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Chapter 1

Introduction

1.1 Whence This Book?
We would all like to have programs check that our programs are correct. Due in no small
part to some bold but unfulfilled promises in the history of computer science, today most
people who write software, practitioners and academics alike, assume that the costs of formal
program verification outweigh the benefits. The purpose of this book is to convince you that
the technology of program verification is mature enough today that it makes sense to use
it in a support role in many kinds of research projects in computer science. Beyond the
convincing, I also want to provide a handbook on practical engineering of certified programs
with the Coq proof assistant. Almost every subject covered is also relevant to interactive
computer theorem-proving in general, such as for traditional mathematical theorems. In
fact, I hope to demonstrate how verified programs are useful as building blocks in all sorts
of formalizations.

Research into mechanized theorem proving began in the second half of the 20th century,
and some of the earliest practical work involved Nqthm [3], the “Boyer-Moore Theorem
Prover,” which was used to prove such theorems as correctness of a complete hardware and
software stack [25]. ACL2 [17], Nqthm’s successor, has seen significant industry adoption,
for instance, by AMD to verify correctness of floating-point division units [26].

Around the beginning of the 21st century, the pace of progress in practical applications
of interactive theorem proving accelerated significantly. Several well-known formal develop-
ments have been carried out in Coq, the system that this book deals with. In the realm
of pure mathematics, Georges Gonthier built a machine-checked proof of the four-color the-
orem [13], a mathematical problem first posed more than a hundred years before, where
the only previous proofs had required trusting ad-hoc software to do brute-force checking
of key facts. In the realm of program verification, Xavier Leroy led the CompCert project
to produce a verified C compiler back-end [19] robust enough to use with real embedded
software.

Many other recent projects have attracted attention by proving important theorems using
computer proof assistant software. For instance, the L4.verified project [18] led by Gerwin
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Klein has given a mechanized proof of correctness for a realistic microkernel, using the
Isabelle/HOL proof assistant [29]. The amount of ongoing work in the area is so large
that I cannot hope to list all the recent successes, so from this point I will assume that
the reader is convinced both that we ought to want machine-checked proofs and that they
seem to be feasible to produce. (To readers not yet convinced, I suggest a Web search for
“machine-checked proof”!)

The idea of certified program features prominently in this book’s title. Here the word
“certified” does not refer to governmental rules for how the reliability of engineered systems
may be demonstrated to sufficiently high standards. Rather, this concept of certification,
a standard one in the programming languages and formal methods communities, has to do
with the idea of a certificate, or formal mathematical artifact proving that a program meets
its specification. Government certification procedures rarely provide strong mathematical
guarantees, while certified programming provides guarantees about as strong as anything we
could hope for. We trust the definition of a foundational mathematical logic, we trust an
implementation of that logic, and we trust that we have encoded our informal intent properly
in formal specifications, but few other opportunities remain to certify incorrect software. For
compilers and other programs that run in batch mode, the notion of a certifying program is
also common, where each run of the program outputs both an answer and a proof that the
answer is correct. Any certifying program can be composed with a proof checker to produce a
certified program, and this book focuses on the certified case, while also introducing principles
and techniques of general interest for stating and proving theorems in Coq.

There are a good number of (though definitely not “many”) tools that are in wide use
today for building machine-checked mathematical proofs and machine-certified programs.
The following is my attempt at an exhaustive list of interactive “proof assistants” satisfying
a few criteria. First, the authors of each tool must intend for it to be put to use for software-
related applications. Second, there must have been enough engineering effort put into the
tool that someone not doing research on the tool itself would feel his time was well spent
using it. A third criterion is more of an empirical validation of the second: the tool must
have a significant user community outside of its own development team.

ACL2 http://www.cs.utexas.edu/users/moore/acl2/
Coq http://coq.inria.fr/

Isabelle/HOL http://isabelle.in.tum.de/
PVS http://pvs.csl.sri.com/
Twelf http://www.twelf.org/

Isabelle/HOL, implemented with the “proof assistant development framework” Isabelle [32],
is the most popular proof assistant for the HOL logic. The other implementations of HOL
can be considered equivalent for purposes of the discussion here.
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1.2 Why Coq?
This book is going to be about certified programming using Coq, and I am convinced that
it is the best tool for the job. Coq has a number of very attractive properties, which I will
summarize here, mentioning which of the other candidate tools lack which properties.

1.2.1 Based on a Higher-Order Functional Programming Language
There is no reason to give up the familiar comforts of functional programming when you start
writing certified programs. All of the tools I listed are based on functional programming
languages, which means you can use them without their proof-related features to write and
run regular programs.

ACL2 is notable in this field for having only a first-order language at its foundation. That
is, you cannot work with functions over functions and all those other treats of functional
programming. By giving up this facility, ACL2 can make broader assumptions about how
well its proof automation will work, but we can generally recover the same advantages in
other proof assistants when we happen to be programming in first-order fragments.

1.2.2 Dependent Types
A language with dependent types may include references to programs inside of types. For
instance, the type of an array might include a program expression giving the size of the
array, making it possible to verify absence of out-of-bounds accesses statically. Dependent
types can go even further than this, effectively capturing any correctness property in a type.
For instance, later in this book, we will see how to give a compiler a type that guarantees
that it maps well-typed source programs to well-typed target programs.

ACL2 and HOL lack dependent types outright. Each of PVS and Twelf supports a
different strict subset of Coq’s dependent type language. Twelf’s type language is restricted
to a bare-bones, monomorphic lambda calculus, which places serious restrictions on how
complicated computations inside types can be. This restriction is important for the soundness
argument behind Twelf’s approach to representing and checking proofs.

In contrast, PVS’s dependent types are much more general, but they are squeezed inside
the single mechanism of subset types, where a normal type is refined by attaching a predicate
over its elements. Each member of the subset type is an element of the base type that
satisfies the predicate. Chapter 6 of this book introduces that style of programming in Coq,
while the remaining chapters of Part II deal with features of dependent typing in Coq that
go beyond what PVS supports.

Dependent types are useful not only because they help you express correctness properties
in types. Dependent types also often let you write certified programs without writing anything
that looks like a proof. Even with subset types, which for many contexts can be used to
express any relevant property with enough acrobatics, the human driving the proof assistant
usually has to build some proofs explicitly. Writing formal proofs is hard, so we want to
avoid it as far as possible. Dependent types are invaluable for this purpose.
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1.2.3 An Easy-to-Check Kernel Proof Language
Scores of automated decision procedures are useful in practical theorem proving, but it
is unfortunate to have to trust in the correct implementation of each procedure. Proof
assistants satisfy the “de Bruijn criterion” when they produce proof terms in small kernel
languages, even when they use complicated and extensible procedures to seek out proofs in
the first place. These core languages have feature complexity on par with what you find in
proposals for formal foundations for mathematics (e.g., ZF set theory). To believe a proof,
we can ignore the possibility of bugs during search and just rely on a (relatively small)
proof-checking kernel that we apply to the result of the search.

Coq meets the de Bruijn criterion, while ACL2 does not, as it employs fancy decision
procedures that produce no “evidence trails” justifying their results. PVS supports strategies
that implement fancier proof procedures in terms of a set of primitive proof steps, where the
primitive steps are less primitive than in Coq. For instance, a propositional tautology solver
is included as a primitive, so it is a question of taste whether such a system meets the de
Bruijn criterion. The HOL implementations meet the de Bruijn criterion more manifestly;
for Twelf, the situation is murkier.

1.2.4 Convenient Programmable Proof Automation
A commitment to a kernel proof language opens up wide possibilities for user extension of
proof automation systems, without allowing user mistakes to trick the overall system into
accepting invalid proofs. Almost any interesting verification problem is undecidable, so it is
important to help users build their own procedures for solving the restricted problems that
they encounter in particular theorems.

Twelf features no proof automation marked as a bona fide part of the latest release;
there is some automation code included for testing purposes. The Twelf style is based on
writing out all proofs in full detail. Because Twelf is specialized to the domain of syntactic
metatheory proofs about programming languages and logics, it is feasible to use it to write
those kinds of proofs manually. Outside that domain, the lack of automation can be a serious
obstacle to productivity. Most kinds of program verification fall outside Twelf’s forte.

Of the remaining tools, all can support user extension with new decision procedures by
hacking directly in the tool’s implementation language (such as OCaml for Coq). Since
ACL2 and PVS do not satisfy the de Bruijn criterion, overall correctness is at the mercy of
the authors of new procedures.

Isabelle/HOL and Coq both support coding new proof manipulations in ML in ways that
cannot lead to the acceptance of invalid proofs. Additionally, Coq includes a domain-specific
language for coding decision procedures in normal Coq source code, with no need to break
out into ML. This language is called Ltac, and I think of it as the unsung hero of the proof
assistant world. Not only does Ltac prevent you from making fatal mistakes, it also includes
a number of novel programming constructs which combine to make a “proof by decision
procedure” style very pleasant. We will meet these features in the chapters to come.
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1.2.5 Proof by Reflection
A surprising wealth of benefits follows from choosing a proof language that integrates a rich
notion of computation. Coq includes programs and proof terms in the same syntactic class.
This makes it easy to write programs that compute proofs. With rich enough dependent
types, such programs are certified decision procedures. In such cases, these certified proce-
dures can be put to good use without ever running them! Their types guarantee that, if we
did bother to run them, we would receive proper “ground” proofs.

The critical ingredient for this technique, many of whose instances are referred to as
proof by reflection, is a way of inducing non-trivial computation inside of logical propositions
during proof checking. Further, most of these instances require dependent types to make it
possible to state the appropriate theorems. Of the proof assistants I listed, only Coq really
provides support for the type-level computation style of reflection, though PVS supports
very similar functionality via refinement types.

1.3 Why Not a Different Dependently Typed Language?
The logic and programming language behind Coq belongs to a type-theory ecosystem with
a good number of other thriving members. Agda1 and Epigram2 are the most developed
tools among the alternatives to Coq, and there are others that are earlier in their lifecycles.
All of the languages in this family feel sort of like different historical offshoots of Latin.
The hardest conceptual epiphanies are, for the most part, portable among all the languages.
Given this, why choose Coq for certified programming?

I think the answer is simple. None of the competition has well-developed systems for
tactic-based theorem proving. Agda and Epigram are designed and marketed more as pro-
gramming languages than proof assistants. Dependent types are great, because they often
help you prove deep theorems without doing anything that feels like proving. Nonetheless,
almost any interesting certified programming project will benefit from some activity that de-
serves to be called proving, and many interesting projects absolutely require semi-automated
proving, to protect the sanity of the programmer. Informally, proving is unavoidable when
any correctness proof for a program has a structure that does not mirror the structure of
the program itself. An example is a compiler correctness proof, which probably proceeds by
induction on program execution traces, which have no simple relationship with the structure
of the compiler or the structure of the programs it compiles. In building such proofs, a
mature system for scripted proof automation is invaluable.

On the other hand, Agda, Epigram, and similar tools have less implementation baggage
associated with them, and so they tend to be the default first homes of innovations in practical
type theory. Some significant kinds of dependently typed programs are much easier to write
in Agda and Epigram than in Coq. The former tools may very well be superior choices for
projects that do not involve any “proving.” Anecdotally, I have gotten the impression that

1http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php
2https://code.google.com/p/epigram/
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manual proving is orders of magnitudes more costly than manual coping with Coq’s lack
of programming bells and whistles. In this book, I will devote significant space to patterns
for programming with dependent types in Coq as it is today. We can hope that the type
theory community is tending towards convergence on the right set of features for practical
programming with dependent types, and that we will eventually have a single tool embodying
those features.

1.4 Engineering with a Proof Assistant
In comparisons with its competitors, Coq is often derided for promoting unreadable proofs.
It is very easy to write proof scripts that manipulate proof goals imperatively, with no
structure to aid readers. Such developments are nightmares to maintain, and they certainly
do not manage to convey “why the theorem is true” to anyone but the original author.
One additional (and not insignificant) purpose of this book is to show why it is unfair and
unproductive to dismiss Coq based on the existence of such developments.

I will go out on a limb and guess that the reader is a fan of some programming language
and may even have been involved in teaching that language to undergraduates. I want to
propose an analogy between two attitudes: coming to a negative conclusion about Coq after
reading common Coq developments in the wild, and coming to a negative conclusion about
Your Favorite Language after looking at the programs undergraduates write in it in the first
week of class. The pragmatics of mechanized proving and program verification have been
under serious study for much less time than the pragmatics of programming have been. The
computer theorem proving community is still developing the key insights that correspond
to those that programming texts and instructors impart to their students, to help those
students get over that critical hump where using the language stops being more trouble than
it is worth. Most of the insights for Coq are barely even disseminated among the experts,
let alone set down in a tutorial form. I hope to use this book to go a long way towards
remedying that.

If I do that job well, then this book should be of interest even to people who have
participated in classes or tutorials specifically about Coq. The book should even be useful to
people who have been using Coq for years but who are mystified when their Coq developments
prove impenetrable by colleagues. The crucial angle in this book is that there are “design
patterns” for reliably avoiding the really grungy parts of theorem proving, and consistent
use of these patterns can get you over the hump to the point where it is worth your while to
use Coq to prove your theorems and certify your programs, even if formal verification is not
your main concern in a project. We will follow this theme by pursuing two main methods for
replacing manual proofs with more understandable artifacts: dependently typed functions
and custom Ltac decision procedures.
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1.5 Prerequisites
I try to keep the required background knowledge to a minimum in this book. I will as-
sume familiarity with the material from usual discrete math and logic courses taken by
undergraduate computer science majors, and I will assume that readers have significant ex-
perience programming in one of the ML dialects, in Haskell, or in some other, closely related
language. Experience with only dynamically typed functional languages might lead to be-
fuddlement in some places, but a reader who has come to understand Scheme deeply will
probably be fine.

My background is in programming languages, formal semantics, and program verification.
I sometimes use examples from that domain. As a reference on these topics, I recommend
Types and Programming Languages [36], by Benjamin C. Pierce; however, I have tried to
choose examples so that they may be understood without background in semantics.

1.6 Using This Book
This book is generated automatically from Coq source files using the wonderful coqdoc
program. The latest PDF version, with hyperlinks from identifier uses to the corresponding
definitions, is available at:

http://adam.chlipala.net/cpdt/cpdt.pdf

There is also an online HTML version available, which of course also provides hyperlinks:

http://adam.chlipala.net/cpdt/html/toc.html

The source code to the book is also freely available at:

http://adam.chlipala.net/cpdt/cpdt.tgz

There, you can find all of the code appearing in this book, with prose interspersed in
comments, in exactly the order that you find in this document. You can step through
the code interactively with your chosen graphical Coq interface. The code also has special
comments indicating which parts of the chapters make suitable starting points for interactive
class sessions, where the class works together to construct the programs and proofs. The
included Makefile has a target templates for building a fresh set of class template files
automatically from the book source.

A traditional printed version of the book is slated to appear from MIT Press in the future.
The online versions will remain available at no cost even after the printed book is released,
and I intend to keep the source code up-to-date with bug fixes and compatibility changes to
track new Coq releases.

I believe that a good graphical interface to Coq is crucial for using it productively. I
use the Proof General3 mode for Emacs, which supports a number of other proof assistants

3http://proofgeneral.inf.ed.ac.uk/

12



besides Coq. There is also the standalone CoqIDE program developed by the Coq team.
I like being able to combine certified programming and proving with other kinds of work
inside the same full-featured editor. In the initial part of this book, I will reference Proof
General procedures explicitly, in introducing how to use Coq, but most of the book will be
interface-agnostic, so feel free to use CoqIDE if you prefer it. The one issue with CoqIDE
before version 8.4, regarding running through the book source, is that I will sometimes begin
a proof attempt but cancel it with the Coq Abort or Restart commands, which CoqIDE
did not support until recently. It would be bad form to leave such commands lying around
in a real, finished development, but I find these commands helpful in writing single source
files that trace a user’s thought process in designing a proof.

1.6.1 Reading This Book
For experts in functional programming or formal methods, learning to use Coq is not hard,
in a sense. The Coq manual [7], the textbook by Bertot and Castéran [1], and Pierce et al.’s
Software Foundations4 have helped many people become productive Coq users. However,
I believe that the best ways to manage significant Coq developments are far from settled.
In this book, I mean to propose my own techniques, and, rather than treating them as
advanced material for a final chapter or two, I employ them from the very beginning. After
a first chapter showing off what can be done with dependent types, I retreat into simpler
programming styles for the first part of the book. I adopt the other main thrust of the book,
Ltac proof automation, more or less from the very start of the technical exposition.

Some readers have suggested that I give multiple recommended reading orders in this
introduction, targeted at people with different levels of Coq expertise. It is certainly true
that Part I of the book devotes significant space to basic concepts that most Coq users
already know quite well. However, as I am introducing these concepts, I am also developing
my preferred automated proof style, so I think even the chapters on basics are worth reading
for experienced Coq hackers.

Readers with no prior Coq experience can ignore the preceding discussion! I hope that
my heavy reliance on proof automation early on will seem like the most natural way to go,
such that you may wonder why others are spending so much time entering sequences of proof
steps manually.

Coq is a very complex system, with many different commands driven more by pragmatic
concerns than by any overarching aesthetic principle. When I use some construct for the first
time, I try to give a one-sentence intuition for what it accomplishes, but I leave the details to
the Coq reference manual [7]. I expect that readers interested in complete understanding will
be consulting that manual frequently; in that sense, this book is not meant to be completely
standalone. I often use constructs in code snippets without first introducing them at all, but
explanations should always follow in the prose paragraphs immediately after the offending
snippets.

Previous versions of the book included some suggested exercises at the ends of chapters.
4http://www.cis.upenn.edu/~bcpierce/sf/
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Since then, I have decided to remove the exercises and focus on the main book exposition.
A database of exercises proposed by various readers of the book is available on the Web5. I
do want to suggest, though, that the best way to learn Coq is to get started applying it in
a real project, rather than focusing on artificial exercises.

1.6.2 On the Tactic Library
To make it possible to start from fancy proof automation, rather than working up to it, I
have included with the book source a library of tactics, or programs that find proofs, since
the built-in Coq tactics do not support a high enough level of automation. I use these tactics
even from the first chapter with code examples.

Some readers have asked about the pragmatics of using this tactic library in their own
developments. My position there is that this tactic library was designed with the specific
examples of the book in mind; I do not recommend using it in other settings. Part III
should impart the necessary skills to reimplement these tactics and beyond. One generally
deals with undecidable problems in interactive theorem proving, so there can be no tactic
that solves all goals, though the crush tactic that we will meet soon may sometimes feel like
that! There are still very useful tricks found in the implementations of crush and its cousins,
so it may be useful to examine the commented source file CpdtTactics.v. I implement
a new tactic library for each new project, since each project involves a different mix of
undecidable theories where a different set of heuristics turns out to work well; and that is
what I recommend others do, too.

1.6.3 Installation and Emacs Set-Up
At the start of the next chapter, I assume that you have installed Coq and Proof General.
The code in this book is tested with Coq versions 8.4pl5 and 8.5beta2. Though parts may
work with other versions, it is expected that the book source will fail to build with earlier
versions.

To set up your Proof General environment to process the source to the next chapter, a
few simple steps are required.

1. Get the book source from

http://adam.chlipala.net/cpdt/cpdt.tgz

2. Unpack the tarball to some directory DIR.

3. Run make in DIR (ideally with a -j flag to use multiple processor cores, if you have
them).

5http://adam.chlipala.net/cpdt/ex/
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4. There are some minor headaches associated with getting Proof General to pass the
proper command line arguments to the coqtop program, which provides the interactive
Coq toplevel. One way to add settings that will be shared by many source files is to
add a custom variable setting to your .emacs file, like this:

(custom-set-variables
...
’(coq-prog-args ’("-R" "DIR/src" "Cpdt"))
...

)

The extra arguments demonstrated here are the proper choices for working with the
code for this book. The ellipses stand for other Emacs customization settings you may
already have. It can be helpful to save several alternate sets of flags in your .emacs
file, with all but one commented out within the custom-set-variables block at any
given time.
Alternatively, Proof General configuration can be set on a per-directory basis, using a
.dir-locals.el file in the directory of the source files for which you want the settings
to apply. Here is an example that could be written in such a file to enable use of the
book source. Note the need to include an argument that starts Coq in Emacs support
mode.

((coq-mode . ((coq-prog-args . ("-emacs-U" "-R" "DIR/src" "Cpdt")))))

Every chapter of this book is generated from a commented Coq source file. You can load
these files and run through them step-by-step in Proof General. Be sure to run the Coq
binary coqtop with the command-line argument -R DIR/src Cpdt. If you have installed
Proof General properly, the Coq mode should start automatically when you visit a .v buffer
in Emacs, and the above advice on .emacs settings should ensure that the proper arguments
are passed to coqtop by Emacs.

With Proof General, the portion of a buffer that Coq has processed is highlighted in some
way, like being given a blue background. You step through Coq source files by positioning
the point at the position you want Coq to run to and pressing C-C C-RET. This can be used
both for normal step-by-step coding, by placing the point inside some command past the
end of the highlighted region; and for undoing, by placing the point inside the highlighted
region.
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1.7 Chapter Source Files
Chapter Source

Some Quick Examples StackMachine.v
Introducing Inductive Types InductiveTypes.v

Inductive Predicates Predicates.v
Infinite Data and Proofs Coinductive.v

Subset Types and Variations Subset.v
General Recursion GeneralRec.v

More Dependent Types MoreDep.v
Dependent Data Structures DataStruct.v

Reasoning About Equality Proofs Equality.v
Generic Programming Generic.v
Universes and Axioms Universes.v

Proof Search by Logic Programming LogicProg.v
Proof Search in Ltac Match.v
Proof by Reflection Reflection.v

Proving in the Large Large.v
A Taste of Reasoning About Programming Language Syntax ProgLang.v
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Chapter 2

Some Quick Examples

I will start off by jumping right in to a fully worked set of examples, building certified
compilers from increasingly complicated source languages to stack machines. We will meet
a few useful tactics and see how they can be used in manual proofs, and we will also see
how easily these proofs can be automated instead. This chapter is not meant to give full
explanations of the features that are employed. Rather, it is meant more as an advertisement
of what is possible. Later chapters will introduce all of the concepts in bottom-up fashion.
In other words, it is expected that most readers will not understand what exactly is going
on here, but I hope this demo will whet your appetite for the remaining chapters!

As always, you can step through the source file StackMachine.v for this chapter interac-
tively in Proof General. Alternatively, to get a feel for the whole lifecycle of creating a Coq
development, you can enter the pieces of source code in this chapter in a new .v file in an
Emacs buffer. If you do the latter, include these three lines at the start of the file.
Require Import Bool Arith List Cpdt.CpdtTactics.
Set Implicit Arguments.
Set Asymmetric Patterns.

In general, similar commands will be hidden in the book rendering of each chapter’s
source code, so you will need to insert them in from-scratch replayings of the code that
is presented. To be more specific, every chapter begins with the above three lines, with
the import list tweaked as appropriate, considering which definitions the chapter uses. The
second command above affects the default behavior of definitions regarding type inference,
and the third allows for more concise pattern-matching syntax in Coq versions 8.5 and higher
(having no effect in earlier versions).

2.1 Arithmetic Expressions Over Natural Numbers
We will begin with that staple of compiler textbooks, arithmetic expressions over a single
type of numbers.
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2.1.1 Source Language
We begin with the syntax of the source language.
Inductive binop : Set := Plus | Times.

Our first line of Coq code should be unsurprising to ML and Haskell programmers. We
define an algebraic datatype binop to stand for the binary operators of our source lan-
guage. There are just two wrinkles compared to ML and Haskell. First, we use the keyword
Inductive, in place of data, datatype, or type. This is not just a trivial surface syntax
difference; inductive types in Coq are much more expressive than garden variety algebraic
datatypes, essentially enabling us to encode all of mathematics, though we begin humbly
in this chapter. Second, there is the : Set fragment, which declares that we are defining a
datatype that should be thought of as a constituent of programs. Later, we will see other
options for defining datatypes in the universe of proofs or in an infinite hierarchy of universes,
encompassing both programs and proofs, that is useful in higher-order constructions.
Inductive exp : Set :=
| Const : nat → exp
| Binop : binop → exp → exp → exp.

Now we define the type of arithmetic expressions. We write that a constant may be built
from one argument, a natural number; and a binary operation may be built from a choice
of operator and two operand expressions.

A note for readers following along in the PDF version: coqdoc supports pretty-printing
of tokens in LATEX or HTML. Where you see a right arrow character, the source contains the
ASCII text ->. Other examples of this substitution appearing in this chapter are a double
right arrow for =>, the inverted ‘A’ symbol for forall, and the Cartesian product ‘X’ for
*. When in doubt about the ASCII version of a symbol, you can consult the chapter source
code.

Now we are ready to say what programs in our expression language mean. We will do
this by writing an interpreter that can be thought of as a trivial operational or denotational
semantics. (If you are not familiar with these semantic techniques, no need to worry: we
will stick to “common sense” constructions.)
Definition binopDenote (b : binop) : nat → nat → nat :=
match b with
| Plus ⇒ plus
| Times ⇒ mult

end.
The meaning of a binary operator is a binary function over naturals, defined with pattern-

matching notation analogous to the case and match of ML and Haskell, and referring to the
functions plus and mult from the Coq standard library. The keyword Definition is Coq’s
all-purpose notation for binding a term of the programming language to a name, with some
associated syntactic sugar, like the notation we see here for defining a function. That sugar
could be expanded to yield this definition:
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Definition binopDenote : binop → nat → nat → nat := fun (b : binop) ⇒
match b with
| Plus ⇒ plus
| Times ⇒ mult

end.
In this example, we could also omit all of the type annotations, arriving at:

Definition binopDenote := fun b ⇒
match b with
| Plus ⇒ plus
| Times ⇒ mult

end.
Languages like Haskell and ML have a convenient principal types property, which gives

us strong guarantees about how effective type inference will be. Unfortunately, Coq’s type
system is so expressive that any kind of “complete” type inference is impossible, and the task
even seems to be hard in practice. Nonetheless, Coq includes some very helpful heuristics,
many of them copying the workings of Haskell and ML type-checkers for programs that fall
in simple fragments of Coq’s language.

This is as good a time as any to mention the profusion of different languages associ-
ated with Coq. The theoretical foundation of Coq is a formal system called the Calculus of
Inductive Constructions (CIC) [31], which is an extension of the older Calculus of Construc-
tions (CoC) [9]. CIC is quite a spartan foundation, which is helpful for proving metatheory
but not so helpful for real development. Still, it is nice to know that it has been proved
that CIC enjoys properties like strong normalization [31], meaning that every program (and,
more importantly, every proof term) terminates; and relative consistency [48] with systems
like versions of Zermelo-Fraenkel set theory, which roughly means that you can believe that
Coq proofs mean that the corresponding propositions are “really true,” if you believe in set
theory.

Coq is actually based on an extension of CIC called Gallina. The text after the := and
before the period in the last code example is a term of Gallina. Gallina includes several
useful features that must be considered as extensions to CIC. The important metatheorems
about CIC have not been extended to the full breadth of the features that go beyond the
formalized language, but most Coq users do not seem to lose much sleep over this omission.

Next, there is Ltac, Coq’s domain-specific language for writing proofs and decision pro-
cedures. We will see some basic examples of Ltac later in this chapter, and much of this
book is devoted to more involved Ltac examples.

Finally, commands like Inductive and Definition are part of the Vernacular, which
includes all sorts of useful queries and requests to the Coq system. Every Coq source file is a
series of vernacular commands, where many command forms take arguments that are Gallina
or Ltac programs. (Actually, Coq source files are more like trees of vernacular commands,
thanks to various nested scoping constructs.)

We can give a simple definition of the meaning of an expression:
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Fixpoint expDenote (e : exp) : nat :=
match e with
| Const n ⇒ n
| Binop b e1 e2 ⇒ (binopDenote b) (expDenote e1 ) (expDenote e2 )

end.
We declare explicitly that this is a recursive definition, using the keyword Fixpoint. The

rest should be old hat for functional programmers.
It is convenient to be able to test definitions before starting to prove things about them.

We can verify that our semantics is sensible by evaluating some sample uses, using the
command Eval. This command takes an argument expressing a reduction strategy, or an
“order of evaluation.” Unlike with ML, which hardcodes an eager reduction strategy, or
Haskell, which hardcodes a lazy strategy, in Coq we are free to choose between these and
many other orders of evaluation, because all Coq programs terminate. In fact, Coq silently
checked termination of our Fixpoint definition above, using a simple heuristic based on
monotonically decreasing size of arguments across recursive calls. Specifically, recursive calls
must be made on arguments that were pulled out of the original recursive argument with
match expressions. (In Chapter 7, we will see some ways of getting around this restriction,
though simply removing the restriction would leave Coq useless as a theorem proving tool,
for reasons we will start to learn about in the next chapter.)

To return to our test evaluations, we run the Eval command using the simpl evalua-
tion strategy, whose definition is best postponed until we have learned more about Coq’s
foundations, but which usually gets the job done.
Eval simpl in expDenote (Const 42).

= 42 : nat
Eval simpl in expDenote (Binop Plus (Const 2) (Const 2)).

= 4 : nat
Eval simpl in expDenote (Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7)).

= 28 : nat
Nothing too surprising goes on here, so we are ready to move on to the target language

of our compiler.

2.1.2 Target Language
We will compile our source programs onto a simple stack machine, whose syntax is:
Inductive instr : Set :=
| iConst : nat → instr
| iBinop : binop → instr.
Definition prog := list instr.
Definition stack := list nat.

An instruction either pushes a constant onto the stack or pops two arguments, applies
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a binary operator to them, and pushes the result onto the stack. A program is a list of
instructions, and a stack is a list of natural numbers.

We can give instructions meanings as functions from stacks to optional stacks, where
running an instruction results in None in case of a stack underflow and results in Some s’
when the result of execution is the new stack s’. The infix operator :: is “list cons” from the
Coq standard library.
Definition instrDenote (i : instr) (s : stack) : option stack :=
match i with
| iConst n ⇒ Some (n :: s)
| iBinop b ⇒
match s with
| arg1 :: arg2 :: s’ ⇒ Some ((binopDenote b) arg1 arg2 :: s’)
| ⇒ None

end
end.
With instrDenote defined, it is easy to define a function progDenote, which iterates appli-

cation of instrDenote through a whole program.
Fixpoint progDenote (p : prog) (s : stack) : option stack :=
match p with
| nil ⇒ Some s
| i :: p’ ⇒
match instrDenote i s with
| None ⇒ None
| Some s’ ⇒ progDenote p’ s’

end
end.
With the two programming languages defined, we can turn to the compiler definition.

2.1.3 Translation
Our compiler itself is now unsurprising. The list concatenation operator ++ comes from the
Coq standard library.
Fixpoint compile (e : exp) : prog :=
match e with
| Const n ⇒ iConst n :: nil
| Binop b e1 e2 ⇒ compile e2 ++ compile e1 ++ iBinop b :: nil

end.
Before we set about proving that this compiler is correct, we can try a few test runs,

using our sample programs from earlier.
Eval simpl in compile (Const 42).

= iConst 42 :: nil : prog
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Eval simpl in compile (Binop Plus (Const 2) (Const 2)).
= iConst 2 :: iConst 2 :: iBinop Plus :: nil : prog

Eval simpl in compile (Binop Times (Binop Plus (Const 2) (Const 2)) (Const 7)).
= iConst 7 :: iConst 2 :: iConst 2 :: iBinop Plus :: iBinop Times :: nil : prog
We can also run our compiled programs and check that they give the right results.

Eval simpl in progDenote (compile (Const 42)) nil.
= Some (42 :: nil) : option stack

Eval simpl in progDenote (compile (Binop Plus (Const 2) (Const 2))) nil.
= Some (4 :: nil) : option stack

Eval simpl in progDenote (compile (Binop Times (Binop Plus (Const 2) (Const 2))
(Const 7))) nil.
= Some (28 :: nil) : option stack
So far so good, but how can we be sure the compiler operates correctly for all input

programs?

2.1.4 Translation Correctness
We are ready to prove that our compiler is implemented correctly. We can use a new
vernacular command Theorem to start a correctness proof, in terms of the semantics we
defined earlier:
Theorem compile correct : ∀ e, progDenote (compile e) nil = Some (expDenote e :: nil).

Though a pencil-and-paper proof might clock out at this point, writing “by a routine
induction on e,” it turns out not to make sense to attack this proof directly. We need to
use the standard trick of strengthening the induction hypothesis. We do that by proving an
auxiliary lemma, using the command Lemma that is a synonym for Theorem, conventionally
used for less important theorems that appear in the proofs of primary theorems.
Abort.
Lemma compile correct’ : ∀ e p s,

progDenote (compile e ++ p) s = progDenote p (expDenote e :: s).
After the period in the Lemma command, we are in the interactive proof-editing mode. We

find ourselves staring at this ominous screen of text:

1 subgoal

============================
∀ (e : exp) (p : list instr) (s : stack),
progDenote (compile e ++ p) s = progDenote p (expDenote e :: s)

Coq seems to be restating the lemma for us. What we are seeing is a limited case of
a more general protocol for describing where we are in a proof. We are told that we have
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a single subgoal. In general, during a proof, we can have many pending subgoals, each of
which is a logical proposition to prove. Subgoals can be proved in any order, but it usually
works best to prove them in the order that Coq chooses.

Next in the output, we see our single subgoal described in full detail. There is a double-
dashed line, above which would be our free variables and hypotheses, if we had any. Below
the line is the conclusion, which, in general, is to be proved from the hypotheses.

We manipulate the proof state by running commands called tactics. Let us start out by
running one of the most important tactics:
induction e.
We declare that this proof will proceed by induction on the structure of the expression e.

This swaps out our initial subgoal for two new subgoals, one for each case of the inductive
proof:

2 subgoals

n : nat
============================
∀ (s : stack) (p : list instr),
progDenote (compile (Const n) ++ p) s =
progDenote p (expDenote (Const n) :: s)

subgoal 2 is

∀ (s : stack) (p : list instr),
progDenote (compile (Binop b e1 e2 ) ++ p) s =
progDenote p (expDenote (Binop b e1 e2 ) :: s)

The first and current subgoal is displayed with the double-dashed line below free variables
and hypotheses, while later subgoals are only summarized with their conclusions. We see
an example of a free variable in the first subgoal; n is a free variable of type nat. The
conclusion is the original theorem statement where e has been replaced by Const n. In a
similar manner, the second case has e replaced by a generalized invocation of the Binop
expression constructor. We can see that proving both cases corresponds to a standard proof
by structural induction.

We begin the first case with another very common tactic.
intros.
The current subgoal changes to:

n : nat
s : stack
p : list instr
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============================
progDenote (compile (Const n) ++ p) s =
progDenote p (expDenote (Const n) :: s)

We see that intros changes ∀-bound variables at the beginning of a goal into free vari-
ables.

To progress further, we need to use the definitions of some of the functions appearing in
the goal. The unfold tactic replaces an identifier with its definition.
unfold compile.

n : nat
s : stack
p : list instr
============================
progDenote ((iConst n :: nil) ++ p) s =
progDenote p (expDenote (Const n) :: s)

unfold expDenote.

n : nat
s : stack
p : list instr
============================
progDenote ((iConst n :: nil) ++ p) s = progDenote p (n :: s)

We only need to unfold the first occurrence of progDenote to prove the goal. An at clause
used with unfold specifies a particular occurrence of an identifier to unfold, where we count
occurrences from left to right.
unfold progDenote at 1.

n : nat
s : stack
p : list instr
============================
(fix progDenote (p0 : prog) (s0 : stack) {struct p0} :
option stack :=
match p0 with
| nil ⇒ Some s0
| i :: p’ ⇒

match instrDenote i s0 with
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| Some s’ ⇒ progDenote p’ s’
| None ⇒ None (A:=stack)
end

end) ((iConst n :: nil) ++ p) s =
progDenote p (n :: s)

This last unfold has left us with an anonymous recursive definition of progDenote (simi-
larly to how fun or “lambda” constructs in general allow anonymous non-recursive functions),
which will generally happen when unfolding recursive definitions. Note that Coq has auto-
matically renamed the fix arguments p and s to p0 and s0, to avoid clashes with our local
free variables. There is also a subterm None (A:=stack), which has an annotation speci-
fying that the type of the term ought to be option stack. This is phrased as an explicit
instantiation of a named type parameter A from the definition of option.

Fortunately, in this case, we can eliminate the complications of anonymous recursion
right away, since the structure of the argument (iConst n :: nil) ++ p is known, allowing
us to simplify the internal pattern match with the simpl tactic, which applies the same
reduction strategy that we used earlier with Eval (and whose details we still postpone).
simpl.

n : nat
s : stack
p : list instr
============================
(fix progDenote (p0 : prog) (s0 : stack) {struct p0} :
option stack :=
match p0 with
| nil ⇒ Some s0
| i :: p’ ⇒

match instrDenote i s0 with
| Some s’ ⇒ progDenote p’ s’
| None ⇒ None (A:=stack)
end

end) p (n :: s) = progDenote p (n :: s)

Now we can unexpand the definition of progDenote:
fold progDenote.

n : nat
s : stack
p : list instr
============================
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progDenote p (n :: s) = progDenote p (n :: s)

It looks like we are at the end of this case, since we have a trivial equality. Indeed, a
single tactic finishes us off:
reflexivity.
On to the second inductive case:

b : binop
e1 : exp
IHe1 : ∀ (s : stack) (p : list instr),

progDenote (compile e1 ++ p) s = progDenote p (expDenote e1 :: s)
e2 : exp
IHe2 : ∀ (s : stack) (p : list instr),

progDenote (compile e2 ++ p) s = progDenote p (expDenote e2 :: s)
============================
∀ (s : stack) (p : list instr),
progDenote (compile (Binop b e1 e2 ) ++ p) s =
progDenote p (expDenote (Binop b e1 e2 ) :: s)

We see our first example of hypotheses above the double-dashed line. They are the
inductive hypotheses IHe1 and IHe2 corresponding to the subterms e1 and e2, respectively.

We start out the same way as before, introducing new free variables and unfolding and
folding the appropriate definitions. The seemingly frivolous unfold/fold pairs are actually
accomplishing useful work, because unfold will sometimes perform easy simplifications.
intros.
unfold compile.
fold compile.
unfold expDenote.
fold expDenote.
Now we arrive at a point where the tactics we have seen so far are insufficient. No further

definition unfoldings get us anywhere, so we will need to try something different.

b : binop
e1 : exp
IHe1 : ∀ (s : stack) (p : list instr),

progDenote (compile e1 ++ p) s = progDenote p (expDenote e1 :: s)
e2 : exp
IHe2 : ∀ (s : stack) (p : list instr),

progDenote (compile e2 ++ p) s = progDenote p (expDenote e2 :: s)
s : stack
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p : list instr
============================
progDenote ((compile e2 ++ compile e1 ++ iBinop b :: nil) ++ p) s =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

What we need is the associative law of list concatenation, which is available as a theorem
app assoc reverse in the standard library. (Here and elsewhere, it is possible to tell the
difference between inputs and outputs to Coq by periods at the ends of the inputs.)
Check app assoc reverse.

app assoc reverse
: ∀ (A : Type) (l m n : list A), (l ++ m) ++ n = l ++ m ++ n

If we did not already know the name of the theorem, we could use the SearchRewrite
command to find it, based on a pattern that we would like to rewrite:
SearchRewrite (( ++ ) ++ ).

app assoc reverse:
∀ (A : Type) (l m n : list A), (l ++ m) ++ n = l ++ m ++ n

app assoc: ∀ (A : Type) (l m n : list A), l ++ m ++ n = (l ++ m) ++ n

We use app assoc reverse to perform a rewrite:
rewrite app assoc reverse.

changing the conclusion to:

progDenote (compile e2 ++ (compile e1 ++ iBinop b :: nil) ++ p) s =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

Now we can notice that the lefthand side of the equality matches the lefthand side of the
second inductive hypothesis, so we can rewrite with that hypothesis, too.
rewrite IHe2.

progDenote ((compile e1 ++ iBinop b :: nil) ++ p) (expDenote e2 :: s) =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

The same process lets us apply the remaining hypothesis.
rewrite app assoc reverse.
rewrite IHe1.
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progDenote ((iBinop b :: nil) ++ p) (expDenote e1 :: expDenote e2 :: s) =
progDenote p (binopDenote b (expDenote e1 ) (expDenote e2 ) :: s)

Now we can apply a similar sequence of tactics to the one that ended the proof of the
first case.
unfold progDenote at 1.
simpl.
fold progDenote.
reflexivity.
And the proof is completed, as indicated by the message:

Proof completed.

And there lies our first proof. Already, even for simple theorems like this, the final proof
script is unstructured and not very enlightening to readers. If we extend this approach
to more serious theorems, we arrive at the unreadable proof scripts that are the favorite
complaints of opponents of tactic-based proving. Fortunately, Coq has rich support for
scripted automation, and we can take advantage of such a scripted tactic (defined elsewhere)
to make short work of this lemma. We abort the old proof attempt and start again.
Abort.

Lemma compile correct’ : ∀ e s p, progDenote (compile e ++ p) s =
progDenote p (expDenote e :: s).
induction e; crush.

Qed.
We need only to state the basic inductive proof scheme and call a tactic that automates

the tedious reasoning in between. In contrast to the period tactic terminator from our last
proof, the semicolon tactic separator supports structured, compositional proofs. The tactic
t1 ; t2 has the effect of running t1 and then running t2 on each remaining subgoal. The
semicolon is one of the most fundamental building blocks of effective proof automation. The
period terminator is very useful for exploratory proving, where you need to see interme-
diate proof states, but final proofs of any serious complexity should have just one period,
terminating a single compound tactic that probably uses semicolons.

The crush tactic comes from the library associated with this book and is not part of
the Coq standard library. The book’s library contains a number of other tactics that are
especially helpful in highly automated proofs.

The Qed command checks that the proof is finished and, if so, saves it. The tactic
commands we have written above are an example of a proof script, or a series of Ltac
programs; while Qed uses the result of the script to generate a proof term, a well-typed term
of Gallina. To believe that a theorem is true, we only need to trust that the (relatively
simple) checker for proof terms is correct; the use of proof scripts is immaterial. Part I of
this book will introduce the principles behind encoding all proofs as terms of Gallina.
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The proof of our main theorem is now easy. We prove it with four period-terminated
tactics, though separating them with semicolons would work as well; the version here is
easier to step through.
Theorem compile correct : ∀ e, progDenote (compile e) nil = Some (expDenote e :: nil).
intros.

e : exp
============================
progDenote (compile e) nil = Some (expDenote e :: nil)

At this point, we want to massage the lefthand side to match the statement of compile correct’.
A theorem from the standard library is useful:
Check app nil end.

app nil end
: ∀ (A : Type) (l : list A), l = l ++ nil

rewrite (app nil end (compile e)).
This time, we explicitly specify the value of the variable l from the theorem statement,

since multiple expressions of list type appear in the conclusion. The rewrite tactic might
choose the wrong place to rewrite if we did not specify which we want.

e : exp
============================
progDenote (compile e ++ nil) nil = Some (expDenote e :: nil)

Now we can apply the lemma.
rewrite compile correct’.

e : exp
============================
progDenote nil (expDenote e :: nil) = Some (expDenote e :: nil)

We are almost done. The lefthand and righthand sides can be seen to match by simple
symbolic evaluation. That means we are in luck, because Coq identifies any pair of terms as
equal whenever they normalize to the same result by symbolic evaluation. By the definition
of progDenote, that is the case here, but we do not need to worry about such details. A
simple invocation of reflexivity does the normalization and checks that the two results
are syntactically equal.
reflexivity.
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Qed.
This proof can be shortened and automated, but we leave that task as an exercise for

the reader.

2.2 Typed Expressions
In this section, we will build on the initial example by adding additional expression forms
that depend on static typing of terms for safety.

2.2.1 Source Language
We define a trivial language of types to classify our expressions:
Inductive type : Set := Nat | Bool.

Like most programming languages, Coq uses case-sensitive variable names, so that our
user-defined type type is distinct from the Type keyword that we have already seen appear
in the statement of a polymorphic theorem (and that we will meet in more detail later),
and our constructor names Nat and Bool are distinct from the types nat and bool in the
standard library.

Now we define an expanded set of binary operators.
Inductive tbinop : type → type → type → Set :=
| TPlus : tbinop Nat Nat Nat
| TTimes : tbinop Nat Nat Nat
| TEq : ∀ t, tbinop t t Bool
| TLt : tbinop Nat Nat Bool.

The definition of tbinop is different from binop in an important way. Where we declared
that binop has type Set, here we declare that tbinop has type type → type → type →
Set. We define tbinop as an indexed type family. Indexed inductive types are at the heart
of Coq’s expressive power; almost everything else of interest is defined in terms of them.

The intuitive explanation of tbinop is that a tbinop t1 t2 t is a binary operator whose
operands should have types t1 and t2, and whose result has type t. For instance, constructor
TLt (for less-than comparison of numbers) is assigned type tbinop Nat Nat Bool, meaning the
operator’s arguments are naturals and its result is Boolean. The type of TEq introduces a
small bit of additional complication via polymorphism: we want to allow equality comparison
of any two values of any type, as long as they have the same type.

ML and Haskell have indexed algebraic datatypes. For instance, their list types are
indexed by the type of data that the list carries. However, compared to Coq, ML and
Haskell 98 place two important restrictions on datatype definitions.

First, the indices of the range of each data constructor must be type variables bound at
the top level of the datatype definition. There is no way to do what we did here, where we,
for instance, say that TPlus is a constructor building a tbinop whose indices are all fixed at
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Nat. Generalized algebraic datatypes (GADTs) [50] are a popular feature in GHC Haskell,
OCaml 4, and other languages that removes this first restriction.

The second restriction is not lifted by GADTs. In ML and Haskell, indices of types must
be types and may not be expressions. In Coq, types may be indexed by arbitrary Gallina
terms. Type indices can live in the same universe as programs, and we can compute with
them just like regular programs. Haskell supports a hobbled form of computation in type
indices based on multi-parameter type classes, and recent extensions like type functions bring
Haskell programming even closer to “real” functional programming with types, but, without
dependent typing, there must always be a gap between how one programs with types and
how one programs normally.

We can define a similar type family for typed expressions, where a term of type texp t can
be assigned object language type t. (It is conventional in the world of interactive theorem
proving to call the language of the proof assistant the meta language and a language being
formalized the object language.)
Inductive texp : type → Set :=
| TNConst : nat → texp Nat
| TBConst : bool → texp Bool
| TBinop : ∀ t1 t2 t, tbinop t1 t2 t → texp t1 → texp t2 → texp t.

Thanks to our use of dependent types, every well-typed texp represents a well-typed
source expression, by construction. This turns out to be very convenient for many things
we might want to do with expressions. For instance, it is easy to adapt our interpreter
approach to defining semantics. We start by defining a function mapping the types of our
object language into Coq types:
Definition typeDenote (t : type) : Set :=
match t with
| Nat ⇒ nat
| Bool ⇒ bool

end.
It can take a few moments to come to terms with the fact that Set, the type of types of

programs, is itself a first-class type, and that we can write functions that return Sets. Past
that wrinkle, the definition of typeDenote is trivial, relying on the nat and bool types from
the Coq standard library. We can interpret binary operators by relying on standard-library
equality test functions eqb and beq nat for Booleans and naturals, respectively, along with
a less-than test leb:
Definition tbinopDenote arg1 arg2 res (b : tbinop arg1 arg2 res)
: typeDenote arg1 → typeDenote arg2 → typeDenote res :=
match b with
| TPlus ⇒ plus
| TTimes ⇒ mult
| TEq Nat ⇒ beq nat
| TEq Bool ⇒ eqb
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| TLt ⇒ leb
end.
This function has just a few differences from the denotation functions we saw earlier.

First, tbinop is an indexed type, so its indices become additional arguments to tbinopDenote.
Second, we need to perform a genuine dependent pattern match, where the necessary type of
each case body depends on the value that has been matched. At this early stage, we will
not go into detail on the many subtle aspects of Gallina that support dependent pattern-
matching, but the subject is central to Part II of the book.

The same tricks suffice to define an expression denotation function in an unsurprising
way. Note that the type arguments to the TBinop constructor must be included explicitly
in pattern-matching, but here we write underscores because we do not need to refer to those
arguments directly.
Fixpoint texpDenote t (e : texp t) : typeDenote t :=
match e with
| TNConst n ⇒ n
| TBConst b ⇒ b
| TBinop b e1 e2 ⇒ (tbinopDenote b) (texpDenote e1 ) (texpDenote e2 )

end.
We can evaluate a few example programs to convince ourselves that this semantics is

correct.
Eval simpl in texpDenote (TNConst 42).

= 42 : typeDenote Nat
Eval simpl in texpDenote (TBConst true).

= true : typeDenote Bool
Eval simpl in texpDenote (TBinop TTimes (TBinop TPlus (TNConst 2) (TNConst 2))

(TNConst 7)).
= 28 : typeDenote Nat

Eval simpl in texpDenote (TBinop (TEq Nat) (TBinop TPlus (TNConst 2) (TNConst 2))
(TNConst 7)).
= false : typeDenote Bool

Eval simpl in texpDenote (TBinop TLt (TBinop TPlus (TNConst 2) (TNConst 2))
(TNConst 7)).
= true : typeDenote Bool
Now we are ready to define a suitable stack machine target for compilation.

2.2.2 Target Language
In the example of the untyped language, stack machine programs could encounter stack
underflows and “get stuck.” This was unfortunate, since we had to deal with this complication
even though we proved that our compiler never produced underflowing programs. We could
have used dependent types to force all stack machine programs to be underflow-free.
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For our new languages, besides underflow, we also have the problem of stack slots with
naturals instead of bools or vice versa. This time, we will use indexed typed families to avoid
the need to reason about potential failures.

We start by defining stack types, which classify sets of possible stacks.
Definition tstack := list type.

Any stack classified by a tstack must have exactly as many elements, and each stack
element must have the type found in the same position of the stack type.

We can define instructions in terms of stack types, where every instruction’s type tells
us what initial stack type it expects and what final stack type it will produce.
Inductive tinstr : tstack → tstack → Set :=
| TiNConst : ∀ s, nat → tinstr s (Nat :: s)
| TiBConst : ∀ s, bool → tinstr s (Bool :: s)
| TiBinop : ∀ arg1 arg2 res s,
tbinop arg1 arg2 res
→ tinstr (arg1 :: arg2 :: s) (res :: s).
Stack machine programs must be a similar inductive family, since, if we again used the

list type family, we would not be able to guarantee that intermediate stack types match
within a program.
Inductive tprog : tstack → tstack → Set :=
| TNil : ∀ s, tprog s s
| TCons : ∀ s1 s2 s3,
tinstr s1 s2
→ tprog s2 s3
→ tprog s1 s3.
Now, to define the semantics of our new target language, we need a representation for

stacks at runtime. We will again take advantage of type information to define types of value
stacks that, by construction, contain the right number and types of elements.
Fixpoint vstack (ts : tstack) : Set :=
match ts with
| nil ⇒ unit
| t :: ts’ ⇒ typeDenote t × vstack ts’

end%type.
This is another Set-valued function. This time it is recursive, which is perfectly valid,

since Set is not treated specially in determining which functions may be written. We say
that the value stack of an empty stack type is any value of type unit, which has just a single
value, tt. A nonempty stack type leads to a value stack that is a pair, whose first element
has the proper type and whose second element follows the representation for the remainder
of the stack type. We write %type as an instruction to Coq’s extensible parser. In particular,
this directive applies to the whole match expression, which we ask to be parsed as though
it were a type, so that the operator × is interpreted as Cartesian product instead of, say,
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multiplication. (Note that this use of type has no connection to the inductive type type that
we have defined.)

This idea of programming with types can take a while to internalize, but it enables
a very simple definition of instruction denotation. Our definition is like what you might
expect from a Lisp-like version of ML that ignored type information. Nonetheless, the fact
that tinstrDenote passes the type-checker guarantees that our stack machine programs can
never go wrong. We use a special form of let to destructure a multi-level tuple.
Definition tinstrDenote ts ts’ (i : tinstr ts ts’) : vstack ts → vstack ts’ :=
match i with
| TiNConst n ⇒ fun s ⇒ (n, s)
| TiBConst b ⇒ fun s ⇒ (b, s)
| TiBinop b ⇒ fun s ⇒
let ’(arg1, (arg2, s’)) := s in
((tbinopDenote b) arg1 arg2, s’)

end.
Why do we choose to use an anonymous function to bind the initial stack in every case

of the match? Consider this well-intentioned but invalid alternative version:
Definition tinstrDenote ts ts’ (i : tinstr ts ts’) (s : vstack ts) : vstack ts’ :=
match i with
| TiNConst n ⇒ (n, s)
| TiBConst b ⇒ (b, s)
| TiBinop b ⇒
let ’(arg1, (arg2, s’)) := s in
((tbinopDenote b) arg1 arg2, s’)

end.
The Coq type checker complains that:

The term "(n, s)" has type "(nat * vstack ts)%type"
while it is expected to have type "vstack ?119".

This and other mysteries of Coq dependent typing we postpone until Part II of the book.
The upshot of our later discussion is that it is often useful to push inside of match branches
those function parameters whose types depend on the type of the value being matched. Our
later, more complete treatment of Gallina’s typing rules will explain why this helps.

We finish the semantics with a straightforward definition of program denotation.
Fixpoint tprogDenote ts ts’ (p : tprog ts ts’) : vstack ts → vstack ts’ :=
match p with
| TNil ⇒ fun s ⇒ s
| TCons i p’ ⇒ fun s ⇒ tprogDenote p’ (tinstrDenote i s)

end.
The same argument-postponing trick is crucial for this definition.

34



2.2.3 Translation
To define our compilation, it is useful to have an auxiliary function for concatenating two
stack machine programs.
Fixpoint tconcat ts ts’ ts’’ (p : tprog ts ts’) : tprog ts’ ts’’ → tprog ts ts’’ :=
match p with
| TNil ⇒ fun p’ ⇒ p’
| TCons i p1 ⇒ fun p’ ⇒ TCons i (tconcat p1 p’)

end.
With that function in place, the compilation is defined very similarly to how it was before,

modulo the use of dependent typing.
Fixpoint tcompile t (e : texp t) (ts : tstack) : tprog ts (t :: ts) :=
match e with
| TNConst n ⇒ TCons (TiNConst n) (TNil )
| TBConst b ⇒ TCons (TiBConst b) (TNil )
| TBinop b e1 e2 ⇒ tconcat (tcompile e2 )

(tconcat (tcompile e1 ) (TCons (TiBinop b) (TNil )))
end.
One interesting feature of the definition is the underscores appearing to the right of

⇒ arrows. Haskell and ML programmers are quite familiar with compilers that infer type
parameters to polymorphic values. In Coq, it is possible to go even further and ask the system
to infer arbitrary terms, by writing underscores in place of specific values. You may have
noticed that we have been calling functions without specifying all of their arguments. For
instance, the recursive calls here to tcompile omit the t argument. Coq’s implicit argument
mechanism automatically inserts underscores for arguments that it will probably be able to
infer. Inference of such values is far from complete, though; generally, it only works in cases
similar to those encountered with polymorphic type instantiation in Haskell and ML.

The underscores here are being filled in with stack types. That is, the Coq type inferencer
is, in a sense, inferring something about the flow of control in the translated programs. We
can take a look at exactly which values are filled in:
Print tcompile.

tcompile =
fix tcompile (t : type) (e : texp t) (ts : tstack) {struct e} :
tprog ts (t :: ts) :=
match e in (texp t0 ) return (tprog ts (t0 :: ts)) with
| TNConst n ⇒ TCons (TiNConst ts n) (TNil (Nat :: ts))
| TBConst b ⇒ TCons (TiBConst ts b) (TNil (Bool :: ts))
| TBinop arg1 arg2 res b e1 e2 ⇒

tconcat (tcompile arg2 e2 ts)
(tconcat (tcompile arg1 e1 (arg2 :: ts))

(TCons (TiBinop ts b) (TNil (res :: ts))))
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end
: ∀ t : type, texp t → ∀ ts : tstack, tprog ts (t :: ts)

We can check that the compiler generates programs that behave appropriately on our
sample programs from above:
Eval simpl in tprogDenote (tcompile (TNConst 42) nil) tt.

= (42, tt) : vstack (Nat :: nil)
Eval simpl in tprogDenote (tcompile (TBConst true) nil) tt.

= (true, tt) : vstack (Bool :: nil)
Eval simpl in tprogDenote (tcompile (TBinop TTimes (TBinop TPlus (TNConst 2)

(TNConst 2)) (TNConst 7)) nil) tt.
= (28, tt) : vstack (Nat :: nil)

Eval simpl in tprogDenote (tcompile (TBinop (TEq Nat) (TBinop TPlus (TNConst 2)
(TNConst 2)) (TNConst 7)) nil) tt.
= (false, tt) : vstack (Bool :: nil)

Eval simpl in tprogDenote (tcompile (TBinop TLt (TBinop TPlus (TNConst 2) (TNConst 2))
(TNConst 7)) nil) tt.
= (true, tt) : vstack (Bool :: nil)
The compiler seems to be working, so let us turn to proving that it always works.

2.2.4 Translation Correctness
We can state a correctness theorem similar to the last one.
Theorem tcompile correct : ∀ t (e : texp t),
tprogDenote (tcompile e nil) tt = (texpDenote e, tt).
Again, we need to strengthen the theorem statement so that the induction will go through.

This time, to provide an excuse to demonstrate different tactics, I will develop an alternative
approach to this kind of proof, stating the key lemma as:
Lemma tcompile correct’ : ∀ t (e : texp t) ts (s : vstack ts),

tprogDenote (tcompile e ts) s = (texpDenote e, s).
While lemma compile correct’ quantified over a program that is the “continuation” [39]

for the expression we are considering, here we avoid drawing in any extra syntactic elements.
In addition to the source expression and its type, we also quantify over an initial stack type
and a stack compatible with it. Running the compilation of the program starting from that
stack, we should arrive at a stack that differs only in having the program’s denotation pushed
onto it.

Let us try to prove this theorem in the same way that we settled on in the last section.
induction e; crush.
We are left with this unproved conclusion:
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tprogDenote
(tconcat (tcompile e2 ts)

(tconcat (tcompile e1 (arg2 :: ts))
(TCons (TiBinop ts t) (TNil (res :: ts))))) s =

(tbinopDenote t (texpDenote e1 ) (texpDenote e2 ), s)

We need an analogue to the app assoc reverse theorem that we used to rewrite the goal
in the last section. We can abort this proof and prove such a lemma about tconcat.
Abort.
Lemma tconcat correct : ∀ ts ts’ ts’’ (p : tprog ts ts’) (p’ : tprog ts’ ts’’)
(s : vstack ts),
tprogDenote (tconcat p p’) s
= tprogDenote p’ (tprogDenote p s).
induction p; crush.

Qed.
This one goes through completely automatically.
Some code behind the scenes registers app assoc reverse for use by crush. We must

register tconcat correct similarly to get the same effect:
Hint Rewrite tconcat correct.

Here we meet the pervasive concept of a hint. Many proofs can be found through ex-
haustive enumerations of combinations of possible proof steps; hints provide the set of steps
to consider. The tactic crush is applying such brute force search for us silently, and it will
consider more possibilities as we add more hints. This particular hint asks that the lemma
be used for left-to-right rewriting.

Now we are ready to return to tcompile correct’, proving it automatically this time.
Lemma tcompile correct’ : ∀ t (e : texp t) ts (s : vstack ts),
tprogDenote (tcompile e ts) s = (texpDenote e, s).
induction e; crush.

Qed.
We can register this main lemma as another hint, allowing us to prove the final theorem

trivially.
Hint Rewrite tcompile correct’.
Theorem tcompile correct : ∀ t (e : texp t),
tprogDenote (tcompile e nil) tt = (texpDenote e, tt).
crush.

Qed.
It is probably worth emphasizing that we are doing more than building mathematical

models. Our compilers are functional programs that can be executed efficiently. One strat-
egy for doing so is based on program extraction, which generates OCaml code from Coq
developments. For instance, we run a command to output the OCaml version of tcompile:
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Extraction tcompile.

let rec tcompile t e ts =
match e with
| TNConst n ->

TCons (ts, (Cons (Nat, ts)), (Cons (Nat, ts)), (TiNConst (ts, n)), (TNil
(Cons (Nat, ts))))

| TBConst b ->
TCons (ts, (Cons (Bool, ts)), (Cons (Bool, ts)), (TiBConst (ts, b)),

(TNil (Cons (Bool, ts))))
| TBinop (t1, t2, t0, b, e1, e2) ->

tconcat ts (Cons (t2, ts)) (Cons (t0, ts)) (tcompile t2 e2 ts)
(tconcat (Cons (t2, ts)) (Cons (t1, (Cons (t2, ts)))) (Cons (t0, ts))

(tcompile t1 e1 (Cons (t2, ts))) (TCons ((Cons (t1, (Cons (t2,
ts)))), (Cons (t0, ts)), (Cons (t0, ts)), (TiBinop (t1, t2, t0, ts,
b)), (TNil (Cons (t0, ts))))))

We can compile this code with the usual OCaml compiler and obtain an executable
program with halfway decent performance.

This chapter has been a whirlwind tour through two examples of the style of Coq devel-
opment that I advocate. Parts II and III of the book focus on the key elements of that style,
namely dependent types and scripted proof automation, respectively. Before we get there,
we will spend some time in Part I on more standard foundational material. Part I may still
be of interest to seasoned Coq hackers, since I follow the highly automated proof style even
at that early stage.

38



Part I

Basic Programming and Proving
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Chapter 3

Introducing Inductive Types

The logical foundation of Coq is the Calculus of Inductive Constructions, or CIC. In a sense,
CIC is built from just two relatively straightforward features: function types and inductive
types. From this modest foundation, we can prove essentially all of the theorems of math and
carry out effectively all program verifications, with enough effort expended. This chapter
introduces induction and recursion for functional programming in Coq. Most of our examples
reproduce functionality from the Coq standard library, and I have tried to copy the standard
library’s choices of identifiers, where possible, so many of the definitions here are already
available in the default Coq environment.

The last chapter took a deep dive into some of the more advanced Coq features, to
highlight the unusual approach that I advocate in this book. However, from this point on,
we will rewind and go back to basics, presenting the relevant features of Coq in a more
bottom-up manner. A useful first step is a discussion of the differences and relationships
between proofs and programs in Coq.

3.1 Proof Terms
Mainstream presentations of mathematics treat proofs as objects that exist outside of the
universe of mathematical objects. However, for a variety of reasoning tasks, it is convenient
to encode proofs, traditional mathematical objects, and programs within a single formal lan-
guage. Validity checks on mathematical objects are useful in any setting, to catch typos and
other uninteresting errors. The benefits of static typing for programs are widely recognized,
and Coq brings those benefits to both mathematical objects and programs via a uniform
mechanism. In fact, from this point on, we will not bother to distinguish between programs
and mathematical objects. Many mathematical formalisms are most easily encoded in terms
of programs.

Proofs are fundamentally different from programs, because any two proofs of a theorem
are considered equivalent, from a formal standpoint if not from an engineering standpoint.
However, we can use the same type-checking technology to check proofs as we use to validate
our programs. This is the Curry-Howard correspondence [10, 14], an approach for relating
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proofs and programs. We represent mathematical theorems as types, such that a theorem’s
proofs are exactly those programs that type-check at the corresponding type.

The last chapter’s example already snuck in an instance of Curry-Howard. We used
the token → to stand for both function types and logical implications. One reasonable
conclusion upon seeing this might be that some fancy overloading of notations is at work.
In fact, functions and implications are precisely identical according to Curry-Howard! That
is, they are just two ways of describing the same computational phenomenon.

A short demonstration should explain how this can be. The identity function over the
natural numbers is certainly not a controversial program.
Check (fun x : nat ⇒ x).

: nat → nat
Consider this alternate program, which is almost identical to the last one.

Check (fun x : True ⇒ x).
: True → True
The identity program is interpreted as a proof that True, the always-true proposition,

implies itself! What we see is that Curry-Howard interprets implications as functions, where
an input is a proposition being assumed and an output is a proposition being deduced.
This intuition is not too far from a common one for informal theorem proving, where we
might already think of an implication proof as a process for transforming a hypothesis into
a conclusion.

There are also more primitive proof forms available. For instance, the term I is the single
proof of True, applicable in any context.
Check I.

: True
With I, we can prove another simple propositional theorem.

Check (fun : False ⇒ I).
: False → True
No proofs of False exist in the top-level context, but the implication-as-function analogy

gives us an easy way to, for example, show that False implies itself.
Check (fun x : False ⇒ x).

: False → False
Every one of these example programs whose type looks like a logical formula is a proof

term. We use that name for any Gallina term of a logical type, and we will elaborate shortly
on what makes a type logical.

In the rest of this chapter, we will introduce different ways of defining types. Every
example type can be interpreted alternatively as a type of programs or proofs.

One of the first types we introduce will be bool, with constructors true and false. New-
comers to Coq often wonder about the distinction between True and true and the distinction
between False and false. One glib answer is that True and False are types, but true and
false are not. A more useful answer is that Coq’s metatheory guarantees that any term of
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type bool evaluates to either true or false. This means that we have an algorithm for an-
swering any question phrased as an expression of type bool. Conversely, most propositions
do not evaluate to True or False; the language of inductively defined propositions is much
richer than that. We ought to be glad that we have no algorithm for deciding our formalized
version of mathematical truth, since otherwise it would be clear that we could not formalize
undecidable properties, like almost any interesting property of general-purpose programs.

3.2 Enumerations
Coq inductive types generalize the algebraic datatypes found in Haskell and ML. Confusingly
enough, inductive types also generalize generalized algebraic datatypes (GADTs), by adding
the possibility for type dependency. Even so, it is worth backing up from the examples of the
last chapter and going over basic, algebraic-datatype uses of inductive datatypes, because
the chance to prove things about the values of these types adds new wrinkles beyond usual
practice in Haskell and ML.

The singleton type unit is an inductive type:
Inductive unit : Set :=
| tt.
This vernacular command defines a new inductive type unit whose only value is tt. We

can verify the types of the two identifiers we introduce:
Check unit.

unit : Set
Check tt.

tt : unit
We can prove that unit is a genuine singleton type.

Theorem unit singleton : ∀ x : unit, x = tt.
The important thing about an inductive type is, unsurprisingly, that you can do induction

over its values, and induction is the key to proving this theorem. We ask to proceed by
induction on the variable x.
induction x.
The goal changes to:

tt = tt
...which we can discharge trivially.
reflexivity.

Qed.
It seems kind of odd to write a proof by induction with no inductive hypotheses. We

could have arrived at the same result by beginning the proof with:
destruct x.
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...which corresponds to “proof by case analysis” in classical math. For non-recursive inductive
types, the two tactics will always have identical behavior. Often case analysis is sufficient,
even in proofs about recursive types, and it is nice to avoid introducing unneeded induction
hypotheses.

What exactly is the induction principle for unit? We can ask Coq:
Check unit ind.

unit ind : ∀ P : unit → Prop, P tt → ∀ u : unit, P u
Every Inductive command defining a type T also defines an induction principle named

T ind. Recall from the last section that our type, operations over it, and principles for
reasoning about it all live in the same language and are described by the same type system.
The key to telling what is a program and what is a proof lies in the distinction between the
type Prop, which appears in our induction principle; and the type Set, which we have seen
a few times already.

The convention goes like this: Set is the type of normal types used in programming,
and the values of such types are programs. Prop is the type of logical propositions, and the
values of such types are proofs. Thus, an induction principle has a type that shows us that
it is a function for building proofs.

Specifically, unit ind quantifies over a predicate P over unit values. If we can present a
proof that P holds of tt, then we are rewarded with a proof that P holds for any value u of
type unit. In our last proof, the predicate was (fun u : unit ⇒ u = tt).

The definition of unit places the type in Set. By replacing Set with Prop, unit with
True, and tt with I, we arrive at precisely the definition of True that the Coq standard
library employs! The program type unit is the Curry-Howard equivalent of the proposition
True. We might make the tongue-in-cheek claim that, while philosophers have expended
much ink on the nature of truth, we have now determined that truth is the unit type of
functional programming.

We can define an inductive type even simpler than unit:
Inductive Empty set : Set := .

Empty set has no elements. We can prove fun theorems about it:
Theorem the sky is falling : ∀ x : Empty set, 2 + 2 = 5.
destruct 1.

Qed.
Because Empty set has no elements, the fact of having an element of this type implies

anything. We use destruct 1 instead of destruct x in the proof because unused quantified
variables are relegated to being referred to by number. (There is a good reason for this,
related to the unity of quantifiers and implication. At least within Coq’s logical foundation
of constructive logic, which we elaborate on more in the next chapter, an implication is just
a quantification over a proof, where the quantified variable is never used. It generally makes
more sense to refer to implication hypotheses by number than by name, and Coq treats our
quantifier over an unused variable as an implication in determining the proper behavior.)

We can see the induction principle that made this proof so easy:
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Check Empty set ind.
Empty set ind : ∀ (P : Empty set → Prop) (e : Empty set), P e
In other words, any predicate over values from the empty set holds vacuously of every

such element. In the last proof, we chose the predicate (fun : Empty set ⇒ 2 + 2 = 5).
We can also apply this get-out-of-jail-free card programmatically. Here is a lazy way of

converting values of Empty set to values of unit:
Definition e2u (e : Empty set) : unit := match e with end.

We employ match pattern matching as in the last chapter. Since we match on a value
whose type has no constructors, there is no need to provide any branches. It turns out that
Empty set is the Curry-Howard equivalent of False. As for why Empty set starts with
a capital letter and not a lowercase letter like unit does, we must refer the reader to the
authors of the Coq standard library, to which we try to be faithful.

Moving up the ladder of complexity, we can define the Booleans:
Inductive bool : Set :=
| true
| false.

We can use less vacuous pattern matching to define Boolean negation.
Definition negb (b : bool) : bool :=
match b with
| true ⇒ false
| false ⇒ true

end.
An alternative definition desugars to the above, thanks to an if notation overloaded to

work with any inductive type that has exactly two constructors:
Definition negb’ (b : bool) : bool :=
if b then false else true.
We might want to prove that negb is its own inverse operation.

Theorem negb inverse : ∀ b : bool, negb (negb b) = b.
destruct b.
After we case-analyze on b, we are left with one subgoal for each constructor of bool.
2 subgoals

============================
negb (negb true) = true

subgoal 2 is

negb (negb false) = false
The first subgoal follows by Coq’s rules of computation, so we can dispatch it easily:
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reflexivity.
Likewise for the second subgoal, so we can restart the proof and give a very compact

justification.
Restart.
destruct b; reflexivity.

Qed.
Another theorem about Booleans illustrates another useful tactic.

Theorem negb ineq : ∀ b : bool, negb b 6= b.
destruct b; discriminate.

Qed.
The discriminate tactic is used to prove that two values of an inductive type are not

equal, whenever the values are formed with different constructors. In this case, the different
constructors are true and false.

At this point, it is probably not hard to guess what the underlying induction principle
for bool is.
Check bool ind.

bool ind : ∀ P : bool → Prop, P true → P false → ∀ b : bool, P b
That is, to prove that a property describes all bools, prove that it describes both true

and false.
There is no interesting Curry-Howard analogue of bool. Of course, we can define such

a type by replacing Set by Prop above, but the proposition we arrive at is not very useful.
It is logically equivalent to True, but it provides two indistinguishable primitive proofs, true
and false. In the rest of the chapter, we will skip commenting on Curry-Howard versions of
inductive definitions where such versions are not interesting.

3.3 Simple Recursive Types
The natural numbers are the simplest common example of an inductive type that actually
deserves the name.
Inductive nat : Set :=
| O : nat
| S : nat → nat.

The constructor O is zero, and S is the successor function, so that 0 is syntactic sugar
for O, 1 for S O, 2 for S (S O), and so on.

Pattern matching works as we demonstrated in the last chapter:
Definition isZero (n : nat) : bool :=
match n with
| O ⇒ true
| S ⇒ false
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end.
Definition pred (n : nat) : nat :=
match n with
| O ⇒ O
| S n’ ⇒ n’

end.
We can prove theorems by case analysis with destruct as for simpler inductive types,

but we can also now get into genuine inductive theorems. First, we will need a recursive
function, to make things interesting.
Fixpoint plus (n m : nat) : nat :=
match n with
| O ⇒ m
| S n’ ⇒ S (plus n’ m)

end.
Recall that Fixpoint is Coq’s mechanism for recursive function definitions. Some theo-

rems about plus can be proved without induction.
Theorem O plus n : ∀ n : nat, plus O n = n.
intro; reflexivity.

Qed.
Coq’s computation rules automatically simplify the application of plus, because unfolding

the definition of plus gives us a match expression where the branch to be taken is obvious
from syntax alone. If we just reverse the order of the arguments, though, this no longer
works, and we need induction.
Theorem n plus O : ∀ n : nat, plus n O = n.
induction n.
Our first subgoal is plus O O = O, which is trivial by computation.
reflexivity.
Our second subgoal requires more work and also demonstrates our first inductive hypoth-

esis.

n : nat
IHn : plus n O = n
============================
plus (S n) O = S n

We can start out by using computation to simplify the goal as far as we can.
simpl.
Now the conclusion is S (plus n O) = S n. Using our inductive hypothesis:

46



rewrite IHn.
...we get a trivial conclusion S n = S n.
reflexivity.
Not much really went on in this proof, so the crush tactic from the CpdtTactics module

can prove this theorem automatically.
Restart.
induction n; crush.

Qed.
We can check out the induction principle at work here:

Check nat ind.

nat ind : ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

Each of the two cases of our last proof came from the type of one of the arguments to
nat ind. We chose P to be (fun n : nat⇒ plus n O = n). The first proof case corresponded
to P O and the second case to (∀ n : nat, P n → P (S n)). The free variable n and inductive
hypothesis IHn came from the argument types given here.

Since nat has a constructor that takes an argument, we may sometimes need to know
that that constructor is injective.
Theorem S inj : ∀ n m : nat, S n = S m → n = m.
injection 1; trivial.

Qed.
The injection tactic refers to a premise by number, adding new equalities between the

corresponding arguments of equated terms that are formed with the same constructor. We
end up needing to prove n = m → n = m, so it is unsurprising that a tactic named trivial
is able to finish the proof. This tactic attempts a variety of single proof steps, drawn from
a user-specified database that we will later see how to extend.

There is also a very useful tactic called congruence that can prove this theorem imme-
diately. The congruence tactic generalizes discriminate and injection, and it also adds
reasoning about the general properties of equality, such as that a function returns equal
results on equal arguments. That is, congruence is a complete decision procedure for the
theory of equality and uninterpreted functions, plus some smarts about inductive types.

We can define a type of lists of natural numbers.
Inductive nat list : Set :=
| NNil : nat list
| NCons : nat → nat list → nat list.

Recursive definitions over nat list are straightforward extensions of what we have seen
before.
Fixpoint nlength (ls : nat list) : nat :=
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match ls with
| NNil ⇒ O
| NCons ls’ ⇒ S (nlength ls’)

end.
Fixpoint napp (ls1 ls2 : nat list) : nat list :=
match ls1 with
| NNil ⇒ ls2
| NCons n ls1’ ⇒ NCons n (napp ls1’ ls2 )

end.
Inductive theorem proving can again be automated quite effectively.

Theorem nlength napp : ∀ ls1 ls2 : nat list, nlength (napp ls1 ls2 )
= plus (nlength ls1 ) (nlength ls2 ).
induction ls1 ; crush.

Qed.
Check nat list ind.

nat list ind
: ∀ P : nat list → Prop,
P NNil →
(∀ (n : nat) (n0 : nat list), P n0 → P (NCons n n0 )) →
∀ n : nat list, P n

In general, we can implement any “tree” type as an inductive type. For example, here
are binary trees of naturals.
Inductive nat btree : Set :=
| NLeaf : nat btree
| NNode : nat btree → nat → nat btree → nat btree.

Here are two functions whose intuitive explanations are not so important. The first one
computes the size of a tree, and the second performs some sort of splicing of one tree into
the leftmost available leaf node of another.
Fixpoint nsize (tr : nat btree) : nat :=
match tr with
| NLeaf ⇒ S O
| NNode tr1 tr2 ⇒ plus (nsize tr1 ) (nsize tr2 )

end.
Fixpoint nsplice (tr1 tr2 : nat btree) : nat btree :=
match tr1 with
| NLeaf ⇒ NNode tr2 O NLeaf
| NNode tr1’ n tr2’ ⇒ NNode (nsplice tr1’ tr2 ) n tr2’

end.
Theorem plus assoc : ∀ n1 n2 n3 : nat, plus (plus n1 n2 ) n3 = plus n1 (plus n2 n3 ).
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induction n1 ; crush.
Qed.
Hint Rewrite n plus O plus assoc.
Theorem nsize nsplice : ∀ tr1 tr2 : nat btree, nsize (nsplice tr1 tr2 )
= plus (nsize tr2 ) (nsize tr1 ).
induction tr1 ; crush.

Qed.
It is convenient that these proofs go through so easily, but it is still useful to look into

the details of what happened, by checking the statement of the tree induction principle.
Check nat btree ind.

nat btree ind
: ∀ P : nat btree → Prop,
P NLeaf →
(∀ n : nat btree,
P n → ∀ (n0 : nat) (n1 : nat btree), P n1 → P (NNode n n0 n1 )) →
∀ n : nat btree, P n

We have the usual two cases, one for each constructor of nat btree.

3.4 Parameterized Types
We can also define polymorphic inductive types, as with algebraic datatypes in Haskell and
ML.
Inductive list (T : Set) : Set :=
| Nil : list T
| Cons : T → list T → list T.
Fixpoint length T (ls : list T ) : nat :=
match ls with
| Nil ⇒ O
| Cons ls’ ⇒ S (length ls’)

end.
Fixpoint app T (ls1 ls2 : list T ) : list T :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2 )

end.
Theorem length app : ∀ T (ls1 ls2 : list T ), length (app ls1 ls2 )
= plus (length ls1 ) (length ls2 ).
induction ls1 ; crush.

Qed.
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There is a useful shorthand for writing many definitions that share the same parameter,
based on Coq’s section mechanism. The following block of code is equivalent to the above:

Section list.
Variable T : Set.
Inductive list : Set :=
| Nil : list
| Cons : T → list → list.
Fixpoint length (ls : list) : nat :=
match ls with
| Nil ⇒ O
| Cons ls’ ⇒ S (length ls’)

end.
Fixpoint app (ls1 ls2 : list) : list :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2 )

end.
Theorem length app : ∀ ls1 ls2 : list, length (app ls1 ls2 )
= plus (length ls1 ) (length ls2 ).
induction ls1 ; crush.

Qed.
End list.
Implicit Arguments Nil [T ].

After we end the section, the Variables we used are added as extra function parameters
for each defined identifier, as needed. With an Implicit Arguments command, we ask that
T be inferred when we use Nil; Coq’s heuristics already decided to apply a similar policy
to Cons, because of the Set Implicit Arguments command elided at the beginning of this
chapter. We verify that our definitions have been saved properly using the Print command,
a cousin of Check which shows the definition of a symbol, rather than just its type.
Print list.

Inductive list (T : Set) : Set :=
Nil : list T | Cons : T → list T → list T
The final definition is the same as what we wrote manually before. The other elements of

the section are altered similarly, turning out exactly as they were before, though we managed
to write their definitions more succinctly.
Check length.

length
: ∀ T : Set, list T → nat
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The parameter T is treated as a new argument to the induction principle, too.
Check list ind.

list ind
: ∀ (T : Set) (P : list T → Prop),
P (Nil T ) →
(∀ (t : T ) (l : list T ), P l → P (Cons t l)) →
∀ l : list T , P l

Thus, despite a very real sense in which the type T is an argument to the constructor
Cons, the inductive case in the type of list ind (i.e., the third line of the type) includes no
quantifier for T , even though all of the other arguments are quantified explicitly. Parameters
in other inductive definitions are treated similarly in stating induction principles.

3.5 Mutually Inductive Types
We can define inductive types that refer to each other:
Inductive even list : Set :=
| ENil : even list
| ECons : nat → odd list → even list

with odd list : Set :=
| OCons : nat → even list → odd list.
Fixpoint elength (el : even list) : nat :=
match el with
| ENil ⇒ O
| ECons ol ⇒ S (olength ol)

end

with olength (ol : odd list) : nat :=
match ol with
| OCons el ⇒ S (elength el)

end.
Fixpoint eapp (el1 el2 : even list) : even list :=
match el1 with
| ENil ⇒ el2
| ECons n ol ⇒ ECons n (oapp ol el2 )

end

with oapp (ol : odd list) (el : even list) : odd list :=
match ol with
| OCons n el’ ⇒ OCons n (eapp el’ el)
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end.
Everything is going roughly the same as in past examples, until we try to prove a theorem

similar to those that came before.
Theorem elength eapp : ∀ el1 el2 : even list,
elength (eapp el1 el2 ) = plus (elength el1 ) (elength el2 ).
induction el1 ; crush.
One goal remains:

n : nat
o : odd list
el2 : even list
============================
S (olength (oapp o el2 )) = S (plus (olength o) (elength el2 ))
We have no induction hypothesis, so we cannot prove this goal without starting another

induction, which would reach a similar point, sending us into a futile infinite chain of induc-
tions. The problem is that Coq’s generation of T ind principles is incomplete. We only get
non-mutual induction principles generated by default.
Abort.
Check even list ind.

even list ind
: ∀ P : even list → Prop,
P ENil →
(∀ (n : nat) (o : odd list), P (ECons n o)) →
∀ e : even list, P e

We see that no inductive hypotheses are included anywhere in the type. To get them,
we must ask for mutual principles as we need them, using the Scheme command.
Scheme even list mut := Induction for even list Sort Prop
with odd list mut := Induction for odd list Sort Prop.

This invocation of Scheme asks for the creation of induction principles even list mut for
the type even list and odd list mut for the type odd list. The Induction keyword says we
want standard induction schemes, since Scheme supports more exotic choices. Finally, Sort
Prop establishes that we really want induction schemes, not recursion schemes, which are
the same according to Curry-Howard, save for the Prop/Set distinction.
Check even list mut.

even list mut
: ∀ (P : even list → Prop) (P0 : odd list → Prop),
P ENil →
(∀ (n : nat) (o : odd list), P0 o → P (ECons n o)) →
(∀ (n : nat) (e : even list), P e → P0 (OCons n e)) →
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∀ e : even list, P e
This is the principle we wanted in the first place.
The Scheme command is for asking Coq to generate particular induction schemes that

are mutual among a set of inductive types (possibly only one such type, in which case we get
a normal induction principle). In a sense, it generalizes the induction scheme generation that
goes on automatically for each inductive definition. Future Coq versions might make that
automatic generation smarter, so that Scheme is needed in fewer places. In a few sections, we
will see how induction principles are derived theorems in Coq, so that there is not actually
any need to build in any automatic scheme generation.

There is one more wrinkle left in using the even list mut induction principle: the induction
tactic will not apply it for us automatically. It will be helpful to look at how to prove one of
our past examples without using induction, so that we can then generalize the technique
to mutual inductive types.
Theorem n plus O’ : ∀ n : nat, plus n O = n.
apply nat ind.
Here we use apply, which is one of the most essential basic tactics. When we are trying

to prove fact P, and when thm is a theorem whose conclusion can be made to match P by
proper choice of quantified variable values, the invocation apply thm will replace the current
goal with one new goal for each premise of thm.

This use of apply may seem a bit too magical. To better see what is going on, we use
a variant where we partially apply the theorem nat ind to give an explicit value for the
predicate that gives our induction hypothesis.
Undo.
apply (nat ind (fun n ⇒ plus n O = n)); crush.

Qed.
From this example, we can see that induction is not magic. It only does some book-

keeping for us to make it easy to apply a theorem, which we can do directly with the apply
tactic.

This technique generalizes to our mutual example:
Theorem elength eapp : ∀ el1 el2 : even list,

elength (eapp el1 el2 ) = plus (elength el1 ) (elength el2 ).
apply (even list mut

(fun el1 : even list ⇒ ∀ el2 : even list,
elength (eapp el1 el2 ) = plus (elength el1 ) (elength el2 ))

(fun ol : odd list ⇒ ∀ el : even list,
olength (oapp ol el) = plus (olength ol) (elength el))); crush.

Qed.
We simply need to specify two predicates, one for each of the mutually inductive types.

In general, it is not a good idea to assume that a proof assistant can infer extra predicates,
so this way of applying mutual induction is about as straightforward as we may hope for.
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3.6 Reflexive Types
A kind of inductive type called a reflexive type includes at least one constructor that takes
as an argument a function returning the same type we are defining. One very useful class of
examples is in modeling variable binders. Our example will be an encoding of the syntax of
first-order logic. Since the idea of syntactic encodings of logic may require a bit of acclima-
tion, let us first consider a simpler formula type for a subset of propositional logic. We are
not yet using a reflexive type, but later we will extend the example reflexively.
Inductive pformula : Set :=
| Truth : pformula
| Falsehood : pformula
| Conjunction : pformula → pformula → pformula.

A key distinction here is between, for instance, the syntax Truth and its semantics True.
We can make the semantics explicit with a recursive function. This function uses the infix
operator ∧, which desugars to instances of the type family and from the standard library.
The family and implements conjunction, the Prop Curry-Howard analogue of the usual pair
type from functional programming (which is the type family prod in Coq’s standard library).
Fixpoint pformulaDenote (f : pformula) : Prop :=
match f with
| Truth ⇒ True
| Falsehood ⇒ False
| Conjunction f1 f2 ⇒ pformulaDenote f1 ∧ pformulaDenote f2

end.
This is just a warm-up that does not use reflexive types, the new feature we mean to

introduce. When we set our sights on first-order logic instead, it becomes very handy to give
constructors recursive arguments that are functions.
Inductive formula : Set :=
| Eq : nat → nat → formula
| And : formula → formula → formula
| Forall : (nat → formula) → formula.

Our kinds of formulas are equalities between naturals, conjunction, and universal quan-
tification over natural numbers. We avoid needing to include a notion of “variables” in our
type, by using Coq functions to encode the syntax of quantification. For instance, here is
the encoding of ∀ x : nat, x = x :
Example forall refl : formula := Forall (fun x ⇒ Eq x x).

We can write recursive functions over reflexive types quite naturally. Here is one trans-
lating our formulas into native Coq propositions.
Fixpoint formulaDenote (f : formula) : Prop :=
match f with
| Eq n1 n2 ⇒ n1 = n2
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| And f1 f2 ⇒ formulaDenote f1 ∧ formulaDenote f2
| Forall f’ ⇒ ∀ n : nat, formulaDenote (f’ n)

end.
We can also encode a trivial formula transformation that swaps the order of equality and

conjunction operands.
Fixpoint swapper (f : formula) : formula :=
match f with
| Eq n1 n2 ⇒ Eq n2 n1
| And f1 f2 ⇒ And (swapper f2 ) (swapper f1 )
| Forall f’ ⇒ Forall (fun n ⇒ swapper (f’ n))

end.
It is helpful to prove that this transformation does not make true formulas false.

Theorem swapper preserves truth : ∀ f, formulaDenote f → formulaDenote (swapper f ).
induction f ; crush.

Qed.
We can take a look at the induction principle behind this proof.

Check formula ind.

formula ind
: ∀ P : formula → Prop,

(∀ n n0 : nat, P (Eq n n0 )) →
(∀ f0 : formula,
P f0 → ∀ f1 : formula, P f1 → P (And f0 f1 )) →
(∀ f1 : nat → formula,
(∀ n : nat, P (f1 n)) → P (Forall f1 )) →
∀ f2 : formula, P f2

Focusing on the Forall case, which comes third, we see that we are allowed to assume that
the theorem holds for any application of the argument function f1. That is, Coq induction
principles do not follow a simple rule that the textual representations of induction variables
must get shorter in appeals to induction hypotheses. Luckily for us, the people behind the
metatheory of Coq have verified that this flexibility does not introduce unsoundness.

Up to this point, we have seen how to encode in Coq more and more of what is possible
with algebraic datatypes in Haskell and ML. This may have given the inaccurate impression
that inductive types are a strict extension of algebraic datatypes. In fact, Coq must rule out
some types allowed by Haskell and ML, for reasons of soundness. Reflexive types provide
our first good example of such a case; only some of them are legal.

Given our last example of an inductive type, many readers are probably eager to try
encoding the syntax of lambda calculus. Indeed, the function-based representation technique
that we just used, called higher-order abstract syntax (HOAS) [35], is the representation of
choice for lambda calculi in Twelf and in many applications implemented in Haskell and ML.
Let us try to import that choice to Coq:
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Inductive term : Set :=
| App : term → term → term
| Abs : (term → term) → term.

Error: Non strictly positive occurrence of "term" in "(term -> term) -> term"

We have run afoul of the strict positivity requirement for inductive definitions, which
says that the type being defined may not occur to the left of an arrow in the type of a
constructor argument. It is important that the type of a constructor is viewed in terms
of a series of arguments and a result, since obviously we need recursive occurrences to the
lefts of the outermost arrows if we are to have recursive occurrences at all. Our candidate
definition above violates the positivity requirement because it involves an argument of type
term→ term, where the type term that we are defining appears to the left of an arrow. The
candidate type of App is fine, however, since every occurrence of term is either a constructor
argument or the final result type.

Why must Coq enforce this restriction? Imagine that our last definition had been ac-
cepted, allowing us to write this function:

Definition uhoh (t : term) : term :=
match t with
| Abs f ⇒ f t
| ⇒ t

end.
Using an informal idea of Coq’s semantics, it is easy to verify that the application uhoh

(Abs uhoh) will run forever. This would be a mere curiosity in OCaml and Haskell, where
non-termination is commonplace, though the fact that we have a non-terminating program
without explicit recursive function definitions is unusual.

For Coq, however, this would be a disaster. The possibility of writing such a function
would destroy all our confidence that proving a theorem means anything. Since Coq combines
programs and proofs in one language, we would be able to prove every theorem with an
infinite loop.

Nonetheless, the basic insight of HOAS is a very useful one, and there are ways to realize
most benefits of HOAS in Coq. We will study a particular technique of this kind in the final
chapter, on programming language syntax and semantics.

3.7 An Interlude on Induction Principles
As we have emphasized a few times already, Coq proofs are actually programs, written in
the same language we have been using in our examples all along. We can get a first sense
of what this means by taking a look at the definitions of some of the induction principles
we have used. A close look at the details here will help us construct induction principles
manually, which we will see is necessary for some more advanced inductive definitions.
Print nat ind.
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nat ind =
fun P : nat → Prop ⇒ nat rect P

: ∀ P : nat → Prop,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

We see that this induction principle is defined in terms of a more general principle,
nat rect. The rec stands for “recursion principle,” and the t at the end stands for Type.
Check nat rect.

nat rect
: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The principle nat rect gives P type nat → Type instead of nat → Prop. This Type is
another universe, like Set and Prop. In fact, it is a common supertype of both. Later on, we
will discuss exactly what the significances of the different universes are. For now, it is just
important that we can use Type as a sort of meta-universe that may turn out to be either
Set or Prop. We can see the symmetry inherent in the subtyping relationship by printing
the definition of another principle that was generated for nat automatically:
Print nat rec.

nat rec =
fun P : nat → Set ⇒ nat rect P

: ∀ P : nat → Set,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

This is identical to the definition for nat ind, except that we have substituted Set for
Prop. For most inductive types T , then, we get not just induction principles T ind, but also
recursion principles T rec. We can use T rec to write recursive definitions without explicit
Fixpoint recursion. For instance, the following two definitions are equivalent:
Fixpoint plus recursive (n : nat) : nat → nat :=
match n with
| O ⇒ fun m ⇒ m
| S n’ ⇒ fun m ⇒ S (plus recursive n’ m)

end.
Definition plus rec : nat → nat → nat :=
nat rec (fun : nat ⇒ nat → nat) (fun m ⇒ m) (fun r m ⇒ S (r m)).

Theorem plus equivalent : plus recursive = plus rec.
reflexivity.

Qed.
Going even further down the rabbit hole, nat rect itself is not even a primitive. It is a

functional program that we can write manually.
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Print nat rect.

nat rect =
fun (P : nat → Type) (f : P O) (f0 : ∀ n : nat, P n → P (S n)) ⇒
fix F (n : nat) : P n :=
match n as n0 return (P n0 ) with
| O ⇒ f
| S n0 ⇒ f0 n0 (F n0 )
end

: ∀ P : nat → Type,
P O → (∀ n : nat, P n → P (S n)) → ∀ n : nat, P n

The only new wrinkles here are, first, an anonymous recursive function definition, using
the fix keyword of Gallina (which is like fun with recursion supported); and, second, the
annotations on the match expression. This is a dependently typed pattern match, because the
type of the expression depends on the value being matched on. We will meet more involved
examples later, especially in Part II of the book.

Type inference for dependent pattern matching is undecidable, which can be proved
by reduction from higher-order unification [15]. Thus, we often find ourselves needing to
annotate our programs in a way that explains dependencies to the type checker. In the
example of nat rect, we have an as clause, which binds a name for the discriminee; and a
return clause, which gives a way to compute the match result type as a function of the
discriminee.

To prove that nat rect is nothing special, we can reimplement it manually.
Fixpoint nat rect’ (P : nat → Type)

(HO : P O)
(HS : ∀ n, P n → P (S n)) (n : nat) :=
match n return P n with
| O ⇒ HO
| S n’ ⇒ HS n’ (nat rect’ P HO HS n’)

end.
We can understand the definition of nat rect better by reimplementing nat ind using

sections.
Section nat ind’.

First, we have the property of natural numbers that we aim to prove.
Variable P : nat → Prop.
Then we require a proof of the O case, which we declare with the command Hypothesis,

which is a synonym for Variable that, by convention, is used for variables whose types are
propositions.
Hypothesis O case : P O.
Next is a proof of the S case, which may assume an inductive hypothesis.
Hypothesis S case : ∀ n : nat, P n → P (S n).
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Finally, we define a recursive function to tie the pieces together.
Fixpoint nat ind’ (n : nat) : P n :=
match n with
| O ⇒ O case
| S n’ ⇒ S case (nat ind’ n’)

end.
End nat ind’.

Closing the section adds the Variables and Hypothesises as new fun-bound arguments
to nat ind’, and, modulo the use of Prop instead of Type, we end up with the exact same
definition that was generated automatically for nat rect.

We can also examine the definition of even list mut, which we generated with Scheme for
a mutually recursive type.
Print even list mut.

even list mut =
fun (P : even list → Prop) (P0 : odd list → Prop)

(f : P ENil) (f0 : ∀ (n : nat) (o : odd list), P0 o → P (ECons n o))
(f1 : ∀ (n : nat) (e : even list), P e → P0 (OCons n e)) ⇒

fix F (e : even list) : P e :=
match e as e0 return (P e0 ) with
| ENil ⇒ f
| ECons n o ⇒ f0 n o (F0 o)
end

with F0 (o : odd list) : P0 o :=
match o as o0 return (P0 o0 ) with
| OCons n e ⇒ f1 n e (F e)
end

for F
: ∀ (P : even list → Prop) (P0 : odd list → Prop),
P ENil →
(∀ (n : nat) (o : odd list), P0 o → P (ECons n o)) →
(∀ (n : nat) (e : even list), P e → P0 (OCons n e)) →
∀ e : even list, P e

We see a mutually recursive fix, with the different functions separated by with in the
same way that they would be separated by and in ML. A final for clause identifies which of
the mutually recursive functions should be the final value of the fix expression. Using this
definition as a template, we can reimplement even list mut directly.
Section even list mut’.

First, we need the properties that we are proving.
Variable Peven : even list → Prop.
Variable Podd : odd list → Prop.
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Next, we need proofs of the three cases.
Hypothesis ENil case : Peven ENil.
Hypothesis ECons case : ∀ (n : nat) (o : odd list), Podd o → Peven (ECons n o).
Hypothesis OCons case : ∀ (n : nat) (e : even list), Peven e → Podd (OCons n e).
Finally, we define the recursive functions.
Fixpoint even list mut’ (e : even list) : Peven e :=
match e with
| ENil ⇒ ENil case
| ECons n o ⇒ ECons case n (odd list mut’ o)

end
with odd list mut’ (o : odd list) : Podd o :=
match o with
| OCons n e ⇒ OCons case n (even list mut’ e)

end.
End even list mut’.

Even induction principles for reflexive types are easy to implement directly. For our
formula type, we can use a recursive definition much like those we wrote above.
Section formula ind’.
Variable P : formula → Prop.
Hypothesis Eq case : ∀ n1 n2 : nat, P (Eq n1 n2 ).
Hypothesis And case : ∀ f1 f2 : formula,
P f1 → P f2 → P (And f1 f2 ).

Hypothesis Forall case : ∀ f : nat → formula,
(∀ n : nat, P (f n)) → P (Forall f ).

Fixpoint formula ind’ (f : formula) : P f :=
match f with
| Eq n1 n2 ⇒ Eq case n1 n2
| And f1 f2 ⇒ And case (formula ind’ f1 ) (formula ind’ f2 )
| Forall f’ ⇒ Forall case f’ (fun n ⇒ formula ind’ (f’ n))

end.
End formula ind’.

It is apparent that induction principle implementations involve some tedium but not
terribly much creativity.

3.8 Nested Inductive Types
Suppose we want to extend our earlier type of binary trees to trees with arbitrary finite
branching. We can use lists to give a simple definition.
Inductive nat tree : Set :=
| NNode’ : nat → list nat tree → nat tree.
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This is an example of a nested inductive type definition, because we use the type we
are defining as an argument to a parameterized type family. Coq will not allow all such
definitions; it effectively pretends that we are defining nat tree mutually with a version
of list specialized to nat tree, checking that the resulting expanded definition satisfies the
usual rules. For instance, if we replaced list with a type family that used its parameter
as a function argument, then the definition would be rejected as violating the positivity
restriction.

As we encountered with mutual inductive types, we find that the automatically generated
induction principle for nat tree is too weak.

Check nat tree ind.

nat tree ind
: ∀ P : nat tree → Prop,

(∀ (n : nat) (l : list nat tree), P (NNode’ n l)) →
∀ n : nat tree, P n

There is no command like Scheme that will implement an improved principle for us. In
general, it takes creativity to figure out good ways to incorporate nested uses of different
type families. Now that we know how to implement induction principles manually, we are
in a position to apply just such creativity to this problem.

Many induction principles for types with nested uses of list could benefit from a unified
predicate capturing the idea that some property holds of every element in a list. By defining
this generic predicate once, we facilitate reuse of library theorems about it. (Here, we are
actually duplicating the standard library’s Forall predicate, with a different implementation,
for didactic purposes.)
Section All.
Variable T : Set.
Variable P : T → Prop.
Fixpoint All (ls : list T ) : Prop :=
match ls with
| Nil ⇒ True
| Cons h t ⇒ P h ∧ All t

end.
End All.

It will be useful to review the definitions of True and ∧, since we will want to write
manual proofs of them below.
Print True.

Inductive True : Prop := I : True
That is, True is a proposition with exactly one proof, I, which we may always supply

trivially.
Finding the definition of ∧ takes a little more work. Coq supports user registration of

arbitrary parsing rules, and it is such a rule that is letting us write ∧ instead of an application
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of some inductive type family. We can find the underlying inductive type with the Locate
command, whose argument may be a parsing token.
Locate "/\".

"A /\ B" := and A B : type scope (default interpretation)

Print and.

Inductive and (A : Prop) (B : Prop) : Prop := conj : A → B → A ∧ B

For conj: Arguments A, B are implicit

In addition to the definition of and itself, we get information on implicit arguments (and
some other information that we omit here). The implicit argument information tells us that
we build a proof of a conjunction by calling the constructor conj on proofs of the conjuncts,
with no need to include the types of those proofs as explicit arguments.

Now we create a section for our induction principle, following the same basic plan as in
the previous section of this chapter.
Section nat tree ind’.
Variable P : nat tree → Prop.
Hypothesis NNode’ case : ∀ (n : nat) (ls : list nat tree),

All P ls → P (NNode’ n ls).

A first attempt at writing the induction principle itself follows the intuition that nested
inductive type definitions are expanded into mutual inductive definitions.

Fixpoint nat tree ind’ (tr : nat tree) : P tr :=
match tr with
| NNode’ n ls ⇒ NNode’ case n ls (list nat tree ind ls)

end

with list nat tree ind (ls : list nat tree) : All P ls :=
match ls with
| Nil ⇒ I
| Cons tr rest ⇒ conj (nat tree ind’ tr) (list nat tree ind rest)

end.

Coq rejects this definition, saying

Recursive call to nat_tree_ind’ has principal argument equal to "tr"
instead of rest.

There is no deep theoretical reason why this program should be rejected; Coq applies
incomplete termination-checking heuristics, and it is necessary to learn a few of the most
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important rules. The term “nested inductive type” hints at the solution to this particular
problem. Just as mutually inductive types require mutually recursive induction principles,
nested types require nested recursion.
Fixpoint nat tree ind’ (tr : nat tree) : P tr :=
match tr with
| NNode’ n ls ⇒ NNode’ case n ls

((fix list nat tree ind (ls : list nat tree) : All P ls :=
match ls with
| Nil ⇒ I
| Cons tr’ rest ⇒ conj (nat tree ind’ tr’) (list nat tree ind rest)

end) ls)
end.
We include an anonymous fix version of list nat tree ind that is literally nested inside

the definition of the recursive function corresponding to the inductive definition that had
the nested use of list.
End nat tree ind’.

We can try our induction principle out by defining some recursive functions on nat tree
and proving a theorem about them. First, we define some helper functions that operate on
lists.
Section map.
Variables T T’ : Set.
Variable F : T → T’.
Fixpoint map (ls : list T ) : list T’ :=
match ls with
| Nil ⇒ Nil
| Cons h t ⇒ Cons (F h) (map t)

end.
End map.
Fixpoint sum (ls : list nat) : nat :=
match ls with
| Nil ⇒ O
| Cons h t ⇒ plus h (sum t)

end.
Now we can define a size function over our trees.

Fixpoint ntsize (tr : nat tree) : nat :=
match tr with
| NNode’ trs ⇒ S (sum (map ntsize trs))

end.
Notice that Coq was smart enough to expand the definition of map to verify that we are

using proper nested recursion, even through a use of a higher-order function.
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Fixpoint ntsplice (tr1 tr2 : nat tree) : nat tree :=
match tr1 with
| NNode’ n Nil ⇒ NNode’ n (Cons tr2 Nil)
| NNode’ n (Cons tr trs) ⇒ NNode’ n (Cons (ntsplice tr tr2 ) trs)

end.
We have defined another arbitrary notion of tree splicing, similar to before, and we can

prove an analogous theorem about its relationship with tree size. We start with a useful
lemma about addition.
Lemma plus S : ∀ n1 n2 : nat,
plus n1 (S n2 ) = S (plus n1 n2 ).
induction n1 ; crush.

Qed.
Now we begin the proof of the theorem, adding the lemma plus S as a hint.

Hint Rewrite plus S.
Theorem ntsize ntsplice : ∀ tr1 tr2 : nat tree, ntsize (ntsplice tr1 tr2 )
= plus (ntsize tr2 ) (ntsize tr1 ).
We know that the standard induction principle is insufficient for the task, so we need to

provide a using clause for the induction tactic to specify our alternate principle.
induction tr1 using nat tree ind’; crush.
One subgoal remains:
n : nat
ls : list nat tree
H : All

(fun tr1 : nat tree ⇒
∀ tr2 : nat tree,
ntsize (ntsplice tr1 tr2 ) = plus (ntsize tr2 ) (ntsize tr1 )) ls

tr2 : nat tree
============================
ntsize
match ls with
| Nil ⇒ NNode’ n (Cons tr2 Nil)
| Cons tr trs ⇒ NNode’ n (Cons (ntsplice tr tr2 ) trs)
end = S (plus (ntsize tr2 ) (sum (map ntsize ls)))

After a few moments of squinting at this goal, it becomes apparent that we need to do a
case analysis on the structure of ls. The rest is routine.
destruct ls; crush.
We can go further in automating the proof by exploiting the hint mechanism.
Restart.
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Hint Extern 1 (ntsize (match ?LS with Nil ⇒ | Cons ⇒ end) = ) ⇒
destruct LS ; crush.

induction tr1 using nat tree ind’; crush.
Qed.

We will go into great detail on hints in a later chapter, but the only important thing to
note here is that we register a pattern that describes a conclusion we expect to encounter
during the proof. The pattern may contain unification variables, whose names are prefixed
with question marks, and we may refer to those bound variables in a tactic that we ask to
have run whenever the pattern matches.

The advantage of using the hint is not very clear here, because the original proof was so
short. However, the hint has fundamentally improved the readability of our proof. Before,
the proof referred to the local variable ls, which has an automatically generated name. To
a human reading the proof script without stepping through it interactively, it was not clear
where ls came from. The hint explains to the reader the process for choosing which variables
to case analyze, and the hint can continue working even if the rest of the proof structure
changes significantly.

3.9 Manual Proofs About Constructors
It can be useful to understand how tactics like discriminate and injection work, so it
is worth stepping through a manual proof of each kind. We will start with a proof fit for
discriminate.
Theorem true neq false : true 6= false.

We begin with the tactic red, which is short for “one step of reduction,” to unfold the
definition of logical negation.
red.

============================
true = false → False
The negation is replaced with an implication of falsehood. We use the tactic intro H to

change the assumption of the implication into a hypothesis named H.
intro H.

H : true = false
============================
False
This is the point in the proof where we apply some creativity. We define a function whose

utility will become clear soon.
Definition toProp (b : bool) := if b then True else False.
It is worth recalling the difference between the lowercase and uppercase versions of truth

and falsehood: True and False are logical propositions, while true and false are Boolean
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values that we can case-analyze. We have defined toProp such that our conclusion of False
is computationally equivalent to toProp false. Thus, the change tactic will let us change
the conclusion to toProp false. The general form change e replaces the conclusion with e,
whenever Coq’s built-in computation rules suffice to establish the equivalence of e with the
original conclusion.
change (toProp false).

H : true = false
============================
toProp false
Now the righthand side of H ’s equality appears in the conclusion, so we can rewrite, using

the notation ← to request to replace the righthand side of the equality with the lefthand
side.
rewrite ← H.

H : true = false
============================
toProp true
We are almost done. Just how close we are to done is revealed by computational simpli-

fication.
simpl.

H : true = false
============================
True

trivial.
Qed.

I have no trivial automated version of this proof to suggest, beyond using discriminate
or congruence in the first place.

We can perform a similar manual proof of injectivity of the constructor S. I leave a walk-
through of the details to curious readers who want to run the proof script interactively.
Theorem S inj’ : ∀ n m : nat, S n = S m → n = m.
intros n m H.
change (pred (S n) = pred (S m)).
rewrite H.
reflexivity.

Qed.
The key piece of creativity in this theorem comes in the use of the natural number

predecessor function pred. Embodied in the implementation of injection is a generic recipe
for writing such type-specific functions.
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The examples in this section illustrate an important aspect of the design philosophy be-
hind Coq. We could certainly design a Gallina replacement that built in rules for constructor
discrimination and injectivity, but a simpler alternative is to include a few carefully chosen
rules that enable the desired reasoning patterns and many others. A key benefit of this phi-
losophy is that the complexity of proof checking is minimized, which bolsters our confidence
that proved theorems are really true.
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Chapter 4

Inductive Predicates

The so-called “Curry-Howard correspondence” [10, 14] states a formal connection between
functional programs and mathematical proofs. In the last chapter, we snuck in a first in-
troduction to this subject in Coq. Witness the close similarity between the types unit and
True from the standard library:
Print unit.

Inductive unit : Set := tt : unit

Print True.

Inductive True : Prop := I : True
Recall that unit is the type with only one value, and True is the proposition that always

holds. Despite this superficial difference between the two concepts, in both cases we can
use the same inductive definition mechanism. The connection goes further than this. We
see that we arrive at the definition of True by replacing unit by True, tt by I, and Set by
Prop. The first two of these differences are superficial changes of names, while the third
difference is the crucial one for separating programs from proofs. A term T of type Set
is a type of programs, and a term of type T is a program. A term T of type Prop is a
logical proposition, and its proofs are of type T. Chapter 12 goes into more detail about
the theoretical differences between Prop and Set. For now, we will simply follow common
intuitions about what a proof is.

The type unit has one value, tt. The type True has one proof, I. Why distinguish between
these two types? Many people who have read about Curry-Howard in an abstract context
but who have not put it to use in proof engineering answer that the two types in fact should
not be distinguished. There is a certain aesthetic appeal to this point of view, but I want to
argue that it is best to treat Curry-Howard very loosely in practical proving. There are Coq-
specific reasons for preferring the distinction, involving efficient compilation and avoidance
of paradoxes in the presence of classical math, but I will argue that there is a more general
principle that should lead us to avoid conflating programming and proving.

The essence of the argument is roughly this: to an engineer, not all functions of type A→
B are created equal, but all proofs of a proposition P → Q are. This idea is known as proof
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irrelevance, and its formalizations in logics prevent us from distinguishing between alternate
proofs of the same proposition. Proof irrelevance is compatible with, but not derivable in,
Gallina. Apart from this theoretical concern, I will argue that it is most effective to do
engineering with Coq by employing different techniques for programs versus proofs. Most
of this book is organized around that distinction, describing how to program, by applying
standard functional programming techniques in the presence of dependent types; and how
to prove, by writing custom Ltac decision procedures.

With that perspective in mind, this chapter is sort of a mirror image of the last chapter,
introducing how to define predicates with inductive definitions. We will point out similarities
in places, but much of the effective Coq user’s bag of tricks is disjoint for predicates versus
“datatypes.” This chapter is also a covert introduction to dependent types, which are the
foundation on which interesting inductive predicates are built, though we will rely on tactics
to build dependently typed proof terms for us for now. A future chapter introduces more
manual application of dependent types.

4.1 Propositional Logic
Let us begin with a brief tour through the definitions of the connectives for propositional
logic. We will work within a Coq section that provides us with a set of propositional variables.
In Coq parlance, these are just variables of type Prop.
Section Propositional.
Variables P Q R : Prop.
In Coq, the most basic propositional connective is implication, written→, which we have

already used in almost every proof. Rather than being defined inductively, implication is
built into Coq as the function type constructor.

We have also already seen the definition of True. For a demonstration of a lower-level
way of establishing proofs of inductive predicates, we turn to this trivial theorem.
Theorem obvious : True.
apply I.

Qed.
We may always use the apply tactic to take a proof step based on applying a particular

constructor of the inductive predicate that we are trying to establish. Sometimes there is
only one constructor that could possibly apply, in which case a shortcut is available:
Theorem obvious’ : True.
constructor.

Qed.

There is also a predicate False, which is the Curry-Howard mirror image of Empty set
from the last chapter.
Print False.
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Inductive False : Prop :=
We can conclude anything from False, doing case analysis on a proof of False in the

same way we might do case analysis on, say, a natural number. Since there are no cases to
consider, any such case analysis succeeds immediately in proving the goal.
Theorem False imp : False → 2 + 2 = 5.
destruct 1.

Qed.
In a consistent context, we can never build a proof of False. In inconsistent contexts

that appear in the courses of proofs, it is usually easiest to proceed by demonstrating the
inconsistency with an explicit proof of False.
Theorem arith neq : 2 + 2 = 5 → 9 + 9 = 835.
intro.
At this point, we have an inconsistent hypothesis 2 + 2 = 5, so the specific conclusion

is not important. We use the elimtype tactic. For a full description of it, see the Coq
manual. For our purposes, we only need the variant elimtype False, which lets us replace
any conclusion formula with False, because any fact follows from an inconsistent context.

elimtype False.

H : 2 + 2 = 5
============================
False

For now, we will leave the details of this proof about arithmetic to crush.
crush.

Qed.
A related notion to False is logical negation.

Print not.

not = fun A : Prop ⇒ A → False
: Prop → Prop

We see that not is just shorthand for implication of False. We can use that fact explicitly
in proofs. The syntax ¬ P (written with a tilde in ASCII) expands to not P.
Theorem arith neq’ : ¬ (2 + 2 = 5).
unfold not.

============================
2 + 2 = 5 → False

crush.
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Qed.
We also have conjunction, which we introduced in the last chapter.
Print and.

Inductive and (A : Prop) (B : Prop) : Prop := conj : A → B → A ∧ B
The interested reader can check that and has a Curry-Howard equivalent called prod, the

type of pairs. However, it is generally most convenient to reason about conjunction using
tactics. An explicit proof of commutativity of and illustrates the usual suspects for such
tasks. The operator ∧ is an infix shorthand for and.
Theorem and comm : P ∧ Q → Q ∧ P.
We start by case analysis on the proof of P ∧ Q.
destruct 1.

H : P
H0 : Q
============================
Q ∧ P

Every proof of a conjunction provides proofs for both conjuncts, so we get a single subgoal
reflecting that. We can proceed by splitting this subgoal into a case for each conjunct of Q
∧ P.

split.

2 subgoals

H : P
H0 : Q
============================
Q

subgoal 2 is

P

In each case, the conclusion is among our hypotheses, so the assumption tactic finishes
the process.

assumption.
assumption.

Qed.
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Coq disjunction is called or and abbreviated with the infix operator ∨.
Print or.

Inductive or (A : Prop) (B : Prop) : Prop :=
or introl : A → A ∨ B | or intror : B → A ∨ B
We see that there are two ways to prove a disjunction: prove the first disjunct or prove

the second. The Curry-Howard analogue of this is the Coq sum type. We can demonstrate
the main tactics here with another proof of commutativity.
Theorem or comm : P ∨ Q → Q ∨ P.
As in the proof for and, we begin with case analysis, though this time we are met by two

cases instead of one.
destruct 1.

2 subgoals

H : P
============================
Q ∨ P

subgoal 2 is

Q ∨ P

We can see that, in the first subgoal, we want to prove the disjunction by proving its
second disjunct. The right tactic telegraphs this intent.

right; assumption.
The second subgoal has a symmetric proof.

1 subgoal

H : Q
============================
Q ∨ P

left; assumption.
Qed.

It would be a shame to have to plod manually through all proofs about propositional
logic. Luckily, there is no need. One of the most basic Coq automation tactics is tauto,
which is a complete decision procedure for constructive propositional logic. (More on what
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“constructive” means in the next section.) We can use tauto to dispatch all of the purely
propositional theorems we have proved so far.
Theorem or comm’ : P ∨ Q → Q ∨ P.
tauto.

Qed.
Sometimes propositional reasoning forms important plumbing for the proof of a theorem,

but we still need to apply some other smarts about, say, arithmetic. The tactic intuition is
a generalization of tauto that proves everything it can using propositional reasoning. When
some further facts must be established to finish the proof, intuition uses propositional laws
to simplify them as far as possible. Consider this example, which uses the list concatenation
operator ++ from the standard library.
Theorem arith comm : ∀ ls1 ls2 : list nat,
length ls1 = length ls2 ∨ length ls1 + length ls2 = 6
→ length (ls1 ++ ls2 ) = 6 ∨ length ls1 = length ls2.
intuition.
A lot of the proof structure has been generated for us by intuition, but the final proof

depends on a fact about lists. The remaining subgoal hints at what cleverness we need to
inject.

ls1 : list nat
ls2 : list nat
H0 : length ls1 + length ls2 = 6
============================
length (ls1 ++ ls2 ) = 6 ∨ length ls1 = length ls2

We can see that we need a theorem about lengths of concatenated lists, which we proved
last chapter and is also in the standard library.

rewrite app length.

ls1 : list nat
ls2 : list nat
H0 : length ls1 + length ls2 = 6
============================
length ls1 + length ls2 = 6 ∨ length ls1 = length ls2

Now the subgoal follows by purely propositional reasoning. That is, we could replace
length ls1 + length ls2 = 6 with P and length ls1 = length ls2 with Q and arrive at a
tautology of propositional logic.

tauto.
Qed.
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The intuition tactic is one of the main bits of glue in the implementation of crush, so,
with a little help, we can get a short automated proof of the theorem.
Theorem arith comm’ : ∀ ls1 ls2 : list nat,

length ls1 = length ls2 ∨ length ls1 + length ls2 = 6
→ length (ls1 ++ ls2 ) = 6 ∨ length ls1 = length ls2.
Hint Rewrite app length.
crush.

Qed.
End Propositional.

Ending the section here has the same effect as always. Each of our propositional theorems
becomes universally quantified over the propositional variables that we used.

4.2 What Does It Mean to Be Constructive?
One potential point of confusion in the presentation so far is the distinction between bool
and Prop. The datatype bool is built from two values true and false, while Prop is a more
primitive type that includes among its members True and False. Why not collapse these
two concepts into one, and why must there be more than two states of mathematical truth,
True and False?

The answer comes from the fact that Coq implements constructive or intuitionistic logic,
in contrast to the classical logic that you may be more familiar with. In constructive logic,
classical tautologies like ¬ ¬ P → P and P ∨ ¬ P do not always hold. In general, we can
only prove these tautologies when P is decidable, in the sense of computability theory. The
Curry-Howard encoding that Coq uses for or allows us to extract either a proof of P or a
proof of ¬ P from any proof of P ∨ ¬ P. Since our proofs are just functional programs which
we can run, a general law of the excluded middle would give us a decision procedure for the
halting problem, where the instantiations of P would be formulas like “this particular Turing
machine halts.”

A similar paradoxical situation would result if every proposition evaluated to either True
or False. Evaluation in Coq is decidable, so we would be limiting ourselves to decidable
propositions only.

Hence the distinction between bool and Prop. Programs of type bool are computational
by construction; we can always run them to determine their results. Many Props are unde-
cidable, and so we can write more expressive formulas with Props than with bools, but the
inevitable consequence is that we cannot simply “run a Prop to determine its truth.”

Constructive logic lets us define all of the logical connectives in an aesthetically appealing
way, with orthogonal inductive definitions. That is, each connective is defined independently
using a simple, shared mechanism. Constructivity also enables a trick called program extrac-
tion, where we write programs by phrasing them as theorems to be proved. Since our proofs
are just functional programs, we can extract executable programs from our final proofs,
which we could not do as naturally with classical proofs.
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We will see more about Coq’s program extraction facility in a later chapter. However, I
think it is worth interjecting another warning at this point, following up on the prior warning
about taking the Curry-Howard correspondence too literally. It is possible to write programs
by theorem-proving methods in Coq, but hardly anyone does it. It is almost always most
useful to maintain the distinction between programs and proofs. If you write a program by
proving a theorem, you are likely to run into algorithmic inefficiencies that you introduced
in your proof to make it easier to prove. It is a shame to have to worry about such situations
while proving tricky theorems, and it is a happy state of affairs that you almost certainly
will not need to, with the ideal of extracting programs from proofs being confined mostly to
theoretical studies.

4.3 First-Order Logic
The ∀ connective of first-order logic, which we have seen in many examples so far, is built
into Coq. Getting ahead of ourselves a bit, we can see it as the dependent function type
constructor. In fact, implication and universal quantification are just different syntactic
shorthands for the same Coq mechanism. A formula P → Q is equivalent to ∀ x : P, Q,
where x does not appear in Q. That is, the “real” type of the implication says “for every
proof of P, there exists a proof of Q.”

Existential quantification is defined in the standard library.
Print ex.

Inductive ex (A : Type) (P : A → Prop) : Prop :=
ex intro : ∀ x : A, P x → ex P
(Note that here, as always, each ∀ quantifier has the largest possible scope, so that the

type of ex intro could also be written ∀ x : A, (P x → ex P).)
The family ex is parameterized by the type A that we quantify over, and by a predicate

P over As. We prove an existential by exhibiting some x of type A, along with a proof of P
x. As usual, there are tactics that save us from worrying about the low-level details most of
the time.

Here is an example of a theorem statement with existential quantification. We use the
equality operator =, which, depending on the settings in which they learned logic, different
people will say either is or is not part of first-order logic. For our purposes, it is.
Theorem exist1 : ∃ x : nat, x + 1 = 2.

We can start this proof with a tactic exists, which should not be confused with the
formula constructor shorthand of the same name. In the version of this document that you
are reading, the reverse “E” appears instead of the text “exists” in formulas.
exists 1.
The conclusion is replaced with a version using the existential witness that we announced.

============================
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1 + 1 = 2

reflexivity.
Qed.

We can also use tactics to reason about existential hypotheses.
Theorem exist2 : ∀ n m : nat, (∃ x : nat, n + x = m) → n ≤ m.

We start by case analysis on the proof of the existential fact.
destruct 1.

n : nat
m : nat
x : nat
H : n + x = m
============================
n ≤ m

The goal has been replaced by a form where there is a new free variable x, and where we
have a new hypothesis that the body of the existential holds with x substituted for the old
bound variable. From here, the proof is just about arithmetic and is easy to automate.
crush.

Qed.

The tactic intuition has a first-order cousin called firstorder, which proves many
formulas when only first-order reasoning is needed, and it tries to perform first-order sim-
plifications in any case. First-order reasoning is much harder than propositional reasoning,
so firstorder is much more likely than intuition to get stuck in a way that makes it run
for long enough to be useless.

4.4 Predicates with Implicit Equality
We start our exploration of a more complicated class of predicates with a simple example:
an alternative way of characterizing when a natural number is zero.
Inductive isZero : nat → Prop :=
| IsZero : isZero 0.
Theorem isZero zero : isZero 0.
constructor.

Qed.
We can call isZero a judgment, in the sense often used in the semantics of programming

languages. Judgments are typically defined in the style of natural deduction, where we write
a number of inference rules with premises appearing above a solid line and a conclusion
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appearing below the line. In this example, the sole constructor IsZero of isZero can be
thought of as the single inference rule for deducing isZero, with nothing above the line and
isZero 0 below it. The proof of isZero zero demonstrates how we can apply an inference
rule. (Readers not familiar with formal semantics should not worry about not following this
paragraph!)

The definition of isZero differs in an important way from all of the other inductive
definitions that we have seen in this and the previous chapter. Instead of writing just Set or
Prop after the colon, here we write nat → Prop. We saw examples of parameterized types
like list, but there the parameters appeared with names before the colon. Every constructor
of a parameterized inductive type must have a range type that uses the same parameter,
whereas the form we use here enables us to choose different arguments to the type for different
constructors.

For instance, our definition isZero makes the predicate provable only when the argument
is 0. We can see that the concept of equality is somehow implicit in the inductive definition
mechanism. The way this is accomplished is similar to the way that logic variables are used
in Prolog (but worry not if not familiar with Prolog), and it is a very powerful mechanism
that forms a foundation for formalizing all of mathematics. In fact, though it is natural to
think of inductive types as folding in the functionality of equality, in Coq, the true situation
is reversed, with equality defined as just another inductive type!
Print eq.

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x
Behind the scenes, uses of infix = are expanded to instances of eq. We see that eq has

both a parameter x that is fixed and an extra unnamed argument of the same type. The type
of eq allows us to state any equalities, even those that are provably false. However, examining
the type of equality’s sole constructor eq refl, we see that we can only prove equality when
its two arguments are syntactically equal. This definition turns out to capture all of the
basic properties of equality, and the equality-manipulating tactics that we have seen so far,
like reflexivity and rewrite, are implemented treating eq as just another inductive type
with a well-chosen definition. Another way of stating that definition is: equality is defined
as the least reflexive relation.

Returning to the example of isZero, we can see how to work with hypotheses that use
this predicate.
Theorem isZero plus : ∀ n m : nat, isZero m → n + m = n.

We want to proceed by cases on the proof of the assumption about isZero.
destruct 1.

n : nat
============================
n + 0 = n

Since isZero has only one constructor, we are presented with only one subgoal. The
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argument m to isZero is replaced with that type’s argument from the single constructor
IsZero. From this point, the proof is trivial.
crush.

Qed.
Another example seems at first like it should admit an analogous proof, but in fact

provides a demonstration of one of the most basic gotchas of Coq proving.
Theorem isZero contra : isZero 1 → False.

Let us try a proof by cases on the assumption, as in the last proof.
destruct 1.

============================
False

It seems that case analysis has not helped us much at all! Our sole hypothesis disappears,
leaving us, if anything, worse off than we were before. What went wrong? We have met an
important restriction in tactics like destruct and induction when applied to types with
arguments. If the arguments are not already free variables, they will be replaced by new
free variables internally before doing the case analysis or induction. Since the argument 1 to
isZero is replaced by a fresh variable, we lose the crucial fact that it is not equal to 0.

Why does Coq use this restriction? We will discuss the issue in detail in a future chapter,
when we see the dependently typed programming techniques that would allow us to write
this proof term manually. For now, we just say that the algorithmic problem of “logically
complete case analysis” is undecidable when phrased in Coq’s logic. A few tactics and design
patterns that we will present in this chapter suffice in almost all cases. For the current
example, what we want is a tactic called inversion, which corresponds to the concept of
inversion that is frequently used with natural deduction proof systems. (Again, worry not if
the semantics-oriented terminology from this last sentence is unfamiliar.)
Undo.
inversion 1.

Qed.
What does inversion do? Think of it as a version of destruct that does its best to

take advantage of the structure of arguments to inductive types. In this case, inversion
completed the proof immediately, because it was able to detect that we were using isZero
with an impossible argument.

Sometimes using destruct when you should have used inversion can lead to confusing
results. To illustrate, consider an alternate proof attempt for the last theorem.
Theorem isZero contra’ : isZero 1 → 2 + 2 = 5.
destruct 1.

============================
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1 + 1 = 4

What on earth happened here? Internally, destruct replaced 1 with a fresh variable,
and, trying to be helpful, it also replaced the occurrence of 1 within the unary representation
of each number in the goal. Then, within the O case of the proof, we replace the fresh variable
with O. This has the net effect of decrementing each of these numbers.
Abort.

To see more clearly what is happening, we can consider the type of isZero’s induction
principle.
Check isZero ind.

isZero ind
: ∀ P : nat → Prop, P 0 → ∀ n : nat, isZero n → P n

In our last proof script, destruct chose to instantiate P as fun n ⇒ S n + S n = S (S
(S (S n))). You can verify for yourself that this specialization of the principle applies to the
goal and that the hypothesis P 0 then matches the subgoal we saw generated. If you are
doing a proof and encounter a strange transmutation like this, there is a good chance that
you should go back and replace a use of destruct with inversion.

4.5 Recursive Predicates
We have already seen all of the ingredients we need to build interesting recursive predicates,
like this predicate capturing even-ness.
Inductive even : nat → Prop :=
| EvenO : even O
| EvenSS : ∀ n, even n → even (S (S n)).

Think of even as another judgment defined by natural deduction rules. The rule EvenO
has nothing above the line and even O below the line, and EvenSS is a rule with even n
above the line and even (S (S n)) below.

The proof techniques of the last section are easily adapted.
Theorem even 0 : even 0.
constructor.

Qed.
Theorem even 4 : even 4.
constructor; constructor; constructor.

Qed.
It is not hard to see that sequences of constructor applications like the above can get

tedious. We can avoid them using Coq’s hint facility, with a new Hint variant that asks
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to consider all constructors of an inductive type during proof search. The tactic auto per-
forms exhaustive proof search up to a fixed depth, considering only the proof steps we have
registered as hints.
Hint Constructors even.
Theorem even 4’ : even 4.
auto.

Qed.

We may also use inversion with even.
Theorem even 1 contra : even 1 → False.
inversion 1.

Qed.
Theorem even 3 contra : even 3 → False.
inversion 1.

H : even 3
n : nat
H1 : even 1
H0 : n = 1
============================
False

The inversion tactic can be a little overzealous at times, as we can see here with
the introduction of the unused variable n and an equality hypothesis about it. For more
complicated predicates, though, adding such assumptions is critical to dealing with the
undecidability of general inversion. More complex inductive definitions and theorems can
cause inversion to generate equalities where neither side is a variable.
inversion H1.

Qed.
We can also do inductive proofs about even.

Theorem even plus : ∀ n m, even n → even m → even (n + m).
It seems a reasonable first choice to proceed by induction on n.
induction n; crush.

n : nat
IHn : ∀ m : nat, even n → even m → even (n + m)
m : nat
H : even (S n)
H0 : even m
============================
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even (S (n + m))

We will need to use the hypotheses H and H0 somehow. The most natural choice is to
invert H.
inversion H.

n : nat
IHn : ∀ m : nat, even n → even m → even (n + m)
m : nat
H : even (S n)
H0 : even m
n0 : nat
H2 : even n0
H1 : S n0 = n
============================
even (S (S n0 + m))

Simplifying the conclusion brings us to a point where we can apply a constructor.
simpl.

============================
even (S (S (n0 + m)))

constructor.

============================
even (n0 + m)

At this point, we would like to apply the inductive hypothesis, which is:

IHn : ∀ m : nat, even n → even m → even (n + m)

Unfortunately, the goal mentions n0 where it would need to mention n to match IHn.
We could keep looking for a way to finish this proof from here, but it turns out that we
can make our lives much easier by changing our basic strategy. Instead of inducting on the
structure of n, we should induct on the structure of one of the even proofs. This technique is
commonly called rule induction in programming language semantics. In the setting of Coq,
we have already seen how predicates are defined using the same inductive type mechanism as
datatypes, so the fundamental unity of rule induction with “normal” induction is apparent.
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Recall that tactics like induction and destruct may be passed numbers to refer to
unnamed lefthand sides of implications in the conclusion, where the argument n refers to
the nth such hypothesis.
Restart.
induction 1.

m : nat
============================
even m → even (0 + m)

subgoal 2 is:
even m → even (S (S n) + m)

The first case is easily discharged by crush, based on the hint we added earlier to try the
constructors of even.
crush.
Now we focus on the second case:
intro.

m : nat
n : nat
H : even n
IHeven : even m → even (n + m)
H0 : even m
============================
even (S (S n) + m)

We simplify and apply a constructor, as in our last proof attempt.
simpl; constructor.

============================
even (n + m)

Now we have an exact match with our inductive hypothesis, and the remainder of the
proof is trivial.
apply IHeven; assumption.
In fact, crush can handle all of the details of the proof once we declare the induction

strategy.
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Restart.
induction 1; crush.

Qed.
Induction on recursive predicates has similar pitfalls to those we encountered with inver-

sion in the last section.
Theorem even contra : ∀ n, even (S (n + n)) → False.
induction 1.

n : nat
============================
False

subgoal 2 is:
False

We are already sunk trying to prove the first subgoal, since the argument to even was
replaced by a fresh variable internally. This time, we find it easier to prove this theorem by
way of a lemma. Instead of trusting induction to replace expressions with fresh variables,
we do it ourselves, explicitly adding the appropriate equalities as new assumptions.
Abort.
Lemma even contra’ : ∀ n’, even n’ → ∀ n, n’ = S (n + n) → False.
induction 1; crush.
At this point, it is useful to consider all cases of n and n0 being zero or nonzero. Only

one of these cases has any trickiness to it.
destruct n; destruct n0 ; crush.

n : nat
H : even (S n)
IHeven : ∀ n0 : nat, S n = S (n0 + n0 ) → False
n0 : nat
H0 : S n = n0 + S n0
============================
False

At this point it is useful to use a theorem from the standard library, which we also proved
with a different name in the last chapter. We can search for a theorem that allows us to
rewrite terms of the form x + S y.
SearchRewrite ( + S ).

plus n Sm : ∀ n m : nat, S (n + m) = n + S m
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rewrite ← plus n Sm in H0.
The induction hypothesis lets us complete the proof, if we use a variant of apply that

has a with clause to give instantiations of quantified variables.
apply IHeven with n0 ; assumption.
As usual, we can rewrite the proof to avoid referencing any locally generated names,

which makes our proof script more readable and more robust to changes in the theorem
statement. We use the notation ← to request a hint that does right-to-left rewriting, just
like we can with the rewrite tactic.
Restart.
Hint Rewrite ← plus n Sm.
induction 1; crush;
match goal with
| [ H : S ?N = ?N0 + ?N0 ` ] ⇒ destruct N ; destruct N0

end; crush.
Qed.

We write the proof in a way that avoids the use of local variable or hypothesis names,
using the match tactic form to do pattern-matching on the goal. We use unification variables
prefixed by question marks in the pattern, and we take advantage of the possibility to mention
a unification variable twice in one pattern, to enforce equality between occurrences. The hint
to rewrite with plus n Sm in a particular direction saves us from having to figure out the
right place to apply that theorem.

The original theorem now follows trivially from our lemma, using a new tactic eauto, a
fancier version of auto whose explanation we postpone to Chapter 13.
Theorem even contra : ∀ n, even (S (n + n)) → False.
intros; eapply even contra’; eauto.

Qed.
We use a variant eapply of apply which has the same relationship to apply as eauto has

to auto. An invocation of apply only succeeds if all arguments to the rule being used can be
determined from the form of the goal, whereas eapply will introduce unification variables for
undetermined arguments. In this case, eauto is able to determine the right values for those
unification variables, using (unsurprisingly) a variant of the classic algorithm for unification
[41].

By considering an alternate attempt at proving the lemma, we can see another common
pitfall of inductive proofs in Coq. Imagine that we had tried to prove even contra’ with all
of the ∀ quantifiers moved to the front of the lemma statement.
Lemma even contra’’ : ∀ n’ n, even n’ → n’ = S (n + n) → False.
induction 1; crush;
match goal with
| [ H : S ?N = ?N0 + ?N0 ` ] ⇒ destruct N ; destruct N0

end; crush.

84



One subgoal remains:

n : nat
H : even (S (n + n))
IHeven : S (n + n) = S (S (S (n + n))) → False
============================
False

We are out of luck here. The inductive hypothesis is trivially true, since its assumption
is false. In the version of this proof that succeeded, IHeven had an explicit quantification
over n. This is because the quantification of n appeared after the thing we are inducting
on in the theorem statement. In general, quantified variables and hypotheses that appear
before the induction object in the theorem statement stay fixed throughout the inductive
proof. Variables and hypotheses that are quantified after the induction object may be varied
explicitly in uses of inductive hypotheses.
Abort.

Why should Coq implement induction this way? One answer is that it avoids burdening
this basic tactic with additional heuristic smarts, but that is not the whole picture. Imagine
that induction analyzed dependencies among variables and reordered quantifiers to pre-
serve as much freedom as possible in later uses of inductive hypotheses. This could make
the inductive hypotheses more complex, which could in turn cause particular automation
machinery to fail when it would have succeeded before. In general, we want to avoid quan-
tifiers in our proofs whenever we can, and that goal is furthered by the refactoring that the
induction tactic forces us to do.
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Chapter 5

Infinite Data and Proofs

In lazy functional programming languages like Haskell, infinite data structures are every-
where [16]. Infinite lists and more exotic datatypes provide convenient abstractions for
communication between parts of a program. Achieving similar convenience without infinite
lazy structures would, in many cases, require acrobatic inversions of control flow.

Laziness is easy to implement in Haskell, where all the definitions in a program may be
thought of as mutually recursive. In such an unconstrained setting, it is easy to implement
an infinite loop when you really meant to build an infinite list, where any finite prefix of the
list should be forceable in finite time. Haskell programmers learn how to avoid such slip-ups.
In Coq, such a laissez-faire policy is not good enough.

We spent some time in the last chapter discussing the Curry-Howard isomorphism, where
proofs are identified with functional programs. In such a setting, infinite loops, intended or
otherwise, are disastrous. If Coq allowed the full breadth of definitions that Haskell did, we
could code up an infinite loop and use it to prove any proposition vacuously. That is, the
addition of general recursion would make CIC inconsistent. For an arbitrary proposition P,
we could write:
Fixpoint bad (u : unit) : P := bad u.

This would leave us with bad tt as a proof of P.
There are also algorithmic considerations that make universal termination very desirable.

We have seen how tactics like reflexivity compare terms up to equivalence under compu-
tational rules. Calls to recursive, pattern-matching functions are simplified automatically,
with no need for explicit proof steps. It would be very hard to hold onto that kind of benefit
if it became possible to write non-terminating programs; we would be running smack into
the halting problem.

One solution is to use types to contain the possibility of non-termination. For instance,
we can create a “non-termination monad,” inside which we must write all of our general-
recursive programs; several such approaches are surveyed in Chapter 7. This is a heavyweight
solution, and so we would like to avoid it whenever possible.

Luckily, Coq has special support for a class of lazy data structures that happens to
contain most examples found in Haskell. That mechanism, co-inductive types, is the subject
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of this chapter.

5.1 Computing with Infinite Data
Let us begin with the most basic type of infinite data, streams, or lazy lists.
Section stream.
Variable A : Type.
CoInductive stream : Type :=
| Cons : A → stream → stream.

End stream.

The definition is surprisingly simple. Starting from the definition of list, we just need to
change the keyword Inductive to CoInductive. We could have left a Nil constructor in our
definition, but we will leave it out to force all of our streams to be infinite.

How do we write down a stream constant? Obviously, simple application of constructors
is not good enough, since we could only denote finite objects that way. Rather, whereas
recursive definitions were necessary to use values of recursive inductive types effectively, here
we find that we need co-recursive definitions to build values of co-inductive types effectively.

We can define a stream consisting only of zeroes.
CoFixpoint zeroes : stream nat := Cons 0 zeroes.

We can also define a stream that alternates between true and false.
CoFixpoint trues falses : stream bool := Cons true falses trues
with falses trues : stream bool := Cons false trues falses.

Co-inductive values are fair game as arguments to recursive functions, and we can use
that fact to write a function to take a finite approximation of a stream.

Fixpoint approx A (s : stream A) (n : nat) : list A :=
match n with
| O ⇒ nil
| S n’ ⇒
match s with
| Cons h t ⇒ h :: approx t n’

end
end.

Eval simpl in approx zeroes 10.

= 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: 0 :: nil
: list nat

Eval simpl in approx trues falses 10.

= true
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:: false
:: true

:: false
:: true :: false :: true :: false :: true :: false :: nil

: list bool

So far, it looks like co-inductive types might be a magic bullet, allowing us to import all
of the Haskeller’s usual tricks. However, there are important restrictions that are dual to
the restrictions on the use of inductive types. Fixpoints consume values of inductive types,
with restrictions on which arguments may be passed in recursive calls. Dually, co-fixpoints
produce values of co-inductive types, with restrictions on what may be done with the results
of co-recursive calls.

The restriction for co-inductive types shows up as the guardedness condition. First,
consider this stream definition, which would be legal in Haskell.
CoFixpoint looper : stream nat := looper.

Error:
Recursive definition of looper is ill-formed.
In environment
looper : stream nat

unguarded recursive call in "looper"

The rule we have run afoul of here is that every co-recursive call must be guarded by a
constructor ; that is, every co-recursive call must be a direct argument to a constructor of
the co-inductive type we are generating. It is a good thing that this rule is enforced. If the
definition of looper were accepted, our approx function would run forever when passed looper,
and we would have fallen into inconsistency.

Some familiar functions are easy to write in co-recursive fashion.
Section map.
Variables A B : Type.
Variable f : A → B.
CoFixpoint map (s : stream A) : stream B :=
match s with
| Cons h t ⇒ Cons (f h) (map t)

end.
End map.

This code is a literal copy of that for the list map function, with the nil case removed and
Fixpoint changed to CoFixpoint. Many other standard functions on lazy data structures
can be implemented just as easily. Some, like filter, cannot be implemented. Since the
predicate passed to filter may reject every element of the stream, we cannot satisfy the
guardedness condition.
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The implications of the condition can be subtle. To illustrate how, we start off with
another co-recursive function definition that is legal. The function interleave takes two
streams and produces a new stream that alternates between their elements.
Section interleave.
Variable A : Type.
CoFixpoint interleave (s1 s2 : stream A) : stream A :=
match s1, s2 with
| Cons h1 t1, Cons h2 t2 ⇒ Cons h1 (Cons h2 (interleave t1 t2 ))

end.
End interleave.

Now say we want to write a weird stuttering version of map that repeats elements in a
particular way, based on interleaving.
Section map’.
Variables A B : Type.
Variable f : A → B.

CoFixpoint map’ (s : stream A) : stream B :=
match s with
| Cons h t ⇒ interleave (Cons (f h) (map’ t)) (Cons (f h) (map’ t))

end.

We get another error message about an unguarded recursive call.
End map’.

What is going wrong here? Imagine that, instead of interleave, we had called some
other, less well-behaved function on streams. Here is one simpler example demonstrating
the essential pitfall. We start by defining a standard function for taking the tail of a stream.
Since streams are infinite, this operation is total.
Definition tl A (s : stream A) : stream A :=
match s with
| Cons s’ ⇒ s’

end.
Coq rejects the following definition that uses tl.

CoFixpoint bad : stream nat := tl (Cons 0 bad).
Imagine that Coq had accepted our definition, and consider how we might evaluate approx

bad 1. We would be trying to calculate the first element in the stream bad. However, it is
not hard to see that the definition of bad “begs the question”: unfolding the definition of
tl, we see that we essentially say “define bad to equal itself”! Of course such an equation
admits no single well-defined solution, which does not fit well with the determinism of Gallina
reduction.

Coq’s complete rule for co-recursive definitions includes not just the basic guardedness
condition, but also a requirement about where co-recursive calls may occur. In particular,
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a co-recursive call must be a direct argument to a constructor, nested only inside of other
constructor calls or fun or match expressions. In the definition of bad, we erroneously nested
the co-recursive call inside a call to tl, and we nested inside a call to interleave in the definition
of map’.

Coq helps the user out a little by performing the guardedness check after using compu-
tation to simplify terms. For instance, any co-recursive function definition can be expanded
by inserting extra calls to an identity function, and this change preserves guardedness. How-
ever, in other cases computational simplification can reveal why definitions are dangerous.
Consider what happens when we inline the definition of tl in bad:
CoFixpoint bad : stream nat := bad.

This is the same looping definition we rejected earlier. A similar inlining process reveals
an alternate view on our failed definition of map’:
CoFixpoint map’ (s : stream A) : stream B :=
match s with
| Cons h t ⇒ Cons (f h) (Cons (f h) (interleave (map’ t) (map’ t)))

end.
Clearly in this case the map’ calls are not immediate arguments to constructors, so we

violate the guardedness condition.
A more interesting question is why that condition is the right one. We can make an

intuitive argument that the original map’ definition is perfectly reasonable and denotes a
well-understood transformation on streams, such that every output would behave properly
with approx. The guardedness condition is an example of a syntactic check for productivity
of co-recursive definitions. A productive definition can be thought of as one whose outputs
can be forced in finite time to any finite approximation level, as with approx. If we replaced
the guardedness condition with more involved checks, we might be able to detect and allow
a broader range of productive definitions. However, mistakes in these checks could cause
inconsistency, and programmers would need to understand the new, more complex checks.
Coq’s design strikes a balance between consistency and simplicity with its choice of guard
condition, though we can imagine other worthwhile balances being struck, too.

5.2 Infinite Proofs
Let us say we want to give two different definitions of a stream of all ones, and then we want
to prove that they are equivalent.
CoFixpoint ones : stream nat := Cons 1 ones.
Definition ones’ := map S zeroes.

The obvious statement of the equality is this:
Theorem ones eq : ones = ones’.

However, faced with the initial subgoal, it is not at all clear how this theorem can be
proved. In fact, it is unprovable. The eq predicate that we use is fundamentally limited to
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equalities that can be demonstrated by finite, syntactic arguments. To prove this equivalence,
we will need to introduce a new relation.
Abort.

Co-inductive datatypes make sense by analogy from Haskell. What we need now is a
co-inductive proposition. That is, we want to define a proposition whose proofs may be
infinite, subject to the guardedness condition. The idea of infinite proofs does not show up
in usual mathematics, but it can be very useful (unsurprisingly) for reasoning about infinite
data structures. Besides examples from Haskell, infinite data and proofs will also turn out
to be useful for modelling inherently infinite mathematical objects, like program executions.

We are ready for our first co-inductive predicate.
Section stream eq.
Variable A : Type.
CoInductive stream eq : stream A → stream A → Prop :=
| Stream eq : ∀ h t1 t2,
stream eq t1 t2
→ stream eq (Cons h t1 ) (Cons h t2 ).

End stream eq.
We say that two streams are equal if and only if they have the same heads and their tails

are equal. We use the normal finite-syntactic equality for the heads, and we refer to our new
equality recursively for the tails.

We can try restating the theorem with stream eq.
Theorem ones eq : stream eq ones ones’.

Coq does not support tactical co-inductive proofs as well as it supports tactical inductive
proofs. The usual starting point is the cofix tactic, which asks to structure this proof as a
co-fixpoint.
cofix.

ones eq : stream eq ones ones’
============================
stream eq ones ones’

It looks like this proof might be easier than we expected!
assumption.

Proof completed.

Unfortunately, we are due for some disappointment in our victory lap.
Qed.

Error:
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Recursive definition of ones_eq is ill-formed.

In environment
ones_eq : stream_eq ones ones’

unguarded recursive call in "ones_eq"

Via the Curry-Howard correspondence, the same guardedness condition applies to our
co-inductive proofs as to our co-inductive data structures. We should be grateful that this
proof is rejected, because, if it were not, the same proof structure could be used to prove
any co-inductive theorem vacuously, by direct appeal to itself!

Thinking about how Coq would generate a proof term from the proof script above, we see
that the problem is that we are violating the guardedness condition. During our proofs, Coq
can help us check whether we have yet gone wrong in this way. We can run the command
Guarded in any context to see if it is possible to finish the proof in a way that will yield a
properly guarded proof term.
Guarded.

Running Guarded here gives us the same error message that we got when we tried to run
Qed. In larger proofs, Guarded can be helpful in detecting problems before we think we are
ready to run Qed.

We need to start the co-induction by applying stream eq’s constructor. To do that, we
need to know that both arguments to the predicate are Conses. Informally, this is trivial,
but simpl is not able to help us.
Undo.
simpl.

ones eq : stream eq ones ones’
============================
stream eq ones ones’

It turns out that we are best served by proving an auxiliary lemma.
Abort.

First, we need to define a function that seems pointless at first glance.
Definition frob A (s : stream A) : stream A :=
match s with
| Cons h t ⇒ Cons h t

end.
Next, we need to prove a theorem that seems equally pointless.

Theorem frob eq : ∀ A (s : stream A), s = frob s.
destruct s; reflexivity.
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Qed.
But, miraculously, this theorem turns out to be just what we needed.

Theorem ones eq : stream eq ones ones’.
cofix.
We can use the theorem to rewrite the two streams.
rewrite (frob eq ones).
rewrite (frob eq ones’).

ones eq : stream eq ones ones’
============================
stream eq (frob ones) (frob ones’)

Now simpl is able to reduce the streams.
simpl.

ones eq : stream eq ones ones’
============================
stream eq (Cons 1 ones)
(Cons 1

((cofix map (s : stream nat) : stream nat :=
match s with
| Cons h t ⇒ Cons (S h) (map t)
end) zeroes))

Note the cofix notation for anonymous co-recursion, which is analogous to the fix
notation we have already seen for recursion. Since we have exposed the Cons structure of
each stream, we can apply the constructor of stream eq.
constructor.

ones eq : stream eq ones ones’
============================
stream eq ones
((cofix map (s : stream nat) : stream nat :=

match s with
| Cons h t ⇒ Cons (S h) (map t)
end) zeroes)

Now, modulo unfolding of the definition of map, we have matched our assumption.
assumption.
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Qed.
Why did this silly-looking trick help? The answer has to do with the constraints placed

on Coq’s evaluation rules by the need for termination. The cofix-related restriction that
foiled our first attempt at using simpl is dual to a restriction for fix. In particular, an
application of an anonymous fix only reduces when the top-level structure of the recursive
argument is known. Otherwise, we would be unfolding the recursive definition ad infinitum.

Fixpoints only reduce when enough is known about the definitions of their arguments.
Dually, co-fixpoints only reduce when enough is known about how their results will be used.
In particular, a cofix is only expanded when it is the discriminee of a match. Rewriting
with our superficially silly lemma wrapped new matches around the two cofixes, triggering
reduction.

If cofixes reduced haphazardly, it would be easy to run into infinite loops in evaluation,
since we are, after all, building infinite objects.

One common source of difficulty with co-inductive proofs is bad interaction with standard
Coq automation machinery. If we try to prove ones eq’ with automation, like we have in
previous inductive proofs, we get an invalid proof.
Theorem ones eq’ : stream eq ones ones’.
cofix; crush.
Guarded.

Abort.
The standard auto machinery sees that our goal matches an assumption and so applies

that assumption, even though this violates guardedness. A correct proof strategy for a
theorem like this usually starts by destructing some parameter and running a custom
tactic to figure out the first proof rule to apply for each case. Alternatively, there are tricks
that can be played with “hiding” the co-inductive hypothesis.

Must we always be cautious with automation in proofs by co-induction? Induction seems
to have dual versions of the same pitfalls inherent in it, and yet we avoid those pitfalls by
encapsulating safe Curry-Howard recursion schemes inside named induction principles. It
turns out that we can usually do the same with co-induction principles. Let us take that
tack here, so that we can arrive at an induction x ; crush-style proof for ones eq’.

An induction principle is parameterized over a predicate characterizing what we mean
to prove, as a function of the inductive fact that we already know. Dually, a co-induction
principle ought to be parameterized over a predicate characterizing what we mean to prove,
as a function of the arguments to the co-inductive predicate that we are trying to prove.

To state a useful principle for stream eq, it will be useful first to define the stream head
function.
Definition hd A (s : stream A) : A :=
match s with
| Cons x ⇒ x

end.
Now we enter a section for the co-induction principle, based on Park’s principle as intro-
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duced in a tutorial by Giménez [12].
Section stream eq coind.
Variable A : Type.
Variable R : stream A → stream A → Prop.
This relation generalizes the theorem we want to prove, defining a set of pairs of streams

that we must eventually prove contains the particular pair we care about.
Hypothesis Cons case hd : ∀ s1 s2, R s1 s2 → hd s1 = hd s2.
Hypothesis Cons case tl : ∀ s1 s2, R s1 s2 → R (tl s1 ) (tl s2 ).
Two hypotheses characterize what makes a good choice of R: it enforces equality of stream

heads, and it is “hereditary” in the sense that an R stream pair passes on “R-ness” to its
tails. An established technical term for such a relation is bisimulation.

Now it is straightforward to prove the principle, which says that any stream pair in R is
equal. The reader may wish to step through the proof script to see what is going on.
Theorem stream eq coind : ∀ s1 s2, R s1 s2 → stream eq s1 s2.
cofix; destruct s1 ; destruct s2 ; intro.
generalize (Cons case hd H ); intro Heq; simpl in Heq; rewrite Heq.
constructor.
apply stream eq coind.
apply (Cons case tl H ).

Qed.
End stream eq coind.

To see why this proof is guarded, we can print it and verify that the one co-recursive call
is an immediate argument to a constructor.
Print stream eq coind.

We omit the output and proceed to proving ones eq’’ again. The only bit of ingenuity is
in choosing R, and in this case the most restrictive predicate works.
Theorem ones eq’’ : stream eq ones ones’.
apply (stream eq coind (fun s1 s2 ⇒ s1 = ones ∧ s2 = ones’)); crush.

Qed.
Note that this proof achieves the proper reduction behavior via hd and tl, rather than

frob as in the last proof. All three functions pattern match on their arguments, catalyzing
computation steps.

Compared to the inductive proofs that we are used to, it still seems unsatisfactory that
we had to write out a choice of R in the last proof. An alternate is to capture a common
pattern of co-recursion in a more specialized co-induction principle. For the current example,
that pattern is: prove stream eq s1 s2 where s1 and s2 are defined as their own tails.
Section stream eq loop.
Variable A : Type.
Variables s1 s2 : stream A.
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Hypothesis Cons case hd : hd s1 = hd s2.
Hypothesis loop1 : tl s1 = s1.
Hypothesis loop2 : tl s2 = s2.
The proof of the principle includes a choice of R, so that we no longer need to make such

choices thereafter.
Theorem stream eq loop : stream eq s1 s2.
apply (stream eq coind (fun s1’ s2’ ⇒ s1’ = s1 ∧ s2’ = s2 )); crush.

Qed.
End stream eq loop.
Theorem ones eq’’’ : stream eq ones ones’.
apply stream eq loop; crush.

Qed.
Let us put stream eq coind through its paces a bit more, considering two different ways

to compute infinite streams of all factorial values. First, we import the fact factorial function
from the standard library.
Require Import Arith.
Print fact.

fact =
fix fact (n : nat) : nat :=
match n with
| 0 ⇒ 1
| S n0 ⇒ S n0 × fact n0
end

: nat → nat
The simplest way to compute the factorial stream involves calling fact afresh at each

position.
CoFixpoint fact slow’ (n : nat) := Cons (fact n) (fact slow’ (S n)).
Definition fact slow := fact slow’ 1.

A more clever, optimized method maintains an accumulator of the previous factorial, so
that each new entry can be computed with a single multiplication.
CoFixpoint fact iter’ (cur acc : nat) := Cons acc (fact iter’ (S cur) (acc × cur)).
Definition fact iter := fact iter’ 2 1.

We can verify that the streams are equal up to particular finite bounds.
Eval simpl in approx fact iter 5.

= 1 :: 2 :: 6 :: 24 :: 120 :: nil
: list nat

Eval simpl in approx fact slow 5.

= 1 :: 2 :: 6 :: 24 :: 120 :: nil
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: list nat
Now, to prove that the two versions are equivalent, it is helpful to prove (and add as a

proof hint) a quick lemma about the computational behavior of fact. (I intentionally skip
explaining its proof at this point.)
Lemma fact def : ∀ x n,
fact iter’ x (fact n × S n) = fact iter’ x (fact (S n)).
simpl; intros; f equal; ring.

Qed.
Hint Resolve fact def.

With the hint added, it is easy to prove an auxiliary lemma relating fact iter’ and
fact slow’. The key bit of ingenuity is introduction of an existential quantifier for the shared
parameter n.
Lemma fact eq’ : ∀ n, stream eq (fact iter’ (S n) (fact n)) (fact slow’ n).
intro; apply (stream eq coind (fun s1 s2 ⇒ ∃ n, s1 = fact iter’ (S n) (fact n)
∧ s2 = fact slow’ n)); crush; eauto.

Qed.
The final theorem is a direct corollary of fact eq’.

Theorem fact eq : stream eq fact iter fact slow.
apply fact eq’.

Qed.
As in the case of ones eq’, we may be unsatisfied that we needed to write down a choice

of R that seems to duplicate information already present in a lemma statement. We can
facilitate a simpler proof by defining a co-induction principle specialized to goals that begin
with single universal quantifiers, and the strategy can be extended in a straightforward way
to principles for other counts of quantifiers. (Our stream eq loop principle is effectively the
instantiation of this technique to zero quantifiers.)
Section stream eq onequant.
Variables A B : Type.
We have the types A, the domain of the one quantifier; and B, the type of data found in

the streams.
Variables f g : A → stream B.
The two streams we compare must be of the forms f x and g x, for some shared x. Note

that this falls out naturally when x is a shared universally quantified variable in a lemma
statement.
Hypothesis Cons case hd : ∀ x, hd (f x) = hd (g x).
Hypothesis Cons case tl : ∀ x, ∃ y, tl (f x) = f y ∧ tl (g x) = g y.
These conditions are inspired by the bisimulation requirements, with a more general

version of the R choice we made for fact eq’ inlined into the hypotheses of stream eq coind.
Theorem stream eq onequant : ∀ x, stream eq (f x) (g x).
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intro; apply (stream eq coind (fun s1 s2 ⇒ ∃ x, s1 = f x ∧ s2 = g x)); crush; eauto.
Qed.

End stream eq onequant.
Lemma fact eq’’ : ∀ n, stream eq (fact iter’ (S n) (fact n)) (fact slow’ n).
apply stream eq onequant; crush; eauto.

Qed.
We have arrived at one of our customary automated proofs, thanks to the new principle.

5.3 Simple Modeling of Non-Terminating Programs
We close the chapter with a quick motivating example for more complex uses of co-inductive
types. We will define a co-inductive semantics for a simple imperative programming language
and use that semantics to prove the correctness of a trivial optimization that removes spurious
additions by 0. We follow the technique of co-inductive big-step operational semantics [20].

We define a suggestive synonym for nat, as we will consider programs over infinitely
many variables, represented as nats.
Definition var := nat.

We define a type vars of maps from variables to values. To define a function set for setting
a variable’s value in a map, we use the standard library function beq nat for comparing
natural numbers.
Definition vars := var → nat.
Definition set (vs : vars) (v : var) (n : nat) : vars :=
fun v’ ⇒ if beq nat v v’ then n else vs v’.
We define a simple arithmetic expression language with variables, and we give it a se-

mantics via an interpreter.
Inductive exp : Set :=
| Const : nat → exp
| Var : var → exp
| Plus : exp → exp → exp.
Fixpoint evalExp (vs : vars) (e : exp) : nat :=
match e with
| Const n ⇒ n
| Var v ⇒ vs v
| Plus e1 e2 ⇒ evalExp vs e1 + evalExp vs e2

end.
Finally, we define a language of commands. It includes variable assignment, sequencing,

and a while form that repeats as long as its test expression evaluates to a nonzero value.
Inductive cmd : Set :=
| Assign : var → exp → cmd
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| Seq : cmd → cmd → cmd
| While : exp → cmd → cmd.

We could define an inductive relation to characterize the results of command evaluation.
However, such a relation would not capture nonterminating executions. With a co-inductive
relation, we can capture both cases. The parameters of the relation are an initial state, a
command, and a final state. A program that does not terminate in a particular initial state
is related to any final state. For more realistic languages than this one, it is often possible for
programs to crash, in which case a semantics would generally relate their executions to no
final states; so relating safely non-terminating programs to all final states provides a crucial
distinction.
CoInductive evalCmd : vars → cmd → vars → Prop :=
| EvalAssign : ∀ vs v e, evalCmd vs (Assign v e) (set vs v (evalExp vs e))
| EvalSeq : ∀ vs1 vs2 vs3 c1 c2, evalCmd vs1 c1 vs2
→ evalCmd vs2 c2 vs3
→ evalCmd vs1 (Seq c1 c2 ) vs3
| EvalWhileFalse : ∀ vs e c, evalExp vs e = 0
→ evalCmd vs (While e c) vs
| EvalWhileTrue : ∀ vs1 vs2 vs3 e c, evalExp vs1 e 6= 0
→ evalCmd vs1 c vs2
→ evalCmd vs2 (While e c) vs3
→ evalCmd vs1 (While e c) vs3.
Having learned our lesson in the last section, before proceeding, we build a co-induction

principle for evalCmd.
Section evalCmd coind.
Variable R : vars → cmd → vars → Prop.
Hypothesis AssignCase : ∀ vs1 vs2 v e, R vs1 (Assign v e) vs2
→ vs2 = set vs1 v (evalExp vs1 e).

Hypothesis SeqCase : ∀ vs1 vs3 c1 c2, R vs1 (Seq c1 c2 ) vs3
→ ∃ vs2, R vs1 c1 vs2 ∧ R vs2 c2 vs3.

Hypothesis WhileCase : ∀ vs1 vs3 e c, R vs1 (While e c) vs3
→ (evalExp vs1 e = 0 ∧ vs3 = vs1)
∨ ∃ vs2, evalExp vs1 e 6= 0 ∧ R vs1 c vs2 ∧ R vs2 (While e c) vs3.
The proof is routine. We make use of a form of destruct that takes an intro pattern

in an as clause. These patterns control how deeply we break apart the components of an
inductive value, and we refer the reader to the Coq manual for more details.
Theorem evalCmd coind : ∀ vs1 c vs2, R vs1 c vs2 → evalCmd vs1 c vs2.
cofix; intros; destruct c.
rewrite (AssignCase H ); constructor.
destruct (SeqCase H ) as [? [? ?]]; econstructor; eauto.
destruct (WhileCase H ) as [[? ?] | [? [? [? ?]]]]; subst; econstructor; eauto.
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Qed.
End evalCmd coind.

Now that we have a co-induction principle, we should use it to prove something! Our
example is a trivial program optimizer that finds places to replace 0 + e with e.
Fixpoint optExp (e : exp) : exp :=
match e with
| Plus (Const 0) e ⇒ optExp e
| Plus e1 e2 ⇒ Plus (optExp e1 ) (optExp e2 )
| ⇒ e

end.
Fixpoint optCmd (c : cmd) : cmd :=
match c with
| Assign v e ⇒ Assign v (optExp e)
| Seq c1 c2 ⇒ Seq (optCmd c1 ) (optCmd c2 )
| While e c ⇒ While (optExp e) (optCmd c)

end.
Before proving correctness of optCmd, we prove a lemma about optExp. This is where we

have to do the most work, choosing pattern match opportunities automatically.
Lemma optExp correct : ∀ vs e, evalExp vs (optExp e) = evalExp vs e.
induction e; crush;
repeat (match goal with

| [ ` context[match ?E with Const ⇒ | ⇒ end] ] ⇒ destruct E
| [ ` context[match ?E with O ⇒ | S ⇒ end] ] ⇒ destruct E

end; crush).
Qed.
Hint Rewrite optExp correct.

The final theorem is easy to establish, using our co-induction principle and a bit of Ltac
smarts that we leave unexplained for now. Curious readers can consult the Coq manual,
or wait for the later chapters of this book about proof automation. At a high level, we
show inclusions between behaviors, going in both directions between original and optimized
programs.
Ltac finisher := match goal with

| [ H : evalCmd ` ] ⇒ ((inversion H ; [])
|| (inversion H ; [|])); subst

end; crush; eauto 10.
Lemma optCmd correct1 : ∀ vs1 c vs2, evalCmd vs1 c vs2
→ evalCmd vs1 (optCmd c) vs2.
intros; apply (evalCmd coind (fun vs1 c’ vs2 ⇒ ∃ c, evalCmd vs1 c vs2
∧ c’ = optCmd c)); eauto; crush;
match goal with
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| [ H : = optCmd ?E ` ] ⇒ destruct E ; simpl in *; discriminate
|| injection H ; intros; subst

end; finisher.
Qed.
Lemma optCmd correct2 : ∀ vs1 c vs2, evalCmd vs1 (optCmd c) vs2
→ evalCmd vs1 c vs2.
intros; apply (evalCmd coind (fun vs1 c vs2 ⇒ evalCmd vs1 (optCmd c) vs2 ));
crush; finisher.

Qed.
Theorem optCmd correct : ∀ vs1 c vs2, evalCmd vs1 (optCmd c) vs2
↔ evalCmd vs1 c vs2.
intuition; apply optCmd correct1 || apply optCmd correct2; assumption.

Qed.
In this form, the theorem tells us that the optimizer preserves observable behavior of

both terminating and nonterminating programs, but we did not have to do more work than
for the case of terminating programs alone. We merely took the natural inductive definition
for terminating executions, made it co-inductive, and applied the appropriate co-induction
principle. Curious readers might experiment with adding command constructs like if; the
same proof script should continue working, after the co-induction principle is extended to
the new evaluation rules.
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Part II

Programming with Dependent Types
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Chapter 6

Subset Types and Variations

So far, we have seen many examples of what we might call “classical program verification.”
We write programs, write their specifications, and then prove that the programs satisfy their
specifications. The programs that we have written in Coq have been normal functional
programs that we could just as well have written in Haskell or ML. In this chapter, we start
investigating uses of dependent types to integrate programming, specification, and proving
into a single phase. The techniques we will learn make it possible to reduce the cost of
program verification dramatically.

6.1 Introducing Subset Types
Let us consider several ways of implementing the natural number predecessor function. We
start by displaying the definition from the standard library:
Print pred.

pred = fun n : nat ⇒ match n with
| 0 ⇒ 0
| S u ⇒ u
end

: nat → nat

We can use a new command, Extraction, to produce an OCaml version of this function.
Extraction pred.

(** val pred : nat -> nat **)

let pred = function
| O -> O
| S u -> u
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Returning 0 as the predecessor of 0 can come across as somewhat of a hack. In some
situations, we might like to be sure that we never try to take the predecessor of 0. We can
enforce this by giving pred a stronger, dependent type.
Lemma zgtz : 0 > 0 → False.
crush.

Qed.
Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.
We expand the type of pred to include a proof that its argument n is greater than 0.

When n is 0, we use the proof to derive a contradiction, which we can use to build a value
of any type via a vacuous pattern match. When n is a successor, we have no need for the
proof and just return the answer. The proof argument can be said to have a dependent type,
because its type depends on the value of the argument n.

Coq’s Eval command can execute particular invocations of pred strong1 just as easily
as it can execute more traditional functional programs. Note that Coq has decided that
argument n of pred strong1 can be made implicit, since it can be deduced from the type of
the second argument, so we need not write n in function calls.
Theorem two gt0 : 2 > 0.
crush.

Qed.
Eval compute in pred strong1 two gt0.

= 1
: nat

One aspect in particular of the definition of pred strong1 may be surprising. We took
advantage of Definition’s syntactic sugar for defining function arguments in the case of n,
but we bound the proofs later with explicit fun expressions. Let us see what happens if we
write this function in the way that at first seems most natural.

Definition pred strong1’ (n : nat) (pf : n > 0) : nat :=
match n with
| O ⇒ match zgtz pf with end
| S n’ ⇒ n’

end.

Error: In environment
n : nat
pf : n > 0
The term "pf" has type "n > 0" while it is expected to have type
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"0 > 0"

The term zgtz pf fails to type-check. Somehow the type checker has failed to take
into account information that follows from which match branch that term appears in. The
problem is that, by default, match does not let us use such implied information. To get refined
typing, we must always rely on match annotations, either written explicitly or inferred.

In this case, we must use a return annotation to declare the relationship between the
value of the match discriminee and the type of the result. There is no annotation that lets
us declare a relationship between the discriminee and the type of a variable that is already
in scope; hence, we delay the binding of pf, so that we can use the return annotation to
express the needed relationship.

We are lucky that Coq’s heuristics infer the return clause (specifically, return n > 0→
nat) for us in the definition of pred strong1, leading to the following elaborated code:
Definition pred strong1’ (n : nat) : n > 0 → nat :=
match n return n > 0 → nat with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.
By making explicit the functional relationship between value n and the result type of

the match, we guide Coq toward proper type checking. The clause for this example follows
by simple copying of the original annotation on the definition. In general, however, the
match annotation inference problem is undecidable. The known undecidable problem of
higher-order unification [15] reduces to the match type inference problem. Over time, Coq is
enhanced with more and more heuristics to get around this problem, but there must always
exist matches whose types Coq cannot infer without annotations.

Let us now take a look at the OCaml code Coq generates for pred strong1.
Extraction pred strong1.

(** val pred_strong1 : nat -> nat **)

let pred_strong1 = function
| O -> assert false (* absurd case *)
| S n’ -> n’

The proof argument has disappeared! We get exactly the OCaml code we would have
written manually. This is our first demonstration of the main technically interesting feature
of Coq program extraction: proofs are erased systematically.

We can reimplement our dependently typed pred based on subset types, defined in the
standard library with the type family sig.

Print sig.

Inductive sig (A : Type) (P : A → Prop) : Type :=
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exist : ∀ x : A, P x → sig P
The family sig is a Curry-Howard twin of ex, except that sig is in Type, while ex is in

Prop. That means that sig values can survive extraction, while ex proofs will always be
erased. The actual details of extraction of sigs are more subtle, as we will see shortly.

We rewrite pred strong1, using some syntactic sugar for subset types.
Locate "{ : | }".

Notation
"{ x : A | P }" := sig (fun x : A ⇒ P)

Definition pred strong2 (s : {n : nat | n > 0}) : nat :=
match s with
| exist O pf ⇒ match zgtz pf with end
| exist (S n’) ⇒ n’

end.
To build a value of a subset type, we use the exist constructor, and the details of how to

do that follow from the output of our earlier Print sig command, where we elided the extra
information that parameter A is implicit. We need an extra here and not in the definition
of pred strong2 because parameters of inductive types (like the predicate P for sig) are not
mentioned in pattern matching, but are mentioned in construction of terms (if they are not
marked as implicit arguments).
Eval compute in pred strong2 (exist 2 two gt0).

= 1
: nat

Extraction pred strong2.

(** val pred_strong2 : nat -> nat **)

let pred_strong2 = function
| O -> assert false (* absurd case *)
| S n’ -> n’

We arrive at the same OCaml code as was extracted from pred strong1, which may seem
surprising at first. The reason is that a value of sig is a pair of two pieces, a value and
a proof about it. Extraction erases the proof, which reduces the constructor exist of sig
to taking just a single argument. An optimization eliminates uses of datatypes with single
constructors taking single arguments, and we arrive back where we started.

We can continue on in the process of refining pred’s type. Let us change its result type
to capture that the output is really the predecessor of the input.
Definition pred strong3 (s : {n : nat | n > 0}) : {m : nat | proj1 sig s = S m} :=
match s return {m : nat | proj1 sig s = S m} with
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| exist 0 pf ⇒ match zgtz pf with end
| exist (S n’) pf ⇒ exist n’ (eq refl )

end.

Eval compute in pred strong3 (exist 2 two gt0).

= exist (fun m : nat ⇒ 2 = S m) 1 (eq refl 2)
: {m : nat | proj1 sig (exist (lt 0) 2 two gt0) = S m}

A value in a subset type can be thought of as a dependent pair (or sigma type) of a base
value and a proof about it. The function proj1 sig extracts the first component of the pair.
It turns out that we need to include an explicit return clause here, since Coq’s heuristics
are not smart enough to propagate the result type that we wrote earlier.

By now, the reader is probably ready to believe that the new pred strong leads to the
same OCaml code as we have seen several times so far, and Coq does not disappoint.
Extraction pred strong3.

(** val pred_strong3 : nat -> nat **)

let pred_strong3 = function
| O -> assert false (* absurd case *)
| S n’ -> n’

We have managed to reach a type that is, in a formal sense, the most expressive possible
for pred. Any other implementation of the same type must have the same input-output
behavior. However, there is still room for improvement in making this kind of code easier
to write. Here is a version that takes advantage of tactic-based theorem proving. We switch
back to passing a separate proof argument instead of using a subset type for the function’s
input, because this leads to cleaner code. (Recall that False rec is the Set-level induction
principle for False, which can be used to produce a value in any Set given a proof of False.)
Definition pred strong4 : ∀ n : nat, n > 0 → {m : nat | n = S m}.
refine (fun n ⇒
match n with
| O ⇒ fun ⇒ False rec
| S n’ ⇒ fun ⇒ exist n’

end).
We build pred strong4 using tactic-based proving, beginning with a Definition com-

mand that ends in a period before a definition is given. Such a command enters the in-
teractive proving mode, with the type given for the new identifier as our proof goal. It
may seem strange to change perspective so implicitly between programming and proving,
but recall that programs and proofs are two sides of the same coin in Coq, thanks to the
Curry-Howard correspondence.

We do most of the work with the refine tactic, to which we pass a partial “proof”
of the type we are trying to prove. There may be some pieces left to fill in, indicated by

107



underscores. Any underscore that Coq cannot reconstruct with type inference is added as a
proof subgoal. In this case, we have two subgoals:

2 subgoals

n : nat
: 0 > 0

============================
False

subgoal 2 is

S n’ = S n’
We can see that the first subgoal comes from the second underscore passed to False rec,

and the second subgoal comes from the second underscore passed to exist. In the first case,
we see that, though we bound the proof variable with an underscore, it is still available in
our proof context. It is hard to refer to underscore-named variables in manual proofs, but
automation makes short work of them. Both subgoals are easy to discharge that way, so let
us back up and ask to prove all subgoals automatically.
Undo.
refine (fun n ⇒
match n with
| O ⇒ fun ⇒ False rec
| S n’ ⇒ fun ⇒ exist n’

end); crush.
Defined.

We end the “proof” with Defined instead of Qed, so that the definition we constructed
remains visible. This contrasts to the case of ending a proof with Qed, where the details of
the proof are hidden afterward. (More formally, Defined marks an identifier as transparent,
allowing it to be unfolded; while Qed marks an identifier as opaque, preventing unfolding.)
Let us see what our proof script constructed.
Print pred strong4.

pred strong4 =
fun n : nat ⇒
match n as n0 return (n0 > 0 → {m : nat | n0 = S m}) with
| 0 ⇒

fun : 0 > 0 ⇒
False rec {m : nat | 0 = S m}
(Bool.diff false true

(Bool.absurd eq true false
(Bool.diff false true
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(Bool.absurd eq true false (pred strong4 subproof n )))))
| S n’ ⇒

fun : S n’ > 0 ⇒
exist (fun m : nat ⇒ S n’ = S m) n’ (eq refl (S n’))

end
: ∀ n : nat, n > 0 → {m : nat | n = S m}

We see the code we entered, with some proofs filled in. The first proof obligation, the
second argument to False rec, is filled in with a nasty-looking proof term that we can be
glad we did not enter by hand. The second proof obligation is a simple reflexivity proof.
Eval compute in pred strong4 two gt0.

= exist (fun m : nat ⇒ 2 = S m) 1 (eq refl 2)
: {m : nat | 2 = S m}

A tactic modifier called abstract can be helpful for producing shorter terms, by auto-
matically abstracting subgoals into named lemmas.
Definition pred strong4’ : ∀ n : nat, n > 0 → {m : nat | n = S m}.
refine (fun n ⇒
match n with
| O ⇒ fun ⇒ False rec
| S n’ ⇒ fun ⇒ exist n’

end); abstract crush.
Defined.
Print pred strong4’.

pred strong4’ =
fun n : nat ⇒
match n as n0 return (n0 > 0 → {m : nat | n0 = S m}) with
| 0 ⇒

fun H : 0 > 0 ⇒
False rec {m : nat | 0 = S m} (pred strong4’ subproof n H )

| S n’ ⇒
fun H : S n’ > 0 ⇒
exist (fun m : nat ⇒ S n’ = S m) n’ (pred strong4’ subproof0 n H )

end
: ∀ n : nat, n > 0 → {m : nat | n = S m}

We are almost done with the ideal implementation of dependent predecessor. We can use
Coq’s syntax extension facility to arrive at code with almost no complexity beyond a Haskell
or ML program with a complete specification in a comment. In this book, we will not dwell
on the details of syntax extensions; the Coq manual gives a straightforward introduction to
them.
Notation "!" := (False rec ).
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Notation "[ e ]" := (exist e ).
Definition pred strong5 : ∀ n : nat, n > 0 → {m : nat | n = S m}.
refine (fun n ⇒
match n with
| O ⇒ fun ⇒ !
| S n’ ⇒ fun ⇒ [n’]

end); crush.
Defined.

By default, notations are also used in pretty-printing terms, including results of evalua-
tion.
Eval compute in pred strong5 two gt0.

= [1]
: {m : nat | 2 = S m}

One other alternative is worth demonstrating. Recent Coq versions include a facility
called Program that streamlines this style of definition. Here is a complete implementation
using Program.
Obligation Tactic := crush.
Program Definition pred strong6 (n : nat) ( : n > 0) : {m : nat | n = S m} :=
match n with
| O ⇒
| S n’ ⇒ n’

end.
Printing the resulting definition of pred strong6 yields a term very similar to what we built

with refine. Program can save time in writing programs that use subset types. Nonetheless,
refine is often just as effective, and refine gives more control over the form the final term
takes, which can be useful when you want to prove additional theorems about your definition.
Program will sometimes insert type casts that can complicate theorem proving.
Eval compute in pred strong6 two gt0.

= [1]
: {m : nat | 2 = S m}

In this case, we see that the new definition yields the same computational behavior as
before.

6.2 Decidable Proposition Types
There is another type in the standard library that captures the idea of program values that
indicate which of two propositions is true.
Print sumbool.
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Inductive sumbool (A : Prop) (B : Prop) : Set :=
left : A → {A} + {B} | right : B → {A} + {B}
Here, the constructors of sumbool have types written in terms of a registered notation

for sumbool, such that the result type of each constructor desugars to sumbool A B. We
can define some notations of our own to make working with sumbool more convenient.
Notation "’Yes’" := (left ).
Notation "’No’" := (right ).
Notation "’Reduce’ x" := (if x then Yes else No) (at level 50).

The Reduce notation is notable because it demonstrates how if is overloaded in Coq.
The if form actually works when the test expression has any two-constructor inductive type.
Moreover, in the then and else branches, the appropriate constructor arguments are bound.
This is important when working with sumbools, when we want to have the proof stored in
the test expression available when proving the proof obligations generated in the appropriate
branch.

Now we can write eq nat dec, which compares two natural numbers, returning either a
proof of their equality or a proof of their inequality.
Definition eq nat dec : ∀ n m : nat, {n = m} + {n 6= m}.
refine (fix f (n m : nat) : {n = m} + {n 6= m} :=
match n, m with
| O, O ⇒ Yes
| S n’, S m’ ⇒ Reduce (f n’ m’)
| , ⇒ No

end); congruence.
Defined.
Eval compute in eq nat dec 2 2.

= Yes
: {2 = 2} + {2 6= 2}

Eval compute in eq nat dec 2 3.

= No
: {2 = 3} + {2 6= 3}

Note that the Yes and No notations are hiding proofs establishing the correctness of the
outputs.

Our definition extracts to reasonable OCaml code.
Extraction eq nat dec.

(** val eq_nat_dec : nat -> nat -> sumbool **)

let rec eq_nat_dec n m =

111



match n with
| O -> (match m with

| O -> Left
| S n0 -> Right)

| S n’ -> (match m with
| O -> Right
| S m’ -> eq_nat_dec n’ m’)

Proving this kind of decidable equality result is so common that Coq comes with a tactic
for automating it.
Definition eq nat dec’ (n m : nat) : {n = m} + {n 6= m}.
decide equality.

Defined.
Curious readers can verify that the decide equality version extracts to the same OCaml

code as our more manual version does. That OCaml code had one undesirable property,
which is that it uses Left and Right constructors instead of the Boolean values built into
OCaml. We can fix this, by using Coq’s facility for mapping Coq inductive types to OCaml
variant types.
Extract Inductive sumbool ⇒ "bool" ["true" "false"].
Extraction eq nat dec’.

(** val eq_nat_dec’ : nat -> nat -> bool **)

let rec eq_nat_dec’ n m0 =
match n with

| O -> (match m0 with
| O -> true
| S n0 -> false)

| S n0 -> (match m0 with
| O -> false
| S n1 -> eq_nat_dec’ n0 n1)

We can build “smart” versions of the usual Boolean operators and put them to good use
in certified programming. For instance, here is a sumbool version of Boolean “or.”

Notation "x || y" := (if x then Yes else Reduce y).
Let us use it for building a function that decides list membership. We need to assume

the existence of an equality decision procedure for the type of list elements.
Section In dec.
Variable A : Set.
Variable A eq dec : ∀ x y : A, {x = y} + {x 6= y}.
The final function is easy to write using the techniques we have developed so far.
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Definition In dec : ∀ (x : A) (ls : list A), {In x ls} + {¬ In x ls}.
refine (fix f (x : A) (ls : list A) : {In x ls} + {¬ In x ls} :=
match ls with
| nil ⇒ No
| x’ :: ls’ ⇒ A eq dec x x’ || f x ls’

end); crush.
Defined.

End In dec.
Eval compute in In dec eq nat dec 2 (1 :: 2 :: nil).

= Yes
: {In 2 (1 :: 2 :: nil)} + { ¬ In 2 (1 :: 2 :: nil)}

Eval compute in In dec eq nat dec 3 (1 :: 2 :: nil).

= No
: {In 3 (1 :: 2 :: nil)} + { ¬ In 3 (1 :: 2 :: nil)}

The In dec function has a reasonable extraction to OCaml.
Extraction In dec.

(** val in_dec : (’a1 -> ’a1 -> bool) -> ’a1 -> ’a1 list -> bool **)

let rec in_dec a_eq_dec x = function
| Nil -> false
| Cons (x’, ls’) ->

(match a_eq_dec x x’ with
| true -> true
| false -> in_dec a_eq_dec x ls’)

This is more or the less code for the corresponding function from the OCaml standard
library.

6.3 Partial Subset Types
Our final implementation of dependent predecessor used a very specific argument type to
ensure that execution could always complete normally. Sometimes we want to allow execution
to fail, and we want a more principled way of signaling failure than returning a default value,
as pred does for 0. One approach is to define this type family maybe, which is a version of
sig that allows obligation-free failure.
Inductive maybe (A : Set) (P : A → Prop) : Set :=
| Unknown : maybe P
| Found : ∀ x : A, P x → maybe P.
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We can define some new notations, analogous to those we defined for subset types.
Notation "{{ x | P }}" := (maybe (fun x ⇒ P)).
Notation "??" := (Unknown ).
Notation "[| x |]" := (Found x ).

Now our next version of pred is trivial to write.
Definition pred strong7 : ∀ n : nat, {{m | n = S m}}.
refine (fun n ⇒
match n return {{m | n = S m}} with
| O ⇒ ??
| S n’ ⇒ [|n’|]

end); trivial.
Defined.
Eval compute in pred strong7 2.

= [|1|]
: {{m | 2 = S m}}

Eval compute in pred strong7 0.

= ??
: {{m | 0 = S m}}

Because we used maybe, one valid implementation of the type we gave pred strong7
would return ?? in every case. We can strengthen the type to rule out such vacuous
implementations, and the type family sumor from the standard library provides the easiest
starting point. For type A and proposition B, A + {B} desugars to sumor A B, whose values
are either values of A or proofs of B.
Print sumor.

Inductive sumor (A : Type) (B : Prop) : Type :=
inleft : A → A + {B} | inright : B → A + {B}

We add notations for easy use of the sumor constructors. The second notation is spe-
cialized to sumors whose A parameters are instantiated with regular subset types, since this
is how we will use sumor below.
Notation "!!" := (inright ).
Notation "[|| x ||]" := (inleft [x]).

Now we are ready to give the final version of possibly failing predecessor. The sumor-
based type that we use is maximally expressive; any implementation of the type has the
same input-output behavior.
Definition pred strong8 : ∀ n : nat, {m : nat | n = S m} + {n = 0}.
refine (fun n ⇒
match n with
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| O ⇒ !!
| S n’ ⇒ [||n’||]

end); trivial.
Defined.
Eval compute in pred strong8 2.

= [||1||]
: {m : nat | 2 = S m} + {2 = 0}

Eval compute in pred strong8 0.

= !!
: {m : nat | 0 = S m} + {0 = 0}

As with our other maximally expressive pred function, we arrive at quite simple output
values, thanks to notations.

6.4 Monadic Notations
We can treat maybe like a monad [45], in the same way that the Haskell Maybe type is
interpreted as a failure monad. Our maybe has the wrong type to be a literal monad, but
a “bind”-like notation will still be helpful. Note that the notation definition uses an ASCII
<-, while later code uses (in this rendering) a nicer left arrow ←.
Notation "x <- e1 ; e2" := (match e1 with

| Unknown ⇒ ??
| Found x ⇒ e2

end)
(right associativity, at level 60).

The meaning of x ← e1 ; e2 is: First run e1. If it fails to find an answer, then announce
failure for our derived computation, too. If e1 does find an answer, pass that answer on to
e2 to find the final result. The variable x can be considered bound in e2.

This notation is very helpful for composing richly typed procedures. For instance, here
is a very simple implementation of a function to take the predecessors of two naturals at
once.

Definition doublePred : ∀ n1 n2 : nat, {{p | n1 = S (fst p) ∧ n2 = S (snd p)}}.
refine (fun n1 n2 ⇒
m1 ← pred strong7 n1;
m2 ← pred strong7 n2;
[|(m1, m2)|]); tauto.

Defined.
We can build a sumor version of the “bind” notation and use it to write a similarly

straightforward version of this function. Again, the notation definition exposes the ASCII
syntax with an operator <--, while the later code uses a nicer long left arrow ←−.
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Notation "x <-- e1 ; e2" := (match e1 with
| inright ⇒ !!
| inleft (exist x ) ⇒ e2

end)
(right associativity, at level 60).

Definition doublePred’ : ∀ n1 n2 : nat,
{p : nat × nat | n1 = S (fst p) ∧ n2 = S (snd p)}
+ {n1 = 0 ∨ n2 = 0}.
refine (fun n1 n2 ⇒
m1 ←− pred strong8 n1;
m2 ←− pred strong8 n2;
[||(m1, m2)||]); tauto.

Defined.
This example demonstrates how judicious selection of notations can hide complexities in

the rich types of programs.

6.5 A Type-Checking Example
We can apply these specification types to build a certified type checker for a simple expression
language.
Inductive exp : Set :=
| Nat : nat → exp
| Plus : exp → exp → exp
| Bool : bool → exp
| And : exp → exp → exp.

We define a simple language of types and its typing rules, in the style introduced in
Chapter 4.
Inductive type : Set := TNat | TBool.
Inductive hasType : exp → type → Prop :=
| HtNat : ∀ n,
hasType (Nat n) TNat
| HtPlus : ∀ e1 e2,
hasType e1 TNat
→ hasType e2 TNat
→ hasType (Plus e1 e2 ) TNat
| HtBool : ∀ b,
hasType (Bool b) TBool
| HtAnd : ∀ e1 e2,
hasType e1 TBool
→ hasType e2 TBool
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→ hasType (And e1 e2 ) TBool.
It will be helpful to have a function for comparing two types. We build one using decide

equality.
Definition eq type dec : ∀ t1 t2 : type, {t1 = t2} + {t1 6= t2}.
decide equality.

Defined.
Another notation complements the monadic notation for maybe that we defined earlier.

Sometimes we want to include “assertions” in our procedures. That is, we want to run a
decision procedure and fail if it fails; otherwise, we want to continue, with the proof that it
produced made available to us. This infix notation captures that idea, for a procedure that
returns an arbitrary two-constructor type.
Notation "e1 ;; e2" := (if e1 then e2 else ??)
(right associativity, at level 60).
With that notation defined, we can implement a typeCheck function, whose code is only

more complex than what we would write in ML because it needs to include some extra type
annotations. Every [|e|] expression adds a hasType proof obligation, and crush makes short
work of them when we add hasType’s constructors as hints.
Definition typeCheck : ∀ e : exp, {{t | hasType e t}}.
Hint Constructors hasType.
refine (fix F (e : exp) : {{t | hasType e t}} :=
match e return {{t | hasType e t}} with
| Nat ⇒ [|TNat|]
| Plus e1 e2 ⇒
t1 ← F e1;
t2 ← F e2;
eq type dec t1 TNat;;
eq type dec t2 TNat;;
[|TNat|]
| Bool ⇒ [|TBool|]
| And e1 e2 ⇒
t1 ← F e1;
t2 ← F e2;
eq type dec t1 TBool;;
eq type dec t2 TBool;;
[|TBool|]

end); crush.
Defined.

Despite manipulating proofs, our type checker is easy to run.
Eval simpl in typeCheck (Nat 0).

= [|TNat|]
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: {{t | hasType (Nat 0) t}}

Eval simpl in typeCheck (Plus (Nat 1) (Nat 2)).

= [|TNat|]
: {{t | hasType (Plus (Nat 1) (Nat 2)) t}}

Eval simpl in typeCheck (Plus (Nat 1) (Bool false)).

= ??
: {{t | hasType (Plus (Nat 1) (Bool false)) t}}

The type checker also extracts to some reasonable OCaml code.
Extraction typeCheck.

(** val typeCheck : exp -> type0 maybe **)

let rec typeCheck = function
| Nat n -> Found TNat
| Plus (e1, e2) ->

(match typeCheck e1 with
| Unknown -> Unknown
| Found t1 ->

(match typeCheck e2 with
| Unknown -> Unknown
| Found t2 ->

(match eq_type_dec t1 TNat with
| true ->

(match eq_type_dec t2 TNat with
| true -> Found TNat
| false -> Unknown)

| false -> Unknown)))
| Bool b -> Found TBool
| And (e1, e2) ->

(match typeCheck e1 with
| Unknown -> Unknown
| Found t1 ->

(match typeCheck e2 with
| Unknown -> Unknown
| Found t2 ->

(match eq_type_dec t1 TBool with
| true ->

(match eq_type_dec t2 TBool with
| true -> Found TBool
| false -> Unknown)
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| false -> Unknown)))

We can adapt this implementation to use sumor, so that we know our type-checker only
fails on ill-typed inputs. First, we define an analogue to the “assertion” notation.
Notation "e1 ;;; e2" := (if e1 then e2 else !!)

(right associativity, at level 60).
Next, we prove a helpful lemma, which states that a given expression can have at most

one type.
Lemma hasType det : ∀ e t1,
hasType e t1
→ ∀ t2, hasType e t2
→ t1 = t2.

induction 1; inversion 1; crush.
Qed.

Now we can define the type-checker. Its type expresses that it only fails on untypable
expressions.
Definition typeCheck’ : ∀ e : exp, {t : type | hasType e t} + {∀ t, ¬ hasType e t}.
Hint Constructors hasType.
We register all of the typing rules as hints.
Hint Resolve hasType det.
The lemma hasType det will also be useful for proving proof obligations with contra-

dictory contexts. Since its statement includes ∀-bound variables that do not appear in its
conclusion, only eauto will apply this hint.

Finally, the implementation of typeCheck can be transcribed literally, simply switching
notations as needed.
refine (fix F (e : exp) : {t : type | hasType e t} + {∀ t, ¬ hasType e t} :=
match e return {t : type | hasType e t} + {∀ t, ¬ hasType e t} with
| Nat ⇒ [||TNat||]
| Plus e1 e2 ⇒
t1 ←− F e1;
t2 ←− F e2;
eq type dec t1 TNat;;;
eq type dec t2 TNat;;;
[||TNat||]
| Bool ⇒ [||TBool||]
| And e1 e2 ⇒
t1 ←− F e1;
t2 ←− F e2;
eq type dec t1 TBool;;;
eq type dec t2 TBool;;;
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[||TBool||]
end); clear F ; crush’ tt hasType; eauto.
We clear F, the local name for the recursive function, to avoid strange proofs that refer

to recursive calls that we never make. Such a step is usually warranted when defining a
recursive function with refine. The crush variant crush’ helps us by performing automatic
inversion on instances of the predicates specified in its second argument. Once we throw in
eauto to apply hasType det for us, we have discharged all the subgoals.
Defined.

The short implementation here hides just how time-saving automation is. Every use of
one of the notations adds a proof obligation, giving us 12 in total. Most of these obligations
require multiple inversions and either uses of hasType det or applications of hasType rules.

Our new function remains easy to test:
Eval simpl in typeCheck’ (Nat 0).

= [||TNat||]
: {t : type | hasType (Nat 0) t} +
{(∀ t : type, ¬ hasType (Nat 0) t)}

Eval simpl in typeCheck’ (Plus (Nat 1) (Nat 2)).

= [||TNat||]
: {t : type | hasType (Plus (Nat 1) (Nat 2)) t} +
{(∀ t : type, ¬ hasType (Plus (Nat 1) (Nat 2)) t)}

Eval simpl in typeCheck’ (Plus (Nat 1) (Bool false)).

= !!
: {t : type | hasType (Plus (Nat 1) (Bool false)) t} +
{(∀ t : type, ¬ hasType (Plus (Nat 1) (Bool false)) t)}

The results of simplifying calls to typeCheck’ look deceptively similar to the results for
typeCheck, but now the types of the results provide more information.
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Chapter 7

General Recursion

Termination of all programs is a crucial property of Gallina. Non-terminating programs
introduce logical inconsistency, where any theorem can be proved with an infinite loop.
Coq uses a small set of conservative, syntactic criteria to check termination of all recursive
definitions. These criteria are insufficient to support the natural encodings of a variety
of important programming idioms. Further, since Coq makes it so convenient to encode
mathematics computationally, with functional programs, we may find ourselves wanting to
employ more complicated recursion in mathematical definitions.

What exactly are the conservative criteria that we run up against? For recursive defini-
tions, recursive calls are only allowed on syntactic subterms of the original primary argument,
a restriction known as primitive recursion. In fact, Coq’s handling of reflexive inductive types
(those defined in terms of functions returning the same type) gives a bit more flexibility than
in traditional primitive recursion, but the term is still applied commonly. In Chapter 5, we
saw how co-recursive definitions are checked against a syntactic guardedness condition that
guarantees productivity.

Many natural recursion patterns satisfy neither condition. For instance, there is our
simple running example in this chapter, merge sort. We will study three different approaches
to more flexible recursion, and the latter two of the approaches will even support definitions
that may fail to terminate on certain inputs, without any up-front characterization of which
inputs those may be.

Before proceeding, it is important to note that the problem here is not as fundamental as
it may appear. The final example of Chapter 5 demonstrated what is called a deep embedding
of the syntax and semantics of a programming language. That is, we gave a mathematical
definition of a language of programs and their meanings. This language clearly admitted
non-termination, and we could think of writing all our sophisticated recursive functions with
such explicit syntax types. However, in doing so, we forfeit our chance to take advantage of
Coq’s very good built-in support for reasoning about Gallina programs. We would rather
use a shallow embedding, where we model informal constructs by encoding them as normal
Gallina programs. Each of the three techniques of this chapter follows that style.
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7.1 Well-Founded Recursion
The essence of terminating recursion is that there are no infinite chains of nested recursive
calls. This intuition is commonly mapped to the mathematical idea of a well-founded rela-
tion, and the associated standard technique in Coq is well-founded recursion. The syntactic-
subterm relation that Coq applies by default is well-founded, but many cases demand alter-
nate well-founded relations. To demonstrate, let us see where we get stuck on attempting a
standard merge sort implementation.
Section mergeSort.
Variable A : Type.
Variable le : A → A → bool.
We have a set equipped with some “less-than-or-equal-to” test.
A standard function inserts an element into a sorted list, preserving sortedness.
Fixpoint insert (x : A) (ls : list A) : list A :=
match ls with
| nil ⇒ x :: nil
| h :: ls’ ⇒
if le x h
then x :: ls
else h :: insert x ls’

end.
We will also need a function to merge two sorted lists. (We use a less efficient imple-

mentation than usual, because the more efficient implementation already forces us to think
about well-founded recursion, while here we are only interested in setting up the example of
merge sort.)
Fixpoint merge (ls1 ls2 : list A) : list A :=
match ls1 with
| nil ⇒ ls2
| h :: ls’ ⇒ insert h (merge ls’ ls2 )

end.
The last helper function for classic merge sort is the one that follows, to split a list

arbitrarily into two pieces of approximately equal length.
Fixpoint split (ls : list A) : list A × list A :=
match ls with
| nil ⇒ (nil, nil)
| h :: nil ⇒ (h :: nil, nil)
| h1 :: h2 :: ls’ ⇒
let (ls1, ls2 ) := split ls’ in
(h1 :: ls1, h2 :: ls2)

end.
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Now, let us try to write the final sorting function, using a natural number “≤” test leb
from the standard library.
Fixpoint mergeSort (ls : list A) : list A :=
if leb (length ls) 1
then ls
else let lss := split ls in
merge (mergeSort (fst lss)) (mergeSort (snd lss)).

Recursive call to mergeSort has principal argument equal to
"fst (split ls)" instead of a subterm of "ls".

The definition is rejected for not following the simple primitive recursion criterion. In
particular, it is not apparent that recursive calls to mergeSort are syntactic subterms of the
original argument ls; indeed, they are not, yet we know this is a well-founded recursive
definition.

To produce an acceptable definition, we need to choose a well-founded relation and prove
that mergeSort respects it. A good starting point is an examination of how well-foundedness
is formalized in the Coq standard library.
Print well founded.

well founded =
fun (A : Type) (R : A → A → Prop) ⇒ ∀ a : A, Acc R a

The bulk of the definitional work devolves to the accessibility relation Acc, whose defi-
nition we may also examine.

Print Acc.

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=
Acc intro : (∀ y : A, R y x → Acc R y) → Acc R x
In prose, an element x is accessible for a relation R if every element “less than” x according

to R is also accessible. Since Acc is defined inductively, we know that any accessibility proof
involves a finite chain of invocations, in a certain sense that we can make formal. Building
on Chapter 5’s examples, let us define a co-inductive relation that is closer to the usual
informal notion of “absence of infinite decreasing chains.”
CoInductive infiniteDecreasingChain A (R : A → A → Prop) : stream A → Prop :=
| ChainCons : ∀ x y s, infiniteDecreasingChain R (Cons y s)
→ R y x
→ infiniteDecreasingChain R (Cons x (Cons y s)).
We can now prove that any accessible element cannot be the beginning of any infinite

decreasing chain.
Lemma noBadChains’ : ∀ A (R : A → A → Prop) x, Acc R x
→ ∀ s, ¬infiniteDecreasingChain R (Cons x s).
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induction 1; crush;
match goal with
| [ H : infiniteDecreasingChain ` ] ⇒ inversion H ; eauto

end.
Qed.
From here, the absence of infinite decreasing chains in well-founded sets is immediate.
Theorem noBadChains : ∀ A (R : A → A → Prop), well founded R
→ ∀ s, ¬infiniteDecreasingChain R s.
destruct s; apply noBadChains’; auto.

Qed.
Absence of infinite decreasing chains implies absence of infinitely nested recursive calls,

for any recursive definition that respects the well-founded relation. The Fix combinator
from the standard library formalizes that intuition:
Check Fix.

Fix
: ∀ (A : Type) (R : A → A → Prop),

well founded R →
∀ P : A → Type,
(∀ x : A, (∀ y : A, R y x → P y) → P x) →
∀ x : A, P x

A call to Fix must present a relation R and a proof of its well-foundedness. The next
argument, P, is the possibly dependent range type of the function we build; the domain A
of R is the function’s domain. The following argument has this type:

∀ x : A, (∀ y : A, R y x → P y) → P x
This is an encoding of the function body. The input x stands for the function argument,

and the next input stands for the function we are defining. Recursive calls are encoded as
calls to the second argument, whose type tells us it expects a value y and a proof that y
is “less than” x, according to R. In this way, we enforce the well-foundedness restriction on
recursive calls.

The rest of Fix’s type tells us that it returns a function of exactly the type we expect, so
we are now ready to use it to implement mergeSort. Careful readers may have noticed that
Fix has a dependent type of the sort we met in the previous chapter.

Before writing mergeSort, we need to settle on a well-founded relation. The right one for
this example is based on lengths of lists.
Definition lengthOrder (ls1 ls2 : list A) :=

length ls1 < length ls2.
We must prove that the relation is truly well-founded. To save some space in the rest of

this chapter, we skip right to nice, automated proof scripts, though we postpone introducing
the principles behind such scripts to Part III of the book. Curious readers may still replace
semicolons with periods and newlines to step through these scripts interactively.
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Hint Constructors Acc.
Lemma lengthOrder wf’ : ∀ len, ∀ ls, length ls ≤ len → Acc lengthOrder ls.
unfold lengthOrder; induction len; crush.

Defined.
Theorem lengthOrder wf : well founded lengthOrder.
red; intro; eapply lengthOrder wf’; eauto.

Defined.
Notice that we end these proofs with Defined, not Qed. Recall that Defined marks the

theorems as transparent, so that the details of their proofs may be used during program
execution. Why could such details possibly matter for computation? It turns out that Fix
satisfies the primitive recursion restriction by declaring itself as recursive in the structure of
Acc proofs. This is possible because Acc proofs follow a predictable inductive structure. We
must do work, as in the last theorem’s proof, to establish that all elements of a type belong
to Acc, but the automatic unwinding of those proofs during recursion is straightforward. If
we ended the proof with Qed, the proof details would be hidden from computation, in which
case the unwinding process would get stuck.

To justify our two recursive mergeSort calls, we will also need to prove that split respects
the lengthOrder relation. These proofs, too, must be kept transparent, to avoid stuckness of
Fix evaluation. We use the syntax @foo to reference identifier foo with its implicit argument
behavior turned off. (The proof details below use Ltac features not introduced yet, and they
are safe to skip for now.)
Lemma split wf : ∀ len ls, 2 ≤ length ls ≤ len
→ let (ls1, ls2 ) := split ls in
lengthOrder ls1 ls ∧ lengthOrder ls2 ls.

unfold lengthOrder; induction len; crush; do 2 (destruct ls; crush);
destruct (le lt dec 2 (length ls));
repeat (match goal with

| [ : length ?E < 2 ` ] ⇒ destruct E
| [ : S (length ?E) < 2 ` ] ⇒ destruct E
| [ IH : ` context[split ?L] ] ⇒
specialize (IH L); destruct (split L); destruct IH

end; crush).
Defined.
Ltac split wf := intros ls ?; intros; generalize (@split wf (length ls) ls);
destruct (split ls); destruct 1; crush.

Lemma split wf1 : ∀ ls, 2 ≤ length ls
→ lengthOrder (fst (split ls)) ls.
split wf.

Defined.
Lemma split wf2 : ∀ ls, 2 ≤ length ls
→ lengthOrder (snd (split ls)) ls.
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split wf.
Defined.
Hint Resolve split wf1 split wf2.
To write the function definition itself, we use the refine tactic as a convenient way to

write a program that needs to manipulate proofs, without writing out those proofs manually.
We also use a replacement le lt dec for leb that has a more interesting dependent type. (Note
that we would not be able to complete the definition without this change, since refine will
generate subgoals for the if branches based only on the type of the test expression, not its
value.)
Definition mergeSort : list A → list A.
refine (Fix lengthOrder wf (fun ⇒ list A)
(fun (ls : list A)

(mergeSort : ∀ ls’ : list A, lengthOrder ls’ ls → list A) ⇒
if le lt dec 2 (length ls)
then let lss := split ls in
merge (mergeSort (fst lss) ) (mergeSort (snd lss) )

else ls)); subst lss; eauto.
Defined.

End mergeSort.
The important thing is that it is now easy to evaluate calls to mergeSort.

Eval compute in mergeSort leb (1 :: 2 :: 36 :: 8 :: 19 :: nil).
= 1 :: 2 :: 8 :: 19 :: 36 :: nil
Since the subject of this chapter is merely how to define functions with unusual recursion

structure, we will not prove any further correctness theorems about mergeSort. Instead, we
stop at proving that mergeSort has the expected computational behavior, for all inputs, not
merely the one we just tested.
Theorem mergeSort eq : ∀ A (le : A → A → bool) ls,
mergeSort le ls = if le lt dec 2 (length ls)
then let lss := split ls in
merge le (mergeSort le (fst lss)) (mergeSort le (snd lss))

else ls.
intros; apply (Fix eq (@lengthOrder wf A) (fun ⇒ list A)); intros.
The library theorem Fix eq imposes one more strange subgoal upon us. We must prove

that the function body is unable to distinguish between “self” arguments that map equal
inputs to equal outputs. One might think this should be true of any Gallina code, but in
fact this general function extensionality property is neither provable nor disprovable within
Coq. The type of Fix eq makes clear what we must show manually:
Check Fix eq.

Fix eq
: ∀ (A : Type) (R : A → A → Prop) (Rwf : well founded R)
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(P : A → Type)
(F : ∀ x : A, (∀ y : A, R y x → P y) → P x),

(∀ (x : A) (f g : ∀ y : A, R y x → P y),
(∀ (y : A) (p : R y x), f y p = g y p) → F x f = F x g) →
∀ x : A,
Fix Rwf P F x = F x (fun (y : A) ( : R y x) ⇒ Fix Rwf P F y)

Most such obligations are dischargeable with straightforward proof automation, and this
example is no exception.
match goal with
| [ ` context[match ?E with left ⇒ | right ⇒ end] ] ⇒ destruct E

end; simpl; f equal; auto.
Qed.

As a final test of our definition’s suitability, we can extract to OCaml.
Extraction mergeSort.

let rec mergeSort le x =
match le_lt_dec (S (S O)) (length x) with
| Left ->

let lss = split x in
merge le (mergeSort le (fst lss)) (mergeSort le (snd lss))

| Right -> x

We see almost precisely the same definition we would have written manually in OCaml!
It might be a good exercise for the reader to use the commands we saw in the previous
chapter to clean up some remaining differences from idiomatic OCaml.

One more piece of the full picture is missing. To go on and prove correctness of mergeSort,
we would need more than a way of unfolding its definition. We also need an appropriate
induction principle matched to the well-founded relation. Such a principle is available in the
standard library, though we will say no more about its details here.
Check well founded induction.

well founded induction
: ∀ (A : Type) (R : A → A → Prop),

well founded R →
∀ P : A → Set,
(∀ x : A, (∀ y : A, R y x → P y) → P x) →
∀ a : A, P a

Some more recent Coq features provide more convenient syntax for defining recursive
functions. Interested readers can consult the Coq manual about the commands Function
and Program Fixpoint.
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7.2 A Non-Termination Monad Inspired by Domain
Theory

The key insights of domain theory [49] inspire the next approach to modeling non-termination.
Domain theory is based on information orders that relate values representing computation
results, according to how much information these values convey. For instance, a simple do-
main might include values “the program does not terminate” and “the program terminates
with the answer 5.” The former is considered to be an approximation of the latter, while the
latter is not an approximation of “the program terminates with the answer 6.” The details
of domain theory will not be important in what follows; we merely borrow the notion of an
approximation ordering on computation results.

Consider this definition of a type of computations.
Section computation.
Variable A : Type.
The type A describes the result a computation will yield, if it terminates.
We give a rich dependent type to computations themselves:
Definition computation :=
{f : nat → option A
| ∀ (n : nat) (v : A),
f n = Some v
→ ∀ (n’ : nat), n’ ≥ n
→ f n’ = Some v}.

A computation is fundamentally a function f from an approximation level n to an optional
result. Intuitively, higher n values enable termination in more cases than lower values. A
call to f may return None to indicate that n was not high enough to run the computation
to completion; higher n values may yield Some. Further, the proof obligation within the
subset type asserts that f is monotone in an appropriate sense: when some n is sufficient to
produce termination, so are all higher n values, and they all yield the same program result
v.

It is easy to define a relation characterizing when a computation runs to a particular
result at a particular approximation level.
Definition runTo (m : computation) (n : nat) (v : A) :=

proj1 sig m n = Some v.
On top of runTo, we also define run, which is the most abstract notion of when a compu-

tation runs to a value.
Definition run (m : computation) (v : A) :=
∃ n, runTo m n v.

End computation.
The book source code contains at this point some tactics, lemma proofs, and hint com-

mands, to be used in proving facts about computations. Since their details are orthogonal
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to the message of this chapter, I have omitted them in the rendered version.
Now, as a simple first example of a computation, we can define Bottom, which corresponds

to an infinite loop. For any approximation level, it fails to terminate (returns None). Note
the use of abstract to create a new opaque lemma for the proof found by the run tactic. In
contrast to the previous section, opaque proofs are fine here, since the proof components of
computations do not influence evaluation behavior. It is generally preferable to make proofs
opaque when possible, as this enforces a kind of modularity in the code to follow, preventing
it from depending on any details of the proof.
Section Bottom.
Variable A : Type.
Definition Bottom : computation A.
exists (fun : nat ⇒ @None A); abstract run.

Defined.
Theorem run Bottom : ∀ v, ¬run Bottom v.
run.

Qed.
End Bottom.

A slightly more complicated example is Return, which gives the same terminating answer
at every approximation level.
Section Return.
Variable A : Type.
Variable v : A.
Definition Return : computation A.
intros; exists (fun : nat ⇒ Some v); abstract run.

Defined.
Theorem run Return : run Return v.
run.

Qed.
End Return.

The name Return was meant to be suggestive of the standard operations of monads [45].
The other standard operation is Bind, which lets us run one computation and, if it terminates,
pass its result off to another computation. We implement bind using the notation let (x, y)
:= e1 in e2, for pulling apart the value e1 which may be thought of as a pair. The second
component of a computation is a proof, which we do not need to mention directly in the
definition of Bind.
Section Bind.
Variables A B : Type.
Variable m1 : computation A.
Variable m2 : A → computation B.
Definition Bind : computation B.
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exists (fun n ⇒
let (f1, ) := m1 in
match f1 n with
| None ⇒ None
| Some v ⇒
let (f2, ) := m2 v in
f2 n

end); abstract run.
Defined.
Theorem run Bind : ∀ (v1 : A) (v2 : B),
run m1 v1
→ run (m2 v1 ) v2
→ run Bind v2.
run; match goal with

| [ x : nat, y : nat ` ] ⇒ exists (max x y)
end; run.

Qed.
End Bind.

A simple notation lets us write Bind calls the way they appear in Haskell.
Notation "x <- m1 ; m2" :=

(Bind m1 (fun x ⇒ m2 )) (right associativity, at level 70).
We can verify that we have indeed defined a monad, by proving the standard monad laws.

Part of the exercise is choosing an appropriate notion of equality between computations. We
use “equality at all approximation levels.”
Definition meq A (m1 m2 : computation A) := ∀ n, proj1 sig m1 n = proj1 sig m2 n.
Theorem left identity : ∀ A B (a : A) (f : A → computation B),

meq (Bind (Return a) f ) (f a).
run.

Qed.
Theorem right identity : ∀ A (m : computation A),
meq (Bind m (@Return )) m.
run.

Qed.
Theorem associativity : ∀ A B C (m : computation A)

(f : A → computation B) (g : B → computation C ),
meq (Bind (Bind m f ) g) (Bind m (fun x ⇒ Bind (f x) g)).
run.

Qed.
Now we come to the piece most directly inspired by domain theory. We want to support

general recursive function definitions, but domain theory tells us that not all definitions are
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reasonable; some fail to be continuous and thus represent unrealizable computations. To
formalize an analogous notion of continuity for our non-termination monad, we write down
the approximation relation on computation results that we have had in mind all along.
Section lattice.
Variable A : Type.
Definition leq (x y : option A) :=
∀ v, x = Some v → y = Some v.

End lattice.
We now have the tools we need to define a new Fix combinator that, unlike the one we

saw in the prior section, does not require a termination proof, and in fact admits recursive
definition of functions that fail to terminate on some or all inputs.
Section Fix.

First, we have the function domain and range types.
Variables A B : Type.
Next comes the function body, which is written as though it can be parameterized over

itself, for recursive calls.
Variable f : (A → computation B) → (A → computation B).
Finally, we impose an obligation to prove that the body f is continuous. That is, when f

terminates according to one recursive version of itself, it also terminates with the same result
at the same approximation level when passed a recursive version that refines the original,
according to leq.
Hypothesis f continuous : ∀ n v v1 x,
runTo (f v1 x) n v
→ ∀ (v2 : A → computation B),
(∀ x, leq (proj1 sig (v1 x) n) (proj1 sig (v2 x) n))
→ runTo (f v2 x) n v.

The computational part of the Fix combinator is easy to define. At approximation level
0, we diverge; at higher levels, we run the body with a functional argument drawn from the
next lower level.
Fixpoint Fix’ (n : nat) (x : A) : computation B :=
match n with
| O ⇒ Bottom
| S n’ ⇒ f (Fix’ n’) x

end.
Now it is straightforward to package Fix’ as a computation combinator Fix.
Hint Extern 1 ( ≥ ) ⇒ omega.
Hint Unfold leq.
Lemma Fix’ ok : ∀ steps n x v, proj1 sig (Fix’ n x) steps = Some v
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→ ∀ n’, n’ ≥ n
→ proj1 sig (Fix’ n’ x) steps = Some v.

unfold runTo in *; induction n; crush;
match goal with
| [ H : ≥ ` ] ⇒ inversion H ; crush; eauto

end.
Qed.
Hint Resolve Fix’ ok.
Hint Extern 1 (proj1 sig = ) ⇒ simpl;
match goal with
| [ ` proj1 sig ?E = ] ⇒ eapply (proj2 sig E)

end.
Definition Fix : A → computation B.
intro x ; exists (fun n ⇒ proj1 sig (Fix’ n x) n); abstract run.

Defined.
Finally, we can prove that Fix obeys the expected computation rule.
Theorem run Fix : ∀ x v,
run (f Fix x) v
→ run (Fix x) v.
run; match goal with

| [ n : nat ` ] ⇒ exists (S n); eauto
end.

Qed.
End Fix.

After all that work, it is now fairly painless to define a version of mergeSort that requires
no proof of termination. We appeal to a program-specific tactic whose definition is hidden
here but present in the book source.
Definition mergeSort’ : ∀ A, (A → A → bool) → list A → computation (list A).
refine (fun A le ⇒ Fix

(fun (mergeSort : list A → computation (list A))
(ls : list A) ⇒
if le lt dec 2 (length ls)
then let lss := split ls in
ls1 ← mergeSort (fst lss);
ls2 ← mergeSort (snd lss);
Return (merge le ls1 ls2 )

else Return ls) ); abstract mergeSort’.
Defined.

Furthermore, “running” mergeSort’ on concrete inputs is as easy as choosing a sufficiently
high approximation level and letting Coq’s computation rules do the rest. Contrast this with
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the proof work that goes into deriving an evaluation fact for a deeply embedded language,
with one explicit proof rule application per execution step.
Lemma test mergeSort’ : run (mergeSort’ leb (1 :: 2 :: 36 :: 8 :: 19 :: nil))

(1 :: 2 :: 8 :: 19 :: 36 :: nil).
exists 4; reflexivity.

Qed.
There is another benefit of our new Fix compared with the one we used in the previous

section: we can now write recursive functions that sometimes fail to terminate, without
losing easy reasoning principles for the terminating cases. Consider this simple example,
which appeals to another tactic whose definition we elide here.

Definition looper : bool → computation unit.
refine (Fix (fun looper (b : bool) ⇒
if b then Return tt else looper b) ); abstract looper.

Defined.
Lemma test looper : run (looper true) tt.
exists 1; reflexivity.

Qed.
As before, proving outputs for specific inputs is as easy as demonstrating a high enough

approximation level.
There are other theorems that are important to prove about combinators like Return,

Bind, and Fix. In general, for a computation c, we sometimes have a hypothesis proving run
c v for some v, and we want to perform inversion to deduce what v must be. Each combinator
should ideally have a theorem of that kind, for c built directly from that combinator. We have
omitted such theorems here, but they are not hard to prove. In general, the domain theory-
inspired approach avoids the type-theoretic “gotchas” that tend to show up in approaches
that try to mix normal Coq computation with explicit syntax types. The next section of
this chapter demonstrates two alternate approaches of that sort. In the final section of the
chapter, we review the pros and cons of the different choices, coming to the conclusion that
none of them is obviously better than any one of the others for all situations.

7.3 Co-Inductive Non-Termination Monads
There are two key downsides to both of the previous approaches: both require unusual
syntax based on explicit calls to fixpoint combinators, and both generate immediate proof
obligations about the bodies of recursive definitions. In Chapter 5, we have already seen how
co-inductive types support recursive definitions that exhibit certain well-behaved varieties of
non-termination. It turns out that we can leverage that co-induction support for encoding
of general recursive definitions, by adding layers of co-inductive syntax. In effect, we mix
elements of shallow and deep embeddings.

Our first example of this kind, proposed by Capretta [4], defines a silly-looking type of
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thunks; that is, computations that may be forced to yield results, if they terminate.
CoInductive thunk (A : Type) : Type :=
| Answer : A → thunk A
| Think : thunk A → thunk A.

A computation is either an immediate Answer or another computation wrapped inside
Think. Since thunk is co-inductive, every thunk type is inhabited by an infinite nesting of
Thinks, standing for non-termination. Terminating results are Answer wrapped inside some
finite number of Thinks.

Why bother to write such a strange definition? The definition of thunk is motivated
by the ability it gives us to define a “bind” operation, similar to the one we defined in the
previous section.
CoFixpoint TBind A B (m1 : thunk A) (m2 : A → thunk B) : thunk B :=
match m1 with
| Answer x ⇒ m2 x
| Think m1’ ⇒ Think (TBind m1’ m2 )

end.
Note that the definition would violate the co-recursion guardedness restriction if we left

out the seemingly superfluous Think on the righthand side of the second match branch.
We can prove that Answer and TBind form a monad for thunk. The proof is omitted here

but present in the book source. As usual for this sort of proof, a key element is choosing an
appropriate notion of equality for thunks.

In the proofs to follow, we will need a function similar to one we saw in Chapter 5, to
pull apart and reassemble a thunk in a way that provokes reduction of co-recursive calls.
Definition frob A (m : thunk A) : thunk A :=
match m with
| Answer x ⇒ Answer x
| Think m’ ⇒ Think m’

end.
Theorem frob eq : ∀ A (m : thunk A), frob m = m.
destruct m; reflexivity.

Qed.

As a simple example, here is how we might define a tail-recursive factorial function.
CoFixpoint fact (n acc : nat) : thunk nat :=
match n with
| O ⇒ Answer acc
| S n’ ⇒ Think (fact n’ (S n’ × acc))

end.
To test our definition, we need an evaluation relation that characterizes results of evalu-

ating thunks.
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Inductive eval A : thunk A → A → Prop :=
| EvalAnswer : ∀ x, eval (Answer x) x
| EvalThink : ∀ m x, eval m x → eval (Think m) x.
Hint Rewrite frob eq.
Lemma eval frob : ∀ A (c : thunk A) x,
eval (frob c) x
→ eval c x.
crush.

Qed.
Theorem eval fact : eval (fact 5 1) 120.
repeat (apply eval frob; simpl; constructor).

Qed.
We need to apply constructors of eval explicitly, but the process is easy to automate

completely for concrete input programs.
Now consider another very similar definition, this time of a Fibonacci number function.

Notation "x <- m1 ; m2" :=
(TBind m1 (fun x ⇒ m2 )) (right associativity, at level 70).

CoFixpoint fib (n : nat) : thunk nat :=
match n with
| 0 ⇒ Answer 1
| 1 ⇒ Answer 1
| ⇒ n1 ← fib (pred n);
n2 ← fib (pred (pred n));
Answer (n1 + n2 )

end.
Coq complains that the guardedness condition is violated. The two recursive calls are

immediate arguments to TBind, but TBind is not a constructor of thunk. Rather, it is
a defined function. This example shows a very serious limitation of thunk for traditional
functional programming: it is not, in general, possible to make recursive calls and then
make further recursive calls, depending on the first call’s result. The fact example succeeded
because it was already tail recursive, meaning no further computation is needed after a
recursive call.

I know no easy fix for this problem of thunk, but we can define an alternate co-inductive
monad that avoids the problem, based on a proposal by Megacz [24]. We ran into trouble
because TBind was not a constructor of thunk, so let us define a new type family where
“bind” is a constructor.
CoInductive comp (A : Type) : Type :=
| Ret : A → comp A
| Bnd : ∀ B, comp B → (B → comp A) → comp A.
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This example shows off Coq’s support for recursively non-uniform parameters, as in the
case of the parameter A declared above, where each constructor’s type ends in comp A, but
there is a recursive use of comp with a different parameter B. Beside that technical wrinkle,
we see the simplest possible definition of a monad, via a type whose two constructors are
precisely the monad operators.

It is easy to define the semantics of terminating comp computations.
Inductive exec A : comp A → A → Prop :=
| ExecRet : ∀ x, exec (Ret x) x
| ExecBnd : ∀ B (c : comp B) (f : B → comp A) x1 x2, exec (A := B) c x1
→ exec (f x1 ) x2
→ exec (Bnd c f ) x2.
We can also prove that Ret and Bnd form a monad according to a notion of comp equality

based on exec, but we omit details here; they are in the book source at this point.

Not only can we define the Fibonacci function with the new monad, but even our running
example of merge sort becomes definable. By shadowing our previous notation for “bind,”
we can write almost exactly the same code as in our previous mergeSort’ definition, but with
less syntactic clutter.
Notation "x <- m1 ; m2" := (Bnd m1 (fun x ⇒ m2 )).
CoFixpoint mergeSort’’ A (le : A → A → bool) (ls : list A) : comp (list A) :=
if le lt dec 2 (length ls)
then let lss := split ls in
ls1 ← mergeSort’’ le (fst lss);
ls2 ← mergeSort’’ le (snd lss);
Ret (merge le ls1 ls2 )

else Ret ls.
To execute this function, we go through the usual exercise of writing a function to catalyze

evaluation of co-recursive calls.
Definition frob’ A (c : comp A) :=
match c with
| Ret x ⇒ Ret x
| Bnd c’ f ⇒ Bnd c’ f

end.
Lemma exec frob : ∀ A (c : comp A) x,
exec (frob’ c) x
→ exec c x.
destruct c; crush.

Qed.
Now the same sort of proof script that we applied for testing thunks will get the job

done.
Lemma test mergeSort’’ : exec (mergeSort’’ leb (1 :: 2 :: 36 :: 8 :: 19 :: nil))
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(1 :: 2 :: 8 :: 19 :: 36 :: nil).
repeat (apply exec frob; simpl; econstructor).

Qed.
Have we finally reached the ideal solution for encoding general recursive definitions, with

minimal hassle in syntax and proof obligations? Unfortunately, we have not, as comp
has a serious expressivity weakness. Consider the following definition of a curried addition
function:
Definition curriedAdd (n : nat) := Ret (fun m : nat ⇒ Ret (n + m)).

This definition works fine, but we run into trouble when we try to apply it in a trivial
way.
Definition testCurriedAdd := Bnd (curriedAdd 2) (fun f ⇒ f 3).

Error: Universe inconsistency.

The problem has to do with rules for inductive definitions that we will study in more
detail in Chapter 12. Briefly, recall that the type of the constructor Bnd quantifies over a
type B. To make testCurriedAdd work, we would need to instantiate B as nat → comp nat.
However, Coq enforces a predicativity restriction that (roughly) no quantifier in an inductive
or co-inductive type’s definition may ever be instantiated with a term that contains the type
being defined. Chapter 12 presents the exact mechanism by which this restriction is enforced,
but for now our conclusion is that comp is fatally flawed as a way of encoding interesting
higher-order functional programs that use general recursion.

7.4 Comparing the Alternatives
We have seen four different approaches to encoding general recursive definitions in Coq.
Among them there is no clear champion that dominates the others in every important way.
Instead, we close the chapter by comparing the techniques along a number of dimensions.
Every technique allows recursive definitions with termination arguments that go beyond
Coq’s built-in termination checking, so we must turn to subtler points to highlight differences.

One useful property is automatic integration with normal Coq programming. That is,
we would like the type of a function to be the same, whether or not that function is defined
using an interesting recursion pattern. Only the first of the four techniques, well-founded
recursion, meets this criterion. It is also the only one of the four to meet the related criterion
that evaluation of function calls can take place entirely inside Coq’s built-in computation
machinery. The monad inspired by domain theory occupies some middle ground in this
dimension, since generally standard computation is enough to evaluate a term once a high
enough approximation level is provided.

Another useful property is that a function and its termination argument may be developed
separately. We may even want to define functions that fail to terminate on some or all inputs.
The well-founded recursion technique does not have this property, but the other three do.
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One minor plus is the ability to write recursive definitions in natural syntax, rather than
with calls to higher-order combinators. This downside of the first two techniques is actually
rather easy to get around using Coq’s notation mechanism, though we leave the details as
an exercise for the reader. (For this and other details of notations, see Chapter 12 of the
Coq 8.4 manual.)

The first two techniques impose proof obligations that are more basic than termination
arguments, where well-founded recursion requires a proof of extensionality and domain-
theoretic recursion requires a proof of continuity. A function may not be defined, and thus
may not be computed with, until these obligations are proved. The co-inductive techniques
avoid this problem, as recursive definitions may be made without any proof obligations.

We can also consider support for common idioms in functional programming. For in-
stance, the thunk monad effectively only supports recursion that is tail recursion, while the
others allow arbitrary recursion schemes.

On the other hand, the comp monad does not support the effective mixing of higher-
order functions and general recursion, while all the other techniques do. For instance, we
can finish the failed curriedAdd example in the domain-theoretic monad.
Definition curriedAdd’ (n : nat) := Return (fun m : nat ⇒ Return (n + m)).
Definition testCurriedAdd := Bind (curriedAdd’ 2) (fun f ⇒ f 3).

The same techniques also apply to more interesting higher-order functions like list map,
and, as in all four techniques, we can mix primitive and general recursion, preferring the
former when possible to avoid proof obligations.
Fixpoint map A B (f : A → computation B) (ls : list A) : computation (list B) :=
match ls with
| nil ⇒ Return nil
| x :: ls’ ⇒ Bind (f x) (fun x’ ⇒

Bind (map f ls’) (fun ls’’ ⇒
Return (x’ :: ls’’)))

end.

Theorem test map : run (map (fun x ⇒ Return (S x)) (1 :: 2 :: 3 :: nil))
(2 :: 3 :: 4 :: nil).
exists 1; reflexivity.

Qed.
One further disadvantage of comp is that we cannot prove an inversion lemma for execu-

tions of Bind without appealing to an axiom, a logical complication that we discuss at more
length in Chapter 12. The other three techniques allow proof of all the important theorems
within the normal logic of Coq.

Perhaps one theme of our comparison is that one must trade off between, on one hand,
functional programming expressiveness and compatibility with normal Coq types and com-
putation; and, on the other hand, the level of proof obligations one is willing to handle at
function definition time.
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Chapter 8

More Dependent Types

Subset types and their relatives help us integrate verification with programming. Though
they reorganize the certified programmer’s workflow, they tend not to have deep effects on
proofs. We write largely the same proofs as we would for classical verification, with some of
the structure moved into the programs themselves. It turns out that, when we use dependent
types to their full potential, we warp the development and proving process even more than
that, picking up “free theorems” to the extent that often a certified program is hardly more
complex than its uncertified counterpart in Haskell or ML.

In particular, we have only scratched the tip of the iceberg that is Coq’s inductive def-
inition mechanism. The inductive types we have seen so far have their counterparts in the
other proof assistants that we surveyed in Chapter 1. This chapter explores the strange new
world of dependent inductive datatypes outside Prop, a possibility that sets Coq apart from
all of the competition not based on type theory.

8.1 Length-Indexed Lists
Many introductions to dependent types start out by showing how to use them to eliminate
array bounds checks. When the type of an array tells you how many elements it has, your
compiler can detect out-of-bounds dereferences statically. Since we are working in a pure
functional language, the next best thing is length-indexed lists, which the following code
defines.
Section ilist.
Variable A : Set.
Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).
We see that, within its section, ilist is given type nat→ Set. Previously, every inductive

type we have seen has either had plain Set as its type or has been a predicate with some type
ending in Prop. The full generality of inductive definitions lets us integrate the expressivity
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of predicates directly into our normal programming.
The nat argument to ilist tells us the length of the list. The types of ilist’s constructors

tell us that a Nil list has length O and that a Cons list has length one greater than the
length of its tail. We may apply ilist to any natural number, even natural numbers that are
only known at runtime. It is this breaking of the phase distinction that characterizes ilist as
dependently typed.

In expositions of list types, we usually see the length function defined first, but here that
would not be a very productive function to code. Instead, let us implement list concatena-
tion.
Fixpoint app n1 (ls1 : ilist n1 ) n2 (ls2 : ilist n2 ) : ilist (n1 + n2 ) :=
match ls1 with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app ls1’ ls2 )

end.
Past Coq versions signalled an error for this definition. The code is still invalid within

Coq’s core language, but current Coq versions automatically add annotations to the original
program, producing a valid core program. These are the annotations on match discriminees
that we began to study in the previous chapter. We can rewrite app to give the annotations
explicitly.
Fixpoint app’ n1 (ls1 : ilist n1 ) n2 (ls2 : ilist n2 ) : ilist (n1 + n2 ) :=
match ls1 in (ilist n1 ) return (ilist (n1 + n2 )) with
| Nil ⇒ ls2
| Cons x ls1’ ⇒ Cons x (app’ ls1’ ls2 )

end.
Using return alone allowed us to express a dependency of the match result type on the

value of the discriminee. What in adds to our arsenal is a way of expressing a dependency on
the type of the discriminee. Specifically, the n1 in the in clause above is a binding occurrence
whose scope is the return clause.

We may use in clauses only to bind names for the arguments of an inductive type family.
That is, each in clause must be an inductive type family name applied to a sequence of
underscores and variable names of the proper length. The positions for parameters to the
type family must all be underscores. Parameters are those arguments declared with section
variables or with entries to the left of the first colon in an inductive definition. They cannot
vary depending on which constructor was used to build the discriminee, so Coq prohibits
pointless matches on them. It is those arguments defined in the type to the right of the
colon that we may name with in clauses.

Our app function could be typed in so-called stratified type systems, which avoid true
dependency. That is, we could consider the length indices to lists to live in a separate,
compile-time-only universe from the lists themselves. Compile-time data may be erased
such that we can still execute a program. As an example where erasure would not work,
consider an injection function from regular lists to length-indexed lists. Here the run-time
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computation actually depends on details of the compile-time argument, if we decide that the
list to inject can be considered compile-time. More commonly, we think of lists as run-time
data. Neither case will work with naïve erasure. (It is not too important to grasp the details
of this run-time/compile-time distinction, since Coq’s expressive power comes from avoiding
such restrictions.)

Fixpoint inject (ls : list A) : ilist (length ls) :=
match ls with
| nil ⇒ Nil
| h :: t ⇒ Cons h (inject t)

end.
We can define an inverse conversion and prove that it really is an inverse.
Fixpoint unject n (ls : ilist n) : list A :=
match ls with
| Nil ⇒ nil
| Cons h t ⇒ h :: unject t

end.
Theorem inject inverse : ∀ ls, unject (inject ls) = ls.
induction ls; crush.

Qed.

Now let us attempt a function that is surprisingly tricky to write. In ML, the list head
function raises an exception when passed an empty list. With length-indexed lists, we can
rule out such invalid calls statically, and here is a first attempt at doing so. We write ??? as
a placeholder for a term that we do not know how to write, not for any real Coq notation
like those introduced two chapters ago.
Definition hd n (ls : ilist (S n)) : A :=
match ls with
| Nil ⇒ ???
| Cons h ⇒ h

end.
It is not clear what to write for the Nil case, so we are stuck before we even turn our

function over to the type checker. We could try omitting the Nil case:
Definition hd n (ls : ilist (S n)) : A :=
match ls with
| Cons h ⇒ h

end.

Error: Non exhaustive pattern-matching: no clause found for pattern Nil

Unlike in ML, we cannot use inexhaustive pattern matching, because there is no concep-
tion of a Match exception to be thrown. In fact, recent versions of Coq do allow this, by
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implicit translation to a match that considers all constructors; the error message above was
generated by an older Coq version. It is educational to discover for ourselves the encoding
that the most recent Coq versions use. We might try using an in clause somehow.

Definition hd n (ls : ilist (S n)) : A :=
match ls in (ilist (S n)) with
| Cons h ⇒ h

end.

Error: The reference n was not found in the current environment

In this and other cases, we feel like we want in clauses with type family arguments
that are not variables. Unfortunately, Coq only supports variables in those positions. A
completely general mechanism could only be supported with a solution to the problem of
higher-order unification [15], which is undecidable. There are useful heuristics for handling
non-variable indices which are gradually making their way into Coq, but we will spend some
time in this and the next few chapters on effective pattern matching on dependent types
using only the primitive match annotations.

Our final, working attempt at hd uses an auxiliary function and a surprising return
annotation.
Definition hd’ n (ls : ilist n) :=
match ls in (ilist n) return (match n with O ⇒ unit | S ⇒ A end) with
| Nil ⇒ tt
| Cons h ⇒ h

end.
Check hd’.

hd’
: ∀ n : nat, ilist n → match n with

| 0 ⇒ unit
| S ⇒ A
end

Definition hd n (ls : ilist (S n)) : A := hd’ ls.
End ilist.

We annotate our main match with a type that is itself a match. We write that the
function hd’ returns unit when the list is empty and returns the carried type A in all other
cases. In the definition of hd, we just call hd’. Because the index of ls is known to be nonzero,
the type checker reduces the match in the type of hd’ to A.
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8.2 The One Rule of Dependent Pattern Matching in
Coq

The rest of this chapter will demonstrate a few other elegant applications of dependent types
in Coq. Readers encountering such ideas for the first time often feel overwhelmed, concluding
that there is some magic at work whereby Coq sometimes solves the halting problem for the
programmer and sometimes does not, applying automated program understanding in a way
far beyond what is found in conventional languages. The point of this section is to cut
off that sort of thinking right now! Dependent type-checking in Coq follows just a few
algorithmic rules. Chapters 10 and 12 introduce many of those rules more formally, and the
main additional rule is centered on dependent pattern matching of the kind we met in the
previous section.

A dependent pattern match is a match expression where the type of the overall match is
a function of the value and/or the type of the discriminee, the value being matched on. In
other words, the match type depends on the discriminee.

When exactly will Coq accept a dependent pattern match as well-typed? Some other
dependently typed languages employ fancy decision procedures to determine when programs
satisfy their very expressive types. The situation in Coq is just the opposite. Only very
straightforward symbolic rules are applied. Such a design choice has its drawbacks, as
it forces programmers to do more work to convince the type checker of program validity.
However, the great advantage of a simple type checking algorithm is that its action on
invalid programs is easier to understand!

We come now to the one rule of dependent pattern matching in Coq. A general dependent
pattern match assumes this form (with unnecessary parentheses included to make the syntax
easier to parse):
match E as y in (T x1 ... xn) return U with
| C z1 ... zm ⇒ B
| ...

end

The discriminee is a term E, a value in some inductive type family T, which takes n
arguments. An as clause binds the name y to refer to the discriminee E. An in clause binds
an explicit name xi for the ith argument passed to T in the type of E.

We bind these new variables y and xi so that they may be referred to in U, a type given
in the return clause. The overall type of the match will be U, with E substituted for y, and
with each xi substituted by the actual argument appearing in that position within E ’s type.

In general, each case of a match may have a pattern built up in several layers from
the constructors of various inductive type families. To keep this exposition simple, we will
focus on patterns that are just single applications of inductive type constructors to lists of
variables. Coq actually compiles the more general kind of pattern matching into this more
restricted kind automatically, so understanding the typing of match requires understanding
the typing of matches lowered to match one constructor at a time.

The last piece of the typing rule tells how to type-check a match case. A generic con-
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structor application C z1 ... zm has some type T x1’ ... xn’, an application of the type
family used in E ’s type, probably with occurrences of the zi variables. From here, a simple
recipe determines what type we will require for the case body B. The type of B should be
U with the following two substitutions applied: we replace y (the as clause variable) with
C z1 ... zm, and we replace each xi (the in clause variables) with xi’. In other words, we
specialize the result type based on what we learn based on which pattern has matched the
discriminee.

This is an exhaustive description of the ways to specify how to take advantage of which
pattern has matched! No other mechanisms come into play. For instance, there is no way to
specify that the types of certain free variables should be refined based on which pattern has
matched. In the rest of the book, we will learn design patterns for achieving similar effects,
where each technique leads to an encoding only in terms of in, as, and return clauses.

A few details have been omitted above. In Chapter 3, we learned that inductive type
families may have both parameters and regular arguments. Within an in clause, a parameter
position must have the wildcard written, instead of a variable. (In general, Coq uses wild-
card ’s either to indicate pattern variables that will not be mentioned again or to indicate
positions where we would like type inference to infer the appropriate terms.) Furthermore,
recent Coq versions are adding more and more heuristics to infer dependent match anno-
tations in certain conditions. The general annotation inference problem is undecidable, so
there will always be serious limitations on how much work these heuristics can do. When
in doubt about why a particular dependent match is failing to type-check, add an explicit
return annotation! At that point, the mechanical rule sketched in this section will provide
a complete account of “what the type checker is thinking.” Be sure to avoid the common
pitfall of writing a return annotation that does not mention any variables bound by in or
as; such a match will never refine typing requirements based on which pattern has matched.
(One simple exception to this rule is that, when the discriminee is a variable, that same
variable may be treated as if it were repeated as an as clause.)

8.3 A Tagless Interpreter
A favorite example for motivating the power of functional programming is implementation
of a simple expression language interpreter. In ML and Haskell, such interpreters are often
implemented using an algebraic datatype of values, where at many points it is checked that
a value was built with the right constructor of the value type. With dependent types, we
can implement a tagless interpreter that both removes this source of runtime inefficiency and
gives us more confidence that our implementation is correct.
Inductive type : Set :=
| Nat : type
| Bool : type
| Prod : type → type → type.
Inductive exp : type → Set :=
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| NConst : nat → exp Nat
| Plus : exp Nat → exp Nat → exp Nat
| Eq : exp Nat → exp Nat → exp Bool

| BConst : bool → exp Bool
| And : exp Bool → exp Bool → exp Bool
| If : ∀ t, exp Bool → exp t → exp t → exp t

| Pair : ∀ t1 t2, exp t1 → exp t2 → exp (Prod t1 t2 )
| Fst : ∀ t1 t2, exp (Prod t1 t2 ) → exp t1
| Snd : ∀ t1 t2, exp (Prod t1 t2 ) → exp t2.

We have a standard algebraic datatype type, defining a type language of naturals,
Booleans, and product (pair) types. Then we have the indexed inductive type exp, where
the argument to exp tells us the encoded type of an expression. In effect, we are defining
the typing rules for expressions simultaneously with the syntax.

We can give types and expressions semantics in a new style, based critically on the chance
for type-level computation.
Fixpoint typeDenote (t : type) : Set :=
match t with
| Nat ⇒ nat
| Bool ⇒ bool
| Prod t1 t2 ⇒ typeDenote t1 × typeDenote t2

end%type.
The typeDenote function compiles types of our object language into “native” Coq types.

It is deceptively easy to implement. The only new thing we see is the %type annotation,
which tells Coq to parse the match expression using the notations associated with types.
Without this annotation, the × would be interpreted as multiplication on naturals, rather
than as the product type constructor. The token type is one example of an identifier bound
to a notation scope delimiter. In this book, we will not go into more detail on notation
scopes, but the Coq manual can be consulted for more information.

We can define a function expDenote that is typed in terms of typeDenote.
Fixpoint expDenote t (e : exp t) : typeDenote t :=
match e with
| NConst n ⇒ n
| Plus e1 e2 ⇒ expDenote e1 + expDenote e2
| Eq e1 e2 ⇒ if eq nat dec (expDenote e1 ) (expDenote e2 ) then true else false

| BConst b ⇒ b
| And e1 e2 ⇒ expDenote e1 && expDenote e2
| If e’ e1 e2 ⇒ if expDenote e’ then expDenote e1 else expDenote e2
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| Pair e1 e2 ⇒ (expDenote e1, expDenote e2)
| Fst e’ ⇒ fst (expDenote e’)
| Snd e’ ⇒ snd (expDenote e’)

end.

Despite the fancy type, the function definition is routine. In fact, it is less complicated
than what we would write in ML or Haskell 98, since we do not need to worry about pushing
final values in and out of an algebraic datatype. The only unusual thing is the use of an
expression of the form if E then true else false in the Eq case. Remember that eq nat dec
has a rich dependent type, rather than a simple Boolean type. Coq’s native if is overloaded
to work on a test of any two-constructor type, so we can use if to build a simple Boolean
from the sumbool that eq nat dec returns.

We can implement our old favorite, a constant folding function, and prove it correct.
It will be useful to write a function pairOut that checks if an exp of Prod type is a pair,
returning its two components if so. Unsurprisingly, a first attempt leads to a type error.
Definition pairOut t1 t2 (e : exp (Prod t1 t2 )) : option (exp t1 × exp t2 ) :=
match e in (exp (Prod t1 t2 )) return option (exp t1 × exp t2 ) with
| Pair e1 e2 ⇒ Some (e1, e2 )
| ⇒ None

end.

Error: The reference t2 was not found in the current environment

We run again into the problem of not being able to specify non-variable arguments in in
clauses. The problem would just be hopeless without a use of an in clause, though, since the
result type of the match depends on an argument to exp. Our solution will be to use a more
general type, as we did for hd. First, we define a type-valued function to use in assigning a
type to pairOut.

Definition pairOutType (t : type) := option (match t with
| Prod t1 t2 ⇒ exp t1 × exp t2
| ⇒ unit

end).
When passed a type that is a product, pairOutType returns our final desired type. On

any other input type, pairOutType returns the harmless option unit, since we do not care
about extracting components of non-pairs. Now pairOut is easy to write.
Definition pairOut t (e : exp t) :=
match e in (exp t) return (pairOutType t) with
| Pair e1 e2 ⇒ Some (e1, e2)
| ⇒ None

end.
With pairOut available, we can write cfold in a straightforward way. There are really

no surprises beyond that Coq verifies that this code has such an expressive type, given the
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small annotation burden. In some places, we see that Coq’s match annotation inference is
too smart for its own good, and we have to turn that inference off with explicit return
clauses.
Fixpoint cfold t (e : exp t) : exp t :=
match e with
| NConst n ⇒ NConst n
| Plus e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return exp Nat with
| NConst n1, NConst n2 ⇒ NConst (n1 + n2 )
| , ⇒ Plus e1’ e2’

end
| Eq e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return exp Bool with
| NConst n1, NConst n2 ⇒ BConst (if eq nat dec n1 n2 then true else false)
| , ⇒ Eq e1’ e2’

end

| BConst b ⇒ BConst b
| And e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return exp Bool with
| BConst b1, BConst b2 ⇒ BConst (b1 && b2 )
| , ⇒ And e1’ e2’

end
| If e e1 e2 ⇒
let e’ := cfold e in
match e’ with
| BConst true ⇒ cfold e1
| BConst false ⇒ cfold e2
| ⇒ If e’ (cfold e1 ) (cfold e2 )

end

| Pair e1 e2 ⇒ Pair (cfold e1 ) (cfold e2 )
| Fst e ⇒
let e’ := cfold e in
match pairOut e’ with
| Some p ⇒ fst p
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| None ⇒ Fst e’
end
| Snd e ⇒
let e’ := cfold e in
match pairOut e’ with
| Some p ⇒ snd p
| None ⇒ Snd e’

end
end.
The correctness theorem for cfold turns out to be easy to prove, once we get over one

serious hurdle.
Theorem cfold correct : ∀ t (e : exp t), expDenote e = expDenote (cfold e).
induction e; crush.
The first remaining subgoal is:

expDenote (cfold e1 ) + expDenote (cfold e2 ) =
expDenote
match cfold e1 with
| NConst n1 ⇒

match cfold e2 with
| NConst n2 ⇒ NConst (n1 + n2 )
| Plus ⇒ Plus (cfold e1 ) (cfold e2 )
| Eq ⇒ Plus (cfold e1 ) (cfold e2 )
| BConst ⇒ Plus (cfold e1 ) (cfold e2 )
| And ⇒ Plus (cfold e1 ) (cfold e2 )
| If ⇒ Plus (cfold e1 ) (cfold e2 )
| Pair ⇒ Plus (cfold e1 ) (cfold e2 )
| Fst ⇒ Plus (cfold e1 ) (cfold e2 )
| Snd ⇒ Plus (cfold e1 ) (cfold e2 )
end

| Plus ⇒ Plus (cfold e1 ) (cfold e2 )
| Eq ⇒ Plus (cfold e1 ) (cfold e2 )
| BConst ⇒ Plus (cfold e1 ) (cfold e2 )
| And ⇒ Plus (cfold e1 ) (cfold e2 )
| If ⇒ Plus (cfold e1 ) (cfold e2 )
| Pair ⇒ Plus (cfold e1 ) (cfold e2 )
| Fst ⇒ Plus (cfold e1 ) (cfold e2 )
| Snd ⇒ Plus (cfold e1 ) (cfold e2 )
end

We would like to do a case analysis on cfold e1, and we attempt to do so in the way that
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has worked so far.
destruct (cfold e1 ).

User error: e1 is used in hypothesis e

Coq gives us another cryptic error message. Like so many others, this one basically means
that Coq is not able to build some proof about dependent types. It is hard to generate
helpful and specific error messages for problems like this, since that would require some kind
of understanding of the dependency structure of a piece of code. We will encounter many
examples of case-specific tricks for recovering from errors like this one.

For our current proof, we can use a tactic dep destruct defined in the book’s CpdtTactics
module. General elimination/inversion of dependently typed hypotheses is undecidable, as
witnessed by a simple reduction from the known-undecidable problem of higher-order unifi-
cation, which has come up a few times already. The tactic dep destruct makes a best effort to
handle some common cases, relying upon the more primitive dependent destruction tactic
that comes with Coq. In a future chapter, we will learn about the explicit manipulation of
equality proofs that is behind dependent destruction’s implementation, but for now, we
treat it as a useful black box. (In Chapter 12, we will also see how dependent destruction
forces us to make a larger philosophical commitment about our logic than we might like, and
we will see some workarounds.)
dep destruct (cfold e1 ).
This successfully breaks the subgoal into 5 new subgoals, one for each constructor of exp

that could produce an exp Nat. Note that dep destruct is successful in ruling out the other
cases automatically, in effect automating some of the work that we have done manually in
implementing functions like hd and pairOut.

This is the only new trick we need to learn to complete the proof. We can back up
and give a short, automated proof (which again is safe to skip and uses Ltac features not
introduced yet).
Restart.
induction e; crush;
repeat (match goal with

| [ ` context[match cfold ?E with NConst ⇒ | ⇒ end] ] ⇒
dep destruct (cfold E)
| [ ` context[match pairOut (cfold ?E) with Some ⇒

| None ⇒ end] ] ⇒
dep destruct (cfold E)
| [ ` (if ?E then else ) = ] ⇒ destruct E

end; crush).
Qed.

With this example, we get a first taste of how to build automated proofs that adapt
automatically to changes in function definitions.
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8.4 Dependently Typed Red-Black Trees
Red-black trees are a favorite purely functional data structure with an interesting invariant.
We can use dependent types to guarantee that operations on red-black trees preserve the
invariant. For simplicity, we specialize our red-black trees to represent sets of nats.
Inductive color : Set := Red | Black.
Inductive rbtree : color → nat → Set :=
| Leaf : rbtree Black 0
| RedNode : ∀ n, rbtree Black n → nat → rbtree Black n → rbtree Red n
| BlackNode : ∀ c1 c2 n, rbtree c1 n → nat → rbtree c2 n → rbtree Black (S n).

A value of type rbtree c d is a red-black tree whose root has color c and that has black
depth d. The latter property means that there are exactly d black-colored nodes on any
path from the root to a leaf.

At first, it can be unclear that this choice of type indices tracks any useful property. To
convince ourselves, we will prove that every red-black tree is balanced. We will phrase our
theorem in terms of a depth calculating function that ignores the extra information in the
types. It will be useful to parameterize this function over a combining operation, so that
we can re-use the same code to calculate the minimum or maximum height among all paths
from root to leaf.

Require Import Max Min.
Section depth.
Variable f : nat → nat → nat.
Fixpoint depth c n (t : rbtree c n) : nat :=
match t with
| Leaf ⇒ 0
| RedNode t1 t2 ⇒ S (f (depth t1 ) (depth t2 ))
| BlackNode t1 t2 ⇒ S (f (depth t1 ) (depth t2 ))

end.
End depth.

Our proof of balanced-ness decomposes naturally into a lower bound and an upper bound.
We prove the lower bound first. Unsurprisingly, a tree’s black depth provides such a bound
on the minimum path length. We use the richly typed procedure min dec to do case analysis
on whether min X Y equals X or Y.
Check min dec.

min dec
: ∀ n m : nat, {min n m = n} + {min n m = m}

Theorem depth min : ∀ c n (t : rbtree c n), depth min t ≥ n.
induction t; crush;
match goal with
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| [ ` context[min ?X ?Y ] ] ⇒ destruct (min dec X Y )
end; crush.

Qed.
There is an analogous upper-bound theorem based on black depth. Unfortunately, a

symmetric proof script does not suffice to establish it.
Theorem depth max : ∀ c n (t : rbtree c n), depth max t ≤ 2 × n + 1.
induction t; crush;
match goal with
| [ ` context[max ?X ?Y ] ] ⇒ destruct (max dec X Y )

end; crush.
Two subgoals remain. One of them is:
n : nat
t1 : rbtree Black n
n0 : nat
t2 : rbtree Black n
IHt1 : depth max t1 ≤ n + (n + 0) + 1
IHt2 : depth max t2 ≤ n + (n + 0) + 1
e : max (depth max t1 ) (depth max t2 ) = depth max t1
============================
S (depth max t1 ) ≤ n + (n + 0) + 1

We see that IHt1 is almost the fact we need, but it is not quite strong enough. We will
need to strengthen our induction hypothesis to get the proof to go through.
Abort.

In particular, we prove a lemma that provides a stronger upper bound for trees with
black root nodes. We got stuck above in a case about a red root node. Since red nodes have
only black children, our IH strengthening will enable us to finish the proof.
Lemma depth max’ : ∀ c n (t : rbtree c n), match c with

| Red ⇒ depth max t ≤ 2 × n + 1
| Black ⇒ depth max t ≤ 2 × n

end.
induction t; crush;
match goal with
| [ ` context[max ?X ?Y ] ] ⇒ destruct (max dec X Y )

end; crush;
repeat (match goal with

| [ H : context[match ?C with Red ⇒ | Black ⇒ end] ` ] ⇒
destruct C

end; crush).
Qed.
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The original theorem follows easily from the lemma. We use the tactic generalize
pf, which, when pf proves the proposition P, changes the goal from Q to P → Q. This
transformation is useful because it makes the truth of P manifest syntactically, so that
automation machinery can rely on P, even if that machinery is not smart enough to establish
P on its own.
Theorem depth max : ∀ c n (t : rbtree c n), depth max t ≤ 2 × n + 1.
intros; generalize (depth max’ t); destruct c; crush.

Qed.
The final balance theorem establishes that the minimum and maximum path lengths of

any tree are within a factor of two of each other.
Theorem balanced : ∀ c n (t : rbtree c n), 2 × depth min t + 1 ≥ depth max t.
intros; generalize (depth min t); generalize (depth max t); crush.

Qed.
Now we are ready to implement an example operation on our trees, insertion. Insertion

can be thought of as breaking the tree invariants locally but then rebalancing. In particular,
in intermediate states we find red nodes that may have red children. The type rtree captures
the idea of such a node, continuing to track black depth as a type index.
Inductive rtree : nat → Set :=
| RedNode’ : ∀ c1 c2 n, rbtree c1 n → nat → rbtree c2 n → rtree n.

Before starting to define insert, we define predicates capturing when a data value is in
the set represented by a normal or possibly invalid tree.
Section present.
Variable x : nat.
Fixpoint present c n (t : rbtree c n) : Prop :=
match t with
| Leaf ⇒ False
| RedNode a y b ⇒ present a ∨ x = y ∨ present b
| BlackNode a y b ⇒ present a ∨ x = y ∨ present b

end.
Definition rpresent n (t : rtree n) : Prop :=
match t with
| RedNode’ a y b ⇒ present a ∨ x = y ∨ present b

end.
End present.

Insertion relies on two balancing operations. It will be useful to give types to these
operations using a relative of the subset types from last chapter. While subset types let
us pair a value with a proof about that value, here we want to pair a value with another
non-proof dependently typed value. The sigT type fills this role.
Locate "{ : & }".
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Notation Scope
"{ x : A & P }" := sigT (fun x : A ⇒ P)

Print sigT.

Inductive sigT (A : Type) (P : A → Type) : Type :=
existT : ∀ x : A, P x → sigT P

It will be helpful to define a concise notation for the constructor of sigT.
Notation "{< x >}" := (existT x).

Each balance function is used to construct a new tree whose keys include the keys of
two input trees, as well as a new key. One of the two input trees may violate the red-black
alternation invariant (that is, it has an rtree type), while the other tree is known to be valid.
Crucially, the two input trees have the same black depth.

A balance operation may return a tree whose root is of either color. Thus, we use a sigT
type to package the result tree with the color of its root. Here is the definition of the first
balance operation, which applies when the possibly invalid rtree belongs to the left of the
valid rbtree.

A quick word of encouragement: After writing this code, even I do not understand the
precise details of how balancing works! I consulted Chris Okasaki’s paper “Red-Black Trees
in a Functional Setting” [30] and transcribed the code to use dependent types. Luckily, the
details are not so important here; types alone will tell us that insertion preserves balanced-
ness, and we will prove that insertion produces trees containing the right keys.
Definition balance1 n (a : rtree n) (data : nat) c2 :=
match a in rtree n return rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode’ c0 t1 y t2 ⇒
match t1 in rbtree c n return rbtree c0 n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode a x b ⇒ fun c d ⇒
{<RedNode (BlackNode a x b) y (BlackNode c data d)>}
| t1’ ⇒ fun t2 ⇒
match t2 in rbtree c n return rbtree Black n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode b x c ⇒ fun a d ⇒
{<RedNode (BlackNode a y b) x (BlackNode c data d)>}
| b ⇒ fun a t ⇒ {<BlackNode (RedNode a y b) data t>}

end t1’
end t2

end.
We apply a trick that I call the convoy pattern. Recall that match annotations only make

it possible to describe a dependence of a match result type on the discriminee. There is no
automatic refinement of the types of free variables. However, it is possible to effect such a
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refinement by finding a way to encode free variable type dependencies in the match result
type, so that a return clause can express the connection.

In particular, we can extend the match to return functions over the free variables whose
types we want to refine. In the case of balance1, we only find ourselves wanting to refine
the type of one tree variable at a time. We match on one subtree of a node, and we want
the type of the other subtree to be refined based on what we learn. We indicate this with
a return clause starting like rbtree n → ..., where n is bound in an in pattern. Such a
match expression is applied immediately to the “old version” of the variable to be refined,
and the type checker is happy.

Here is the symmetric function balance2, for cases where the possibly invalid tree appears
on the right rather than on the left.
Definition balance2 n (a : rtree n) (data : nat) c2 :=
match a in rtree n return rbtree c2 n → { c : color & rbtree c (S n) } with
| RedNode’ c0 t1 z t2 ⇒
match t1 in rbtree c n return rbtree c0 n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode b y c ⇒ fun d a ⇒
{<RedNode (BlackNode a data b) y (BlackNode c z d)>}
| t1’ ⇒ fun t2 ⇒
match t2 in rbtree c n return rbtree Black n → rbtree c2 n
→ { c : color & rbtree c (S n) } with
| RedNode c z’ d ⇒ fun b a ⇒
{<RedNode (BlackNode a data b) z (BlackNode c z’ d)>}
| b ⇒ fun a t ⇒ {<BlackNode t data (RedNode a z b)>}

end t1’
end t2

end.
Now we are almost ready to get down to the business of writing an insert function. First,

we enter a section that declares a variable x , for the key we want to insert.
Section insert.
Variable x : nat.
Most of the work of insertion is done by a helper function ins, whose return types are

expressed using a type-level function insResult.
Definition insResult c n :=
match c with
| Red ⇒ rtree n
| Black ⇒ { c’ : color & rbtree c’ n }

end.
That is, inserting into a tree with root color c and black depth n, the variety of tree we

get out depends on c. If we started with a red root, then we get back a possibly invalid tree
of depth n. If we started with a black root, we get back a valid tree of depth n with a root
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node of an arbitrary color.
Here is the definition of ins. Again, we do not want to dwell on the functional details.
Fixpoint ins c n (t : rbtree c n) : insResult c n :=
match t with
| Leaf ⇒ {< RedNode Leaf x Leaf >}
| RedNode a y b ⇒
if le lt dec x y
then RedNode’ (projT2 (ins a)) y b
else RedNode’ a y (projT2 (ins b))

| BlackNode c1 c2 a y b ⇒
if le lt dec x y
then
match c1 return insResult c1 → with
| Red ⇒ fun ins a ⇒ balance1 ins a y b
| ⇒ fun ins a ⇒ {< BlackNode (projT2 ins a) y b >}

end (ins a)
else
match c2 return insResult c2 → with
| Red ⇒ fun ins b ⇒ balance2 ins b y a
| ⇒ fun ins b ⇒ {< BlackNode a y (projT2 ins b) >}

end (ins b)
end.
The one new trick is a variation of the convoy pattern. In each of the last two pattern

matches, we want to take advantage of the typing connection between the trees a and b.
We might naïvely apply the convoy pattern directly on a in the first match and on b in
the second. This satisfies the type checker per se, but it does not satisfy the termination
checker. Inside each match, we would be calling ins recursively on a locally bound variable.
The termination checker is not smart enough to trace the dataflow into that variable, so the
checker does not know that this recursive argument is smaller than the original argument.
We make this fact clearer by applying the convoy pattern on the result of a recursive call,
rather than just on that call’s argument.

Finally, we are in the home stretch of our effort to define insert. We just need a few more
definitions of non-recursive functions. First, we need to give the final characterization of
insert’s return type. Inserting into a red-rooted tree gives a black-rooted tree where black
depth has increased, and inserting into a black-rooted tree gives a tree where black depth
has stayed the same and where the root is an arbitrary color.
Definition insertResult c n :=
match c with
| Red ⇒ rbtree Black (S n)
| Black ⇒ { c’ : color & rbtree c’ n }

end.
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A simple clean-up procedure translates insResults into insertResults.
Definition makeRbtree c n : insResult c n → insertResult c n :=
match c with
| Red ⇒ fun r ⇒
match r with
| RedNode’ a x b ⇒ BlackNode a x b

end
| Black ⇒ fun r ⇒ r

end.
We modify Coq’s default choice of implicit arguments for makeRbtree, so that we do not

need to specify the c and n arguments explicitly in later calls.
Implicit Arguments makeRbtree [c n].
Finally, we define insert as a simple composition of ins and makeRbtree.
Definition insert c n (t : rbtree c n) : insertResult c n :=

makeRbtree (ins t).
As we noted earlier, the type of insert guarantees that it outputs balanced trees whose

depths have not increased too much. We also want to know that insert operates correctly on
trees interpreted as finite sets, so we finish this section with a proof of that fact.
Section present.
Variable z : nat.
The variable z stands for an arbitrary key. We will reason about z ’s presence in particular

trees. As usual, outside the section the theorems we prove will quantify over all possible
keys, giving us the facts we wanted.

We start by proving the correctness of the balance operations. It is useful to define a
custom tactic present balance that encapsulates the reasoning common to the two proofs.
We use the keyword Ltac to assign a name to a proof script. This particular script just
iterates between crush and identification of a tree that is being pattern-matched on and
should be destructed.

Ltac present balance :=
crush;
repeat (match goal with

| [ : context[match ?T with Leaf ⇒ | ⇒ end] ` ] ⇒
dep destruct T
| [ ` context[match ?T with Leaf ⇒ | ⇒ end] ] ⇒ dep destruct T

end; crush).
The balance correctness theorems are simple first-order logic equivalences, where we use

the function projT2 to project the payload of a sigT value.
Lemma present balance1 : ∀ n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),

present z (projT2 (balance1 a y b))
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↔ rpresent z a ∨ z = y ∨ present z b.
destruct a; present balance.

Qed.
Lemma present balance2 : ∀ n (a : rtree n) (y : nat) c2 (b : rbtree c2 n),

present z (projT2 (balance2 a y b))
↔ rpresent z a ∨ z = y ∨ present z b.
destruct a; present balance.

Qed.
To state the theorem for ins, it is useful to define a new type-level function, since ins

returns different result types based on the type indices passed to it. Recall that x is the
section variable standing for the key we are inserting.

Definition present insResult c n :=
match c return (rbtree c n → insResult c n → Prop) with
| Red ⇒ fun t r ⇒ rpresent z r ↔ z = x ∨ present z t
| Black ⇒ fun t r ⇒ present z (projT2 r) ↔ z = x ∨ present z t

end.
Now the statement and proof of the ins correctness theorem are straightforward, if ver-

bose. We proceed by induction on the structure of a tree, followed by finding case analysis
opportunities on expressions we see being analyzed in if or match expressions. After that,
we pattern-match to find opportunities to use the theorems we proved about balancing. Fi-
nally, we identify two variables that are asserted by some hypothesis to be equal, and we use
that hypothesis to replace one variable with the other everywhere.

Theorem present ins : ∀ c n (t : rbtree c n),
present insResult t (ins t).
induction t; crush;
repeat (match goal with

| [ : context[if ?E then else ] ` ] ⇒ destruct E
| [ ` context[if ?E then else ] ] ⇒ destruct E
| [ : context[match ?C with Red ⇒ | Black ⇒ end]
` ] ⇒ destruct C

end; crush);
try match goal with

| [ : context[balance1 ?A ?B ?C ] ` ] ⇒
generalize (present balance1 A B C )

end;
try match goal with

| [ : context[balance2 ?A ?B ?C ] ` ] ⇒
generalize (present balance2 A B C )

end;
try match goal with

| [ ` context[balance1 ?A ?B ?C ] ] ⇒
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generalize (present balance1 A B C )
end;

try match goal with
| [ ` context[balance2 ?A ?B ?C ] ] ⇒
generalize (present balance2 A B C )

end;
crush;
match goal with
| [ z : nat, x : nat ` ] ⇒
match goal with
| [ H : z = x ` ] ⇒ rewrite H in *; clear H

end
end;
tauto.

Qed.
The hard work is done. The most readable way to state correctness of insert involves

splitting the property into two color-specific theorems. We write a tactic to encapsulate the
reasoning steps that work to establish both facts.

Ltac present insert :=
unfold insert; intros n t; inversion t;
generalize (present ins t); simpl;
dep destruct (ins t); tauto.

Theorem present insert Red : ∀ n (t : rbtree Red n),
present z (insert t)
↔ (z = x ∨ present z t).
present insert.

Qed.
Theorem present insert Black : ∀ n (t : rbtree Black n),
present z (projT2 (insert t))
↔ (z = x ∨ present z t).
present insert.

Qed.
End present.

End insert.
We can generate executable OCaml code with the command Recursive Extraction

insert, which also automatically outputs the OCaml versions of all of insert’s dependencies.
In our previous extractions, we wound up with clean OCaml code. Here, we find uses of
Obj.magic, OCaml’s unsafe cast operator for tweaking the apparent type of an expression
in an arbitrary way. Casts appear for this example because the return type of insert depends
on the value of the function’s argument, a pattern that OCaml cannot handle. Since Coq’s
type system is much more expressive than OCaml’s, such casts are unavoidable in general.
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Since the OCaml type-checker is no longer checking full safety of programs, we must rely on
Coq’s extractor to use casts only in provably safe ways.

8.5 A Certified Regular Expression Matcher
Another interesting example is regular expressions with dependent types that express which
predicates over strings particular regexps implement. We can then assign a dependent type
to a regular expression matching function, guaranteeing that it always decides the string
property that we expect it to decide.

Before defining the syntax of expressions, it is helpful to define an inductive type cap-
turing the meaning of the Kleene star. That is, a string s matches regular expression star
e if and only if s can be decomposed into a sequence of substrings that all match e. We
use Coq’s string support, which comes through a combination of the String library and some
parsing notations built into Coq. Operators like ++ and functions like length that we know
from lists are defined again for strings. Notation scopes help us control which versions we
want to use in particular contexts.
Require Import Ascii String.
Open Scope string scope.
Section star.
Variable P : string → Prop.
Inductive star : string → Prop :=
| Empty : star ""
| Iter : ∀ s1 s2,
P s1
→ star s2
→ star (s1 ++ s2 ).

End star.
Now we can make our first attempt at defining a regexp type that is indexed by predicates

on strings, such that the index of a regexp tells us which language (string predicate) it
recognizes. Here is a reasonable-looking definition that is restricted to constant characters
and concatenation. We use the constructor String, which is the analogue of list cons for the
type string, where "" is like list nil.
Inductive regexp : (string → Prop) → Set :=
| Char : ∀ ch : ascii,
regexp (fun s ⇒ s = String ch "")
| Concat : ∀ (P1 P2 : string → Prop) (r1 : regexp P1 ) (r2 : regexp P2 ),
regexp (fun s ⇒ ∃ s1, ∃ s2, s = s1 ++ s2 ∧ P1 s1 ∧ P2 s2 ).

User error: Large non-propositional inductive types must be in Type

What is a large inductive type? In Coq, it is an inductive type that has a constructor
that quantifies over some type of type Type. We have not worked with Type very much to

159



this point. Every term of CIC has a type, including Set and Prop, which are assigned type
Type. The type string → Prop from the failed definition also has type Type.

It turns out that allowing large inductive types in Set leads to contradictions when
combined with certain kinds of classical logic reasoning. Thus, by default, such types are
ruled out. There is a simple fix for our regexp definition, which is to place our new type
in Type. While fixing the problem, we also expand the list of constructors to cover the
remaining regular expression operators.
Inductive regexp : (string → Prop) → Type :=
| Char : ∀ ch : ascii,
regexp (fun s ⇒ s = String ch "")
| Concat : ∀ P1 P2 (r1 : regexp P1 ) (r2 : regexp P2 ),
regexp (fun s ⇒ ∃ s1, ∃ s2, s = s1 ++ s2 ∧ P1 s1 ∧ P2 s2 )
| Or : ∀ P1 P2 (r1 : regexp P1 ) (r2 : regexp P2 ),
regexp (fun s ⇒ P1 s ∨ P2 s)
| Star : ∀ P (r : regexp P),
regexp (star P).
Many theorems about strings are useful for implementing a certified regexp matcher, and

few of them are in the String library. The book source includes statements, proofs, and hint
commands for a handful of such omitted theorems. Since they are orthogonal to our use of
dependent types, we hide them in the rendered versions of this book.

A few auxiliary functions help us in our final matcher definition. The function split will
be used to implement the regexp concatenation case.
Section split.
Variables P1 P2 : string → Prop.
Variable P1 dec : ∀ s, {P1 s} + {¬ P1 s}.
Variable P2 dec : ∀ s, {P2 s} + {¬ P2 s}.
We require a choice of two arbitrary string predicates and functions for deciding them.
Variable s : string.
Our computation will take place relative to a single fixed string, so it is easiest to make

it a Variable, rather than an explicit argument to our functions.
The function split’ is the workhorse behind split. It searches through the possible ways of

splitting s into two pieces, checking the two predicates against each such pair. The execution
of split’ progresses right-to-left, from splitting all of s into the first piece to splitting all of s
into the second piece. It takes an extra argument, n, which specifies how far along we are
in this search process.
Definition split’ : ∀ n : nat, n ≤ length s
→ {∃ s1, ∃ s2, length s1 ≤ n ∧ s1 ++ s2 = s ∧ P1 s1 ∧ P2 s2}
+ {∀ s1 s2, length s1 ≤ n → s1 ++ s2 = s → ¬ P1 s1 ∨ ¬ P2 s2}.
refine (fix F (n : nat) : n ≤ length s
→ {∃ s1, ∃ s2, length s1 ≤ n ∧ s1 ++ s2 = s ∧ P1 s1 ∧ P2 s2}
+ {∀ s1 s2, length s1 ≤ n → s1 ++ s2 = s → ¬ P1 s1 ∨ ¬ P2 s2} :=
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match n with
| O ⇒ fun ⇒ Reduce (P1 dec "" && P2 dec s)
| S n’ ⇒ fun ⇒ (P1 dec (substring 0 (S n’) s)

&& P2 dec (substring (S n’) (length s - S n’) s))
|| F n’

end); clear F ; crush; eauto 7;
match goal with
| [ : length ?S ≤ 0 ` ] ⇒ destruct S
| [ : length ?S’ ≤ S ?N ` ] ⇒ destruct (eq nat dec (length S’) (S N ))

end; crush.
Defined.
There is one subtle point in the split’ code that is worth mentioning. The main body

of the function is a match on n. In the case where n is known to be S n’, we write S n’
in several places where we might be tempted to write n. However, without further work to
craft proper match annotations, the type-checker does not use the equality between n and S
n’. Thus, it is common to see patterns repeated in match case bodies in dependently typed
Coq code. We can at least use a let expression to avoid copying the pattern more than
once, replacing the first case body with:

| S n’ ⇒ fun ⇒ let n := S n’ in
(P1 dec (substring 0 n s)

&& P2 dec (substring n (length s - n) s))
|| F n’

The split function itself is trivial to implement in terms of split’. We just ask split’ to
begin its search with n = length s.
Definition split : {∃ s1, ∃ s2, s = s1 ++ s2 ∧ P1 s1 ∧ P2 s2}
+ {∀ s1 s2, s = s1 ++ s2 → ¬ P1 s1 ∨ ¬ P2 s2}.
refine (Reduce (split’ (n := length s) )); crush; eauto.

Defined.
End split.
Implicit Arguments split [P1 P2 ].

One more helper function will come in handy: dec star, for implementing another linear
search through ways of splitting a string, this time for implementing the Kleene star.
Section dec star.
Variable P : string → Prop.
Variable P dec : ∀ s, {P s} + {¬ P s}.
Some new lemmas and hints about the star type family are useful. We omit them here;

they are included in the book source at this point.

The function dec star’’ implements a single iteration of the star. That is, it tries to find
a string prefix matching P, and it calls a parameter function on the remainder of the string.
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Section dec star’’.
Variable n : nat.
Variable n is the length of the prefix of s that we have already processed.
Variable P’ : string → Prop.
Variable P’ dec : ∀ n’ : nat, n’ > n
→ {P’ (substring n’ (length s - n’) s)}
+ {¬ P’ (substring n’ (length s - n’) s)}.

When we use dec star’’, we will instantiate P’ dec with a function for continuing the
search for more instances of P in s.

Now we come to dec star’’ itself. It takes as an input a natural l that records how much
of the string has been searched so far, as we did for split’. The return type expresses that
dec star’’ is looking for an index into s that splits s into a nonempty prefix and a suffix, such
that the prefix satisfies P and the suffix satisfies P’ .

Definition dec star’’ : ∀ l : nat,
{∃ l’, S l’ ≤ l
∧ P (substring n (S l’) s) ∧ P’ (substring (n + S l’) (length s - (n + S l’)) s)}

+ {∀ l’, S l’ ≤ l
→ ¬ P (substring n (S l’) s)
∨ ¬ P’ (substring (n + S l’) (length s - (n + S l’)) s)}.

refine (fix F (l : nat) : {∃ l’, S l’ ≤ l
∧ P (substring n (S l’) s) ∧ P’ (substring (n + S l’) (length s - (n + S l’)) s)}

+ {∀ l’, S l’ ≤ l
→ ¬ P (substring n (S l’) s)
∨ ¬ P’ (substring (n + S l’) (length s - (n + S l’)) s)} :=

match l with
| O ⇒
| S l’ ⇒
(P dec (substring n (S l’) s) && P’ dec (n’ := n + S l’) )
|| F l’

end); clear F ; crush; eauto 7;
match goal with
| [ H : ?X ≤ S ?Y ` ] ⇒ destruct (eq nat dec X (S Y )); crush

end.
Defined.

End dec star’’.

The work of dec star’’ is nested inside another linear search by dec star’, which provides
the final functionality we need, but for arbitrary suffixes of s, rather than just for s overall.
Definition dec star’ : ∀ n n’ : nat, length s - n’ ≤ n
→ {star P (substring n’ (length s - n’) s)}
+ {¬ star P (substring n’ (length s - n’) s)}.
refine (fix F (n n’ : nat) : length s - n’ ≤ n
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→ {star P (substring n’ (length s - n’) s)}
+ {¬ star P (substring n’ (length s - n’) s)} :=
match n with
| O ⇒ fun ⇒ Yes
| S n’’ ⇒ fun ⇒

le gt dec (length s) n’
|| dec star’’ (n := n’) (star P)

(fun n0 ⇒ Reduce (F n’’ n0 )) (length s - n’)
end); clear F ; crush; eauto;

match goal with
| [ H : star ` ] ⇒ apply star substring inv in H ; crush; eauto

end;
match goal with
| [ H1 : < - , H2 : ∀ l’ : nat, ≤ - → ` ] ⇒
generalize (H2 (lt le S H1 )); tauto

end.
Defined.
Finally, we have dec star, defined by straightforward reduction from dec star’.
Definition dec star : {star P s} + {¬ star P s}.
refine (Reduce (dec star’ (n := length s) 0 )); crush.

Defined.
End dec star.

With these helper functions completed, the implementation of our matches function is
refreshingly straightforward. We only need one small piece of specific tactic work beyond
what crush does for us.
Definition matches : ∀ P (r : regexp P) s, {P s} + {¬ P s}.
refine (fix F P (r : regexp P) s : {P s} + {¬ P s} :=
match r with
| Char ch ⇒ string dec s (String ch "")
| Concat r1 r2 ⇒ Reduce (split (F r1 ) (F r2 ) s)
| Or r1 r2 ⇒ F r1 s || F r2 s
| Star r ⇒ dec star

end); crush;
match goal with
| [ H : ` ] ⇒ generalize (H (eq refl ))

end; tauto.
Defined.

It is interesting to pause briefly to consider alternate implementations of matches. De-
pendent types give us much latitude in how specific correctness properties may be encoded
with types. For instance, we could have made regexp a non-indexed inductive type, along
the lines of what is possible in traditional ML and Haskell. We could then have implemented
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a recursive function to map regexps to their intended meanings, much as we have done with
types and programs in other examples. That style is compatible with the refine-based
approach that we have used here, and it might be an interesting exercise to redo the code
from this subsection in that alternate style or some further encoding of the reader’s choice.
The main advantage of indexed inductive types is that they generally lead to the smallest
amount of code.

Many regular expression matching problems are easy to test. The reader may run each
of the following queries to verify that it gives the correct answer. We use evaluation strategy
hnf to reduce each term to head-normal form, where the datatype constructor used to build
its value is known. (Further reduction would involve wasteful simplification of proof terms
justifying the answers of our procedures.)
Example a star := Star (Char "a"%char).
Eval hnf in matches a star "".
Eval hnf in matches a star "a".
Eval hnf in matches a star "b".
Eval hnf in matches a star "aa".

Evaluation inside Coq does not scale very well, so it is easy to build other tests that
run for hours or more. Such cases are better suited to execution with the extracted OCaml
code.
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Chapter 9

Dependent Data Structures

Our red-black tree example from the last chapter illustrated how dependent types enable
static enforcement of data structure invariants. To find interesting uses of dependent data
structures, however, we need not look to the favorite examples of data structures and algo-
rithms textbooks. More basic examples like length-indexed and heterogeneous lists come up
again and again as the building blocks of dependent programs. There is a surprisingly large
design space for this class of data structure, and we will spend this chapter exploring it.

9.1 More Length-Indexed Lists
We begin with a deeper look at the length-indexed lists that began the last chapter.
Section ilist.
Variable A : Set.
Inductive ilist : nat → Set :=
| Nil : ilist O
| Cons : ∀ n, A → ilist n → ilist (S n).
We might like to have a certified function for selecting an element of an ilist by position.

We could do this using subset types and explicit manipulation of proofs, but dependent types
let us do it more directly. It is helpful to define a type family fin, where fin n is isomorphic
to {m : nat | m < n}. The type family name stands for “finite.”

Inductive fin : nat → Set :=
| First : ∀ n, fin (S n)
| Next : ∀ n, fin n → fin (S n).
An instance of fin is essentially a more richly typed copy of a prefix of the natural

numbers. Every element is a First iterated through applying Next a number of times that
indicates which number is being selected. For instance, the three values of type fin 3 are
First 2, Next (First 1), and Next (Next (First 0)).

Now it is easy to pick a Prop-free type for a selection function. As usual, our first
implementation attempt will not convince the type checker, and we will attack the deficiencies
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one at a time.
Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒ ?
| Cons x ls’ ⇒ fun idx ⇒
match idx with
| First ⇒ x
| Next idx’ ⇒ get ls’ idx’

end
end.

We apply the usual wisdom of delaying arguments in Fixpoints so that they may be
included in return clauses. This still leaves us with a quandary in each of the match cases.
First, we need to figure out how to take advantage of the contradiction in the Nil case. Every
fin has a type of the form S n, which cannot unify with the O value that we learn for n in the
Nil case. The solution we adopt is another case of match-within-return, with the return
clause chosen carefully so that it returns the proper type A in case the fin index is O, which
we know is true here; and so that it returns an easy-to-inhabit type unit in the remaining,
impossible cases, which nonetheless appear explicitly in the body of the match.
Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx with
| First ⇒ x
| Next idx’ ⇒ get ls’ idx’

end
end.

Now the first match case type-checks, and we see that the problem with the Cons case
is that the pattern-bound variable idx’ does not have an apparent type compatible with
ls’. In fact, the error message Coq gives for this exact code can be confusing, thanks to an
overenthusiastic type inference heuristic. We are told that the Nil case body has type match
X with | O ⇒ A | S ⇒ unit end for a unification variable X, while it is expected to have
type A. We can see that setting X to O resolves the conflict, but Coq is not yet smart enough
to do this unification automatically. Repeating the function’s type in a return annotation,
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used with an in annotation, leads us to a more informative error message, saying that idx’
has type fin n1 while it is expected to have type fin n0, where n0 is bound by the Cons
pattern and n1 by the Next pattern. As the code is written above, nothing forces these two
natural numbers to be equal, though we know intuitively that they must be.

We need to use match annotations to make the relationship explicit. Unfortunately, the
usual trick of postponing argument binding will not help us here. We need to match on both
ls and idx ; one or the other must be matched first. To get around this, we apply the convoy
pattern that we met last chapter. This application is a little more clever than those we
saw before; we use the natural number predecessor function pred to express the relationship
between the types of these variables.
Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
match idx in fin n’ return ilist (pred n’) → A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun ls’ ⇒ get ls’ idx’

end ls’
end.

There is just one problem left with this implementation. Though we know that the local
ls’ in the Next case is equal to the original ls’, the type-checker is not satisfied that the
recursive call to get does not introduce non-termination. We solve the problem by convoy-
binding the partial application of get to ls’, rather than ls’ by itself.
Fixpoint get n (ls : ilist n) : fin n → A :=
match ls with
| Nil ⇒ fun idx ⇒
match idx in fin n’ return (match n’ with

| O ⇒ A
| S ⇒ unit

end) with
| First ⇒ tt
| Next ⇒ tt

end
| Cons x ls’ ⇒ fun idx ⇒
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match idx in fin n’ return (fin (pred n’) → A) → A with
| First ⇒ fun ⇒ x
| Next idx’ ⇒ fun get ls’ ⇒ get ls’ idx’

end (get ls’)
end.

End ilist.
Implicit Arguments Nil [A].
Implicit Arguments First [n].

A few examples show how to make use of these definitions.
Check Cons 0 (Cons 1 (Cons 2 Nil)).

Cons 0 (Cons 1 (Cons 2 Nil))
: ilist nat 3

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) First.

= 0
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next First).

= 1
: nat

Eval simpl in get (Cons 0 (Cons 1 (Cons 2 Nil))) (Next (Next First)).

= 2
: nat

Our get function is also quite easy to reason about. We show how with a short example
about an analogue to the list map function.
Section ilist map.
Variables A B : Set.
Variable f : A → B.
Fixpoint imap n (ls : ilist A n) : ilist B n :=
match ls with
| Nil ⇒ Nil
| Cons x ls’ ⇒ Cons (f x) (imap ls’)

end.
It is easy to prove that get “distributes over” imap calls.

Theorem get imap : ∀ n (idx : fin n) (ls : ilist A n),
get (imap ls) idx = f (get ls idx).
induction ls; dep destruct idx ; crush.
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Qed.
End ilist map.

The only tricky bit is remembering to use our dep destruct tactic in place of plain
destruct when faced with a baffling tactic error message.

9.2 Heterogeneous Lists
Programmers who move to statically typed functional languages from scripting languages
often complain about the requirement that every element of a list have the same type. With
fancy type systems, we can partially lift this requirement. We can index a list type with a
“type-level” list that explains what type each element of the list should have. This has been
done in a variety of ways in Haskell using type classes, and we can do it much more cleanly
and directly in Coq.
Section hlist.
Variable A : Type.
Variable B : A → Type.

We parameterize our heterogeneous lists by a type A and an A-indexed type B.
Inductive hlist : list A → Type :=
| HNil : hlist nil
| HCons : ∀ (x : A) (ls : list A), B x → hlist ls → hlist (x :: ls).
We can implement a variant of the last section’s get function for hlists. To get the

dependent typing to work out, we will need to index our element selectors (in type family
member) by the types of data that they point to.

Variable elm : A.
Inductive member : list A → Type :=
| HFirst : ∀ ls, member (elm :: ls)
| HNext : ∀ x ls, member ls → member (x :: ls).
Because the element elm that we are “searching for” in a list does not change across the

constructors of member, we simplify our definitions by making elm a local variable. In the
definition of member, we say that elm is found in any list that begins with elm, and, if
removing the first element of a list leaves elm present, then elm is present in the original
list, too. The form looks much like a predicate for list membership, but we purposely define
member in Type so that we may decompose its values to guide computations.

We can use member to adapt our definition of get to hlists. The same basic match tricks
apply. In the HCons case, we form a two-element convoy, passing both the data element x
and the recursor for the sublist mls’ to the result of the inner match. We did not need to do
that in get’s definition because the types of list elements were not dependent there.
Fixpoint hget ls (mls : hlist ls) : member ls → B elm :=
match mls with
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| HNil ⇒ fun mem ⇒
match mem in member ls’ return (match ls’ with

| nil ⇒ B elm
| :: ⇒ unit

end) with
| HFirst ⇒ tt
| HNext ⇒ tt

end
| HCons x mls’ ⇒ fun mem ⇒
match mem in member ls’ return (match ls’ with

| nil ⇒ Empty set
| x’ :: ls’’ ⇒
B x’ → (member ls’’ → B elm)
→ B elm

end) with
| HFirst ⇒ fun x ⇒ x
| HNext mem’ ⇒ fun get mls’ ⇒ get mls’ mem’

end x (hget mls’)
end.

End hlist.
Implicit Arguments HNil [A B].
Implicit Arguments HCons [A B x ls].
Implicit Arguments HFirst [A elm ls].
Implicit Arguments HNext [A elm x ls].

By putting the parameters A and B in Type, we enable fancier kinds of polymorphism
than in mainstream functional languages. For instance, one use of hlist is for the simple
heterogeneous lists that we referred to earlier.
Definition someTypes : list Set := nat :: bool :: nil.

Example someValues : hlist (fun T : Set ⇒ T ) someTypes :=
HCons 5 (HCons true HNil).

Eval simpl in hget someValues HFirst.

= 5
: (fun T : Set ⇒ T ) nat

Eval simpl in hget someValues (HNext HFirst).

= true
: (fun T : Set ⇒ T ) bool

We can also build indexed lists of pairs in this way.
Example somePairs : hlist (fun T : Set ⇒ T × T )%type someTypes :=
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HCons (1, 2) (HCons (true, false) HNil).
There are many other useful applications of heterogeneous lists, based on different choices

of the first argument to hlist.

9.2.1 A Lambda Calculus Interpreter
Heterogeneous lists are very useful in implementing interpreters for functional programming
languages. Using the types and operations we have already defined, it is trivial to write an
interpreter for simply typed lambda calculus. Our interpreter can alternatively be thought
of as a denotational semantics (but worry not if you are not familiar with such terminology
from semantics).

We start with an algebraic datatype for types.
Inductive type : Set :=
| Unit : type
| Arrow : type → type → type.

Now we can define a type family for expressions. An exp ts t will stand for an expression
that has type t and whose free variables have types in the list ts. We effectively use the de
Bruijn index variable representation [11]. Variables are represented as member values; that
is, a variable is more or less a constructive proof that a particular type is found in the type
environment.
Inductive exp : list type → type → Set :=
| Const : ∀ ts, exp ts Unit

| Var : ∀ ts t, member t ts → exp ts t
| App : ∀ ts dom ran, exp ts (Arrow dom ran) → exp ts dom → exp ts ran
| Abs : ∀ ts dom ran, exp (dom :: ts) ran → exp ts (Arrow dom ran).
Implicit Arguments Const [ts].

We write a simple recursive function to translate types into Sets.
Fixpoint typeDenote (t : type) : Set :=
match t with
| Unit ⇒ unit
| Arrow t1 t2 ⇒ typeDenote t1 → typeDenote t2

end.
Now it is straightforward to write an expression interpreter. The type of the function,

expDenote, tells us that we translate expressions into functions from properly typed environ-
ments to final values. An environment for a free variable list ts is simply an hlist typeDenote
ts. That is, for each free variable, the heterogeneous list that is the environment must have
a value of the variable’s associated type. We use hget to implement the Var case, and we use
HCons to extend the environment in the Abs case.

Fixpoint expDenote ts t (e : exp ts t) : hlist typeDenote ts → typeDenote t :=
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match e with
| Const ⇒ fun ⇒ tt

| Var mem ⇒ fun s ⇒ hget s mem
| App e1 e2 ⇒ fun s ⇒ (expDenote e1 s) (expDenote e2 s)
| Abs e’ ⇒ fun s ⇒ fun x ⇒ expDenote e’ (HCons x s)

end.
Like for previous examples, our interpreter is easy to run with simpl.

Eval simpl in expDenote Const HNil.

= tt
: typeDenote Unit

Eval simpl in expDenote (Abs (dom := Unit) (Var HFirst)) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit Unit)

Eval simpl in expDenote (Abs (dom := Unit)
(Abs (dom := Unit) (Var (HNext HFirst)))) HNil.

= fun x : unit ⇒ x
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (Abs (dom := Unit) (Abs (dom := Unit) (Var HFirst))) HNil.

= fun x0 : unit ⇒ x0
: typeDenote (Arrow Unit (Arrow Unit Unit))

Eval simpl in expDenote (App (Abs (Var HFirst)) Const) HNil.

= tt
: typeDenote Unit

We are starting to develop the tools behind dependent typing’s amazing advantage over
alternative approaches in several important areas. Here, we have implemented complete
syntax, typing rules, and evaluation semantics for simply typed lambda calculus without even
needing to define a syntactic substitution operation. We did it all without a single line of
proof, and our implementation is manifestly executable. Other, more common approaches to
language formalization often state and prove explicit theorems about type safety of languages.
In the above example, we got type safety, termination, and other meta-theorems for free, by
reduction to CIC, which we know has those properties.
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9.3 Recursive Type Definitions
There is another style of datatype definition that leads to much simpler definitions of the
get and hget definitions above. Because Coq supports “type-level computation,” we can redo
our inductive definitions as recursive definitions. Here we will preface type names with the
letter f to indicate that they are based on explicit recursive function definitions.

Section filist.
Variable A : Set.
Fixpoint filist (n : nat) : Set :=
match n with
| O ⇒ unit
| S n’ ⇒ A × filist n’

end%type.
We say that a list of length 0 has no contents, and a list of length S n’ is a pair of a data

value and a list of length n’.
Fixpoint ffin (n : nat) : Set :=
match n with
| O ⇒ Empty set
| S n’ ⇒ option (ffin n’)

end.
We express that there are no index values when n = O, by defining such indices as type

Empty set; and we express that, at n = S n’, there is a choice between picking the first
element of the list (represented as None) or choosing a later element (represented by Some
idx, where idx is an index into the list tail). For instance, the three values of type ffin 3 are
None, Some None, and Some (Some None).
Fixpoint fget (n : nat) : filist n → ffin n → A :=
match n with
| O ⇒ fun idx ⇒ match idx with end
| S n’ ⇒ fun ls idx ⇒
match idx with
| None ⇒ fst ls
| Some idx’ ⇒ fget n’ (snd ls) idx’

end
end.
Our new get implementation needs only one dependent match, and its annotation is

inferred for us. Our choices of data structure implementations lead to just the right typing
behavior for this new definition to work out.
End filist.

Heterogeneous lists are a little trickier to define with recursion, but we then reap similar
benefits in simplicity of use.
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Section fhlist.
Variable A : Type.
Variable B : A → Type.
Fixpoint fhlist (ls : list A) : Type :=
match ls with
| nil ⇒ unit
| x :: ls’ ⇒ B x × fhlist ls’

end%type.
The definition of fhlist follows the definition of filist, with the added wrinkle of dependently

typed data elements.
Variable elm : A.
Fixpoint fmember (ls : list A) : Type :=
match ls with
| nil ⇒ Empty set
| x :: ls’ ⇒ (x = elm) + fmember ls’

end%type.
The definition of fmember follows the definition of ffin. Empty lists have no members,

and member types for nonempty lists are built by adding one new option to the type of
members of the list tail. While for ffin we needed no new information associated with the
option that we add, here we need to know that the head of the list equals the element we
are searching for. We express that idea with a sum type whose left branch is the appropriate
equality proposition. Since we define fmember to live in Type, we can insert Prop types as
needed, because Prop is a subtype of Type.

We know all of the tricks needed to write a first attempt at a get function for fhlists.
Fixpoint fhget (ls : list A) : fhlist ls → fmember ls → B elm :=
match ls with
| nil ⇒ fun idx ⇒ match idx with end
| :: ls’ ⇒ fun mls idx ⇒
match idx with
| inl ⇒ fst mls
| inr idx’ ⇒ fhget ls’ (snd mls) idx’

end
end.

Only one problem remains. The expression fst mls is not known to have the proper type.
To demonstrate that it does, we need to use the proof available in the inl case of the inner
match.
Fixpoint fhget (ls : list A) : fhlist ls → fmember ls → B elm :=
match ls with
| nil ⇒ fun idx ⇒ match idx with end
| :: ls’ ⇒ fun mls idx ⇒
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match idx with
| inl pf ⇒ match pf with

| eq refl ⇒ fst mls
end

| inr idx’ ⇒ fhget ls’ (snd mls) idx’
end

end.
By pattern-matching on the equality proof pf, we make that equality known to the type-

checker. Exactly why this works can be seen by studying the definition of equality.

Print eq.

Inductive eq (A : Type) (x : A) : A → Prop := eq refl : x = x
In a proposition x = y, we see that x is a parameter and y is a regular argument. The

type of the constructor eq refl shows that y can only ever be instantiated to x. Thus, within
a pattern-match with eq refl, occurrences of y can be replaced with occurrences of x for
typing purposes.
End fhlist.
Implicit Arguments fhget [A B elm ls].

How does one choose between the two data structure encoding strategies we have pre-
sented so far? Before answering that question in this chapter’s final section, we introduce
one further approach.

9.4 Data Structures as Index Functions
Indexed lists can be useful in defining other inductive types with constructors that take vari-
able numbers of arguments. In this section, we consider parameterized trees with arbitrary
branching factor.

Section tree.
Variable A : Set.
Inductive tree : Set :=
| Leaf : A → tree
| Node : ∀ n, ilist tree n → tree.

End tree.
Every Node of a tree has a natural number argument, which gives the number of child

trees in the second argument, typed with ilist. We can define two operations on trees of
naturals: summing their elements and incrementing their elements. It is useful to define a
generic fold function on ilists first.
Section ifoldr.
Variables A B : Set.
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Variable f : A → B → B.
Variable i : B.
Fixpoint ifoldr n (ls : ilist A n) : B :=
match ls with
| Nil ⇒ i
| Cons x ls’ ⇒ f x (ifoldr ls’)

end.
End ifoldr.
Fixpoint sum (t : tree nat) : nat :=
match t with
| Leaf n ⇒ n
| Node ls ⇒ ifoldr (fun t’ n ⇒ sum t’ + n) O ls

end.
Fixpoint inc (t : tree nat) : tree nat :=
match t with
| Leaf n ⇒ Leaf (S n)
| Node ls ⇒ Node (imap inc ls)

end.
Now we might like to prove that inc does not decrease a tree’s sum.

Theorem sum inc : ∀ t, sum (inc t) ≥ sum t.
induction t; crush.

n : nat
i : ilist (tree nat) n
============================
ifoldr (fun (t’ : tree nat) (n0 : nat) ⇒ sum t’ + n0 ) 0 (imap inc i) ≥
ifoldr (fun (t’ : tree nat) (n0 : nat) ⇒ sum t’ + n0 ) 0 i

We are left with a single subgoal which does not seem provable directly. This is the same
problem that we met in Chapter 3 with other nested inductive types.
Check tree ind.

tree ind
: ∀ (A : Set) (P : tree A → Prop),
(∀ a : A, P (Leaf a)) →
(∀ (n : nat) (i : ilist (tree A) n), P (Node i)) →
∀ t : tree A, P t

The automatically generated induction principle is too weak. For the Node case, it gives
us no inductive hypothesis. We could write our own induction principle, as we did in Chapter
3, but there is an easier way, if we are willing to alter the definition of tree.
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Abort.
Reset tree.

First, let us try using our recursive definition of ilists instead of the inductive version.
Section tree.
Variable A : Set.

Inductive tree : Set :=
| Leaf : A → tree
| Node : ∀ n, filist tree n → tree.

Error: Non strictly positive occurrence of "tree" in
"forall n : nat, filist tree n -> tree"

The special-case rule for nested datatypes only works with nested uses of other inductive
types, which could be replaced with uses of new mutually inductive types. We defined filist
recursively, so it may not be used in nested inductive definitions.

Our final solution uses yet another of the inductive definition techniques introduced in
Chapter 3, reflexive types. Instead of merely using fin to get elements out of ilist, we can
define ilist in terms of fin. For the reasons outlined above, it turns out to be easier to work
with ffin in place of fin.
Inductive tree : Set :=
| Leaf : A → tree
| Node : ∀ n, (ffin n → tree) → tree.
A Node is indexed by a natural number n, and the node’s n children are represented as

a function from ffin n to trees, which is isomorphic to the ilist-based representation that we
used above.
End tree.
Implicit Arguments Node [A n].

We can redefine sum and inc for our new tree type. Again, it is useful to define a generic
fold function first. This time, it takes in a function whose domain is some ffin type, and
it folds another function over the results of calling the first function at every possible ffin
value.
Section rifoldr.
Variables A B : Set.
Variable f : A → B → B.
Variable i : B.
Fixpoint rifoldr (n : nat) : (ffin n → A) → B :=
match n with
| O ⇒ fun ⇒ i
| S n’ ⇒ fun get ⇒ f (get None) (rifoldr n’ (fun idx ⇒ get (Some idx)))
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end.
End rifoldr.
Implicit Arguments rifoldr [A B n].
Fixpoint sum (t : tree nat) : nat :=
match t with
| Leaf n ⇒ n
| Node f ⇒ rifoldr plus O (fun idx ⇒ sum (f idx))

end.
Fixpoint inc (t : tree nat) : tree nat :=
match t with
| Leaf n ⇒ Leaf (S n)
| Node f ⇒ Node (fun idx ⇒ inc (f idx))

end.
Now we are ready to prove the theorem where we got stuck before. We will not need to

define any new induction principle, but it will be helpful to prove some lemmas.
Lemma plus ge : ∀ x1 y1 x2 y2,
x1 ≥ x2
→ y1 ≥ y2
→ x1 + y1 ≥ x2 + y2.
crush.

Qed.
Lemma sum inc’ : ∀ n (f1 f2 : ffin n → nat),

(∀ idx, f1 idx ≥ f2 idx)
→ rifoldr plus O f1 ≥ rifoldr plus O f2.
Hint Resolve plus ge.
induction n; crush.

Qed.
Theorem sum inc : ∀ t, sum (inc t) ≥ sum t.
Hint Resolve sum inc’.
induction t; crush.

Qed.

Even if Coq would generate complete induction principles automatically for nested in-
ductive definitions like the one we started with, there would still be advantages to using this
style of reflexive encoding. We see one of those advantages in the definition of inc, where
we did not need to use any kind of auxiliary function. In general, reflexive encodings often
admit direct implementations of operations that would require recursion if performed with
more traditional inductive data structures.
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9.4.1 Another Interpreter Example
We develop another example of variable-arity constructors, in the form of optimization of
a small expression language with a construct like Scheme’s cond. Each of our conditional
expressions takes a list of pairs of boolean tests and bodies. The value of the conditional
comes from the body of the first test in the list to evaluate to true. To simplify the interpreter
we will write, we force each conditional to include a final, default case.
Inductive type’ : Type := Nat | Bool.
Inductive exp’ : type’ → Type :=
| NConst : nat → exp’ Nat
| Plus : exp’ Nat → exp’ Nat → exp’ Nat
| Eq : exp’ Nat → exp’ Nat → exp’ Bool

| BConst : bool → exp’ Bool

| Cond : ∀ n t, (ffin n → exp’ Bool)
→ (ffin n → exp’ t) → exp’ t → exp’ t.
A Cond is parameterized by a natural n, which tells us how many cases this conditional

has. The test expressions are represented with a function of type ffin n → exp’ Bool, and
the bodies are represented with a function of type ffin n → exp’ t, where t is the overall
type. The final exp’ t argument is the default case. For example, here is an expression that
successively checks whether 2 + 2 = 5 (returning 0 if so) or if 1 + 1 = 2 (returning 1 if so),
returning 2 otherwise.
Example ex1 := Cond 2
(fun f ⇒ match f with

| None ⇒ Eq (Plus (NConst 2) (NConst 2)) (NConst 5)
| Some None ⇒ Eq (Plus (NConst 1) (NConst 1)) (NConst 2)
| Some (Some v) ⇒ match v with end

end)
(fun f ⇒ match f with

| None ⇒ NConst 0
| Some None ⇒ NConst 1
| Some (Some v) ⇒ match v with end

end)
(NConst 2).
We start implementing our interpreter with a standard type denotation function.

Definition type’Denote (t : type’) : Set :=
match t with
| Nat ⇒ nat
| Bool ⇒ bool

end.
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To implement the expression interpreter, it is useful to have the following function that
implements the functionality of Cond without involving any syntax.
Section cond.
Variable A : Set.
Variable default : A.
Fixpoint cond (n : nat) : (ffin n → bool) → (ffin n → A) → A :=
match n with
| O ⇒ fun ⇒ default
| S n’ ⇒ fun tests bodies ⇒
if tests None
then bodies None
else cond n’
(fun idx ⇒ tests (Some idx))
(fun idx ⇒ bodies (Some idx))

end.
End cond.
Implicit Arguments cond [A n].

Now the expression interpreter is straightforward to write.
Fixpoint exp’Denote t (e : exp’ t) : type’Denote t :=
match e with
| NConst n ⇒ n
| Plus e1 e2 ⇒ exp’Denote e1 + exp’Denote e2
| Eq e1 e2 ⇒
if eq nat dec (exp’Denote e1 ) (exp’Denote e2 ) then true else false

| BConst b ⇒ b
| Cond tests bodies default ⇒
cond
(exp’Denote default)
(fun idx ⇒ exp’Denote (tests idx))
(fun idx ⇒ exp’Denote (bodies idx))

end.

We will implement a constant-folding function that optimizes conditionals, removing
cases with known-false tests and cases that come after known-true tests. A function cfoldCond
implements the heart of this logic. The convoy pattern is used again near the end of the
implementation.
Section cfoldCond.
Variable t : type’.
Variable default : exp’ t.
Fixpoint cfoldCond (n : nat)
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: (ffin n → exp’ Bool) → (ffin n → exp’ t) → exp’ t :=
match n with
| O ⇒ fun ⇒ default
| S n’ ⇒ fun tests bodies ⇒
match tests None return with
| BConst true ⇒ bodies None
| BConst false ⇒ cfoldCond n’

(fun idx ⇒ tests (Some idx))
(fun idx ⇒ bodies (Some idx))
| ⇒
let e := cfoldCond n’
(fun idx ⇒ tests (Some idx))
(fun idx ⇒ bodies (Some idx)) in

match e in exp’ t return exp’ t → exp’ t with
| Cond n tests’ bodies’ default’ ⇒ fun body ⇒

Cond
(S n)
(fun idx ⇒ match idx with

| None ⇒ tests None
| Some idx ⇒ tests’ idx

end)
(fun idx ⇒ match idx with

| None ⇒ body
| Some idx ⇒ bodies’ idx

end)
default’
| e ⇒ fun body ⇒

Cond
1
(fun ⇒ tests None)
(fun ⇒ body)
e

end (bodies None)
end

end.
End cfoldCond.
Implicit Arguments cfoldCond [t n].

Like for the interpreters, most of the action was in this helper function, and cfold itself
is easy to write.
Fixpoint cfold t (e : exp’ t) : exp’ t :=
match e with
| NConst n ⇒ NConst n
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| Plus e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return exp’ Nat with
| NConst n1, NConst n2 ⇒ NConst (n1 + n2 )
| , ⇒ Plus e1’ e2’

end
| Eq e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ return exp’ Bool with
| NConst n1, NConst n2 ⇒ BConst (if eq nat dec n1 n2 then true else false)
| , ⇒ Eq e1’ e2’

end

| BConst b ⇒ BConst b
| Cond tests bodies default ⇒
cfoldCond
(cfold default)
(fun idx ⇒ cfold (tests idx))
(fun idx ⇒ cfold (bodies idx))

end.
To prove our final correctness theorem, it is useful to know that cfoldCond preserves

expression meanings. The following lemma formalizes that property. The proof is a standard
mostly automated one, with the only wrinkle being a guided instantiation of the quantifiers
in the induction hypothesis.
Lemma cfoldCond correct : ∀ t (default : exp’ t)
n (tests : ffin n → exp’ Bool) (bodies : ffin n → exp’ t),
exp’Denote (cfoldCond default tests bodies)
= exp’Denote (Cond n tests bodies default).
induction n; crush;
match goal with
| [ IHn : ∀ tests bodies, , tests : → , bodies : → ` ] ⇒
specialize (IHn (fun idx ⇒ tests (Some idx)) (fun idx ⇒ bodies (Some idx)))

end;
repeat (match goal with

| [ ` context[match ?E with NConst ⇒ | ⇒ end] ] ⇒
dep destruct E
| [ ` context[if ?B then else ] ] ⇒ destruct B

end; crush).
Qed.

It is also useful to know that the result of a call to cond is not changed by substituting
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new tests and bodies functions, so long as the new functions have the same input-output
behavior as the old. It turns out that, in Coq, it is not possible to prove in general that
functions related in this way are equal. We treat this issue with our discussion of axioms in
a later chapter. For now, it suffices to prove that the particular function cond is extensional;
that is, it is unaffected by substitution of functions with input-output equivalents.
Lemma cond ext : ∀ (A : Set) (default : A) n (tests tests’ : ffin n → bool)

(bodies bodies’ : ffin n → A),
(∀ idx, tests idx = tests’ idx)
→ (∀ idx, bodies idx = bodies’ idx)
→ cond default tests bodies
= cond default tests’ bodies’.
induction n; crush;
match goal with
| [ ` context[if ?E then else ] ] ⇒ destruct E

end; crush.
Qed.

Now the final theorem is easy to prove.
Theorem cfold correct : ∀ t (e : exp’ t),

exp’Denote (cfold e) = exp’Denote e.
Hint Rewrite cfoldCond correct.
Hint Resolve cond ext.
induction e; crush;
repeat (match goal with

| [ ` context[cfold ?E ] ] ⇒ dep destruct (cfold E)
end; crush).

Qed.
We add our two lemmas as hints and perform standard automation with pattern-matching

of subterms to destruct.

9.5 Choosing Between Representations
It is not always clear which of these representation techniques to apply in a particular
situation, but I will try to summarize the pros and cons of each.

Inductive types are often the most pleasant to work with, after someone has spent the
time implementing some basic library functions for them, using fancy match annotations.
Many aspects of Coq’s logic and tactic support are specialized to deal with inductive types,
and you may miss out if you use alternate encodings.

Recursive types usually involve much less initial effort, but they can be less convenient to
use with proof automation. For instance, the simpl tactic (which is among the ingredients
in crush) will sometimes be overzealous in simplifying uses of functions over recursive types.
Consider a call get l f , where variable l has type filist A (S n). The type of l would be
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simplified to an explicit pair type. In a proof involving many recursive types, this kind of
unhelpful “simplification” can lead to rapid bloat in the sizes of subgoals. Even worse, it
can prevent syntactic pattern-matching, like in cases where filist is expected but a pair type
is found in the “simplified” version. The same problem applies to applications of recursive
functions to values in recursive types: the recursive function call may “simplify” when the
top-level structure of the type index but not the recursive value is known, because such
functions are generally defined by recursion on the index, not the value.

Another disadvantage of recursive types is that they only apply to type families whose
indices determine their “skeletons.” This is not true for all data structures; a good coun-
terexample comes from the richly typed programming language syntax types we have used
several times so far. The fact that a piece of syntax has type Nat tells us nothing about the
tree structure of that syntax.

Finally, Coq type inference can be more helpful in constructing values in inductive types.
Application of a particular constructor of that type tells Coq what to expect from the
arguments, while, for instance, forming a generic pair does not make clear an intention
to interpret the value as belonging to a particular recursive type. This downside can be
mitigated to an extent by writing “constructor” functions for a recursive type, mirroring the
definition of the corresponding inductive type.

Reflexive encodings of data types are seen relatively rarely. As our examples demon-
strated, manipulating index values manually can lead to hard-to-read code. A normal in-
ductive type is generally easier to work with, once someone has gone through the trouble
of implementing an induction principle manually with the techniques we studied in Chap-
ter 3. For small developments, avoiding that kind of coding can justify the use of reflexive
data structures. There are also some useful instances of co-inductive definitions with nested
data structures (e.g., lists of values in the co-inductive type) that can only be deconstructed
effectively with reflexive encoding of the nested structures.
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Chapter 10

Reasoning About Equality Proofs

In traditional mathematics, the concept of equality is usually taken as a given. On the other
hand, in type theory, equality is a very contentious subject. There are at least three different
notions of equality that are important in Coq, and researchers are actively investigating new
definitions of what it means for two terms to be equal. Even once we fix a notion of equality,
there are inevitably tricky issues that arise in proving properties of programs that manipulate
equality proofs explicitly. In this chapter, I will focus on design patterns for circumventing
these tricky issues, and I will introduce the different notions of equality as they are germane.

10.1 The Definitional Equality
We have seen many examples so far where proof goals follow “by computation.” That is, we
apply computational reduction rules to reduce the goal to a normal form, at which point
it follows trivially. Exactly when this works and when it does not depends on the details
of Coq’s definitional equality. This is an untyped binary relation appearing in the formal
metatheory of CIC. CIC contains a typing rule allowing the conclusion E : T from the
premise E : T’ and a proof that T and T’ are definitionally equal.

The cbv tactic will help us illustrate the rules of Coq’s definitional equality. We redefine
the natural number predecessor function in a somewhat convoluted way and construct a
manual proof that it returns 0 when applied to 1.
Definition pred’ (x : nat) :=
match x with
| O ⇒ O
| S n’ ⇒ let y := n’ in y

end.
Theorem reduce me : pred’ 1 = 0.

CIC follows the traditions of lambda calculus in associating reduction rules with Greek
letters. Coq can certainly be said to support the familiar alpha reduction rule, which allows
capture-avoiding renaming of bound variables, but we never need to apply alpha explicitly,
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since Coq uses a de Bruijn representation [11] that encodes terms canonically.
The delta rule is for unfolding global definitions. We can use it here to unfold the

definition of pred’. We do this with the cbv tactic, which takes a list of reduction rules and
makes as many call-by-value reduction steps as possible, using only those rules. There is an
analogous tactic lazy for call-by-need reduction.
cbv delta.

============================
(fun x : nat ⇒ match x with

| 0 ⇒ 0
| S n’ ⇒ let y := n’ in y
end) 1 = 0

At this point, we want to apply the famous beta reduction of lambda calculus, to simplify
the application of a known function abstraction.
cbv beta.

============================
match 1 with
| 0 ⇒ 0
| S n’ ⇒ let y := n’ in y
end = 0
Next on the list is the iota reduction, which simplifies a single match term by determining

which pattern matches.
cbv iota.

============================
(fun n’ : nat ⇒ let y := n’ in y) 0 = 0
Now we need another beta reduction.
cbv beta.

============================
(let y := 0 in y) = 0
The final reduction rule is zeta, which replaces a let expression by its body with the

appropriate term substituted.
cbv zeta.

============================
0 = 0

reflexivity.
Qed.

The beta reduction rule applies to recursive functions as well, and its behavior may be
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surprising in some instances. For instance, we can run some simple tests using the reduction
strategy compute, which applies all applicable rules of the definitional equality.
Definition id (n : nat) := n.
Eval compute in fun x ⇒ id x.

= fun x : nat ⇒ x

Fixpoint id’ (n : nat) := n.
Eval compute in fun x ⇒ id’ x.

= fun x : nat ⇒ (fix id’ (n : nat) : nat := n) x
By running compute, we ask Coq to run reduction steps until no more apply, so why do we

see an application of a known function, where clearly no beta reduction has been performed?
The answer has to do with ensuring termination of all Gallina programs. One candidate rule
would say that we apply recursive definitions wherever possible. However, this would clearly
lead to nonterminating reduction sequences, since the function may appear fully applied
within its own definition, and we would naïvely “simplify” such applications immediately.
Instead, Coq only applies the beta rule for a recursive function when the top-level structure
of the recursive argument is known. For id’ above, we have only one argument n, so clearly
it is the recursive argument, and the top-level structure of n is known when the function is
applied to O or to some S e term. The variable x is neither, so reduction is blocked.

What are recursive arguments in general? Every recursive function is compiled by Coq
to a fix expression, for anonymous definition of recursive functions. Further, every fix with
multiple arguments has one designated as the recursive argument via a struct annotation.
The recursive argument is the one that must decrease across recursive calls, to appease Coq’s
termination checker. Coq will generally infer which argument is recursive, though we may
also specify it manually, if we want to tweak reduction behavior. For instance, consider this
definition of a function to add two lists of nats elementwise:
Fixpoint addLists (ls1 ls2 : list nat) : list nat :=
match ls1, ls2 with
| n1 :: ls1’ , n2 :: ls2’ ⇒ n1 + n2 :: addLists ls1’ ls2’
| , ⇒ nil

end.
By default, Coq chooses ls1 as the recursive argument. We can see that ls2 would have

been another valid choice. The choice has a critical effect on reduction behavior, as these
two examples illustrate:
Eval compute in fun ls ⇒ addLists nil ls.

= fun : list nat ⇒ nil

Eval compute in fun ls ⇒ addLists ls nil.

= fun ls : list nat ⇒
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(fix addLists (ls1 ls2 : list nat) : list nat :=
match ls1 with
| nil ⇒ nil
| n1 :: ls1’ ⇒

match ls2 with
| nil ⇒ nil
| n2 :: ls2’ ⇒

(fix plus (n m : nat) : nat :=
match n with
| 0 ⇒ m
| S p ⇒ S (plus p m)
end) n1 n2 :: addLists ls1’ ls2’

end
end) ls nil

The outer application of the fix expression for addLists was only simplified in the first
case, because in the second case the recursive argument is ls, whose top-level structure is
not known.

The opposite behavior pertains to a version of addLists with ls2 marked as recursive.
Fixpoint addLists’ (ls1 ls2 : list nat) {struct ls2} : list nat :=
match ls1, ls2 with
| n1 :: ls1’ , n2 :: ls2’ ⇒ n1 + n2 :: addLists’ ls1’ ls2’
| , ⇒ nil

end.

Eval compute in fun ls ⇒ addLists’ ls nil.

= fun ls : list nat ⇒ match ls with
| nil ⇒ nil
| :: ⇒ nil
end

We see that all use of recursive functions has been eliminated, though the term has
not quite simplified to nil. We could get it to do so by switching the order of the match
discriminees in the definition of addLists’.

Recall that co-recursive definitions have a dual rule: a co-recursive call only simplifies
when it is the discriminee of a match. This condition is built into the beta rule for cofix,
the anonymous form of CoFixpoint.

The standard eq relation is critically dependent on the definitional equality. The rela-
tion eq is often called a propositional equality, because it reifies definitional equality as a
proposition that may or may not hold. Standard axiomatizations of an equality predicate
in first-order logic define equality in terms of properties it has, like reflexivity, symmetry,
and transitivity. In contrast, for eq in Coq, those properties are implicit in the properties of
the definitional equality, which are built into CIC’s metatheory and the implementation of
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Gallina. We could add new rules to the definitional equality, and eq would keep its definition
and methods of use.

This all may make it sound like the choice of eq’s definition is unimportant. To the
contrary, in this chapter, we will see examples where alternate definitions may simplify
proofs. Before that point, I will introduce proof methods for goals that use proofs of the
standard propositional equality “as data.”

10.2 Heterogeneous Lists Revisited
One of our example dependent data structures from the last chapter (code repeated below)
was the heterogeneous list and its associated “cursor” type. The recursive version poses
some special challenges related to equality proofs, since it uses such proofs in its definition
of fmember types.
Section fhlist.
Variable A : Type.
Variable B : A → Type.
Fixpoint fhlist (ls : list A) : Type :=
match ls with
| nil ⇒ unit
| x :: ls’ ⇒ B x × fhlist ls’

end%type.
Variable elm : A.
Fixpoint fmember (ls : list A) : Type :=
match ls with
| nil ⇒ Empty set
| x :: ls’ ⇒ (x = elm) + fmember ls’

end%type.
Fixpoint fhget (ls : list A) : fhlist ls → fmember ls → B elm :=
match ls return fhlist ls → fmember ls → B elm with
| nil ⇒ fun idx ⇒ match idx with end
| :: ls’ ⇒ fun mls idx ⇒
match idx with
| inl pf ⇒ match pf with

| eq refl ⇒ fst mls
end

| inr idx’ ⇒ fhget ls’ (snd mls) idx’
end

end.
End fhlist.
Implicit Arguments fhget [A B elm ls].
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We can define a map-like function for fhlists.
Section fhlist map.
Variables A : Type.
Variables B C : A → Type.
Variable f : ∀ x, B x → C x.
Fixpoint fhmap (ls : list A) : fhlist B ls → fhlist C ls :=
match ls return fhlist B ls → fhlist C ls with
| nil ⇒ fun ⇒ tt
| :: ⇒ fun hls ⇒ (f (fst hls), fhmap (snd hls))

end.
Implicit Arguments fhmap [ls].

For the inductive versions of the ilist definitions, we proved a lemma about the interaction
of get and imap. It was a strategic choice not to attempt such a proof for the definitions that
we just gave, which sets us on a collision course with the problems that are the subject of
this chapter.
Variable elm : A.
Theorem fhget fhmap : ∀ ls (mem : fmember elm ls) (hls : fhlist B ls),
fhget (fhmap hls) mem = f (fhget hls mem).
induction ls; crush.

In Coq 8.2, one subgoal remains at this point. Coq 8.3 has added some tactic improve-
ments that enable crush to complete all of both inductive cases. To introduce the basics of
reasoning about equality, it will be useful to review what was necessary in Coq 8.2.

Part of our single remaining subgoal is:
a0 : a = elm
============================
match a0 in ( = a2 ) return (C a2 ) with
| eq refl ⇒ f a1
end = f match a0 in ( = a2 ) return (B a2 ) with

| eq refl ⇒ a1
end

This seems like a trivial enough obligation. The equality proof a0 must be eq refl, the
only constructor of eq. Therefore, both the matches reduce to the point where the conclusion
follows by reflexivity.

destruct a0.

User error: Cannot solve a second-order unification problem

This is one of Coq’s standard error messages for informing us of a failure in its heuristics
for attempting an instance of an undecidable problem about dependent typing. We might
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try to nudge things in the right direction by stating the lemma that we believe makes the
conclusion trivial.

assert (a0 = eq refl ).

The term "eq_refl ?98" has type "?98 = ?98"
while it is expected to have type "a = elm"

In retrospect, the problem is not so hard to see. Reflexivity proofs only show x = x for
particular values of x, whereas here we are thinking in terms of a proof of a = elm, where
the two sides of the equality are not equal syntactically. Thus, the essential lemma we need
does not even type-check!

Is it time to throw in the towel? Luckily, the answer is “no.” In this chapter, we will see
several useful patterns for proving obligations like this.

For this particular example, the solution is surprisingly straightforward. The destruct
tactic has a simpler sibling case which should behave identically for any inductive type with
one constructor of no arguments.

case a0.

============================
f a1 = f a1
It seems that destruct was trying to be too smart for its own good.
reflexivity.

Qed.
It will be helpful to examine the proof terms generated by this sort of strategy. A simpler

example illustrates what is going on.
Lemma lemma1 : ∀ x (pf : x = elm), O = match pf with eq refl ⇒ O end.
simple destruct pf ; reflexivity.

Qed.
The tactic simple destruct pf is a convenient form for applying case. It runs intro to

bring into scope all quantified variables up to its argument.
Print lemma1.

lemma1 =
fun (x : A) (pf : x = elm) ⇒
match pf as e in ( = y) return (0 = match e with

| eq refl ⇒ 0
end) with

| eq refl ⇒ eq refl 0
end

: ∀ (x : A) (pf : x = elm), 0 = match pf with
| eq refl ⇒ 0

191



end

Using what we know about shorthands for match annotations, we can write this proof in
shorter form manually.
Definition lemma1’ (x : A) (pf : x = elm) :=
match pf return (0 = match pf with

| eq refl ⇒ 0
end) with

| eq refl ⇒ eq refl 0
end.
Surprisingly, what seems at first like a simpler lemma is harder to prove.
Lemma lemma2 : ∀ (x : A) (pf : x = x), O = match pf with eq refl ⇒ O end.
simple destruct pf.

User error: Cannot solve a second-order unification problem

Abort.
Nonetheless, we can adapt the last manual proof to handle this theorem.
Definition lemma2 :=
fun (x : A) (pf : x = x) ⇒
match pf return (0 = match pf with

| eq refl ⇒ 0
end) with

| eq refl ⇒ eq refl 0
end.

We can try to prove a lemma that would simplify proofs of many facts like lemma2:

Lemma lemma3 : ∀ (x : A) (pf : x = x), pf = eq refl x.
simple destruct pf.

User error: Cannot solve a second-order unification problem

Abort.
This time, even our manual attempt fails.
Definition lemma3’ :=
fun (x : A) (pf : x = x) ⇒
match pf as pf’ in ( = x’) return (pf’ = eq refl x’) with
| eq refl ⇒ eq refl

end.

The term "eq_refl x’" has type "x’ = x’" while it is expected to have type
"x = x’"
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The type error comes from our return annotation. In that annotation, the as-bound
variable pf’ has type x = x’, referring to the in-bound variable x’. To do a dependent match,
we must choose a fresh name for the second argument of eq. We are just as constrained to
use the “real” value x for the first argument. Thus, within the return clause, the proof we
are matching on must equate two non-matching terms, which makes it impossible to equate
that proof with reflexivity.

Nonetheless, it turns out that, with one catch, we can prove this lemma.
Lemma lemma3 : ∀ (x : A) (pf : x = x), pf = eq refl x.
intros; apply UIP refl.

Qed.
Check UIP refl.

UIP refl
: ∀ (U : Type) (x : U ) (p : x = x), p = eq refl x

The theorem UIP refl comes from the Eqdep module of the standard library. (Its name
uses the acronym “UIP” for “unicity of identity proofs.”) Do the Coq authors know of some
clever trick for building such proofs that we have not seen yet? If they do, they did not use
it for this proof. Rather, the proof is based on an axiom, the term eq rect eq below.
Print eq rect eq.

*** [ eq rect eq :
∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),
x = eq rect p Q x p h ]

The axiom eq rect eq states a “fact” that seems like common sense, once the notation
is deciphered. The term eq rect is the automatically generated recursion principle for eq.
Calling eq rect is another way of matching on an equality proof. The proof we match on is
the argument h, and x is the body of the match. The statement of eq rect eq just says that
matches on proofs of p = p, for any p, are superfluous and may be removed. We can see this
intuition better in code by asking Coq to simplify the theorem statement with the compute
reduction strategy.

Eval compute in (∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),
x = eq rect p Q x p h).

= ∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),
x = match h in ( = y) return (Q y) with
| eq refl ⇒ x
end

Perhaps surprisingly, we cannot prove eq rect eq from within Coq. This proposition is
introduced as an axiom; that is, a proposition asserted as true without proof. We cannot
assert just any statement without proof. Adding False as an axiom would allow us to prove
any proposition, for instance, defeating the point of using a proof assistant. In general,
we need to be sure that we never assert inconsistent sets of axioms. A set of axioms is

193



inconsistent if its conjunction implies False. For the case of eq rect eq, consistency has
been verified outside of Coq via “informal” metatheory [43], in a study that also established
unprovability of the axiom in CIC.

This axiom is equivalent to another that is more commonly known and mentioned in
type theory circles.

Check Streicher K.

Streicher K
: ∀ (U : Type) (x : U ) (P : x = x → Prop),
P eq refl → ∀ p : x = x, P p

This is the opaquely named “Streicher’s axiom K,” which says that a predicate on properly
typed equality proofs holds of all such proofs if it holds of reflexivity.
End fhlist map.

It is worth remarking that it is possible to avoid axioms altogether for equalities on
types with decidable equality. The Eqdep dec module of the standard library contains a
parametric proof of UIP refl for such cases. To simplify presentation, we will stick with the
axiom version in the rest of this chapter.

10.3 Type-Casts in Theorem Statements
Sometimes we need to use tricks with equality just to state the theorems that we care about.
To illustrate, we start by defining a concatenation function for fhlists.
Section fhapp.
Variable A : Type.
Variable B : A → Type.
Fixpoint fhapp (ls1 ls2 : list A)

: fhlist B ls1 → fhlist B ls2 → fhlist B (ls1 ++ ls2 ) :=
match ls1 with
| nil ⇒ fun hls2 ⇒ hls2
| :: ⇒ fun hls1 hls2 ⇒ (fst hls1, fhapp (snd hls1 ) hls2)

end.
Implicit Arguments fhapp [ls1 ls2 ].

We might like to prove that fhapp is associative.
Theorem fhapp assoc : ∀ ls1 ls2 ls3
(hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 ) (hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 ) = fhapp (fhapp hls1 hls2 ) hls3.

The term
"fhapp (ls1:=ls1 ++ ls2) (ls2:=ls3) (fhapp (ls1:=ls1) (ls2:=ls2) hls1 hls2)
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hls3" has type "fhlist B ((ls1 ++ ls2) ++ ls3)"
while it is expected to have type "fhlist B (ls1 ++ ls2 ++ ls3)"

This first cut at the theorem statement does not even type-check. We know that the two
fhlist types appearing in the error message are always equal, by associativity of normal list
append, but this fact is not apparent to the type checker. This stems from the fact that
Coq’s equality is intensional, in the sense that type equality theorems can never be applied
after the fact to get a term to type-check. Instead, we need to make use of equality explicitly
in the theorem statement.
Theorem fhapp assoc : ∀ ls1 ls2 ls3

(pf : (ls1 ++ ls2) ++ ls3 = ls1 ++ (ls2 ++ ls3))
(hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 ) (hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 )
= match pf in ( = ls) return fhlist ls with
| eq refl ⇒ fhapp (fhapp hls1 hls2 ) hls3

end.
induction ls1 ; crush.
The first remaining subgoal looks trivial enough:
============================
fhapp (ls1 :=ls2 ) (ls2 :=ls3 ) hls2 hls3 =
match pf in ( = ls) return (fhlist B ls) with
| eq refl ⇒ fhapp (ls1 :=ls2 ) (ls2 :=ls3 ) hls2 hls3
end

We can try what worked in previous examples.
case pf.

User error: Cannot solve a second-order unification problem

It seems we have reached another case where it is unclear how to use a dependent match
to implement case analysis on our proof. The UIP refl theorem can come to our rescue
again.

rewrite (UIP refl pf ).

============================
fhapp (ls1 :=ls2 ) (ls2 :=ls3 ) hls2 hls3 =
fhapp (ls1 :=ls2 ) (ls2 :=ls3 ) hls2 hls3

reflexivity.
Our second subgoal is trickier.
pf : a :: (ls1 ++ ls2 ) ++ ls3 = a :: ls1 ++ ls2 ++ ls3
============================
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(a0,
fhapp (ls1 :=ls1 ) (ls2 :=ls2 ++ ls3 ) b

(fhapp (ls1 :=ls2 ) (ls2 :=ls3 ) hls2 hls3 )) =
match pf in ( = ls) return (fhlist B ls) with
| eq refl ⇒

(a0,
fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3 )
(fhapp (ls1 :=ls1 ) (ls2 :=ls2 ) b hls2 ) hls3 )

end

rewrite (UIP refl pf ).

The term "pf" has type "a :: (ls1 ++ ls2) ++ ls3 = a :: ls1 ++ ls2 ++ ls3"
while it is expected to have type "?556 = ?556"

We can only apply UIP refl on proofs of equality with syntactically equal operands, which
is not the case of pf here. We will need to manipulate the form of this subgoal to get us
to a point where we may use UIP refl. A first step is obtaining a proof suitable to use in
applying the induction hypothesis. Inversion on the structure of pf is sufficient for that.

injection pf ; intro pf’.

pf : a :: (ls1 ++ ls2 ) ++ ls3 = a :: ls1 ++ ls2 ++ ls3
pf’ : (ls1 ++ ls2 ) ++ ls3 = ls1 ++ ls2 ++ ls3
============================
(a0,
fhapp (ls1 :=ls1 ) (ls2 :=ls2 ++ ls3 ) b

(fhapp (ls1 :=ls2 ) (ls2 :=ls3 ) hls2 hls3 )) =
match pf in ( = ls) return (fhlist B ls) with
| eq refl ⇒

(a0,
fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3 )
(fhapp (ls1 :=ls1 ) (ls2 :=ls2 ) b hls2 ) hls3 )

end

Now we can rewrite using the inductive hypothesis.
rewrite (IHls1 pf’).

============================
(a0,
match pf’ in ( = ls) return (fhlist B ls) with
| eq refl ⇒

fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3 )
(fhapp (ls1 :=ls1 ) (ls2 :=ls2 ) b hls2 ) hls3
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end) =
match pf in ( = ls) return (fhlist B ls) with
| eq refl ⇒

(a0,
fhapp (ls1 :=ls1 ++ ls2 ) (ls2 :=ls3 )
(fhapp (ls1 :=ls1 ) (ls2 :=ls2 ) b hls2 ) hls3 )

end

We have made an important bit of progress, as now only a single call to fhapp appears
in the conclusion, repeated twice. Trying case analysis on our proofs still will not work, but
there is a move we can make to enable it. Not only does just one call to fhapp matter to us
now, but it also does not matter what the result of the call is. In other words, the subgoal
should remain true if we replace this fhapp call with a fresh variable. The generalize tactic
helps us do exactly that.

generalize (fhapp (fhapp b hls2 ) hls3 ).

∀ f : fhlist B ((ls1 ++ ls2 ) ++ ls3 ),
(a0,
match pf’ in ( = ls) return (fhlist B ls) with
| eq refl ⇒ f
end) =
match pf in ( = ls) return (fhlist B ls) with
| eq refl ⇒ (a0, f )
end

The conclusion has gotten markedly simpler. It seems counterintuitive that we can have
an easier time of proving a more general theorem, but such a phenomenon applies to the
case here and to many other proofs that use dependent types heavily. Speaking informally,
the reason why this kind of activity helps is that match annotations contain some positions
where only variables are allowed. By reducing more elements of a goal to variables, built-in
tactics can have more success building match terms under the hood.

In this case, it is helpful to generalize over our two proofs as well.
generalize pf pf’.

∀ (pf0 : a :: (ls1 ++ ls2 ) ++ ls3 = a :: ls1 ++ ls2 ++ ls3 )
(pf’0 : (ls1 ++ ls2 ) ++ ls3 = ls1 ++ ls2 ++ ls3 )
(f : fhlist B ((ls1 ++ ls2 ) ++ ls3 )),

(a0,
match pf’0 in ( = ls) return (fhlist B ls) with
| eq refl ⇒ f
end) =
match pf0 in ( = ls) return (fhlist B ls) with
| eq refl ⇒ (a0, f )
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end

To an experienced dependent types hacker, the appearance of this goal term calls for a
celebration. The formula has a critical property that indicates that our problems are over.
To get our proofs into the right form to apply UIP refl, we need to use associativity of list
append to rewrite their types. We could not do so before because other parts of the goal
require the proofs to retain their original types. In particular, the call to fhapp that we
generalized must have type (ls1 ++ ls2 ) ++ ls3, for some values of the list variables. If we
rewrite the type of the proof used to type-cast this value to something like ls1 ++ ls2 ++
ls3 = ls1 ++ ls2 ++ ls3, then the lefthand side of the equality would no longer match the
type of the term we are trying to cast.

However, now that we have generalized over the fhapp call, the type of the term being
type-cast appears explicitly in the goal and may be rewritten as well. In particular, the final
masterstroke is rewriting everywhere in our goal using associativity of list append.

rewrite app assoc.

============================
∀ (pf0 : a :: ls1 ++ ls2 ++ ls3 = a :: ls1 ++ ls2 ++ ls3 )
(pf’0 : ls1 ++ ls2 ++ ls3 = ls1 ++ ls2 ++ ls3 )
(f : fhlist B (ls1 ++ ls2 ++ ls3 )),

(a0,
match pf’0 in ( = ls) return (fhlist B ls) with
| eq refl ⇒ f
end) =
match pf0 in ( = ls) return (fhlist B ls) with
| eq refl ⇒ (a0, f )
end

We can see that we have achieved the crucial property: the type of each generalized
equality proof has syntactically equal operands. This makes it easy to finish the proof with
UIP refl.

intros.
rewrite (UIP refl pf0 ).
rewrite (UIP refl pf’0 ).
reflexivity.

Qed.
End fhapp.
Implicit Arguments fhapp [A B ls1 ls2 ].

This proof strategy was cumbersome and unorthodox, from the perspective of mainstream
mathematics. The next section explores an alternative that leads to simpler developments
in some cases.
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10.4 Heterogeneous Equality
There is another equality predicate, defined in the JMeq module of the standard library,
implementing heterogeneous equality.
Print JMeq.

Inductive JMeq (A : Type) (x : A) : ∀ B : Type, B → Prop :=
JMeq refl : JMeq x x

The identifier JMeq stands for “John Major equality,” a name coined by Conor McBride [23]
as an inside joke about British politics. The definition JMeq starts out looking a lot like the
definition of eq. The crucial difference is that we may use JMeq on arguments of different
types. For instance, a lemma that we failed to establish before is trivial with JMeq. It makes
for prettier theorem statements to define some syntactic shorthand first.
Infix "==" := JMeq (at level 70, no associativity).
Definition UIP refl’ (A : Type) (x : A) (pf : x = x) : pf == eq refl x :=
match pf return (pf == eq refl ) with
| eq refl ⇒ JMeq refl

end.
There is no quick way to write such a proof by tactics, but the underlying proof term

that we want is trivial.
Suppose that we want to use UIP refl’ to establish another lemma of the kind we have

run into several times so far.
Lemma lemma4 : ∀ (A : Type) (x : A) (pf : x = x),
O = match pf with eq refl ⇒ O end.
intros; rewrite (UIP refl’ pf ); reflexivity.

Qed.
All in all, refreshingly straightforward, but there really is no such thing as a free lunch.

The use of rewrite is implemented in terms of an axiom:
Check JMeq eq.

JMeq eq
: ∀ (A : Type) (x y : A), x == y → x = y

It may be surprising that we cannot prove that heterogeneous equality implies normal
equality. The difficulties are the same kind we have seen so far, based on limitations of match
annotations. The JMeq eq axiom has been proved on paper to be consistent, but asserting
it may still be considered to complicate the logic we work in, so there is some motivation for
avoiding it.

We can redo our fhapp associativity proof based around JMeq.
Section fhapp’.
Variable A : Type.
Variable B : A → Type.
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This time, the naïve theorem statement type-checks.

Theorem fhapp assoc’ : ∀ ls1 ls2 ls3 (hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 )
(hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 ) == fhapp (fhapp hls1 hls2 ) hls3.
induction ls1 ; crush.
Even better, crush discharges the first subgoal automatically. The second subgoal is:
============================
(a0, fhapp b (fhapp hls2 hls3 )) == (a0, fhapp (fhapp b hls2 ) hls3 )
It looks like one rewrite with the inductive hypothesis should be enough to make the goal

trivial. Here is what happens when we try that in Coq 8.2:
rewrite IHls1.

Error: Impossible to unify "fhlist B ((ls1 ++ ?1572) ++ ?1573)" with
"fhlist B (ls1 ++ ?1572 ++ ?1573)"

Coq 8.4 currently gives an error message about an uncaught exception. Perhaps that will
be fixed soon. In any case, it is educational to consider a more explicit approach.

We see that JMeq is not a silver bullet. We can use it to simplify the statements of
equality facts, but the Coq type-checker uses non-trivial heterogeneous equality facts no
more readily than it uses standard equality facts. Here, the problem is that the form (e1,
e2 ) is syntactic sugar for an explicit application of a constructor of an inductive type. That
application mentions the type of each tuple element explicitly, and our rewrite tries to
change one of those elements without updating the corresponding type argument.

We can get around this problem by another multiple use of generalize. We want to
bring into the goal the proper instance of the inductive hypothesis, and we also want to
generalize the two relevant uses of fhapp.

generalize (fhapp b (fhapp hls2 hls3 ))
(fhapp (fhapp b hls2 ) hls3 )
(IHls1 b hls2 hls3 ).

============================
∀ (f : fhlist B (ls1 ++ ls2 ++ ls3 ))

(f0 : fhlist B ((ls1 ++ ls2 ) ++ ls3 )), f == f0 → (a0, f ) == (a0, f0 )
Now we can rewrite with append associativity, as before.
rewrite app assoc.

============================
∀ f f0 : fhlist B (ls1 ++ ls2 ++ ls3 ), f == f0 → (a0, f ) == (a0, f0 )
From this point, the goal is trivial.
intros f f0 H ; rewrite H ; reflexivity.
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Qed.
End fhapp’.

This example illustrates a general pattern: heterogeneous equality often simplifies the-
orem statements, but we still need to do some work to line up some dependent pattern
matches that tactics will generate for us.

The proof we have found relies on the JMeq eq axiom, which we can verify with a
command that we will discuss more in two chapters.
Print Assumptions fhapp assoc’.

Axioms:
JMeq eq : ∀ (A : Type) (x y : A), x == y → x = y

It was the rewrite H tactic that implicitly appealed to the axiom. By restructuring
the proof, we can avoid axiom dependence. A general lemma about pairs provides the key
element. (Our use of generalize above can be thought of as reducing the proof to another,
more complex and specialized lemma.)
Lemma pair cong : ∀ A1 A2 B1 B2 (x1 : A1 ) (x2 : A2 ) (y1 : B1 ) (y2 : B2 ),
x1 == x2
→ y1 == y2
→ (x1, y1) == (x2, y2).
intros until y2 ; intros Hx Hy; rewrite Hx ; rewrite Hy; reflexivity.

Qed.
Hint Resolve pair cong.
Section fhapp’’.
Variable A : Type.
Variable B : A → Type.
Theorem fhapp assoc’’ : ∀ ls1 ls2 ls3 (hls1 : fhlist B ls1 ) (hls2 : fhlist B ls2 )
(hls3 : fhlist B ls3 ),
fhapp hls1 (fhapp hls2 hls3 ) == fhapp (fhapp hls1 hls2 ) hls3.
induction ls1 ; crush.

Qed.
End fhapp’’.
Print Assumptions fhapp assoc’’.

Closed under the global context

One might wonder exactly which elements of a proof involving JMeq imply that JMeq eq
must be used. For instance, above we noticed that rewrite had brought JMeq eq into
the proof of fhapp assoc’, yet here we have also used rewrite with JMeq hypotheses while
avoiding axioms! One illuminating exercise is comparing the types of the lemmas that
rewrite uses under the hood to implement the rewrites. Here is the normal lemma for eq
rewriting:
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Check eq ind r.

eq ind r
: ∀ (A : Type) (x : A) (P : A → Prop),
P x → ∀ y : A, y = x → P y

The corresponding lemma used for JMeq in the proof of pair cong is defined internally
by rewrite as needed, but its type happens to be the following.

internal JMeq rew r
: ∀ (A : Type) (x : A) (B : Type) (b : B)

(P : ∀ B0 : Type, B0 → Type), P B b → x == b → P A x
The key difference is that, where the eq lemma is parameterized on a predicate of type A

→ Prop, the JMeq lemma is parameterized on a predicate of type more like ∀ A : Type, A→
Prop. To apply eq ind r with a proof of x = y, it is only necessary to rearrange the goal into
an application of a fun abstraction to y. In contrast, to apply the alternative principle, it is
necessary to rearrange the goal to an application of a fun abstraction to both y and its type.
In other words, the predicate must be polymorphic in y’s type; any type must make sense,
from a type-checking standpoint. There may be cases where the former rearrangement is
easy to do in a type-correct way, but the second rearrangement done naïvely leads to a type
error.

When rewrite cannot figure out how to apply the alternative principle for x == y where
x and y have the same type, the tactic can instead use a different theorem, which is easy to
prove as a composition of eq ind r and JMeq eq.
Check JMeq ind r.

JMeq ind r
: ∀ (A : Type) (x : A) (P : A → Prop),
P x → ∀ y : A, y == x → P y

Ironically, where in the proof of fhapp assoc’ we used rewrite app assoc to make it clear
that a use of JMeq was actually homogeneously typed, we created a situation where rewrite
applied the axiom-based JMeq ind r instead of the axiom-free principle!

For another simple example, consider this theorem that applies a heterogeneous equality
to prove a congruence fact.
Theorem out of luck : ∀ n m : nat,
n == m
→ S n == S m.
intros n m H.
Applying JMeq ind r is easy, as the pattern tactic will transform the goal into an ap-

plication of an appropriate fun to a term that we want to abstract. (In general, pattern
abstracts over a term by introducing a new anonymous function taking that term as argu-
ment.)
pattern n.
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n : nat
m : nat
H : n == m
============================
(fun n0 : nat ⇒ S n0 == S m) n
apply JMeq ind r with (x := m); auto.
However, we run into trouble trying to get the goal into a form compatible with the

alternative principle.
Undo 2.

pattern nat, n.

Error: The abstracted term "fun (P : Set) (n0 : P) => S n0 == S m"
is not well typed.
Illegal application (Type Error):
The term "S" of type "nat -> nat"
cannot be applied to the term
"n0" : "P"
This term has type "P" which should be coercible to
"nat".

In other words, the successor function S is insufficiently polymorphic. If we try to gener-
alize over the type of n, we find that S is no longer legal to apply to n.
Abort.

Why did we not run into this problem in our proof of fhapp assoc’’? The reason is that
the pair constructor is polymorphic in the types of the pair components, while functions like
S are not polymorphic at all. Use of such non-polymorphic functions with JMeq tends to
push toward use of axioms. The example with nat here is a bit unrealistic; more likely cases
would involve functions that have some polymorphism, but not enough to allow abstractions
of the sort we attempted above with pattern. For instance, we might have an equality
between two lists, where the goal only type-checks when the terms involved really are lists,
though everything is polymorphic in the types of list data elements. The Heq1 library builds
up a slightly different foundation to help avoid such problems.

10.5 Equivalence of Equality Axioms

Assuming axioms (like axiom K and JMeq eq) is a hazardous business. The due diligence
associated with it is necessarily global in scope, since two axioms may be consistent alone

1http://www.mpi-sws.org/~gil/Heq/
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but inconsistent together. It turns out that all of the major axioms proposed for reasoning
about equality in Coq are logically equivalent, so that we only need to pick one to assert
without proof. In this section, we demonstrate by showing how each of the previous two
sections’ approaches reduces to the other logically.

To show that JMeq and its axiom let us prove UIP refl, we start from the lemma UIP refl’
from the previous section. The rest of the proof is trivial.
Lemma UIP refl’’ : ∀ (A : Type) (x : A) (pf : x = x), pf = eq refl x.
intros; rewrite (UIP refl’ pf ); reflexivity.

Qed.
The other direction is perhaps more interesting. Assume that we only have the axiom of

the Eqdep module available. We can define JMeq in a way that satisfies the same interface
as the combination of the JMeq module’s inductive definition and axiom.
Definition JMeq’ (A : Type) (x : A) (B : Type) (y : B) : Prop :=
∃ pf : B = A, x = match pf with eq refl ⇒ y end.

Infix "===" := JMeq’ (at level 70, no associativity).

We say that, by definition, x and y are equal if and only if there exists a proof pf that
their types are equal, such that x equals the result of casting y with pf. This statement can
look strange from the standpoint of classical math, where we almost never mention proofs
explicitly with quantifiers in formulas, but it is perfectly legal Coq code.

We can easily prove a theorem with the same type as that of the JMeq refl constructor
of JMeq.
Theorem JMeq refl’ : ∀ (A : Type) (x : A), x === x.
intros; unfold JMeq’; exists (eq refl A); reflexivity.

Qed.

The proof of an analogue to JMeq eq is a little more interesting, but most of the action
is in appealing to UIP refl.
Theorem JMeq eq’ : ∀ (A : Type) (x y : A),
x === y → x = y.
unfold JMeq’; intros.

H : ∃ pf : A = A,
x = match pf in ( = T ) return T with
| eq refl ⇒ y
end

============================
x = y

destruct H.

x0 : A = A
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H : x = match x0 in ( = T ) return T with
| eq refl ⇒ y
end

============================
x = y

rewrite H.

x0 : A = A
============================
match x0 in ( = T ) return T with
| eq refl ⇒ y
end = y

rewrite (UIP refl x0 ); reflexivity.
Qed.

We see that, in a very formal sense, we are free to switch back and forth between the
two styles of proofs about equality proofs. One style may be more convenient than the other
for some proofs, but we can always interconvert between our results. The style that does
not use heterogeneous equality may be preferable in cases where many results do not require
the tricks of this chapter, since then the use of axioms is avoided altogether for the simple
cases, and a wider audience will be able to follow those “simple” proofs. On the other hand,
heterogeneous equality often makes for shorter and more readable theorem statements.

10.6 Equality of Functions
The following seems like a reasonable theorem to want to hold, and it does hold in set theory.

Theorem two funs : (fun n ⇒ n) = (fun n ⇒ n + 0).

Unfortunately, this theorem is not provable in CIC without additional axioms. None of
the definitional equality rules force function equality to be extensional. That is, the fact
that two functions return equal results on equal inputs does not imply that the functions are
equal. We can assert function extensionality as an axiom, and indeed the standard library
already contains that axiom.
Require Import FunctionalExtensionality.
About functional extensionality.

functional extensionality :
∀ (A B : Type) (f g : A → B), (∀ x : A, f x = g x) → f = g

This axiom has been verified metatheoretically to be consistent with CIC and the two
equality axioms we considered previously. With it, the proof of two funs is trivial.
Theorem two funs : (fun n ⇒ n) = (fun n ⇒ n + 0).
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apply functional extensionality; crush.
Qed.

The same axiom can help us prove equality of types, where we need to “reason under
quantifiers.”
Theorem forall eq : (∀ x : nat, match x with

| O ⇒ True
| S ⇒ True

end)
= (∀ : nat, True).
There are no immediate opportunities to apply functional extensionality, but we can use

change to fix that problem.
change ((∀ x : nat, (fun x ⇒ match x with

| 0 ⇒ True
| S ⇒ True

end) x) = (nat → True)).
rewrite (functional extensionality (fun x ⇒ match x with

| 0 ⇒ True
| S ⇒ True

end) (fun ⇒ True)).

2 subgoals

============================
(nat → True) = (nat → True)

subgoal 2 is:
∀ x : nat, match x with

| 0 ⇒ True
| S ⇒ True
end = True

reflexivity.
destruct x ; constructor.

Qed.
Unlike in the case of eq rect eq, we have no way of deriving this axiom of functional

extensionality for types with decidable equality. To allow equality reasoning without axioms,
it may be worth rewriting a development to replace functions with alternate representations,
such as finite map types for which extensionality is derivable in CIC.
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Chapter 11

Generic Programming

Generic programming makes it possible to write functions that operate over different types of
data. Parametric polymorphism in ML and Haskell is one of the simplest examples. ML-style
module systems [22] and Haskell type classes [44] are more flexible cases. These language
features are often not as powerful as we would like. For instance, while Haskell includes a
type class classifying those types whose values can be pretty-printed, per-type pretty-printing
is usually either implemented manually or implemented via a deriving clause [33], which
triggers ad-hoc code generation. Some clever encoding tricks have been used to achieve
better within Haskell and other languages, but we can do datatype-generic programming
much more cleanly with dependent types. Thanks to the expressive power of CIC, we need
no special language support.

Generic programming can often be very useful in Coq developments, so we devote this
chapter to studying it. In a proof assistant, there is the new possibility of generic proofs
about generic programs, which we also devote some space to.

11.1 Reifying Datatype Definitions
The key to generic programming with dependent types is universe types. This concept should
not be confused with the idea of universes from the metatheory of CIC and related languages,
which we will study in more detail in the next chapter. Rather, the idea of universe types
is to define inductive types that provide syntactic representations of Coq types. We cannot
directly write CIC programs that do case analysis on types, but we can case analyze on
reified syntactic versions of those types.

Thus, to begin, we must define a syntactic representation of some class of datatypes. In
this chapter, our running example will have to do with basic algebraic datatypes, of the kind
found in ML and Haskell, but without additional bells and whistles like type parameters and
mutually recursive definitions.

The first step is to define a representation for constructors of our datatypes. We use the
Record command as a shorthand for defining an inductive type with a single constructor,
plus projection functions for pulling out any of the named arguments to that constructor.
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Record constructor : Type := Con {
nonrecursive : Type;
recursive : nat

}.
The idea is that a constructor represented as Con T n has n arguments of the type that

we are defining. Additionally, all of the other, non-recursive arguments can be encoded in
the type T . When there are no non-recursive arguments, T can be unit. When there are
two non-recursive arguments, of types A and B, T can be A × B. We can generalize to any
number of arguments via tupling.

With this definition, it is easy to define a datatype representation in terms of lists of
constructors. The intended meaning is that the datatype came from an inductive definition
including exactly the constructors in the list.
Definition datatype := list constructor.

Here are a few example encodings for some common types from the Coq standard library.
While our syntax type does not support type parameters directly, we can implement them
at the meta level, via functions from types to datatypes.
Definition Empty set dt : datatype := nil.
Definition unit dt : datatype := Con unit 0 :: nil.
Definition bool dt : datatype := Con unit 0 :: Con unit 0 :: nil.
Definition nat dt : datatype := Con unit 0 :: Con unit 1 :: nil.
Definition list dt (A : Type) : datatype := Con unit 0 :: Con A 1 :: nil.

The type Empty set has no constructors, so its representation is the empty list. The type
unit has one constructor with no arguments, so its one reified constructor indicates no non-
recursive data and 0 recursive arguments. The representation for bool just duplicates this
single argumentless constructor. We get from bool to nat by changing one of the constructors
to indicate 1 recursive argument. We get from nat to list by adding a non-recursive argument
of a parameter type A.

As a further example, we can do the same encoding for a generic binary tree type.

Section tree.
Variable A : Type.
Inductive tree : Type :=
| Leaf : A → tree
| Node : tree → tree → tree.

End tree.
Definition tree dt (A : Type) : datatype := Con A 0 :: Con unit 2 :: nil.

Each datatype representation stands for a family of inductive types. For a specific real
datatype and a reputed representation for it, it is useful to define a type of evidence that
the datatype is compatible with the encoding.
Section denote.
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Variable T : Type.
This variable stands for the concrete datatype that we are interested in.
Definition constructorDenote (c : constructor) :=

nonrecursive c → ilist T (recursive c) → T.
We write that a constructor is represented as a function returning a T . Such a function

takes two arguments, which pack together the non-recursive and recursive arguments of the
constructor. We represent a tuple of all recursive arguments using the length-indexed list
type ilist that we met in Chapter 8.
Definition datatypeDenote := hlist constructorDenote.
Finally, the evidence for type T is a heterogeneous list, including a constructor denotation

for every constructor encoding in a datatype encoding. Recall that, since we are inside a
section binding T as a variable, constructorDenote is automatically parameterized by T .
End denote.

Some example pieces of evidence should help clarify the convention. First, we define
a helpful notation for constructor denotations. The ASCII ~> from the notation will be
rendered later as  .
Notation "[ v , r ˜> x ]" := ((fun v r ⇒ x) : constructorDenote (Con )).
Definition Empty set den : datatypeDenote Empty set Empty set dt :=

HNil.
Definition unit den : datatypeDenote unit unit dt :=
[ ,  tt] ::: HNil.

Definition bool den : datatypeDenote bool bool dt :=
[ ,  true] ::: [ ,  false] ::: HNil.

Definition nat den : datatypeDenote nat nat dt :=
[ ,  O] ::: [ , r  S (hd r)] ::: HNil.

Definition list den (A : Type) : datatypeDenote (list A) (list dt A) :=
[ ,  nil] ::: [x, r  x :: hd r] ::: HNil.

Definition tree den (A : Type) : datatypeDenote (tree A) (tree dt A) :=
[v,  Leaf v] ::: [ , r  Node (hd r) (hd (tl r))] ::: HNil.
Recall that the hd and tl calls above operate on richly typed lists, where type indices tell

us the lengths of lists, guaranteeing the safety of operations like hd. The type annotation
attached to each definition provides enough information for Coq to infer list lengths at
appropriate points.

11.2 Recursive Definitions

We built these encodings of datatypes to help us write datatype-generic recursive functions.
To do so, we will want a reified representation of a recursion scheme for each type, similar
to the T rect principle generated automatically for an inductive definition of T . A clever
reuse of datatypeDenote yields a short definition.
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Definition fixDenote (T : Type) (dt : datatype) :=
∀ (R : Type), datatypeDenote R dt → (T → R).
The idea of a recursion scheme is parameterized by a type and a reputed encoding of

it. The principle itself is polymorphic in a type R, which is the return type of the recursive
function that we mean to write. The next argument is a heterogeneous list of one case of
the recursive function definition for each datatype constructor. The datatypeDenote function
turns out to have just the right definition to express the type we need; a set of function
cases is just like an alternate set of constructors where we replace the original type T with
the function result type R. Given such a reified definition, a fixDenote invocation returns a
function from T to R, which is just what we wanted.

We are ready to write some example functions now. It will be useful to use one new
function from the DepList library included in the book source.
Check hmake.

hmake
: ∀ (A : Type) (B : A → Type),
(∀ x : A, B x) → ∀ ls : list A, hlist B ls

The function hmake is a kind of map alternative that goes from a regular list to an hlist.
We can use it to define a generic size function that counts the number of constructors used
to build a value in a datatype.
Definition size T dt (fx : fixDenote T dt) : T → nat :=
fx nat (hmake (B := constructorDenote nat) (fun r ⇒ foldr plus 1 r) dt).
Our definition is parameterized over a recursion scheme fx . We instantiate fx by passing

it the function result type and a set of function cases, where we build the latter with hmake.
The function argument to hmake takes three arguments: the representation of a constructor,
its non-recursive arguments, and the results of recursive calls on all of its recursive arguments.
We only need the recursive call results here, so we call them r and bind the other two inputs
with wildcards. The actual case body is simple: we add together the recursive call results
and increment the result by one (to account for the current constructor). This foldr function
is an ilist-specific version defined in the DepList module.

It is instructive to build fixDenote values for our example types and see what specialized
size functions result from them.
Definition Empty set fix : fixDenote Empty set Empty set dt :=
fun R emp ⇒ match emp with end.

Eval compute in size Empty set fix.

= fun emp : Empty set ⇒ match emp return nat with
end

: Empty set → nat
Despite all the fanciness of the generic size function, CIC’s standard computation rules

suffice to normalize the generic function specialization to exactly what we would have written
manually.
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Definition unit fix : fixDenote unit unit dt :=
fun R cases ⇒ (hhd cases) tt INil.

Eval compute in size unit fix.

= fun : unit ⇒ 1
: unit → nat

Again normalization gives us the natural function definition. We see this pattern repeated
for our other example types.
Definition bool fix : fixDenote bool bool dt :=
fun R cases b ⇒ if b
then (hhd cases) tt INil
else (hhd (htl cases)) tt INil.

Eval compute in size bool fix.

= fun b : bool ⇒ if b then 1 else 1
: bool → nat

Definition nat fix : fixDenote nat nat dt :=
fun R cases ⇒ fix F (n : nat) : R :=
match n with
| O ⇒ (hhd cases) tt INil
| S n’ ⇒ (hhd (htl cases)) tt (ICons (F n’) INil)

end.
To peek at the size function for nat, it is useful to avoid full computation, so that the

recursive definition of addition is not expanded inline. We can accomplish this with proper
flags for the cbv reduction strategy.
Eval cbv beta iota delta -[plus] in size nat fix.

= fix F (n : nat) : nat := match n with
| 0 ⇒ 1
| S n’ ⇒ F n’ + 1
end

: nat → nat

Definition list fix (A : Type) : fixDenote (list A) (list dt A) :=
fun R cases ⇒ fix F (ls : list A) : R :=
match ls with
| nil ⇒ (hhd cases) tt INil
| x :: ls’ ⇒ (hhd (htl cases)) x (ICons (F ls’) INil)

end.
Eval cbv beta iota delta -[plus] in fun A ⇒ size (@list fix A).

= fun A : Type ⇒
fix F (ls : list A) : nat :=
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match ls with
| nil ⇒ 1
| :: ls’ ⇒ F ls’ + 1
end

: ∀ A : Type, list A → nat

Definition tree fix (A : Type) : fixDenote (tree A) (tree dt A) :=
fun R cases ⇒ fix F (t : tree A) : R :=
match t with
| Leaf x ⇒ (hhd cases) x INil
| Node t1 t2 ⇒ (hhd (htl cases)) tt (ICons (F t1 ) (ICons (F t2 ) INil))

end.
Eval cbv beta iota delta -[plus] in fun A ⇒ size (@tree fix A).

= fun A : Type ⇒
fix F (t : tree A) : nat :=
match t with
| Leaf ⇒ 1
| Node t1 t2 ⇒ F t1 + (F t2 + 1)
end

: ∀ A : Type, tree A → n

As our examples show, even recursive datatypes are mapped to normal-looking size func-
tions.

11.2.1 Pretty-Printing
It is also useful to do generic pretty-printing of datatype values, rendering them as human-
readable strings. To do so, we will need a bit of metadata for each constructor. Specifically,
we need the name to print for the constructor and the function to use to render its non-
recursive arguments. Everything else can be done generically.
Record print constructor (c : constructor) : Type := PI {

printName : string;
printNonrec : nonrecursive c → string

}.
It is useful to define a shorthand for applying the constructor PI. By applying it explicitly

to an unknown application of the constructor Con, we help type inference work.
Notation "ˆ" := (PI (Con )).

As in earlier examples, we define the type of metadata for a datatype to be a heteroge-
neous list type collecting metadata for each constructor.
Definition print datatype := hlist print constructor.

We will be doing some string manipulation here, so we import the notations associated
with strings.
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Local Open Scope string scope.
Now it is easy to implement our generic printer, using another function from DepList.

Check hmap.

hmap
: ∀ (A : Type) (B1 B2 : A → Type),

(∀ x : A, B1 x → B2 x) →
∀ ls : list A, hlist B1 ls → hlist B2 ls

Definition print T dt (pr : print datatype dt) (fx : fixDenote T dt) : T → string :=
fx string (hmap (B1 := print constructor) (B2 := constructorDenote string)
(fun pc x r ⇒ printName pc ++ "(" ++ printNonrec pc x
++ foldr (fun s acc ⇒ ", " ++ s ++ acc) ")" r) pr).

Some simple tests establish that print gets the job done.
Eval compute in print HNil Empty set fix.

= fun emp : Empty set ⇒ match emp return string with
end

: Empty set → string

Eval compute in print (ˆ "tt" (fun ⇒ "") ::: HNil) unit fix.

= fun : unit ⇒ "tt()"
: unit → string

Eval compute in print (ˆ "true" (fun ⇒ "")
::: ˆ "false" (fun ⇒ "")
::: HNil) bool fix.

= fun b : bool ⇒ if b then "true()" else "false()"
: bool → string

Definition print nat := print (ˆ "O" (fun ⇒ "")
::: ˆ "S" (fun ⇒ "")
::: HNil) nat fix.

Eval cbv beta iota delta -[append] in print nat.

= fix F (n : nat) : string :=
match n with
| 0%nat ⇒ "O" ++ "(" ++ "" ++ ")"
| S n’ ⇒ "S" ++ "(" ++ "" ++ ", " ++ F n’ ++ ")"
end

: nat → string

Eval simpl in print nat 0.
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= "O()"
: string

Eval simpl in print nat 1.

= "S(, O())"
: string

Eval simpl in print nat 2.

= "S(, S(, O()))"
: string

Eval cbv beta iota delta -[append] in fun A (pr : A → string) ⇒
print (ˆ "nil" (fun ⇒ "")
::: ˆ "cons" pr
::: HNil) (@list fix A).

= fun (A : Type) (pr : A → string) ⇒
fix F (ls : list A) : string :=
match ls with
| nil ⇒ "nil" ++ "(" ++ "" ++ ")"
| x :: ls’ ⇒ "cons" ++ "(" ++ pr x ++ ", " ++ F ls’ ++ ")"
end

: ∀ A : Type, (A → string) → list A → string

Eval cbv beta iota delta -[append] in fun A (pr : A → string) ⇒
print (ˆ "Leaf" pr
::: ˆ "Node" (fun ⇒ "")
::: HNil) (@tree fix A).

= fun (A : Type) (pr : A → string) ⇒
fix F (t : tree A) : string :=
match t with
| Leaf x ⇒ "Leaf" ++ "(" ++ pr x ++ ")"
| Node t1 t2 ⇒

"Node" ++ "(" ++ "" ++ ", " ++ F t1 ++ ", " ++ F t2 ++ ")"
end

: ∀ A : Type, (A → string) → tree A → string

Some of these simplified terms seem overly complex because we have turned off simplifi-
cation of calls to append, which is what uses of the ++ operator desugar to. Selective ++
simplification would combine adjacent string literals, yielding more or less the code we would
write manually to implement this printing scheme.
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11.2.2 Mapping
By this point, we have developed enough machinery that it is old hat to define a generic
function similar to the list map function.
Definition map T dt (dd : datatypeDenote T dt) (fx : fixDenote T dt) (f : T → T )
: T → T :=
fx T (hmap (B1 := constructorDenote T ) (B2 := constructorDenote T )
(fun c x r ⇒ f (c x r)) dd).

Eval compute in map Empty set den Empty set fix.

= fun ( : Empty set → Empty set) (emp : Empty set) ⇒
match emp return Empty set with
end

: (Empty set → Empty set) → Empty set → Empty set

Eval compute in map unit den unit fix.

= fun (f : unit → unit) ( : unit) ⇒ f tt
: (unit → unit) → unit → unit

Eval compute in map bool den bool fix.

= fun (f : bool → bool) (b : bool) ⇒ if b then f true else f false
: (bool → bool) → bool → bool

Eval compute in map nat den nat fix.

= fun f : nat → nat ⇒
fix F (n : nat) : nat :=
match n with
| 0%nat ⇒ f 0%nat
| S n’ ⇒ f (S (F n’))
end

: (nat → nat) → nat → nat

Eval compute in fun A ⇒ map (list den A) (@list fix A).

= fun (A : Type) (f : list A → list A) ⇒
fix F (ls : list A) : list A :=
match ls with
| nil ⇒ f nil
| x :: ls’ ⇒ f (x :: F ls’)
end

: ∀ A : Type, (list A → list A) → list A → list A

Eval compute in fun A ⇒ map (tree den A) (@tree fix A).
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= fun (A : Type) (f : tree A → tree A) ⇒
fix F (t : tree A) : tree A :=
match t with
| Leaf x ⇒ f (Leaf x)
| Node t1 t2 ⇒ f (Node (F t1 ) (F t2 ))
end

: ∀ A : Type, (tree A → tree A) → tree A → tree A
These map functions are just as easy to use as those we write by hand. Can you figure

out the input-output pattern that map nat S displays in these examples?
Definition map nat := map nat den nat fix.
Eval simpl in map nat S 0.

= 1%nat
: nat

Eval simpl in map nat S 1.

= 3%nat
: nat

Eval simpl in map nat S 2.

= 5%nat
: nat

We get map nat S n = 2 × n + 1, because the mapping process adds an extra S at
every level of the inductive tree that defines a natural, including at the last level, the O
constructor.

11.3 Proving Theorems about Recursive Definitions
We would like to be able to prove theorems about our generic functions. To do so, we need
to establish additional well-formedness properties that must hold of pieces of evidence.
Section ok.
Variable T : Type.
Variable dt : datatype.
Variable dd : datatypeDenote T dt.
Variable fx : fixDenote T dt.
First, we characterize when a piece of evidence about a datatype is acceptable. The

basic idea is that the type T should really be an inductive type with the definition given
by dd. Semantically, inductive types are characterized by the ability to do induction on
them. Therefore, we require that the usual induction principle is true, with respect to the
constructors given in the encoding dd.
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Definition datatypeDenoteOk :=
∀ P : T → Prop,
(∀ c (m : member c dt) (x : nonrecursive c) (r : ilist T (recursive c)),

(∀ i : fin (recursive c), P (get r i))
→ P ((hget dd m) x r))
→ ∀ v, P v.

This definition can take a while to digest. The quantifier over m : member c dt is
considering each constructor in turn; like in normal induction principles, each constructor
has an associated proof case. The expression hget dd m then names the constructor we have
selected. After binding m, we quantify over all possible arguments (encoded with x and r)
to the constructor that m selects. Within each specific case, we quantify further over i : fin
(recursive c) to consider all of our induction hypotheses, one for each recursive argument of
the current constructor.

We have completed half the burden of defining side conditions. The other half comes in
characterizing when a recursion scheme fx is valid. The natural condition is that fx behaves
appropriately when applied to any constructor application.
Definition fixDenoteOk :=
∀ (R : Type) (cases : datatypeDenote R dt)
c (m : member c dt)
(x : nonrecursive c) (r : ilist T (recursive c)),
fx cases ((hget dd m) x r)
= (hget cases m) x (imap (fx cases) r).

As for datatypeDenoteOk, we consider all constructors and all possible arguments to them
by quantifying over m, x, and r. The lefthand side of the equality that follows shows a call to
the recursive function on the specific constructor application that we selected. The righthand
side shows an application of the function case associated with constructor m, applied to the
non-recursive arguments and to appropriate recursive calls on the recursive arguments.
End ok.

We are now ready to prove that the size function we defined earlier always returns positive
results. First, we establish a simple lemma.
Lemma foldr plus : ∀ n (ils : ilist nat n),

foldr plus 1 ils > 0.
induction ils; crush.

Qed.
Theorem size positive : ∀ T dt

(dd : datatypeDenote T dt) (fx : fixDenote T dt)
(dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx)
(v : T ),
size fx v > 0.
unfold size; intros.
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============================
fx nat

(hmake
(fun (x : constructor) ( : nonrecursive x)

(r : ilist nat (recursive x)) ⇒ foldr plus 1%nat r) dt) v > 0
Our goal is an inequality over a particular call to size, with its definition expanded. How

can we proceed here? We cannot use induction directly, because there is no way for Coq to
know that T is an inductive type. Instead, we need to use the induction principle encoded
in our hypothesis dok of type datatypeDenoteOk dd. Let us try applying it directly.
apply dok.

Error: Impossible to unify "datatypeDenoteOk dd" with
"fx nat

(hmake
(fun (x : constructor) (_ : nonrecursive x)

(r : ilist nat (recursive x)) => foldr plus 1%nat r) dt) v > 0".

Matching the type of dok with the type of our conclusion requires more than simple
first-order unification, so apply is not up to the challenge. We can use the pattern tactic to
get our goal into a form that makes it apparent exactly what the induction hypothesis is.
pattern v.

============================
(fun t : T ⇒
fx nat
(hmake

(fun (x : constructor) ( : nonrecursive x)
(r : ilist nat (recursive x)) ⇒ foldr plus 1%nat r) dt) t > 0) v

apply dok; crush.

H : ∀ i : fin (recursive c),
fx nat
(hmake

(fun (x : constructor) ( : nonrecursive x)
(r : ilist nat (recursive x)) ⇒ foldr plus 1%nat r) dt)

(get r i) > 0
============================
hget

(hmake
(fun (x0 : constructor) ( : nonrecursive x0 )

(r0 : ilist nat (recursive x0 )) ⇒ foldr plus 1%nat r0 ) dt) m x
(imap

(fx nat
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(hmake
(fun (x0 : constructor) ( : nonrecursive x0 )

(r0 : ilist nat (recursive x0 )) ⇒
foldr plus 1%nat r0 ) dt)) r) > 0

An induction hypothesis H is generated, but we turn out not to need it for this example.
We can simplify the goal using a library theorem about the composition of hget and hmake.
rewrite hget hmake.

============================
foldr plus 1%nat

(imap
(fx nat

(hmake
(fun (x0 : constructor) ( : nonrecursive x0 )

(r0 : ilist nat (recursive x0 )) ⇒
foldr plus 1%nat r0 ) dt)) r) > 0

The lemma we proved earlier finishes the proof.
apply foldr plus.
Using hints, we can redo this proof in a nice automated form.
Restart.
Hint Rewrite hget hmake.
Hint Resolve foldr plus.
unfold size; intros; pattern v; apply dok; crush.

Qed.
It turned out that, in this example, we only needed to use induction degenerately as case

analysis. A more involved theorem may only be proved using induction hypotheses. We will
give its proof only in unautomated form and leave effective automation as an exercise for
the motivated reader.

In particular, it ought to be the case that generic map applied to an identity function is
itself an identity function.
Theorem map id : ∀ T dt

(dd : datatypeDenote T dt) (fx : fixDenote T dt)
(dok : datatypeDenoteOk dd) (fok : fixDenoteOk dd fx)
(v : T ),
map dd fx (fun x ⇒ x) v = v.
Let us begin as we did in the last theorem, after adding another useful library equality

as a hint.
Hint Rewrite hget hmap.
unfold map; intros; pattern v; apply dok; crush.
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H : ∀ i : fin (recursive c),
fx T

(hmap
(fun (x : constructor) (c : constructorDenote T x)

(x0 : nonrecursive x) (r : ilist T (recursive x)) ⇒
c x0 r) dd) (get r i) = get r i

============================
hget dd m x

(imap
(fx T

(hmap
(fun (x0 : constructor) (c0 : constructorDenote T x0 )

(x1 : nonrecursive x0 ) (r0 : ilist T (recursive x0 )) ⇒
c0 x1 r0 ) dd)) r) = hget dd m x r

Our goal is an equality whose two sides begin with the same function call and initial
arguments. We believe that the remaining arguments are in fact equal as well, and the
f equal tactic applies this reasoning step for us formally.
f equal.

============================
imap

(fx T
(hmap

(fun (x0 : constructor) (c0 : constructorDenote T x0 )
(x1 : nonrecursive x0 ) (r0 : ilist T (recursive x0 )) ⇒

c0 x1 r0 ) dd)) r = r
At this point, it is helpful to proceed by an inner induction on the heterogeneous list r

of recursive call results. We could arrive at a cleaner proof by breaking this step out into an
explicit lemma, but here we will do the induction inline to save space.
induction r ; crush.

The base case is discharged automatically, and the inductive case looks like this, where
H is the outer IH (for induction over T values) and IHr is the inner IH (for induction over
the recursive arguments).
H : ∀ i : fin (S n),

fx T
(hmap

(fun (x : constructor) (c : constructorDenote T x)
(x0 : nonrecursive x) (r : ilist T (recursive x)) ⇒

c x0 r) dd)
(match i in (fin n’) return ((fin (pred n’) → T ) → T ) with
| First n ⇒ fun : fin n → T ⇒ a
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| Next n idx’ ⇒ fun get ls’ : fin n → T ⇒ get ls’ idx’
end (get r)) =

match i in (fin n’) return ((fin (pred n’) → T ) → T ) with
| First n ⇒ fun : fin n → T ⇒ a
| Next n idx’ ⇒ fun get ls’ : fin n → T ⇒ get ls’ idx’
end (get r)

IHr : (∀ i : fin n,
fx T
(hmap

(fun (x : constructor) (c : constructorDenote T x)
(x0 : nonrecursive x) (r : ilist T (recursive x)) ⇒

c x0 r) dd) (get r i) = get r i) →
imap
(fx T

(hmap
(fun (x : constructor) (c : constructorDenote T x)

(x0 : nonrecursive x) (r : ilist T (recursive x)) ⇒
c x0 r) dd)) r = r

============================
ICons

(fx T
(hmap

(fun (x0 : constructor) (c0 : constructorDenote T x0 )
(x1 : nonrecursive x0 ) (r0 : ilist T (recursive x0 )) ⇒

c0 x1 r0 ) dd) a)
(imap

(fx T
(hmap

(fun (x0 : constructor) (c0 : constructorDenote T x0 )
(x1 : nonrecursive x0 ) (r0 : ilist T (recursive x0 )) ⇒

c0 x1 r0 ) dd)) r) = ICons a r
We see another opportunity to apply f equal, this time to split our goal into two different

equalities over corresponding arguments. After that, the form of the first goal matches our
outer induction hypothesis H, when we give type inference some help by specifying the right
quantifier instantiation.
f equal.
apply (H First).

============================
imap

(fx T
(hmap

221



(fun (x0 : constructor) (c0 : constructorDenote T x0 )
(x1 : nonrecursive x0 ) (r0 : ilist T (recursive x0 )) ⇒

c0 x1 r0 ) dd)) r = r
Now the goal matches the inner IH IHr.
apply IHr ; crush.

i : fin n
============================
fx T

(hmap
(fun (x0 : constructor) (c0 : constructorDenote T x0 )

(x1 : nonrecursive x0 ) (r0 : ilist T (recursive x0 )) ⇒
c0 x1 r0 ) dd) (get r i) = get r i

We can finish the proof by applying the outer IH again, specialized to a different fin
value.
apply (H (Next i)).

Qed.
The proof involves complex subgoals, but, still, few steps are required, and then we may

reuse our work across a variety of datatypes.
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Chapter 12

Universes and Axioms

Many traditional theorems can be proved in Coq without special knowledge of CIC, the logic
behind the prover. A development just seems to be using a particular ASCII notation for
standard formulas based on set theory. Nonetheless, as we saw in Chapter 4, CIC differs
from set theory in starting from fewer orthogonal primitives. It is possible to define the
usual logical connectives as derived notions. The foundation of it all is a dependently typed
functional programming language, based on dependent function types and inductive type
families. By using the facilities of this language directly, we can accomplish some things
much more easily than in mainstream math.

Gallina, which adds features to the more theoretical CIC [31], is the logic implemented
in Coq. It has a relatively simple foundation that can be defined rigorously in a page or
two of formal proof rules. Still, there are some important subtleties that have practical
ramifications. This chapter focuses on those subtleties, avoiding formal metatheory in favor
of example code.

12.1 The Type Hierarchy
Every object in Gallina has a type.
Check 0.

0
: nat

It is natural enough that zero be considered as a natural number.
Check nat.

nat
: Set

From a set theory perspective, it is unsurprising to consider the natural numbers as a
“set.”
Check Set.
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Set
: Type

The type Set may be considered as the set of all sets, a concept that set theory handles
in terms of classes. In Coq, this more general notion is Type.
Check Type.

Type
: Type

Strangely enough, Type appears to be its own type. It is known that polymorphic lan-
guages with this property are inconsistent, via Girard’s paradox [8]. That is, using such a
language to encode proofs is unwise, because it is possible to “prove” any proposition. What
is really going on here?

Let us repeat some of our queries after toggling a flag related to Coq’s printing behavior.
Set Printing Universes.
Check nat.

nat
: Set

Check Set.

Set
: Type (* (0)+1 *)

Check Type.

Type (* Top.3 *)
: Type (* (Top.3)+1 *)

Occurrences of Type are annotated with some additional information, inside comments.
These annotations have to do with the secret behind Type: it really stands for an infinite
hierarchy of types. The type of Set is Type(0), the type of Type(0) is Type(1), the type
of Type(1) is Type(2), and so on. This is how we avoid the “Type : Type” paradox. As a
convenience, the universe hierarchy drives Coq’s one variety of subtyping. Any term whose
type is Type at level i is automatically also described by Type at level j when j > i.

In the outputs of our first Check query, we see that the type level of Set’s type is (0)+1.
Here 0 stands for the level of Set, and we increment it to arrive at the level that classifies
Set.

In the third query’s output, we see that the occurrence of Type that we check is assigned
a fresh universe variable Top.3. The output type increments Top.3 to move up a level in
the universe hierarchy. As we write code that uses definitions whose types mention universe
variables, unification may refine the values of those variables. Luckily, the user rarely has to
worry about the details.
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Another crucial concept in CIC is predicativity. Consider these queries.
Check ∀ T : nat, fin T.

∀ T : nat, fin T
: Set

Check ∀ T : Set, T.

∀ T : Set, T
: Type (* max(0, (0)+1) *)

Check ∀ T : Type, T.

∀ T : Type (* Top.9 *) , T
: Type (* max(Top.9, (Top.9)+1) *)

These outputs demonstrate the rule for determining which universe a ∀ type lives in. In
particular, for a type ∀ x : T1, T2, we take the maximum of the universes of T1 and T2. In
the first example query, both T1 (nat) and T2 (fin T ) are in Set, so the ∀ type is in Set,
too. In the second query, T1 is Set, which is at level (0)+1; and T2 is T, which is at level
0. Thus, the ∀ exists at the maximum of these two levels. The third example illustrates the
same outcome, where we replace Set with an occurrence of Type that is assigned universe
variable Top.9. This universe variable appears in the places where 0 appeared in the previous
query.

The behind-the-scenes manipulation of universe variables gives us predicativity. Consider
this simple definition of a polymorphic identity function, where the first argument T will
automatically be marked as implicit, since it can be inferred from the type of the second
argument x.
Definition id (T : Set) (x : T ) : T := x.
Check id 0.

id 0
: nat

Check id Set.

Error: Illegal application (Type Error):
...
The 1st term has type "Type (* (Top.15)+1 *)"
which should be coercible to "Set".

The parameter T of id must be instantiated with a Set. The type nat is a Set, but Set
is not. We can try fixing the problem by generalizing our definition of id.
Reset id.
Definition id (T : Type) (x : T ) : T := x.

225



Check id 0.

id 0
: nat

Check id Set.

id Set
: Type (* Top.17 *)

Check id Type.

id Type (* Top.18 *)
: Type (* Top.19 *)

So far so good. As we apply id to different T values, the inferred index for T ’s Type
occurrence automatically moves higher up the type hierarchy.
Check id id.

Error: Universe inconsistency (cannot enforce Top.16 < Top.16).

This error message reminds us that the universe variable for T still exists, even though it is
usually hidden. To apply id to itself, that variable would need to be less than itself in the type
hierarchy. Universe inconsistency error messages announce cases like this one where a term
could only type-check by violating an implied constraint over universe variables. Such errors
demonstrate that Type is predicative, where this word has a CIC meaning closely related to
its usual mathematical meaning. A predicative system enforces the constraint that, when an
object is defined using some sort of quantifier, none of the quantifiers may ever be instantiated
with the object itself. Impredicativity is associated with popular paradoxes in set theory,
involving inconsistent constructions like “the set of all sets that do not contain themselves”
(Russell’s paradox). Similar paradoxes would result from uncontrolled impredicativity in
Coq.

12.1.1 Inductive Definitions
Predicativity restrictions also apply to inductive definitions. As an example, let us consider
a type of expression trees that allows injection of any native Coq value. The idea is that an
exp T stands for an encoded expression of type T.
Inductive exp : Set → Set :=
| Const : ∀ T : Set, T → exp T
| Pair : ∀ T1 T2, exp T1 → exp T2 → exp (T1 × T2 )
| Eq : ∀ T, exp T → exp T → exp bool.

Error: Large non-propositional inductive types must be in Type.
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This definition is large in the sense that at least one of its constructors takes an argument
whose type has type Type. Coq would be inconsistent if we allowed definitions like this one
in their full generality. Instead, we must change exp to live in Type. We will go even further
and move exp’s index to Type as well.
Inductive exp : Type → Type :=
| Const : ∀ T, T → exp T
| Pair : ∀ T1 T2, exp T1 → exp T2 → exp (T1 × T2 )
| Eq : ∀ T, exp T → exp T → exp bool.

Note that before we had to include an annotation : Set for the variable T in Const’s
type, but we need no annotation now. When the type of a variable is not known, and when
that variable is used in a context where only types are allowed, Coq infers that the variable
is of type Type, the right behavior here, though it was wrong for the Set version of exp.

Our new definition is accepted. We can build some sample expressions.
Check Const 0.

Const 0
: exp nat

Check Pair (Const 0) (Const tt).

Pair (Const 0) (Const tt)
: exp (nat × unit)

Check Eq (Const Set) (Const Type).

Eq (Const Set) (Const Type (* Top.59 *) )
: exp bool

We can check many expressions, including fancy expressions that include types. However,
it is not hard to hit a type-checking wall.
Check Const (Const O).

Error: Universe inconsistency (cannot enforce Top.42 < Top.42).

We are unable to instantiate the parameter T of Const with an exp type. To see why, it
is helpful to print the annotated version of exp’s inductive definition.
Print exp.

Inductive exp
: Type (* Top.8 *) →
Type
(* max(0, (Top.11)+1, (Top.14)+1, (Top.15)+1, (Top.19)+1) *) :=

Const : ∀ T : Type (* Top.11 *) , T → exp T
| Pair : ∀ (T1 : Type (* Top.14 *) ) (T2 : Type (* Top.15 *) ),
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exp T1 → exp T2 → exp (T1 × T2 )
| Eq : ∀ T : Type (* Top.19 *) , exp T → exp T → exp bool
We see that the index type of exp has been assigned to universe level Top.8. In addition,

each of the four occurrences of Type in the types of the constructors gets its own universe
variable. Each of these variables appears explicitly in the type of exp. In particular, any
type exp T lives at a universe level found by incrementing by one the maximum of the four
argument variables. Therefore, exp must live at a higher universe level than any type which
may be passed to one of its constructors. This consequence led to the universe inconsistency.

Strangely, the universe variable Top.8 only appears in one place. Is there no restriction
imposed on which types are valid arguments to exp? In fact, there is a restriction, but it
only appears in a global set of universe constraints that are maintained “off to the side,” not
appearing explicitly in types. We can print the current database.
Print Universes.

Top.19 < Top.9 ≤ Top.8
Top.15 < Top.9 ≤ Top.8 ≤ Coq.Init.Datatypes.38
Top.14 < Top.9 ≤ Top.8 ≤ Coq.Init.Datatypes.37
Top.11 < Top.9 ≤ Top.8

The command outputs many more constraints, but we have collected only those that
mention Top variables. We see one constraint for each universe variable associated with a
constructor argument from exp’s definition. Universe variable Top.19 is the type argument
to Eq. The constraint for Top.19 effectively says that Top.19 must be less than Top.8, the
universe of exp’s indices; an intermediate variable Top.9 appears as an artifact of the way
the constraint was generated.

The next constraint, for Top.15, is more complicated. This is the universe of the second
argument to the Pair constructor. Not only must Top.15 be less than Top.8, but it also comes
out that Top.8 must be less than Coq.Init.Datatypes.38. What is this new universe variable?
It is from the definition of the prod inductive family, to which types of the form A × B are
desugared.
Print prod.

Inductive prod (A : Type (* Coq.Init.Datatypes.37 *) )
(B : Type (* Coq.Init.Datatypes.38 *) )
: Type (* max(Coq.Init.Datatypes.37, Coq.Init.Datatypes.38) *) :=

pair : A → B → A × B
We see that the constraint is enforcing that indices to exp must not live in a higher

universe level than B-indices to prod. The next constraint above establishes a symmetric
condition for A.

Thus it is apparent that Coq maintains a tortuous set of universe variable inequalities
behind the scenes. It may look like some functions are polymorphic in the universe levels
of their arguments, but what is really happening is imperative updating of a system of
constraints, such that all uses of a function are consistent with a global set of universe levels.
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When the constraint system may not be evolved soundly, we get a universe inconsistency
error.

The annotated definition of prod reveals something interesting. A type prod A B lives at
a universe that is the maximum of the universes of A and B. From our earlier experiments,
we might expect that prod’s universe would in fact need to be one higher than the maximum.
The critical difference is that, in the definition of prod, A and B are defined as parameters;
that is, they appear named to the left of the main colon, rather than appearing (possibly
unnamed) to the right.

Parameters are not as flexible as normal inductive type arguments. The range types of all
of the constructors of a parameterized type must share the same parameters. Nonetheless,
when it is possible to define a polymorphic type in this way, we gain the ability to use the
new type family in more ways, without triggering universe inconsistencies. For instance,
nested pairs of types are perfectly legal.
Check (nat, (Type, Set)).

(nat, (Type (* Top.44 *) , Set))
: Set × (Type (* Top.45 *) × Type (* Top.46 *) )

The same cannot be done with a counterpart to prod that does not use parameters.
Inductive prod’ : Type → Type → Type :=
| pair’ : ∀ A B : Type, A → B → prod’ A B.

Check (pair’ nat (pair’ Type Set)).

Error: Universe inconsistency (cannot enforce Top.51 < Top.51).

The key benefit parameters bring us is the ability to avoid quantifying over types in the
types of constructors. Such quantification induces less-than constraints, while parameters
only introduce less-than-or-equal-to constraints.

Coq includes one more (potentially confusing) feature related to parameters. While
Gallina does not support real universe polymorphism, there is a convenience facility that
mimics universe polymorphism in some cases. We can illustrate what this means with a
simple example.
Inductive foo (A : Type) : Type :=
| Foo : A → foo A.

Check foo nat.

foo nat
: Set

Check foo Set.

foo Set
: Type
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Check foo True.

foo True
: Prop

The basic pattern here is that Coq is willing to automatically build a “copied-and-pasted”
version of an inductive definition, where some occurrences of Type have been replaced by
Set or Prop. In each context, the type-checker tries to find the valid replacements that are
lowest in the type hierarchy. Automatic cloning of definitions can be much more convenient
than manual cloning. We have already taken advantage of the fact that we may re-use the
same families of tuple and list types to form values in Set and Type.

Imitation polymorphism can be confusing in some contexts. For instance, it is what is
responsible for this weird behavior.
Inductive bar : Type := Bar : bar.
Check bar.

bar
: Prop

The type that Coq comes up with may be used in strictly more contexts than the type
one might have expected.

12.1.2 Deciphering Baffling Messages About Inability to Unify
One of the most confusing sorts of Coq error messages arises from an interplay between uni-
verses, syntax notations, and implicit arguments. Consider the following innocuous lemma,
which is symmetry of equality for the special case of types.
Theorem symmetry : ∀ A B : Type,
A = B
→ B = A.
intros ? ? H ; rewrite H ; reflexivity.

Qed.
Let us attempt an admittedly silly proof of the following theorem.

Theorem illustrative but silly detour : unit = unit.
apply symmetry.

Error: Impossible to unify "?35 = ?34" with "unit = unit".

Coq tells us that we cannot, in fact, apply our lemma symmetry here, but the error
message seems defective. In particular, one might think that apply should unify ?35 and
?34 with unit to ensure that the unification goes through. In fact, the issue is in a part of
the unification problem that is not shown to us in this error message!

The following command is the secret to getting better error messages in such cases:
Set Printing All.
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apply symmetry.

Error: Impossible to unify "@eq Type ?46 ?45" with "@eq Set unit unit".

Now we can see the problem: it is the first, implicit argument to the underlying equality
function eq that disagrees across the two terms. The universe Set may be both an element
and a subtype of Type, but the two are not definitionally equal.
Abort.

A variety of changes to the theorem statement would lead to use of Type as the implicit
argument of eq. Here is one such change.
Theorem illustrative but silly detour : (unit : Type) = unit.
apply symmetry; reflexivity.

Qed.
There are many related issues that can come up with error messages, where one or both of

notations and implicit arguments hide important details. The Set Printing All command
turns off all such features and exposes underlying CIC terms.

For completeness, we mention one other class of confusing error message about inability
to unify two terms that look obviously unifiable. Each unification variable has a scope; a
unification variable instantiation may not mention variables that were not already defined
within that scope, at the point in proof search where the unification variable was introduced.
Consider this illustrative example:
Unset Printing All.
Theorem ex symmetry : (∃ x, x = 0) → (∃ x, 0 = x).
eexists.

H : ∃ x : nat, x = 0
============================
0 = ?98

destruct H.

x : nat
H : x = 0
============================
0 = ?99

symmetry; exact H.

Error: In environment
x : nat
H : x = 0
The term "H" has type "x = 0" while it is expected to have type
"?99 = 0".
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The problem here is that variable x was introduced by destruct after we introduced ?99
with eexists, so the instantiation of ?99 may not mention x. A simple reordering of the
proof solves the problem.
Restart.
destruct 1 as [x ]; apply ex intro with x ; symmetry; assumption.

Qed.
This restriction for unification variables may seem counterintuitive, but it follows from

the fact that CIC contains no concept of unification variable. Rather, to construct the final
proof term, at the point in a proof where the unification variable is introduced, we replace it
with the instantiation we eventually find for it. It is simply syntactically illegal to refer there
to variables that are not in scope. Without such a restriction, we could trivially “prove”
such non-theorems as ∃ n : nat, ∀ m : nat, n = m by econstructor; intro; reflexivity.

12.2 The Prop Universe
In Chapter 4, we saw parallel versions of useful datatypes for “programs” and “proofs.” The
convention was that programs live in Set, and proofs live in Prop. We gave little explanation
for why it is useful to maintain this distinction. There is certainly documentation value from
separating programs from proofs; in practice, different concerns apply to building the two
types of objects. It turns out, however, that these concerns motivate formal differences
between the two universes in Coq.

Recall the types sig and ex, which are the program and proof versions of existential
quantification. Their definitions differ only in one place, where sig uses Type and ex uses
Prop.
Print sig.

Inductive sig (A : Type) (P : A → Prop) : Type :=
exist : ∀ x : A, P x → sig P

Print ex.

Inductive ex (A : Type) (P : A → Prop) : Prop :=
ex intro : ∀ x : A, P x → ex P
It is natural to want a function to extract the first components of data structures like

these. Doing so is easy enough for sig.
Definition projS A (P : A → Prop) (x : sig P) : A :=
match x with
| exist v ⇒ v

end.

We run into trouble with a version that has been changed to work with ex.
Definition projE A (P : A → Prop) (x : ex P) : A :=
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match x with
| ex intro v ⇒ v

end.

Error:
Incorrect elimination of "x" in the inductive type "ex":
the return type has sort "Type" while it should be "Prop".
Elimination of an inductive object of sort Prop
is not allowed on a predicate in sort Type
because proofs can be eliminated only to build proofs.

In formal Coq parlance, “elimination” means “pattern-matching.” The typing rules of
Gallina forbid us from pattern-matching on a discriminee whose type belongs to Prop, when-
ever the result type of the match has a type besides Prop. This is a sort of “information
flow” policy, where the type system ensures that the details of proofs can never have any
effect on parts of a development that are not also marked as proofs.

This restriction matches informal practice. We think of programs and proofs as clearly
separated, and, outside of constructive logic, the idea of computing with proofs is ill-formed.
The distinction also has practical importance in Coq, where it affects the behavior of ex-
traction.

Recall that extraction is Coq’s facility for translating Coq developments into programs
in general-purpose programming languages like OCaml. Extraction erases proofs and leaves
programs intact. A simple example with sig and ex demonstrates the distinction.
Definition sym sig (x : sig (fun n ⇒ n = 0)) : sig (fun n ⇒ 0 = n) :=
match x with
| exist n pf ⇒ exist n (sym eq pf )

end.
Extraction sym sig.

(** val sym_sig : nat -> nat **)

let sym_sig x = x

Since extraction erases proofs, the second components of sig values are elided, making
sig a simple identity type family. The sym sig operation is thus an identity function.
Definition sym ex (x : ex (fun n ⇒ n = 0)) : ex (fun n ⇒ 0 = n) :=
match x with
| ex intro n pf ⇒ ex intro n (sym eq pf )

end.
Extraction sym ex.

(** val sym_ex : __ **)

let sym_ex = __
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In this example, the ex type itself is in Prop, so whole ex packages are erased. Coq
extracts every proposition as the (Coq-specific) type , whose single constructor is . Not
only are proofs replaced by , but proof arguments to functions are also removed completely,
as we see here.

Extraction is very helpful as an optimization over programs that contain proofs. In
languages like Haskell, advanced features make it possible to program with proofs, as a way
of convincing the type checker to accept particular definitions. Unfortunately, when proofs
are encoded as values in GADTs [50], these proofs exist at runtime and consume resources.
In contrast, with Coq, as long as all proofs are kept within Prop, extraction is guaranteed
to erase them.

Many fans of the Curry-Howard correspondence support the idea of extracting programs
from proofs. In reality, few users of Coq and related tools do any such thing. Instead,
extraction is better thought of as an optimization that reduces the runtime costs of expressive
typing.

We have seen two of the differences between proofs and programs: proofs are subject
to an elimination restriction and are elided by extraction. The remaining difference is that
Prop is impredicative, as this example shows.
Check ∀ P Q : Prop, P ∨ Q → Q ∨ P.

∀ P Q : Prop, P ∨ Q → Q ∨ P
: Prop

We see that it is possible to define a Prop that quantifies over other Props. This is fortu-
nate, as we start wanting that ability even for such basic purposes as stating propositional
tautologies. In the next section of this chapter, we will see some reasons why unrestricted
impredicativity is undesirable. The impredicativity of Prop interacts crucially with the elim-
ination restriction to avoid those pitfalls.

Impredicativity also allows us to implement a version of our earlier exp type that does
not suffer from the weakness that we found.
Inductive expP : Type → Prop :=
| ConstP : ∀ T, T → expP T
| PairP : ∀ T1 T2, expP T1 → expP T2 → expP (T1 × T2 )
| EqP : ∀ T, expP T → expP T → expP bool.
Check ConstP 0.

ConstP 0
: expP nat

Check PairP (ConstP 0) (ConstP tt).

PairP (ConstP 0) (ConstP tt)
: expP (nat × unit)

Check EqP (ConstP Set) (ConstP Type).

234



EqP (ConstP Set) (ConstP Type)
: expP bool

Check ConstP (ConstP O).

ConstP (ConstP 0)
: expP (expP nat)

In this case, our victory is really a shallow one. As we have marked expP as a family of
proofs, we cannot deconstruct our expressions in the usual programmatic ways, which makes
them almost useless for the usual purposes. Impredicative quantification is much more useful
in defining inductive families that we really think of as judgments. For instance, this code
defines a notion of equality that is strictly more permissive than the base equality =.
Inductive eqPlus : ∀ T, T → T → Prop :=
| Base : ∀ T (x : T ), eqPlus x x
| Func : ∀ dom ran (f1 f2 : dom → ran),

(∀ x : dom, eqPlus (f1 x) (f2 x))
→ eqPlus f1 f2.

Check (Base 0).

Base 0
: eqPlus 0 0

Check (Func (fun n ⇒ n) (fun n ⇒ 0 + n) (fun n ⇒ Base n)).

Func (fun n : nat ⇒ n) (fun n : nat ⇒ 0 + n) (fun n : nat ⇒ Base n)
: eqPlus (fun n : nat ⇒ n) (fun n : nat ⇒ 0 + n)

Check (Base (Base 1)).

Base (Base 1)
: eqPlus (Base 1) (Base 1)

Stating equality facts about proofs may seem baroque, but we have already seen its utility
in the chapter on reasoning about equality proofs.

12.3 Axioms
While the specific logic Gallina is hardcoded into Coq’s implementation, it is possible to add
certain logical rules in a controlled way. In other words, Coq may be used to reason about
many different refinements of Gallina where strictly more theorems are provable. We achieve
this by asserting axioms without proof.

We will motivate the idea by touring through some standard axioms, as enumerated in
Coq’s online FAQ. I will add additional commentary as appropriate.
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12.3.1 The Basics
One simple example of a useful axiom is the law of the excluded middle.
Require Import Classical Prop.
Print classic .

*** [ classic : ∀ P : Prop, P ∨ ¬ P ]
In the implementation of module Classical Prop, this axiom was defined with the com-

mand
Axiom classic : ∀ P : Prop, P ∨ ¬ P.

An Axiom may be declared with any type, in any of the universes. There is a synonym
Parameter for Axiom, and that synonym is often clearer for assertions not of type Prop. For
instance, we can assert the existence of objects with certain properties.
Parameter num : nat.
Axiom positive : num > 0.
Reset num.

This kind of “axiomatic presentation” of a theory is very common outside of higher-order
logic. However, in Coq, it is almost always preferable to stick to defining your objects,
functions, and predicates via inductive definitions and functional programming.

In general, there is a significant burden associated with any use of axioms. It is easy to
assert a set of axioms that together is inconsistent. That is, a set of axioms may imply False,
which allows any theorem to be proved, which defeats the purpose of a proof assistant. For
example, we could assert the following axiom, which is consistent by itself but inconsistent
when combined with classic .
Axiom not classic : ¬ ∀ P : Prop, P ∨ ¬ P.
Theorem uhoh : False.
generalize classic not classic ; tauto.

Qed.
Theorem uhoh again : 1 + 1 = 3.
destruct uhoh.

Qed.
Reset not classic .

On the subject of the law of the excluded middle itself, this axiom is usually quite harm-
less, and many practical Coq developments assume it. It has been proved metatheoretically
to be consistent with CIC. Here, “proved metatheoretically” means that someone proved on
paper that excluded middle holds in a model of CIC in set theory [48]. All of the other
axioms that we will survey in this section hold in the same model, so they are all consistent
together.

Recall that Coq implements constructive logic by default, where the law of the excluded
middle is not provable. Proofs in constructive logic can be thought of as programs. A ∀
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quantifier denotes a dependent function type, and a disjunction denotes a variant type. In
such a setting, excluded middle could be interpreted as a decision procedure for arbitrary
propositions, which computability theory tells us cannot exist. Thus, constructive logic with
excluded middle can no longer be associated with our usual notion of programming.

Given all this, why is it all right to assert excluded middle as an axiom? The intuitive
justification is that the elimination restriction for Prop prevents us from treating proofs as
programs. An excluded middle axiom that quantified over Set instead of Prop would be
problematic. If a development used that axiom, we would not be able to extract the code to
OCaml (soundly) without implementing a genuine universal decision procedure. In contrast,
values whose types belong to Prop are always erased by extraction, so we sidestep the axiom’s
algorithmic consequences.

Because the proper use of axioms is so precarious, there are helpful commands for deter-
mining which axioms a theorem relies on.
Theorem t1 : ∀ P : Prop, P → ¬ ¬ P.
tauto.

Qed.
Print Assumptions t1.

Closed under the global context

Theorem t2 : ∀ P : Prop, ¬ ¬ P → P.
tauto.

Error: tauto failed.

intro P; destruct (classic P); tauto.
Qed.
Print Assumptions t2.

Axioms:
classic : ∀ P : Prop, P ∨ ¬ P
It is possible to avoid this dependence in some specific cases, where excluded middle is

provable, for decidable families of propositions.
Theorem nat eq dec : ∀ n m : nat, n = m ∨ n 6= m.
induction n; destruct m; intuition; generalize (IHn m); intuition.

Qed.
Theorem t2’ : ∀ n m : nat, ¬ ¬ (n = m) → n = m.
intros n m; destruct (nat eq dec n m); tauto.

Qed.
Print Assumptions t2’.

Closed under the global context
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Mainstream mathematical practice assumes excluded middle, so it can be useful to have
it available in Coq developments, though it is also nice to know that a theorem is proved in
a simpler formal system than classical logic. There is a similar story for proof irrelevance,
which simplifies proof issues that would not even arise in mainstream math.
Require Import ProofIrrelevance.
Print proof irrelevance.

*** [ proof irrelevance : ∀ (P : Prop) (p1 p2 : P), p1 = p2 ]
This axiom asserts that any two proofs of the same proposition are equal. Recall this

example function from Chapter 6.

Definition pred strong1 (n : nat) : n > 0 → nat :=
match n with
| O ⇒ fun pf : 0 > 0 ⇒ match zgtz pf with end
| S n’ ⇒ fun ⇒ n’

end.
We might want to prove that different proofs of n > 0 do not lead to different results

from our richly typed predecessor function.
Theorem pred strong1 irrel : ∀ n (pf1 pf2 : n > 0), pred strong1 pf1 = pred strong1 pf2.
destruct n; crush.

Qed.
The proof script is simple, but it involved peeking into the definition of pred strong1.

For more complicated function definitions, it can be considerably more work to prove that
they do not discriminate on details of proof arguments. This can seem like a shame, since
the Prop elimination restriction makes it impossible to write any function that does oth-
erwise. Unfortunately, this fact is only true metatheoretically, unless we assert an axiom
like proof irrelevance. With that axiom, we can prove our theorem without consulting the
definition of pred strong1.
Theorem pred strong1 irrel’ : ∀ n (pf1 pf2 : n > 0), pred strong1 pf1 = pred strong1 pf2.
intros; f equal; apply proof irrelevance.

Qed.

In the chapter on equality, we already discussed some axioms that are related to proof
irrelevance. In particular, Coq’s standard library includes this axiom:
Require Import Eqdep.
Import Eq rect eq.
Print eq rect eq.

*** [ eq rect eq :
∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),
x = eq rect p Q x p h ]
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This axiom says that it is permissible to simplify pattern matches over proofs of equalities
like e = e. The axiom is logically equivalent to some simpler corollaries. In the theorem
names, “UIP” stands for “unicity of identity proofs”, where “identity” is a synonym for
“equality.”
Corollary UIP refl : ∀ A (x : A) (pf : x = x), pf = eq refl x.
intros; replace pf with (eq rect x (eq x) (eq refl x) x pf ); [
symmetry; apply eq rect eq
| exact (match pf as pf’ return match pf’ in = y return x = y with

| eq refl ⇒ eq refl x
end = pf’ with

| eq refl ⇒ eq refl
end) ].

Qed.
Corollary UIP : ∀ A (x y : A) (pf1 pf2 : x = y), pf1 = pf2.
intros; generalize pf1 pf2 ; subst; intros;
match goal with
| [ ` ?pf1 = ?pf2 ] ⇒ rewrite (UIP refl pf1 ); rewrite (UIP refl pf2 ); reflexivity

end.
Qed.

These corollaries are special cases of proof irrelevance. In developments that only need
proof irrelevance for equality, there is no need to assert full irrelevance.

Another facet of proof irrelevance is that, like excluded middle, it is often provable for
specific propositions. For instance, UIP is provable whenever the type A has a decidable
equality operation. The module Eqdep dec of the standard library contains a proof. A
similar phenomenon applies to other notable cases, including less-than proofs. Thus, it is
often possible to use proof irrelevance without asserting axioms.

There are two more basic axioms that are often assumed, to avoid complications that do
not arise in set theory.
Require Import FunctionalExtensionality.
Print functional extensionality dep.

*** [ functional extensionality dep :
∀ (A : Type) (B : A → Type) (f g : ∀ x : A, B x),
(∀ x : A, f x = g x) → f = g ]

This axiom says that two functions are equal if they map equal inputs to equal outputs.
Such facts are not provable in general in CIC, but it is consistent to assume that they are.

A simple corollary shows that the same property applies to predicates.
Corollary predicate extensionality : ∀ (A : Type) (B : A → Prop) (f g : ∀ x : A, B x),
(∀ x : A, f x = g x) → f = g.
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intros; apply functional extensionality dep; assumption.
Qed.

In some cases, one might prefer to assert this corollary as the axiom, to restrict the
consequences to proofs and not programs.

12.3.2 Axioms of Choice
Some Coq axioms are also points of contention in mainstream math. The most prominent
example is the axiom of choice. In fact, there are multiple versions that we might consider,
and, considered in isolation, none of these versions means quite what it means in classical
set theory.

First, it is possible to implement a choice operator without axioms in some potentially
surprising cases.
Require Import ConstructiveEpsilon.
Check constructive definite description.

constructive definite description
: ∀ (A : Set) (f : A → nat) (g : nat → A),
(∀ x : A, g (f x) = x) →
∀ P : A → Prop,
(∀ x : A, {P x} + { ¬ P x}) →
(∃! x : A, P x) → {x : A | P x}

Print Assumptions constructive definite description.

Closed under the global context

This function transforms a decidable predicate P into a function that produces an el-
ement satisfying P from a proof that such an element exists. The functions f and g, in
conjunction with an associated injectivity property, are used to express the idea that the set
A is countable. Under these conditions, a simple brute force algorithm gets the job done:
we just enumerate all elements of A, stopping when we find one satisfying P. The existence
proof, specified in terms of unique existence ∃!, guarantees termination. The definition of
this operator in Coq uses some interesting techniques, as seen in the implementation of the
ConstructiveEpsilon module.

Countable choice is provable in set theory without appealing to the general axiom of
choice. To support the more general principle in Coq, we must also add an axiom. Here is
a functional version of the axiom of unique choice.
Require Import ClassicalUniqueChoice.
Check dependent unique choice.

dependent unique choice
: ∀ (A : Type) (B : A → Type) (R : ∀ x : A, B x → Prop),
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(∀ x : A, ∃! y : B x, R x y) →
∃ f : ∀ x : A, B x,
∀ x : A, R x (f x)

This axiom lets us convert a relational specification R into a function implementing
that specification. We need only prove that R is truly a function. An alternate, stronger
formulation applies to cases where R maps each input to one or more outputs. We also
simplify the statement of the theorem by considering only non-dependent function types.

Require Import ClassicalChoice.
Check choice.

choice
: ∀ (A B : Type) (R : A → B → Prop),
(∀ x : A, ∃ y : B, R x y) →
∃ f : A → B, ∀ x : A, R x (f x)

This principle is proved as a theorem, based on the unique choice axiom and an additional
axiom of relational choice from the RelationalChoice module.

In set theory, the axiom of choice is a fundamental philosophical commitment one makes
about the universe of sets. In Coq, the choice axioms say something weaker. For instance,
consider the simple restatement of the choice axiom where we replace existential quantifica-
tion by its Curry-Howard analogue, subset types.
Definition choice Set (A B : Type) (R : A → B → Prop) (H : ∀ x : A, {y : B | R x y})

: {f : A → B | ∀ x : A, R x (f x)} :=
exist (fun f ⇒ ∀ x : A, R x (f x))
(fun x ⇒ proj1 sig (H x)) (fun x ⇒ proj2 sig (H x)).

Via the Curry-Howard correspondence, this “axiom” can be taken to have the same
meaning as the original. It is implemented trivially as a transformation not much deeper
than uncurrying. Thus, we see that the utility of the axioms that we mentioned earlier comes
in their usage to build programs from proofs. Normal set theory has no explicit proofs, so the
meaning of the usual axiom of choice is subtly different. In Gallina, the axioms implement
a controlled relaxation of the restrictions on information flow from proofs to programs.

However, when we combine an axiom of choice with the law of the excluded middle,
the idea of “choice” becomes more interesting. Excluded middle gives us a highly non-
computational way of constructing proofs, but it does not change the computational nature
of programs. Thus, the axiom of choice is still giving us a way of translating between two
different sorts of “programs,” but the input programs (which are proofs) may be written in a
rich language that goes beyond normal computability. This combination truly is more than
repackaging a function with a different type.

The Coq tools support a command-line flag -impredicative-set, which modifies Gallina
in a more fundamental way by making Set impredicative. A term like ∀ T : Set, T has type
Set, and inductive definitions in Set may have constructors that quantify over arguments
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of any types. To maintain consistency, an elimination restriction must be imposed, similarly
to the restriction for Prop. The restriction only applies to large inductive types, where some
constructor quantifies over a type of type Type. In such cases, a value in this inductive type
may only be pattern-matched over to yield a result type whose type is Set or Prop. This rule
contrasts with the rule for Prop, where the restriction applies even to non-large inductive
types, and where the result type may only have type Prop.

In old versions of Coq, Set was impredicative by default. Later versions make Set pred-
icative to avoid inconsistency with some classical axioms. In particular, one should watch
out when using impredicative Set with axioms of choice. In combination with excluded mid-
dle or predicate extensionality, inconsistency can result. Impredicative Set can be useful for
modeling inherently impredicative mathematical concepts, but almost all Coq developments
get by fine without it.

12.3.3 Axioms and Computation
One additional axiom-related wrinkle arises from an aspect of Gallina that is very different
from set theory: a notion of computational equivalence is central to the definition of the
formal system. Axioms tend not to play well with computation. Consider this example. We
start by implementing a function that uses a type equality proof to perform a safe type-cast.
Definition cast (x y : Set) (pf : x = y) (v : x) : y :=
match pf with
| eq refl ⇒ v

end.
Computation over programs that use cast can proceed smoothly.

Eval compute in (cast (eq refl (nat → nat)) (fun n ⇒ S n)) 12.

= 13
: nat

Things do not go as smoothly when we use cast with proofs that rely on axioms.
Theorem t3 : (∀ n : nat, fin (S n)) = (∀ n : nat, fin (n + 1)).
change ((∀ n : nat, (fun n ⇒ fin (S n)) n) = (∀ n : nat, (fun n ⇒ fin (n + 1)) n));
rewrite (functional extensionality (fun n ⇒ fin (n + 1)) (fun n ⇒ fin (S n))); crush.

Qed.
Eval compute in (cast t3 (fun ⇒ First)) 12.

= match t3 in ( = P) return P with
| eq refl ⇒ fun n : nat ⇒ First
end 12

: fin (12 + 1)
Computation gets stuck in a pattern-match on the proof t3. The structure of t3 is

not known, so the match cannot proceed. It turns out a more basic problem leads to this
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particular situation. We ended the proof of t3 with Qed, so the definition of t3 is not available
to computation. That mistake is easily fixed.
Reset t3.
Theorem t3 : (∀ n : nat, fin (S n)) = (∀ n : nat, fin (n + 1)).
change ((∀ n : nat, (fun n ⇒ fin (S n)) n) = (∀ n : nat, (fun n ⇒ fin (n + 1)) n));
rewrite (functional extensionality (fun n ⇒ fin (n + 1)) (fun n ⇒ fin (S n))); crush.

Defined.
Eval compute in (cast t3 (fun ⇒ First)) 12.

= match
match
match
functional extensionality

....
We elide most of the details. A very unwieldy tree of nested matches on equality proofs

appears. This time evaluation really is stuck on a use of an axiom.
If we are careful in using tactics to prove an equality, we can still compute with casts

over the proof.
Lemma plus1 : ∀ n, S n = n + 1.
induction n; simpl; intuition.

Defined.
Theorem t4 : ∀ n, fin (S n) = fin (n + 1).
intro; f equal; apply plus1.

Defined.
Eval compute in cast (t4 13) First.

= First
: fin (13 + 1)

This simple computational reduction hides the use of a recursive function to produce a
suitable eq refl proof term. The recursion originates in our use of induction in t4’s proof.

12.3.4 Methods for Avoiding Axioms
The last section demonstrated one reason to avoid axioms: they interfere with computational
behavior of terms. A further reason is to reduce the philosophical commitment of a theorem.
The more axioms one assumes, the harder it becomes to convince oneself that the formal
system corresponds appropriately to one’s intuitions. A refinement of this last point, in
applications like proof-carrying code [27] in computer security, has to do with minimizing the
size of a trusted code base. To convince ourselves that a theorem is true, we must convince
ourselves of the correctness of the program that checks the theorem. Axioms effectively
become new source code for the checking program, increasing the effort required to perform
a correctness audit.
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An earlier section gave one example of avoiding an axiom. We proved that pred strong1
is agnostic to details of the proofs passed to it as arguments, by unfolding the definition of
the function. A “simpler” proof keeps the function definition opaque and instead applies a
proof irrelevance axiom. By accepting a more complex proof, we reduce our philosophical
commitment and trusted base. (By the way, the less-than relation that the proofs in question
here prove turns out to admit proof irrelevance as a theorem provable within normal Gallina!)

One dark secret of the dep destruct tactic that we have used several times is reliance on
an axiom. Consider this simple case analysis principle for fin values:
Theorem fin cases : ∀ n (f : fin (S n)), f = First ∨ ∃ f’, f = Next f’.
intros; dep destruct f ; eauto.

Qed.

Print Assumptions fin cases.

Axioms:
JMeq eq : ∀ (A : Type) (x y : A), JMeq x y → x = y

The proof depends on the JMeq eq axiom that we met in the chapter on equality proofs.
However, a smarter tactic could have avoided an axiom dependence. Here is an alternate
proof via a slightly strange looking lemma.
Lemma fin cases again’ : ∀ n (f : fin n),
match n return fin n → Prop with
| O ⇒ fun ⇒ False
| S n’ ⇒ fun f ⇒ f = First ∨ ∃ f’, f = Next f’

end f.
destruct f ; eauto.

Qed.
We apply a variant of the convoy pattern, which we are used to seeing in function im-

plementations. Here, the pattern helps us state a lemma in a form where the argument to
fin is a variable. Recall that, thanks to basic typing rules for pattern-matching, destruct
will only work effectively on types whose non-parameter arguments are variables. The exact
tactic, which takes as argument a literal proof term, now gives us an easy way of proving
the original theorem.
Theorem fin cases again : ∀ n (f : fin (S n)), f = First ∨ ∃ f’, f = Next f’.
intros; exact (fin cases again’ f ).

Qed.
Print Assumptions fin cases again.
Closed under the global context

As the Curry-Howard correspondence might lead us to expect, the same pattern may be
applied in programming as in proving. Axioms are relevant in programming, too, because,
while Coq includes useful extensions like Program that make dependently typed programming
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more straightforward, in general these extensions generate code that relies on axioms about
equality. We can use clever pattern matching to write our code axiom-free.

As an example, consider a Set version of fin cases. We use Set types instead of Prop
types, so that return values have computational content and may be used to guide the
behavior of algorithms. Beside that, we are essentially writing the same “proof” in a more
explicit way.
Definition finOut n (f : fin n) : match n return fin n → Type with

| O ⇒ fun ⇒ Empty set
| ⇒ fun f ⇒ {f’ : | f = Next f’} + {f = First}

end f :=
match f with
| First ⇒ inright (eq refl )
| Next f’ ⇒ inleft (exist f’ (eq refl ))

end.
As another example, consider the following type of formulas in first-order logic. The

intent of the type definition will not be important in what follows, but we give a quick
intuition for the curious reader. Our formulas may include ∀ quantification over arbitrary
Types, and we index formulas by environments telling which variables are in scope and what
their types are; such an environment is a list Type. A constructor Inject lets us include
any Coq Prop as a formula, and VarEq and Lift can be used for variable references, in what
is essentially the de Bruijn index convention. (Again, the detail in this paragraph is not
important to understand the discussion that follows!)
Inductive formula : list Type → Type :=
| Inject : ∀ Ts, Prop → formula Ts
| VarEq : ∀ T Ts, T → formula (T :: Ts)
| Lift : ∀ T Ts, formula Ts → formula (T :: Ts)
| Forall : ∀ T Ts, formula (T :: Ts) → formula Ts
| And : ∀ Ts, formula Ts → formula Ts → formula Ts.

This example is based on my own experiences implementing variants of a program logic
called XCAP [28], which also includes an inductive predicate for characterizing which for-
mulas are provable. Here I include a pared-down version of such a predicate, with only two
constructors, which is sufficient to illustrate certain tricky issues.
Inductive proof : formula nil → Prop :=
| PInject : ∀ (P : Prop), P → proof (Inject nil P)
| PAnd : ∀ p q, proof p → proof q → proof (And p q).

Let us prove a lemma showing that a “P ∧ Q → P” rule is derivable within the rules of
proof.
Theorem proj1 : ∀ p q, proof (And p q) → proof p.
destruct 1.

p : formula nil
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q : formula nil
P : Prop
H : P
============================
proof p
We are reminded that induction and destruct do not work effectively on types with

non-variable arguments. The first subgoal, shown above, is clearly unprovable. (Consider
the case where p = Inject nil False.)

An application of the dependent destruction tactic (the basis for dep destruct) solves
the problem handily. We use a shorthand with the intros tactic that lets us use question
marks for variable names that do not matter.
Restart.
Require Import Program.
intros ? ? H ; dependent destruction H ; auto.

Qed.
Print Assumptions proj1.

Axioms:
eq rect eq : ∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),

x = eq rect p Q x p h
Unfortunately, that built-in tactic appeals to an axiom. It is still possible to avoid

axioms by giving the proof via another odd-looking lemma. Here is a first attempt that fails
at remaining axiom-free, using a common equality-based trick for supporting induction on
non-variable arguments to type families. The trick works fine without axioms for datatypes
more traditional than formula, but we run into trouble with our current type.
Lemma proj1 again’ : ∀ r, proof r
→ ∀ p q, r = And p q → proof p.
destruct 1; crush.

H0 : Inject [] P = And p q
============================
proof p
The first goal looks reasonable. Hypothesis H0 is clearly contradictory, as discriminate

can show.
discriminate.

H : proof p
H1 : And p q = And p0 q0
============================
proof p0
It looks like we are almost done. Hypothesis H1 gives p = p0 by injectivity of construc-

tors, and then H finishes the case.
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injection H1 ; intros.

Unfortunately, the “equality” that we expected between p and p0 comes in a strange
form:

H3 : existT (fun Ts : list Type ⇒ formula Ts) []%list p =
existT (fun Ts : list Type ⇒ formula Ts) []%list p0

============================
proof p0
It may take a bit of tinkering, but, reviewing Chapter 3’s discussion of writing injection

principles manually, it makes sense that an existT type is the most direct way to express
the output of injection on a dependently typed constructor. The constructor And is
dependently typed, since it takes a parameter Ts upon which the types of p and q depend.
Let us not dwell further here on why this goal appears; the reader may like to attempt the
(impossible) exercise of building a better injection lemma for And, without using axioms.

How exactly does an axiom come into the picture here? Let us ask crush to finish the
proof.
crush.

Qed.
Print Assumptions proj1 again’.

Axioms:
eq rect eq : ∀ (U : Type) (p : U ) (Q : U → Type) (x : Q p) (h : p = p),

x = eq rect p Q x p h
It turns out that this familiar axiom about equality (or some other axiom) is required to

deduce p = p0 from the hypothesis H3 above. The soundness of that proof step is neither
provable nor disprovable in Gallina.

Hope is not lost, however. We can produce an even stranger looking lemma, which gives
us the theorem without axioms. As always when we want to do case analysis on a term with
a tricky dependent type, the key is to refactor the theorem statement so that every term we
match on has variables as its type indices; so instead of talking about proofs of And p q, we
talk about proofs of an arbitrary r, but we only conclude anything interesting when r is an
And.
Lemma proj1 again’’ : ∀ r, proof r
→ match r with

| And Ps p ⇒ match Ps return formula Ps → Prop with
| nil ⇒ fun p ⇒ proof p
| ⇒ fun ⇒ True

end p
| ⇒ True

end.
destruct 1; auto.
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Qed.
Theorem proj1 again : ∀ p q, proof (And p q) → proof p.
intros ? ? H ; exact (proj1 again’’ H ).

Qed.
Print Assumptions proj1 again.

Closed under the global context

This example illustrates again how some of the same design patterns we learned for
dependently typed programming can be used fruitfully in theorem statements.

To close the chapter, we consider one final way to avoid dependence on axioms. Often
this task is equivalent to writing definitions such that they compute. That is, we want Coq’s
normal reduction to be able to run certain programs to completion. Here is a simple example
where such computation can get stuck. In proving properties of such functions, we would
need to apply axioms like K manually to make progress.

Imagine we are working with deeply embedded syntax of some programming language,
where each term is considered to be in the scope of a number of free variables that hold normal
Coq values. To enforce proper typing, we will need to model a Coq typing environment
somehow. One natural choice is as a list of types, where variable number i will be treated
as a reference to the ith element of the list.
Section withTypes.
Variable types : list Set.
To give the semantics of terms, we will need to represent value environments, which

assign each variable a term of the proper type.
Variable values : hlist (fun x : Set ⇒ x) types.
Now imagine that we are writing some procedure that operates on a distinguished variable

of type nat. A hypothesis formalizes this assumption, using the standard library function
nth error for looking up list elements by position.
Variable natIndex : nat.
Variable natIndex ok : nth error types natIndex = Some nat.
It is not hard to use this hypothesis to write a function for extracting the nat value in

position natIndex of values, starting with two helpful lemmas, each of which we finish with
Defined to mark the lemma as transparent, so that its definition may be expanded during
evaluation.
Lemma nth error nil : ∀ A n x,
nth error (@nil A) n = Some x
→ False.
destruct n; simpl; unfold error; congruence.

Defined.
Implicit Arguments nth error nil [A n x ].

248



Lemma Some inj : ∀ A (x y : A),
Some x = Some y
→ x = y.
congruence.

Defined.
Fixpoint getNat (types’ : list Set) (values’ : hlist (fun x : Set ⇒ x) types’)

(natIndex : nat) : (nth error types’ natIndex = Some nat) → nat :=
match values’ with
| HNil ⇒ fun pf ⇒ match nth error nil pf with end
| HCons t ts x values’’ ⇒
match natIndex return nth error (t :: ts) natIndex = Some nat → nat with
| O ⇒ fun pf ⇒
match Some inj pf in = T return T with
| eq refl ⇒ x

end
| S natIndex’ ⇒ getNat values’’ natIndex’

end
end.

End withTypes.
The problem becomes apparent when we experiment with running getNat on a concrete

types list.
Definition myTypes := unit :: nat :: bool :: nil.
Definition myValues : hlist (fun x : Set ⇒ x) myTypes :=
tt ::: 3 ::: false ::: HNil.

Definition myNatIndex := 1.
Theorem myNatIndex ok : nth error myTypes myNatIndex = Some nat.
reflexivity.

Defined.
Eval compute in getNat myValues myNatIndex myNatIndex ok.

= 3
We have not hit the problem yet, since we proceeded with a concrete equality proof for

myNatIndex ok. However, consider a case where we want to reason about the behavior of
getNat independently of a specific proof.
Theorem getNat is reasonable : ∀ pf, getNat myValues myNatIndex pf = 3.
intro; compute.

1 subgoal

pf : nth error myTypes myNatIndex = Some nat
============================
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match
match
pf in ( = y)
return (nat = match y with

| Some H ⇒ H
| None ⇒ nat
end)

with
| eq refl ⇒ eq refl
end in ( = T ) return T

with
| eq refl ⇒ 3
end = 3
Since the details of the equality proof pf are not known, computation can proceed no

further. A rewrite with axiom K would allow us to make progress, but we can rethink the
definitions a bit to avoid depending on axioms.
Abort.

Here is a definition of a function that turns out to be useful, though no doubt its purpose
will be mysterious for now. A call update ls n x overwrites the nth position of the list ls with
the value x, padding the end of the list with extra x values as needed to ensure sufficient
length.
Fixpoint copies A (x : A) (n : nat) : list A :=
match n with
| O ⇒ nil
| S n’ ⇒ x :: copies x n’

end.
Fixpoint update A (ls : list A) (n : nat) (x : A) : list A :=
match ls with
| nil ⇒ copies x n ++ x :: nil
| y :: ls’ ⇒ match n with

| O ⇒ x :: ls’
| S n’ ⇒ y :: update ls’ n’ x

end
end.
Now let us revisit the definition of getNat.

Section withTypes’.
Variable types : list Set.
Variable natIndex : nat.
Here is the trick: instead of asserting properties about the list types, we build a “new”

list that is guaranteed by construction to have those properties.
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Definition types’ := update types natIndex nat.
Variable values : hlist (fun x : Set ⇒ x) types’.
Now a bit of dependent pattern matching helps us rewrite getNat in a way that avoids

any use of equality proofs.
Fixpoint skipCopies (n : nat)

: hlist (fun x : Set ⇒ x) (copies nat n ++ nat :: nil) → nat :=
match n with
| O ⇒ fun vs ⇒ hhd vs
| S n’ ⇒ fun vs ⇒ skipCopies n’ (htl vs)

end.
Fixpoint getNat’ (types’’ : list Set) (natIndex : nat)
: hlist (fun x : Set ⇒ x) (update types’’ natIndex nat) → nat :=
match types’’ with
| nil ⇒ skipCopies natIndex
| t :: types0 ⇒
match natIndex return hlist (fun x : Set ⇒ x)

(update (t :: types0 ) natIndex nat) → nat with
| O ⇒ fun vs ⇒ hhd vs
| S natIndex’ ⇒ fun vs ⇒ getNat’ types0 natIndex’ (htl vs)

end
end.

End withTypes’.
Now the surprise comes in how easy it is to use getNat’. While typing works by modifi-

cation of a types list, we can choose parameters so that the modification has no effect.
Theorem getNat is reasonable : getNat’ myTypes myNatIndex myValues = 3.
reflexivity.

Qed.
The same parameters as before work without alteration, and we avoid use of axioms.
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Part III

Proof Engineering
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Chapter 13

Proof Search by Logic Programming

The Curry-Howard correspondence tells us that proving is “just” programming, but the
pragmatics of the two activities are very different. Generally we care about properties of a
program besides its type, but the same is not true about proofs. Any proof of a theorem will
do just as well. As a result, automated proof search is conceptually simpler than automated
programming.

The paradigm of logic programming [21], as embodied in languages like Prolog [42], is
a good match for proof search in higher-order logic. This chapter introduces the details,
attempting to avoid any dependence on past logic programming experience.

13.1 Introducing Logic Programming
Recall the definition of addition from the standard library.
Print plus.

plus =
fix plus (n m : nat) : nat := match n with

| 0 ⇒ m
| S p ⇒ S (plus p m)
end

This is a recursive definition, in the style of functional programming. We might also
follow the style of logic programming, which corresponds to the inductive relations we have
defined in previous chapters.
Inductive plusR : nat → nat → nat → Prop :=
| PlusO : ∀ m, plusR O m m
| PlusS : ∀ n m r, plusR n m r
→ plusR (S n) m (S r).
Intuitively, a fact plusR n m r only holds when plus n m = r. It is not hard to prove

this correspondence formally.
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Hint Constructors plusR.
Theorem plus plusR : ∀ n m,
plusR n m (n + m).
induction n; crush.

Qed.
Theorem plusR plus : ∀ n m r,
plusR n m r
→ r = n + m.
induction 1; crush.

Qed.
With the functional definition of plus, simple equalities about arithmetic follow by com-

putation.
Example four plus three : 4 + 3 = 7.
reflexivity.

Qed.

Print four plus three.

four plus three = eq refl
With the relational definition, the same equalities take more steps to prove, but the

process is completely mechanical. For example, consider this simple-minded manual proof
search strategy. The steps with error messages shown afterward will be omitted from the
final script.
Example four plus three’ : plusR 4 3 7.
apply PlusO.

Error: Impossible to unify "plusR 0 ?24 ?24" with "plusR 4 3 7".

apply PlusS.
apply PlusO.

Error: Impossible to unify "plusR 0 ?25 ?25" with "plusR 3 3 6".

apply PlusS.
apply PlusO.

Error: Impossible to unify "plusR 0 ?26 ?26" with "plusR 2 3 5".

apply PlusS.
apply PlusO.

Error: Impossible to unify "plusR 0 ?27 ?27" with "plusR 1 3 4".
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apply PlusS.
apply PlusO.

At this point the proof is completed. It is no doubt clear that a simple procedure could find
all proofs of this kind for us. We are just exploring all possible proof trees, built from the
two candidate steps apply PlusO and apply PlusS. The built-in tactic auto follows exactly
this strategy, since above we used Hint Constructors to register the two candidate proof
steps as hints.
Restart.
auto.

Qed.
Print four plus three’.

four plus three’ = PlusS (PlusS (PlusS (PlusS (PlusO 3))))
Let us try the same approach on a slightly more complex goal.

Example five plus three : plusR 5 3 8.
auto.
This time, auto is not enough to make any progress. Since even a single candidate step

may lead to an infinite space of possible proof trees, auto is parameterized on the maximum
depth of trees to consider. The default depth is 5, and it turns out that we need depth 6 to
prove the goal.
auto 6.
Sometimes it is useful to see a description of the proof tree that auto finds, with the info

tactical. (This tactical is not available in Coq 8.4 as of this writing, but I hope it reappears
soon. The special case info auto tactic is provided as a chatty replacement for auto.)
Restart.
info auto 6.

== apply PlusS; apply PlusS; apply PlusS; apply PlusS;
apply PlusS; apply PlusO.

Qed.
The two key components of logic programming are backtracking and unification. To see

these techniques in action, consider this further silly example. Here our candidate proof
steps will be reflexivity and quantifier instantiation.
Example seven minus three : ∃ x, x + 3 = 7.

For explanatory purposes, let us simulate a user with minimal understanding of arith-
metic. We start by choosing an instantiation for the quantifier. Recall that ex intro is the
constructor for existentially quantified formulas.
apply ex intro with 0.
reflexivity.
Error: Impossible to unify "7" with "0 + 3".
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This seems to be a dead end. Let us backtrack to the point where we ran apply and
make a better alternate choice.
Restart.
apply ex intro with 4.
reflexivity.

Qed.
The above was a fairly tame example of backtracking. In general, any node in an under-

construction proof tree may be the destination of backtracking an arbitrarily large number
of times, as different candidate proof steps are found not to lead to full proof trees, within
the depth bound passed to auto.

Next we demonstrate unification, which will be easier when we switch to the relational
formulation of addition.
Example seven minus three’ : ∃ x, plusR x 3 7.

We could attempt to guess the quantifier instantiation manually as before, but here there
is no need. Instead of apply, we use eapply, which proceeds with placeholder unification
variables standing in for those parameters we wish to postpone guessing.
eapply ex intro.

1 subgoal

============================
plusR ?70 3 7
Now we can finish the proof with the right applications of plusR’s constructors. Note

that new unification variables are being generated to stand for new unknowns.
apply PlusS.

============================
plusR ?71 3 6
apply PlusS. apply PlusS. apply PlusS.

============================
plusR ?74 3 3
apply PlusO.
The auto tactic will not perform these sorts of steps that introduce unification variables,

but the eauto tactic will. It is helpful to work with two separate tactics, because proof
search in the eauto style can uncover many more potential proof trees and hence take much
longer to run.
Restart.
info eauto 6.
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== eapply ex intro; apply PlusS; apply PlusS;
apply PlusS; apply PlusS; apply PlusO.

Qed.
This proof gives us our first example where logic programming simplifies proof search

compared to functional programming. In general, functional programs are only meant to
be run in a single direction; a function has disjoint sets of inputs and outputs. In the last
example, we effectively ran a logic program backwards, deducing an input that gives rise to
a certain output. The same works for deducing an unknown value of the other input.
Example seven minus four’ : ∃ x, plusR 4 x 7.
eauto 6.

Qed.
By proving the right auxiliary facts, we can reason about specific functional programs

in the same way as we did above for a logic program. Let us prove that the constructors
of plusR have natural interpretations as lemmas about plus. We can find the first such
lemma already proved in the standard library, using the SearchRewrite command to find
a library function proving an equality whose lefthand or righthand side matches a pattern
with wildcards.
SearchRewrite (O + ).

plus O n: ∀ n : nat, 0 + n = n
The command Hint Immediate asks auto and eauto to consider this lemma as a candi-

date step for any leaf of a proof tree.
Hint Immediate plus O n.

The counterpart to PlusS we will prove ourselves.
Lemma plusS : ∀ n m r,
n + m = r
→ S n + m = S r.
crush.

Qed.
The command Hint Resolve adds a new candidate proof step, to be attempted at any

level of a proof tree, not just at leaves.
Hint Resolve plusS.

Now that we have registered the proper hints, we can replicate our previous examples
with the normal, functional addition plus.
Example seven minus three’’ : ∃ x, x + 3 = 7.
eauto 6.

Qed.
Example seven minus four : ∃ x, 4 + x = 7.
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eauto 6.
Qed.

This new hint database is far from a complete decision procedure, as we see in a further
example that eauto does not finish.
Example seven minus four zero : ∃ x, 4 + x + 0 = 7.
eauto 6.

Abort.
A further lemma will be helpful.

Lemma plusO : ∀ n m,
n = m
→ n + 0 = m.
crush.

Qed.
Hint Resolve plusO.

Note that, if we consider the inputs to plus as the inputs of a corresponding logic program,
the new rule plusO introduces an ambiguity. For instance, a sum 0 + 0 would match both of
plus O n and plusO, depending on which operand we focus on. This ambiguity may increase
the number of potential search trees, slowing proof search, but semantically it presents no
problems, and in fact it leads to an automated proof of the present example.
Example seven minus four zero : ∃ x, 4 + x + 0 = 7.
eauto 7.

Qed.
Just how much damage can be done by adding hints that grow the space of possible

proof trees? A classic gotcha comes from unrestricted use of transitivity, as embodied in this
library theorem about equality:
Check eq trans.

eq trans
: ∀ (A : Type) (x y z : A), x = y → y = z → x = z

Hints are scoped over sections, so let us enter a section to contain the effects of an
unfortunate hint choice.
Section slow.
Hint Resolve eq trans.
The following fact is false, but that does not stop eauto from taking a very long time to

search for proofs of it. We use the handy Time command to measure how long a proof step
takes to run. None of the following steps make any progress.
Example zero minus one : ∃ x, 1 + x = 0.
Time eauto 1.

Finished transaction in 0. secs (0.u,0.s)
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Time eauto 2.
Finished transaction in 0. secs (0.u,0.s)

Time eauto 3.
Finished transaction in 0. secs (0.008u,0.s)

Time eauto 4.
Finished transaction in 0. secs (0.068005u,0.004s)

Time eauto 5.
Finished transaction in 2. secs (1.92012u,0.044003s)

We see worrying exponential growth in running time, and the debug tactical helps us see
where eauto is wasting its time, outputting a trace of every proof step that is attempted.
The rule eq trans applies at every node of a proof tree, and eauto tries all such positions.

debug eauto 3.

1 depth=3
1.1 depth=2 eapply ex intro
1.1.1 depth=1 apply plusO
1.1.1.1 depth=0 eapply eq trans
1.1.2 depth=1 eapply eq trans
1.1.2.1 depth=1 apply plus n O
1.1.2.1.1 depth=0 apply plusO
1.1.2.1.2 depth=0 eapply eq trans
1.1.2.2 depth=1 apply @eq refl
1.1.2.2.1 depth=0 apply plusO
1.1.2.2.2 depth=0 eapply eq trans
1.1.2.3 depth=1 apply eq add S ; trivial
1.1.2.3.1 depth=0 apply plusO
1.1.2.3.2 depth=0 eapply eq trans
1.1.2.4 depth=1 apply eq sym ; trivial
1.1.2.4.1 depth=0 eapply eq trans
1.1.2.5 depth=0 apply plusO
1.1.2.6 depth=0 apply plusS
1.1.2.7 depth=0 apply f equal (A:=nat)
1.1.2.8 depth=0 apply f equal2 (A1 :=nat) (A2 :=nat)
1.1.2.9 depth=0 eapply eq trans
Abort.

End slow.
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Sometimes, though, transitivity is just what is needed to get a proof to go through
automatically with eauto. For those cases, we can use named hint databases to segregate
hints into different groups that may be called on as needed. Here we put eq trans into the
database slow.
Hint Resolve eq trans : slow.
Example from one to zero : ∃ x, 1 + x = 0.
Time eauto.

Finished transaction in 0. secs (0.004u,0.s)

This eauto fails to prove the goal, but at least it takes substantially less than the 2
seconds required above!
Abort.

One simple example from before runs in the same amount of time, avoiding pollution by
transitivity.
Example seven minus three again : ∃ x, x + 3 = 7.
Time eauto 6.

Finished transaction in 0. secs (0.004001u,0.s)
Qed.
When we do need transitivity, we ask for it explicitly.
Example needs trans : ∀ x y, 1 + x = y
→ y = 2
→ ∃ z, z + x = 3.
info eauto with slow.
== intro x ; intro y; intro H ; intro H0 ; simple eapply ex intro;

apply plusS; simple eapply eq trans.
exact H.

exact H0.
Qed.

The info trace shows that eq trans was used in just the position where it is needed to
complete the proof. We also see that auto and eauto always perform intro steps without
counting them toward the bound on proof tree depth.

13.2 Searching for Underconstrained Values
Recall the definition of the list length function.
Print length.

length =
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fun A : Type ⇒
fix length (l : list A) : nat :=
match l with
| nil ⇒ 0
| :: l’ ⇒ S (length l’)
end

This function is easy to reason about in the forward direction, computing output from
input.
Example length 1 2 : length (1 :: 2 :: nil) = 2.
auto.

Qed.
Print length 1 2.

length 1 2 = eq refl
As in the last section, we will prove some lemmas to recast length in logic programming

style, to help us compute inputs from outputs.
Theorem length O : ∀ A, length (nil (A := A)) = O.
crush.

Qed.
Theorem length S : ∀ A (h : A) t n,

length t = n
→ length (h :: t) = S n.
crush.

Qed.
Hint Resolve length O length S.

Let us apply these hints to prove that a list nat of length 2 exists. (Here we register
length O with Hint Resolve instead of Hint Immediate merely as a convenience to use
the same command as for length S; Resolve and Immediate have the same meaning for a
premise-free hint.)
Example length is 2 : ∃ ls : list nat, length ls = 2.
eauto.

No more subgoals but non-instantiated existential variables:
Existential 1 = ?20249 : [ |- nat]
Existential 2 = ?20252 : [ |- nat]

Coq complains that we finished the proof without determining the values of some unifica-
tion variables created during proof search. The error message may seem a bit silly, since any
value of type nat (for instance, 0) can be plugged in for either variable! However, for more
complex types, finding their inhabitants may be as complex as theorem-proving in general.
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The Show Proof command shows exactly which proof term eauto has found, with the
undetermined unification variables appearing explicitly where they are used.
Show Proof.

Proof: ex_intro (fun ls : list nat => length ls = 2)
(?20249 :: ?20252 :: nil)
(length_S ?20249 (?20252 :: nil)

(length_S ?20252 nil (length_O nat)))
Abort.
We see that the two unification variables stand for the two elements of the list. Indeed, list
length is independent of data values. Paradoxically, we can make the proof search process
easier by constraining the list further, so that proof search naturally locates appropriate data
elements by unification. The library predicate Forall will be helpful.

Print Forall.

Inductive Forall (A : Type) (P : A → Prop) : list A → Prop :=
Forall nil : Forall P nil
| Forall cons : ∀ (x : A) (l : list A),

P x → Forall P l → Forall P (x :: l)

Example length is 2 : ∃ ls : list nat, length ls = 2
∧ Forall (fun n ⇒ n ≥ 1) ls.
eauto 9.

Qed.
We can see which list eauto found by printing the proof term.

Print length is 2.

length is 2 =
ex intro
(fun ls : list nat ⇒ length ls = 2 ∧ Forall (fun n : nat ⇒ n ≥ 1) ls)
(1 :: 1 :: nil)
(conj (length S 1 (1 :: nil) (length S 1 nil (length O nat)))

(Forall cons 1 (le n 1)
(Forall cons 1 (le n 1) (Forall nil (fun n : nat ⇒ n ≥ 1)))))

Let us try one more, fancier example. First, we use a standard higher-order function to
define a function for summing all data elements of a list.
Definition sum := fold right plus O.

Another basic lemma will be helpful to guide proof search.
Lemma plusO’ : ∀ n m,
n = m
→ 0 + n = m.
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crush.
Qed.
Hint Resolve plusO’.

Finally, we meet Hint Extern, the command to register a custom hint. That is, we
provide a pattern to match against goals during proof search. Whenever the pattern matches,
a tactic (given to the right of an arrow⇒) is attempted. Below, the number 1 gives a priority
for this step. Lower priorities are tried before higher priorities, which can have a significant
effect on proof search time.
Hint Extern 1 (sum = ) ⇒ simpl.

Now we can find a length-2 list whose sum is 0.
Example length and sum : ∃ ls : list nat, length ls = 2
∧ sum ls = O.
eauto 7.

Qed.

Printing the proof term shows the unsurprising list that is found. Here is an example
where it is less obvious which list will be used. Can you guess which list eauto will choose?
Example length and sum’ : ∃ ls : list nat, length ls = 5
∧ sum ls = 42.
eauto 15.

Qed.

We will give away part of the answer and say that the above list is less interesting than
we would like, because it contains too many zeroes. A further constraint forces a different
solution for a smaller instance of the problem.
Example length and sum’’ : ∃ ls : list nat, length ls = 2
∧ sum ls = 3
∧ Forall (fun n ⇒ n 6= 0) ls.
eauto 11.

Qed.

We could continue through exercises of this kind, but even more interesting than finding
lists automatically is finding programs automatically.

13.3 Synthesizing Programs
Here is a simple syntax type for arithmetic expressions, similar to those we have used sev-
eral times before in the book. In this case, we allow expressions to mention exactly one
distinguished variable.
Inductive exp : Set :=
| Const : nat → exp
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| Var : exp
| Plus : exp → exp → exp.

An inductive relation specifies the semantics of an expression, relating a variable value
and an expression to the expression value.
Inductive eval (var : nat) : exp → nat → Prop :=
| EvalConst : ∀ n, eval var (Const n) n
| EvalVar : eval var Var var
| EvalPlus : ∀ e1 e2 n1 n2, eval var e1 n1
→ eval var e2 n2
→ eval var (Plus e1 e2 ) (n1 + n2 ).

Hint Constructors eval.
We can use auto to execute the semantics for specific expressions.

Example eval1 : ∀ var, eval var (Plus Var (Plus (Const 8) Var)) (var + (8 + var)).
auto.

Qed.
Unfortunately, just the constructors of eval are not enough to prove theorems like the

following, which depends on an arithmetic identity.
Example eval1’ : ∀ var, eval var (Plus Var (Plus (Const 8) Var)) (2 × var + 8).
eauto.

Abort.
To help prove eval1’, we prove an alternate version of EvalPlus that inserts an extra

equality premise. This sort of staging is helpful to get around limitations of eauto’s unifi-
cation: EvalPlus as a direct hint will only match goals whose results are already expressed
as additions, rather than as constants. With the alternate version below, to prove the first
two premises, eauto is given free reign in deciding the values of n1 and n2, while the third
premise can then be proved by reflexivity, no matter how each of its sides is decomposed
as a tree of additions.
Theorem EvalPlus’ : ∀ var e1 e2 n1 n2 n, eval var e1 n1
→ eval var e2 n2
→ n1 + n2 = n
→ eval var (Plus e1 e2 ) n.
crush.

Qed.
Hint Resolve EvalPlus’.

Further, we instruct eauto to apply omega, a standard tactic that provides a complete
decision procedure for quantifier-free linear arithmetic. Via Hint Extern, we ask for use of
omega on any equality goal. The abstract tactical generates a new lemma for every such
successful proof, so that, in the final proof term, the lemma may be referenced in place of
dropping in the full proof of the arithmetic equality.
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Hint Extern 1 ( = ) ⇒ abstract omega.
Now we can return to eval1’ and prove it automatically.

Example eval1’ : ∀ var, eval var (Plus Var (Plus (Const 8) Var)) (2 × var + 8).
eauto.

Qed.
Print eval1’.

eval1’ =
fun var : nat ⇒
EvalPlus’ (EvalVar var) (EvalPlus (EvalConst var 8) (EvalVar var))

(eval1’ subproof var)
: ∀ var : nat,
eval var (Plus Var (Plus (Const 8) Var)) (2 × var + 8)

The lemma eval1’ subproof was generated by abstract omega.
Now we are ready to take advantage of logic programming’s flexibility by searching for a

program (arithmetic expression) that always evaluates to a particular symbolic value.
Example synthesize1 : ∃ e, ∀ var, eval var e (var + 7).
eauto.

Qed.
Print synthesize1.

synthesize1 =
ex intro (fun e : exp ⇒ ∀ var : nat, eval var e (var + 7))

(Plus Var (Const 7))
(fun var : nat ⇒ EvalPlus (EvalVar var) (EvalConst var 7))
Here are two more examples showing off our program synthesis abilities.

Example synthesize2 : ∃ e, ∀ var, eval var e (2 × var + 8).
eauto.

Qed.

Example synthesize3 : ∃ e, ∀ var, eval var e (3 × var + 42).
eauto.

Qed.

These examples show linear expressions over the variable var. Any such expression is
equivalent to k × var + n for some k and n. It is probably not so surprising that we can
prove that any expression’s semantics is equivalent to some such linear expression, but it is
tedious to prove such a fact manually. To finish this section, we will use eauto to complete
the proof, finding k and n values automatically.

We prove a series of lemmas and add them as hints. We have alternate eval constructor
lemmas and some facts about arithmetic.
Theorem EvalConst’ : ∀ var n m, n = m
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→ eval var (Const n) m.
crush.

Qed.
Hint Resolve EvalConst’.
Theorem zero times : ∀ n m r,
r = m
→ r = 0 × n + m.
crush.

Qed.
Hint Resolve zero times.
Theorem EvalVar’ : ∀ var n,
var = n
→ eval var Var n.
crush.

Qed.
Hint Resolve EvalVar’.
Theorem plus 0 : ∀ n r,
r = n
→ r = n + 0.
crush.

Qed.
Theorem times 1 : ∀ n, n = 1 × n.
crush.

Qed.
Hint Resolve plus 0 times 1.

We finish with one more arithmetic lemma that is particularly specialized to this theorem.
This fact happens to follow by the axioms of the semiring algebraic structure, so, since the
naturals form a semiring, we can use the built-in tactic ring.
Require Import Arith Ring.
Theorem combine : ∀ x k1 k2 n1 n2,
(k1 × x + n1) + (k2 × x + n2) = (k1 + k2) × x + (n1 + n2).
intros; ring.

Qed.
Hint Resolve combine.

Our choice of hints is cheating, to an extent, by telegraphing the procedure for choosing
values of k and n. Nonetheless, with these lemmas in place, we achieve an automated proof
without explicitly orchestrating the lemmas’ composition.
Theorem linear : ∀ e, ∃ k, ∃ n,
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∀ var, eval var e (k × var + n).
induction e; crush; eauto.

Qed.

By printing the proof term, it is possible to see the procedure that is used to choose the
constants for each input term.

13.4 More on auto Hints
Let us stop at this point and take stock of the possibilities for auto and eauto hints. Hints
are contained within hint databases, which we have seen extended in many examples so far.
When no hint database is specified, a default database is used. Hints in the default database
are always used by auto or eauto. The chance to extend hint databases imperatively is
important, because, in Ltac programming, we cannot create “global variables” whose values
can be extended seamlessly by different modules in different source files. We have seen
the advantages of hints so far, where crush can be defined once and for all, while still
automatically applying the hints we add throughout developments. In fact, crush is defined
in terms of auto, which explains how we achieve this extensibility. Other user-defined tactics
can take similar advantage of auto and eauto.

The basic hints for auto and eauto are: Hint Immediate lemma, asking to try solving
a goal immediately by applying a lemma and discharging any hypotheses with a single
proof step each; Resolve lemma, which does the same but may add new premises that
are themselves to be subjects of nested proof search; Constructors type, which acts like
Resolve applied to every constructor of an inductive type; and Unfold ident, which tries
unfolding ident when it appears at the head of a proof goal. Each of these Hint commands
may be used with a suffix, as in Hint Resolve lemma : my db, to add the hint only to
the specified database, so that it would only be used by, for instance, auto with my db.
An additional argument to auto specifies the maximum depth of proof trees to search in
depth-first order, as in auto 8 or auto 8 with my db. The default depth is 5.

All of these Hint commands can be expressed with a more primitive hint kind, Extern.
A few more examples of Hint Extern should illustrate more of the possibilities.
Theorem bool neq : true 6= false.
auto.
A call to crush would have discharged this goal, but the default hint database for auto

contains no hint that applies.
Abort.

It is hard to come up with a bool-specific hint that is not just a restatement of the
theorem we mean to prove. Luckily, a simpler form suffices, by appealing to the built-in
tactic congruence, a complete procedure for the theory of equality, uninterpreted functions,
and datatype constructors.
Hint Extern 1 ( 6= ) ⇒ congruence.
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Theorem bool neq : true 6= false.
auto.

Qed.
A Hint Extern may be implemented with the full Ltac language. This example shows a

case where a hint uses a match.
Section forall and.
Variable A : Set.
Variables P Q : A → Prop.
Hypothesis both : ∀ x, P x ∧ Q x.
Theorem forall and : ∀ z, P z.
crush.
The crush invocation makes no progress beyond what intros would have accomplished.

An auto invocation will not apply the hypothesis both to prove the goal, because the con-
clusion of both does not unify with the conclusion of the goal. However, we can teach auto
to handle this kind of goal.

Hint Extern 1 (P ?X) ⇒
match goal with
| [ H : ∀ x, P x ∧ ` ] ⇒ apply (proj1 (H X))

end.
auto.

Qed.
We see that an Extern pattern may bind unification variables that we use in the associ-

ated tactic. The function proj1 is from the standard library, for extracting a proof of U from
a proof of U ∧ V.
End forall and.

After our success on this example, we might get more ambitious and seek to generalize
the hint to all possible predicates P.
Hint Extern 1 (?P ?X) ⇒
match goal with
| [ H : ∀ x, P x ∧ ` ] ⇒ apply (proj1 (H X))

end.

User error: Bound head variable

Coq’s auto hint databases work as tables mapping head symbols to lists of tactics to try.
Because of this, the constant head of an Extern pattern must be determinable statically. In
our first Extern hint, the head symbol was not, since x 6= y desugars to not (eq x y); and,
in the second example, the head symbol was P.

Fortunately, a more basic form of Hint Extern also applies. We may simply leave out
the pattern to the left of the ⇒, incorporating the corresponding logic into the Ltac script.
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Hint Extern 1 ⇒
match goal with
| [ H : ∀ x, ?P x ∧ ` ?P ?X ] ⇒ apply (proj1 (H X))

end.
Be forewarned that a Hint Extern of this kind will be applied at every node of a proof

tree, so an expensive Ltac script may slow proof search significantly.

13.5 Rewrite Hints
Another dimension of extensibility with hints is rewriting with quantified equalities. We
have used the associated command Hint Rewrite in many examples so far. The crush tactic
uses these hints by calling the built-in tactic autorewrite. Our rewrite hints have taken the
form Hint Rewrite lemma, which by default adds them to the default hint database core;
but alternate hint databases may also be specified just as with, e.g., Hint Resolve.

The next example shows a direct use of autorewrite. Note that, while Hint Rewrite
uses a default database, autorewrite requires that a database be named.
Section autorewrite.
Variable A : Set.
Variable f : A → A.
Hypothesis f f : ∀ x, f (f x) = f x.
Hint Rewrite f f.
Lemma f f f : ∀ x, f (f (f x)) = f x.
intros; autorewrite with core; reflexivity.

Qed.
There are a few ways in which autorewrite can lead to trouble when insufficient care is

taken in choosing hints. First, the set of hints may define a nonterminating rewrite system,
in which case invocations to autorewrite may not terminate. Second, we may add hints
that “lead autorewrite down the wrong path.” For instance:
Section garden path.
Variable g : A → A.
Hypothesis f g : ∀ x, f x = g x.
Hint Rewrite f g.
Lemma f f f’ : ∀ x, f (f (f x)) = f x.
intros; autorewrite with core.

============================
g (g (g x)) = g x

Abort.
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Our new hint was used to rewrite the goal into a form where the old hint could no longer
be applied. This “non-monotonicity” of rewrite hints contrasts with the situation for auto,
where new hints may slow down proof search but can never “break” old proofs. The key
difference is that auto either solves a goal or makes no changes to it, while autorewrite may
change goals without solving them. The situation for eauto is slightly more complicated, as
changes to hint databases may change the proof found for a particular goal, and that proof
may influence the settings of unification variables that appear elsewhere in the proof state.
Reset garden path.
The autorewrite tactic also works with quantified equalities that include additional

premises, but we must be careful to avoid similar incorrect rewritings.
Section garden path.
Variable P : A → Prop.
Variable g : A → A.
Hypothesis f g : ∀ x, P x → f x = g x.
Hint Rewrite f g.
Lemma f f f’ : ∀ x, f (f (f x)) = f x.
intros; autorewrite with core.

============================
g (g (g x)) = g x

subgoal 2 is:
P x
subgoal 3 is:
P (f x)
subgoal 4 is:
P (f x)

Abort.
The inappropriate rule fired the same three times as before, even though we know we

will not be able to prove the premises.
Reset garden path.
Our final, successful, attempt uses an extra argument to Hint Rewrite that specifies a

tactic to apply to generated premises. Such a hint is only used when the tactic succeeds for
all premises, possibly leaving further subgoals for some premises.
Section garden path.
Variable P : A → Prop.
Variable g : A → A.
Hypothesis f g : ∀ x, P x → f x = g x.
Hint Rewrite f g using assumption.
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Lemma f f f’ : ∀ x, f (f (f x)) = f x.
intros; autorewrite with core; reflexivity.

Qed.
We may still use autorewrite to apply f g when the generated premise is among our

assumptions.
Lemma f f f g : ∀ x, P x → f (f x) = g x.
intros; autorewrite with core; reflexivity.

Qed.
End garden path.
It can also be useful to apply the autorewrite with db in * form, which does rewriting

in hypotheses, as well as in the conclusion.
Lemma in star : ∀ x y, f (f (f (f x))) = f (f y)
→ f x = f (f (f y)).
intros; autorewrite with core in *; assumption.

Qed.
End autorewrite.

Many proofs can be automated in pleasantly modular ways with deft combinations of
auto and autorewrite.
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Chapter 14

Proof Search in Ltac

We have seen many examples of proof automation so far, some with tantalizing code snippets
from Ltac, Coq’s domain-specific language for proof search procedures. This chapter aims
to give a bottom-up presentation of the features of Ltac, focusing in particular on the Ltac
match construct, which supports a novel approach to backtracking search. First, though, we
will run through some useful automation tactics that are built into Coq. They are described
in detail in the manual, so we only outline what is possible.

14.1 Some Built-In Automation Tactics
A number of tactics are called repeatedly by crush. The intuition tactic simplifies propo-
sitional structure of goals. The congruence tactic applies the rules of equality and congru-
ence closure, plus properties of constructors of inductive types. The omega tactic provides
a complete decision procedure for a theory that is called quantifier-free linear arithmetic or
Presburger arithmetic, depending on whom you ask. That is, omega proves any goal that fol-
lows from looking only at parts of that goal that can be interpreted as propositional formulas
whose atomic formulas are basic comparison operations on natural numbers or integers, with
operands built from constants, variables, addition, and subtraction (with multiplication by
a constant available as a shorthand for addition or subtraction).

The ring tactic solves goals by appealing to the axioms of rings or semi-rings (as in
algebra), depending on the type involved. Coq developments may declare new types to be
parts of rings and semi-rings by proving the associated axioms. There is a similar tactic
field for simplifying values in fields by conversion to fractions over rings. Both ring and
field can only solve goals that are equalities. The fourier tactic uses Fourier’s method to
prove inequalities over real numbers, which are axiomatized in the Coq standard library.

The setoid facility makes it possible to register new equivalence relations to be understood
by tactics like rewrite. For instance, Prop is registered as a setoid with the equivalence
relation “if and only if.” The ability to register new setoids can be very useful in proofs of a
kind common in math, where all reasoning is done after “modding out by a relation.”

There are several other built-in “black box” automation tactics, which one can learn
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about by perusing the Coq manual. The real promise of Coq, though, is in the coding of
problem-specific tactics with Ltac.

14.2 Ltac Programming Basics
We have already seen many examples of Ltac programs. In the rest of this chapter, we
attempt to give a thorough introduction to the important features and design patterns.

One common use for match tactics is identification of subjects for case analysis, as we
see in this tactic definition.
Ltac find if :=
match goal with
| [ ` if ?X then else ] ⇒ destruct X

end.
The tactic checks if the conclusion is an if, destructing the test expression if so. Certain

classes of theorem are trivial to prove automatically with such a tactic.
Theorem hmm : ∀ (a b c : bool),
if a
then if b
then True
else True

else if c
then True
else True.

intros; repeat find if ; constructor.
Qed.

The repeat that we use here is called a tactical, or tactic combinator. The behavior of
repeat t is to loop through running t, running t on all generated subgoals, running t on their
generated subgoals, and so on. When t fails at any point in this search tree, that particular
subgoal is left to be handled by later tactics. Thus, it is important never to use repeat with
a tactic that always succeeds.

Another very useful Ltac building block is context patterns.
Ltac find if inside :=
match goal with
| [ ` context[if ?X then else ] ] ⇒ destruct X

end.
The behavior of this tactic is to find any subterm of the conclusion that is an if and

then destruct the test expression. This version subsumes find if.
Theorem hmm’ : ∀ (a b c : bool),
if a
then if b
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then True
else True

else if c
then True
else True.

intros; repeat find if inside; constructor.
Qed.

We can also use find if inside to prove goals that find if does not simplify sufficiently.
Theorem hmm2 : ∀ (a b : bool),
(if a then 42 else 42) = (if b then 42 else 42).
intros; repeat find if inside; reflexivity.

Qed.
Many decision procedures can be coded in Ltac via “repeat match loops.” For instance,

we can implement a subset of the functionality of tauto.
Ltac my tauto :=
repeat match goal with

| [ H : ?P ` ?P ] ⇒ exact H

| [ ` True ] ⇒ constructor
| [ ` ∧ ] ⇒ constructor
| [ ` → ] ⇒ intro

| [ H : False ` ] ⇒ destruct H
| [ H : ∧ ` ] ⇒ destruct H
| [ H : ∨ ` ] ⇒ destruct H

| [ H1 : ?P → ?Q, H2 : ?P ` ] ⇒ specialize (H1 H2 )
end.

Since match patterns can share unification variables between hypothesis and conclusion
patterns, it is easy to figure out when the conclusion matches a hypothesis. The exact tactic
solves a goal completely when given a proof term of the proper type.

It is also trivial to implement the introduction rules (in the sense of natural deduction [37])
for a few of the connectives. Implementing elimination rules is only a little more work, since
we must give a name for a hypothesis to destruct.

The last rule implements modus ponens, using a tactic specialize which will replace a
hypothesis with a version that is specialized to a provided set of arguments (for quantified
variables or local hypotheses from implications). By convention, when the argument to
specialize is an application of a hypothesis H to a set of arguments, the result of the
specialization replaces H. For other terms, the outcome is the same as with generalize.
Section propositional.
Variables P Q R : Prop.

274



Theorem propositional : (P ∨ Q ∨ False) ∧ (P → Q) → True ∧ Q.
my tauto.

Qed.
End propositional.

It was relatively easy to implement modus ponens, because we do not lose information
by clearing every implication that we use. If we want to implement a similarly complete
procedure for quantifier instantiation, we need a way to ensure that a particular proposition
is not already included among our hypotheses. To do that effectively, we first need to learn
a bit more about the semantics of match.

It is tempting to assume that match works like it does in ML. In fact, there are a few
critical differences in its behavior. One is that we may include arbitrary expressions in
patterns, instead of being restricted to variables and constructors. Another is that the same
variable may appear multiple times, inducing an implicit equality constraint.

There is a related pair of two other differences that are much more important than
the others. The match construct has a backtracking semantics for failure. In ML, pattern
matching works by finding the first pattern to match and then executing its body. If the
body raises an exception, then the overall match raises the same exception. In Coq, failures
in case bodies instead trigger continued search through the list of cases.

For instance, this (unnecessarily verbose) proof script works:
Theorem m1 : True.
match goal with
| [ ` ] ⇒ intro
| [ ` True ] ⇒ constructor

end.
Qed.

The first case matches trivially, but its body tactic fails, since the conclusion does not
begin with a quantifier or implication. In a similar ML match, the whole pattern-match
would fail. In Coq, we backtrack and try the next pattern, which also matches. Its body
tactic succeeds, so the overall tactic succeeds as well.

The example shows how failure can move to a different pattern within a match. Failure
can also trigger an attempt to find a different way of matching a single pattern. Consider
another example:
Theorem m2 : ∀ P Q R : Prop, P → Q → R → Q.
intros; match goal with

| [ H : ` ] ⇒ idtac H
end.

Coq prints “H1”. By applying idtac with an argument, a convenient debugging tool for
“leaking information out of matches,” we see that this match first tries binding H to H1 ,
which cannot be used to prove Q. Nonetheless, the following variation on the tactic succeeds
at proving the goal:
match goal with
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| [ H : ` ] ⇒ exact H
end.

Qed.
The tactic first unifies H with H1 , as before, but exact H fails in that case, so the tactic

engine searches for more possible values of H. Eventually, it arrives at the correct value, so
that exact H and the overall tactic succeed.

Now we are equipped to implement a tactic for checking that a proposition is not among
our hypotheses:
Ltac notHyp P :=
match goal with
| [ : P ` ] ⇒ fail 1
| ⇒
match P with
| ?P1 ∧ ?P2 ⇒ first [ notHyp P1 | notHyp P2 | fail 2 ]
| ⇒ idtac

end
end.
We use the equality checking that is built into pattern-matching to see if there is a

hypothesis that matches the proposition exactly. If so, we use the fail tactic. Without
arguments, fail signals normal tactic failure, as you might expect. When fail is passed an
argument n, n is used to count outwards through the enclosing cases of backtracking search.
In this case, fail 1 says “fail not just in this pattern-matching branch, but for the whole
match.” The second case will never be tried when the fail 1 is reached.

This second case, used when P matches no hypothesis, checks if P is a conjunction.
Other simplifications may have split conjunctions into their component formulas, so we need
to check that at least one of those components is also not represented. To achieve this, we
apply the first tactical, which takes a list of tactics and continues down the list until one
of them does not fail. The fail 2 at the end says to fail both the first and the match
wrapped around it.

The body of the ?P1 ∧ ?P2 case guarantees that, if it is reached, we either succeed
completely or fail completely. Thus, if we reach the wildcard case, P is not a conjunction.
We use idtac, a tactic that would be silly to apply on its own, since its effect is to succeed
at doing nothing. Nonetheless, idtac is a useful placeholder for cases like what we see here.

With the non-presence check implemented, it is easy to build a tactic that takes as input
a proof term and adds its conclusion as a new hypothesis, only if that conclusion is not
already present, failing otherwise.
Ltac extend pf :=
let t := type of pf in
notHyp t; generalize pf ; intro.

We see the useful type of operator of Ltac. This operator could not be implemented in
Gallina, but it is easy to support in Ltac. We end up with t bound to the type of pf. We
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check that t is not already present. If so, we use a generalize/intro combo to add a new
hypothesis proved by pf. The tactic generalize takes as input a term t (for instance, a
proof of some proposition) and then changes the conclusion from G to T → G, where T is
the type of t (for instance, the proposition proved by the proof t).

With these tactics defined, we can write a tactic completer for, among other things,
adding to the context all consequences of a set of simple first-order formulas.
Ltac completer :=
repeat match goal with

| [ ` ∧ ] ⇒ constructor
| [ H : ∧ ` ] ⇒ destruct H
| [ H : ?P → ?Q, H’ : ?P ` ] ⇒ specialize (H H’)
| [ ` ∀ x, ] ⇒ intro

| [ H : ∀ x, ?P x → , H’ : ?P ?X ` ] ⇒ extend (H X H’)
end.

We use the same kind of conjunction and implication handling as previously. Note that,
since→ is the special non-dependent case of ∀, the fourth rule handles intro for implications,
too.

In the fifth rule, when we find a ∀ fact H with a premise matching one of our hypotheses,
we add the appropriate instantiation of H ’s conclusion, if we have not already added it.

We can check that completer is working properly, with a theorem that introduces a
spurious variable whose didactic purpose we will come to shortly.
Section firstorder.
Variable A : Set.
Variables P Q R S : A → Prop.
Hypothesis H1 : ∀ x, P x → Q x ∧ R x.
Hypothesis H2 : ∀ x, R x → S x.
Theorem fo : ∀ (y x : A), P x → S x.
completer.

y : A
x : A
H : P x
H0 : Q x
H3 : R x
H4 : S x
============================
S x

assumption.
Qed.
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End firstorder.
We narrowly avoided a subtle pitfall in our definition of completer. Let us try another

definition that even seems preferable to the original, to the untrained eye. (We change the
second match case a bit to make the tactic smart enough to handle some subtleties of Ltac
behavior that had not been exercised previously.)
Ltac completer’ :=
repeat match goal with

| [ ` ∧ ] ⇒ constructor
| [ H : ?P ∧ ?Q ` ] ⇒ destruct H ;
repeat match goal with

| [ H’ : P ∧ Q ` ] ⇒ clear H’
end

| [ H : ?P → , H’ : ?P ` ] ⇒ specialize (H H’)
| [ ` ∀ x, ] ⇒ intro

| [ H : ∀ x, ?P x → , H’ : ?P ?X ` ] ⇒ extend (H X H’)
end.

The only other difference is in the modus ponens rule, where we have replaced an unused
unification variable ?Q with a wildcard. Let us try our example again with this version:
Section firstorder’.
Variable A : Set.
Variables P Q R S : A → Prop.
Hypothesis H1 : ∀ x, P x → Q x ∧ R x.
Hypothesis H2 : ∀ x, R x → S x.
Theorem fo’ : ∀ (y x : A), P x → S x.
completer’.

y : A
H1 : P y → Q y ∧ R y
H2 : R y → S y
x : A
H : P x
============================
S x
The quantified theorems have been instantiated with y instead of x, reducing a provable

goal to one that is unprovable. Our code in the last match case for completer’ is careful
only to instantiate quantifiers along with suitable hypotheses, so why were incorrect choices
made?
Abort.

End firstorder’.
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A few examples should illustrate the issue. Here we see a match-based proof that works
fine:
Theorem t1 : ∀ x : nat, x = x.
match goal with
| [ ` ∀ x, ] ⇒ trivial

end.
Qed.

This one fails.
Theorem t1’ : ∀ x : nat, x = x.
match goal with
| [ ` ∀ x, ?P ] ⇒ trivial

end.
User error: No matching clauses for match goal

Abort.
The problem is that unification variables may not contain locally bound variables. In this
case, ?P would need to be bound to x = x, which contains the local quantified variable x.
By using a wildcard in the earlier version, we avoided this restriction. To understand why
this restriction affects the behavior of the completer tactic, recall that, in Coq, implication is
shorthand for degenerate universal quantification where the quantified variable is not used.
Nonetheless, in an Ltac pattern, Coq is happy to match a wildcard implication against a
universal quantification.

The Coq 8.2 release includes a special pattern form for a unification variable with an
explicit set of free variables. That unification variable is then bound to a function from the
free variables to the “real” value. In Coq 8.1 and earlier, there is no such workaround. We
will see an example of this fancier binding form in Section 15.5.

No matter which Coq version you use, it is important to be aware of this restriction. As
we have alluded to, the restriction is the culprit behind the surprising behavior of completer’.
We unintentionally match quantified facts with the modus ponens rule, circumventing the
check that a suitably matching hypothesis is available and leading to different behavior,
where wrong quantifier instantiations are chosen. Our earlier completer tactic uses a modus
ponens rule that matches the implication conclusion with a variable, which blocks matching
against non-trivial universal quantifiers.

Actually, the behavior demonstrated here applies to Coq version 8.4, but not 8.4pl1. The
latter version will allow regular Ltac pattern variables to match terms that contain locally
bound variables, but a tactic failure occurs if that variable is later used as a Gallina term.

14.3 Functional Programming in Ltac

Ltac supports quite convenient functional programming, with a Lisp-with-syntax kind of
flavor. However, there are a few syntactic conventions involved in getting programs to be
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accepted. The Ltac syntax is optimized for tactic-writing, so one has to deal with some
inconveniences in writing more standard functional programs.

To illustrate, let us try to write a simple list length function. We start out writing it just
as in Gallina, simply replacing Fixpoint (and its annotations) with Ltac.
Ltac length ls :=
match ls with
| nil ⇒ O
| :: ls’ ⇒ S (length ls’)

end.

Error: The reference ls’ was not found in the current environment

At this point, we hopefully remember that pattern variable names must be prefixed by
question marks in Ltac.
Ltac length ls :=
match ls with
| nil ⇒ O
| :: ?ls’ ⇒ S (length ls’)

end.

Error: The reference S was not found in the current environment

The problem is that Ltac treats the expression S (length ls’) as an invocation of a tactic
S with argument length ls’. We need to use a special annotation to “escape into” the Gallina
parsing nonterminal.
Ltac length ls :=
match ls with
| nil ⇒ O
| :: ?ls’ ⇒ constr:(S (length ls’))

end.
This definition is accepted. It can be a little awkward to test Ltac definitions like this

one. Here is one method.
Goal False.
let n := length (1 :: 2 :: 3 :: nil) in
pose n.

n := S (length (2 :: 3 :: nil)) : nat
============================
False
We use the pose tactic, which extends the proof context with a new variable that is set

equal to a particular term. We could also have used idtac n in place of pose n, which would
have printed the result without changing the context.
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The value of n only has the length calculation unrolled one step. What has happened
here is that, by escaping into the constr nonterminal, we referred to the length function of
Gallina, rather than the length Ltac function that we are defining.
Abort.
Reset length.

The thing to remember is that Gallina terms built by tactics must be bound explicitly via
let or a similar technique, rather than inserting Ltac calls directly in other Gallina terms.
Ltac length ls :=
match ls with
| nil ⇒ O
| :: ?ls’ ⇒
let ls’’ := length ls’ in
constr:(S ls’’)

end.
Goal False.
let n := length (1 :: 2 :: 3 :: nil) in
pose n.

n := 3 : nat
============================
False

Abort.

We can also use anonymous function expressions and local function definitions in Ltac,
as this example of a standard list map function shows.
Ltac map T f :=
let rec map’ ls :=
match ls with
| nil ⇒ constr:(@nil T )
| ?x :: ?ls’ ⇒
let x’ := f x in
let ls’’ := map’ ls’ in
constr:(x’ :: ls’’)

end in
map’.
Ltac functions can have no implicit arguments. It may seem surprising that we need

to pass T, the carried type of the output list, explicitly. We cannot just use type of f ,
because f is an Ltac term, not a Gallina term, and Ltac programs are dynamically typed.
The function f could use very syntactic methods to decide to return differently typed terms
for different inputs. We also could not replace constr:(@nil T ) with constr:nil, because we
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have no strongly typed context to use to infer the parameter to nil. Luckily, we do have
sufficient context within constr:(x’ :: ls’’).

Sometimes we need to employ the opposite direction of “nonterminal escape,” when we
want to pass a complicated tactic expression as an argument to another tactic, as we might
want to do in invoking map.
Goal False.
let ls := map (nat × nat)%type ltac:(fun x ⇒ constr:(x, x)) (1 :: 2 :: 3 :: nil) in
pose ls.

l := (1, 1) :: (2, 2) :: (3, 3) :: nil : list (nat × nat)
============================
False

Abort.
Each position within an Ltac script has a default applicable non-terminal, where constr

and ltac are the main options worth thinking about, standing respectively for terms of
Gallina and Ltac. The explicit colon notation can always be used to override the default
non-terminal choice, though code being parsed as Gallina can no longer use such overrides.
Within the ltac non-terminal, top-level function applications are treated as applications in
Ltac, not Gallina; but the arguments to such functions are parsed with constr by default.
This choice may seem strange, until we realize that we have been relying on it all along in
all the proof scripts we write! For instance, the apply tactic is an Ltac function, and it is
natural to interpret its argument as a term of Gallina, not Ltac. We use an ltac prefix
to parse Ltac function arguments as Ltac terms themselves, as in the call to map above.
For some simple cases, Ltac terms may be passed without an extra prefix. For instance,
an identifier that has an Ltac meaning but no Gallina meaning will be interpreted in Ltac
automatically.

One other gotcha shows up when we want to debug our Ltac functional programs. We
might expect the following code to work, to give us a version of length that prints a debug
trace of the arguments it is called with.
Reset length.
Ltac length ls :=
idtac ls;
match ls with
| nil ⇒ O
| :: ?ls’ ⇒
let ls’’ := length ls’ in
constr:(S ls’’)

end.
Coq accepts the tactic definition, but the code is fatally flawed and will always lead to

dynamic type errors.
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Goal False.

let n := length (1 :: 2 :: 3 :: nil) in
pose n.

Error: variable n should be bound to a term.

Abort.
What is going wrong here? The answer has to do with the dual status of Ltac as both
a purely functional and an imperative programming language. The basic programming
language is purely functional, but tactic scripts are one “datatype” that can be returned by
such programs, and Coq will run such a script using an imperative semantics that mutates
proof states. Readers familiar with monadic programming in Haskell [45, 34] may recognize a
similarity. Haskell programs with side effects can be thought of as pure programs that return
the code of programs in an imperative language, where some out-of-band mechanism takes
responsibility for running these derived programs. In this way, Haskell remains pure, while
supporting usual input-output side effects and more. Ltac uses the same basic mechanism,
but in a dynamically typed setting. Here the embedded imperative language includes all the
tactics we have been applying so far.

Even basic idtac is an embedded imperative program, so we may not automatically mix
it with purely functional code. In fact, a semicolon operator alone marks a span of Ltac
code as an embedded tactic script. This makes some amount of sense, since pure functional
languages have no need for sequencing: since they lack side effects, there is no reason to run
an expression and then just throw away its value and move on to another expression.

An alternate explanation that avoids an analogy to Haskell monads (admittedly a tricky
concept in its own right) is: An Ltac tactic program returns a function that, when run
later, will perform the desired proof modification. These functions are distinct from other
types of data, like numbers or Gallina terms. The prior, correctly working version of length
computed solely with Gallina terms, but the new one is implicitly returning a tactic function,
as indicated by the use of idtac and semicolon. However, the new version’s recursive call to
length is structured to expect a Gallina term, not a tactic function, as output. As a result,
we have a basic dynamic type error, perhaps obscured by the involvement of first-class tactic
scripts.

The solution is like in Haskell: we must “monadify” our pure program to give it access
to side effects. The trouble is that the embedded tactic language has no return construct.
Proof scripts are about proving theorems, not calculating results. We can apply a somewhat
awkward workaround that requires translating our program into continuation-passing style
[39], a program structuring idea popular in functional programming.
Reset length.
Ltac length ls k :=
idtac ls;
match ls with
| nil ⇒ k O
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| :: ?ls’ ⇒ length ls’ ltac:(fun n ⇒ k (S n))
end.
The new length takes a new input: a continuation k, which is a function to be called

to continue whatever proving process we were in the middle of when we called length. The
argument passed to k may be thought of as the return value of length.
Goal False.
length (1 :: 2 :: 3 :: nil) ltac:(fun n ⇒ pose n).

(1 :: 2 :: 3 :: nil)
(2 :: 3 :: nil)
(3 :: nil)
nil
Abort.

We see exactly the trace of function arguments that we expected initially, and an exam-
ination of the proof state afterward would show that variable n has been added with value
3.

Considering the comparison with Haskell’s IO monad, there is an important subtlety that
deserves to be mentioned. A Haskell IO computation represents (theoretically speaking, at
least) a transformer from one state of the real world to another, plus a pure value to return.
Some of the state can be very specific to the program, as in the case of heap-allocated
mutable references, but some can be along the lines of the favorite example “launch missile,”
where the program has a side effect on the real world that is not possible to undo.

In contrast, Ltac scripts can be thought of as controlling just two simple kinds of mutable
state. First, there is the current sequence of proof subgoals. Second, there is a partial assign-
ment of discovered values to unification variables introduced by proof search (for instance,
by eauto, as we saw in the previous chapter). Crucially, every mutation of this state can be
undone during backtracking introduced by match, auto, and other built-in Ltac constructs.
Ltac proof scripts have state, but it is purely local, and all changes to it are reversible, which
is a very useful semantics for proof search.

14.4 Recursive Proof Search
Deciding how to instantiate quantifiers is one of the hardest parts of automated first-order
theorem proving. For a given problem, we can consider all possible bounded-length sequences
of quantifier instantiations, applying only propositional reasoning at the end. This is proba-
bly a bad idea for almost all goals, but it makes for a nice example of recursive proof search
procedures in Ltac.

We can consider the maximum “dependency chain” length for a first-order proof. We
define the chain length for a hypothesis to be 0, and the chain length for an instantiation
of a quantified fact to be one greater than the length for that fact. The tactic inster n is
meant to try all possible proofs with chain length at most n.

284



Ltac inster n :=
intuition;
match n with
| S ?n’ ⇒
match goal with
| [ H : ∀ x : ?T, , y : ?T ` ] ⇒ generalize (H y); inster n’

end
end.
The tactic begins by applying propositional simplification. Next, it checks if any chain

length remains, failing if not. Otherwise, it tries all possible ways of instantiating quantified
hypotheses with properly typed local variables. It is critical to realize that, if the recursive
call inster n’ fails, then the match goal just seeks out another way of unifying its pattern
against proof state. Thus, this small amount of code provides an elegant demonstration of
how backtracking match enables exhaustive search.

We can verify the efficacy of inster with two short examples. The built-in firstorder
tactic (with no extra arguments) is able to prove the first but not the second.
Section test inster.
Variable A : Set.
Variables P Q : A → Prop.
Variable f : A → A.
Variable g : A → A → A.
Hypothesis H1 : ∀ x y, P (g x y) → Q (f x).
Theorem test inster : ∀ x, P (g x x) → Q (f x).
inster 2.

Qed.
Hypothesis H3 : ∀ u v, P u ∧ P v ∧ u 6= v → P (g u v).
Hypothesis H4 : ∀ u, Q (f u) → P u ∧ P (f u).
Theorem test inster2 : ∀ x y, x 6= y → P x → Q (f y) → Q (f x).
inster 3.

Qed.
End test inster.

The style employed in the definition of inster can seem very counterintuitive to functional
programmers. Usually, functional programs accumulate state changes in explicit arguments
to recursive functions. In Ltac, the state of the current subgoal is always implicit. Nonethe-
less, recalling the discussion at the end of the last section, in contrast to general imperative
programming, it is easy to undo any changes to this state, and indeed such “undoing” hap-
pens automatically at failures within matches. In this way, Ltac programming is similar to
programming in Haskell with a stateful failure monad that supports a composition operator
along the lines of the first tactical.

Functional programming purists may react indignantly to the suggestion of programming
this way. Nonetheless, as with other kinds of “monadic programming,” many problems are
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much simpler to solve with Ltac than they would be with explicit, pure proof manipulation
in ML or Haskell. To demonstrate, we will write a basic simplification procedure for logical
implications.

This procedure is inspired by one for separation logic [40], where conjuncts in formulas
are thought of as “resources,” such that we lose no completeness by “crossing out” equal
conjuncts on the two sides of an implication. This process is complicated by the fact that,
for reasons of modularity, our formulas can have arbitrary nested tree structure (branching at
conjunctions) and may include existential quantifiers. It is helpful for the matching process
to “go under” quantifiers and in fact decide how to instantiate existential quantifiers in the
conclusion.

To distinguish the implications that our tactic handles from the implications that will
show up as “plumbing” in various lemmas, we define a wrapper definition, a notation, and
a tactic.
Definition imp (P1 P2 : Prop) := P1 → P2.
Infix "–>" := imp (no associativity, at level 95).
Ltac imp := unfold imp; firstorder.

These lemmas about imp will be useful in the tactic that we will write.
Theorem and True prem : ∀ P Q,

(P ∧ True –> Q)
→ (P –> Q).
imp.

Qed.
Theorem and True conc : ∀ P Q,
(P –> Q ∧ True)
→ (P –> Q).
imp.

Qed.
Theorem pick prem1 : ∀ P Q R S,
(P ∧ (Q ∧ R) –> S)
→ ((P ∧ Q) ∧ R –> S).
imp.

Qed.
Theorem pick prem2 : ∀ P Q R S,
(Q ∧ (P ∧ R) –> S)
→ ((P ∧ Q) ∧ R –> S).
imp.

Qed.
Theorem comm prem : ∀ P Q R,

(P ∧ Q –> R)
→ (Q ∧ P –> R).
imp.
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Qed.
Theorem pick conc1 : ∀ P Q R S,

(S –> P ∧ (Q ∧ R))
→ (S –> (P ∧ Q) ∧ R).
imp.

Qed.
Theorem pick conc2 : ∀ P Q R S,
(S –> Q ∧ (P ∧ R))
→ (S –> (P ∧ Q) ∧ R).
imp.

Qed.
Theorem comm conc : ∀ P Q R,

(R –> P ∧ Q)
→ (R –> Q ∧ P).
imp.

Qed.
The first order of business in crafting our matcher tactic will be auxiliary support for

searching through formula trees. The search prem tactic implements running its tactic
argument tac on every subformula of an imp premise. As it traverses a tree, search prem
applies some of the above lemmas to rewrite the goal to bring different subformulas to the
head of the goal. That is, for every subformula P of the implication premise, we want P to
“have a turn,” where the premise is rearranged into the form P ∧ Q for some Q. The tactic
tac should expect to see a goal in this form and focus its attention on the first conjunct of
the premise.
Ltac search prem tac :=
let rec search P :=
tac
|| (apply and True prem; tac)
|| match P with

| ?P1 ∧ ?P2 ⇒
(apply pick prem1; search P1 )
|| (apply pick prem2; search P2 )

end
in match goal with

| [ ` ?P ∧ –> ] ⇒ search P
| [ ` ∧ ?P –> ] ⇒ apply comm prem; search P
| [ ` –> ] ⇒ progress (tac || (apply and True prem; tac))

end.
To understand how search prem works, we turn first to the final match. If the premise

begins with a conjunction, we call the search procedure on each of the conjuncts, or only the
first conjunct, if that already yields a case where tac does not fail. The call search P expects
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and maintains the invariant that the premise is of the form P ∧ Q for some Q. We pass
P explicitly as a kind of decreasing induction measure, to avoid looping forever when tac
always fails. The second match case calls a commutativity lemma to realize this invariant,
before passing control to search. The final match case tries applying tac directly and then,
if that fails, changes the form of the goal by adding an extraneous True conjunct and calls
tac again. The progress tactical fails when its argument tactic succeeds without changing
the current subgoal.

The search function itself tries the same tricks as in the last case of the final match,
using the || operator as a shorthand for trying one tactic and then, if the first fails, trying
another. Additionally, if neither works, it checks if P is a conjunction. If so, it calls itself
recursively on each conjunct, first applying associativity/commutativity lemmas to maintain
the goal-form invariant.

We will also want a dual function search conc, which does tree search through an imp
conclusion.
Ltac search conc tac :=
let rec search P :=
tac
|| (apply and True conc; tac)
|| match P with

| ?P1 ∧ ?P2 ⇒
(apply pick conc1; search P1 )
|| (apply pick conc2; search P2 )

end
in match goal with

| [ ` –> ?P ∧ ] ⇒ search P
| [ ` –> ∧ ?P ] ⇒ apply comm conc; search P
| [ ` –> ] ⇒ progress (tac || (apply and True conc; tac))

end.
Now we can prove a number of lemmas that are suitable for application by our search

tactics. A lemma that is meant to handle a premise should have the form P ∧ Q –> R for
some interesting P, and a lemma that is meant to handle a conclusion should have the form
P –> Q ∧ R for some interesting Q.
Theorem False prem : ∀ P Q,
False ∧ P –> Q.
imp.

Qed.
Theorem True conc : ∀ P Q : Prop,
(P –> Q)
→ (P –> True ∧ Q).
imp.

Qed.
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Theorem Match : ∀ P Q R : Prop,
(Q –> R)
→ (P ∧ Q –> P ∧ R).
imp.

Qed.
Theorem ex prem : ∀ (T : Type) (P : T → Prop) (Q R : Prop),

(∀ x, P x ∧ Q –> R)
→ (ex P ∧ Q –> R).
imp.

Qed.
Theorem ex conc : ∀ (T : Type) (P : T → Prop) (Q R : Prop) x,
(Q –> P x ∧ R)
→ (Q –> ex P ∧ R).
imp.

Qed.
We will also want a “base case” lemma for finishing proofs where cancellation has removed

every constituent of the conclusion.
Theorem imp True : ∀ P,
P –> True.
imp.

Qed.
Our final matcher tactic is now straightforward. First, we intros all variables into

scope. Then we attempt simple premise simplifications, finishing the proof upon finding
False and eliminating any existential quantifiers that we find. After that, we search through
the conclusion. We remove True conjuncts, remove existential quantifiers by introducing
unification variables for their bound variables, and search for matching premises to cancel.
Finally, when no more progress is made, we see if the goal has become trivial and can be
solved by imp True. In each case, we use the tactic simple apply in place of apply to use
a simpler, less expensive unification algorithm.
Ltac matcher :=
intros;
repeat search prem ltac:(simple apply False prem || (simple apply ex prem; intro));
repeat search conc ltac:(simple apply True conc || simple eapply ex conc

|| search prem ltac:(simple apply Match));
try simple apply imp True.

Our tactic succeeds at proving a simple example.
Theorem t2 : ∀ P Q : Prop,
Q ∧ (P ∧ False) ∧ P –> P ∧ Q.
matcher.

Qed.
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In the generated proof, we find a trace of the workings of the search tactics.
Print t2.

t2 =
fun P Q : Prop ⇒
comm prem (pick prem1 (pick prem2 (False prem (P:=P ∧ P ∧ Q) (P ∧ Q))))

: ∀ P Q : Prop, Q ∧ (P ∧ False) ∧ P –> P ∧ Q

We can also see that matcher is well-suited for cases where some human intervention is
needed after the automation finishes.
Theorem t3 : ∀ P Q R : Prop,
P ∧ Q –> Q ∧ R ∧ P.
matcher.

============================
True –> R

Our tactic canceled those conjuncts that it was able to cancel, leaving a simplified subgoal
for us, much as intuition does.
Abort.

The matcher tactic even succeeds at guessing quantifier instantiations. It is the unifica-
tion that occurs in uses of the Match lemma that does the real work here.
Theorem t4 : ∀ (P : nat → Prop) Q, (∃ x, P x ∧ Q) –> Q ∧ (∃ x, P x).
matcher.

Qed.
Print t4.

t4 =
fun (P : nat → Prop) (Q : Prop) ⇒
and True prem
(ex prem (P:=fun x : nat ⇒ P x ∧ Q)

(fun x : nat ⇒
pick prem2
(Match (P:=Q)

(and True conc
(ex conc (fun x0 : nat ⇒ P x0 ) x

(Match (P:=P x) (imp True (P:=True))))))))
: ∀ (P : nat → Prop) (Q : Prop),
(∃ x : nat, P x ∧ Q) –> Q ∧ (∃ x : nat, P x)

This proof term is a mouthful, and we can be glad that we did not build it manually!
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14.5 Creating Unification Variables
A final useful ingredient in tactic crafting is the ability to allocate new unification variables
explicitly. Tactics like eauto introduce unification variables internally to support flexible
proof search. While eauto and its relatives do backward reasoning, we often want to do
similar forward reasoning, where unification variables can be useful for similar reasons.

For example, we can write a tactic that instantiates the quantifiers of a universally quan-
tified hypothesis. The tactic should not need to know what the appropriate instantiations
are; rather, we want these choices filled with placeholders. We hope that, when we apply
the specialized hypothesis later, syntactic unification will determine concrete values.

Before we are ready to write a tactic, we can try out its ingredients one at a time.
Theorem t5 : (∀ x : nat, S x > x) → 2 > 1.
intros.

H : ∀ x : nat, S x > x
============================
2 > 1

To instantiate H generically, we first need to name the value to be used for x.
evar (y : nat).

H : ∀ x : nat, S x > x
y := ?279 : nat
============================
2 > 1

The proof context is extended with a new variable y, which has been assigned to be equal
to a fresh unification variable ?279. We want to instantiate H with ?279. To get ahold of the
new unification variable, rather than just its alias y, we perform a trivial unfolding in the
expression y, using the eval Ltac construct, which works with the same reduction strategies
that we have seen in tactics (e.g., simpl, compute, etc.).
let y’ := eval unfold y in y in
clear y; specialize (H y’).

H : S ?279 > ?279
============================

2 > 1

Our instantiation was successful. We can finish the proof by using apply’s unification to
figure out the proper value of ?279.
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apply H.
Qed.

Now we can write a tactic that encapsulates the pattern we just employed, instantiating
all quantifiers of a particular hypothesis.
Ltac insterU H :=
repeat match type of H with

| ∀ x : ?T, ⇒
let x := fresh "x" in
evar (x : T );
let x’ := eval unfold x in x in
clear x ; specialize (H x’)

end.
Theorem t5’ : (∀ x : nat, S x > x) → 2 > 1.
intro H ; insterU H ; apply H.

Qed.
This particular example is somewhat silly, since apply by itself would have solved the goal

originally. Separate forward reasoning is more useful on hypotheses that end in existential
quantifications. Before we go through an example, it is useful to define a variant of insterU
that does not clear the base hypothesis we pass to it. We use the Ltac construct fresh to
generate a hypothesis name that is not already used, based on a string suggesting a good
name.
Ltac insterKeep H :=
let H’ := fresh "H’" in
generalize H ; intro H’ ; insterU H’.

Section t6.
Variables A B : Type.
Variable P : A → B → Prop.
Variable f : A → A → A.
Variable g : B → B → B.
Hypothesis H1 : ∀ v, ∃ u, P v u.
Hypothesis H2 : ∀ v1 u1 v2 u2,
P v1 u1
→ P v2 u2
→ P (f v1 v2 ) (g u1 u2 ).

Theorem t6 : ∀ v1 v2, ∃ u1, ∃ u2, P (f v1 v2 ) (g u1 u2 ).
intros.
Neither eauto nor firstorder is clever enough to prove this goal. We can help out by

doing some of the work with quantifiers ourselves, abbreviating the proof with the do tactical
for repetition of a tactic a set number of times.

do 2 insterKeep H1.
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Our proof state is extended with two generic instances of H1 .

H’ : ∃ u : B, P ?4289 u
H’0 : ∃ u : B, P ?4288 u
============================
∃ u1 : B, ∃ u2 : B, P (f v1 v2 ) (g u1 u2 )

Normal eauto still cannot prove the goal, so we eliminate the two new existential quan-
tifiers. (Recall that ex is the underlying type family to which uses of the ∃ syntax are
compiled.)

repeat match goal with
| [ H : ex ` ] ⇒ destruct H

end.
Now the goal is simple enough to solve by logic programming.
eauto.

Qed.
End t6.

Our insterU tactic does not fare so well with quantified hypotheses that also contain
implications. We can see the problem in a slight modification of the last example. We
introduce a new unary predicate Q and use it to state an additional requirement of our
hypothesis H1 .
Section t7.
Variables A B : Type.
Variable Q : A → Prop.
Variable P : A → B → Prop.
Variable f : A → A → A.
Variable g : B → B → B.
Hypothesis H1 : ∀ v, Q v → ∃ u, P v u.
Hypothesis H2 : ∀ v1 u1 v2 u2,
P v1 u1
→ P v2 u2
→ P (f v1 v2 ) (g u1 u2 ).

Theorem t7 : ∀ v1 v2, Q v1 → Q v2 → ∃ u1, ∃ u2, P (f v1 v2 ) (g u1 u2 ).
intros; do 2 insterKeep H1 ;
repeat match goal with

| [ H : ex ` ] ⇒ destruct H
end; eauto.

This proof script does not hit any errors until the very end, when an error message like
this one is displayed.
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No more subgoals but non-instantiated existential variables :
Existential 1 =

?4384 : [A : Type
B : Type
Q : A → Prop
P : A → B → Prop
f : A → A → A
g : B → B → B
H1 : ∀ v : A, Q v → ∃ u : B, P v u
H2 : ∀ (v1 : A) (u1 : B) (v2 : A) (u2 : B),

P v1 u1 → P v2 u2 → P (f v1 v2 ) (g u1 u2 )
v1 : A
v2 : A
H : Q v1
H0 : Q v2
H’ : Q v2 → ∃ u : B, P v2 u ` Q v2 ]

There is another similar line about a different existential variable. Here, “existential
variable” means what we have also called “unification variable.” In the course of the proof,
some unification variable ?4384 was introduced but never unified. Unification variables are
just a device to structure proof search; the language of Gallina proof terms does not include
them. Thus, we cannot produce a proof term without instantiating the variable.

The error message shows that ?4384 is meant to be a proof of Q v2 in a particular proof
state, whose variables and hypotheses are displayed. It turns out that ?4384 was created by
insterU, as the value of a proof to pass to H1 . Recall that, in Gallina, implication is just
a degenerate case of ∀ quantification, so the insterU code to match against ∀ also matched
the implication. Since any proof of Q v2 is as good as any other in this context, there was
never any opportunity to use unification to determine exactly which proof is appropriate.
We expect similar problems with any implications in arguments to insterU.
Abort.

End t7.
Reset insterU.

We can redefine insterU to treat implications differently. In particular, we pattern-match
on the type of the type T in ∀ x : ?T, .... If T has type Prop, then x ’s instantiation should
be thought of as a proof. Thus, instead of picking a new unification variable for it, we instead
apply a user-supplied tactic tac. It is important that we end this special Prop case with ||
fail 1, so that, if tac fails to prove T, we abort the instantiation, rather than continuing on
to the default quantifier handling. Also recall that the tactic form solve [ t ] fails if t does
not completely solve the goal.
Ltac insterU tac H :=
repeat match type of H with

| ∀ x : ?T, ⇒
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match type of T with
| Prop ⇒
(let H’ := fresh "H’" in
assert (H’ : T ) by solve [ tac ];
specialize (H H’); clear H’)

|| fail 1
| ⇒
let x := fresh "x" in
evar (x : T );
let x’ := eval unfold x in x in
clear x ; specialize (H x’)

end
end.

Ltac insterKeep tac H :=
let H’ := fresh "H’" in
generalize H ; intro H’ ; insterU tac H’.

Section t7.
Variables A B : Type.
Variable Q : A → Prop.
Variable P : A → B → Prop.
Variable f : A → A → A.
Variable g : B → B → B.
Hypothesis H1 : ∀ v, Q v → ∃ u, P v u.
Hypothesis H2 : ∀ v1 u1 v2 u2,
P v1 u1
→ P v2 u2
→ P (f v1 v2 ) (g u1 u2 ).

Theorem t7 : ∀ v1 v2, Q v1 → Q v2 → ∃ u1, ∃ u2, P (f v1 v2 ) (g u1 u2 ).
We can prove the goal by calling insterKeep with a tactic that tries to find and apply

a Q hypothesis over a variable about which we do not yet know any P facts. We need to
begin this tactic code with idtac; to get around a strange limitation in Coq’s proof engine,
where a first-class tactic argument may not begin with a match.

intros; do 2 insterKeep ltac:(idtac; match goal with
| [ H : Q ?v ` ] ⇒
match goal with
| [ : context[P v ] ` ] ⇒ fail 1
| ⇒ apply H

end
end) H1 ;

repeat match goal with
| [ H : ex ` ] ⇒ destruct H
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end; eauto.
Qed.

End t7.
It is often useful to instantiate existential variables explicitly. A built-in tactic provides

one way of doing so.
Theorem t8 : ∃ p : nat × nat, fst p = 3.
econstructor; instantiate (1 := (3, 2)); reflexivity.

Qed.
The 1 above is identifying an existential variable appearing in the current goal, with the

last existential appearing assigned number 1, the second-last assigned number 2, and so on.
The named existential is replaced everywhere by the term to the right of the :=.

The instantiate tactic can be convenient for exploratory proving, but it leads to very
brittle proof scripts that are unlikely to adapt to changing theorem statements. It is often
more helpful to have a tactic that can be used to assign a value to a term that is known
to be an existential. By employing a roundabout implementation technique, we can build a
tactic that generalizes this functionality. In particular, our tactic equate will assert that two
terms are equal. If one of the terms happens to be an existential, then it will be replaced
everywhere with the other term.
Ltac equate x y :=
let dummy := constr:(eq refl x : x = y) in idtac.
This tactic fails if it is not possible to prove x = y by eq refl. We check the proof only

for its unification side effects, ignoring the associated variable dummy. With equate, we can
build a less brittle version of the prior example.
Theorem t9 : ∃ p : nat × nat, fst p = 3.
econstructor; match goal with

| [ ` fst ?x = 3 ] ⇒ equate x (3, 2)
end; reflexivity.

Qed.
This technique is even more useful within recursive and iterative tactics that are meant

to solve broad classes of goals.
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Chapter 15

Proof by Reflection

The last chapter highlighted a very heuristic approach to proving. In this chapter, we will
study an alternative technique, proof by reflection [2]. We will write, in Gallina, decision
procedures with proofs of correctness, and we will appeal to these procedures in writing very
short proofs. Such a proof is checked by running the decision procedure. The term reflection
applies because we will need to translate Gallina propositions into values of inductive types
representing syntax, so that Gallina programs may analyze them, and translating such a
term back to the original form is called reflecting it.

15.1 Proving Evenness
Proving that particular natural number constants are even is certainly something we would
rather have happen automatically. The Ltac-programming techniques that we learned in the
last chapter make it easy to implement such a procedure.
Inductive isEven : nat → Prop :=
| Even O : isEven O
| Even SS : ∀ n, isEven n → isEven (S (S n)).
Ltac prove even := repeat constructor.
Theorem even 256 : isEven 256.
prove even.

Qed.
Print even 256.

even 256 =
Even SS

(Even SS
(Even SS

(Even SS
...and so on. This procedure always works (at least on machines with infinite resources), but
it has a serious drawback, which we see when we print the proof it generates that 256 is even.
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The final proof term has length super-linear in the input value. Coq’s implicit arguments
mechanism is hiding the values given for parameter n of Even SS, which is why the proof
term only appears linear here. Also, proof terms are represented internally as syntax trees,
with opportunity for sharing of node representations, but in this chapter we will measure
proof term size as simple textual length or as the number of nodes in the term’s syntax tree,
two measures that are approximately equivalent. Sometimes apparently large proof terms
have enough internal sharing that they take up less memory than we expect, but one avoids
having to reason about such sharing by ensuring that the size of a sharing-free version of a
term is low enough.

Superlinear evenness proof terms seem like a shame, since we could write a trivial and
trustworthy program to verify evenness of constants. The proof checker could simply call
our program where needed.

It is also unfortunate not to have static typing guarantees that our tactic always behaves
appropriately. Other invocations of similar tactics might fail with dynamic type errors, and
we would not know about the bugs behind these errors until we happened to attempt to
prove complex enough goals.

The techniques of proof by reflection address both complaints. We will be able to write
proofs like in the example above with constant size overhead beyond the size of the input,
and we will do it with verified decision procedures written in Gallina.

For this example, we begin by using a type from the MoreSpecif module (included in the
book source) to write a certified evenness checker.

Print partial.

Inductive partial (P : Prop) : Set := Proved : P → [P] | Uncertain : [P]
A partial P value is an optional proof of P. The notation [P] stands for partial P.

Local Open Scope partial scope.
We bring into scope some notations for the partial type. These overlap with some of the

notations we have seen previously for specification types, so they were placed in a separate
scope that needs separate opening.
Definition check even : ∀ n : nat, [isEven n].
Hint Constructors isEven.
refine (fix F (n : nat) : [isEven n] :=
match n with
| 0 ⇒ Yes
| 1 ⇒ No
| S (S n’) ⇒ Reduce (F n’)

end); auto.
Defined.

The function check even may be viewed as a verified decision procedure, because its type
guarantees that it never returns Yes for inputs that are not even.
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Now we can use dependent pattern-matching to write a function that performs a sur-
prising feat. When given a partial P, this function partialOut returns a proof of P if the
partial value contains a proof, and it returns a (useless) proof of True otherwise. From the
standpoint of ML and Haskell programming, it seems impossible to write such a type, but
it is trivial with a return annotation.
Definition partialOut (P : Prop) (x : [P]) :=
match x return (match x with

| Proved ⇒ P
| Uncertain ⇒ True

end) with
| Proved pf ⇒ pf
| Uncertain ⇒ I

end.
It may seem strange to define a function like this. However, it turns out to be very useful

in writing a reflective version of our earlier prove even tactic:
Ltac prove even reflective :=
match goal with
| [ ` isEven ?N ] ⇒ exact (partialOut (check even N ))

end.
We identify which natural number we are considering, and we “prove” its evenness by

pulling the proof out of the appropriate check even call. Recall that the exact tactic proves
a proposition P when given a proof term of precisely type P.
Theorem even 256’ : isEven 256.
prove even reflective.

Qed.
Print even 256’.

even 256’ = partialOut (check even 256)
: isEven 256

We can see a constant wrapper around the object of the proof. For any even number,
this form of proof will suffice. The size of the proof term is now linear in the number being
checked, containing two repetitions of the unary form of that number, one of which is hidden
above within the implicit argument to partialOut.

What happens if we try the tactic with an odd number?
Theorem even 255 : isEven 255.
prove even reflective.

User error: No matching clauses for match goal

Thankfully, the tactic fails. To see more precisely what goes wrong, we can run manually
the body of the match.
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exact (partialOut (check even 255)).

Error: The term "partialOut (check_even 255)" has type
"match check_even 255 with
| Yes => isEven 255
| No => True
end" while it is expected to have type "isEven 255"

As usual, the type checker performs no reductions to simplify error messages. If we
reduced the first term ourselves, we would see that check even 255 reduces to a No, so that
the first term is equivalent to True, which certainly does not unify with isEven 255.
Abort.

Our tactic prove even reflective is reflective because it performs a proof search process
(a trivial one, in this case) wholly within Gallina, where the only use of Ltac is to translate
a goal into an appropriate use of check even.

15.2 Reifying the Syntax of a Trivial Tautology Lan-
guage

We might also like to have reflective proofs of trivial tautologies like this one:
Theorem true galore : (True ∧ True) → (True ∨ (True ∧ (True → True))).
tauto.

Qed.

Print true galore.

true galore =
fun H : True ∧ True ⇒
and ind (fun : True ⇒ or introl (True ∧ (True → True)) I) H

: True ∧ True → True ∨ True ∧ (True → True)
As we might expect, the proof that tauto builds contains explicit applications of natural

deduction rules. For large formulas, this can add a linear amount of proof size overhead,
beyond the size of the input.

To write a reflective procedure for this class of goals, we will need to get into the actual
“reflection” part of “proof by reflection.” It is impossible to case-analyze a Prop in any way
in Gallina. We must reify Prop into some type that we can analyze. This inductive type is
a good candidate:
Inductive taut : Set :=
| TautTrue : taut
| TautAnd : taut → taut → taut
| TautOr : taut → taut → taut
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| TautImp : taut → taut → taut.
We write a recursive function to reflect this syntax back to Prop. Such functions are

also called interpretation functions, and we have used them in previous examples to give
semantics to small programming languages.
Fixpoint tautDenote (t : taut) : Prop :=
match t with
| TautTrue ⇒ True
| TautAnd t1 t2 ⇒ tautDenote t1 ∧ tautDenote t2
| TautOr t1 t2 ⇒ tautDenote t1 ∨ tautDenote t2
| TautImp t1 t2 ⇒ tautDenote t1 → tautDenote t2

end.
It is easy to prove that every formula in the range of tautDenote is true.

Theorem tautTrue : ∀ t, tautDenote t.
induction t; crush.

Qed.
To use tautTrue to prove particular formulas, we need to implement the syntax reification

process. A recursive Ltac function does the job.
Ltac tautReify P :=
match P with
| True ⇒ TautTrue
| ?P1 ∧ ?P2 ⇒
let t1 := tautReify P1 in
let t2 := tautReify P2 in
constr:(TautAnd t1 t2 )

| ?P1 ∨ ?P2 ⇒
let t1 := tautReify P1 in
let t2 := tautReify P2 in
constr:(TautOr t1 t2 )

| ?P1 → ?P2 ⇒
let t1 := tautReify P1 in
let t2 := tautReify P2 in
constr:(TautImp t1 t2 )

end.
With tautReify available, it is easy to finish our reflective tactic. We look at the goal

formula, reify it, and apply tautTrue to the reified formula.
Ltac obvious :=
match goal with
| [ ` ?P ] ⇒
let t := tautReify P in
exact (tautTrue t)
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end.
We can verify that obvious solves our original example, with a proof term that does not

mention details of the proof.
Theorem true galore’ : (True ∧ True) → (True ∨ (True ∧ (True → True))).
obvious.

Qed.
Print true galore’.

true galore’ =
tautTrue

(TautImp (TautAnd TautTrue TautTrue)
(TautOr TautTrue (TautAnd TautTrue (TautImp TautTrue TautTrue))))
: True ∧ True → True ∨ True ∧ (True → True)

It is worth considering how the reflective tactic improves on a pure-Ltac implementation.
The formula reification process is just as ad-hoc as before, so we gain little there. In general,
proofs will be more complicated than formula translation, and the “generic proof rule” that
we apply here is on much better formal footing than a recursive Ltac function. The dependent
type of the proof guarantees that it “works” on any input formula. This benefit is in addition
to the proof-size improvement that we have already seen.

It may also be worth pointing out that our previous example of evenness testing used
a function partialOut for sound handling of input goals that the verified decision procedure
fails to prove. Here, we prove that our procedure tautTrue (recall that an inductive proof
may be viewed as a recursive procedure) is able to prove any goal representable in taut, so
no extra step is necessary.

15.3 A Monoid Expression Simplifier
Proof by reflection does not require encoding of all of the syntax in a goal. We can insert
“variables” in our syntax types to allow injection of arbitrary pieces, even if we cannot apply
specialized reasoning to them. In this section, we explore that possibility by writing a tactic
for normalizing monoid equations.
Section monoid.
Variable A : Set.
Variable e : A.
Variable f : A → A → A.
Infix "+" := f.
Hypothesis assoc : ∀ a b c, (a + b) + c = a + (b + c).
Hypothesis identl : ∀ a, e + a = a.
Hypothesis identr : ∀ a, a + e = a.
We add variables and hypotheses characterizing an arbitrary instance of the algebraic

structure of monoids. We have an associative binary operator and an identity element for it.
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It is easy to define an expression tree type for monoid expressions. A Var constructor
is a “catch-all” case for subexpressions that we cannot model. These subexpressions could
be actual Gallina variables, or they could just use functions that our tactic is unable to
understand.
Inductive mexp : Set :=
| Ident : mexp
| Var : A → mexp
| Op : mexp → mexp → mexp.
Next, we write an interpretation function.
Fixpoint mdenote (me : mexp) : A :=
match me with
| Ident ⇒ e
| Var v ⇒ v
| Op me1 me2 ⇒ mdenote me1 + mdenote me2

end.
We will normalize expressions by flattening them into lists, via associativity, so it is

helpful to have a denotation function for lists of monoid values.
Fixpoint mldenote (ls : list A) : A :=
match ls with
| nil ⇒ e
| x :: ls’ ⇒ x + mldenote ls’

end.
The flattening function itself is easy to implement.
Fixpoint flatten (me : mexp) : list A :=
match me with
| Ident ⇒ nil
| Var x ⇒ x :: nil
| Op me1 me2 ⇒ flatten me1 ++ flatten me2

end.
This function has a straightforward correctness proof in terms of our denote functions.
Lemma flatten correct’ : ∀ ml2 ml1,

mldenote ml1 + mldenote ml2 = mldenote (ml1 ++ ml2 ).
induction ml1 ; crush.

Qed.
Theorem flatten correct : ∀ me, mdenote me = mldenote (flatten me).
Hint Resolve flatten correct’.
induction me; crush.

Qed.
Now it is easy to prove a theorem that will be the main tool behind our simplification

tactic.
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Theorem monoid reflect : ∀ me1 me2,
mldenote (flatten me1 ) = mldenote (flatten me2 )
→ mdenote me1 = mdenote me2.
intros; repeat rewrite flatten correct; assumption.

Qed.
We implement reification into the mexp type.
Ltac reify me :=
match me with
| e ⇒ Ident
| ?me1 + ?me2 ⇒
let r1 := reify me1 in
let r2 := reify me2 in
constr:(Op r1 r2 )

| ⇒ constr:(Var me)
end.
The final monoid tactic works on goals that equate two monoid terms. We reify each and

change the goal to refer to the reified versions, finishing off by applying monoid reflect and
simplifying uses of mldenote. Recall that the change tactic replaces a conclusion formula
with another that is definitionally equal to it.
Ltac monoid :=
match goal with
| [ ` ?me1 = ?me2 ] ⇒
let r1 := reify me1 in
let r2 := reify me2 in
change (mdenote r1 = mdenote r2 );
apply monoid reflect; simpl

end.
We can make short work of theorems like this one:

Theorem t1 : ∀ a b c d, a + b + c + d = a + (b + c) + d.
intros; monoid.

============================
a + (b + (c + (d + e))) = a + (b + (c + (d + e)))

Our tactic has canonicalized both sides of the equality, such that we can finish the proof
by reflexivity.

reflexivity.
Qed.
It is interesting to look at the form of the proof.
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Print t1.

t1 =
fun a b c d : A ⇒
monoid reflect (Op (Op (Op (Var a) (Var b)) (Var c)) (Var d))

(Op (Op (Var a) (Op (Var b) (Var c))) (Var d))
(eq refl (a + (b + (c + (d + e)))))

: ∀ a b c d : A, a + b + c + d = a + (b + c) + d
The proof term contains only restatements of the equality operands in reified form, fol-

lowed by a use of reflexivity on the shared canonical form.
End monoid.

Extensions of this basic approach are used in the implementations of the ring and field
tactics that come packaged with Coq.

15.4 A Smarter Tautology Solver
Now we are ready to revisit our earlier tautology solver example. We want to broaden the
scope of the tactic to include formulas whose truth is not syntactically apparent. We will
want to allow injection of arbitrary formulas, like we allowed arbitrary monoid expressions
in the last example. Since we are working in a richer theory, it is important to be able to
use equalities between different injected formulas. For instance, we cannot prove P → P by
translating the formula into a value like Imp (Var P) (Var P), because a Gallina function has
no way of comparing the two Ps for equality.

To arrive at a nice implementation satisfying these criteria, we introduce the quote tactic
and its associated library.
Require Import Quote.
Inductive formula : Set :=
| Atomic : index → formula
| Truth : formula
| Falsehood : formula
| And : formula → formula → formula
| Or : formula → formula → formula
| Imp : formula → formula → formula.

The type index comes from the Quote library and represents a countable variable type.
The rest of formula’s definition should be old hat by now.

The quote tactic will implement injection from Prop into formula for us, but it is not
quite as smart as we might like. In particular, it wants to treat function types specially, so
it gets confused if function types are part of the structure we want to encode syntactically.
To trick quote into not noticing our uses of function types to express logical implication, we
will need to declare a wrapper definition for implication, as we did in the last chapter.
Definition imp (P1 P2 : Prop) := P1 → P2.
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Infix "–>" := imp (no associativity, at level 95).
Now we can define our denotation function.

Definition asgn := varmap Prop.
Fixpoint formulaDenote (atomics : asgn) (f : formula) : Prop :=
match f with
| Atomic v ⇒ varmap find False v atomics
| Truth ⇒ True
| Falsehood ⇒ False
| And f1 f2 ⇒ formulaDenote atomics f1 ∧ formulaDenote atomics f2
| Or f1 f2 ⇒ formulaDenote atomics f1 ∨ formulaDenote atomics f2
| Imp f1 f2 ⇒ formulaDenote atomics f1 –> formulaDenote atomics f2

end.
The varmap type family implements maps from index values. In this case, we define

an assignment as a map from variables to Props. Our interpretation function formulaDenote
works with an assignment, and we use the varmap find function to consult the assignment
in the Atomic case. The first argument to varmap find is a default value, in case the variable
is not found.
Section my tauto.
Variable atomics : asgn.
Definition holds (v : index) := varmap find False v atomics.
We define some shorthand for a particular variable being true, and now we are ready

to define some helpful functions based on the ListSet module of the standard library, which
(unsurprisingly) presents a view of lists as sets.
Require Import ListSet.
Definition index eq : ∀ x y : index, {x = y} + {x 6= y}.
decide equality.

Defined.
Definition add (s : set index) (v : index) := set add index eq v s.
Definition In dec : ∀ v (s : set index), {In v s} + {¬ In v s}.
Local Open Scope specif scope.
intro; refine (fix F (s : set index) : {In v s} + {¬ In v s} :=
match s with
| nil ⇒ No
| v’ :: s’ ⇒ index eq v’ v || F s’

end); crush.
Defined.
We define what it means for all members of an index set to represent true propositions,

and we prove some lemmas about this notion.
Fixpoint allTrue (s : set index) : Prop :=
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match s with
| nil ⇒ True
| v :: s’ ⇒ holds v ∧ allTrue s’

end.
Theorem allTrue add : ∀ v s,

allTrue s
→ holds v
→ allTrue (add s v).
induction s; crush;
match goal with
| [ ` context[if ?E then else ] ] ⇒ destruct E

end; crush.
Qed.
Theorem allTrue In : ∀ v s,
allTrue s
→ set In v s
→ varmap find False v atomics.
induction s; crush.

Qed.
Hint Resolve allTrue add allTrue In.
Local Open Scope partial scope.
Now we can write a function forward that implements deconstruction of hypotheses,

expanding a compound formula into a set of sets of atomic formulas covering all possible
cases introduced with use of Or. To handle consideration of multiple cases, the function
takes in a continuation argument, which will be called once for each case.

The forward function has a dependent type, in the style of Chapter 6, guaranteeing
correctness. The arguments to forward are a goal formula f , a set known of atomic formulas
that we may assume are true, a hypothesis formula hyp, and a success continuation cont that
we call when we have extended known to hold new truths implied by hyp.
Definition forward : ∀ (f : formula) (known : set index) (hyp : formula)
(cont : ∀ known’, [allTrue known’ → formulaDenote atomics f ]),
[allTrue known → formulaDenote atomics hyp → formulaDenote atomics f ].
refine (fix F (f : formula) (known : set index) (hyp : formula)
(cont : ∀ known’, [allTrue known’ → formulaDenote atomics f ])
: [allTrue known → formulaDenote atomics hyp → formulaDenote atomics f ] :=
match hyp with
| Atomic v ⇒ Reduce (cont (add known v))
| Truth ⇒ Reduce (cont known)
| Falsehood ⇒ Yes
| And h1 h2 ⇒
Reduce (F (Imp h2 f ) known h1 (fun known’ ⇒
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Reduce (F f known’ h2 cont)))
| Or h1 h2 ⇒ F f known h1 cont && F f known h2 cont
| Imp ⇒ Reduce (cont known)

end); crush.
Defined.
A backward function implements analysis of the final goal. It calls forward to handle

implications.
Definition backward : ∀ (known : set index) (f : formula),
[allTrue known → formulaDenote atomics f ].
refine (fix F (known : set index) (f : formula)

: [allTrue known → formulaDenote atomics f ] :=
match f with
| Atomic v ⇒ Reduce (In dec v known)
| Truth ⇒ Yes
| Falsehood ⇒ No
| And f1 f2 ⇒ F known f1 && F known f2
| Or f1 f2 ⇒ F known f1 || F known f2
| Imp f1 f2 ⇒ forward f2 known f1 (fun known’ ⇒ F known’ f2 )

end); crush; eauto.
Defined.
A simple wrapper around backward gives us the usual type of a partial decision procedure.
Definition my tauto : ∀ f : formula, [formulaDenote atomics f ].
intro; refine (Reduce (backward nil f )); crush.

Defined.
End my tauto.

Our final tactic implementation is now fairly straightforward. First, we intro all quanti-
fiers that do not bind Props. Then we call the quote tactic, which implements the reification
for us. Finally, we are able to construct an exact proof via partialOut and the my tauto Gal-
lina function.
Ltac my tauto :=
repeat match goal with

| [ ` ∀ x : ?P, ] ⇒
match type of P with
| Prop ⇒ fail 1
| ⇒ intro

end
end;

quote formulaDenote;
match goal with
| [ ` formulaDenote ?m ?f ] ⇒ exact (partialOut (my tauto m f ))

end.
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A few examples demonstrate how the tactic works.
Theorem mt1 : True.
my tauto.

Qed.
Print mt1.

mt1 = partialOut (my tauto (Empty vm Prop) Truth)
: True

We see my tauto applied with an empty varmap, since every subformula is handled by
formulaDenote.
Theorem mt2 : ∀ x y : nat, x = y –> x = y.
my tauto.

Qed.

Print mt2.

mt2 =
fun x y : nat ⇒
partialOut

(my tauto (Node vm (x = y) (Empty vm Prop) (Empty vm Prop))
(Imp (Atomic End idx) (Atomic End idx)))
: ∀ x y : nat, x = y –> x = y

Crucially, both instances of x = y are represented with the same index, End idx. The
value of this index only needs to appear once in the varmap, whose form reveals that varmaps
are represented as binary trees, where index values denote paths from tree roots to leaves.
Theorem mt3 : ∀ x y z,
(x < y ∧ y > z) ∨ (y > z ∧ x < S y)
–> y > z ∧ (x < y ∨ x < S y).
my tauto.

Qed.
Print mt3.

fun x y z : nat ⇒
partialOut

(my tauto
(Node vm (x < S y) (Node vm (x < y) (Empty vm Prop) (Empty vm Prop))

(Node vm (y > z) (Empty vm Prop) (Empty vm Prop)))
(Imp

(Or (And (Atomic (Left idx End idx)) (Atomic (Right idx End idx)))
(And (Atomic (Right idx End idx)) (Atomic End idx)))

(And (Atomic (Right idx End idx))
(Or (Atomic (Left idx End idx)) (Atomic End idx)))))
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: ∀ x y z : nat,
x < y ∧ y > z ∨ y > z ∧ x < S y –> y > z ∧ (x < y ∨ x < S y)

Our goal contained three distinct atomic formulas, and we see that a three-element
varmap is generated.

It can be interesting to observe differences between the level of repetition in proof terms
generated by my tauto and tauto for especially trivial theorems.
Theorem mt4 : True ∧ True ∧ True ∧ True ∧ True ∧ True ∧ False –> False.
my tauto.

Qed.
Print mt4.

mt4 =
partialOut

(my tauto (Empty vm Prop)
(Imp

(And Truth
(And Truth

(And Truth (And Truth (And Truth (And Truth Falsehood))))))
Falsehood))

: True ∧ True ∧ True ∧ True ∧ True ∧ True ∧ False –> False

Theorem mt4’ : True ∧ True ∧ True ∧ True ∧ True ∧ True ∧ False → False.
tauto.

Qed.

Print mt4’.

mt4’ =
fun H : True ∧ True ∧ True ∧ True ∧ True ∧ True ∧ False ⇒
and ind
(fun ( : True) (H1 : True ∧ True ∧ True ∧ True ∧ True ∧ False) ⇒
and ind
(fun ( : True) (H3 : True ∧ True ∧ True ∧ True ∧ False) ⇒
and ind
(fun ( : True) (H5 : True ∧ True ∧ True ∧ False) ⇒
and ind

(fun ( : True) (H7 : True ∧ True ∧ False) ⇒
and ind

(fun ( : True) (H9 : True ∧ False) ⇒
and ind (fun ( : True) (H11 : False) ⇒ False ind False H11 )
H9 ) H7 ) H5 ) H3 ) H1 ) H

: True ∧ True ∧ True ∧ True ∧ True ∧ True ∧ False → False
The traditional tauto tactic introduces a quadratic blow-up in the size of the proof term,

whereas proofs produced by my tauto always have linear size.
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15.4.1 Manual Reification of Terms with Variables

The action of the quote tactic above may seem like magic. Somehow it performs equality
comparison between subterms of arbitrary types, so that these subterms may be represented
with the same reified variable. While quote is implemented in OCaml, we can code the
reification process completely in Ltac, as well. To make our job simpler, we will represent
variables as nats, indexing into a simple list of variable values that may be referenced.

Step one of the process is to crawl over a term, building a duplicate-free list of all
values that appear in positions we will encode as variables. A useful helper function adds
an element to a list, preventing duplicates. Note how we use Ltac pattern matching to
implement an equality test on Gallina terms; this is simple syntactic equality, not even the
richer definitional equality. We also represent lists as nested tuples, to allow different list
elements to have different Gallina types.
Ltac inList x xs :=
match xs with
| tt ⇒ false
| (x, ) ⇒ true
| ( , ?xs’) ⇒ inList x xs’

end.
Ltac addToList x xs :=
let b := inList x xs in
match b with
| true ⇒ xs
| false ⇒ constr:(x, xs)

end.
Now we can write our recursive function to calculate the list of variable values we will

want to use to represent a term.
Ltac allVars xs e :=
match e with
| True ⇒ xs
| False ⇒ xs
| ?e1 ∧ ?e2 ⇒
let xs := allVars xs e1 in
allVars xs e2

| ?e1 ∨ ?e2 ⇒
let xs := allVars xs e1 in
allVars xs e2

| ?e1 → ?e2 ⇒
let xs := allVars xs e1 in
allVars xs e2

| ⇒ addToList e xs
end.
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We will also need a way to map a value to its position in a list.
Ltac lookup x xs :=
match xs with
| (x, ) ⇒ O
| ( , ?xs’) ⇒
let n := lookup x xs’ in
constr:(S n)

end.
The next building block is a procedure for reifying a term, given a list of all allowed

variable values. We are free to make this procedure partial, where tactic failure may be
triggered upon attempting to reify a term containing subterms not included in the list of
variables. The type of the output term is a copy of formula where index is replaced by nat,
in the type of the constructor for atomic formulas.
Inductive formula’ : Set :=
| Atomic’ : nat → formula’
| Truth’ : formula’
| Falsehood’ : formula’
| And’ : formula’ → formula’ → formula’
| Or’ : formula’ → formula’ → formula’
| Imp’ : formula’ → formula’ → formula’.

Note that, when we write our own Ltac procedure, we can work directly with the normal
→ operator, rather than needing to introduce a wrapper for it.
Ltac reifyTerm xs e :=
match e with
| True ⇒ constr:Truth’
| False ⇒ constr:Falsehood’
| ?e1 ∧ ?e2 ⇒
let p1 := reifyTerm xs e1 in
let p2 := reifyTerm xs e2 in
constr:(And’ p1 p2 )

| ?e1 ∨ ?e2 ⇒
let p1 := reifyTerm xs e1 in
let p2 := reifyTerm xs e2 in
constr:(Or’ p1 p2 )

| ?e1 → ?e2 ⇒
let p1 := reifyTerm xs e1 in
let p2 := reifyTerm xs e2 in
constr:(Imp’ p1 p2 )

| ⇒
let n := lookup e xs in
constr:(Atomic’ n)
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end.
Finally, we bring all the pieces together.

Ltac reify :=
match goal with
| [ ` ?G ] ⇒ let xs := allVars tt G in
let p := reifyTerm xs G in
pose p

end.
A quick test verifies that we are doing reification correctly.

Theorem mt3’ : ∀ x y z,
(x < y ∧ y > z) ∨ (y > z ∧ x < S y)
→ y > z ∧ (x < y ∨ x < S y).
do 3 intro; reify.
Our simple tactic adds the translated term as a new variable:

f := Imp’
(Or’ (And’ (Atomic’ 2) (Atomic’ 1)) (And’ (Atomic’ 1) (Atomic’ 0)))
(And’ (Atomic’ 1) (Or’ (Atomic’ 2) (Atomic’ 0))) : formula’

Abort.
More work would be needed to complete the reflective tactic, as we must connect our

new syntax type with the real meanings of formulas, but the details are the same as in our
prior implementation with quote.

15.5 Building a Reification Tactic that Recurses Under
Binders

All of our examples so far have stayed away from reifying the syntax of terms that use such
features as quantifiers and fun function abstractions. Such cases are complicated by the fact
that different subterms may be allowed to reference different sets of free variables. Some
cleverness is needed to clear this hurdle, but a few simple patterns will suffice. Consider this
example of a simple dependently typed term language, where a function abstraction body is
represented conveniently with a Coq function.
Inductive type : Type :=
| Nat : type
| NatFunc : type → type.
Inductive term : type → Type :=
| Const : nat → term Nat
| Plus : term Nat → term Nat → term Nat
| Abs : ∀ t, (nat → term t) → term (NatFunc t).
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Fixpoint typeDenote (t : type) : Type :=
match t with
| Nat ⇒ nat
| NatFunc t ⇒ nat → typeDenote t

end.
Fixpoint termDenote t (e : term t) : typeDenote t :=
match e with
| Const n ⇒ n
| Plus e1 e2 ⇒ termDenote e1 + termDenote e2
| Abs e1 ⇒ fun x ⇒ termDenote (e1 x)

end.
Here is a naïve first attempt at a reification tactic.

Ltac refl’ e :=
match e with
| ?E1 + ?E2 ⇒
let r1 := refl’ E1 in
let r2 := refl’ E2 in
constr:(Plus r1 r2 )

| fun x : nat ⇒ ?E1 ⇒
let r1 := refl’ E1 in
constr:(Abs (fun x ⇒ r1 x))

| ⇒ constr:(Const e)
end.
Recall that a regular Ltac pattern variable ?X only matches terms that do not men-

tion new variables introduced within the pattern. In our naïve implementation, the case for
matching function abstractions matches the function body in a way that prevents it from
mentioning the function argument! Our code above plays fast and loose with the function
body in a way that leads to independent problems, but we could change the code so that it
indeed handles function abstractions that ignore their arguments.

To handle functions in general, we will use the pattern variable form @?X, which allows
X to mention newly introduced variables that are declared explicitly. A use of @?X must be
followed by a list of the local variables that may be mentioned. The variable X then comes
to stand for a Gallina function over the values of those variables. For instance:
Reset refl’.
Ltac refl’ e :=
match e with
| ?E1 + ?E2 ⇒
let r1 := refl’ E1 in
let r2 := refl’ E2 in
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constr:(Plus r1 r2 )

| fun x : nat ⇒ @?E1 x ⇒
let r1 := refl’ E1 in
constr:(Abs r1 )

| ⇒ constr:(Const e)
end.
Now, in the abstraction case, we bind E1 as a function from an x value to the value

of the abstraction body. Unfortunately, our recursive call there is not destined for success.
It will match the same abstraction pattern and trigger another recursive call, and so on
through infinite recursion. One last refactoring yields a working procedure. The key idea is
to consider every input to refl’ as a function over the values of variables introduced during
recursion.
Reset refl’.
Ltac refl’ e :=
match eval simpl in e with
| fun x : ?T ⇒ @?E1 x + @?E2 x ⇒
let r1 := refl’ E1 in
let r2 := refl’ E2 in
constr:(fun x ⇒ Plus (r1 x) (r2 x))

| fun (x : ?T ) (y : nat) ⇒ @?E1 x y ⇒
let r1 := refl’ (fun p : T × nat ⇒ E1 (fst p) (snd p)) in
constr:(fun u ⇒ Abs (fun v ⇒ r1 (u, v)))

| ⇒ constr:(fun x ⇒ Const (e x))
end.
Note how now even the addition case works in terms of functions, with @?X patterns.

The abstraction case introduces a new variable by extending the type used to represent
the free variables. In particular, the argument to refl’ used type T to represent all free
variables. We extend the type to T × nat for the type representing free variable values
within the abstraction body. A bit of bookkeeping with pairs and their projections produces
an appropriate version of the abstraction body to pass in a recursive call. To ensure that all
this repackaging of terms does not interfere with pattern matching, we add an extra simpl
reduction on the function argument, in the first line of the body of refl’.

Now one more tactic provides an example of how to apply reification. Let us consider
goals that are equalities between terms that can be reified. We want to change such goals
into equalities between appropriate calls to termDenote.
Ltac refl :=
match goal with
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| [ ` ?E1 = ?E2 ] ⇒
let E1’ := refl’ (fun : unit ⇒ E1 ) in
let E2’ := refl’ (fun : unit ⇒ E2 ) in
change (termDenote (E1’ tt) = termDenote (E2’ tt));
cbv beta iota delta [fst snd]

end.
Goal (fun (x y : nat) ⇒ x + y + 13) = (fun ( z : nat) ⇒ z).
refl.

============================
termDenote

(Abs
(fun y : nat ⇒
Abs (fun y0 : nat ⇒ Plus (Plus (Const y) (Const y0 )) (Const 13)))) =

termDenote (Abs (fun : nat ⇒ Abs (fun y0 : nat ⇒ Const y0 )))

Abort.
Our encoding here uses Coq functions to represent binding within the terms we reify,

which makes it difficult to implement certain functions over reified terms. An alternative
would be to represent variables with numbers. This can be done by writing a slightly smarter
reification function that identifies variable references by detecting when term arguments are
just compositions of fst and snd; from the order of the compositions we may read off the
variable number. We leave the details as an exercise (though not a trivial one!) for the
reader.
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Part IV

The Big Picture
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Chapter 16

Proving in the Large

It is somewhat unfortunate that the term “theorem proving” looks so much like the word
“theory.” Most researchers and practitioners in software assume that mechanized theorem
proving is profoundly impractical. Indeed, until recently, most advances in theorem proving
for higher-order logics have been largely theoretical. However, starting around the beginning
of the 21st century, there was a surge in the use of proof assistants in serious verification
efforts. That line of work is still quite new, but I believe it is not too soon to distill some
lessons on how to work effectively with large formal proofs.

Thus, this chapter gives some tips for structuring and maintaining large Coq develop-
ments.

16.1 Ltac Anti-Patterns
In this book, I have been following an unusual style, where proofs are not considered finished
until they are “fully automated,” in a certain sense. Each such theorem is proved by a single
tactic. Since Ltac is a Turing-complete programming language, it is not hard to squeeze
arbitrary heuristics into single tactics, using operators like the semicolon to combine steps.
In contrast, most Ltac proofs “in the wild” consist of many steps, performed by individual
tactics followed by periods. Is it really worth drawing a distinction between proof steps
terminated by semicolons and steps terminated by periods?

I argue that this is, in fact, a very important distinction, with serious consequences for
a majority of important verification domains. The more uninteresting drudge work a proof
domain involves, the more important it is to work to prove theorems with single tactics. From
an automation standpoint, single-tactic proofs can be extremely effective, and automation
becomes more and more critical as proofs are populated by more uninteresting detail. In
this section, I will give some examples of the consequences of more common proof styles.

As a running example, consider a basic language of arithmetic expressions, an interpreter
for it, and a transformation that scales up every constant in an expression.
Inductive exp : Set :=
| Const : nat → exp
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| Plus : exp → exp → exp.
Fixpoint eval (e : exp) : nat :=
match e with
| Const n ⇒ n
| Plus e1 e2 ⇒ eval e1 + eval e2

end.
Fixpoint times (k : nat) (e : exp) : exp :=
match e with
| Const n ⇒ Const (k × n)
| Plus e1 e2 ⇒ Plus (times k e1 ) (times k e2 )

end.
We can write a very manual proof that times really implements multiplication.

Theorem eval times : ∀ k e,
eval (times k e) = k × eval e.
induction e.
trivial.
simpl.
rewrite IHe1.
rewrite IHe2.
rewrite mult plus distr l.
trivial.

Qed.
We use spaces to separate the two inductive cases, but note that these spaces have no

real semantic content; Coq does not enforce that our spacing matches the real case structure
of a proof. The second case mentions automatically generated hypothesis names explicitly.
As a result, innocuous changes to the theorem statement can invalidate the proof.
Reset eval times.
Theorem eval times : ∀ k x,
eval (times k x) = k × eval x.
induction x.
trivial.
simpl.

rewrite IHe1.

Error: The reference IHe1 was not found in the current environment.

The inductive hypotheses are named IHx1 and IHx2 now, not IHe1 and IHe2.
Abort.
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We might decide to use a more explicit invocation of induction to give explicit binders
for all of the names that we will reference later in the proof.
Theorem eval times : ∀ k e,

eval (times k e) = k × eval e.
induction e as [ | ? IHe1 ? IHe2 ].
trivial.
simpl.
rewrite IHe1.
rewrite IHe2.
rewrite mult plus distr l.
trivial.

Qed.
We pass induction an intro pattern, using a | character to separate instructions for

the different inductive cases. Within a case, we write ? to ask Coq to generate a name
automatically, and we write an explicit name to assign that name to the corresponding
new variable. It is apparent that, to use intro patterns to avoid proof brittleness, one
needs to keep track of the seemingly unimportant facts of the orders in which variables are
introduced. Thus, the script keeps working if we replace e by x, but it has become more
cluttered. Arguably, neither proof is particularly easy to follow.

That category of complaint has to do with understanding proofs as static artifacts. As
with programming in general, with serious projects, it tends to be much more important
to be able to support evolution of proofs as specifications change. Unstructured proofs like
the above examples can be very hard to update in concert with theorem statements. For
instance, consider how the last proof script plays out when we modify times to introduce a
bug.
Reset times.
Fixpoint times (k : nat) (e : exp) : exp :=
match e with
| Const n ⇒ Const (1 + k × n)
| Plus e1 e2 ⇒ Plus (times k e1 ) (times k e2 )

end.
Theorem eval times : ∀ k e,

eval (times k e) = k × eval e.
induction e as [ | ? IHe1 ? IHe2 ].
trivial.
simpl.

rewrite IHe1.

Error: The reference IHe1 was not found in the current environment.
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Abort.
Can you spot what went wrong, without stepping through the script step-by-step? The
problem is that trivial never fails. Originally, trivial had been succeeding in proving an
equality that follows by reflexivity. Our change to times leads to a case where that equality
is no longer true. The invocation trivial happily leaves the false equality in place, and
we continue on to the span of tactics intended for the second inductive case. Unfortunately,
those tactics end up being applied to the first case instead.

The problem with trivial could be “solved” by writing, e.g., solve [ trivial ] instead,
so that an error is signaled early on if something unexpected happens. However, the root
problem is that the syntax of a tactic invocation does not imply how many subgoals it
produces. Much more confusing instances of this problem are possible. For example, if a
lemma L is modified to take an extra hypothesis, then uses of apply L will generate more
subgoals than before. Old unstructured proof scripts will become hopelessly jumbled, with
tactics applied to inappropriate subgoals. Because of the lack of structure, there is usually
relatively little to be gleaned from knowledge of the precise point in a proof script where an
error is raised.
Reset times.
Fixpoint times (k : nat) (e : exp) : exp :=
match e with
| Const n ⇒ Const (k × n)
| Plus e1 e2 ⇒ Plus (times k e1 ) (times k e2 )

end.
Many real developments try to make essentially unstructured proofs look structured by

applying careful indentation conventions, idempotent case-marker tactics included solely to
serve as documentation, and so on. All of these strategies suffer from the same kind of failure
of abstraction that was just demonstrated. I like to say that if you find yourself caring about
indentation in a proof script, it is a sign that the script is structured poorly.

We can rewrite the current proof with a single tactic.
Theorem eval times : ∀ k e,

eval (times k e) = k × eval e.
induction e as [ | ? IHe1 ? IHe2 ]; [
trivial
| simpl; rewrite IHe1 ; rewrite IHe2 ; rewrite mult plus distr l; trivial ].

Qed.
We use the form of the semicolon operator that allows a different tactic to be specified for

each generated subgoal. This change improves the robustness of the script: we no longer need
to worry about tactics from one case being applied to a different case. Still, the proof script
is not especially readable. Probably most readers would not find it helpful in explaining why
the theorem is true. The same could be said for scripts using the bullets or curly braces
provided by Coq 8.4, which allow code like the above to be stepped through interactively,
with periods in place of the semicolons, while representing proof structure in a way that is
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enforced by Coq. Interactive replay of scripts becomes easier, but readability is not really
helped.

The situation gets worse in considering extensions to the theorem we want to prove. Let
us add multiplication nodes to our exp type and see how the proof fares.
Reset exp.
Inductive exp : Set :=
| Const : nat → exp
| Plus : exp → exp → exp
| Mult : exp → exp → exp.
Fixpoint eval (e : exp) : nat :=
match e with
| Const n ⇒ n
| Plus e1 e2 ⇒ eval e1 + eval e2
| Mult e1 e2 ⇒ eval e1 × eval e2

end.
Fixpoint times (k : nat) (e : exp) : exp :=
match e with
| Const n ⇒ Const (k × n)
| Plus e1 e2 ⇒ Plus (times k e1 ) (times k e2 )
| Mult e1 e2 ⇒ Mult (times k e1 ) e2

end.
Theorem eval times : ∀ k e,
eval (times k e) = k × eval e.
induction e as [ | ? IHe1 ? IHe2 ]; [
trivial
| simpl; rewrite IHe1 ; rewrite IHe2 ; rewrite mult plus distr l; trivial ].

Error: Expects a disjunctive pattern with 3 branches.

Abort.
Unsurprisingly, the old proof fails, because it explicitly says that there are two inductive
cases. To update the script, we must, at a minimum, remember the order in which the
inductive cases are generated, so that we can insert the new case in the appropriate place.
Even then, it will be painful to add the case, because we cannot walk through proof steps
interactively when they occur inside an explicit set of cases.
Theorem eval times : ∀ k e,

eval (times k e) = k × eval e.
induction e as [ | ? IHe1 ? IHe2 | ? IHe1 ? IHe2 ]; [
trivial
| simpl; rewrite IHe1 ; rewrite IHe2 ; rewrite mult plus distr l; trivial
| simpl; rewrite IHe1 ; rewrite mult assoc; trivial ].
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Qed.
Now we are in a position to see how much nicer is the style of proof that we have followed

in most of this book.
Reset eval times.
Hint Rewrite mult plus distr l.
Theorem eval times : ∀ k e,

eval (times k e) = k × eval e.
induction e; crush.

Qed.
This style is motivated by a hard truth: one person’s manual proof script is almost always

mostly inscrutable to most everyone else. I claim that step-by-step formal proofs are a poor
way of conveying information. Thus, we might as well cut out the steps and automate as
much as possible.

What about the illustrative value of proofs? Most informal proofs are read to convey the
big ideas of proofs. How can reading induction e; crush convey any big ideas? My position
is that any ideas that standard automation can find are not very big after all, and the real
big ideas should be expressed through lemmas that are added as hints.

An example should help illustrate what I mean. Consider this function, which rewrites
an expression using associativity of addition and multiplication.
Fixpoint reassoc (e : exp) : exp :=
match e with
| Const ⇒ e
| Plus e1 e2 ⇒
let e1’ := reassoc e1 in
let e2’ := reassoc e2 in
match e2’ with
| Plus e21 e22 ⇒ Plus (Plus e1’ e21 ) e22
| ⇒ Plus e1’ e2’

end
| Mult e1 e2 ⇒
let e1’ := reassoc e1 in
let e2’ := reassoc e2 in
match e2’ with
| Mult e21 e22 ⇒ Mult (Mult e1’ e21 ) e22
| ⇒ Mult e1’ e2’

end
end.

Theorem reassoc correct : ∀ e, eval (reassoc e) = eval e.
induction e; crush;
match goal with
| [ ` context[match ?E with Const ⇒ | ⇒ end] ] ⇒
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destruct E ; crush
end.
One subgoal remains:
IHe2 : eval e3 × eval e4 = eval e2
============================
eval e1 × eval e3 × eval e4 = eval e1 × eval e2
The crush tactic does not know how to finish this goal. We could finish the proof

manually.
rewrite ← IHe2 ; crush.
However, the proof would be easier to understand and maintain if we separated this

insight into a separate lemma.
Abort.
Lemma rewr : ∀ a b c d, b × c = d → a × b × c = a × d.
crush.

Qed.
Hint Resolve rewr.
Theorem reassoc correct : ∀ e, eval (reassoc e) = eval e.
induction e; crush;
match goal with
| [ ` context[match ?E with Const ⇒ | ⇒ end] ] ⇒
destruct E ; crush

end.
Qed.

In the limit, a complicated inductive proof might rely on one hint for each inductive
case. The lemma for each hint could restate the associated case. Compared to manual proof
scripts, we arrive at more readable results. Scripts no longer need to depend on the order in
which cases are generated. The lemmas are easier to digest separately than are fragments
of tactic code, since lemma statements include complete proof contexts. Such contexts can
only be extracted from monolithic manual proofs by stepping through scripts interactively.

The more common situation is that a large induction has several easy cases that au-
tomation makes short work of. In the remaining cases, automation performs some standard
simplification. Among these cases, some may require quite involved proofs; such a case may
deserve a hint lemma of its own, where the lemma statement may copy the simplified version
of the case. Alternatively, the proof script for the main theorem may be extended with some
automation code targeted at the specific case. Even such targeted scripting is more desirable
than manual proving, because it may be read and understood without knowledge of a proof’s
hierarchical structure, case ordering, or name binding structure.

A competing alternative to the common style of Coq tactics is the declarative style,
most frequently associated today with the Isar [47] language. A declarative proof script is
very explicit about subgoal structure and introduction of local names, aiming for human
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readability. The coding of proof automation is taken to be outside the scope of the proof
language, an assumption related to the idea that it is not worth building new automation
for each serious theorem. I have shown in this book many examples of theorem-specific
automation, which I believe is crucial for scaling to significant results. Declarative proof
scripts make it easier to read scripts to modify them for theorem statement changes, but the
alternate adaptive style from this book allows use of the same scripts for many versions of a
theorem.

Perhaps I am a pessimist for thinking that fully formal proofs will inevitably consist
of details that are uninteresting to people, but it is my preference to focus on conveying
proof-specific details through choice of lemmas. Additionally, adaptive Ltac scripts contain
bits of automation that can be understood in isolation. For instance, in a big repeat match
loop, each case can generally be digested separately, which is a big contrast from trying to
understand the hierarchical structure of a script in a more common style. Adaptive scripts
rely on variable binding, but generally only over very small scopes, whereas understanding
a traditional script requires tracking the identities of local variables potentially across pages
of code.

One might also wonder why it makes sense to prove all theorems automatically (in the
sense of adaptive proof scripts) but not construct all programs automatically. My view
there is that program synthesis is a very useful idea that deserves broader application! In
practice, there are difficult obstacles in the way of finding a program automatically from
its specification. A typical specification is not exhaustive in its description of program
properties. For instance, details of performance on particular machine architectures are often
omitted. As a result, a synthesized program may be correct in some sense while suffering
from deficiencies in other senses. Program synthesis research will continue to come up with
ways of dealing with this problem, but the situation for theorem proving is fundamentally
different. Following mathematical practice, the only property of a formal proof that we care
about is which theorem it proves, and it is trivial to check this property automatically. In
other words, with a simple criterion for what makes a proof acceptable, automatic search
is straightforward. Of course, in practice we also care about understandability of proofs
to facilitate long-term maintenance, which is just what motivates the techniques outlined
above, and the next section gives some related advice.

16.2 Debugging and Maintaining Automation
Fully automated proofs are desirable because they open up possibilities for automatic adap-
tation to changes of specification. A well-engineered script within a narrow domain can
survive many changes to the formulation of the problem it solves. Still, as we are work-
ing with higher-order logic, most theorems fall within no obvious decidable theories. It is
inevitable that most long-lived automated proofs will need updating.

Before we are ready to update our proofs, we need to write them in the first place. While
fully automated scripts are most robust to changes of specification, it is hard to write every
new proof directly in that form. Instead, it is useful to begin a theorem with exploratory
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proving and then gradually refine it into a suitable automated form.
Consider this theorem from Chapter 8, which we begin by proving in a mostly manual

way, invoking crush after each step to discharge any low-hanging fruit. Our manual effort
involves choosing which expressions to case-analyze on.

Theorem cfold correct : ∀ t (e : exp t), expDenote e = expDenote (cfold e).
induction e; crush.
dep destruct (cfold e1 ); crush.
dep destruct (cfold e2 ); crush.
dep destruct (cfold e1 ); crush.
dep destruct (cfold e2 ); crush.
dep destruct (cfold e1 ); crush.
dep destruct (cfold e2 ); crush.
dep destruct (cfold e1 ); crush.
dep destruct (expDenote e1 ); crush.
dep destruct (cfold e); crush.
dep destruct (cfold e); crush.

Qed.
In this complete proof, it is hard to avoid noticing a pattern. We rework the proof,

abstracting over the patterns we find.
Reset cfold correct.
Theorem cfold correct : ∀ t (e : exp t), expDenote e = expDenote (cfold e).
induction e; crush.
The expression we want to destruct here turns out to be the discriminee of a match, and

we can easily enough write a tactic that destructs all such expressions.
Ltac t :=
repeat (match goal with

| [ ` context[match ?E with NConst ⇒ | ⇒ end] ] ⇒
dep destruct E

end; crush).
t.
This tactic invocation discharges the whole case. It does the same on the next two cases,

but it gets stuck on the fourth case.
t.
t.
t.
The subgoal’s conclusion is:
============================
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(if expDenote e1 then expDenote (cfold e2 ) else expDenote (cfold e3 )) =
expDenote (if expDenote e1 then cfold e2 else cfold e3 )
We need to expand our t tactic to handle this case.
Ltac t’ :=
repeat (match goal with

| [ ` context[match ?E with NConst ⇒ | ⇒ end] ] ⇒
dep destruct E
| [ ` (if ?E then else ) = ] ⇒ destruct E

end; crush).
t’.
Now the goal is discharged, but t’ has no effect on the next subgoal.
t’.
A final revision of t finishes the proof.
Ltac t’’ :=
repeat (match goal with

| [ ` context[match ?E with NConst ⇒ | ⇒ end] ] ⇒
dep destruct E
| [ ` (if ?E then else ) = ] ⇒ destruct E
| [ ` context[match pairOut ?E with Some ⇒

| None ⇒ end] ] ⇒
dep destruct E

end; crush).
t’’.
t’’.

Qed.
We can take the final tactic and move it into the initial part of the proof script, arriving

at a nicely automated proof.
Reset cfold correct.
Theorem cfold correct : ∀ t (e : exp t), expDenote e = expDenote (cfold e).
induction e; crush;
repeat (match goal with

| [ ` context[match ?E with NConst ⇒ | ⇒ end] ] ⇒
dep destruct E
| [ ` (if ?E then else ) = ] ⇒ destruct E
| [ ` context[match pairOut ?E with Some ⇒

| None ⇒ end] ] ⇒
dep destruct E

end; crush).
Qed.
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Even after we put together nice automated proofs, we must deal with specification changes
that can invalidate them. It is not generally possible to step through single-tactic proofs
interactively. There is a command Debug On that lets us step through points in tactic
execution, but the debugger tends to make counterintuitive choices of which points we would
like to stop at, and per-point output is quite verbose, so most Coq users do not find this
debugging mode very helpful. How are we to understand what has broken in a script that
used to work?

An example helps demonstrate a useful approach. Consider what would have happened
in our proof of reassoc correct if we had first added an unfortunate rewriting hint.
Reset reassoc correct.
Theorem confounder : ∀ e1 e2 e3,
eval e1 × eval e2 × eval e3 = eval e1 × (eval e2 + 1 - 1) × eval e3.
crush.

Qed.
Hint Rewrite confounder.
Theorem reassoc correct : ∀ e, eval (reassoc e) = eval e.
induction e; crush;
match goal with
| [ ` context[match ?E with Const ⇒ | ⇒ end] ] ⇒
destruct E ; crush

end.
One subgoal remains:

============================
eval e1 × (eval e3 + 1 - 1) × eval e4 = eval e1 × eval e2
The poorly chosen rewrite rule fired, changing the goal to a form where another hint no

longer applies. Imagine that we are in the middle of a large development with many hints.
How would we diagnose the problem? First, we might not be sure which case of the inductive
proof has gone wrong. It is useful to separate out our automation procedure and apply it
manually.
Restart.
Ltac t := crush; match goal with

| [ ` context[match ?E with Const ⇒ | ⇒ end] ] ⇒
destruct E ; crush

end.
induction e.
Since we see the subgoals before any simplification occurs, it is clear that we are looking

at the case for constants. Our t makes short work of it.
t.
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The next subgoal, for addition, is also discharged without trouble.
t.
The final subgoal is for multiplication, and it is here that we get stuck in the proof state

summarized above.
t.
What is t doing to get us to this point? The info command can help us answer this

kind of question. (As of this writing, info is no longer functioning in the most recent Coq
release, but I hope it returns.)
Undo.
info t.

== simpl in *; intuition; subst; autorewrite with core in *;
simpl in *; intuition; subst; autorewrite with core in *;
simpl in *; intuition; subst; destruct (reassoc e2 ).
simpl in *; intuition.

simpl in *; intuition.

simpl in *; intuition; subst; autorewrite with core in *;
refine (eq ind r

(fun n : nat ⇒
n × (eval e3 + 1 - 1) × eval e4 = eval e1 × eval e2 ) IHe1 );

autorewrite with core in *; simpl in *; intuition;
subst; autorewrite with core in *; simpl in *;
intuition; subst.

A detailed trace of t’s execution appears. Since we are using the very general crush tactic,
many of these steps have no effect and only occur as instances of a more general strategy.
We can copy-and-paste the details to see where things go wrong.
Undo.
We arbitrarily split the script into chunks. The first few seem not to do any harm.
simpl in *; intuition; subst; autorewrite with core in *.
simpl in *; intuition; subst; autorewrite with core in *.
simpl in *; intuition; subst; destruct (reassoc e2 ).
simpl in *; intuition.
simpl in *; intuition.
The next step is revealed as the culprit, bringing us to the final unproved subgoal.
simpl in *; intuition; subst; autorewrite with core in *.
We can split the steps further to assign blame.
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Undo.
simpl in *.
intuition.
subst.
autorewrite with core in *.
It was the final of these four tactics that made the rewrite. We can find out exactly what

happened. The info command presents hierarchical views of proof steps, and we can zoom
down to a lower level of detail by applying info to one of the steps that appeared in the
original trace.
Undo.
info autorewrite with core in *.

== refine (eq ind r (fun n : nat ⇒ n = eval e1 × eval e2 )
(confounder (reassoc e1 ) e3 e4 )).

The way a rewrite is displayed is somewhat baroque, but we can see that theorem
confounder is the final culprit. At this point, we could remove that hint, prove an alter-
nate version of the key lemma rewr, or come up with some other remedy. Fixing this kind
of problem tends to be relatively easy once the problem is revealed.
Abort.

Sometimes a change to a development has undesirable performance consequences, even if
it does not prevent any old proof scripts from completing. If the performance consequences
are severe enough, the proof scripts can be considered broken for practical purposes.

Here is one example of a performance surprise.
Section slow.
Hint Resolve trans eq.
The central element of the problem is the addition of transitivity as a hint. With tran-

sitivity available, it is easy for proof search to wind up exploring exponential search spaces.
We also add a few other arbitrary variables and hypotheses, designed to lead to trouble
later.
Variable A : Set.
Variables P Q R S : A → A → Prop.
Variable f : A → A.
Hypothesis H1 : ∀ x y, P x y → Q x y → R x y → f x = f y.
Hypothesis H2 : ∀ x y, S x y → R x y.
We prove a simple lemma very quickly, using the Time command to measure exactly how

quickly.
Lemma slow : ∀ x y, P x y → Q x y → S x y → f x = f y.
Time eauto 6.
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Finished transaction in 0. secs (0.068004u,0.s)

Qed.
Now we add a different hypothesis, which is innocent enough; in fact, it is even provable as
a theorem.
Hypothesis H3 : ∀ x y, x = y → f x = f y.
Lemma slow’ : ∀ x y, P x y → Q x y → S x y → f x = f y.
Time eauto 6.

Finished transaction in 2. secs (1.264079u,0.s)

Why has the search time gone up so much? The info command is not much help, since
it only shows the result of search, not all of the paths that turned out to be worthless.

Restart.
info eauto 6.

== intro x ; intro y; intro H ; intro H0 ; intro H4 ;
simple eapply trans eq.

simple apply eq refl.

simple eapply trans eq.
simple apply eq refl.

simple eapply trans eq.
simple apply eq refl.

simple apply H1 .
eexact H.

eexact H0.

simple apply H2 ; eexact H4.

This output does not tell us why proof search takes so long, but it does provide a clue that
would be useful if we had forgotten that we added transitivity as a hint. The eauto tactic
is applying depth-first search, and the proof script where the real action is ends up buried
inside a chain of pointless invocations of transitivity, where each invocation uses reflexivity
to discharge one subgoal. Each increment to the depth argument to eauto adds another
silly use of transitivity. This wasted proof effort only adds linear time overhead, as long as
proof search never makes false steps. No false steps were made before we added the new
hypothesis, but somehow the addition made possible a new faulty path. To understand
which paths we enabled, we can use the debug command.
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Restart.
debug eauto 6.

The output is a large proof tree. The beginning of the tree is enough to reveal what is
happening:
1 depth=6
1.1 depth=6 intro
1.1.1 depth=6 intro
1.1.1.1 depth=6 intro
1.1.1.1.1 depth=6 intro
1.1.1.1.1.1 depth=6 intro
1.1.1.1.1.1.1 depth=5 apply H3
1.1.1.1.1.1.1.1 depth=4 eapply trans eq
1.1.1.1.1.1.1.1.1 depth=4 apply eq refl
1.1.1.1.1.1.1.1.1.1 depth=3 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1 depth=3 apply eq refl
1.1.1.1.1.1.1.1.1.1.1.1 depth=2 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.1 depth=2 apply eq refl
1.1.1.1.1.1.1.1.1.1.1.1.1.1 depth=1 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 depth=1 apply eq refl
1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 depth=0 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.1.1.2 depth=1 apply sym eq ; trivial
1.1.1.1.1.1.1.1.1.1.1.1.1.1.2.1 depth=0 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.1.1.3 depth=0 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.2 depth=2 apply sym eq ; trivial
1.1.1.1.1.1.1.1.1.1.1.1.2.1 depth=1 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.2.1.1 depth=1 apply eq refl
1.1.1.1.1.1.1.1.1.1.1.1.2.1.1.1 depth=0 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.2.1.2 depth=1 apply sym eq ; trivial
1.1.1.1.1.1.1.1.1.1.1.1.2.1.2.1 depth=0 eapply trans eq
1.1.1.1.1.1.1.1.1.1.1.1.2.1.3 depth=0 eapply trans eq

The first choice eauto makes is to apply H3 , since H3 has the fewest hypotheses of all
of the hypotheses and hints that match. However, it turns out that the single hypothesis
generated is unprovable. That does not stop eauto from trying to prove it with an expo-
nentially sized tree of applications of transitivity, reflexivity, and symmetry of equality. It
is the children of the initial apply H3 that account for all of the noticeable time in proof
execution. In a more realistic development, we might use this output of debug to realize
that adding transitivity as a hint was a bad idea.
Qed.

End slow.
As aggravating as the above situation may be, there is greater aggravation to be had

from importing library modules with commands like Require Import. Such a command
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imports not just the Gallina terms from a module, but also all the hints for auto, eauto,
and autorewrite. Some very recent versions of Coq include mechanisms for removing hints
from databases, but the proper solution is to be very conservative in exporting hints from
modules. Consider putting hints in named databases, so that they may be used only when
called upon explicitly, as demonstrated in Chapter 13.

It is also easy to end up with a proof script that uses too much memory. As tactics run,
they avoid generating proof terms, since serious proof search will consider many possible
avenues, and we do not want to build proof terms for subproofs that end up unused. Instead,
tactic execution maintains thunks (suspended computations, represented with closures), such
that a tactic’s proof-producing thunk is only executed when we run Qed. These thunks can
use up large amounts of space, such that a proof script exhausts available memory, even
when we know that we could have used much less memory by forcing some thunks earlier.

The abstract tactical helps us force thunks by proving some subgoals as their own
lemmas. For instance, a proof induction x ; crush can in many cases be made to use
significantly less peak memory by changing it to induction x ; abstract crush. The main
limitation of abstract is that it can only be applied to subgoals that are proved completely,
with no undetermined unification variables in their initial states. Still, many large automated
proofs can realize vast memory savings via abstract.

16.3 Modules
Last chapter’s examples of proof by reflection demonstrate opportunities for implementing
abstract proof strategies with stronger formal guarantees than can be had with Ltac script-
ing. Coq’s module system provides another tool for more rigorous development of generic
theorems. This feature is inspired by the module systems found in Standard ML [22] and
OCaml, and the discussion that follows assumes familiarity with the basics of one of those
systems.

ML modules facilitate the grouping of abstract types with operations over those types.
Moreover, there is support for functors, which are functions from modules to modules. A
canonical example of a functor is one that builds a data structure implementation from a
module that describes a domain of keys and its associated comparison operations.

When we add modules to a base language with dependent types, it becomes possible
to use modules and functors to formalize kinds of reasoning that are common in algebra.
For instance, the following module signature captures the essence of the algebraic structure
known as a group. A group consists of a carrier set G, an associative binary operation f, a
left identity element id for f, and an operation i that is a left inverse for f.
Module Type GROUP.
Parameter G : Set.
Parameter f : G → G → G .
Parameter id : G .
Parameter i : G → G .
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Axiom assoc : ∀ a b c, f (f a b) c = f a (f b c).
Axiom ident : ∀ a, f id a = a.
Axiom inverse : ∀ a, f (i a) a = id .

End GROUP.
Many useful theorems hold of arbitrary groups. We capture some such theorem state-

ments in another module signature.
Module Type GROUP THEOREMS.
Declare Module M : GROUP.
Axiom ident’ : ∀ a, M.f a M.id = a.
Axiom inverse’ : ∀ a, M.f a (M.i a) = M.id .
Axiom unique ident : ∀ id’, (∀ a, M.f id’ a = a) → id’ = M.id .

End GROUP THEOREMS.
We implement generic proofs of these theorems with a functor, whose input is an arbitrary

group M.
Module GroupProofs (M : GROUP) : GROUP THEOREMS with Module M := M.

As in ML, Coq provides multiple options for ascribing signatures to modules. Here we
use just the colon operator, which implements opaque ascription, hiding all details of the
module not exposed by the signature. Another option is transparent ascription via the <:
operator, which checks for signature compatibility without hiding implementation details.
Here we stick with opaque ascription but employ the with operation to add more detail to
a signature, exposing just those implementation details that we need to. For instance, here
we expose the underlying group representation set and operator definitions. Without such a
refinement, we would get an output module proving theorems about some unknown group,
which is not very useful. Also note that opaque ascription can in Coq have some undesirable
consequences without analogues in ML, since not just the types but also the definitions of
identifiers have significance in type checking and theorem proving.
Module M := M.
To ensure that the module we are building meets the GROUP THEOREMS signature,

we add an extra local name for M, the functor argument.
Import M.
It would be inconvenient to repeat the prefix M. everywhere in our theorem statements

and proofs, so we bring all the identifiers of M into the local scope unqualified.
Now we are ready to prove the three theorems. The proofs are completely manual, which

may seem ironic given the content of the previous sections! This illustrates another lesson,
which is that short proof scripts that change infrequently may be worth leaving unautomated.
It would take some effort to build suitable generic automation for these theorems about
groups, so I stick with manual proof scripts to avoid distracting us from the main message
of the section. We take the proofs from the Wikipedia page on elementary group theory.
Theorem inverse’ : ∀ a, f a (i a) = id .
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intro.
rewrite ← (ident (f a (i a))).
rewrite ← (inverse (f a (i a))) at 1.
rewrite assoc .
rewrite assoc .
rewrite ← (assoc (i a) a (i a)).
rewrite inverse.
rewrite ident.
apply inverse.

Qed.
Theorem ident’ : ∀ a, f a id = a.
intro.
rewrite ← (inverse a).
rewrite ← assoc .
rewrite inverse’.
apply ident.

Qed.
Theorem unique ident : ∀ id’, (∀ a, M.f id’ a = a) → id’ = M.id .
intros.
rewrite ← (H id).
symmetry.
apply ident’.

Qed.
End GroupProofs.

We can show that the integers with + form a group.
Require Import ZArith.
Open Scope Z scope.
Module Int.
Definition G := Z.
Definition f x y := x + y.
Definition id := 0.
Definition i x := -x.
Theorem assoc : ∀ a b c, f (f a b) c = f a (f b c).
unfold f; crush.

Qed.
Theorem ident : ∀ a, f id a = a.
unfold f, id; crush.

Qed.
Theorem inverse : ∀ a, f (i a) a = id.
unfold f, i, id; crush.

Qed.

335



End Int.
Next, we can produce integer-specific versions of the generic group theorems.

Module IntProofs := GroupProofs(Int).
Check IntProofs.unique ident.

IntProofs.unique ident
: ∀ e’ : Int.G, (∀ a : Int.G, Int.f e’ a = a) → e’ = Int.e

Projections like Int.G are known to be definitionally equal to the concrete values we
have assigned to them, so the above theorem yields as a trivial corollary the following more
natural restatement:
Theorem unique ident : ∀ id’, (∀ a, id’ + a = a) → id’ = 0.
exact IntProofs.unique ident.

Qed.
As in ML, the module system provides an effective way to structure large developments.

Unlike in ML, Coq modules add no expressiveness; we can implement any module as an
inhabitant of a dependent record type. It is the second-class nature of modules that makes
them easier to use than dependent records in many cases. Because modules may only be
used in quite restricted ways, it is easier to support convenient module coding through
special commands and editing modes, as the above example demonstrates. An isomorphic
implementation with records would have suffered from lack of such conveniences as module
subtyping and importation of the fields of a module. On the other hand, all module values
must be determined statically, so modules may not be computed, e.g., within the definitions
of normal functions, based on particular function parameters.

16.4 Build Processes

As in software development, large Coq projects are much more manageable when split across
multiple files and when decomposed into libraries. Coq and Proof General provide very good
support for these activities.

Consider a library that we will name Lib, housed in directory LIB and split between files
A.v, B.v, and C.v. A simple Makefile will compile the library, relying on the standard Coq
tool coq makefile to do the hard work.

MODULES := A B C
VS := $(MODULES:%=%.v)

.PHONY: coq clean

coq: Makefile.coq
$(MAKE) -f Makefile.coq
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Makefile.coq: Makefile $(VS)
coq_makefile -R . Lib $(VS) -o Makefile.coq

clean:: Makefile.coq
$(MAKE) -f Makefile.coq clean
rm -f Makefile.coq

The Makefile begins by defining a variable VS holding the list of filenames to be included
in the project. The primary target is coq, which depends on the construction of an auxil-
iary Makefile called Makefile.coq. Another rule explains how to build that file. We call
coq makefile, using the -R flag to specify that files in the current directory should be con-
sidered to belong to the library Lib. This Makefile will build a compiled version of each
module, such that X.v is compiled into X.vo.

Now code in B.v may refer to definitions in A.v after running
Require Import Lib.A.

Library Lib is presented as a module, containing a submodule A, which contains the
definitions from A.v. These are genuine modules in the sense of Coq’s module system, and
they may be passed to functors and so on.

The command Require Import is a convenient combination of two more primitive com-
mands. The Require command finds the .vo file containing the named module, ensuring
that the module is loaded into memory. The Import command loads all top-level definitions
of the named module into the current namespace, and it may be used with local modules that
do not have corresponding .vo files. Another command, Load, is for inserting the contents
of a named file verbatim. It is generally better to use the module-based commands, since
they avoid rerunning proof scripts, and they facilitate reorganization of directory structure
without the need to change code.

Now we would like to use our library from a different development, called Client and
found in directory CLIENT, which has its own Makefile.

MODULES := D E
VS := $(MODULES:%=%.v)

.PHONY: coq clean

coq: Makefile.coq
$(MAKE) -f Makefile.coq

Makefile.coq: Makefile $(VS)
coq_makefile -R LIB Lib -R . Client $(VS) -o Makefile.coq

clean:: Makefile.coq
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$(MAKE) -f Makefile.coq clean
rm -f Makefile.coq

We change the coq makefile call to indicate where the library Lib is found. Now D.v
and E.v can refer to definitions from Lib module A after running
Require Import Lib.A.

and E.v can refer to definitions from D.v by running
Require Import Client.D.

It can be useful to split a library into several files, but it is also inconvenient for client
code to import library modules individually. We can get the best of both worlds by, for
example, adding an extra source file Lib.v to Lib’s directory and Makefile, where that file
contains just this line:
Require Export Lib.A Lib.B Lib.C.

Now client code can import all definitions from all of Lib’s modules simply by running
Require Import Lib.

The two Makefiles above share a lot of code, so, in practice, it is useful to define a common
Makefile that is included by multiple library-specific Makefiles.

The remaining ingredient is the proper way of editing library code files in Proof General.
Recall this snippet of .emacs code from Chapter 2, which tells Proof General where to find
the library associated with this book.

(custom-set-variables
...
’(coq-prog-args ’("-R" "/path/to/cpdt/src" "Cpdt"))
...

)

To do interactive editing of our current example, we just need to change the flags to point
to the right places.

(custom-set-variables
...

; ’(coq-prog-args ’("-R" "/path/to/cpdt/src" "Cpdt"))
’(coq-prog-args ’("-R" "LIB" "Lib" "-R" "CLIENT" "Client"))
...

)

When working on multiple projects, it is useful to leave multiple versions of this setting
in your .emacs file, commenting out all but one of them at any moment in time. To switch
between projects, change the commenting structure and restart Emacs.

Alternatively, we can revisit the directory-local settings approach and write the following
into a file .dir-locals.el in CLIENT:
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((coq-mode . ((coq-prog-args .
("-emacs-U" "-R" "LIB" "Lib" "-R" "CLIENT" "Client")))))

A downside of this approach is that users of your code may not want to trust the arbitrary
Emacs Lisp programs that you are allowed to place in such files, so that they prefer to add
mappings manually.

Relatively recent versions of Coq support another, more principled approach to all this.
A project’s list of settings and source files may be saved in a single file named CoqProject,
which is processed uniformly by recent enough versions of coq makefile, Proof General,
and CoqIDE. For details, see the Coq manual.
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Chapter 17

A Taste of Reasoning About
Programming Language Syntax

Reasoning about the syntax and semantics of programming languages is a popular appli-
cation of proof assistants. Before proving the first theorem of this kind, it is necessary
to choose a formal encoding of the informal notions of syntax, dealing with such issues as
variable binding conventions. I believe the pragmatic questions in this domain are far from
settled and remain as important open research problems. However, in this chapter, I will
demonstrate two underused encoding approaches. Note that I am not recommending either
approach as a silver bullet! Mileage will vary across concrete problems, and I expect there
to be significant future advances in our knowledge of encoding techniques. For a broader
introduction to programming language formalization, using more elementary techniques, see
Software Foundations1 by Pierce et al.

This chapter is also meant as a case study, bringing together what we have learned in
the previous chapters. We will see a concrete example of the importance of representation
choices; translating mathematics from paper to Coq is not a deterministic process, and
different creative choices can have big impacts. We will also see dependent types and scripted
proof automation in action, applied to solve a particular problem as well as possible, rather
than to demonstrate new Coq concepts.

I apologize in advance to those readers not familiar with the theory of programming
language semantics. I will make a few remarks intended to relate the material here with
common ideas in semantics, but these remarks should be safe for others to skip.

We will define a small programming language and reason about its semantics, expressed
as an interpreter into Coq terms, much as we have done in examples throughout the book. It
will be helpful to build a slight extension of crush that tries to apply functional extensionality,
an axiom we met in Chapter 12, which says that two functions are equal if they map equal
inputs to equal outputs. We also use f equal to simplify goals of a particular form that will
come up with the term denotation function that we define shortly.
Ltac ext := let x := fresh "x" in extensionality x.

1http://www.cis.upenn.edu/~bcpierce/sf/
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Ltac pl := crush; repeat (match goal with
| [ ` (fun x ⇒ ) = (fun y ⇒ ) ] ⇒ ext
| [ ` ?E = ?E ] ⇒ f equal
| [ ` ?E ::: = ?E ::: ] ⇒ f equal
| [ ` hmap ?E = hmap ?E ] ⇒ f equal

end; crush).
At this point in the book source, some auxiliary proofs also appear.

Here is a definition of the type system we will use throughout the chapter. It is for simply
typed lambda calculus with natural numbers as the base type.
Inductive type : Type :=
| Nat : type
| Func : type → type → type.
Fixpoint typeDenote (t : type) : Type :=
match t with
| Nat ⇒ nat
| Func t1 t2 ⇒ typeDenote t1 → typeDenote t2

end.
Now we have some choices as to how we represent the syntax of programs. The two

sections of the chapter explore two such choices, demonstrating the effect the choice has on
proof complexity.

17.1 Dependent de Bruijn Indices
The first encoding is one we met first in Chapter 9, the dependent de Bruijn index encoding.
We represent program syntax terms in a type family parameterized by a list of types, rep-
resenting the typing context, or information on which free variables are in scope and what
their types are. Variables are represented in a way isomorphic to the natural numbers, where
number 0 represents the first element in the context, number 1 the second element, and so
on. Actually, instead of numbers, we use the member dependent type family from Chapter
9.
Module FirstOrder.

Here is the definition of the term type, including variables, constants, addition, function
abstraction and application, and let binding of local variables.
Inductive term : list type → type → Type :=
| Var : ∀ G t, member t G → term G t

| Const : ∀ G, nat → term G Nat
| Plus : ∀ G, term G Nat → term G Nat → term G Nat
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| Abs : ∀ G dom ran, term (dom :: G) ran → term G (Func dom ran)
| App : ∀ G dom ran, term G (Func dom ran) → term G dom → term G ran

| Let : ∀ G t1 t2, term G t1 → term (t1 :: G) t2 → term G t2.
Implicit Arguments Const [G].
Here are two example term encodings, the first of addition packaged as a two-argument

curried function, and the second of a sample application of addition to constants.
Example add : term nil (Func Nat (Func Nat Nat)) :=

Abs (Abs (Plus (Var (HNext HFirst)) (Var HFirst))).
Example three the hard way : term nil Nat :=
App (App add (Const 1)) (Const 2).
Since dependent typing ensures that any term is well-formed in its context and has a

particular type, it is easy to translate syntactic terms into Coq values.
Fixpoint termDenote G t (e : term G t) : hlist typeDenote G → typeDenote t :=
match e with
| Var x ⇒ fun s ⇒ hget s x

| Const n ⇒ fun ⇒ n
| Plus e1 e2 ⇒ fun s ⇒ termDenote e1 s + termDenote e2 s

| Abs e1 ⇒ fun s ⇒ fun x ⇒ termDenote e1 (x ::: s)
| App e1 e2 ⇒ fun s ⇒ (termDenote e1 s) (termDenote e2 s)

| Let e1 e2 ⇒ fun s ⇒ termDenote e2 (termDenote e1 s ::: s)
end.
With this term representation, some program transformations are easy to implement and

prove correct. Certainly we would be worried if this were not the the case for the identity
transformation, which takes a term apart and reassembles it.
Fixpoint ident G t (e : term G t) : term G t :=
match e with
| Var x ⇒ Var x

| Const n ⇒ Const n
| Plus e1 e2 ⇒ Plus (ident e1 ) (ident e2 )

| Abs e1 ⇒ Abs (ident e1 )
| App e1 e2 ⇒ App (ident e1 ) (ident e2 )

| Let e1 e2 ⇒ Let (ident e1 ) (ident e2 )
end.
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Theorem identSound : ∀ G t (e : term G t) s,
termDenote (ident e) s = termDenote e s.
induction e; pl.

Qed.
A slightly more ambitious transformation belongs to the family of constant folding opti-

mizations we have used as examples in other chapters.
Fixpoint cfold G t (e : term G t) : term G t :=
match e with
| Plus G e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
let maybeOpt := match e1’ return with

| Const n1 ⇒
match e2’ return with
| Const n2 ⇒ Some (Const (n1 + n2 ))
| ⇒ None

end
| ⇒ None

end in
match maybeOpt with
| None ⇒ Plus e1’ e2’
| Some e’ ⇒ e’

end

| Abs e1 ⇒ Abs (cfold e1 )
| App e1 e2 ⇒ App (cfold e1 ) (cfold e2 )

| Let e1 e2 ⇒ Let (cfold e1 ) (cfold e2 )

| e ⇒ e
end.
The correctness proof is more complex, but only slightly so.
Theorem cfoldSound : ∀ G t (e : term G t) s,
termDenote (cfold e) s = termDenote e s.
induction e; pl;
repeat (match goal with

| [ ` context[match ?E with Var ⇒ | ⇒ end] ] ⇒
dep destruct E

end; pl).
Qed.
The transformations we have tried so far have been straightforward because they do
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not have interesting effects on the variable binding structure of terms. The dependent de
Bruijn representation is called first-order because it encodes variable identity explicitly; all
such representations incur bookkeeping overheads in transformations that rearrange binding
structure.

As an example of a tricky transformation, consider one that removes all uses of “let x
= e1 in e2” by substituting e1 for x in e2. We will implement the translation by pairing
the “compile-time” typing environment with a “run-time” value environment or substitution,
mapping each variable to a value to be substituted for it. Such a substitute term may be
placed within a program in a position with a larger typing environment than applied at
the point where the substitute term was chosen. To support such context transplantation,
we need lifting, a standard de Bruijn indices operation. With dependent typing, lifting
corresponds to weakening for typing judgments.

The fundamental goal of lifting is to add a new variable to a typing context, maintaining
the validity of a term in the expanded context. To express the operation of adding a type
to a context, we use a helper function insertAt.
Fixpoint insertAt (t : type) (G : list type) (n : nat) {struct n} : list type :=
match n with
| O ⇒ t :: G
| S n’ ⇒ match G with

| nil ⇒ t :: G
| t’ :: G’ ⇒ t’ :: insertAt t G’ n’

end
end.
Another function lifts bound variable instances, which we represent withmember values.
Fixpoint liftVar t G (x : member t G) t’ n : member t (insertAt t’ G n) :=
match x with
| HFirst G’ ⇒ match n return member t (insertAt t’ (t :: G’) n) with

| O ⇒ HNext HFirst
| ⇒ HFirst

end
| HNext t’’ G’ x’ ⇒ match n return member t (insertAt t’ (t’’ :: G’) n) with

| O ⇒ HNext (HNext x’)
| S n’ ⇒ HNext (liftVar x’ t’ n’)

end
end.
The final helper function for lifting allows us to insert a new variable anywhere in a

typing context.
Fixpoint lift’ G t’ n t (e : term G t) : term (insertAt t’ G n) t :=
match e with
| Var x ⇒ Var (liftVar x t’ n)
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| Const n ⇒ Const n
| Plus e1 e2 ⇒ Plus (lift’ t’ n e1 ) (lift’ t’ n e2 )

| Abs e1 ⇒ Abs (lift’ t’ (S n) e1 )
| App e1 e2 ⇒ App (lift’ t’ n e1 ) (lift’ t’ n e2 )

| Let e1 e2 ⇒ Let (lift’ t’ n e1 ) (lift’ t’ (S n) e2 )
end.
In the Let removal transformation, we only need to apply lifting to add a new variable

at the beginning of a typing context, so we package lifting into this final, simplified form.
Definition lift G t’ t (e : term G t) : term (t’ :: G) t :=
lift’ t’ O e.
Finally, we can implement Let removal. The argument of type hlist (term G’) G rep-

resents a substitution mapping each variable from context G into a term that is valid in
context G’. Note how the Abs case (1) extends via lifting the substitution s to hold in the
broader context of the abstraction body e1 and (2) maps the new first variable to itself. It
is only the Let case that maps a variable to any substitute beside itself.
Fixpoint unlet G t (e : term G t) G’ : hlist (term G’) G → term G’ t :=
match e with
| Var x ⇒ fun s ⇒ hget s x

| Const n ⇒ fun ⇒ Const n
| Plus e1 e2 ⇒ fun s ⇒ Plus (unlet e1 s) (unlet e2 s)

| Abs e1 ⇒ fun s ⇒ Abs (unlet e1 (Var HFirst ::: hmap (lift ) s))
| App e1 e2 ⇒ fun s ⇒ App (unlet e1 s) (unlet e2 s)

| Let t1 e1 e2 ⇒ fun s ⇒ unlet e2 (unlet e1 s ::: s)
end.
We have finished defining the transformation, but the parade of helper functions is not

over. To prove correctness, we will use one more helper function and a few lemmas. First,
we need an operation to insert a new value into a substitution at a particular position.
Fixpoint insertAtS (t : type) (x : typeDenote t) (G : list type) (n : nat) {struct n}

: hlist typeDenote G → hlist typeDenote (insertAt t G n) :=
match n with
| O ⇒ fun s ⇒ x ::: s
| S n’ ⇒ match G return hlist typeDenote G

→ hlist typeDenote (insertAt t G (S n’)) with
| nil ⇒ fun s ⇒ x ::: s
| t’ :: G’ ⇒ fun s ⇒ hhd s ::: insertAtS t x n’ (htl s)

end
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end.
Implicit Arguments insertAtS [t G].
Next we prove that liftVar is correct. That is, a lifted variable retains its value with

respect to a substitution when we perform an analogue to lifting by inserting a new mapping
into the substitution.
Lemma liftVarSound : ∀ t’ (x : typeDenote t’) t G (m : member t G) s n,

hget s m = hget (insertAtS x n s) (liftVar m t’ n).
induction m; destruct n; dep destruct s; pl.

Qed.
Hint Resolve liftVarSound.
An analogous lemma establishes correctness of lift’.
Lemma lift’Sound : ∀ G t’ (x : typeDenote t’) t (e : term G t) n s,
termDenote e s = termDenote (lift’ t’ n e) (insertAtS x n s).
induction e; pl;
repeat match goal with

| [ IH : ∀ n s, = termDenote (lift’ n ?E)
` context[lift’ (S ?N ) ?E ] ] ⇒ specialize (IH (S N ))

end; pl.
Qed.
Correctness of lift itself is an easy corollary.
Lemma liftSound : ∀ G t’ (x : typeDenote t’) t (e : term G t) s,
termDenote (lift t’ e) (x ::: s) = termDenote e s.
unfold lift; intros; rewrite (lift’Sound x e O); trivial.

Qed.
Hint Rewrite hget hmap hmap hmap liftSound.
Finally, we can prove correctness of unletSound for terms in arbitrary typing environ-

ments.
Lemma unletSound’ : ∀ G t (e : term G t) G’ (s : hlist (term G’) G) s1,
termDenote (unlet e s) s1
= termDenote e (hmap (fun t’ (e’ : term G’ t’) ⇒ termDenote e’ s1 ) s).
induction e; pl.

Qed.
The lemma statement is a mouthful, with all its details of typing contexts and substitu-

tions. It is usually prudent to state a final theorem in as simple a way as possible, to help
your readers believe that you have proved what they expect. We follow that advice here for
the simple case of terms with empty typing contexts.
Theorem unletSound : ∀ t (e : term nil t),
termDenote (unlet e HNil) HNil = termDenote e HNil.
intros; apply unletSound’.
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Qed.
End FirstOrder.

The Let removal optimization is a good case study of a simple transformation that may
turn out to be much more work than expected, based on representation choices. In the
second part of this chapter, we consider an alternate choice that produces a more pleasant
experience.

17.2 Parametric Higher-Order Abstract Syntax
In contrast to first-order encodings, higher-order encodings avoid explicit modeling of vari-
able identity. Instead, the binding constructs of an object language (the language being
formalized) can be represented using the binding constructs of the meta language (the lan-
guage in which the formalization is done). The best known higher-order encoding is called
higher-order abstract syntax (HOAS) [35], and we can start by attempting to apply it directly
in Coq.
Module HigherOrder.

With HOAS, each object language binding construct is represented with a function of
the meta language. Here is what we get if we apply that idea within an inductive definition
of term syntax.

Inductive term : type → Type :=
| Const : nat → term Nat
| Plus : term Nat → term Nat → term Nat

| Abs : ∀ dom ran, (term dom → term ran) → term (Func dom ran)
| App : ∀ dom ran, term (Func dom ran) → term dom → term ran

| Let : ∀ t1 t2, term t1 → (term t1 → term t2 ) → term t2.
However, Coq rejects this definition for failing to meet the strict positivity restriction.

For instance, the constructor Abs takes an argument that is a function over the same type
family term that we are defining. Inductive definitions of this kind can be used to write
non-terminating Gallina programs, which breaks the consistency of Coq’s logic.

An alternate higher-order encoding is parametric HOAS, as introduced by Washburn
and Weirich [46] for Haskell and tweaked by me [5] for use in Coq. Here the idea is to
parameterize the syntax type by a type family standing for a representation of variables.
Section var.
Variable var : type → Type.
Inductive term : type → Type :=
| Var : ∀ t, var t → term t
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| Const : nat → term Nat
| Plus : term Nat → term Nat → term Nat

| Abs : ∀ dom ran, (var dom → term ran) → term (Func dom ran)
| App : ∀ dom ran, term (Func dom ran) → term dom → term ran

| Let : ∀ t1 t2, term t1 → (var t1 → term t2 ) → term t2.
End var.
Implicit Arguments Var [var t].
Implicit Arguments Const [var ].
Implicit Arguments Abs [var dom ran].
Coq accepts this definition because our embedded functions now merely take variables as

arguments, instead of arbitrary terms. One might wonder whether there is an easy loophole
to exploit here, instantiating the parameter var as term itself. However, to do that, we
would need to choose a variable representation for this nested mention of term, and so on
through an infinite descent into term arguments.

We write the final type of a closed term using polymorphic quantification over all possible
choices of var type family.
Definition Term t := ∀ var, term var t.
Here are the new representations of the example terms from the last section. Note how

each is written as a function over a var choice, such that the specific choice has no impact
on the structure of the term.
Example add : Term (Func Nat (Func Nat Nat)) := fun var ⇒
Abs (fun x ⇒ Abs (fun y ⇒ Plus (Var x) (Var y))).

Example three the hard way : Term Nat := fun var ⇒
App (App (add var) (Const 1)) (Const 2).
The argument var does not even appear in the function body for add. How can that be?

By giving our terms expressive types, we allow Coq to infer many arguments for us. In fact,
we do not even need to name the var argument!
Example add’ : Term (Func Nat (Func Nat Nat)) := fun ⇒
Abs (fun x ⇒ Abs (fun y ⇒ Plus (Var x) (Var y))).

Example three the hard way’ : Term Nat := fun ⇒
App (App (add’ ) (Const 1)) (Const 2).

Even though the var formal parameters appear as underscores, they are mentioned in
the function bodies that type inference calculates.

17.2.1 Functional Programming with PHOAS
It may not be at all obvious that the PHOAS representation admits the crucial computable
operations. The key to effective deconstruction of PHOAS terms is one principle: treat
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the var parameter as an unconstrained choice of which data should be annotated on each
variable. We will begin with a simple example, that of counting how many variable nodes
appear in a PHOAS term. This operation requires no data annotated on variables, so we
simply annotate variables with unit values. Note that, when we go under binders in the
cases for Abs and Let, we must provide the data value to annotate on the new variable we
pass beneath. For our current choice of unit data, we always pass tt.
Fixpoint countVars t (e : term (fun ⇒ unit) t) : nat :=
match e with
| Var ⇒ 1

| Const ⇒ 0
| Plus e1 e2 ⇒ countVars e1 + countVars e2

| Abs e1 ⇒ countVars (e1 tt)
| App e1 e2 ⇒ countVars e1 + countVars e2

| Let e1 e2 ⇒ countVars e1 + countVars (e2 tt)
end.
The above definition may seem a bit peculiar. What gave us the right to represent

variables as unit values? Recall that our final representation of closed terms is as polymorphic
functions. We merely specialize a closed term to exactly the right variable representation for
the transformation we wish to perform.
Definition CountVars t (E : Term t) := countVars (E (fun ⇒ unit)).
It is easy to test that CountVars operates properly.
Eval compute in CountVars three the hard way.

= 2
In fact, PHOAS can be used anywhere that first-order representations can. We will not go

into all the details here, but the intuition is that it is possible to interconvert between PHOAS
and any reasonable first-order representation. Here is a suggestive example, translating
PHOAS terms into strings giving a first-order rendering. To implement this translation, the
key insight is to tag variables with strings, giving their names. The function takes as an
additional input a string giving the name to be assigned to the next variable introduced. We
evolve this name by adding a prime to its end. To avoid getting bogged down in orthogonal
details, we render all constants as the string "N ".
Require Import String.
Open Scope string scope.
Fixpoint pretty t (e : term (fun ⇒ string) t) (x : string) : string :=
match e with
| Var s ⇒ s
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| Const ⇒ "N"
| Plus e1 e2 ⇒ "(" ++ pretty e1 x ++ " + " ++ pretty e2 x ++ ")"

| Abs e1 ⇒ "(fun " ++ x ++ " => " ++ pretty (e1 x) (x ++ "’") ++ ")"
| App e1 e2 ⇒ "(" ++ pretty e1 x ++ " " ++ pretty e2 x ++ ")"

| Let e1 e2 ⇒ "(let " ++ x ++ " = " ++ pretty e1 x ++ " in "
++ pretty (e2 x) (x ++ "’") ++ ")"

end.
Definition Pretty t (E : Term t) := pretty (E (fun ⇒ string)) "x".
Eval compute in Pretty three the hard way.

= "(((fun x => (fun x’ => (x + x’))) N) N)"
However, it is not necessary to convert to first-order form to support many common

operations on terms. For instance, we can implement substitution of terms for variables.
The key insight here is to tag variables with terms, so that, on encountering a variable, we
can simply replace it by the term in its tag. We will call this function initially on a term
with exactly one free variable, tagged with the appropriate substitute. During recursion,
new variables are added, but they are only tagged with their own term equivalents. Note
that this function squash is parameterized over a specific var choice.
Fixpoint squash var t (e : term (term var) t) : term var t :=
match e with
| Var e1 ⇒ e1

| Const n ⇒ Const n
| Plus e1 e2 ⇒ Plus (squash e1 ) (squash e2 )

| Abs e1 ⇒ Abs (fun x ⇒ squash (e1 (Var x)))
| App e1 e2 ⇒ App (squash e1 ) (squash e2 )

| Let e1 e2 ⇒ Let (squash e1 ) (fun x ⇒ squash (e2 (Var x)))
end.
To define the final substitution function over terms with single free variables, we define

Term1, an analogue to Term that we defined before for closed terms.
Definition Term1 (t1 t2 : type) := ∀ var, var t1 → term var t2.
Substitution is defined by (1) instantiating a Term1 to tag variables with terms and (2)

applying the result to a specific term to be substituted. Note how the parameter var of
squash is instantiated: the body of Subst is itself a polymorphic quantification over var ,
standing for a variable tag choice in the output term; and we use that input to compute a
tag choice for the input term.
Definition Subst (t1 t2 : type) (E : Term1 t1 t2 ) (E’ : Term t1 ) : Term t2 :=
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fun var ⇒ squash (E (term var) (E’ var)).
Eval compute in Subst (fun x ⇒ Plus (Var x) (Const 3)) three the hard way.

= fun var : type → Type ⇒
Plus

(App
(App

(Abs
(fun x : var Nat ⇒
Abs (fun y : var Nat ⇒ Plus (Var x) (Var y))))

(Const 1)) (Const 2)) (Const 3)
One further development, which may seem surprising at first, is that we can also imple-

ment a usual term denotation function, when we tag variables with their denotations.
Fixpoint termDenote t (e : term typeDenote t) : typeDenote t :=
match e with
| Var v ⇒ v

| Const n ⇒ n
| Plus e1 e2 ⇒ termDenote e1 + termDenote e2

| Abs e1 ⇒ fun x ⇒ termDenote (e1 x)
| App e1 e2 ⇒ (termDenote e1 ) (termDenote e2 )

| Let e1 e2 ⇒ termDenote (e2 (termDenote e1 ))
end.

Definition TermDenote t (E : Term t) : typeDenote t :=
termDenote (E typeDenote).

Eval compute in TermDenote three the hard way.

= 3
To summarize, the PHOAS representation has all the expressive power of more stan-

dard first-order encodings, and a variety of translations are actually much more pleasant to
implement than usual, thanks to the novel ability to tag variables with data.

17.2.2 Verifying Program Transformations
Let us now revisit the three example program transformations from the last section. Each
is easy to implement with PHOAS, and the last is substantially easier than with first-order
representations.

First, we have the recursive identity function, following the same pattern as in the pre-
vious subsection, with a helper function, polymorphic in a tag choice; and a final function
that instantiates the choice appropriately.
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Fixpoint ident var t (e : term var t) : term var t :=
match e with
| Var x ⇒ Var x

| Const n ⇒ Const n
| Plus e1 e2 ⇒ Plus (ident e1 ) (ident e2 )

| Abs e1 ⇒ Abs (fun x ⇒ ident (e1 x))
| App e1 e2 ⇒ App (ident e1 ) (ident e2 )

| Let e1 e2 ⇒ Let (ident e1 ) (fun x ⇒ ident (e2 x))
end.

Definition Ident t (E : Term t) : Term t := fun var ⇒
ident (E var).
Proving correctness is both easier and harder than in the last section, easier because we

do not need to manipulate substitutions, and harder because we do the induction in an extra
lemma about ident, to establish the correctness theorem for Ident.
Lemma identSound : ∀ t (e : term typeDenote t),

termDenote (ident e) = termDenote e.
induction e; pl.

Qed.
Theorem IdentSound : ∀ t (E : Term t),

TermDenote (Ident E) = TermDenote E.
intros; apply identSound.

Qed.
The translation of the constant-folding function and its proof work more or less the same

way.
Fixpoint cfold var t (e : term var t) : term var t :=
match e with
| Plus e1 e2 ⇒
let e1’ := cfold e1 in
let e2’ := cfold e2 in
match e1’, e2’ with
| Const n1, Const n2 ⇒ Const (n1 + n2 )
| , ⇒ Plus e1’ e2’

end

| Abs e1 ⇒ Abs (fun x ⇒ cfold (e1 x))
| App e1 e2 ⇒ App (cfold e1 ) (cfold e2 )

| Let e1 e2 ⇒ Let (cfold e1 ) (fun x ⇒ cfold (e2 x))
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| e ⇒ e
end.

Definition Cfold t (E : Term t) : Term t := fun var ⇒
cfold (E var).

Lemma cfoldSound : ∀ t (e : term typeDenote t),
termDenote (cfold e) = termDenote e.
induction e; pl;
repeat (match goal with

| [ ` context[match ?E with Var ⇒ | ⇒ end] ] ⇒
dep destruct E

end; pl).
Qed.
Theorem CfoldSound : ∀ t (E : Term t),
TermDenote (Cfold E) = TermDenote E.
intros; apply cfoldSound.

Qed.
Things get more interesting in the Let-removal optimization. Our recursive helper func-

tion adapts the key idea from our earlier definitions of squash and Subst: tag variables with
terms. We have a straightforward generalization of squash, where only the Let case has
changed, to tag the new variable with the term it is bound to, rather than just tagging the
variable with itself as a term.
Fixpoint unlet var t (e : term (term var) t) : term var t :=
match e with
| Var e1 ⇒ e1

| Const n ⇒ Const n
| Plus e1 e2 ⇒ Plus (unlet e1 ) (unlet e2 )

| Abs e1 ⇒ Abs (fun x ⇒ unlet (e1 (Var x)))
| App e1 e2 ⇒ App (unlet e1 ) (unlet e2 )

| Let e1 e2 ⇒ unlet (e2 (unlet e1 ))
end.

Definition Unlet t (E : Term t) : Term t := fun var ⇒
unlet (E (term var)).
We can test Unlet first on an uninteresting example, three the hard way, which does not

use Let.
Eval compute in Unlet three the hard way.

= fun var : type → Type ⇒
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App
(App

(Abs
(fun x : var Nat ⇒
Abs (fun x0 : var Nat ⇒ Plus (Var x) (Var x0 ))))

(Const 1)) (Const 2)
Next, we try a more interesting example, with some extra Lets introduced in three the hard way.

Definition three a harder way : Term Nat := fun ⇒
Let (Const 1) (fun x ⇒ Let (Const 2) (fun y ⇒ App (App (add ) (Var x)) (Var y))).

Eval compute in Unlet three a harder way.

= fun var : type → Type ⇒
App

(App
(Abs

(fun x : var Nat ⇒
Abs (fun x0 : var Nat ⇒ Plus (Var x) (Var x0 ))))

(Const 1)) (Const 2)
The output is the same as in the previous test, confirming that Unlet operates properly

here.
Now we need to state a correctness theorem for Unlet, based on an inductively proved

lemma about unlet. It is not at all obvious how to arrive at a proper induction principle for
the lemma. The problem is that we want to relate two instantiations of the same Term, in
a way where we know they share the same structure. Note that, while Unlet is defined to
consider all possible var choices in the output term, the correctness proof conveniently only
depends on the case of var := typeDenote. Thus, one parallel instantiation will set var :=
typeDenote, to take the denotation of the original term. The other parallel instantiation will
set var := term typeDenote, to perform the unlet transformation in the original term.

Here is a relation formalizing the idea that two terms are structurally the same, differing
only by replacing the variable data of one with another isomorphic set of variable data in
some possibly different type family.
Section wf.
Variables var1 var2 : type → Type.

To formalize the tag isomorphism, we will use lists of values with the following record
type. Each entry has an object language type and an appropriate tag for that type, in each
of the two tag families var1 and var2 .

Record varEntry := {
Ty : type;
First : var1 Ty;
Second : var2 Ty
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}.
Here is the inductive relation definition. An instance wf G e1 e2 asserts that terms e1

and e2 are equivalent up to the variable tag isomorphism G. Note how the Var rule looks up
an entry in G, and the Abs and Let rules include recursive wf invocations inside the scopes
of quantifiers to introduce parallel tag values to be considered as isomorphic.

Inductive wf : list varEntry → ∀ t, term var1 t → term var2 t → Prop :=
| WfVar : ∀ G t x x’, In {| Ty := t; First := x; Second := x’ |} G
→ wf G (Var x) (Var x’)

| WfConst : ∀ G n, wf G (Const n) (Const n)

| WfPlus : ∀ G e1 e2 e1’ e2’, wf G e1 e1’
→ wf G e2 e2’
→ wf G (Plus e1 e2 ) (Plus e1’ e2’)

| WfAbs : ∀ G dom ran (e1 : dom → term ran) e1’,
(∀ x1 x2, wf ({| First := x1; Second := x2 |} :: G) (e1 x1 ) (e1’ x2 ))
→ wf G (Abs e1 ) (Abs e1’)

| WfApp : ∀ G dom ran (e1 : term (Func dom ran)) (e2 : term dom) e1’ e2’,
wf G e1 e1’
→ wf G e2 e2’
→ wf G (App e1 e2 ) (App e1’ e2’)

| WfLet : ∀ G t1 t2 e1 e1’ (e2 : t1 → term t2 ) e2’, wf G e1 e1’
→ (∀ x1 x2, wf ({| First := x1; Second := x2 |} :: G) (e2 x1 ) (e2’ x2 ))
→ wf G (Let e1 e2 ) (Let e1’ e2’).

End wf.
We can state a well-formedness condition for closed terms: for any two choices of tag

type families, the parallel instantiations belong to the wf relation, starting from an empty
variable isomorphism.
Definition Wf t (E : Term t) := ∀ var1 var2, wf nil (E var1 ) (E var2 ).
After digesting the syntactic details of Wf, it is probably not hard to see that reasonable

term encodings will satisfy it. For example:
Theorem three the hard way Wf : Wf three the hard way.
red; intros; repeat match goal with

| [ ` wf ] ⇒ constructor; intros
end; intuition.

Qed.
Now we are ready to give a nice simple proof of correctness for unlet. First, we add

one hint to apply a small variant of a standard library theorem connecting Forall, a higher-
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order predicate asserting that every element of a list satisfies some property; and In, the list
membership predicate.
Hint Extern 1 ⇒ match goal with

| [ H1 : Forall , H2 : In ` ] ⇒ apply (Forall In H1 H2 )
end.

The rest of the proof is about as automated as we could hope for.
Lemma unletSound : ∀ G t (e1 : term t) e2,
wf G e1 e2
→ Forall (fun ve ⇒ termDenote (First ve) = Second ve) G
→ termDenote (unlet e1 ) = termDenote e2.
induction 1; pl.

Qed.
Theorem UnletSound : ∀ t (E : Term t), Wf E
→ TermDenote (Unlet E) = TermDenote E.
intros; eapply unletSound; eauto.

Qed.
With this example, it is not obvious that the PHOAS encoding is more tractable than

dependent de Bruijn. Where the de Bruijn version had lift and its helper functions, here we
have Wf and its auxiliary definitions. In practice, Wf is defined once per object language,
while such operations as lift often need to operate differently for different examples, forcing
new implementations for new transformations.

The reader may also have come up with another objection: via Curry-Howard, wf proofs
may be thought of as first-order encodings of term syntax! For instance, the In hypothesis of
rule WfVar is equivalent to a member value. There is some merit to this objection. However,
as the proofs above show, we are able to reason about transformations using first-order
representation only for their inputs, not their outputs. Furthermore, explicit numbering of
variables remains absent from the proofs.

Have we really avoided first-order reasoning about the output terms of translations? The
answer depends on some subtle issues, which deserve a subsection of their own.

17.2.3 Establishing Term Well-Formedness
Can there be values of type Term t that are not well-formed according to Wf? We expect
that Gallina satisfies key parametricity [38] properties, which indicate how polymorphic types
may only be inhabited by specific values. We omit details of parametricity theorems here,
but ∀ t (E : Term t), Wf E follows the flavor of such theorems. One option would be to
assert that fact as an axiom, “proving” that any output of any of our translations is well-
formed. We could even prove the soundness of the theorem on paper meta-theoretically, say
by considering some particular model of CIC.

To be more cautious, we could prove Wf for every term that interests us, threading such
proofs through all transformations. Here is an example exercise of that kind, for Unlet.
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First, we prove that wf is monotone, in that a given instance continues to hold as we add
new variable pairs to the variable isomorphism.
Hint Constructors wf.
Hint Extern 1 (In ) ⇒ simpl; tauto.
Hint Extern 1 (Forall ) ⇒ eapply Forall weaken; [ eassumption | simpl ].
Lemma wf monotone : ∀ var1 var2 G t (e1 : term var1 t) (e2 : term var2 t),
wf G e1 e2
→ ∀ G’, Forall (fun x ⇒ In x G’) G
→ wf G’ e1 e2.

induction 1; pl; auto 6.
Qed.
Hint Resolve wf monotone Forall In’.
Now we are ready to prove that unlet preserves any wf instance. The key invariant has

to do with the parallel execution of unlet on two different var instantiations of a particular
term. Since unlet uses term as the type of variable data, our variable isomorphism context
G contains pairs of terms, which, conveniently enough, allows us to state the invariant that
any pair of terms in the context is also related by wf.
Hint Extern 1 (wf ) ⇒ progress simpl.
Lemma unletWf : ∀ var1 var2 G t (e1 : term (term var1 ) t) (e2 : term (term var2 ) t),
wf G e1 e2
→ ∀ G’, Forall (fun ve ⇒ wf G’ (First ve) (Second ve)) G
→ wf G’ (unlet e1 ) (unlet e2 ).

induction 1; pl; eauto 9.
Qed.
Repackaging unletWf into a theorem about Wf and Unlet is straightforward.
Theorem UnletWf : ∀ t (E : Term t), Wf E
→ Wf (Unlet E).
red; intros; apply unletWf with nil; auto.

Qed.
This example demonstrates how we may need to use reasoning reminiscent of that asso-

ciated with first-order representations, though the bookkeeping details are generally easier
to manage, and bookkeeping theorems may generally be proved separately from the inde-
pendently interesting theorems about program transformations.

17.2.4 A Few More Remarks
Higher-order encodings derive their strength from reuse of the meta language’s binding con-
structs. As a result, we can write encoded terms so that they look very similar to their
informal counterparts, without variable numbering schemes like for de Bruijn indices. The
example encodings above have demonstrated this fact, but modulo the clunkiness of explicit
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use of the constructors of term. After defining a few new Coq syntax notations, we can work
with terms in an even more standard form.
Infix "–>" := Func (right associativity, at level 52).
Notation "ˆ" := Var.
Notation "#" := Const.
Infix "@" := App (left associativity, at level 50).
Infix "@+" := Plus (left associativity, at level 50).
Notation "\ x : t , e" := (Abs (dom := t) (fun x ⇒ e))
(no associativity, at level 51, x at level 0).

Notation "[ e ]" := (fun ⇒ e).
Example Add : Term (Nat –> Nat –> Nat) :=
[\x : Nat, \y : Nat, ˆx @+ ˆy].

Example Three the hard way : Term Nat :=
[Add @ #1 @ #2].

Eval compute in TermDenote Three the hard way.

= 3

End HigherOrder.
The PHOAS approach shines here because we are working with an object language that

has an easy embedding into Coq. That is, there is a straightforward recursive function
translating object terms into terms of Gallina. All Gallina programs terminate, so clearly
we cannot hope to find such embeddings for Turing-complete languages; and non-Turing-
complete languages may still require much more involved translations. I have some work [6]
on modeling semantics of Turing-complete languages with PHOAS, but my impression is
that there are many more advances left to be made in this field, possibly with completely
new term representations that we have not yet been clever enough to think up.
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Conclusion

I have designed this book to present the key ideas needed to get started with productive
use of Coq. Many people have learned to use Coq through a variety of resources, yet
there is a distinct lack of agreement on structuring principles and techniques for easing the
evolution of Coq developments over time. Here I have emphasized two unusual techniques:
programming with dependent types and proving with scripted proof automation. I have also
tried to present other material following my own take on how to keep Coq code beautiful
and scalable.

Part of the attraction of Coq and similar tools is that their logical foundations are small.
A few pages of LATEX code suffice to define CIC, Coq’s logic, yet there do not seem to be
any practical limits on which mathematical concepts may be encoded on top of this modest
base. At the same time, the pragmatic foundation of Coq is vast, encompassing tactics,
libraries, and design patterns for programs, theorem statements, and proof scripts. I hope
the preceding chapters have given a sense of just how much there is to learn before it is
possible to drive Coq with the same ease with which many readers write informal proofs!
The pay-off of this learning process is that many proofs, especially those with many details
to check, become much easier to write than they are on paper. Further, the truth of such
theorems may be established with much greater confidence, even without reading proof
details.

As Coq has so many moving parts to catalogue mentally, I have not attempted to describe
most of them here; nor have I attempted to give exhaustive descriptions of the few I devote
space to. To those readers who have made it this far through the book, my advice is: read
through the Coq manual, front to back, at some level of detail. Get a sense for which bits
of functionality are available. Dig more into those categories that sound relevant to the
developments you want to build, and keep the rest in mind in case they come in handy later.

In a domain as rich as this one, the learning process never ends. The Coq Club mailing
list (linked from the Coq home page) is a great place to get involved in discussions of the
latest improvements, or to ask questions about stumbling blocks that you encounter. (I hope
that this book will save you from needing to ask some of the most common questions!) I
believe the best way to learn is to get started using Coq to build some development that
interests you.

Good luck!
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constr, 280
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destruct, 42, 99
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do, 292
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eauto, 84, 256
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eval, 291
evar, 291
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fail, 276
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idtac, 275, 276
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progress, 288
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repeat, 273
rewrite, 27, 29, 66
right, 72
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simple apply, 289
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tagless interpreters, 144
termination checking, 20, 56
theory of equality and uninterpreted functions,

47
thunks, 333
transparent, 108
transparent ascription, 334
trusted code base, 243
Twelf, 8, 9, 55
type classes, 207
type hierarchy, 223
type inference, 19, 58

unicity of identity proofs, 239
unification, 255
unification variable, 256
universe inconsistency, 226
universe polymorphism, 229
universe types, 207
universe variable, 224

variable binding, 340
Vernacular commands, 19

Abort, 28
Axiom, 236
Check, 27
CoFixpoint, 87
CoInductive, 87
Debug On, 328
Declare Module, 334
Defined, 108, 125
Definition, 18
Eval, 20
Example, 54
Extract Inductive, 112
Extraction, 37, 103
Fixpoint, 19
Guarded, 92
Hint Constructors, 255, 267
Hint Extern, 64, 263

Hint Immediate, 257, 267
Hint Resolve, 257, 267
Hint Rewrite, 37, 269
Hint Unfold, 267
Hypothesis, 58
Implicit Arguments, 50
Import, 337
Inductive, 18
Lemma, 22
Load, 337
Locate, 62
Ltac, 156
Module, 334
Module Type, 333
Obligation Tactic, 110
Open Scope, 159
Parameter, 236
Print Assumptions, 201, 237
Print Universes, 228
Program Definition, 110
Qed, 28, 333
Recursive Extraction, 158
Require, 337
Require Export, 338
Require Import, 332
Restart, 45
Scheme, 52
SearchRewrite, 27, 257
Section, 50
Set Implicit Arguments, 50
Set Printing All, 230
Set Printing Universes, 224
Show Proof, 262
Theorem, 22
Time, 258, 330
Variable, 50

well-founded recursion, 122
well-founded relation, 122

Zermelo-Fraenkel set theory, 19
zeta reduction, 186
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