
LOGIC

FOR

COMPUTER SCIENCE

Steve Reeves

and

Mike Clarke

Department of Computer Science
Queen Mary and Westfield College

University of London
U.K.

Department of Computer Science
University of Waikato

New Zealand

©1990 and 2003

The programs in this book have been included for their instructional value.

They have been tested with care but are not guaranteed for any particular purpose.

The authors and publishers do not offer any warranties or representations, nor do they

accept any liabilities with respect to the programs.

The contents of this book were first published in 1990 by Addison-Wesley

Publishers Ltd.

iii

Preface to 1990 edition

Aims

The aim of this book is to give students of computer science a working

knowledge of the relevant parts of logic. It is not intended to be a review of

applications of logic in computer science, neither is it primarily intended to be a first

course in logic for students of mathematics or philosophy, although we believe that

mush of the material will be increasingly relevant to both of these groups as

computational ideas pervade their syllabuses.

Most controversial perhaps will be our decision to include modal and

intuitionistic logic in an introductory text, the inevitably cost being a rather more

summary treatment of some aspects of classical predicate logic. We believe, however,

that a glance at the wide variety of ways in which logic is used in computer science

fully justifies this approach. Certainly classical predicate logic is the basic tool of

sequential program verification, but modal and temporal logics are increasingly being

used for distributed and concurrent systems and intuitionistic logic provides a basis

for expressing specifications and deriving programs. Horn clause logic and resolution

underlie the very widespread use of logic programming, while algorithms for

automated theorem proving have long been of interest to computer scientists for both

their intrinsic interest and the applications in artificial intelligence.

One major (and deliberate) omission is the standard development of the

logical basis of set theory and arithmetic. These theories are so well covered in a

number of excellent and widely available texts (many of which are referenced in the

text or are among the sources we acknowledge at the end of this preface) that we

preferred to use the space for less well-exposed topics. Of course, the need to

formalize arithmetic and set theory has led to major developments in logic and

computer science and we have tried to give the historical perspective, while referring

readers elsewhere for the detail.

iv

Different disciplines have different motivations for studying logic and

correspondingly different conventions of notation and rigour. To keep the within

reasonable bounds we have decided to omit some of the lengthier explanations and

proofs found in traditional logic texts in favour of introducing topics considered more

‘advanced’, that are central to modern computer science. In many cases, where proof

methods have been specified by non-deterministic sets of rules, we have been more

precise than usual by giving algorithms and programs; in other cases we have relied

on the background of our students to keep routine formal development to a minimum.

Another major departure is that we present many of the definitions and

algorithms as computer programs in, not just one but, two programming languages.

We have chosen Prolog and SML, partly because they are both highly succinct and

suitable languages for the procedures we want to express, but also because they have

their roots, respectively in logic and the l–calculus, two of the most important

theoretical developments that underlie computer science and the theory of

computability. Either of the languages is sufficient, but a student who carefully

studies the programs in both languages will learn a lot about the theory and technique

of declarative programming as well as about the logical definitions and algorithms

that the programs express.

In Appendix A we give a brief introduction to the philosophy and facilities of

both languages, but this is aimed to some extent at teachers and students with a

considerable background in computer science. The less sophisticated will need access

to one or other of the introductory texts that we recommend. That being said, the

programs are designed to be readable ad should relay some message even to non-

programmers, perhaps helping them to realize that much of logic is inseparable from

the notion of an effective algorithm, and even encourage them to start programming.

Overall, our aim has been to show how computer science and logic are closely

linked. We hope that students will see that what they might have considered a dry

subject without obvious applications is being put to good use and vigorously

developed by computer scientists.

Readership

Much of the material has been tested in a course given to first-year

undergraduate students in computer science who, at that stage, have had an

introductory course in discrete mathematics and a first programming course that

emphasizes recursion, inductive proof and scope of definition. So they already have a

fair grasp at a semiformal level of notions such as set, function, relation, formal

v

language, free and bounds variable and mathematical induction, and we believe that

such a background will, if not already standard, soon become so for first-year students

of computer science. The students, we are glad to say, bear out our conviction that an

introductory logic course can successfully go beyond what is usually considered tot

he be the appropriate level. They are able to actually do proofs using the methods we

teach and are surprised and challenged by the idea of several logics. We feel that this

is because computer science, properly taught, makes the student of logic easier, and

vice versa. The activity of constructing and reasoning about programs in not all that

different from the activity of constructing and reasoning about proofs.

Acknowledgements

Our colleagues, also, have made a big contribution to the development of the

course, and subsequently the book. We would single out for special mention, in no

particular order, Peter Burton, Wilfrid Hodges, Doug Goldson, Peter Landin, Sarah

Lloyd-Jones, Mike Hopkins, Keith Clarke, Richard Bornat, Steve Sommerville, Dave

Saunders, Mel Slater, John Bell and Mark Christian, and well as those further

away—Alan Bundy, Dov Gabbay—who have influenced our views on the more

advanced topics.

Finally, it will be obvious that we have been strongly influenced, and greatly

helped, by many other texts whose development fo the subject we have studied, and

in many instances borrowed. These have included Hodges (1977), Logic, Hamilton

(1978), Logic for Mathematicians, Boolos and Jeffrey (1980), Computability and

Logic, Scott et al. (1981), Foundations of Logic Programming, and Martin-Löf

(1985), Constructive Mathematics and Computer Programming.

Steve Reeves

Mike Clarke

QMW, University of London

November, 1989

 Preface to 2003 edition

Since 1990 much has changed in our subject and many further chapters could

be added to the book Mike and I wrote in 1989-1990. However, I think it is good to

be able to say that all of the things we wrote about then are still relevant and being

used in many areas of computer science today, which is something not many authors

iv

of computer science texts looking back over 13 years from 2003 could say—we

clearly chose well.

However, there are two reasons why the book has not changed. One is that no

company, today, thinks it worth publishing (well, not Addison-Wesley anyhow—now

part of Pearson). To some extent you can’t blame them—computer science has

become more and more a ticket to a good job rather than an intellectual undertaking

(that is likely to lead to a good job) taught and studied by people who are interested in

it. (many of our current students are not interested in the subject, or are not very good

at it, so I hate to think what their working lives, in terms of self-fulfillment, are going

to be like). The publishers look around at all the courses which teach short-term skills

rather than lasting knowledge and see that logic has little place, and see that a book on

logic for computer science does not represent an opportunity to make monetary

profits.

Why, then, has the book re-appeared? Because of repeated demands from

around the world (but mainly from the USA) for copies of it! There are no longer any

(new) copies for sale, so given the demand something had to be done. Hence this

ersatz edition. It’s not as high quality as AW’s was, but then I’m not a type-setter,

printer, bookbinder, designer etc. It was produced from the original Word files we

gave to AW (from which, after much re-typing and re-design, they produced the 1990

edition). Those files were written using a couple of Macintosh SEs. The files have

traveled around the world with me, moving from computer to computer until the 2003

version has been produced on an eMac and a Titanium Powerbook. There is one

constant in Word—it still crashes reliably about once a day!

The other reason the book has not been re-written is that Mike Clarke died in

1994, so the version before you stands as a memorial to him—he was a friend and a

mentor, and you can’t be more than that.

Steve Reeves

University of Waikato

January 2003

vii

CONTENTS

Preface to 1990 edition iii

Preface to 2003 edition v

CONTENTS vii

Introduction 1

1.1. Aims and Objectives 1

1.2. Background history 2

1.3. Background terminology 2

1.4. Propositions, Beliefs and Declarative Sentences 5

1.5. Contradictions 6

1.6. Formalization 7

viii

Formalizing the Language 9

2.1 Informal Propositional Calculus 9

2.2 Arguments 20

2.3 Functional Completeness 27

2.4 Consistency, Inconsistency, Entailment. 28

2.5 Formal Propositional Calculus 33

2.6 Soundness and Completeness for propositional calculus 42

Extending the language 49

3.1. Informal predicate calculus 49

3.2. FDS for predicate calculus 60

3.3. Historical discussion 65

3.4. Models and Theories 68

Semantic Tableaux 71

4.1. Introduction 71

4.2. Semantic Tableaux for Propositional Calculus 72

4.3. Soundness and Completeness for Propositional Calculus 80

4.4. Semantic Tableaux for Predicate Calculus 89

4.5. Soundness and Completeness for Predicate Calculus 92

Natural Deduction 99

5.1. Rules and Proofs 99

5.2. The Sequent Calculus 110

5.3. Generalizing the logic 117

5.4. What is Logic Ultimately? 121

ix

Some Extended Examples 125

6.1. Introduction 125

6.2. Theory examples 125

6.3. Gödel and the limits of formalization 144

Logic Programming 147

7.1. Introduction 147

7.2. Substitution and Unification 153

7.3. Resolution 159

7.4. Least Herbrand models and a declarative semantics for definite clause programs 162

Non-Standard Logics 167

8.1. Introduction 167

8.2. Necessity and Possibility 167

8.3. Possible world semantics 169

8.4. Frames, interpretations and models 170

8.5. Truth-functionality and modal logic 174

8.6. Systems of modal logic 175

8.7. A tableau system for S4 175

8.8. One use for modal logic in programming 184

8.9. Tableaux for Intuitionistic Logic 186

Further Study 193

9.1. Introduction 193

9.2. Connection method 193

9.3. LCF 197

9.4. Temporal and dynamic logics 204

9.5. Intuitionistic logic 210

x

Introductions to Standard ML and Prolog 221

A.1. Introduction 221

A.2. Standard ML 221

A.3. Prolog 239

Programs in Standard ML and Prolog 255

B.1.Programs in SML 255

B.2. Programs in Prolog 279

Solutions to Selected Exercises 281

REFERENCES 293

INDEX 297

1

CHAPTER ONE

Introduction

1.1. Aims and Objectives

This book will differ from most others with similar titles because we aim to

give you not one or two ways of looking at Logic, but many. The forms of reasoning

that are fundamental to Computer Science are not necessarily those most familiar

from a study of Mathematics and this gives us the opportunity to develop the subject

along two dimensions, looking not only at different methods for implementing one

particular mode of reasoning, but also at different ways of formalizing the process of

reasoning itself.

There are many reasons why a computer scientist should need to study logic.

Not only has it historically formed the roots of computer science, both Church's and

Turing's work being motivated by the decision problem for first-order logic, but

nowadays we are finding conversely that computer science is generating an explosion

of interest in logic, with the desire to automate reasoning and the necessity to prove

programs correct.

Basically, logic is about formalizing language and reasoning, and computer

science addresses similar problems with the extra task, having formalized them, of

expressing those formalizations, in the technical sense of producing mechanisms

which follow the rules that they lay down. This, indeed, has led to the recent use of

computer science for investigating logics in an experimental way, exploring some of

them much more thoroughly than was possible when the 'computer' was a person

rather than a machine.

2 INTRODUCTION

What we hope then to show is that computer science has grown out of logic.

It is helping to suggest new ideas for logical analysis and these logical ideas are, in

turn, allowing computer science to develop further. The two subjects have each

contributed to the growth of the other and still are, and in combination they form an

exciting and rapidly growing field of study.

1.2. Background history

In the middle of the last century Boole laid down what we now see as the

mathematical basis for computer hardware and propositional logic, but the logics that

we are going to look at really started towards the end of the century with the work of

Gottlob Frege, a German mathematician working in relative obscurity. Frege aimed to

derive all of mathematics from logical principles, in other words pure reason, together

with some self-evident truths about sets. (Such as 'sets are identical if they have the

same members' or 'every property determines a set'). In doing this he introduced new

notation and language which forms the basis of the work that we shall be covering.

Until Boole and Frege, logic had not fundamentally changed since Aristotle!

Frege's huge work was (terminally) criticized at its foundations by Bertrand

Russell who found a basic flaw in it stemming from one of the 'self-evident' truths

upon which the whole enterprise was based. However, Russell developed the work

further by suggesting ways of repairing the damage. He also introduced Frege's work

to the English-speaking mathematicians since not many of them, at that time, read

German. Russell, who did read German, saw that the work was important and so

publicized it.

1.3. Background terminology

We are going to be doing what is usually known as 'mathematical Logic' or

'symbolic Logic' or 'formal Logic'. That is, we are going to use ordinary, but careful,

mathematical methods to study a branch of mathematics called Logic. Before we

start to look at what Logic actually is we shall try to make the context in which we are

working a bit clearer. To make the discussion concrete we can think in terms of the

typical introductory programming course that you may have followed.

Such a programming course not only teaches you how to use the constructs of

the language to produce the effects that you want when the program is executed, but it

also teaches you the distinction between the language that you write programs in and

the meaning of the statements of that language in terms of the effect that they have

when executed by a computer. If the course was a good one, it will also have taught

3

you how to reason about programs - perhaps to show that two apparently different

programs are equivalent. Logic is the study of formal (i.e. symbolic) systems of

reasoning and of methods of attaching meaning to them. So there are strong parallels

between formal computer science and logic. Both involve the study of formal systems

and ways of giving them meaning (semantics). However in Logic you study a wider

variety of formal systems than you do in Computer Science, so wide and so

fundamental that Logic is used not only as one of the mathematical tools for studying

programming, but also as a foundation for mathematics itself. This ought to set the

alarm bells ringing, because we have already said that we were going to use

mathematics to study Logic, so there is an apparent circularity here. It is certainly the

case that circular or "self-referential" discussion like this is very easy to get wrong but

the notion of self-reference is a central one in Computer Science and, in fact, is

exploited rather than avoided.

In Logic we deal with the issue by putting the logic we are going to study in

one compartment and the logic we are going to do the studying with in another. These

compartments are realized by using different languages. The logic that is the object of

our study will be expressed in one particular language that we call the object

language. Our study of this logic and language is carried out in another language

which we call the observer's language. (You might also see the word metalanguage

for this.)

 The idea should already be familiar to you from studying foreign or ancient

languages. In this case Latin, for example, might be the object language and your

native language, in which you might have discussed the details of Latin syntax or the

meaning of particular Latin sentences, is the observer's language. In mathematics, the

symbolism of calculus, set theory, graph theory and so on, provide the object

language and again your native language, augmented perhaps with some specialised

mathematical vocabulary, is used as the observer's language. In programming, the

object language is a 'programming' language such as Pascal, Lisp or Miranda and the

observer's language is again your native language augmented with the appropriate

mathematical and operational notions.

Example 1.1

Consider the statement

times 0 do print* od = donothing

4 INTRODUCTION

This, in fact, is a statement in the observer's language about the equivalence of

two statements in one of our local programming languages. Although you may have

guessed correctly, you have no means of saying with certainty which are the symbols

of the object language and which are symbols of the observers language until the

object language has been defined for you. In fact, the distinction is as shown in Figure

1.

Exercise 1.1 Now you are invited to use your linguistic, mathematical and

programming experience to do a similar analysis of the following statements into

observer and object languages.

(a) The sentence 'They feeds the cat' is ungrammatical in English.

(b) The French translation of the English phrase 'Thank you very much' is

'Merci beaucoup'

(c) The equation E=mc2 holds in Special Relativity.

(d) There is no real value of x that satisfies x2 -2x + 2 = 0

(e) There is no real value of foo that satisfies x2 -2x + 2 = 0

(f) If x2 - 2x + 1 = 0 then x = 1

(g) If x2 - 2x + 1 = 0 then x must be 1

(h) If x2 - 2x + 1 = 0 then x must be unity

(i) "E=mc2 holds in Special Relativity" cannot be proved.

(j) The statements x:=x+1; x:=x+1; are equivalent to x:=x+2; in Pascal.

(k) "if…then…else" is a statement form in Pascal

You probably found that one or two of these exercises were borderline cases

and caused you to point out, more or less forcibly, that it would be a lot easier if you

5

had an actual definition of the object language in front of you. This is the first thing

we do when we embark on the development of propositional logic in Chapter 2.

1.4. Propositions, Beliefs and Declarative Sentences

The basic items that logic deals with are propositions. Philosophers have

given a variety of answers to the question "What is a proposition?" but since we are

dealing with the mathematics rather than the philosophy of logic it doesn't really

matter for our purposes. One answer, however, is that a proposition is what is

common to a set of declarative sentences in your native language that all say the same

thing. Philosophers then have to argue about what "all say the same thing" means, but

fortunately we don't.

 Propositions communicate judgements or beliefs and since beliefs are

themselves manifested as states of mind (it's hard to see what else they could be) the

act of believing or the stating of propositions allows, with practice, the representation

in your mind of complex objects both physical and abstract. We seem to be a long

way from the limits of the human race, as a whole, in representing things mentally,

and reasoning with them, and we are in the Stone Age when it comes to building

ourselves tools for doing so. This is why the study of formal methods of

manipulating propositions, Logic in other words, is so important.

 Since Computer Science is one discipline in which the objects that we want to

reason about are extraordinarily complex, and often abstract and purely formal, the

need for Logic here is especially clear.

Of course, the fact that beliefs are states of mind means that we cannot

directly manipulate them, neither can we manipulate propositions, since they are

expressions of those states of mind. What we do is to manipulate sentences in some

language which map on to propositions and beliefs.

The language with which we, the authors, are most familiar for this task is the

natural language called "English". We use it to express our beliefs as propositions, for

the purpose of transferring them to each other, testing them and so on. When one of

us says to the other "I believe that Moto Guzzi manufacture the best motorcycles in

the world" he conveys part of his current state of mind, in particular a part that

expresses a certain relation between himself and motorcycles.

In general, then, we use English to express our beliefs. However, we need to

refine this statement since English is rather complicated and not all of English is used

for this purpose. There are only certain sentences in English that convey beliefs, i.e.

express propositions, and these are the declarative sentences.

6 INTRODUCTION

Definition 1.1

A declarative sentence is a grammatically correct English sentence that can be

put in place of '…' in the sentence "Is it true that …?" with the effect that the

resulting sentence is a grammatically correct English question.

One might expect further restrictions here, though. The definition has a rather

syntactic bias to it, and English is notoriously expressive. We cannot go into it fully

here, but a good introductory discussion can be found in Hodges (1977).

Exercise 1.2 Decide whether the following are declarative sentences or not:

(a) What is your name?

(b) Close the door!

(c) Grass is green.

(d) Grass is red.

(e) It is wrong.

(f) I am honest.

(g) You must not cheat.

(h) It is false that grass is red.

1.5. Contradictions

By this stage you should have some feel for how beliefs are manipulated in

natural language. But how are beliefs actually useful? What is their reason for

existing? Basically beliefs give a description of the world as it is or might be. For

example, if I have a system of beliefs about the laws of mechanics (a description of

part of the world) I can generate beliefs about the Solar System without having to

actually go out there and make measurements. If I have a system of beliefs about my

friends, I can predict their behaviour in certain situations without the possible

embarrassment of engineering and being in those situations. Again, I can have a set of

beliefs about numbers and reason about the result of the sum 2+2, without actually

creating two different sets of cardinality 2, amalgamating and counting them.

So systems of belief allow decisions to be made, facts to be conjectured; it

seems that they can do anything. However, there is one limitation. You cannot

simultaneously hold two different beliefs which you know contradict one another.

Since we have said that Logic is important because it allows us to manipulate beliefs,

it follows that a fundamental task of Logic is to be able to decide whether or not a set

of beliefs is contradictory. In simple cases, as we shall see, Logic can do this in a

7

mechanical way. But there are inherent limitations and it may be that, ultimately,

even the most ingeniously programmed machine cannot do as well at manipulating

propositions as the most careful person. This belief has not yet been contradicted!

1.6. Formalization

Formalization is the process of constructing an object language together with

rules for manipulating sentences in the language. One aim in doing this is to promote

clarity of thought and eliminate mistakes.

Another equally important issue, one that gives rise to the term

"formalization" itself, is that we provide a means of manipulating objects of interest

without having to understand what we are doing. This sounds at first like a retrograde

step, but to give an example: arithmetic arose out of the formalization of counting. So

we now have a set of rules which we can follow to add together numbers correctly

without needing to understand what numbers are or what adding up is. Of course, we

can always go back to the original physical act and see that adding up comes from the

process of counting up to a particular number n with reference to one group of objects

and then starting from n+1 in counting a second group. The answer in this case is

what we would formally call the sum of the numbers concretely represented by each

group.

So the power of formalization is that, once formalized, an area of interest can

be worked in without understanding. If the agent following the rules is a human being

this might be a mixed blessing, since understanding at the intellectual level is a strong

motivation for getting things done. But, if you want to write a computer program to

reason, then formalization is essential. Equally essential, if the results are to be useful,

is to be able to prove that, as long as the rules are correctly applied, the results will be

correct.

For instance, a programmer employed in the financial sector may have, in the

form of a set of beliefs that are related in complicated ways, an idea of how the Stock

Exchange works. It is the abstract structure of these relationships which models the

concrete structure of the Stock Exchange and forms a model of how the Stock

Exchange works. The programmer will then formalize this model when writing a

computer system to automatically deal in the Stock Exchange, say. Now, if you look

at the program, it is clear that the names of the objects in the program do not matter.

Nor does the language in which they are written. What matters is that the

relationships in the real thing are faithfully and fully represented in the program. This

8 INTRODUCTION

is the sense of formalization that we are concerned with: the program should model

the form of the real thing in interaction between its parts.

In the next chapter we make a start by looking at a simple form of declarative

sentence and we show how it can be used to formalize some basic instances of

reasoning.

Summary

 • Mathematical logic began towards the end of the last century when Frege

developed what is now the predicate calculus.

 • Mathematical logic involves applying standard mathematical methods to

the study of systems that themselves can be used to formalize mathematics. The

apparent circularity is overcome by distinguishing between the object language, in

which the formal system is expressed, and the observer's language in which

properties of the formal system are expressed and reasoned about.

 • The basic items that logic deals with are propositions. Propositions are

used to express beliefs. In natural language they are represented by declarative

sentences.

 • The notion of belief is a very general one; nevertheless there are some

restrictions on the way beliefs can be manipulated in mental reasoning. For example

you cannot simultaneously hold contradictory beliefs (at least without being aware

that something is wrong).

 • The importance of formalization is that once a particular area of

mathematics or computer science has been formalized, reasoning in it can be carried

out purely by symbol manipulation, without reference to meaning or understanding,

and mathematical properties of the reasoning process can be clearly stated and

proved.

9

CHAPTER TWO

Formalizing the Language

2.1 Informal Propositional Calculus

2.1.1 The language

We will use Æ, Ÿ, ⁄, ! and ´ as our standard symbols for the connectives.

These symbols form part of the alphabet of the language of propositional logic. Other

elements of the alphabet are the parentheses,) and (, and a set of propositional

variables, for instance {p, q, r, s}. We can now give a proper definition of the

conditions that a sequence (string) of symbols must satisfy to be a sentence of

propositional logic.

Definition 2.1

If P is a set of propositional variables then:

1) a propositional variable from the set P is a sentence,

2) if S and T are sentences then so are (¬S), (S Ÿ T), (S ⁄ T), (S Æ T) and (S ´

T),

3) no other sequences are sentences.

We can, for example, use the definition to show that p, (p Æ q), (p Ÿ (¬q)) and

((p Ÿ q) Æ r) are sentences, because p is a sentence by clause 1, since p is a

propositional variable, (p Æ q) is a sentence because p and q are sentences by clause

1 and hence, by the fourth condition in clause 2, the whole string of symbols is a

sentence. The other cases follow similarly.

10 FORMALIZING THE LANGUAGE

In practice, to keep the number of brackets to a minimum, there is a

convention that ¬ takes precedence over or, as it is sometimes put, "binds more

tightly" than Ÿ and ⁄ , which in turn bind more tightly than Æ and ´. Also, outside

parentheses can often be omitted without ambiguity. So (p Ÿ (¬q)) would usually be

written as p Ÿ ¬q and ((p Ÿ q) Æ r) as p Ÿ q Æ r.

Furthermore, we can see that ¬p), for instance, is not a sentence since,

although we have that p is a sentence (clause 1), none of the other clauses makes ¬p)

a sentence so by clause 3 it is not a sentence.

The set of symbol sequences (strings) defined in this way is called the set of

(well-formed) sentences or language of propositional logic. The form of the definition

is important not only because it is the first of many that we shall be seeing, but also

because it determines the property of "being a sentence of propositional logic" as

being decidable. That is, the question "is this sequence of symbols, formed from the

alphabet of propositional logic, a sentence of propositional logic?" can always be

answered correctly either "yes" or "no". Later on we shall see some similarly

structured questions which cannot be answered in all cases. These will be called

undecidable questions.

There are two ways to be sure that this (or any) definition gives rise to a

decidable property; you can either construct a proof that it is so or you can construct a

program which always gives the correct answer to the question "is this string a

sentence?". By "always gives the correct answer" here we mean that, whenever the

question is asked, the program answers it correctly before it terminates - and it always

terminates. Clearly, to implement the definition as a program involves much more

work than only proving that the definition gives a decidable property, but for the extra

work we gain a program that can always answer the question correctly without further

work on our part.

With a suitably expressive programming language we can use the above

definition, of sentences based on the set P of propositional variables, to give us

almost directly a programmed decision procedure. First, though, we have to represent

the forms of sentence defined by the grammar in the language that we will use.

In this book we use two programming languages, SML and Prolog, that are

becoming widely used in computer science for implementing algebraic and logically

based calculations. These languages are also theoretically interesting in their own

right. SML is based on the l-calculus and type inference, while Prolog is abed on the

notion of logic programming (see Chapter 7). An introduction to each of the

languages is given in Appendix A. Using the datatype feature of SML makes it easy

11

to define all the possible forms of sentence. For instance, just as the definition above

uses the phrase ‘…if S is a sentence then so are (¬S) and …’ then we can use the

phrase ‘…S = Not of S |…’ in SML to represent the same idea. Notice that

instead of using the symbol ‘¬’ we have used the symbol ‘Not’; this is done so that

later on when we write programs to manipulate these sentences we do not get too

many, possibly confusing, sequences of symbols, that is we prefer the words. So

using datatypes the type SENT, which represents sentences of the language, can be

defined in SML as:

Datatype SENT = Prop of string

 | Not of SENT

 | And of (SENT * SENT)

 | Or of (SENT * SENT)

 | Imp of (SENT * SENT)

 | Eq of (SENT * SENT);

This means that a sentence, that is a value of type SENT, is either of the form

Prop (“p”) or Not (S) where S is a value of type SENT, or And (S,T) where

S and T are both values of type SENT, and so on. The way in which this declaration

represents sentences as defined above should now be clear.

Of course, writing down sentences using the form described in this declaration

is not as convenient fro us as the from in the original definition since there is more to

write. But we must remember that the language SML is fixed (and completely

formal, of course) whereas we, as humans, have a certain amount of flexibility when

it comes to adapting ourselves to other notations. So, since the programming

language will not adapt, we have to.

However, it is usual to mitigate the somewhat verbose programming

representation of the components of a language when, say, non-specialists have to use

it by putting a piece of software called a parser between the user and the program

being used. The task of the parser is to take a string of symbols from the user and, for

those that are suitable, to transform them into the required form from the

programmer’s point of view. Thus, we would, in any suite of programs to do things

as yet unspecified with logical statement, expect to have to write a program which

carried out this task. It turns out that to do this task properly is not a trivial thing.

However, parsers are such important and ubiquitous pieces of software that a lot of

effort as gone into making their design fairly routine. In the SML programs that we

12 FORMALIZING THE LANGUAGE

write in the rest of the text we will be using just the internal from of the language, but

in Appendix B we have given the text of a parser so that the interested reader may see

what is required to implement such a program. It is not, however, necessary to

understand how the parser works, or even to acknowledge its existence, in order to

understand what follows, so the uninterested reader need not worry. (In fact, by

defining the constructor symbols to be infixed, we can circumvent the need for a

parser somewhat, which is just what we do below in Prolog, but since this was a good

please to bring to the reader’s notice the idea of parsing we decided on the current

presentation.)

Having represented the sentences we can now go on to describe how to do

computations with them. First, consider the problem of deciding whether a string is a

sentence based on a set of the definition above but given in SML:

fun decide P (Prop v) = v memberof P

| decide P (Not(l)) = decide P l

| decide P (And(l,r)) = (decide P l) andalso (decide P r)

| decide P (Or(l,r,)) = (decide P l) andalso Pr)

| decide P (Imp(l,r)) = (decide P l) andalso (decide P r)

| decide P (Eq(l,r)) = (decide P l) andalso (decide P r);

We can see that the program always terminates since it either returns a value (true or

false) immediately or, if a recursive call is made, the arguments of the recursive call

are strictly smaller, as pieces of text, than the preceding number of recursions, so the

program will always terminate. The correctness of its answer follows from the

closeness of the program to the original definition. We conclude, therefore, that the

property of being a sentence of propositional logic is decidable.

2.1.2 The Prolog version of ‘decide’ and the enumeration of sentences

In Prolog (and again see Appendix A for details of the language) the decision

procedure can be expressed as

:-op(510, fx, [~]).

:-op(520,xfy, [/ \]).

:-op(530,xfy, [\ /]).

13

:-op(540,xfx, [’]).

:-op(550,xfx, [÷]).

member(X,[Y|Z]):-X = Y;member(X,Z).

decide(S):-member(S,[p,q,r,s]).

decide(~S):-decide(S).

decide(S):-(S=Q)/ \ R;S = Q \ / R;S=Q’R;S=Q÷R),

 decide(Q),decide(R).

The major difference between the SML and Prolog versions is that with

Prolog we define a relation rather than a function, but it should nevertheless be

apparent that the programs are essentially the same operationally and what was said

above about the recursive calls, termination and decidability applies equally here.

Prolog allows you to define your own infixed operators and this program is

complete and can be used as it stands, without the need for an additional parser. We

have taken the opportunity to invent some symbols for the logical connectives that we

use in this book. The first five lines of the program are system-defined predicates fro

specifying the precedence and associativity of the operators and you will find an

explanation of this in Appendix A or any good book on Prolog.

Prolog programs are used by expressing a request for a computation as a goal

(again, see Appendix A for more practical, and Chapter 7 for more theoretical, detail).

For example to use the program above to check whether or not the string of symbols

p/\q -> r is a sentence of the language, you type

?-decide(p/\q -> r).

to which the prolog interpreter would out put ‘yes’, whereas for

?-decide(p+q).

you would get the output ‘no’, and for

?-decide(->p).

you would be told that there is a syntax error because the connective -> is defined to

take two arguments.

14 FORMALIZING THE LANGUAGE

As well as the question of decidability another important property is

that the sentences of prepositional logic are enumerable, that is all the sentences that

get the answer ‘yes’ can be arranged in a list with a first member, a second member,

and so on. With a little experience of Prolog one might think that the backtracking

mechanism could be used to generate this list by repeatedly satisfying the goal

?-decide(S).

However, this does not work because of the fixed-order, depth-first

nature of Prolog’s execution model. With two prepositional variables p and q you

would, in fact, get the output

p;

q;

~p;

~q;

~~p;

~~q;

~~~p;

and so on ad infinitum. Because the program clauses dealing with ~ come before

those dealing with the other connectives, a formula such as p/\q can never be

generated. It is clear  that simply reordering the clauses will not help either.

One way to get round this is to use an idea invented around 1880 by

Georg Cantor. Cantor wanted to find out if all infinite sets are the same size (they are

not in fact), and he defined a set as enumerably infinite if it could be put into one-to-

one correspondence with the positive integers. He noticed a similar problem to the

one we have encountered here arises with the rationals, that is numbers of the form i/j

where i and j are positive integers. If you start listing them in the order 1/1, 2/1,

3/1,… you will never, for example, get to 1/2. Cantor’s way around this was to

imagine the rationals arranged in a two-dimensional array in which i/j is in the ith

column and the jth row (the diagram following shows the idea.)



15

 1  2  3  4    5   …

1 1/1 2/1 3/1 4/1    5/1    …

2 1/2 2/2 3/2 4/2 5/2    …

3 1/3 2/3 3/3 4/3 5/3   …

4 1/4 2/4 3/4 4/4 5/4   …

5 1/5 2/5 3/5 4/5 5/5 …

…  … …  … … … …

The idea is to enumerate the elements of the array by starting at the top left-hand

corner with 1/1 and following the path shown to give the list 1/1, 2/1, 1/2, 3/1, 2/2,

1/3, 4/1, 3/2,… . It is intuitively clear that by doing this you eventually get to any

point i/j. If intuition does not satisfy you, as indeed it should not if you are going to

study logic, then it is straightforward by elementary algebra to show that i/j is in

position (i + j – 2)(i + j –1)/2 + j in the list. Conversely, we can invert the mapping to

show that the nth rational in the list is i/j where j = n – (k – 2)(k – 1)/2, i = k – j and k

= (3 + 8n –  7 ) /2Î ˚ .

We can use the same idea to enumerate logical formulas. To keep things

simple for the moment suppose we have only one connective, f say. Then, following

the recursive scheme given above, we know that any formula is either a sentence

letter or of the form (S fT) where S and T are both formulas. Now we do exactly the

same as for the rationals. (S fT) is in the column corresponding to S and the row

corresponding to T.

The propositional variables count as formulas, of course. If they are finite in

number then they can be listed before all the compound formulas. If we have an

infinite supply of propositional variables then there is a slight complication because

we must ensure that any given one is eventually brought into use.  One way round this

is to place the propositional  variables at odd numbers in the list, with compound

formulas at the even-numbered positions. The top left-hand corner of the array of



16 FORMALIZING THE LANGUAGE

compound formulas would then, for propositional variables p, q, r,… be as in the

following diagram (we have as usual omitted the outermost pair of parentheses).

p p f p         q      (p f p) f p       r

           p         p f p            (p f p) f p               q f p            ((p f p) f p) f p      …

       p f p         p f (p f p)    (p f p) f (p f p)   q f  (p f p)                …       …

         q         p f q            (p f p) f q               q f q                    …             … 

(p f p) f p     p f ((p f p) f p)   …                      …                               …                  …

We can now use exactly the same scheme of enumeration as we did for the

rationals to generate the list of formulas p f p, (p f p) f p, p f (p f p),.. which,

when merged with the sentence letters, will be in positions 2, 4, 6,…. We can imagine

this mapping to be a code, a function c say, that takes integers to formulas. As above

it is straightforward to show that

c(S f T) = (c(S) + c(T) – 2)(c(S) + c(T) –1) +2c(T)

and, for n even, d(n) is d(i) f d(j) where j = (n – (k – 2)(k – 1))/2, i = k – j and k =

(3 + 4n –  7 ) /2Î ˚ .

We can then write these functions as Prolog predicates and, by enumerating

the integers in increasing order and decoding them into formulas, we can realize our

original goal of demonstrating an effective rpocedure for enumerating all the

sentences of the language—or in practical terms, as many as we want.

:-op(540,xfx,[->]).

int(1).

int(K) :- int(J), K is J+1.

split(N,I,J) :- int(K), L is K * (K-1), L>=N,!,

                J is (N-(K-2) * (K-1))//2, I is K-J.

code(S,N) :- atom(S), name(S,[I]),N is 2 * I – 193.

code(S->T,N) :- code(S,I),code(T,J),

                      N is (I+J-2)*(I+J-1)+2*J.



17

decode(N,S) :- 1 is N mod2,!,

                   I is (N+193)//2,name(S,[I]).

decode(N,S->T) :- split(N,I,J),

                       decode(I,S),decode(J,T).

enumerate(N) :- int(K),L is 2*K,

                  decode(L,X),write(X),nl,K>=N.

This is a complete program for coding, decoding and enumerating sentences

that will work as it stands. It will be seen that it includes some features of Prolog that

are of no logical interest, but are necessary to manipulate numbers and symbols at a

basic level. The name predicate for example is a system utility for splitting an atom

into a list of characters. It is used here to generate propositional variables starting at

the letter ‘a’ (193 being twice the internal numerical code for ‘a’ minus one). The

split predicate does the square root computation by a method of testing that uses

only interger arithmetic. It could be replaced in most Prolog systems by the system’s

square root operator.

Of course, enumerating all possible sentences is not much practical use but, in

the theoretical study of what the limits of computation are, it is important to show that

you can in principle carry out such an enumeration . Furthermore, the idea that you

can code formulas using arithmetic is an important one in its own right, quite apart

from its use here for enumeration. In one of the most significant results in the history

of mathematics Gödel used the idea to show, in 1931, that any logical basis for

arithmetic is bound to be inadequate in a certain technical sense. We shall say a little

more about this later.

Exercise 2.1

(a) Work out how you might modify the Prolog program for enumerating

sentences with -> so that it could handle the complete set of connectives ~,

/\, \/, ->, <->.

(b) Calculate by hand what the 1000th compound sentence is, that is what d(2000)

is.

(c) Write a similar program for enumerating sentences in SML.



18 FORMALIZING THE LANGUAGE

2.1.3. Giving meaning to the language

So far we have defined the form of the language that we are studying. We can

now decide whether or not a string of symbols from the alphabet is a well-formed

sentence of this language. However, we do not yet have a way of giving any meaning

or semantics to these sentences. It is as if you had been given a manual for Pascal

with the part that gives the meaning, usually a set of rules that tell you how a given

statement is executed (known as operational semantics), omitted from the manual.

You would be in a position to write programs that were correctly formed, as far as the

Pascal syntax is concerned, but you would not know what the program denotes or

what its effect would be. You would not know its meaning.

At this point we are in a similar position with propositional logic; we can

write well-formed sentences but we cannot say what they mean or relate them to any

other language.

To give a meaning to a language we first have to associate the sentences of the

language with some class of objects. For instance, in English, we begin our

acquisition of language with simple utterances that consist of single words: "Dog!",

"Cat!", "Car!" etc. Our understanding of the meaning of these words is judged by our

use of them. That is, we say that someone understands the word "cat" if they point to

a cat as they say it. If  someone points to a cat and says "Dog!" then we conclude that

they do not understand the meaning of the word.

At this simple level, at least, we can imagine that there is a mapping between

the words and the objects that they denote. Then, as our natural language develops,

we understand words for verbs, adjectives, relations and so on. Again, our

understanding is demonstrated by our use of the words in certain situations. Of

course, a natural language like English is far more complicated than any artificial

language (such as a programming language or a logical language) and, although our

methods will allow us to give a semantics to the languages that we shall study in this

book, it is not yet, and may never be, possible to give a semantics to English in the

same manner (if only because the language is not static).

So we have first to decide what objects, perhaps in an abstract sense, we are to

have our sentences denoting. For the moment we are going to make an assumption

that will mean our semantics is classical. The assumption is that any sentence is - has

for its meaning something that is - either true or false. To make the meaning of 'true'

and 'false' absolutely clear we can do what we do when telling someone the meaning

of any other word - we can point to an instance. In this case, to explain our usage of

'true' and 'false', we refer you to statements that we can confidently assume you will



19

recognise as true and false. Every reader can be assumed to know that the numbers

one and zero are not equal.So we can say that what a sentence refers to will either be

the same thing that the arithmetic statement "0=0" refers to or it will be the same

thing that the arithmetic statement "0=1" refers to. Here we are taking a view of

semantics that is called denotational - we say what each sentence in the language

denotes. Contrast this with what was said earlier about Pascal, where we spoke of the

semantics of the language being specified by the actions that can be attributed to a

particular sentence of the language, known as operational semantics. As it happens,

Pascal is a simple enough language for it to be given a denotational semantics too,

although quite a lot of work had to be done before the underlying mathematics was

properly worked out.

We could contemplate giving an operational semantics to our propositional

logic in which, perhaps, one action was performed and called 'true' and another was

performed and called 'false' depending on whether the result of  testing a value in a

computer register is what we conventionally call true or false. It turns out, however,

that such an operational approach is too cumbersome when all we really want to work

with are abstract notions such as truth and falsity. The idea of letting truth reside in a

particular action involves all the detail of how the action is carried out, how long it

takes and what happens if it goes wrong. For other purposes, particular those

involving getting an effect when you execute a program, like an invoice being printed

or a line drawn on a screen, the operational detail is vital; but here it just complicates

matters, so we take the denotational approach.

Every sentence of the language is either true or false, so we need rules for

calculating which of these two values a given sentence has. The situation here is

similar to the usual algebra of arithmetic where we have operations like multiplication

and addition, symbolized by * and +, and letters such as x and y which are understood

to stand in place of numbers. In propositional logic we have five operation symbols

and a quantity of sentence variables that can stand in place of sentences. Just as we

can give a meaning to an algebraic statement in terms of the meanings, or

denotations, of the operation symbols, which operate on numbers, so we can give a

meaning to the logical operators, which here we call connectives, by saying how they

act on the denotations of sentences, i.e. on truth and falsity.



20 FORMALIZING THE LANGUAGE

2.2 Arguments

2.2.1 Informal arguments

 A notion that is central to our work is that of argument.  The language that we

introduced above will allow us to express, and show valid, arguments such as

If Socrates is a man then Socrates is mortal.

Socrates is a man.

Therefore, Socrates is mortal.

 It should not allow us to show valid the argument

Socrates is a man.

Therefore, Socrates is mortal.

even though, by knowing the meaning of the words, we would say that the conclusion

holds. If the textual form of the argument is changed to

If Ssss is an xxxx then Ssss is a yyyy.

Ssss is an  xxxx.

Therefore Ssss is a yyyy.

we can guarantee that you cannot make an assessment of the argument from its

meaning, yet  we anticipate that you will accept it as valid by virtue of its structure.

So we are going to judge the validity of arguments by their form, not their

meaning. This means that even the following argument is valid:

Paris is in Australia and Australia is below the equator

Therefore, Paris is in Australia

because its form is that of a valid argument, even though your geographical

knowledge tells you the conclusion is false. Also, the following argument is not valid

despite all the statements, including the conclusion, being true:

The Eiffel Tower is in Paris or Paris is in France

Therefore, the Eiffel Tower is in Paris



21

So, the correctness of an argument is not governed by its content, or its meaning, but

by its logical form. We are going to make this idea much more precise and at the

same time abstract away from the particular statements involved in the arguments,

which makes the form much clearer.

Exercise 2.2

1) Say whether each of the following arguments is valid or not.

a) The Eiffel Tower is in Australia and Australia is below the equator

Therefore, The Eiffel Tower is in Australia

b) The Eiffel Tower is in Paris or Paris is in France

Therefore, the Eiffel Tower is in Paris

c) The Eiffel Tower is in Australia or Australia is below the equator

Therefore, the Eiffel Tower is in Australia

d) The Eiffel Tower is in Paris and Paris is in France

Therefore, the Eiffel Tower is in Paris

e) The Eiffel Tower is in Australia and Paris is in France

Therefore, Paris is in France

f) The Eiffel Tower is in Australia or France is in Australia

Therefore, the Eiffel Tower is in Australia

g) The Eiffel Tower is in Australia or France is in Australia

Therefore, the Eiffel Tower is in Paris

2) For each of the above use your knowledge of English and geography to say

whether 

i) the premise, i.e. the sentence before the 'therefore', is true

ii) the conclusion, i.e. the sentence after the 'therefore',  is true

3) Can you construct a valid argument with true premise and false conclusion?



22 FORMALIZING THE LANGUAGE

2.2.2 Formalizing arguments

The argument forms of the first two Socrates examples can be abstracted to

if p then q

p

therefore

q

and

 p

therefore

q

How to represent in logic the natural language form 'if S then T', where S and

T are arbitrary statements, has been the subject of heated debate among logicians. It

turns out that simple examples of the kind we have here can be written

unproblematically as S Æ T  where Æ is one of the connectives we introduced in the

alphabet for propositional logic and S and T stand for arbitrary sentences of

propositional logic. There are other commonly occurring natural language forms,

some of which we have seen above, that correspond to the remaining connectives.

natural language propositional logic

S and T S Ÿ T

S or T S ⁄ T

not S ¬S

S if and only if T S ´ T

We shall see that the correctness of an argument in the propositional calculus

is decidable, in other words there are effective procedures for determining whether or

not a given argument is correct. One such a procedure is the method of truth-tables

which we now describe.

 The Socrates argument can be transcribed into the formal language as

          ((p Æ q)  Ÿ p)  Æ q                              (1)

 i.e. if it is the case both that p is true, and also that if p is true then q is true, then it is

the case that q is true.



23

 We have said we are going to assume that every proposition is either true or

false and that this is one of the basic assumptions of "classical" logic - the oldest form

of logic and the one that we are studying to start with. Because we are only interested

in the form of arguments and the truth-values (true or false) of propositions, rather

than their more subtle meanings in the everyday world, we use sentence variables to

stand for arbitrary interpreted sentences that can take the values true (t) or false (f)

alone.

 From these we can build up more complicated formulae (with corresponding

forms of natural language argument) using the connectives such as those for "if..then"

and "and" as shown above.

 In elementary algebra, if we know that if a=2 and b=3, we can calculate the

value of a+b as 5 without knowing or caring whether a stands for 2 apples or 2

houses. Similarly, in classical logic the truth-value of a compound formula can be

calculated solely from the truth-values of its constituent sentence variables,

independently of how these were determined or of any other aspects of their meaning

in the real world. Logics with this property are called truth-functional and their

connectives are sometimes called truth-functors.

 Classical logic has, although as we shall see it does not necessarily need, the

five connectives listed above. The rules for using them in truth-value calculations can

be conveniently expressed in the form of truth-tables - the same idea as the

multiplication tables of elementary arithmetic, but of course the rules are different.

Æ t f

t t f

f t t

Ÿ t f

t t f

f f f

⁄ t f

t t t

f t f



24 FORMALIZING THE LANGUAGE

´ t f

t t f

f f t

¬

t f

f t

To find, for example, the truth-value of p Æ q when the truth-value of p is t

and the truth-value of q is f we look along the row marked t for p and down the

column marked f for q. The corresponding table entry in the t row and f column is f

for p=t and q=f.

 Note that for Æ it matters which of its arguments is the row and which the

column; we would have got a different answer if we had taken q as the row and p as

the column. Some of the truth-functors commute and some do not.

 With the truth-tables for the connectives the argument (1) can be shown

correct as follows:

p q p Æ q (p Æ q) Ÿ p ((p Æ q) Ÿ p) Æ q

t t t t t

t f f f t

f t t f t

f f t f t

What we have done is to build up a truth table for the formula that we want to

check by using the rules for the connectives to compute the truth values of all

subformulas. We  see that for any possible combination of truth-values for p and q,

i.e. for all lines in the truth-table, the argument is true. The assignment of truth-values

to propositional variables - each line of the truth-table - is called a valuation. The

formula (1) is true in any valuation and we say therefore that (1) is  valid. Another

word often used for formulas that are true in all valutions  is  tautology.

 For a two-argument truth-functor there can only be 24 = 16 different truth-

tables because for two sentence variables there are only 4 different combinations of

truth-values and each of these can only correspond to one of two truth-values.



25

In classical logic, i.e. the logic based on these truth-tables, the connectives we

have introduced can be defined in terms of each other. For example S Æ T is truth-

functionally equivalent to ¬S  ⁄  T. We can show this by the truth-table

S T S Æ T ¬S ⁄ T

t t t t

t f f f

f t t t

f f t t

where you see that the column headed ⁄ is the same as that given above for Æ.

It can easily be checked from the truth-table for ´ that S is truth-functionally

equivalent to T if and only if  S ´ T is a tautology, so equivalences are a special kind

of tautology in which the principle connective is ´ . They are useful in the

transformation of statements into logically equivalent statements of different, perhaps

simpler or more useful, form.

Exercise 2.3

 a) Using the propositional variable r to mean 'it is raining', s to mean 'it is

snowing' and f to mean 'it is freezing' translate the following into our

logical notation:

(i) It is raining and it is freezing

(ii) It is either raining or snowing, and it is freezing

(iii) It is raining but not snowing

(iv) If it is freezing then it is snowing

(v) It is neither raining nor snowing

(vi) If it is freezing or snowing then it is not raining

b) How many different n-argument truth-functors are there?

c)  Many other equivalences are known. Here are some. You should check as

many as you have the patience for.



26 FORMALIZING THE LANGUAGE

(i) (P * P) ´ P           idempotence

(ii) (P * Q) ´ (Q * P)    commutativity

(iii) (P * (Q * R)) ´ ((P * Q) * R)   associativity

      where * can be either Ÿ,⁄ or ´, but not Æ, in (ii) and (iii), and either Ÿ or

⁄in (i).

(iv) Which of (i), (ii) and (iii) does Æ  satisfy? Is it for example

associative?

Here are some more equivalences.

(v) (P Ÿ (Q ⁄ R)) ´ ((P Ÿ Q) ⁄ (P Ÿ R))

(vi) (P ⁄ (Q Ÿ R)) ´ ((P ⁄ Q) Ÿ (P ⁄ R))

(vii) (P Ÿ ¬P) ´ ^   a special propositional constant that is false in every

valuation (to be pronounced "absurdity", "falsity" or "bottom").

(viii) (P ⁄ ¬P) ´   T    a constant that is true in every valuation. This

tautology is often called "excluded middle" or historically, in Latin,

"tertium non datur".

(ix) ¬¬P ´ P

(x) ¬(P Ÿ Q) ´ (¬P ⁄ ¬Q)

(xi) ¬(P ⁄ Q) ´ (¬P Ÿ ¬Q)

d) Use truth-tables to check that the following pairs of sentences are

equivalent:

(i)  p and p ⁄ (p Ÿ q)

(ii)   p and p Ÿ (p ⁄ q)

(iii)  p Ÿ q and p



27

      If I now tell you that p means 'everyone loves everyone' and q means

'everyone loves themselves', why is it that given these meanings p Ÿ q and

p have the same truth-values?

(iv) Use the laws of equivalence above to show that the pairs of sentences

in (i) and (ii) are equivalent.

e) Formalize the arguments from the previous section and use truth-tables to

check the assessments of validity that you gave there.

f) Use truth-tables to determine, for each of the following sentences, whether

it is a tautology, a contradiction or contingent, i.e. neither a tautology nor a

contradiction.

i) (p Æ (q Æ p))

ii) ((p ´ ¬q) ⁄ q)

iii) ((p Æ (q Æ r)) Æ ((p Æ q) Æ (p Æ r)))

iv) ((p Æ q) Æ (¬(q Æ p)))

v) ((¬p Æ ¬q) Æ (q Æ p))

vi) ¬(((p Æ q) Æ p) Æ p)

2.3 Functional Completeness

 The logical connectives ¬, Æ, Ÿ, ⁄ and ´ are chosen for the fairly natural

way that their truth-tables correspond to common usage in argument, but it is not

mathematically necessary to have so many.

 In fact it can be shown that a single connective is sufficient to represent all

classical truth-functors. Such a "functionally complete" connective is the Sheffer

stroke, written |, whose truth table is the same as that for ¬(SŸT).

 Another connective with this property of being functionally complete is

"NOR", which is equivalent to ¬(S⁄T). This has important consequences in hardware

design. A digital circuit can be built to realize any possible truth-functor from NOR

gates alone (circuits which realize NOR).



28 FORMALIZING THE LANGUAGE

Exercise 2.4

a) Show that

(i) ¬S ´ S |S

(ii) S Ÿ T ´ (S |T) | (S |T)

b) How can S ⁄ T and S Æ T be written in terms of | alone?

2.4 Consistency, Inconsistency, Entailment.

Definition 2.2

A valuation is an assignment of truth-values to the propositional variables.

Thus a valuation is a function v : P Æ  {t, f}, where P is the set of propositional

variables.

Definition 2.3

A sentence is valid iff it is true (evaluates to t) for all valuations. A valid

sentence is also be called a tautology.

Definition 2.4

Suppose you have a set  G = {S1,...,Sn} of sentences. In some valuations (lines

of the truth-table) some of the Si will be true and some false. If there is at least

one line in which all the Si Œ G are true then we say that G is semantically

consistent. If no valuation makes all the Si true then G is inconsistent.

An example of inconsistency is the set {S, ¬S}.

Definition 2.5

A set of sentences G semantically entails a sentence T, written as G  J T, iff

there is no valuation that makes all of the sentences in G true and makes T

false, i.e. assuming the truth of all Si Œ G has the consequence that T is true.



29

 If we now adopt the convention that we write  J T  in the case where G is the

empty set then we can use J T as a neat notation for saying that T is a tautology

because if G is empty then the definition of semantic entailment says that there is no

valuation which makes T false, so T is true in all valuations. Also, if T is omitted, then

the definition can be read as saying that there is no valuation which makes all of the

sentences in G true, so we can write G J  for G is inconsistent.

 With this convention J (which of course is a symbol in the observer's

language for a relation between sentences and sets of sentences in the object

language) behaves rather like the = sign in algebraic equations. We have G  J T iff

G,¬T J where G, ¬T is a convenient abbreviation for G » {¬T}.

We can think of this as formalizing the idea that, given the assumptions in G,

then the conclusion T is true, or T follows from the assumptions.

As examples, we look at the sets {p, ¬p} and  {(p Ÿ q) Æ q, ¬p ⁄ ¬q, p} and

try to decide on their consistency. To do this we write out the truth-tables, which

enumerate all possible valuations for the propositional variables p and q, to see

whether or not there is at least one row in the truth-tables which has t in each place,

i.e. to see whether or not all the sentences can simultaneously be true.

In the first case we get

 p        ¬p

 t            f

 f            t

and here we can clearly see that no row has t everywhere, so the sentences in {p, ¬p}

are inconsistent. Next we get

p      q    (p Ÿ q)    ¬p    ¬q    (p Ÿ q) Æ q    (¬p ⁄ ¬q)

t       t          t           f        f              t                      f

t       f         f           f        t               t                      t

f       t         f           t        f               t                      t

f       f         f           t        t               t                      t

and we can see that the set {(p Ÿ q) Æ q, ¬p ⁄ ¬q, p} is consistent because the second

line of the truth-table shows that all three sentences in the set have value t.

We next give some examples of deciding the correctness of questions of

semantic entailment. Remember that G J  S iff there is no valuation which, while



30 FORMALIZING THE LANGUAGE

making all of the sentences in G, true makes S false. This, again, can be decided by

writing out truth-tables so as to enumerate all possible valuations.

Consider the examples {p} J  p,  {p Æ q, p} J q  and {p,  ¬p} J q. The first is

trivial since the truth-table is just

p

t

f

and here everywhere p has value t then p has value t. The second case gives the truth-

table

 p         q           p Æ q

t t      t

t f      f

f t      t

f f      t

and we can see that in the single case, in the first line, where the assumptions are both

true then the conclusion is too, so the entailment is valid. Finally we have

p        q      ¬p

t         t        f

t         f        f

f         t        t

f         f        t

and we can see that nowhere do the assumptions both have value t and this means that

the conclusion never has the value f when all the assumptions have the value t. Hence,

the entailment is valid.

Note that this would always be the outcome if the assumptions are {p, ¬p}

since, as we saw above, this set is inconsistent, so it is never the case that both

sentences have value t simultaneously. Any entailment therefore, no matter what the



31

conclusion, would be valid with these assumptions. We can sum this up by saying

that "anything follows from inconsistent assumptions".

Exercise 2.5

a) Work out which of the following sets of sentences are semantically

consistent and which are semantically inconsistent:

i) {p Æ q, ¬q}

ii) {p  Æ q, ¬q ⁄ r,  p  Ÿ ¬r}

iii) {(p ⁄ q) Æ r, ¬((¬p Ÿ ¬q) ⁄ r)}

b) Work out which of the following semantic entailments are correct and

which are not .

i) {p Æ q} J (¬q Æ ¬p)

ii) {p Æ q} J q

iii) {(p ⁄ q) Æ r, ¬r} J ¬p

iv) J ((p Æ q) Æ p) Æ p

c) Rewrite (a ⁄ b) Ÿ (a ⁄ c) to a logically equivalent sentence containing no

connectives other than ¬ and Æ.

d) If A and B are any sentences and T is a set of sentences then show that

T » {A} J B if and only if T J A Æ B.

e) Here are some facts about entailment; you should prove that they follow

from the definition.  R,S and T are any sentences and G and D are any sets

of sentences. Recall that G,D means G»D and G,T means G»{T}.

i) G,T J T

ii) if G JT then G, D JT (Monotonicity)

iii) if G J T and G, T J S then G J S (called the Cut Theorem)

iv) if T J S and S J R then T JR (Transitivity)



32 FORMALIZING THE LANGUAGE

v) G J ¬T  iff  G, T J

vi) G J T and G J S  iff  G J (T Ÿ S)

vii) G, T J R  and G, S J R  iff  G, (T ⁄ S) J R

viii) G, T J S  iff  G J T Æ S

ix) G, T J S   and G, S J T  iff  G JT ´ S

f)  Use the properties of J listed in question five to show, without using truth-

tables, that:

 i)  J p Æ (q Æ p)

ii)  J (p Æ q) Æ ((q Æ r) Æ (p Æ r))

g)  Three people A, B and C are apprehended on suspicion of cruelty to mice

in the computer lab.

A says: "B did it; C is innocent"

B says: "If A is guilty then so is C"

C says: "I didn't do it; one of the others did"

i)  Are the statements consistent?

ii) Assuming that everyone is innocent of the dastardly deed, who told 

lies?

iii)  Assuming that everyone's statement is true, who is innocent and who

is guilty?

Hint: let IA stand for "A is innocent", IB for "B is innocent" and IC for

"C is innocent". Then A's statement can be written as ¬IA Ÿ IC, which

we call SA, and so on.

For each valuation of IA, IB and IC determine the truth-values of SA, SB

and SC. All these answers can be determined from the truth-table.



33

h)  The Cut Theorem, which is one of the facts about entailment that you were

invited to prove above, says:

if G JT and G, T J S then G J S

where T and S are sentences and G is a set of sentences. Give a counter-

example, i.e. examples of G, T and S, which shows that if G, T J S then G J

S  does not always hold.

2.5 Formal Propositional Calculus

 Up to now we have been working with informal systems.We now re-express

all of the above in more formal terms and then go on to introduce our first formal

system. That will mean that the person using the system no longer has to know the

meaning of the symbols in the language or the meaning behind any rule—the only

thing communicated is the form of the expressions and rules, and the relations

between them. To use a formal system correctly, and hence to make arguments

correctly, we need only follow the rules correctly. If this can be done then, because

the rules are completely specified, it follows that a program can be written which can

construct correct proofs.

To show that an argument is correct, in other words to assess its validity or

otherwise, we first need to give a formal interpretation for the symbols of the

language. This is where the notion of valuation, as already introduced, will be used.

But then a further development will be to construct a valid argument step by step

without knowing the meaning of the expressions and rules. This is where we will turn

to the formal deductive system.

2.5.1 The language of Propositions

We will first elaborate some of the definitions which were given fairly

informally in previous sections.

Definition 2.6

A propositional language is based on two components, an alphabet and a

grammar.

a) The alphabet consists of three sets:



34 FORMALIZING THE LANGUAGE

 i) a set of connective symbols { ¬, Æ, Ÿ, ⁄, ´ },

ii) a set of punctuation symbols {(, )},

iii) a set of propositional variables P.

b) The grammar, which defines what counts as being a sentence based on P:

 i)   each of the elements of P is a sentence based on P,

ii) if S and T are sentences based on P then so are (¬S), (S Ÿ T),

(S ⁄ T), (S Æ T) and (S ´ T),

iv)  nothing else is a sentence based on P.

Definition 2.7

The set of sentences based on P is called the propositional language based on

P, which we write as L(P). We often refer to the elements of P as atomic

sentences.

We have already seen one particular way, based on truth-tables, of giving a

meaning to the symbols in a language. We are now going to be more abstract so,

instead of tying ourselves to one particular way of giving meaning, we simply present

a general definition of what it is to give meaning to a language. The truth-tables can

be seen as a particular example of this.

Recall that a valuation is a function v from a set of propositional variables to

the set {t,f}. If the domain of v is P then we say that v is a P-valuation.

We can now extend v into a new function which gives meaning not only to the

members of P, as v does, but to any member of L(P ). This extended function,

truthvaluev : L (P) Æ  {t,f}, is defined below by cases based on the structure of

members of L(P). By convention, we drop the v subscript where it is clear which

valuation we are basing our definition on.

Definition 2.8

  i) truthvalue(S) = v(S) if S is atomic.

 ii) truthvalue(¬S) = t if truthvalue(S) = f and

truthvalue(¬S) = f if truthvalue(S) = t.

iii) truthvalue(S Ÿ T) = t  if truthvalue(S) = t and truthvalue(T) = t,

and truthvalue(S  Ÿ T) = f otherwise.

iv) truthvalue(S  ⁄ T) = t  if truthvalue(S) = t or truthvalue(T) = t, or

both, and truthvalue(S ⁄ T) = f otherwise.

v) truthvalue(S Æ T) = f if truthvalue(S) = t and truthvalue(T) = f



35

 and truthvalue(S Æ T) = t otherwise.

vi) truthvalue(S  ´ T) = t  if truthvalue(S) = truthvalue(T) and

truthvalue(S  ´ T) = f otherwise.

As an example, consider the sentence (¬(p ⁄ q) Æ (r Ÿ p)) in a context where

we have a valuation v such that v(p) = t, v(q) = f and v(r) = t. We have

truthvalue((¬(p ⁄ q) Æ (r Ÿ p))) depends on

truthvalue(¬(p ⁄ q)) which depends on

truthvalue((p ⁄ q)) which depends on

truthvalue(p) = v(p) = t

        or truthvalue(q) = v(q) = f

        so truthvalue((p ⁄ q)) = t

        so truthvalue(¬(p ⁄ q)) = f

     and truthvalue((r Ÿ p)) which depends on

truthvalue(r) = v(r) = t

     and truthvalue(p) = v(p) = t

        so truthvalue((r Ÿ p)) = t

      so  truthvalue((¬(p ⁄ q) Æ (r Ÿ p))) = t.

Now this computation of the truth-value of a sentence, in the context of a

certain valuation, clearly follows the same pattern as the computation which sets out

to decide whether or not a sequence of symbols from the alphabet is a member of the

language.

If we recall the definition of sentencehood above, and use it on the same

sentence (¬(p ⁄ q) Æ (r Ÿ p)) as above we get

decide((¬(p ⁄ q) Æ (r Ÿ p))) depends on

decide((¬(p ⁄ q) which depends on

decide((p ⁄ q)) which depends on

decide(p) which is true, since p Œ P

        and decide(q) which is true, since q Œ P

        so decide((p ⁄ q)) is true

        so decide(¬(p ⁄ q)) is true

     and decide((r Ÿ p)) which depends on

decide(r) which is true, since r Œ P



36 FORMALIZING THE LANGUAGE

     and decide(p) is true, since p Œ P

        so decide((r Ÿ p)) is true

      so  decide((¬(p ⁄ q) Æ (r Ÿ p))) is true.

This similarity of computations should come as no surprise, since their

patterns are governed by the grammar, which is the same in each case.

Exercise 2.6

a) How many sentences are there for the alphabet which has P = {q}?

b) How many sentences are there in the language which has P = {p1, p2 ...},

i.e. a countably infinite set?

c) For each of the following sentences, and given the valuation v where v(p) =

t, v(q) = f and v(r) = t, find the truth-values of

i) (p ⁄ ¬p)

ii)  (p Ÿ ¬p)

iii)  (p  ´ ¬¬p)

iv) ((p Æ q) Æ (p ⁄ q))

v) (((p ⁄ q) Ÿ r) Æ (q ´ p))

2.5.2 More definitions

Definition 2.9

If v  is a P -valuation we say that v  satisfies a sentence S  of L (P ) if

truthvaluev(S) = t, which is also written Jv S. A P-valuation v satisfies a set of

sentences {S1,...,Sn} if truthvaluev(Si) = t for all i between 1 and n. Note that

this is the same as saying truthvaluev(S1 Ÿ ... Ÿ Sn) = t.

If G and D are two sets of sentences then v satisfies G » D if and only if v

satisfies both G  and D. To make this work in general we say that any P-

valuation satisfies the empty set.



37

Definition 2.10

 A P-valuation v is a model for a set of sentences iff v satisfies the set of

sentences.

Definition 2.11

If S  Œ  L(P) then S is a tautology if and only if truthvaluev(S) = t for all v.

Equivalently, S is a tautology if and only if  Jv S for all v. As before we write

this simply as  J S.

2.5.3 Formal Deductive Systems

Definition 2.12

A formal system has the following components:

a) an alphabet of symbols,

b) rules for building sentences, the grammar,

c) a set of sentences, the axioms,

d) a finite set of rules for generating new sentences from old, the rules of 

deduction.

 The main characteristic of a formal system is that the behaviour and

properties of the symbols in the alphabet are given entirely by the rules of inference.

The symbols themselves have no meaning so the notion of valuation, which we were

using above, does not arise. However, as we shall see later, a desirable property of a

formal deductive system is that it bears a particular relationship to any valuation.

2.5.4 Formal deductive system  for propositional calculus

 The alphabet and grammar components will be just as they were in the

previous sections. The two new components are the axioms and the rules of inference.

The axiom system that we give here is not the only one possible. A set of axiom

schemas for propositional calculus was first given by Frege; it contained six

sentences. The set that we have chosen was given, and shown to do the same job as

Frege's, by Lukasiewicz. Yet another, this time with four axiom schemas, was given

by Hilbert and Ackermann. In fact, the one we give is not the smallest possible: Nicod

used the Sheffer stroke to give a set consisting of just one schema, though instead of

Modus Ponens he used a slightly more complicated variant of it.



38 FORMALIZING THE LANGUAGE

a) the alphabet

b) the grammar

c) the axioms: if S,T and R are any sentences then

A1) (S  Æ ( T Æ S))

A2) ((S Æ (T Æ R)) Æ ((S Æ T) Æ (S Æ R)))

A3) (((¬S) Æ (¬T)) Æ (T Æ S))

are axiom schemas, which generate the axioms in the same way as the

clauses of the grammar generate the sentences.

d) rule of deduction, which for historical reasons is called Modus Ponens,

often abbreviated to MP:  from S and (S Æ T), for S and T any sentences,  we obtain T

as a direct consequence.

So we actually have infinitely many axioms since S, T and R can be any

sentences and the number of sentences is infinite. Clearly, though, there are more

sentences than there are axioms. For example (p Æ p) is certainly a sentence but it is

not an axiom. Just as clearly, all the axioms are sentences. These two facts together

mean that the set of axioms is a proper subset of the set of sentences, yet both are

infinitely large. However, this is not such a strange situation; the natural numbers

form an infinite set and the even natural numbers form another infinite set which is a

proper subset of the natural numbers. The similarity can be seen if we give their set

definitions:

Ax(P) = { S | S Œ L(P) and axiom(S) }

Evens = { n | n Œ N and even(n) }

Here axiom(S) is true whenever S is an axiom, and even(n) is true whenever

there is a natural number k such that n = 2k. We can see that even is decidable, but

can we define axiom so that it is decidable too? Well, once again we can look to the

structure of the definition of the axiom schemas for an answer. The definition above

can be recast so that axiom is

axiom P sentence = axiom1 P sentence or axiom2 P sentence or axiom3 P sentence

where

axiom1 P (S  Æ (T Æ R)) = true if decide P S and decide P T and S=R



39

axiom2 P ((S Æ (T Æ R)) Æ ((S 'Æ T') Æ (S'' Æ R'))) = true if decide P S and

decide P T  and decide P R and S=S' and R=R' and T=T' and S=S''

axiom3 P (((¬S) Æ (¬T)) Æ (T'Æ S' ))) = true if decide P S and decide P T 

           and S=S' and T=T'

and axiom is false for all other sentences (P is the set of propositional variables in the

alphabet). Finally, since decide is decidable it follows that axiom is too.

There is another way of deciding whether or not a sentence is an axiom and

that is by introducing the idea of instances. First, we need some definitions and

notation.

Let P and Q be two sets of propositional variables. Then these give rise to two

propositional languages L(P) and L(Q).

Let varsP be a function which takes an element of a propositional language as

argument and returns as result the set of all those propositional variables that appear

in the sentence. So, for example, if P = {p1, p2} then varsP(p1 Æ (p2 Æ p2)) = {p1,

p2}.

We can give a method for calculating varsP which, again, is based on the

structure of sentences:

 varsP(S) =  {S} if S Œ P

or varsP(T) if S = ¬T

or varsP(T) » varsP(R) if S = T Ÿ R or T Æ R or T ⁄ R or T ´ R

Now, if varsP(S) = {p1,...,pk} then S[b1/p1,...,bk/pk], where bi Œ L(Q), is the

sentence of L(Q) that results from simultaneously substituting bi for pi for all i from 1

to k. We say that S[b1/p1,...,bk/pk] is a Q-instance  of S, which is a sentence based on

P. (As usual, when there is sufficient context we omit the reference to the sets P and

Q).

Now, to get back to our axioms, let P = {S, T, R}. Consider the axiom schemas

above as the (only) three sentences of a language based on P, which we call l(P). Then

the axioms as defined above are simply all the P-instances of all the elements of l(P).

That is

Ax(P) = {S[S1/p1,...,Sn/pn] Œ L(P) | S Œ l(P) and varsP(S) = {S1,...,Sn}

and p1,...,pn ŒL(P)}



40 FORMALIZING THE LANGUAGE

The idea of an instance is probably quite an intuitive one. In fact, we have

been using it implicitly all along by using curly letters to range over all sentences.

What we were doing, we can now see, was to express results, definitions and

questions in a language based on an alphabet of curly letters and to assume that it was

clear how to apply these general results in particular cases, i.e. how the results,

definitions and questions related to all instances over an appropriate alphabet.

2.5.5 Proofs

 Definition 2.14

A proof in a Formal Deductive System (FDS) is a sequence of sentences

S1,...,Sn such that, for all i ≤ n, either Si  is an axiom or there are two members

Sj , Sk  of the sequence, with j,k < i, which have Si as a direct consequence by

Modus Ponens (MP). Sn is then a theorem of the FDS, and the sequence

S1,...,Sn is a proof of Sn.

 Note that, in such a proof, any of the Si are theorems since we can truncate

the proof at Si, giving a proof of Si.

 Definition 2.15

If G is a set of sentences then a sequence S1,...Sn is a deduction from G if, for

each i≤n

either  a) Si is an axiom

or b) Si Œ G

or c) Si follows from two earlier members of the sequence as a 

         direct consequence of MP.

 We can think of a deduction from G as being like a proof with the elements of

G as temporary axioms.

Definition 2.16

If G is a set of sentences and S1,...Sn is a deduction from G then Sn is deducible

from G, and this is written G HSn.

"S is a theorem" can therefore be written as  H S, i.e.S is deducible from the

empty set. And, as should be clear from the definition by now, we could write a



41

program which takes any sequence of sentences and decides whether or not the

sequence is a proof. That is, proofhood is also decidable.

Example 2.1

Here is an example of a proof of the sentence (p Æ p). Note that the numbers

on the left and the comments on the right are not part of the formal proof, they are

annotations to help the reader see that the steps are justified.

1. ((p Æ ((p Æ p) Æ p)) Æ ((p Æ (p Æ p)) Æ (p Æ p))) instance of A2

2. (p Æ ((p Æ p) Æ p))            instance of A1

3. ((p Æ (p Æ p)) Æ (p Æ p)) MP with 1 and 2

4. (p Æ (p Æ p)) instance of A1

5. (p Æ p) MP with 3 and 4

Even this simple example shows that proofs in this system are difficult. This is

mainly because very long sentences are generated and it is usually hard to see how to

proceed correctly or what are the appropriate axiom instances to choose. Later we

will see some far better syntactic proof methods, but we introduce the system here

because it is easy to prove things about it (if not in it!).

Example 2.2

Now we have an example of a proof that uses assumptions. Recall from above

that the assumptions can be used in the same way as the axioms.

We show that  {p, (q Æ (p Æ r))} H (q Æ r).

1. p assumption

2. (q Æ (p Æ r)) assumption

3. (p Æ (q Æ p)) instance of A1

4. (q Æ p) MP with 1 and 3

5. ((q Æ (p Æ r)) Æ ((q Æ p) Æ (q Æ r))) instance of A2

6. ((q Æ p) Æ (q Æ r)) MP with 2 and 5

7. (q Æ r) MP with 4 and 6



42 FORMALIZING THE LANGUAGE

Exercise 2.7

a) For each stage of the two proofs above, write down the substitutions used in

the relevant axiom schemas to obtain the sentences in the proof.

b) Construct proofs of the following:

i)  H (a Æ (a Æ a))

ii) {a} H a Æ a

iii) {a} H a Æ a, but make it different from the proof you gave in (ii).

iv) {a, a Æ b} H b

v) {a} H b Æ a

vi) {f Æ g, g Æ h} H f Æ h

vii) {f Æ (g Æ h), g} H f Æ h

viii) H ¬¬f Æ f

ix) H f Æ ¬¬f

2.6 Soundness and Completeness for propositional
calculus

Now that we have a system in which we can build proofs, we would like to be

sure that the sentences we can find proofs for, the theorems, are indeed the tautologies

that we previously characterised as valid. So, we have to show that the following is

true:

For any sentence S, if S is a theorem then S is a tautology

and if S is a tautology then S is a theorem.

 This will allow us to claim that our formal system adequately characterizes

our intuitive ideas about valid arguments, so we say that the italicized statement

expresses the adequacy theorem for the formal system. The first part expresses the

soundness of our formal system. It says that if we show that S is a theorem then it is a



43

tautology. In other words we only ever produce valid sentences as theorems.

Conversely, the second sentence expresses completeness and says that any S which is

a tautology will always be provable in the formal system.

2.6.1 The deduction theorem

This section introduces and proves a theorem that turns out to be very useful

for both drastically shortening proofs within the formal system and also for easing the

presentation of the completeness proof, which we do later.

Theorem

If G, S H T then G H S Æ T, where S and T are any sentences and G is any set of

sentences.

Proof

Let T1,...,Tn be a proof of T from assumptions G » {S}, so Tn is T. We do

induction on n.

If n=1 then either T is in G or T is an instance of an axiom schema or T is S. In

the first two cases G H T so since H T Æ (S Æ T) we have G H S Æ T. In the final case

since H S Æ S we have G H S  Æ T.

Now assume that for any k, 1 ≤ k < n, the result holds. There are four

possibilities. Either T is in G, or T is an instance of an axiom schema, or T is S, or T

follows as a direct consequence by Modus Ponens from Ti and Tj, 1 ≤ i , j < n. In the

first three cases we can argue as we did in the case where n=1.

In the fourth case Tj, say, has the form Ti  Æ Tn. By the assumption we have G

H  S  Æ  Ti and G H  S  Æ  (Ti Æ  T n). But an instance of axiom schema A2 is

H (S Æ (Ti  Æ Tn)) Æ ((S Æ Ti) Æ (S Æ T)) , so we have by Modus Ponens, using G H

S Æ (Ti  Æ Tn), that G H (S Æ Ti) Æ (S Æ T) and then by MP again, this time with G H

S Æ Ti, that G H S Æ T. So, by induction on n, the theorem holds.

The adequacy theorem

There are two parts to this proof since we have to show both  if H S  then J S

and if J S  then H S.  We also use, and prove, a couple of lemmas.

Lemma 1

If S and (S Æ  T)  are both tautologies then T is a tautology.



44 FORMALIZING THE LANGUAGE

Proof

Assume that T is not a tautology.  We will now deduce a contradiction, which

will mean that our initial assumption is false, so T must be a tautology.  (This method

of argument is known as 'reductio ad absurdum').

If T is not a tautology, but both S and (S Æ  T) are, then there must be a

valuation v such that v(S)=t, v((S Æ T))=t and v(T)=f .

If v((S Æ  T))=t, then v(S)=f or v(T)=t or both. If v(S)=f then this contradicts

v(S)=t. If v(T)=t then this contradicts v(T)=f .

Either way we have a contradiction so T must be a tautology.

With this, we can go on to give the Soundness theorem.

Theorem

If H S then J S, where S is any sentence.

Proof

If S is a theorem then there is a sequence S1,...,Sn with Sn = S such that the

sequence is a proof of S.  If S is an axiom then there is nothing to prove since it can be

shown by straightforward calculation of their truth-values that all our axioms are

tautologies. If S is not an axiom then we proceed by induction on the length of the

proof of S.

If n=1 then S is an axiom (by the definition of proof) and so S is a tautology. If

n>1 then we proceed by assuming that all theorems with proofs of length less than n

are tautologies.

Now, either S is an axiom or the proof of S contains two sentences Si and Sj,

with i,j < n, such that Sj (say) is (Si Æ S). Si and Sj are tautologies by hypothesis (since

they have proofs of length less than n) and so, by Lemma 1, S is a tautology too. So

the induction step is complete and the soundness theorem is proved.

Before we go on to the completeness theorem we need the other lemma.

Lemma 2

Let S be any sentence and let S1,..., Sn be the propositional variables that

appear in S. Let v be any valuation. Then if v(Si) = t  let Si' be Si  while if v(Si) = f  let



45

Si' be ¬Si. Also let S' be S  if v(S) = t  and S ' be ¬S if v(S) = f. Then we have that

{S1',...,Sn'} H S'.

Proof

This is by induction on the structure of S. Let us assume that S has m

occurrences of connectives.

In the case that m=0, S is atomic and so consists of a single propositional

variable. Clearly, if v(S) = t then we put S' = S and we have S' H S' and if v(S) = f then

we put S' = ¬S and so S' H S'. So the theorem holds for this simplest case. Now assume

that it holds for any j < m. There are several cases and sub-cases to deal with.

a) If S is of the form T1 Æ T2 then T1  and T2 have less than m connectives and

so by the assumption we have {S1',...,Sk'} H  T1' and {S1',...,Sk'} H  T2', where

S1',...,Sk' are the propositional variables in S.

i) If v(T1) = t then T1' is T1 and if v(T2) = t then T2' is T2. Also we have v(T1

Æ T2) = t and so S' is T1 Æ T2. By the assumption, therefore,  {S1',...,Sk'} H

T2 and since H T2 Æ (T1 Æ T2) we have, by Modus Ponens, that {S1',...,Sk'}

H T1 Æ T2, i.e. {S1',...,Sk'} H S'.

ii) If v(T1) = t then T1' is T1 and if v(T2) = f then T2' is ¬T2. Also we have

v(T1 Æ  T2) = f and so S' is ¬(T1 Æ  T2). By the assumption, therefore,

{S1',...,Sk'} H ¬T2 and {S1',...,Sk'} H T1 and since we can show that H T1 Æ

(¬T2 Æ ¬(T1 Æ T2)) we have, by Modus Ponens twice, that {S1',...,Sk'} H

¬(T1 Æ T2), i.e. {S1',...,Sk'} H S'.

iii) If v(T1) = f then T1' is ¬T1 and, whatever value v gives T2, we have v(T1

Æ T2) = t and so S' is T1 Æ T2. By the assumption, therefore,  {S1',...,Sk'} H

¬T1 and since H  ¬T1 Æ  (T1 Æ  T2) we have, by Modus Ponens, that

{S1',...,Sk'} H T1 Æ T2,  i.e. {S1',...,Sk'} H S'.

b) If S is of the form ¬T1 then T1 has less than n connectives and so {S1',...,Sk'}

H T1', by the assumption.



46 FORMALIZING THE LANGUAGE

i) If v(T1) = t then T1' is T1 and v(S) = f so S' is ¬S. Since H T1 Æ ¬¬T1 we

have by MP that {S1',...,Sk'} H ¬¬T1, i.e. {S1',...,Sk'} H ¬S, i.e. {S1',...,Sk'} H

S'.

ii) If v ( T 1) = f then T1' is ¬T 1 and v ( S ) = t so S ' is S.

Therefore {S1',...,Sk'} H ¬T1,  i.e. {S1',...,Sk'} H S'.

With that we have covered all cases and, by induction on n, the proof is

complete.

Theorem

If JS then H S, for any sentence S.

Proof

Assume that  J S. Let S1,...,Sn be the propositional variables in S. By Lemma 2

we know that, for any valuation, {S1',...,Sn'} H S. Note here that S' is S since J S, so for

any valuation S is true. Therefore we have that  {S1',...,Sn-1',Sn} H S and {S1',...,Sn-

1',¬Sn} H S.

Using the deduction theorem we have {S1',...,Sn-1'} H Sn Æ S and {S1',...,Sn-1'}

H ¬Sn Æ S. Since we can show H (Sn Æ S) Æ ((¬Sn  Æ S) Æ S) we have, using MP

twice,  {S1',...,Sn-1'} H S. By repeating this process n-1 more times we have H  S as

required.

Example 2.3

As an example of how this proof works, consider the case in which S is

 (p Æ (q Æ p)). Then, by Lemma 2, we have {p', q'} H (p Æ (q Æ p)). Writing  this

out in full we have

{p, q} H (p Æ (q Æ p))

and

{p, ¬q} H (p Æ (q Æ p))

and

{¬p, q} H (p Æ (q Æ p))

and

{¬p, ¬q} H (p Æ (q Æ p)).



47

So by the deduction theorem we have

       {p} H (q Æ (p Æ (q Æ p))) and {p} H (¬q Æ (p Æ (q Æ p)))

and

{¬p} ì (q Æ (p Æ (q Æ p))) and {¬p} H (¬q Æ (p Æ (q Æ p)))

The first two of these can be combined twice with

H (qÆ (p Æ (q Æ p)))Æ ((¬q Æ (p Æ (q Æ p))) Æ (p Æ (q Æ p)))

using Modus Ponens to give

{p} H (p Æ (q Æ p))

and similarly for the second two to give

{¬p} H (p Æ (q Æ p))

This can then be repeated to give

H (p Æ (q Æ p))

Summary

 •  A logical language is defined by giving its alphabet and its grammar—a

set of rules that says which strings of symbols from the alphabet are well-formed

sentences. We give the alphabet and grammar of propositional logic. The property of

being a sentence is decidable and there is a computationally effective method of

enumerating the sentences of the language. We demonstrate this by giving SML and

Prolog programs for decidability and enumeration.

•  An important part of logic is the study of arguments - of which conclusions

can correctly be said to follow from given premises. The validity of an argument is

judged from its form not its meaning. A valid argument can have a false conclusion -



48 FORMALIZING THE LANGUAGE

provided its premises are false - but a valid argument applied to true premises always

gives a true conclusion. In classical propositional logic the validity of argument forms

can be decided by truth-tables.

• Meaning is given to a language via a set of rules that enable you to calculate

what the sentences of the language denote. Languages in which you can calculate the

truth-value of a sentence from the truth-values of its sub-sentences are called truth-

functional. Classical propositional logic is truth-functional and the calculation rules

are given by truth-tables for each of the connectives. A truth-table can be constructed

for any given sentence by listing all the ways in which truth-values can be assigned to

its constituent propositional variables and, using the truth-tables for the connectives,

calculating the value of the sentence in each case. An assignment of truth-values to

propositional variables is called a valuation. A formula that is true in every valuation

is said to be valid. Valid formulas in propositional logic are called tautologies.

•  A set of sentences G entails a sentence S, written G J S if every valuation

that makes all the sentences in G true makes S true also. If no valuation makes all the

sentences in G true then G is said to be inconsistent.

•  A formal system enables the validity of arguments in a language to be

decided without reference to the notions of true and false. As well as the alphabet and

grammar of the language a formal system has axioms and rules of inference. A proof

in such a system is a sequence of sentences each of which is either an axiom or is

derived from earlier members of the sequence by using the rules of inference. The

final sentence of such a sequence is said to be a theorem of the system. It can be

shown that the formal system for classical propositional logic given in this chapter is

sound  and complete in the sense that all its theorems are tautologies and all

tautologies are among its theorems.



49

CHAPTER THREE

Extending the language

3.1. Informal predicate calculus

 The simplicity of the propositional calculus is also its worst shortcoming. A

simple argument like

All men are mortal

Socrates is a man

therefore

Socrates is mortal

is of the form

A

M

therefore

D

 or, in propositional logic

(A Ÿ M) Æ D

but this, as you can verify, is not a valid argument; the truth-table does not give 't' for

every valuation. However, we would obviously like to characterize such arguments as

valid. To do this we have to look at the internal structure of the propositions.



50 EXTENDING THE LANGUAGE

'All men are mortal' has the natural language form 'if x is a man then x is

mortal, for all x'. We are going to define a language called predicate calculus in which

this can be written formally as "x(M(x) Æ D(x)).

 Here, x is a variable which is understood to stand for any object, A is a

universal quantifier ('for all...') and M and D are one-place predicates. That is, they

express properties that the objects which are their arguments have.

 If we write 's' for Socrates we have M(s) and D(s) for the other two sentences

in the argument. Now we can show the argument to be valid.

 "x(M(x) Æ D(x)) says that, for any x, (M(x) Æ D(x)) so it is certainly true to

say (M(s) Æ D(s)). But we are given M(s), so by propositional logic we can deduce

D(s).

We now give the formal definition of the language.

3.1.1. Grammatical Definitions

Definition 3.1

A language of predicate calculus based on <P, N, F> , written L (<P, N, F>),

is defined by:

a) the alphabet, which has the  seven components:

i) a set of connective symbols { ¬, Æ, Ÿ, ⁄, ´ },

ii) a set of quantifier symbols { A , E},

iii) a set of punctuation symbols {(, ), ,},

iv) a set P of sets Pn of n-ary predicate symbols for each n≥0,

v) a set N of names {a,b,c, ...},

vi) a set F of sets Fn of n-ary function symbols {f, g, ,...} for each n≥0.

We call P, N and F the parameters of the language.

Each language also contains (vii) a set V of variables {x, y,…, x1, x2,...}.

However, since this set is included in all languages there is no need to include

it in the parameters that define the language.

b) the grammar, which defines L(<P, N, F>), the set of sentences based on

<P, N, F>. It is given here informally by describing several kinds of object

which go to make up sentences (and as before we will not mention the basis of

the sentence and its parts explicitly unless it is not clear from the context what

we are referring to).



51

 A term based on <P, N, F> is either a variable, or a name, or a function

symbol followed in brackets, and separated by commas, by the correct number

of terms for the function symbol's  arity.

 For example x, a and f(x, a, g(y, z)) are all terms if f has arity 3, g has arity 2,

a is a name and x, y and z are variables.

 A formula based on <P, N, F> is of the form

   ¬F or  (F * G),  or  QvF or P(t1, t2, …, tn),

where * is one of the binary logical connectives, F and G are formulas, called

sub-formulas of the formula, Q is a quantifier, v is a variable and P(t1, t2, …,

tn) is an atomic formula  consisting of a predicate symbol followed in brackets,

and separated by commas, by the correct number of terms for its arity .

In the case  QvF where F contains no quantifiers we say that any occurrence of

v in F is bound by Q  in F, and F is the scope of Q. If an occurrence of a

variable v is bound by a quantifier then it is a bound occurrence and we say

that the quantifier binds v. In the case of QvF where F does contain quantifiers

then any occurrences of v in F which are not bound by any other quantifier in

F are bound by Q. In this case the scope of Q consists of all sub-formulas of F

that are not in the scope of a quantifier other than Q that binds v.

 Note that no occurrence of a variable can be bound by more than one

quantifier. If an occurrence of a variable v is not bound by any quantifier then

that occurrence is a free occurrence.

A sentence based on <P, N, F> is a formula in which no free variables occur.

An atomic formula with no free variables is an atomic sentence.

 For example, if a is a name and x is a variable then f(x, a) is a term, provided

that f is a function symbol of arity two,  (A Æ B(x, f(y, a))) is a formula in which x

and y are free, "x$y(A Æ  B(x, f (y,a))) is a sentence and R(a, b, c) is an atomic

sentence.



52 EXTENDING THE LANGUAGE

One final definition in this section is of the notion of a term t being free for a

variable v. This essentially means that no variables of t are 'captured' when t is

substituted for v in a formula F.

Definition 3.2

If F is a formula and v is a variable then the term t is free for v in F iff there is

no variable u in t such that v appears within the scope of a quantifier that binds

u.

For example, if "x1A(x1, x2) is the formula in question, then f x1, x3) is not free

for x1. Since x2 appears within the scope, namely A(x1, x2), of a quantifier that binds x1,

the x1 in f(x1, x2) is captured by the quantifier. However, f(x2, x3) is free for x2 in the

same formula  since the only quantifier binds x1 and this variable does not appear in

f(x2, x3).

Now we can extend the SML declarations that define the language in the

previous section. The extensions that we need are to do with the terms, and the

addition of predicates and quantifiers to the language. First, we have to decide on how

to represent the terms. From the definition a term is either a variable or a name or a

function whose parameter places are filled with the correct number of terms for its

arity. So the following SML datatype can be used:

datatype TERM =  Var of string

| Name of string
| app of (string * TERM list)

| empty;

So, the term which is the name “a” will be represented as Name "a"; the

variable "x" will be represented as Var "x"; the application of a function to its

arguments as in "g(a,b)" will be represented by app("g",[Name "a",Name "b"])

and so on.

Having represented the terms we can extend the declaration of SENT, for the

sentences:

datatype SENT =  Prop of string

| Not of SENT
| And of (SENT * SENT)

| Or of (SENT * SENT)

| Imp of (SENT * SENT)

| Eq of (SENT * SENT)

| Forall of (TERM * SENT)



53

| Exists of (TERM * SENT)

| Pred of (string * TERM list);

3.1.2. Interpretations

 We now go on to define the meaning of the sentences of the language. This is

done by introducing the notion of interpretation:

Definition 3.3

An interpretation of a language L(<P, N, F>) - and we will shorten this to just

L in this section -  over a universe U is a pair

I
L
U  = <FU , YU>L 

where

U is a non-empty set of objects, which the terms refer to, called the universe

YU : Pn Æ ℘Un maps, for each Pn in P, the n-ary predicate symbols to n-ary

relations over U

FU : N Æ U maps the names to objects in the universe

FU : Fn Æ (Un Æ U) maps, for each Fn in F, the n-ary function symbols to n-

ary functions over the universe.

Note that FU  is overloaded, i.e. the symbol stands for two operations.

However, this is not ambiguous because, when it is applied, we can always tell from

its argument which operation to use.

 YU maps n-ary predicate symbols to the relations which they denote. We

think of a relation as given by the set of tuples of objects from U which are in the

relation to one another (which you may see called its extension). For instance, in

mathematics the symbol "<" as a relation over the universe of the positive integers

{1,2,3,…} has, as its extension, the set of ordered pairs {(1,2), (1,3), (2,3),…}

because 1 is less than 2, 1 is less than 3, 2 is less than 3 and  so on.

 We have to extend FU so that, when applied to an element from the set of

terms  T, FU produces as its value an object from U. So, we define

FU(g(t1,...,tm)) = FU(g)(FU(t1),...,FU(tm))

for each g Œ Fm , ti Œ T.



54 EXTENDING THE LANGUAGE

Finally, to make such a FU complete, each variable must also denote an object

in U. This is done by considering FU to be, in fact, a set of functions, which we call

assignments and which we denote by fU. All assignments fU in the set FU agree on

the names and function symbols and they all obey the equation above. So, on the

names and function symbols we are justified in thinking of just one assignment, since

all the elements of the set of assignments behave in the same way for these

arguments. However, they differ on what they map the variables to and there are

enough of them to allow a given variable to be mapped to each of the objects in the

universe.

The name "assignment" for such functions varies between authors. Some

(Hamilton (1978) for example) use the word "valuation" (and in the way we used it

previously, which is rather confusing) and Mendelson uses "sequence" for part of it.

Some use no name at all. Hodges (1977) seems to use "assignment" too.

We are now in a position to give a hierarchy by which the truth of a sentence

in a particular language L can be determined.

Definition 3.4

An assignment fU satisfies a formula in an interpretation I
L
U   according to the

following, where F and G are any formulas:

1) for any predicate Q Œ Pn, fU  satisfies Q(t1,...,tn), for any ti Œ T, iff

 (fU(t1),...,fU(tn)) Œ YU(Q)

2) fU satisfies ¬F iff fU does not satisfy F

3) fU satisfies (F  Ÿ  G) iff fU satisfies both F and G,

4) fU satisfies (F  ⁄  G) iff fU satisfies either F or G, or both,

5) fU satisfies (F  Æ  G) iff fU satisfies (¬F ⁄ G),

6) fU satisfies (F  ´  G) iff fU satisfies (F  Ÿ  G)  ⁄  (¬F  Ÿ ¬G)

7) fU satisfies $xF iff there is an element a of U  such that there is some

assignment f'U from I
L
U  , which is the same as fU except perhaps at x where

f'U(x) = a, which satisfies F.

8) fU satisfies "xF iff fU satisfies ¬ $x¬S. This is the same as saying that

there is no element a of U such that there is some assignment f'U from I
L
U   

which is the same as fU,  except perhaps at x where f'U(x) = a, which does not

satisfy F. This, in turn, says that for every element a in U all assignments f'U,

which are the same as fU,  except perhaps at x where f'U(x) = a, satisfy F.



55

The fact that variables are only allowed to range over members of the universe

leads to other names for the language that we are studying. In full we should call it a

first-order predicate language. In the same vein, the propositional language, where

quantifiers ranged over nothing (since there were none) might be called a zero-order

predicate language. So, the order of the language refers to the "level" of the objects up

to and including which the quantifiers can range over. You can think of the level as

being the place that the objects come in the series which starts

nothing zeroth-order

the universe first-order

relations over the universe (i.e. predicates) second-order

relations over relations third-order

etc. etc.

We will use the term "predicate logic" or "predicate calculus" to refer only to the first-

order case, so there is no ambiguity. Sometimes we may talk of "first-order logic" or

"first-order language" when we refer to this same level.

Definition 3.5

 A formula is true in an interpretation I
L
U  iff all the  assignments in I

L
U  satisfy

it. A formula is valid iff it is true in every interpretation of its language L.

Conversely, a formula is false in an interpretation I
L
U  iff no assignment in I

L
U  

satisfies it and it is unsatisfiable iff it is false in every interpretation. Formulas

that are not unsatisfiable are  satisfiable.

Note that in the propositional case, since there are no terms, the assignment

functions are redundant and then an interpretation collapses to what we called a

valuation (as long as we equate the propositions with nullary predicates).

Note that the definition implies that if we wish to see whether a sentence is

true in some interpretation then we have to show that it is satisfied by all assignments

in the interpretation. This, clearly, may involve a lot of work (especially if the number

of assignments is infinite!). However, it can be proved that a sentence is satisfied by

all assignments in an interpretation iff it is satisfied by at least one assignment in the

interpretation, which means that the amount of work required to see whether a

sentence is true in an interpretation can be vastly reduced.



56 EXTENDING THE LANGUAGE

3.1.3. Examples on interpretations

1) The sentence $ x1 (1 < x1) is true in the interpretation which makes '1'

denote the number one and '<', which is an infixed predicate symbol in the formal

language, denote the less-than relation over the integers {one, two three}. To see this

in a graphical way imagine all the possible assignments in this interpretation

displayed as a tree. The common part of all the assignments maps 1 to one, 2 to two, 3

to three and < to the relation whose extension is {(one,two), (one,three), (two,three)}.

This is shown on the trunk of the tree. The branches then show all the possible

extensions which give all the possible assignments:

1 ˜Æ one

2 ˜Æ two

3˜Æ three

x1 ˜Æone

x2 ˜Æ threex2˜Æ two
x2 ˜Æ one

x1 ˜Æthreex1 ˜Ætwo

      < ˜Æ{(one,three),
                 (one,two),
                (two,three)}

x3 ˜Æ one

x3 ˜Æ two

x3 ˜Æ three

We can see that  for an arbitrary assignment (path up the tree) there is an assignment

that is the same everywhere except possibly at x1, where it maps x1 to two. This

means that the assignment satisfies the existential sentence and so it meets the

condition for being satisfied by any assignment and so it is true under the

interpretation.

2) The sentence

1 < 2  Æ  $ x(x < 2)



57

 is valid. We can think of this as saying that "in those assignments where the left-hand

side is satisfied, the right-hand side is too". This is the case since any assignment

which satisfies 1<2 will clearly (trivially) satisfy $x(x<2). This argument then extends

to any interpretation, which might be clearer if we use a less suggestive language and

write the sentence as

P(a,b)  Æ   $ xP(x,b)

3) In the same interpretation as above

 $x(x < 1)

is a false sentence. This is so because, for an arbitrary assignment, there is no

assignment which is the same, except perhaps at x1, such that x1 is mapped to an

element of the universe which is in the relation less-than to 1.

4) An example of an unsatisfiable sentence is    1 < 2  Æ "x¬(x < 2).

5) The sentence

"x"y"z(x < y  Ÿ  y < z  Æ x < z)

is satisfiable. It is true if '<' is less-than over the natural numbers, and it is false if '<'

denotes "is the square-root of" over the same universe, since, for instance, we have

2<4 and 4<16 but not 2<16.

 In general, to prove validity, we must show that an arbitrary assignment in an

arbitrary interpretation satisfies the sentence concerned.

 On the other hand, to prove a sentence non-valid we must be ingenious

enough to actually construct an interpretation in which there is a assignment which

does not satisfy the sentence.

In the sequel we will usually omit the references to L and U when they are

clear from the context.

6) For a more extended example we consider a language with parameters as

follows.



58 EXTENDING THE LANGUAGE

The set of predicate symbols is {M, S}, both symbols having arity two; the set

of function symbols is {f', m'}, both with arity one; the set of names is {a,b,c,d,e,f,g}.

This defines the language so that the following are all sentences:

M(a,b)

M(a,b) Æ M(b,a)

¬M(c,d)

"xM(a,x)

$xM(a,x)

M(f'(a),m'(c))

However, even though we know that these are sentences, we still have no way

of knowing their meaning. For this we need an interpretation. One interpretation,

which we call I, is as follows:

I = <FU,YU> where U = {Albert, Brian, Cynthia, Dougal, Ermintrude, 

Florence, Georgina}

YU(M) = {(Cynthia, Brian), (Brian,Cynthia)}

YU(S) = {(Ermintrude,Dougal), (Dougal,Ermintrude)}

FU(f ') = {(Cynthia,Albert), (Florence,Brian)}

FU(m') = {(Florence,Cynthia), (Ermintrude,Florence), (Dougal,Florence)}

Given this interpretation we can work out the truth-values of some of the

sentences above. For example we have, for M(a,b) , that (FU(a),FU(b))  =

(Albert,Brian) œ{(Cynthia,Brian), (Brian,Cynthia)} = YU(M), so M(a,b) is not true

since any completion of FU will behave the same way.

7) As another example, we can give a different interpretation, J, to the same

language as above. We define J as follows:

J  = < F V,YV>  where V  = {Anne, Bill, Charles, Diana, Elizabeth, Fred,

Gertrude}

YV(M) = {(Anne, Bill), (Bill, Anne), (Fred, Gertrude), (Gertrude, Fred)}

YV(S) = {(Charles, Diana), (Diana, Charles), (Bill, Elizabeth), (Elizabeth,

Bill)}

FV(f') = {(Diana, Bill), (Charles, Bill), (Bill, Fred), (Elizabeth, Fred)}



59

FV(m') = {(Elizabeth, Gertrude), (Bill, Gertrude), (Charles, Anna), (Diana,

Anna)}

Given this interpretation we have, for M(a,b) , that (F V(a),FV(b))  =

(Anne,Bill) Œ{(Anne, Bill), (Bill, Anne), (Fred, Gertrude), (Gertrude, Fred)} =

YV(M), so M(a,b) is true.

Exercise 3.1

1) Work out whether the following are true in each of the interpretations I and

J  given in the previous section:

a) M(a,c)

b) M(a,b) Æ M(b,a)

c) S(e,d)

d) S(e,d) Æ S(d,e)

e) "x"y(M(x,y) Æ M(y,x))

f) $zM(f'(c),b)

2) From your knowledge of family relationships and the legalities of marriage

etc., choose suitable denotations for the function symbols f' and m', and the

predicate symbols M and S in the examples above. Draw the family trees

that the interpretations I and J  describe.

3) A first-order language L has the usual connectives and punctuation

symbols, together with variable symbols x and y, a constant symbol a, a

unary function symbol t and two binary predicate symbols = and <, both

used in infixed form.

The domain of an interpretation I for L is the set of integers D={0,1,2}.

The denotation of a is the number 0. The denotation of t is the function

from D to D that, for any nŒD, maps n to the remainder on dividing (n+2)

by 3. The denotation of < is the binary relation on D whose extension is

{<0,1>, <1,2>, <2,0>} and the denotation of = is the usual identity relation

over integers.



60 EXTENDING THE LANGUAGE

For each of the following strings of symbols say whether or not it is a

formula of L. If it is, say whether the formula is true, satisfiable, or false in

I. Justify your statement briefly. The first one has been completed for you

as an example.

a) t(t(a))=a is a formula of L and is false, because t(a) denotes the number 2,

so t(t(a)) denotes the number (2+2) mod 3 =1 and 1 is not the same

number as 0.

b) t(a)<a is ………

c) $x(x>t(x)) is ………

d) "x( t(t(t(x))) =x ) is ………

e) "x$y(t(x)<t(y)) is ………

f) "x(t(x)<t(y)) is ………

g) "x((t(x)<t(y))  Æ  ¬(x=y)) is ………

3.2. FDS for predicate calculus

 We have already seen an alphabet and (informal) grammar for this system.

The following is a possible collection of axiom schemas:

Let S,T and R be sentences of the language. Then:

P1) (S Æ (T Æ S))

P2) ((S Æ  (T  Æ R)) Æ  ((S  Æ T) Æ  (S Æ R)))

P3) (((¬S) Æ  (¬T)) Æ (T Æ S))

P4) ("xiS Æ S), if xi does not occur free in S

P5) ("xiS Æ S[t/ xi]), if S is a formula of the language in which xi may appear

free and t  is free for xi in S

P6) ("x1(S Æ T) Æ (S Æ "x1T)), if x1 does not occur free in S.

Rules of deduction

1)  Modus Ponens (MP), from S and (S  Æ T) deduce T where S and T are any

formulas of the language.

2) Generalization, from S  deduce "x1S , where S  is any formula of the

language.



61

Note that since the rules and axioms given above include those of the

propositional calculus it is clear that any sentence that is a theorem of propositional

calculus is also a theorem of predicate calculus.

One important fact about this new logic is that the deduction theorem does not

go through quite as before. This time we need an extra condition in the premise of the

theorem.

Theorem

Let S and T be any sentences and let G be any set of sentences.

Then, if G, S H T , and no use was made of Generalization involving a free

variable of S, it is the case that G H S Æ T.

It can be shown that predicate calculus has the same soundness and

completeness properties that we proved for propositional calculus, although in this

case we shall not give the proofs since they are even more involved than was the case

for propositional calculus, though they follow the same lines.

One property that predicate calculus does not have is that of decidability. That

is, the question "Is this sentence valid or not?" cannot be answered if we use any

method which, essentially, can be programmed. We say that predicate calculus is

undecidable (though we will be able to refine this statement later on). The lack of an

answer does not depend on how clever the method is, or how long we set it to work

for. It is simply that for some sentences there is no answer.

3.2.1. Deciding on Proofhood

Even though there are bounds to what is possible computationally, we can

extend some of the programs that we had in the sections on propositional logic to the

predicate case since, although deciding on validity is not possible in general, deciding

on proofhood is. This is because a proof is simply a finite sequence of finite

sentences, each of which has to have some decidable property  that we can check.

We saw above how the language can be extended to include terms, quantifiers

and predicates. In order to be able to check a sequence of sentences to see whether it

satisfies the definition of a proof in predicate logic, as we did for propositional logic,

we first need some programs for  checking for free variables, deciding on axiomhood

etc. The first function we define tests to see if a given variable occurs in a given term

and of course the program follows the definition of the structure of a term:



62 EXTENDING THE LANGUAGE

infix occurs_in;

fun v occurs_in ((Name n)::t)     = false orelse (v occurs_in t)

  | v occurs_in ((Var w)::t)     = (v = w) orelse (v occurs_in t)

  | v occurs_in (app(f,terms)::t) = (v occurs_in terms) orelse

    (v occurs_in t);

infix free_in;

fun v free_in (And(s,t)) = (v free_in s) orelse (v free_in t)

  | v free_in (Or(s,t))  = (v free_in s) orelse (v free_in t)

  | v free_in (Imp(s,t)) = (v free_in s) orelse (v free_in t)

  | v free_in (Eq(s,t))  = (v free_in s) orelse (v free_in t)

  | v free_in (Not(s))   = (v free_in s) orelse (v free_in t)

  | v free_in (Forall(Var y,s)) = if v = Var y

    then false

    else v free_in s

  | v free_in (Exists(Var y,s)) = if v = Var y

    then false
    else v free_in s

  | v free_in (Pred(p,terms)) = v occurs_in terms

  | v free_in (Prop p) = false;

This may look rather complicated but in fact the computation, as before,

simply follows the structure of the sentence being tested. As we can see, for each of

the connectives we just test for the variable being free in each sub-sentence. For the

quantifiers, if the bound variable is the same as the variable then clearly it is not free.

The only interesting case, really, is the atomic sentence of the form P(t1,...,tn). Here

we just test to see if the variable occurs in any of t1 to tn. Finally, if the sentence is

propositional then clearly the variable does not occur, so it does not occur free.

In order to test for axiomhood we also need a test to see whether a term is free

for a variable in a sentence, but we assume that we have such a function, which we

call free_for (and leave its development as an exercise).

We can now go on to give functions for the three new axiom schemas P4, P5

and P6:

fun axiom1 (Imp(S,Imp(T,S'))) = S=S'

  | axiom1  s                 = false;

fun axiom2 (Imp(Imp(S,Imp(T,R)),Imp(Imp(S',T'),Imp(S'',R')))) =

               (S=S') andalso (T=T') andalso (R=R') andalso (S=S'')

  | axiom2  s = false;

fun axiom3 (Imp(Imp(Not S,Not T),Imp(T',S')))= (S=S') andalso (T=T')

  | axiom3  s                                = false;

fun axiom4 (Imp(Forall(x,S),S')) = not(x free_in S)

  | axiom4  _                    = false;

fun axiom5 (Imp(Forall(x,S),S')) =

let val (ok,t) = forms_match (x,S) S' in



63

                      if ok then t free_for (x,S) else false

                   end

  | axiom5  _ = false;

fun axiom6 (Imp(Forall(x,Imp(S,T)),Imp(S',Forall(x',T')))) =

S=S' andalso T=T'andalso x=x' andalso not(x free_in S)

  | axiom6   _ = false;

fun axiom s = axiom1 s orelse axiom2 s orelse axiom3 s

                  orelse axiom4 s orelse axiom5 s orelse axiom6 s;

The function forms_match is again left as an exercise, and it essentially

takes two sentences and a variable and returns true if the sentences match up to

occurrences of the variable and also the term that appears in place of the variable

where the variable does not itself appear. For instance we have that forms_match

applied to the formulae P(x) and P(f(a)) and the variable x returns true, since the

sentences are the same up to the occurrence of x, together with f(a), since that is the

term that appears in the place of x. If we apply it to Q(x,x) and Q(f(b),f(a)) then it

returns false since the formulas do not match because the terms in place of x are not

the same.

The final part we need is to check for a correct use of the rule of

generalization. This means that if a sentence of the form "xS appears in the sequence

of sentences that we are testing for proofhood then we also need to see if a sentence

of the form S appears before it in the sequence. The following SML function does just

that:

fun generalization l (Forall(x,S)) = S memberof l

  | generalization _ _             = false;

We can then adapt and extend the function proof as given before to give a proof-

checker for predicate logic too. This is again left as an exercise.

Exercise 3.2

1) Which of the following statements are correct and which incorrect?

 In the sentence "x1A(x2)

i) x2 is free for x2

ii) x2 is free for x1

iii) x1 is free for x2



64 EXTENDING THE LANGUAGE

iv) x7 is free for x2

v) f(x1, x7) is free for x2

2) In the sentences and formulae below, is the term f(x1, x3) free for x2 or not?

i) " x2(A x1, x2) Æ A(x2,a))

ii) " x1" x3(A(x1, x2) Æ B(x3))

iii) "x2A(f x2)) Æ " x3B(x1, x2, x3)

iv) ¬¬A(x2) Ÿ " x5A(x2)

v) "x2A(x2)

3) Show that

i) xi is free for xi in any formula

ii) any term is free for x i in a formula S  if S contains no free

occurrences of xi.

4) Write an SML or Prolog program which tests whether a given term is free

for a given variable in a given formula.

5) Construct proofs of the following theorems of predicate calculus:

a) "x1"x2A H "x2"xi A

b) "x1"x2A(x1, x2) H " x1A(x1, x1)

6) The word "theorem" is use in two different ways in chapter two. Give one

example of each of these two uses of "theorem", from sections five or six.

7) Write an SML or Prolog program which implements the forms_match

function needed for this section.

8) Adapt and extend the program for proof in the previous chapter so that it

works on proofs in predicate logic too.



65

3.3. Historical discussion

The undecidability of predicate logic is one of the fundamental results for

Computer Science as well as for Logic and it links our subject with the work of some

of the greatest mathematicians and logicians of the modern era. First, the German

mathematician David Hilbert, who was celebrated as the greatest mathematician of

his time, being something of an all-rounder, proposed 23 problems at a congress of

mathematicians from all over the world in 1900. (See (Reid, 1970) for his

bibliography). He stated in the introduction to these problems that he was convinced

that every mathematical problem could be answered, either with a solution or with a

proof that it had no solution. He even referred to "this axiom of solvability". The

problems that he listed (and, even though there were 23, he only described 10 in the

lecture, since the talk was considered long enough already) lead, as he had hoped

when he propounded them, to some of the greatest discoveries in mathematics.

Unfortunately for Hilbert, as we now know and have said above, his "axiom

of solvability" is not valid. We now know that even completely rigorously stated

problems, i.e. problems expressed in the completely formal language of logic, cannot,

in general, be solved. That is, there are logical sentences whose validity cannot be

determined by any general procedure or process. This contradicts Hilbert's statement

in his lecture when he said of some of the great unsolved problems: "However

unapproachable these problems may seem to us and however helpless we stand before

them, we have, nevertheless, the firm conviction that their solution must follow by a

finite number of purely logical processes". The problem of finding a method which

tells whether a sentence is valid or not was formulated in Grundzüge der

Theoretischen Logik (Hilbert and Ackermann, 1950) and is known as the

Entscheidungsproblem.

The discovery that there is no such method was due to two people working

independently  (one in the USA, the other in England). The remarkable thing was, as

often seems to happen with problems of this sort, that they both seemed to make the

discovery, by different methods, at the same time, around 1936. These two

formalisms are very different: one deals with functions defined by application and

abstraction: the other deals with an abstract machine which was taken as the model

for the first ever stored-program computer. Nevertheless they were both used to

produce the same result.



66 EXTENDING THE LANGUAGE

3.3.1. Church and  functions

The person working in the USA was Alonzo Church. He introduced what we

are now familiar with as the l-calculus (a good introduction is Henson (1987)) as the

vehicle for his proof that predicate calculus is undecidable. The l-calculus has had a

huge impact on Computer Science and we mention some of its effects here. Details of

the proof are in (Church, 1936).

There has been a long history of using the ideas on abstraction and application

that the l-calculus formalizes as a basis for programming languages. The first well-

known language with this basis was Lisp, as developed by John McCarthy

(McCarthy, 1960). Later, in the 1960s,  Peter Landin (Landin, 1965) initiated the idea

of using l-calculus as a basis for describing programming languages. This work was

taken up by Strachey and his followers and developed into a method for giving

denotational semantics for programming languages, and is well presented by Stoy

(Stoy, 1977). It was also taken as a basis for new programming languages, which lead

to  ISWIM (If you See What I Mean, Landin, 1966), which in turn has been further

developed by others. The influence of ISWIM can be seen in languages like SML

(though SML was originally just ML and used for a particular purpose; for more on

this see chapter nine on LCF) and the "blackboard notation" initially developed by

Landin and developed as a more complete programming notation in (Bornat, 1987).

3.3.2. Turing and mechanism

  The person working in England was Alan Turing, and his method for the

unsolvability of the Entscheidungsproblem involved the introduction of what we now

know as Turing machines. A good introduction, which also gives a proof of the

undecidability, is in Boolos and Jeffrey (1980). Turing's original paper (Turing,1936)

is very clear (though it contains mistakes in the detail which he later corrected).

Turing's proof is based on showing that there are certain completely specifiable

problems, like "does this computation ever print a 0?", which cannot be answered by

algorithmic means, in other words by following a finite set of rules precise enough to

be executed mechanically. He showed that if it were possible to decide validity in

predicate logic then we would be able to answer questions like the one above. This is

clearly a contradictory state of affairs. Since the reasoning that leads to these

conclusions is clearly sound the only way out of the contradiction is to deny the truth

of the assumption that gave rise to it. Namely, we have to conclude that the validity

problem is undecidable.



67

A direct link between l-calculus and mechanism was provided in a paper of

Landin's (Landin, 1964) which introduced the SECD machine (the Store,

Environment, Control, Dump machine) and showed that the l-calculus could be given

a completely mechanical, i.e. operational, semantics which coincides exactly with the

semantics given by Church, which was in terms of re-writing expressions. This work

has also had a lasting impact in that it has formed the basis of work on

implementation of the so-called functional languages,  languages based on a

"sugaring" (to use a term of Landin's) of the somewhat terse language of the l-

calculus itself.

3.3.3. Computability

 We have referred to the link between l-calculus and mechanism provided by

the SECD machine. It was known long before 1964 that the l-calculus and Turing

machines pick out exactly the same class of functions, which are what we call the

computable functions or recursive functions or effective functions. By "effective

functions" we mean "the functions which it is in principle possible for someone to

calculate". Of course this is not a very exact definition, and it never can be since it is

not clear how to define exactly a notion that depends on the possibilities of human

calculation; to paraphrase Russell, we would need to formalize something which

seems to be just a medical fact.

However, it is now commonly held to be the case that the class of functions

definable by Turing machines or l-calculus (or one of many other methods) does

indeed coincide exactly which what is in principle calculable. That is, we have no

evidence against this and much in favour of it. But, because we cannot formally

define what we mean by terms like "calculable in principle" we cannot hope to prove

a theorem. However, the correspondence is recorded as a thesis, a statement that is

believed to be true. This is known as the Church-Turing Thesis:

the class of effectively calculable functions is the same as the class

of Turing computable (or l-definable or recursive) functions.

So, we have seen that there are problems which can be specified or described

in completely formal detail, yet which no one has ever or will ever write a program to

solve. This is at once exciting, in that it gives us insight into a fundamental limit to

computation, mysterious, in that it raises the question of whether human beings have



68 EXTENDING THE LANGUAGE

the same kind of inherent limitation, and depressing since for the first time it seems

that there is a definite bound to the tasks that computation can solve.

3.4. Models and Theories

A  sentence in a first-order language is just a collection of symbols put

together according to certain syntactic rules. To give meaning to the sentences of a

language we have first to identify the objects about which we are talking. We have

called this collection of objects the universe, taken to be non-empty. Over the

universe we have certain relations between objects. If our universe is a collection of

people then such a relation might be 'p is the father of q'. We might take a particular

person and identify that person's father. So, to say useful things about a universe we

also want to be able to express relationships and generate new objects. This is where

predicates and functions are used. We can express the relation above as  F(p,q)  or,

given  a  person q,  we can identify the father by applying a function, f(p), where f is

the 'father producing' function. This is the idea behind interpretations as defined

above.

So, the interpretations give a basis upon which to judge the  truth or falsity  of

a sentence in a particular language. In a given interpretation each predicate has a

truth-value when its parameters are replaced by names. Such sentences are called

ground atoms. Each ground atom has a value of true or false, i.e. if L is a ground atom

then either ¬L is true or L is true. The truth-values calculated from the ground atoms

are then combined by the connectives according to their usual meanings to finally

give a truth-value for the whole sentence. From these ideas we can define the notion

of a model.

Definition 3.6

A model is an interpretation of a sentence which makes the sentence true. We

also extend this to sets of sentences, G, and say that M is a model of G iff M is

a model for every sentence in G.

Definition 3.7

A theory is a set of sentences in a language which are true in a class of

interpretations.



69

 A set  G of sentences determines a class of interpretations I, i.e. all those

interpretations that are models of G, and I determines a further set of sentences that

are true in all the interpretations in I. We write the set of sentences that are true in all

models of G as Th(G), i.e. the theory based on G.

Definition 3.8

We call a set such as G the axioms (of the theory). The sentences which are

elements of the theory we call the theorems.

If S is a theorem of the theory determined by the set of axioms G then we

write  G J S, which we have introduced already as entailment, since here theoremhood

is determined semantically.

Theories provide the starting point for the use of logic in formalizing

reasoning in other areas of mathematics and computer science, and we shall be giving

some examples in chapter six. To apply logic, however, you have to be able to prove

theorems. We have already seen one method of doing this with axiom systems. In the

next two chapters we look at some other, more powerful, proof methods.

Summary

 •  As a means of formalizing arguments propositional calculus lacks

expressive power because there is no way of referring to individuals or stating that

propositions apply to some or all individuals. Predicate calculus is an extension of

propositional calculus with names, variables, function symbols, predicate symbols

and quantifiers.

 •  In predicate calculus individuals are denoted by terms. A term is either a

name, a variable symbol or a function symbol applied to terms. The propositional

variables of the propositional calculus are extended to atomic formulas which have

the form of predicate symbols applied to terms. The quantifiers bind variables in the

formulas over which their scope extends. The notions of scope and free and bound

variable are similar to those in computer science The other logical connectives are the

same as in propositional logic and the recursive definition of compound formulas is

similar.



70 EXTENDING THE LANGUAGE

 •  The simple truth-tables of propositional calculus no longer suffice to give

a semantics for predicate calculus. The notion of interpretation is introduced. An

interpretation consists of a universe of objects, an assignment function that specifies

which objects in the universe the terms of the language denote, and a function that

maps predicate symbols in the language to relations over the universe. The denotation

of a term (the element of the universe that it denotes) is calculated by means of the

recursively defined assignment function which maps names and variable symbols to

elements of the universe and function symbols to functions over the universe.

 •  For each of the logical connectives and quantifiers, rules are given

specifying when a well-formed formula in which they are the principal connective is

satisfied for a given assignment in a given interpretation. Atomic formulas are

satisfied if the denotation of their arguments is in the relation denoted by their

predicate symbol. A formula of predicate calculus is true in an interpretation if it is

satisfied for all assignments in that interpretation and it is valid if it is true in all

interpretations.

 •  A formal deductive system for predicate calculus is given as an extension

of that for propositional calculus. The notion of proof as a sequence of formulas in

which each element is either an axiom or is derived from earlier members of the

sequence by rules of inference is also similar.

 •  Whereas propositional calculus is decidable - any sentence can be shown

either valid or not valid in a finite number of steps by the method of truth-tables - this

is not the case for the full predicate calculus. There can be no mechanical method for

deciding that an arbitrary formula of predicate calculus is not valid. This fundamental

result was proved in two different ways, by Church who invented the lambda calculus

to do it, and by Turing who modelled the notion of computability with an idealised

machine that turned out to be the forerunner of the stored-program computer as we

know it today.

 •  A theory  is a set of sentences all of which are true in a class of

interpretations. A model is an interpretation that makes all the sentences of a theory

true. Theories and models provide the starting point for the use of logic in formalizing

areas of mathematics such as arithmetic and set theory, and data abstractions in

computer science such as lists and trees (see chapter six).



71

CHAPTER FOUR

Semantic Tableaux

4.1. Introduction

In this chapter we introduce one of the main methods that we will be using in

the rest of the book to judge validity and consistency.

Semantic tableaux will turn out to be much more expressive and easy to use

than truth-tables, though that is not the reason for their introduction.

In any model for G, a set of sentences, each element gi of G is true. Thus the

conjunction Ÿi gi is also true. Our problem, in proving that G J S for some sentence

S, is to show that if Ÿi gi is true then S is true whatever model of G we choose. That

is we must show that

(Ÿi gi  f  S) (1)

is valid.

We can think of this as working by saying that the 'if Ÿi gi...' picks out all the

models from all the interpretations of its language and then passes these on to the

'...then S'.

Because of the definition of implication, if a given interpretation is not a

model of Ÿi gi then this will be false and so the whole of (1) is true; and if the given

interpretation of Ÿi gi is a model then the truth of (1) depends on the truth of S. Thus

(1) expresses the statement that S is a theorem of the theory generated by G, i.e. G J S.



72 SEMANTIC TABLEAUX

As it happens (1) does not express this in quite the way that we wish.

However, consider the following argument. If (Ÿi gi f  S) is valid then for each

interpretation in its language

1) if Ÿi gi is true then S must be true (by the definition of implication) so (Ÿi

gi Ÿ ¬S) must be false for every such interpretation

2) if Ÿi gi is false then the value of S, true or false, has no effect and (Ÿi gi Ÿ

¬S) is false for every such interpretation

3) for each interpretation only 1 or 2 holds, since Ÿi g i can only be true or

false, thus (Ÿi gi Ÿ ¬S) is unsatisfiable.

This final sentence is the form that is most suitable for our purpose. S is a

theorem of the theory generated by G if and only if (Ÿi gi Ÿ ¬S) is unsatisfiable.

This argument forms the basis of the method of semantic tableaux. Given that

we are required to prove G J S then we must attempt to show that (Ÿ i gi Ÿ ¬S) is

unsatisfiable. The basic idea is to allow this sentence to be elaborated in every

possible way that expresses its satisfiability. If we find that no such way exists then

we conclude that it is unsatisfiable, i.e. there is no assignment which will allow it to

be true. Then we know that G J S from the preceding argument.

Of course, this is just another way of saying that G J S iff G » {¬S} J , which

we have seen before in chapter two.

4.2. Semantic Tableaux for Propositional Calculus

In this section we will be dealing only with a propositional language. As we

saw in chapter two for such a language the notion of interpretation becomes trivial. It

is simply a mapping from propositional letters to the truth-values t and f, i.e. it is what

we called a valuation before.

Given a set of sentences of the form G » {¬S} we want to show that no model

for it exists,  i.e. no valuation satisfies it. We say that the semantic tableau method is a

'proof by refutation' method. We want to refute the existence of a model of G » {¬S}.

We display the evolution of the refutation in the form of a binary tree. We use

the terms root , leaf and path with their usual meanings.



73

Definition 4.1

We have that a  binary  tree is given by a pair B  = <s,N> where s  is a

successor function and N is a set of  nodes. Given an n Œ N, s(n) Õ N is the

successor  set of N, i.e. the set of nodes which come 'below' n in the tree.

Since B is binary s(n), for any n, has at most two members. Since B is a tree

any node appears in at most one successor set. The root node of B  is the

unique node which is in the successor set of no node. A leaf is a node which

has an empty successor set. A  path is a sequence of nodes < ni >{i≥0} such

that ni+1 Œ s(ni), i ≥ 0.

 We also have a labeling function which maps nodes to their labels, which will

be sentences. Consider the set of sentences shown in figure 4.1. Here we have a tree

with the node set {n0, n1 , n2} and s(n0) = {n1}, s(n1) = {n2} and s(n2) = {}. The

labeling function l is given by l(n0) = A f B, l(n1) = B f C and l(n2) = ¬(A f C).

Note here that our set of propositional letters has {A, B, C} as a sub-set.

Sentences listed vertically beneath one another are, by definition, understood

to be conjugated together.

 It is easily seen that G J S so how do we use the tableau method to prove it?

Well, we must show that the above set is unsatisfiable. i.e. that it has no model.

Definition 4.2

The sentences in G » {¬S} are the initial sentences of the tableau. G J S is the

entailment represented by the initial sentences given by G » {¬S}.

!



74 SEMANTIC TABLEAUX

Referring to figure 4.1, we take sentence (1) first. According to what we

said before, the sentence must be allowed to express its validity in every

possible way. We can see the possible ways that (1) can be valid by looking at the

truth-table for the connective f

f t f

t t f

f t t

If we take the cases where the antecedent A is false together with those where

the consequent B is true then we have the cases which are exactly those which make

A f B true. The fact that there is some redundancy here is not important. All that we

require is that the tableau expresses all the possible ways that A f B can be true.

Referring now to figure 4.2, the the fork in the tableau denotes a disjunction

between A and B. A f B is true iff A is false or B is true (or both).

The tableau is now as shown in figure 4.3 and we mark sentence (1) with a √

to show that all its cases have been covered already. We use the same argument with

sentence (2) to get the tableau shown in figure 4.4.

Note that the path with + at its leaf contains the sentences A f  B, B f  C,

¬(A f C), B and ¬B. The last two form a contradiction so we close the path, i.e. we

mark it with + to show that it should take no further part in the refutation. There is no

possible interpretation that could allow this path to be satisfiable.

Definition 4.3

We say that a path is closed iff it contains a sentence and its negation. A

tableau is closed iff all its paths are closed.

!



75

We have now

to deal with sentence (3). For ¬(A f  C) to be true A f  C must be false and by

referring to the above truth-table (with B as C) we see that to make this so

!

!



76 SEMANTIC TABLEAUX

A must be true and B false so we add a new path to the still open paths of the

tableau to get the tableau in figure 4.5, so the whole tableau is now closed.

We can now say that our initial entailment G J S is valid. This is because the

methods used to expand the sentences covered all the possible ways in which each

could be true. However, we have seen that every path is unsatisfiable so there is no

way for all the initial sentences to be true, i.e. they form an unsatisfiable set. So no

model exists for G U {¬S}.

If we use this method on an entailment G J S which is not valid then we will

reach a stage when no more sentences can be expanded but the tableau is unclosed. In

this case each unclosed path forms a model which satisfies G U {¬S} since, by the

method of construction, we have that the sentences on an open path form a satisfiable

set of sentences. Hence, there is a valuation under which all the sentences on an open



77

path are true. It follows that, since the initial sentences are on every path, there is

some valuation under which they are all true. The simplest such valuation is one

where each sentence that appears negated has the value f and any others, i.e. the un-

negated ones, have value t. For example the initial tableau in figure 4.6 produced the

completed tableau in figure 4.7, which says that a valuation v such that v(A) = f and

v(B) =  t  satisfies the initial sentences, as you can easily check.

So, G U {¬S} is satisfiable so G J S is an invalid entailment, i.e. {A f B, ¬A}

does not imply ¬B.

You should compare this with the truth-table that we would get for this

entailment:

A f B    √

Figure 4.7



78 SEMANTIC TABLEAUX

A B ¬A ¬B A f B

t t f f t

t f f t f

f t t f t

f f t t t

and here we can see that in the third line we have the premises true while the

conclusion is false. That is, the entailment is invalid, since the conclusion is not true

everywhere that the premises are, and on this line we see that A has value f and B has

value t, just as with the tableau above.

The method given here can be extended to handle the other connectives and

the relevant direct extensions are shown in figure 4.8. We call these the (schemas for)

splitting rules (for connectives) of the tableau method. They may be verified as for f

by comparing with the usual truth tables for the connectives.



79

As a final example we give a proof of

(A Ÿ B) f C, ¬A f D J B f (C ⁄ D) the tableau for which is given in figure

4.9.



80 SEMANTIC TABLEAUX

Exercise 4.1

Use truth-tables and tableaux to decide on the status of the following

entailments:

(a)  J A j (A Ÿ B)

(b)  J (A ⁄ B) j (B ⁄ A)

(c)  A j B, A ⁄ B J A Ÿ B

(d)  A J A ⁄ B

(e)  A, B J A Ÿ B

(f)  A Ÿ B J A

(g) A ⁄ B, A ⁄ (B Ÿ C) J A Ÿ C

4.3. Soundness and Completeness for Propositional
Calculus

We can now do a soundness and completeness proof for semantic tableaux.

That is, we can prove, as we did for the formal system for propositional calculus in

chapter two, that a sentence is provable by tableaux iff it is a tautology.

Definition 4.6

A sentence S of the form A Ÿ B, ¬(A ⁄ B) or ¬(A f  B) will be called a

sentence of type a.. If S is of the form A Ÿ B then a1 denotes A and a2

denotes B. If S is of the form ¬(A ⁄ B) then a1 denotes ¬A and a2 denotes

¬B. If S is of the form ¬(A f B) then a1 denotes A and a2 denotes ¬B.

A sentence S of the form A ⁄ B, ¬(A  Ÿ  B), A j  B, A f B or ¬(A j B)

will be called a sentence of type b. If S is of the form A ⁄ B then b1 denotes A

and b2 denotes B. If S is of the form ¬(A Ÿ B) then b1 denotes ¬A and b2

denotes ¬B. If S is of the form A f B then b1 denotes ¬A and b2 denotes B.

If S is of the form A j B then b1 denotes A Ÿ B and b2 denotes ¬A Ÿ ¬B. If

S is of the form ¬(A j B) then b1 denotes ¬A Ÿ B and b2 denotes A Ÿ ¬B.



81

Lemma

For any valuation v the following hold, by the usual definition of the

connectives :

C1: a sentence of the form a is true iff both a1 and a2 are true.

C2: a sentence of the form b is true iff b1 or b2 is true.

Definition 4.7

A path p in a tableau T is true under a valuation v iff all the sentences on p are

true under v. T is true iff at least one of its paths is true.

Definition 4.8

A tableau T2 is a direct extension of a tableau T1 if it can be obtained from T1

by application of one of the following rules, where pl is a path in T1:

D1) if some a occurs on path pl with leaf l, then join a1 to l and a2 to a1 to

get T2.

D2) if some b occurs on path pl with leaf l then add b1 as the left successor of

l and b2 as the right successor of l to get T2.

Lemma

For any satisfiable set G of sentences the following hold:

(i) S1: if a Œ G then G U {a1, a2} is satisfiable.

S2: if b Œ G then G U {b1} or G U {b2} is satisfiable.

(ii) If a tableau T2  is a direct extension of a tableau T1 which is true under v

then T2  is true under v.

Proof

(i) S1 and S2 follow from C1 and C2.

(ii) If T1 is true under v then it contains at least one true path, say p, on which

the set of sentences G appears, all members of which are true under v. T2  is a direct

extension of T1, so it was obtained by one of the steps D1 or  D2  above applied to a

path p' of T1. If p' is different from p then p is still a path of T2 and hence T2 is true

under v.

If p' is the same as p then we have two cases which are proved by use of S1

and S2.



82 SEMANTIC TABLEAUX

For instance, if p was extended by D1 then some a appeared on p so by S1 the

sentences in G  U {a1, a2} are true under v and appear on p', so p' is true too. The

proof of the other case is similar.

Corollary

If the initial sentences of a tableau T generated by D1 and D2 are satisfied

then T must be true.

Definition 4.9

 G J S is provable iff there is a tableau with initial sentences G U {¬S} which

has an extension which is closed.

Soundness Theorem

Any entailment provable by a tableau must be valid.

Proof

A closed tableau cannot be true under any valuation. Hence, by the corollary,

the initial sentences cannot be satisfiable. Thus, the entailment represented by the

initial sentences is valid.

Definition 4.10

G is a model set in the following cases:

H0: No proposition symbol and its negation are both in G

H1: if a Œ G, then a1, a2 Œ G

H2: if b Œ G, then b1 Œ G or b2 Œ G or both

Lemma

If G is a model set then G is satisfiable.

Proof

We prove this by constructing a model for G . Let v be a valuation of the

sentences in G. Let p be a propositional letter that occurs in at least one element of G.

Then if p  Œ  G  we put v(p) = t, if ¬p  Œ  G  then v(p) = f and if neither then we

arbitrarily give v(p) the value t.

Now, take an arbitrary element X of G. Let X have n>0 connective symbols in

it. Suppose that all elements of G with m<n connectives in them are true under v.



83

Then X is true under v also. We show this by induction. If X is an a then a1 and a2

must also be in G, by H1. a1 and a2 both contain less than n connectives and so are

true. Thus, X is true. The case for X being a b is similar.

It is clear, then, that we have constructed a model for G, so G is satisfiable.

Definition 4.11

A path p in a tableau is complete iff

i) for every a on p, both a1 and a2 are on p

ii) for every b on p, at least one of b1 or b2 is on p.

Definition 4.12

A tableau is completed iff every path is either closed or complete.

We can describe one particular way of repeatedly directly extending a tableau

so as to give a sound and complete proof method as follows:

begin

    repeat

        changes:=false

   close each path that contains a sentence and

its negation

        if all paths are closed

   then deliver "correct entailment"

   else

       changes:=true

  apply the appropriate rule

  mark the sentence as used

    until not changes

    deliver "incorrect entailment"

end

This algorithm can be seen to achieve the required soundness and

completeness conditions by noticing that at the beginning of each time around the

loop the tableau is open and 'changes' is true. At the end of the loop either (i) all the

paths are closed and we deliver "correct entailment" or (ii) a splitting rule has been



84 SEMANTIC TABLEAUX

applied (and at least one path is open) or (iii) no splitting rule is applicable (and at

least one path is open).

In case (i) we are obviously finished since the tableau is closed and by the

soundness theorem the entailment must be valid. In case (ii) we added a finite number

of sentences to the tableau, each of which had one less connective than the split

sentence that produced them. In case (iii) we have again finished, but this time by the

completeness theorem we do not have a valid entailment.

Thus, we only re-enter the loop in case (ii). Clearly, the number of

occurrences of connectives in unmarked sentences is strictly decreasing so we will

eventually reach a stage where no connectives appear in unmarked sentences, thus the

algorithm always terminates. We expected this since the propositional calculus is

decidable.

Notice that this is only one possible algorithm since the theory does not

specify an order for direct extensions, so we can change the algorithm by imposing

different orders on the selection of sentences to be split. Decisions about which

ordering, if any, to impose on the use of rules will be guided by how efficient we

want the procedure to be. That is, how much work it takes to actually decide on the

status of given sentence. In general we can show that any procedure will be very

inefficient on many sentences and the development of more or less efficient

procedures for deciding logical status comes under the remit of people doing research

in automated reasoning. We will not go into these matters further here, but suffice to

say that there is a huge body of research on this topic which is still growing very

rapidly.

The algorithm above was written in a sort of procedural English, and is

sometimes called pseudo-code. This is done to suggest the how such an algorithm

might be written in your favoured programming language. Below we give SML and

Prolog versions of, essentially, this algorithm so that you can compare how these

languages would go about implementing it.

The first language we use is SML. The following first collection of functions

carries out the operations on sentences that are needed. In particular, apply_rule

takes a sentence and returns its sub-sentences as used by the connective rules:

fun Neg (Not(sent)) = sent
  | Neg sent = Not(sent);

fun alpha(And(s,t)) = true
  | alpha(Not(Imp(s,t))) =true
  | alpha(Not(Or(s,t))) = true
  | alpha(s) = false;



85

fun composite(Var s) = false
  | composite(Not(Var s))= false
  | composite(s) = true;

fun apply_rule (Imp(s,t)) = (Neg(s),t)
  | apply_rule (Eq(s,t)) = (And(s,t),And(Neg(s),Neg(t)))
  | apply_rule(And(s,t)) = (s,t)
  | apply_rule(Or(s,t)) = (s,t)
  | apply_rule(Not(Imp(s,t))) = (s,Neg(t))
  | apply_rule(Not(Eq(s,t))) = (And(Neg(s),t),And(s,Neg(t)))
  | apply_rule(Not(And(s,t))) = (Neg(s),Neg(t))
  | apply_rule(Not(Or(s,t)))= (Neg(s),Neg(t));

Now we need to introduce a type that will model the tableau. We define three

kinds of node: a Leaf; a Onenode, i.e. a node with one successor; a Twonode, i.e.

a node with two successors. Then, as we will see later on, we can use these three

kinds of node to describe what action to do on any tableau. Each node, of whichever

kind, also contains information to say whether it has been Closed or Used:

type nodeinfo = {Closed : bool, Used : bool};

datatype Tableau = Leaf of (SENT * nodeinfo) |

Onenode of (SENT * nodeinfo * Tableau) |

Twonode of (SENT * nodeinfo * Tableau * Tableau);

These next functions do the building up of the tableau; initinfo builds the

first part of the tableau from the initial sentences:

val initinfo = {Closed=false,Used=false};

fun initialize (nil,goal)  =   Leaf(Neg(goal),initinfo)
  | initialize (premise::nil,Null) =Leaf(premise,initinfo)
  | initialize (premise :: rest,goal)  =

Onenode(premise,initinfo,initialize (rest,goal));

val useup = {Closed=false,Used=true};
val useable = (fn a => fn b:nodeinfo =>

not(#Used(b)) andalso composite(a));

fun extend(Leaf(S,N),sent)=
if not(#Closed(N))
then let val (f,s) = apply_rule(sent) in

if alpha(sent)
then Onenode(S,N,

Onenode(f,initinfo,
Leaf(s,initinfo)))

else Twonode(S,N,
next(Leaf(f,initinfo)),
next(Leaf(s,initinfo)))



86 SEMANTIC TABLEAUX

 end
else (Leaf(S,N))

 | extend(Onenode(S,N,T),sent) =
if not (#Closed(N))
then Onenode(S,N,extend(T,sent))
else Onenode(S,N,T)

 | extend(Twonode(S,N,T1,T2),sent) =
if not (#Closed(N))
then Twonode(S,N,

extend(T1,sent),extend(T2,sent))
else Twonode(S,N,T1,T2)

and next(Leaf(S,N)) =
if (useable S N)
then extend(Leaf(S,useup),S)
else (Leaf(S,N))

| next(Onenode(S,N,T)) = 
if (useable S N)
then extend(Onenode(S,useup,T),S)
else (Onenode(S,N,next T))

| next(Twonode(S,N,T1,T2))=
if (useable S N)
then extend(Twonode(S,useup,T1,T2),S)
else (Twonode(S,N,next T1,next T2));

The next functions are used to see whether or not the tableau is closed:

val closeit =

fn N:nodeinfo => {Closed=true,Used=#Used(N)};

fun  cleaves(Leaf(S,N))= Leaf(S,closeit N)

   | cleaves(Onenode(S,N,T))= Onenode(S,closeit N,cleaves(T))

   | cleaves(Twonode(S,N,T1,T2))=

Twonode(S,closeit N,cleaves(T1),cleaves(T2));

fun close'(S,Leaf(S',N))= if S=S'

then cleaves(Leaf(S',N))

else Leaf(S',N)

  | close'(S,Onenode(S',N,T))=

if S=S'

then cleaves(Onenode(S',N,T))

else Onenode(S',N,close'(S,T))

  | close'(S,Twonode(S',N,T1,T2))=

if S=S'

then cleaves(Twonode(S,N,T1,T2))

         else Twonode(S',N,

close'(S,T1),close'(S,T2));



87

fun Close (Leaf(S,N)) = close'(Neg(S),Leaf(S,N))

  | Close(Onenode(S,N,T)) = Onenode(S,N,close'(Neg(S),Close(T)))

  | Close(Twonode(S,N,T1,T2))=

Twonode(S,N,close'(Neg(S),Close(T1)),

close'(Neg(S),Close(T2)));

fun closed (Leaf(S,N)) = #Closed(N)

  | closed (Onenode(S,N,T)) = #Closed(N) orelse closed T

  | closed (Twonode(S,N,T1,T2)) = #Closed(N)  orelse

((closed T1) andalso

(closed T2));

Finally, we can write a function for the main algorithm. Note that here instead

of using a value "changes" as we did in the psuedo-code above here we test for any

changes by seeing whether or not the tableau is unchanged by comparing it with the

result of applying another round of direct extensions, via next, to itself. This is, of

course, very inefficient. However, what we have been trying to do here is to present

the clearest SML version of something close to the algorithm above. There are more

efficient versions given in appendix 2. The reader will see that, as so often, we trade

simplicity of algorithm for efficiency of computation.

fun make_tableau T  = let val T' = next T in

if T' = T

then T

else make_tableau(Close T')

end;

infix entails;

fun asslist entails goal =

let val start_tableau = initialize(asslist,goal) in

if initalclosed start_tableau

then output std_out “\ncorrect\n”

else

let val final_tableau =

make_tableau(start_tableau) in



88 SEMANTIC TABLEAUX

if closed(final_tableau)

then output std_out "\ncorrect\n"

 else output std_out "\nincorrect\n"

end

end;

Next, we give the Prolog program for the same algorithm.

:-op(500,xfx,  [:]).
:-op(510, fy,  [~]).
:-op(520,xfy, [/\]).
:-op(530,xfy, [\/]).
:-op(540,xfy, [->]).
:-op(550,xfx,  [?]).

Assumptions?Goal:-set_up(Assumptions,Goal,[],open,Start_tree,R),!,
     ((R=clsd,!,write('valid'));(maketab(Start_tree,[],Final_tree),
     ((closed(Final_tree),!,write('valid'));write('not valid')))).

set_up([],G,B,X,tr(NotG:U,Y),R):- literal(~G,NotG:U),
              (((X=clsd;closes(NotG,B)),Y=clsd);Y=open),R=Y.
set_up([H|S],G,B,X,tr(A:U,[T]),R):-literal(H,A:U),
    (((X=clsd;closes(A,B)),Y=clsd);Y=open),set_up(S,G,[A|B],Y,T,R).

maketab(tr(X,clsd),_,tr(X,clsd)).
maketab(tr(F:Used,open),B,tr(F:yes,T)):-
           (Used=yes,T=open);(Used=no,apply_rule(F,[F|B],T)).
maketab(tr(F:Used,[T]),B,tr(F:yes,[NewT])):-
   (Used= no,extend(T,B,F,Ta),maketab(Ta,[F|B],NewT));
   (Used=yes,                 maketab(T ,[F|B],NewT)).
maketab(tr(F:Used,[L,R]),B,tr(F:yes,[NewL,NewR])):-
   (Used= no,extend(L,B,F,La),extend(R,B,F,Ra),
             maketab(La,[F|B],NewL),maketab(Ra,[F|B],NewR));
   (Used=yes,maketab(L ,[F|B],NewL),maketab(R ,[F|B],NewR)).

extend(tr(F:U,clsd),_,_,tr(F:U,clsd)).
extend(tr(F:U,open),B,X,tr(F:U,T)):-apply_rule(X,[F|B],T).
extend(tr(F:U,[T]),B,X,tr(F:U,[NewT])):- extend(T,[F|B],X,NewT).
extend(tr(F:U,[L,R]),B,X,tr(F:U,[NewL,NewR])):-
extend(L,[F|B],X,NewL),
extend(R,[F|B],X,NewR).

apply_rule(  A/\B ,Branch,Newtree):- alpha(  A, B,Branch,Newtree).
apply_rule(  A\/B ,Branch,Newtree):-  beta(  A, B,Branch,Newtree).
apply_rule(  A->B ,Branch,Newtree):-  beta( ~A, B,Branch,Newtree).
apply_rule(~(A/\B),Branch,Newtree):-  beta( ~A,~B,Branch,Newtree).
apply_rule(~(A\/B),Branch,Newtree):- alpha( ~A,~B,Branch,Newtree).
apply_rule(~(A->B),Branch,Newtree):- alpha(  A,~B,Branch,Newtree).

alpha(U,V,B,[tr(X:G,[tr(Y:H,T)])]):-literal(U,X:G),literal(V,Y:H),
             (((closes(X,B),!;closes(Y,[X|B])),!,T=clsd);T=open).

beta(U,V,B,[tr(X:G,L),tr(Y:H,R)]):-literal(U,X:G),literal(V,Y:H),
    ((closes(X,B),!,L=clsd);L=open),((closes(Y,B),!,R=clsd);R=open).



89

literal(X,Y:U):-   
dblneg(X,Y),(((atomic(Y);(Y=~Z,atomic(Z))),U=yes);U=no).

dblneg(X,Y):-(X= ~(~Z),!,dblneg(Z,Y));Y=X.

closes(F,[H|T]):- F= ~H,!; ~F=H,!;closes(F,T).

closed(tr(_:_,T)):-
T=clsd;(T=[X],closed(X));(T=[L,R],closed(L),closed(R)).

Completeness Theorem

If G J S is valid then it is provable.

Proof

Assume that G J S is valid. Then G U {¬S} is unsatisfiable. Let C(G,S) be a

tableau produced by the algorithm above with initial sentences G U {¬S}. If some

path p of C(G,S) is unclosed then, since it is complete, the sentences on p form a

model set and thus are satisfiable.

Hence G U {¬S} is satisfiable, so it is not the case that G J S. Thus, no path of

C(G,S) can be unclosed. Thus G J S is provable.

Since if every path of C(G,S) above must close then every path must be of

finite length and C(G ,S) is finitary, it follows that it will close after some finite

number of steps. Thus we have

Corollary

If G J S is valid then it is provable in a finite number of steps.

From the above it is clear that we have

Correctness Theorem

The algorithm started with initial sentences G  U  {¬S} will terminate with

"entailment is valid (invalid)" iff G J S (not G J S).

4.4. Semantic Tableaux for Predicate Calculus

We now turn to the more complex problem of applying semantic tableaux to

predicate calculus. Essentially we use exactly the same ideas that we used for

propositional logic with two main extensions to deal with quantifiers.

Consider the sentence



90 SEMANTIC TABLEAUX

$x(A(x) ⁄  B(x)) f  ($xA(x) ⁄  $xB(x))

which is valid as it stands, i.e.

 J  $x(A(x) ⁄ B(x)) f ($xA(x) ⁄  $xB(x))

We go about proving this by first negating it. The rule we need to apply first,

since we have negated and inside the negation f is the dominant connective, is the

¬-f  rule.

Having applied it the tableau is as in figure 4.10. Now apply ¬-⁄  to (2) to get

figure 4.11.

The next stage is to move the negations of (4) and (5) inwards. We do this by

using the equivalences

¬ $xA  j  "x¬A

¬"xA  j   $x¬A



91

which means that we add the fragment

to the tableau.

Now we are in the position of having no more rules to apply since the

connective in (3) is not dominant. This is where we need some rules for dealing with

" and  $.

Remember that we are aiming to display a tableau in which every possible

interpretation is given to any  sentence appearing in it. Thus, when we meet a

sentence saying 'there exists something such that...' it needs a name to form an

!



92 SEMANTIC TABLEAUX

instance. However, it says that this something denotes an object with specific

attributes i.e. in this case, A is true of it or B is true of it or both, thus, to preclude

imposing these attributes on an object already mentioned, as will be the case in

general, and of which they may not be true, we use an as yet unused name. Let us

choose 'b'. Thus we now add

(A(b)  ⁄  B(b))

as sentence 8 to the tableau. Since the sentence only demanded one such name we can

mark it as used since it has been displayed according to our goal and that is all that is

required.

Now we have (6) and (7) which say 'for all things...'. We must take every

name which has so far appeared on the path, i.e. all objects that we know, so far,

appear in the universe of the model that is being constructed, which includes the

sentence with which we are dealing, and place an instance of the sentence, for each

name, on the path. This ensures that the given sentence has been interpreted in every

way possible in the model as so far constructed. And this brings out an important

point. At some future stage some new names may be added to the possible universe

which we are  gradually constructing.

 Therefore, to keep to the goal of allowing every possible interpretation of

every sentence we must allow the possibility of different instances of the sentence

being needed in the future. Thus we do not mark this sentence as having been used so

that it may be taken into account in later stages. So we apply the "-rule to (6) and (7)

with the name 'b'. Then we can apply the ⁄ -rule to (8) to get the tableau so far as in

figure 4.12. We note that the paths both contain contradictions. So we can say that

given the chance at each stage to produce a model we have failed. There is no model

for our original negated sentence so $x(A(x) ⁄ B(x)) j ($xA(x) ⁄  $xB(x)) is valid.

4.5. Soundness and Completeness for Predicate
Calculus

We now collect together the rules we need and finally produce a simple

algorithm for generating complete tableaux whenever possible in the predicate logic

case.



93

Definition 4.13

The universal rule is:

Given a sentence of the form "xS with x free in S on an open path which

contains names n0,...,nm-1 Œ N, add each of the sentences S[ni/x] to the end of

the path iff S[ni/x]  does not appear already on the path, where 0≤i≤m-1. Note

for future use that the tableau has changed.

We note here that there may not be any names on the path when this rule is

applied. In this case, since we are dealing with a non-empty universe, we take any

name and apply the rule using this name. We shall usually take 'a' to be this first

name.

Definition 4.14

The existential rule is:

Given a sentence of the form  $ xS with x free in S on an open path which

contains names n0,...,nm-1 Œ  N , mark the sentence as used and add the

sentence S[nm/x] where nm Œ  N  \ {n0,...,nm-1 }. Note for future use that the

tableau has changed.

Consider the sentence

 $y"xP(x,y)           (1)

This is not valid. Almost any interpretation you are likely to think up will show this.

For example U = natural numbers, F(P) = less-than. Then the sentence says 'there is a

largest natural number'.

Now consider the following. Since sentences of the form "xS are never

marked we can always apply them to new names and a new name is always produced

by an application of  $xS so a sentence like (1) will produce an infinite tableau which

starts as in figure 4.13 and will go on and on growing. In this case after any finite

time the tableau is not closed and we still have some sentences to apply, thus we

continue. So, in our search for a counter-model it seems that we might, in some cases,

never reach a conclusion since the process of building the tableau will never stop.



94 SEMANTIC TABLEAUX

There are two points to make here. First, notice that by stepping outside of the

algorithmic framework we were able to see that the sentence is in fact not valid. Thus,

it is clear that algorithmic methods certainly are not the last word - which is

comforting for humans (but not for expert systems salespeople). Secondly, this

limitation is not specific to our method here.

Contrast this result with the propositional case where the tableau for any

initial sentences always stops extending. This means that the question "does G entail

S?" can always be answered either "yes" or "no". We say that the validity question in

propositional logic is decidable. It seems, however, that in the predicate calculus case

we cannot hope for such a state of affairs.

But things are not as bad as they might seem. It is a central theorem of this

subject that if a sentence is valid then there are methods for finding this out. In fact,

the method of semantic tableaux is one such. We say that the validity question in

predicate logic is semi-decidable. The following informal argument should help to

justify this.



95

We can extend the algorithm in the section above to get:

begin

    repeat

        changes:=false

close each path that contains a sentence

 and its negation

        if all paths are closed

   then deliver "correct entailment"

   else

       if a connective rule can be applied

    then

        changes:=true

apply the appropriate rule

        mark the sentence as used

    else

        apply the existential rule

       apply the universal rule

    until not changes

    deliver "incorrect entailment"

end

We can argue for the correctness of this algorithm in the same way as for the

propositional case though with one big difference. Because a direct extension by the

universal rule does not exhaust the sentence it is applied to, i.e. the sentence is not

marked, we may never actually get a completed tableau in some cases. However,

since any given universal sentence will always be dealt with after some finite time

(since the preceding part of the algorithm deals only with the connectives, and they

are always dealt with in a finite time) it is clear that any tableau makes progress

towards being completed. So, even if some path is never closed it must come nearer

and nearer to forming a model set. ((Smullyan, 1968) and (Jeffreys, 1967) give other

examples of how to organize the rules so that they always lead to a model set if one is

possible.)

From this discussion we can show a Soundness Theorem and a Completeness

Theorem as before in the propositional case, though we will not give them here since



96 SEMANTIC TABLEAUX

we are more interested in the computation side of the problem. However, see

(Smullyan, 1968), for instance, for details.

Correctness Theorem

The algorithm started with initial sentences G  U  {¬S} will terminate with

"entailment is valid" iff G J S. If the algorithm terminates with "entailment is invalid"

then not G J S. But, it may not terminate if not G J S.

What we are trying to do here is to establish theoremhood within a theory

(which is a semantic notion, i.e. by choosing the 'right' substitution we are trying to

decide on an assignment of elements of the universe to the variables like x and s

which makes the sentences true, i.e. satisfied in the model) by purely syntactic means.

Of course, this has been done rather informally above, i.e. we have resorted rather a

lot to woolly justification, but the aim of this chapter is to introduce a completely

formal procedure which will decide theoremhood in a given theory.

Even though we have succeeded in this task, we should also point out that

following the algorithm, while guaranteed to lead to the correct answer (if there is

one) is not always the best strategy if you want a short refutation. As you will find if

you try the exercises below, following the algorithm will lead to a far longer proof

that will the strategy of looking at each stage of the development of the tableau and

using your intelligence to plan how to proceed, keeping in mind that you want as

short a refutation as possible. Another feature of this strategy, the first being that it

requires intelligence and some idea of what a 'good' plan is, is that it gets better with

practice, i.e. you also need to learn about what you are doing to be effective.

Now, our algorithm has none of these features and so we should expect it to

be fairly ineffective for most of the time. However, since no one has yet succeeded in

developing an algorithm which will learn in such a complex domain and which

displays the sort of behaviour that we would call intelligent, we are left with largely

ineffective algorithms. However, work in this area is developing new and (usually

slightly) improved algorithms continuously. The most obvious strategy that we would

like to add to our algorithm would give us some guidance as to which names to

instantiate in universally quantified sentences in the universal rule. That is, instead of

instantiating with every name, as we do here, is there a way of being sure of picking

all and only those names needed to still give a sound and complete algorithm? The

answer to this question is complicated and fairly subtle, so we will not go further into



97

it here. Also, later in the book, in the logic programming chapter, we will address

essentially the same problem in a different setting.

Since in a given model the predicates and functions already have denotations

the problem comes down to deciding on some assignment for the variables that

appear in the sentence (as we did above) so that the sentence as a whole is true.

In  appendix 2 we give SML and Prolog programs which extend the ones

given earlier in this chapter and that implement the algorithm for the predicate case.

Exercise 4.2

a) Use tableaux to decide on the status of the following entailments:

(i) "y(H(y) f A(y)) J  "x($y(H(y) Ÿ T(x,y)) f $y(A(y) Ÿ T(x,y)))

(ii) J "x(P(x) f "xP(x))

(iii) J $x(P(x) f "xP(x))

(iv) J $x"y(S(x,y) j ¬S(y,y))

b) How would you express a)(iv) in English if S was the predicate "x shaves

y"?

c) Express

"There is a man in town who shaves all the men in town who do not shave

themselves" entails "Some man in town shaves himself"

as an entailment using predicate calculus. Then, use the tableau method to

decide its status.

Summary

 •  Semantic tableaux provide another method of determining validity and

consistency in predicate calculus. Tableaux are more concise and can be constructed

more mechanically than proofs in axiom systems and, even for propositional logic,



98 SEMANTIC TABLEAUX

tableaux are much more efficient than truth-tables while giving exactly the same

information.

 •  A tableau proof of G  J S starts with the set of sentences G U {¬S}. The

tableau itself is a binary tree constructed from this initial set of sentences by using

rules for each of the logical connectives and quantifiers that specify how the tree

branches. If the tableau closes then the initial set of sentences is unsatisfiable and the

entailment G U S holds. A tableau closes if every branch closes. A branch closes if it

contains F and ¬F for some sentence F.

 •   If a tableau does not close, and yet is complete because none of the rules

can be applied to extend it, then the initial sentences are satisfiable and the unclosed

branches give a model for them. In this case G J S  does not hold. So a tableau proof

is a proof by refutation; the existence of a model for G U {¬S} is refuted.

 • For the propositional calculus semantic tableaux give a decision procedure

(just as truth-tables do). For predicate calculus the rule for universal sentences,

sentences of the form "xF, can be applied repeatedly. Methods of applying the rules

can be given that are guaranteed to terminate with a closed tableau if and only if the

initial set of sentences is unsatisfiable (i.e. the tableau method is sound and complete).

However if the initial set is satisfiable (the corresponding entailment is not valid) the

method may never terminate. It can be shown that no method could terminate with the

correct answer  for all cases of invalidity. Predicate calculus is semi-decidable.



99

CHAPTER FIVE

Natural Deduction

5.1. Rules and Proofs

Both of the methods given in previous chapters for constructing proofs have

their disadvantages. Axiom systems are difficult to construct proofs in; their main

uses are metalogical, the small number of rules making it easier to prove results about

logic.

The tableau method on the other hand is easy to use mechanically but, because

of the form of the connective rules and the fact that a tableau starts from the negation

of the formula to be proved, the proofs that result are not a natural sequence of easily

justifiable steps. Likewise, very few proofs in mathematics are from axiom systems

directly. Mathematicians in practice usually reason in a more flexible way.

5.1.1. Natural Deduction rules

Suppose that, on the assumption that some statement P is true, Q can be

shown to hold, possibly via some intervening proof steps. Since, given P, Q holds we

can conclude (using the truth table for f ) that P f Q holds (given nothing). We can

represent this sort of reasoning with a diagram

P Æ Q

Q

P

.

.



100        NATURAL DEDUCTION

where P is crossed through to remind us that, once P f Q has been derived, P need

no longer be considered an assumption, P f Q is true outright. We say that the

original assumption P has been discharged in the process of going from Q to P f Q.

What we have, in effect, is a method for introducing f , generating a new

formula with f as the principal connective. Similar introduction rules can be given

for the other connectives and rules also for eliminating them. A set of rules that is

adequate for deriving all theorems in predicate logic is given in figure 5.1. The rules

for ŸI, ŸE and ⁄I are straightforward, while f  E is Modus Ponens, however ⁄E

requires some explanation. The rule is essentially that of analysis by cases, familiar

from mathematics. Suppose we want to show that some theorem is true for all

integers. One method of proceeding, for example if the theorem has something to do

with division by two, would be to show that, if n is an even integer, the theorem

holds, and then show that for n odd the theorem also holds. Since integers must be

either odd or even the theorem therefore holds for all integers.

The truth of the conclusion does not depend on whether n is odd or even (even

though the form of the proof perhaps does) so we are justified in discharging the

assumptions we made to get the proof.

In a similar way the rule C expresses another frequently used pattern of

reasoning, commonly known as reductio ad absurdum or proof by contradiction.

Given a result to be proved we assume that the result is not true and then show that

falsity follows. Either the result is true or it is not, the assumption that it is not true

leads to a contradiction so the result must be true. Note that the validity of this

argument depends on accepting that the result is either true or not true and so one

could argue that the rule is really a special case of ⁄E applied to P⁄¬P. This makes

the point that the set of rules we have given is not the only satisfactory set that could

be given. We could have taken  P⁄¬P as fundamental and got the effect of the rule C

from this and ⁄E. The important thing about a set of rules is that it should be sound

and complete. Sound because, by using the rules, you cannot do other than derive

valid conclusions, complete because, if you are clever enough to see how, you can

derive any valid conclusion. The set of rules that we give is both sound and complete,

although we cannot give the rather technical proof of this here. For aesthetic reasons

we also like our rules to be minimal, in the sense that if we left out any rule the set

would no longer be complete. We carry the tools for the job, but we carry no more

than strictly necessary. Naturally this places a burden on our ingenuity and as we gain

experience of using the rules we add to our stock of tools in the form of lemmas



101

which, just as in mathematics, are small but useful results that we often find ourselves

using. However, further discussion of strategy and technique must come later. For the

moment we continue our discussion of the rules.

Natural Deduction Rules for Classical Predicate Logic

S Ÿ T

S T
ŸI

S f T

S ⁄ T

S

S

T

T

⁄I

fI

S Ÿ T

S

S Ÿ T

T

S ⁄ T
⁄I

ŸEŸ E

S ⁄ T

S T

R R

R
⁄E

S f T

T

S ^
^

S

¬ S

^

SC

provided that a does not occur in S(x) or

any premise on which S(a) may depend

$ xS(x)

S (a)

T

T
$E

provided that a does not occur in S(x) or T or

any assumption other than S(a) on which the

derivation of T  from S(a) depends

.

.

.

.

.

.

.

.
.

.

Notes:
             1. S, T  and R stand for any sentence

             2.  ¬ S  is defined as S f^

Figure 5.1

fE

EE
S (a)

ExS (x)
AE

Ax S (x)

S (a)

AI
S (a)

AxS (x)



102        NATURAL DEDUCTION

It will be seen that we have chosen to define negation in terms of ^ which, it

will be recalled, is the symbol for a proposition that is false in every valuation. P

f  ̂is false when P is true and true when P is false, so P f  ̂and ¬P are logically

equivalent. In the natural deduction system that we are using, ^ is fundamental and P

f   ̂ is the way you express negation, but for clarity and brevity we will allow

negated formulas to appear in proofs on the understanding that ¬P stands at all points

for P f .̂ There  are implicit introduction and elimination rules for negation

because we have as instances of f I  and f E the rules

P Æ ^

^

P

.

.

P Æ ^

^

P

Our rule ^ comes from the fact that an inconsistent set of formulas entails any

formula. Note the difference between this and the rule C. The latter allows you to

discharge the formula ¬P, the former does not.

Turning to the rules for the quantifiers, those for "E and $I are clearly sound,

whatever the constant a denotes. The rule for "I depends on the constant a being

"typical", hence the condition.

Mathematical proofs often start "take any integer a ……" and conclude "but

the choice of a was arbitrary and so the result holds for all a". If it turns out that the

result about a (i.e. S(a) in the rule) depends on a being prime, say, then you are not

justified in concluding that the result holds for all a. The rule for $E contains a similar

caveat. Suppose that S(x) is some mathematical equation. We let the constant a be a

solution to the equation and derive some other result T. Now if there are other

conditions that a has to satisfy and the derivation of T from S(a) depends on these as

well, then it may turn out that no solution to the equation S(x) satisfies these further

conditions and so the proof is not valid.

It will be apparent from what we have said that unlike the axiom and tableau

systems already discussed, these rules are designed to mimic fairly closely the

patterns of reasoning that we use both in mathematics and everyday argument. For

this reason the system is known as natural deduction. Its use in Computer Science has

been found particularly appropriate where people collaborate with computers in an

interactive way to construct proofs about programs. The LCF system (which we

describe in chapter nine), for example, is based on natural deduction. Natural though



103

the rules may be, they still form part of a formal system in that they enable us to

manipulate formulas in a purely syntactic way without regard to their meaning. As we

indicated above the deductive system based on the rules can be shown sound and

complete with respect to the semantics we gave in chapter three. They are therefore

logically equivalent to the axiom and tableau methods covered already.

Natural deduction proofs are constructed by fitting the rules together to form a

tree with the required formula at the root. Here for example is a demonstration of

H  P f (Q f (P Ÿ Q)).

P Æ (Q Æ (P Ÿ Q))

Q Æ (P Ÿ Q)

P Ÿ Q

P Q
ŸI

ÆI

ÆI 1

1

2

2

The application of a rule is indicated by a horizontal line, on the left of which

is the name of the rule used. For instance, in the example above, the first rule applied

is ŸI (which in discussing it with someone else you would pronounce "and

introduction"). Assumptions are identified with numbers as they are introduced and

when they are discharged, i.e. used in a rule such as f  I which brings down the

assumption as the antecedent of an introduced implication, then the corresponding

number is written to the right of the discharging rule line and the assumption is

crossed through to show that it has been discharged. Note that the rule names and

numbers are not part of the proof; they are just annotations to make it easier to check

that the rules have been followed.

Ideally you would have seen this proof develop as we wrote it down, while

listening to the verbal explanation. Viewing the actual performance would also have

given you some idea of how we went about inventing the proof, i.e. the proof

strategy, as computer scientists call it. From the finished article you can't see whether

we started at the top, the bottom or the middle. So here is the action replay.

We know that we have to end up with P f (Q f (PŸQ)) as the bottom line,

so what could the rule application that gives this be?  For the moment we are working

backwards. We start by writing down



104        NATURAL DEDUCTION

P Æ (Q Æ (P Ÿ Q))

?
?

Now ŸE and ⁄E are not very likely because you would be coming from a

more complicated formula that nevertheless still contains the formula you want. C is a

possibility, but we know by experience that this is something to try when all else fails

(as we see several times later). The obvious choice is the introduction rule for the

principal connective, namely f I. So we write down

P Æ (Q Æ (P Ÿ Q))

?

ÆI

Q Æ (P Ÿ Q)

P
1

1

Now we are in the same position again and the same argument gives

P Æ (Q Æ (P Ÿ Q))

?

ÆI

Q Æ (P Ÿ Q)

P
1

1

P Ÿ Q

ÆI

Q
2

2

Now we see that things have worked out well for us because we have all the

ingredients for an instance of ŸI, so we complete the proof as shown above.

Of course it doesn't always work out so easily. It can often be hard to see how

to put the rules together to get the result you want, and even harder to legally

discharge assumptions that you find it convenient to make. Ingenuity is often



105

required, but this must be confined to fitting the rules together and not to making up

new rules of your own. For example we have seen in chapter two that

¬"xP(x) H $x¬P(x).

A common mistake is to "prove" this by natural deduction with

$x¬P(x)

¬P(a)

¬ "xP(x)

$I

the point being that there is no rule among those we have given that sanctions the

passage from ¬"xP(x) to ¬P(a). (We give the correct proof below.)

5.1.2. Fitch box presentation

Before we look at some more examples we will just say something about

presentation. We have chosen to show proofs as trees (albeit growing the right way up

in contrast to the usual convention in computer science) but there are other ways of

presenting natural deduction proofs that are sometimes more convenient

typographically. The proofs are the same, only the presentation differs. One of these

variants is due to Fitch.  The idea is reminiscent of Chinese boxes, boxes-within-

boxes. When you make an assumption you put a box round it. When you discharge

the assumption the box is closed and the derived formula  is written outside the box.

You can imagine the box, if you like, as a machine, literally a black box, which

verifies the formula and "outputs" it. The box is part of the world outside, so you can

copy into the box any formula from outside it, but no formula from inside the box,

which of course may depend on assumptions local to the box, may be copied to the

outside. Here, then, is the example above done in the Fitch style.



106        NATURAL DEDUCTION

P                                                          Assumption

Q                                                         Assumption

P                                                         From outer box

P Ÿ Q                                                  ŸI

Q Æ (P Ÿ Q)                                       ÆI

P Æ (Q Æ (P Ÿ Q))                            ÆI

5.1.3. Natural and non-natural  reasoning

One of the best methods of formulating proofs by natural deduction is to

imagine how you would convince someone else, who didn't know any formal logic, of

the validity of the entailment you are trying to demonstrate. Here is an example with

quantifiers. We want to show

{"x(F(x) f G(x)),"x(G(x) f H(x))} H "x(F(x) f  H(x))

If you were trying to convince someone of the validity of this you might say

Take an arbitrary object a

Suppose a is an F

Since all Fs are Gs, a is a G

Since all Gs are Hs, a is an H

So if a is an F then a is an H

But this argument works for any a

So all Fs are Hs

Note how the following natural deduction proof expresses this argument

almost exactly



107

"x(F(x) Æ H(x))

F(a) Æ H(a)

H(a)

G(a) G(a) Æ H(a)

"x(G(x) Æ  H(x))F(a) Æ G(a)F(a)

"x(F(x) Æ G(x))

1

1

"E

"E

ÆE

ÆI

"I

ÆE

Not all natural deduction proofs are as natural as this. One of the disconcerting

things at first about natural deduction is that some simple tautologies can be tricky to

derive. This is nearly always because they involve the C rule in one form or another.

Here, for example is a derivation of  H P⁄¬P.  (Remember that  ¬P is defined as P f

^.)

P ⁄¬P

^

P ⁄¬P ¬(P ⁄¬P)

¬P

^

P ⁄¬P ¬(P ⁄¬P)

P
1

1

2

2

⁄I

ÆE

ÆI

⁄I

ÆE

C

2

Once again it helps to consider how this proof works at the informal level.

Remember you can't just say  "either P is true or P is false and so ¬P is true" because

this is what you are trying to prove! We are not going to get anywhere by ⁄I because

this would involve proving either P or ¬P from no assumptions, so we start by

assuming the result is false and use the C rule. Now suppose P is true, then by the rule

for ⁄I we have P⁄¬P and hence a contradiction. So ¬P must be true (by definition of

¬, the assumption of P has led to a contradiction). But again by ⁄I we have P⁄¬P and

hence once more a contradiction; however the difference this time is that P is no

longer an outstanding assumption.



108        NATURAL DEDUCTION

At this point the only current assumption is ¬(P⁄¬P), so discharging this with

the C rule we get the required result. In fact we obtained P⁄¬P in three places but

only on the last  occasion did it not depend on an undischarged assumption. One final

point of presentation: we introduced ¬(P⁄¬P) as an assumption on two separate

occasions but gave it the same number each time and discharged both occurrences at

once. This is quite sound. It is only a single assumption written twice for purposes of

presentation. It would be a different matter though if we had discharged the first

occurrence before introducing the second.

We could of course have included P⁄¬P as a primitive rule and you may

sometimes see natural deduction systems in which this or something similar is done.

However, now that we have carried out the proof above, it is clear that any formula

could have been consistently substituted for P and both the proof and result would be

equally valid. So in several cases that follow we will allow ourselves to assume that

this has been done and will quote an instance of P⁄¬P as a lemma.

Finally, observe that  at the last step we could have used f I to get ¬¬(P ⁄

¬P), showing that this can be derived without ^  or C. This is an important point that

we return to when we look at other logics.

Now here are some examples with quantifiers. First we show how to derive

the basic equivalences between " and $, starting with {¬$xP(x)} H  "x¬P(x).

"x¬P(x)

¬P(a)

^

$xP(x) ¬ $xP(x)

P(a)
$I

ÆE

ÆI

"I

1

1

Note that we have labeled the line marking the second rule application as f E

because the ¬$xP(x) in the line above is a synonym for $xP(x) f ,̂ and a similar

convention is used in reverse in the following line.

Two of the remaining three facts of this type namely {"x¬P(x)} H ¬$xP(x)

and {$x¬P(x)} H ¬"xP(x) are straightforward and we leave them as exercises.

However {¬"xP(x)} H $x¬P(x) requires use of the C rule



109

$x¬P(x)

^

"xP(x) ¬ "xP(x)

P(a)

^

$x¬P(x) ¬ $x¬P(x)

¬P(a)

C

ÆE

$I

1

2

2

1C

"I

ÆE

Finally here is an example of a fallacious "proof" of

{$xF(x),$xG(x)} H  $x(F(x)ŸG(x))

to illustrate the need for the restriction on $E.

$x(F(x) Ÿ G(x))

$x(F(x) Ÿ G(x))$xG(x)

$xF(x) $x(F(x) Ÿ G(x))

F(a) Ÿ G(a)

F(a) G(a)

$E

$E

$I

ŸI

1

1

2

2

The error is in the topmost use of $E. At that point the constant a occurs in an

undischarged assumption, G(a), on which the proof of $x(F(x)ŸG(x)) at that stage

still depends. A similar example can be given to show the need for the condition in

"I, and we leave it as an exercise for the reader to construct one.

Exercise 5.1 Show using the natural deduction rules given that the following are

correct:

a)  H  (P f  (Q f  R)) f  ((P f  Q) f  (P f  R))



110        NATURAL DEDUCTION

b)  H  ¬¬P f  P

c)  H  (¬P f  Q) f  (¬Q f  P)

d)  H  ("xP(x) f  Q) f  $x(P(x) f  Q)

e)  ¬P H P f Q

f) {P ⁄ Q, ¬P} H Q

g) {"x¬P(x)} H ¬$xP(x)

h) {$x¬P(x)} H ¬"xP(x)

i) P f Q H ¬Q f ¬P

5.2. The Sequent Calculus

5.2.1. Natural Deduction rules as sequents

The tree format in which we have displayed natural deduction proofs is good

for constructing proofs but not so good for reasoning about them. Suppose we want to

demonstrate, for example, that from a derivation {A,B} H C  we can get {A} H B f  C

where A, B and C are any formulas, then we have to draw pictures to point out that a

proof tree such as

C

A                              B

.........................

.........................

.........................

C

A                              B

.........................

.........................

.........................

1

Bf C

fI 1

can be transformed to

What we need is a less pictorial, more formal, notation for manipulating

derivations. This is provided by the notion of a sequent. A sequent is an expression of

the form G fi H where H and G are sets of formulas. To start with we shall be talking

about cases in which H is a single formula , A say, in which case we shall allow



111

ourselves to write G fi {A} as G fi A. We shall also for brevity write G U {A} fi B

as G,A fi B and adopt the convention that G fi {},G fi and G fi ^ are all the same.

The use of the fi, instead of the  H  that you might have expected, is designed

to make an important distinction clear. If you assert G H B you are saying, in the

observer's language, that B can be derived from the set of assumptions G in some

system of deduction, whereas G fi B is just a formula in the observer's language.

Like a formula such as x+7 in ordinary algebra, it doesn't make sense to say that it

holds or doesn't hold—it is just there to be manipulated. We are going to put forward

a set of rules that say how formulas involving fi can manipulated and we will draw

conclusions of the form "if G fi A can be obtained by using the rules then G H A in

classical logic".

You may notice a similarity between this and the kind of statement we were

making in the axiom systems we looked at earlier. This is no coincidence. In chapter

two we were defining the notion of proof in a formal system, here we are formalizing

the notion of entailment. Note by the way that fi does not necessarily have anything

to do with the symbol f  in the language of predicate calculus, and there will be

nothing in our rules that results in formulas such as A fi (B fi C) being obtained.

The symbol fi will never be iterated.

Figure 5.2 above shows the natural deduction rules expressed in sequent

notation. Note how the sets of formulas on the left of the fi  are used to bundle

together and make explicit the assumptions that were part of our verbal explanation

above.

To make these complete we have had to add (at the beginning) two more rules

that were also previously part of our verbal explanation. The first of them (which has

been given the name "Assumption") gives you a way of getting started. You might

think of it as (the only) axiom schema of this formal system for writing down

derivations. The second is  called "Thin" and the remainder are direct translations of

the natural deduction rules we had earlier.



112        NATURAL DEDUCTION

S fi S
Assumption

G,H fi S

H fi S

Thin

G,H fi S Ÿ T

G fi S H fi T
ŸI

G fi S Ÿ T

G fi S
ŸE

G fi S Ÿ T

G fi T

ŸE

G fi S ⁄ T

G fi S

⁄I

G fi S ⁄ T

G fi T

⁄I

G fi S ⁄ T S,H fi R T ,F fi R

G,H,F fi R
⁄E

G fi S f T

S,G fi T

fI
G fi S

f

fT H fi S

G,H fi T

fE

G fi S(a)

G fi "xS(x)

"I
provided a does not occur in
G or S(x)

G fi "xS(x)

G fi SS(a)

"E G fi S(a)

G fi $xS(x)

$I

$E provided a does not occur in
H, S (x) or T

G fi $xS(x) S(a),H fi T

G,H fi T

Figure 5.2

G fi S

G fi B
B



113

As an example the very first natural deduction derivation of the chapter can be

rewritten using the sequent form of the rules as

fi P Æ (Q Æ (P Ÿ Q))

 P fi Q Æ (P Ÿ Q)

P ,Q fi  P Ÿ Q

P  fi  P Q  fi  Q

Assumption Assumption

ŸI

ÆI

ÆI

We implied above that one of the motives behind rewriting natural deduction

in this form is to prove metatheorems about natural deduction. Here is an example. If

G and H are sets of formulas and S and T are any formulas we fit the rules together to

give

G,H fi T

G fi S H fi S f T

 S,H fi T
fI

fE

We have shown that, whatever G, H, S and T are, from G fi S and S,Hfi T we

can get  G,H fi T. This derived rule is called the Cut Rule and, for G = H, will be

recalled from chapter two where we showed that if G J  S and G,S J T then G J T,

where J denotes semantic entailment.

Exercise 5.2  Show that

G fi S

G fi ¬¬ S

is also a derived rule of this system.



114        NATURAL DEDUCTION

5.2.3. Classical sequent calculus

Sequents were introduced by Gentzen (1934) who proposed a calculus in

which elimination rules are replaced by introduction rules on the left of the fi .

Gentzen proved the equivalence of his sequent calculus to natural deduction by

adding the Cut Rule to his system, which makes relating it to natural deduction a lot

easier. Then in a famous result known as Gentzen's Hauptsatz, he showed that any

derivation involving the Cut rule could be converted to one that was Cut-free.

Gentzen's sequent calculus idea is a very powerful one for studying

derivations and relating them to other systems such as the tableau method. A further

generalization allows more than one formula on the right of the fi. Doing this, and

bringing in rules for ¬, gives the following symmetrical system shown in Figure 5.3

which again can be shown equivalent to the natural deduction system for full

predicate logic.



115

G'fi H',T

Assumption
S fi S

G fi H

S ,G fi H
Thin fi

G fi H

G fi H,T
fi Thin

fi¶ ¶fi

fiv

fif ffi

fi" "fi

fi$ $fi

fi! !fi

Figure 5.3

Gfi H,S

G,G'fi H,H',S¶T

S, T ,G fi H
S ¶T,G fi H

G fi H,S

G fi H,S vT
fiv

G fi H,T

G fi H,S vT

T ,G'fi H'
vfi

S ,Gfi H

S vT ,G,G'fi H,H'

S ,G fi H,T

G fi H,SfT

G fi H,S T ,G'fi H'

,SfT,G,G'fi H,H'

S ,G fi H

G fi H, !S

G fi H, S

!S ,G fi H

G fi H,S(a)

G fi H,AxS(x)

S(a),G fi H

AxS(x),G fi H

G fi H,S(a)

G fi H,ExS(x)

S(a),G fi H

ExS(x),G fi H

Note:in the rules fiA and Efi a must not be free in G, H or S(x)



116        NATURAL DEDUCTION

5.2.4. Tableaux and sequents

 It can be shown that  the statement  "G fi H can be derived in the system

above" is equivalent to the statement  "if all the formulas in G are true in an

interpretation then at least one of the formulas in H is true".  This can be used as the

basis for a demonstration that the tableau and sequent calculus are equivalent. In fact

closed tableaux are essentially sequent derivations in this system written upside

down.

For instance, we have the following tableau proof of

{A f B, B f C} J  A f C

A Æ B   ÷   (1)

B Æ C   ÷   (2)

¬(A Æ C)   ÷   (3)

¬A   (4, from 1) B   (5, from 1)

¬B   (from 2) C   (6, from 2) ¬B   (7, from 2) C   (8, from 2)

A   (9, from 3)

¬C   (from 3)

A   (from 3)

¬C   (10, from 3)

+   (5 and 7) A   (from 3)

¬C   (11, from 3)

+   (4 and 9) +   (6 and 10)

+   (8 and 11)

and the following sequent proof of {A f B, B f C} J  A f C

A Æ B, B Æ C fi A Æ C

B Æ C fi A Æ C, A

 

fi  A,  B, A Æ C C fi A, A Æ C

A, C fi A, C

C, A fi A

A fi A

B fi B, A Æ C

B fiB

 B Æ C, B fi A Æ C

fiÆ
C, B fi A Æ C

A, C, B fi  C

B, C fi C

C fi C

fiÆ

Æfi Æfi

Æfi

A fi  A,  B, C

A fi  A,  B

A fi  A
fiThin

Ass

fiÆ

Ass

Ass

Ass

fiThin

Thinfi

fiThin

fiThin

Thinfi

Thinfi



117

Now, if we read each sequent as describing the unused sentences on each path

of the tableau, with sentences on the left of the  fi being un-negated and those on its

right being negated and with branches in the tableau matching branches in the sequent

proof, the similarity becomes quite clear. So, starting at the bottom, i.e. root, of the

sequent proof we have sentences 1, 2 and 3 from the tableau. Then, moving up the

leftmost branch, we have sentences 2, 3 and 4, i.e. the unused ones on the

corresponding tableau branch. Then, moving up leftmost again, we have sentences 3,

4 and the ¬B from 2. Then we get, using   fi f, sentences 4, the ¬B, 9 and the ¬C

from 3. This leads to a closure in the table of the leftmost path and, after some

thinning, an assumption in the sequent proof.

The other paths can be seen to be equivalent to the corresponding tableau

paths in the same way.

In fact, the original tableaux as introduced by Beth were even closer to the

sequents since he used some notation to show whether, in sequent terms, a sentences

was on the left or the right of the fi. Our tableaux are a subsequent specialization of

Beth's to make the presentation, at least for the classical logics, clearer.

5.3. Generalizing the logic

5.3.1. Changing the Rules to get a different logic

Up to this point we have only talked about a single logic, called classical

logic, the logic of two truth values and a truth-functional valuation system as

described in chapter two and chapter three. In the introduction we promised to look

not just at one logic but many. The sequent calculus with its many rules, each

intended to capture in a straightforward way the behaviour of the logical connectives,

gives us the opportunity to do this.

We have already seen that without the rule called C we are apparently unable

to give a natural deduction proof of the propositional tautology P⁄¬P. We now show

that this is not just due to lack of inventiveness on our part. It provides a good

illustration of the use of the sequent calculus for reasoning about derivations.

However, to avoid some detail, we ask the reader to take on trust that the natural

deduction system without C is equivalent to the sequent calculus system in which, for

the rules f, ¬ and ",  the set of formulas H on the right of the fi must be null.

Using this system we can derive ¬¬(P⁄¬P) as follows



118        NATURAL DEDUCTION

P fi P

P fi P ⁄¬P

P,¬(P ⁄¬P) fi 

¬(P ⁄¬P) fi ¬P

¬(P ⁄¬P) fi P ⁄ ¬P

¬(P ⁄¬P) fi 

fi ¬¬(P ⁄¬P) 

fi⁄ 

¬ fi 

fi¬ 

fi⁄ 

¬ fi 

fi¬ 

However, for any derivation of fi (P⁄¬P) in this system, there would only be

two possibilities at the last step. One is fiThin, which is clearly not applicable, the

other is fi⁄ which would have either fi P or fi ¬P as an antecedent, so there is no

way to derive fi (P⁄¬P). As an exercise the reader should show that fi (P⁄¬P) can

be derived in the system printed above where H can be non-empty in all rules.

5.3.2. Giving a semantics for the system without C

It is clear that in any reasonable truth-functional valuation system based on

two truth values, P⁄¬P has to take a single truth value in all valuations. If we are to

give a semantics for a logical system in which P⁄¬P is not a theorem then the obvious

solution is to admit more than two truth-values.

In fact many logics with multiple truth values have been invented to model

various notions of uncertainty or overcome apparent paradoxes in classical logic. To

give some idea of the kind of reasoning that arises, and to provide some background

for developments in chapter eight, let us, in a similar way to that in chapter two,

attempt to define, for the propositional case only, a more general valuation function

vk: Lf{1,…,k}.

vk(A)Œ{1,…,k} for A  a propositional letter and vk(^) = k.

vk(AŸB) = max(vk(A),vk(B))



119

vk(A⁄B) = min(vk(A),vk(B))

vk(AfB)= 1 if vk(A)≥vk(B) and k if vk(A)<vk(B)

We then have

vk(¬A) = vk(Af^) = 1 if vk(A)=k and k if vk(A)<k

The rules have been chosen so that v2 reduces to the valuation function for

classical propositional logic that we used in chapter two. We might hope that v3

would provide  an adequate valuation function  for  the system that you get by

omitting the C rule.

Now that we are talking about more than one logical system we must be

careful to distinguish between them. We will call the full set of natural deduction

rules C (either standing for "Classical" or "using Contradiction"), and the system

derived from the full set by deleting the C rule we shall call I, for a reason to be

revealed shortly.  If a formula A can be derived from a set of formulas G in the full

natural deduction system C then we will write G  HC A, and if A can be derived from

G in the system I then we will write G HI A.

By a lengthy but straightforward induction over the natural deduction proof

tree (there are seven cases, one for each of the propositional rules) we can show that if

G  HI A then max{vk(ti) | tiŒT}≥vk(A) and hence if  HI A then vk(A)=1. This shows

that the system I is sound for any k≥2. We know that it is not complete for k=2

because we have shown above that P⁄¬P is not a theorem of I whereas v2(P⁄¬P)=1

for both possible values of v2(P). But what about k=3 ?

Constructing the "truth-table" we get

     v3(P) v3(¬P)     v3(P⁄¬P)

   1     3 1

   2     3 2

   3     1 1

so the stratagem seems to have worked in this case. P⁄¬P is not a tautology in the

three-valued semantics and so the fact that it is not a theorem of I does not disprove

the completeness of I.



120        NATURAL DEDUCTION

Success is short-lived, however, because it is possible to show that whatever

value of k is chosen, there are formulas A  for which vk(A) =1 in all valuations but it

is not the case that  HI A. In fact (¬¬PHP) f (P⁄¬P) is such a formula. We can leave

it to the reader to show that vk(A) = 1 for all k and all values of vk(P). To show that it

is not the case that  HI A we have to wait until chapter eight. The conclusion is that a

simple extension of the truth-table idea with a linearly ordered set, however large, is

insufficient to give a semantic basis for the system of deduction I. In chapter eight we

show what the correct semantic basis is.

5.3.3. Constructive ideas

In fact I is a system of deduction for a logic known as Intuitionistic logic.

Historically it is important because it grew out of the work of Brouwer who

originated the study of intuitionistic, for which you may read constructive,

mathematics in the early part of this century. Brouwer rejected the law of the

excluded middle, i.e. S⁄¬S for any sentence S, and he and his followers set out to

reconstitute mathematics on purely constructive lines. Constructivists would not, for

example, admit existence proofs that rely on deriving a contradiction from the

assumption that some mathematical entity does not exist. They said that for a proof of

existence to have any meaning you have to actually produce an instance of the object

in question. We can see an immediate connection here with the natural deduction

system I.

In one of our earlier examples we showed that {¬"xP(x)} HC $x¬P(x), which

"says" that if it is not the case that every x has property P, then there must be some x

that does not have property P. However we didn't do this by producing a particular

object a such that ¬P(a) was true. We assumed ¬$x¬P(x), derived ^, and used the C

rule. It is not hard to show that in the system I which does not have the C rule, you

cannot prove $x¬P(x) from  ¬"xP(x).

It was Heyting around 1930 who first gave an informal semantics for

intuitionistic logic in terms of the notion of constructive proof and Gentzen a few

years later who essentially formulated the natural deduction systems for both I and C,

that we have been discussing in this chapter. We have just seen that a simplistic

approach to giving the logic a mathematical semantics, using more than two truth-

values, doesn't work. Tarski and Stone, working at about the same time as Gentzen,

were the first to show the correct way to do it when they noticed similarities between

intuitionistic logic and topology. However Kripke in 1963 proposed a semantics that



121

is much easier to work with, and since we explain this in chapter eight, we shall

continue the discussion of intuitionistic logic there.

5.4. What is Logic Ultimately?

We made a point in our introduction of saying that  we were going to look at

not just one logic but many, and we have just shown you an example of this by

examining the consequences of modifying the natural deduction rules for classical

logic to get another important system. There is nothing sacred about classical logic.

We can and will go on to look at other logics. But if we are going to do this where do

we draw the line?  Ultimately what is and what is not a logic?

Imagine I am showing you a computer program I have written. I place you in

front of a terminal and invite you to type in things like

{P, P f Q} H  Q

to which the machine answers "yes", or

{¬P f Q} H  ¬Q f P

to which the machine answers "no", meaning that in whatever system of deduction

my program implements, Q can be derived from P and P f Q, but ¬Q f P cannot be

derived from ¬P f Q.

The symbol H denotes, in the observer's language, a relation, called a

consequence relation, between formulas and sets of formulas of the object language.

If you were to try out my program for a long time you would gradually build up some

knowledge of what the consequence relation of my system was and you would start to

get some idea of its properties. For example you might notice that it always said "yes"

to questions of the form {A} H A, whatever formula A was, or that whenever it said

"yes" to G H A it would always say "yes" to G,B H A. Thinking back to chapter two

you recall that the relation of semantic entailment J possessed similar properties. If

you observe that the program's consequence relation shares these properties then this

increases your confidence that my program is implementing some kind of logic. This

example is due to Dov Gabbay (1984).

Suppose however that I now tell you my program works by converting all the

formulas to numbers and then says that G H A if the number corresponding to A, call

it n(A), divides the product Pn(gi) of the numbers corresponding to the gi in G. You



122        NATURAL DEDUCTION

would probably want to say that a program that worked on a purely arithmetic basis

such as this did not have anything to do with logic. Yet if the program did work like

this it would have at least some of the properties of the systems described above

because n(A) divides n(A) and so {A} H A and if n(A) divides Pn(gi) then n(A)

divides n(B)Pn(gi), and so if G H A then G,B H A. If arithmetically-based programs

like this can have logical properties then where do we draw the line on deduction

rules? What is and what is not logic?

A relation H between sets of formulas and formulas of some language L is the

consequence relation of a logical deduction system based on L if it satisfies the three

rules

     Reflexivity {A} H A

  Monotonicity G H A implies G,B H A

Transitivity (Cut) G H A   and A,H H B implies G,H H B

plus another condition to cope with infinite sets. We leave the reader as an exercise to

show by means of a counter-example that the arithmetically-based relation above

does not always satisfy the transitivity condition.

Summary

 •  Natural Deduction is a formal deductive system that models ordinary

mathematical reasoning more closely than axiom systems or the tableau method do. A

natural deduction system consists of rules for introducing and eliminating each of the

logical connectives and quantifiers. Proofs are constructed by fitting the rules together

in the form of a tree. As in ordinary reasoning, temporary assumptions may be made

in the course of the proof and then discharged by incorporating them into the

conclusion. Interactive proof systems for reasoning about programs in computer

science are often based on natural deduction.

 • The Sequent Calculus is a less pictorial, more algebraic, formulation of

natural deduction in which the role of assumptions is more explicit. It provides a

means of reasoning about proofs and axiomatizing deduction. A sequent is an

expression of the form  G fi H where G and H are sets of formulas. A sequent

calculus is a set of rules for manipulating sequents. Gentzen gave a set of sequent



123

rules for classical predicate calculus that he showed equivalent to natural deduction.

The tableau method is shown to be essentially another way of writing sequent

calculus derivations.

 •  Natural deduction and the sequent calculus give us the opportunity to

generate different logics by varying the rules. Leaving out the Contradiction rule we

get a logic, called intuitionistic logic, in which the 'law of the excluded middle',

P⁄¬P, is not a theorem. It is shown that this logic cannot have a semantics with two

truth-values, or indeed any linearly ordered set of truth-values.

 •  If we can change the logic by changing the rules, how far can we go while

still 'doing logic'? The rules of deduction determine a consequence relation.

Consequence relations for logical deductive systems are reflexive, transitive and

monotonic. Nowadays, however, the definition of what constitutes logical deduction

is  being pushed wider and wider, partly as a result of the impetus given by computer

science.



124        NATURAL DEDUCTION



125

CHAPTER SIX

Some Extended Examples

6.1. Introduction

In chapter three we introduced the fundamental notion of interpretation and

said what it meant for an interpretation to be a model for a theory in a formal

language. It should be clear that there is a use for interpretations in computer science.

Either explicitly, when new programming languages are designed, or less explicitly

when we invent data structures in solving some computational problem, we set up a

relationship between parts of the language and the objects that we want to reason

about. In both cases we can use the interpretation and the proof theory of the logic to

state and derive properties of the programming language or the data structures.

6.2. Theory examples

In the next few sections we will give examples of theories and models. For

this presentation our reasoning will be largely informal; that is we will not be working

within the formal systems given in chapters two and three, though we will, of course,

be respecting the meanings given there to the constants and other symbols that we

introduced.

6.2.1. A simple theory

Consider a language with one predicate symbol P and no function symbols or

names, so in the notation of chapter three we have L(<{P},{},{}>). Let P be the

theory generated by the axioms

P1 :   "x"y"z((P(x,y) Ÿ P(y,z)) f P(x,z))



126        SOME EXTENDED EXAMPLES

P2 :   "x(¬P(x,x))

 To find models of Th({P1, P2}) we need only look for models of P1 and P2,

by definition. One such model would be the interpretation whose universe is the set Z

of positive and negative integers, and where P denotes the "less-than" relation over Z.

It can get tedious using the strictly formal language when we have a particular

interpretation in mind, so we will allow ourselves to write

P1 :   "x"y"z((x Ì y Ÿ y Ì z) f x Ì z)

P2 :   "x(¬x Ì x)

but we must remember that this is still a formal system and so we are still at liberty to

take interpretations for these sentences that are "non-standard", i.e. in which Ì has

some unusual denotation.

In one of the standard interpretations, where Ì is the usual arithmetic "less-

than" relation over Z, it is clear that many other sentences in addition to P1 and P2 are

true. For example

"x"y (xÌy f ¬yÌx)

but is this true in every model of P1  and P2?

We can reason informally to start with. Suppose there were elements in the

universe (where we invent some names a and b to denote them) such that both aÌb

and bÃa were the case. Then by P1 we would have aÌa, which contradicts P2. So it

cannot be the case that such elements exist, and it would be the case that

¬ $ x $ y (xÌy Ÿ yÌx)

which is equivalent to

"x"y¬(xÌy Ÿ yÌx)



127

which is equivalent to

"x"y(¬xÌy ⁄ ¬yÌx)

which is equivalent to

"x"y (xÌy f ¬yÌx)

which is the sentence we suggested. So, this sentence is true in every model for P1

and P2.



128        SOME EXTENDED EXAMPLES

 To give a formal proof of the result, we can, for example, use the tableau

method. As usual, in setting up the proof, the initial sentences are P1 and P2 together

with the negation of the sentence that we wish to prove. The tableau we get is given

in figure 6.1.

In examining this tableau you should bear in mind that the algorithms given in

chapter four are not, in general, going to give the shortest proof, and an algorithm

which orders use of the rules differently will give a different proof. When you have

studied the tableau which solves this problem you should try using the rules in

different orders, and also apply your intelligence, to get different, and perhaps better

or less voluminous proofs.

Exercise 6.1

a) Find a model for P which has a finite universe.

b) If P is interpreted as inequality over Z, is P2 true? Is P1 true?

c) Use natural deduction (chapter five) instead of the tableau method to give a

formal proof that "x"y (xÌy f ¬yÌx) is true in all models of P.

6.2.2. A theory for equality

Virtually all applications of logic need a predicate in the language whose

denotation is what we normally understand by equality.

Strictly speaking we should use some neutral symbol of arity two, say Q, for

this. Once again, to make our formulas and sentences easier to read and understand,

we shall use the more intuitive informal symbol =, with the usual warning about being

at liberty to give it non-standard interpretations if we wish.

Our theory for equality has one axiom

E1 : "x(x = x)

and one axiom schema

E2 : "x"y"z1..."zn(x = y  f  (S f S[y/x]))



129

where S is any formula with free variables z1,...zn, x and possibly y. S[y/x] is the

formula that results from putting y instead of one or more of the free occurrences of x.

We need a schema like this since we do not know in advance what other predicate

symbols will be in the language in addition to equality.

In particular we can use = as a predicate symbol in S and consider S to be the

formula x=z1. Then an instance of E2 would be

"x"y"z1(x = y f (x=z1 f y=z1)) (1)

We can now use this together with E1 to prove other useful properties of =.

For example we can prove that  =  is symmetric. Our informal reasoning is as follows.

By the above we have

(a = b f (a=a f b=a)) (2)

with a for x and z1 and b for y. Now assume that

a =b (3)

then, by Modus Ponens on 2 and 3,we have that

a = a f b = a                       (4)

 but, by E1, we have

a = a (5)

and so, by using Modus Ponens again on (4) and (5), we have

b = a

We have therefore shown that, if a=b is the case, then b=a is the case. So we have

shown (see the beginning of chapter five) that

a =b f b = a

and since a and b were arbitrary it follows that we have



130        SOME EXTENDED EXAMPLES

"x"y (x = y f y = x)

which is the formal language statement of the symmetry of  =  as required.

It should be apparent that the informal demonstration we have just given is

very similar in style to the informal argument of chapter five (section 5.1.3) that was

there the starting point for a formal proof using natural deduction. You should carry

out a similar exercise and construct the formal proof by natural deduction that

corresponds to the informal argument above. Again, we give the tableau proof in

figure 6.2.

!



131

Exercise 6.2

1) Show that transitivity of equality follows from E1 and an instance of E2.

2) Give natural deduction proofs of the symmetry and transitivity of equality.

6.2.3. A theory for strings

In this case the intended interpretation is to be strings over a given alphabet of

symbols, say {a, b, g}, so that, for example, ab, aa, g, baag are in the universe, as is

the empty string which we will denote by e.

The formal language has the usual set of variables, connectives and

punctuation plus a constant symbol, or name, e which denotes the empty string. The

language has an infixed function symbol '.' denoting the operation of attaching a

single character on the left hand end of a string, and two predicate symbols C and S,

C(x) being true if the denotation of x is a single character string, and S(x) being true if

x denotes a string.

Other names in the language are a, b and c (whose intended denotations are

the single character strings a, b and g). In the notation of chapter three the language is

L(<{C,S}, {.}, {a, b, c, e}>). Terms in the language therefore include a.(b.e), b, e (but

not for example ab). Different terms may denote the same string. The denotation of

some terms may be undefined.

Now we consider the theory generated by the equality axioms E1 and E2 plus

S1 :  S(e)

S2 :  "x"y(C(x) Ÿ S(y) f S(x.y))

S3 :  "x(C(x) f x.e = x)

We can check to see whether some sentences are in the theory. As a first

example we take

"x(C(x) f S(x)) (1)

First, assume that

C(a) (2)



132        SOME EXTENDED EXAMPLES

then, from S2 we have

C(a) Ÿ S(e) f S(a.e) (3)

with x in S2 as a and y as e. Then, from (2) and S1 we have

C(a) Ÿ S(e)

and this, together with (3) gives

S(a.e) (4)

Then, S3, with x as a gives

C(a) f a.e = a

and this together with (2) again gives

a.e = a

and this further, by properties of identity  together with (4) gives

S(a)

Then, since a was arbitrary, we have the sentence (1) as required. So, we have shown

(informally of course) that

S1, S2, S3, E1, E2 H (1)

which is just to say that (1) is in the theory Th({S1, S2, S3, E1, E2}) since we also

have, by the soundness theorem

S1, S2, S3, E1, E2  J  (1)

The tableau that proves this is given in figure 6.3.



133

!!



134        SOME EXTENDED EXAMPLES

6.2.4. Another example

Consider the theory given by the equality axioms E1 and E2 together with

St1 :  "x"y(f(g(x,y))=x)

St2 :  N(e) Ÿ "y (¬ e = y   j ¬N(y))

St3 :  "x"y(¬N(g(x,y))

We will call this set of sentences St. Then, as usual, of all the possible interpretations

of the non-logical symbols N, e, f, g and =, only a certain sub-class of them form

models of St. Therefore, only a subset of all possible sentences in the language are in

the theory determined by these models, i.e. only a subset of all possible sentences are

theorems.

Clearly, we only talk in a non-trivial way if our sentences 'pick out' a subset of

all possible relations that hold in the world. If the only sentences that we could utter

were all valid sentences then, since they would be, by definition, true in all

interpretations, we would not be saying anything interesting about particular

interpretations.

Thinking back to chapters two and three, we used the word 'axiom' in defining

formal deductive systems. There the axioms were all valid. How can it be,

considering what has just been said, that the formal deductive system is saying

anything interesting? Well, the point is that those axioms are only valid under our

underlying assumption that all statements are either true or false. Without that

assumption those axioms are no longer necessarily valid. To put it another way, by

framing the definitions so that those axioms are valid we are selecting interpretations

in which all sentences are either true or false as a framework for our logic. So, the

axioms are telling us something after all.

Going back to St, let us fix our interpretation of the non-logical symbols as

one which is a model for St1, St2, St3, E1 and E2, and call the model M. Now consider

the sentence

¬N(g(a,g(b,e)))

Is this true or false in M? We can take axiom St3 above and substitute a for x and

g(b,e) for y to get the required sentence. Therefore, since this is an instance of St3



135

(using a version of P5 from chapter three, section 3.2) we have established that the

sentence is a theorem.  You may have already have noticed that St is an

approximation to a theory of stacks (a stack is a data structure that can only be

modified in a "last in, first out" manner; you can only access the last item to have

been added to it).

Exercise 6.3 Give similar arguments to decide whether or not the following are

theorems of the theory St.

a)   ¬ e = g(a,e)

b)     f(f(g(a,e))) = a

c) "x(N(x) f x=e)

6.2.5.  Induction

Many proofs in mathematics and computer science require the principle of

mathematical induction. This is almost invariably the case with recursively defined

programs and data structures. To illustrate the formulation of induction in a logical

theory we  return to the theory of strings that was given in section 6.2.3 and extend it

with further axioms for another function symbol '@'  whose intended interpretation is

concatenation of strings. (In fact the symbol  '@' is the same as the one used to denote

concatenation in the SML system).

We are going to prove by induction that '@' is associative, but before doing

so, because there are minor complications in the theory of strings to do with having

more than one sort of object, namely both characters and strings, we start by looking

at how induction would be formulated in a simpler and more familiar setting.

If you were constructing a theory of non-negative integers you would have a

predicate symbol such as I whose denotation is the integers, and axioms such as

I(0)

"x (I(x) f I(s(x))

where the intended denotation of the name '0' is the number zero, and that of the

function symbol 's' is the successor function over the integers, i.e. the function that

takes an integer and adds unity to it. So, for example,  s(s(0)) denotes the number two.



136        SOME EXTENDED EXAMPLES

In this theory the principle of induction would be formulated as the schema

(F[0] Ÿ "x( F[x] f F[s(x)])) f "xF[x]

where F[x] is any sentence containing x as a free variable. In the same way as we did

for equality, we need a schema for the induction axiom rather than a sentence because

we want to leave open the possibility of using the principle for any statement about

the domain (sentence in the formal language).

Now if we were to extend our theory of the integers with additional function

symbols and axioms intended to formalize, say, the addition function, then we could

use the induction schema given above to derive, for example, a sentence whose

denotation is the associativity of addition.

In the theory of strings the role of the successor function is played by the

denotation of the '.' function that extends a string by adding a single character to it.

Recall that if a denotes a, b denotes b, c denotes g, and so on, then b.(c.e) denotes the

string bg and a.(b.(c.e)) denotes the string abg. The corresponding induction principle

is an example of what is called structural induction - instead of arguing by induction

over the integers we operate, in this case over strings, in general over formulas, trees,

indeed anything whose structure can be given the appropriate recursive definition. In

fact, many of the meta-theorems proved earlier in the book have employed structural

induction, but in the observer's rather than the object language.

For the theory of strings the appropriate induction schema is

(F[e] Ÿ "x (S(x) f (F[x] f "u(C(u) f F[u.x]))) f   "x(S(x) f F[x])

This looks more complicated than it is. It says that if the sentence F is true of

the empty string and if, for all strings x, F is true of x implies that F is true of u.x for

any character u, then F is true of all strings. Because we have two sorts of object in

the universe we need the S(x) and C(u) to ensure that the universal quantifiers can

only range over the appropriate type. (There are 'many-sorted' logics in which this can

be done more neatly but to discuss them would take us too far afield).

The additional axioms for '@' (written, like the function symbol '.' that we

already have, in infixed mode) are

S4 :   "x ( S(x) f e@x=x )

S5 :   "x"y"z ( C(x)ŸS(y)ŸS(z) f (x.y)@z = x.(y@z) )



137

If the term a.(b.e) denotes the string ab and b.(c.e) denotes the string bg, then

the denotation of the term (a.(b.e))@(b.(c.e)) is the string abbg. It is clear from one's

intuition of the domain that @ is associative, in other words (t1@t2)@t3  denotes the

same string as t1@(t2@t3) whatever strings the terms t1, t2 and t3 denote. To prove

this we take F[x] in the induction schema as

"y"z ( S(y)ŸS(z) f (x@y)@z = x@(y@z) )       (F[x])

We are also going to need some theorems from the theory of equality. We

have already shown

"x"y ( x=y f y=x )             (Symmetry of = )

Using suitable instances of E2 it is also straightforward to show

"x"y"z ( x=y f (y=z f x=z))            (Transitivity of =)

and, for any terms t,t',t1,…,tn and function symbol f, that

t=t' f f(t1,…,t,…,tn) = f(t1,…,t',…,tn)     (Substitution in terms)

 Now we take, as the inductive hypothesis, F[q] for some string q, so we have S(q)

and

"y"z ( (q@y)@z = q@(y@z) )

  Then by " elimination, and assuming S(r) and S(s), we have

(q@r)@s = q@(r@s)            (1)

Now by S5, and the rule for substitution in terms, if p is such that C(p) holds

((p.q)@r)@s = (p.(q@r))@s            (2)

and again by S5

(p.(q@r))@s = p.((q@r)@s)            (3)



138        SOME EXTENDED EXAMPLES

From (1), E1, and the rule for substitution in terms, we have

p.((q@r)@s) = p.(q@(r@s))            (4)

From S5 and the rule for symmetry of = we have

p.(q@(r@s)) = (p.q)@(r@s)           (5)

So by several applications of the transitivity of = we have, from (2),(3),(4),(5),

((p.q)@r)@s = (p.q)@(r@s)

Discharging S(r) and S(s), and using " introduction and the definition of F[x], we

have F[p.q], and discharging C(p) and using " introduction we have

"u ( C(u) f F[u.q] )

Discharging the inductive hypothesis F[q]  we have

F[q] f "u ( C(u) f F[u.q] )

 and discharging  S(q) and using " introduction we have

"x ( S(x) f (F[x] f "u ( C(u) f F[u.x] )))           (6)

Now from S1 and S4 we have both

e@q = q           (7)

and

e@(q@r) = (q@r)           (8)

and so, from (7) and (8), and the symmetry and transitivity of =, we have

(e@q)@r = e@(q@r)



139

But q and r are arbitrary strings, so discharging S(q) and S(r) and using "

introduction, we have

"y"z ( S(y)ŸS(z) f  (e@y)@z = e@(y@z) )

 

But this is F[e], and so with (6) and the principle of induction we have "xF[x], i.e.

"x"y"z ( (x@y)@z = x@(y@z) )

which is the associativity of '@' that we set out to derive.

This use of structural induction is typical of many proofs about abstract data

structures that are carried out in computer science and similar theories can be

constructed for lists and trees. Manna and Waldinger (1985) give numerous examples.

6.2.6. A puzzling example

Raymond Smullyan is a well-known logician, but aside from his "serious"

work he has also produced a number of more popular books about logic that are

unique in that they illustrate quite difficult topics (up to and including Gödel's

theorem for example) by means of stories and puzzles. We borrow one of his puzzles

now to illustrate some points about theories involving equality and also to show that

the application of formal deductive systems is not just confined to reasoning in

mathematics or computer science.

The story goes as follows. In the Merchant of Venice the character Portia had

three caskets, one made of gold, one of silver and one of lead. Concealed inside one

of them was her portrait. Prospective suitors were tested by being asked which casket

the portrait was in. Inscribed on the top of each casket was a statement they might

find useful in making their choice. At most one of the statements is true. For example:



140        SOME EXTENDED EXAMPLES

It is quite easy to solve this conundrum by logical but informal reasoning. You

should do it now as an exercise. To do it mechanically, either by hand or by

computer, is another matter. As usual we have to set up an appropriate formal

language. In this case we have three constant symbols, a, b and c say, which in the

intended interpretation will denote the gold, silver and lead caskets respectively, and



141

two predicate symbols T and P. T(x) will be satisfied if the statement written on the

casket that x denotes is true, P(x) will be satisfied if the portrait is in the casket that x

denotes. There are many such puzzles that can be constructed, but they all have one

thing in common; there is only one copy of the portrait and it is in one of the caskets.

So the basic theory for all these puzzles will contain a sentence that says this in the

casket interpretation. There are several ways to do it. Since we know there are only

three objects in the domain we can do it without quantifiers by writing

C1:     (P(a)Ÿ¬P(b)Ÿ¬P(c)) ⁄ (¬P(a)ŸP(b)Ÿ¬P(c)) ⁄ (¬P(a)Ÿ¬P(b)ŸP(c))

or even without predicates by writing P(a), P(b) and P(c) as propositional letters A,B

and C.

Using quantifiers has the advantage that our theory will cope with any number

of caskets, but it does require some care with the theory of equality. First we solve the

puzzle, then we return to consider how to use quantifiers and the theory of equality.

The condition that at most one of the inscriptions on the caskets is true can be

expressed similarly by

C2:   (T(a)Ÿ¬T(b)Ÿ¬T(c))⁄(¬T(a)ŸT(b)Ÿ¬T(c))⁄

(¬T(a)Ÿ¬T(b)ŸT(c))⁄(¬T(a)Ÿ¬T(b)Ÿ¬T(c))

and the inscriptions themselves by

C3:      T(a) j P(a)

C4:      T(b) j  ¬P(b)

C5:      T(c) j  ¬P(a)

Now we don't know the answer to the puzzle so we don't know exactly what

we are trying to prove but we do know that it will be either P(a), P(b) or P(c). We

shall opt to use the tableau method - appropriately, since Smullyan (1968) has  given

a particularly clear exposition of it. When the tableau is completed we shall see what

is required to close it. In fact it is a straightforward exercise in the use of the Ÿ,⁄ and

j  rules that we leave to the reader. All branches except one close. The open branch

contains ¬P(a), P(b), ¬P(c), showing that the silver casket is the one containing the

portrait, because if we had known this at the start we would have added ¬P(b) to the

initial set of sentences C1,…,C5 and the tableau would have closed.



142        SOME EXTENDED EXAMPLES

If we had decided to use quantifiers to express the two conditions that the

portrait is in precisely one of the boxes and no more than one of the inscriptions is

true then there are several ways to say these things in the formal language. There is,

however, no way to do it without using equality. Perhaps the simplest is to use the

sentence

$x$y(¬(x=y) Ÿ T(x) Ÿ T(y) )

which says that  at least two objects in the domain possess property T. We can then

negate this to give the condition that no more than one of the inscriptions is true.

C'
2:     ¬ $x$y(¬(x=y) Ÿ T(x) Ÿ T(y) )

The condition that the portrait is in precisely one of the boxes is similar, but

with the additional condition that says it is in at least one of the boxes,

C'
1:     ¬ $x$y(¬(x=y) Ÿ P(x) Ÿ P(y) ) Ÿ $zP(z)

Showing that this formulation is  equivalent to the one without quantifiers is

instructive because it  demonstrates some of the points that arise in working with

theories that contain the theory of equality. We show that C'
2 entails C2. Negating C2

and applying the tableau rules gives 34 = 81 branches of which all but seven close or

are duplicated. The seven distinct open branches contain (reading them vertically) the

formulas shown below. Note that they enumerate all possible countermodels to C2,

i.e. those in which two or more of the statements on the caskets are true.

                                                   ¬ $x$y(¬(x=y) Ÿ T(x) Ÿ T(y) )

    ¬ (T(a) Ÿ¬T(b) Ÿ¬T(c)) ⁄(¬T(a)ŸT(b)Ÿ¬T(c))⁄(¬T(a)Ÿ¬T(b) ŸT(c))⁄(¬T(a)Ÿ¬T(b) Ÿ¬T(c))

                                                                     ..........
                                                                ..................
                                                          .............................
                                            ...................................................

                                   T(a)      T(a)      T(a)      T(a)       T(a)     ¬T(a)

                                   T(b)      T(b)      T(b)                 ¬T(b)       T(b)      T(b)

                                             ¬T(c)       T(c)      T(c)       T(c)        T(c)      T(c)                                      



143

Now we can close each of these branches by applying the tableau rules to the

topmost sentence. First we get "x"y¬(¬(x=y) Ÿ T(x) Ÿ  T(y) ). Then taking for

example a for x and b for y we get

                                     a=b                ¬(T(a)ŸT(b))

                                                     ¬T(a)              ¬T(b)

Now the two rightmost branches can be used to close the three leftmost

branches of the big tableau that contain T(a) and T(b). The branch containing a=b can

be closed if our theory of equality contains sentences  such as ¬(a=b), ¬(b=c) and

¬(c=a) that say that the constants of the language denote different objects in the

interpretation. The other branches of the tableau can be closed in a similar way by

taking a different choice of constants, remembering that " sentences can be used

more than once.

C1 can be dealt with in a similar way with the additional complication that it

involves $zP(z). Here another aspect of reasoning with equality comes in. Recall that

{P(a)⁄P(b)⁄P(c)}ï $zP(z) because we can construct the closed tableau

                                                         (P(a)⁄P(b))⁄P(c)

                                                                ¬ $zP(z)

"x¬P(x)

                                                                  ¬P(a)

                                                                  ¬P(b)

                                                                  ¬P(c)

                                                    P(a)                      P(b)⁄P(c)

                                                                           P(b)                 P(c)



144        SOME EXTENDED EXAMPLES

However  $zP(z) does not entail P(a)⁄P(b)⁄P(c) unless we add an extra

condition that says there are no objects other than a,b and c in the domain. The

appropriate condition to add is

                                  "x( (x=a) ⁄ (x=b) ⁄ (x=c) )

This is known as the Closed World Assumption (CWA). Together with the

assumption that distinct names denote distinct objects in the domain, it is of particular

importance in deductive databases and Artificial Intelligence where one of the aims is

to write logically-based programs that, for example, will enable a computer-

controlled robot to prove simple theorems about its environment . With the CWA we

can get the equivalence we need as shown below.

"x( (x=a) ⁄ (x=b) ⁄ (x=c) )

$zP(z)   (1)

                                                     ¬ (P(a) ⁄P(b))⁄P(c)

                                                                  P(d)   (from 1)

                                                               ¬P(a)

                                                               ¬P(b)

                                                               ¬P(c)

                                                      d=a Ÿ d=b Ÿ d=c

                                                 d=a                 d=b Ÿ d=c

                                                           d=b                           d=c

and now we can close all these branches by using sentence E2 from the theory of

equality, which gives for example (d=a) f (P(d) f P(a)), which when expanded

closes the left-hand branch. The others are similar.

6.3.   Gödel and the limits of formalization

Because so many good accounts are available elsewhere we have chosen not

to describe the classical logical theories of arithmetic and the foundations of set

theory. A theory of arithmetic (more precisely - a theory whose standard

interpretation is the integers and the usual arithmetic operators and predicates over



145

them) can be generated from the theory of equality, six axioms for the arithmetic

constants and operators and an induction schema. If Hilbert's assumption had been

correct (see the end of chapter three) then all the truths of arithmetic could in

principle have been established by the methods of the current chapter. However in

1931 Gödel showed that, for a certain sentence G, neither G nor ¬G can be proved

within the formal system for arithmetic.

The method Gödel used was to show that formulas and proofs could be coded

as numbers (Gödel numbers), so that statements in the observer's language about the

existence of proofs in the formal system can be expressed as statements about

numbers within the system itself. The formula G is a rather unusual one, in that it can

be interpreted as asserting its own unprovability. Nevertheless its denotation can

clearly be recognized as true, which means that there are truths of arithmetic that

cannot proved or disproved within the formal system for arithmetic.

Summary

 •  A theory  is a set of sentences all of which are true in a class of

interpretations. A theory can be specified by giving the axioms from which all the

other sentences in the theory can be deduced by one of the systems of deduction for

predicate calculus. The soundness of the deduction system guarantees that, if the

axioms are true in the intended class of interpretations, then all the sentences of the

theory are true in those interpretations. Theories provide the means by which logic is

actually used to formalize or automate reasoning in other domains such as

mathematics, computer science and artificial intelligence.

 • Theories of ordering and equality are often required as part of other

theories. Axiomatizations are given for both these theories and some theorems are

deduced from them. With such commonly used theories we often relax the rules of

the logical language slightly, allowing infixed predicate symbols to make formulas

easier to read.

 • Strings and stacks are examples of abstract data structures.

Axiomatizations are given in this chapter and some  theorems of these theories are

deduced.



146        SOME EXTENDED EXAMPLES

 • Many proofs in mathematics and computer science use the principle of

mathematical induction. This can be formalized by including in the theory an

induction schema. An appropriate induction schema is given for the theory of strings

and used to prove the associativity of string concatenation.

 •  Most theories have to include the theory of equality (identity) and,

particularly in applications of logic in artificial intelligence, often require further

axioms of identity stating, for example, that different names denote different objects,

and the Closed World Assumption which says that no objects exist other than those

named. We illustrate these aspects of automating practical reasoning by using logic to

solve a well-known type of puzzle.

Furthermore Gödel showed that no formal system for arithmetic that is

consistent can be complete. It might be thought that all one needs to do is to add all

the truths of arithmetic that cannot be proved within the system as extra axioms. The

catch here is that the set of Gödel numbers of the sentences that are true in arithmetic

is not effectively computable, so once again we have come up against one of the

fundamental limits to computation. All this meant that Hilbert's programme for the

formalization of mathematics could never be realized in its entirety, although it must

be said that the attempt to do so had led to several of the most significant discoveries

in the history of mathematics.



147

CHAPTER  SEVEN

Logic Programming

7.1. Introduction

7.1.1. Background

We have already seen how logic can be used to reason about the objects or

data structures that computer programs manipulate and we mentioned in the

introduction that another use for logical notation in computer science is as a

specification language. Given a problem to be solved or task to be carried out, what

constitutes a solution is specified in some more or less formal notation. A method or

algorithm for producing the required output is then invented and coded as a sequence

of instructions that can be executed to produce an output that satisfies the

specification. A necessary supplementary activity is proving, possibly using some of

the methods we have already discussed, that the output satisfies the specification.

The idea behind logic programming is that, having written down down a

specification of what constitutes a solution to a problem in some logical language, the

execution mechanism or operational semantics is then given by a system of deduction

for this language. Not only are the steps of inventing and coding an effective

algorithm saved but, since a provably sound deduction mechanism is used, showing

additionally that the output satisfies the specification is unnecessary.

Potentially many formulations of logic programming are possible, depending

on  the logic and deduction mechanism used. A common mistake is to confuse logic

programming with programming in Prolog, which is just one particular (and impure)

logic programming system. For readers with the background to make sense of the

remark Prolog bears much the same relationship to logic programming as Lisp does to



148        LOGIC PROGRAMMING

the lambda calculus. However, while the core of Lisp is a complete implementation of

the lambda calculus, the purely logical core of Prolog implements only a subset of the

full predicate calculus and is supplemented, in the systems used in practice, by non-

classical negation and other meta-logical constructions. There is no theoretical reason

why the idea of using logic as a programming language should not be extended to the

full predicate calculus but, at the present state of development, implementations are

not efficient enough to be attractive for most programming tasks. With its non-logical

extensions Prolog has the full power of any other language and yet is sufficiently

close to the ideal of programming in logic to have generated an explosion of interest

in the possibilities. As we described at the end of chapter three, Church and Turing

showed that logic and the lambda calculus have equivalent computing power in the

sense that the same set of functions is computable in both formalisms. This does not

address the possibility that formulating algorithms may be more efficiently carried out

in one formalism than the other. In chapter three we also briefly mentioned the notion

of one formalism being of higher-order than another, and the lambda calculus is of

higher-order than predicate calculus in just this sense. Whether this makes

programming systems based on the lambda calculus better in any theoretical or

practical sense than those based on logic programming is still a matter of current

debate.

 Prolog was developed around 1972 by Colmerauer and his group in

Marseilles as a tool for processing natural language. Kowalski, who had some contact

with the group, realized that there are two ways of looking at a Prolog program. You

can either understand it procedurally, as you would a programming language such as

Pascal, or you can read it as a set of sentences in (a subset of) predicate calculus. Of

course it is not just logic programming languages that have this characteristic.

Functional languages such as SML, can also be seen, partly at least, as executable

specifications. As we have indicated, there is some controversy among computer

scientists over whether programming with functions is more or less effective than

programming with relations. The arguments centre round notions such as higher-order

functions, i.e. functions which take other functions as arguments or return other

functions as results, and logical variables, i.e. variables in the sense that we have been

using them in logic rather than in the way that they are used in languages like Pascal.

For the straightforward tasks in this book there is very little to choose between the

two systems.



149

7.1.2. Definite Clauses

In this book we look at only one variety of logic programming, a subset of

predicate calculus called definite clause programs. In order to make the analogy with

programming as close as possible it is customary to change the logical notation

slightly and introduce a new way of writing formulas and some new terminology.

Definition 7.1

 A definite clause is a formula either of the form P a  or of the form

P a  Q1,Q2,...,Qn, for n>0, where P and the Qi are atomic formulas of

predicate calculus, i.e. of the form S(t1,...,tk) where S is a predicate symbol

and the ti are terms. In both cases P is said to be the head of the clause (we

will draw an analogy between this and a procedure heading in, say, Pascal)

and Q1,Q2,...,Qn is the body of the clause.

Definition 7.2

A definite clause program  is a sequence of definite clauses.

For example

                          P(x) a Q(x,y), R(y)

                          Q(a,b) a

                          R(b) a

is a definite clause program.

Logically speaking, the definite clause P a  Q1,Q2,...,Qn is to be read as " P if

Q1 and Q2 and ... and Qn", and semantically is exactly the same as the predicate

calculus formula  Q1ŸQ2Ÿ...ŸQnf  P.    The meaning of P a, a definite clause with

null body, is that P holds unconditionally, i.e. simply P; the meaning of a  P is that

there are no circumstances in which P holds, i.e. ¬P; while the meaning of a by

itself is ^.

If P and the Qi contain variables, then the meaning of P a Q1,Q2,...,Qn is the

same as "x1..."xj$y1...$yk(Q1ŸQ2Ÿ...ŸQn f  P) where x1...xj are the variable

symbols in P and y1...yk are the variable symbols that  occur in the Qi but not in P.

For example P(x) a  Q(x,y),R(y)  means  "x$y(Q(x,y) Ÿ R(y) f P(x)).

A set of definite clauses is like a set of procedure definitions; to use the

procedures we have to execute a procedure call. To execute a definite clause program

we add to it a goal, which is a formula of the form a G1,G2,...,Gn. Logically what

we are doing is to show  that G1 Ÿ G2 Ÿ ... Ÿ Gn follows from the program. As in the



150        LOGIC PROGRAMMING

tableau method the proof is by refutation, but the inference mechanism is different.

We use a new rule called resolution..

Before going into the details of what resolution is we explore a bit further the

connection with programming by looking again at one of the examples from chapter

six. There we discussed a theory of strings, the language for which contained two

function symbols, one  being the '.' which denotes the 'cons' function that takes a

character and a string as arguments and adjoins them. The other function symbol '@'

denoted concatenation of strings. We shall use concatenation as an example of

programming with definite clauses. To do this we have to rewrite it as a relation over

strings and, as is customary in programming, we give it a mnemonic symbol.  The

distinction between characters and strings that was preserved in section 6.2.8 can be

omitted (and in fact we then get a slightly more general theory of sequences (lists) in

which the elements of sequences can be general terms, including sequences). The

axioms S4 and S5 from section 6.2.5  then become

          "v Concat (e,v,v)

          "w"x"y"z (Concat(x,y,z) f Concat(w.x,y,w.z))

In the standard interpretation these sentences are easily seen to be true. The first

asserts that the result of concatenating any sequence v on to the empty sequence is v.

The second asserts that if the result of concatenating y on to x is z then the result of

concatenating y on to the sequence whose first element (head) is w and whose

remainder(tail) is x, is a sequence whose head is w and whose tail is z.

In programming, this fact about sequences is used as the justification for

function definitions such as

      def  concat(x,y) =

             if x=emptystring then y

             else cons(head(x),concat(tail(x),y))

      endef

and  this definition might be used by executing an instruction such as

       print(concat("ab","c"))



151

resulting in the answer "abc" being output. The equivalent logic program consists of

the two definite clauses

        Concat(e,v,v) a

        Concat(w.x,y,w.z) a  Concat(x,y,z)

and these would be used by adding the goal

 a  Concat(a.(b.e),c.e,z)

resulting in the answer z = a.(b.(c.e)) being output. To see exactly how this happens

we now have to say what the resolution rule of inference is.

7.1.3. Propositional Resolution

Definite clause programs are only a subset of all predicate calculus formulas

and we will only consider the simplified form of resolution that applies to definite

clauses. We explain it first for the propositional case. The rule is

      from                             P a Q1,Q2,...,Qm

         and           a  P,R1,R2,...,Rn

   deduce           a Q1,Q2,...,Qm , R1,R2,...,Rn

It can be shown that if both the formulas above the line (the resolvents) are

satisfiable then the formula below the line is satisfiable. So, if we can derive a from

a definite clause program and a goal, then the program and the goal are together

unsatisfiable. This means that the program entails the negation of the goal, i.e. entails

the formula to the right of the a in the goal. The basic idea is the same as the tableau

method, but the inference rule used is, superficially at least, entirely different. Here is

an example (the numbers are not part of the program they are there for explanation).

Program                                      1. P a Q,R

2.    Q a

                                                          3.      R a

Goal                                                 4.             a  P

Resolution using 4 and 1                  5.            a  Q, R



152        LOGIC PROGRAMMING

Resolution using 5 and 2                6.            a  R

Resolution using 6 and 3                                  a

We have shown that  formulas 1 to 4 are unsatisfiable and hence that 1, 2 and

3 entail P, as of course is obvious from their logical meaning.

We can compare this with the tableau for the same initial sentences, i.e. (Q Ÿ

R) f P, Q, R and ¬P. The tableau we get, as you should check, is

(Q Ÿ R) f P √   (1)

Q   (2)

R   (3)

¬ P   (4)

¬ (Q Ÿ R) √   (5) P   (6)

¬ Q   (7) ¬R   (8)

+

+ +

Here (1) gives (5) and (6) and (5) gives (7) and (8). The connection with the

resolution proof is made clearer if we note that (4) and (6), which came from (1),

contradict. Then (7), which came from (5), contradicts (2). Finally (8), which also

came from (5), contradicts (3). The same links between contradictory sentences, and

the sentences that they came from, can be seen in the resolution proof. In fact, this

similarity can be made even more precise, which makes resolution and tableaux look

like variants of the same logical idea, which of course is exactly what they are.

For predicate calculus the resolution rule is essentially the same, but the

presence of variables introduces the additional possibility of creating resolvents by

making substitutions. Essentially what we do is to make atoms the same by suitable

variable substitutions. To say this more precisely we will, at this point, have to go into

considerable detail before we can return to logic programming. However the ideas

involved are fundamental not just to logic programming, or even to the more general



153

subject of theorem-proving in full predicate calculus, but also to other areas of

computer science such as functional programming and term rewriting. So a

substantial digression at this point is worthwhile.

7.2. Substitution and Unification

7.2.1. Substitution

Definition 7.3

A substitution is a function from variable symbols to terms in which all but a

finite number of variable symbols are mapped into themselves. Substitutions

therefore can be presented as a finite set of variable/term pairs {v1/t1,…,vn/tn}

in which the vi  are distinct variable symbols and no ti  is the same as the

corresponding vi. A pair vi/ti is called a binding  for vi. In computer science a

substitution is often called a set of variable bindings  or an environment .

A substitution s can be extended to a function s* from terms to terms in

which a term t is mapped into the term obtained from t and s by, for every vi/ti pair

in s such that vi  occurs in t, simultaneously replacing all such vi in t by the

corresponding ti. By a mild abuse of notation the image of t under s* is written ts

(rather than ts*)  and ts is said to be an instance  of t. Note that we say

"simultaneously replacing" because some tj , or even ti itself, may contain vi and this

occurrence is not to be subject to further replacement. This notion of a single set of

simultaneous replacements can be specified more formally but only by going into

some mathematical detail. For our purpose the computer programs given below make

the definition completely precise. The following examples should make it intuitively

clear as well.

Suppose the formal language has constants a and b, variable symbols x, y and

z, and function symbols f and g. If t is the term f(x,g(y),b)  and s is  { x/a, y/x }, then

ts is f(a,g(x),b). If t is the term f(x,y,z) and s is {x/y, y/z, z/x }, then ts is f(y,z,x).

Substitutions often have to be applied one after the other, which means we

need the following definition.

Definition 7.4

If s and q are substitutions then the composition  sq of s  and q satisfies

(ts)q=t(sq) for any term t.



154        LOGIC PROGRAMMING

L e t  s be the substitution {x1/s1,…,xm/sm} and  q  be the substitution

{y1/t1,…,yn/tn}. Since function symbols and constants are unchanged by substitution

we need only consider variable symbols. Let X={x1,…,xm} and Y={y1,…,yn} and let

z be any variable. There are three cases to consider. Suppose z=xi in X. Then (zs)q =

(xis)q = siq so, if (zs)q = z(sq), we must have xi/siq in sq. If z is also yj in Y we

must omit yj/tj from sq. If z is not in X but is yj in Y then, remembering that s

implicitly contains z/z, we have (zs)q = zq = yjq = tj so we must have yj/tj in sq.

So sq is the substitution {x1/s1q,…,xm/smq, y1/t1,…,yn/tn}  in which pairs

xi/siq for which xi = siq and pairs yj/tj for which yj = xi  for some i have been deleted.

For example, if s is { x/g(y), y/z } and q is { x/a, y/b, z/y } then sq is {x/g(b),z/y}.

Note that, if h is another substitution, then by the result above we have

z((sq)h) = (z(sq))h = ((zs)q)h = (zs)(qh) = z(s(qh)). Since this holds for any

variable, (sq)h = s (qh ) and so composition of substitutions is associative.

Furthermore the null substitution {} is a left and right identity and so substitutions

form a monoid under composition.

The following Prolog predicates define the function s* introduced above (and

the SML versions are given in appendix two).

apply_subst(Subst,Term,NewTerm):-Term=..[Symbol|Args],

 (Args=[],!,(member(Symbol/NewTerm,Subst),!;Newterm=Term);

  do_args(Subst,Args,NewArgs),NewTerm=..[Symbol|NewArgs]).

do_args(_,[],[]).

do_args(Subst,[FirstArg|RestofArgs],[NewArg|RestofNew]):-

apply_subst(Subst,FirstArg,NewArg), 

do_args(Subst,RestofArgs,RestofNew).

and the following define composition of substitutions.

composition([Var/Term|Sub1],Sub2,Sub12):-composition(Sub1,Sub2,S),

delete_pair(Var,S,Sub), apply_subst(Sub2,Term,NewTerm),

(Var=NewTerm,!,Sub12=Sub; Sub12=[Var/NewTerm|Sub]).

composition([],Sub,Sub).

delete_pair(_,[],[]).

delete_pair(X,[V/T|Y],Z):- X=V,!,Z=Y; delete_pair(X,Y,U),Z=[V/T|U].



155

Exercise 7.1

a) Say which of the following are valid substitutions, and say why:

i) {x/y,y/x}

ii) {x/x, y/x}

iii) {x/y,x/z}

iv) {x/f(x,y), y/g(z)}

v) {x/a,y/x}

fvi {z/a,b/c}

b) Apply the substitution {x/f(y,a), y/b, z/g(c)} to each of the following terms:

i) f(x,y,z)

ii) f(a,b,c)

iii) h(x,x)

iv) f(g(h(x),v),g(x,y),g(z,f(x,y,u)))

c) Calculate the compositions st and ts where s and t are, respectively:

i) {x/y,y/x} and {x/f(y), z/a}

ii) {x/a,y/z, z/f(x,y,a)} and {x/b, z/g(x)}

iii) {x/z,z/y} and {z/x, y/z}



156        LOGIC PROGRAMMING

7.2.2.Unification

Definition 7.5

A unifier of two expressions F and G is a substitution s that makes Fs=Gs.

 A single pair of expressions may have no unifier or several. For example

f(x,y) and f(x,a) not only have {y/a} as a unifier, but also {x/a,y/a}.

Definition 7.6

Let S be the set of all unifiers of F and G. A substitution mŒS having the

property that ms=s for any sŒS is called a most general unifier  (mgu) of F

and G.

It is by no means obvious that such a substitution exists: our proof that it does

will be constructive. If such a substitution exists the proof will actually construct the

substitution. We give a method that is guaranteed  either to find the mgu of two

expressions or to tell us that it does not exist, in which case S={}.

We construct a finite sequence of triples <F0,G0,m0>,…,<Fn,Gn,mn> such that

F0 = F, G0 = G, m0 = {}, Fn = Gn and mn = m, an mgu of F and G, where

Fi+1 = Fisi

Gi+1 = Gisi

mi+1 = misi

and si is {vi/ti} where vi is a variable symbol in Fi or Gi and ti is a term in which vi

does not occur. This last condition is the crucial one that will ensure the algorithm

terminates. If there are n distinct variable symbols in F and G taken together then,

since we are eliminating one variable at each step, the sequence will contain n

elements. The next step is to show how to construct the si.

Given two expressions F = f(F1,…,Fm) and G = g(G1,…,Gn) we define a set

d(F,G) called the difference-set  of F and G as follows. If F = G then d(F,G) = {}, if F

≠ G but f = g and m = n then d(F,G) = d(F1,G1) U … U d(Fn,Gn), if f ≠ g or m ≠ n

then d(F,G) = {F:G}.

A difference-set D is reducible  if, for every pair U:VŒD, at least one of U and

V is a variable symbol, and neither U occurs in V nor V occurs in U.

A reducing substitution  for a difference-set D is a substitution {v/t} derived

from any member U:V of D as follows: if U is a variable symbol then let v = U and t



157

= V; if V is the variable (one of them must be) then let v = V and t = U. Note that a

reducible difference-set D may become irreducible as a result of applying a reducing

substitution s to F and G. For example if F = f(g(x),x) and G = f(y,f(y)) then d(F,G) =

{y:g(x),x:f(y)}. A reducing substitution is {y/g(x)} and d(Fs,Gs) = {x:f(g(x))} which

is irreducible. Note that choosing the other substitution doesn't help: we still get the

irreducible set {y:g(f(y))}. It can be shown that unification is linear, in the sense that,

if two expressions are unifiable, any choice of reducing substitutions will unify them

(though possibly giving mgus that are variants - the variable symbols may be

permuted), while if they are not unifiable then no choice of reducing substitution will

unify them. This simplifies the programming. To unify two expressions we construct,

notionally at least, the triples of the sequence defined above, generating at each step

the difference-set d(Fi,Gi). If d(Fi,Gi) is irreducible then F and G are not unifiable. If

d(Fi,Gi) is reducible then every element is a reducing substitution and we can take si

as any one of them.

For example to unify f(x,g(a,y)) and f(a,g(x,z)) we can construct the sequence

as set out in the following table.

          i Fi Gi d(Fi,Gi) mi

0    f(x,g(a,y))   f(a,g(x,z))   {x:a,y:z}           {}

1    f(x,g(a,z))   f(a,g(x,z))     {x:a}             {y/z}

2     f{a,g(a,z))  f(a,g(a,z))       {}             {x/a,y/z}

Here is another example, this time with terms f(g(x),g(y)) and f(y,g(x)),

which are not unifiable. Note that d(F1,G1) is not reducible because the pair x:g(x)

violates the condition that the variable that in one element of the pair shall not occur

in the other.

         i               Fi                   Gi                  d(Fi,Gi)              mi

         0        f(g(x),g(y))      f(y,g(x))          {y:g(x),y:x}          {}

         1    f(g(x),g(g(x)))   f(g(x),g(x))           {x:g(x)}         {y/g(x)}

We have seen that termination is guaranteed but have not yet shown that we

get the right answer on termination. A detailed proof of this is too long to give in full

here but we will sketch the basic idea, which involves induction on the sequence of

triples defined above. We show that for all unifiers s of F and G, s = mis for all i, 0 ≤



158        LOGIC PROGRAMMING

i ≤ n. Clearly this is true for i = 0 because m0 = {}, and if it is true for  i = n we have

shown that  mn  = m is an mgu of F and G. Whatever choice we make for si   from

d(Fi,Gi) it has the form  U:V where we can suppose U is a variable not occurring in

V. It is then fairly straightforward to show  that sis = s for all unifiers s of F and G.

So s = mis = mi(sis) = (mi+1s) and hence mn = m is an mgu by the definition of mgu.It

is also clear that, if the sequence terminates with non-empty difference-set, then F and

G are not unifiable, because, if they were, there would be a reducing substitution.

Exercise 7.2

a) Find the difference sets for each of the following pairs of terms:

i) f(a,b,c) and f(x,y,z)

ii) f(a,b) and g(a,b)

iii) f(f(a,b),g(c)) and f(f(g(a),g(b)),g(c))

iv) f(x,f(x,z)) and f(g(x),f(x,y))

b) For each of the sets that you calculated in a) above, say whether or not they

are reducible and why.

c) Calculate, where they exist, the most general unifiers for each of the pairs

of terms in a) above. If no most general unifier exists, say why not.

d) Under what circumstances is it true, for substitutions s and t, that st = ts?

7.2.3. Some background on unification and resolution

The unification method just described, although theoretically transparent,

contains a lot of redundancy in the representation and manipulation of the expressions

and substitutions. For example, not only is it unnecessary to explicitly calculate Fi and

Gi at each stage but the substitutions can be stored in product form rather than

carrying out explicit composition. In practice much faster but less transparent

algorithms are used.  For more mathematical detail by far the best treatment (rigorous

but very readable) of unification and resolution, and indeed of many of the basic ideas

of logic, is the book Logic, Form and Function by Robinson (1979). Robinson, basing

his work on that of Herbrand and Prawitz, developed resolution in 1965 as the basis

of automatic theorem proving. In the ten years  from 1965 to 1975 there were



159

numerous refinements, and it was believed at the time that theorem-provers could be

constructed that would be applicable to a wide variety of problems in mathematics

and artificial intelligence. This early optimism has turned out to be somewhat

premature and it is now considered doubtful that one single uniform procedure will

ever be effective for all problems. Nevertheless resolution is still the basis for one

important subclass of automatic theorem-proving, namely logic programming, which

brings us back to the main subject matter of this chapter.

7.3. Resolution

7.3.1. First-order definite clauses

The resolution rule for formulas containing variables is an elaboration, using

unification, of that for the propositional case.

      from                             P a Q1,Q2,...,Qm

         and           a  P*,R1,R2,...,Rn

   deduce           a Q1s,Q2s,...,Qms, R1s,R2s,...,Rns

where  s is a most general unifier of P and P*, and the set of variable symbols

occurring in P a  Q1,Q2,...,Qm is disjoint from the set of those occurring in a

P*,R1,R2,...,Rn. If these sets are not already disjoint then they can be made so by

renaming. Recall that all the variables are quantified, though we do not write the

quantifier, and so they are just placeholders, and as long as we rename them

uniformly, so that whenever a certain variable appears we always replace it by the

same new variable, the meaning of the formula is unchanged.

 Here is an example of the more general resolution rule in use:

                          P(x,f(x)) a  Q(x,y),R(y)

      a  P(a,z),R(z)

      a  Q(a,y),R(y),R(f(a))

Now that we have a resolution rule that handles variables we can complete the

concatenate example and show how answer substitutions are calculated. The definite

clause program was



160        LOGIC PROGRAMMING

1.                   Concat (e,v,v) a

2.                   Concat (w.x,y,w.z) a Concat (x,y,z)

where we have numbered the program clauses for reference in explanation. To use the

program to compute the result of concatenating the single element c on to the

sequence with elements a and b we add the goal

3. a Concat (a.(b.e), c.e, z )

resolving 3 and 2 with {w / a, x / b.e, y / c.e, z / a.z
1
 }, where we have renamed the 'z'

in 2 to be 'z
1
' to make sure that the rule can be properly applied, we get

4. a Concat (b.e, c.e, z1)

resolving 4 and 2 with {w / b, x / e, y / c.e, z1 / b.z
2  }, where again the 'z' in 2 is

renamed, this time to be 'z
2
', we get

5. a Concat (e, c.e, z2)

resolving 5 and 1 with{v / c.e, z2 / c.e} we get

6. a

Tracing back through the substitutions: z2 is c.e, z1 is b.(c.e), z is a.(b.(c.e)) as we

would expect.

Again, we can form a tableau proof for this. In fact, exactly the proof above

can be produced by the tableau method when extended beyond the method that we

talked about in chapter four, i.e. if we add the idea of unification to guide the choice

of substitutions for universally quantified variables. We shall not actually present

these extensions to the tableau method, but the tableau that the extended method

produces can be seen as one where many unproductive instances of universally

quantified sentences, as produced by the universal rule in the basic method that we

are using, can be ignored. The tableau below has had such economies made in it:



161

"vConcat(e,v,v)   (1)

"w"x"y"z(Concat(x,y,z)f Concat(w.x,y,w.z))   (2)

"z¬Concat(a.(b.e),c.e,z)   (3)

Concat(b.e,c.e,b.(c.e))f Concat(a.(b.e),c.e,a.(b.(c.e)))   (4) √

¬Concat(b.e,c.e,b.(c.e))   (5) Concat(a.(b.e),c.e,a.(b.(c.e)))  (6)

¬Concat(a.(b.e),c.e,a.(b.(c.e)))   (7)Concat(e,c.e,c.e)f Concat(b.e,c.e,b.(c.e)) √   (8)

¬Concat(e,c.e,c.e)   (9) Concat(b.e,c.e,b.(c.e))   (10)

Concat(e,c.e,c.e)   (11)

+

+

+

We get this by the following use of rules: (4) comes from (2) by several

instances of the universal rule where w is a, x is b.e, y is c.e and z is b.(c.e); then (5)

and (6) comes from (4) by the f-rule; then (7) comes from (3) by the universal rule

using a.(b.(c.e)) for z, which causes a closure due to (6) and (7) being contradictory;

then (8) comes from (3) by the universal rule using e for x, c.e for y, c.e for z and b

for w; then (9) and (10) come from (8) by another use of the f-rule, and (10)

contradicts (5) so we have another closure; finally (11) comes from (1) with c.e for v

in a use of the universal rule, and this closes the whole tableau due to a contradiction

with (9).

We can see that the substitutions that are made, in particular the substitution

of a.(b.(c.e)) for the z in (3), are exactly those in the resolution proof. Again, this is as

we would hope, since logically the two methods should give the same results given

that they are both sound and complete.

Exercise 7.3

a) Given the definite-clause program

Concat(e,v,v) a

Concat(w.x, y, w.z) a Concat(x,y,z)



162        LOGIC PROGRAMMING

Reverse(e,e) a

Reverse(w.x,z) a Reverse(x,y), Concat(y,w.e, z)

      use resolution to show that the following are logical consequences of the

program. Calculate the answer substitution where relevant.

a) Reverse(a.(b.e), b.(a.e))

b) Reverse(a.(b.e), z)

b) Give corresponding tableau proofs for each of the above resolution proofs.

As before, you should use the substitutions that the resolution proofs

generate to guide your tableau proofs so as to make them as small as

possible.

7.4. Least Herbrand models and a declarative
semantics for definite clause programs

7.4.1. Herbrand interpretations

Up to now in our discussion of logic programming we have  concentrated on

demonstrating how the program and negated goal can be shown unsatisfiable  using

the resolution rule of inference, and how the answer substitution emerges from the

composition of substitutions made in unification. This is an essentially operational

description. In the terminology of computer science we have given an operational

semantics for definite clause programs. Yet in chapter three we showed how meaning

can be given to the sentences of a language via the notion of interpretation. Can we

not do the same for logic programs?

 The answer is that of course we can, since logic programs are just  formulas

in a subset of predicate calculus. However, interpretations involve a universe of

objects external to the language, whereas programmers would usually be unwilling to

imagine their programs tied to a particular application. They tend to think of their

programs as manipulating abstract objects such as numbers and sequences and being

applicable to any problem whose data fits these abstractions. The analogy for logic

programming would lead us to describe the meaning of such a program as relations

over the terms that are involved in it. This raises an apparent problem since in chapter



163

three we were very insistent that the elements of the formal language and the elements

of the domain were to be thought of as distinct.

We can bring language and interpretation closer together via the notion of

Herbrand interpretations.  Given a logic program P we can identify the set of all

ground terms (terms not containing occurrences of variable symbols) that can be

formed from the names and function symbols of P. For the language with constant

symbols a and b, binary function symbol f and unary function symbol g, for example,

this set is

{a, b, f(a,a), f(a,b), f(b,a), f(b,b), g(a), g(b), f(g(a),b), f(g(g(b)), g(a)), …}

Clearly the set is enumerably infinite if there are any function symbols or

infinitely many names.

We now construct an interpretation whose universe has an element

corresponding to each element of this set. We may as well give them similar names,

for example { a, b, f(a,a), …}. This set is called the Herbrand universe  for the

program P.  In practice, if we are careful to avoid confusion with terms of the

language, we can omit the typographic distinction embodied in our underlining and

just say that the Herbrand Universe consists of the ground terms themselves

We now define  the Herbrand base  for P as the set of all ground atoms, i.e.

atomic formulas all of whose arguments are ground, that can be formed from the

predicate symbols occurring in P and the Herbrand universe for P.

A Herbrand interpretation for P is then a subset of the Herbrand base, the

elements of the subset being the ground atoms that are satisfied in the interpretation.

A Herbrand model for P is a Herbrand interpretation that makes all the clauses

of P true. For example, if P is the program

p(a) a

q(b) a

r(c) a

p(x) a  q(x)

r(y) a  p(y)

then the Herbrand universe is {a,b,c}, and the Herbrand base is



164        LOGIC PROGRAMMING

{p(a), p(b), p(c), q(a), q(b), q(c), r(a), r(b), r(c)}

A Herbrand model for P is {p(a), p(b), q(a), q(b), r(a), r(b), r(c)}.

The interpretation  {p(a), p(b), q(a), q(b), r(a), r(c)} would not be a Herbrand

model for P (why not?).

Now what meaning can we attach to P?  What can we say that the program P

denotes?  One possible answer is that the meaning of P is given by a Herbrand model

for P.  But which one? Some models are larger than strictly necessary to satisfy the

program, as in the example above. The intersection of all Herbrand models for P is

clearly also a Herbrand model for P and no Herbrand model can be smaller. We call

this the least Herbrand model for P, and denote it by MP. It can be shown that MP is

precisely the set of ground atoms that are the logical consequences of P, the set of

ground goals that succeed by resolution with the clauses of P.

In complicated cases the least Herbrand model will not be obvious from

inspection, but there is a recursive method of calculating it. Let the function fP, which

maps Herbrand interpretations into Herbrand interpretations, be defined as follows

fP(H) = H U {B | B a B1,…,Bn is a ground instance

of a clause in P and  {B1,…,Bn} z H}

Then the least Herbrand model is the least fixed point of fP, i.e. the smallest

solution of the equation fP(H) = H. For finite models this can be calculated by setting

Hn+1 = fP(Hn), where H0 = {}, and finding the smallest n for which Hn+1 = Hn. For

the program P above, we have

H1 = fP({}) = {p(a), q(b), r(c)}

H2 = fP(H1) ={p(a), q(b), r(c), p(b), r(a)}

H3 = fP(H2) ={p(a), q(b), r(c), p(b), r(a), r(b)}

H4 = fP(H3) ={p(a), q(b), r(c), p(b), r(a), r(b)}

So the least Herbrand model for P is given by H4 and it is obvious that this is

the complete set of goals that would succeed, given P. It seems reasonable to view the

least Herbrand model of a logic program as canonical, in this sense, and to say that

that is what the meaning of the logic program is.



165

7.4.2. General clauses and theorem-proving

Herbrand interpretations have a significance that extends beyond definite

clause programs. One can define a clause  more generally as a universally quantified

finite disjunction of literals. Literals are atomic formulas or their negations. The

clauses that can appear in definite clause programs, or their goals, are special cases.

Using the equivalence

(Q1ŸQ2Ÿ...ŸQnf P) j (¬Q1 ⁄ ¬Q2 ⁄ ... ⁄ ¬Qn ⁄  P)

it can be seen that definite clauses have precisely one unnegated literal and goals have

none. (Clauses with at most one unnegated literal are called Horn clauses).

It can be shown that any sentence S of classical predicate calculus can be

transformed into a set of clauses CS such that if S is satisfiable then CS has a Herbrand

model. This means that if CS can be shown by resolution to have no Herbrand model

then S is unsatisfiable. Resolution therefore has application wider than logic

programming, in that, like the tableau method, it can be used to test the validity of any

sentence in predicate calculus. Robinson's (1979) book is the definitive reference.

Exercise 7.4 Show that the sentence

P(a)Ÿ $x(¬P(x))

has a model but does not have aHerbrand model.

Summary

 •  The idea behind logic programming is that the program is a specification,

in a logical language, of what constitutes a solution to the problem, and the

computational mechanism (operational semantics) is then provided by a system of

deduction for that language.

 •  The logic programs in this chapter are definite clause programs. A definite

clause is a universally quantified disjunction of one or more literals, exactly one of



166        LOGIC PROGRAMMING

which is unnegated. Definite clauses can be compared with procedure definitions in a

procedural language. Definite clause programs are executed by adding a goal, a

clause in which there are no unnegated literals.

 •  The system of deduction in this form of logic programming is resolution.

Like the tableau method resolution works by refutation. Unlike the tableau method it

requires the set of input sentences to be in a special form—a universally quantified

conjunction of disjunctions—known as clause form. The resolution rule of inference

sanctions the derivation, from a set of clauses, of an enlarged set having the property

that, if the original set is satisfiable, so is the enlarged set. If falsity in the shape of the

empty clause can be derived the original set is unsatisfiable and the entailment from

which they were constructed is therefore valid.

 •  Resolution in the predicate calculus involves unification. Unification is the

process of finding substitutions that make two terms containing free variables

identical. A substitution is a function from variable symbols to terms and can be

represented as a set of variable bindings. Algorithms are given for composition of

substitutions and for finding the most general unifier (mgu) of two terms. The mgu is

unique up to permutation of variable names.

 •  Herbrand interpretations can be used to give a semantics for logic

programs. A Herbrand interpretation is based on the set of all ground atoms that can

be constructed from the names, function symbols and predicate symbols in the

program. The least Herbrand model of a program can be calculated as the least fixed

point of a certain function that maps Herbrand interpretations into Herbrand

interpretations.

 •  Any predicate calculus sentence can be transformed into a set of clauses

such that if the original sentence is satisfiable, the corresponding clauses have a

Herbrand model. On this case for some sentences resolution may not terminate. If the

clauses can be shown by resolution to have no Herbrand model then the original

sentence is unsatisfiable. So, like the tableau method, resolution can be used to test,

by refutation, the validity of any entailment in predicate calculus.



167

CHAPTER EIGHT

Non-Standard Logics

8.1. Introduction

In this chapter we will look at other systems which formalize reasoning. We

pre-empted this discussion a little when we introduced intuitionistic logic in chapter

five, and we will return to this later. The other systems that we present here will be

different from the logics, apart from intuitionistic logic, that we have seen so far,

which we call classical logics,  in that other sorts of valid reasoning will be treated.

By other sorts of reasoning we mean both extensions to the sorts of arguments that we

have looked at before and arguments based on different fundamental assumptions.

8.2. Necessity and Possibility

So far, we have only formalized reasoning in which relations have a truth-

value timelessly. That is, when we say "x is red" we do not refer to when it is red or

for how long it is red or how I know that it is red. However, we often need to reason

in situations where states of affairs change over time (especially in computing). Two

important time or state dependent qualities of relations tell us whether a relation is

necessarily true, i.e. true at all times or in all situations, or whether a relation is

possibly true, i.e. there is at least one moment or state when or where the relation

holds.

Whether a relation is necessary or possible is itself a proposition on the

predicate, i.e. has a truth-value, which expresses something about the mood or

manner or mode of the predicate. This leads to the name modal logic for a system of

reasoning in which the ideas of necessity and possibility occur.



168        NON-STANDARD LOGICS

8.2.1. Possible Worlds

To begin to formalize such a logic we need to extend our semantics. Consider

the sentence "the sky is blue". Clearly we have (by common experience) that "the sky

is necessarily blue" is false (sunsets?) and "the sky is possibly blue" is true. So, there

are situations or possible worlds in which "the sky is blue" is true, and some in which

it is false.

By possible worlds we mean not only actually occurring worlds but any

logically possible situation, i.e. one in which no contradictions arise. So, any

imagined world counts as a possible world, as long as it is not logically impossible,

i.e. contradictory. Thus, possibility is not the same as conceivability, it is a more

general notion, and not all possible worlds are actual either. For instance, "London

buses are black" is true in some imaginable world. The possibility is not ruled out just

because it is not actually the case. In the future of our actual world (in which London

buses are red) someone might decide to re-paint them. However, a proposition like

"the sky is blue and the sky is not blue" cannot be true in any world since it is a

contradiction.

For example consider the sentence "0=1", where we assume that all the terms

in the sentence have their usual meanings. We ask whether there is a possible world

in which this sentence is true. To see how to decide this question imagine the

proposition "there are two objects on the table" in the case where there are two

objects on the table at which you might be sitting. Then, if we also accept the truth of

the sentence "0=1" and since 2+0=2+0 it follows that 2+0=2+1 and hence 2 = 3. So,

the proposition "there are not two objects on the table" is true in exactly the same

circumstances as the proposition "there are two objects on the table". Clearly, these

are contradictory.

 This contradiction came about by using true facts of arithmetic together with

the sentence "0=1". The only way out of this contradiction, then, is to deny that this

sentence is true in the world and, by a similar argument, in any possible world, since

no possible world can be contradictory and the inclusion of the sentence "0=1" as true

in any world gives rise to contradiction.

Exercise 8.1 In the following exercises, all the terms that appear should be

understood with their usual meanings. For each sentence, say whether or not there is a

possible world in which it can be true:

a) Mount Snowdon is higher than Mount Everest.



169

b) 2+2 ≠ 4.

c) A yard is shorter than a metre, a metre is shorter than a chain and a chain is

shorter than a yard.

d) I believe that there is a greatest natural number.

e) I know that there is a greatest natural number.

8.2.2. Contingency

A sentence or proposition which can be either true or false, depending on the

situation it is evaluated in, is called contingent. Any proposition which has the same

truth-value no matter what situation it is evaluated in is called non-contingent. For

example, "the sky is blue" is contingent since, for example, on Mars it is pink, i.e. the

sentence is false, whereas on Earth the sentence can be true. On the other hand 'all

yellow things are coloured' is true no matter what situation or possible world it is in,

i.e. it is non-contingent.

Exercise 8.2 In each of the following, say whether the sentence is contingent or non-

contingent. If you think that it is non-contingent, say whether it is true or false.

a) All uncles are males

b) All males are uncles

c) All black birds are black

d) All blackbirds are black

e) No toadstools are poisonous

f) All coloured things are red

8.3. Possible world semantics

This idea of possible worlds or situations has been taken up and used as one

basis for a formalization of modal logic. We shall use this basis too. However, unlike



170        NON-STANDARD LOGICS

classical logic, formalizations and proof systems for modal logics (among others) are

still a matter of research and our presentation is by no means the only one or

universally agreed to be the correct one (whatever that means).

We use an extension of the language of classical (propositional) logic, so we

have  Ÿ , ⁄  etc.

If we know that A is necessarily true then we are saying that whatever worlds

we can 'get to' or 'imagine' in some way—we shall say access—then A is true in each

of them. So, since we know that "anything red is necessarily coloured" we are saying

that in any world that we can access from our world "anything red is coloured" is true.

Similarly, since "possibly the sky is blue" is true we are saying that there is at

least one world that we can access from our world in which "the sky is blue" is true.

8.4. Frames, interpretations and models

We wish to formalize the ideas above. We have a set of possible worlds P and

a relation, the accessibility relation R, which tells us which worlds are accessible from

which others. (You may also, though rarely, see the term reachability, instead of

accessibility). So, if W and V are possible worlds, i.e. W,V Œ P, then R(W,V) means

that V is accessible from W. The exact definition of any particular R will determine

what 'sort' of accessibility we mean, as we will see later. Thus, non-accessible worlds

are in some way irrelevant to us in the current world.

Definition 8.1

 If P is a set of possible worlds and R is an accessibility relation then <P,R> is

a frame (of reference).

Definition 8.2

Let <P,R> be a frame. An interpretation in <P,R> is a function v such that

v : P x L   f  {true,false}

where L is a set of propositional letters.

So, an interpretation tells us whether a given proposition (from L) is true in a

possible world (from P).  Note how this extends our definition previously because

now we need to take into account the world in which the sentence is being considered

as well as the sentence itself.

For example:  let P = {today, tomorrow} and L = {P1, P2}. Then let

v(today,P1) = true



171

v(tomorrow,P1) = false

v(today,P2) = false

v(tomorrow,P2) = true

and let the accessibility relation over P be reflexive and transitive then, informally,

you might now see that, as far as "today" is concerned, "possibly P1" and "possibly

P2" are true while "necessarily P1" and "necessarily P2" are false. What we have to

do is to formalize this notion, which we now do.

8.4.1. Extending the language

We extend our alphabet and language with two new symbols. w (diamond)

means 'possibly' and p (box) means 'necessarily', Then, if S is any sentence, so are

wS and pS. So, in our example we have wP1, wP2, ¬pP1 and ¬pP2.

Definition 8.3

For a frame <P,R>, we write W |Jv S iff S is true in the interpretation v at

world W Œ P, i.e. W |Jv S iff v(W,S) = true for some v. When v is clear from

the context that we are in we drop it.  We read ' W |J S ' as ' W forces S '.

Definition 8.4

If v is an interpretation in the frame <P,R> of a set of sentences S at any world

W Œ P then, given the above definition, we have the following for any S, T Œ

S:

m1) W |J  (S Ÿ T) iff W |J S and W |J T

m2) W |J (S ⁄ T) iff W |J S or W |J T, or both

m3) W |J (S f T) iff not W |J S or W |J T, or both

m4) W |J ¬S iff not W |J S

m5) W |J pS iff for all VŒP such that R(W,V) we have V |J S

m6) W |J wS iff there is a VŒP such that R(W,V) and V |J S.

Example 8.1

Going back to our previous example, we can illustrate these definitions. We

will take P and L as before and re-define R to be the equivalence relation,

 {(today,tomorrow),(tomorrow,today),(today,today),(tomorrow,tomorrow)}

We have

today |J P1

tomorrow |J P2

today |J ¬P2



172        NON-STANDARD LOGICS

tomorrow |J ¬P1

Since it is not the case that for all UŒP such that R(W,U) we have U |J P1 (because

tomorrowŒP, R(today,tomorrow) and not tomorrow |J P1) it follows that not today |J

pP1. Similarly, we can show that

not today |J pP2

not tomorrow |J pP1

not tomorrow |J pP2

However, since todayŒP, R(today,today) and today |J P1 we have today        |J wP1.

Also, since todayŒP, R(tomorrow,today) and today |J P1, we have tomorrow |J wP1.

Similarly

today |J wP2

tomorrow |J wP2

We can illustrate these facts by using a diagram, a possible-worlds diagram, which is

essentially a labeled, directed graph. The nodes are intended to be possible worlds, so

they are labeled with their names. Also, at each node we write the propositions which

are true there. The arcs are arrows which show which worlds (nodes) are directly

accessible from which others. Therefore, the above example will be as shown in

figure 8.1. There we see that the accessibility relation is reflexive, transitive and

symmetric.
  !!

Example 8.2

As another example consider the frame <P,R> given by

P = {W1, W2}

R = {(W1,W2),(W1,W1),(W2,W2}

Consider the sentence A f pwA in the interpretation v given by

v(W1,A) = true

v(W2,A) = false



173

Then, W1 |J A. Now, what about W1 |J pwA ? Is it true that for all U ŒP such that

R(W1,U) that U |J wA ? i.e. is it true that W1 |J wA and W2 |J wA ? i.e. is it true

that

(1) there is a UŒP such that R(W1,U) and U |J A and

(2) there is a UŒP such that R(W2,U) and U  |J A ?

Well, (1) has the answer yes since W1 ŒP, R(W1,W1) and W1 |J A. However, (2) has

the answer no, This is because although W1ŒP and W1 |J  A, it is not true that

R(W2,W1). And, although W2ŒP and R(W2,W2), it is not true that W2 |J A.

So, we finally have that not W1 |J pwA, so not W1 |J A f pwA. Figure 8.2

shows the possible-worlds diagram that describes this.
  !!

Definition 8.5

  Let F  = <P,R> be a frame, with P a set of possible worlds and R an

accessibility relation, and let v be an interpretation in F . Also, let S  be a

sentence. Then v is a model of S  in F iff v(W,S) = true for all WŒP. S is

satisfied by v iff v(W,S) = true for some WŒP. So, S is satisfiable iff there is

an interpretation in F such that v(W,S) = true for some WŒP. S is true in v in F

iff v in F is a model of S. S is valid in F iff all interpretations in F are models

of S, i.e. S is true in all interpretations in F.

Going back to the example above, A f pwA is not valid in <P,R> since we

have given an interpretation in <P,R> which is not a model, i.e. we have an

interpretation in which the sentence is not true for all possible worlds in P.

Exercise 8.3

a) Draw the possible-worlds diagrams, as exemplified above, for the following

frames:



174        NON-STANDARD LOGICS

i) Pa = {W1,W2,W3}, Ra = {(W1,W1), (W2,W2), (W3,W3)}

ii) Pb = {W1,W2,W3}, Rb = {(W1,W2), (W2,W1), (W3, W3)}

iii) Pc = {W1,W2}, Rc = {(W1,W2), (W2,W1), (W1, W1), (W2, W2)}

iv) Pd = set of natural numbers, Rd = the less-than relation over Pd

b) Draw the possible-worlds diagram for frames given by the following:

i) P = {W1,W2}, R is an equivalence relation over P.

ii) with P and R as in i), but a different frame.

8.5. Truth-functionality and modal logic

When we say that a logic is truth-functional we mean, essentially and as you

should recall, that its semantics can be given by truth-tables. Putting this another way,

it means that the meaning of a sentence can be calculated from the meanings of its

sub-sentences. However, modal logics do not have this property. Thus, they are non-

truth-functional, as we shall see. This means that we cannot use the simple ideas of

truth-tables to give the meanings of such logics, so the (relatively) complicated

methods introduced above must be used.

For example, the operator w  is not truth-functional (unlike ¬ which is)

because the truth-value of wA does not depend only on the truth-value of A. If A is

true, then clearly wA is true too. However, if A is false the answer to the question

must be "it depends...". When pressed further we might say "it depends on the

situation". Exactly! The truth-value of wA depends not only on the truth-value of A

but also on the situation, i.e. on the frame in which the question is asked.

If we try to fill in its truth-table we get

w
 t       t

 f       ?

where '?' stands for "it depends...".

Another way of seeing that there is no truth-table for w is to consider the fact

that w is a unary operator and write down all the truth-tables, since there are only

four. However, two of them are 'used' in the sense that one of then is the truth-table



175

for ¬ and another is just the identity function (which w and p certainly are not). The

other two give 't' for all possibilities and 'f' for all possibilities. Clearly, these will not

do either. So, there are not enough truth-tables to give one each to w and p.

A further way of exploring this problem is to introduce more than two truth-

values, e.g. true, false and undefined. This idea was worked on extensively by many

people. A major example is the three-valued logic of Lukasiewicz.

8.6. Systems of modal logic

Obviously, as the frame varies, even for a fixed language, the behaviour of the

logic will change, i.e. we will have different logics. It turns out that certain simple

ways of axiomatizing the logics, which we have not looked at for modal logics,

correspond to certain simple and familiar properties of the accessibility relation. A

series of such axiomatizations were studied in the past by Lewis (Lewis and

Langford, 1932) and the elements of the series were named S1, S2,..., i.e. system 1 ,

system 2,..... They were generated by taking some initial set of axioms and adding

new axioms to get new logics with particular properties. We shall be looking at S4 in

the next section. In S4 the accessibility relation is reflexive and transitive. The system

after S4, that is S5, is such that its accessibility relation is an equivalence relation, i.e.

it is reflexive, transitive and symmetric. Though we shall say no more about these

systems other than S4, it is remarkable that they can be characterized in such simple

terms.

8.7. A tableau system for S4

8.7.1. Introduction

We have chosen to use the possible worlds idea (originally due to Kripke

(1963) ) to present a semantics for modal logics. One component of such a semantics

is the accessibility relation. The choice of this relation, and in particular its properties,

reflects just what sort of reasoning we are doing. For instance, if the relation is not

symmetric then we cannot be reasoning about a system in which "going back to

where we have been" is possible, i.e. if I pass from world W to world V then I cannot

pass from V back to W, in general. From now on we will concentrate on a logic

whose accessibility relation is reflexive and transitive. This is the logic S4 as

mentioned in the previous section. Our goal here is to develop a tableau system

which, as before, will give us a mechanical way to test the validity (in S4) of

sentences in our language. We will use the possible worlds interpretation to do this.



176        NON-STANDARD LOGICS

First, remember that the basic idea behind tableaux is to explore all possible

ways in which a sentence or set of sentences can be satisfiable. If we ask the right

question, we can thus devise a system which allows us to decide whether a sentence is

valid. By valid here we mean valid in any S4 logic, i.e. we specialize the definition

above to

Definition 8.6

A sentence S is S4-valid iff S is true in all interpretations in any frame <P,R>

where R is reflexive and transitive. We write this as

JS4 S

We shall say just 'valid' in the future and write just

J S

Thus, above we showed that it is not the case that

J (A f pwA)

i.e. A f pwA is not S4-valid.

This definition also extends to sets of sentences in the usual way.

8.7.2. Testing validity

Now, we want to devise a way to answer questions like "is it the case that J S

?" As before in the classical case, what we do is to try to find all possible ways in

which ¬S is (S4-)satisfiable. If no such way exists then we conclude that JS. It turns

out that the rules for non-modal operators (i.e. those other than p and w) are much

as before. We need new rules to deal with modal sentences. (We are essentially

presenting Kripke's original work as extensively developed by Fitting (Fitting, 1983).)

Consider the case for a sentence of the form pS. How can we express (in our tableau

style) all possible ways in which this can be true? Well, it says that S is necessarily

true, i.e that S is true in all worlds accessible from our current one. So, if we were to

move to a representative accessible world, S would be true there.

Now, what about wS? We can express the truth of this in all possible ways by

thinking of moving to an arbitrary accessible world in which S is true and which

includes just what must be there. Putting this another way, in moving to this other

world we need to delete all information that does not have to be there, i.e. all non-

necessary information. So, in moving between worlds we should delete all sentences



177

not of the form pT or ¬wT, since no sentences other than these has to be true in

every accessible world.

The reason why this is correct is that if our sentence ¬S is not satisfiable in

this 'minimal' accessible world, then it is certainly not satisfiable in any world which

has more things true in it. So if, when we need to change worlds, we always change to

one which only has in it the things which  must be true, and our test sentence is

unsatisfiable in an arbitrary such world, then it must be unsatisfiable in any accessible

worlds (since these will have either the same things true in them or more things true

in them, but never less, by definition).

We will give the extra rules needed and then give some more justification.

Written in the pictorial way, as previously, we have four more rules:

Definition 8.7

  The non-deleting modal rules can be pictured as (where S is any sentence)

 pS ¬wS

  S   ¬S

and the deleting modal rules can be pictured as

wS     ¬pS

 S       ¬S

BUT in these two cases delete from the paths that have just been extended all

sentences except those of the form pR and ¬wR.

Example 8.3

Consider

J A fpwA

the tableau for which is in figure 8.3. As usual, we start with the initial sentence

which is the negation of the one whose validity we are testing, i.e we start with the

initial sentence ¬(A fpwA).  Here, (2) and (3) came from (1) by the usual rule for

¬-f. Then, (4) came from (3) by the rule for ¬-p, which also caused the crossing out

of sentences (1), (2) and (3), since none of them are of the form which we have to

save, i.e. none of them have to be true in the 'minimal' accessible world. Finally (5)

came from (4) by the rule for ¬-w.



178        NON-STANDARD LOGICS

˜

A         (2)

¬ A   (5)

Figure 8.3

¬ (A fpw A)       √       (1)

¬ pw A        √       (3)

˜

¬ w A               (4)

˜

˜

The tableau does not close here because the sentences true in the current

world, i.e. those not crossed out, are not contradictory. Since the tableau is complete

but not closed, we say that, having elaborated the tableau in all possible true ways

there is one which is not contradictory, namely the one in which there is a world in

which ¬A is true. If you look at the way we dealt with this example before you will

see that this is exactly the frame we used.

Example 8.4

As another example consider

  J   (p¬A j ¬wA)

Informally, we can see that this says that if A is necessarily false then it is not

possible that it is true, and vice versa. The tableau method gives the tableau shown in

figure 8.4.



179

  A              (6)

   ¬A              (7)

   +

 ¬¬A               (8)

   ¬A                (9)

   +

Figure 8.4

¬ (p¬A j ¬wA)         √            (1)

p¬A            (2)

wA      √   (3)

¬p¬A        √        (4)

¬wA            (5)

Here (1) is as usual the negation of the sentence whose validity is being tested.

(2), (3), (4) and (5) come from the rule for ¬-j . Then, (6) comes from (3) by the

rule for w, which also causes (1) and (3) to be deleted. Then (7) comes from (2) by

the p-rule. This path then closes because it contains both A and ¬A. (8) comes from

(4) by ¬-p and (9) comes from (5) by ¬-w. This path then closes too since ¬A and

¬¬A are contradictory.

8.7.4. Cycles and backtracking

With these new rules for modal operators, we need to take care about when we

use them. In fact, they must only be used after all possible sentences with non-modal

operators (i.e. the connectives) at the top-most level have been used. The following

example shows that we get wrong results otherwise. We know that

{wA f A, wA}  J  A

since this is just an instance of {S f T, S}  J  T, but if we do not take note of the point

above we might get the tableau shown in figure 8.5, which does not close.



180        NON-STANDARD LOGICS

A further complication arises when two (or more) sentences of the form wS

occur on the same path. Consider the tableau for the valid sentence

¬p¬(pA ⁄ p¬pA)

as given in figure 8.6.

In constructing this tableau we chose sentences 1 and 1' to be elaborated at

each choice point, i.e. when we first had to choose between 1 and 2 and then between

1' and 2'. When we reach the state shown in the figure we can stop building the

tableau because it is clear that we have reached a cycle, i.e. if we keep making the

same choices then the path will never be finished and so never closes. Hence, we

would conclude that the initial sentence is satisfiable, i.e. that ¬p¬(pA ⁄ p ¬pA) is

invalid. But, we know that this is not the case, so we need to do something to stop this

wrong conclusion being reached.

The problem is that we have not explored all possible ways in which the initial

sentence, and its sub-sentences, can be elaborated. For instance, we have at no point

chosen sentence 2 as the one to be used. One way of making sure that all possibilities

are eventually tried is to remember where a choice is made and use backtracking.

So, if we detect  a cycle then we backtrack to the previous choice point, make

a different choice, if possible, and carry on. If no other choice was possible, i.e. all the

others have been tried, then we backtrack to an even earlier choice point and make

another choice if possible. If all choices  have been made and they lead to non-closing

paths then, and only then, can we conclude that the initial sentence is invalid.

˜

w A       √

Figure 8.5

w A f A

√

¬  A

˜

 A

˜



181

Going back to the example we would backtrack to the last choice point, i.e.

where we chose 1', and this time choose 2'. As you can see in figure 8.7 the path does

close now because the starred sentences are contradictory. As you can check for

p ¬ (pA v p ¬ pA)

˜

¬ A

Figure 8.6

¬ ¬ p ¬ (pA v p ¬ pA)       √

˜

˜

˜

¬ (pA v p ¬ pA)          √

¬ pA          √            (1)

¬ p ¬ pA             (2)

¬ (pA v p ¬ pA)          √

¬ pA          √            (1')

¬ p ¬ pA             (2')

¬ A

˜

˜

˜

˜

˜



182        NON-STANDARD LOGICS

yourself, an even shorter proof could have been obtained by choosing sentence 2 at

the first choice point.

p ¬ (pA v p ¬ pA)

˜

¬ A

Figure 8.7

¬ ¬ p ¬ (pA v p ¬ pA)       √

˜

˜

˜

¬ (pA v p ¬ pA)          √

¬ pA          √            (1)

¬ p ¬ pA             (2)

¬ (pA v p ¬ pA)          √

¬ pA          √            (1')

¬ p ¬ pA             (2')

¬ ¬ p A      √

˜

˜

˜

˜

˜

˜

p A       (*)

 A

˜

¬ (pA v p ¬ pA)          √

˜

¬ pA

˜

¬ p ¬ pA       

˜

+



183

Having taken all these points into consideration we can write down an

algorithm for constructing tableaux as we did in the classical case. This algorithm will

be an easy adaptation of the original one, as you can see.

begin

repeat

changes := false

close each path that contains a sentence

and its negation

if all paths are closed

then deliver "S4-valid"

else

if a connective rule can be applied

   to a sentence

then

changes := true

apply the appropriate rule

mark the sentence as used

else

if a non-deleting modal rule

   can be used

then

apply the rule

changes := true

else

apply a deleting modal rule

mark the sentence as used

remember this as a choice point

do the necessary deletions

changes := true

if a cycle is detected

then

backtrack to last choice point

changes := true

until changes is false

deliver "not S4-valid"

end



184        NON-STANDARD LOGICS

Note here that the non-deleting modal rules do not lead to the sentence being

marked as used. This is so since if a sentence is of the non-deleting sort, i.e. either pS

or ¬wS, then either S or ¬S is true is all possible worlds (respectively), including any

minimal ones we might move to, so they should be available for elaboration in all

those worlds. This is rather similar to the case for the universal quantifier in classical

logic.

Once again we can show, though we won't here, that this algorithm is sound

and complete.

Exercise 8.4

a) Use the tableau method for S4 to decide the validity of the following

sentences:

i) pA f A

ii) A f pA

iii) w(A Ÿ B) f (wA Ÿ wB)

iv) wA f A

v) p(A  ⁄  ¬A)

vi) p(A  Ÿ  ¬A)

vii) p(pA  ⁄ ¬wA)

viii) wwA

b) Check your answers to i), ii), iv), v) and viii) above by using the definitions

of the semantics of the modal operators as given in section 8.4.

8.8. One use for modal logic in programming

In this section we will briefly illustrate how modal logic has been used to get

some grasp on the problem of expressing properties of programs (as you would want

to if you are going to reason about their correctness etc.) This example is one among

many given by Zohar Manna and Amir Pnueli in (Manna and Pnueli, 1981).



185

First, we need to set the scene. We will consider sequential computation as

described by a language which manipulates states. A state will be a pair (l,v) where l

is the current location and v is a vector of current identifier values, i.e. an

environment. Each statement of the program will be linked with the next by a

location. So, for instance, we can write

y1 := 2

l0 : print(y1)

l1 :  y1 := y1 + 1

l2 : y2 := 2

l3 : if (y2)2 > y1 then goto l0
l4 : if (y1 mod y2) = 0 then goto l1
l5 : y2 := y2 + 1

l6 : goto l3

which we call PR. The ys are identifiers, so their values are what are stored in e (in

order, i.e. value of y1, value of y2 etc.), and the ls are locations. Therefore, an

example of a state is (l1, <2,2>)

Then, our set of possible worlds will be a set of such states and the

accessibility relation holds between two states S = (li, v) and T = (mk, w) iff there is a

statement, whose location is li, which being executed in state S results in state T. So

in our example (l4, <3,2>) is related to (l5, <3,2>) and this state is in turn related to

(l6, <3,3>) etc.

We also define a useful predicate 'at l' which is true iff in the current state the

current location is l.

Now, the program PR prints an infinite sequence of successive prime numbers

2  3  5  7  11  13  17  19 .... If we have a predicate 'prime(x)' which is true iff x is a

prime number then using our knowledge of modal logic we can make statements

about the program. For instance, part of the statement that the program is correct is

 J  p(at l0 f prime(y1)) (1)

i.e. it is necessarily the case that if we are in a state whose current location is l0 then

the value of the first current identifier is a prime number. We might paraphrase this as

'nothing but primes are printed'. But there is much more to be said before we have

stated that PR prints the required sequence. For instance, the sequence  3  17  2  5  19



186        NON-STANDARD LOGICS

.... also satisfies (1). The property that every prime number is printed could be

expressed by

J " u[(at l0 Ÿ  y1 = 2  Ÿ  prime(u)) f w(at l0  Ÿ  y1 = u)]            (2)

i.e. if we are ever in the state where the current location is l0 and y1 is 2 (which we

are at the start of an execution of PR) and u is any prime number then there is at least

one state in which we are at l0 and y1 is u (which means that u will be printed).

This still does not mean that the primes (all of which will be printed) are

printed in order. To get that we need to have

 J  "u[(at l1 Ÿ  y1 = u) f p(at l0 f y1 > u)]

This simple example does, hopefully, show that we can use a modal logic to

state (and then prove) properties of programs. In this simple case the only apparent

benefit seems to be that precise statements can be made relatively easily readable.

You should contrast this with trying to express the above purely in first-order logic,

i.e. with the sequentiality explicitly mentioned. However, the real power of using this

logic becomes apparent if we consider describing computations involving several

programs which run simultaneously and interacting with one another. As an example,

we might express what is known as the 'liveness' of a program, i.e. the property that

the program never 'gets stuck' (perhaps waiting for a communicating program to give

it some input) indefinitely as

 J  at l f w¬ at l

i.e. if the program is at a particular location then there is an accessible state in

which it has moved from that location. Many other such important properties can be

so expressed.

8.9. Tableaux for Intuitionistic Logic

Computationally, the assumption that, for any proposition S, S ⁄ ¬S is valid

leads to problems. For example consider the program:

select

S : print "hello"



187

         ¬S : print "hello"

endselect

This can be shown to be equal to the program

print "hello"

 using the rule

if P=Q then

    select ... Ci : P ... Cj : Q ... endselect

= select ... Ci ⁄ Cj : P endselect

as follows:

select

S : print "hello"

         ¬S : print "hello"

endselect

= select S ⁄ ¬S : print "hello" endselect

= select true : print "hello" endselect

= print "hello"

However, if S is a proposition whose truth-value is not known, for instance if S is

"there are an infinite number of twin primes", then the original program, when

executed, gets no further than the test. Thus, the proof above must be wrong when

compared with the execution.

Considerations like this may lead us to think about logics where the

assumption that, for any S, S ⁄ ¬S is valid is not made.

We first looked at such a logic in chapter five where we gave a natural

deduction system for it. We will now give a tableau system too, but first we recap a

little.

Intuitionistic logic rejects this basic assumption of classical logic that every

sentence is either true or false, regardless of whether or not we know which it is.

Intuitionistic logic requires that if we say something is true (false) then we have

shown that it is true (false) by, for instance, constructing a proof or disproof. So,



188        NON-STANDARD LOGICS

given an arbitrary sentence, we cannot say it is true or false since in general we will

have shown neither.

A slogan of intuitionistic logic is "provability equals truth"; that is, speaking

intuitionistically, if you say a sentence is true then you mean the sentence has been

proved. Thus, to say a sentence is either true or false is to mean that it has either been

proved or disproved, but this is clearly not true of every sentence. So, while

classically S  ⁄  ¬S  (where S is any sentence) is a tautology, intuitionistically it

certainly is not. Thus, we reject the so-called "Law of the Excluded Middle".  We

shall have more to say on all of this in the next chapter.

We next want to develop a tableau procedure for deciding the truth of a

sentence under its intuitionistic meaning. It turns out that we can already do this by

using the procedure above for S4. What we do is to model intuitionistic reasoning

within a certain modal logic, and S4 turns out to be the one that works.

First of all, recall that an S4-logic is one in which the accessibility relation is

reflexive and transitive. Now, if we consider states of knowledge to be our possible

worlds then these clearly have a reflexive and transitive relation between them. That

is, once in a given state of knowledge we assume that all the knowledge in that state

is accessible to us (where by 'us' we mean 'ourselves as working mathematicians,

scientists etc.'). Also, if state of knowledge A leads to state of knowledge B, and B

leads to state of knowledge C then C is accessible from A too. This, we feel, is a

reasonable model for the development of knowledge.

Now, the model becomes complete if we follow a certain translation. If S is an

atomic sentence that is intuitionistically true, then it is classically provable.

Furthermore, if it is provable in state of knowledge A then it is provable in all states

of knowledge accessible from A (i.e. 'in the future' if we think of the accessibility as

allowing access between a state and its future). That is, we assume that something

once known is not 'not known'. If we formalize this we have that

 A makes S intuitionistically true iff for any state of knowledge B

accessible from A, B allows us to classically prove S

Now, if you look back to the definition of p you will see that the following is

the case

A  J S4 pS iff for all possible worlds B such that B is accessible from

A we have that  B J S4 S.



189

 Since, 'allows us to classically prove' can be summed up as ' J S4' and since

our possible worlds are states of knowledge we have

A makes S intuitionistically true iff for all possible worlds B accessible

from A we have B J S4 S

and further

A makes S intuitionistically true iff A  J S4 pS

 which we write, finally, as

A  J I S iff A  J S4 pS

Therefore, we can test the intuitionistic validity of S by testing the S4-validity

of  pS. In general we have to extend this to other than just the atomic sentences. We

have the following translation function T:

T(S) = pS, for S atomic.

T(S Ÿ T) = p(T(S)  Ÿ T(T))

T(S ⁄ T) = p(T(S)  ⁄ T(T))

T(S f T) = p(T(S) f T(T))

T(S j T) = p(T(S) j T(T))

T(¬S) = p¬T(S)

which, for example, formalizes the idea that S Ÿ T is intuitionistically true if is

provable that  S is intuitionistically true and T is intuitionistically true. So, if we have

A Ÿ B, where A and B are atomic, then we have that A Ÿ B is intuitionistically true iff

A is provable and B is provable, as we should have expected. Also we have that S ⁄ T

is intuitionistically true iff S is intuitionistically true or T is intuitionistically true

(which makes it clear that we should not expect S ⁄ ¬S in general). The last clauses

says that  ¬S is true is read as p¬pS, i.e (approximately) it is provable that S is not

provable. The other translations can be read similarly.

We then have the property

 J I S iff  J S4 T(S)



190        NON-STANDARD LOGICS

for S and T any sentences.

Thus, to test the validity of a sentence intuitionistically we first translate it

using T and then test the validity of the resulting sentence by using the procedure for

S4.

For example, the sentence A ⁄ ¬A gives

T(A ⁄ ¬A) =

p(T(A) ⁄ T(¬A) =

p(pA ⁄ p¬T(A)) =

p(pA  ⁄ p¬pA)

Then, the S4 procedure will show that this sentence is not valid, as we did in section

seven of this chapter, and hence A ⁄ ¬A is not valid intuitionistically.

Exercise 8.5

a) Decide on the classical and intuitionistic validity of each of the following

sentences:

i) A  ⁄  ¬A

ii) ¬¬A f A

iii) A f ¬¬A

b) We can extend the translation function T above to cope with the quantifiers

as well. T is extended so that as well as the rules above we have:

T("xS) = "xpT(S)

T($xS) = $xpT(S)

using this, decide on the classical and intuitionistic validity of:

i) "xA(x) f $xA(x)

ii) ¬"x¬A(x) f $xA(x)



191

Summary

•   Predicate calculus can only formalize types of reasoning in which

sentences are true or false timelessly whereas in computer science, particularly, we

often want to formalize systems in which propositions are true in some situations and

false in others (such propositions are called contingent). To do this we introduce into

the language two new modalities., wS which is read 'possibly S' and whose intended

interpretation is that wS is true if S is true in some possible situation, and pS which is

read 'necessarily S' and  is true if S is true in all possible situations.

 • These extensions to the language are given a semantics by introducing the

notion of a frame. A frame consists of a set of possible worlds  together with a

relation of accessibility between worlds. Propositions may be true in some worlds and

false in others. If S is a sentence then pS is true in a particular world if S is true in all

worlds accessible from that world, and wS is true if S is true in some world accessible

from it. Thus modal logic is not truth-functional. The truth-value of a formula such as

pS or wS  cannot be calculated from the truth-value of S at that world alone. The

truth-value of the other logical connectives, however, depends only on their value at

the world in which it is calculated, and so they are truth-functional and have the same

meaning as in predicate calculus.

 •  A model in modal logic consists of a frame and an interpretation which

specifies which atomic formulas are forced (i.e. true) in each possible world. A

formula is satisfiable if there is an interpretation and a world in which it is forced. The

validity of a formula can be disproved by displaying a counter-model in the form of a

possible-worlds diagram, showing the frame as a directed graph together with the

propositions that are forced at each world (node of the graph).

 •  Many systems of modal logic can be defined, depending on the properties

of the accessibility relation. For example the modal logic called S4 is the  system in

which the accessibility relation is reflexive and transitive. All such systems however

have the tautologies of propositional logic together with some basic equivalences

such as wS j ¬p¬S. For different accessibility relations in the semantics there are

corresponding proof systems. We show how a tableau system can be defined for S4.

 •  Modal logic can be used to give a semantics for intuitionistic logic, the

logic that is obtained by dropping the Contradiction rule from the natural deduction



192        NON-STANDARD LOGICS

system for predicate calculus. We saw in chapter five that a simple extension of the

truth-table idea to many linearly-ordered truth-values is not sufficient. However, a

possible-worlds semantics can be given for intuitionistic logic. The appropriate

accessibility relation is reflexive and transitive and we show how the tableau system

for S4 can be adapted to yield a proof procedure. A sentence S is intuitionistically

valid iff p S is valid in S4.



193

CHAPTER NINE

Further Study

9.1. Introduction

This chapter is intended as an appetizer for further study. Having worked

through the book the reader will hopefully be in a position to go on to more advanced

work: to look at  logics with more sophisticated bases; to look further, and more

sceptically, at the philosophical basis for much that we have presented here; to see

how logics have been developed for talking about, and making progress towards

solutions for, many problems in computer science.

We will, it what follows, do no more than briefly mention some problems and

further work based on them, and direct the reader to some reasonably accessible texts

that will allow further study. By no means do we claim to present a complete

bibliography, merely one that will allow the reader to move onto the next stage in

each area.

9.2. Connection method

9.2.1. Basic ideas

The connection method was introduced by Bibel (1987) as an efficient method

for deciding validity in predicate logic. It turns out that it has very close connections

with the tableau method that we looked at in chapter four, and can be seen, especially

in its later developments, as a very efficient way of implementing tableau systems.

Indeed, this has been demonstrated best by Wallen (1987) not only for classical logics

but non-standard ones too.



194        FURTHER STUDY

We shall give here just the first few steps towards the full connection method.

It is rather complicated to describe as the logical and algorithmic aspects that give it

its efficiency tend to be rather intertwined.

Consider the usual first example of a predicate logic argument

A1: "x(Man(x) f Mortal(x))

A2: Man(Socrates)

TH: Mortal(Socrates)

As we know, we can express this argument as

("x(Man(x) f Mortal(x)) Ÿ Man(Socrates)) f Mortal(Socrates)            (1)

If we then replace f by its expression in terms of   ⁄  and ¬ we get

¬["x(Man(x) f Mortal(x)) Ÿ Man(Socrates)] ⁄ Mortal(Socrates)

j ¬["x(¬Man(x) ⁄ Mortal(x)) Ÿ Man(Socrates)] ⁄ Mortal(Socrates)

 j $x(Man(x) Ÿ ¬Mortal(x)) ⁄ Man(Socrates) ⁄ Mortal(Socrates)            (2)

The next step is to write (1) in the form of a matrix. This is a two dimensional

representation of any sentence that is in the form of a disjunction of conjuncts, the

disjunctive normal form, like (1) above. So the matrix here is

Man(x)

ÿMan(Socrates) Mortal(Socrates)  

ÿMortal(x)

È 

Î 

Í 

Í 

˘ 

˚ 

˙ 

˙ 

and by convention variables, like x here, are existentially quantified. The above is

said to be a matrix consisting of a set of clauses, which are in disjunction, and each

clause consists of a set of literals, which are in conjunction. If we cross the matrix

from left to right, visiting one literal from each clause, we form a path.

A pair of literals with the same predicate symbol, where one of the literals is

negated, is called a connection. A set of connections is called spanning if each path

through a matrix contains a connection from the set.

In the matrix above there are two paths



195

{ Man(x), ¬Man(Socrates), Mortal(Socrates) }          (p1)

{ ¬Mortal(x), ¬Man(Socrates), Mortal(Socrates) }                   (p2)

and two connections

{ Man(x), ¬Man(Socrates) }                   (c1)

{ ¬Mortal(x),  Mortal(Socrates) }          (c2)

Since each of p1 and p2 contains one of c1 or c2, i.e. c1 ℘ p1 and c2 ℘ p2,

then by definition {c1, c2} is a spanning set of connections for the matrix.

It can be shown that a sentence is valid iff each element of a spanning set of

connections for the matrix form of S can be made into a complementary pair of

literals, i.e. the literals have the same predicate letter, one negated, and the same

arguments.

In the case above c1 and c2 can each be made complementary by the

substitution of Socrates for x. Therefore, we conclude that the original sentence (1) is

valid.

It is illuminating to compare this with the tableau proof:

"x(Man(x) Æ Mortal(x))   (1)

Man(Socrates)   (2)

¬Mortal(Socrates)   (3)

Man(Socrates) Æ Mortal(Socrates)    ÷   (4)

¬Man(Socrates)   (5) Mortal(Soctrates)    (6)

+   
using (2) and (5)

+   
using (3) and (6)

Note that we have made the same substitution and, essentially, the same

connections, shown here by contradictions. We can think of this set of contradictions

as spanning since they close every path of the tableau. Note, further, that by listing

the atomic sentences of all paths on the tableau we regain all of the paths through the

matrix.



196        FURTHER STUDY

9.2.2. Generating spanning sets

Consider the matrix shown below:

  0        1       2     3     4

L ÿL ÿM K L

ÿK M M

È 

Î 

Í 

Í 

˘ 

˚ 

˙ 

˙ 

0

1

We have added a grid to this matrix to make the naming of (positions of) literals

easier in what follows. This matrix has eight paths:

{00, 01, 02, 03, 04} p1

{00, 01, 02, 03, 14} p2

{00, 11, 02, 03, 04} p3

{00, 11, 02, 03, 14} p4

{10, 01, 02, 03, 04} p5

{10, 01, 02, 03, 14} p6

{10, 11, 02, 03, 04} p7

{10, 11, 02, 03, 14} p8

The task is to find a spanning set of connections, i.e. a connection for each path.

We choose a clause, say 0, and a literal within it, say 00. We then look for a

complementary literal in some other clause, say 1, so we find the literal 01. After

making this connection we can form three disjoint sets of paths:

a) those containing the connection {00,01} - these need no more work

b) those still to be worked on which contain 00

c) those still to be worked on which do not contain 00

so here we have

a) {p1,p2}

b) {p3,p4}

c) {p5,p6,p7,p8}

Next we put set c aside, perhaps on a stack in an implementation of this

procedure, and look at set b. With b we now repeat the procedure above. We choose a

clause, say 1, and a literal not yet in a connection (here there is only one, namely 11).

Then, we search the other clauses to form a connection with 11. Say we find 02.

Then, we partition the set b, as before, into three disjoint sub-sets:

ba) {p3,p4}



197

bb) {}

bc) {}

Clearly, this sub-problem is solved since there are no clauses in the "still to be

connected" sets. So, we go back to our stack of sets containing paths yet to have

connections found for them and work on them. Here, we work on set c. This gives

ca) {p5,p6,p7,p8}

cb) {}

cc) {}

by choosing the connection {10,03}. Now, since there are no more problems stacked

the whole problem is solved and we have our spanning set. Hence, the initial matrix

represents a valid sentence.

There is, of course, much more to say about the connection method. In

particular we have not mentioned here how we deal with first-order sentences. Having

generated spanning sets using the above mechanism we would need to find

substitutions that make the literals in the sets complementary. This involves the use of

unification and also some mechanism for respecting the restrictions that govern

universal and existential quantifiers. We have also not said anything about the

algorithms developed by Bibel for efficiently implementing the method. However, all

these questions really take us too far into the research area of automated reasoning

and so too far outside the scope of the current text. To treat the method properly

would take a whole textbook, as Bibel indeed does (Bibel, 1987), so we prefer to

leave the topic here and let  readers follow up if they wish.

9.3. LCF

9.3.1. Introduction

The name "LCF" (which stands for Logic for Computable Functions)

nowadays covers more than one system. The one that we shall look at here, which is

the original one, is more properly called "Edinburgh LCF". It grew out of work that

was started at Stanford University in California, USA. It is essentially a computer

program that acts as a proof-checker for a logic of computable functions.

The interactive nature of this system means that instead of a problem being

stated and then given to the program to work on until it gets an answer (or, more

usually, until it runs out of storage or the user runs out of patience), the idea of a

proof-checker (as opposed to a theorem-prover) is that the user issues commands to

build proofs step by step in an interactive manner. So, a step might be, "apply modus

ponens to theorems A and B". The program will check that the premises A and B are



198        FURTHER STUDY

of the right form for this step to be correct and then go on to produce the conclusion.

(Our SML program for proof checking does just this, though not interactively.)

In the case of Edinburgh LCF the way of issuing commands has been

embodied in a language that has an expressive functional subset. This language is

ML, for Meta Language, and is the pre-cursor to the language SML that we have been

using in this book.

Using a language with the expressiveness of ML means that not only can

proof rules be encoded but also rules for composing proof rules together. This feature

is a very important one.

The form of proof used in LCF is that of natural deduction. Each rule of

inference in the logic is expressed as an ML function which has as result a value of

the ML abstract type thm, i.e. a theorem. There are also functions which work on the

syntax of the language to break up sentences and build new ones, rather in the manner

of our functions like free_for, free_in, instance_of etc.

9.3.2. An example proof

As an example of how the system is used we will re-express a proof given

above in chapter five. This theorem to be proved is

 H p f (q f (p Ÿ q))

and, adapting the proof from chapter five we have the following proof:

H  p f (q f (p Ÿ q))

{p} H   q f (p Ÿ q)

{p,q} H   p Ÿ q

{p} H   p {q} H   q
ASSUME ASSUME

CONJ

DISCH

DISCH

Having discovered a proof like the above, we now need to use the LCF system

to check that it is in fact a correct proof. As we said before, the rules of the logic are

implemented as ML functions. These functions check that the premises given to each

application of a rule really do meet the requirements given in the rule definition.



199

Further, the only way of getting values of type thm , i.e. theorems in the

implementation is as the result of the functions which implement the rules. Hence, if

something is of type thm then it really is a theorem. So, if we can show that at each

stage of the proof above the statements are in thm then we know that the proof is

correct, i.e. we will successfully have checked it.

The first rule we need to use is

ASSUME : form -> thm 

where the formula w is mapped to  {w} H w. So, if we are sitting with the system

waiting in readiness for us to interact with it, we type

let a1 = ASSUME "p";;

let a2 = ASSUME "q";;

and get the response

val a1 = ["p"] ]- "p" : thm

val a2 = ["q"] ]- "q" : thm

(where ]- is the turnstile). Then we use the function

CONJ: (thm x thm) -> thm

which takes a theorem of the form A1 H w1 and one of the form A2 H w2 and returns

A1U A2 H w1Ÿw2 so here we type

let a3 = CONJ(a1,a2);;

which gives

val a3 = ["p","q"] ]- "p & q" : thm

Then we use

DISCH: form -> thm -> thm



200        FURTHER STUDY

where w and A H w' are mapped to  A' H w f w' where A' is A with all occurrences of

w deleted. So here we type

let a4 = DISCH "q" a3;;

to get

val a4 = ["p"]  ]- "q imp (p & q)" : thm

and finally

let a5 = DISCH "p" a4;;

to get

val a5 = ]- "p imp (q imp (p & q))" : thm

as required. So, our proof has been checked and found correct. If we had actually

made a mistake in any of the above steps then the system would have informed us of

this and disallowed the step. That is, a step is only allowed if the rule is being used

correctly. Any misuses are reported and the user has to adapt the alleged proof so that

all its steps are correct uses of the rules.

9.3.3. Tactics

Having seen how the system might be used on a very simple example where

the user decides at each step which rule to use, we now go on to look at a way in

which we can begin to make the system do more work for us. This will depend on

using the expressiveness of ML to program some more or less general purpose

problem -solving strategies.

One common way of constructing proofs in a natural deduction style (though

it is not of course restricted to this style) is as described in the natural deduction

chapter above, i.e. we use the rules of inference in a backward sense. That is, given

the correct goal, we find a rule whose conclusion can be made to match the goal and

hence, by reading off the associated premises, find some sub-goals which are simpler



201

to prove than the original goal. We keep on using this basic strategy until all the sub-

goals reduce to axioms or to sentences that we have proved previously.

For example, we can try to prove

 H (p Ÿ q) f (q Ÿ p)            (1)

First we look for a rule whose conclusion matches the sentence. In general there will

be many matches, so a searching mechanism will be required to make sure that we try

all possibilities. In this case it turns out that two rules are applicable; the rule

ASSUME or the rule DISCH as given above.

Clearly ASSUME gets us nowhere with our current goal so we use DISCH. We

match with (1) so that

(p Ÿ q) is w

(q Ÿ p) is w'

{} is A

{} is A'

and end up with the sub-goal, i.e. the instantiated premise of DISCH, being

(p Ÿ q) H (q Ÿ p)            (2)

We also need to record, for use later, the reason why this is a legitimate step. In this

case it is because of the rule DISCH. Now, we do the same with sub-goal (2). The

only rule that matches is CONJ which means we now have the sub-goals

(p Ÿ q) H q          (3a)

(p Ÿ q) H p          (3b)

and we record CONJ as the reason for these sub-goals. Tackling (3a) first, the only

rule which matches it is

SEL2: thm -> thm takes a theorem of the 

form A H w1 Ÿ w2 and 

returns A H w2

to give the goal



202        FURTHER STUDY

(p Ÿ q) H (p Ÿ q)          (4a)

with the reason SEL2. Similarly, (3b) needs SEL1

SEL1: thm -> thm takes a theorem of the 

form A H w1 Ÿ w2 and 

returns A H w1

to give

(p Ÿ q) H (p Ÿ q)          (4b)

with reason SEL1. Then (4a) and (4b) can be satisfied by ASSUME applied to (p Ÿ q),

and leading to no further sub-goals.

Now, we can put the all the validations together to get

DISCH(CONJ(SEL2(ASSUME(p&q)),SEL1(ASSUME(p&q))))   (5)

which can be thought of a linear way of describing what, in chapter five, would have

been more conventionally written as

H  (p Ÿ q) f (q Ÿ p)

 (p Ÿ q) H  (q Ÿ p)

(p Ÿ q) H  q (p Ÿ q) H  p

(p Ÿ q) H  (p Ÿ q) (p Ÿ q) H  (p Ÿ q)
ASSUME ASSUME

SEL2 SEL1

CONJ

DISCH

The task of mapping a goal to a list of sub-goals and a validation is carried out

by what, in LCF parlance, are called tactics. (Here we are going to present a

simplified version of the full LCF idea. It will however convey the main points about

use of tactics.) . A validation is some action which makes a tactic T  valid.  This

means that,

if g and g1, ..., gn are goals and v is a validation and T(g) = ([g
1
,..., g

n
], v)

then,



203

if v
1
,..., v

n
 achieve g

1
,...g

n
 respectively then v(v

1
,...,v

n
) achieves g, which rule

we call V.

By looking at the example above, together with the descriptions of the rules,

we can assemble the following tactics, sub-goal lists and validations:

DISCHtac   where (A',w f w') is mapped to

([(A U {w},w')], lx.(DISCH w x))

CONJtac where (A
1
 U A

2
,w

1
Ÿw

2
) is mapped to

([(A
1
,w

1
),(A

2
,w

2
)], l(x,y).CONJ(x,y))

SEL1tac where (A,w
1
) w

2
 are mapped to

([(A,w
1
 Ÿ w

2
)], lx.(SEL1 x))

SEL2tac where (A,w
2
) and w

1
 are mapped to

([(A,w
1
 Ÿ w

2
)], lx.(SEL2 x))

ASSUMEtac where ({w},w) is mapped to

([], ASSUME w)

and note that this last tactic is a special case since it produces no sub-goals.

Now we can re-trace our steps in the construction of the proof above. First, at

step one, we apply DISCHtac to "(p & q) imp (q & p)" which gives us

([([(p & q)],(q & p))], lx.(DISCH (p & q) x))

(and here we have left out some of the quotes and brackets to make the text a little

easier to read.) Then we begin on the sub-goal list, which in this case means dealing

with just one sub-goal. We use CONJtac to get, at step two,

([([(p & q)],q),([(p & q)],p)], l(x,y).CONJ(x,y))

and then SEL2tac on the first sub-goal and SEL1tac on the second to get, at steps

three and four

([([(p & q)],(p & q))], lx.(SEL2 x)) ([([(p & q)],(p & q))], lx.(SEL1 x))



204        FURTHER STUDY

and each of these is solved with ASSUMEtac, at steps five and six, to give, for both

cases

([], ASSUME (p & q))

which has no sub-goals, so we are finished. Now we just need to collect up the

validations in each case and use the rule V for achieving goals. So, to achieve the two

sub-goals resulting from steps three and four we apply ASSUME (p & q) to what

achieves the sub-goals at steps five and six, but since the list is empty in each case,

i.e. there are no sub-goals, we apply it to nothing. Then, to achieve the first sub-goal

at step two we apply lx.(SEL2 x) to ASSUME (p & q) (according to rule V) and to

achieve the second sub-goal at step two we apply lx.(SEL1 x) to ASSUME (p & q).

To achieve the sub-goal at step one we apply l(x,y).CONJ(x,y)  to (lx.(SEL2 x)

ASSUME (p & q), lx.(SEL1 x)  ASSUME (p & q)). Finally, to get the original goal we

apply lx.(DISCH (p & q) x) to (l(x,y).CONJ(x,y) (lx.(SEL2 x)  ASSUME (p & q),

lx.(SEL1 x)  ASSUME (p & q))) to get

lx.(DISCH (p & q) x)  (l(x,y).CONJ(x,y) (lx.(SEL2 x)  ASSUME (p & q), 

           lx.(SEL1 x)  ASSUME (p & q)))

which simplifies, by the rules of the l-calculus, to the expression (5) above.

So, we can see that by having tactics, which are essentially the rules of

inference backwards with extra mechanism for book-keeping purposes, we can

formalize the idea of working backwards from goal to simpler and simpler sub-goals.

The next stage, which we will not go into, allows these tactics to be combined

together, by functions called tacticals, by operators to form more and more complex

tactics to get nearer and nearer to aim of making more and more of the proof

construction process automatic, at least in fairly uniform and simple cases.

We will leave our presentation of LCF here, but fuller details can be found in

Gordon et al. (1979).

9.4. Temporal and dynamic logics

9.4.1. Temporal logic

One particularly important use for the ideas of modal logics are logics where

the modalities are related to the time at which or for which statements are true or



205

false. We looked briefly at an approximation to this idea when we showed an example

of using modal logics to describe computations in chapter eight. There the possible

worlds were states in a computation and the accessibility relation related worlds

which were linked by the execution of a program statement. This can be taken further

and instead of states in the computation being linked by program statements we can

think of moments in time linked by the passage of time. Under this more general

presentation the accessibility relation relates states that are temporally earlier with

states that are temporally later. Finally, this idea can then be used to model any

system where there is a temporal relation between states.

Let us set up a simple temporal logic, as we call logics which reason about

time (and they are also called "tense logics" by other authors). We follow the pattern

set when we talked about modal logics, so first we need a frame. We let P be a set of

possible worlds and R be an accessibility relation, but this time, to remind ourselves

that we are dealing with an "earlier-later than" relation we shall write R as <. As

suggested by the use of this symbol, we shall make <  transitive. We shall also make

< connected. This means that no time that we can get to is isolated from past or future

times. These two conditions mean that the sort of time we shall look at is the usual

linear one that is used in everyday reasoning (though it does break down once we start

to think of relativistic effects). The conditions can be formalized as

< is connected: "t"t'(t<t' ⁄ t=t' ⁄ t'<t)

< is transitive:  "t"t'((t<t' Ÿ t'<t'') f t<t'')

Now, following our pattern for modal logics we can introduce the counterpart

to p and w. Following our previous use of the notation we will write

 t |J S

to mean that S is true at time t.

There are usually taken to be four temporal modalities and these are as

follows, where S is any statement:

FS there is a future time when S will be true

GS at all future times S will be true

PS there is a past time when S was true

HS at all past times S was true



206        FURTHER STUDY

These can be formalized as:

t |Jv FS  iff  there is a t' such that t<t' and t' |Jv S

t |Jv GS iff for all t', if t<t' then  t' |Jv S

t |Jv PS iff there is a t' such that t'<t and t' |Jv S

t |Jv HS iff for all t', if t'<t then t' |Jv S

with the definitions for the non-temporal operators as before. These definitions give,

analogous to the case with p and w,

¬FS  j G¬S

¬PS  j H¬S 

It turns out that for this system there is also a tableau method which can be

used to decide validity, just as in the modal and classical cases.

This, of course, is just the beginning of the story. We can go on to ask whether

time is discrete, i.e. broken into indivisible moments, or continuous, in which case,

like the real line, there is always a moment of time between any two moments. Also,

we can model the idea that the future is not linear, as we have it here, but branching,

in the sense that, even though, a given observer passes through a sequence of

moments, the future might be a branching structure of possibilities through which an

individual traces a single, linear path. The difference can be suggested by comparing

the diagrams below, for linear and branching time respectively:



207

 We have here only looked at a tiny fragment of the huge and varied

philosophical and mathematical literature on temporal logics. For further study we

refer the reader to Rescher and Urquhart (1971). For work on temporal logics directly

related to programming Manna and Pnueli (1981) is a good starting point.

9.4.2. Dynamic logic

This is another example of an extension of the basic ideas of modal logic. If

we take P, the set of possible worlds, to be possible states of a computation then the

accessibility relation R will relate a state s to a state t. However, we want the fact that

states are related, because execution of a program causes transition from one to the

next to be reflected in the accessibility relation. The dynamic logic way of doing this

is to index the relation with the program. So, if s and t are states of a computation and

we get from s to t by executing the program a then we should have that (s,t) Œ R(a).

That is, the relation R changes depending on what program we are currently dealing

with. This is clearly an extension of the idea of accessibility relation that we saw

previously.

Now we want to see how this change is reflected at the level of propositions.

Recall the definition of p:

s |J p S iff for all tŒP such that (s,t)ŒR, t |J S

Since the relation R will now depend upon the program a  we make the

necessity operator depend upon it too. If the frame and valuation (as before) are

understood then we write s |J [a]S to mean that whenever the program a is executed



208        FURTHER STUDY

starting in state s, then proposition S is true under the valuation in the state that

obtains after the execution. Formally we have

s |J [a]S iff for all tŒP such that (s,t)ŒR(a), t |J S            (1)

and we also have, as you might expect,

s |J <a>S iff there exists a t such that (s,t)ŒR(a) and t |J S            (2)

that is s |J <a>S means that if a is executed in state S then there is a state that the

computation will be in where S obtains. As before, a sentence is valid in a frame iff it

is true for all valuations in the frame and a sentence is valid iff it is valid in all frames.

The language of propositions, with the extension of indexing the modalities, is

just as usual. The language of programs is usually based, using the initial work in

Pratt  (1976), on the following primitives:

do a then do b a;b

do either a or b a U b

do a a finite number of times a*

evaluate the proposition S, if it is true

then carry on with the evaluation, S?

otherwise fail

The meaning of these programs is given in an obvious way. So, for instance,

we have

if (s,t)ŒR(a) and (t,r)ŒR(b) then (s,r)ŒR(a;b), for any s,r,tŒP.

Using these program forms we can introduce more expressive statements by

definition. For example we have

while S do a is defined to be (S?;a)*;¬S?

if S then a else b is defined to be (S?;a) U (¬S?;b)

Using this simple propositional language we can make statements about the

correctness of algorithms. For instance, the statement



209

(n≥0) f [x,y := n,1; while x>0 do (y:=y*x; x:=x-1)] (y=n!)

is true if, whenever we start in a state where n≥0 (where a state is a tuple of variable

values) and then execute the program, the final state will be one where y=n!, i.e. the

statement says that the program correctly calculates the factorial function of n.

We can, more abstractly, also make statements about relations between

programs. So, for instance, if S is any statement then if we can prove

<a>S j <b>S

then we can conclude that the programs a and b are equivalent, that is they give the

same result when started in the same state.

We can also prove derived properties of programs that can serve to make

proofs easier. For instance, under the intended interpretation, it is clear that we would

expect that if

|J S f [a] T and  |J T  f [b]R

then

|J S f [a;b]R

and we can show this as follows. By assumption, for any frame <P,R> and any

valuation in that frame we have, for any sŒP, s |J S f [a] T , i.e. if s |J S then s |J [a]

T . So, for all tŒP such that (s,t)ŒR(a), t |J T. Similarly, again by assumption, we have

that if, for any tŒP, t |J T, then for all rŒP such that (t,r)ŒR(b), r |J R. So, putting this

together, we have that if s |J S then for all tŒP such that (s,t)ŒR(a) and for all rŒP

such that (t,r)ŒR(b), r |J R. By definition, this means that if s |J S then, for all s,rŒP

such that  (s,r)ŒR(a;b), r |J R. And this means that if s |J S then s |J [a;b]R. This,

finally, gives us the desired conclusion.

Here we have only given an idea of the expressiveness of dynamic logic and

have given very little in the way of formal semantics. Its expressiveness can be

extended by allowing the statements to be first-order and then as well as quantifying

over, say, numbers we can quantify over programs themselves. The formal semantics

that we gave for modal logics can be extended to include a formal semantics for

programs too. This in turn leads to an extension of the tableau system to provide

algorithmic means for decision procedures and semi-decision procedures as before.



210        FURTHER STUDY

However, we will leave this huge subject here since, again, we would need to write a

whole book to do it justice.

9.5. Intuitionistic logic

9.5.1. Introduction

Intuitionistic logic was developed because mathematicians working at the turn

of the century thought that the foundations of their subject were not secure. The basis

for these thoughts came with problems in set theory like the Cantor paradox. This can

be briefly described as follows. If A is a set then the size of the set is given by its

cardinal number A
=

 , which is the set of all sets which have the same number of

elements as A (or more precisely whose elements can be put into a one-one

correspondence with those of A). Let  A
=

  ≤  B
=

 , for two sets A and B, mean that A has

the same cardinality as a sub-set of B. Then, by a result of Cantor's, for any set A and

its powerset P(A) we have  A
=

  ·   P(A)
====

 . Now, let U be the set of all sets, i.e. the

universal set. Then, by definition P(U) z U so  P(U)
====

  ≤  U
=

 . But, by Cantor's result

we have  U
=

  < P(U)
====

 , which gives a contradiction. This is Cantor's paradox.

 Frege and Hilbert, who thought that mathematics lacked proper foundations,

set about trying to provide them.

Frege thought that the foundations should be built by basing everything on

logic, as he considered this to be a more fundamental subject. Hilbert thought that

mathematics should be built by setting up, say, arithmetic by using completely agreed

upon and clear axioms and then using only completely clear "metamathematical"

arguments to construct all of the rest. Both these projects failed. Frege's ideas, as we

said before, failed to form the foundations based on purely logical grounds because of

the contradictions found by Russell. Hilbert's program, as it was called, failed because

of the incompleteness theorems of Gödel. Brouwer started a third movement that tried

to provide a proper foundation, and this movement is usually called intuitionism.

If you are working as an intuitionist then you want all of your mathematics to

be constructive. Put simply, this means that you do your mathematics without use of

the so-called law (or principle) of the excluded middle and without the use of non-

constructive existence proofs.

The law of the excluded middle  states that for any statement S, either S is true

or ¬S is true. This is the fundamental assumption that we introduced when starting

with classical logic. The general form of a non-constructive existence proof is one

where we seek to prove $xS(x) by proving  ¬ "x¬ S(x)



211

As an example of the sort of proof that mathematicians do not want to give up,

due to its elegance and simplicity and which uses the law of the excluded middle, we

have the following time-honoured first example:

Theorem

 There exist solutions of   x
y
 = z  with x and y irrational and z rational.

Proof

  2  is irrational. Also, 2
2

  is either rational or irrational. If 2
2
   is

rational then put x =  2  and y = 2 , then z is rational. If 2
2
    is irrational then

put x = 2
2

  and y = 2 , then z = Ë
Ê

¯
ˆ

2
2 2

 = 2 
2

  = 2 is rational.

Constructively the problem with this is that, having "proved" the theorem is

true, we still do not know how to actually give examples of the numbers x, y and z.

This is rather unsatisfactory and certainly not constructive.

9.5.2. Brouwer's criticism

Brouwer said that mathematics was essentially something that people carried

out in their minds. He saw mathematics as the activity of building mental models and

finding relationships between them. Formalism, under his reading, is not a part of

mathematics itself; however, since we like to communicate our mathematics to other

people we need to express it in some precise language, hence the formalisms that

have been developed.

Brouwer also saw as basic the idea of a unit and the idea of putting units

together, from which we get the basic notion of counting and so the natural numbers.

This analysis also immediately yields the idea of mathematical induction. This is in

contrast to Frege's development of the natural numbers from purely logical principles.

 However Brouwer rejected the idea of the law of the excluded middle and the

validity of non-constructive existence proofs. He believed that the problem that was at

the root of the set theoretic paradoxes was that classical logic was generalized from

the logic that is behind finite sets. This is what mathematics essentially dealt with

until the work of Cantor, Dedekind and others, who introduced the idea of infinite

sets as completed objects. It then seems as though people eventually forgot or ignored

this development from the finite and used this actually rather restricted logic on sets

in general. This misuse was what gave rise to the paradoxes.



212        FURTHER STUDY

9.5.3. Formalization of intuitionistic mathematics

The first formal system for the logical part of intuitionistic mathematics was

presented in 1930 by Heyting. (A more readable, to a non-German reader,

presentation is in (Heyting, 1956)). He gave an interpretation of the connectives

which forms the basis of the system that we shall talk about below. The interpretation

is as follows:

S Ÿ T can be asserted iff both S and T can be asserted.

S ⁄ T can be asserted iff at least one of S and T can be asserted.

¬ S can be asserted iff we have a method which, supposing we have con-

structed a proof of S, would when applied to the proof for S lead to a contradiction.

S f T can be asserted iff we have a method which when applied to a proof for

S will give a proof for T.

("x)S(x), with x ranging over T, can be asserted iff we have a method which,

for any element a from T, gives a method for constructing a proof of S(a).

($x)S(x) can be asserted iff we can construct an element a and a proof of S(a).

Logical schemas, i.e. formulae with sentence variables, can be asserted iff we

have a method which by specialization gives a method for constructing a proof for the

formula with any propositions substituted for the variables. For example, we have S

f S since the "identity method" trivially can be specialized to provide a proof of this

formula with any proposition in place of S.

We can see how this explanation shows that the excluded middle, S ⁄ ¬S, is

not valid. If it were valid then it would give a general method to solve any problem.

That is, for any proposition S the general method would specialize to give either a

proof of S or a proof of ¬S. Since such a general method does not exist, the law is not

valid.

Heyting actually gave his logic as a formal system. It consisted of ten axioms

together with the usual rules of deduction, i.e. modus ponens and instantiation.

9.5.4. The link between proofs and programs

The connection between intuitionistic mathematics and programming comes

via the propositions-as-types principle. This, as its name suggests, says that

propositions and types (in the logical and programming senses respectively) are

equivalent. In this section we go on to look at how the ideas above have more recently

been brought together.

Basically, we use Heyting's definitions of the logical constants, so we have

things like (where P maps propositions to their proofs)



213

P(S  Ÿ  T) = {(a,b) | a Œ P(S ) and b Œ P(T)} = P(S ) X P(T)

P(S ⁄ T) = {i(a) | a ŒP(S)} ª {j(b) | b Œ P(T)} = P(S) + P(T)

P(S f T) = {lx.b | if a Œ P(S) then b(a) Œ P(T)} =  P(S) f P(T)

and so on. We see here that the witnesses to the truth of a proposition are made

explicit and shown as terms, like (a,b) as the proof of S  Ÿ  T, which we write

(a,b) : S  Ÿ  T

When we read this as a type we have

(a,b) : S  X  T

just as in SML. So, the third term in each of the lines above, i.e. P(S) X P(T) etc.,

uses an interpretation that we would expect to see if we remember that we are looking

for a link between propositions and types. Thus, we see that the above semantics

introduces all our favourite data-type constructors like X, +, function space etc.

The quantifiers, when thinking of propositions as types, are modelled by the

operators ’ and S , universal and existential respectively. These operators can be

thought of as acting like quantifiers ranging over some type, i.e. instead of saying

"For all x, T(x)" we say "For all x in S, T(x)". Extending the definitions above we get

(and following Heyting again):

P((" x  Œ  S)T(x)) = { lx.b(x) | if a Œ P(S) then b(a) Œ P(T(a))} = 

’(P(S), P(T))

P(($ x Œ S)T(x)) = { (a,b(a)) | a Œ P(S) and b(a) Œ P(T(a))} = 

S(P(S),P(T))

The final gloss we add is to interpret propositions not only as types but also as

specifications. The reason that we can do this is that the type language is so rich, far

richer than with SML for instance. As we shall see this means that we now have a

single language in which to specify and construct  programs.



214        FURTHER STUDY

9.5.5. The formal system

The formal system which defines the syntax and semantics of this powerful

language is usually presented in a natural deduction style.

We should also say something about the expressions that appear in the lan-

guage of the system. As usual expressions are built from a set of given constants,

variables like x,y etc. and abstraction and are combined by the operation of ap-

plication. If e is an expression which contains free occurrences of the variable x, then

(x)e is an expression in which the free occurrences of x in e are now bound.

Application is then as usual, i.e. (x)e(a) is an application of (x)e to a, and it is

computed by replacing all free occurrences of x in e by a (with the usual rules for

avoiding variable capture).

For example, the usual natural deduction rules for introducing Ÿ might be

S$$$$$$$$$$T

$S$Ÿ$T  

and in the formal system this would be written, making the proof witness explicit,

%

$a$:$S$$$$b$:$T%

(a,b)$:$S$Ÿ$T%  

As another example we have the rules for f

     [S]

$T%

$S$Æ$T$  

which  is  written

               %

b(a)$:$T$$[a$:$S]

l$(b)$:$S$Æ$T  

So, for example, we can construct a derivation as follows:%

 
(x)x(x)$:$S$[x$:$S]

l((x)x)$:$S$Æ$S  %



215

and we can see how this fits with the definition that Heyting gave to f; if a is a proof

witness of S then applying l((x)x) to a gives a back, which is a proof witness of S, so

l((x)x) is properly a proof witness of S f S. We see here a simple example of a proof

witness being a program, i.e. l((x)x) is the program for the identity function.

The inputs and outputs, so to speak, of the rules are known as judgements. So,

above (x)x(x) : S [x : S] and l((x)x) : S f S are judgements. The first, since it depends

upon another judgement, is called a hypothetical judgement . There are four readings

of the judgement form %a : S%which are:

i) a is a proof witness of proposition A

ii) a is an object of type A

iii) a is an element of the set A

iv) a is a program that satisfies A (as a specification)%.

The first two express the idea of propositions-as-types. The third one can be

seen as a reading of the first if we consider that, thought of as a set, the elements of a

proposition are its proofs. The final reading is a more suggestive version of the

second made possible because of the computational nature of proofs and the very

expressive types.

Apart from logical rules such as these we also have the natural numbers as a

basic type.  If we think of the type N to be "logically" the predicate "there is a natural

number" then we usually have

%

N(0)                       
N(x)%

$N(succ(x))% 

%

which we have in the formal system as

%

%0  :  N                    
x$:$N%

succ(x)$:$N% 

We also have mathematical induction:%

%[P(0)  Ÿ  (" k)(P(k) f P(succ(k)))] f (" x)P(x)%

which becomes

%



216        FURTHER STUDY

n$:$N$$$$$$$d$:$C(0)$$$$$$e(a,b)$:$C(succ(a))%$[a$:$N,$b$:$C(a)]%

rec(n,$d,$e):$C(n)  %

Here rec(n, d, e) is an example of a non-canonical  expression, i.e. an

expression which can be evaluated or converted into a simpler (more canonical) form.

In this case, as you would expect with "rec" denoting primitive recursion, we have

(with » denoting "converts to")

rec(0, d, e) » d

rec(succ(a), d, e) » e(a, rec(a, d, e))

For example, if we put d ≡ 0 and e ≡ (x,y)succ(y) then we have

rec(0, d, e) » d ≡ 0

and

rec(succ(0), d, e) »

 (x,y)succ(y)(0,rec(0, d, e)) ≡ 

succ(rec(0, d, e)) »

succ(d) ≡ 

succ(0)

In fact we can show that (n,m)rec(n,m, (x,y)succ(y)) behaves like addition.

9.5.6. Algorithm development - A sorting example

The formal system very briefly introduced above was developed by Martin-

Löf (1985) and is called, variously, ITT, for Intuitionistic Type Theory, or CST, for

Constructive Set Theory. Algorithm development in ITT consists of writing a speci-

fication (which will look like what may be viewed as a typed predicate calculus

sentence) for a task and then, considering the specification as a type, demonstrating

that the type is non-empty. If the demonstration is successful then an object of the

appropriate type (equally a program that satisfies the specification, equally a proof

that the statement of the, as we are reading it, typed predicate calculus sentence is

true) will have been constructed.

   In the course of proving the sentence it will probably, for all but the most

trivial cases, be necessary to have many theorems about the objects that are

mentioned. Some of these theorems will be about basic objects and will, hence,

already be available since basic objects are defined by stating some of their properties

(specifically, how to construct them and how to prove two objects equal).



217

   For derived objects, i.e. objects which are not basic, the fact that they exist

means that we have some sentences which describe some of their properties. Indeed,

the activity of programming in ITT must be viewed as the construction of a hierarchy

of objects, each with various theorems describing them, such that more complex

derived objects are built from simpler ones.

So, when we start to develop an algorithm, we must assume that we are

working in an environment where various properties of various objects are known,

either by being basic properties or because, at some previous time, we have

demonstrated that various derived objects have these properties.

   The first task is to write down the specification for the program to be

developed. In English we might express the specification of an algorithm to sort lists

of natural numbers as

"write a program which, for any list x of natural numbers, gives a list l of

natural numbers such that l is a permutation of x and l is ordered".

In ITT we would say that we must prove that the type

  ’(List(N),(x)S(List(N),(l)(Perm(x,l)  Ÿ  Ordered(l))))                              (1)

 is not empty, and we do that by constructing an object of that type. This object will

then be, under the alternative reading,  a program which satisfies the specification. It

turns out, as you may have guessed, that since this construction process is to be

carried out entirely within this formal system it is a long and complicated process.

There are many research level projects currently being carried out whose aim is to

transfer more and more of the burden of these formal constructions onto

programming systems so as to allow a programmer more freedom to think and

provide the inspiration needed to make the constructions possible. For this reason, i.e.

that the constructions are hard and also, in all their detail, unpleasant to look at, we

shall only go as far as presenting the development of a type, or specification, for a

sorting algorithm and the first simple steps in the construction of a program.

    Before we can carry on with our construction, we must know what Perm

and Ordered are. Ordered should be provable of a list x if either x is nil or x is a

singleton or its first two elements are in  order and its tail is ordered, which we write

(using ≡ for definitional equality)

Ordered  ≡  (l)listrec(l,True,(x,y,z)listrec(y,True,(x',y',z')((x≤x'=B true) Ÿ z)))



218        FURTHER STUDY

To see how the English and the definition match up first note that we have

listrec(nil,a,(x,y,z)c(x,y,z)) = a

and

listrec(b.l,a,(x,y,z)c(x,y,z)) = c(b,l,listrec(l,a,(x,y,z)c(x,y,z))

where . is infix cons.

The type True has only  one element, i.e.

True  ≡  {it}

and is trivially non-empty since the property  that defines it is

it : True

 i.e. the sentence True is trivially always provable. Thus, in  the definition of Ordered

above we are stating that  Ordered(nil) is simply the type True and thus

it : Ordered(nil)

so Ordered(nil) is true.

By repeatedly applying the listrec we have

Ordered(nil) = True

Ordered(a.nil) = True

Ordered(a.(b.c)) = (a≤b)   =B   true Ÿ  Ordered(b.c)

where the type B (for Boolean) is another enumerated type such  that

B  ≡ {false, true}

Similarly, we define Perm by

Perm ≡ (a,b)(listrec(a,True, (x,y,z)(occurrencesof(x,a) =N   

occurrencesof(x,b)Ÿ  z)  Ÿ  len(a) =N  len(b) )



219

As with our previous natural deduction derivations from chapter six, a good,

overall strategy is to work in a goal directed fashion, bottom-up. So, given that (1)

needs to appear at the root of a derivation we need to find a rule which has a

judgement of the form

e : P(A,B)

as its conclusion. Such a rule is called P-intro and has the form

b(x)$:$B(x)$[x$:$A]
l((x)b)$:$P(A,B)  

so our first step is to write the root of the derivation as, where b is to be discovered as

the derivation proceeds,

b(x)$:$Â(List(N),(l)(Perm(x,l)ŸOrdered(l)))$[x$:$List(N)]

l((x)b)$:$’(List(N),(x)Â(List(N),(l)(Perm(x,l)ŸOrdered(l)))) 

Now we have reached the stage where the construction starts to get very

detailed and difficult and the reader should note that  this section forms the basis of

the more detailed introduction in Reeves (1989). As we said before, we have to leave

the development here and allow the interested reader to follow the references given

earlier on their own.

Summary

 •  We have seen four methods of deciding validity in predicate calculus,

namely axiom systems, semantic tableaux, natural deduction (or sequent calculus)

and resolution. All these methods are logically equivalent but they differ substantially

when viewed as algorithms for practical implementation. 'State of the art' at the time

of writing (i.e. 1990) is the connection method which can be viewed as an efficient

development of the tableau method that avoids explicit and wasteful duplication of

sub-formulas and branches. (Added in 2003: there has been a great upsurge in interest

in tableaux methods too over the last ten years, which is very heartening.)



220        FURTHER STUDY

 •   The basic reason why fully automatic theorem-proving is currently too

slow to be practical  is that it is difficult, in a fully automatic uniform procedure that

doesn't know the meaning of the formulas it is manipulating, to control the size of the

search space. Currently the most successful systems for using logic to reason about

programs are interactive. Both partners do the part they are good at. The machine

does the book-keeping and checks that the rules are correctly applied; the person

interacting with it chooses what to do next on the basis of understanding and

experience of the domain. The LCF system described in this chapter goes further than

this. Based on natural deduction, it not only does the basic book-keeping when rules

are applied but also allows general-purpose proof techniques, such as working

backwards, to be used, and simple strategies to be combined together into more

complex ones.

 •  One  important application of modal logic is in temporal reasoning. For

example, in reasoning about the execution of concurrent programs, the possible

worlds are different states of a computation at different points in time and the

accessibility relation represents the ordering of time points.  The modalities are used

to tense statements, for example FS is true if S is true at some future time.

 •  Another application of the ideas of modal logic in computer science is

dynamic logic. Here the possible worlds are different states of a computation and the

accessibility relation represents the program which determines, for each state, the

state that succeeds it. The p of modal logic now depends on the program a and is

written [a]. [a]S is true in state s if S is true in the state that results when a  is

executed in state s. Dynamic logic is expressive enough to represent many

programming constructions such as 'if…then…else'.

 •  Intuitionistic logic arose out of the constructivist movement in

mathematics which rejected non-constructive existence proofs or those based on the

law of the excluded middle. Recently a connection between intuitionistic mathematics

and programming has come out of the observation that propositions and types (in the

programming sense) are equivalent. Algorithm development in this formal system,

which is based on natural deduction, consists of writing a specification in logical

notation and then, considering this as a type, proving that it is non-empty. Because the

underlying logic is constructive the proof, if it can be carried out, must embody the

explicit construction of an object of the appropriate type.



221

APPENDIX A

Introductions to Standard ML and

Prolog

A.1. Introduction

In this appendix we will describe and present programs in Standard ML and

Prolog for the various algorithms introduced in the body of the book and for those

asked for in answers to exercises.

We begin with a brief run through the basic features of SML and Prolog, so

that the reader who is fairly familiar with these languages may understand the

programs that we present. For those of our readers who are not familiar with either of

these languages we would recommend the texts by Wikström (1987) and Bratko

(1987) as excellent introductions to SML and Prolog respectively.

A.2. Standard ML

A.2.1. Simple values

A program in Standard ML (hereafter SML) is a sequence of declarations

which are always read from top to bottom and left to right. Each declaration refers to

and updates a value environment, which is a function which maps names to values.

The simplest form that such a declaration can take is to associate a name with a basic

value, like an integer:

val n = 2;



222        APPENDIX A

This declaration associates the name n with the value of 2, the association

being recorded in the environment. When this declaration is presented to the SML

implementation it not only updates the environment but its type is also calculated,

printed and added to a type environment, which maps names to types. So, having

checked that the above declaration is well-formed, i.e. conforms to the grammar of

SML, the implementation prints some type information; in this case we have

val n = 2 : int

which tells us that n is associated with the value of 2 in the value environment and

the type of 'n ' is 'int ', i.e. n  is associated with the type 'int ' in the type

environment.

There is a particular form of declaration which looks as though it should be

called something like 'expression'. For example

2;

is of this form. In fact any input of this form is treated by SML as a declaration of the

hidden name 'it'. This name is a standard one that exists in every environment and

any input like the one above is taken to be an abbreviation of the declaration

val it = 2;

or more generally

val it = EXP

where EXP is any SML expression.

A.2.2. Function values

As well as simple values of the types of int, string, bool and so on

we have values of function type. For instance, we can define a successor function s by

fun s(x) = x+1;



223

Again, the environment is updated so that the name s is associated with a

value; in this case the value is the function which adds one to its single argument.

Given the above declaration the interpreter will return

val s = fn : int  -> int

i.e. that s is a function of type integer to integer, as we would expect. Note that

instead of writing out the value of s the interpreter writes just fn.

The language SML is known as a strict language. This means that the

arguments to any function are evaluated before the body of the function is executed.

This means, for instance, that if one of the arguments is undefined then the whole

function is undefined whether or not the argument is used in the body of the function.

To see the difference consider the function s again and imagine applying it the

expression 1 div 0. As we would hope, the evaluation of the expression s(1 div

0) fails, but this would have happened even in a language that was not strict.

However, now consider applying the function defined by

fun t x = 2;

to 1 div 0. In SML the expression t(1 div 0) is also undefined, even though

the argument is unused in the body of t, proving that SML is strict. In a non-strict

language, where the arguments to a function are evaluated only if they are needed in

its body, the expression would have evaluated to 2.

While we are talking about the notion of an expression being undefined we

should say something about how this is handled in SML. If you try to evaluated 1

div 0 then you will get the message

Failure: div

from the interpreter, which means, as we expected, that the evaluation of the function

div for this pair of arguments has failed. In the jargon on SML we say that an

exception has been raised. As a first approximation to how this system works we can

assume that if we are evaluating an expression and an exception is raised then the

evaluation fails and the exception is passed to the enclosing expression. If the

enclosing expression cannot do anything with the exception then it is passed to the

next enclosing expression and so on. Eventually the exception will reach the outer

level and at this point the interpreter forms the message that we have just seen above.



224        APPENDIX A

In SML we do not have to rely just on exceptions from system defined

functions; the user can define exceptions too. For instance we may want to fail in the

evaluation of a function if the value that is given as its argument is, in some way, too

big. We would first declare the exception, say large, and then raise it at the

appropriate point in the function

exception large;

fun test n=if n>10000 then raise large else n div 5;

which would give values like

test 6;

1 : int

test 12000;

Failure: large

In fact exceptions can be used in far more sensitive ways than the simple one

shown here, but this is something we must leave the reader to learn from the

recommended books.

This simple example of the definition of s also shows an important feature of

SML, namely that of type inference. This is the mechanism by which the interpreter ,

in the example above, was able to calculate the type of the function s. The reasoning

was as follows: assume the type of x is unconstrained. Then, we see that x is involved

in an addition and one of the values in the addition is 1  which has type int .

Therefore, for the expression to type correctly the other value in the addition must

have the type int too. Since int is one of the types that x can have, because its type

is unconstrained, we can consistently type the whole expression to give the answer as

above.

These definitions using fun can also be recursive, so that the declaration

fun t x = if x>0 then t (x-1) else 1;

would result in the environment being updated so that t was associated with the

function of one argument that always has value one.



225

SML has a way of writing such a function which can be thought of as SML's

way of writing l-expressions which some of our readers may have come across.

Where we might write lx.ly.x+y ordinarily we can write

fn x => fn y => x+y

in SML. So, if we write the declaration

val f = fn x => fn y => x+y;

then f has the value denoted by lx.ly.x+y and so is, of course, equivalent in meaning

to writing

fun f x y = x+y;

and our function t above can also be defined by

val t = fn x => 1;

Functions are treated as 'first-class citizens' in SML. That is, they, like any

other type of value, can be taken as argument and given as result by functions. So, it

makes perfect sense to have the declarations

fun s x = x+1;

fun twice f y = f(f(y));

The interpreter will write

val s = fn : int -> int

val twice = fn : ('a -> 'a) -> 'a -> 'a

which means that the environment is updated so that s refers to the successor function

and twice refers to a function which takes a unary function of any type 'a (where

'a can be thought of as a type variable, i.e. an expression that can stand for any type)

and a value of type 'a and returns the result, also of type 'a, of applying the

function twice to the argument in the obvious way. This example also introduces



226        APPENDIX A

the idea of polymorphic types, i.e. types which contain variables and, hence, can

themselves stand for a range of types. So, since s has type int -> int, it can

properly have twice applied to it, because the type of s and the type of the first

argument of twice can be unified, i.e. there is a substitution of the type variable 'a

that makes it the same as the type of s. The result of making the declaration

twice s;

is to associate it with the function which when applied to x has s(s(x)) as

value, i.e. the same value as the value of fn x => s(s(x)), and to write

fn : int -> int

i.e. to give the type of twice s.

As something of a digression we will present some rules for finding such

types. These rules will be in a natural deduction style but with objects and their types

in the place of propositions.

If we write f : t to mean the object f has type t then we have two rules as

shown in figure 1. Now,we can use these rules to work out the value of twice in the

following way. First, we remember that twice can also be defined by

val twice = fn f => fn y => f(f(y));

First, we do a piece of "rough working" where we leave types as

unconstrained as possible but where the rules (1) and (2) are obeyed. Here 'a, 'b,

'c, 'd , 'e, 'f are type variables and the working is shown in figure 2.

f :  ('a -> 'b)     x : 'a

fx : 'b

(1)

x : 'a                     e : 'b

fn x => e :  ('a -> 'b)

(2)

Figure 1

fn f => fn y => f(f(y)) : ('a -> 'b)

f : 'a fn y => f(f(y)) : 'b
(2)

y : 'c           f(f(y)) : 'd
(2)

where 'b = ('c -> 'd)

f : ('e -> 'd)        f(y) : 'e
(1)

f : ('f -> 'e)     y : 'f
(1)

Figure 2



227

To make this a proper derivation we need to make sure that we have the same

type for all occurences of f and all occurences of y. For this to happen we need 'a to

match with 'e -> 'd and with 'f -> 'e.

This means that we have 'd = 'e = 'f. Also we need 'c to match with

'f, so 'c = 'f. This in turn means that 'a = 'e -> 'e and 'b = 'c -> 'd =

'e -> 'e. Then figure 3 shows a proper derivation of the type of twice which,

up to a consistent renaming of type variables, is as we expected.

This use of polymorphic types does carry some overhead in the sense that the

programmer has to be careful to disambiguate contexts when necessary otherwise

type inference may not succeed. For instance if we made the declaration

fun g x = x*x;

then, since * is overloaded, this definition is ambiguous, for we cannot tell whether

the operation to be carried out is, say, multiplication of reals or of ints, which are,

of course, very different operations. (To see this consider the fact that in real

multiplication there are extra rules about where the decimal point goes which integer

multiplication does not have.) The interpreter will respond to this declaration with a

message saying that it cannot decide on the type of the * and the declaration will fail.

This problem can be overcome by the use of type tags which convey type information

to the interpreter. For instance, we can disambiguate the attempted declaration above

by writing

fun g (x:real) = x*x;

fn f => fn y => f(f(y)) : (('e -> 'e) -> 'e -> 'e)

f : ('e -> 'e) fn y => f(f(y)) : ('e -> 'e)
(2)

y : 'e           f(f(y)) : 'e
(2)

f : ('e -> 'e)       f(y) : 'e
(1)

f : ('e -> 'e)     y : 'e
(1)

Figure 3



228        APPENDIX A

to get the response

fun g = _ : real -> real

as expected. We could have got the declaration to work by tagging the result type of

the function, rather than its argument type, by writing

fun (g x):real = x*x;

or we could also have written

fun g x = (x:real)*x;

It is sometimes more usual to think of certain functions as being infix, that is

written between their arguments. We can arrange for this in SML by using the infix

directive, which tells the interpreter that the function named is going to be used in an

infix fashion. We would write

infix plus;

fun x plus y :int = x+y;

2 plus 3;

to get the required effect.

A.2.3. Datatypes

The next idea in SML that the reader needs to understand, to allow them to

have some idea of the meaning of the SML programs given in this book, is that of

datatype declarations.

We can think of a datatype declaration as describing a way of making a new

type from a mixture of old types and, since they can be recursive, from the new type

itself. For instance, if a term could be either a string or a term applied to a term we

would write

datatype term = var of string | app of term*term;



229

and this would introduce two new values, called constructors, named var and app

above, which take a string and a pair of terms, respectively, and give a term. So, if we

have the string "abc" then it can be made into a term using the constructor var to

get var "abc". Then, having the term var "abc" we can make another term

using app to get app(var "abc",var "abc").

In the parser for propositional calculus, which we present completely later, we

have the following datatype, which you should now be able to understand:

    datatype SENT = Prop of string |
Not of SENT |
And of (SENT * SENT) |

                Or of (SENT * SENT) |
Imp of (SENT * SENT) |
Eq of (SENT * SENT);

Having constructors to form new types not only makes it easier to uniformly

build up quite complicated types, but it allows the introduction of a technique which

makes it easier to define functions which work on such types using the idea of

matching. Imagine that we have the datatype term as introduced above and, for some

reason, we wish to recover the components that go to make up  the values of type

term. We can do this by defining a function which systematically works through all

the possible forms of values of type term and describes an operation for each such

form. So, since we have two possible forms of values of type term, namely var s

and app(t1,t2), s is a string and t1 and t2 are of type term, we have two

clauses in the function definition:

fun parts (var s) = [s]

  | parts (app(t1,t2)) = [parts t1,parts t2];

The first clause tells us that if the argument has the form var s then its parts

are just the string s which it returns in a list. However, if the argument is in the form

of an application involving t1 and t2 then the list of parts returned is calculated by

finding, in turn, the parts of t1 and t2. This form of definition at once makes it clear

what to do with each form of term and allows us to see that we have looked at all

possibilities, since we have two parts to the definition of term and two clauses in the

function parts. To complete this idea we also need to know that a variable matches

anything and a constant matches only itself.



230        APPENDIX A

This technique is used heavily in the programs in this book since we are

mainly taking sentences or formulas or terms in logical languages and manipulating

them, which means breaking them into their component parts and re-building these

parts into other terms. The function decide given in chapter two is probably the

simplest example of this sort of operation.

A.2.4. Other forms of expression

As well as the forms of expression and declaration that we have introduced so

far there are others, most of which you probably expected to see and whose meaning

is likely to be obvious to you. Probably the most common expression used is the if-

then-else form. So, we would use it in definitions like

fun fact n = if n=0 then 1 else n*(fact (n-1));

Of course in this case we could have used the matching mechanism to define the same

function as in

fun fact 0 = 1

  | fact n = n*(fact(n-1));

The choice between these two forms is largely one of style, but the latter can be

useful with more complicated types to ensure that all possibilities of argument form

have been taken into account, as we said before.

There is a restriction on the typing of the conditional expression, and that is

that both "arms" of the conditional must have the same type. So the expression

if true then 1 else 2.0;

would not be allowed by the interpreter because the "true" arm gives a value of type

int and the other arm a value of type real. Since these two types are mutually

exclusive the expression has no type and is rejected.

We said above that SML is strict, but the conditional expressions and boolean

expressions are an exception to this. So, when evaluating

if true then 1.0 else (1.0/0.0);



231

the interpreter gives the value 1.0 rather than an error, as it would if the expression

were thought of as the "function" if-then-else being applied to the arguments

true, 1.0 and (1.0/0.0). So, the rule is that the boolean test is first evaluated

and then the appropriate arm, the other arm being discarded. Also, boolean

expressions are treated in a similar way so we should consider, for instance, the

definition of the function andalso to be

infix andalso;

fun x andalso y = if x then y else false;

so the value of

false andalso ((1.0/0.0)= 0.0);

is false rather than undefined.

Remember that declarations are read from top to bottom and a name must be

defined before it is used. This means that a definition that is mutually recursive, i.e.

one in which, say, two functions are defined, each referring to the other, does not

seem to be allowable. This is overcome by the use of the and  construct for

combining declarations. So, whereas

fun f x = if x=0 then 1 else g (x-1);

fun g x = if x=0 then 0 else f (x-1);

would lead to a message from the interpreter to the effect that g is undefined in the

definition of f, we can make the declaration work by writing

fun f x = if x=0 then 1 else g (x-1)

and g x = if x=0 then 0 else f (x-1);

We use this construct a great deal in the programs in this book, especially for the

parser, which contains many definitions that are mutually recursive.

A further addition to forms of expression is provided by the "let-in-end" form.

This allows definitions to be made locally, which enhances the modularity of

programs and can make them much more efficient. For instance, we might write



232        APPENDIX A

fun f y x z =

    if y = 2*(x div z) then 3*(x div z) else 0;

but the same effect , as far as the definition of f is concerned, would be produced by

writing

fun f y x z = let val u = x div z in

    if y = 2*u

    then 3*u

    else 0

end;

Here, u is not defined either before or after the declaration of f and so reference to it

is a mistake. The advantage is that  x div z is computed only once, whereas

originally it had to be computed twice. Clearly, with very much more complicated

repeated computations, the use of this mechanism can save a lot of computing effort.

Another reason for using this construct is for enhancing modularity, i.e. the property

of programs that makes them separable into independent parts. This means that

different programmers can work on the parts of a program without fear of creating

mistakes or ambiguities. For instance, a programmer working on a part of a program

might have used the name x to refer to some value and another programmer working

on a different part might have used x to refer to something different, and the effect of

combining these two parts might not be what was intended. So, this construct can be

used to hide names that are purely local to particular declarations, especially when

there is no need for them to be available anywhere else.

We can also use  local declarations in other declarations by using the "local-

in-end" form, as in

local fun (g x):int = x*x in

fun f a b c = ((g a)*(g b)*(g c) div 2) 

end;

or in

local val e = 2 div 3 in val y = e*e end;

which again can enhance modularity (and readability) and also improve efficiency.



233

A.2.5. Lists

Lists form a pre-defined type in SML. Lists are formed by using the

constructors nil , which is the empty list, and ::, which is a function from elements

and lists to lists, also known as "cons". Both these constructors are polymorphic, with

the proviso that all the elements of a list must have the same type. For instance we

can form lists of ints like

1::(2::(3::nil));

or of strings like

"a"::("b"::("c"::("d"::nil)));

or of lists of bools like

(true::nil)::((false::nil)::nil);

and these expression would be type as int list, string list  and (bool

list) list respectively. If you try evaluating these expressions using an SML

interpreter you will find, however, that the value printed is not in the same form as

given above. In fact, the responses will show the lists as

[1,2,3]

["a","b","c"]

[[true],[false]]

and this is because there is a shorthand way of writing lists which means that nil

becomes [] and e::nil becomes [e] etc.

We can define functions over lists either by using the matching mechanism or

by using the "if-then-else" expression. For instance, we can define the function which

gives the length of a list over any type as

fun length(a::l) = if l=nil then 1 else 1+(length

l);

or as



234        APPENDIX A

fun length nil = 0

  | length (a::l) = 1+(length l);

or as

fun length (a::nil) = 1

  | length (a::l) = 1+(length l);

and each of these functions will have type

('a list) -> int

The question of which of these definitions is "best" is hard to answer but the

second will pass the interpreter without comment whilst the first and third will

provoke a message like

***Warning:  Patterns in Match not exhaustive

which means that there is the possibility that the writer has not given a value of the

function for all possible forms of the argument. The reason that the interpreter does

not give this warning for the second declaration is that we should imagine the type 'a

list as defined by

infix ::;

datatype 'a list = nil | op :: of ('a * 'a list);

So as far as the interpreter is concerned there are two forms which define lists: either

nil  alone or an expression like e1::e2 . As you can see the first and third

declarations for length do not mention both of these forms and so the interpreter

gives a warning just in case you did not mean to leave out some possible forms. In

fact we can see that in the first and third examples the functions are not defined for

lists which are nil, which may be a mistake.

Two functions that are very commonly applied to lists are map and append,

denoted by @ in SML. The idea of map is to encapsulate the operation of "doing the

same thing to all elements of a list". For instance, we may have a list of ints and

want to square them all. A function to do this, called squarelist, might be

fun squarelist nil = nil



235

  | squarelist ((n:int)::l) = (n*n)::(squarelist l);

We can make this declaration look a bit more general by taking the squaring

part and using a local declaration for it

local fun square (n:int) = n*n in

  fun squarelist nil = nil

    | squarelist (n::l) = (square n)::(squarelist l)

end;

Now consider a function that takes a list of booleans and negates each of them

local fun negate b = if b then false else true in

   fun negatelist nil = nil

| negatelist (b::l) = (negate b)::(negatelist

l)

end;

If you compare these two definitions a pattern becomes clear. They are both of the

form

local fun f x = <some expression> in

  fun g nil = nil

    | g (x::y) = (f x)::(g y)

end;

This is still not as general a form as is possible though. The auxiliary function f

above is only used in the declaration of g, but if we make the auxiliary function an

argument of g then g is more generally usable. So, we now have

fun g f nil = nil

  | g f (x::y) = (f x)::(g y);

and the two functions we had before can be defined by

   fun squarelist l = g (fn (n:int)=>n*n) l;



236        APPENDIX A

 fun negatelist l = g (fn b=>if b then false else true)

l;

Since this function that we have called g turns out to be so useful it is already

defined within the SML interpreter and is the function called map. The other function

is @ which can be thought of as defined by

infix @;

fun  nil @ m = m

  |  (a::l) @ m = a::(l @ m);

and simply takes two lists, of the same base type, and joins the left one to the right

one keeping the same order between the elements.

Armed with these basic functions you should now be able to understand the

functions over lists used in the programs in this book, with more or less work. You

will see that lists form a very adaptable type which can be used to imitate many

different structures and, historically they were used to imitate tree structures. For

instance, a binary tree might be imitated by a list of lists, each list denoting a path

from the root through the tree. However, in SML we can use the datatype mechanism

to represent trees much more directly, and since, via this method, we also have all the

typechecking mechanism working for us we can have more confidence in our

solutions.

A simple binary tree might be defined by

datatype bintree = null

 | node of (int * bintree * bintree);

which means that examples of values of type bintree might be

null

node(1,null,null)

node(1,node(2,null,null),node(3,null,null))

which might be displayed in two dimensions as



237

1

32

1an empty tree

and so on for more complicated shapes of tree. Now we can write functions that

manipulate the contents of nodes rather as we did with map, the function that

manipulated the contents of lists, without changing their structure or shape. (This sort

of function, a homomorphism, turns out to be a central notion throughout computer

science and logic). A function to square the contents of each node might be

squarenodes given by

fun squarenodes null = null

  | squarenodes (node(n,t1,t2)) =

node(n*n, squarenodes t1, squarenodes t2);

and again we can see how the definition of the function follows exactly the structure

of the tree. However, just as we did with lists, we can write a more abstract function

which does an arbitrary operation, provided as an argument, to all nodes of a tree

whilst preserving the tree structure. We call this maptree and it is defined by

fun maptree f null = null

  | maptree f (node(n,t1,t2)) =

node(f n,maptree f t1, maptree f t2);

and using this our first function can be defined by

fun squarenodes t = maptree (fn n => n*n) t;

The other main activity that takes place when we traverse trees is to build new

datatypes from their parts. For instance, we may wish to construct a list which

contains all the values in the nodes of a value of type bintree. Again we need to write

a function which takes into account all the possible forms of tree but this time instead

of preserving the structure of the tree it produces values from the list datatype. A

reasonable definition might be



238        APPENDIX A

fun getnodes null = []

  | getnodes (node(n,t1,t2)) =

    n::((getnodes t1)@(getnodes t2));

and when we apply it to each of the three trees given above we get the values [],

[1] and [1,2,3] respectively.

As a final level of abstraction we can introduce a function which can be

specialized to either maptree or getnodes, even though maptree preserves the structure

of the tree and getnodes constructs something almost completely new. We can do this

first by exploiting the structure of the bintree and also by using, quite heavily, the

facility with which SML deals with functional parameters. We construct a function

which takes two arguments , one which describes the value of the function at values

of the form null  and the other which describes an action for the form

node(n,t1,t2). If these arguments are represented by f and s below then we

know that the most information that can be passed to s are the three pieces of

information that go to make up a node, namely the int value n and the two sub-

trees, values of type bintree. Since the information for a node which is null is

fixed the f is a constant. Our definition for this most general function, which we

name bintreerec, for bintree recursion, is

fun bintreerec f s null = f

  | bintreerec f s (node(n,t1,t2)) =

    s n (bintreerec f s t1) (bintreerec f s

t2);

and using this we can define both maptree and getnodes by abstracting the

appropriate auxiliary function from their definitions which gives us

fun maptree g l =

let val f = null

fun s n t1 t2 = node(g n,t1,t2)

in bintreerec f s l end;

and

fun getnodes l =

let val f = []

fun s n t1 t2 = n::(t1@t2)



239

in bintreerec f s l end;

The use of bintreerec gives us even more checks on the correctness of our

definitions of functions over bintrees because, once bintreerec is properly

defined, we have much more structure, which the typechecker can use, against which

to judge the completeness of our subsequent definitions. This level of abstraction

means that a few highly abstract definitions can be given and then specialized as

needed to the more basic functions over a given datatype and this means that we, as

programmers, have less to remember to check because the typechecker does much of

the work for us. This, in turn, means that our programs are much less likely to be

wrong and this is the great strength of languages such as SML.

We have introduced some of the main features of SML, but much more

remains to be said and the textbooks referred to should be consulted for further

details.

A.3. Prolog

This brief introduction is not intended as a stand-alone course on Prolog

programming. The aim is to give sufficient explanation of the language, and relevant

programming techniques, for the programs in the text to be used and understood by a

reader with some experience of a procedural or functional language such as Pascal, C,

Lisp or Miranda. Good books that give a more complete explanation of Prolog and

cover a much wider variety of programming tasks are Bratko (1986), Sterling and

Shapiro (1986) and the original Clocksin and Mellish (1981).

Prolog is a practical programming language whose theoretical basis lies in the

notion of logic programming, an introduction to which is given in chapter seven. Here

we are concerned with the pragmatics of using Prolog to carry out calculations in

which the objects manipulated are logical formulas. This section will not depend on

having read chapter seven, but use of some basic logical terminology, as explained in

chapters two and three, is unavoidable.

A Prolog program is a sequence of clauses, which play much the same role as

function definitions in a functional language such as Lisp, Miranda and SML, or

procedure definitions in Pascal and C. Clauses have a head and a body  and are

always terminated by a full stop. The head has the form of a logical atom, i.e. it

consists of a predicate name followed by zero or more arguments which have the

form of logical terms (see chapter three and below). The body is a sequence of zero or

more atomic formulas separated by commas and terminated by a full stop.  The head



240        APPENDIX A

and body are separated by the compound symbol ':-' which is omitted if the body is

null. The following is an example of a complete Prolog program.

p(X):- q(X,Y),r(Y).

q(a,b).

q(a,c).

r(c).

Variables in Prolog are denoted by strings beginning with a capital letter or

the underline symbol '_'. All other strings not starting with a capital letter or the '_'

symbol are constants in various categories such as predicate names, data, operators,

numbers. Prolog programs can be read in both a declarative (i.e. logical) and a

procedural (i.e. operational) way.  The declarative reading is ultimately more

productive, but the operational reading can be helpful  provided one remembers that

Prolog 'procedures' are satisfied (by appropriate substitutions for their bound

variables) rather than executed. So the first line of the program above can be

compared with the definition of a function or procedure p with formal parameter X,

the q(X,Y),r(Y) on the right of the ':-' symbol being analogous to the statements

in the body of the function or procedure. The predicates q and r are like procedures

with no body and so are analogous to primitive instructions. Many Prolog texts call

the first line, that defines p(X), a rule and the remaining clauses facts because the

latter are unconditionally satisfied.

Declaratively, the first line of the program is read as "For all terms that can be

substituted for X, p(X) is satisfied if there is a term that can be substituted for Y

such that both q(X,Y) and r(Y) can be satisfied". The second line of the program

says that q(a,b) is unconditionally satisfied. It can be seen that p(a) can be

satisfied because there is a substitution for Y, namely c, that enables both q(a,Y)

and r(Y) to be simultaneously satisfied. Although substituting b for Y satisfies

q(a,Y) it doesn't satisfy r(Y) because there is no clause r(b) in the program. It

should be noted that if, within a clause, a substitution is made for a particular instance

of a variable symbol then the substitution is made throughout the clause. So, in first

line of the program above, the two occurrences of the variable symbol X either have

the same instantiation or are both uninstantiated, and the same applies to Y. However,

a particular variable symbol denotes different variables in different clauses, in a

similar way, for example, to the local variables or formal parameters of a procedure in



241

Pascal. There are no global variables in Prolog, although we see later that operator

definitions can be given global scope.

A Prolog program is used by typing a goal in response to the interpreter's

prompt. Following the procedural analogy this is the Prolog equivalent of a procedure

call.  For example

?- p(a).

The compound symbol ?- is the system's prompt and the p(a). is input by

the user and is a request for the system to check that the formula p(a) follows

logically from the program clauses. The reply, that p(a) does follow logically from the

program, is output simply by the system as 'yes'.

Operationally speaking the goal is matched against the heads of all program

clauses starting at the top of the program until a match is found, in this case at the first

line. The head of the first clause is p(X) and X is a variable so a substitution can be

made for it to enable the match to succeed, in this case by substituting a for X. Then

a similar matching process is carried out on the body of the clause, which is now

q(a,Y),r(Y),working from left to right.  Starting again from the top of the

program  q(a,Y) is matched against the clause heads. It cannot match p(X)

because the predicate symbol q  is not the same as p. However it matches q(a,b)

provided Y is instantiated to b. We now attempt to satisfy r(b) starting again at the

top of the program. This time no match can be found for r(b) so we go back to

q(X,Y) and see if this could be satisfied in a different way. This going back to try

other possibilities for goals to be satisfied is called backtracking, and is one of the

ways in which Prolog differs radically from other languages, including SML.  The

matching process for q(a,Y) resumes from the point it previously got to at q(a,b).

Another match is found, this time with Y instantiated to c, so now we try to satisfy

r(c) starting again at the top of the program . This time the search succeeds, so the

original goal p(a) succeeds and the system outputs yes.

The possibilities become more interesting when goals contain uninstantiated

variables. The goal

?- p(Answer).

can be read as a request for a binding for the variable Answer that enables

the formula p(Answer) to be satisfied. The resulting binding (the output from the



242        APPENDIX A

computation) is printed by the system as  Answer=a. The variable name Answer

has no particular significance, of course. We use it to emphasise that one is not

restricted to the X,Y,Z,… of mathematical or logical notation. Any other string

starting with a capital or '_' could have been used.

Operationally the computation is very similar to that described above for ?-

p(a). The goal p(Answer) is matched against the heads of all program clauses

starting at the top of the program until a match is found, at the first line in this case.

Uninstantiated variables always match and become, in effect, two aliases for the same

variable. The body of the matching clause is now q(Answer,Y),r(Y) and an

attempt is now made to satisfy this, working from left to right. Starting again from the

top of the program q(Answer,Y) is matched against the clause heads.  As before it

matches q(a,b), this time with Answer instantiated to a and Y to b. But r(b)

fails and backtracking occurs in the same way as before. Eventually the original goal

p(Answer) succeeds and the instantiation that enabled it to succeed, namely

Answer=a, is output.

Chapter seven will show that a Prolog program (or at least most of it) is a

formula in a subset of first-order logic, and the interpreter that executes it is a simple-

minded theorem-prover. This means that Prolog programs can be understood and

reasoned about at a logical level, as well as in the operational style exemplified

above. The declarative (logical) reading of Prolog programs is the best one for

constructing programs and convincing oneself of their correctness but, because the

Prolog interpreter is not a complete theorem-prover for first-order logic, the

operational understanding is also necessary for reasoning about completeness and

efficiency. The perfect logic programming system has not yet been invented.

In comparison with languages such as Pascal or SML there is no equivalent

notion of type in Prolog. The only data structure is the term . A term is either a

constant, a variable, or a function symbol followed in brackets by one or more terms.

The definition is as it is in chapter three or, less formally, like the notion of

expression in mathematics. Prolog is essentially a system for doing calculations in a

term algebra. There are several examples below that use terms but, as a simple

example here, we can slightly elaborate the program above by replacing the clause

q(a,c) by  q(f(a),c). The output that would then result from satisfying the goal

?- p(Answer).



243

would be Answer=f(a). Note that no type declarations are required to say for

example that f is a function symbol rather than a predicate symbol. The grammatical

category of any given symbol in the program is inferred from its position in the

program text. In this case f is a function symbol because a term is expected after the

symbols q(. This is not the same as in logic where you have to say in advance what

the function and predicate symbols are.

A.3.1. System predicates and unification

All Prolog systems make available to the programmer a predefined set of

predicates and one has to think of the user-defined program as being an extension of

these. One of the most important  is =, which can be thought of as being internally

defined in every program  by the single clause

X=X.

Thus with no user-defined program at all, you can input the goal

?- a=a.

and get the output  yes (because it matches X=X. with X as a) or

?- a=b.

and get the answer no because a=b. cannot match X=X.   The goal

?- Y=a.

results in the output Y=a because the goal Y=a is matched against X=X and succeeds

with Y instantiated to X and X to a.  A more interesting example is

?- f(g(Y),h(b))=f(g(a),Z).

which gives the output

Y=a

Z=h(b)



244        APPENDIX A

because these are the variable instantiations required to make the left and right hand

sides the same, i.e. to make X=X.  succeed. This computation of the set of

substitutions required to make two terms identical is known as unification and is

discussed in more detail in chapter seven. A goal matches a program clause in Prolog

if the predicate names are identical and the arguments can be unified pairwise. Note

that unification is more general than the matching in functional languages such as

SML because in Prolog variables can occur in both sides to be matched. One

limitation, though, is that function or predicate symbols in Prolog cannot be variables.

Variables stand for terms, not for symbols (remember that a constant is a term).

In this book we are using Prolog to do calculations in a term algebra, with

expressions formed from constants, variables and function symbols, so we will now

concentrate entirely on this type of application and briefly cover some of the

necessary techniques.  In particular we want to be able to represent logical formulas

and terms, and to take them to pieces in order to examine and operate on their

component parts. We also have  to carry out calculations with sets and sequences of

terms.

A.3.2. Sets, sequences and lists

It is convenient to represent both sets and sequences as lists. Lists have to be

represented in Prolog as terms since that is the only data type but, since manipulating

lists is such a common requirement, all Prolog systems provide a special notation to

make list programming easier and programs more readable. By convention a special

constant [] is used to denote the empty list and a special function symbol, the dot '.'

is used to denote an operator that may already be familiar as the cons function of

Lisp, i.e. the function that takes a term T and a list L as arguments and returns the list

whose first element is T and the rest of which, the so-called tail of the list, is L.  Thus,

by convention in Prolog, one thinks of the term .(a,.(b,[])) as denoting the list

whose head is a and whose tail is the list consisting of the single element b. To make

programs more readable the notation [a,b] is allowed for this but it should be

emphasised that this is only for readability . There are no special "list processing

facilities" or "list structures" in Prolog. The only data type is the term.

A basic operation in many computations is a test for set membership. Again

we have to choose some way of representing sets by terms. One possibility is to

represent sets as lists, and if we do this we can program set membership in Prolog as



245

member(X,[H|T]):- X=H.

member(X,[H|T]):- member(X,T).

This introduces some more notation. [H|T] is allowed as a more readable

synonym for the term .(H,T), i.e. the list whose head is H and whose tail is T. The

declarative reading of the first clause is that  "for all X, H and T, X is a member of the

list with head H and tail T if X and H are the same term". The second clause reads

"for all X, H and T, X is a member of the list with head H and tail T if X is a member

of the list T."  Both these statements are mathematically correct statements about the

member relation. We show now that they are also operationally effective when

executed by the Prolog interpreter in the manner described above.

One way in which the member program could be used is by typing the goal

?- member(b,[a,b]).

which would get the answer yes as a result of the following sequence of operations.

As before, the goal is matched against the sequence of program clauses starting at the

top. The goal member(b,[a,b]) doesn't match member(X,[H|T]) because

X gets instantiated to a and H to b, and a=b fails, so a match with the second clause

is attempted. This succeeds with X instantiated to b, H to a and Y to [b], and the

body of the clause is now executed in an environment containing these variable

bindings. So  member(b,[b]) is matched against the sequence of program clauses

starting again at the top. This time it matches with the first because  X and H both

get instantiated to b and so X=H succeeds and hence the original goal also succeeds.

Logically it is irrelevant, but as a point of programming style most Prolog

programmers would prefer to write the two clauses above as

member(X,[X|_]).

member(X,[_|Y]):- member(X,Y).

where the '_' symbol is used to denote a variable whose binding is irrelevant. Note

also how the X=H in the first clause is unnecessary because it can be incorporated by

replacing H by X in the clause head.  Another way to write the definition of member

is

member(X,[Y|Z]):- X=Y; member(X,Z).



246        APPENDIX A

where the semicolon symbol ';' is read as a logical 'or'. The declarative reading is thus

"For all X, X is a member of the list whose head is Y and whose tail is the list Z if,

either X is the same as Y, or X is a member of Z". Logically and operationally all

these definitions of member are identical. Neatness, readability and personal

preference determine which style is used in practice.

Another basic relation on lists is concatenation, which often goes by the name

of append in Prolog systems, and can be implemented by the following clauses

append([],Y,Y).

append([H|X],Y,[H|Z]):- append(X,Y,Z).

Once again these clauses correspond directly to the base case and induction

step in proofs of statements about  the append relation. As for member, there is

more than one way to use append. For example

?-append([a,b],[c,d],[a,b,c,d]).

yes

?- append([a,b],[b,c],Z).

Z=[a,b,b,c]

As an exercise it is a good test of understanding to go, as we did  for

member, through the steps that the Prolog interpreter has to make in order to

produce these responses. A full explanation of append is given in the recommended

textbooks. It is worth noting here though that append can be used in a variety of

other ways and many useful predicates can be defined neatly, if not always

efficiently, in terms of it. For example

 member(X,Y):- append(_,[X|_],Y).

which says that X is a member of Y if there is a list with head X which, when

appended to some other list, gives Y. The second argument of append is not fully

instantiated here, and this brings up another of the ways in which Prolog differs

radically from functional languages. With functions there is a distinction between

domain and range, whereas with relations no such distinction can be made between



247

the arguments.  This has the consequence that many Prolog programs that can be used

to compute the value of a function can also be used, unchanged, to compute its

inverse. For example

?- append([a,b],Y,[a,b,c,d]).

Y=[c,d]

 ?- append(X,Y,[a,b,c,d]).

X=[]

Y=[a,b,c,d];

X=[a]

Y=[b,c,d];

   etc.

This ability to use a deterministic program "backwards" to generate all

solutions that satisfy a constraint is an extremely useful feature, but it is not a

universal property of Prolog programs and examining  its correctness often involves

non-logical, operational reasoning.

If we are implementing set union rather than concatenation of lists then we

have to remove duplicates. The union predicate can be defined with the clauses

union([],Y,Y).
union([H|X],Y,Z):- member(H,Y), union(X,Y,Z).
union([H|X],Y,[H|Z]):- not(member(H,Y)),union(X,Y,Z).

which again correspond to mathematically correct statements about a relation

union(X,Y,Z) which is satisfied when the list represented by the term Z is the

union of the lists represented by the terms X and Y. Note that we have carefully said

"list" rather than "set" here. The definition given is adequate for computing the union

of two sets, with a goal such as

?- union([a,b],[b,c],Z).
Z=[a,b,c]
yes

but a goal such as

?- union([a,b],[b,c], [c,b,a]).



248        APPENDIX A

would give the result no, which is right for lists but wrong for sets. There is nothing in

the program to say that two lists that are permutations of each other represent the

same set. One way to do this is given below. We leave the reader to work out how to

use this in the union program.

same_set([H|U],V):- take_out(H,V,W),same_set(U,W).
same_set([],[]).
take_out(H,[H|T],T):-!.
take_out(X,[H|T],[H|U]):- take_out(X,T,U).

The usual close correspondence between recursion and mathematical

induction is again evident in the union program. The induction is on the size of the

list corresponding to the first argument. The base case is given by the first clause

which says that the union of Y with the null list is Y. The second and third clauses

deal with the two possible cases of the induction step. Taking an element H of the

first list: either H is a member of Y, in which case the relation is satisfied if Z is the

union of Y and the remainder of the first list X, or H is not a member of Y, in which

case the union is a list containing both H and Z  where Z is the union of X and Y.

These are clearly mathematically correct statements. Readers should satisfy

themselves that they are operationally effective by working out, in the same way as

we did above for member , what happens when, for example, the goal  ? -

union([a,b],[b,c],Z) is satisfied to give the answer substitution

Z=[a,b,c].  Before you can do this we have to explain the system-defined

predicate not . The goal not(X)  is defined to succeed if the term that X is

instantiated to  fails when an attempt is made to satisfy it as a goal. So in this case to

see, when some goal matches the third clause, whether not(member(H,Y))

succeeds we have to see if member(H,Y) succeeds, taking account of what H and

Y  might at that point be instantiated to. If member(H,Y) succeeds then

n o t ( m e m b e r ( H , Y ) )  fails, but if m e m b e r ( H , Y )  fails then

not(member(H,Y)) succeeds.  This definition of not is known as negation-as-

failure and it will be seen, certainly after reading chapter three, that it is not the same,

in general, as logical negation. Being unable to prove P in some system of deduction

is not metalogically equivalent to being able to prove  ¬P.

The second and third clauses of the union program are mutually exclusive

in the sense that a non-empty set must match one or the other and cannot match both.

In the case where an attempted match with the second clause fails because H is not a

member of Y a completely redundant repetition of the member computation is made



249

when the third clause is executed to show that not(member(H,Y)) succeeds. One

cannot simply leave out the not(member(H,Y)) because the union program might

be used in another program where backtracking forces the third clause to be tried after

the second has succeeded, and this would be mathematically unsound. To get round

this Prolog interpreters provide a system predicate denoted by the symbol '!'; and

pronounced 'cut'. The example above would be rewritten using cut as

union([],Y,Y).

union([H|X],Y,Z):- member(H,Y),!,union(X,Y,Z).

union([H|X],Y,[H|Z]):- union(X,Y,Z).

The cut predicate always succeeds and has the side-effect of removing all

choices available up to that point on subsequent backtracking. So, in the example

above, if the second clause of union is being tried, and member(H,Y) succeeds,

then the cut succeeds and removes the possibility of backtracking to the third clause.

One sometimes sees use of the cut vilified as a dangerously operational, non-

logical notion, but properly used it is perfectly safe and can make programs more

concise as well as more efficient. A common construction, which arises in many of

the examples in this book, is the Prolog equivalent of the if-then-else construction of

other languages. The general form is

p:-q,!,r;s.

which says that p is satisfied either if q is satisfied and r is satisfied, or if q is not

satisfied but s is satisfied (i.e. if q then r else s).

There are many other ways to use the cut to manipulate the operational

behaviour of Prolog programs. Sterling and Shapiro give a discussion of the issues.

From a pragmatic point of view if there is any doubt about the correctness of a

construction involving 'cut' then it should not be used - there will always be a

corresponding definition using 'not'. However one or other of the constructions is

often unavoidable. There are good mathematical reasons why it is not possible to

write clauses defining set intersection, for example, without using negation or some

logically equivalent construction.



250        APPENDIX A

A.3.3. Taking terms to pieces

System-defined predicates are provided for getting inside and manipulating

terms. Of these the most useful for our purposes is one whose predicate symbol is

=..  pronounced 'univ' for historical reasons. Used without any user-defined program

this has the following behaviour.

?- f(a,b)=..X.

    X=[f,a,b]

?- f(a,b)=..[f|Args].

     Args=[a,b]

?- Term=..[f,a,b].

     Term=f(a,b)

?- [a]=..Functor_and_Args.

Functor_and_Args=[.,a,[]]

The last example in particular is a good test of understanding. Recall that lists are

terms of arity two, whose function symbol is '.' In general T=..L is satisfied if L is

or can be instantiated to a list and T can be unified with the term whose function

symbol is the head of L and whose sequence of arguments is the tail of L. We will see

in the examples below, and in the main text, that, even though function symbols in

Prolog terms have to be ground, we can use =.. to write programs which operate on

general terms. So this is a departure from strict first-order logic;  one of the

metalogical features of Prolog.

Other useful system predicates in the same category are functor(T,F,N)

which unifies F and N with the function symbol and number of arguments,

respectively, of the term to which T is  instantiated, and arg(I,T,X) which, if I is

instantiated to an integer i, unifies X with the ith argument of the term to which T is

(and must be)  instantiated. Thus

?- functor([a],F,N).

F=.

N=2



251

?- arg(2,[a],X).

X=[]

Finally, a pragmatic point, it is worth noting that most Prolog systems implement '=..'

in terms of functor and arg so the latter should be used if efficiency is at a

premium.

A.3.4. Arithmetic

Even in algebraic computation we sometimes have to do some arithmetic. An

arithmetic expression such as 2+3  is a term whose function symbol is + and whose

arguments are 2 and 3. By convention in mathematics the function symbol '+' is

infixed, i.e. written between its two arguments, and the same facility is provided in

Prolog for function and predicate symbols to be defined as infixed if required - we

have already seen this in the case of the system predicates = and =..  If, for example,

we give the interpreter the goal

?- 2+3=..X.

then we get the output X=[+,2,3], showing that 2+3 is recognised by the system

as a term whose function symbol is + and whose arguments are the constants 2 and 3.

Because 2+3 is just a term like f(2,3) the goal

?- X=2+3.

gives the, at first sight unexpected, answer X=2+3. This is because in first-order

logic there is nothing to say that a term  represents a function that may be applied to

arguments to yield a value. It is perfectly feasible by purely logical means to define a

predicate that can be used to evaluate an expression, but all Prolog systems in fact

provide a system predicate 'is' for this purpose. So

?- X is 2+3.

succeeds with X instantiated to the result of evaluating the right-hand side by the

normal conventions of arithmetic, giving in this case the output X=5. It is important

to understand the difference between = which succeeds if both sides can be unified



252        APPENDIX A

and 'is' which succeeds if the right-hand side can be evaluated arithmetically and then

both sides unified. Again more detail is given in the recommended Prolog texts.

A.3.5. User-defined operators

We have seen that the arithmetic operators  can be used in the conventional

infixed form. We now go on to show that programmers can define their own function

symbols as infixed. To give an example, the goal

:- op(550,xfx,[->]).

succeeds and has the side effect of recording that the compound symbol '->' is an

infixed operator with precedence 550 and associativity of type 'xfx'. Precedence and

associativity are used to disambiguate terms whose structure is not made explicit

through the use of brackets. Again this is covered in full detail in the recommended

books; here we just give a few examples.

The precise value of the precedence number is of no significance, it is only

used as a convenient way to specify a linear ordering. The general rule is that the

function symbol of highest precedence is the principal connective. So if we also

include in the program

:- op(540,yfx,[/\]).

then we are saying that the string a/\b->c stands for the term (a/\b)->c rather

than a/\(b->c). The second argument of the op predicate, the associativity type,

can be used to say , for example, that a-b-c stands for (a-b)-c rather than a-(b-

c), by including at the head of the program the goal

:- op(500,yfx,[-]).

although this would, in fact, be unnecessary since most Prolog systems already

include standard definitions for the arithmetic operators. Note that these operator

definitions have to be included as goals rather than definitions (:- is essentially the

same as ?-) because they have to be satisfied, and not just stored, in order to produce

the required side-effect. For the same reason they must appear before the operators

that they introduce are used. For present purposes we need these operator definitions

in order to be able to use the conventional logical notation in our programs (see also



253

chapter two, section 2.1.2). For the examples in this book we have used the

definitions

:-op(510, fx,  [~]).

:-op(520,yfx, [/\]).

:-op(530,yfx, [\/]).

:-op(540,xfx, [->]).

:-op(550,xfx,[<->]).

:-op(560,xfx, [|-]).

for the logical connectives and the metalogical 'turnstile'  ì , but other choices for the

symbols would be perfectly valid. It cannot be emphasised too often that, to the

Prolog interpreter, expressions involving these symbols are just terms, they have no

logical significance.

A.3.6. Some common patterns in manipulating terms

We conclude this brief introduction to Prolog by discussing two of the basic

program schemas that arise in manipulating terms.

A common pattern of recursion is illustrated by the following program. A term

S is a subterm of a term T either if it is identical to T or if it is a subterm of one of the

arguments of T. In the latter case we use the =.. system predicate to access the list of

arguments of T and, if necessary, check S against each of them.

subterm(T,T).

subterm(S,T):- T=..[_|Args], sub(S,Args).

sub(S,[First|Rest]):- subterm(S,First); sub(S,Rest).

Note the use of the subsidiary predicate sub to process the list of arguments.

It would be wrong to use subterm(S,Args) at the end of the second line because

subterm expects a general term and not just a list as its second argument. Note also

that here we don't need a base case for sub because we want it to fail if the second

argument is the null list.[]. Smaller points of style are the use of the anonymous

variable '_' in the second line because the precise value of the function symbol doesn't

matter here, and the use of the 'or' construction with ';' which seems neater here than

having two clauses, one for the case where S is a subterm of the first argument, and

the other for the recursive case.



254        APPENDIX A

Another frequently-occurring type of program is where we have a different

case for each operator in some algebra. We could illustrate this with the logical

connectives defined above but there are several such examples in the text. Suppose

instead that we want to define predicates to evaluate expressions in an algebra of sets

with two binary infixed operators \/ and /\ denoting union and intersection and a

unary prefixed operator ~ denoting complement with respect to some given universal

set. The program, headed by the appropriate operator definitions, might be

:-op(500, fx, [~]).
:-op(510,xfx,[/\]).
:-op(520,xfx,[\/]).

set([]).
set([_|S]):- set(S).
universal_set([a,b,c,d]).

complement([],_,[]).
complement([H|T],X,Y):- complement(T,X,Z),

   (member(H,X),!,Y=Z; Y=[H|Z]).

value(A\/B,C):-value(A,U),value(B,V),union(U,V,C).
value(A/\B,C):-value(A,U),value(B,V),intersection(U,V,C).
value(  ~A,C):-value(A,B),universal_set(U),complement(U,B,C).
value(A,A):- set(A).

where union is given above and intersection (left as an exercise) is very

similar to union.

The program would be used by typing goals of the form

?- X=[a,b],Y=[b,c],value(~((X/\~Y)\/(Y/\~X)),Z).

when the appropriate answer Z=[b,d] should be output.

Demands on space preclude any more examples, but there are plenty in the

text. Some are more complicated, but all employ the basic ideas covered here. The

aim of this brief introduction to algebraic manipulation in Prolog has been to prepare

the ground for using and understanding them.



255

APPENDIX B

Programs in Standard ML and

Prolog

B.1.Programs in SML

B.1.1. A parser for propositional logic

(* The datatype that represents sentences of propositional logic

internally *)

datatype SENT  = Null |

Prop of string |

Not of SENT |

And of (SENT * SENT) |

                Or of (SENT * SENT) |

Imp of (SENT * SENT) |

                  Eq of (SENT * SENT);

(* Some useful functions *)

fun eq a (b:string)  = (a=b);

fun fst (a,b) = a;

(* Variables are lowercase letters a to z *)

fun var h  = "a" <= h andalso h <= "z";



256        APPENDIX B

fun andoper oper = (oper="&") orelse (oper="V");

fun impoper oper = (oper=">") orelse (oper="=");

exception varerror;

fun makeVar  (h, rest) = if var h

then (Var h, rest)

else raise varerror;

exception error;

fun rest P (head :: tail) = if P head

then tail

else raise error;

(* The parser from strings to SENT *)

fun constructsent str = auxconstructsent(constructterm str)

and auxconstructsent (l, nil) = (l, nil)

  | auxconstructsent (l, head :: tail) =

if impoper head

then let val (r, tail) = constructterm tail in

 auxconstructsent( if head = ">"

then (Imp(l,r), tail)

else (Eq(l,r) ,tail))

  end

else (l, head :: tail)

and constructterm tail =

auxconstructterm(constructfact tail)

and auxconstructterm (l, nil) = (l, nil)

  | auxconstructterm (l, head :: tail) =

if andoper head

                 then let val (r,tail) =

constructfact tail in 

       auxconstructsent(if head = "&"

                       then (And(l,r), tail)

                       else (Or(l,r), tail))



257

  end

else (l, head :: tail)

and constructfact nil = raise error

  | constructfact (head :: tail) =

if head = "~"

                  then let val (t1, tail) =

constructfact tail in

auxconstructsent (Not(t1),tail)

                         end

                  else if head = "("

                       then let val (t1,tail)=

constructsent tail in

 if hd tail = ")"

then (t1, rest (eq ")") tail)

else raise error

                            end

                        else makeVar (head , tail);

    (* Packaging the parser to make it easily useable *)

fun strip nil = nil

  | strip S = if hd S = " "

  then strip (tl S)

  else (hd S) :: (strip (tl S));

fun make S = fst(constructsent (strip (explode S)));

(* Unparsing, ready for printing *)

fun printsent (Var v) =  v

  | printsent (And(left, right)) =

"(" ^ printsent left ^ "&" ^ printsent right ^ ")"

  | printsent (Not(rest)) =

"(" ^ "~" ^ printsent rest ^ ")"

  | printsent (Or(left, right)) =

       "(" ^ printsent left ^ "V" ^  printsent right ^ ")"



258        APPENDIX B

  | printsent (Imp(left, right)) =

"(" ^ printsent left ^ ">" ^ printsent right ^ ")"

  | printsent (Eq(left, right)) =

       "(" ^ printsent left ^ "=" ^ printsent right ^ ")";

(* Finally, we parse some input and

print it out if it is correct *)

val pr = printsent o make;

B.1.2. Extending the parser for predicate calculus

datatype TERM = Var of string |

Name of string |

app of (string * TERM list) |

empty;

datatype SENT = Null |

Prop of string |

Pred of (string * TERM list) |

Not of SENT |

And of (SENT * SENT) |

Or of (SENT * SENT) |

Imp of (SENT * SENT) |

Eq of (SENT * SENT) |

Forall of (TERM * SENT) |

Exists of (TERM * SENT);

(* Some useful functions *)

fun eq a (b:string) = (a=b);

fun fst (a,b) = a;

(* Predicate letters are capitals from P to T *)

fun proporpred h  = "M" <= h andalso h <= "T";

fun andoper oper = (oper="&") orelse (oper="V");



259

fun impoper oper = (oper=">") orelse (oper="=");

(* Names start with lower case letters from a to e... *)

fun name n = "a"<= n andalso n <= "e";

(* ...and carry on with one or more digits *)

fun number n = "0"<= n andalso n <= "9";

(* Variables are lower case letters from x to z *)

fun variable v = "x" <= v andalso v <= "z";

(* Functions letters are lower case from f to h *)

fun function f = "f" <= f andalso f <= "h";

fun quantifier q = (q="A") orelse (q="E");

exception Var_error

and Name_error

and term_error1

and term_error2

and app_error1

and app_error2

and app_error3

and termlist_error0

and termlist_error1

and termlist_error2;

fun bldVar (v,nil) = raise Var_error

  | bldVar (v, h::t) = if number h

       then bldVar(v ^ h,t)

       else (Var v, h::t);

fun bldName (n,nil) = raise Name_error

  | bldName (n,h::t) = if number h

          then bldName(n ^ h, t)

         else (Name n,h::t);

fun bldterm nil = raise term_error1

  | bldterm (h::t) = if name h

   then bldName (h,t)

   else if variable h



260        APPENDIX B

        then bldVar(h,t)

           else if function h

    then bldapp(h,t)

    else raise term_error2

and bldapp (f,nil) = raise app_error1

  | bldapp (f,h::t) = if number h

    then bldapp(f ^ h,t)

    else let val (terms,t') =

bldtermlist (h::t) in

if terms=nil

         then raise app_error2

         else (app(f,terms),t')

            end

and bldtermlist (h::t) = if h="("

       then let val (term,t') = bldterm t in 

bldtermlist' ([term],t')

  end

       else raise termlist_error0

and bldtermlist' (a,nil) = raise termlist_error1

  | bldtermlist' (tl,h::t)= if h=")"

          then (tl,t)

          else if h=","

  then let val (term,t') = 

     bldtermlist'(tl@[term],t') 

      else raise termlist_error2;

exception ProporPred_error;

fun makeProporPred  (h, rest) = if proporpred h

then makePorP(h,rest)

else raise ProporPred_error

and makePorP (p,nil) = (Prop p,nil)

  | makePorP (p,h::t) = if number h

          then makePorP(p ^ h,t)

          else if h="("

       then let val (terms,rest) =

bldtermlist (h::t) in



261

   (Pred(p,terms),rest)

 end

       else (Prop p,h::t);

exception rest_error

and fact_error0

and fact_error1

and quant_error0;

fun rest P (head :: tail) = if P head

 then tail

 else raise rest_error;

fun constructsent str = auxconstructsent(constructterm str)

and auxconstructsent (l, nil) = (l, nil)

   | auxconstructsent (l, head :: tail) =

                        if impoper head

                        then let val (r, tail) =

constructterm tail

                             in auxconstructsent(

if head = ">"

then (Imp(l,r),tail)

                                    else (Eq(l,r),tail)) 

                        else (l, head :: tail)

and constructterm tail = auxconstructterm(constructfact tail)

and auxconstructterm (l, nil) = (l, nil)

  | auxconstructterm (l, head :: tail) =

                        if andoper head

                        then let val (r,tail) =

constructfact tail in

  auxconstructterm(

  if head = "&"

  then (And(l,r),tail)

  else (Or(l,r),tail))

   end

                        else (l, head :: tail)



262        APPENDIX B

and constructfact nil = raise fact_error0

  | constructfact (head :: tail) =

   if head = "~"

               then let val (t1, tail) =

constructfact tail in

 auxconstructsent (Not(t1),tail)

                       end

               else if head = "("

                      then let val (t1, tail) = 

if hd tail = ")"

                            then (t1, rest (eq ")") tail)

                            else raise fact_error1

                         end

                     else if quantifier head

        then bldquant (head,tail)

        else makeProporPred (head,tail)

and bldquant (h,t)=

let val (v,tail) =

bldVar (hd t,tl t) in

let val (S,tail') =

constructfact tail in

if h="A"

    then auxconstructsent(Forall(v,S),tail')

else if h="E"

        then auxconstructsent 

        else raise quant_error0

end

end;

fun strip nil = nil

  | strip S = if hd S = " "

then strip (tl S)

              else (hd S) :: (strip (tl S));

(* This is the final function that maps a string to a SENT *)



263

fun make S = fst(constructsent (strip (explode S)));

(* Auxiliary functions for printing terms, used in... *)

exception printterms_error0;

fun printterms nil = raise printterms_error0

  | printterms ((Name n)::t) = "(" ^ n ^ (printterms' t)

  | printterms ((Var v)::t) = "(" ^ v ^ (printterms' t)

  | printterms ((app(f,terms))::t) =

"(" ^ f ^ (printterms terms) 

and printterms' nil = ")"

  | printterms' ((Name n)::t) = "," ^ n ^ (printterms' t)

  | printterms' ((Var v)::t) = "," ^ v ^ (printterms' t)

  | printterms' ((app(f,terms))::t) =

"," ^ f ^ (printterms terms) ^ (printterms' t);

(* ...this function, which takes SENTs and

prints them as strings *)

fun printsent (Prop v) =  v

  | printsent (And(left, right)) = "(" ^ printsent left ^ "&" ^ ")"

  | printsent (Not(rest)) = "(" ^ "~" ^ printsent rest ^ ")"

  | printsent (Or(left, right)) =

"(" ^ printsent left ^ "V" ^ printsent right ^ ")"

  | printsent (Imp(left, right)) =

"(" ^ printsent left ^ ">" ^ printsent right ^ ")"

  | printsent (Eq(left, right)) = "(" ^ printsent left ^ "=" ^ ")"

  | printsent (Pred(p,terms)) = p ^ printterms terms

  | printsent (Forall(Var v,S)) ="A" ^ v ^ "(" ^ printsent S ^ ")"

  | printsent (Exists(Var v,S)) ="E" ^ v ^  "(" ^ printsent S ^ ")";

B.1.3. Using truth-tables efficiently

(* Here is a collection of functions to use the truth-tables method

for deciding validity of entailments. Instead of building the whole

truth-table we check line by line because we can stop whenever to



264        APPENDIX B

conditions for validity are first broken, rather than going through

all possibilities *)

fun filter p nil = nil

  | filter p (x::xs) = if p x

then x :: filter p xs

else filter p xs;

fun mem nil  a = false

  | mem (x::xs)  a = a=x orelse mem xs a;

fun union(s,t) = s @ filter (not o mem s) t;

fun apply((s,v)::rest,S) = if s=S

then v

else apply(rest,S);

exception finished;

fun switch' nil a = raise finished

  | switch' ((sent,true)::rest) a = a@((sent,false)::rest)

  | switch' ((sent,false)::rest) a = switch' rest ((sent,true)::a);

fun switch a = switch' a nil;

fun set_up (Var s) = [(s,true)]

  | set_up(Not s) = set_up(s)

  | set_up(And(s,t)) = union(set_up(s),set_up(t))

  | set_up(Or(s,t)) = union(set_up(s),set_up(t))

  | set_up(Imp(s,t)) = union(set_up(s),set_up(t))

  | set_up(Eq(s,t)) = union(set_up(s),set_up(t));

local fun valid' (s,valuation) =

if (truthvalue valuation s)

then output std_out "\nincorrect\n")

                  else valid'(s,switch valuation) in

fun valid sent = valid'(sent,set_up sent)

end;



265

fun transform(nil,goal) = Not(goal)

  | transform(x::nil,Null) = x

  | transform(x::xs,goal) = And(x,transform(xs,goal));

infix ttentails;

(* Here is the main function.

Given a list of assumptions ass and

a conclusion conc we evaluate

ass ttentails conc *)

fun ass ttentails conc =

(valid(transform(ass,conc)))

 handle finished => output std_out "\ncorrect\n");

B.1.4. Proofs using tableaux

(* Here is a version of the tableau algorithm which shortens

the amount of tableau traversal by keeping a

note of all the sentences passed on the way

from root to node.This makes testing

 for closure much quicker  *)

type nodeinfo = {Closed : bool, Used : bool};

datatype Tableau = Leaf of (SENT * nodeinfo) |

 Onenode of (SENT * nodeinfo * Tableau) |

           Twonode of (SENT * nodeinfo * Tableau * Tableau);

fun Neg (Not(sent)) = sent | Neg sent = Not(sent);

infix mem;

fun a mem nil = false | a mem (x::xs) = a=x orelse a mem xs;



266        APPENDIX B

val initinfo = {Closed=false,Used=false};

fun initialise (nil,goal)  =   Leaf(Neg(goal),initinfo)

  | initialise (premise::nil,Null) = Leaf(premise,initinfo)

  | initialise (premise :: rest,goal)  =

 Onenode(premise,initinfo,initialise (rest,goal));

fun alpha(And(s,t)) = true

  | alpha(Not(Imp(s,t))) =true

  | alpha(Not(Or(s,t))) = true

  | alpha(s) = false;

fun composite(Var s) = false

  | composite(Not(Var s))= false

  | composite(s) = true;

fun apply_rule (Imp(s,t)) = (Neg(s),t)

 |  apply_rule (Eq(s,t)) = (And(s,t),And(Neg(s),Neg(t)))

 |  apply_rule(And(s,t)) = (s,t)

 |  apply_rule(Or(s,t)) = (s,t)

 |  apply_rule(Not(Imp(s,t))) = (s,Neg(t))

 |  apply_rule(Not(Eq(s,t))) = (And(Neg(s),t),And(s,Neg(t)))

 |  apply_rule(Not(And(s,t))) = (Neg(s),Neg(t))

 |  apply_rule(Not(Or(s,t)))= (Neg(s),Neg(t));

val useup = {Closed=false,Used=true};

val useable = (fn a => fn b:nodeinfo =>

 not(#Used(b)) andalso composite(a));

fun extend(Leaf(S,N),sent,path)=

let fun test s ={Closed = Neg(s) mem path,Used = false} in

 if not(#Closed(N))

 then let val (f,s) = apply_rule(sent) in

     if alpha(sent)

then Onenode(S,N,Onenode(f,test f,

Leaf(s,test s)))

else Twonode(S,N,next'(Leaf(f,test f),S::path),

  next'(Leaf(s,test s),S::f::path))



267

    end

else (Leaf(S,N))

end

 | extend(Onenode(S,N,T),sent,path) =

if not(#Closed(N))

    then Onenode(S,N,extend(T,sent,S::path))

     else Onenode(S,N,T)

 | extend(Twonode(S,N,T1,T2),sent,path) =

if not(#Closed(N))

then Twonode(S,N,extend(T1,sent,S::path),

  extend(T2,sent,S::path))

  else Twonode(S,N,T1,T2)

and next' (Leaf(S,N),path)=

if (useable S N)

then extend(Leaf(S,useup),S,path)

else Leaf(S,N)

  | next' (Onenode(S,N,T),path) =

if (useable S N)

then extend(Onenode(S,useup,T),S,path)

else Onenode(S,N,next'(T,S::path))

  | next' (Twonode(S,N,T1,T2),path) =

  if (useable S N)

  then extend(Twonode(S,useup,T1,T2),S,path)

  else Twonode(S,N,next'(T1,S::path), 

  next'(T2,S::path))

and next T = next'(T,nil);

fun closed (Leaf(S,N)) = #Closed(N)

  | closed (Onenode(S,N,T)) = #Closed(N) orelse closed T

  | closed (Twonode(S,N,T1,T2)) = #Closed(N) orelse ((closed T1)

andalso (closed T2));

fun make_tableau T  = let val T' = next T in

if T' = T

then T



268        APPENDIX B

else make_tableau  T'

end;

infix entails;

fun asslist entails goal =

let val start_tableau = initialise(asslist,goal) in

let val final_tableau = make_tableau(start_tableau) in

 if closed(final_tableau)

 then output std_out "\ncorrect\n"

  else output std_out "\nincorrect\n"

end

end;

B.1.5. Terms, substitutions

(* Here we introduce some terms and

show how we can do substitutions on them.

We also show how composition of substitutions

   can be implemented *)

datatype term  = app of string * term list |

var of string |

const of string |

empty;

fun lookup(x,nil) = empty

  | lookup(x,(y,t)::rest) = if x=y

 then t

 else lookup(x,rest);

fun applySubst (Subst,(app(f,Args))) = app(f,(Sub (Subst,Args)))

  | applySubst (Subst, (var x)) =

let val NewTerm = lookup(var x,Subst) in

if NewTerm = empty

then var x

else NewTerm

end



269

  | applySubst (_, (const a)) = const a

  | applySubst (_,empty) = empty

and Sub (_,nil) = nil

  | Sub (Subst,FirstArg::RestofArgs) =

applySubst (Subst,FirstArg) :: Sub (Subst,RestofArgs);

fun combine(S,nil) = S

  | combine(Sub,(Var,_)::Rest) = let val S=combine(Sub,Rest) in

   if not(lookup(Var,Sub)=empty)

then S

else (Var,Var)::S

end;

fun compose(nil,_)=nil

  | compose((Var,Term)::Rest,Sub2) =

let val NewTerm = applySubst(Sub2,Term)

and S = compose(Rest,Sub2) in

if Var=NewTerm

then S

else (Var,NewTerm)::S

end;

fun composition(Sub1,Sub2) = compose(combine(Sub1,Sub2),Sub2);

B.1.6. Program for semantic tableau method for predicate calculus

fun lookup(x,nil) = empty

  | lookup(x,(y,t)::rest) = if x=y then t else lookup(x,rest);

fun applySubst Subst (app(f,Args)) =

app(f,map (applySubst Subst) Args)

  | applySubst Subst (Var x) = let val NewTerm =

          lookup(Var x,Subst) in

if NewTerm = empty

                                    then Var x

else NewTerm

 end

  | applySubst _ (Name a) = Name a



270        APPENDIX B

  | applySubst _ empty = empty;

type nodeinfo = {Closed : bool, Used : bool};

datatype Tableau =

Leaf of (SENT * nodeinfo)

    | Onenode of (SENT * nodeinfo * Tableau)

    | Twonode of (SENT * nodeinfo * Tableau * Tableau);

fun fst (a,b) = a;

fun snd (a,b) = b;

infix mem;

fun a mem nil = false | a mem (x::xs) = a=x orelse a mem xs;

infix -;

fun l1 - nil = l1

  | l1 - (h::t) = take(h,l1) - t

and take(h,nil) = nil

  | take(h,a::b) = if h = a then b else a::take(h,b);

fun anddist nil = true

  | anddist (h::t) = h andalso (anddist t);

fun flatten nil = nil

  | flatten (h::t) = h @ (flatten t);

fun filter nil = nil

  | filter (h::t) = if (h mem t) then filter t else h::(filter t);

val allnames = [Name "a",Name "b",Name "c",Name "d",Name "e",

Name "a1",Name "a2", Name "a3"];

fun name (Name n) = true

  | name (app(f,l)) = anddist (map name l)

  | name s = false;

fun alpha(And(s,t)) = true



271

  | alpha(Not(Imp(s,t))) = true

  | alpha(Not(Or(s,t))) = true

  | alpha(s) = false;

fun beta(Or(s,t)) = true

  | beta(Imp(s,t)) = true

  | beta(Not(And(s,t))) = true

  | beta(Eq(s,t)) = true

  | beta(Not(Eq(s,t))) = true

  | beta(s) = false;

fun gamma(Forall(v,s)) = true

  | gamma(Not(Exists(v,s))) = true

  | gamma(s) = false;

fun delta(Exists(v,s)) = true

  | delta(Not(Forall(v,s))) = true

  | delta(s) = false;

fun composite(Pred(p,t)) = false

  | composite(Not(Pred(p,t)))= false

  | composite (Prop p) = false

  | composite (Not(Prop p)) = false

  | composite(s) = true;

fun Neg (Not(sent)) = sent | Neg sent = Not(sent);

fun instance term (Forall(x,s)) = instance'(s,x,term)

  | instance term (Not(Exists(x,s))) = Neg(instance'(s,x,term))

  | instance term (Exists(x,s)) = instance'(s,x,term)

  | instance term (Not(Forall(x,s))) =Neg(instance'(s,x,term))

and instance'(And(s,t),x,newt) = 

And(instance'(s,x,newt),instance'(t,x,newt))

  | instance'(Or(s,t),x,newt) = 

Or(instance'(s,x,newt),instance'(t,x,newt))



272        APPENDIX B

  | instance'(Imp(s,t),x,newt) = 

Imp(instance'(s,x,newt),instance'(t,x,newt))

  | instance'(Eq(s,t),x,newt) = 

Eq(instance'(s,x,newt),instance'(t,x,newt))

  | instance'(Not(s),x,newt) = Not(instance'(s,x,newt))

  | instance'(Forall(Var y,s),x,newt) =

if x = Var y

then Forall(Var y,s)

else Forall(Var y,instance'(s,x,newt))

  | instance'(Exists(Var y,s),x,newt) =

if x = Var y

then Exists(Var y,s)

else Exists(Var y, instance'(s,x,newt))

  | instance'(Pred(p,terms),x,newt) =

Pred(p,map (applySubst [(x,newt)]) terms)

  | instance'(p,x,newt) = p;

fun apply_rule (Imp(s,t)) = (Neg(s),t)

 |  apply_rule (Eq(s,t)) = (And(s,t),And(Neg(s),Neg(t)))

 |  apply_rule(And(s,t)) = (s,t)

 |  apply_rule(Or(s,t)) = (s,t)

 |  apply_rule(Not(Imp(s,t))) = (s,Neg(t))

 |  apply_rule(Not(Eq(s,t))) = (And(Neg(s),t),And(s,Neg(t)))

 |  apply_rule(Not(And(s,t))) = (Neg(s),Neg(t))

 |  apply_rule(Not(Or(s,t)))= (Neg(s),Neg(t))

 | apply_rule p = (Null,Null);

fun newname nl =  if (allnames - nl) = nil

then (Name "*")

else hd(allnames - nl);

fun getnames (And(s,t)) = (getnames s) @ (getnames t)

  | getnames (Or(s,t)) = (getnames s) @ (getnames t)

  | getnames (Imp(s,t)) = (getnames s) @ (getnames t)

  | getnames (Eq(s,t)) = (getnames s) @ (getnames t)

  | getnames (Not(s)) = getnames s



273

  | getnames (Forall(v,s)) = getnames s

  | getnames (Exists(v,s)) = getnames s

  | getnames (Pred(p,l)) =  flatten (map getnames' l)

  | getnames p = nil

and getnames' (Name n)  = [Name n]

  | getnames' (Var x) = nil

  | getnames' (app(f,l)) = (if name(app(f,l))

    then [app(f,l)]

    else nil) @ (flatten (map getnames' l))

  | getnames' empty = nil;

val initinfo = {Closed=false,Used=false};

fun initialise (nil,goal)  =   Leaf(Neg(goal),initinfo)

  | initialise (premise::nil,Null) = Leaf(premise,initinfo)

  | initialise (premise :: rest,goal)  = 

Onenode(premise,initinfo,initialise (rest,goal));

infix oneof;

fun S oneof (Leaf(S',N)) = S=S'

  | S oneof (Onenode(S',N,T)) = S=S' orelse (S oneof T);

fun initialclosed (Leaf(S,N)) = false

  | initialclosed (Onenode(S,N,T)) = (Neg(S) oneof T) orelse

                                                 (initialclosed T);

fun nameson path =

filter(flatten(map (fn (a,b) => getnames a) path));

infix onpath;

fun S onpath path = ((S,{Closed=true,Used=true})mem path) orelse

                  ((S,{Closed=true,Used=false}) mem path) orelse

                  ((S,{Closed=false,Used=true}) mem path) orelse

                        ((S,{Closed=false,Used=false}) mem path);

infix appears_unused_on;



274        APPENDIX B

fun S appears_unused_on path =

((S,{Closed=true,Used=false}) mem path) orelse

                       ((S,{Closed = false,Used = false}) mem path);

fun test S s n path =

{Closed = Neg(s) onpath (n::(S::path)), Used = false};

fun addgammanodes(S,N,sent,path) = agn(S,N,sent,path,nameson path)

and agn(S,N,sent,path,n::nil) =

let val newsent = instance n sent in

                      if newsent onpath path

                      then if sent appears_unused_on path

                           then Leaf(S,N)

                           else Onenode(S,N, Leaf(sent,initinfo))

                      else  (print ("\nuniversal\n" ^

                                        (printsent newsent)^ "\n");

                             if sent appears_unused_on path

                             then Onenode(S,N,Leaf(newsent,

test (S,N) newsent 

(Null,initinfo) path))

                             else Onenode(S,N,Onenode(newsent,

                                          test (S,N) newsent 

  Leaf(sent,initinfo))))

                  end

  | agn(S,N,sent,path,n::t) =

let val newsent = instance n sent in

                      if newsent onpath path

                      then agn(S,N,sent,path,t)

                      else (print ("\nuniversal\n" ^ printsent 

                            if sent appears_unused_on path

                            then Onenode(S,N,agn(newsent,test (S,N) 

  path,sent,path,t))

                            else Onenode(S,N,Onenode(newsent,test 

                                          (Null,initinfo) path,



275

agn(sent,test (S,N) 

newsent (Null,initinfo) 

path,sent,path,t))))

                  end

  | agn(S,N,sent,path,nil) =

let val nn = instance (Name "a") sent in

                      (print ("\nuniversal\n" ^ (printsent 

                       if sent appears_unused_on path

                       then Onenode(S,N,Leaf(nn, test

                                     (S,N) nn (Null,initinfo) path))

                       else Onenode(S,N,Onenode(nn, test

                                    (S,N) nn (Null,initinfo) 

                  end;

fun adddeltanode(S,N,sent,path) = adn(S,N,sent,nameson path,path)

and adn(S,N,sent,nl,path) =

       let val nn = instance (newname nl) sent in

          (print ("\nexistential\n" ^ (printsent nn)^ "\n");

           Onenode(S,N,Leaf(nn,test (S,N) nn (Null,initinfo) path)))

       end;

val useable = (fn a => fn b:nodeinfo => not(#Used(b)) andalso 

datatype kinds = prop | univ | exis| ground;

fun kindof s = if alpha(s) orelse beta(s)

               then prop

               else if gamma(s)

                    then univ

                    else if delta(s)

                         then exis

                         else ground;

val useup = {Closed=false,Used=true};



276        APPENDIX B

fun extend(Leaf(S,N),sent,path) kind =

                if not(#Closed(N))

                then case kind of

                     prop=>

                       if alpha(sent)

                       then let val (f,s) = apply_rule(sent) in

                               (Onenode(S,N Onenode(f,test (S,N) f 

                            end

                       else if beta(sent)

                            then let val (f,s) = apply_rule(sent) in

                                            (Twonode(S,N,

                                 Leaf(f,test (S,N)

  f (Null,initinfo) path),

                                Leaf(s,test (S,N)

  s (Null,initinfo) path

)),true)

                                 end

                            else (Leaf(S,N),false)

                  | univ=>

                     if gamma(sent)

                     then (addgammanodes(S,N,sent,(S,N)::path),true)

                     else (Leaf(S,N),false)

                  | exis=>

                     if delta(sent)

                     then (adddeltanode(S,N,sent,(S,N)::path),true)

                     else (Leaf(S,N),false)

                  | ground=> (Leaf(S,N),false)

              else (Leaf(S,N),false)

   | extend(Onenode(S,N,T),sent,path) kind =

                        if not(#Closed(N))

         then let val (f,s) = 

extend(T,sent,(S,N)::path)

kind in

                                (Onenode(S,N,f),s)

                             end

                       else (Onenode(S,N,T),false)



277

   | extend(Twonode(S,N,T1,T2),sent,path) kind =

                      if not(#Closed(N))

                      then let val (f1,s1) = 

extend(T1,sent,(S,N)::path) kind

                               and (f2,s2) =

extend(T2,sent,(S,N)::path) kind in

                                   (Twonode(S,N,f1,f2),s1 orelse s2)

                           end

                      else (Twonode(S,N,T1,T2),false)

and next' (Leaf(S,N),path) kind =

                        if (useable S N) andalso (kindof S) = kind

                        then extend(Leaf(S,useup),S,path) kind

                        else (Leaf(S,N),false)

  | next' (Onenode(S,N,T),path) kind =

                      if (useable S N) andalso (kindof S) = kind

                      then  extend(Onenode(S,useup,T),S,path) 

     else let val (f,s) =

next'(T,(S,N)::path) kind in

                                                (Onenode(S,N,f),s)

                           end

  | next' (Twonode(S,N,T1,T2),path) kind =

                     if (useable S N) andalso (kindof S) = kind

                     then extend(Twonode(S,useup,T1,T2),S,path) 

   else let val (f1,s1) =

next'(T1,(S,N)::path) kind

and (f2,s2) =

next'(T2,(S,N)::path) kind  in

       (Twonode(S,N,f1,f2),s1 orelse s2)

                          end

and propnext T = next'(T,nil) prop

and univnext T = next'(T,nil) univ

and exisnext T = next'(T,nil) exis;

fun closed (Leaf(S,N)) = #Closed(N)



278        APPENDIX B

  | closed (Onenode(S,N,T)) = #Closed(N) orelse closed T

  | closed (Twonode(S,N,T1,T2)) = #Closed(N)  orelse ((closed T1) 

fun make_tableau T = let val (T',changes) = propnext T  in

                     if closed T'

                     then T'

                     else if changes

                          then make_tableau T'

                          else let val (T',changes) = exisnext T' in

                               if closed T'

                               then T'

                               else if changes

                                    then make_tableau T'

                                    else let val (T',changes) =

                                                      univnext T' in

                                         if closed T'

                                         then T'

                                         else if changes

                                              then make_tableau T'

                                              else T'

                                         end

                               end

                     end;

infix entails;

fun asslist entails goal =

   let val start_tableau = initialise(map make asslist,make goal) in

       if initialclosed start_tableau

       then output std_out "\ncorrect\n"

       else let val final_tableau = make_tableau(start_tableau) in

                if closed(final_tableau)

                then output std_out "\ncorrect\n"

                else output std_out  "\nincorrect\n"

            end

  end;



279

B.2. Programs in Prolog

B.2.1. Using truth-tables efficiently

:-op(510, fx,  [~]).

:-op(520,xfy, [/\]).

:-op(530,xfy, [\/]).

:-op(540,xfx, [->]).

:-op(550,xfx,  [?]).

Assumptions?Goal:- transform(Assumptions,Goal,Formula),

                   setup(Formula,Valuation),

                   (generate(Valuation),

                    value(Formula,t,Valuation),

                    write('not valid'));

                    write('valid').

transform([],G,~G).

transform([H|T],G,H/\X):- transform(T,G,X).

setup(A,[[A|_]]):-atomic(A).

setup(~F,V):-setup(F,V).

setup(F,V):- F=..[_,A,B],setup(A,X),setup(B,Y),union(X,Y,V).

generate([]).

generate([[A,V]|T]):- (V=t;V=f),generate(T).

value(   A,Z,V):- atomic(A),!,member([A,Z],V).

value(  ~A,Z,V):- value(A,X,V),             truth_table(  ~X,Z).

value(A/\B,Z,V):- value(A,X,V),value(B,Y,V),truth_table(X/\Y,Z).

value(A\/B,Z,V):- value(A,X,V),value(B,Y,V),truth_table(X\/Y,Z).

value(A->B,Z,V):- value(A,X,V),value(B,Y,V),truth_table(X->Y,Z).

truth_table(t/\t,t):-!.

truth_table(_/\_,f).

truth_table(f\/f,f):-!.



280        APPENDIX B

truth_table(_\/_,t).

truth_table(t->f,f):-!.

truth_table(_->_,t).

truth_table(  ~t,f).

truth_table(  ~f,t).

union([],Y,Y).

union([[A,_]|T],Y,Z):- member([A,_],Y),!,union(T,Y,Z).

union([[A,V]|T],Y,[[A,V]|Z]):-union(T,Y,Z).

member(X,[H|T]):- X=H;member(X,T).



281

Solutions to Selected Exercises

2.2

(b)

The sentences in the arguments in one have the following truth-values:

sentence truth-value

A f

B t

C t

D t

E f

premise conclusion argument

a) f f valid

b) t t invalid

c) t f invalid

d) t t valid

e) f t valid

f) f f invalid

g) f t invalid

This shows that an invalid argument can have

true premises and true conclusion.

true premises and false conclusion



282        SOLUTIONS

false premises and true conclusion

false premises and false conclusion

and that a valid argument can have

true premises and true conclusion

false premises and true conclusion

false premises and false conclusion.

(c)

No such argument can be constructed since a valid argument cannot have true

premises and false conclusion. This is because an argument is valid iff the sentence

which is "conjunction of its premises f its conclusion" is a tautology. That this was

so would contradict the fact that the premises were true and the the conclusion false.

2.3

(e)

We use the abbreviations:

A : The Eiffel Tower is in Australia

B : Australia is below the equator

C : The Eiffel Tower is in Paris

D : Paris is in France

E : France is in Australia

i)

A  Ÿ  B

\ A

A B A  Ÿ  B (A  Ÿ  B)  f B

t t t t

t f f t

f t f t

f f f t

The argument is valid since it is true under all valuations, i.e. lines of the

truth-table.



283

ii)

C  ⁄  D

\ C

C D C  ⁄  D (C Ÿ D) f C

t t t t

t f t t

f t t f

f f f t

The argument is invalid since the third line makes the argument false, so it is

not true under all valuations.

iii)

A  ⁄  B

\ B

same form of argument as ii), so it is invalid too.

iv)

C Ÿ D

\ C

same form of argument as i), so it is valid too.

v)

A Ÿ D

\ D

As A Ÿ D is equivalent to D Ÿ A, this is the same form of argument as i), so it

is valid too.

vi)

A ⁄ E

\ A

Same form of argument as iii), so it is valid too.



284        SOLUTIONS

vii)

A ⁄ E

\ C

A E A  ⁄  E C (A  ⁄  E) f C

t t t t t

t t t f f

t f t t t

t f t f f

f t t t t

f t t f f

f f f t t

f f f f t

Here, there are valuations, i.e. lines of the truth-table where the argument is

false, so it is invalid.

2.6

(d)

fun truthvalue V Null = raise invalid_sentence
  | truthvalue V (Prop P) = apply(V,P)
  | truthvalue V (Not(S)) =

if truthvalue V S = true
then false else true

  | truthvalue V (And(S, T)) =
if truthvalue V S andalso truthvalue V T = true
then true else false

  | truthvalue V (Or(S, T)) =
if truthvalue V S = true orelse truthvalue V T = true
then true else false

  | truthvalue V (Imp(S, T)) =
if truthvalue V S = true andalso truthvalue V T = false
then false else true

  | truthvalue V (Eq(S, T)) =
if truthvalue V S = truthvalue V T then true else false;

2.7

(c)

fun rhsimp(s,nil) = (false,Null)
  | rhsimp(s,(Imp(l,r))::t) = if s=r then (true,l) else rhsimp(s,t)
  | rhsimp(s,h::t) = rhsimp(s,t);

fun MP l s  = let val (ok,left) = rhsimp(s,l) in



285

ok andalso (left memberof l)
  end;

fun proof  l = proof'  nil l
and proof' l nil = true
  | proof' l (h::t) = (axiom h orelse MP l h) andalso

(proof'(l @ [h]) t);

3.2

(d)

infix free_for;
fun t free_for (x, And(S,T)) = (t free_for (x,S)) andalso

(t free_for (x,T))
    | t free_for (x ,Or(S,T)) = (t free_for (x,S)) andalso

(t free_for (x,T))
    | t free_for (x ,Imp(S,T)) = (t free_for (x,S)) andalso

(t free_for (x,T))
    | t free_for (x ,Eq(S,T)) = (t free_for (x,S)) andalso

(t free_for (x,T))
    | t free_for (x ,Not(S)) = (t free_for (x,S))
    | t free_for (x ,Forall(v,S)) =

not(x free_in (Forall(v,S )) andalso
v occurs_in [t]) andalso (t free_for (x,S))

    | t free_for (x ,Exists(v,S)) =
not(x free_in (Exists(v,S)) andalso
v occurs_in [t]) andalso (t free_for (x,S))

    | _ free_for _   = true;

(g)

We first new two auxiliary functions before we can give the definition of

forms_match:

fun combine (b,t) (b',t') =  let val b'' = (b andalso b') in
                                 if t=t'

    then (b'',t)
    else if t=empty

   then (b'',t')
   else if t' = empty

  then (b'',t)
                                  else (false,empty)
                        end;

fun terms_match (x,nil) nil = (true,empty)
  | terms_match (x,(Name n)::tail) ((Name n')::tail') =

if n=n'
            then (terms_match (x,tail) tail')
            else (false,empty)
  | terms_match (x, (Var v)::tail) (t::tail') =

if x = Var v
      then (combine (terms_match (x,tail) tail') (true,t))
            else if t=Var v



286        SOLUTIONS

                 then (terms_match (x,tail) tail')
                 else (false,empty)

  | terms_match (x,(app(f,terms))::tail) ((app(f',terms'))::tail') = 
if f=f'

            then (terms_match (x,tail) tail')
            else (false, empty)
  | terms_match _ _ = (false,empty);

fun forms_match (x,And(S,T)) (And(S',T')) =
combine (forms_match(x,S) S') (forms_match(x,T) T')

  | forms_match (x,Or(S,T)) (Or(S',T')) =
combine (forms_match(x,S) S') (forms_match(x,T) T')

  | forms_match (x,Imp(S,T)) (Imp(S',T')) =
combine (forms_match(x,S) S') (forms_match(x,T) T')

  | forms_match (x,Eq(S,T)) (Eq(S',T')) =
combine (forms_match(x,S) S') (forms_match(x,T) T')

  | forms_match (x,Not(S)) (Not(S')) = (forms_match (x,S) S')
  | forms_match (x, Forall(v,S)) (Forall(v',S')) =

if v=v'
then (forms_match (x,S) S')
else (false,empty)

  | forms_match (x,Exists(v,S)) (Exists(v',S')) =
if v=v'
then (forms_match (x,S) S')
else (false,empty)

  | forms_match (x,Pred(p,terms)) (Pred(p',terms')) =
if p=p'

                 then  (terms_match (x,terms) terms')
                 else (false,empty)
  | forms_match (x,Prop p) (Prop p') = (p=p',empty)
  | forms_match  _ _ = (false,empty);

(h)

fun proof   l = proof'  nil l
and proof'  l nil = true
  | proof'  l (h::t) = (axiom h orelse MP l h

orelse generalization  l h) andalso
(proof'  (l @ [h]) t);



287

4.1

(a)

¬(A ´ (A Ÿ B))   ÷   (1)

A   (2, from 1)

¬(A Ÿ B)   √   (3, from 1)

¬A (4, from 3) ¬B   (5, from 3)

¬A   (6, from 1)

(A Ÿ B)   ÷   (7, from 1)

A   (8, from 7)

B   (9, from 7)+   (2 and 4)

+   (6 and 8)

This path is unclosed, so entailment not valid

A B A Ÿ B A  j (A Ÿ B)

t t t t            
t f f f             here is a line which is f

f t f t so since we do not have

f f f t true in all valuations, i.e.

lines of the truth-table the

entailment is not valid

(b)

¬((A ⁄ B) ´ (B ⁄ A))   ÷   (1)

¬(A ⁄ B)  ÷   (2, from 1) 

(B ⁄ A)   ÷   (3, from 1)

¬A   (4, from 2)

¬B   (5, from 2)

B   (6, from 3) A   (7, from 3)

+   (6 and 5) +   (7 and 4)

(A ⁄ B)  ÷   (8, from 1)

¬(B ⁄ A)   ÷   (9, from 1)

A   (10, from 8)

¬B   (11, from 9)

¬A   (12, from 9)

+   (10 and 12)

B   (13, from 8)

¬B   (14, from 9)

¬A   (15, from 9)

+   (13 and 14)

All paths are closed, so entailment is valid



288        SOLUTIONS

A B A ⁄ B B ⁄ A (A ⁄ B) f (B ⁄ A)

t t t t t the conclusion is true
t f t t t in all valuations
f t t t t and so the
f f f f t entailment is valid

(c)

A   (10, from 2)A   (8, from 2) B   (9, from 2)

B   (5, from 1)

A   (4, from 1)

A ́  B   ÷   (1)

A ⁄ B   ÷   (2)

¬(A Ÿ B)   ÷   (3)

¬A   (12, from 3) ¬B   (13, from 3)

¬A   (14, from 3) ¬B   (15, from 3)

+   (8 and 12) +   (5 and 13)

+   (4 and 14) +   (9 and 15)

+   (6 and 10) +   (7 and 11)

¬A   (6, from 1)

¬B   (7, from 1)

B   (11, from 2)

all paths closed, so entailment is valid

A B A  j B A ⁄ B A Ÿ B

t t t t t       this is the only line 

t f f t f       where both the

f t f t f       premises are true,

 f f t f f       so as the conclusion

      is true here too the

      entailment is valid



289

(d)

A   (1)

¬(A ⁄ B)   ÷   (2)

¬A   (3, from 2)

¬B   (4, from 2)

+   (1 and 3)

all paths closed, so entailment is valid

A B A ⁄ B

t t t      these first two lines are where the premise is true
t f t      and the conclusion is true here too so
f t t the entailment is valid
f f f

(e)

A   (1)

B   (2)

¬(A Ÿ B)   ÷   (3)

¬A   (4, from 3) ¬B   (5, from 3)

+   (1 and 4) +   (2 and 5)

all paths closed, so entailment is valid

A B A Ÿ B

t t t    this line is where the premises are both
t f f true and the conclusion is true here
f t f too, so the entailment is valid
f f f



290        SOLUTIONS

(f)

A Ÿ B   ÷   (1)

¬A   (2)

A   (3, from 1)

B   (4, from 1)

+   (2 and 3)

all paths closed, so entailment is valid

A B A Ÿ B

t t t   this line is where the premise is true
t f f and as the conclusion is true too the

f t f entailment is valid

f f f

(g)

A ⁄ B   ÷   (1)

A ⁄ (B Ÿ C)   ÷   (2)

¬(A Ÿ C)   ÷   (3)

A   (4, from 1) B   (5, from 1)

       A   
(6, from 2)

(B Ÿ C)   ÷   (7, from 2)

       ¬A   
 (10, from 3)

       +   
(6 and 10)

   ¬C
(from 3)

B   (from 7)

      C   
(11, from 7)

     ¬A   
(12, from 3)

      ¬C   
(13, from 3)

      +   
(4 and 12)

       +   
(11 and 13)

       A   
(8, from 2)

(B Ÿ C)   ÷   (9, from 2)

       ¬A   
 (15, from 3)

       +   
(8 and 15)

   ¬C
(from 3)

B   (from 9)

      C   
(16, from 9)

     ¬A   
(17, from 3)

      ¬C   
(18, from 3)

       +   
(16 and 18)

These paths are open, so the entailment is not valid



291

A B C A ⁄ B A ⁄ (B Ÿ C) A  Ÿ  C
t t t t t t      
t t f t t f ®
t f t t t t      
t f f t t f  ®  
f t t    t t f ®
f t f t f f
f f t f f f
f f f f f f

The marked lines show that the entailment is not valid.

8.1

(a) There is a possible world in which this can be true.

(b) There is no possible world in which this is true. If it were true in some world then,

since 2+2≠4 then there is some number, say n, for which 2+2=n. Then, if 2+2 > n , by

repeatedly subtracting 1 from either side we will eventually get to a stage where we

have m=0 where m is not 0. Then, by subtracting m-1 1s from m we get 1=0 and the

argument given in the text just before this exercise leads to a contradiction. A similar

argument in the case where 2+2<n leads to a contradiction also. So, there is no

possible world in which the sentence can be true.

(c) There is no possible world in which this can be true. In any one where is is we get

a yard is shorter than a yard, which is contradictory.

(d) There is a possible world where this is true. For instance, one where I am ignorant

of, or mistaken about, results on natural numbers.

(e) There is no possible world where this can be true since knowledge is simply the

belief of facts, and it is not a fact that there is a greatest prime number.



292        SOLUTIONS



293

REFERENCES

Bibel W. (1987). Automated Theorem-Proving. 2nd. revised edition. Braunschweig:
Vieweg

Boolos G. and Jeffrey R. (1980). Computability and Logic 2nd edn. Cambridge:
Cambridge University Press

Bornat  R.  (1987). Programming from First Principles  Hemel Hempstead: Prentice-
Hall International

Bratko I.  (1986). Prolog programming for artificial intelligence. Wokingham:
Addison-Wesley

Church  A.  (1936). A note on the Entscheidungsproblem. Journal of Symbolic Logic,
1,1,40-41,101-102

Clocksin W.F. and Mellish C.S. (1981). Programming in Prolog. Springer-Verlag

Fitting M.  (1983). Proof methods in modal and intuitionistic logics.Reidel

Gentzen G. (1934). Investigations into Logical Deduction. In  (1969) The Collected
papers of Gerhard Gentzen (M. Szabo ed.). North-Holland

Gordon M.J., Milner R., Wadsworth C.P.  (1979). Edinburgh LCF, Lecture notes in
Computer Science 78. Berlin: Springer-Verlag

Hamilton A. (1978). Logic for Mathematicians. Cambridge University Press

Henson M. (1987). Elements of Functional Languages. Blackwell

Heyting A. (1956).  Intuitionism : an introduction. North-Holland

Hilbert D. and Ackermann W. (1950). Principles of Mathematical Logic. New York:
Chelsea Publishing Company (translation from (1938) Grundzüge der Theoretischen
Logik. 2nd edn. Berlin: Springer-Verlag)



294        REFERENCES

Hodges W. (1977). Logic. Pelican Books

Jeffreys R. (1967). Formal Logic: its Scope and Limits New York:McGraw-Hill Book
Company

Kripke S. (1963). Semantical analysis of modal logic I. Normal modal propositional
calculi. Zeitschrift für Mathematische Logik und Grundlagen der Mathemathik, 9, 67-
96

Landin P.J.(1964). The mechanical evalutation of expressions. Computer Journal,
6 (4), 308-320

Landin P.J. (1965) A correspondence between ALGOL 60 and Church's lambda-
notation.  Comm. ACM, 8, 89-101,158-165

Landin  P.J. (1966) The next 700 programming languages. Comm. ACM, 9(3), 157-
166

Lewis C.I. and Langford C.H.  (1932). Symbolic Logic. New York: Dover

Lloyd J.W. (1984). Foundations of Logic Programming. Springer-Verlag

Manna Z. and Pnueli A. (1981).  Verification of Concurrent Programs: the temporal
framework. In Proc. International Summer School on Theoretic Foundations of
Programming Methodology, Marktoberdorf, FRG, June 1981

Manna Z. and Waldinger  R. (1985) The Logical Basis for Computer Programming.
Addison-Wesley

Martin-Löf P. (1985). Constructive Mathematics and Computer Programming. In
Mathematical Logic and Computer Programming (eds. Hoare C.A.R. and
Shepherdson J.C.), Prentice-Hall
McCarthy J. (1960). Recursive functions of symbolic expressions and their
computation by machine, part 1. Comm. ACM, 3(4), 184-195

Mendelson, E. (1987). Introduction to Mathematical Logic, 3rd Edition. Wadsworth
and Brooks

Pratt  V.R. (1976). Semantical considerations on Floyd-Hoare Logic. In Proc. 17th
IEEE Symposium on the Foundations of Computer Science, 109-121

Reeves S.V. (1989). Programming as Constructive Mathematics. In Proceedings of
IMA Conference on Mathematical Structures for Software Engineering, Manchester,
July 1988

Reid C. (1970). Hilbert. Heidelberg: Springer-Verlag Berlin

Rescher N. and Urquhart A. (1971). Temporal Logic. Wien: Springer-Verlag

Robinson J.A. (1979). Logic: Form and Function. Edinburgh: University Press

Scott D., Bostock D., Forbes G., Issacson D. and Sundholm G. (1981). Notes on the
Formalization of Logic. Faculty of Philosophy, University of Oxford



295

Smullyan R. (1984). What is the name of this book. Pelican

Smullyan R. (1968).  First-Order Logic. Berlin: Springer-Verlag

Sterling L. and Shapiro E. (1986). The Art of Prolog. Cambridge: MIT Press

Stoy J. (1977). Denotational semantics: the Scott-Strachey approach to Programming
Languages. Cambridge: MIT press

Turing A.M. (1936). On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society, ser.2, 42,
230-265

Wikström Å. (1987). Functional programming using Standard ML. Hemel
Hempstead: Prentice-Hall International

Wallen L.  (1987). Automated Proof Search in Non-Classical Logics: Efficient Matrix
Proof methods for Modal and Intuitionistic Logics. PhD Thesis. University of
Edinburgh



296        REFERENCES



297

INDEX

!, 9
^, 26
|J, 171
p, 171
w, 171
A, 50
E, 50
H, 40
HC, 119
HI, 119
J, 28
JS4, 176
´, 9
Æ, 9
Ÿ, 9
⁄, 9
a, 149
fi, 110
accessibility, 170, 175
accessibility relation, 170
Ackermann, 37
adequacy, 42
alphabet, 9, 33, 50
arguments, 20

decidablity, 22
formal, 22
informal, 20
predicate logic, 49

associativity, 26
assumptions, 29

inconsistent, 31
atomic, 34, 51
axioms, 37

of a theory, 69

predicate, 60
propositional calculus, 38

backtracking, 180
binary tree, 72
binding, 153
Boole, 2
bound, 51
Brouwer, 120, 210, 211
Cantor, 210
cardinal number, 210
Church, 66
Church-Turing Thesis, 67
classical assumption, 18
classical logic, 23, 117, 121
clause, 165

connection method, 194
goal, 149
Horn, 165

closed world assumption, 144
commutativity, 26
complete

paths in tableaux, 83
completeness

predicate, 61
propositional, 46
semantic tableaux, 89
tableaux, 80

computable, 67
conclusion, 29
connected relation, 205
connection, 194
connection method, 193

clauses, 194
literals, 194



298        INDEX

matrix, 194
path, 194

connective symbols, 50
connectives, 9, 22

associativity, 26
commutativity, 26
idempotence, 26

consequence relation, 121
consistent, 28
constructive, 120, 210
constructive set theory, 216
contingent, 27, 169
contradiction, 6, 26, 168

proof by, 100
Cut Rule, 113, 114
Cut theorem, 33
cut-free, 114
cycle

in an S4 tableau, 180
decidability

predicate, 61
decidable, 10, 22
declarative sentence, 5
deducible, 40
deduction, 40
deduction theorem

predicate, 61
propositional, 43

definite clause, 149
body, 149
head, 149

definite clause program, 149
difference-set, 156
disjunctive normal form, 194
dynamic logic, 207
effective, 67
entailment

properties of, 31
Entscheidungsproblem, 65
environment, 153
equality, 128
equivalence relation, 175
excluded middle, 26, 120, 188, 210
extension, 53
false

in an interpretation, 55
first-order, 55
forces, 171
form, 20, 33
formal deductive system

predicate, 60
propositional, 37

formalism, 211
formalization, 7

formula, 51
frame of reference, 170
free for, 52
Frege, 2, 37, 210
functional completeness, 27
generalization, 60
Gentzen, 114, 120
goal, 149
Gödel, 145, 210
grammar, 33, 50
graph

directed, labelled, 172
Hauptsatz, 114
Herbrand base, 163
Herbrand interpretations, 163
Herbrand model, 163
Herbrand universe, 163
Heyting, 120
higher-order, 148
Hilbert, 37, 65, 145, 210
Horn clause, 165
idempotence, 26
inconsistent, 28, 30
index, 163
induction, 135
instance, 39, 153
interpretation, 53, 68, 125

over a frame, 170
intuitionism, 210
intuitionistic, 120

S4 translation, 188
tableaux for, 186

intuitionistic logic, 210
intuitionistic type theory, 216
ISWIM, 66
Kripke, 120, 175
l-calculus, 66
Landin, 66
language

predicate calculus, 50
propositional calculus, 33

LCF, 102, 197
lemma, 100
Lisp, 66
literal, 165
literals

connection method, 194
logic programming, 147
logical equivalence, 25
Lukasiewicz, 37, 175
Martin-Löf, 216
McCarthy, 66
metalanguage, 3
minimal



299

possible world, 177
ML, 198
modal, 167

tableau rules
deleting, 177
non-deleting, 177
ordering, 179

model, 37, 68, 125
Herbrand, 163
in a frame, 173

model set, 82
modus ponens, 38, 100
monotonicity

of consequence relation, 122
most general unifier, 156
natural deduction

discharge an assumption, 100
Fitch boxes, 105
LCF, 198
negation, 102
proof strategy, 103
rules, 99
rules for predicate classical
predicate calculus, 100

non-constructive existence, 210
non-contingent, 169
NOR, 27
observer's language, 3
occurrence

bound, 51
free, 51

oject language, 3
overloaded, 53
path, 73
possible worlds, 168, 170
possible-worlds diagram, 172
predicate calculus

informal, 49
natural deduction, 100

Prolog, 148
arithmetic, 251
bactracking, 241
body of clause, 239
clauses, 239
cut, 249
declarative reading, 240
goal, 241
head of clause, 239
if-then-else, 249
lists, 244
matching, 241
negation-as-failure, 248
procedural reading, 240
program, 239

system predicates, 243
term, 242
unification, 244
univ, 250
user-defined operators, 252
variable, 240

Prolog programs
efficient truth_tables, 279
semantic tableaux

propositional, 88
substitutions, 154

proof
in a formal deductive system, 40

proof-checker, 197
propositional

sentence, 9
propositional calculus

formal, 33
propositional language, 34
propositions, 5

internal structure, 49
propositions-as-types, 212
provability

intuitionistic, 188
provable

by semantic tableau, 82
quantifier

existential, 50
universal, 50

quantifier symbols, 50
reachability, 170
recursive, 67
reducible difference-set, 156
reducing substitution, 156
reductio ad absurdum, 100
reflexivity

of consequence relation, 122
resolution, 150

predicate, 159
propositional, 151

resolvents, 151
rules of deduction

propositional, 37
Russell, 2, 210
S4, 175

intuitionistic logic, 188
S5, 175
satisfiable, 55
satisfy, 36, 54

modal, 173
scope, 51
SECD machine, 67
semantic entailment, 28
semantic tableaux, 71



300        INDEX

basis of the method, 72
closing paths, 74
completed, 83
direct extension, 81
entailment represented by, 73
initial sentences, 73
intuitionistic logic, 186
invalid entailment, 76
predicate

algorithm, 95
correctness, 96

predicate calculus, 89
propositional, 72

algorithm, 83
completeness, 80, 89
correctness, 89
Prolog program, 88
SML program, 84
soundness, 80

relation to sequents, 116
rules for quantifiers

formal, 93
informal, 91

S4, 175
splitting rules, 78

semantics, 18
classical, 18
denotational, 19
operational, 18, 67
possible worlds, 169

semi-decidable, 94
sentence, 50

propositional, 34
sequent, 110
sequent calculus, 110

Cut Rule, 114
relation to tableaux, 116

Sheffer stroke, 27, 37
SML

conditional expression, 230
constructors, 229
datatypes, 228
declaration, 221
exception, 223
function value, 222
if-then-else, 230
infix, 228
it, 222
lists, 233
local definitions, 231
matching, 229
mutual recursion, 231
polymorphic types, 226
program, 221

raising and exception, 223
sentence, 52
strict language, 223
term, 52
type, 222
type environment, 222
type inference, 224
value environment, 221
l-expressions, 225

SML programs
efficient truth-tables, 263
parser

predicate, 258
propositional, 255

propositional tableaux, 265
semantic tableaux

predicate, 269
propositional, 84

terms and substitutions, 268
Smullyan, 139
soundness

predicate, 61
propositional, 44
tableaux, 80

spanning
set of connections, 194

stacks
theory of, 135

state
in a computation, 185

Stone, 120
Strachey, 66
strings

theory of, 131
sub-formula, 51
substitution, 39, 153

composition of, 153
symmetry

of equality, 129
tactics, 202
Tarski, 120
tautology, 24, 28, 29, 37
temporal logic, 204
temporal modalities, 205
term, 51
theorem, 40
theorems

of a theory, 69
theory, 68, 125

axioms, 69
theorems, 69

three-valued logic, 175
transitivity

of consequence relation, 122



301

of equality, 131
translation

intuitionistic to S4, 188
translation function, 189
true

in a frame, 173
in an interpretation, 55
paths in tableaux, 81

truth
intuitionistic, 188

truth-functional, 23, 174
truth-functors, 23
truth-tables, 22
truth-values, 23

Turing, 66
Turing machine, 66
undecidable, 10, 61
unifier, 156
universe, 53, 68

Herbrand, 163
unsatisfiable, 55
valid, 24, 28, 55

for a tactic, 202
in a frame, 173
in S4, 176

validation, 202
valuation, 24, 28, 34, 76
variable, 50


