
An introduction to Boolean Algebra and Logic in Computers
Logic is the business of propositions and propositions are statements that have a truth value. The 
logic algebra called Boolean algebra (after George Boole) is a two-valued (binary) algebra, a 
proposition can have the value yes or no, true or false, 1 or 0, high or low, there are no intermediate 
values. For example the statement "Today is Tuesday" is a proposition that is either true or false, it 
can't be partly true, today is either Tuesday or it isn't. Propositions can be combined by using 
operators, just like numbers can be combined by using operators. In arithmetic there are operations 
like 7 + 3 = 10, and, in logic there are equivalent operations like TRUE + TRUE = TRUE or A + B 
= C. In arithmetic there are laws and theorems which describe how numerical quantities behave and 
in logic there are laws and theorems which describe how logical quantities behave. The table below 
shows some of the propositions, laws and theorems which govern Boolean algebra. 

a) A + A' = 1 b) A.A' = 0
c) A + 1 = 1 d) A.1 = A
e) A + A = A f) A.A = A
g) A'' = A h) A.0 = 0
i) A + 0 = A
j) (A + B) + C = A + (B + C) k) (AB)C = A(BC)
l) A + B = B + A m) A.B = B.A
n) A(B + C) = A.B + A.C o) A + BC = (A + B)(A + C)
p) (A + B)' = A'B' q) (AB)' = A' + B'
r) A + AB = A s) A(A + B) = A

The items (a) to (i) are known as the elementary propositions, (j) and (k) are associative laws, (l) 
and (m) are commutative laws, (n) and (o) are distributive laws, (p) and (q) show DeMorgans 
theorem and (r) and (s) show the Absorption theorem. 

The terms A and B and C stand for propositions, remember, something which can be true or false. 
The symbols + . and ' (plus dot and apostrophe) are logical operators. The + symbol means OR, the . 
symbol (dot) means AND, the ' symbol means NOT. The AND symbol is often left out (it is implied 
like the multiplication symbol in "normal" algebra), so AB means the same as A.B (A AND B). 
Expressions like A + A' = 1 read like "A OR NOT A equals 1". 1 means always TRUE, 0 means 
always FALSE, so the proposition A + A' = 1 simply states that something is either TRUE or 
FALSE. 

Page 1



The logical operations AND, OR, NOT, NAND and NOR are shown below (NOR means NOT OR 
and NAND means NOT AND). Each operation is shown in truth table form, ie all the possible 
states of the various propositions are enumerated and the results are tabulated. 

AND Function
C = A.B A B C

0 0 0
0 1 0
1 0 0
1 1 1

OR Function
C = A + B A B C

0 0 0
0 1 1
1 0 1
1 1 1

NOT Function
NOT A' A A'

0 1
1 0

NAND Function
C = (A.B)' A B C

0 0 1
0 1 1
1 0 1
1 1 0

NOR Function
C = (A + B)' A B C

0 0 1
0 1 0
1 0 0
1 1 0

True and False, High and Low, Ones and Zeros
Usually when talking about propositions we use the terms true and false to represent the two 
possible values. There are other terms like high and low, one and zero which are also used. High 
and low are generally used when dealing with logic gates (a topic you meet soon), 1 and 0 are used 
just about anywhere but are particularly useful when using truth tables and Karnaugh maps. 

TRUE FALSE
HIGH LOW
1 0

Page 2



Using the Boolean Algebra
It is always a bit daunting learning an algebra, especially if it is many years since you have been to 
school. You should put algebra in it's place, it is just a general way of representing and manipulating 
values by using symbols. If you are told that the area of a room is it's length times it's breadth then 
this could be shown as A = LB, where A is area, L is length, B is breadth and by implication, L is 
multiplied by B. A = LB is a simple and concise way of expressing something. If you are told that a 
computer consists of a CPU, disk drive, memory, screen and keyboard then this could be written as 
C = PDMSK, where C represents Computer, P is CPU, D is disk drive, M is memory, S is screen 
and K is keyboard, as with the LB example, the AND operator is implied. In logic if P and D and M 
and S and K are all true then C is true. 

The Absorption Theorem states that A + AB = A, ie the AB term is absorbed by the A term. Can it 
be proved algebraically?

A + AB = A
A.1 + AB = 
A by elementary proposition (d), since A.1 = A we can substitute A1 for A

A(1 + B) = 
A

the distributive law (n) states that A(B + C) = A.B + A.C so we can undistribute A 
from teh A1 and AB terms

A1 = A elementary proposition (c) states that 1 + A is A, likewise 1 + B is B, 1 + ABCDEFG 
is ABCDEFG

A = A elementary proposition (d) again

What about proving that (A' + B)(A + B')(A + B) = AB? 

(A'+B)(A+B')(A+B) = (A'A + A'B + 
AB + B'B)(A + B)

use the distributive law to distribute (A'+B) over (A+B') ie 
multiply one by the other

(0 + A'B + AB + 0)(A+B) = (A'B+AB)
(A+B) elementary propositions (b) and (i) produce this line

AA'B + A'BB + AAB + ABB = 0 + 0 
+ AB + AB

apply the distributive law again and elementary proposition 
(e)

0 + 0 + AB + AB = AB elementary propositions (i) and (e) simplify this line

Page 3



Logic Gates
Logic gates are the building blocks of digital and computer circuits and implement the Boolean 
functions in silicon or some other semiconductor material. These gates can be bought in a variety of 
different packages and can range from single function gates similar to those shown here to the 
highly complex arrangements of gates found in computer integrated circuits. The devices you see 
soldered to the surfaces of mother boards and I/O cards contain logic gates, ie mechanisms for 
implementing Boolean functions. Many of these devices or chips are highly complex pieces of 
engineering built to exacting specifications. In recent years perhaps the single most important factor 
in the development has been the ability of engineers to package logic at increasingly higher 
densities. 

Each boolean function has a logic gate and complex functions are built from the fundamental 
functions: 

NOT (invertor). The single input is on the left of the gate, the 
output on the right.

AND. This gate has two inputs, both on the left and a single 
output on the right.

 

OR. This gate has two inputs, both on the left and a single 
output on the right.

 

NAND. This gate has two inputs, both on the left and a single 
output on the right.

 

NOR. This gate has two inputs, both on the left and a single 
output on the right.

 
Each gate has one or more input connections and usually one output connection. As you will see 
below the connections are numbered so that they can be correlated to a physical package. 

Note the use of an inversion symbol on the NAND and NOR gates. The 
bubble indicates inversion which could also appear on an input.

Page 4



Gates are available with more than two inputs. The example here is 
an 8 input NOR gate

A NAND or NOR gate which has it's inputs connected 
together can function as a NOT gate

One way of packing the gates shown above is in small low-density 
14/16/18 pin packages. Most electronic devices contain packages like 
these. Packages like those shown here have been around since the 
late '60's. More up-to-date packaging now achieves much higher 
densities, for example, 100,000's of thousands of gates per package.

This diagram represents the contents of a specific logic package, a 
collection of NOT gates. It's described as a HEX inverter, ie 6 NOT 
gates.

Here is a package which contains 4 (quad) 2 input (A and B) NAND 
gates. The NAND gate is probably the most commonly used logic 
gate.

Logic Expressions in the Solid
The symbols used in digital logic are just another way of writing 
logical expressions. The circuit shown here can be written as X = 
ABC since gates 1 and 2 are AND gates. The two variables A and B 
are both applied to the inputs of gate 1, the output of gate 1 (ie the 
term AB) is applied to one input of gate 2, C, another variable, is 
applied to the other input of gate 2. X is true when A is true and B 
is true and C is true.

Page 5



Simplifying logical expressions
In the process of designing a logic circuit we may develop a series of logical expressions. To arrive 
at the optimum circuit we simplify the expressions and the objective of simplification may be lower 
cost or improved performance or both. 

(Example 1) simplify the circuit:

AB(A' + BC)' = ABA''(BC)' using DeMorgan's theorem
= ABA(BC)'
= AB(BC)'
= ABB' + ABC'
= A.0 + ABC

ABC' i.e

Evaluating a logic circuit output

If A = 0, B = 1, C = 1, D = 1, what is X?

To determine what value X has, first find the expression that represents X, ie X = A'BC(A + D) then 
substitute the relevant values for the variables:

X = A'BC(A + D) = 0'.1.1.(0 + 1) = 1.1.1.(1) = 1.1.1.1 = 1 

The Rules of Evaluation 

1. NOT 
2. Parentheses 
3. AND before OR unless parentheses indicate otherwise 

Page 6



4. If expression is inverted, perform operations of the expression first and then invert the result. 

Logic Conventions
If a function or variable is true when high we call that active high or positive logic. If it is true when 
low we call that active low or negative logic. 

A B F
0 0 1 What logic function
0 1 1 does this table
1 0 1 represent
1 1 0
If you said NAND you are right for positive logic; but what if we assumed that the inputs and 
outputs are true when 0, what is it now? What about the case for negative logic inputs and positive 
logic outputs (ie input 0 is true but output 0 is false)? and for positive logic input and negative 
output (input 0 false, output 0 true)? 

The logic conventions for the NAND gate can be summarised as:
Using a NAND gate as the functor

A B NAND Input Convention Output Convention Gate Function
0 0 1 +ve +ve NAND
0 1 1 -ve -ve NOR
1 0 1 +ve -ve AND
1 1 0 -ve +ve OR

What do we get if a NOR gate is used as the functor? 
Using a NOR gate as the functor

A B NOR Input Convention Output Convention Gate function
0 0 1 +ve +ve NOR
0 1 0 -ve -ve NAND
1 0 0 +ve -ve OR
1 1 0 -ve +ve AND
Try building similar tables similar to the above for both AND and OR. 

Page 7



Minimising or Simplifying Boolean Expressions
In mathematics expressions are simplified for a number of reasons, for instance simpler expressions 
are easier to understand (and easier to write down), they are also less prone to error in interpretation 
but, most important, simplified expressions are usually more efficient and effective when 
implemented in practice. For example imagine you have devised some long and complex formula 
which describes how the efficiency of internal combustion engines can be improved by 50%. The 
formula indicates to an automotive engineer what he should do in practical terms. It may be that, as 
it stands, the formula may lead to a piece of gadgetry that is too expensive to build; if though the 
formula is simplified the gadget itself might also be simplified and the cost reduced. A Boolean 
expression, like any other algebraic expression, is composed of variables and terms, A variable is 
something like A or B, P or Q etc which represents a truth value and term is a collection of variables 
e.g. A'BC. The simplification of Boolean expressions can lead to more effective computer 
programs, algorithms and computer circuits. 

Minimisation can be achieved by a number of methods, four well-known methods are: 

 Algebraic manipulation 
 Tree reduction 
 Quine-McCluskey reduction 
 Karnaugh maps 

We will restrict ourselves to Algebraic manipulation and Karnaugh maps. 

Algebraic Manipulation: Minterms and Maxterms and Duality
Minterms and maxterms are canonical expressions of a truth table line, and this means that the 
minterm (or maxterm) is a term which contains all the variables pertaining to that line of the truth 
table. 

A minterm depicts variables in their true state, a maxterm depicts the complement of the minterm, 
for example: 

A B C Minterm Maxterm
0 1 0 A'.B.C' (A'.B.C')'

By DeMorgans theorem: (A'.B.C')' = A'' + B' + C'' = A + B' + C. A + B' + C is the usual form of a 
maxterm. 

A B C Minterm Maxterm
0 1 0 A'.B.C' A + B' + C

 A minterm is a product of all the variables in their true state. 
 A maxterm is a sum of all the variables in their complement state. 

Page 8



Look at the truth table below: 

A B F Minterm Maxterm
0 0 0 A'B' A+B
0 1 1 A'B A+B'
1 0 1 AB' A'+B
1 1 1 AB A'+B'

It is an OR function and any output which is 1 will satisfy the function F = A + B, ie any minterm 
which is 1 will satisfy the function F = A + B: 

F = A'B + AB' + AB 

In this form the expression is known as the SUM OF PRODUCTS. We can minimise the SOP, i.e. 
prove that: 

A'B + AB' + AB = A + B 

A'B+AB'+AB = A'B+A(B+B') . distributive over +
A'B+A(B+B') = A'B + A.1 B+B' = 1
A'B+A = A+A'B commutative law
A+A'B=(A+A')(A+B) + distributive over .
(A+A')(A+B) = 1.(A+B) A + A' = 1, A.1 = A

And now with maxterms: 

If a function is satisfied by any output which is 1 (i.e. any line in the truth table which is 1), then it 
is not satisfied by any output which is 0, or it is satisfied by the complement of any of the outputs 
which do not satisfy it. Remember a maxterm is the sum of all the variables in their complement 
state. The maxterms can be used to minimise an expression. In the OR case we can see that 
maxterm 1 (A + B) is the only maxterm which applies (i.e the only 0 output). 

Here is an example using maxterms: 

A B F Minterm Maxterm
0 0 0 A'B' A+B
0 1 0 A'B A+B'
1 0 0 AB' A'+B
1 1 1 AB A'+B'

We can state the product of sums as F = (A+B).(A+B').(A'+B) 

(A+B).(A+B').
(A'+B) = (AA + AB' + AB + BB').

(A'+B) distribute (A+B) over (A+B')

= (A + AB' + 0)(A'+B) AA = A, BB' = 0, A + AB + AB' = A 
(absorption)

= A(A' + B) distribute A over (A'+B)
= AA' + AB AA'=0, 0 + AB = AB
= AB

Page 9



Look at the function: 

F = A'B'C' + A'BC + ABC (ie minterms 0, 3 and 7) 

It is a sum of minterms form. A truth table can be constructed for it:

A B C F minterms maxterms
0 0 0 1 A'B'C' A+B+C
0 0 1 0 A'B'C A+B+C'
0 1 0 0 A'BC' A+B'+C
0 1 1 1 A'BC A+B'+C'
1 0 0 0 AB'C' A'+B+C
1 0 1 0 AB'C A'+B+C'
1 1 0 0 ABC' A'+B'+C
1 1 1 1 ABC A'+B'+C'

The complement of the function can be obtained by the sum of products when F is false: 

F' = A'B'C + A'BC' + AB'C' + AB'C + ABC' 

So why is this interesting? There is a principle of duality that states "the dual of a function can 
be found by exchanging operators and identity elements", i.e. ANDs become ORs (and vice-
versa) and 1's become 0's (and vice-versa). 

The dual of F' is then: F = (A+B+C')(A+B'+C)(A'+B+C)(A'+B+C')(A'+B'+C) which tells us that the 
Sum of Minterms 0,3 and 7 is equal to the Product of Maxterms 1,2,4,5 and 6, i.e. 

F = A'B'C' + A'BC + ABC
(A+B+C')(A+B'+C)(A'+B+C)(A'+B+C')(A'+B'+C)

The truth table also indicates the simplest way in which the function can be implemented. 

In this example: 

 SOP requires three terms 
 POS requires 5 terms 

More on the canonical forms: 

A canonical form is with all terms and variables included.

 A Boolean expression involving 3 variables has a maximum of 8 3-variable-terms. 
 A Boolean expression involving 4 variables has a maximum of 16 4-variable-terms. 
 A Boolean expression involving n variables has a maximum of 2n n-variable-terms. 

Page 10



Minimising a Sum of Products (minterms)
Given F=A'B'C+A'BC'+AB'C+ABC

Apply commutative law to re-arrange the terms: F=A'B'C+AB'C+ABC+A'BC'
Use A + A = A to introduce a term twice: F=A'B'C+AB'C+AB'C+ABC+A'BC'

i.e. AB'C + AB'C = AB'C
Apply distributive law : F=A'B'C+AB'C+AB'C+ABC+A'BC'

=B'C(A'+A) + AC(B'+B) + A'BC'
Use A+A'=1 and A.1 = A F =B'C(A'+A) + AC(B'+B) + A'BC'

=B'C.1 + AC.1 + A'BC'
= B'C + AC + A'BC'

Minimising a Product of Sums (maxterms)
Given F=(A+B+C)(A+B'+C')(A'+B+C)(A'+B'+C)

Use distributive law on the first two terms: F = (AA+AB'+AC'+AB+BB'+BC'+AC+B'C+CC') 
(A'+B+C)(A'+B'+C)

Use A.A = A and A.A' = 0 F = (A+AB'+AC'+AB+0+BC'+B'C+0)(A'+B+C)
(A'+B'+C)
=(A+AB'+AC'+AB+BC'+B'C)(A'+B+C)(A'+B'+C)
=(A+AB'+AB+AC'+BC'+B'C)(A'+B+C)(A'+B'+C)

Use absorption theorem to absorb those 
terms containing A or "undistribute" :

F = (A+A(B'+B)+A(C'+C)+BC'+B'C)(A'+B+C)
(A'+B'+C)
F = (A+BC'+B'C)(A'+B+C)(A'+B'+C)

Apply step 1 again to the first 2 terms of 
result 3:

F = 
(AA'+AB+AC+A'BC'+BBC'+BC'C+A'B'C+B'B'C+
B'CC)(A'+B'+C)

Use A.A' = 0 and A.A = A and absorption: F = (AB+AC+A'BC'+BC'+A'B'C+B'C)(A'+B'+C)
Use distribution and A + 1 = 1: F = (AB+AC+A'BC'+BC'+A'B'C+B'C)(A'+B'+C)

=(AB + AC + BC'(A'+1) + B'C(A'+1))(A'+B'+C)
=(AB + AC + BC'+ B'C)(A'+B'+C)

Step 1 again for the remaining terms: F = (A'AB + ABB' + ABC + A'AC + AB'C + ACC + 
A'BC' + B'BC' + BC'C + A'B'C + B'B'C + B'CC) 

Use A.A' = 0 F = (0 + 0 + ABC + 0 + AB'C + AC + A'BC' + 0 + 0 
+ A'B'C + B'C + B'C)
= (ABC + AB'C + AC + A'BC' + A'B'C + B'C)

Absorb A'B'C + B'C and distribute: F = (ABC + AB'C + AC + A'BC' + A'B'C + B'C)
= (AC(B + B') + AC + A'BC' + B'C)
= AC + B'C + A'BC'

Page 11



Karnaugh Maps - Introduction
The process of minimising boolean expressions using algebraic manipulation can be quite difficult 
since we have to determine which of the various laws and propositions to use. The Karnaugh Map 
(KMAP) provides a simpler method of minimising expressions. It was first proposed by E.W. 
Veitch and later modified by M.Karnaugh. 

The KMAP is a pictorial representation of a truth table and displays a number of cells, each of 
which is separated from it's neighbours by the unit distance (1 bit) between boolean terms: 

Single variable KMAP

Two variable KMAP

The two variable KMAP shows the variables and values for each cell. A'B' is value 00 or minterm 0 
(m0). 

Using a two variable KMAP
Given the Sum Of Products F = A'B + AB' + AB 

 

The KMAP on the right is equivalent to the truth table on the left. Note in the KMAP that only 1 bit 
changes between adjacent cells. This 1 bit difference is called a unit distance. 

To use the KMAP: 

To use the KMAP: 

1. Insert a 1 in each cell where required (i.e. where each minterm is true). 
2. Simplify cells separated by a unit distance, e.g. cells m1 and m3 are a unit distance apart. 

These simplify as A'B + AB = B, and cells m2 and m3 are also a unit distance apart, so AB' 

Page 12



+ AB = A 

When comparing cells separated by a unit distance we can eliminate any variable which changes 
value between the adjacent cells. 

Three variable KMAP
The three variable truth table can be drawn as a 3 variable KMAP. The table below shows where 
each minterm appears in the KMAP. The rule that each cell differs from the neighbouring cells by a 
unit distance still applies. Note also that the KMAP is continuous at it's edges so (in the right-hand 
KMAP) m4 differs from m0 by a unit distance and m5 differs from m1 by a unit distance. 

A B C minterms
0 0 0 m0
0 0 1 m1
0 1 0 m2
0 1 1 m3
1 0 0 m4
1 0 1 m5
1 1 0 m6
1 1 1 m7

Page 13



Four variable KMAP

4 variable KMAPS are minimised in the 
same way as 3 variable maps, the same 
unit distance rule applies: 

 One cell represents one minterm, 
giving a term of four variables. 

 Two adjacent cells represent a 
term of three variables. 

 Four adjacent cells represent a 
term of two variables. 

 Eight adjacent cells represent a 
term of one variable. 

 Sixteen adjacent cells represent a 
function which is always true. 

Example - Simplify, using a KMAP, the expression: 

 

First, sketch the KMAP and insert a 1 for each minterm that is true:

 

next, examine the KMAP and combine those cells which contain a 1 bit and which are separated by 
a unit distance: 

 There are 8 adjacent cells (m0,m1,m4,5,m12,m13,m8,m9) which will simplify to a single 

Page 14



literal, C', ie the only variable which is always true in this area is C''. 
 There are two groups of 4 adjacent cells (m0,m4,m2,m6) and (m4,m12,m6,m14) which will 

combine to give two terms of two literals, A'D' and BD'. Since the KMAP "wraps" around at 
it's edges then cell pairs like (m4,m6) are a unit distance apart. 

 All cells have been combined and the final expression is: F = C' + A'D' + BD' 

Karnaugh Maps and non-canonical expressions
Assume you need to simplify the expression A + A'B + AB. You can 
see that one of the terms A is not in canonical from (ie the term 
doesn't contain all the variables, it's just a bit of a minterm or 
maxterm). How do you draw a KMAP with only partial terms? The 
KMAP here shows one way. Here you can see that each cell which 
contains A (ie A is true) has a 1 bit. In this simple case that means 
cells AB and AB'. Since the term AB' is already in the expression 

then a 1 appears in this cell anyway, you don't need to enter another 1 bit.

The Boolean Algebra trail finishes here. I hope you found it useful.

Page 15


	An introduction to Boolean Algebra and Logic in Computers
	True and False, High and Low, Ones and Zeros
	Using the Boolean Algebra
	Logic Gates
	Logic Expressions in the Solid
	Simplifying logical expressions
	Evaluating a logic circuit output
	Logic Conventions
	Minimising or Simplifying Boolean Expressions
	Algebraic Manipulation: Minterms and Maxterms and Duality
	Minimising a Sum of Products (minterms)
	Minimising a Product of Sums (maxterms)
	Karnaugh Maps - Introduction
	Using a two variable KMAP
	Three variable KMAP
	Four variable KMAP
	Karnaugh Maps and non-canonical expressions

