
OpenSCAD User Manual/The OpenSCAD
Language

Chapter 1 -- General
Introduction

Comments

Values and Data Types
Numbers

Boolean Values

Strings

Ranges

The Undefined Value

Variables
Undefined variable

Scope of variables

Variables are set at compile-time, not run-time

Special Variables

Vectors
vector operators

concat

len

Matrix

Getting input

Chapter 2 -- 3D Objects
Primitive Solids

cube

sphere

cylinder

polyhedron
Debugging polyhedra

Mis-ordered faces

Alternate Face Descriptions

Point repetitions in a polyhedron point list

3D to 2D Projection

Chapter 3 -- 2D Objects
square

circle
ellipse

regular polygon

polygon

import_dxf

Contents

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

1 of 122 01/13/2018 02:30 AM

Text
Using Fonts & Styles

Alignment
Vertical alignment

Horizontal alignment

Renderable 3Dtext

3D to 2D Projection

2D to 3D Extrusion
Linear Extrude

Usage

Twist

Center

Mesh Refinement

Scale

Rotate Extrude
Usage

Examples

Mesh Refinement

Extruding a Polygon

Description of extrude parameters
Extrude parameters for all extrusion modes

Extrude parameters for linear extrusion only

Chapter 4 -- Transform
Basic concept

Advanced concept

scale

resize

rotate
Rotation rule help

translate

mirror
Function signature:

Examples

multmatrix
More?

color
Function signature:

Example

Example 2

offset

minkowski

hull

Combining transformations

Chapter 5 -- Boolean combination
boolean overview

2D examples

3D examples

union

difference
difference with multiple children

intersection

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

2 of 122 01/13/2018 02:30 AM

render

Chapter 6 -- Other Functions and Operators
Conditional and Iterator Functions

For loop

Intersection For Loop

If Statement
else if

Conditional ? :
Recursive function calls

Assign Statement

Let Statement

Mathematical Operators
Scalar Arithmetical Operators

Relational Operators

Logical Operators

Conditional Operator

Vector-Number Operators

Vector Operators

Vector Dot-Product Operator

Matrix Multiplication

Mathematical Functions

Trigonometric Functions
cos

sin

tan

acos

asin

atan

atan2

Other Mathematical Functions
abs

ceil

concat

cross

exp

floor

ln

len

let

log

lookup

max

min

norm

pow

rands

round

sign

sqrt

Infinities and NaNs

String Functions
str

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

3 of 122 01/13/2018 02:30 AM

chr

Also See search()

List Comprehensions
Basic Syntax

for

if

let

Nested loops

Advanced Examples
Generating vertices for a polygon

Flattening a nested vector

Sorting a vector

Selecting elements of a vector

Concatenating two vectors

Other Language Features
Special variables

$fa, $fs and $fn

$t

$vpr, $vpt and $vpd

Echo Statements
Usage examples

Rounding examples

Small and large Numbers

HTML

Render

Surface
Text file format

Images

Examples

Search
Search Usage

Search Arguments

Search Usage Examples
Index values return as list

Search on different column; return Index values

Search on list of values

Search on list of strings

Getting the right results

OpenSCAD Version

parent_module(n) and $parent_modules

assert
failing example

checking parameters

combining assert with echo

assert vs. echo

Chapter 7 -- User-Defined Functions and Modules
Introduction

Functions
Recursive functions

Modules
Object modules

Operator Modules

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

4 of 122 01/13/2018 02:30 AM

Children

Further Module Examples

Recursive Modules

Overwriting built-in modules

Overwriting built-in functions

Chapter 8 -- Debugging aids
Advanced concept

Background Modifier

Debug Modifier

Root Modifier

Disable Modifier

Echo Statements

Chapter 9 -- External libraries and code files
Use and Include

Directory separators

Variables
Scope of variables

Overwriting variables

Example "Ring-Library"

Nested Include and Use

import
Convexity

Notes

import_dxf

import_stl

Surface
Text file format

Images

Examples

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

5 of 122 01/13/2018 02:30 AM

Chapter 1 -- General
OpenSCAD User Manual/The OpenSCAD Language

OpenSCAD is a 2D/3D and solid modeling program which is based on a Functional programming language used to create models that

are previewed on the screen, and rendered into 3D mesh which allows the model to be exported in a variety of 2D/3D file formats.

A script in the OpenSCAD language is used to create 2D or 3D models. This script is a free format list of action statements.

 object();
 variable = value;
 operator() action();
 operator() { action(); action(); }
 operator() operator() { action(); action(); }
 operator() { operator() action();
 operator() { action(); action(); } }

Objects

Objects are the building blocks for models, created by 2D and 3D primitives. Objects end in a semicolon ';'.

Actions

Action statements include creating objects using primitives and assigning values to variables. Action statements also end in a

semicolon ';'.

Operators

Operators, or transformations, modify the location, color and other properties of objects. Operators use braces '{}' when their scope

covers more than one action. More than one operator may be used for the same action or group of actions. Multiple operators are

processed Right to Left, that is, the operator closest to the action is processed first. Operators do not end in semicolons ';', but the

individual actions they contain do.

 Examples

 cube(5);
 x = 4+y;
 rotate(40) square(5,10);
 translate([10,5]) { circle(5); square(4); }
 rotate(60) color("red") { circle(5); square(4); }
 color("blue") { translate([5,3,0]) sphere(5); rotate([45,0,45]) { cylinder(10); cube([5,6,7]); } }

Comments are a way of leaving notes within the script, or code, (either to yourself or to future programmers) describing how the code

works, or what it does. Comments are not evaluated by the compiler, and should not be used to describe self-evident code.

OpenSCAD uses C++-style comments:

// This is a comment

Introduction

Comments

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

6 of 122 01/13/2018 02:30 AM

myvar = 10; // The rest of the line is a comment

/*
 Multi-line comments
 can span multiple lines.
*/

A value in OpenSCAD is either a Number (like 42), a Boolean (like true), a String (like "foo"), a Range (like [0: 1: 10]), a Vector (like

[1,2,3]), or the Undefined value (undef). Values can be stored in variables, passed as function arguments, and returned as function

results.

[OpenSCAD is a dynamically typed language with a fixed set of data types. There are no type names, and no user defined types.

Functions are not values. In fact, variables and functions occupy disjoint namespaces.]

Numbers are the most important type of value in OpenSCAD, and they are written in the familiar decimal notation used in other

languages. Eg, -1, 42, 0.5, 2.99792458e+8. [OpenSCAD does not support octal or hexadecimal notation for numbers.]

In additional to decimal numerals, the following names for special numbers are defined:

PI

OpenSCAD has only a single kind of number, which is a 64 bit IEEE floating point number. [OpenSCAD does not distinguish integers

and floating point numbers as two different types, nor does it support complex numbers.] Because OpenSCAD uses the IEEE floating

point standard, there are a few deviations from the behaviour of numbers in mathematics:

We use binary floating point. A fractional number is not represented exactly unless the denominator is a power of
2. For example, 0.2 (2/10) does not have an exact internal representation, but 0.25 (1/4) and 0.125 (1/8) are
represented exactly.

The largest representable number is about 1e308. If a numeric result is too large, then the result can be infinity
(printed as inf by echo).

The smallest representable number is about -1e308. If a numeric result is too small, then the result can be
-infinity (printed as -inf by echo).

If a numeric result is invalid, then the result can be Not A Number (printed as nan by echo).

If a non-zero numeric result is too close to zero to be representable, then the result will be -0 if the result is
negative, otherwise it will be 0. Zero (0) and negative zero (-0) are treated as two distinct numbers by some of the
math operations, and are printed differently by 'echo', although they compare equal.

Note that 'inf' and 'nan' are not supported as numeric constants by OpenSCAD, even though you can compute numbers that are

printed this way by 'echo'. You can define variables with these values by using:

inf = 1e200 * 1e200;
nan = 0 / 0;
echo(inf,nan);

Note that 'nan' is the only OpenSCAD value that is not equal to any other value, including itself. Although you can test if a variable 'x'

has the undefined value using 'x == undef', you can't use 'x == 0/0' to test if x is Not A Number. Instead, you must use 'x != x' to test if

x is nan.

Booleans are truth values. There are two Boolean values, namely true and false. A Boolean is passed as the argument to conditional

statement 'if()'. conditional operator '? :', and logical operators '!' (not), '&&' (and), and '||' (or). In all of these contexts, you can

actually pass any quantity. Most values are converted to 'true' in a Boolean context, the values that count as 'false' are:

Values and Data Types

Numbers

Boolean Values

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

7 of 122 01/13/2018 02:30 AM

false

0 and -0

""

[]

undef

Note that "false" (the string), [0] (a numeric vector), [[]] (a vector containing an empty vector), [false] (a vector containing

the Boolean value false) and 0/0 (Not A Number) all count as true.

A string is a sequence of zero or more unicode characters. String values are used to specify file names when importing a file, and to

display text for debugging purposes when using echo(). Strings can also be used with the new text() primitive added in 2015.03.

A string literal is written as a sequence of characters enclosed in quotation marks ", like this: "" (an empty string), or "this is a

string".

To include a " character in a string literal, use \". To include a \ character in a string literal, use \\. The following escape sequences

beginning with \ can be used within string literals:

\" → "

\\ → \

\t → tab

\n → newline

\r → carriage return

\u03a9 → Ω - see text() for further information on unicode characters

Note: This behavior is new since OpenSCAD-2011.04. You can upgrade old files using the following sed command: sed 's/\\/

\\\\/' non-escaped.scad > escaped.scad

Example:

 echo("The quick brown fox \tjumps \"over\" the lazy dog.\rThe quick brown fox.\nThe \\lazy\\ dog.");

result
 ECHO: "The quick brown fox jumps "over" the lazy dog.
 The quick brown fox.
 The \lazy\ dog."

old result
 ECHO: "The quick brown fox \tjumps \"over\" the lazy dog.
 The quick brown fox.\nThe \\lazy\\ dog."

Ranges are used by for() loops and children(). They have 2 varieties:

[<start>:<end>]
[<start>:<increment>:<end>]

Although enclosed in square brackets [] , they are not vectors. They use colons : for separators rather than commas.

r1 = [0:10];
r2 = [0.5:2.5:20];
echo(r1); // ECHO: [0: 1: 10]
echo(r2); // ECHO: [0.5: 2.5: 20]

You should avoid step values that cannot be represented exactly as binary floating point numbers. Integers are okay, as are fractional

values whose denominator is a power of two. For example, 0.25 (1/4) and 0.125 (1/8) are safe, but 0.2 (2/10) should be avoided. The

Strings

Ranges

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

8 of 122 01/13/2018 02:30 AM

problem with these step values is that your range may have too many or too few elements, due to inexact arithmetic.

A missing <increment> defaults to 1. A range in the form [<start>:<end>] with <start> greater than <end> will generate a warning

and is equivalent to [<end>: 1: <start>]. A range in the form [<start>:1:<end>] with <start> greater than <end> will not generate a

warning and is equivalent to []. The <increment> in a range may be negative (for versions after 2014).

The undefined value is a special value written as undef. It's the initial value of a variable that hasn't been assigned a value, and it is

often returned as a result by functions or operations that are passed illegal arguments. Finally, undef can be used as a null value,

equivalent to null or NULL in other programming languages.

All arithmetic expressions containing undef values evaluate as undef. In logical expressions, undef is equivalent to false.

Relational operator expressions with undef evaluate as false except for undef==undef which is true.

Note that numeric operations may also return 'nan' (not-a-number) to indicate an illegal argument. For example, 0/false is undef,

but 0/0 is 'nan'. Relational operators like < and > return false if passed illegal arguments. Although undef is a language value, 'nan'

is not.

OpenSCAD variables are created by a statement with a name or identifier, assignment via an expression and a semicolon. The role of

arrays, found in many imperative languages, is handled in OpenSCAD via vectors.

var = 25;
xx = 1.25 * cos(50);
y = 2*xx+var;
logic = true;
MyString = "This is a string";
a_vector = [1,2,3];
rr = a_vector[2]; // member of vector
range1 = [-1.5:0.5:3]; // for() loop range
xx = [0:5]; // alternate for() loop range

OpenSCAD is a Functional programming language, as such variables are bound to expressions and keep a single value during their

entire lifetime due to the requirements of referential transparency. In imperative languages, such as C, the same behavior is seen as

constants, which are typically contrasted with normal variables.

In other words OpenSCAD variables are more like constants, but with an important difference. If variables are assigned a value

multiple times, only the last assigned value is used in all places in the code. See further discussion at Variables are set at compile-time,

not run-time. This behavior is due to the need to supply variable input on the command line, via the use of -D variable=value option.

OpenSCAD currently places that assignment at the end of the source code, and thus must allow a variables value to be changed for this

purpose.

The variable retains its last assigned value at compile time, in line with Functional programming languages. Unlike Imperative

languages, such as C, OpenSCAD is not an iterative language, as such the concept of x = x + 1 is not valid, get to understand this

concept and you will understand the beauty of OpenSCAD.

Before version 2015.03

It was not possible to do assignments at any place except the file top-level and module top-level. Inside an if/else or for loop, assign()

was needed.

Since version 2015.03

Variables can now be assigned in any scope. Note that assignments are only valid within the scope in which they are defined - you are

The Undefined Value

Variables

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

9 of 122 01/13/2018 02:30 AM

still not allowed to leak values to an outer scope. See Scope of variables for more details.

a=0;
if (a==0)
 {
 a=1; // before 2015.03 this line would generate a Compile Error
 // since 2015.03 no longer an error, but the value a=1 is confined to within the braces {}
 }

A non assigned variable has the special value undef. It could be tested in conditional expression, and returned by a function.

Example

 echo("Variable a is ", a); // Variable a is undef
 if (a==undef) {
 echo("Variable a is tested undefined"); // Variable a is tested undefined
 }

When operators such as translate() and color() need to encompass more than one action (actions end in ;), braces {} are needed to to

group the actions, creating a new, inner scope. When there is only one semicolon, braces are usually optional.

Each pair of braces creates a new scope inside the scope where they were used. Since 2015.03, new variables can be created within

this new scope. New values can be given to variables which were created in an outer scope . These variables and their values are also

available to further inner scopes created within this scope, but are not available to any thing outside this scope. Variables still have

only the last value assigned within a scope.

 // scope 1
 a = 6; // create a
 echo(a,b); // 6, undef
 translate([5,0,0]){ // scope 1.1
 a= 10;
 b= 16; // create b
 echo(a,b); // 100, 16 a=10; was overridden by later a=100;
 color("blue") { // scope 1.1.1
 echo(a,b); // 100, 20
 cube();
 b=20;
 } // back to 1,1
 echo(a,b); // 100, 16
 a=100; // override a in 1.1
 } // back to 1
 echo(a,b); // 6, undef
 color("red"){ // scope 1.2
 cube();
 echo(a,b); // 6, undef
 } // back to 1
 echo(a,b); // 6, undef

 //In this example, scopes 1 and 1.1 are outer scopes to 1.1.1 but 1.2 is not.

Anonymous scopes are not considered scopes:

 {
 angle = 45;
 }
 rotate(angle) square(10);

For() loops are not an exception to the rule about variables having only one value within a scope. A copy of loop contents is created for

each pass. Each pass is given its own scope, allowing any variables to have unique values for that pass. No, you still can't do a=a+1;

Undefined variable

Scope of variables

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

10 of 122 01/13/2018 02:30 AM

Because OpenSCAD calculates its variable values at compile-time, not run-time, the last variable assignment, within a scope will apply

everywhere in that scope, or inner scopes thereof. It may be helpful to think of them as override-able constants rather than as

variables.

// The value of 'a' reflects only the last set value
 a = 0;
 echo(a); // 5
 a = 3;
 echo(a); // 5
 a = 5;

While this appears to be counter-intuitive, it allows you to do some interesting things: For instance, if you set up your shared library

files to have default values defined as variables at their root level, when you include that file in your own code, you can 're-define' or

override those constants by simply assigning a new value to them.

Special variables provide an alternate means of passing arguments to modules and functions. All variables starting with a '$' are

special variables, similar to special variables in lisp. As such they are more dynamic than regular variables. (for more details see Other

Language Features)

A vector is a sequence of zero or more OpenSCAD values. Vectors are a collection (or list or table) of numeric or boolean values,

variables, vectors, strings or any combination thereof. They can also be expressions which evaluate to one of these. Vectors handle the

role of arrays found in many imperative languages. The information here also applies to lists and tables which use vectors for their

data.

A vector has square brackets, [] enclosing zero or more items (elements or members), separated by commas. A vector can contain

vectors, which contain vectors, etc.

examples

 [1,2,3]
 [a,5,b]
 []
 [5.643]
 ["a","b","string"]
 [[1,r],[x,y,z,4,5]]
 [3, 5, [6,7], [[8,9],[10,[11,12],13], c, "string"]
 [4/3, 6*1.5, cos(60)]

use in OpenSCAD:

 cube([width,depth,height]); // optional spaces shown for clarity
 translate([x,y,z])
 polygon([[x0,y0], [x1,y1], [x2,y2]]);

creation

Vectors are created by writing the list of elements, separated by commas, and enclosed in square brackets. Variables are replaced by

their values.

Variables are set at compile-time, not run-time

Special Variables

Vectors

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

11 of 122 01/13/2018 02:30 AM

 cube([10,15,20]);
 a1 = [1,2,3];
 a2 = [4,5];
 a3 = [6,7,8,9];
 b = [a1,a2,a3]; // [[1,2,3], [4,5], [6,7,8,9]] note increased nesting depth

elements within vectors

Elements within vectors are numbered from 0 to n-1 where n is the length returned by len(). Address elements within vectors with the

following notation:

e[5] // element no 5 (sixth) at 1st nesting level
e[5][2] // element 2 of element 5 2nd nesting level
e[5][2][0] // element 0 of 2 of 5 3rd nesting level
e[5][2][0][1] // element 1 of 0 of 2 of 5 4th nesting level

example elements with lengths from len()

e = [[1], [], [3,4,5], "string", "x", [[10,11],[12,13,14],[[15,16],[17]]]]; // length 6

address length element
e[0] 1 [1]
e[1] 0 []
e[5] 3 [[10,11], [12,13,14], [[15,16],[17]]]
e[5][1] 3 [12, 13, 14]
e[5][2] 2 [[15,16], [17]]
e[5][2][0] 2 [15, 16]
e[5][2][0][1] undef 16

e[3] 6 "string"
e[3][2] 1 "r"

s = [2,0,5]; a = 2;
s[a] undef 5
e[s[a]] 3 [[10,11], [12,13,14], [[15,16],[17]]]

[Note: Requires version 2015.03 or later]

concat() combines the elements of 2 or more vectors into a single vector. No change in nesting level is made.

 vector1 = [1,2,3]; vector2 = [4]; vector3 = [5,6];
 new_vector = concat(vector1, vector2, vector3); // [1,2,3,4,5,6]

 string_vector = concat("abc","def"); // ["abc", "def"]
 one_string = str(string_vector[0],string_vector[1]); // "abcdef"

len() is a function which returns the length of vectors or strings. Indices of elements are from [0] to [length-1].

vector
Returns the number of elements at this level.
Single values, which are not vectors, return undef.

string
Returns the number of characters in string.

vector operators

concat

len

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

12 of 122 01/13/2018 02:30 AM

 a = [1,2,3]; echo(len(a)); // 3

See example elements with lengths

A matrix is a vector of vectors.

Example which defines a 2D rotation matrix
mr = [
 [cos(angle), -sin(angle)],
 [sin(angle), cos(angle)]
];

Now we have variables, it would be nice to be able to get input into them instead of setting the values from code. There are a few

functions to read data from DXF files, or you can set a variable with the -D switch on the command line.

Getting a point from a drawing

Getting a point is useful for reading an origin point in a 2D view in a technical drawing. The function dxf_cross will read the

intersection of two lines on a layer you specify and return the intersection point. This means that the point must be given with two

lines in the DXF file, and not a point entity.

OriginPoint = dxf_cross(file="drawing.dxf", layer="SCAD.Origin",
origin=[0, 0], scale=1);

Getting a dimension value

You can read dimensions from a technical drawing. This can be useful to read a rotation angle, an extrusion height, or spacing between

parts. In the drawing, create a dimension that does not show the dimension value, but an identifier. To read the value, you specify this

identifier from your program:

TotalWidth = dxf_dim(file="drawing.dxf", name="TotalWidth",
layer="SCAD.Origin", origin=[0, 0], scale=1);

For a nice example of both functions, see Example009 and the image on the homepage of OpenSCAD (http://www.openscad.org/).

Matrix

Getting input

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

13 of 122 01/13/2018 02:30 AM

Chapter 2 -- 3D Objects
OpenSCAD User Manual/The OpenSCAD Language

Creates a cube in the first octant. When center is true, the cube is centered on the origin. Argument names are optional if given in the

order shown here.

cube(size = [x,y,z], center = true/false);
cube(size = x , center = true/false);

parameters:

size
single value, cube with all sides this length
3 value array [x,y,z], cube with dimensions x, y and z.

center
false (default), 1st (positive) octant, one corner at (0,0,0)
true, cube is centered at (0,0,0)

default values: cube(); yields: cube(size = [1, 1, 1], center = false);

examples:

equivalent scripts for this example
 cube(size = 18);
 cube(18);
 cube([18,18,18]);
 .
 cube(18,false);
 cube([18,18,18],false);
 cube([18,18,18],center=false);
 cube(size = [18,18,18], center = false);
 cube(center = false,size = [18,18,18]);

Primitive Solids

cube

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

14 of 122 01/13/2018 02:30 AM

equivalent scripts for this example
 cube([18,28,8],true);
 box=[18,28,8];cube(box,true);

Creates a sphere at the origin of the coordinate system. The r argument name is optional. To use d instead of r, d must be named.

Parameters

r
Radius. This is the radius of the sphere. The resolution of the sphere will be based on the size
of the sphere and the $fa, $fs and $fn variables. For more information on these special
variables look at: OpenSCAD_User_Manual/Other_Language_Features

d
Diameter. This is the diameter of the sphere.

(NOTE: d is only available in versions later than 2014.03. Debian is currently known to be behind this)

$fa
Fragment angle in degrees

$fs
Fragment size in mm

$fn
Resolution

 default values: sphere(); yields: sphere($fn = 0, $fa = 12, $fs = 2, r = 1);

} Usage Examples

sphere(r = 1);
sphere(r = 5);
sphere(r = 10);
sphere(d = 2);
sphere(d = 10);
sphere(d = 20);

// this will create a high resolution sphere with a 2mm radius
sphere(2, $fn=100);

// will also create a 2mm high resolution sphere but this one
// does not have as many small triangles on the poles of the sphere
sphere(2, $fa=5, $fs=0.1);

sphere

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

15 of 122 01/13/2018 02:30 AM

Creates a cylinder or cone centered about the z axis. When center is true, it is also centered vertically along the z axis.

Parameter names are optional if given in the order shown here. If a parameter is named, all following parameters must also be named.

NOTE: If r, d, d1 or d2 are used they must be named.

cylinder(h = height, r1 = BottomRadius, r2 = TopRadius, center = true/false);

Parameters

h : height of the cylinder or cone
r : radius of cylinder. r1 = r2 = r.
r1 : radius, bottom of cone.
r2 : radius, top of cone.
d : diameter of cylinder. r1 = r2 = d /2.
d1 : diameter, bottom of cone. r1 = d1 /2
d2 : diameter, top of cone. r2 = d2 /2

(NOTE: d,d1,d2 require 2014.03 or later. Debian is currently known to be behind
this)

center
false (default), z ranges from 0 to h
true, z ranges from -h/2 to +h/2

$fa : minimum angle (in degrees) of each fragment.
$fs : minimum circumferential length of each fragment.
$fn : fixed number of fragments in 360 degrees. Values of 3 or more override $fa and
$fs

$fa, $fs and $fn must be named. click here for more details,.

defaults: cylinder(); yields: cylinder($fn = 0, $fa = 12, $fs = 2, h = 1, r1 = 1, r2 = 1, center = false);

cylinder

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

16 of 122 01/13/2018 02:30 AM

equivalent scripts
 cylinder(h=15, r1=9.5, r2=19.5, center=false);
 cylinder(15, 9.5, 19.5, false);
 cylinder(15, 9.5, 19.5);
 cylinder(15, 9.5, d2=39);
 cylinder(15, d1=19, d2=39);
 cylinder(15, d1=19, r2=19.5);

equivalent scripts
 cylinder(h=15, r1=10, r2=0, center=true);
 cylinder(15, 10, 0, true);
 cylinder(h=15, d1=20, d2=0, center=true);

center = false center = true

equivalent scripts
 cylinder(h=20, r=10, center=true);
 cylinder(20, 10, 10,true);
 cylinder(20, d=20, center=true);
 cylinder(20,r1=10, d2=20, center=true);
 cylinder(20,r1=10, d2=2*10, center=true);

use of $fn

Larger values of $fn create smoother, more circular, surfaces at the cost of longer rendering time. Some use medium values during

development for the faster rendering, then change to a larger value for the final F6 rendering.

However, use of small values can produce some interesting non circular objects. A few examples are show here:

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

17 of 122 01/13/2018 02:30 AM

scripts for these examples
 cylinder(20,20,20,$fn=3);
 cylinder(20,20,00,$fn=4);
 cylinder(20,20,10,$fn=4);

undersized holes

When using cylinder() with difference() to place holes in objects, the holes will be undersized. This is because circular paths are

approximated with polygons inscribed within in a circle. The points of the polygon are on the circle, but straight lines between are

inside. To have all of the hole larger than the true circle, the polygon must lie wholly outside of the circle (circumscribed). Modules for

circumscribed holes

Notes on accuracy Circle objects are approximated. The algorithm for doing this matters when you want 3d printed holes to be the

right size. Current behavior is illustrated in a diagram (https://camo.githubusercontent.com

/533961dfae3fd5643f3474345e4179a8a328dcf9

/68747470733a2f2f662e636c6f75642e6769746875622e636f6d2f6173736574732f313937323936312f313930353837342f34323261383

738322d376361352d313165332d383035612d3531303633613361306531322e4a5047) . Discussion regarding optionally changing this

behavior happening in a Pull Request (https://github.com/openscad/openscad/pull/599)

A polyhedron is the most general 3D primitive solid. It can be used to create any regular or irregular shape including those with

concave as well as convex features. Curved surfaces are approximated by a series of flat surfaces.

polyhedron(points = [[X0, Y0, Z0], [X1, Y1, Z1], ...], triangles = [[P0, P1, P2], ...], convexity = N); // before 2014.03
polyhedron(points = [[X0, Y0, Z0], [X1, Y1, Z1], ...], faces = [[P0, P1, P2, P3, ...], ...], convexity = N); // 2014.03 & later

Parameters
points

Vector of 3d points or vertices. Each point is in turn a vector, [x,y,z], of its
coordinates.
Points may be defined in any order. N points are referenced, in the order defined,
as 0 to N-1.

polyhedron

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

18 of 122 01/13/2018 02:30 AM

triangles (deprecated in version 2014.03, use faces)
Vector of faces which collectively enclose the solid. Each face is a vector containing
the indices (0 based) of 3 points from the points vector.

faces (introduced in version 2014.03)
Vector of faces which collectively enclose the solid. Each face is a vector containing
the indices (0 based) of 3 or more points from the points vector.
Faces may be defined in any order. Define enough faces to fully enclose the solid,
with no overlap.
Points which describe a single face must all be on the same plane.

convexity
Integer. The convexity parameter specifies the maximum number of faces a ray
intersecting the object might penetrate. This parameter is only needed for correctly
displaying the object in OpenCSG preview mode. It has no effect on the polyhedron
rendering. For display problems, setting it to 10 should work fine for most cases.

 default values: polyhedron(); yields: polyhedron(points = undef, faces = undef, convexity = 1);

All faces must have points ordered in the same direction . OpenSCAD prefers clockwise when looking at each face from outside

inwards. The back is viewed from the back, the bottom from the bottom, etc..

Example 1 Using polyhedron to generate cube([10, 7, 5]);

point numbers for cube

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

19 of 122 01/13/2018 02:30 AM

unfolded cube faces

CubePoints = [
 [0, 0, 0], //0
 [10, 0, 0], //1
 [10, 7, 0], //2
 [0, 7, 0], //3
 [0, 0, 5], //4
 [10, 0, 5], //5
 [10, 7, 5], //6
 [0, 7, 5]]; //7

CubeFaces = [
 [0,1,2,3], // bottom
 [4,5,1,0], // front
 [7,6,5,4], // top
 [5,6,2,1], // right
 [6,7,3,2], // back
 [7,4,0,3]]; // left

polyhedron(CubePoints, CubeFaces);

equivalent descriptions of the bottom face
 [0,1,2,3],
 [0,1,2,3,0],
 [1,2,3,0],
 [2,3,0,1],
 [3,0,1,2],
 [0,1,2],[2,3,0], // 2 triangles with no overlap
 [1,2,3],[3,0,1],
 [1,2,3],[0,1,3],

Example 2 A square base pyramid:

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

20 of 122 01/13/2018 02:30 AM

A simple polyhedron, square base pyramid

polyhedron(
 points=[[10,10,0],[10,-10,0],[-10,-10,0],[-10,10,0], // the four points at base
 [0,0,10]], // the apex point
 faces=[[0,1,4],[1,2,4],[2,3,4],[3,0,4], // each triangle side
 [1,0,3],[2,1,3]] // two triangles for square base
);

Example 3 A triangular prism:

A polyhedron triangular prism

 module prism(l, w, h){
 polyhedron(
 points=[[0,0,0], [l,0,0], [l,w,0], [0,w,0], [0,w,h], [l,w,h]],
 faces=[[0,1,2,3],[5,4,3,2],[0,4,5,1],[0,3,4],[5,2,1]]
);

 // preview unfolded (do not include in your function
 z = 0.08;
 separation = 2;
 border = .2;
 translate([0,w+separation,0])
 cube([l,w,z]);
 translate([0,w+separation+w+border,0])
 cube([l,h,z]);
 translate([0,w+separation+w+border+h+border,0])
 cube([l,sqrt(w*w+h*h),z]);
 translate([l+border,w+separation+w+border+h+border,0])

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

21 of 122 01/13/2018 02:30 AM

 polyhedron(
 points=[[0,0,0],[h,0,0],[0,sqrt(w*w+h*h),0], [0,0,z],[h,0,z],[0,sqrt(w*w+h*h),z]],
 faces=[[0,1,2], [3,5,4], [0,3,4,1], [1,4,5,2], [2,5,3,0]]
);
 translate([0-border,w+separation+w+border+h+border,0])
 polyhedron(
 points=[[0,0,0],[0-h,0,0],[0,sqrt(w*w+h*h),0], [0,0,z],[0-h,0,z],[0,sqrt(w*w+h*h),z]],
 faces=[[1,0,2],[5,3,4],[0,1,4,3],[1,2,5,4],[2,0,3,5]]
);
 }

 prism(10, 5, 3);

Mistakes in defining polyhedra include not having all faces with the same order, overlap of faces and missing faces or portions of faces.

As a general rule, the polyhedron faces should also satisfy (manifold conditions):

exactly two faces should meet at any polyhedron edge.

if two faces have a vertex in common, they should be in the same cycle face-edge around the vertex.

The first rule eliminates polyhedron like two cubes with a common edge and the second excludes polyhedron like two cubes with a

common vertex.

When viewed from the outside, the points describing each face must be in the same order . OpenSCAD prefers CW, and provides a

mechanism for detecting CCW. When the thrown together view (F12) is used with F5, CCW faces are shown in pink. Reorder the points

for incorrect faces. Rotate the object to view all faces. The pink view can be turned off with F10.

OpenSCAD allows, temporarily, commenting out part of the face descriptions so that only the remaining faces are displayed. Use // to

comment out the rest of the line. Use /* and */ to start and end a comment block. This can be part of a line or extend over several lines.

Viewing only part of the faces can be helpful in determining the right points for an individual face. Note that a solid is not shown, only

the faces. If using F12, all faces have one pink side. Commenting some faces helps also to show any internal face.

CubeFaces = [
/* [0,1,2,3], // bottom
 [4,5,1,0], // front */
 [7,6,5,4], // top
/* [5,6,2,1], // right
 [6,7,3,2], // back */
 [7,4,0,3]]; // left

Example 4 a more complex polyhedron with mis-ordered faces

When you select 'Thrown together' from the view menu and compile the design (not compile and render!) you will see a preview with

the mis-oriented polygons highlighted. Unfortunately this highlighting is not possible in the OpenCSG preview mode because it would

interfere with the way the OpenCSG preview mode is implemented.)

Below you can see the code and the picture of such a problematic polyhedron, the bad polygons (faces or compositions of faces) are in

pink.

Debugging polyhedra

example 1 showing only 2
faces

Mis-ordered faces

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

22 of 122 01/13/2018 02:30 AM

// Bad polyhedron
polyhedron

(points = [
 [0, -10, 60], [0, 10, 60], [0, 10, 0], [0, -10, 0], [60, -10, 60], [60, 10, 60],
 [10, -10, 50], [10, 10, 50], [10, 10, 30], [10, -10, 30], [30, -10, 50], [30, 10, 50]
],
faces = [

 [0,2,3], [0,1,2], [0,4,5], [0,5,1], [5,4,2], [2,4,3],
[6,8,9], [6,7,8], [6,10,11], [6,11,7], [10,8,11],

 [10,9,8], [0,3,9], [9,0,6], [10,6, 0], [0,4,10],
[3,9,10], [3,10,4], [1,7,11], [1,11,5], [1,7,8],
[1,8,2], [2,8,11], [2,11,5]

]
);

Polyhedron with badly oriented polygons

A correct polyhedron would be the following:

polyhedron
(points = [
 [0, -10, 60], [0, 10, 60], [0, 10, 0], [0, -10, 0], [60, -10, 60], [60, 10, 60],
 [10, -10, 50], [10, 10, 50], [10, 10, 30], [10, -10, 30], [30, -10, 50], [30, 10, 50]
],
faces = [

 [0,3,2], [0,2,1], [4,0,5], [5,0,1], [5,2,4], [4,2,3],
[6,8,9], [6,7,8], [6,10,11],[6,11,7], [10,8,11],

 [10,9,8], [3,0,9], [9,0,6], [10,6, 0],[0,4,10],
[3,9,10], [3,10,4], [1,7,11], [1,11,5], [1,8,7],
[2,8,1], [8,2,11], [5,11,2]

]
);

Beginner's tip:

If you don't really understand "orientation", try to identify the mis-oriented pink faces and then permute the references to the points

vectors until you get it right. E.g. in the above example, the third triangle ([0,4,5]) was wrong and we fixed it as [4,0,5]. In addition,

you may select "Show Edges" from the "View Menu", print a screen capture and number both the points and the faces. In our example,

the points are annotated in black and the faces in blue. Turn the object around and make a second copy from the back if needed. This

way you can keep track.

Clockwise Technique:

Orientation is determined by clockwise indexing. This means that if you're looking at the triangle (in this case [4,0,5]) from the outside

you'll see that the path is clockwise around the center of the face. The winding order [4,0,5] is clockwise and therefore good. The

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

23 of 122 01/13/2018 02:30 AM

winding order [0,4,5] is counter-clockwise and therefore bad. Likewise, any other clockwise order of [4,0,5] works: [5,4,0] & [0,5,4]

are good too. If you use the clockwise technique, you'll always have your faces outside (outside of OpenSCAD, other programs do use

counter-clockwise as the outside though).

Think of it as a Left Hand Rule:

If you hold the face and the fingers of your hand curls is the same order as the points, then your thumb points outwards.

Polyhedron with badly oriented polygons

Succinct description of a 'Polyhedron'

* Points define all of the points/vertices in the shape.
* Faces is a list of flat polygons that connect up the points/vertices.

Each point, in the point list, is defined with a 3-tuple x,y,z position specification. Points in the point list are automatically given an

identifier starting at zero for use in the faces list (0,1,2,3,... etc).

Each face, in the faces list, is defined by selecting 3 or more of the points (using the point identifier) out of the point list.

e.g. faces=[[0,1,2]] defines a triangle from the first point (points are zero referenced) to the second point and then to the third point.

When looking at any face from the outside, the face must list all points in a clockwise order.

Before 2014.03, faces could only be described via triangles. Since 2014.03, a face description can have any number of points. The

points, all in the same plane, must be listed in the proper order. Since version ???, the face vertices do not have to be planar:

OpenSCAD will do its best to internally subdivide the face in triangles. Note that this may lead to different results depending on the

chosen face triangulation. If a specific result is needed, the non planar face should be broken in triangular pieces by the user.

An alternate (correct) face definition for example 4:

faces = [
 [0,3,2,1], [0,1,5,4], [2,3,4,5], // outside

Alternate Face Descriptions

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

24 of 122 01/13/2018 02:30 AM

 [6,7,8,9], [7,6,10,11], [11,10,9,8], // inside
 [0,4,3,0,6,9,10,6], // front
 [1,2,5,1,7,11,8,7] // back
]

The point list of the polyhedron definition may have repetitions. When two or more points have the same coordinates they are

considered the same polyhedron vertex. So, the following polyhedron:

points = [[0, 0, 0], [10, 0, 0], [0,10, 0],
[0, 0, 0], [10, 0, 0], [0,10, 0],
[0,10, 0], [10, 0, 0], [0, 0,10],
[0, 0, 0], [0, 0,10], [10, 0, 0],
[0, 0, 0], [0, 0,10], [0,10, 0]];

polyhedron(points, [[0,1,2], [3,4,5], [6,7,8], [9,10,11]]);

define the same tetrahedron as:

points = [[0,0,0], [0,10,0], [10,0,0], [0,0,10]];
polyhedron(points, [[0,2,1], [0,1,3], [1,2,3], [0,3,2]]);

Point repetitions in a polyhedron point list

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

25 of 122 01/13/2018 02:30 AM

Using the projection() function, you can create 2d drawings from 3d models, and export them to the dxf format. It works by

projecting a 3D model to the (x,y) plane, with z at 0. If cut=true, only points with z=0 will be considered (effectively cutting the

object), with cut=false(the default), points above and below the plane will be considered as well (creating a proper projection).

Example: Consider example002.scad, that comes with OpenSCAD.

Then you can do a 'cut' projection, which gives you the 'slice' of the x-y plane with z=0.

projection(cut = true) example002();

You can also do an 'ordinary' projection, which gives a sort of 'shadow' of the object onto the xy plane.

projection(cut = false) example002();

3D to 2D Projection

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

26 of 122 01/13/2018 02:30 AM

Another Example

You can also use projection to get a 'side view' of an object. Let's take example002, and move it up, out of the X-Y plane, and rotate it:

translate([0,0,25]) rotate([90,0,0]) example002();

Now we can get a side view with projection()

projection() translate([0,0,25]) rotate([90,0,0]) example002();

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

27 of 122 01/13/2018 02:30 AM

Links:

example021.scad from Clifford Wolf's site (http://svn.clifford.at/openscad/trunk/examples/example021.scad).

More complicated example (http://www.gilesbathgate.com/2010/06/extracting-2d-mendel-outlines-using-
openscad/) from Giles Bathgate's blog

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

28 of 122 01/13/2018 02:30 AM

Chapter 3 -- 2D Objects
OpenSCAD User Manual/The OpenSCAD Language

All 2D primitives can be transformed with 3D transformations. Usually used as part of a 3D extrusion. Although infinitely thin, they

are rendered with a 1 thickness.

Creates a square or rectangle in the first quadrant. When center is true the square is centered on the origin. Argument names are

optional if given in the order shown here.

square(size = [x, y], center = true/false);
square(size = x , center = true/false);

parameters:

size
single value, square with both sides this length
2 value array [x,y], rectangle with dimensions x and y

center
false (default), 1st (positive) quadrant, one corner at (0,0)
true, square is centered at (0,0)

default values: square(); yields: square(size = [1, 1], center = false);

examples:

equivalent scripts for this example
 square(size = 10);
 square(10);
 square([10,10]);
 .
 square(10,false);
 square([10,10],false);
 square([10,10],center=false);
 square(size = [10, 10], center = false);
 square(center = false,size = [10, 10]);

equivalent scripts for this example
 square([20,10],true);
 a=[20,10];square(a,true);

square

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

29 of 122 01/13/2018 02:30 AM

Creates a circle at the origin. All parameters, except r, must be named.

circle(r=radius | d=diameter);

Parameters
r : circle radius. r name is the only one optional with circle.

circle resolution is based on size, using $fa or $fs.

For a small, high resolution circle you can make a large circle, then scale it down,
or you could set $fn or other special variables. Note: These examples exceed the
resolution of a 3d printer as well as of the display screen.

scale([1/100, 1/100, 1/100]) circle(200); // create a high resolution circle with a radius of 2.
circle(2, $fn=50); // Another way.

d : circle diameter (only available in versions later than 2014.03).
$fa : minimum angle (in degrees) of each fragment.
$fs : minimum circumferential length of each fragment.
$fn : fixed number of fragments in 360 degrees. Values of 3 or more override $fa and
$fs

$fa, $fs and $fn must be named. click here for more details,.

defaults: circle(); yields: circle($fn = 0, $fa = 12, $fs = 2, r = 1);

equivalent scripts for this example
 circle(10);
 circle(r=10);
 circle(d=20);
 circle(d=2+9*2);

An ellipse can be created from a circle by using either scale() or resize() to make the x and y dimensions unequal. See OpenSCAD User

Manual/Transformations

equivalent scripts for this example
 resize([30,10])circle(d=20);
 scale([1.5,.5])circle(d=20);

circle

ellipse

regular polygon

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

30 of 122 01/13/2018 02:30 AM

A regular polygon of 3 or more sides can be created by using circle() with $fn set to the number of sides. The polygon is inscribed

within the circle with all sides (and angles) equal. One corner points to the positive x direction. For irregular shapes see the polygon

primitive below.

script for these examples
 translate([-42, 0]){circle(20,$fn=3);%circle(20,$fn=90);}
 translate([0, 0]) circle(20,$fn=4);
 translate([42, 0]) circle(20,$fn=5);
 translate([-42,-42]) circle(20,$fn=6);
 translate([0,-42]) circle(20,$fn=8);
 translate([42,-42]) circle(20,$fn=12);

 color("black"){
 translate([-42, 0,1])text("3",7,,center);
 translate([0, 0,1])text("4",7,,center);
 translate([42, 0,1])text("5",7,,center);
 translate([-42,-42,1])text("6",7,,center);
 translate([0,-42,1])text("8",7,,center);
 translate([42,-42,1])text("12",7,,center);
 }

Creates a multiple sided shape from a list of x,y coordinates. A polygon is the most powerful 2D object. It can create anything that

circle and squares can, as well as much more. This includes irregular shapes with both concave and convex edges. In addition it can

place holes within that shape.

polygon(points = [[x, y], ...], paths = [[p1, p2, p3..], ...], convexity = N);

Parameters

points
The list of x,y points of the polygon. : A vector of 2 element vectors.
Note: points are indexed from 0 to n-1.

paths
default

If no path is specified, all points are used in the order listed.
single vector

The order to traverse the points. Uses indices from 0 to n-1. May be in a different
order and use all or part, of the points listed.

multiple vectors
Creates primary and secondary shapes. Secondary shapes are subtracted from the
primary shape (like difference). Secondary shapes may be wholly or partially within
the primary shape.

A closed shape is created by returning from the last point specified to the first.

polygon

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

31 of 122 01/13/2018 02:30 AM

convexity
Integer number of "inward" curves, ie. expected path crossings of an arbitrary line
through the polygon. See below.

defaults: polygon(); yields: polygon(points = undef, paths = undef, convexity = 1);

Example no holes

equivalent scripts for this example
 polygon(points=[[0,0],[100,0],[130,50],[30,50]]);
 polygon([[0,0],[100,0],[130,50],[30,50]], paths=[[0,1,2,3]]);
 polygon([[0,0],[100,0],[130,50],[30,50]],[[3,2,1,0]]);
 polygon([[0,0],[100,0],[130,50],[30,50]],[[1,0,3,2]]);

 a=[[0,0],[100,0],[130,50],[30,50]];
 b=[[3,0,1,2]];
 polygon(a);
 polygon(a,b);
 polygon(a,[[2,3,0,1,2]]);

Example one hole

equivalent scripts for this example
 polygon(points=[[0,0],[100,0],[0,100],[10,10],[80,10],[10,80]], paths=[[0,1,2],[3,4,5]],convexity=10);

 triangle_points =[[0,0],[100,0],[0,100],[10,10],[80,10],[10,80]];
 triangle_paths =[[0,1,2],[3,4,5]];
 polygon(triangle_points,triangle_paths,10);

The 1st path vector, [0,1,2], selects the points, [0,0],[100,0],[0,100], for the primary shape.

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

32 of 122 01/13/2018 02:30 AM

The 2nd path vector, [3,4,5], selects the points, [10,10],[80,10],[10,80], for the secondary shape.
The secondary shape is subtracted from the primary (think difference()).
Since the secondary is wholly within the primary, it leaves a shape with a hole.

Example multi hole

NOTE: concat() requires 2015.03 or later

 //example polygon with multiple holes
a0 = [[0,0],[100,0],[130,50],[30,50]]; // main
b0 = [1,0,3,2];
a1 = [[20,20],[40,20],[30,30]]; // hole 1
b1 = [4,5,6];
a2 = [[50,20],[60,20],[40,30]]; // hole 2
b2 = [7,8,9];
a3 = [[65,10],[80,10],[80,40],[65,40]]; // hole 3
b3 = [10,11,12,13];
a4 = [[98,10],[115,40],[85,40],[85,10]]; // hole 4
b4 = [14,15,16,17];
a = concat (a0,a1,a2,a3,a4);
b = [b0,b1,b2,b3,b4];
polygon(a,b);
 //alternate
polygon(a,[b0,b1,b2,b3,b4]);

convexity

The convexity parameter specifies the maximum number of front sides (back sides) a ray intersecting the object might penetrate. This

parameter is only needed for correctly displaying the object in OpenCSG preview mode and has no effect on the polyhedron rendering.

This image shows a 2D shape with a convexity of 4, as the ray indicated in red crosses the 2D shape a maximum of 4 times. The

convexity of a 3D shape would be determined in a similar way. Setting it to 10 should work fine for most cases.

import_dxf

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

33 of 122 01/13/2018 02:30 AM

DEPRECATED: The import_dxf() module will be removed in future releases. Use import() (https://en.wikibooks.org

/wiki/OpenSCAD_User_Manual/The_OpenSCAD_Language#import) instead.

Read a DXF file and create a 2D shape.

Example

linear_extrude(height = 5, center = true, convexity = 10)
 import_dxf(file = "example009.dxf", layer = "plate");

The text module creates text as a 2D geometric object, using fonts installed on the local system or provided as separate font file.

[Note: Requires version 2015.03]

Parameters

text
String. The text to generate.

size
Decimal. The generated text will have approximately an ascent of the given value (height
above the baseline). Default is 10.
Note that specific fonts will vary somewhat and may not fill the size specified exactly, usually
slightly smaller.

font
String. The name of the font that should be used. This is not the name of the font file, but the
logical font name (internally handled by the fontconfig library). This can also include a style
parameter, see below. A list of installed fonts & styles can be obtained using the font list
dialog (Help -> Font List).

halign
String. The horizontal alignment for the text. Possible values are "left", "center" and "right".
Default is "left".

valign
String. The vertical alignment for the text. Possible values are "top", "center", "baseline" and
"bottom". Default is "baseline".

spacing
Decimal. Factor to increase/decrease the character spacing. The default value of 1 will result
in the normal spacing for the font, giving a value greater than 1 will cause the letters to be
spaced further apart.

direction
String. Direction of the text flow. Possible values are "ltr" (left-to-right), "rtl" (right-to-left),
"ttb" (top-to-bottom) and "btt" (bottom-to-top). Default is "ltr".

language
String. The language of the text. Default is "en".

script
String. The script of the text. Default is "latin".

$fn
used for subdividing the curved path segments provided by freetype

Text

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

34 of 122 01/13/2018 02:30 AM

Example

text("OpenSCAD");

Note

To allow specification of particular Unicode characters you can specify them in a string with the following escape codes;

\x03 - single hex character (only allowed values are 01h - 7fh)

\u0123 - unicode char with 4 hexadecimal digits (note: Lowercase)

\U012345 - unicode char with 6 hexadecimal digits (note: Uppercase)

Example

t="\u20AC10 \u263A"; // 10 euro and a smilie

Fonts are specified by their logical font name; in addition a style parameter can be added to select a specific font style like "bold" or

"italic", such as:

font="Liberation Sans:style=Bold Italic"

The font list dialog shows the font name and the font style for each available font. For reference, the dialog also displays the location of

the font file. You can drag a font in the font list, into the editor window to use in the text() statement.

OpenSCAD font list dialog

OpenSCAD includes the fonts Liberation Mono, Liberation Sans, Liberation Sans Narrow and Liberation Serif. Hence, as fonts in

general differ by platform type, use of these included fonts is likely to be portable across platforms.

For common/casual text usage, the specification of one of these fonts is recommended for this reason. Liberation Sans is the default

font to encourage this.

Example 1: Result.

Using Fonts & Styles

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

35 of 122 01/13/2018 02:30 AM

In addition to the installed fonts, it's possible to add project specific font files. Supported font file formats are TrueType Fonts (*.ttf)

and OpenType Fonts (*.otf). The files need to be registered with use<>.

 use <ttf/paratype-serif/PTF55F.ttf>

After the registration, the font will also be listed in the font list dialog, so in case logical name of a font is unknown, it can be looked up

there are it was registered.

Example

 square(10);

 translate([15, 15]) {
 text("OpenSCAD", font = "Liberation Sans");
 }

 translate([15, 0]) {
 text("OpenSCAD", font = "Liberation Sans:style=Bold Italic");
 }

top
The text is aligned with the top of the bounding box at the given Y coordinate.

center
The text is aligned with the center of the bounding box at the given Y coordinate.

baseline
The text is aligned with the font baseline at the given Y coordinate. This is the default.

bottom
The text is aligned with the bottom of the bounding box at the given Y coordinate.

 text = "Align";
 font = "Liberation Sans";

 valign = [
 [0, "top"],
 [40, "center"],
 [75, "baseline"],
 [110, "bottom"]
];

 for (a = valign) {
 translate([10, 120 - a[0], 0]) {
 color("red") cube([135, 1, 0.1]);
 color("blue") cube([1, 20, 0.1]);
 linear_extrude(height = 0.5) {
 text(text = str(text,"_",a[1]), font = font, size = 20, valign = a[1]);
 }
 }
 }

Example 2: Result.

Alignment

Vertical alignment

OpenSCAD vertical text
alignment

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

36 of 122 01/13/2018 02:30 AM

left
The text is aligned with the left side of the bounding box at the given X coordinate. This is
the default.

center
The text is aligned with the center of the bounding box at the given X coordinate.

right
The text is aligned with the right of the bounding box at the given X coordinate.

 text = "Align";
 font = "Liberation Sans";

 halign = [
 [10, "left"],
 [50, "center"],
 [90, "right"]
];

 for (a = halign) {
 translate([140, a[0], 0]) {
 color("red") cube([115, 2,0.1]);
 color("blue") cube([2, 20,0.1]);
 linear_extrude(height = 0.5) {
 text(text = str(text,"_",a[1]), font = font, size = 20, halign = a[1]);
 }
 }
 }

It is easy only using the function linear_extrude(height);

Using the projection() function, you can create 2d drawings from 3d models, and export them to the dxf format. It works by

projecting a 3D model to the (x,y) plane, with z at 0. If cut=true, only points with z=0 will be considered (effectively cutting the

object), with cut=false(the default), points above and below the plane will be considered as well (creating a proper projection).

Example: Consider example002.scad, that comes with OpenSCAD.

Horizontal alignment

OpenSCAD horizontal text
alignment

Renderable 3Dtext

3D to 2D Projection

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

37 of 122 01/13/2018 02:30 AM

Then you can do a 'cut' projection, which gives you the 'slice' of the x-y plane with z=0.

projection(cut = true) example002();

You can also do an 'ordinary' projection, which gives a sort of 'shadow' of the object onto the xy plane.

projection(cut = false) example002();

Another Example

You can also use projection to get a 'side view' of an object. Let's take example002, and move it up, out of the X-Y plane, and rotate it:

translate([0,0,25]) rotate([90,0,0]) example002();

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

38 of 122 01/13/2018 02:30 AM

Now we can get a side view with projection()

projection() translate([0,0,25]) rotate([90,0,0]) example002();

Links:

example021.scad from Clifford Wolf's site (http://svn.clifford.at/openscad/trunk/examples/example021.scad).

More complicated example (http://www.gilesbathgate.com/2010/06/extracting-2d-mendel-outlines-using-
openscad/) from Giles Bathgate's blog

Extrusion is the process of creating an object with a fixed cross-sectional profile. OpenSCAD provides two commands to create 3D

solids from a 2D shape: linear_extrude() and rotate_extrude(). Linear extrusion is similar to pushing Playdoh through a press with a

die of a specific shape.

Rotational extrusion is similar to the process of turning or "throwing" a bowl on the Potter's wheel.

Both extrusion methods work on a (possibly disjointed) 2D shape which exists on the X-Y plane. While transformations that operates

on both 2D shapes and 3D solids can move a shape off the X-Y plane, when the extrusion is performed the end result is not very

intuitive. What actually happens is that any information in the third coordinate (the Z coordinate) is ignored for any 2D shape, this

process amounts to an implicit projection() performed on any 2D shape before the extrusion is executed. It is recommended to

perform extrusion on shapes that remains strictly on the X-Y plane. See also 3D and 2D objects.

2D to 3D Extrusion

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

39 of 122 01/13/2018 02:30 AM

Linear Extrusion is a modeling operation that takes a 2D polygon as input and extends it in

the third dimension. This way a 3D shape is created. Keep in mind that extrusion is always

performed from XY plane to the height indicate along Z axis; so if you rotate or apply other

transformations before extrusion, the extrusion is applied to the projection of the 2D

polygon to the XY plane.

linear_extrude(height = fanwidth, center = true, convexity = 10, twist = -fanrot, slices = 20, scale

You must use parameter names due to a backward compatibility issue.

height must be positive.

If the extrusion fails for a non-trivial 2D shape, try setting the convexity parameter (the

default is not 10, but 10 is a "good" value to try). See explanation further down.

Twist is the number of degrees of through which the shape is extruded. Setting the

parameter twist = 360 will extrude through one revolution. The twist direction follows the

left hand rule.

0° of Twist

linear_extrude(height = 10, center = true, convexity = 10, twist = 0)
translate([2, 0, 0])
circle(r = 1);

linear_extrude() works like a
Playdoh extrusion press

rotate_extrude() emulates
throwing a vessel

Linear Extrude

Usage

Twist

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

40 of 122 01/13/2018 02:30 AM

-100° of Twist

linear_extrude(height = 10, center = true, convexity = 10, twist = -100)
translate([2, 0, 0])
circle(r = 1);

100° of Twist

linear_extrude(height = 10, center = true, convexity = 10, twist = 100)
translate([2, 0, 0])
circle(r = 1);

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

41 of 122 01/13/2018 02:30 AM

-500° of Twist

linear_extrude(height = 10, center = true, convexity = 10, twist = -500)
translate([2, 0, 0])
circle(r = 1);

It is similar to the parameter center of cylinders. If center is false the linear extrusion Z range is from 0 to height; if it is true, the

range is from -height/2 to height/2.

center = true

linear_extrude(height = 10, center = true, convexity = 10, twist = -500)
translate([2, 0, 0])
circle(r = 1);

Center

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

42 of 122 01/13/2018 02:30 AM

center = false

linear_extrude(height = 10, center = false, convexity = 10, twist = -500)
translate([2, 0, 0])
circle(r = 1);

The slices parameter defines the number of intermediate points along the Z axis of the extrusion. Its default increases with the value of

twist. Explicitly setting slices may improve the output refinement.

linear_extrude(height = 10, center = false, convexity = 10, twist = 360, slices = 100)
translate([2, 0, 0])
circle(r = 1);

The special variables $fn, $fs and $fa can also be used to improve the output. If slices is not defined, its value is taken from the defined

$fn value.

Mesh Refinement

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

43 of 122 01/13/2018 02:30 AM

linear_extrude(height = 10, center = false, convexity = 10, twist = 360, $fn = 100)
translate([2, 0, 0])
circle(r = 1);

Scales the 2D shape by this value over the height of the extrusion. Scale can be a scalar or a vector:

 linear_extrude(height = 10, center = true, convexity = 10, scale=3)
 translate([2, 0, 0])
 circle(r = 1);

 linear_extrude(height = 10, center = true, convexity = 10, scale=[1,5], $fn=100)
 translate([2, 0, 0])
 circle(r = 1);

Scale

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

44 of 122 01/13/2018 02:30 AM

Note that if scale is a vector, the resulting side walls may be nonplanar. Use twist=0 and the slices parameter to avoid asymmetry

(https://github.com/openscad/openscad/issues/1341).

 linear_extrude(height=10, scale=[1,0.1], slices=20, twist=0)
 polygon(points=[[0,0],[20,10],[20,-10]]);

Rotational extrusion spins a 2D shape around the Z-axis to form a solid which has rotational symmetry. One way to think of this

operation is to imagine a Potter's wheel placed on the X-Y plane with its axis of rotation pointing up towards +Z. Then place the

to-be-made object on this virtual Potter's wheel (possibly extended down below the X-Y plane towards -Z, take the cross-section of this

object on the X-Z plane but keep only the right half (X >= 0). That is the 2D shape that need to be fed to rotate_extrude() as the child

in order to generate this solid.

Since a 2D shape is rendered by OpenSCAD on the X-Y plane, an alternative way to think of this operation is as follows: spins a 2D

shape around the Y-axis to form a solid. The resultant solid is placed so that its axis of rotation lies along the Z-axis.

It can not be used to produce a helix or screw threads.

The 2D shape needs to lie completely on either the right (recommended) or the left side of the Y-axis. More precisely speaking, each

vertex of the shape must have either x >= 0 or x <= 0. If the shape crosses the X axis a warning will be shown in the console windows

and the rotate_extrude() will be ignored. For OpenSCAD versions prior to 2016.xxxx, if the shape is in the negative axis the faces will

be inside-out, which may cause undesired effects.

Parameters

rotate_extrude(angle = 360, convexity = 2) {...}

You must use parameter names due to a backward compatibility issue.

convexity

Rotate Extrude

Usage

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

45 of 122 01/13/2018 02:30 AM

If the extrusion fails for a non-trival 2D shape, try setting the
convexity parameter (the default is not 10, but 10 is a "good"
value to try). See explanation further down.

angle [Note: Requires version 2016.XX]
Defaults to 360. Specifies the number of degrees to sweep,
starting at the positive X axis. The direction of the sweep
follows the Right Hand Rule, hence a negative angle will
sweep clockwise.

→

A simple torus can be constructed using a rotational extrude.

rotate_extrude(convexity = 10)
translate([2, 0, 0])
circle(r = 1);

Right-hand grip rule

Examples

Mesh Refinement

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

46 of 122 01/13/2018 02:30 AM

→

Increasing the number of fragments that the 2D shape is composed of will improve the quality of the mesh, but take longer to render.

rotate_extrude(convexity = 10)
translate([2, 0, 0])
circle(r = 1, $fn = 100);

→

The number of fragments used by the extrusion can also be increased.

rotate_extrude(convexity = 10, $fn = 100)
translate([2, 0, 0])
circle(r = 1, $fn = 100);

Using the parameter angle (with OpenSCAD versions 2016.xx), a hook can be modeled .

translate([0,60,0])
 rotate_extrude(angle=270, convexity=10)
 translate([40, 0]) circle(10);
rotate_extrude(angle=90, convexity=10)
 translate([20, 0]) circle(10);

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

47 of 122 01/13/2018 02:30 AM

translate([20,0,0])
 rotate([90,0,0]) cylinder(r=10,h=80);

Extrusion can also be performed on polygons with points chosen by the user.

Here is a simple polygon and its 200 step rotational extrusion. (Note it has been rotated 90

degrees to show how the rotation will look; the rotate_extrude() needs it flat).

rotate([90,0,0]) polygon(points=[[0,0],[2,1],[1,2],[1,3],[3,4],[0,5]]);

rotate_extrude($fn=200) polygon(points=[[0,0],[2,1],[1,2],[1,3],[3,4],[0,5]]);

→ →

For more information on polygons, please see: 2D Primitives: Polygon.

convexity

Integer. The convexity parameter specifies the maximum number of front sides (back
sides) a ray intersecting the object might penetrate.

This parameter is only needed for correctly displaying the object in OpenCSG preview mode and has no

effect on the polyhedron rendering.

OpenSCAD - a hook

Extruding a Polygon

Description of extrude parameters

Extrude parameters for all extrusion modes

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

48 of 122 01/13/2018 02:30 AM

This image shows a 2D shape with a convexity of 4, as the ray indicated in red crosses the 2D shape a maximum of 4 times. The

convexity of a 3D shape would be determined in a similar way. Setting it to 10 should work fine for most cases.

height The extrusion height

center If true the solid will be centered after extrusion

twist The extrusion twist in degrees

slices Similar to special variable $fn without being passed down to the child 2D shape.

scale Scales the 2D shape by this value over the height of the extrusion.

Chapter 4 -- Transform
OpenSCAD User Manual/The OpenSCAD Language

Transformation affect the child nodes and as the name implies transforms them in various ways such as moving/rotating or scaling the

child. Cascading transformations are used to apply a variety of transforms to a final child. Cascading is achieved by nesting statements

i.e.

rotate([45,45,45])
 translate([10,20,30])
 cube(10);

Transformations can be applied to a group of child nodes by using '{' and '}' to enclose the subtree e.g.

translate([0,0,-5])
{

cube(10);
cylinder(r=5,h=10);

}

Transformations are written before the object they affect.

Imagine command like translate, mirror and scale as verbs. Commands like color are like adjectives that describe the object.

Extrude parameters for linear extrusion only

Basic concept

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

49 of 122 01/13/2018 02:30 AM

Notice that there is no semicolon following transformation command.

As OpenSCAD uses different libraries to implement capabilities this can introduce some inconsistencies to the F5 preview behaviour of

transformations. Traditional transforms (translate, rotate, scale, mirror & multimatrix) are performed using OpenGL in preview, while

other more advanced transforms, such as resize, perform a CGAL operation, behaving like a CSG operation affecting the underlying

object, not just transforming it. In particular this can affect the display of modifier characters, specifically "#" and "%", where the

highlight may not display intuitively, such as highlighting the pre-resized object, but highlighting the post-scaled object.

Scales its child elements using the specified vector. The argument name is optional.

Usage Example:
scale(v = [x, y, z]) { ... }

cube(10);
translate([15,0,0]) scale([0.5,1,2]) cube(10);

Note: Do not use negative scale values. Negative scale values appear to work for previews, but they lead to unpredictable errors when

rendering through CGAL. Use the mirror() function instead.

resize() is available since OpenSCAD 2013.06. It modifies the size of the child object to match the given x,y, and z.

There is a bug with shrinking in the 2013.06 release, that will be fixed in the next release.

Usage Example:

Advanced concept

scale

resize

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

50 of 122 01/13/2018 02:30 AM

// resize the sphere to extend 30 in x, 60 in y, and 10 in the z directions.
resize(newsize=[30,60,10]) sphere(r=10);

If x,y, or z is 0 then that dimension is left as-is.

// resize the 1x1x1 cube to 2x2x1
resize([2,2,0]) cube();

If the 'auto' parameter is set to true, it will auto-scale any 0-dimensions to match. For example.

// resize the 1x2x0.5 cube to 7x14x3.5
resize([7,0,0], auto=true) cube([1,2,0.5]);

The 'auto' parameter can also be used if you only wish to auto-scale a single dimension, and leave the other as-is.

// resize to 10x8x1. Note that the z dimension is left alone.
resize([10,0,0], auto=[true,true,false]) cube([5,4,1]);

Rotates its child 'a' degrees about the axis of the coordinate system or around an arbitrary axis. The argument names are optional if the

arguments are given in the same order as specified.

//Usage:
rotate(a = deg_a, v = [x, y, z]) { ... }
// or
rotate(deg_a, [x, y, z]) { ... }
rotate(a = [deg_x, deg_y, deg_z]) { ... }
rotate([deg_x, deg_y, deg_z]) { ... }

The 'a' argument (deg_a) can be an array, as expressed in the later usage above; when deg_a is an array, the 'v' argument is ignored.

Where 'a' specifies multiple axes then the rotation is applied in the following order: x, y, z. That means the code:

rotate(a=[ax,ay,az]) {...}

is equivalent to:

rotate

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

51 of 122 01/13/2018 02:30 AM

rotate(a=[0,0,az]) rotate(a=[0,ay,0]) rotate(a=[ax,0,0]) {...}

The optional argument 'v' is a vector and allows you to set an arbitrary axis about which the object will be rotated.

For example, to flip an object upside-down, you can rotate your object 180 degrees around the 'y' axis.

rotate(a=[0,180,0]) { ... }

This is frequently simplified to

rotate([0,180,0]) { ... }

When specifying a single axis the 'v' argument allows you to specify which axis is the basis for rotation. For example, the equivalent to

the above, to rotate just around y

rotate(a=180, v=[0,1,0]) { ... }

When specifying a single axis, 'v' is a vector defining an arbitrary axis for rotation; this is different from the multiple axis above. For

example, rotate your object 45 degrees around the axis defined by the vector [1,1,0],

rotate(a=45, v=[1,1,0]) { ... }

Rotate with a single scalar argument rotates around the Z axis. This is useful in 2D contexts where that is the only axis for rotation.

For example:

rotate(45) square(10);

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

52 of 122 01/13/2018 02:30 AM

For the case of:

rotate([a, b, c]) { ... };

"a" is a rotation about the X axis, from the +Y axis, toward the +Z axis.

"b" is a rotation about the Y axis, from the +Z axis, toward the +X axis.

"c" is a rotation about the Z axis, from the +X axis, toward the +Y axis.

These are all cases of the Right Hand Rule. Point your right thumb along the positive axis,

your fingers show the direction of rotation.

Thus if "a" is fixed to zero, and "b" and "c" are manipulated appropriately, this is the

spherical coordinate system.

So, to construct a cylinder from the origin to some other point (x,y,z):

x= 10; y = 10; z = 10; // point coordinates of end of cylinder

length = norm([x,y,z]); // radial distance
b = acos(z/length); // inclination angle
c = atan2(y,x); // azimuthal angle

rotate([0, b, c])
cylinder(h=length, r=0.5);

%cube([x,y,z]); // corner of cube should coincide with end of cylinder

Rotation rule help

Right-hand grip rule

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

53 of 122 01/13/2018 02:30 AM

Translates (moves) its child elements along the specified vector. The argument name is optional.

Example:
translate(v = [x, y, z]) { ... }

cube(2,center = true);
translate([5,0,0])

sphere(1,center = true);

Mirrors the child element on a plane through the origin. The argument to mirror() is the normal vector of a plane intersecting the

origin through which to mirror the object.

translate

mirror

Function signature:

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

54 of 122 01/13/2018 02:30 AM

mirror(v= [x, y, z]) { ... }

The original is on the right side. Note that mirror doesn't make a copy. Like rotate and scale, it changes the object.

hand(); // original

mirror([1,0,0]) hand();

hand(); // original

mirror([1,1,0]) hand();

hand(); // original

mirror([1,1,1]) hand();

rotate([0,0,10]) cube([3,2,1]);
mirror([1,0,0]) translate([1,0,0]) rotate([0,0,10]) cube([3,2,1]);

Multiplies the geometry of all child elements with the given 4x4 transformation matrix.

Usage: multmatrix(m = [...]) { ... }

This is a breakdown of what you can do with the independent elements in the matrix (for the first three rows):

[Scale X] [Scale X sheared along Y] [Scale X sheared along Z] [Translate X]
[Scale Y sheared along X] [Scale Y] [Scale Y sheared along Z] [Translate Y]
[Scale Z sheared along X] [Scale Z sheared along Y] [Scale Z] [Translate Z]

the fourth row is used in 3D environments to define a view of the object. it is not used in OpenSCAD and should be [0,0,0,1]

Example which rotates by 45 degrees in XY plane and translates by [10,20,30], ie the same as translate([10,20,30])

rotate([0,0,45]) would do.

Examples

multmatrix

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

55 of 122 01/13/2018 02:30 AM

angle=45;
multmatrix(m = [[cos(angle), -sin(angle), 0, 10],

[sin(angle), cos(angle), 0, 20],
[0, 0, 1, 30],
[0, 0, 0, 1]

]) union() {
cylinder(r=10.0,h=10,center=false);
cube(size=[10,10,10],center=false);

}

Example that skews a model, something that is not possible with the other transformations. Also shows you can have the matrix in a

variable.

M = [[1 , 0 , 0 , 0],
[0 , 1 , 0.7, 0], // The "0.7" is the skew value; pushed along the y axis
[0 , 0 , 1 , 0],
[0 , 0 , 0 , 1]] ;

multmatrix(M) { union() {
cylinder(r=10.0,h=10,center=false);
cube(size=[10,10,10],center=false);

} }

Learn more about it here:

Affine Transformations (http://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations) on wikipedia

http://www.senocular.com/flash/tutorials/transformmatrix/

Displays the child elements using the specified RGB color + alpha value. This is only used for the F5 preview as CGAL and STL (F6) do

not currently support color. The alpha value will default to 1.0 (opaque) if not specified.

color(c = [r, g, b, a]) { ... }
color(c = [r, g, b], alpha = 1.0) { ... }
color("colorname", 1.0) { ... }

Note that the r, g, b, a values are limited to floating point values in the range [0,1] rather than the more traditional integers { 0 ...

255 }. However, nothing prevents you to using R, G, B values from {0 ... 255} with appropriate scaling: color([R/255, G/255,

B/255]) { ... }

Since version 2011.12, colors can also be defined by name (case insensitive). For example, to create a red sphere, you can write

color("red") sphere(5);. Alpha is specified as an extra parameter for named colors: color("Blue",0.5) cube(5);

The available color names are taken from the World Wide Web consortium's SVG color list (http://www.w3.org/TR/css3-color/). A

chart of the color names is as follows,

(note that both spellings of grey/gray including slategrey/slategray etc are valid):

Purples
Lavender

Thistle

Plum

Violet

Blues
Aqua

Cyan

LightCyan

PaleTurquoise

Greens
GreenYellow

Chartreuse

LawnGreen

Lime

Yellows
Gold

Yellow

LightYellow

LemonChiffon

Whites
White

Snow

Honeydew

MintCream

More?

color

Function signature:

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

56 of 122 01/13/2018 02:30 AM

Orchid

Fuchsia

Magenta

MediumOrchid

MediumPurple

BlueViolet

DarkViolet

DarkOrchid

DarkMagenta

Purple

Indigo

DarkSlateBlue

SlateBlue

MediumSlateBlue

Pinks
Pink

LightPink

HotPink

DeepPink

MediumVioletRed

PaleVioletRed

Aquamarine

Turquoise

MediumTurquoise

DarkTurquoise

CadetBlue

SteelBlue

LightSteelBlue

PowderBlue

LightBlue

SkyBlue

LightSkyBlue

DeepSkyBlue

DodgerBlue

CornflowerBlue

RoyalBlue

Blue

MediumBlue

DarkBlue

Navy

MidnightBlue

Reds
IndianRed

LightCoral

Salmon

DarkSalmon

LightSalmon

Red

Crimson

FireBrick

DarkRed

LimeGreen

PaleGreen

LightGreen

MediumSpringGreen

SpringGreen

MediumSeaGreen

SeaGreen

ForestGreen

Green

DarkGreen

YellowGreen

OliveDrab

Olive

DarkOliveGreen

MediumAquamarine

DarkSeaGreen

LightSeaGreen

DarkCyan

Teal

Oranges
LightSalmon

Coral

Tomato

OrangeRed

DarkOrange

Orange

LightGoldenrodYellow

PapayaWhip

Moccasin

PeachPuff

PaleGoldenrod

Khaki

DarkKhaki

Browns
Cornsilk

BlanchedAlmond

Bisque

NavajoWhite

Wheat

BurlyWood

Tan

RosyBrown

SandyBrown

Goldenrod

DarkGoldenrod

Peru

Chocolate

SaddleBrown

Sienna

Brown

Maroon

Azure

AliceBlue

GhostWhite

WhiteSmoke

Seashell

Beige

OldLace

FloralWhite

Ivory

AntiqueWhite

Linen

LavenderBlush

MistyRose

Grays
Gainsboro

LightGrey

Silver

DarkGray

Gray

DimGray

LightSlateGray

SlateGray

DarkSlateGray

Black

Here's a code fragment that draws a wavy multicolor object

for(i=[0:36]) {
for(j=[0:36]) {
color([0.5+sin(10*i)/2, 0.5+sin(10*j)/2, 0.5+sin(10*(i+j))/2])
translate([i, j, 0])
cube(size = [1, 1, 11+10*cos(10*i)*sin(10*j)]);

}
}

↗ Being that -1<=sin(x)<=1 then 0<=(1/2 + sin(x)/2)<=1 , allowing for the RGB

components assigned to color to remain within the [0,1] interval.

Chart based on "Web Colors" from Wikipedia (http://en.wikipedia.org/wiki/Web_colors)

In cases where you want to optionally set a color based on a parameter you can use the following trick:

Example

A 3-D multicolor sine wave

Example 2

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

57 of 122 01/13/2018 02:30 AM

Positive r/delta value

Negative r/delta value

module myModule(withColors=false) {
c=withColors?"red":undef;
color(c) circle(r=10);

}

Setting the colorname to undef will keep the default colors.

[Note: Requires version 2015.03]

Offset allows moving 2D outlines outward or inward by a given amount.

This is useful for making thin walls, by differencing a positive-offset exterior and a negative-offset interior.

Fillet: offset(r=-3) offset(delta=+3) rounds all inside (concave) corners, and leaves flat walls unchanged.
However, holes less than 2*r in diameter will vanish.

Round: offset(r=+3) offset(delta=-3) rounds all outside (convex) corners, and leaves flat walls unchanged.
However, walls less than 2*r thick will vanish.

Parameters

r | delta
Double. Amount to offset the polygon. When negative, the polygon is offset inwards. The
parameter r specifies the radius that is used to generate rounded corners, using delta gives
straight edges.

chamfer
Boolean. (default false) When using the delta parameter, this flag defines if edges should be
chamfered (cut off with a straight line) or not (extended to their intersection).

Result for different parameters. The black polygon is the input for the offset() operation.

Examples

// Example 1

offset

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

58 of 122 01/13/2018 02:30 AM

linear_extrude(height = 60, twist = 90, slices = 60) {
difference() {
offset(r = 10) {
square(20, center = true);
}
offset(r = 8) {
square(20, center = true);

}
}

}

// Example 2

module fillet(r) {
offset(r = -r) {
offset(delta = r) {
children();

}
}

}

Displays the minkowski sum (http://www.cgal.org/Manual/latest/doc_html/cgal_manual

/Minkowski_sum_3/Chapter_main.html) of child nodes.

Usage example:

Say you have a flat box, and you want a rounded edge. There are many ways to do this, but

minkowski is very elegant. Take your box, and a cylinder:

$fn=50;
cube([10,10,1]);
cylinder(r=2,h=1);

Then, do a minkowski sum of them (note that the outer dimensions of the box are now 10+2+2

= 14 units by 14 units by 2 units high as the heights of the objects are summed):

$fn=50;
minkowski()
{
cube([10,10,1]);
cylinder(r=2,h=1);

}

NB: The origin of the second object is used for the addition. If the second object is not

centered, then the addition will be asymmetric. The following minkowski sums are different:

the first expands the original cube by 0.5 units in all directions, both positive and negative. The

second expands it by +1 in each positive direction, but doesn't expand in the negative directions.

minkowski() {
cube([10, 10, 1]);
cube(1, center=true);

}

minkowski() {
cube([10, 10, 1]);
cube(1);

}

Example 1: Result.

minkowski

A box and a cylinder

Minkowski sum of the box
and cylinder

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

59 of 122 01/13/2018 02:30 AM

Displays the convex hull (http://www.cgal.org/Manual/latest/doc_html/cgal_manual

/Convex_hull_2/Chapter_main.html) of child nodes.

Usage example:

hull() {
translate([15,10,0]) circle(10);
circle(10);

}

When combining transformations, it is a sequential process, but going right-to-left. That is

 rotate(...) translate (...) cube(5) ;

would first move the cube, and then move in an arc (turning it the same amount) at the radius

given by the translation.

 translate (...) rotate(...) cube(5) ;

would first turn the cube and place it at the offset defined by the translate.

color("red") translate([0,10,0]) rotate([45,0,0]) cube(5);
color("green") rotate([45,0,0]) translate([0,10,0]) cube(5);

hull

Two cylinders

Convex hull of two cylinders

Combining transformations

Combine two transforms

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

60 of 122 01/13/2018 02:30 AM

Chapter 5 -- Boolean combination
OpenSCAD User Manual/The OpenSCAD Language

union (or)

circle + square

difference (and not)

square - circle

difference (and not)

circle - square

intersection (and)

circle - (circle -

square)

union() {square(10);circle(10);} // square or circle
difference() {square(10);circle(10);} // square and not circle
difference() {circle(10);square(10);} // circle and not square
intersection(){square(10);circle(10);} // square and circle

union (or)

sphere + cube

difference (and not)

cube - sphere

difference (and not)

sphere - cube

intersection (and)

sphere - (sphere -

cube)

union() {cube(12, center=true); sphere(8);} // cube or sphere
difference() {cube(12, center=true); sphere(8);} // cube and not sphere
difference() {sphere(8); cube(12, center=true);} // sphere and not cube
intersection(){cube(12, center=true); sphere(8);} // cube and sphere

Creates a union of all its child nodes. This is the sum of all children (logical or).

May be used with either 2D or 3D objects, but don't mix them.

boolean overview

2D examples

3D examples

union

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

61 of 122 01/13/2018 02:30 AM

//Usage example:
union() {

cylinder (h = 4, r=1, center = true, $fn=100);
rotate ([90,0,0]) cylinder (h = 4, r=0.9, center = true, $fn=100);

}

Remark: union is implicit when not used. But it is mandatory, for example, in difference to group first child nodes into one.

Subtracts the 2nd (and all further) child nodes from the first one (logical and not).

May be used with either 2D or 3D objects, but don't mix them.

Usage example:
difference() {

cylinder (h = 4, r=1, center = true, $fn=100);
rotate ([90,0,0]) cylinder (h = 4, r=0.9, center = true, $fn=100);

}

Note, in the second instance, the result of adding a union of the 1st and 2nd children.

difference

difference with multiple children

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

62 of 122 01/13/2018 02:30 AM

// Usage example for difference of multiple children:
$fn=90;
difference(){

cylinder(r=5,h=20,center=true);
rotate([00,140,-45]) color("LightBlue") cylinder(r=2,h=25,center=true);
rotate([00,40,-50]) cylinder(r=2,h=30,center=true);
translate([0,0,-10])rotate([00,40,-50]) cylinder(r=1.4,h=30,center=true);

}

// second instance with added union
translate([10,10,0]){

difference(){
union(){ // combine 1st and 2nd children

cylinder(r=5,h=20,center=true);
rotate([00,140,-45]) color("LightBlue") cylinder(r=2,h=25,center=true);

}
rotate([00,40,-50]) cylinder(r=2,h=30,center=true);
translate([0,0,-10])rotate([00,40,-50]) cylinder(r=1.4,h=30,center=true);

}
}

Creates the intersection of all child nodes. This keeps the overlapping portion (logical and).

Only the area which is common or shared by all children is retained.

May be used with either 2D or 3D objects, but don't mix them.

intersection

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

63 of 122 01/13/2018 02:30 AM

//Usage example:
intersection() {

cylinder (h = 4, r=1, center = true, $fn=100);
rotate ([90,0,0]) cylinder (h = 4, r=0.9, center = true, $fn=100);

}

Always calculate the CSG model for this tree (even in OpenCSG preview mode).

Usage example:
render(convexity = 1) { ... }

convexity

Integer. The convexity parameter specifies the maximum number of front and back
sides a ray intersecting the object might penetrate. This parameter is only needed for
correctly displaying the object in OpenCSG preview mode and has no effect on the
polyhedron rendering.

This image shows a 2D shape with a convexity of 4, as the ray indicated in red crosses the 2D shape a maximum of 4 times. The

convexity of a 3D shape would be determined in a similar way. Setting it to 10 should work fine for most cases.

render

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

64 of 122 01/13/2018 02:30 AM

Chapter 6 -- Other Functions and Operators
OpenSCAD User Manual/The OpenSCAD Language

Evaluate each value in a range or vector, applying it to the following Action.

 for(variable = [start : increment : end])
 for(variable = [start : end])
 for(variable = [vector])

parameters

As a range [start : <increment : > end] (see section on range)
Note: For range, values are separated by colons rather than commas used in vectors.

start - initial value
increment or step - amount to increase the value, optional, default = 1
end - stop when next value would be past end

As a vector
The Action is evaluated for each element of the vector

examples:

 for (a =[3:5])echo(a); // 3 4 5
 for (a =[3:0]){echo(a);} // 0 1 2 3 start < end is invalid, deprecated by 2015.3
 for (a =[3:0.5:5])echo(a); // 3 3.5 4 4.5 5
 for (a =[0:2:5])echo(a); // 0 2 4 a never equals end
 for (a =[3:-2:-1])echo(a); // 3 1 -1 negative increment requires 2015.3
 be sure end < start
 for (a =[3,4,1,5])echo(a); // 3 4 1 5
 for (a =[0.3,PI,1,99]){echo(a);} // 0.3 3.14159 1 99
 x1=2; x2=8; x3=5.5;
 for (a =[x1,x2,x3]){echo(a);} // 2 8 5.5
 for (a =[[1,2],6,"s",[[3,4],[5,6]]])echo(a); // [1,2] 6 "s" [[3,4],[5,6]]

for() is an Operator. Operators require braces {} if more than one Action is within it scope. Actions end in semicolons, Operators do

not.

for() is not an exception to the rule about variables having only one value within a scope. Each evaluation is given its own scope,

allowing any variables to have unique values. No, you still can't do a=a+1;

Remember this is not an iterative language, the for() does not loop in the programmatic sense, it builds a tree of objects one branch for

each item in the range/vector, inside each branch the 'variable' is a specific and separate instantiation or scope.

Hence:

for (i=[0:3])
 translate([i*10,0,0])
 cube(i+1);

Produces: [See Design/Display-CSG-Tree menu]

 group() {

Conditional and Iterator Functions

For loop

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

65 of 122 01/13/2018 02:30 AM

 group() {
 multmatrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) {
 cube(size = [1, 1, 1], center = false);
 }
 multmatrix([[1, 0, 0, 10], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) {
 cube(size = [2, 2, 2], center = false);
 }
 multmatrix([[1, 0, 0, 20], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) {
 cube(size = [3, 3, 3], center = false);
 }
 multmatrix([[1, 0, 0, 30], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]) {
 cube(size = [4, 4, 4], center = false);
 }
 }
}

All instances of the for() exist at the same time, they do not iterate sequentially.

Nested for()

While it is reasonable to nest multiple for() statements such as:

for(z=[-180:45:+180])
 for(x=[10:5:50])
 rotate([0,0,z]) translate([x,0,0]) cube(1);

instead, all ranges/vectors can be include in the same for() operator.

for (variable1 = <range or vector> , variable2 = <range or vector>) <do something using both variables>

 example for() nested 3 deep

 color_vec = ["black","red","blue","green","pink","purple"];
 for (x = [-20:10:20])
 for (y = [0:4])color(color_vec[y])
 for (z = [0,4,10])
 {translate([x,y*5-10,z])cube();}

shorthand nesting for same result

 color_vec = ["black","red","blue","green","pink","purple"];
 for (x = [-20:10:20],
 y = [0:4],
 z = [0,4,10])
 translate([x,y*5-10,z]){color(color_vec[y])cube();}

Examples using vector of vectors

example 1 - iteration over a vector of vectors (rotation)

 for(i = [[0, 0, 0],
 [10, 20, 300],
 [200, 40, 57],
 [20, 88, 57]])
{
 rotate(i)
 cube([100, 20, 20], center = true);
}

example 2 - iteration over a vector of vectors (translation)

for(i = [[0, 0, 0],
 [10, 12, 10],
 [20, 24, 20],

for() loops nested 3 deep

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

66 of 122 01/13/2018 02:30 AM

 [30, 36, 30],
 [20, 48, 40],
 [10, 60, 50]])
{
 translate(i)
 cube([50, 15, 10], center = true);
}

example 3 - iteration over a vector of vectors
for(i = [[[0, 0, 0], 20],
 [[10, 12, 10], 50],
 [[20, 24, 20], 70],
 [[30, 36, 30], 10],
 [[20, 48, 40], 30],
 [[10, 60, 50], 40]])
{
 translate([i[0][0], 2*i[0][1], 0])
 cube([10, 15, i[1]]);
}

Iterate over the values in a range or vector and create the intersection of objects created by

each pass.

Besides creating separate instances for each pass, the standard for() also groups all these

instances creating an implicit union. intersection_for() is a work around because the

implicit union prevents getting the expected results using a combination of the standard

for() and intersection() statements.

intersection_for() uses the same parameters, and works the same as a For Loop, other

than eliminating the implicit union.

example 1 - loop over a
range:

intersection_for(n = [1 : 6])
{

rotate([0, 0, n * 60])
{

translate([5,0,0])
sphere(r=12);

}
}

example 1 for() loop vector of
vectors (rotation)

example 2 for() loop vector of
vectors (translation)

example 3 for() loop vector of
vectors

Intersection For Loop

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

67 of 122 01/13/2018 02:30 AM

example 2 - rotation :

intersection_for(i = [[0, 0, 0],
[10, 20, 300],
[200, 40, 57],
[20, 88, 57]])

{
rotate(i)
cube([100, 20, 20], center = true);

}

In

Performs a test to determine if the actions in a sub scope should be performed or not.

if (test) scope1
if (test){scope1}
if (test) scope1 else scope2
if (test){scope1} else {scope2}

Parameters

test: Usually a boolean expression, but can be any value or variable.
See here for true or false state of values.
See here for boolean and logical operators
Do not confuse the assignment operator '=' with the equal operator '=='

scope1: one or more actions to take when test is true.
scope2: one or more actions to take when test is false.

if (b==a) cube(4);
if (b<a) {cube(4); cylinder(6);}

intersection_for()
either intersection() for() or
for() intersection()

intersection_for() intersection() for()

If Statement

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

68 of 122 01/13/2018 02:30 AM

if (b&&a) {cube(4); cylinder(6);}
if (b!=a) cube(4); else cylinder(3);
if (b) {cube(4); cylinder(6);} else {cylinder(10,5,5);}
if (!true){cube(4); cylinder(6);} else cylinder(10,5,5);
if (x>y) cube(1, center=false); else {cube(size = 2, center = true);}
if (a==4) {} else echo("a is not 4");
if ((b<5)&&(a>8)) {cube(4); else cylinder(3);}
if (b<5&&a>8) cube(4); else cylinder(3);

Since 2015.03 variables can now be assigned in any scope. Note that assignments are only valid within the scope in which they are

defined - you are still not allowed to leak values to an outer scope. See Scope of variables for more details.

Nested if

The scopes of both the if() portion and the else portion, can in turn contain if() statements. This nesting can be to many depths.

 if (test1)
 {
 scope1 if (test2) {scope2.1}
 else {scope2.2}
 }
 else
{
 scope2 if (test3) {scope3.1}
 else {scope3.2}
}

When scope1 and scope2 contain only the if() statement, the outer sets of braces can be removed.

 if (test1)
 if (test2) {scope2.1}
 else {scope2.2}
 else
 if (test3) {scope3.1}
 else {scope3.2}

One evolution is this:

 if(test1) {scope1}
 else if(test2) {scope2}
 else if(test3) {scope3}
 else if(test4) {scope4}
 else {scope5}

Note that else and if are two separate words. When working down the chain of tests, the first true will use its scope. All further tests

will be skipped.

example

if((k<8)&&(m>1)) cube(10);
else if(y==6) {sphere(6);cube(10);}
else if(y==7) color("blue")sphere(5);
else if(k+m!=8) {cylinder(15,5,0);sphere(8);}
else color("green"){cylinder(12,5,0);sphere(8);}

A function which uses a test to determine which of 2 values to return.

else if

Conditional ? :

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

69 of 122 01/13/2018 02:30 AM

 a = test ? TrueValue : FalseValue ;
 echo(test ? TrueValue : FalseValue);

Parameters

test: Usually a boolean expression, but can be any value or variable.
See here for true or false state of values.
See here for boolean and logical operators
Do not confuse assignment '=' with equal '=='

TrueValue: the value to return when test is true.
FalseValue: the value to return when test is false.

A value in OpenSCAD is either a Number (like 42), a Boolean (like true), a
String (like "foo"), a Vector (like [1,2,3]), or the Undefined value (undef).
Values can be stored in variables, passed as function arguments, and returned
as function results.

This works like the ?: operator from the family of C-like programming languages.

Examples

 a=1; b=2; c= a==b ? 4 : 5 ; // 5
 a=1; b=2; c= a==b ? "a==b" : "a!=b" ; // "a!=b"

 TrueValue = true; FalseValue = false;
 a=5; test = a==1;
 echo(test ? TrueValue : FalseValue); // false

 L = 75; R = 2; test = (L/R)>25;
 TrueValue = [test,L,R,L/R,cos(30)];
 FalseValue = [test,L,R,sin(15)];
 a1 = test ? TrueValue : FalseValue ; // [true, 75, 2, 37.5, 0.866025]

Recursive function calls are supported. Using the Conditional "... ? ... : ... " it's possible to ensure the recursion is terminated. Note:

There is a built-in recursion limit to prevent an application crash. If the limit is hit, the function returns undef.

example

 // recursion - find the sum of the values in a vector (array) by calling itself
 // from the start (or s'th element) to the i'th element - remember elements are zero based

 function sumv(v,i,s=0) = (i==s ? v[i] : v[i] + sumv(v,i-1,s));

 vec=[10, 20, 30, 40];
 echo("sum vec=", sumv(vec,2,1)); // calculates 20+30=50

Some forms of tail-recursion elimination are supported.

Set variables to a new value for a sub-tree.

Since 2015.03 assign() is deprecated, as variables can now be assigned anywhere, see 2nd example below. If you prefer this way of

setting values, the new Let Statement can be used instead.

Parameters

The variables that should be (re-)assigned

Recursive function calls

Assign Statement

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

70 of 122 01/13/2018 02:30 AM

example:

for (i = [10:50])
{

assign (angle = i*360/20, distance = i*10, r = i*2)
{

rotate(angle, [1, 0, 0])
translate([0, distance, 0])
sphere(r = r);

}
}

for (i = [10:50])
{

angle = i*360/20;
distance = i*10;
r = i*2;
rotate(angle, [1, 0, 0])
translate([0, distance, 0])
sphere(r = r);

}

[Note: Requires version 2016.XX] (ie a development version)

Set variables to a new value for a sub-tree. The parameters are evaluated sequentially and may depend on each other (as opposed to

the deprecated assign() statement).

Parameters

The variables that should be set

example:

for (i = [10:50])
{

let (angle = i*360/20, r= i*2, distance = r*5)
{

rotate(angle, [1, 0, 0])
translate([0, distance, 0])
sphere(r = r);

}
}

Let Statement

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

71 of 122 01/13/2018 02:30 AM

The scalar arithmetical operators take numbers as operands and produce a new number.

+ add

- subtract

* multiply

/ divide

% modulo

The "-" can also be used as prefix operator to negate a number.

Relational operators produce a Boolean result from two operands.

< less than

<= less equal

== equal

!= not equal

>= greater equal

> greater than

If both operands are simple numbers, the meaning is self-evident.

If both operands are strings, alphabetical sorting determines equality and order. E.g., "ab" > "aa" > "a".

If both operands are Booleans, true > false. If one operand is Boolean, the other operand is converted to Boolean before the

comparison is made.

If both operands are vectors, OpenSCAD performs an element-by-element comparison and can only result in true if the vectors are

equal in size and each and every pair of elements results in true upon the comparison. Otherwise, false is returned.

Vectors of different sizes are treated as unequal for '==' and '!=' operators, and always result in false for '>', '>=', '<' and '<=' operators.

In fact the same principle applies for all comparison between dissimilar types of operand, e.g. comparing a string with a number.

Note that [1] ≠ 1.

undef doesn't equal anything but undef. undef compares ('>' etc.) anything result in false.

nan doesn't equal anything. See Numbers.

All logical operators take Booleans as operands and produce a Boolean. Non-Boolean quantities are converted to Booleans before the

operator is evaluated.

Mathematical Operators

Scalar Arithmetical Operators

Relational Operators

Logical Operators

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

72 of 122 01/13/2018 02:30 AM

&& logical AND

|| logical OR

! logical unary NOT

Since [false] is true, false || [false] is also true.

Note that how logical operators deal with vectors is different than relational operators:

[1, 1] > [0, 2] is false, but

[false, false] && [false, false] is true.

The ?: operator can be used to conditionally evaluate one or another expression. It works like the ?: operator from the family of

C-like programming languages.

 ? : Conditional operator

Usage Example:

a=1;
b=2;
c= a==b ? 4 : 5;

If a equals b, then c is set to 4, else c is set to 5.

The part "a==b" must be something that evaluates to a boolean value.

The vector-number operators take a vector and a number as operands and produce a new vector.

* multiply all vector elements by number

/ divide all vector elements by number

Example

L = [1, [2, [3, "a"]]];
echo(5*L);
// ECHO: [5, [10, [15, undef]]]

The vector operators take vectors as operands and produce a new vector.

+ add element-wise

- subtract element-wise

The "-" can also be used as prefix operator to element-wise negate a vector.

Example

Conditional Operator

Vector-Number Operators

Vector Operators

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

73 of 122 01/13/2018 02:30 AM

L1 = [1, [2, [3, "a"]]];
L2 = [1, [2, 3]];
echo(L1+L1); // ECHO: [2, [4, [6, undef]]]
echo(L1+L2); // ECHO: [2, [4, undef]]

If both operands of multiplication are simple vectors, the result is a number according to the linear algebra rule for dot product. c =

u*v; results in . If the operands' sizes don't match, the result is undef.

If one or both operands of multiplication are matrices, the result is a simple vector or matrix according to the linear algebra rules for

matrix product. In the following, A, B, C... are matrices, u, v, w... are vectors. Subscripts i, j denote element indices.

For A a matrix of size n × m and B a matrix of size m × p, their product C = A*B; is a matrix of size n × p with elements

.

C = B*A; results in undef unless n = p.

For A a matrix of size n × m and v a vector of size m, their product u = A*v; is a vector of size n with elements

.

In linear algebra, this is the product of a matrix and a column vector.

For v a vector of size n and A a matrix of size n × m, their product u = v*A; is a vector of size m with elements

.

In linear algebra, this is the product of a row vector and a matrix.

Matrix multiplication is not commutative: , .

Vector Dot-Product Operator

Matrix Multiplication

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

74 of 122 01/13/2018 02:30 AM

The trig functions use the C Language mathematics functions, which are based in turn on Binary Floating Point mathematics, which

use approximations of Real Numbers during calculation. OpenSCAD's math functions use the C++ 'double' type, inside

Value.h/Value.cc,

A good resource for the specifics of the C library math functions, such as valid inputs/output ranges, can be found at the Open Group

website math.h (http://pubs.opengroup.org/onlinepubs/009695399/basedefs/math.h.html) & acos (http://pubs.opengroup.org

/onlinepubs/009695399/functions/acos.html)

Mathematical cosine function of degrees. See Cosine

Parameters

<degrees>
Decimal. Angle in degrees.

Usage Example:

for(i=[0:36])
translate([i*10,0,0])

cylinder(r=5,h=cos(i*10)*50+60);

Mathematical sine function. See Sine

Parameters

<degrees>
Decimal. Angle in degrees.

Usage example 1:

for (i = [0:5]) {
echo(360*i/6, sin(360*i/6)*80, cos(360*i/6)*80);
translate([sin(360*i/6)*80, cos(360*i/6)*80, 0])
cylinder(h = 200, r=10);

}

Usage example 2:

Mathematical Functions

Trigonometric Functions

cos

OpenSCAD Cos Function

sin

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

75 of 122 01/13/2018 02:30 AM

for(i=[0:36])
translate([i*10,0,0])

cylinder(r=5,h=sin(i*10)*50+60);

Mathematical tangent function. See Tangent

Parameters

<degrees>
Decimal. Angle in degrees.

Usage example:

for (i = [0:5]) {
echo(360*i/6, tan(360*i/6)*80);
translate([tan(360*i/6)*80, 0, 0])
cylinder(h = 200, r=10);

}

Mathematical arccosine, or inverse cosine, expressed in degrees. See: Inverse trigonometric functions

Mathematical arcsine, or inverse sine, expressed in degrees. See: Inverse trigonometric functions

Mathematical arctangent, or inverse tangent, function. Returns the principal value of the arc tangent of x, expressed in degrees.

See: Inverse trigonometric functions

Mathematical two-argument atan function, taking y as its first argument. Returns the principal value of the arc tangent of y/x,

expressed in degrees. See: atan2

OpenSCAD Sin Function

tan

acos

asin

atan

atan2

Other Mathematical Functions

abs

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

76 of 122 01/13/2018 02:30 AM

Mathematical absolute value function. Returns the positive value of a signed decimal number.

Usage examples:

abs(-5.0);
abs(0);
abs(8.0);

Results:

5.0
0.0
8.0

Mathematical ceiling function.

Returns the next highest integer value by rounding up value if necessary.

See: Ceil Function

echo(ceil(4.4),ceil(-4.4)); // produces ECHO: 5, -4

[Note: Requires version 2015.03]

Return a vector containing the arguments.

Where an argument is a vector the elements of the vector are individually added to the result vector. Strings are distinct from vectors

in this case.

Usage examples:

echo(concat("a","b","c","d","e","f")); // produces ECHO: ["a", "b", "c", "d", "e", "f"]
echo(concat(["a","b","c"],["d","e","f"])); // produces ECHO: ["a", "b", "c", "d", "e", "f"]
echo(concat(1,2,3,4,5,6)); // produces ECHO: [1, 2, 3, 4, 5, 6]

Vector of vectors

echo(concat([[1],[2]], [[3]])); // produces ECHO: [[1], [2], [3]]

Contrast with strings

echo(concat([1,2,3],[4,5,6])); // produces ECHO: [1, 2, 3, 4, 5, 6]
echo(concat("abc","def")); // produces ECHO: ["abc", "def"]
echo(str("abc","def")); // produces ECHO: "abcdef"

Calculates the cross product of two vectors in 3D space. The result is a vector that is perpendicular to both of the input vectors.

Using invalid input parameters (e.g. vectors with a length different from 3 or other types) will produce an undefined result.

ceil

concat

cross

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

77 of 122 01/13/2018 02:30 AM

Usage examples:

echo(cross([2, 3, 4], [5, 6, 7])); // produces ECHO: [-3, 6, -3]
echo(cross([2, 1, -3], [0, 4, 5])); // produces ECHO: [17, -10, 8]
echo(cross([2, 3, 4], "5")); // produces ECHO: undef

Mathematical exp function. Returns the base-e exponential function of x, which is the number e raised to the power x. See: Exponent

echo(exp(1),exp(ln(3)*4)); // produces ECHO: 2.71828, 81

Mathematical floor function. floor(x) = is the largest integer not greater than x

See: Floor Function

echo(floor(4.4),floor(-4.4)); // produces ECHO: 4, -5

Mathematical natural logarithm. See: Natural logarithm

Mathematical length function. Returns the length of an array, a vector or a string parameter.

Usage examples:

str1="abcdef"; len_str1=len(str1);
echo(str1,len_str1);

a=6; len_a=len(a);
echo(a,len_a);

array1=[1,2,3,4,5,6,7,8]; len_array1=len(array1);
echo(array1,len_array1);

array2=[[0,0],[0,1],[1,0],[1,1]]; len_array2=len(array2);
echo(array2,len_array2);

len_array2_2=len(array2[2]);
echo(array2[2],len_array2_2);

Results:

ECHO: "abcdef", 6
ECHO: 6, undef
ECHO: [1, 2, 3, 4, 5, 6, 7, 8], 8
ECHO: [[0, 0], [0, 1], [1, 0], [1, 1]], 4
ECHO: [1, 0], 2

This function allows (e.g.) the parsing of an array, a vector or a string.

Usage examples:

exp

floor

ln

len

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

78 of 122 01/13/2018 02:30 AM

str2="4711";
for (i=[0:len(str2)-1])
 echo(str("digit ",i+1," : ",str2[i]));

Results:

ECHO: "digit 1 : 4"
ECHO: "digit 2 : 7"
ECHO: "digit 3 : 1"
ECHO: "digit 4 : 1"

Note that the len() function is not defined when a simple variable is passed as the parameter.

This is useful when handling parameters to a module, similar to how shapes can be defined as a single number, or as an [x,y,z] vector;

i.e. cube(5) or cube([5,5,5])

For example

module doIt(size) {
 if (len(size) == undef) {
 // size is a number, use it for x,y & z. (or could be undef)
 do([size,size,size]);
 } else {
 // size is a vector, (could be a string but that would be stupid)
 do(size);
 }
 }

doIt(5); // equivalent to [5,5,5]
doIt([5,5,5]); // similar to cube(5) v's cube([5,5,5])

[Note: Requires version 2015.03]

Sequential assignment of variables inside an expression. The following expression is evaluated in context of the let assignments and

can use the variables. This is mainly useful to make complicated expressions more readable by assigning interim results to variables.

Parameters

let (var1 = value1, var2 = f(var1), var3 = g(var1, var2)) expression

Usage Example:

echo(let(a = 135, s = sin(a), c = cos(a)) [s, c]); // ECHO: [0.707107, -0.707107]

Mathematical logarithm to the base 10. Example: log(1000) = 3. See: Logarithm

Look up value in table, and linearly interpolate if there's no exact match. The first argument is the value to look up. The second is the

lookup table -- a vector of key-value pairs.

Parameters

let

log

lookup

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

79 of 122 01/13/2018 02:30 AM

key
A lookup key

<key,value> array
keys and values

Notes

There is a bug where out-of-range keys will return the first value in the list. Newer versions of Openscad should use the top or bottom

end of the table as appropriate instead.

Usage example:

Will create a sort of 3D chart made out of cylinders of
different height.

function get_cylinder_h(p) = lookup(p, [
[-200, 5],
[-50, 20],
[-20, 18],
[+80, 25],
[+150, 2]

]);

for (i = [-100:5:+100]) {
// echo(i, get_cylinder_h(i));
translate([i, 0, -30]) cylinder(r1 = 6, r2 = 2, h = get_cylinder_h(i)*3);

}

Returns the maximum of the parameters. If a single vector is given as parameter, returns the maximum element of that vector.

Parameters

max(n,n{,n}...)
max(vector)

<n>
Two or more decimals

<vector>
Single vector of decimals (requires OpenSCAD version 2014.06 or later).

Usage Example:

max(3.0,5.0)
max(8.0,3.0,4.0,5.0)
max([8,3,4,5])

Results:

5
8
8

Returns the minimum of the parameters. If a single vector is given as parameter, returns the minimum element of that vector.

OpenSCAD Lookup Function

max

min

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

80 of 122 01/13/2018 02:30 AM

Parameters

min(n,n{,n}...)
min(vector)

<n>
Two or more decimals

<vector>
Single vector of decimals (requires OpenSCAD version 2014.06 or later).

Usage Example:

min(3.0,5.0)
min(8.0,3.0,4.0,5.0)
min([8,3,4,5])

Results:

3
3
3

Looking for mod - it's not a function, see modulo operator (%)

Returns the euclidean norm of a vector. Note this returns the actual numeric length while len returns the number of elements in the

vector or array.

Usage examples:

a=[1,2,3,4];
b="abcd";
c=[];
d="";
e=[[1,2,3,4],[1,2,3],[1,2],[1]];
echo(norm(a)); //5.47723
echo(norm(b)); //undef
echo(norm(c)); //0
echo(norm(d)); //undef
echo(norm(e[0])); //5.47723
echo(norm(e[1])); //3.74166
echo(norm(e[2])); //2.23607
echo(norm(e[3])); //1

Results:

ECHO: 5.47723
ECHO: undef
ECHO: 0
ECHO: undef
ECHO: 5.47723
ECHO: 3.74166
ECHO: 2.23607
ECHO: 1

norm

pow

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

81 of 122 01/13/2018 02:30 AM

Mathematical power function.

Parameters

<base>
Decimal. Base.

<exponent>
Decimal. Exponent.

Usage examples:

for (i = [0:5]) {
 translate([i*25,0,0]) {
 cylinder(h = pow(2,i)*5, r=10);
 echo (i, pow(2,i));
 }
}

echo(pow(10,2)); // means 10^2 or 10*10
// result: ECHO: 100

echo(pow(10,3)); // means 10^3 or 10*10*10
// result: ECHO: 1000

echo(pow(125,1/3)); // means 125^(0.333...) which equals calculating the cube root of 125
// result: ECHO: 5

Random number generator. Generates a constant vector of pseudo random numbers, much like an array. The numbers are doubles not

integers. When generating only one number, you still call it with variable[0]

Parameters

min_value
Minimum value of random number range

max_value
Maximum value of random number range

value_count
Number of random numbers to return as a vector

seed_value (optional)
Seed value for random number generator for repeatable results. On versions before late
2015, seed_value gets rounded to the nearest integer

Usage Examples:

// get a single number
single_rand = rands(0,10,1)[0];
echo(single_rand);

// get a vector of 4 numbers
seed=42;
random_vect=rands(5,15,4,seed);
echo("Random Vector: ",random_vect);
sphere(r=5);
for(i=[0:3]) {
 rotate(360*i/4) {
 translate([10+random_vect[i],0,0])
 sphere(r=random_vect[i]/2);
 }
}

rands

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

82 of 122 01/13/2018 02:30 AM

// ECHO: "Random Vector: ", [8.7454, 12.9654, 14.5071, 6.83435]

The "round" operator returns the greatest or least integer part, respectively, if the numeric input is positive or negative.

Some examples:

round(x.5) = x+1.
round(x.49) = x.
round(-(x.5)) = -(x+1).
round(-(x.49)) = -x.

round(5.4); //-> 5
round(5.5); //-> 6
round(5.6); //-> 6

Mathematical signum function. Returns a unit value that extracts the sign of a value see: Signum function

Parameters

<x>
Decimal. Value to find the sign of.

Usage examples:

sign(-5.0);
sign(0);
sign(8.0);

Results:

-1.0
0.0
1.0

Mathematical square root function.

Usage Examples:

translate([sqrt(100),0,0])sphere(100);

How does OpenSCAD deal with inputs like (1/0)? Basically, the behavior is inherited from the language OpenSCAD was written in, the

C++ language and it's floating point number types and the associated C math library. This system allows representation of both

positive and negative infinity by the special values "Inf" or "-Inf". It also allow representation of creatures like sqrt(-1) or 0/0 as "NaN",

an abbreviation for "Not A Number". Some very nice explanations can be found on the web, for example the Open Group's site on

round

sign

sqrt

Infinities and NaNs

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

83 of 122 01/13/2018 02:30 AM

math.h (http://pubs.opengroup.org/onlinepubs/009695399/basedefs/math.h.html) or Wikipedia's page on the IEEE 754 number

format. However OpenSCAD is it's own language so it may not exactly match everything that happens in C. For example, OpenSCAD

uses degrees instead of radians for trigonometric functions. Another example is that sin() does not throw a "domain error" when the

input is 1/0, although it does return NaN.

Here are some examples of infinite input to OpenSCAD math functions and the resulting output, taken from OpenSCAD's regression

test system in late 2015.

0/0: nan sin(1/0): nan asin(1/0): nan ln(1/0): inf round(1/0): inf

-0/0: nan cos(1/0): nan acos(1/0): nan ln(-1/0): nan round(-1/0): -inf

0/-0: nan tan(1/0): nan atan(1/0): 90 log(1/0): inf sign(1/0): 1

1/0: inf ceil(-1/0): -inf atan(-1/0): -90 log(-1/0): nan sign(-1/0): -1

1/-0: -inf ceil(1/0): inf atan2(1/0, -1/0): 135 max(-1/0, 1/0): inf sqrt(1/0): inf

-1/0: -inf floor(-1/0): -inf exp(1/0): inf min(-1/0, 1/0): -inf sqrt(-1/0): nan

-1/-0: inf floor(1/0): inf exp(-1/0): 0 pow(2, 1/0): inf pow(2, -1/0): 0

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

84 of 122 01/13/2018 02:30 AM

Convert all arguments to strings and concatenate.

Usage examples:

number=2;
echo ("This is ",number,3," and that's it.");
echo (str("This is ",number,3," and that's it."));

Results:

ECHO: "This is ", 2, 3, " and that's it."
ECHO: "This is 23 and that's it."

[Note: Requires version 2015.03]

Convert numbers to a string containing character with the corresponding code. OpenSCAD uses Unicode, so the number is interpreted

as Unicode code point. Numbers outside the valid code point range will produce an empty string.

Parameters

chr(Number)
Convert one code point to a string of length 1 (number of bytes depending on UTF-8
encoding) if the code point is valid.

chr(Vector)
Convert all code points given in the argument vector to a string.

chr(Range)
Convert all code points produced by the range argument to a string.

Examples

echo(chr(65), chr(97)); // ECHO: "A", "a"
echo(chr(65, 97)); // ECHO: "Aa"
echo(chr([66, 98])); // ECHO: "Bb"
echo(chr([97 : 2 : 102])); // ECHO: "ace"
echo(chr(-3)); // ECHO: ""
echo(chr(9786), chr(9788)); // ECHO: "☺", "☼"
echo(len(chr(9788))); // ECHO: 1

Note: When used with echo() the output to the console for character codes greater than 127 is platform dependent.

search() for text searching.

String Functions

str

chr

Also See search()

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

85 of 122 01/13/2018 02:30 AM

[Note: Requires version 2015.03]

The list comprehensions provide a flexible way to generate lists using the general syntax

 [list-definition expression]

The following elements are supported to construct the list definition

for (i = sequence)
Iteration over a range or an existing list

if (condition)
Selection criteria, when true the expression will be calculated and added to the result list

let (x = value)
Local variable assignment

The for element defines the input values for the list generation, the syntax is the same as used by the for iterator.

[for (i = [start : step : end]) i]
Generate output based on a range definition, this version is mainly useful to calculate list
values or access existing lists using the range value as index.

Examples

// generate a list with all values defined by a range
list1 = [for (i = [0 : 2 : 10]) i];
echo(list1); // ECHO: [0, 2, 4, 6, 8, 10]

// extract every second character of a string
str = "SomeText";
list2 = [for (i = [0 : 2 : len(str) - 1]) str[i]];
echo(list2); // ECHO: ["S", "m", "T", "x"]

// indexed list access, using function to map input values to output values
function func(x) = x < 1 ? 0 : x + func(x - 1);
input = [1, 3, 5, 8];
output = [for (a = [0 : len(input) - 1]) func(input[a])];
echo(output); // ECHO: [1, 6, 15, 36]

[for (i = [a, b, c, ...]) i]
Use list parameter as input, this version can be used to map input values to calculated
output values.

Examples

// map input list to output list

List Comprehensions

Basic Syntax

for

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

86 of 122 01/13/2018 02:30 AM

list = [for (i = [2, 3, 5, 7, 11]) i * i];
echo(list); // ECHO: [4, 9, 25, 49, 121]

// calculate Fibonacci numbers
function func(x) = x < 3 ? 1 : func(x - 1) + func(x - 2);
input = [7, 10, 12];
output = [for (a = input) func(a)];
echo(output); // ECHO: [13, 55, 144]

The if element allows selection if the expression should be allocated and added to the result list or not. In the simplest case this allows

filtering of an list.

[for (i = list) if (condition(i)) i]
When the evaluation of the condition returns true, the expression i is added to the result list.

Example

list = [for (a = [1 : 8]) if (a % 2 == 0) a];
echo(list); // ECHO: [2, 4, 6, 8]

Note that the if element cannot be inside an expression, it should be at the top.

Example

// from the input list include all positive odd numbers
// and also all even number divided by 2

list = [-10:5];
echo([for(n=list) if(n%2==0 || n>=0) n%2==0 ? n/2 : n]);
// ECHO: [-5, -4, -3, -2, -1, 0, 1, 1, 3, 2, 5]
// echo([for(n=list) n%2==0 ? n/2 : if(n>=0) n]); // this would generate a syntactical error

The let element allows sequential assignment of variables inside a list comprehension definition.

[for (i = list) let (assignments) a]

Example

list = [for (a = [1 : 4]) let (b = a*a, c = 2 * b) [a, b, c]];
echo(list); // ECHO: [[1, 1, 2], [2, 4, 8], [3, 9, 18], [4, 16, 32]]

There are different ways to define nested loops. Defining multiple loop variables inside one for element and multiple for elements

produce both flat result lists. To generate nested result lists an additional [] markup is required.

// nested loop using multiple variables
flat_result1 = [for (a = [0 : 2], b = [0 : 2]) a == b ? 1 : 0];
echo(flat_result1); // ECHO: [1, 0, 0, 0, 1, 0, 0, 0, 1]

if

let

Nested loops

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

87 of 122 01/13/2018 02:30 AM

// nested loop using multiple for elements
flat_result2 = [for (a = [0 : 2]) for (b = [0 : 2]) a == b ? 1 : 0];
echo(flat_result2); // ECHO: [1, 0, 0, 0, 1, 0, 0, 0, 1]

// nested loop to generate a bi-dimensional matrix
identity_matrix = [for (a = [0 : 2]) [for (b = [0 : 2]) a == b ? 1 : 0]];
echo(identity_matrix); // ECHO: [[1, 0, 0], [0, 1, 0], [0, 0, 1]]

This chapter lists some advanced examples, useful idioms and use-cases for the list comprehension syntax.

Using list comprehension, a parametric equation can be calculated at a number of points to

approximate many curves, such as the following example for an ellipse (using polygon()):

sma = 20; // semi-minor axis
smb = 30; // semi-major axis

polygon(
[for (a = [0 : 5 : 359]) [sma * sin(a), smb * cos(a)]]

);

List comprehension can be used in a user-defined function to perform tasks on or for vectors. Here is a user-defined function that

flattens a nested vector.

// input : nested list
// output : list with the outer level nesting removed
function flatten(l) = [for (a = l) for (b = a) b] ;

nested_list = [[1, 2, 3], [4, 5, 6]];
echo(flatten(nested_list)); // ECHO: [1, 2, 3, 4, 5, 6]

Even a complicated algorithm Quicksort becomes doable with for(), if(), let() and recursion:

// input : list of numbers
// output : sorted list of numbers
function quicksort(arr) = !(len(arr)>0) ? [] : let(

pivot = arr[floor(len(arr)/2)],
lesser = [for (y = arr) if (y < pivot) y],
equal = [for (y = arr) if (y == pivot) y],
greater = [for (y = arr) if (y > pivot) y]

) concat(
quicksort(lesser), equal, quicksort(greater)

);

// use seed in rands() to get reproducible results
unsorted = [for (a = rands(0, 10, 6, 3)) ceil(a)];
echo(unsorted); // ECHO: [6, 1, 8, 9, 3, 2]

Advanced Examples

Generating vertices for a polygon

Result

Flattening a nested vector

Sorting a vector

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

88 of 122 01/13/2018 02:30 AM

echo(quicksort(unsorted)); // ECHO: [1, 2, 3, 6, 8, 9]

select() performs selection and reordering of elements into a new vector.

function select(vector,indices) = [for (index = indices) vector[index]];

vector1 = [[0,0],[1,1],[2,2],[3,3],[4,4]];
selector1 = [4,0,3];
vector2 = select(vector1,selector1); // [[4, 4], [0, 0], [3, 3]]
vector3 = select(vector1,[0,2,4,4,2,0]);// [[0, 0], [2, 2], [4, 4],[4, 4], [2, 2], [0, 0]]
// range also works as indices
vector4 = select(vector1, [4:-1:0]); // [[4, 4], [3, 3], [2, 2], [1, 1], [0, 0]]

Using indices:

function cat(L1, L2) = [for (i=[0:len(L1)+len(L2)-1])
i < len(L1)? L1[i] : L2[i-len(L1)]] ;

echo(cat([1,2,3],[4,5])); //concatenates two OpenSCAD lists [1,2,3] and [4,5], giving [1, 2, 3, 4, 5]

Without using indices:

function cat(L1, L2) = [for(L=[L1, L2], a=L) a];

echo(cat([1,2,3],[4,5])); //concatenates two OpenSCAD lists [1,2,3] and [4,5], giving [1, 2, 3, 4, 5]

Selecting elements of a vector

Concatenating two vectors

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

89 of 122 01/13/2018 02:30 AM

Special variables provide an alternate means of passing arguments to modules and functions. All user, or OpenSCAD, defined variables

starting with a '$' are special variables, similar to special variables in lisp. Modules and function see all outside variables in addition to

those passed as arguments or defined internally.

The value for a regular variable is assigned at compile time and is thus static for all calls.

Special variables pass along their value from within the scope (see scope of variables) from which the module or function is called. This

means that special variables can potentially have a different value each time a module or function is called.

regular = "regular global";
$special = "special global";
module show() echo(" in show ", regular," ", $special);

echo (" outside ", regular," ", $special);
 // ECHO: " outside ", "regular global", " ", "special global"

for (regular = [0:1]){ echo("in regular loop ", regular," ", $special); show();}
 // ECHO: "in regular loop ", 0, " ", "special global"
 // ECHO: " in show ", "regular global", " ", "special global"
 // ECHO: "in regular loop ", 1, " ", "special global"
 // ECHO: " in show ", "regular global", " ", "special global"

for ($special = [5:6]){ echo("in special loop ", regular," ", $special); show();}
 // ECHO: "in special loop ", "regular global", " ", 5
 // ECHO: " in show ", "regular global", " ", 5
 // ECHO: "in special loop ", "regular global", " ", 6
 // ECHO: " in show ", "regular global", " ", 6

show();
 // ECHO: " in show ", "regular global", " ", "special global"

This is useful when multiple arguments need to be passed thru several layers of module calls.

Several special variables are already defined by OpenSCAD.

The $fa, $fs and $fn special variables control the number of facets used to generate an arc:

$fa is the minimum angle for a fragment. Even a huge circle does not have more fragments than 360 divided by this number. The

default value is 12 (i.e. 30 fragments for a full circle). The minimum allowed value is 0.01. Any attempt to set a lower value will cause a

warning.

$fs is the minimum size of a fragment. Because of this variable very small circles have a smaller number of fragments than specified

using $fa. The default value is 2. The minimum allowed value is 0.01. Any attempt to set a lower value will cause a warning.

$fn is usually 0. When this variable has a value greater than zero, the other two variables are ignored and full circle is rendered using

this number of fragments. The default value is 0.

The higher the number of fragments, the more memory and CPU consumed, large values will bring many systems to their knees.

Depending on the design, $fn values, and the corresponding results of $fa & $fs, should be kept small, at least until the design is

finalised when it can be increased for the final result. A $fn over 100 is not recommended or only for specific circumstances, and

below 50 would be advisable for performance.

Other Language Features

Special variables

$fa, $fs and $fn

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

90 of 122 01/13/2018 02:30 AM

TIP: If you want to create a circle/cylinder/sphere which has a axis aligned integer bounding box (i.e. a bounding box that has integral

dimensions, and an integral position) use a value of $fn that is divisible by 4.

When $fa and $fs are used to determine the number of fragments for a circle, then OpenSCAD will never use fewer than 5 fragments.

This is the C code that calculates the number of fragments in a circle:

 int get_fragments_from_r(double r, double fn, double fs, double fa)
 {
 if (r < GRID_FINE) return 3;
 if (fn > 0.0) return (int)(fn >= 3 ? fn : 3);
 return (int)ceil(fmax(fmin(360.0 / fa, r*2*M_PI / fs), 5));
 }

Spheres are first sliced into as many slices as the number of fragments being used to render a circle of the sphere's radius, and then

every slice is rendered into as many fragments as are needed for the slice radius. You might have recognized already that the pole of a

sphere is usually a pentagon. This is why.

The number of fragments for a cylinder is determined using the greater of the two radii.

The method is also used when rendering circles and arcs from DXF files. The variables have no effect when importing STL files.

You can generate high resolution spheres by resetting the $fX values in the instantiating module:

 $fs = 0.01;
 sphere(2);

or simply by passing the special variable as parameter:

 sphere(2, $fs = 0.01);

You can even scale the special variable instead of resetting it:

 sphere(2, $fs = $fs * 0.01);

The $t variable is used for animation. If you enable the animation frame with view->animate and give a value for "FPS" and "Steps",

the "Time" field shows the current value of $t. With this information in mind, you can animate your design. The design is recompiled

every 1/"FPS" seconds with $t incremented by 1/"Steps" for "Steps" times, ending at either $t=1 or $t=1-1/steps.

If "Dump Pictures" is checked, then images will be created in the same directory as the .scad file, using the following $t values, and

saved in the following files:

$t=0/Steps filename="frame00001.png"

$t=1/Steps filename="frame00002.png

$t=2/Steps filename="frame00003.png"

. . .

$t=1-3/Steps filename="frame<Steps-2>.png"

$t=1-2/Steps filename="frame<Steps-1>.png"

$t=1-1/Steps filename="frame00000.png"

Or, for other values of Steps, it follows this pattern:

$t=0/Steps filename="frame00001.png"

$t=1/Steps filename="frame00002.png

$t

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

91 of 122 01/13/2018 02:30 AM

$t=2/Steps filename="frame00003.png"

. . .

$t=1-3/Steps filename="frame<Steps-2>.png"

$t=1-2/Steps filename="frame<Steps-1>.png"

$t=1-1/Steps filename="frame<Steps-0>.png"

$t=1-0/Steps filename="frame00000.png"

Which pattern it chooses appears to be an unpredictable, but consistent, function of Steps. For example, when Steps=4, it follows the

first pattern, and outputs a total of 4 files. When Steps=3, it follows the second pattern, and also outputs 4 files. It will always output

either Steps or Steps+1 files, though it may not be predictable which. When finished, it will wrap around and recreate each of the files,

looping through and recreating them forever.

These contain the current viewport rotation and translation and camera distance - at the time of doing the rendering. Moving the

viewport does not update them. During an animation they are updated for each frame.

$vpr shows rotation

$vpt shows translation (i.e. won't be affected by rotate and zoom)

$vpd shows the camera distance [Note: Requires version 2015.03]

Example

 cube([10, 10, $vpr[0] / 10]);

which makes the cube change size based on the view angle, if an animation loop is active (which does not need to use the $t variable)

You can also make bits of a complex model vanish as you change the view.

All three variables are writable but only assignments at the top-level of the main file will have an effect on the viewport. [Note:

Requires version 2015.03]

Example

 $vpr = [0, 0, $t * 360];

which allows a simple 360 degree rotation around the Z axis in animation mode.

The menu command Edit - Paste Viewport Rotation/Translation copies the current value of the viewport, but not the current $vpr or

$vpt.

This function prints the contents to the compilation window (aka Console). Useful for debugging code. Also see the String function

str().

Numeric values are rounded to 5 significant digits.

The OpenSCAD console supports a subset of HTML markup language. See Qt Docs (http://doc.qt.io/qt-5/richtext-html-subset.html)

for details.

It can be handy to use 'variable=variable' as the expression to easily label the variables, see the example below.

Usage examples:

$vpr, $vpt and $vpd

Echo Statements

Usage examples

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

92 of 122 01/13/2018 02:30 AM

my_h=50;
my_r=100;
echo("This is a cylinder with h=", my_h, " and r=", my_r);
echo(my_h=my_h,my_r=my_r); // shortcut
cylinder(h=my_h, r=my_r);
//
echo("Hello <i>Qt!</i>");

Shows in the Console as

ECHO: "This is a cylinder with h=", 50, " and r=", 100
ECHO: my_h = 50, my_r = 100
ECHO: "Hello Qt!"

An example for the rounding:

a=1.0;
b=1.000002;
echo(a);
echo(b);

if(a==b){ //while echoed the same, the values are still distinct
echo ("a==b");

}else if(a>b){
echo ("a>b");

}else if(a<b){
echo ("a<b");

}else{
echo ("???");

}

c=1000002;
d=0.000002;
echo(c); //1e+06
echo(d); //2e-06

Working HTML examples:

echo("<h1>Heading</h1>");
echo("Bold <i>italic</i> <big>big</big>");
echo("i₁<sup>2<sup>");
echo("red green blue");

not really working examples:

echo("");
echo("wikibooks");

Note: the Output can be copy and pasted into OpenOffice, where both the image and the link work fine.

Forces the generation of a mesh even in preview mode. Useful when the boolean operations become too slow to track.

Rounding examples

Small and large Numbers

HTML

Render

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

93 of 122 01/13/2018 02:30 AM

Needs description.

Usage examples:

render(convexity = 2) difference() {
 cube([20, 20, 150], center = true);
 translate([-10, -10, 0])
 cylinder(h = 80, r = 10, center = true);
 translate([-10, -10, +40])
 sphere(r = 10);
 translate([-10, -10, -40])
 sphere(r = 10);
}

Surface reads Heightmap information from text or image files.

Parameters

file
String. The path to the file containing the heightmap data.

center
Boolean. This determines the positioning of the generated object. If true, object is centered
in X- and Y-axis. Otherwise, the object is placed in the positive quadrant. Defaults to false.

invert
Boolean. Inverts how the color values of imported images are translated into height values.
This has no effect when importing text data files. Defaults to false. [Note: Requires version
2015.03]

convexity
Integer. The convexity parameter specifies the maximum number of front sides (back sides)
a ray intersecting the object might penetrate. This parameter is only needed for correctly
displaying the object in OpenCSG preview mode and has no effect on the final rendering.

The format for text based heightmaps is a matrix of numbers that represent the height for a specific point. Rows are mapped to the

Y-axis, columns to the X axis. The numbers must be separated by spaces or tabs. Empty lines and lines starting with a # character are

ignored.

[Note: Requires version 2015.03]

Currently only PNG images are supported. Alpha channel information of the image is ignored and the height for the pixel is

determined by converting the color value to Grayscale using the linear luminance for the sRGB color space (Y = 0.2126R + 0.7152G +

0.0722B). The gray scale values are scaled to be in the range 0 to 100.

Example 1:

//surface.scad
surface(file = "surface.dat", center = true, convexity = 5);
%translate([0,0,5])cube([10,10,10], center =true);

Surface

Text file format

Images

Examples

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

94 of 122 01/13/2018 02:30 AM

#surface.dat
10 9 8 7 6 5 5 5 5 5
9 8 7 6 6 4 3 2 1 0
8 7 6 6 4 3 2 1 0 0
7 6 6 4 3 2 1 0 0 0
6 6 4 3 2 1 1 0 0 0
6 6 3 2 1 1 1 0 0 0
6 6 2 1 1 1 1 0 0 0
6 6 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

Result:

Example 2

 // example010.dat generated using octave:
 // d = (sin(1:0.2:10)' * cos(1:0.2:10)) * 10;
 // save("example010.dat", "d");
 intersection() {
 surface(file = "example010.dat", center = true, convexity = 5);
 rotate(45, [0, 0, 1]) surface(file = "example010.dat", center = true, convexity = 5);
 }

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

95 of 122 01/13/2018 02:30 AM

Input image Example 3a: surface(invert =
false)

Example 3b: surface (invert =
true)

Example 3:

[Note: Requires version 2015.03]

// Example 3a
scale([1, 1, 0.1])
 surface(file = "smiley.png", center = true);

// Example 3b
scale([1, 1, 0.1])
 surface(file = "smiley.png", center = true, invert = true);

Example 3: Using surface() with a PNG image as heightmap input.

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

96 of 122 01/13/2018 02:30 AM

Example 4:

[Note: Requires version 2015.03]

// Example 4
surface(file = "BRGY-Grey.png", center = true, invert = false);

PNG Test File 3D Surface

The search() function is a general-purpose function to find one or more (or all) occurrences of a value or list of values in a vector, string

or more complex list-of-list construct.

search(match_value , string_or_vector [, num_returns_per_match [, index_col_num]]);

match_value

Can be a single value or vector of values.

Strings are treated as vectors-of-characters to iterate over; the search function does not search for
substrings.

Note: If match_value is a vector of strings, search will look for exact string matches.

See Example 9 below.

string_or_vector

The string or vector to search for matches.

num_returns_per_match (default: 1)

By default, search only looks for one match per element of match_value to return as a list of indices

If num_returns_per_match > 1, search returns a list of lists of up to num_returns_per_match index values for
each element of match_value.

See Example 8 below.

If num_returns_per_match = 0, search returns a list of lists of all matching index values for each element of
match_value.

See Example 6 below.

index_col_num (default: 0)

Search

Search Usage

Search Arguments

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

97 of 122 01/13/2018 02:30 AM

When string_or_vector is a vector-of-vectors, multidimensional table or more complex list-of-lists construct,
the match_value may not be found in the first (index_col_num=0) column.

See Example 5 below for a simple usage example.

See example023.scad included with OpenSCAD for a renderable example.

Example Code Result

1 search("a","abcdabcd"); [0]

2 search("e","abcdabcd"); []

3 search("a","abcdabcd",0); [[0,4]]

4

data=[["a",1],["b",2],["c",3],["d",4],["a",5],

["b",6],["c",7],["d",8],["e",9]];

search("a", data, num_returns_per_match=0);

[[0,4]] (see also Example 6

below)

Example 5:

 data= [["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",3]];
 search(3, data, num_returns_per_match=0, index_col_num=1);

Returns:

 [2,8]

Example 6: Return all matches per search vector element.

 data= [["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9]];
 search("abc", data, num_returns_per_match=0);

Returns:

 [[0,4],[1,5],[2,6]]

Example 7: Return first match per search vector element; special case return vector.

 data= [["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9]];
 search("abc", data, num_returns_per_match=1);

Search Usage Examples

Index values return as list

Search on different column; return Index values

Search on list of values

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

98 of 122 01/13/2018 02:30 AM

Returns:

 [0,1,2]

Example 8: Return first two matches per search vector element; vector of vectors.

 data= [["a",1],["b",2],["c",3],["d",4],["a",5],["b",6],["c",7],["d",8],["e",9]];
 search("abce", data, num_returns_per_match=2);

Returns:

 [[0,4],[1,5],[2,6],[8]]

Example 9:

 lTable2=[["cat",1],["b",2],["c",3],["dog",4],["a",5],["b",6],["c",7],["d",8],["e",9],["apple",10],["a",11]];
 lSearch2=["b","zzz","a","c","apple","dog"];
 l2=search(lSearch2,lTable2);
 echo(str("Default list string search (",lSearch2,"): ",l2));

Returns

 ECHO: "Default list string search (["b", "zzz", "a", "c", "apple", "dog"]): [1, [], 4, 2, 9, 3]"

// workout which vectors get the results
v=[["O",2],["p",3],["e",9],["n",4],["S",5],["C",6],["A",7],["D",8]];
//
echo(v[0]); // -> ["O",2]
echo(v[1]); // -> ["p",3]
echo(v[1][0],v[1][1]); // -> "p",3
echo(search("p",v)); // find "p" -> [1]
echo(search("p",v)[0]); // -> 1
echo(search(9,v,0,1)); // find 9 -> [2]
echo(v[search(9,v,0,1)[0]]); // -> ["e",9]
echo(v[search(9,v,0,1)[0]][0]); // -> "e"
echo(v[search(9,v,0,1)[0]][1]); // -> 9
echo(v[search("p",v,1,0)[0]][1]); // -> 3
echo(v[search("p",v,1,0)[0]][0]); // -> "p"
echo(v[search("d",v,1,0)[0]][0]); // "d" not found -> undef
echo(v[search("D",v,1,0)[0]][1]); // -> 8

version() and version_num() will return OpenSCAD version number.

The version() function will return the OpenSCAD version as a vector, e.g. [2011, 09, 23]

The version_num() function will return the OpenSCAD version as a number, e.g. 20110923

$parent_modules contains the number of modules in the instantiation stack. parent_module(i) returns the name of the module i

levels above the current module in the instantiation stack. The stack is independent of where the modules are defined. It's where

they're instantiated that counts. This can be used to e.g. build BOMs.

Search on list of strings

Getting the right results

OpenSCAD Version

parent_module(n) and $parent_modules

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

99 of 122 01/13/2018 02:30 AM

Example:

 module top() {
 children();
 }
 module middle() {
 children();
 }
 top() middle() echo(parent_module(0)); // prints "middle"
 top() middle() echo(parent_module(1)); // prints "top"

[Note: Requires version 2017.01 Experimental Build]

see also Assertion (software development)

Assert evaluates a logical expression. If the logical expression evaluates to false, the generation of the preview/render is stopped with

an error.

For example, assertion can be used in modules to ensure that the parameters are valid.

Currently (2017.01 Experimental Build), OpenSCAD does not output the file name in which the assertion failed. This can be an issue

when writing libraries. (see Issue #1910 (https://github.com/openscad/openscad/issues/1910))

The simplest example is a simple assert(false);.

Source Code Console output

cube();
assert(false);
sphere();

Compiling design (CSG Tree generation)...
ERROR: Assertion 'false' failed, line 2
Compiling design (CSG Products generation)...
Geometries in cache: 0
Geometry cache size in bytes: 0
CGAL Polyhedrons in cache: 0
CGAL cache size in bytes: 0
Compiling design (CSG Products normalization)...
Normalized CSG tree has 0 elements
Compile and preview finished.
Total rendering time: 0 hours, 0 minutes, 0 seconds

This example has little use, but the simple assert(false); has.

assert(false); can be used in code sections that should be unreachable.

A useful example is checking the validity of input parameters:

module row(cnt=1){
assert(cnt>0); //Error: Count has to be a positive integer greater 0
for(i = [1 : cnt]){

translate([i*2,0,0])sphere();
}

}

row(2);

assert

failing example

checking parameters

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

100 of 122 01/13/2018 02:30 AM

If you write a library containing modules, it could be useful to output additional information to the user in case of an failed assertion.

This can be done by using echo.

module row(cnt=1){
if(cnt<=0){

echo("Error: Count has to be a positive integer greater 0");
assert(false);

}
for(i = [1 : cnt]){

translate([i*2,0,0])sphere();
}

}

cube();
row(0);

The benefit of using assert over echo are:

assert stops the execution, forcing the user to resolve the issue

Benefit of echo over assert:

with echo, you (for e.g. as library creator) can output a meaning full error message

combining assert with echo

assert vs. echo

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

101 of 122 01/13/2018 02:30 AM

Chapter 7 -- User-Defined Functions and
Modules
OpenSCAD User Manual/The OpenSCAD Language

Users can extend the language by defining their own modules and functions. This allows grouping portions of script for easy reuse with

different values. Well chosen names also help document your script.

OpenSCAD provides:

functions which return values.
modules which perform actions, but do not return values.

OpenSCAD calculates the value of variables at compile-time, not run-time. The last variable assignment within a scope will apply

everywhere in that scope. It also applies to any inner scopes, or children, thereof. See Scope of variables for more details. It may be

helpful to think of them as override-able constants rather than as variables.

For functions and modules OpenSCAD makes copies of pertinent portions of the script for each use. Each copy has its own scope,

which contains fixed values for variables and expressions unique to that instance.

The name of functions and modules is case sensitive, therefore test() and TEST() refer to different functions/modules.

Functions operate on values to calculate and return new values.

function definition

function name (parameters) = value ;

name
Your name for this function. A meaningful name is helpful later.

parameters
Zero or more arguments. Parameters can be assigned default values, to use in
case they are omitted in the call. Parameter names are local and do not conflict
with external variables of the same name.

value
an expression which calculates a value. This value can be a vector.

function use
When used, functions are treated as values, and do not themselves end with a
semi-colon ';'.

//example 1

function func0() = 5;
function func1(x=3) = 2*x+1;
function func2() = [1,2,3,4];
function func3(y=7) = (y==7) ? 5 : 2 ;
function func4(p0,p1,p2,p3) = [p0,p1,p2,p3];

echo (func0()); // 5

Introduction

Functions

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

102 of 122 01/13/2018 02:30 AM

a = func1(); // 7
b= func1(5); // 11
echo (func2()); // [1, 2, 3, 4]
echo(func3(2),func3()); // 2, 5

z= func4(func0(),func1(),func2(),func3()); // [5, 7, [1, 2, 3, 4], 5]

translate([0,-4*func0(),0])cube([func0(),2*func0(),func0()]);
// same as translate([0,-20,0])cube([5,10,5]);

//example 2 creates for() range to give desired no of steps to cover range

function steps(start, no_steps, end) = [start:(end-start)/(no_steps-1):end];

echo(steps(10,3,5)); // [10 : -2.5 : 5]
for(i=steps(10,3,5))echo(i); // 10 7.5 5

echo(steps(10,3,15)); //[10 : 2.5 : 15]
for(i=steps(10,3,15))echo(i); // 10 12.5 15

echo(steps(0,5,5)); // [0 : 1.25 : 5]
for(i=steps(0,5,5))echo(i); // 0 1.25 2.5 3.75 5

//example 3 rectangle with top pushed over, keeping same y

function rhomboid(x=1,y=1,angle=90)
= [[0,0],[x,0],
[x+x*cos(angle)/sin(angle),y],
[x*cos(angle)/sin(angle),y]];

echo (v1); v1 = rhomboid(10,10,35); // [[0, 0],

// [10, 0],
// [24.2815, 10],
// [14.2815, 10]]

polygon(v1);
polygon(rhomboid(10,10,35)); // alternate

//performing the same action with a module

module parallelogram(x=1,y=1,angle=90)

{polygon([[0,0],[x,0],
[x+x*cos(angle)/sin(angle),y],
[x*cos(angle)/sin(angle),y]]);};

parallelogram(10,10,35);

You can also use the let statement:

function get_square_triangle_perimeter(p1, p2) =
let(hypotenuse=sqrt(p1*p1+p2*p2))
p1+p2+hypotenuse;

It can be used to store variables in recursive functions.

Recursive function calls are supported. Using the Conditional Operator "... ? ... : ... ", it is possible to ensure the recursion is

terminated.

// recursion example: add all integers up to n
function add_up_to(n) = (n==0 ? 0 : n + add_up_to(n-1));

There is a built-in recursion limit to prevent an application crash (a few thousands). If the limit is hit, you get an error like: ERROR:

Recursion detected calling function For some special cases of tail-recursive functions, OpenSCAD is able to eliminate internally the

recursion transforming it in an iterative loop. The special forms are:

Example 3

Recursive functions

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

103 of 122 01/13/2018 02:30 AM

function recurse(...) = <test> ? <result> : recurse(...);

and

function recurse(...) = <test> ? recurse(...) : <result>;

The previous example code does not match any of these forms. But the following is entitled to tail-recursion elimination:

// tail-recursion elimination example: add all integers up to n
function add_up_to(n, sum=0) =

n==0 ?
sum :
add_up_to(n-1, sum+n);

echo(sum=add_up_to(100000));
// ECHO: sum = 5.00005e+009

Tail-recursion elimination allows much higher recursion limits.

Modules can be used to define objects or, using children(), define operators. Once defined, modules are temporarily added to the

language.

module definition

module name (parameters) { actions }

name
Your name for this module. Try to pick something meaningful.

parameters
Zero or more arguments. Parameters may be assigned default values, to use in
case they are omitted in the call. Parameter names are local and do not conflict
with external variables of the same name.

actions
Nearly any statement valid outside a module can be included within a module. This
includes the definition of functions and other modules. Such functions and modules
can only be called from within the enclosing module.

Variables can be assigned, but their scope is limited to within each individual use of the module. There is no mechanism in OpenSCAD

for modules to return values to the outside. See Scope of variables for more details.

Object modules use one or more primitives, with associated operators, to define new objects.

In use, object modules are actions ending with a semi-colon ';'.

name (parameter values);

//example 1

translate([-30,-20,0])

ShowColorBars(Expense);

Modules

Object modules

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

104 of 122 01/13/2018 02:30 AM

ColorBreak=[[0,""],
[20,"lime"], // upper limit of color range
[40,"greenyellow"],
[60,"yellow"],
[75,"LightCoral"],
[200,"red"]];

Expense=[16,20,25,85,52,63,45];

module ColorBar(value,period,range){ // 1 color on 1 bar

RangeHi = ColorBreak[range][0];
RangeLo = ColorBreak[range-1][0];
color(ColorBreak[range][1])
translate([10*period,0,RangeLo])

if (value > RangeHi) cube([5,2,RangeHi-RangeLo]);
else if (value > RangeLo) cube([5,2,value-RangeLo]);

}
module ShowColorBars(values){

for (month = [0:len(values)-1], range = [1:len(ColorBreak)-1])
ColorBar(values[month],month,range);

}

//example 2
module house(roof="flat",paint=[1,0,0]) {

color(paint)
if(roof=="flat") { translate([0,-1,0]) cube(); }
else if(roof=="pitched") {
rotate([90,0,0]) linear_extrude(height=1)
polygon(points=[[0,0],[0,1],[0.5,1.5],[1,1],[1,0]]); }

else if(roof=="domical") {
translate([0,-1,0]){
translate([0.5,0.5,1]) sphere(r=0.5,$fn=20); cube(); }

} }

house();
translate([2,0,0]) house("pitched");
translate([4,0,0]) house("domical",[0,1,0]);
translate([6,0,0]) house(roof="pitched",paint=[0,0,1]);
translate([0,3,0]) house(paint=[0,0,0],roof="pitched");
translate([2,3,0]) house(roof="domical");
translate([4,3,0]) house(paint=[0,0.5,0.5]);

//example 3

element_data = [[0,"","",0], // must be in order

[1,"Hydrogen","H",1.008], // indexed via atomic number
[2,"Helium", "He",4.003] // redundant atomic number to preserve your sanity later

];

Hydrogen = 1;
Helium = 2;

module coaster(atomic_number){

element = element_data[atomic_number][1];
symbol = element_data[atomic_number][2];
atomic_mass = element_data[atomic_number][3];
//rest of script

}

Use of children() allows modules to act as operators applied to any or all of the objects within this module instantiation. In use,

operator modules do not end with a semi-colon.

name (parameter values){scope of operator}

Objects are indexed via integers from 0 to $children-1. OpenSCAD sets $children to the total number of objects within the scope.

Objects grouped into a sub scope are treated as one child. See example of separate children below and Scope of variables.

Color bar

House

Operator Modules

Children

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

105 of 122 01/13/2018 02:30 AM

 children(); all children
 children(index); value or variable to select one child
 children([start : step : end]); select from start to end incremented by step
 children([start : end]); step defaults to 1 or -1
 children([vector]); selection of several children

Deprecated child() module

Up to release 2013.06 the now deprecated child() module was used instead. This can be translated to the new children() according

to the table:

up to 2013.06 2014.03 and later

child() children(0)

child(x) children(x)

for (a = [0:$children-1]) child(a) children([0:$children-1])

Examples

//Use all children

module move(x=0,y=0,z=0,rx=0,ry=0,rz=0)
{ translate([x,y,z])rotate([rx,ry,rz]) children(); }

move(10) cube(10,true);
move(-10) cube(10,true);
move(z=7.07, ry=45)cube(10,true);
move(z=-7.07,ry=45)cube(10,true);

//Use only the first child, multiple times

module lineup(num, space) {

for (i = [0 : num-1])
translate([space*i, 0, 0]) children(0);

}

lineup(5, 65){ sphere(30);cube(35);}

//Separate action for each child

module SeparateChildren(space){
for (i= [0:1:$children-1]) // step needed in case $children < 2
translate([i*space,0,0]) {children(i);text(str(i));}

}

SeparateChildren(-20){
cube(5); // 0
sphere(5); // 1
translate([0,20,0]){ // 2
cube(5);
sphere(5);

}
cylinder(15); // 3
cube(8,true); // 4

}
translate([0,40,0])color("lightblue")
SeparateChildren(20){cube(3,true);}

//Multiple ranges
module MultiRange(){

color("lightblue") children([0:1]);
color("lightgreen")children([2:$children-2]);
color("lightpink") children($children-1);

}

MultiRange()

Use all children

Use only the first child, multiple
times

Separate action for each child

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

106 of 122 01/13/2018 02:30 AM

{
cube(5); // 0
sphere(5); // 1
translate([0,20,0]){ // 2
cube(5);
sphere(5);

}
cylinder(15); // 3
cube(8,true); // 4

}

Objects

module arrow(){
cylinder(10);
cube([4,.5,3],true);
cube([.5,4,3],true);
translate([0,0,10]) cylinder(4,2,0,true);

}

module cannon(){

difference(){union()
{sphere(10);cylinder(40,10,8);} cylinder(41,4,4);

} }

module base(){

difference(){
cube([40,30,20],true);
translate([0,0,5]) cube([50,20,15],true);

} }

Operators

module aim(elevation,azimuth=0)
{ rotate([0,0,azimuth])
{ rotate([0,90-elevation,0]) children(0);
children([1:1:$children-1]); // step needed in case $children < 2

} }

aim(30,20)arrow();
aim(35,270)cannon();
aim(15){cannon();base();}

module RotaryCluster(radius=30,number=8)
for (azimuth =[0:360/number:359])
rotate([0,0,azimuth])
translate([radius,0,0]) { children();
translate([40,0,30]) text(str(azimuth)); }

RotaryCluster(200,7) color("lightgreen") aim(15){cannon();base();}
rotate([0,0,110]) RotaryCluster(100,4.5) aim(35)cannon();
color("LightBlue")aim(55,30){cannon();base();}

Like functions, modules may contain recursive calls. However, there is no tail-recursion elimination for recursive modules.

The code below generates a crude model of a tree. Each tree branch is itself a modified version of the tree and produced by recursion.

Be careful to keep the recursion depth (branching) n below 7 as the number of primitives and the preview time grow exponentially.

module simple_tree(size, dna, n) {
if (n > 0) {

// trunk
cylinder(r1=size/10, r2=size/12, h=size, $fn=24);
// branches

Multiple ranges

Further Module Examples

Recursive Modules

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

107 of 122 01/13/2018 02:30 AM

Another example of recursive module may be found in Tips and Tricks

It is possible to overwrite the built-in modules.

A simple, but pointless example would be:

module sphere(){
square();

}
sphere();

Note that the built-in sphere module can not be called when over written.

A more sensible way to use this language feature is to overwrite the 3D primitives with extruded 2D-primitives. This allows additional

to customize the default parameters and to add additional parameters.

It is possible to overwrite the built-in functions.

Rotary Clusters

A simple tree created with a
recursive OpenSCAD module

Overwriting built-in modules

Overwriting built-in functions

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

108 of 122 01/13/2018 02:30 AM

Source Code Console output

echo (sin(1));
function sin() = true;
echo (sin(1));

Compiling design (CSG Tree generation)...
ECHO: true
ECHO: true
Compiling design (CSG Products generation)...

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

109 of 122 01/13/2018 02:30 AM

Chapter 8 -- Debugging aids
OpenSCAD User Manual/The OpenSCAD Language

Modifier characters are used to change the appearance or behaviours of child nodes. They are particularly useful in debugging where

they can be used to highlight specific objects, or include or exclude them from rendering.

As OpenSCAD uses different libraries to implement capabilities this can introduce some inconsistencies to the F5 preview behaviour of

transformations. Traditional transforms (translate, rotate, scale, mirror & multimatrix) are performed using OpenGL in preview, while

other more advanced transforms, such as resize, perform a CGAL operation, behaving like a CSG operation affecting the underlying

object, not just transforming it. In particular this can affect the display of modifier characters, specifically "#" and "%", where the

highlight may not display intuitively, such as highlighting the pre-resized object, but highlighting the post-scaled object.

Note: The color changes triggered by character modifiers will only be shown in "Compile" mode not "Compile and Render (CGAL)"

mode. (As per the color section.)

Ignore this subtree for the normal rendering process and draw it in transparent gray (all transformations are still applied to the nodes

in this tree).

Because the marked subtree is completely ignored, it might have unexpected effects in case it's used, for example, with the first object

in a difference(). In that case this object will be rendered in transparent gray, but it will not be the base for the difference()!

Usage

 % { ... }

Example

difference() {
cylinder (h = 12, r=5, center = true, $fn=100);
// first object that will be subtracted
rotate ([90,0,0]) cylinder (h = 15, r=1, center = true, $fn=100);
// second object that will be subtracted
%rotate ([0,90,0]) cylinder (h = 15, r=3, center = true, $fn=100);

}

Example Output

Advanced concept

Background Modifier

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

110 of 122 01/13/2018 02:30 AM

Output without the modifier. Output with modifier added.

Rendered Model.

Use this subtree as usual in the rendering process but also draw it unmodified in transparent pink.

Usage

 # { ... }

Example

difference() {
// start objects
cylinder (h = 12, r=5, center = true, $fn=100);

// first object that will subtracted
#rotate ([90,0,0]) cylinder (h = 15, r=1, center = true, $fn=100);

// second object that will be subtracted
#rotate ([0,90,0]) cylinder (h = 15, r=3, center = true, $fn=100);

}

Example Output

Debug Modifier

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

111 of 122 01/13/2018 02:30 AM

Output without the modifier.

Output with modifier added.

Ignore the rest of the design and use this subtree as design root.

Usage

 ! { ... }

Example

difference() {
cube(10, center = true);
translate([0, 0, 5]) {

!rotate([90, 0, 0]) {
#cylinder(r = 2, h = 20, center = true, $fn = 40);

}
}

}

Example Output

Root Modifier

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

112 of 122 01/13/2018 02:30 AM

Output without the modifier.

Output with modifier added.

As shown in the example output with the root modifier active, the rotate() is executed as it's part of the subtree marked with the root

modifier, but the translate() has no effect.

Simply ignore this entire subtree.

Usage

 * { ... }

Example

difference() {
cube(10, center = true);
translate([0, 0, 5]) {

rotate([0, 90, 0]) {
cylinder(r = 2, h = 20, center = true, $fn = 40);

}
*rotate([90, 0, 0]) {

#cylinder(r = 2, h = 20, center = true, $fn = 40);
}

}
}

Example Output

Disable Modifier

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

113 of 122 01/13/2018 02:30 AM

Output without the modifier.

Output with modifier added.

The disable modifier allows to comment out one or multiple subtrees. Compared to using the usual line or multi-line comments, it's

aware of the hierarchical structure which makes it easier to disable even larger trees without the need to search for the end of the

subtree.

see also OpenSCAD User Manual/Other Language Features#Echo Statements

This function prints the contents to the compilation window (aka Console). Useful for debugging code. Also see the String function

str().

Numeric values are rounded to 5 significant digits.

The OpenSCAD console supports a subset of HTML markup language. See here (http://qt-project.org/doc/qt-4.7/richtext-

html-subset.html) for details.

It can be handy to use 'variable=variable' as the expression to easily label the variables, see the example below.

Usage examples:

my_h=50;
my_r=100;
echo("This is a cylinder with h=", my_h, " and r=", my_r);
echo(my_h=my_h,my_r=my_r); // shortcut
cylinder(h=my_h, r=my_r);
//
echo("Hello <i>Qt!</i>");

Shows in the Console as

ECHO: "This is a cylinder with h=", 50, " and r=", 100
ECHO: my_h = 50, my_r = 100
ECHO: "Hello Qt!"

Echo Statements

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

114 of 122 01/13/2018 02:30 AM

Chapter 9 -- External libraries and code files
OpenSCAD User Manual/The OpenSCAD Language

For including code from external files in OpenSCAD, there are two commands available:

include <filename> acts as if the contents of the included file were written in the including file, and

use <filename> imports modules and functions, but does not execute any commands other than those
definitions.

Library files are searched for in the same folder as the design was open from, or in the library folder of the OpenSCAD installation. You

can use a relative path specification to either. If they lie elsewhere you must give the complete path. Newer versions have predefined

user libraries, see the OpenSCAD_User_Manual/Libraries page, which also documents a number of library files included in

OpenSCAD.

Wildcards (*, for e.g. include <MCAD/*.scad>) can not be used to include multiple files.

Windows and Linux/Mac use different separators for directories. Windows uses \, e.g. directory\file.ext, while the others use /, e.g.

directory/file.ext. This could lead to cross platform issues. However OpenSCAD on Windows correctly handles the use of /, so using /

in all include or use statements will work on all platforms.

To access the parent directory ../ can be used under Linux.

Using include <filename> allows default variables to be specified in the library. These defaults can be overridden in the main

code. An OpenSCAD variable only has one value during the life of the program. When there are multiple assignments it takes the last

value, but assigns when the variable is first created. This has an effect when assigning in a library, as any variables which you later use

to change the default, must be assigned before the include statement. See the second example below.

Default variables in an include can be overridden, for example

lib.scad

i=1;
k=3;
module x() {
 echo("hello world");
 echo("i=",i,"j=",j,"k=",k);
}

hello.scad

j=4;
include <lib.scad>;
x();
i=5;
x();

Use and Include

Directory separators

Variables

Scope of variables

Overwriting variables

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

115 of 122 01/13/2018 02:30 AM

k=j;
x();

Produces the following

ECHO: "hello world"
ECHO: "i=", 5, "j=", 4, "k=", 4
ECHO: "hello world"
ECHO: "i=", 5, "j=", 4, "k=", 4
ECHO: "hello world"
ECHO: "i=", 5, "j=", 4, "k=", 4

However, placing j=4; after the include fails, producing

ECHO: "hello world"
ECHO: "i=", 5, "j=", 4, "k=", undef
ECHO: "hello world"
ECHO: "i=", 5, "j=", 4, "k=", undef
ECHO: "hello world"
ECHO: "i=", 5, "j=", 4, "k=", undef

A library file for generating rings might look like this (defining a function and providing an example):

ring.scad:

module ring(r1, r2, h) {
 difference() {
 cylinder(r = r1, h = h);
 translate([0, 0, -1]) cylinder(r = r2, h = h+2);
 }
}

ring(5, 4, 10);

Including the library using

include <ring.scad>;
rotate([90, 0, 0]) ring(10, 1, 1);

would result in the example ring being shown in addition to the rotated ring, but

use <ring.scad>;
rotate([90, 0, 0]) ring(10, 1, 1);

only shows the rotated ring.

If using the use function, make sure to place the use statements at top of the file, or at least not within a module!

This will work fine:

 // a.scad
 use <ring.scad>;
 module a() {
 ring();
 }

but this will result in an syntax error:

Example "Ring-Library"

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

116 of 122 01/13/2018 02:30 AM

 //a.scad
 module a() {
 use <ring.scad>;
 ring();
 }

OpenSCAD will execute nested calls to include and use. There is one caveat to this, that use only brings functions and modules into

the local file context. As a result, nested calls to use will have no effect on the environment of the base file; the child use call will work

in the parent use context, but the modules and functions so imported will fall out of context before they are seen by the base context.

Imports a file for use in the current OpenSCAD model. OpenSCAD currently supports import of DXF, OFF and STL (both ASCII and

Binary) files.

NOTE: The file extension is used to determine which type.

 OpenSCAD can export files as STL, OFF, AMF, DXF, SVG, CSG OR PNG(Image).

 These file types created by OpenSCAD, or others, can be imported as follows:

 STL, OFF and DXF are imported using import().
 CSG can be imported using include<> or loaded like an SCAD file
 PNG can be imported using surface()
 There are open pull requests for SVG and AMF, which require a bit more work/testing.
 The file suffix is used to determine type.

Parameters

<file>
A string containing the path to the STL, OFF or DXF file.

<convexity>
An Integer. The convexity parameter specifies the maximum number of front sides (back
sides) a ray intersecting the object might penetrate. This parameter is only needed for
correctly displaying the object in OpenCSG preview mode and has no effect on the
polyhedron rendering.

import("example012.stl", convexity=3);
import("D:\\Documents and Settings\\User\\My Documents\\Gear.stl", convexity=3);
(Windows users must "escape" the backslashes by writing them doubled.)

Nested Include and Use

import

Convexity

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

117 of 122 01/13/2018 02:30 AM

This image shows a 2D shape with a convexity of 4, as the ray indicated in red crosses the 2D shape a maximum of 4 times. The

convexity of a 3D shape would be determined in a similar way. Setting it to 10 should work fine for most cases.

In the latest version of OpenSCAD, import() is now used for importing both 2D (DXF for extrusion) and 3D (STL) files.

If you want to render the imported STL file later, you have to make sure that the STL file is "clean". This means that the mesh has to be

manifold and should not contain holes nor self-intersections. If the STL is not clean, you might get errors like:

 CGAL error in CGAL_Build_PolySet: CGAL ERROR: assertion violation!
 Expr: check_protocoll == 0
 File: /home/don/openscad_deps/mxe/usr/i686-pc-mingw32/include/CGAL/Polyhedron_incremental_builder_3.h
 Line: 199

or

 CGAL error in CGAL_Nef_polyhedron3(): CGAL ERROR: assertion violation!
 Expr: pe_prev->is_border() || !internal::Plane_constructor<Plane>::get_plane(pe_prev->facet(),pe_prev->facet()->plane()).is_degenerate()
 File: /home/don/openscad_deps/mxe/usr/i686-pc-mingw32/include/CGAL/Nef_3/polyhedron_3_to_nef_3.h
 Line: 253

In order to clean the STL file, you have the following options:

- use http://wiki.netfabb.com/Semi-Automatic_Repair_Options . This will repair the holes but not the self-intersections.

- use netfabb basic. This free software doesnt have the option to close holes nor can it fix the self-intersections

- use MeshLab, This free software can fix all the issues

Using MeshLab, you can do:

- Render - Show non Manif Edges

- Render - Show non Manif Vertices

- if found, use Filters - Selection - Select non Manifold Edges or Select non Manifold Vertices - Apply - Close. Then click button 'Delete

Notes

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

118 of 122 01/13/2018 02:30 AM

the current set of selected vertices...' or check http://www.youtube.com/watch?v=oDx0Tgy0UHo for an instruction video. The screen

should show "0 non manifold edges", "0 non manifold vertices"

Next, you can click the icon 'Fill Hole', select all the holes and click Fill and then Accept. You might have to redo this action a few times.

Use File - Export Mesh to save the STL.

If Meshlab can't fill the last hole then Blender might help:

Start Blender1.

`X, 1` to remove the default object2.

File, Import, Stl3.

`Tab` to edit the mesh4.

`A` to de-select all vertices5.

`Alt+Ctrl+Shift+M` to select all non-manifold vertices6.

`MMB` to rotate, `Shift+MMB` to pan, `wheel` to zoom7.

`C` for "circle" select, `Esc` to finish8.

`Alt+M, 1` to merge or `Space` and search for "merge" as alternative9.

Merging vertices is a useful way of filling holes where the vertices are so closely packed that the slight change in
geometry is unimportant compared to the precision of a typical 3D printer

10.

DEPRECATED: Will be removed in future releases. Use import() instead.

Read a DXF file and create a 2D shape.

linear_extrude(height = 5, center = true, convexity = 10)
 import_dxf(file = "example009.dxf", layer = "plate");

DEPRECATED: Will be removed in future releases. Use import() instead.

Imports an STL file for use in the current OpenSCAD model

import_stl("body.stl", convexity = 5);

Surface reads Heightmap information from text or image files. Surface can read PNG files.

Parameters

file
String. The path to the file containing the heightmap data.

center
Boolean. This determines the positioning of the generated object. If true, object is centered
in X- and Y-axis. Otherwise, the object is placed in the positive quadrant. Defaults to false.

import_dxf

import_stl

Surface

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

119 of 122 01/13/2018 02:30 AM

invert
Boolean. Inverts how the color values of imported images are translated into height values.
This has no effect when importing text data files. Defaults to false. [Note: Requires version
2015.03]

convexity
Integer. The convexity parameter specifies the maximum number of front sides (back sides)
a ray intersecting the object might penetrate. This parameter is only needed for correctly
displaying the object in OpenCSG preview mode and has no effect on the final rendering.

The format for text based heightmaps is a matrix of numbers that represent the height for a specific point. Rows are mapped to the

Y-axis, columns to the X axis. The numbers must be separated by spaces or tabs. Empty lines and lines starting with a # character are

ignored.

[Note: Requires version 2015.03]

Currently only PNG images are supported. Alpha channel information of the image is ignored and the height for the pixel is

determined by converting the color value to Grayscale using the linear luminance for the sRGB color space (Y = 0.2126R + 0.7152G +

0.0722B). The gray scale values are scaled to be in the range 0 to 100.

Example 1:

//surface.scad
surface(file = "surface.dat", center = true, convexity = 5);
%translate([0,0,5])cube([10,10,10], center =true);

#surface.dat
10 9 8 7 6 5 5 5 5 5
9 8 7 6 6 4 3 2 1 0
8 7 6 6 4 3 2 1 0 0
7 6 6 4 3 2 1 0 0 0
6 6 4 3 2 1 1 0 0 0
6 6 3 2 1 1 1 0 0 0
6 6 2 1 1 1 1 0 0 0
6 6 1 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0

Result:

Text file format

Images

Examples

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

120 of 122 01/13/2018 02:30 AM

Example 2

 // example010.dat generated using octave:
 // d = (sin(1:0.2:10)' * cos(1:0.2:10)) * 10;
 // save("example010.dat", "d");
 intersection() {
 surface(file = "example010.dat", center = true, convexity = 5);
 rotate(45, [0, 0, 1]) surface(file = "example010.dat", center = true, convexity = 5);
 }

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

121 of 122 01/13/2018 02:30 AM

Input image Example 3a: surface(invert =
false)

Example 3b: surface(invert =
true)

Example 3:

[Note: Requires version 2015.03]

// Example 3a
scale([1, 1, 0.1])
 surface(file = "smiley.png", center = true);

// Example 3b
scale([1, 1, 0.1])
 surface(file = "smiley.png", center = true, invert = true);

Example 3: Using surface() with a PNG image as heightmap input.

Retrieved from "https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual/The_OpenSCAD_Language&
oldid=3289314"

This page was last edited on 4 September 2017, at 12:24.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using
this site, you agree to the Terms of Use and Privacy Policy.

OpenSCAD User Manual/The OpenSCAD Languag... https://en.wikibooks.org/wiki/OpenSCAD_User_...

122 of 122 01/13/2018 02:30 AM

