
OpenSCAD User Manual/Print version

Introduction

Contents

Chapter 1 -- First Steps
Compiling and rendering our first model

See also

There is no semicolon following the translate command

CGAL Surfaces

CGAL Grid Only

The OpenCSG View

The thrown together view

Chapter 2 -- The OpenSCAD User Interface
User Interface

Viewing area

Console window

Text editor

View navigation

View setup
Render modes

OpenCSG (F9)
Implementation Details

CGAL (Surfaces and Grid, F10 and F11)
Implementation Details

View options
Show Edges (Ctrl+1)

Show Axes (Ctrl+2)

Show Crosshairs (Ctrl+3)

Animation

View alignment

Dodecahedron

Bounding Box

Linear Extrude extended use examples
Linear Extrude with Scale as an interpolated function

Linear Extrude with Twist as an interpolated function

Linear Extrude with Twist and Scale as interpolated functions

Rocket
Command line usage

Export options
Camera and image output

Constants

Command to build required files

Processing all .scad files in a folder

Makefile example
Automatic targets

Windows notes

MacOS notes

Chapter 3 -- Commented Example Projects

Contents

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

1 of 63 01/13/2018 02:29 AM

Dodecahedron

Bounding Box

Linear Extrude extended use examples
Linear Extrude with Scale as an interpolated function

Linear Extrude with Twist as an interpolated function

Linear Extrude with Twist and Scale as interpolated functions

Rocket

Chapter 4 -- Export
Export

STL Export

Linear Extrude

Rotate Extrude

Getting Inkscape to work

PS/EPS

SVG

Makefile automation

AI (Adobe Illustrator)

Chapter 5 -- Using an external Editor with OpenSCAD
Why use an external editor

How to use an external editor

Support of external editors

Additional benefits

Chapter 6 -- Using OpenSCAD in a command line environment
Command line usage

Export options
Camera and image output

Constants

Command to build required files

Processing all .scad files in a folder

Makefile example
Automatic targets

Windows notes

MacOS notes

Chapter 7 -- Path locations
Env variables

Per platform roots

Read-only Resources

User Resources

Misc Resources

Reference

Chapter 8 -- Building OpenSCAD from Sources
Prebuilt binary packages

Building OpenSCAD yourself
Installing dependencies

Prepackaged dependencies

Verifying dependencies

Building the dependencies yourself

Build the OpenSCAD binary

Experimental

Compiling the test suite

Troubleshooting
Errors about incompatible library versions

OpenCSG didn't automatically build

CGAL didn't automatically build

Compiling fails with an Internal compiler error from GCC or GAS

Compiling is horribly slow and/or grinds the disk

BSD issues

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

2 of 63 01/13/2018 02:29 AM

Sun / Solaris / IllumOS / AIX / IRIX / Minix / etc

Test suite problems

I moved the dependencies I built and now openscad won't run

Tricks and tips
Reduce space of dependency build

Preferences

Setup environment to start developing OpenSCAD in Ubuntu 11.04

The Clang Compiler

Setup

Requirements

Build OpenSCAD

Downloads

Installing

Compiling Dependencies
Qt

CGAL

OpenCSG

OpenSCAD

Building an installer

Compiling the regression tests

Troubleshooting
CGAL

References

Chapter 9 -- Frequently Asked Questions

General
How is OpenSCAD pronounced?

Display
Preview doesn't appear to work at all

What are those strange flickering artifacts in the preview?

Why are some parts (e.g. holes) of the model not rendered correctly?

Why is my model showing up with F5 but not F6?

Why is the preview so slow?

Import
Why is my imported STL file only showing up with F5 but not F6?

I'm getting "Unsupported DXF Entity" warnings when importing DXF files, what does that mean?

Export
How can I export multiple parts from one script?

Language
Why am I getting an error when writing a = a + 1?

User Interface
I'm not getting any menubar when running OpenSCAD in Ubuntu, how can I get it back?

Why are the error line numbers wrong?

Errors / Problems
Why am I getting "no top level geometry to render"?

OpenSCAD crashed/was killed, are my unsaved changes lost?

Reporting bugs, Requesting features
How do I report bugs?

How do I request new features?

How do I report bugs that are related to the Operating System I use?
Windows

Mac OSX

Linux

Chapter 10 -- Libraries

Library Locations
Setting OPENSCADPATH

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

3 of 63 01/13/2018 02:29 AM

MCAD

Other Libraries
Other OpenSCAD tutorials and documentation

Chapter 11 -- Command Glossary
Mathematical Operators

Mathematical Functions

String Functions

Primitive Solids

Transformations

Conditional and Iterator Functions

CSG Modelling

Modifier Characters

Modules

Include Statement

Other Language Features

2D Primitives

3D to 2D Projection

2D to 3D Extrusion

DXF Extrusion

STL Import

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

4 of 63 01/13/2018 02:29 AM

Introduction
OpenSCAD is a software for creating solid 3D CAD objects.

It is free software (http://www.gnu.org/philosophy/free-sw.html) and available for GNU/Linux (http://www.gnu.org/), Microsoft Windows and Mac

OS X.

Unlike most free software for creating 3D models (such as the well-known application Blender), OpenSCAD does not focus on the artistic aspects of

3D modelling, but instead focuses on the CAD aspects. So it might be the application you are looking for when you are planning to create 3D models

of machine parts, but probably is not what you are looking for when you are more interested in creating computer-animated movies or organic

life-like models.

OpenSCAD, unlike many CAD products, is not an interactive modeler. Instead it is something like a 2D/3D-compiler that reads in a program file that

describes the object and renders the model from this file. This gives you (the designer) full control over the modelling process. This enables you to

easily change any step in the modelling process. This enables you to make designs that are defined by configurable parameters.

OpenSCAD has two main operating modes, Preview and Render. Preview is relatively fast using 3D graphics and the computer's GPU, but is an

approximation of the model and can produce artifacts; Preview uses OpenCSG (http://opencsg.org/) and OpenGL. Render generates exact geometry

and a fully tessellated mesh, it is not an approximation and as such it is often a lengthy process, taking minutes or hours for larger designs; Render

uses CGAL as its geometry engine.

OpenSCAD provides two types of 3D modelling:

Constructive Solid Geometry (CSG)

extrusion of 2D primitives into 3D space.

Autocad DXF files are used as the data exchange format for 2D outlines. In addition to 2D paths for extrusion it is also possible to read design

parameters from DXF files. Besides DXF files OpenSCAD can read and create 3D models in the STL and OFF file formats.

OpenSCAD can be downloaded from http://openscad.org/. You may find extra information in the mailing list (http://rocklinux.net/mailman/listinfo

/openscad).

People who don't want to (or can't) install new software on their computer may be able to use OpenJSCAD (http://OpenJSCAD.org/), a port of

OpenSCAD that runs in a web browser, if your browser supports WebGL.

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

5 of 63 01/13/2018 02:29 AM

Contents
OpenSCAD User Manual without The OpenSCAD Language Reference

First Steps1.

The OpenSCAD User Interface2.

Commented Example Projects3.

Export4.

Using an external Editor with OpenSCAD5.

Using OpenSCAD in a command line environment6.

Path locations7.

Building OpenSCAD from Sources

Building on Linux/UNIX1.

Cross-compiling for Windows on Linux or Mac OS X2.

Building on Windows3.

Building on Mac OS X4.

8.

Frequently Asked Questions9.

Libraries10.

Glossary11.

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

6 of 63 01/13/2018 02:29 AM

Chapter 1 -- First Steps
OpenSCAD User Manual

For our first model we will create a simple 2 x 3 x 4 cuboid. To get started launch OpenSCAD. You should have a preview window, toolbar, console

and editor windows open. If one is hidden you can turn it on by going to the View menu and unselect the hidden items.

To create our cuboid we will use the openSCAD editor window to type our one line command:

Usage example 1 - simple cuboid:

cube([2,3,4]);

The cuboid can now be compiled and rendered by pressing F5 or F6 Function key on your keyboard while the OpenSCAD editor has focus. You

should now see your object in the preview window as shown above.

Positioning an object

Open one of the many examples that come with OpenSCAD (File, Examples). Or you can copy and paste

this simple example into the OpenSCAD window:

Usage example 1

difference() {
cube(30, center=true);
sphere(20);

}
translate([0, 0, 30]) {

cylinder(h=40, r=10);
}

Then press F5 to get a graphical preview of what you typed (or press F6 to get a graphical view).

You get three types of movement in the preview frame:

Drag with left mouse button to rotate the view. The bottom line will change the rotate
values.

1.

Drag with an other mouse button (or control-drag under OSX) to translate (move) the
view. The bottom line will change translate values.

2.

Use the mouse scroll to zoom in and out. Alternatively you can use the + and - keys, or
right-drag with the mouse while pressing a shift key (or control-shift-drag under OSX).
The Viewport line at the bottom of the window will show a change in the distance value.

3.

We have already seen how to create a simple cuboid. Our next task is to attempt to use the translate

positioning command to place an identical cuboid next to the existing cuboid. Type the data as shown below. There are a total of 4 lines of code. Press

OpenSCAD Simple Cuboid

Compiling and rendering our first model

See also

OpenSCAD after starting

OpenSCAD after pasting the
example code and pressing F5

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

7 of 63 01/13/2018 02:29 AM

F5 or F6 function key when done to see the preview.

Usage example 1 - positioning an object:

cube([2,3,4]);
translate([3,0,0]) {
cube([2,3,4]);

}

Notice that there is no semicolon following the translate command. This is because the translate command relates to the following object. If the

semicolon was in place, then the effect of the position translation would end, and the second cuboid would be placed at the same position as the first

cuboid. We can change the color of an object by giving it RGB values. Instead of the traditional RGB values from 0 to 255 floating point values are

used from 0.0 to 1.0. Note! Changing the colors only works in Preview mode (F5). Render mode (F6) does not currently support color.

Usage example 1 - changing the color of an object:

color([1,0,0]) cube([2,3,4]);
translate([3,0,0])
color([0,1,0]) cube([2,3,4]);
translate([6,0,0])
color([0,0,1]) cube([2,3,4]);

Color names can be used in the 2011.12 version (and newer). The names are the same used for Web colors (http://en.wikipedia.org

/wiki/Web_colors). For example: color("red") cube();

If you think of the entire command as a sentence, then color() is an "adjective" that describes the "object" of the sentence (which is a "noun"). In

this case, the object is the cube() to be created. The adjective is placed before the noun in the sentence, like so: color() cube();. In the same

way, translate() can be thought of as a "verb" that acts upon the object, and is placed like this: translate() color() cube();. The

following code will produce the same result:

translate([6,0,0])
{

color([0,0,1]) // notice that there is NO semicolon
cube([2,3,4]); // notice the semicolon is at the end of all related commands

}

The "View" menu at the top of the OpenSCAD application window provides a variety of view options in the OpenSCAD model view window.

OpenSCAD positioning an
object

There is no semicolon following the translate command

OpenSCAD changing the color
of an object

CGAL Surfaces

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

8 of 63 01/13/2018 02:29 AM

The surface view is the initial model view that appears when the model code is first rendered. You can get back to this view by choosing "View >>

CGAL Surfaces".

Designers often choose "View >> CGAL Grid Only" when working with a particularly complex 3D model.

The Grid Only view presents only the "scaffolding" beneath the surface, also known as a wireframe. Think of the Eiffel Tower.

A wire frame is a visual presentation of a three dimensional or physical object. Using a wire frame model allows visualization of the underlying design

structure of a 3D model. Since wireframe renderings are relatively simple and fast to calculate, they are often used in cases where a high screen frame

rate is needed (for instance, when working with a particularly complex 3D model, or in real-time systems that model exterior phenomena). When

greater graphical detail is desired, surface textures can be added automatically after completion of the initial rendering of the wireframe. This allows

the designer to quickly review changes or rotate the object to new desired views without long delays associated with more realistic rendering. The

wire frame format is also well suited and widely used in programming tool paths for DNC (Direct Numerical Control) machine tools. Wireframe

models are also used as the input for CAM (computer-aided manufacturing). Wireframe is the most abstract and least realistic of the three main CAD

models. This method of modelling consists only of lines, points and curves defining the edges of an object. (From Wikipedia: http://en.wikipedia.org

/wiki/Wire-frame_model)

Choosing "View >> OpenCSG" uses the open constructive solid geometry library to generate the model view utilizing OpenGL. If the OpenCSG library

is not available or the video card or drivers do not support OpenGL, then this view will produce no visible output.

Choosing "View >> Thrown Together" provides all the previous views, in the same screen.

CGAL Grid Only

The OpenCSG View

The thrown together view

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

9 of 63 01/13/2018 02:29 AM

Chapter 2 -- The OpenSCAD User Interface
OpenSCAD User Manual

The user interface of OpenSCAD has three parts

The viewing area

The console window

The text editor

Preview and rendering output goes into the viewing area. Using the Show Axes menu entry an indicator

for the coordinate axes can be enabled.

Status information, warnings and errors are displayed in the console window.

The built-in text editor provides basic editing features like text search & replace and also supports syntax highlighting. There are predefined color

schemes which can be selected in the Preferences dialog.

OpenSCAD Editor with Find / Replace functionality.

The viewing area is navigated primarily using the mouse:

User Interface

Main Window of OpenSCAD with
a small program generating the
OpenSCAD-Logo.

Viewing area

Console window

Text editor

View navigation

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

10 of 63 01/13/2018 02:29 AM

Action Icons Description

rotating the view

Dragging with the left mouse button rotates the view along the axes of the viewing area.
It preserves the vertical axis' direction.

⇧ Shift +
Dragging with the left mouse button when the shift key is pressed rotates the view along
the vertical axis and the axis pointing towards the user.

moving the
viewing area

Dragging with the right mouse button moves the viewing area.

zooming

using the scroll wheel

dragging with the middle mouse button

⇧ Shift +

dragging with the right or middle mouse button and the shift key pressed
⇧ Shift +

+ and - the keys + and -

rotation reset Ctrl + 0 Rotation can be reset using the shortcut Ctrl + 0 .

movement reset Ctrl + P Movement can be reset using the shortcut Ctrl + P .

The viewing area can be configured to use different rendering methods and other options using the View menu. Most of the options described here

are available using shortcuts as well.

This method produces instantaneous results, but has low frame rates when working with highly nonconvex objects.

Note that selecting the OpenCSG mode using F9 will switch to the last generated OpenCSG view, but will not re-evaluate the source code. You may

want to use the Compile function (F5, found in the Design menu) to re-evaluate the source code, build the OpenCSG objects and then switch to

OpenCSG view.

In OpenCSG mode, the OpenCSG library (http://opencsg.org/) is used for generating the visible model. This library uses advanced OpenGL features

(2.0) like the Z buffer and does not require an explicit description of the resulting mesh – instead, it tracks how objects are to be combined. For

example, when rendering a spherical dent in a cube, it will first render the cube on the graphics card and then render the sphere, but instead of using

the Z buffer to hide the parts of the sphere that are covered by the cube, it will render only those parts of the sphere, visually resulting in a cube with

a spherical dent.

This method might need some time when first used with a new program, but will then have higher framerates.

As before with OpenCSG, F10 and F11 only enable CGAL display mode and don't update the underlying objects; for that, use the Compile and Render

function (F6, found in the Design menu).

To combine the benefits of those two display methods, you can selectively wrap parts of your program in a render function and force them to be

baken into a mesh even with OpenCSG mode enabled.

View setup

Render modes

OpenCSG (F9)

Implementation Details

CGAL (Surfaces and Grid, F10 and F11)

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

11 of 63 01/13/2018 02:29 AM

The acronym CGAL refers to The Open Source Computational Geometry Algorithms Library.

In CGAL mode, the CGAL library is used to compute the mesh of the root object, which is then displayed using simple OpenGL.

If Show Edges is enabled, both OpenCSG and CGAL mode will render edges as well as faces,

CGAL will even show vertices. In CGAL grid mode, this option has no effect.

Enabling this option shows the difference between OpenCSG and CGAL quite clearly: While

in CGAL mode you see an edge drawn everywhere it "belongs", OpenCSG will not show

edges resulting from boolean operations – this is because they were never explicitly

calculated but are just where one object's Z clipping begins or ends.

If Show Axes is enabled, the origin of the global coordinate system will be indicated by an

orthogonal axes indicator. Additionally, a smaller axes indicator with axes names will be

shown in the lower left corner of the viewing area. The smaller axes indicator is marked x, y,

z and coloured red, green, blue respectively.

If Show Crosshairs is enabled, the center of the viewport will be indicated by four lines pointing in the room diagonal directions of the global

coordinate system. This is useful when aligning the viewing area to a particular point in the model to keep it centered on screen during rotation.

The Animate option adds an animation bar to the lower edge of the screen. As soon as FPS and Steps are set (reasonable values to begin with are 10

and 100, respectively), the current Time is incremented by 1/Steps, FPS times per second, until it reaches 1, when it wraps back to 0.

Every time Time is changed, the program is re-evaluated with the variable $t set to the current time. Read more about how $t is used in section

Other_Language_Features.

The menu items Top, Bottom, …, Diagonal and Center (Ctrl+4, Ctrl+5, …, Ctrl+0, Ctrl+P) align the view to the global coordinate system.

Top, Bottom, Left, Right, Front and Back align it in parallel to the axes, the Diagonal option aligns it diagonally as it is aligned when OpenSCAD

starts.

The Center option will put the coordinate center in the middle of the screen (but not rotate the view).

By default, the view is in Perspective mode, meaning that distances far away from the viewer will look shorter, as it is common with eyes or cameras.

When the view mode is changed to Orthogonal, visible distances will not depend on the camera distance (the view will simulate a camera in an

infinite distance with an infinite focal length). This is especially useful in combination with the Top etc. options described above, as this will result in

a 2D image similar to what one would see in an engineering drawing. This is currently very good.

//create a dodecahedron by intersecting 6 boxes
module dodecahedron(height)
{
 scale([height,height,height]) //scale by height parameter
 {

Implementation Details

View options

Show Edges (Ctrl+1)

The difference between the CGAL and
OpenCSG approaches can be seen at edges
created by boolean operations.

Show Axes (Ctrl+2)

Show Crosshairs (Ctrl+3)

Animation

View alignment

Dodecahedron

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

12 of 63 01/13/2018 02:29 AM

 intersection(){
 //make a cube
 cube([2,2,1], center = true);
 intersection_for(i=[0:4]) //loop i from 0 to 4, and intersect results
 {
 //make a cube, rotate it 116.565 degrees around the X axis,
 //then 72*i around the Z axis
 rotate([0,0,72*i])
 rotate([116.565,0,0])
 cube([2,2,1], center = true);
 }
 }
 }
}
//create 3 stacked dodecahedra
//call the module with a height of 1 and move up 2
translate([0,0,2])dodecahedron(1);
//call the module with a height of 2
dodecahedron(2);
//call the module with a height of 4 and move down 4
translate([0,0,-4])dodecahedron(4);

// Rather kludgy module for determining bounding box from intersecting projections
module BoundingBox()
{
 intersection()
 {
 translate([0,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false) intersection()
 {
 rotate([0,90,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([0,-90,0])
 children(0);

 rotate([90,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([-90,0,0])
 children(0);
 }
 rotate([90,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([-90,0,0])
 intersection()
 {
 rotate([0,90,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([0,-90,0])
 children(0);

 rotate([0,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([0,0,0])
 children(0);
 }
 }
}

// Test module on ellipsoid
translate([0,0,40]) scale([1,2,3]) sphere(r=5);
BoundingBox() scale([1,2,3]) sphere(r=5);

The Dodecahedron as rendered
from the example.

Bounding Box

Bounding Box applied to an
Ellipsoid

Linear Extrude extended use examples

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

13 of 63 01/13/2018 02:29 AM

 //Linear Extrude with Scale as an interpolated function
 // This module does not need to be modified,
 // - unless default parameters want to be changed
 // - or additional parameters want to be forwarded (e.g. slices,...)
 module linear_extrude_fs(height=1,isteps=20,twist=0){
 //union of piecewise generated extrudes
 union(){
 for(i = [0: 1: isteps-1]){
 //each new piece needs to be adjusted for height
 translate([0,0,i*height/isteps])
 linear_extrude(
 height=height/isteps,
 twist=twist/isteps,
 scale=f_lefs((i+1)/isteps)/f_lefs(i/isteps)
)
 // if a twist constant is defined it is split into pieces
 rotate([0,0,-(i/isteps)*twist])
 // each new piece starts where the last ended
 scale(f_lefs(i/isteps))
 obj2D_lefs();
 }
 }
 }
 // This function defines the scale function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function f_lefs(x) =
 let(span=150,start=20,normpos=45)
 sin(x*span+start)/sin(normpos);
 // This module defines the base 2D object to be extruded
 // - Function name must not be modified
 // - Modify the contents to define the base 2D object
 module obj2D_lefs(){
 translate([-4,-3])
 square([9,12]);
 }

 //Top rendered object demonstrating the interpolation steps
 translate([0,0,25])
 linear_extrude_fs(height=20,isteps=4);

 linear_extrude_fs(height=20);

 //Bottom rendered object demonstrating the inclusion of a twist
 translate([0,0,-25])
 linear_extrude_fs(height=20,twist=90,isteps=30);

 //Linear Extrude with Twist as an interpolated function
 // This module does not need to be modified,
 // - unless default parameters want to be changed
 // - or additional parameters want to be forwarded (e.g. slices,...)
 module linear_extrude_ft(height=1,isteps=20,scale=1){
 //union of piecewise generated extrudes
 union(){
 for(i = [0: 1: isteps-1]){
 //each new piece needs to be adjusted for height
 translate([0,0,i*height/isteps])
 linear_extrude(
 height=height/isteps,
 twist=f_left((i+1)/isteps)-f_left((i)/isteps),
 scale=(1-(1-scale)*(i+1)/isteps)/(1-(1-scale)*i/isteps)
)
 //Rotate to next start point
 rotate([0,0,-f_left(i/isteps)])
 //Scale to end of last piece size
 scale(1-(1-scale)*(i/isteps))
 obj2D_left();
 }
 }

Linear Extrude with Scale as an interpolated function

Example Linear Extrude of a
rectangle with scale following
part of a sine curve function

Linear Extrude with Twist as an interpolated function

Example Linear Extrude of a
rectangle with twist following
part of a sine curve function

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

14 of 63 01/13/2018 02:29 AM

 }
 // This function defines the twist function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function f_left(x) =
 let(twist=90,span=180,start=0)
 twist*sin(x*span+start);
 // This module defines the base 2D object to be extruded
 // - Function name must not be modified
 // - Modify the contents to define the base 2D object
 module obj2D_left(){
 translate([-4,-3])
 square([12,9]);
 }

 //Left rendered object demonstrating the interpolation steps
 translate([-20,0])
 linear_extrude_ft(height=30,isteps=5);

 linear_extrude_ft(height=30);

 //Right rendered object demonstrating the scale inclusion
 translate([25,0])
 linear_extrude_ft(height=30,scale=3);

 //Linear Extrude with Twist and Scale as interpolated functions
 // This module does not need to be modified,
 // - unless default parameters want to be changed
 // - or additional parameters want to be forwarded
 module linear_extrude_ftfs(height=1,isteps=20,slices=0){
 //union of piecewise generated extrudes
 union(){
 for(i=[0:1:isteps-1]){
 translate([0,0,i*height/isteps])
 linear_extrude(
 height=height/isteps,
 twist=leftfs_ftw((i+1)/isteps)-leftfs_ftw(i/isteps),
 scale=leftfs_fsc((i+1)/isteps)/leftfs_fsc(i/isteps),
 slices=slices
)
 rotate([0,0,-leftfs_ftw(i/isteps)])
 scale(leftfs_fsc(i/isteps))
 obj2D_leftfs();
 }
 }
 }
 // This function defines the scale function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function leftfs_fsc(x)=
 let(scale=3,span=140,start=20)
 scale*sin(x*span+start);
 // This function defines the twist function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function leftfs_ftw(x)=
 let(twist=30,span=360,start=0)
 twist*sin(x*span+start);
 // This module defines the base 2D object to be extruded
 // - Function name must not be modified
 // - Modify the contents to define the base 2D object
 module obj2D_leftfs(){
 square([12,9]);
 }

 //Left rendered objects demonstrating the steps effect
 translate([0,-50,-60])
 rotate([0,0,90])
 linear_extrude_ftfs(height=50,isteps=3);

 translate([0,-50,0])
 linear_extrude_ftfs(height=50,isteps=3);

Linear Extrude with Twist and Scale as interpolated functions

Example Linear Extrude of a
rectangle with twist and scale
following part of a sine curve
function

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

15 of 63 01/13/2018 02:29 AM

 //Center rendered objects demonstrating the slices effect
 translate([0,0,-60])
 rotate([0,0,90])
 linear_extrude_ftfs(height=50,isteps=3,slices=20);

 linear_extrude_ftfs(height=50,isteps=3,slices=20);

 //Right rendered objects with default parameters
 translate([0,50,-60])
 rotate([0,0,90])
 linear_extrude_ftfs(height=50);

 translate([0,50,0])
 linear_extrude_ftfs(height=50);

// increase the visual detail
$fn = 100;
//
// the main body :
// a cylinder
rocket_d = 30; // 3 cm wide
rocket_r = rocket_d / 2;
rocket_h = 100; // 10 cm tall
cylinder(d = rocket_d, h = rocket_h);
//
// the head :
// a cone
head_d = 40; // 4 cm wide
head_r = head_d / 2;
head_h = 40; // 4 cm tall
// prepare a triangle
tri_base = head_r;
tri_height = head_h;
tri_points = [
 [0,0],
 [tri_base,0],
 [0,tri_height]];
// rotation around X-axis and then 360° around Z-axis
// put it on top of rocket's body
translate([0,0,rocket_h])
 rotate_extrude(angle = 360)
 polygon(tri_points);
//
// the wings :
// 3x triangles
wing_w = 2; // 2 mm thick
many = 3; // 3x wings
wing_l = 40; // length
wing_h = 40; // height
wing_points = [[0,0],[wing_l,0],[0,wing_h]];
module wing() {
 // let it a bit inside the main body
 in_by = 1; // 1 mm
 // set it up on the rocket's perimeter
 translate([rocket_r - in_by,0,0])
 // set it upright by rotating around X-axis
 rotate([90,0,0])
 // set some width and center it
 linear_extrude(height = wing_w,center = true)
 // make a triangle
 polygon(wing_points);
}
for (i = [0:many-1])
 rotate([0,0,360/many*i])
 wing();

OpenSCAD can not only be used as a GUI, but also handles command line arguments. Its usage line says:

OpenSCAD 2015.03-1 has these options:

Rocket

A rocket using rotate_extrude()

Command line usage

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

16 of 63 01/13/2018 02:29 AM

openscad [-o output_file [-d deps_file]]\
 [-m make_command] [-D var=val [..]] \
 [--help] print this help message and exit \
 [--version] [--info] \
 [--camera=translatex,y,z,rotx,y,z,dist | \
 --camera=eyex,y,z,centerx,y,z] \
 [--autocenter] \
 [--viewall] \
 [--imgsize=width,height] [--projection=(o)rtho|(p)ersp] \
 [--render | --preview[=throwntogether]] \
 [--colorscheme=[Cornfield|Sunset|Metallic|Starnight|BeforeDawn|Nature|DeepOcean]] \
 [--csglimit=num]\
 filename

OpenSCAD 2014.03+ has these options:

openscad [-o output_file [-d deps_file]]\
 [-m make_command] [-D var=val [..]] \
 [--version] [--info] \
 [--camera=translatex,y,z,rotx,y,z,dist | \
 --camera=eyex,y,z,centerx,y,z] \
 [--imgsize=width,height] [--projection=(o)rtho|(p)ersp] \
 [--render | --preview[=throwntogether]] \
 [--csglimit=num] \
 filename

Openscad 2013.05 had these options:

openscad [-o output_file [-d deps_file]]\
 [-m make_command] [-D var=val [..]] [--render] \
 [--camera=translatex,y,z,rotx,y,z,dist | \
 --camera=eyex,y,z,centerx,y,z] \
 [--imgsize=width,height] [--projection=(o)rtho|(p)ersp] \
 filename

Earlier releases had only these:

openscad [-o output_file [-d deps_file]] \
 [-m make_command] [-D var=val [..]] filename

The usage on OpenSCAD version 2011.09.30 (now deprecated) was:

openscad [{ -s stl_file | -o off_file | -x dxf_file } [-d deps_file]]\
 [-m make_command] [-D var=val [..]] filename

When called with the -o option, OpenSCAD will not start the GUI, but execute the given file and export the to the output_file in a format depending

on the extension (.stl / .off / .dxf, .csg).

Some versions use -s/-d/-o to determine the output file format instead; check with "openscad --help".

If the option -d is given in addition to an export command, all files accessed while building the mesh are written in the argument of -d in the syntax

of a Makefile.

For at least 2015.03-2+, specifying the extension .echo causes openscad to produce a text file containing error messages and the output of all

echo() calls in filename as they would appear in the console window visible in the GUI. Multiple output files are not supported, so using this

option you cannot also obtain the model that would have normally been generated.

For 2013.05+, the option to output a .png image was added. There are two types of cameras available for the generation of images.

The first camera type is a 'gimbal' camera that uses Euler angles, translation, and a camera distance, like OpenSCAD's GUI viewport display at the

bottom of the OpenSCAD window.

The second camera type is a 'vector' camera, with an 'eye' camera location vector and a 'lookat' center vector.

Export options

Camera and image output

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

17 of 63 01/13/2018 02:29 AM

--imgsize chooses the .png dimensions and --projection chooses orthogonal or perspective, as in the GUI.

By default, cmdline .png output uses Preview mode (f5) with OpenCSG. For some situations it will be desirable instead to use the full render, with

CGAL. This is done by adding '--render' as an option.

In order to pre-define variables, use the -D option. It can be given repeatedly. Each occurrence of -D must be followed by an assignment. Unlike

normal OpenSCAD assignments, these assignments don't define variables, but constants, which can not be changed inside the program, and can thus

be used to overwrite values defined in the program at export time.

If you want to assign the -D variable to another variable, the -D variable MUST be initialised in the main .scad program

param1=0; // must be initalised
len=param1; // param1 passed via -D on cmd-line
echo(len,param);

without the first line len wound be undefined.

The right hand sides can be arbitrary OpenSCAD expressions, including mathematical operations and strings. Be aware that strings have to be

enclosed in quotes, which have to be escaped from the shell. To render a model that takes a quality parameter with the value "production", one has to

run

openscad -o my_model_production.stl -D 'quality="production"' my_model.scad

On Windows you may need to escape the inner quotes instead:

openscad -o my_model_production.stl -D "quality=\"production\"" my_model.scad

In a complex build process, some files required by an OpenSCAD file might be currently missing, but can be generated, for example if they are

defined in a Makefile. If OpenSCAD is given the option -m make, it will start make file the first time it tries to access a missing file.

Example to convert all the .scad in a folder into .stl:

In a folder with .scad files, make a .bat file with text:

 FOR %%f in (*.scad) DO openscad -o "%%~nf.stl" "%%f"

If it closes without processing, check to set the PATH by adding openscad directory to:

 Start - Settings - Control Panel - System - Advanced tab - Environment Variables - System Variables, select Path, then click Edit.

Add the openscad directory to the list

The -d and -m options only make sense together. (-m without -d would not consider modified dependencies when building exports, -d without -m

would require the files to be already built for the first run that generates the dependencies.)

Here is an example of a basic Makefile that creates an .stl file from an .scad file of the same name:

explicit wildcard expansion suppresses errors when no files are found

Constants

Command to build required files

Processing all .scad files in a folder

Makefile example

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

18 of 63 01/13/2018 02:29 AM

include $(wildcard *.deps)

%.stl: %.scad
 openscad -m make -o $@ -d $@.deps $<

When make my_example.stl is run for the first time, it finds no .deps files, and will just depend on my_example.scad; since my_example.stl

is not yet preset, it will be created unconditionally. If OpenSCAD finds missing files, it will call make to build them, and it will list all used files in

my_example.stl.deps.

When make my_example.stl is called subsequently, it will find and include my_example.stl.deps and check if any of the files listed there,

including my_example.scad, changed since my_example.stl was built, based on their time stamps. Only if that is the case, it will build

my_example.stl again.

When building similar .stl files from a single .scad file, there is a way to automate that too:

match "module foobar() { // `make` me"
TARGETS=$(shell sed '/^module [a-z0-9_-]*().*make..\?me.*$$/!d;s/module //;s/().*/.stl/' base.scad)

all: ${TARGETS}

auto-generated .scad files with .deps make make re-build always. keeping the
scad files solves this problem. (explanations are welcome.)
.SECONDARY: $(shell echo "${TARGETS}" | sed 's/\.stl/.scad/g')

explicit wildcard expansion suppresses errors when no files are found
include $(wildcard *.deps)

%.scad:
 echo -n 'use <base.scad>\n$*();' > $@

%.stl: %.scad
 openscad -m make -o $@ -d $@.deps $<

All objects that are supposed to be exported automatically have to be defined in base.scad in an own module with their future file name (without

the ".stl"), and have a comment like "// make me" in the line of the module definition. The "TARGETS=" line picks these out of the base file and

creates the file names. These will be built when make all (or make, for short) is called.

As the convention from the last example is to create the .stl files from .scad files of the same base name, for each of these files, an .scad file has to be

generated. This is done in the "%.scad:" paragraph; my_example.scad will be a very simple OpenSCAD file:

use <base.scad>
my_example();

The ".SECONDARY" line is there to keep make from deleting the generated .scad files. If it deleted it, it would not be able to automatically determine

which files need no rebuild any more; please post ideas about what exactly goes wrong there (or how to fix it better) on the talk page!

On Windows, openscad.com should be called from the command line as a wrapper for openscad.exe. This is because Openscad uses the 'devenv'

solution to the Command-Line/GUI output issue. Typing 'openscad' at the cmd.exe prompt will, by default, call the .com program wrapper.

On MacOS the binary is normally hidden inside the App folder. If OpenSCAD is installed in the global Applications folder, it can be called from

command line like in the following example that just shows the OpenSCAD version:

macbook:/$ /Applications/OpenSCAD.app/Contents/MacOS/OpenSCAD -v
OpenSCAD version 2013.06

Alternatively, you may create a symbolic link to the binary to make calls from the command line easier:

 macbook:/$ sudo ln -sf /Applications/OpenSCAD.app/Contents/MacOS/OpenSCAD /usr/local/bin/openscad

Automatic targets

Windows notes

MacOS notes

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

19 of 63 01/13/2018 02:29 AM

Now you can call openscad directly without having to type in the full path.

 macbook:/$ openscad -v
 OpenSCAD version 2015.03-3

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

20 of 63 01/13/2018 02:29 AM

Chapter 3 -- Commented Example Projects
OpenSCAD User Manual

//create a dodecahedron by intersecting 6 boxes
module dodecahedron(height)
{
 scale([height,height,height]) //scale by height parameter
 {
 intersection(){
 //make a cube
 cube([2,2,1], center = true);
 intersection_for(i=[0:4]) //loop i from 0 to 4, and intersect results
 {
 //make a cube, rotate it 116.565 degrees around the X axis,
 //then 72*i around the Z axis
 rotate([0,0,72*i])
 rotate([116.565,0,0])
 cube([2,2,1], center = true);
 }
 }
 }
}
//create 3 stacked dodecahedra
//call the module with a height of 1 and move up 2
translate([0,0,2])dodecahedron(1);
//call the module with a height of 2
dodecahedron(2);
//call the module with a height of 4 and move down 4
translate([0,0,-4])dodecahedron(4);

// Rather kludgy module for determining bounding box from intersecting projections
module BoundingBox()
{
 intersection()
 {
 translate([0,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false) intersection()
 {
 rotate([0,90,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([0,-90,0])
 children(0);

 rotate([90,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([-90,0,0])
 children(0);
 }
 rotate([90,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([-90,0,0])
 intersection()
 {
 rotate([0,90,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([0,-90,0])
 children(0);

 rotate([0,0,0])
 linear_extrude(height = 1000, center = true, convexity = 10, twist = 0)
 projection(cut=false)
 rotate([0,0,0])
 children(0);
 }
 }

Dodecahedron

The Dodecahedron as rendered
from the example.

Bounding Box

Bounding Box applied to an
Ellipsoid

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

21 of 63 01/13/2018 02:29 AM

}

// Test module on ellipsoid
translate([0,0,40]) scale([1,2,3]) sphere(r=5);
BoundingBox() scale([1,2,3]) sphere(r=5);

 //Linear Extrude with Scale as an interpolated function
 // This module does not need to be modified,
 // - unless default parameters want to be changed
 // - or additional parameters want to be forwarded (e.g. slices,...)
 module linear_extrude_fs(height=1,isteps=20,twist=0){
 //union of piecewise generated extrudes
 union(){
 for(i = [0: 1: isteps-1]){
 //each new piece needs to be adjusted for height
 translate([0,0,i*height/isteps])
 linear_extrude(
 height=height/isteps,
 twist=twist/isteps,
 scale=f_lefs((i+1)/isteps)/f_lefs(i/isteps)
)
 // if a twist constant is defined it is split into pieces
 rotate([0,0,-(i/isteps)*twist])
 // each new piece starts where the last ended
 scale(f_lefs(i/isteps))
 obj2D_lefs();
 }
 }
 }
 // This function defines the scale function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function f_lefs(x) =
 let(span=150,start=20,normpos=45)
 sin(x*span+start)/sin(normpos);
 // This module defines the base 2D object to be extruded
 // - Function name must not be modified
 // - Modify the contents to define the base 2D object
 module obj2D_lefs(){
 translate([-4,-3])
 square([9,12]);
 }

 //Top rendered object demonstrating the interpolation steps
 translate([0,0,25])
 linear_extrude_fs(height=20,isteps=4);

 linear_extrude_fs(height=20);

 //Bottom rendered object demonstrating the inclusion of a twist
 translate([0,0,-25])
 linear_extrude_fs(height=20,twist=90,isteps=30);

 //Linear Extrude with Twist as an interpolated function
 // This module does not need to be modified,
 // - unless default parameters want to be changed
 // - or additional parameters want to be forwarded (e.g. slices,...)
 module linear_extrude_ft(height=1,isteps=20,scale=1){
 //union of piecewise generated extrudes

Linear Extrude extended use examples

Linear Extrude with Scale as an interpolated function

Example Linear Extrude of a
rectangle with scale following
part of a sine curve function

Linear Extrude with Twist as an interpolated function

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

22 of 63 01/13/2018 02:29 AM

 union(){
 for(i = [0: 1: isteps-1]){
 //each new piece needs to be adjusted for height
 translate([0,0,i*height/isteps])
 linear_extrude(
 height=height/isteps,
 twist=f_left((i+1)/isteps)-f_left((i)/isteps),
 scale=(1-(1-scale)*(i+1)/isteps)/(1-(1-scale)*i/isteps)
)
 //Rotate to next start point
 rotate([0,0,-f_left(i/isteps)])
 //Scale to end of last piece size
 scale(1-(1-scale)*(i/isteps))
 obj2D_left();
 }
 }
 }
 // This function defines the twist function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function f_left(x) =
 let(twist=90,span=180,start=0)
 twist*sin(x*span+start);
 // This module defines the base 2D object to be extruded
 // - Function name must not be modified
 // - Modify the contents to define the base 2D object
 module obj2D_left(){
 translate([-4,-3])
 square([12,9]);
 }

 //Left rendered object demonstrating the interpolation steps
 translate([-20,0])
 linear_extrude_ft(height=30,isteps=5);

 linear_extrude_ft(height=30);

 //Right rendered object demonstrating the scale inclusion
 translate([25,0])
 linear_extrude_ft(height=30,scale=3);

 //Linear Extrude with Twist and Scale as interpolated functions
 // This module does not need to be modified,
 // - unless default parameters want to be changed
 // - or additional parameters want to be forwarded
 module linear_extrude_ftfs(height=1,isteps=20,slices=0){
 //union of piecewise generated extrudes
 union(){
 for(i=[0:1:isteps-1]){
 translate([0,0,i*height/isteps])
 linear_extrude(
 height=height/isteps,
 twist=leftfs_ftw((i+1)/isteps)-leftfs_ftw(i/isteps),
 scale=leftfs_fsc((i+1)/isteps)/leftfs_fsc(i/isteps),
 slices=slices
)
 rotate([0,0,-leftfs_ftw(i/isteps)])
 scale(leftfs_fsc(i/isteps))
 obj2D_leftfs();
 }
 }
 }
 // This function defines the scale function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function leftfs_fsc(x)=
 let(scale=3,span=140,start=20)
 scale*sin(x*span+start);
 // This function defines the twist function
 // - Function name must not be modified
 // - Modify the contents/return value to define the function
 function leftfs_ftw(x)=
 let(twist=30,span=360,start=0)
 twist*sin(x*span+start);
 // This module defines the base 2D object to be extruded

Example Linear Extrude of a
rectangle with twist following
part of a sine curve function

Linear Extrude with Twist and Scale as interpolated functions

Example Linear Extrude of a
rectangle with twist and scale
following part of a sine curve
function

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

23 of 63 01/13/2018 02:29 AM

 // - Function name must not be modified
 // - Modify the contents to define the base 2D object
 module obj2D_leftfs(){
 square([12,9]);
 }

 //Left rendered objects demonstrating the steps effect
 translate([0,-50,-60])
 rotate([0,0,90])
 linear_extrude_ftfs(height=50,isteps=3);

 translate([0,-50,0])
 linear_extrude_ftfs(height=50,isteps=3);

 //Center rendered objects demonstrating the slices effect
 translate([0,0,-60])
 rotate([0,0,90])
 linear_extrude_ftfs(height=50,isteps=3,slices=20);

 linear_extrude_ftfs(height=50,isteps=3,slices=20);

 //Right rendered objects with default parameters
 translate([0,50,-60])
 rotate([0,0,90])
 linear_extrude_ftfs(height=50);

 translate([0,50,0])
 linear_extrude_ftfs(height=50);

// increase the visual detail
$fn = 100;
//
// the main body :
// a cylinder
rocket_d = 30; // 3 cm wide
rocket_r = rocket_d / 2;
rocket_h = 100; // 10 cm tall
cylinder(d = rocket_d, h = rocket_h);
//
// the head :
// a cone
head_d = 40; // 4 cm wide
head_r = head_d / 2;
head_h = 40; // 4 cm tall
// prepare a triangle
tri_base = head_r;
tri_height = head_h;
tri_points = [
 [0,0],
 [tri_base,0],
 [0,tri_height]];
// rotation around X-axis and then 360° around Z-axis
// put it on top of rocket's body
translate([0,0,rocket_h])
 rotate_extrude(angle = 360)
 polygon(tri_points);
//
// the wings :
// 3x triangles
wing_w = 2; // 2 mm thick
many = 3; // 3x wings
wing_l = 40; // length
wing_h = 40; // height
wing_points = [[0,0],[wing_l,0],[0,wing_h]];
module wing() {
 // let it a bit inside the main body
 in_by = 1; // 1 mm
 // set it up on the rocket's perimeter
 translate([rocket_r - in_by,0,0])
 // set it upright by rotating around X-axis
 rotate([90,0,0])
 // set some width and center it
 linear_extrude(height = wing_w,center = true)
 // make a triangle
 polygon(wing_points);

Rocket

A rocket using rotate_extrude()

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

24 of 63 01/13/2018 02:29 AM

}
for (i = [0:many-1])
 rotate([0,0,360/many*i])
 wing();

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

25 of 63 01/13/2018 02:29 AM

Chapter 4 -- Export
OpenSCAD User Manual

After rendering with F6, the "File --> Export" menu can be used to export as STL, OFF, AMF, DXF, SVG, CSG OR PNG (Image).

Be sure to check the console window for err messages.

 STL, OFF and DXF are imported using import().
 CSG can be imported using include<> or loaded like an SCAD file
 PNG can be imported using surface()
 There are open pull requests for SVG and AMF, which require a bit more work/testing.
 The file suffix is used to determine type.

To export your design, select "Export as STL..." from the "File --> Export" menu, then enter a filename in the ensuing dialog box. Don't forget to add

the ".stl" extension.

Trouble shooting:

After compile and render CGAL (F6), you may see that your design is simple: no. That's bad news.

See line 8 in the following output from OpenSCAD 2010.02:

Parsing design (AST generation)...
Compiling design (CSG Tree generation)...
Compilation finished.
Rendering Polygon Mesh using CGAL...
Number of vertices currently in CGAL cache: 732
Number of objects currently in CGAL cache: 12
 Top level object is a 3D object:
 Simple: no <*****************
 Valid: yes
 Vertices: 22
 Halfedges: 70
 Edges: 35
 Halffacets: 32
 Facets: 16
 Volumes: 2
Total rendering time: 0 hours, 0 minutes, 0 seconds
Rendering finished.

When you try to export this to .STL you will get a message like:

Object isn't a valid 2-manifold! Modify your design..

"Manifold" means that it is "water tight" and that there are no holes in the geometry. In a valid 2-manifold each edge must connect exactly two facets.

That means that the program must be able to connect a face with an object. E.g. if you use a cube of height 10 to carve out something from a wider

cube of height 10, it is not clear to which cube the top or the bottom belongs. So make the small extracting cube a bit "longer" (or "shorter"):

difference() {
// original
cube (size = [2,2,2]);
// object that carves out
translate ([0.5,0.5,-0.5]) {
 cube (size = [1,1,3]);
}

}

Export

STL Export

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

26 of 63 01/13/2018 02:29 AM

Correct use of difference

Here is a more tricky little example taken from the OpenSCAD (http://rocklinux.net/pipermail/openscad/2009-December/000018.html) Forum

(retrieved 15:13, 22 March 2010 (UTC)):

module example1() {
cube([20, 20, 20]);
translate([-20, -20, 0]) cube([20, 20, 20]);
cube([50, 50, 5], center = true);

}
module example2() {

cube([20.1, 20.1, 20]);
translate([-20, -20, 0]) cube([20.1, 20.1, 20]);
cube([50, 50, 5], center = true);

}

Example1 would render like this:

A not valid 2-manifold cube (simple = no)

The example1 module is not a valid 2-manifold because both cubes are sharing one edge. They touch each other but do not intersect.

Example2 is a valid 2-manifold because there is an intersection. Now the construct meets the 2-manifold constraint stipulating that each edge must

connect exactly two facets.

Pieces you are subtracting must extend past the original part. (OpenSCAD Tip: Manifold Space and Time (http://www.iheartrobotics.com/2010/01

/openscad-tip-manifold-space-and-time.html), retrieved 18:40, 22 March 2010 (UTC)).

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

27 of 63 01/13/2018 02:29 AM

For reference, another situation that causes the design to be non-exportable is when two faces that are each the result of a subtraction touch. Then

the error message comes up.

difference () {
 cube ([20,10,10]);
 translate ([10,0,0]) cube (10);
}
difference () {
 cube ([20,10,10]);
 cube (10);
}

simply touching surfaces is correctly handled.

translate ([10,0,0]) cube (10);
cube (10);

- STL, OFF, AMF, DXF, SVG, CSG, PNG

With the import() and extrusion modules it is possible to convert 2D objects read from DXF files to 3D objects. See also 2D to 3D Extrusion.

Example of linear extrusion of a 2D object imported from a DXF file.

linear_extrude(height = fanwidth, center = true, convexity = 10)
 import (file = "example009.dxf", layer = "fan_top");

Example of rotational extrusion of a 2D object imported from a DXF file.

rotate_extrude(convexity = 10)
 import (file = "example009.dxf", layer = "fan_side", origin = fan_side_center);

Inkscape is an open source drawing program. Tutorials for transferring 2d DXF drawings from Inkscape to OpenSCAD are available here:

http://repraprip.blogspot.com/2011/05/inkscape-to-openscad-dxf-tutorial.html (Very simple, needs path segments to be
straight lines)

http://tonybuser.com/?tag=inkscape (More complicated, involves conversion to Postscript)

http://bobcookdev.com/inkscape/inkscape-dxf.html (Better DXF Export, native support for bezier curves)

http://www.bigbluesaw.com/saw/big-blue-saw-blog/general-updates/big-blue-saws-dxf-export-for-inkscape.html (even better
support, works as of 10/29/2014, see link below registration window. Note: As of 6/17/15 only works with version 0.48.5 or
earlier of inkscape, due to a breaking change made in 0.91.)

http://www.instructables.com/id/Convert-any-2D-image-to-a-3D-object-using-OpenSCAD/ (Convert any 2D image to a 3D object
using OpenSCAD)

Currently, OpenSCAD only supports DXF as a graphics format for 2D graphics. Other common formats are PS/EPS, SVG and AI.

The pstoedit (http://www.pstoedit.net/) program can convert between various vector graphics formats. OpenSCAD needs the -polyaslines option

passed to the dxf output plugin to understand the file. The -mm option sets one mm to be one unit in the dxf; include this if you use one unit in

OpenSCAD as equal to one millimeter. The -dt options instructs pstoedit to render texts, which is usually what you want if you include text. (If the

rendered text's resolution in terms of polygon count is too low, the easiest solution is to scape up the eps before converting; if you know a more

elegant solution, please add it to the example.)

Linear Extrude

Rotate Extrude

Getting Inkscape to work

PS/EPS

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

28 of 63 01/13/2018 02:29 AM

pstoedit -dt -f "dxf: -polyaslines -mm" infile.eps outfile.dxf

Inkscape (http://inkscape.org) can convert SVG to EPS. Then pstoedit can convert the EPS to DXF.

inkscape -E intermediate.eps infile.svg
pstoedit -dt -f dxf:-polyaslines\ -mm intermediate.eps outfile.dxf

The conversion can be automated using the make system; put the following lines in your Makefile:

 all: my_first_file.dxf my_second_file.dxf another_file.dxf

 %.eps: %.svg
 inkscape -E $@ $<

 %.dxf: %.eps
 pstoedit -dt -f dxf:-polyaslines\ -mm $< $@

The first line specifies which dxf files are to be generated when make is called in the current directory. The second paragraph specifies how to convert

a file ending in .svg to a file ending in .eps, and the third from .eps to .dxf.

A more complete makefile could autogenerate dxf files from the any svg in the folder. In which case, put the following lines into your Makefile:

SVG := $(wildcard *.svg)
DXF := $(SVG:%.svg=%.dxf)
EPS := $(SVG:%.svg=%.eps)

.PHONY: all clean clean-eps clean-dxf

all: $(DXF)

%.eps: %.svg
inkscape -E $*.eps $*.svg

%.dxf: %.eps
pstoedit -dt -f "dxf: -polyaslines -mm" $*.eps $*.dxf

clean: clean-dxf clean-eps

clean-dxf:
rm -f $(DXF)

clean-eps:
rm -f $(EPS)

It's still possible to call make filename.dxf to build a particular file, but this code also allows for (re)building of all dxf files in a folder just by

calling make or make all.

This code is also universal enough that it's possible to put the code in a single file and symlink every makefile in any directory that has svg files for dxf

conversion by running:

ln -s /path/to/this/svg_to_dxf_makefile makefile

in each respective directory.

Although Adobe Illustrator CC/CC.2014 allows you to export illustrations as DXF (and select DXF format versions as early as 12), it will use DXF

entities that are not supported by OpenSCAD, such as POLYLINE and SPLINE.

Since pstoedit does not natively support Adobe Illustrator files, one alternative is to use EXDXF (http://www.baby-universe.co.jp/en/plug-

in/products/exdxf-pro/) which is an Adobe Illustrator plug-in (30 free trial exports and then you have to pay $90 to register the plugin).

SVG

Makefile automation

AI (Adobe Illustrator)

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

29 of 63 01/13/2018 02:29 AM

Before exporting, it is recommended that you ensure that your Artboard is the same dimensions as the component you are exporting. Although

EXDXF provides you with numerous options when exporting to DXF the most important option for OpenSCAD compliance is to set Line

Conversion to Line and Arc.

OpenSCAD doesn't always provide information about the issues it encountered with a DXF import. If this happens, select Design | Flush

Caches and then Design | Reload and Compile.

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

30 of 63 01/13/2018 02:29 AM

Chapter 5 -- Using an external Editor with OpenSCAD
OpenSCAD User Manual

Many people prefer to use a certain editor. They are used to the feature set and know the keybindings.

OpenSCADs editor is functional and simplistic but might lack features people know from other editors.

OpenScad is able to check for changes of files and automatically recompile if a file change occurs. To use

this feature enable "Design->Automatic Reload and Compile"

Once the feature is activated, just load the scad file within OpenSCAD as usual ("File->Open.."). After that,

open the scad file in your favorite editor too. Edit and work on the scad file within the external editor.

Whenever the file is saved to disk (from within the external editor), OpenSCAD will recognize the file

change and automatically recompiles accordingly.

The internal editor can be hidden by minimizing the frame with the mouse or by selecting "View->Hide

editor".

In principle all editors can be used. For some exist extensions/modes to provide features for OpenSCAD.

Atom: There is a Language OpenSCAD package (https://atom.io/packages/language-openscad) for Atom (https://atom.io) that
provides highlighting and snippets.

Emacs: OpenSCAD provides an emacs mode (https://github.com/openscad/openscad/blob/master/contrib/scad-mode.el) for
OpenSCAD files. Use the link or install via emacs package management (ELPA) with the MELPA (https://melpa.org) repository.

Geany: cobra18t (http://www.thingiverse.com/cobra18t/overview) provides a Geany syntax file (http://www.thingiverse.com
/thing:263620) for OpenSCAD. See Instructions tab in Thingiverse to install it.

Gedit: Andy Turner (https://github.com/AndrewJamesTurner) provides a Gedit syntax file (https://github.com
/AndrewJamesTurner/openSCAD-lang-file) for OpenSCAD.

Kate: nerd256 (http://www.thingiverse.com/nerd256/overview) provides a kate syntax file (http://www.thingiverse.com
/thing:29505) for OpenSCAD. See Instructions tab in Thingiverse to install it. You could create also a kate External tool to open
OpenSCAD with the current file with script openscad %directory/%filename

Notepad++: TheHeadlessSourceMan (http://www.thingiverse.com/TheHeadlessSourceMan/overview) provides a Notepad++
syntax file (http://www.thingiverse.com/thing:280319) for OpenSCAD. See Instructions tab in Thingiverse to install it.

OpenSCADitor: OpenSCAD-dedicated editor (http://rcs-34.net//software/openscaditor/index.php)

Sublime: Syntax highlighting and Customizer support (http://www.thingiverse.com/thing:67566)

Textmate: Syntax highlighting and Customizer support (http://www.thingiverse.com/thing:67566)

VIM: vim.org provides a VIM syntax file (http://www.vim.org/scripts/script.php?script_id=3556) for OpenSCAD.

Visual Studio Code: Free, open-source code editor (https://code.visualstudio.com/) Install the scad extension for syntax
highlighting

Besides using your editor of choice, this solutions enables the flexible usage of multi-monitor set-ups. One can have one monitor set-up to depict the

3D object on the entire screen and a second monitor for the editor and other tools.

OpenSCAD session using emacs
as an external editor

Why use an external editor

How to use an external editor

Support of external editors

Additional benefits

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

31 of 63 01/13/2018 02:29 AM

Chapter 6 -- Using OpenSCAD in a command line
environment
OpenSCAD User Manual

OpenSCAD can not only be used as a GUI, but also handles command line arguments. Its usage line says:

OpenSCAD 2015.03-1 has these options:

openscad [-o output_file [-d deps_file]]\
 [-m make_command] [-D var=val [..]] \
 [--help] print this help message and exit \
 [--version] [--info] \
 [--camera=translatex,y,z,rotx,y,z,dist | \
 --camera=eyex,y,z,centerx,y,z] \
 [--autocenter] \
 [--viewall] \
 [--imgsize=width,height] [--projection=(o)rtho|(p)ersp] \
 [--render | --preview[=throwntogether]] \
 [--colorscheme=[Cornfield|Sunset|Metallic|Starnight|BeforeDawn|Nature|DeepOcean]] \
 [--csglimit=num]\
 filename

OpenSCAD 2014.03+ has these options:

openscad [-o output_file [-d deps_file]]\
 [-m make_command] [-D var=val [..]] \
 [--version] [--info] \
 [--camera=translatex,y,z,rotx,y,z,dist | \
 --camera=eyex,y,z,centerx,y,z] \
 [--imgsize=width,height] [--projection=(o)rtho|(p)ersp] \
 [--render | --preview[=throwntogether]] \
 [--csglimit=num] \
 filename

Openscad 2013.05 had these options:

openscad [-o output_file [-d deps_file]]\
 [-m make_command] [-D var=val [..]] [--render] \
 [--camera=translatex,y,z,rotx,y,z,dist | \
 --camera=eyex,y,z,centerx,y,z] \
 [--imgsize=width,height] [--projection=(o)rtho|(p)ersp] \
 filename

Earlier releases had only these:

openscad [-o output_file [-d deps_file]] \
 [-m make_command] [-D var=val [..]] filename

The usage on OpenSCAD version 2011.09.30 (now deprecated) was:

openscad [{ -s stl_file | -o off_file | -x dxf_file } [-d deps_file]]\
 [-m make_command] [-D var=val [..]] filename

When called with the -o option, OpenSCAD will not start the GUI, but execute the given file and export the to the output_file in a format depending

on the extension (.stl / .off / .dxf, .csg).

Some versions use -s/-d/-o to determine the output file format instead; check with "openscad --help".

If the option -d is given in addition to an export command, all files accessed while building the mesh are written in the argument of -d in the syntax

of a Makefile.

Command line usage

Export options

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

32 of 63 01/13/2018 02:29 AM

For at least 2015.03-2+, specifying the extension .echo causes openscad to produce a text file containing error messages and the output of all

echo() calls in filename as they would appear in the console window visible in the GUI. Multiple output files are not supported, so using this

option you cannot also obtain the model that would have normally been generated.

For 2013.05+, the option to output a .png image was added. There are two types of cameras available for the generation of images.

The first camera type is a 'gimbal' camera that uses Euler angles, translation, and a camera distance, like OpenSCAD's GUI viewport display at the

bottom of the OpenSCAD window.

The second camera type is a 'vector' camera, with an 'eye' camera location vector and a 'lookat' center vector.

--imgsize chooses the .png dimensions and --projection chooses orthogonal or perspective, as in the GUI.

By default, cmdline .png output uses Preview mode (f5) with OpenCSG. For some situations it will be desirable instead to use the full render, with

CGAL. This is done by adding '--render' as an option.

In order to pre-define variables, use the -D option. It can be given repeatedly. Each occurrence of -D must be followed by an assignment. Unlike

normal OpenSCAD assignments, these assignments don't define variables, but constants, which can not be changed inside the program, and can thus

be used to overwrite values defined in the program at export time.

If you want to assign the -D variable to another variable, the -D variable MUST be initialised in the main .scad program

param1=0; // must be initalised
len=param1; // param1 passed via -D on cmd-line
echo(len,param);

without the first line len wound be undefined.

The right hand sides can be arbitrary OpenSCAD expressions, including mathematical operations and strings. Be aware that strings have to be

enclosed in quotes, which have to be escaped from the shell. To render a model that takes a quality parameter with the value "production", one has to

run

openscad -o my_model_production.stl -D 'quality="production"' my_model.scad

On Windows you may need to escape the inner quotes instead:

openscad -o my_model_production.stl -D "quality=\"production\"" my_model.scad

In a complex build process, some files required by an OpenSCAD file might be currently missing, but can be generated, for example if they are

defined in a Makefile. If OpenSCAD is given the option -m make, it will start make file the first time it tries to access a missing file.

Example to convert all the .scad in a folder into .stl:

In a folder with .scad files, make a .bat file with text:

 FOR %%f in (*.scad) DO openscad -o "%%~nf.stl" "%%f"

If it closes without processing, check to set the PATH by adding openscad directory to:

 Start - Settings - Control Panel - System - Advanced tab - Environment Variables - System Variables, select Path, then click Edit.

Camera and image output

Constants

Command to build required files

Processing all .scad files in a folder

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

33 of 63 01/13/2018 02:29 AM

Add the openscad directory to the list

The -d and -m options only make sense together. (-m without -d would not consider modified dependencies when building exports, -d without -m

would require the files to be already built for the first run that generates the dependencies.)

Here is an example of a basic Makefile that creates an .stl file from an .scad file of the same name:

explicit wildcard expansion suppresses errors when no files are found
include $(wildcard *.deps)

%.stl: %.scad
 openscad -m make -o $@ -d $@.deps $<

When make my_example.stl is run for the first time, it finds no .deps files, and will just depend on my_example.scad; since my_example.stl

is not yet preset, it will be created unconditionally. If OpenSCAD finds missing files, it will call make to build them, and it will list all used files in

my_example.stl.deps.

When make my_example.stl is called subsequently, it will find and include my_example.stl.deps and check if any of the files listed there,

including my_example.scad, changed since my_example.stl was built, based on their time stamps. Only if that is the case, it will build

my_example.stl again.

When building similar .stl files from a single .scad file, there is a way to automate that too:

match "module foobar() { // `make` me"
TARGETS=$(shell sed '/^module [a-z0-9_-]*().*make..\?me.*$$/!d;s/module //;s/().*/.stl/' base.scad)

all: ${TARGETS}

auto-generated .scad files with .deps make make re-build always. keeping the
scad files solves this problem. (explanations are welcome.)
.SECONDARY: $(shell echo "${TARGETS}" | sed 's/\.stl/.scad/g')

explicit wildcard expansion suppresses errors when no files are found
include $(wildcard *.deps)

%.scad:
 echo -n 'use <base.scad>\n$*();' > $@

%.stl: %.scad
 openscad -m make -o $@ -d $@.deps $<

All objects that are supposed to be exported automatically have to be defined in base.scad in an own module with their future file name (without

the ".stl"), and have a comment like "// make me" in the line of the module definition. The "TARGETS=" line picks these out of the base file and

creates the file names. These will be built when make all (or make, for short) is called.

As the convention from the last example is to create the .stl files from .scad files of the same base name, for each of these files, an .scad file has to be

generated. This is done in the "%.scad:" paragraph; my_example.scad will be a very simple OpenSCAD file:

use <base.scad>
my_example();

The ".SECONDARY" line is there to keep make from deleting the generated .scad files. If it deleted it, it would not be able to automatically determine

which files need no rebuild any more; please post ideas about what exactly goes wrong there (or how to fix it better) on the talk page!

On Windows, openscad.com should be called from the command line as a wrapper for openscad.exe. This is because Openscad uses the 'devenv'

solution to the Command-Line/GUI output issue. Typing 'openscad' at the cmd.exe prompt will, by default, call the .com program wrapper.

Makefile example

Automatic targets

Windows notes

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

34 of 63 01/13/2018 02:29 AM

On MacOS the binary is normally hidden inside the App folder. If OpenSCAD is installed in the global Applications folder, it can be called from

command line like in the following example that just shows the OpenSCAD version:

macbook:/$ /Applications/OpenSCAD.app/Contents/MacOS/OpenSCAD -v
OpenSCAD version 2013.06

Alternatively, you may create a symbolic link to the binary to make calls from the command line easier:

 macbook:/$ sudo ln -sf /Applications/OpenSCAD.app/Contents/MacOS/OpenSCAD /usr/local/bin/openscad

Now you can call openscad directly without having to type in the full path.

 macbook:/$ openscad -v
 OpenSCAD version 2015.03-3

MacOS notes

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

35 of 63 01/13/2018 02:29 AM

Chapter 7 -- Path locations
OpenSCAD User Manual OpenSCAD looks for and saves resources to various paths. This is an overview.

HOME

XDG_CONFIG_HOME

OPENSCAD_FONT_PATH

OPENSCADPATH

ResourcesPath

Posix:

Mac OS X: OpenSCAD.app/Contents/Resources

Windows:

DocumentsPath

Posix: $HOME/.local/share

Mac OS X: [NSDocumentDirectory], typically $HOME/Documents

Windows XP: [CSIDL_PERSONAL], typically C:\documents and settings\username\my documents

Windows Vista->: [CSIDL_PERSONAL], typically C:\users\username\documents

UserConfigPath

Posix: $XDG_CONFIG_HOME/OpenSCAD or $HOME/.config/OpenSCAD

Mac: [NSApplicationSupportDirectory], typically $HOME/Library/Application Support/OpenSCAD

Windows: [CSIDL_LOCAL_APPDATA], typically C:\Documents and Settings\username\Local Settings\Application Data

libraries: [ResourcesPath]/libraries

fonts: [ResourcesPath]/fonts

render color schemes: [ResourcesPath]/color-schemes/render

editor color schemes: [ResourcesPath]/color-schemes/editor

libraries: $OPENSCADPATH, [DocumentsPath]/OpenSCAD/libraries

fonts

 * $HOME/.fonts

render color schemes: [UserConfigPath]/color-schemes/render

editor color schemes: [UserConfigPath]/color-schemes/editor

GUI preferences (Uses QSettings):

 * Posix: $HOME/.config/OpenSCAD.conf
 * Windows: Registry
 * Mac OS X: $HOME/Library/Preferences/org.openscad.OpenSCAD.plist

backups: [DocumentsPath]/OpenSCAD/backups

Env variables

Per platform roots

Read-only Resources

User Resources

Misc Resources

Reference

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

36 of 63 01/13/2018 02:29 AM

this chapter is based on https://github.com/openscad/openscad/wiki/Path-locations written by the developer kintel (https://github.com/kintel)

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

37 of 63 01/13/2018 02:29 AM

Chapter 8 -- Building OpenSCAD from Sources
OpenSCAD User Manual

If you are lucky, you won't have to build it. Many Linux and BSD systems have pre-built OpenSCAD packages including Debian, Ubuntu, Fedora,

Arch, NetBSD and OpenBSD. Check your system's package manager for details.

For Ubuntu systems you can also try chrysn's Ubuntu packages at his launchpad PPA (https://launchpad.net/~chrysn/+archive/openscad), or you

can just copy/paste the following onto the command line:

sudo add-apt-repository ppa:chrysn/openscad
sudo apt-get update
sudo apt-get install openscad

His repositories for OpenSCAD and OpenCSG are here (http://archive.amsuess.com/pool/contrib/o/openscad/) and here

(http://archive.amsuess.com/pool/main/o/opencsg/).

There is also a generic linux binary package at http://www.openscad.org that can be unpacked and run from within most linux systems. It is self

contained and includes the required libraries.

If you wish to build OpenSCAD for yourself, start by installing git on your system using your package manager. Git is sometimes packaged under the

name 'scmgit' or 'git-core'. Then, use git to download the OpenSCAD source code

cd ~/
git clone https://github.com/openscad/openscad.git
cd openscad

Then get the MCAD library, which is now included with OpenSCAD binary distributions

git submodule init
git submodule update

OpenSCAD uses a large number of third-party libraries and tools. These are called dependencies. An up to date list of dependencies can usually be

found in the README.md in openscad's main directory, here: https://github.com/openscad/openscad/ A brief list follows:

Eigen, GCC or Clang, Bison, Flex, CGAL, Qt, GMP, MPFR, boost, cmake, OpenCSG, GLEW, QScintilla, glib2, harfbuzz, freetype2, pkg-config,

fontconfig

Most systems are set up to install pre-built dependencies using a 'package manager', such as apt on ubuntu or pacman on Arch Linux. OpenSCAD

comes with a 'helper script' that will attempt to automatically run your package manager for you and download and install these pre-built packages if

they exist. Note you must be running as root and/or using sudo to try this. Note that these scripts will likely fail on Sun, Solaris, AIX, IRIX, etc (skip

to the 'building dependencies' section below).

./scripts/uni-get-dependencies.sh

After attempting to install dependencies, you should double check them. Exit any shells and perhaps reboot.

Prebuilt binary packages

Building OpenSCAD yourself

Installing dependencies

Prepackaged dependencies

Verifying dependencies

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

38 of 63 01/13/2018 02:29 AM

Now verify that the version numbers are up to those listed in openscad/README.md file. Also verify that no packages were accidentally missed. For

example open a shell and run 'flex --version' or 'gcc --version'. These are good sanity checks to make sure your environment is proper.

OpenSCAD comes with another helper script that attempts to automate this process on many Linux and BSD systems (Again, it won't work on

Sun/Solaris/Irix/AIX/etc).

./scripts/check-dependencies.sh

If you cannot verify that your dependencies are installed properly and of a sufficient version, then you may have to install some 'by hand' (see the

section below on building your own dependencies).

If your system has all the proper versions of dependencies, then continue to the 'Building OpenSCAD' section.

On systems that lack updated dependency libraries or tools, you will need to download each and build it and install it by hand. You can do this by

downloading and following installation instructions for each package separately. However OpenSCAD comes with scripts that attempt to automate

this process on Linux and BSD systems, by installing everything into a folder created under $HOME/openscad_deps. This script will not build typical

development dependencies like X11, Qt4, gcc, bash etc. But it will attempt things like OpenCSG, CGAL, boost, etc.

To run the automated script, first set up the environment variables (if you don't use bash, replace "source" with a single ".")

source scripts/setenv-unibuild.sh

Then, run a second script to download and build.

./scripts/uni-build-dependencies.sh

(If you only need CGAL or OpenCSG, you can just run ' ./scripts/uni-build-dependencies.sh cgal' or opencsg and it will only build a single library.)

The complete download and build process can take several hours, depending on your network connection speed and system speed. It is

recommended to have at least 2 Gigabyte of free disk space to do the full dependency build. Each time you log into a new shell and wish to re-compile

OpenSCAD you need to re-run the 'source scripts/setenv-unibuild.sh' script.

After completion, return to the section above on 'verifying dependencies' to see if they installed correctly.

Once you have installed your dependencies, you can build OpenSCAD.

qmake # or qmake-qt4, depending on your distribution
make

You can also install OpenSCAD to /usr/local/ if you wish. The 'openscad' binary will be put under /usr/local/bin, the libraries and examples will be

under something like /usr/local/share/openscad possibly depending on your system. Note that if you have previously installed a binary linux package

of openscad, you should take care to delete /usr/local/lib/openscad and /usr/local/share/openscad because they are not the same paths as what the

standard qmake-built 'install' target uses.

sudo make install

Note: on Debian-based systems create a package and install OpenSCAD using:

sudo checkinstall -D make install

Building the dependencies yourself

Build the OpenSCAD binary

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

39 of 63 01/13/2018 02:29 AM

If you prefer not to install you can run "./openscad" directly whilst still in the ~/openscad directory.

To enable the experimental features, edit add

CONFIG+=experimental

as the first line of openscad.pro. Then remake the project:

qmake
make -B

The -B is only required once (when you have changed the config).

The experimental features are disabled by default, even when explicitly build as experimental build.

When you successfully build, you find a "features" tab in the preferences, where you can enable individual

experimental features.

OpenSCAD comes with over 740 regression tests. To build and run them, it is recommended to first build

the GUI version of OpenSCAD by following the steps above, including the downloading of MCAD. Then,

from the same login, run these commands:

cd tests
 mkdir build && cd build
 cmake ..
 make
 ctest -C All

The file 'openscad/doc/testing.txt' has more information. Full test logs are under tests/build/Testing/Temporary. A pretty-printed

index.html web view of the tests can be found under a machine-specific subdirectory thereof and opened with a browser.

If you encounter any errors when building, please file an issue report at https://github.com/openscad/openscad/issues/ .

This may be caused by old libraries living in /usr/local/lib like boost, CGAL, OpenCSG, etc, (often left over from previous experiments with

OpenSCAD). You are advised to remove them. To remove, for example, CGAL, run rm -rf /usr/local/include/CGAL && rm -rf /usr/local/lib/*CGAL*.

Then erase $HOME/openscad_deps, remove your openscad source tree, and restart fresh. As of 2013 OpenSCAD's build process does not advise nor

require anything to be installed in /usr/local/lib nor /usr/local/include.

Note that CGAL depends on Boost and OpenCSG depends on GLEW - interdependencies like this can really cause issues if there are stray libraries in

unusual places.

Another source of confusion can come from running from within an 'unclean shell'. Make sure that you don't have LD_LIBRARY_PATH set to point

to any old libraries in any strange places. Also don't mix a Mingw windows cross build with your linux build process - they use different environment

variables and may conflict.

If for some reason the recommended build process above fails to work with OpenCSG, please file an issue on the OpenSCAD github. In the meantime,

you can try building it yourself.

 wget http://www.opencsg.org/OpenCSG-1.3.2.tar.gz

Experimental

OpenSCAD 2017-01-06
experimental-build,
all experimental features
enabled

Compiling the test suite

Troubleshooting

Errors about incompatible library versions

OpenCSG didn't automatically build

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

40 of 63 01/13/2018 02:29 AM

 sudo apt-get purge libopencsg-dev libopencsg1 # or your system's equivalent
 tar -xvf OpenCSG-1.3.2.tar.gz
cd OpenCSG-1.3.2
edit the Makefile and remove 'example'

 make
 sudo cp -d lib/lib* $HOME/openscad_deps/lib/
 sudo cp include/opencsg.h $HOME/openscad_deps/include/

Note: on Debian-based systems (such as Ubuntu), you can add the 'install' target to the
OpenCSG Makefile, and then use checkinstall to create a clean .deb package for
install/removal/upgrade. Add this target to Makefile:

 install:
 # !! THESE LINES PREFIXED WITH ONE TAB, NOT SPACES !!
 cp -d lib/lib* /usr/local/lib/
 cp include/opencsg.h /usr/local/include/
 ldconfig

Then:

 sudo checkinstall -D make install

.. to create and install a clean package.

If this happens, you can try to compile CGAL yourself. It is recommended to install to $HOME/openscad_deps and otherwise follow the build

process as outlined above.

This can happen if you run out of virtual memory, which means all of physical RAM as well as virtual swap space from the disk. See below under

"horribly slow" for reasons. If you are non-root, there are a few things you can try. The first is to use the 'clang' compiler, as it uses much less RAM

than gcc. The second thing is to edit the Makefile and remove the '-g' and '-pipe' flags from the compiler flags section.

If, on the other hand, you are root, then you can expand your swap space. On Linux this is pretty standard procedure and easily found in a web

search. Basically you do these steps (after verifying you have no file named /swapfile already):

 sudo dd if=/dev/zero of=/swapfile bs=1M count=2000 # create a roughly 2 gig swapfile
 sudo chmod 0600 /swapfile # set proper permissions for security
 sudo mkswap /swapfile # format as a swapfile
 sudo swapon /swapfile # turn on swap

For permanent swap setup in /etc/fstab, instructions are easily found through web search. If you are building on an SSD (solid state drive) machine

the speed of a swapfile will allow a very reasonable build time.

It is recommended to have at least 1.5 Gbyte of RAM to compile OpenSCAD. There are a few workarounds in case you don't. The first is to use the

experimental support for the Clang Compiler (described below) as Clang uses much less RAM than GCC. Another workaround is to edit the Makefile

generated by qmake and search/replace the optimization flags (-O2) with -O1 or blank, and to remove any '-g' debug flags from the compiler line, as

well as '-pipe'.

If you have plenty of RAM and just want to speed up the build, you can try a paralell multicore build with

 make -jx

Where 'x' is the number of cores you want to use. Remember you need x times the amount of RAM to avoid possible disk thrashing.

The reason the build is slow is because OpenSCAD uses template libraries like CGAL, Boost, and Eigen, which use large amounts of RAM to compile -

CGAL didn't automatically build

Compiling fails with an Internal compiler error from GCC or GAS

Compiling is horribly slow and/or grinds the disk

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

41 of 63 01/13/2018 02:29 AM

especially CGAL. GCC may take up 1.5 Gigabytes of RAM on some systems during the build of certain CGAL modules. There is more information at

StackOverflow.com (http://stackoverflow.com/questions/3634203/why-are-templates-so-slow-to-compile).

The build instructions above are designed to work unchanged on FreeBSD and NetBSD. However the BSDs typically require special environment

variables set up to build any QT project - you can set them up automatically by running

 source ./scripts/setenv-unibuild.sh

NetBSD 5.x, requires a patched version of CGAL. It is recommended to upgrade to NetBSD 6 instead as it has all dependencies available from pkgin.

NetBSD also requires the X Sets to be installed when the system was created (or added later (http://ghantoos.org/2009/05/12/my-first-shot-of-

netbsd/)).

On OpenBSD it may fail to build after running out of RAM. OpenSCAD requires at least 1 Gigabyte to build with GCC. You may have need to be a user

with 'staff' level access or otherwise alter required system parameters. The 'dependency build' sequence has also not been ported to OpenBSD so you

will have to rely on the standard OpenBSD system package tools (in other words you have to have root).

The OpenSCAD dependency builds have been mainly focused on Linux and BSD systems like Debian or FreeBSD. The 'helper scripts' likely will fail

on other types of Un*x. Furthermore the OpenSCAD build system files (qmake .pro files for the GUI, cmake CMakeFiles.txt for the test suite) have

not been tested thoroughly on non-Linux non-BSD systems. Extensive work may be required to get a working build on such systems.

Headless server

The test suite will try to automatically detect if you have an X11 DISPLAY environment variable set. If not, it will try to automatically start Xvfb or

Xvnc (virtual X framebuffers) if they are available.

If you want to run these servers manually, you can attempt the following:

$ Xvfb :5 -screen 0 800x600x24 &
$ DISPLAY=:5 ctest

Alternatively:

$ xvfb-run --server-args='-screen 0 800x600x24' ctest

There are some cases where Xvfb/Xvnc won't work. Some older versions of Xvfb may fail and crash without warning. Sometimes Xvfb/Xvnc have

been built without GLX (OpenGL) support and OpenSCAD won't be able to generate any images.

Image-based tests takes a long time, they fail, and the log says 'return -11'

Imagemagick may have crashed while comparing the expected images to the test-run generated (actual) images. You can try using the alternate

ImageMagick comparison method by by erasing CMakeCache, and re-running cmake with -DCOMPARATOR=ncc. This will enable the Normalized

Cross Comparison method which is more stable, but possibly less accurate and may give false positives or negatives.

Testing images fails with 'morphology not found" for ImageMagick in the log

Your version of imagemagick is old. Upgrade imagemagick, or pass -DCOMPARATOR=old to cmake. The comparison will be of lowered reliability.

It isn't advised to move them because the build is using RPATH hard coded into the openscad binary. You may try to workaround by setting the

LD_LIBRARY_PATH environment variable to place yourpath/lib first in the list of paths it searches. If all else fails, you can re-run the entire

dependency build process but export the BASEDIR environment variable to your desired location, before you run the script to set environment

variables.

BSD issues

Sun / Solaris / IllumOS / AIX / IRIX / Minix / etc

Test suite problems

I moved the dependencies I built and now openscad won't run

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

42 of 63 01/13/2018 02:29 AM

After you have built the dependencies you can free up space by removing the $BASEDIR/src directory - where $BASEDIR defaults to

$HOME/openscad_deps.

OpenSCAD's config file is kept in ~/.config/OpenSCAD/OpenSCAD.conf.

The following paragraph describes an easy way to setup a development environment for OpenSCAD in Ubuntu 11.04. After executing the following

steps QT Creator can be used to graphically start developing/debugging OpenSCAD.

Add required PPA repositories:

sudo add-apt-repository ppa:chrysn/openscad

Update and install required packages:

sudo apt-get update
sudo apt-get install git build-essential qtcreator libglew1.5-dev libopencsg-dev libcgal-dev libeigen2-dev bison flex

Get the OpenSCAD sources:

mkdir ~/src
cd ~/src
git clone https://github.com/openscad/openscad.git

Build OpenSCAD using the command line:

cd ~/src/openscad
qmake
make

Build OpenSCAD using QT Creator:

Just open the project file openscad.pro (CTRL+O) in QT Creator and hit the build all (CTRL+SHIFT+B) and run button (CTRL+R).

There is experimental support for building with the Clang compiler under linux. Clang is faster, uses less RAM, and has different error messages than

GCC. To use it, first of all you will need CGAL of at least version 4.0.2, as prior versions have a bug that makes clang unusable. Then, run this script

before you build OpenSCAD.

source scripts/setenv-unibuild.sh clang

Clang support depends on your system's QT installation having a clang enabled qmake.conf file. For example, on Ubuntu, this is under /usr/share

/qt4/mkspecs/unsupported/linux-clang/qmake.conf. BSD clang-building may require a good deal of fiddling and is untested, although eventually it

is planned to move in this direction as the BSDs (not to mention OSX) are moving towards favoring clang as their main compiler. OpenSCAD

includes convenience scripts to cross-build Windows installer binaries using the MXE system (http://mxe.cc). If you wish to use them, you can first

install the MXE Requirements such as cmake, perl, scons, using your system's package manager (click to view a complete list of requirements)

(http://mxe.cc/#requirements). Then you can perform the following commands to download OpenSCAD source and build a windows installer:

 git clone https://github.com/openscad/openscad.git
 cd openscad
 source ./scripts/setenv-mingw-xbuild.sh
 ./scripts/mingw-x-build-dependencies.sh

Tricks and tips

Reduce space of dependency build

Preferences

Setup environment to start developing OpenSCAD in Ubuntu 11.04

The Clang Compiler

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

43 of 63 01/13/2018 02:29 AM

 ./scripts/release-common.sh mingw32

The x-build-dependencies process takes several hours, mostly to cross-build QT. It also requires several gigabytes of disk space. If you have multiple

CPUs you can speed up things by running export NUMCPU=x before running the dependency build script. By default it builds the dependencies in

$HOME/openscad_deps/mxe. You can override the mxe installation path by setting the BASEDIR environment variable before running the scripts.

The OpenSCAD binaries are built into a separate build path, openscad/mingw32.

Note that if you want to then build linux binaries, you should log out of your shell, and log back in. The 'setenv' scripts, as of early 2013, required a

'clean' shell environment to work.

If you wish to cross-build manually, please follow the steps below and/or consult the release-common.sh source code.

The easiest way to cross-compile OpenSCAD for Windows on Linux or Mac is to use mxe (M cross environment). You will need to install git to get it.

Once you have git, navigate to where you want to keep the mxe files in a terminal window and run:

git clone git://github.com/mxe/mxe.git

Add the following line to your ~/.bashrc file:

export PATH=/<where mxe is installed>/usr/bin:$PATH

replacing <where mxe is installed> with the appropriate path.

The requirements to cross-compile for Windows are just the requirements of mxe. They are listed, along with a command for installing them here

(http://mxe.cc/#requirements). You don't need to type 'make'; this will make everything and take up >10 GB of diskspace. You can instead follow the

next step to compile only what's needed for openscad.

Now that you have the requirements for mxe installed, you can build OpenSCAD's dependencies (CGAL, Opencsg, MPFR, and Eigen2). Just open a

terminal window, navigate to your mxe installation and run:

make mpfr eigen opencsg cgal qt

This will take a few hours, because it has to build things like gcc, qt, and boost. Just go calibrate your printer or something while you wait. To speed

things up, you might want do something like "make -j 4 JOBS=2" for parallel building. See the mxe tutorial (http://mxe.cc/#tutorial) for more

details.

Optional: If you want to build an installer, you need to install the nullsoft installer system. It should be in your package manager, called "nsis".

Now that all the requirements have been met, all that remains is to build OpenSCAD itself. Open a terminal window and enter:

git clone git://github.com/openscad/openscad.git
cd openscad

Then get MCAD:

git submodule init
git submodule update

You need to create a symbolic link here for the build system to find the libraries:

Setup

Requirements

Build OpenSCAD

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

44 of 63 01/13/2018 02:29 AM

ln -s /<where mxe is installed>/usr/i686-pc-mingw32/ mingw-cross-env

again replacing <where mxe is installed> with the appropriate path

Now to build OpenSCAD run:

i686-pc-mingw32-qmake CONFIG+=mingw-cross-env openscad.pro
make

When that is finished, you will have openscad.exe in ./release and you can build an installer with it as described in the instructions for building with

Microsoft Visual C++, described here (http://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Building_on_Windows#Building_an_installer).

The difference is that instead of right-clicking on the *.nsi file you will run:

makensis installer.nsis

Note that as of early 2013, OpenSCAD's 'scripts/release-common.sh' automatically uses the version of nsis that comes with the MXE cross build

system, so you may wish to investigate the release-common.sh source code to see how it works, if you have troubles. This is a set of instructions for

building OpenSCAD with the Microsoft Visual C++ compilers. It has not been used since circa 2012 and is unlikely to work properly. It is maintained

here for historical reference purposes.

A newer build is being attempted with the Msys2 system, please see http://en.wikibooks.org/wiki/OpenSCAD_User_Manual

/Building_on_Microsoft_Windows

This MSVC build is as static as reasonable, with no external DLL dependencies that are not shipped with Windows

Note: It was last tested on the Dec 2011 build. Newer checkouts of OpenSCAD may not build correctly or require extensive modification to compile

under MSVC. OpenSCAD releases of 2012 were typically cross-compiled from linux using the Mingw & MXE system. See Cross-compiling for

Windows on Linux or Mac OS X.

start by downloading:

Visual Studio Express http://download.microsoft.com/download/E/8/E/E8EEB394-7F42-4963-A2D8-29559B738298
/VS2008ExpressWithSP1ENUX1504728.iso

QT (for vs2008) http://get.qt.nokia.com/qt/source/qt-win-opensource-4.7.2-vs2008.exe

git http://msysgit.googlecode.com/files/Git-1.7.4-preview20110204.exe

glew https://sourceforge.net/projects/glew/files/glew/1.5.8/glew-1.5.8-win32.zip/download

cmake http://www.cmake.org/files/v2.8/cmake-2.8.4-win32-x86.exe

boost http://www.boostpro.com/download/boost_1_46_1_setup.exe

cgal https://gforge.inria.fr/frs/download.php/27647/CGAL-3.7-Setup.exe

OpenCSG http://www.opencsg.org/OpenCSG-1.3.2.tar.gz

eigen2 http://bitbucket.org/eigen/eigen/get/2.0.15.zip

gmp/mpfr http://holoborodko.com/pavel/downloads/win32_gmp_mpfr.zip

MinGW http://netcologne.dl.sourceforge.net/project/mingw/Automated%20MinGW%20Installer/mingw-get-inst/mingw-get-inst-
20110316/mingw-get-inst-20110316.exe

Install Visual Studio

No need for siverlight or mssql express

You can use a virtual-CD program like MagicDisc to mount the ISO file and install without using a CD

Install QT

Install to default location C:\Qt\4.7.2\

Install Git

Downloads

Installing

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

45 of 63 01/13/2018 02:29 AM

Click Run Git and included Unix tools from the Windows Command Prompt despite the big red letters warning you
not to.

Install Cmake

Check the 'Add cmake to the system path for the current user' checkbox

Install to default location C:\Program Files\CMake 2.8

Install Boost

Select the VC++ 9.0 vs2008 radio

Check the 'multithreaded static runtime' checkbox only

Install into C:\boost_1_46_1\

Install CGAL

Note - CGAL 3.9 fixes several bugs in earlier versions of CGAL, but CGAL 3.9 will not compile under MSVC without extensive
patching. Please keep that in mind when compiling OpenSCAD with MSVC - there may be bugs due to the outdated version
of CGAL required to use MSVC.

Note its not a binary distribution, just an installer that installs the source.

No need for CGAL Examples and Demos

Make sure mpfr and gmp precompiled libs is checked

The installer wants you to put this in C:\Program Files\CGAL-3.7\ I used C:\CGAL-3.7\

Make sure CGAL_DIR environment checked.

Install MinGW

Make sure you select the MSYS Basic System under components

Extract downloaded win32_gmp_mpfr.zip file to C:\win32_gmp_mpfr\

Replace the mpfr and gmp .h files in CGAL with the ones from win32_gmp_mpfr

Delete, or move to a temp folder, all files in CGAL-3.7\auxiliary\gmp\include folder

Copy all the .h files in C:\win32_gmp_mpfr\gmp\Win32\Release to CGAL-3.7\auxiliary\gmp\include

Copy all the .h files in C:\win32_gmp_mpfr\mpfr\Win32\Release to CGAL-3.7\auxiliary\gmp\include

Replace the mpfr and gmp libs in CGAL with the ones from win32_gmp_mpfr

Delete, or move to a temp folder, all (06/20/2011 libmpfr-4.lib is needed 7/19/11 - i didnt need it) files in
CGAL-3.7\auxiliary\gmp\lib folder.

Copy C:\win32_gmp_mpfr\gmp\Win32\Release\gmp.lib to CGAL-3.7\auxiliary\gmp\lib

Copy C:\win32_gmp_mpfr\mpfr\Win32\Release\mpfr.lib to CGAL-3.7\auxiliary\gmp\lib

Go into CGAL-3.7\auxiliary\gmp\lib and copy gmp.lib to gmp-vc90-mt-s.lib, and mpfr.lib to mpfr-vc90-mt-s.lib
(so the linker can find them in the final link of openscad.exe)

To get OpenSCAD source code:

Open "Git Bash" (or MingW Shell) (the installer may have put a shortcut on your desktop). This launches a command line
window.

Type cd c: to change the current directory.

Type git clone git://github.com/openscad/openscad.git This will put OpenSCAD source into C:\openscad\

Where to put other files:

I put all the dependencies in C:\ so for example,

C:\eigen2\

C:\glew-1.5.8\

C:\OpenCSG-1.3.2\

.tgz can be extracted with tar -zxvf from the MingW shell, or Windows tools like 7-zip. Rename and move sub-directories if needed. I.e eigen-

eigen-0938af7840b0 should become c:\eigen2, with the files like COPYING and CMakeLists.txt directly under it. c:\glew-1.5.8 should have 'include'

and 'lib' directly under it.

For compilation I use the QT Development Command Prompt

Start->Program Files->Qt by Nokia v4.7.2 (VS2008 OpenSource)->QT 4.7.2 Command Prompt

Compiling Dependencies

Qt

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

46 of 63 01/13/2018 02:29 AM

Qt needs to be recompiled to get a static C runtime build. To do so, open the command prompt and do:

configure -static -platform win32-msvc2008 -no-webkit

Configure will take several minutes to finish processing. After it is done, open up the file Qt\4.7.2\mkspecs\win32-msvc2008\qmake.conf and

replace every instance of -MD with -MT. Then:

nmake

This takes a very, very long time. Have a nap. Get something to eat. On a Pentium 4, 2.8GHZ CPU with 1 Gigabyte RAM, Windows XP, it took more

than 7 hours, (that was with -O2 turned off)

cd C:\CGAL-3.7\
set BOOST_ROOT=C:\boost_1_46_1\
cmake .

Now edit the CMakeCache.txt file. Replace every instance of /MD with /MT . Now, look for a line like this:

CMAKE_BUILD_TYPE:STRING=Debug

Change Debug to Release. Now re-run cmake

cmake .

It should scroll by, watch for lines saying "--Building static libraries" and "--Build type: Release" to confirm the proper settings.

Also look for /MT in the CXXFLAGS line. When it's done, you can do the build:

nmake

You should now have a CGAL-vc90-mt-s.lib file under C:\CGAL-3.7\lib . If not, see Troubleshooting, below.

Launch Visual Express.

cd C:\OpenCSG-1.3.2
vcexpress OpenCSG.sln
Substitute devenv for vcexpress if you are not using the express version

Manually step through project upgrade wizard

Make sure the runtime library settings for all projects is for Release (not Debug)

Click Build/Configuration Manager

Select "Release" from "Configuration:" drop down menu

Hit Close

Make sure the runtime library setting for OpenCSG project is set to multi-threaded static

Open the OpenCSG project properties by clicking menu item "Project->OpenCSG Properties" (might be just "Properties")

Make sure it says "Active(Release)" in the "Configuration:" drop down menu

Click 'Configuration Properties -> C/C++ -> Code Generation'

Make sure "Runtime Library" is set to "Multi-threaded (/MT)"

Click hit OK

Make sure the runtime library setting for glew_static project is set to multi-threaded static

In "Solution Explorer - OpenCSG" pane click "glew_static" project

Open the OpenCSG project properties by clicking menu item "Project->OpenCSG Properties" (might be just "Properties")

Make sure it says "Active(Release)" in the "Configuration:" drop down menu

Click C/C++ -> Code Generation

CGAL

OpenCSG

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

47 of 63 01/13/2018 02:29 AM

Make sure "Runtime Library" is set to "Multi-threaded (/MT)"

Click hit OK

Close Visual Express saving changes

Build OpenCSG library. You can use the GUI Build/Build menu (the Examples project might fail, but glew and OpenCSG should succeed).

Alternatively you can use the command line:

cmd /c vcexpress OpenCSG.sln /build
Again, substitute devenv if you have the full visual studio

The cmd /c bit is needed otherwise you will be returned to the shell immediately and have to Wait for build process to complete (there will be no

indication that this is happening appart from in task manager)

Bison/Flex: Open the mingw shell and type mingw-get install msys-bison. Then do the same for flex: mingw-get install
msys-flex

Open the QT Shell, and copy/paste the following commands

cd C:\openscad
set INCLUDE=%INCLUDE%C:\CGAL-3.7\include;C:\CGAL-3.7\auxiliary\gmp\include;
set INCLUDE=%INCLUDE%C:\boost_1_46_1;C:\glew-1.5.8\include;C:\OpenCSG-1.3.2\include;C:\eigen2
set LIB=%LIB%C:\CGAL-3.7\lib;C:\CGAL-3.7\auxiliary\gmp\lib;
set LIB=%LIB%C:\boost_1_46_1\lib;C:\glew-1.5.8\lib;C:\OpenCSG-1.3.2\lib
qmake
nmake -f Makefile.Release

Wait for the nmake to end. There are usually a lot of non-fatal warnings about the linker. On success, there will be an openscad.exe file in the release

folder. Enjoy.

Download and install NSIS from http://nsis.sourceforge.net/Download

Put the FileAssociation.nsh macro from http://nsis.sourceforge.net/File_Association in the NSIS Include directory, C:\Program
Files\NSIS\Include

Run 'git submodule init' and 'git submodule update' to download the MCAD system (https://github.com/elmom/MCAD) into the
openscad/libraries folder.

Copy the OpenSCAD "libraries" and "examples" directory into the "release" directory

Copy OpenSCAD's "scripts/installer.nsi" to the "release" directory.

Right-click on the file and compile it with NSIS. It will spit out a nice, easy installer. Enjoy.

Follow all the above steps, build openscad, run it, and test that it basically works.

Install Python 2.x (not 3.x) from http://www.python.org

Install Imagemagick from http://www.imagemagick.org

read openscad\docs\testing.txt

Go into your QT shell

set PATH=%PATH%;C:\Python27 (or your version of python)
cd c:\openscad\tests\
cmake . -DCMAKE_BUILD_TYPE=Release
Edit the CMakeCache.txt file, search/replace /MD to /MT
cmake .
nmake -f Makefile

This should produce a number of test .exe files in your directory. Now run

ctest

If you have link problems, see Troubleshooting, below.

OpenSCAD

Building an installer

Compiling the regression tests

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

48 of 63 01/13/2018 02:29 AM

Linker errors

If you have errors during linking, the first step is to improve debug logging, and redirect to a file. Open Openscad.pro and uncomment this line:

 QMAKE_LFLAGS += -VERBOSE

Now rerun

 nmake -f Makefile.Release > log.txt

You can use a program like 'less' (search with '/') or wordpad to review the log.

To debug these errors, you must understand basics about Windows linking. Windows links to its standard C library with basic C functions like

malloc(). But there are four different ways to do this, as follows:

compiler switch - type - linked runtime C library
/MT - Multithreaded static Release - link to LIBCMT.lib
/MTd - Multithreaded static Debug - link to LIBCMTD.lib
/MD - Multithreaded DLL Release - link to MSVCRT.lib (which itself helps link to the DLL)
/MDd - Multithreaded DLL Debug - link to MSVCRTD.lib (which itself helps link to the DLL)

All of the libraries that are link together in a final executable must be compiled with the same type of linking to the standard C library. Otherwise, you

get link errors like, "LNK2005 - XXX is already defined in YYY". But how can you track down which library wasn't linked properly? 1. Look at the log,

and 2. dumpbin.exe

dumpbin.exe

dumpbin.exe can help you determine what type of linking your .lib or .obj files were created with. For example, dumpbin.exe /all CGAL.lib |

find /i "DEFAULTLIB" will give you a list of DEFAULTLIB symbols inside of CGAL.lib. Look for LIBCMT, LIBCMTD, MSVCRT, or MSVCRTD.

That will tell you, according to the above table, whether it was built Static Release, Static Debug, DLL Release, or DLL Debug. (DLL, of course means

Dynamic Link Library in this conversation.) This can help you track down, for example, linker errors about conflicting symbols in LIBCMT and

LIBCMTD.

dumpbin.exe can also help you understand errors involving unresolved external symbols. For example, if you get an error about unresolved external

symbol ___GLEW_NV_occlusion_query, but your VERBOSE error log says the program linked in glew32.lib, then you can dumpbin.exe /all

glew32.lib | find /i "occlusion" to see if the symbol is actually there. You may see a mangled symbol, with __impl, which gives you

another clue with which you can google. In this particular example, glew32s.lib (s=static) should have been linked instead of glew32.lib.

CGAL-vc90-mt-s.lib

After compilation, it is possible that you might get a file named CGAL-vc90-mt.lib or CGAL-vc90-mt-gd.lib instead of CGAL-vc90-

mt-s.lib. There are many possibilities: you accidentally built the wrong version, or you may have built the right version and VCExpress named it

wrong. To double check, and fix the problem, you can do the following:

cd C:\CGAL-3.7\lib
dumpbin /all CGAL-vc90-mt.lib | find /i "DEFAULTLIB"
(if you have mt-gd, use that name instead)

If this shows lines referencing LIBCMTD, MSVCRT, or MSVCRTD then you accidentally built the debug and/or dynamic version, and you need to

clean the build, and try to build again with proper settings to get the multi-threaded static release version. However, if it just says LIBCMT, then you

are probably OK. Look for another line saying DEFAULTLIB:CGAL-vc90-mt-s. If it is there, then you can probably just rename the file and have it

work.

move CGAL-vc90-mt.lib CGAL-vc90-mt-s.lib

Visual Studio build

Troubleshooting

CGAL

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

49 of 63 01/13/2018 02:29 AM

You can build CGAL using the GUI of visual studio, as an alternative to nmake. You have to use an alternate cmake syntax. Type 'cmake' by itself and

it will give you a list of 'generators' that are valid for your machine; for example Visual Studio Express is cmake -G"Visual Studio 9 2008" ..

That should get you a working .sln (solution) file.

Then run this:

vcexpress CGAL.sln

Modify the build configure target to Release (not Debug) and change the properties of the projects to be '/MT' multithreaded static builds. This is the

similar procedure used to build OpenCSG, so refer to those instructions above for more detail.

Note for Unix users

The 'MingW Shell' (Start/Programs) provide tools like bash, sed, grep, vi, tar, &c. The C:\ drive is under '/c/'. MingW has packages, for example:

mingw-get install msys-unzip downloads and installs the 'unzip' program. Git contains some programs by default, like perl. The windows

command shell has cut/paste - hit alt-space. You can also change the scrollback buffer settings.

Windows Building, OpenSCAD mailing list, 2011 May (http://rocklinux.net/pipermail/openscad/2011-May/thread.html).

C Run-Time Libraries linking (http://msdn.microsoft.com/en-us/library/abx4dbyh(v=vs.80).aspx), Microsoft.com for Visual Studio
8 (The older manual is good too, here (http://msdn.microsoft.com/en-us/library/aa278396(VS.60).aspx))

old nabble (http://old.nabble.com/flex-2.5.35-1:-isatty()-problem-(and-solution)-td17659695.html) on _isatty, flex

Windows vs. Unix: Linking dynamic load modules (http://xenophilia.org/winvunix.html) by Chris Phoenix

Static linking in CMAKE under MS Visual C (http://www.cmake.org
/Wiki/CMake_FAQ#How_can_I_build_my_MSVC_application_with_a_static_runtime.3F) (cmake.org)

__imp , declspec(dllimport), and unresolved references (http://stackoverflow.com/questions/3704374/linking-error-lnk2019-
in-msvc-unresolved-symbols-with-imp-prefix-but-should) (stackoverflow.com)

For building OpenSCAD, see https://github.com/openscad/openscad/blob/master/README.md

For making release binaries, see http://svn.clifford.at/openscad/trunk/doc/checklist-macosx.txt

References

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

50 of 63 01/13/2018 02:29 AM

Chapter 9 -- Frequently Asked Questions
OpenSCAD User Manual

General

The intended pronounciation is: Open - ESS - CAD

Display

Some systems, in particular Intel GPUs on Windows, tend to have old or broken OpenGL drivers. This

affects preview rendering when using difference or intersection operators.

The following tends to improve the situation: Edit->Preferences->Advanced->Force Goldfeather (see

screenshot).

This is typically caused by differencing objects that share one or more faces, e.g.:

difference() {
cube(20, center = true);
cylinder(r = 10, h = 20, center = true);

}

In most cases the final render will be fine, but it's recommended to make the cuts a little bit larger to prevent

this type of issues.

Note that this issue may also occur with faces that are not even visible in the final result, for example because

they're removed by a difference() operation. This is an artifact of the library used for drawing the

preview. See this discussion (https://github.com/openscad/openscad/issues/1793) for an example and a

workaround.

See also: https://en.wikipedia.org/wiki/Z-fighting

This can happen when using features like linear_extrude() or when importing objects. The convexity of the objects is not known. For more

complex objects, the convexity parameter can be used to specify the value. Note that higher values will cause a slowdown in preview.

difference() {
linear_extrude(height = 15) {

difference() {
square([50, 50]);
translate([10, 10]) circle(5);

How is OpenSCAD pronounced?

Preview doesn't appear to work at all

Force Goldfeather

What are those strange flickering artifacts in the preview?

OpenSCAD display issue with
coincident faces

Why are some parts (e.g. holes) of the model not rendered correctly?

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

51 of 63 01/13/2018 02:29 AM

}
}
translate([25, 25]) cube([5, 5, 40], center = true);

}

See also https://en.wikipedia.org/wiki/Convexity_%28mathematics%29

This can be caused by polyhedrons with flipped faces.

This can be visualized in "Thrown Together" display mode. See misordered faces for details.

points = [[5,5,0],[5,-5,0],[-5,-5,0],[-5,5,0],[0,0,3]];
faces = [[0,1,4],[1,2,4],[2,3,4],[3,4,0],[1,0,3],[2,1,3]];
polyhedron(points, faces);

If the model imports external STL files, see also import related question.

http://forum.openscad.org/Why-is-for-so-slow-tp11511p11531.html

This is hard to explain, but in essence, having intersections as the negative objects in difference is expensive. The preview rendering algorithm only

allows having primitive objects as negatives, and everything else has to be unpacked.

For example (using A+B = union() / A-B = difference() / A*B = intersection()):

A - B*C - D*E

becomes: A-B-D + A-B-E + A-C-D + A-C-E

..and if A is more complex:

A+B - C*D - E*F

becomes: A-C-E + A-C-F + A-D-E + A-D-F + B-C-E + B-C-F + B-D-E + B-D-F

All combinations have to be rendered, which can take some time, especially on older GPUs, and especially on low-end Intel GPUs.

Import

This is mostly caused by bad STL files, the best bet is to verify the STL file in a tool like Blender, MeshLab or NetFabb and fix the issues. In essence

the model needs to be manifold to be processed in OpenSCAD.

The reason for the model still showing up in preview mode is that there is no real geometry calculation going on yet. The preview simply draws the

triangles from the STL.

There is one specific issue that causes problems called "Zero faces" (meaning the STL contains triangles with zero area because all 3 points are on one

line) which are currently not handled well in OpenSCAD.

Using MeshLab

OpenSCAD display issue with
convexity setting too low

Why is my model showing up with F5 but not F6?

OpenSCAD polyhedron with
flipped face

Why is the preview so slow?

Why is my imported STL file only showing up with F5 but not F6?

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

52 of 63 01/13/2018 02:29 AM

MeshLab has a filter to remove zero faces by flipping edges of polygons

Filters -> Cleaning and Repairing -> Remove T-Vertices by Edge-Flip.

Set the Ratio to a very high value (e.g. 1000000), otherwise it's possible the model gets distorted.

Using Blender

Blender has a 3D-Printing-Toolbox Plug-in (needs to be enabled in the UserSettings) which can show issues with the STL file. See

http://wiki.blender.org/index.php/Extensions:2.6/Py/Scripts/Modeling/PrintToolbox

Using NetFabb/Microsoft cloud service

The Microsoft 3D Model Repair service can help with fixing STL files. Make sure to read the service conditions before posting files. See

https://modelrepair.azurewebsites.net/

DXF import sometimes produces warning messages like Unsupported DXF Entity 'SPLINE' (1c1) in "file.dxf". This means the DXF

file is using features that the OpenSCAD importer does not know how to handle. The importer will simply ignore those unknown entities which could

result in an incomplete model.

When using Inkscape, the easiest way to produces DXF files without unsupported entities is to convert all Bezier curves to short line segments using

Extensions -> Modify Path -> Flatten Beziers

The value given in the dialog will determine the length of the line segments. Lower values will produce smoother results, but also much more line

segments. As export file format, use "Desktop Cutting Plotter (AutoCAD DXF R14)".

A more detailed tutorial is available at http://repraprip.blogspot.de/2011/05/inkscape-to-openscad-dxf-tutorial.html

Export

Answer based on comments in related issue on github https://github.com/openscad/openscad/pull/1534#issuecomment-227024209

There is a way to generate a bunch of geometric primitives and export them as STL files from a single script, without commenting/uncommenting

code.

There is a variable, PARTNO, that indicates which part is being exported in the current run. If PARTNO is 'undef', then nothing is exported.

 PARTNO = undef; // default part number

 module tree() {
 color("green") cylinder(r1 = 12, r2 = 1, h = 30);
 // ...
 }

 module trunk() {
 color("brown") cylinder(r = 3, h = 10);
 // ...
 }

 module base() {
 color("white") translate([-10, -10, 0]) cube([20, 20, 5]);
 // ...
 }

 if (PARTNO == 1) tree();
 if (PARTNO == 2) trunk();
 if (PARTNO == 3) base();

 // optionally use 0 for whole object
 if (PARTNO == 0) {
 base();

I'm getting "Unsupported DXF Entity" warnings when importing DXF
files, what does that mean?

How can I export multiple parts from one script?

Image exported with PARTNO=0

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

53 of 63 01/13/2018 02:29 AM

 translate([0, 0, 5]) trunk();
 translate([0, 0, 15]) tree();
 }

When working interactively, the PARTNO variable at the top of the file can be set to the number of the part that will be shown/exported from the

GUI.

It's possible to automate the process of exporting all of the parts by writing a shell script on MacOS or Linux, or a batch file on Windows. The shell

script would look something like this:

 # export parts as STL
 openscad -DPARTNO=1 -o tree.stl model.scad
 openscad -DPARTNO=2 -o trunk.stl model.scad
 openscad -DPARTNO=3 -o base.stl model.scad

 # export image of all the parts combined
 openscad -DPARTNO=0 -o model.png model.scad

Running this script once from the command line will export all of the parts to separate files.

Language

http://forum.openscad.org/A-A-1-tp11385p11411.html

First of all, the question why we have these "limitations" will become more clear once we start better exploiting the opportunities.

We need a "reduce" function to help collecting information depending on a list of input. Recursion is fine, but people tend to
struggle with it and we could offer some help.

We should probable disallow any attempt of reassignment, to make it more clear what's going on. The only real reason we
partially allow it is to allow cmd-line variable overrides.

To help think about things:

Imagine every expression in OpenCAD being executed in parallel. Any dependency of existing expressions must be made
explicit by hierarchical grouping. This will kill the idea of iterating in order to accumulate information.

In terms of functions: Imagine a function expression being something you'd type into a spreadsheet cell. Not totally mappable,
but it might help framing it.

Now, we could add all kinds of sugar to help people apply their existing programming problem solving skills. Question is more if it really helps us,

secondary who will spearhead the design of such language extensions, as we currently don't really have attachment for these ideas on the dev-team.

If you think about the OpenSCAD language as something similar to HTML, but for 3D modeling, you'd still have a need for various programs

generating code in this language (similar to the plethora of HTML generators out there). There exist a number of tools for helping with OpenSCAD

code generation from existing programming languages (python, ruby, C++, haskell, clojure off the top of my head) and there are tools offering

Javascript interfaces for similar purposes (OpenJSCAD, CoffeeSCAD). Until we have a really good reason to do so in OpenSCAD proper, and a really

good candidate for which language to support, I think it's better to keep these things separate.

see also for help: List Comprehension,Tips & Tricks

Recursive Functions (https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/User-Defined_Functions_and_Modules#Recursive_functions)

User Interface

This seems to be caused by Ubuntu messing with Qt to move the menubar somewhere else (e.g. top of the screen).

That problem hits other applications too, see https://bugs.launchpad.net/ubuntu/+source/appmenu-qt5/+bug/1307619

Why am I getting an error when writing a = a + 1?

I'm not getting any menubar when running OpenSCAD in Ubuntu, how
can I get it back?

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

54 of 63 01/13/2018 02:29 AM

There are two things that could help:

Set the QT_QPA_PLATFORMTHEME environment variable to an empty string (the default value is probably "appmenu-qt5") or
simply run OpenSCAD with QT_QPA_PLATFORMTHEME= openscad

Remove the appmenu-qt5 package to globally disable menubar changes for all applications

That is a limitation/bug in the current parser that handles include<> basically as copy&paste of content. In some cases it's possible to work around

the issue by placing the include<> statements at the end of the file.

When depending on libraries, it's recommended to use use<> instead which does not have that problem and also automatically inhibits any top-level

geometry of that file (which might be there as demo for the library).

Errors / Problems

This can have different reasons, some common ones include

Missing / Commented out module call

module model() {
cube(20);

}
%model();

Using the % modifier does not only make the part transparent, it's not included in the final render!

Difference / Intersection with wrong translated objects

The easiest way to solve this type of issues is to highlight the objects using the # modifier and see if the objects are placed at the position where they

should be.

Importing broken STL files

See Why is my imported STL file only showing up with F5 but not F6?

Before starting a preview or render process, the OpenSCAD editor writes a backup file in case there are unsaved changes.

This file is stored in the users documents folder in a separate directory (e.g. on Linux this is normally $HOME/.local/share/OpenSCAD

/backups). The actual path can be checked in the Help->Library Info dialog where it is listed as "Backup Path".

Reporting bugs, Requesting features

Bugs in OpenSCAD are best reported in the github (http://github.com/) issue tracking system at https://github.com/openscad/openscad/issues. If

you are not sure it's a bug, asking on the mailing list/forum (http://www.openscad.org/community.html) can help clarifying things.

Please try searching through the existing issues if the bug was already reported. If you find something similar or if you are unsure, create a new issue,

but mention the (possibly) related one.

The bug report should give as much information as possible to help with reproducing it, including but not limited to

The OpenSCAD version

The Operating System name and version

A description of the scenario that produces the issue

Why are the error line numbers wrong?

Why am I getting "no top level geometry to render"?

OpenSCAD crashed/was killed, are my unsaved changes lost?

How do I report bugs?

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

55 of 63 01/13/2018 02:29 AM

In case of graphics issues, the OpenGL driver information

If possible, a trimmed down script reproducing the issue

Most of the technical version information can be found in menu Help -> Library Info.

New features or changes/extensions to existing features can be requested in the github (http://github.com/) issue tracking system at

https://github.com/openscad/openscad/issues too.

Please make an effort to clearly explain the new feature / change as detailed as possible. Including some background about why you think this feature

would be useful to you and other people helps a lot and increases the chances of it being implemented.

The Windows version is currently maintained by the OpenSCAD team, so please use the github issue tracker (https://github.com/openscad

/openscad/issues) for reporting bugs.

The Mac OSX version is currently maintained by the OpenSCAD team, so please use the github issue tracker (https://github.com/openscad

/openscad/issues) for reporting bugs.

The OpenSCAD versions included in / distributed by the various Linux distributions are usually maintained by people/teams working with the

distributions.

Specific bugs can be reported in the respective bug tracking systems, e.g.

Debian - See "please report it" directions at https://bugs.debian.org/cgi-bin/pkgreport.cgi?package=openscad

Ubuntu - See "Report a bug" directions at https://launchpad.net/ubuntu/+source/openscad

Fedora / Red Hat - See https://apps.fedoraproject.org/packages/openscad/bugs and https://bugzilla.redhat.com
/buglist.cgi?component=openscad

Arch Linux - See "reporting bug guidelines" directions at https://bugs.archlinux.org/index.php?string=openscad&status
%5B%5D=

The nightly builds (https://build.opensuse.org/package/show/home:t-paul/OpenSCAD) hosted on the openSUSE build service

(https://build.opensuse.org/) are maintained by the OpenSCAD team, so please use the github issue tracker (https://github.com/openscad

/openscad/issues) for reporting issues with those packages.

How do I request new features?

How do I report bugs that are related to the Operating System I use?

Windows

Mac OSX

Linux

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

56 of 63 01/13/2018 02:29 AM

Chapter 10 -- Libraries
OpenSCAD User Manual

Library Locations
OpenSCAD uses three library locations, the installation library, built-in library, and user defined libraries.

The Installation library location is the libraries directory under the directory where OpenSCAD is installed.1.

The Built-In library location is O/S dependent. Since version 2014.03, it can be opened in the system specific file manager
using the "File->Show Library Folder..." menu entry.

Windows: My Documents\OpenSCAD\libraries

Linux: $HOME/.local/share/OpenSCAD/libraries

Mac OS X: $HOME/Documents/OpenSCAD/libraries

2.

The User-Defined library path can be created using the OPENSCADPATH Environment Variable to point to the library(s).
OPENSCADPATH can contain multiple directories in case you have library collections in more than one place, separate directories
with a semi-colon for Windows, and a colon for Linux/Mac OS. For example:

3.

Windows: C:\Users\A_user\Documents\OpenSCAD\MyLib;C:\Thingiverse Stuff\OpenSCAD Things;D:\test_stuff
(Note: For Windows, in versions prior to 2014.02.22 there is a bug preventing multiple directories in OPENSCADPATH as
described above, it uses a colon (:) to separate directories. A workaround, if your libraries are on C: is to leave off the
drive letter & colon, e.g. \Thingiverse Stuff\OpenSCAD Things:\stuff
Linux/Mac OS: /usr/lib:/home/mylib:.

OpenSCAD will need to be restarted to recognise any change to the OPENSCADPATH Environment
Variable.

Where you specify a non-fully qualified path & filename in the use <...> or include <...> statement
that path/file is checked against the directory of the calling .scad file, the User-Defined library
paths (OPENSCADPATH), the Built-In library (i.e. the O/S dependent locations above), and the Installation
library, in that order. NOTE: In the case of a library file itself having use <...> or include <...> the
directory of the library .scad file is the 'calling' file, i.e. when looking for libraries within a library, it
does not check the directory of the top level .scad file.

For example, with the following locations & files defined: (with OPENSCADPATH=/usr/lib:/home/lib_os:.)

1. <installation library>/lib1.scad
2. <built-in library>/lib2.scad
3. <built-in library>/sublib/lib2.scad
4. <built-in library>/sublib/lib3.scad
5. /usr/lib/lib2.scad
6. /home/lib_os/sublib/lib3.scad

The following include <...> statements will match to the nominated library files

include <lib1.scad> // #1.
include <lib2.scad> // #5.
include <sublib/lib2.scad> // #3.
include <sublib/lib3.scad> // #6.

Since 2014.03, the currently active list of locations can be verified in the "Help->Library Info" dialog.

The details info shows both the content of the OPENSCADPATH variable and the list of all library locations. The locations will be searched in the order

they appear in this list. For example;

OPENSCADPATH: /data/lib1:/data/lib2
OpenSCAD library path:
 /data/lib1
 /data/lib2
 /home/user/.local/share/OpenSCAD/libraries
 /opt/OpenSCAD/libraries

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

57 of 63 01/13/2018 02:29 AM

In Windows, Environment Variables are set via the Control panel, select System, then Advanced System Settings, click Environment

Variables. Create a new User Variable, or edit OPENSCADPATH if it exists.

On Linux (probably also on Mac), to simply add the environment variable to all users, you can type in terminal: sudo sh -c 'echo

"OPENSCADPATH=$HOME/openscad/libraries" >>/etc/profile' to set the OPENSCADPATH to openscad/libraries under each user's

home directory. For more control on environment variables, you'll need to edit the configuration files; see for example this page

(http://unix.stackexchange.com/questions/117467/how-to-permanently-set-environmental-variables).

MCAD
OpenSCAD bundles the MCAD library (https://github.com/openscad/MCAD).

There are many different forks floating around (e.g.[1] (https://github.com/SolidCode/MCAD), [2] (https://github.com/elmom/MCAD), [3]

(https://github.com/benhowes/MCAD)) many of them unmaintained.

MCAD bundles a lot of stuff, of varying quality, including:

Many common shapes like rounded boxes, regular polygons and polyeders in 2D and 3D

Gear generator for involute gears and bevel gears.

Stepper motor mount helpers, stepper and servo outlines

Nuts, bolts and bearings

Screws and augers

Material definitions for common materials

Mathematical constants, curves

Teardrop holes and polyholes

The git repo also contains python code to scrape OpenSCAD code, a testing framework and SolidPython, an external python library for solid cad.

More details on using MCAD are in a later chapter, OpenSCAD User Manual/MCAD.

Other Libraries
BOLTS tries to build a standard part and vitamin library that can be used with OpenSCAD and other CAD tools: [4]
(http://www.bolts-library.org/)

Obiscad contains various useful tools, notably a framework for attaching modules on other modules in a simple and modular
way: [5] (https://github.com/Obijuan/obiscad)

This library provides tools to create proper 2D technical drawings of your 3D objects: [6] (http://www.cannymachines.com
/entries/9/openscad_dimensioned_drawings)

Stephanie Shaltes (https://plus.google.com/u/0/101448691399929440302) wrote a fairly comprehensive fillet library
(https://github.com/StephS/i2_xends/blob/master/inc/fillets.scad)

The shapes library (http://svn.clifford.at/openscad/trunk/libraries/shapes.scad) contains many shapes like rounded boxes,
regular polygons. It is also included in MCAD.

Also Giles Bathgates shapes library (https://github.com/elmom/MCAD/blob/master/regular_shapes.scad) provides regular
polygons and polyeders and is included in MCAD.

The OpenSCAD threads (http://dkprojects.net/openscad-threads/) library provides ISO conform metric and imperial threads and
support internal and external threads and multiple starts.

Sprockets for ANSI chains and motorcycle chains can be created with the Roller Chain Sprockets OpenSCAD Module
(http://www.thingiverse.com/thing:197896). Contains hard coded fudge factors, may require tweaking.

The Pinball Library (http://code.google.com/p/how-to-build-a-pinball/source/browse/trunk/scad/pinball) provides many
components for pinball design work, including models for 3d printing of the parts, 3d descriptions of mount holes for CNC
drilling and 2d descriptions of parts footprint

For the generation of celtic knots there is the Celtic knot library (https://github.com/beanz/celtic-knot-scad)

The 2D connection library (https://www.youmagine.com/designs/openscad-2d-connection-library) helps with connections
between 2D sheets, which is useful for laser cut designs.

local.scad (https://github.com/jreinhardt/local-scad) provides a flexible method for positioning parts of a design. Is also used in
BOLTS.

SCADBoard (http://scadboard.wordpress.com/) is a library for designing 3D printed PCBs in OpenSCAD.

A Ruler (http://www.thingiverse.com/thing:30769) for determining the size of things in OpenSCAD.

A colorspace converter for working with colors in HSV and RGB: http://www.thingiverse.com/thing:279951/

Setting OPENSCADPATH

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

58 of 63 01/13/2018 02:29 AM

A number of utility functions is collected in https://github.com/oampo/missile

Unit test framework https://github.com/oampo/testcard

Knurled surface library by aubenc http://www.thingiverse.com/thing:9095

Text module based on technical lettering style https://github.com/thestumbler/alpha

Round corners for Openscad https://www.thingiverse.com/thing:8812 https://www.makerbot.com/media-center/2011/05
/26/script-for-rounded-corners-for-openscad-by-warrantyvoider

Bevel library for OpenScad https://www.thingiverse.com/thing:30336

SCAD libraraies used by Michigan Tech's Open Sustainability Technology Lab (MOST) https://github.com/mtu-most/most-
scad-libraries

There is also a list with more libraries here: [7] (https://github.com/openscad/openscad/wiki/Libraries)

"OpenSCAD User Manual" http://www.openscad.org/documentation.html

"Know only 10 things to be dangerous in OpenSCAD" https://cubehero.com/2013/11/19/know-only-10-things-to-be-dangerous-
in-openscad/

"OpenScad beginners tutorial" http://edutechwiki.unige.ch/en/OpenScad_beginners_tutorial

"How to use Openscad, tricks and tips to design a parametric 3D object" http://www.tridimake.com/2014/09/how-to-
use-openscad-tricks-and-tips-to.html

OpenSCAD discussion forum http://forum.openscad.org

Other OpenSCAD tutorials and documentation

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

59 of 63 01/13/2018 02:29 AM

Chapter 11 -- Command Glossary
OpenSCAD User Manual

This is a Quick Reference; a short summary of all the commands without examples, just the basic syntax. The headings are links to the full chapters.

Please be warned: The Command Glossary is presently outdated (03 2015).

Please have a look at the Cheatsheet, instead:

http://www.openscad.org/cheatsheet/

+
- // also as unary negative
*
/
%

<
<=
==
!=
>=
>

&& // logical and
|| // logical or
! // logical not

<boolean> ? <valIfTrue> : <valIfFalse>

abs (<value>)

cos (<degrees>)
sin (<degrees>)
tan (<degrees>)
asin (<value>)
acos (<value>)
atan (<value>)
atan2 (<y_value>, <x_value>)

pow(<base>, <exponent>)

len (<string>) len (<vector>) len (<vector_of_vectors>)
min (<value1>, <value2>)
max (<value1>, <value2>)
sqrt (<value>)
round (<value>)
ceil (<value>)
floor (<value>)
lookup(<in_value>, <vector_of_vectors>)

str(string, value, ...)

Mathematical Operators

Mathematical Functions

String Functions

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

60 of 63 01/13/2018 02:29 AM

cube(size = <value or vector>, center = <boolean>);

sphere(r = <radius>);

cylinder(h = <height>, r1 = <bottomRadius>, r2 = <topRadius>, center = <boolean>);
cylinder(h = <height>, r = <radius>);

polyhedron(points = [[x, y, z], ...], triangles = [[p1, p2, p3..], ...], convexity = N);

scale(v = [x, y, z]) { ... }

(In versions > 2013.03)
resize(newsize=[x,y,z], auto=(true|false) { ... }
resize(newsize=[x,y,z], auto=[xaxis,yaxis,zaxis]) { ... } // #axis is true|false
resize([x,y,z],[xaxis,yaxis,zaxis]) { ... }
resize([x,y,z]) { ... }

rotate(a = deg, v = [x, y, z]) { ... }
rotate(a=[x_deg,y_deg,z_deg]) { ... }

translate(v = [x, y, z]) { ... }

mirror([0, 1, 0]) { ... }

multmatrix(m = [tranformationMatrix]) { ... }

color([r, g, b, a]) { ... }
color([R/255, G/255, B/255, a]) { ... }
color("blue",a) { ... }

for (<loop_variable_name> = <vector>) {...}

intersection_for (<loop_variable_name> = <vector_of_vectors>) {...}

if (<boolean condition>) {...} else {...}

assign (<var1>= <val1>, <var2>= <val2>, ...) {...}

union() {...}

difference() {...}

intersection() {...}

Primitive Solids

Transformations

Conditional and Iterator Functions

CSG Modelling

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

61 of 63 01/13/2018 02:29 AM

render(convexity = <value>) { ... }

! { ... } // Ignore the rest of the design and use this subtree as design root
* { ... } // Ignore this subtree
% { ... } // Ignore CSG of this subtree and draw it in transparent gray
{ ... } // Use this subtree as usual but draw it in transparent pink

module name(<var1>, <var2>, ...) { ...<module code>...}

Variables can be default initialized <var1>=<defaultvalue>

In module you can use children() to refer to all child nodes, or children(i) where i is between 0 and $children.

After 2010.02

include <filename.scad> (appends whole file)

use <filename.scad> (appends ONLY modules and functions)

filename could use directory (with / char separator).

Prior to 2010.02

<filename.scad>

$fa is the minimum angle for a fragment. The default value is 12 (degrees)

$fs is the minimum size of a fragment. The default value is 1.

$fn is the number of fragments. The default value is 0.

When $fa and $fs are used to determine the number of fragments for a circle, then OpenSCAD will never use less than 5 fragments.

$t

The $t variable is used for animation. If you enable the animation frame with view->animate and give a value for "FPS" and "Steps", the "Time" field

shows the current value of $t.

function name(<var>) = f(<var>);

echo(<string>, <var>, ...);

render(convexity = <val>) {...}

surface(file = "filename.dat", center = <boolean>, convexity = <val>);

Modifier Characters

Modules

Include Statement

Other Language Features

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

62 of 63 01/13/2018 02:29 AM

square(size = <val>, center=<boolean>);
square(size = [x,y], center=<boolean>);

circle(r = <val>);

polygon(points = [[x, y], ...], paths = [[p1, p2, p3..], ...], convexity = N);

projection(cut = <boolean>)

linear_extrude(height = <val>, center = <boolean>, convexity = <val>, twist = <degrees>[, slices = <val>, $fn=...,$fs=...,$fa=...]){...}

rotate_extrude(convexity = <val>[, $fn = ...]){...}

linear_extrude(height = <val>, center = <boolean>, convexity = <val>, twist = <degrees>[...])
import (file = "filename.dxf", layer = "layername")

rotate_extrude(origin = [x,y], convexity = <val>[, $fn = ...])
import (file = "filename.dxf", layer = "layername")

import("filename.stl", convexity = <val>);

Retrieved from "https://en.wikibooks.org/w/index.php?title=OpenSCAD_User_Manual/Print_version&oldid=3355434"

This page was last edited on 30 December 2017, at 11:51.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this site, you
agree to the Terms of Use and Privacy Policy.

2D Primitives

3D to 2D Projection

2D to 3D Extrusion

DXF Extrusion

STL Import

OpenSCAD User Manual/Print version - Wikibooks... https://en.wikibooks.org/wiki/OpenSCAD_User_...

63 of 63 01/13/2018 02:29 AM

