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Preface 

The Modelica modeling language and technology is being warmly received by the world community in 
modeling and simulation with major applications in virtual prototyping of complex cyber-physical 
systems, which mix physical system dynamics with software (cyber) and networks. It is bringing about a 
revolution in this area, based on its ease of use, visual design of models with combination of lego-like 
predefined model building blocks, its ability to define model libraries with reusable components, its 
support for modeling and simulation of complex applications involving parts from several application 
domains, and many more useful facilities. To draw an analogy—Modelica is currently in a similar phase as 
Java early on, before the language became well known, but for virtual prototyping instead of Internet 
programming. 

About the Author 
Peter Fritzson, PhD, is Professor and Research Director of the Programming 
Environment Laboratory within Department of Computer and Information 
Science, Linkoping University, Sweden. Prof. Fritzson is also Director of the 
Open Source Modelica Consortium, Director of the MODPROD Center for 
Model-Based Product Development, and Vice Chairman of the Modelica 
Association, all organizations he helped to establish. Previously, he has served 
as Chairman of the Scandinavian Simulation Society, Secretary of EuroSim, and 
a Project Leader at Sun MicroSystems California. Prof. Fritzson is one of the 
world's leading experts on object-oriented equation-based modeling and 
simulation technology, and is one of the founding fathers of Modelica.. 

About this Book 

This book teaches modeling and simulation of cyber-physical systems and gives an introduction and 
complete overview of the Modelica language to people who are familiar with basic programming concepts. 
It gives a basic introduction to the concepts of cyber-physical systems, modeling and simulation, equation-
based object-oriented modeling, as well as the basics of object-oriented component-based modeling for the 
novice, and a comprehensive overview of modeling and simulation in a number of application areas. In 
fact, the book has several goals: 

• Being a useful textbook in introductory courses on modeling and simulation of cyber-physical 
systems. 

• Being easily accessible for people who do not previously have a background in modeling, 
simulation and object orientation. 

• Introducing the concepts of cyber-physical modeling, object-oriented modeling, and component-
based modeling. 

• Providing a complete yet informal reference for the Modelica 3.3 language including the new 
synchronous features for embedded system modeling. 
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• Demonstrating modeling examples from a wide range of application areas. 
• Being a reference guide for the most commonly used Modelica libraries. 
• Introducing requirement driven model-based system design and verification. 
• Giving an introduction to numeric and symbolic techniques used in current Modelica tools. 

The book contains many examples of models in different application domains, as well as examples 
combining several domains. However, it is not primarily intended for the advanced modeler who, for 
example, needs additional insight into modeling within very specific application domains, or the person 
who constructs very complex models where special tricks may be needed. 

All examples and exercises in this book are available in an electronic self-teaching material called 
DrModelica, based on this book, which gradually guides the reader from simple introductory examples and 
exercises to more advanced ones. All of this teaching material can be freely downloaded from the book 
web site within www. openmodelica. org. This site also includes the downloadable free open source tool 
OpenModelica for modeling and simulation, which is the tool primarily used in this book. 

Moreover, the web site contains additional (teaching) material related to this book. The Modelica 
Standard Library 3.2.1 release August 2013 is used for the examples in this book. The main web site for 
the Modelica and Modelica libraries, including the most recent versions, is the Modelica Association 
website, www.Modelica.org. 
This second edition describes improvements and updates of the Modelica language up to Modelica 3.3. 
revision 1, including synchronous clocked constructs, examines basic concepts of cyber-physical, 
equation-based, object-oriented system modeling and simulation. The Modelica class concept and its use 
in graphical and textual modeling is introduced together with several hundred examples from many 
application areas and explores modeling methodology for continuous, discrete, and hybrid systems; and 
more. 

Reading Guide 

This book is a combination of a textbook for teaching modeling and simulation of cyber-physical systems, 
a textbook and reference guide for learning how to model and program using Modelica, and an application 
guide on how to do physical modeling in a number of application areas. The book can be read sequentially 
from the beginning to the end, but this will probably not be the typical reading pattern. Here are some 
suggestions: 

• Very quick introduction to modeling and simulation of cyber-physical systems - an object-oriented 
approach: Chapters 1 and 2. 

• Basic introduction to the Modelica language: Chapter 2 and first part of Chapter 13. 
• Full Modelica language course: Chapters 1-13. 
• Emphasis on cyber-physical system modeling: Chapter 12 and Chapter 13. 
• Application-oriented course: Chapter 1, and 2, most of Chapter 5, Chapters 12-15. Use Chapters 

3-11 as a language reference, and Chapter 16 and appendices as a library reference. 
• Teaching object orientation in modeling: Chapters 2-A, first part of Chapter 12. 
• Introduction to mathematical equation representations, as well as numeric and symbolic 

techniques, Chapters 17-18. 
• Modelica environments, with three example tools, Chapter 19. 

An interactive computer-based self-teaching course material called DrModelica is available as electronic 
live notebooks at www.openmodelica.org. This material includes all the examples and exercises with 
solutions from the book, and is designed to be used in parallel when reading the book, with page 
references, etc. 

The reading diagram below is yet another reading guideline, giving a combination of important 
language concepts together with modeling methodology and application examples of your choice. The 
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selection is of necessity somewhat arbitrary - you should also take a look at the table of contents of other 
chapters and part of chapters so that you do not miss something important according to your own interest. 

Acknowledgements 

The members of the Modelica Association created the Modelica language, and contributed have many 
examples of Modelica code in the Modelica Language Rationale and Modelica Language Specification 
(see http://www.modelica.org), some of which are used in this book. The members who contributed to 
various versions of Modelica are mentioned further below. 
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to write a Modelica book. 
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The second edition, titled "Principles of Modeling and Simulation with Modelica 3.3: A Cyber-Physical 
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cyber-physical systems with integrated hardware-software and the new clocked synchronous features in 
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style, Riidiger Franke regarding application models and help to convert the thermodynamic examples in 
Chapter 15 to stream connector style, Alachew Shitahun for help with updating library and scripting 
appendices, Arunkumar Palanisamy for help with the grammar appendix update, Adeel Asghar for 
feedback regarding graphical annotations and the graphical editor. Also thanks to Dirk Zimmer, Elena 
Shmoylova, Martin Otter, Hilding Elmqvist, and Bernt Lie for feedback. Many thanks to Adrian Pop, Per 
Ostlund, Martin Sjolund, Adeel Asghar, Willi Braun, Lennart Ochel, Vitalij Ruge, and all other developers 
in the OpenModelica project for support and help when needed. Thanks to Lena Buffoni for additional 
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Contributions to Examples 

Many people contributed to the original versions of some of the Modelica examples presented in this book. 
Most examples have been significantly revised compared to the originals. A number of individuals are 
acknowledged below with the risk of accidental omission due to oversight. If the original version of an 
example is from the Modelica Tutorial or the Modelica Specification on the Modelica Association web 
sites, the contributors usually are the members of the Modelica Association, but in some cases individuals 
are mentioned also in this case. In addition to the examples mentioned in this table, there are also 
numerous small example fragments from the Modelica Tutorial and Specification used in original or 
modified form in the text, which is indicated to some extent in the reference section of each chapter. 
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SimpleCircuit expansion in Section 2.20.1 
Rocket in Section 3.5 
MoonLanding in Section 3.5 
BoardExample in Section 3.17.5 
BaseClassExtendsConf lict in Section 4.1.6 
LowPassFilter in Section 4.2.10 
FrictionFunction, KindOfController Sec 4.3.12 
Tank in Section 4.4.5 
Oscillator, Mass, Rigid in Section 5.4.4 
SpringDamper of Figure 5-22 in Section 5.4.5 5.4.4 
Reallnput, RealoutPut, MISO in Section 5.5.2 
MatrixGain, CrossProduct in Section 5.7.5 
Environment in Section 5.8.1 
CircuitBoard in Section 5.8.2 
uniformGravity, pointGravity in Section 5.8.3 
ParticleSystern in Section 5.8.3 
Volume in Section 5.10.4.1 

WaterVolumeConstant in Section 5.10.4.1 
WaterVolumeCompressible in Section 5.10.4.1 
isoenthalpicFlow in Section 5.10.4.25.10.4.1 

WaterVolumeConstant in Section 5.10.4.1 
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IsoenthalpicFlow in Section 5.10.4.25.10.4.1 

TemperatureSensor in Section 5.10.4.3 
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TimeEventTest, mySinNoTime in Section 5.10.4.36.3.3 
PendulumlmplicitL, readParameterData in 
Section 8.4.4 
ProcessControll, ProcessControl2, 
ProcessControl3, ProcessControl4 in Section 8.4.6 
HeatRectangle2D in Section 8.10.1.4 
Material to Figure 8-13 on 2D heat flow using FEM. 
FieldDomainOperatorslD in Section 8.10.5. 
Dif ferentialOperatorslD in Section 8.10.5. 
HeadDif fusionlD in Section 8.10.5. 
Dif f22D in Section 8.10.5.1 
FourBari example in Section 8.5.1. 
Orientation in Section 8.5.1. 

FixedTranslation in Section 8.5.3 

Material to Figure 8-5 on cutting branches in virtual 
connection graph. 
findElement in Section 9.2.7 
FilterBlockl in Section 8.3.6 
realToString in Section 9.3.2.1 
e igen in Section 9.3.2.3 
findMatrixElement in Section 9.3.2.6 
Record2 in Section 9.3.3 
bilinear Sampling in Section 9.4.3 
MyTable, interpolateMyTable in Section 9.4.8 
Mechanics in Section 10.3.2.2 
Placement, Transformation in Section 11.4.4 
Line, Polygon, etc. in Section 11.4.5 
Resistor, FrictionFunction in Section 11.5.8.2 
hO, hi, h2 in Section 11.10.1 
FlatTank in Section 12.2.1.1 
TankPl, Tank, LiquidSource in Section 12.2.3 
PIContinuousController in Section 12.2.3 
TankPID, PIContinuousController Section 12.2.4 
DC-Motor Servo in Section 12.3 
SmoothAndEvents in Section 13.2.5.11 
Countings tat eMachinel in Section 13.3.2.1 

ClockedVarWhen in Section 13.2.6.4 
PreVsPrevious in Section Section 13.2.5.14 
WatchDogSystem in Section 13.3.2.4 
WatchDogSystemStateMachinePack in Section 13.3.2.5 
CustomerGeneration in Section 13.3.4.2 
ServerWithQueue in Section 13.3.4.2 
BasicDEVSTwoPort in Section 13.3.5 
SimpleDEVSServer in Section 13.3.5 
Place, Transition in Section 13.3.6.5 
GameOfLife, nextGeneration in Section 13.3.3.1 
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PldiscreteController in Section 13.4.1 
TankHybridPl in Section 13.4.1 
SimpleElastoBacklash in Section 13.4.2 
DCMotorCircuitBacklash in Section 13.4.2 
ElastoBacklash in Section 13.4.2 
Philosophers, DiningTable in Section 13.5.1 
MassWithSpringDamper in Section 13.6.1 

SpeedControlP_MassWithSpringDamper in Section 
13.6.1 
ClockedPiEx in Section 13.6.5 

BackSampleExl in Section 13.6.9.4 

NoClockVsSampleHold in Section 13.6.9.5 
BaseClockPartitionEx in Section 13.6.13.1 

ControlledMass in Section 13.6.13.2 

SolverMethodClockedPi in Section 13.6.15.3 

ClockTicks in Section 13.6.16 

ciockTicksWithModelica32 in Section 13.6.16 

StateMachineSemantics in Section 13.7.4.4 

HierarchicalAndParallelStateMachinel 
13.7.5 
HierarchicalAndParallelStateMachine2 
13.7.5 
BasicVolume in Section 15.2.2 
BasicVolume in Section 15.2.3 
BasicVolume in Section 15.2.4 
BasicVolume in Section 15.2.4.2 
FlowConnectorln in Section 15.2.5.1 
FlowConnectorOut in Section 15.2.5.1 
FlowConnector in Section 15.2.5.1 
IdealGas in Section 15.2.5.2 
BasicVolumeFirst in Section 15.2.5.2 
BasicVolume in Section 15.2.5.2 

PressureEnthalpySource in Section 15.2.5.3 
PressureEnthalpyBoundary in Section 15.2.5.3 
SimpleValveFlow in Section 15.2.5.4 
ValveFlowFirst in Section 15.2.5.5 
ValveFlow in Section 15.2.5.5 
ControlledValveFlowFirst in Section 15.2.5.6 
ControlledValveFlow in Section 15.2.5.6 
CtrlFlowSystemin Section 15.2.5.6 
PneumaticCylinderVolume in Section 15.2.5.7 
PneumaticCylinderVolume in Section 15.2.5.8 
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RoomWithFan in Section 15.2.6 
RoomlnEnvironment in Section 15.2.6 
Hydrogen Iodi de in Section 15.3.1 
LotkaVolterra in Section 15.4.1 
HandyBase in Section 15.4.2.2 
HandyEgalitarianBase in Section 15.4.2.4 
HandyEquitableBase in Section 15.4.2.5 
HandyUnEquitableBase in Section 15.4.2.6 
World3 in Section 15.4.2.7 
willowForest in Section 15.4.3 
TCPSender, Loss_link_queue in Section 15.6.3 
Router21, TCPSackvsTCPWestWood in Section 15.6 
LinearActuator in Section 15.7 
WeakAxis in Section 15.8 
WaveEquationSample in Section 15.9 
FreeFlyingBody in Section 15.10.2 
doublePendulumNoGeometry in Section 15.10.7 
doublePendulumCylinders in Section 15.10.6.2 
PendulumLoop2D in Section 15.10.7 
ExtForcePendulum in Section 15.10.9.1 
PendulumRotationalSteering in Section 15.10.9.3 
PendulumWithPDCon troll er in Section 15.10.9.4 
TripleSprings in Section TripleSprings 5.4.3.2 
EngineV6 in Section 15.10.10 
Generator in Section 17.1.6 
Material to Figure 17-4, Figure 17-5, and Figure 17-6 
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Chapter 1 

Introduction to Modeling and Simulation 

It is often said that computers are revolutionizing science and engineering. By using computers, we are 
able to construct complex engineering designs such as space shuttles. We are able to compute the 
properties of the universe as it was fractions of a second after the Big Bang. Our ambitions are ever-
increasing. We want to create even more complex designs such as better spaceships, cars, medicines, 
computerized cellular phone systems, and so on. We want to understand deeper aspects of nature. These 
are just a few examples of computer-supported modeling and simulation. More powerful tools and 
concepts are needed to help us handle this increasing complexity, which is precisely what this book is 
about. 

This text presents an object-oriented, component-based approach to computer-supported 
mathematical modeling and simulation through the powerful Modelica language and its associated 
technology. Modelica can be viewed as an almost-universal approach to high-level computational 
modeling and simulation, by being able to represent a range of application areas and providing general 
notation as well as powerful abstractions and efficient implementations. The introductory part of this 
book, consisting of the first two chapters, gives a quick overview of the two main topics of this text: 

• Modeling and simulation 
• The Modelica language 

The two subjects are presented together since they belong together. Throughout the text, Modelica is 
used as a vehicle for explaining different aspects of modeling and simulation. Conversely, a number of 
concepts in the Modelica language are presented by modeling and simulation examples. This first 
chapter introduces basic concepts such as system, model, and simulation. The second chapter gives a 
quick tour of the Modelica language as well as a number of examples, interspersed with presentations of 
topics such as object-oriented mathematical modeling, declarative formalisms, methods for compilation 
of equation-based models, and so forth. 

Subsequent chapters contain detailed presentations of object-oriented modeling principles and 
specific Modelica features; introductions of modeling methodology for continuous, discrete, and hybrid 
systems; as well as a thorough overview of a number of currently available Modelica model libraries for 
a range of application domains. Finally, in the last chapter, a few of the currently available Modelica 
environments are presented. 

1.1 Systems and Experiments 

What is a system? We have already mentioned some systems such as the universe, a space shuttle, and 
so on. A system can be almost anything. A system can contain subsystems that are themselves systems. 
A possible definition of system might be: 

• A system is an object or collection of objects whose properties we want to study. 

3 
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Our wish to study selected properties of objects is central in this definition. The "study" aspect is fine 
despite the fact that it is subjective. The selection and definition of what constitutes a system is 
somewhat arbitrary and must be guided by what the system is to be used for. 

What reasons can there be to study a system? There are many answers to this question but we can 
discern two major motivations: 

• Study a system to understand it in order to build it. This is the engineering point of view. 
• Satisfy human curiosity; for example, to understand more about nature—the natural science 

viewpoint. 

1.1.1 Natural and Artificial Systems 

A system, according to our previous definition, can occur naturally, for example, the universe, or it can 
be artificial, such as a space shuttle, or a mix of both. For example, the house in Figure 1-1, with solar-
heated tap water is an artificial system, that is, it is manufactured by humans. If we also include the sun 
and clouds in the system, it becomes a combination of natural and artificial components. 

Figure 1-1. A system: a house with solar-heated tap water, together with clouds and sunshine. 

Even if a system occurs naturally, its definition is always highly selective. This is made very 
apparent in the following quote from Ross Ashby [Ashby-56]: 

At this point, we must be clear about how a system is to be defined. Our first impulse is to point 
at the pendulum and to say "the system is that thing there." This method, however, has a 
fundamental disadvantage: every material object contains no less than an infinity of variables, 
and therefore, of possible systems. The real pendulum, for instance, has not only length and 
position; it has also mass, temperature, electric conductivity, crystalline structure, chemical 
impurities, some radioactivity, velocity, reflecting power, tensile strength, a surface film of 
moisture, bacterial contamination, an optical absorption, elasticity, shape, specific gravity, and 
so on and on. Any suggestion that we should study all the facts is unrealistic, and actually the 
attempt is never made. What is necessary is that we should pick out and study the facts that are 
relevant to some main interest that is already given. 

Even if the system is completely artificial, such as the cellular phone system depicted in Figure 1-2, we 
must be highly selective in its definition, depending on what aspects we want to study for the moment. 
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incoming calls incoming calls incoming calls 

Figure 1-2. A cellular phone system containing a central processor and regional processors to handle 
incoming calls. 

An important property of systems is that they should be observable. Some systems, but not large 
natural systems like the universe, are also controllable in the sense that we can influence their behavior 
through inputs: 

• The inputs of a system are variables of the environment that influence the behavior of the 
system. These inputs may or may not be controllable by us. 

• The outputs of a system are variables that are determined by the system and may influence the 
surrounding environment. 

In many systems, the same variables act as both inputs and outputs. We talk about acausal behavior if 
the relationships or influences between variables do not have a causal direction, which is the case for 
relationships described by equations. For example, in a mechanical system the forces from the 
environment influence the displacement of an object but, on the other hand, the displacement of the 
object influences the forces between the object and environment. What is input and what is output in 
this case is primarily a choice by the observer, guided by what is interesting to study, rather than a 
property of the system itself. 

1.1.2 Experiments 

Observability is essential in order to study a system according to our definition of system. We must at 
least be able to observe some outputs of a system. We can learn even more if it is possible to exercise a 
system by controlling its inputs. This process is called experimentation. 

• An experiment is the process of extracting information from a system by exercising its inputs. 

To perform an experiment on a system it must be both controllable and observable. We apply a set of 
external conditions to the accessible inputs and observe the reaction of the system by measuring the 
accessible outputs. 

One of the disadvantages of the experimental method is that for a large number of systems many 
inputs are not accessible and controllable. These systems are under the influence of inaccessible inputs, 
sometimes called disturbance inputs. Likewise, it is often the case that many really useful possible 
outputs are not accessible for measurements; these are sometimes called internal states of the system. 
There are also a number of practical problems associated with performing an experiment: 

• The experiment might be too expensive—investigating ship durability by building ships and 
letting them collide is a very expensive method of gaining information. 

• The experiment might be too dangerous—training nuclear plant operators in handling dangerous 
situations by letting the nuclear reactor enter hazardous states is not advisable. 

• The system needed for the experiment might not yet exist—this is typical of systems to be 
designed or manufactured. 

C Central processoP^v 
in cellular phone systern/ 

/RegionalN /RegionalN /RegionaT\ 
\processory \processor/ \processor/ 
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The shortcomings of the experimental method lead us to the model concept. If we make a model of a 
system, this model can be investigated and may answer many questions regarding the real system if the 
model is realistic enough. 

1.2 The Model Concept 

Given the previous definitions of system and experiment, we can now attempt to define the notion of 
model: 

• A model of a system is anything an "experiment" can be applied to in order to answer questions 
about that system. 

This implies that a model can be used to answer questions about a system without doing experiments on 
the real system. Instead, we perform simplified "experiments" on the model, which in turn can be 
regarded as a kind of simplified system that reflects properties of the real system. In the simplest case, a 
model can just be a piece of information that is used to answer questions about the system. 

Given this definition, any model also qualifies as a system. Models, just like systems, are 
hierarchical in nature. We can cut out a piece of a model, which becomes a new model that is valid for a 
subset of the experiments for which the original model is valid. A model is always related to the system 
it models and the experiments it can be subject to. A statement such as "a model of a system is invalid" 
is meaningless without mentioning the associated system and the experiment. A model of a system 
might be valid for one experiment on the model and invalid for another. The term model validation (see 
Section 1.5.3, page 10) always refers to an experiment or a class of experiments to be performed. 

We talk about different kinds of models depending on how the model is represented: 

• Mental model—a statement like "a person is reliable" helps us answer questions about that 
person's behavior in various situations. 

• Verbal model—this kind of model is expressed in words. For example, the sentence "More 
accidents will occur if the speed limit is increased" is an example of a verbal model. Expert 
systems is a technology for formalizing verbal models. 

• Physical model—this is a physical object that mimics some properties of a real system to help us 
answer questions about that system. For example, during design of artifacts such as buildings 
and airplanes it is common to construct small physical models with same shape and appearance 
as the real objects to be studied, with respect to their aerodynamic properties and aesthetics. 

• Mathematical model—a description of a system in which the relationships between variables of 
the system are expressed in mathematical form. Variables can be measurable quantities such as 
size, length, weight, temperature, unemployment level, information flow, bit rate, and so on. 
Most laws of nature are mathematical models in this sense. For example, Ohm's law describes 
the relationship between current and voltage for a resistor; Newton's laws describe relationships 
between velocity, acceleration, mass, force, and so on. 

The kinds of models that we primarily deal with in this book are mathematical models represented in 
various ways, for example as equations, functions, and computer programs. Artifacts represented by 
mathematical models in a computer are often called virtual prototypes. The process of constructing and 
investigating such models is virtual prototyping. Sometimes the term physical modeling is used also for 
the process of building mathematical models of physical systems in the computer if the structuring and 
synthesis process are the same as when building real physical models. 
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1.3 Simulation 

In the previous section, we mentioned the possibility of performing "experiments" on models instead of 
on the real systems corresponding to the models. This is actually one of the main uses of models, and is 
denoted by the term simulation, from the Latin simulare, which means to pretend. We define a 
simulation as follows: 

• A simulation is an experiment performed on a model. 

In analogy with our previous definition of model, this definition of simulation does not require the 
model to be represented in mathematical or computer-program form. However, in the rest of this text we 
will concentrate on mathematical models, primarily those that have a computer-representable form. The 
following are a few examples of such experiments or simulations: 

• A simulation of an industrial process, such as steel or pulp manufacturing, to learn about the 
behavior under different operating conditions in order to improve the process. 

• A simulation of vehicle behavior, for example of a car or an airplane, for the purpose of 
providing realistic operator training. 

• A simulation of a simplified model of a packet-switched computer network, to learn about its 
behavior under different loads in order to improve performance. 

It is important to realize that the experiment description and model description parts of a simulation 
are conceptually separate entities. On the other hand, these two aspects of a simulation belong together 
even if they are separate. For example, a model is valid only for a certain class of experiments. It can be 
useful to define an experimental frame associated with the model, which defines the conditions that 
need to be fulfilled by valid experiments. 

If the mathematical model is represented in executable form in a computer, simulations can be 
performed by numerical experiments, or in nonnumeric cases by computational experiments. This is a 
simple and safe way of performing experiments, with the added advantage that essentially all variables 
of the model are observable and controllable. However, the value of the simulation results is completely 
dependent on how well the model represents the real system with regard to the questions to be answered 
by the simulation. 

Except for experimentation, simulation is the only technique that is generally applicable for analysis 
of the behavior of arbitrary systems. Analytical techniques are better than simulation, but usually apply 
only under a set of simplifying assumptions, which often cannot be justified. On the other hand, it is not 
uncommon to combine analytical techniques with simulations, that is, simulation is used not alone but 
in combination with analytical or semianalytical techniques. 

1.3.1 Reasons for Simulation 

There are a number of good reasons to perform simulations instead of performing experiments on real 
systems: 

• Experiments are too expensive, too dangerous, or the system to be investigated does not yet 
exist. These are the main difficulties of experimentation with real systems, previously mentioned 
in Section 1.1.2, page 5. 

• The time scale of the dynamics of the system is not compatible with that of the experimenter. 
For example, it takes millions of years to observe small changes in the development of the 
universe, whereas similar changes can be quickly observed in a computer simulation of the 
universe. 

• Variables may be inaccessible. In a simulation, all variables can be studied and controlled, even 
those that are inaccessible in the real system. 
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• Easy manipulation of models. Using simulation, it is easy to manipulate the parameters of a 
system model, even outside the feasible range of a particular physical system. For example, the 
mass of a body in a computer-based simulation model can be increased from 40 to 500 kg at a 
keystroke, whereas this change might be hard to realize in the physical system. 

• Suppression of disturbances. In a simulation of a model, it is possible to suppress disturbances 
that might be unavoidable in measurements of the real system. This can allow us to isolate 
particular effects and thereby gain a better understanding of those effects. 

• Suppression of second-order effects. Often, simulations are performed because they allow 
suppression of second-order effects such as small nonlinearities or other details of certain 
system components, which can help us to better understand the primary effects. 

1.3.2 Dangers of Simulation 

The ease of use of simulation is also its most serious drawback: it is quite easy for the user to forget the 
limitations and conditions under which a simulation is valid and, therefore, draw the wrong conclusions 
from the simulation. To reduce these dangers, one should always try to compare at least some results of 
simulation against experimental results from the real system. It also helps to be aware of the following 
three common sources of problems when using simulation: 

• Falling in love with a model—the Pygmalion2 effect. It is easy to become too enthusiastic about 
a model and forget all about the experimental frame; the model is not the real world but only 
represents the real system under certain conditions. One example is the introduction of foxes to 
the Australian continent to solve the rabbit problem, on the model assumption that foxes hunt 
rabbits, which is true in many other parts of the world. Unfortunately, the foxes found the 
indigenous fauna much easier to hunt and largely ignored the rabbits. 

• Forcing reality into the constraints of a model—the Procrustes3 effect. One example is the 
shaping of our societies after currently fashionable economic theories having a simplified view 
of reality, and ignoring many other important aspects of human behavior, society, and nature. 

• Forgetting the model's level of accuracy. All models have simplifying assumptions and we have 
to be aware of those in order to correctly interpret the results. 

For these reasons, while analytical techniques are generally more restrictive since they have a much 
smaller domain of applicability, such techniques are more powerful when they apply. A simulation 
result is valid only for a particular set of input data. Many simulations are needed to gain an 
approximate understanding of a system. Therefore, if analytical techniques are applicable they should be 
used instead of simulation or as a complement. 

1.4 Building Models 

Given the usefulness of simulation in order to study the behavior of systems, how do we go about 
building models of those systems? This is the subject of most of this book and of the Modelica 
language, which has been created to simplify model construction as well as reuse of existing models. 

There are in principle two main sources of general system-related knowledge needed for building 
mathematical models of systems: 

2 Pygmalion was a mythical king of Cyprus, who also was a sculptor. The king fell in love with one of his works, a 
sculpture of a young woman, and asked the gods to make her alive. 

3 Procrustes was a robber known from Greek mythology. He was known for the bed where he tortured travelers who fell 
into his hands: if the victim was too short, he stretched arms and legs until the person fit the length of the bed; if the 
victim was too tall, he cut off the head and part of the legs. 
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• The collected general experience in relevant domains of science and technology, found in the 
literature and available from experts in these areas. This includes the laws of nature, including 
Newton's laws for mechanical systems, Kirchhoffs laws for electrical systems, and 
approximate relationships for nontechnical systems based on economic or sociological theories. 

• The system itself, that is, observations of and experiments on the system we want to model. 

In addition to the above system knowledge, there is also specialized knowledge about mechanisms 
for handling and using facts in model construction for specific applications and domains, as well as 
generic mechanisms for handling facts and models: 

• Application expertise—mastering the application area and techniques for using all facts relative 
to a specific modeling application. 

• Software and knowledge engineering—generic knowledge about defining, handling, using, and 
representing models and software, for example, object orientation, component system 
techniques, and expert system technology. 

What is then an appropriate analysis and synthesis process to be used in applying these information 
sources for constructing system models? Generally, we first try to identify the main components of a 
system and the kinds of interaction between these components. Each component is broken down into 
subcomponents until each part fits the description of an existing model from some model library, or we 
can use appropriate laws of nature or other relationships to describe the behavior of that component. 
Then we state the component interfaces and make a mathematical formulation of the interactions 
between the components of the model. 

Certain components might have unknown or partially known model parameters and coefficients. 
These can often be found by fitting experimental measurement data from the real system to the 
mathematical model using system identification, which in simple cases reduces to basic techniques like 
curve fitting and regression analysis. However, advanced versions of system identification may even 
determine the form of the mathematical model selected from a set of basic model structures. 

1.5 Analyzing Models 

Simulation is one of the most common techniques for using models to answer questions about systems. 
However, there also exist other methods of analyzing models such as sensitivity analysis and model-
based diagnosis, or analytical mathematical techniques in the restricted cases where solutions can be, 
found in a closed analytical form. 

1.5.1 Sensitivity Analysis 

Sensitivity analysis deals with the question how sensitive the behavior of the model is to changes in 
model parameters. This is a very common question in design and analysis of systems. For example, 
even in well-specified application domains such as electrical systems, resistor values in a circuit are 
typically known only by an accuracy of 5 to 10 percent. If there is a large sensitivity in the results of 
simulations to small variations in model parameters, we should be very suspicious about the validity the 
model. In such cases, small random variations in the model parameters can lead to large random 
variations in the behavior. 

On the other hand, if the simulated behavior is not very sensitive to small variations in the model 
parameters, there is a good chance that the model fairly accurately reflects the behavior of the real 
system. Such robustness in behavior is a desirable property when designing new products, since they 
otherwise may become expensive to manufacture if certain tolerances must be kept very small. 
However, there are also a number of examples of real systems that are very sensitive to variations in 



10 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

specific model parameters. In those cases, that sensitivity should be reflected in models of those 
systems. 

1.5.2 Model-Based Diagnosis 

Model based diagnosis is a technique somewhat related to sensitivity analysis. We want to find the 
causes of certain behavior of a system by analyzing a model of that system. In many cases, we want to 
find the causes of problematic and erroneous behavior. For example, consider a car, which is a complex 
system consisting of many interacting parts such as a motor, an ignition system, a transmission system, 
suspension, and wheels. Under a set of well-defined operating conditions, each of these parts can be 
considered to exhibit a correct behavior if certain quantities are within specified value intervals. A 
measured or computed value outside such an interval might indicate an error in that component, or in 
another part influencing that component. This kind of analysis is called model-based diagnosis. 

1.5.3 Model Verification and Validation 

We have previously remarked about the dangers of simulation, for example, when a model is not valid 
for a system regarding the intended simulation. How can we verify that the model is a good and reliable 
model, that is, that it is valid for its intended use? This can be very hard and sometimes we can hope 
only to get a partial answer to this question. However, the following techniques are useful to at least 
partially verify the validity of a model: 

• Critically review the assumptions and approximations behind the model, including available 
information about the domain of validity regarding these assumptions. 

• Compare simplified variants of the model to analytical solutions for special cases. 
• Compare to experimental results for cases when this is possible. 
• Perform sensitivity analysis of the model. If the simulation results are relatively insensitive to 

small variations of model parameters, we have stronger reasons to believe in the validity of the 
model. 

• Perform internal consistency checking of the model, such as checking that dimensions or units 
are compatible across equations. For example, in Newton's equation F = ma, the unit [N] on the 
left-hand side is consistent with [kg m s~2] on the right-hand side. 

In the last case, it is possible for tools to automatically verify that dimensions are consistent if unit 
attributes are available for the quantities of the model. This functionality, however, is yet not available 
for most current modeling tools. 

1.6 Kinds of Mathematical Models 

Different kinds of mathematical models can be characterized by different properties reflecting the 
behavior of the systems that are modeled. One important aspect is whether the model incorporates 
dynamic time-dependent properties or is static. Another dividing line is between models that evolve 
continuously over time, and those that change at discrete points in time. A third dividing line is between 
quantitative and qualitative models. 

Certain models describe physical distribution of quantities, such as mass, whereas other models are 
lumped in the sense that the physically distributed quantity is approximated by being lumped together 
and represented by a single variable such as a point mass. 

Some phenomena in nature are conveniently described by stochastic processes and probability 
distributions, for example noisy radio transmissions or atomic-level quantum physics. Such models 
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might be labeled stochastic or probability-based models for which the behavior can be represented only 
in a statistic sense, whereas deterministic models allow the behavior to be represented without 
uncertainty. However, even stochastic models can be simulated in a "deterministic" way using a 
computer since the random number sequences often used to represent stochastic variables can be 
regenerated given the same seed values. 

The same phenomenon can often be modeled as being either stochastic or deterministic depending 
on the level of detail at which it is studied. Certain aspects at one level are abstracted or averaged away 
at the next higher level. For example, consider the modeling of gases at different levels of detail starting 
at the quantum-mechanical elementary particle level, where the positions of particles are described by 
probability distributions: 

• Elementary particles (orbitals)—stochastic models. 
• Atoms (ideal gas model)—deterministic models. 
• Atom groups (statistical mechanics)—stochastic models. 
• Gas volumes (pressure and temperature)—deterministic models. 
• Real gases (turbulence)—stochastic models. 
• Ideal mixer (concentrations)—deterministic models. 

It is interesting to note the kinds of model changes between stochastic or deterministic models that occur 
depending on what aspects we want to study. Detailed stochastic models can be averaged as 
deterministic models when approximated at the next upper macroscopic level in the hierarchy. On the 
other hand, stochastic behavior such as turbulence can be introduced at macroscopic levels as the result 
of chaotic phenomena caused by interacting deterministic parts. 

1.6.1 Kinds of Equations 

Mathematical models usually contain equations. There are basically four main kinds of equations; we 
give one example of each. 

Differential equations contain time derivatives such as , usually denoted x : 

x = a-x + 3 (1-0 

Algebraic equations do not include any differentiated variables: 

x1 +y2 =L2 (1-2) 

Partial differential equations also contain derivatives with respect to other variables than time: 

(1-3) da d2a 
dt dz2 

Difference equations express relations between variables, for example at different points in time: 

x(/ + l) = 3*(0 + 2 (1-4) 

1.6.2 Dynamic vs. Static Models 

All systems, both natural and man-made, are dynamic in the sense that they exist in the real world, 
which evolves in time. Mathematical models of such systems would be naturally viewed as dynamic in 
the sense that they evolve over time and therefore incorporate time. However, it is often useful to make 
the approximation of ignoring time dependence in a system. Such a system model is called static. Thus, 
we can define the concepts of dynamic and static models as follows: 
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• A dynamic model includes time in the model. The word dynamic is derived from the Greek word 
dynamis, meaning force and power, with dynamics being the (time-dependent) interplay 
between forces. Time can be included explicitly as a variable in a mathematical formula or be 
present indirectly, for example through the time derivative of a variable or as events occurring at 
certain points in time. 

• A static model can be defined without involving time, where the word static is derived from the 
Greek word statikos, meaning something that creates equilibrium. Static models are often used 
to describe systems in steady-state or equilibrium situations, where the output does not change if 
the input is the same. However, static models can display a rather dynamic behavior when fed 
with dynamic input signals. 

It is usually the case that the behavior of a dynamic model is dependent on its previous simulation 
history. For example, the presence of a time derivative in a mathematical model means that this 
derivative needs to be integrated to solve for the corresponding variable when the model is simulated, 
that is, the integration operation takes the previous time history into account. This is the case, for 
example for models of capacitors where the voltage over the capacitor is proportional to the 
accumulated charge in the capacitor or integration/accumulation of the current through the capacitor. By 
differentiating that relation, the time derivative of the capacitor voltage becomes proportional to the 
current through the capacitor. We can study the capacitor voltage increasing over time at a rate 
proportional to the current in Figure 1-3. 

Another way for a model to be dependent on its previous history is to let preceding events influence 
the current state, as in a model of an ecological system where the number of prey animals in the system 
will be influenced by events such as the birth of predators. On the other hand, a dynamic model such as 
a sinusoidal signal generator can be modeled by a formula directly including time and not involving the 
previous time history. 

Input current pulse 

/ 

Resistor voltage 

Capacitor voltage 

k l -• t ime 

Figure 1-3. A resistor is a static system where the voltage is directly proportional to the current, 
independent of time, whereas a capacitor is a dynamic system where voltage is dependent on the previous 
time history. 

A resistor is an example of a static model which can be formulated without including time. The resistor 
voltage is directly proportional to the current through the resistor, as depicted in Figure 1-3, with no 
dependence on time or on the previous history. 

1.6.3 Continuous-Time vs. Discrete-Time Dynamic Models 

There are two main classes of dynamic models: continuous-time and discrete-time models. The class of 
continuous-time models can be characterized as follows: 
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• Continuous-time models evolve their variable values continuously over time. 

A variable from a continuous-time model A is depicted in Figure 1-4. The mathematical formulation of 
continuous-time models includes differential equations with time derivatives of some model variables. 
Many laws of nature, for example as expressed in physics, are formulated as differential equations. 

1 1 1 »> t i m e 

Figure 1-4. A discrete-time system B changes values only at certain points in time, whereas continuous-
time systems like A evolve values continuously. 

The second class of mathematical models is discrete-time models, as B in Figure 1-4, where 
variables change value only at certain points in time: 

• Discrete-time models may change their variable values only at discrete points in time. 

Discrete-time models are often represented by sets of difference equations, or as computer programs 
mapping the state of the model at one point in time to the state at the next point in time. 

Discrete-time models occur frequently in engineering systems, especially computer-controlled 
systems. A common special case is sampled systems, where a continuous-time system is measured at 
regular time intervals and is approximated by a discrete-time model. Such sampled models usually 
interact with other discrete-time systems like computers. Discrete-time models may also occur naturally, 
such as an insect population that breeds during a short period once a year; the discretization period in 
that case is one year. 

1.6.4 Quantitative vs. Qualitative Models 

All of the different kinds of mathematical models previously discussed in this section are of a 
quantitative nature—variable values can be represented numerically according to a quantitatively 
measurable scale. 

• 

Superb 

Tasty 

Good 

Mediocre 

Figure 1-5. Quality of food in a restaurant according to inspections at irregular points in time. 

Other models, so-called qualitative models, lack that kind of precision. The best we can hope for is a 
rough classification into a finite set of values, as in the food-quality model depicted in Figure 1-5. 
Qualitative models are by nature discrete-time, and the dependent variables are also discretized. 
However, even if the discrete values are represented by numbers in the computer (e.g. mediocre—1, 
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good—2, tasty —3, superb—4), we have to be aware of the fact that the values of variables in certain 
qualitative models do not necessarily fit a linear measurable scale, for example, tasty might not be three 
times better than mediocre. 

1.7 Using Modeling and Simulation in Product Design 

What role does modeling and simulation have in industrial product design and development? In fact, our 
previous discussion has already briefly touched on this issue. Building mathematical models in the 
computer—so-called virtual prototypes—and simulating those models is a way to quickly determine and 
optimize product properties without building costly physical prototypes. Such an approach can often 
drastically reduce development time and time to market while increasing the quality of the designed 
product. 

Documentation, Version and Configuration Management 

Figure 1-6. The product design-V. 

The so-called product design-V, depicted in Figure 1-6, includes all the standard phases of product 
development: 

• Requirements analysis and specification. 
• System design. 
• Design refinement. 
• Realization and implementation. 
• Subsystem verification and validation. 
• Integration. 
• System calibration and model validation. 
• Product deployment. 

How does modeling and simulation fit into this design process? 
In the first phase, requirements analysis, functional and nonfunctional requirements are specified. In 

this phase important design parameters are identified and requirements on their values are specified. For 
example, when designing a car there might be requirements for acceleration, fuel consumption, 
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maximum emissions, and so on. Those system parameters will also become parameters in our model of 
the designed product. 

In the system-design phase we specify the architecture of the system—the main components in the 
system and their interactions. If we have a simulation model component library at hand, we can use 
these library components in the design phase, or otherwise create new components that fit the designed 
product. This design process iteratively increases the level of detail in the design. A modeling tool that 
supports hierarchical system modeling and decomposition can help in handling system complexity. 

The implementation phase will realize the product as a physical system and/or as a virtual prototype 
model in the computer. Here a virtual prototype can be realized before the physical prototype is built, 
usually for a small fraction of the cost. 

In the subsystem verification and validation phase, the behavior of the subsystems of the product is 
verified. The subsystem virtual prototypes can be simulated in the computer and the models corrected if 
there are problems. 

In the integration phase the subsystems are connected. Regarding a computer-based system model, 
the models of the subsystems are connected together in an appropriate way. The whole system can then 
be simulated, and certain design problems corrected based on the simulation results. 

The system and model calibration and validation phase validates the model against measurements 
from appropriate physical prototypes. Design parameters are calibrated, and the design is often 
optimized to a certain extent according to what is specified in the original requirements. 

During the last phase, product deployment, which usually only applies to the physical version of the 
product, the product is deployed and sent to the customer for feedback. In certain cases this can also be 
applied to virtual prototypes, which can be delivered and put in a computer that is interacting with the 
rest of the customer physical system in real time—hardware-in-the-loop simulation. 

In most cases, experience feedback can be used to tune both models and physical products. All 
phases of the design process continuously interact with the model and design database, as depicted at 
the bottom of Figure 1-6. 

1.8 Examples of System Models 

In this section, we briefly present examples of mathematical models from three different application 
areas, in order to illustrate the power of the Model ica mathematical modeling and simulation technology 
to be described in the rest of this book: 

• A thermodynamic system—part of an industrial GTX100 gas turbine model. 
• A 3D mechanical system with a hierarchical decomposition—an industry robot. 
• A biochemical application —part of the citrate cycle (TCA cycle). 

A connection diagram of the power cutoff mechanism of the GTX100 gas turbine is depicted in Figure 
1-8 on page 15, whereas the gas turbine itself is shown in Figure 1-7 below. This connection diagram 
might not appear as a mathematical model, but behind each icon in the diagram is a model component 
containing the equations that describe the behavior of the respective component. In Figure 1-9, we show 
a few plots from simulations of the gas turbine, which illustrates how a model can be used to investigate 
the properties of a given system. 
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Figure 1-7. A schematic picture of the GTX100 gas turbine. Courtesy Siemens Industrial 
Turbomachinery AB, Finsp&ng, Sweden. 

Figure 1-8. Detail of power cutoff mechanism in 40 MW GTX100 gas turbine model. Courtesy Siemens 
Industrial Turbomachinery AB, Finspàng, Sweden. 
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Figure 1-9. Simulation of GTX100 gas turbine power system cutoff mechanism. Courtesy Siemens 
Industrial Turbomachinery AB, Finsp&ng, Sweden 

The second example, the industry robot, illustrates the power of hierarchical model decomposition. 
The three-dimensional robot, shown to the right of Figure 1-10, is represented by a two-dimensional 
connection diagram (in the middle). Each part in the connection diagram can be a mechanical 
component such as a motor or joint, a control system for the robot, and so on. Components may consist 
of other components, which can in turn can be decomposed. At the bottom of the hierarchy we have 
model classes containing the actual equations. 

Figure 1-10. Hierarchical model of an industrial robot. Courtesy Martin Otter. 

The third example is from an entirely different domain—biochemical pathways describing the 
reactions between reactants, in this particular case describing part of the citrate cycle (TCA cycle) as 
depicted in Figure 1-9. 
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1.9 Summary 

We have briefly presented important concepts such as system, model, experiment, and simulation. 
Systems can be represented by models, which can be subject to experiments, that is, simulation. Certain 
models can be represented by mathematics, so-called mathematical models. This book is about object-
oriented, component-based technology for building and simulating such mathematical models. There are 
different classes of mathematical models—static versus dynamic models, continuous-time versus 
discrete-time models, and so on—depending on the properties of the modeled system, the available 
information about the system, and the approximations made in the model. 

1.10 Literature 

Any book on modeling and simulation must define fundamental concepts such as system, model, and 
experiment. The definitions in this chapter are generally available in the modeling and simulation 
literature, including (Ljung and Glad 1994; Cellier 1991). The quote on system definitions, referring to 
the pendulum, is from (Ashby 1956). The example of different levels of details in mathematical models 
of gases presented in Section 1.6 is mentioned in (Hyfltyniemi 2002). The product design-V process 
mentioned in Section 1.7 is described in (Stevens, Brook., Jackson, and Arnold 1998; Shumate and 
Keller 1992). The citrate cycle biochemical pathway in Figure 1-11 is modeled after the description in 
(Michael 1999). 

s LHhj ' 

Figure 1-11. Biochemical pathway model of part of the citrate cycle (TCA cycle). 



Chapter 2 

A Quick Tour of Modélica 

Modelica is primarily a modeling language that allows specification of mathematical models of complex 
natural or man-made systems, for example, for the purpose of computer simulation of dynamic systems 
where behavior evolves as a function of time. Modelica is also an object-oriented, equation-based 
programming language, oriented toward computational applications with high complexity requiring 
high performance. The four most important features of Modelica are: 

• Modelica is primarily based on equations instead of assignment statements. This permits acausal 
modeling that gives better reuse of classes since equations do not specify a certain data-flow 
direction. Thus a Modelica class can adapt to more than one data flow context. 

• Modelica has multidomain modeling capability, meaning that model components corresponding 
to physical objects from several different domains such as electrical, mechanical, 
thermodynamic, hydraulic, biological, and control applications can be described and connected. 

• Modelica is an object-oriented language with a general class concept that unifies classes, 
generics—known as templates in C++ —and general subtyping into a single language construct. 
This facilitates reuse of components and evolution of models. 

• Modelica has a strong software component model, with constructs for creating and connecting 
components. Thus the language is ideally suited as an architectural description language for 
complex physical systems and, to some extent, for software systems. 

These are the main properties that make Modelica both powerful and easy to use, especially for 
modeling and simulation. We will start with a gentle introduction to Modelica from the very beginning. 

2.1 Getting Started with Modelica 

Modelica programs are built from classes, also called models. From a class definition, it is possible to 
create any number of objects that are known as instances of that class. Think of a class as a collection of 
blueprints and instructions used by a factory to create objects. In this case, the Modelica compiler and 
run-time system is the factory. 

A Modelica class contains elements that can be variable declarations and equation sections 
containing equations. Variables contain data belonging to instances of the class; they make up the data 
storage of the instance. The equations of a class specify the behavior of instances of that class. 

There is a long tradition that the first sample program in any computer language is a trivial program 
printing the string "HelloWorld." Since Modelica is an equation-based language, printing a string 
does not make much sense. Instead, our Hello World Modelica program solves a trivial differential 
equation. 

19 
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x - - a x (2-1) 

The variable x in this equation is a dynamic variable (here also a state variable) that can change value 
over time. The time derivative x is the time derivative of x, represented as der (x) in Modelica. Since 
all Modelica programs, usually called models, consist of class declarations, our HelioWorld program is 
declared as a class: 

class HelioWorld 
Real x(start = 1); 
parameter Real a = 1; 

equation 
der(x) = -a*x; 

end HelioWorld; 
Use your favorite text editor or Modelica programming environment to type in this Modelica code4, or 
open the DrModelica electronic document (part of OpenModelica) containing most examples and 
exercises in this book. Then invoke the simulation command in your Modelica environment. This will 
compile the Modelica code to some intermediate code, usually C code, which in turn will be compiled 
to machine code and executed together with a numerical ordinary differential equation (ODE) solver or 
differential algebraic equation (DAE) solver to produce a solution for x as a function of time. The 
following command in the OpenModelica environment produces a solution between time 0 seconds and 
time 2 seconds: 

simulate5 (HelioWorld, stopTime=2) 
Since the solution fo r* is a function of time, it can be plotted by a plot command: 

plot®(X) 
(or the longer form p l o t (x, x range= {0,2}) that specifies the x-axis), giving the curve in Figure 2-1. 

Figure 2-1. Plot of a simulation of the simple HelioWorld model. 

Now we have a small Modelica model that does something, but what does it actually mean? The 
program contains a declaration of a class called HelioWorld with two variables and a single equation. 
The first attribute of the class is the variable x , which is initialized to a start value of 1 at the time when 
the simulation starts. All variables in Modelica have a start attribute with a default value that is 
normally set to 0. Having a different start value is accomplished by providing a so-called modifier 

4 There is a downloadable open source Modelica environment OpenModelica from OSMC at www.openmodelica.org, 
Wolfram SystemModeler is from Wolfram Research (www.mathcore.com or www.wolfram.com), Dymola from 
Dassault Systems (www.dymola.com), etc. 

5 Before simulating an existing model, you need to open it or load it, e.g. loadModel (HelioWorld) in OpenModelica.. 
The OpenModelica command for simulation is simulate. The corresponding Wolfram SystemModeler (WSM) 
Mathematica-style command for this example, after loading the model into WSM, would be 
Ml=WSMSimulate ["HelioWorld", {0, 2 } ] , and in D y m o l a simulateModel ("HelioWorld", stopTime=2) . 

6 plot is the OpenModelica command for plotting simulation results. The corresponding Wolfram SystemModeler 
Mathematica-style and Dymola commands would be wsMPlot [Ml, "x" ], and plot ({"x"}) respectively. 
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within parentheses after the variable name, that is, a modification equation setting the start attribute to 1 
and replacing the original default equation for the attribute. 

The second attribute is the variable a, which is a constant that is initialized to 1 at the beginning of 
the simulation. Such a constant is prefixed by the keyword parameter in order to indicate that it is 
constant during simulation but is a model parameter that can be changed between simulations, for 
example, through a command in the simulation environment. For example, we could rerun the 
simulation for a different value of a, without recompilation if a is changed through the environment's 
parameter update facility. 

Also note that each variable has a type that precedes its name when the variable is declared. In this 
case, both the variable * and the "variable" a have the type Real. 

The single equation in this HelloWorld example specifies that the time derivative o f * is equal to 
the constant -a times x. In Modelica, the equal sign = always means equality, that is, establishes an 
equation, and not an assignment as in many other languages. The time derivative of a variable is 
indicated by the pseudofunction der ( ) . 

Our second example is only slightly more complicated, containing five rather simple equations (2-2): 

X ir 
mvY = — F 

L 

mv =-^-F-mg y L 
x=vx 

y=vy 

x2 + y2 = L2 

(2-2) 

This example is actually a mathematical model of a physical system, a planar pendulum, as depicted in 
Figure 2-2. 

Figure 2-2. A planar pendulum. 

The equations are Newton's equations of motion for the pendulum mass under the influence of 
gravity, together with a geometric constraint, the fifth equation x2 + y2 = Z?, that specifies that its 
position (xy) must be on a circle with radius L. The variables vx and v v are its velocities in the x and y 
directions, respectively. A Modelica model of the pendulum appears below: 

c l a s s Pendulum "Planar Pendulum" 
c o n s t a n t Real PI=3.141592653589793; 
p a r a m e t e r Real m=l, g=9.81, L=0.5; 
Real F; 
output Real x(start=0.5),y(start=0); 
output Real vx,vy; 

e q u a t i o n 
m*der(vx)=-(x/L)*F; 
m*der(vy)=-(y/L)*F-m*g; 
d e r ( x ) = v x ; 
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der(y)=vy; 
xA2+yA2=LA2; 

end Pendulum; 
The interesting property of this model, however, is the fact that the fifth equation is of a different kind: a 
so-called algebraic equation only involving algebraic formulas of variables but no derivatives. The first 
four equations of this model are differential equations, as in the HelloWorld example. Equation 
systems that contain both differential and algebraic equations are called differential algebraic equation 
systems (DAEs). 

We simulate the Pendulum model and plot the x-coordinate, as shown in Figure 2-3. You can also 
write down DAE equation systems without physical significance, with equations containing formulas 
selected more or less at random, as in the class DAEexample below: 

simulate(Pendulum, stopTime=4) 

class DAEexample 
Real x(start=0.9); 
Real y; 

equation 
der(y) + (1+0.5*sin(y))*der(x) = sin(time); 
x-y = exp(-0.9*x)*cos(y); 

end DAEexample; 
This class contains one differential and one algebraic equation. Try to simulate and plot it yourself, to 
see if any reasonable curve appears! 

Finally, an important observation regarding Modelica models: 

• The number of variables must be equal to the number of equations\ 

This statement is true for the three models we have seen so far, and holds for all solvable Modelica 
models. By variables we mean something that can vary, not named constants and parameters to be 
described in Section 2.1.3, page 24. 

2.1.1 Variables and Predefined Types 

This example shows a slightly more complicated model, which describes a Van der Pol7 oscillator. 
Notice that here the keyword model is used instead of class with almost the same meaning: 

model Van,DerPol "Van der Pol oscillator model" 
Real x(start = 1) "Descriptive string for x"; // x starts at 1 
Real y(start = 1) "Descriptive string for y"; // y starts at 1 
parameter Real lambda = 0.3; 

7 Balthazar van der Pol was a Dutch electrical engineer who initiated modern experimental dynamics in the laboratory 
during the 1920's and 1930's. Van der Pol investigated electrical circuits employing vacuum tubes and found that they 
have stable oscillations, now called limit cycles. The van der Pol oscillator is a model developed by him to describe the 
behavior of nonlinear vacuum tube circuits 
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Figure 2-3. Plot of a simulation of the Pendulum DAE (differential algebraic equation) model. 
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equation 
der(x) = y; // This is the first equation 
der(y) = -x + lambda*(1 - x*x)*y; /* The 2nd differential equation */ 

end VanDerPol; 
This example contains declarations of two dynamic variables (here also state variables) x and y, both of 
type Real and having the start value 1 at the beginning of the simulation, which normally is at time 0. 
Then follows a declaration of the parameter constant lambda, which is a so-called model parameter. 

A parameter is a special kind of constant which is implemented as a static variable that is initialized 
once and never changes its value during a specific execution. A parameter is a constant variable that 
makes it simple for a user to modify the behavior of a model; for example, changing the parameter 
lambda, which strongly influences the behavior of the Van der Pol oscillator. By contrast, a fixed 
Modelica constant declared with the prefix constant never changes and can be substituted by its 
value wherever it occurs. 

Finally, we present declarations of three dummy variables just to show variables of data types 
different from Real: the boolean variable bb, which has a default start value of false if nothing else is 
specified; the string variable dummy, which is always equal to "dummy string"; and the integer 
variable fooint, which is always equal to 0: 

Boolean bb; 
String dummy = "dummy string"; 
Integer fooint = 0; 

Modelica has built-in "primitive" predefined data types to support floating-point, integer, boolean, and 
string values. These predefined primitive types contain data that Modelica understands directly, as 
opposed to class types defined by programmers. There is also the Complex type for complex-numbers 
computations, which is predefined in a library. The type of each variable must be declared explicitly. 
The predefined basic data types of Modelica are: 

Boolean either true or false 
Integer 32-bit two's complement, usually corresponding to the C int data type 
R e a l 64-bit floating-point usually corresponding to the C double data type 
String string of text characters 
enumeration ( . . . ) enumeration type of enumeration literals 
Clock clock type for clocked synchronous models 
Complex f o r complex number computations, a basic type predefined in a library 

Finally, there is an equation section starting with the keyword equation, containing two mutually 
dependent equations that define the dynamics of the model. 

To illustrate the behavior of the model, we give a command to simulate the Van der Pol oscillator 
during 25 seconds starting at time 0: 

simulate(VanDerPol, stopTime=25) 
and a phase plane plot of the state variables for the Van der Pol oscillator model (Figure 2-4): 

plotParametric(x,y, stopTime=25) 
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The names of variables, functions, classes, and so on are known as identifiers. There are two forms in 
Modelica. The most common form starts with a letter, followed by letters or digits, for example, x2. The 
second form starts with a single quote, followed by any characters, and terminated by a single quote, for 
example, '2nd*3'. 

2.1.2 Comments 

Arbitrary descriptive text, for example, in English, inserted throughout a computer program, are 
comments to that code. Modelica has three styles of comments, all illustrated in the previous 
VanDerPol example. 

Comments make it possible to write descriptive text together with the code, which makes a model 
easier to use for the user, or easier to understand for programmers who may read your code in the future. 
That programmer may very well be yourself, months or years later. You save yourself future effort by 
commenting your own code. Also, it is often the case that you find errors in your code when you write 
comments since when explaining your code you are forced to think about it once more. 

The first kind of comment is a string within string quotes, for example, "a comment," optionally 
appearing after variable declarations or at the beginning of class declarations. Those are "definition 
comments" that are processed to be used by the Modelica programming environment, for example, to 
appear in menus or as help texts for the user. From a syntactic point of view, they are not really 
comments since they are part of the language syntax. In the previous example, such definition 
comments appear for the VanDerPol class and for the x and y variables. 

The other two types of comments are ignored by the Modelica compiler, and are just present for the 
benefit of Modelica programmers. Text following / / up to the end of the line is skipped by the 
compiler, as is text between / * and the next * / . Hence, the last type of comment can be used for 
large sections of text that occupies several lines. 

Finally we should mention a construct called annotation, a kind of structured "comment" that can 
store information together with the code, described in Section 2.17. 

2.1.3 Constants 

Constant literals in Modelica can be integer values such as 4, 75, 3078; floating-point values like 
3.14159, 0.5, 2.735E-10, 8.6835e+5; string values such as "hello world," "red"; and enumeration 
values such as Colors . red, Sizes.xlarge. 

Named constants are preferred by programmers for two reasons. One reason is that the name of the 
constant is a kind of documentation that can be used to describe what the particular value is used for. 
The other, perhaps even more important reason, is that a named constant is defined at a single place in 
the program. When the constant needs to be changed or corrected, it can be changed in only one place, 
simplifying program maintenance. 

Figure 2-4. Parametric plot of a simulation of the Van der Pol oscillator model. 
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Named constants in Modelica are created by using one of the prefixes constant or parameter in 
declarations, and providing a declaration equation as part of the declaration. For example: 

constant Real PI = 3.141592653589793; 
constant String redcolor = "red"; 
constant Integer one = 1; 
parameter Real mass = 22.5; 

Parameter constants (often called parameters) can usually be accessed and changed from Modelica tool 
graphical user interfaces. Most Modelica tools support resimulating a model without recompilation after 
changing a parameter, which usually makes the time waiting for results much shorter. 

Parameters can be declared without a declaration equation (but a default start value is recommended) 
since their value can be defined, e.g., interactively or by reading from a file, before simulation starts. 
This is not possible for constants with prefix constant. For example: 

parameter Real mass, gravity, length; 
A parameter with a default start value, as shown below, means that the parameter has a value, but that 
this value is expected to be replaced by a more realistic value, for example, by the user, at a real 
simulation: 

parameter Real mass(start=0), gravity(start=0), length(start=0); 
Constants and parameters are very similar, but also have some differences (Section 3.11.2, page 99). 
Parameters are typically much more common in application models. When in doubt whether to use 
constant or parameter, use parameter, except when declaring a constant in a package/library 
where constant is allowed but not parameter. 

2.1.4 Variability 

We have seen that some variables can change value at any point in time whereas named constants are 
more or less constant. In fact, there is a general concept of four levels of variability of variables and 
expressions in Modelica (see also Section 6.9, page 279): 

• Expressions or variables with continuous-time variability can change at any point in time. 
• Discrete-time variability means that value changes can occur only at so-called events; see 

Section 13.2, page 593. There are two kinds: unclocked discrete-time variability and clocked 
discrete-time variability. In the latter case the value can only change at clock tick events. 

• Parameter variability means that the value can be changed at initialization before simulation but 
is fixed during simulation. 

• Constant variability means the value is always fixed. However, a named constant definition 
equation can be replaced by a so-called redeclaration or modification. 

2.1.5 Default start Values 

If a numeric variable lacks a specified definition value or start value in its declaration, it is usually 
initialized to zero at the start of the simulation. Boolean variables have start value false, and string 
variables the start value empty string "" if nothing else is specified. 

Exceptions to this rule are function results and local variables in functions, where the default initial 
value at function call is undefined. See also Section 8.4, page 363. 
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2.2 Object-Oriented Mathematical Modeling 

Traditional object-oriented programming languages like Simula, C++, Java, and Smalltalk, as well as 
procedural languages such as Fortran or C, support programming with operations on stored data. The 
stored data of the program include variable values and object data. The number of objects often changes 
dynamically. The Smalltalk view of object orientation emphasizes sending messages between 
(dynamically) created objects. 

The Modelica view on object orientation is different since the Modelica language emphasizes 
structured mathematical modeling. Object orientation is viewed as a structuring concept that is used to 
handle the complexity of large system descriptions. A Modelica model is primarily a declarative 
mathematical description, which simplifies further analysis. Dynamic system properties are expressed in 
a declarative way through equations. 

The concept of declarative programming is inspired by mathematics, where it is common to state or 
declare what holds, rather than giving a detailed stepwise algorithm on how to achieve the desired goal, 
as is required when using procedural languages. This relieves the programmer from the burden of 
keeping track of such details. Furthermore, the code becomes more concise and easier to change without 
introducing errors. 

Thus, the declarative Modelica view of object orientation, from the point of view of object-oriented 
mathematical modeling, can be summarized as follows: 

• Object orientation is primarily used as a structuring concept, emphasizing the declarative 
structure and reuse of mathematical models. Our three ways of structuring are hierarchies, 
component connections, and inheritance. 

• Dynamic model properties are expressed in a declarative way through equations8. 
• An object is a collection of instance variables and equations that share a set of data. 

However: 
• Object-orientation in mathematical modeling is not viewed as dynamic message passing. 

The declarative object-oriented way of describing systems and their behavior offered by Modelica is at a 
higher level of abstraction than the usual object-oriented programming since some implementation 
details can be omitted. For example, we do not need to write code to explicitly transport data between 
objects through assignment statements or message-passing code. Such code is generated automatically 
by the Modelica compiler based on the given equations. 

Just as in ordinary object-oriented languages, classes are blueprints for creating objects. Both 
variables and equations can be inherited between classes. Function definitions can also be inherited. 
However, specifying behavior is primarily done through equations instead of via methods. There are 
also facilities for stating algorithmic code including functions in Modelica, but this is an exception 
rather than the rule. See also Chapter 3, page 79 and Chapter 4, page 135 for a discussion regarding 
object-oriented concepts. 

2.3 Classes and Instances 

Modelica, like any object-oriented computer language, provides the notions of classes and objects, also 
called instances, as a tool for solving modeling and programming problems. Every object in Modelica 
has a class that defines its data and behavior. A class has three kinds of members: 

• Data variables associated with a class and its instances. Variables represent results of 
computations caused by solving the equations of a class together with equations from other 

8 Algorithms are also allowed, but in a way that makes it possible to regard an algorithm section as a system of equations. 
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classes. During numeric solution of time-dependent problems, the variables store results of the 
solution process at the current time instant. 

• Equations specify the behavior of a class. The way in which the equations interact with 
equations from other classes determines the solution process, that is, program execution. 

• Classes can be members of other classes. 

Here is the declaration of a simple class that might represent a point in a three-dimensional space: 

class Point "Point in a three-dimensional space" 
public 
Real x; 
Real y, z; 

end Point; 
The Point class has three variables representing the x, y, and z coordinates of a point and has no 
equations. A class declaration like this one is like a blueprint that defines how instances created from 
that class look, as well as instructions in the form of equations that define the behavior of those objects. 
Members of a class may be accessed using dot ( . ) notation. For example, regarding an instance 
myPoint of the Point class, we can access the x variable by writing myPoint. x. 

Members of a class can have two levels of visibility. The public declaration of x, y, and z, which is 
the default if nothing else is specified, means that any code with access to a Point instance can refer to 
those values. The other possible level of visibility, specified by the keyword protected, means that 
only code inside the class as well as code in classes that inherit this class, are allowed access. 

Note that an occurrence of one of the keywords public or protected means that all member 
declarations following that keyword assume the corresponding visibility until another occurrence of one 
of those keywords or the end of the class containing the member declarations has been reached. 

2.3.1 Creating Instances 

In Modelica, objects are created implicitly just by declaring instances of classes. This is in contrast to 
object-oriented languages like Java or C++, where object creation is specified using the new keyword 
when allocating on the heap. For example, to create three instances of our P o i n t class we just declare 
three variables of type Point in a class, here Triangle: 

class Triangle 
Point pointl; 
Point point2; 
Point point3; 

end Triangle; 
There is one remaining problem, however. In what context should Triangle be instantiated, and when 
should it just be interpreted as a library class not to be instantiated until actually used? 

This problem is solved by regarding the class at the top of the instantiation hierarchy in the Modelica 
program to be executed as a kind of "main" class that is always implicitly instantiated, implying that its 
variables are instantiated, and that the variables of those variables are instantiated, and so on. Therefore, 
to instantiate Triangle, either make the class Triangle the "top" class or declare an instance of 
Triangle in the "main" class. In the following example, both the class Triangle and the class Fool 
are instantiated, 

class Fool 

end Fool; 
class Foo2 

end Foo2; 
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class Triangle 
Point pointl; 
Point point2; 
Point point3; 

end Triangle; 
class Main 
Triangle pts; 
Fool fl; 

end Main; 
The variables of Modelica classes are instantiated per object. This means that a variable in one object is 
distinct from the variable with the same name in every other object instantiated from that class. Many 
object-oriented languages allow class variables. Such variables are specific to a class as opposed to 
instances of the class, and are shared among all objects of that class. The notion of class variables is not 
yet available in Modelica. 

2.3.2 Initialization 

Another problem is initialization of variables. As mentioned previously in Section 2.1.4, page 25, if 
nothing else is specified, the default start value of all numerical variables is zero, apart from function 
results and local variables where the initial value at call time is unspecified. Other start values can be 
specified by setting the start attribute of instance variables. Note that the start value only gives a 
suggestion for initial value—the solver may choose a different value unless the f i x e d attribute is true 
for that variable. Below, a start value is specified in the example class T r i a n g l e : 

class Triangle 
Point pointl(start=Point(1,2,3)); 
Point point2; 
Point point3; 

end Triangle; 
Alternatively, the start value of pointl can be specified when instantiating Triangle, as below: 

class Main 
Triangle pts(pointl.start=Point(1,2,3)); 
Fool fl; 

end Main; 
A more general way of initializing a set of variables according to some constraints is to specify an 

equation system to be solved in order to obtain the initial values of these variables. This method is 
supported in Modelica through the initial equation construct. 

An example of a continuous-time controller initialized in steady-state, that is, when derivatives 
should be zero, is given below: 

model Controller 
parameter Real a=l, b=2; 
Real y; 

equation 
der(y) = a*y + b*u; 

initial equation 
der(y)=0; 

end Controller; 
This has the following solution at initialization: 

der (y) = 0; 

y = ~(b/a)*u; 
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For more information, see Section 8.4, page 363. 

2.3.3 Specialized Classes 

The class concept is fundamental to Modelica and is used for a number of different purposes. Almost 
anything in Modelica is a class. However, in order to make Modelica code easier to read and maintain, 
special keywords have been introduced for specific uses of the class concept. The keywords model, 
connector, record, block, type, package, and function can be used to denote a class under 
appropriate conditions, called restrictions. Some of the specialized classes also have additional 
capabilities, called enhancements. For example, a function class has the enhancement that it can be 
called, whereas a record is a class used to declare a record data structure and has the restrictions that it 
may not contain equations and may only contain public declarations: 

record Person 
Real age; 
String name; 

end Person; 
A model is almost the same as a class, that is, those keywords are completely interchangeable. A 
block is a class with fixed causality, which means that for each connector variable of the class it is 
specified whether it has input or output causality. Thus, each connector variable in a block class 
interface must be declared with a causality prefix keyword of either input or output. 

A connector class is used to declare the structure of "ports" or interface points of a component, 
may not contain equations, and has only public sections, but has the additional property to allow 
connect(...) to instances of connector classes. A type is a class that can be an alias or an extension to a 
predefined type, enumeration, or array of a type. For example: 

type vector3D = Real[3]; 

The idea of specialized classes has some advantages since they re-use most properties of the general 
class concept. The notion of specialized classes also gives the user a chance to express more precisely 
what a class is intended for, and requires the Modelica compiler to check that these usage constraints are 
actually fulfilled. 

Fortunately, the notion of specialized class is quite uniform since all basic properties of a class, such 
as the syntax and semantics of definition, instantiation, inheritance, and generic properties, are identical 
for all kinds of specialized classes. Furthermore, the construction of Modelica translators is simplified 
since only the syntax and semantics of the general class concept has to be implemented along with some 
additional checks on restrictions and enhancements of the classes. 

The package and function specialized classes in Modelica have much in common with the class 
concept but also have many additional properties, so-called enhancements. Especially, functions have 
quite a lot of enhancements—they can be called with an argument list, instantiated at run-time, and so 
on. An operator class is similar to a package that is like a container for other definitions, but may 
only contain declarations of functions and is intended for user-defined overloaded operators. See also 
Section 3.8, page 87, regarding specialized classes. 

2.3.4 Reuse of Classes by Modifications 

The class concept is the key to reuse of modeling knowledge in Modelica. Provisions for expressing 
adaptations or modifications of classes through so-called modifiers in Modelica make reuse easier. For 
example, assume that we would like to connect two filter models with different time constants in series. 
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Instead of creating two separate filter classes, it is better to define a common filter class and create 
two appropriately modified instances of this class, which are connected. An example of connecting two 
modified low-pass filters is shown after the example low-pass filter class below: 

model LowPassFilter 
parameter Real T=1 "Time constant of filter"; 
Real u, y(start=l); 

equation 
T*der(y) + y = u; 

end LowPassFilter; 
The model class can be used to create two instances of the filter with different time constants and 
"connecting" them together by the equation F2. u = Fl. y as follows: 

model FiltersInSeries 
LowPassFilter F1(T=2), F2(T=3); 

equation 
Fl.u = sin(time); 
F2.u = Fl.y; 

end FiltersInSeries; 
Here we have used modifiers—attribute equations such as T=2 and T=3—to modify the time constant of 
the low-pass filter when creating the instances Fl and F2. The independent time variable is a built-in, 
predefined variable denoted time. If the FiltersInSeries model is used to declare variables at a 
higher hierarchical level, for example, F12, the time constants can still be adapted by using hierarchical 
modification, as for Fl and F2 below: 

model ModifiedFiltersInSeries 
FiltersInSeries F12(F1(T=6), F2.T=11); 

end ModifiedFiltersInSeries; 
See also Chapter 4, page 135. 

2.3.5 Built-in Classes 

The built-in predefined type classes of Modelica correspond to the types Real, integer, Boolean, 
String, enumeration(...), and Clock, and have most of the properties of a class, for example, they 
can be inherited, modified, and so on. Only the value attribute can be changed at run time and is 
accessed through the variable name itself, not through dot notation, that is, use x and not x.value to 
access the value. Other attributes are accessed through dot notation. 

For example, a Real variable has a set of default attributes such as unit of measure, initial value, and 
minimum and maximum value. These default attributes can be changed when declaring a new class, for 
example: 

class Voltage = Real(unit= "V", min=-22 0.0, max=220.0); 
See also Section 2.1.1, page 22, and Section 3.9, page 93. 

2.4 Inheritance 

One of the major benefits of object-orientation is the ability to extend the behavior and properties of an 
existing class. The original class, known as the superclass or base class, is extended to create a more 
specialized version of that class, known as the subclass or derived class. In this process, the behavior 
and properties of the original class in the form of variable declarations, equations, and other contents are 
reused, or inherited, by the subclass. 
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Let us look at an example of extending a simple Modelica class, the class Point introduced 
previously. First, we introduce two classes named ColorData and Color, where Color inherits the 
data variables to represent the color from class ColorData and adds an equation as a constraint. The 
new class CoioredPoint inherits from multiple classes, that is, it uses multiple inheritance, to get the 
position variables from class Point, and the color variables together with the equation from class 
Color. 

record ColorData 
Real red; 
Real blue; 
Real green; 

end ColorData; 
class Color 
extends ColorData; 

equation 
red + blue + green = 1; 

end Color; 
class Point 
public 
Real x; 
Real y, z; 

end Point; 
class CoioredPoint 
extends Po i nt; 
extends Color; 

end CoioredPoint; 
See also Chapter 4, page 135, regarding inheritance and reuse. 

2.5 Generic Classes 

In many situations, it is advantageous to be able to express generic patterns for models or programs. 
Instead of writing many similar pieces of code with essentially the same structure, a substantial amount 
of coding and software maintenance can be avoided by directly expressing the general structure of the 
problem and providing the special cases as parameter values. 

Such generic constructs are available in several programming languages, for example, templates in 
C++, generics in Ada, and type parameters in functional languages such as Haskell or Standard ML. In 
Modelica the class construct is sufficiently general to handle generic modeling and programming in 
addition to the usual class functionality. 

There are essentially two cases of generic class parameterization in Modelica: class parameters can 
either be instance parameters, that is, have instance declarations (components) as values, or be type 
parameters, that is, have types as values. Note that by class parameters in this context we do not usually 
mean model parameters prefixed by the keyword parameter, even though such "variables" are also a 
kind of class parameter. Instead we mean formal parameters to the class. Such formal parameters are 
prefixed by the keyword replaceable. The special case of replaceable local functions is roughly 
equivalent to virtual methods in some object-oriented programming languages. 

See also Section 4.4, page 168. 
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2.5.1 Class Parameters Being Instances 

First, we present the case when class parameters are variables, that is, declarations of instances, often 
called components. The class c in the example below has three class parameters marked by the keyword 
replaceable. These class parameters, which are components (variables) of class c, are declared as 
having the (default) types GreenClass, YellowClass, and GreenClass, respectively. There is also a 
red object declaration that is not replaceable and therefore not a class parameter (Figure 2-5). 

Figure 2-5. Three class parameters pobj 1, pobj 2, and pobj 3 that are instances (variables) of class C. 
These are essentially slots that can contain objects of different colors. 

Here is the class C with its three class parameters pobj 1, pobj 2, and pobj 3, and a variable obj 4 
that is not a class parameter: 

class C 
replaceable GreenClass pobjl(pl=5); 
replaceable YellowClass pobj2; 
replaceable GreenClass pobj3; 
RedClass obj4; 

equation 

end C; 
Now a class C2 is defined by providing two declarations of pobj l and pobj 2 as actual arguments to 
class C, being red and green, respectively, instead of the defaults green and yellow. The keyword 
redeclare must precede an actual argument to a class formal parameter to allow changing its type. 
The requirement to use a keyword for a redeclaration in Modelica has been introduced in order to avoid 
accidentally changing the type of an object through a standard modifier. 

In general, the type of a class component cannot be changed if it is not declared as replaceable 
and a redeclaration is provided. A variable in a redeclaration can replace the original variable if it has a 
type that is a subtype of the original type or its type constraint. It is also possible to declare type 
constraints (not shown here) on the substituted classes. 

class C2 = C(redeclare RedClass pobjl, redeclare GreenClass pobj2); 
Such a class C2, obtained through redeclaration of pobjl and pobj2, is, of course, equivalent to 
directly defining C2 without reusing class C, as below. 

class C2 
RedClass pobjl(pl=5); 
GreenClass pobj2; 
GreenClass pobj3; 
RedClass obj4; 

equation 

end C2; 

class C 

A green A yellow A green A red 
object object object object 

pobjl ! pobj2 pobj3 obj4 
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2.5.2 Class Parameters Being Types 

A class parameter can also be a type, which is useful for changing the type of many objects. For 
example, by providing a type parameter ColoredClass in class C below, it is easy to change the color 
of all objects of type ColoredClass. 

class C 
replaceable class ColoredClass = GreenClass; 
ColoredClass objl(pl=5); 
replaceable YellowClass obj 2; 
ColoredClass obj 3; 
RedClass obj 4; 

equation 

end C; 

Figure 2-6 depicts how the type value of the ColoredClass class parameter is propagated to the 
member object declarations obj 1 and obj 3. 

1 GreenC lass| 

ColoredClass 
Colored-

Class 
object 

A yellow 
object 

Colored-
Class 
object 

A red 
object 

objl obj2 obj3 obj4 

Figure 2-6. The class parameter ColoredClass is a type parameter that is propagated to the two 
member instance declarations of obj 1 and obj 3. 
We create a class C2 by giving the type parameter ColoredClass of class c the value BlueClass. 
class C2 = C(redeclare class ColoredClass = BlueClass); 

This is equivalent to the following definition of C2: 
class C2 

BlueClass objl(pl=5); 
YellowClass obj 2; 
BlueClass obj3; 
RedClass obj4; 

equation 

end C2; 

2.6 Equations 

As we already stated, Modelica is primarily an equation-based language in contrast to ordinary 
programming languages, where assignment statements proliferate. Equations are more flexible than 
assignments since they do not prescribe a certain data flow direction or execution order. This is the key 
to the physical modeling capabilities and increased reuse potential of Modelica classes. 

Thinking in equations is a bit unusual for most programmers. In Modelica the following holds: 
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• Assignment statements in conventional languages are usually represented as equations in 
Modelica. 

• Attribute assignments are represented as equations. 
• Connections between objects generate equations. 

Equations are more powerful than assignment statements. For example, consider a resistor equation 
where the resistance R multiplied by the current i is equal to the voltage v: 

R*i = v; 
This equation can be used in three ways corresponding to three possible assignment statements: 
computing the current from the voltage and the resistance, computing the voltage from the resistance 
and the current, or computing the resistance from the voltage and the current. This is expressed in the 
following three assignment statements: 

i := v/R; 
v := R*i; 
R := v/i; 

Equations in Modelica can be informally classified into four different groups depending on the syntactic 
context in which they occur: 

• Normal equations occurring in equation sections, including the connect equation, which is a 
special form of equation. 

• Declaration equations, which are part of variable or constant declarations. 
• Modification equations, which are commonly used to modify attributes. 
• Initial equations, specified in initial equation sections or as start attribute equations. These 

equations are used to solve the initialization problem at startup time. 

As we already have seen in several examples, normal equations appear in equation sections started by 
the keyword equation and terminated by some other allowed keyword: 

equation 

<equations> 

<some other allowed keyword> 

The above resistor equation is an example of a normal equation that can be placed in an equation 
section. Declaration equations are usually given as part of declarations of fixed or parameter constants, 
for example: 

constant Integer one = 1; 
parameter Real mass = 22.5; 

An equation always holds, which means that the mass in the above example never changes value during 
simulation. It is also possible to specify a declaration equation for a normal variable: 

Real speed - 72.4; 
However, this does not make much sense since it will constrain the variable to have the same value 
throughout the computation, effectively behaving as a constant. Therefore, a declaration equation is 
quite different from a variable initializer in other languages since it always holds and can be solved 
together with other equations in the total system of equations. 

Concerning attribute assignments, these are typically specified using modification equations. For 
example, if we need to specify an initial value for a variable, meaning its value at the start of the 
computation, then we give an attribute equation for the start attribute of the variable: 

Real speed(start=72.4); 
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See also Chapter 8, page 347, for a complete overview of equations in Modelica. 

2.6.1 Repetitive Equation Structures 

Before reading this section, you might want to take a look at Section 2.13 about arrays, page 47, and 
Section 2.14.2 about statements and algorithmic for-loops, page 50. 

Sometimes there is a need to conveniently express sets of equations that have a regular, that is, 
repetitive structure. Often this can be expressed by array equations, including references to array 
elements denoted using square bracket notation9. However, for the more general case of repetitive 
equation structures Modelica provides a loop construct. Note that this is not a loop in the algorithmic 
sense of the word—it is rather a shorthand notation for expressing a set of equations. 

For example, consider an equation for a polynomial expression: 

y = a[1]+a[2]*x + a[3]*xA2 + ... + a[n+l]*xAn 
The polynomial equation can be expressed as a set of equations with regular structure in Modelica, with 
y equal to the scalar product of the vectors a and xpowers, both of length n+1: 

xpowers[l] = 1; 
xpowers[2] = xpowers[1]*x; 
xpowers[3] = xpowers[2]*x; 

xpowers[n+1] = xpowers[n]*x; 
y = a * xpowers; 

The regular set of equations involving xpowers can be expressed more conveniently using the for loop 
notation: 

for i in l:n loop 
xpowers[i+1] = xpowers[i]*x; 

end for; 
In this particular case, a vector equation provides an even more compact notation: 

xpowers[2:n+l] = xpowers[1:n]*x; 
Here the vectors x and xpowers have length n+1. The colon notation 2: n+1 means extracting a vector 
of length n, starting from element 2 up to and including element n+1. 

2.6.2 Partial Differential Equations 

Partial differential equations (abbreviated PDEs) contain derivatives with respect to other variables than 
time, for example, of spatial Cartesian coordinates such as x and y. Models of phenomena such as heat 
flow or fluid flow typically involve PDEs. At the time of this writing, PDE functionality is not yet part 
of the official Modelica language. See Section 8.10, page 400, for an overview of the most important 
current PDE design proposals, which to some extent have been evaluated in test implementations, as 
well as one language construct (spatialDistribution, Section 8.10.3, page 412) for ID PDEs that 
is part of the Modelica language standard. 

9 For more information regarding arrays see Chapter 7, page 207. 
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2.7 Acausal Physical Modeling 

Acausal modeling is a declarative modeling style, meaning modeling based on equations instead of 
assignment statements. Equations do not specify which variables are inputs and which are outputs, 
whereas in assignment statements variables on the left-hand side are always outputs (results) and 
variables on the right-hand side are always inputs. Thus, the causality of equation-based models is 
unspecified and becomes fixed only when the corresponding equation systems are solved. This is called 
acausal modeling. The term physical modeling reflects the fact that acausal modeling is very well suited 
for representing the physical structure of modeled systems. 

The main advantage with acausal modeling is that the solution direction of equations will adapt to 
the data flow context in which the solution is computed. The data flow context is defined by stating 
which variables are needed as outputs and which are external inputs to the simulated system. 

The acausality of Modelica library classes makes these more reusable than traditional classes 
containing assignment statements where the input-output causality is fixed. 

2.7.1 Physical Modeling vs. Block-Oriented Modeling 

To illustrate the idea of acausal physical modeling, we give an example of a simple electrical circuit 
(Figure 2-7). The connection diagram10 of the electrical circuit shows how the components are 
connected. It may be drawn with component placements to roughly correspond to the physical layout of 
the electrical circuit on a printed circuit board. The physical connections in the real circuit correspond to 
the logical connections in the diagram. Therefore the term physical modeling is quite appropriate. 

The Modelica SimpleCircuit model below directly corresponds to the circuit depicted in the 
connection diagram of Figure 2-7. Each graphic object in the diagram corresponds to a declared instance 
in the simple circuit model. The model is acausal since no signal flow, that is, cause-and-effect flow, is 
specified. Connections between objects are specified using the connect-equation construct, which is a 
special syntactic form of equation that we will examine later. The classes Resistor, Capacitor, 
Inductor, VsourceAC, and Ground will be presented in more detail on pages 43 to 46. 

Figure 2-7. Connection diagram of the acausal SimpleCircuit model, 

model SimpleCircuit 

10 A connection diagram emphasizes the connections between components of a model, whereas a composition diagram 
specifies which components a model is composed of, their subcomponents, and so on. A class diagram usually depicts 
inheritance and composition relations. 
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Resistor R1(R=10); 
Capacitor C(C=0.01); 
Resistor R2(R=100); 
Inductor L(L=0.1); 
VsourceAC AC; 
Ground G; 

equation 
connect(AC. p, R1.p); 
connect(R1.n, C.p); 
connect(C.n, AC.n); 
connect(R1.p, R2.p); 
connect(R2.n, L.p); 
connect(L. n, C.n); 
connect(AC.n, G.p); 

end SimpleCircuit; 

// Capacitor circuit 

// Inductor circuit 

// Ground 

As a comparison we show the same circuit modeled using causal block-oriented modeling depicted as a 
diagram in Figure 2-8. Here the physical topology is lost—the structure of the diagram has no simple 
correspondence to the structure of the physical circuit board. 

Figure 2-8 The simple circuit model using causal block-oriented modeling with explicit signal flow. 

This model is causal since the signal flow has been deduced and is clearly shown in the diagram. 
Even for this simple example, the analysis to convert the intuitive physical model to a causal block-
oriented model is nontrivial. Another disadvantage is that the resistor representations are context 
dependent. For example, the resistors R1 and R2 have different definitions, which makes reuse of model 
library components hard. Furthermore, such system models are usually hard to maintain since even 
small changes in the physical structure may result in large changes to the corresponding block-oriented 
system model. 

2.8 The Modelica Software Component Model 

For a long time, software developers have looked with envy on hardware system builders, regarding the 
apparent ease with which reusable hardware components are used to construct complicated systems. 
With software, there seems too often to be a need or tendency to develop from scratch instead of reusing 
components. Early attempts at software components include procedure libraries, which unfortunately 
have too limited applicability and low flexibility. The advent of object-oriented programming has 
stimulated the development of software component frameworks such as CORBA, the Microsoft 
COM/DCOM component object model, and JavaBeans. These component models have considerable 
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success in certain application areas, but there is still a long way to go to reach the level of reuse and 
component standardization found in the hardware industry. 

The reader might wonder what all this has to do with Modelica. In fact, Modelica offers quite a 
powerful software component model that is on par with hardware component systems in flexibility and 
potential for reuse. The key to this increased flexibility is the fact that Modelica classes are based on 
equations. What is a software component model? It should include the following three items: 

1. Components 
2. A connection mechanism 
3. A component framework 

Components are connected via the connection mechanism, which can be visualized in connection 
diagrams. The component framework realizes components and connections, and ensures that 
communication works and constraints are maintained over the connections. For systems composed of 
acausal components, the direction of data flow, that is, the causality, is automatically deduced by the 
compiler at composition time. 

See also Chapter 5, page 187, for a complete overview of components, connectors, and connections. 

2.8.1 Components 

Components are simply instances of Modelica classes. Those classes should have well-defined 
interfaces, sometimes called ports, in Modelica called connectors, for communication and coupling 
between a component and the outside world. 

A component is modeled independently of the environment in which it is used, which is essential for 
its reusability. This means that in the definition of the component including its equations, only local 
variables and connector variables can be used. No means of communication between a component and 
the rest of the system, apart from going via a connector, should be allowed. However, in Modelica 
access of component data via dot notation is also possible. A component may internally consist of other 
connected components, that is, hierarchical modeling. 

2.8.2 Connection Diagrams 

Complex systems usually consist of large numbers of connected components, of which many 
components can be hierarchically decomposed into other components through several levels. To grasp 
this complexity, a pictorial representation of components and connections is quite important. Such 
graphic representation is available as connection diagrams, of which a schematic example is shown in 
Figure 2-9. We have earlier presented a connection diagram of a simple circuit in Figure 2-7. 

_{j] componentl [ j ] [j] component2 [j] 

• i 
component3 [ 

Figure 2-9. Schematic picture of a connection diagram for components. 

Each rectangle in the diagram example represents a physical component—a resistor, a capacitor, a 
transistor, a mechanical gear, a valve, and so on. The connections represented by lines in the diagram 
correspond to real, physical connections. For example, connections can be realized by electrical wires, 
by the mechanical connections, by pipes for fluids, by heat exchange between components, and so on. 
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The connectors (interface points) are shown as small square dots on the rectangle in the diagram. 
Variables at such interface points define the interaction between the component represented by the 
rectangle and other components. 

Front wheels 

controller 

Figure 2-10. A connection diagram for a simple car model. 

A simple car example of a connection diagram for an application in the mechanical domain is shown 
in Figure 2-10. The simple car model below includes variables for subcomponents such as wheels, 
chassis, and control unit. A "comment" string after the class name briefly describes the class. The 
wheels are connected to both the chassis and the controller. Connect equations are present, but are not 
shown in this partial example. 

class Car "A car class to combine car components" 
Wheel wl,w2,w3,w4 "Wheel one to four"; 
Chassis chassis "Chassis"; 
CarController controller "Car controller"; 

end Car; 

2.8.3 Connectors and Connector Classes 

Model ica connectors are instances of connector classes, which define the variables that are part of the 
communication interface that is specified by a connector. Thus, connectors specify external interfaces 
for interaction. 

For example, Pin is a connector class that can be used to specify the external interfaces for electrical 
components (Figure 2-11) that have pins. The types Voltage and Current used within Pin are the 
same as Real, but with different associated units. From the Modelica language point of view, the types 
Voltage and Current are similar to Real, and are regarded as having equivalent types. Checking unit 
compatibility within equations is optional. 

type Voltage = Real(unit="V"); 
type Current = Real(unit="A"); 

V 

• 
i 

Figure 2-11. A component with one electrical Pin connector. 

The Pin connector class below contains two variables. The flow prefix on the second variable 
indicates that this variable represents a flow quantity, which has special significance for connections as 
explained in the next section. 

connector Pin 
Voltage v; 

^ ^ ^ ^ R e a r wheels 
chassis / 
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flow Current i; 
end Pin; 

2.8.4 Connections 
Connections between components can be established between connectors of equivalent type. Modelica 
supports equation-based acausal connections, which means that connections are realized as equations. 
For acausal connections, the direction of data flow in the connection need not be known. Additionally, 
causal connections can be established by connecting a connector with an output attribute to a 
connector declared as input. 

Two types of coupling can be established by connections, depending on whether the variables in the 
connected connectors are potential (default) or declared using the flow prefix: 

1. Equality coupling, for potential variables, according to Kirchhoffs first law. 
2. Sum-to-zero coupling, for flow variables, according to Kirchhoffs current law. 

For example, the keyword flow for the variable i of type Current in the Pin connector class indicates 
that all currents in connected pins are summed to zero, according to Kirchhoffs current law. 

Figure 2-12. Connecting two components that have electrical pins. 

Connection equations are used to connect instances of connection classes. A connection equation 
connect (Rl .p, R2 .p), with R1 ,p and R2 .p of connector class Pin, connects the two pins (Figure 
2-12) so that they form one node. This produces two equations, namely: 

Rl.p.v = R2.p.v 
Rl.p.i + R2.p.i = 0 

The first equation says that the voltages of the connected wire ends are the same. The second equation 
corresponds to Kirchhoffs second law, saying that the currents sum to zero at a node (assuming positive 
value while flowing into the component). The sum-to-zero equations are generated when the prefix 
flow is used. Similar laws apply to flows in piping networks and to forces and torques in mechanical 
systems. 

See also Section 5.3, page 190, for a complete description of this kind of explicit connections. We 
should also mention the concept of implicit connections, useful for modeling force fields, which is 
represented by the Modelica inner/outer construct and described in more detail in Section 5.8, page 

2.8.5 Implicit Connections with inner/outer 

So far we have focused on explicit connections between connectors, where each connection is explicitly 
represented by a connect-equation and a corresponding line in a connection diagram. However, when 
modeling certain kinds of large models with many interacting components this approach becomes rather 
clumsy because of the large number of potential connections—a connection might be needed between 
each pair of components. This is especially true for system models involving force fields, which lead to 
a maximum of n x n connections between the n components influenced by the force field or 1 xn 
connections between a central object and n components if intercomponent interaction is neglected. 

224. 

n I + R1 .P .V R 2 . D . V + n 
R1 • R2 

R l . p . i R2 .P . Ì I 
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For the case of 1 x n connections, instead of using a large number of explicit connections, Modelica 
provides a convenient mechanism for implicit connections between an object and n of its components 
through the inner and outer declaration prefixes. 

A rather common kind of implicit interaction is where a shared attribute of a single environment 
object is accessed by a number of components within that environment. For example, we might have an 
environment including house components, each accessing a shared environment temperature, or a circuit 
board environment with electronic components accessing the board temperature. 

A Modelica environment-component example model along these lines is shown below, where a 
shared environment temperature variable TO is declared as a definition declaration marked by the 
keyword inner. This declaration is implicitly accessed by the reference declarations of TO marked by 
the prefix outer in the components compl and comp2. For more details, see Section 5.8, page 224. 

model Environment 
inner Real TO; / /Definition of actual environment temperature TO 
Component compl, comp2; / /Lookup match compl.TO = comp2 .TO = TO 
parameter Real k=l; 

equation 
TO = sin(k*time); 

end Environment; 

model Component 
outer Real TO; II Reference to temperature TO defined in the environments 
Real T; 

equation 
T = TO; 

end Component; 

2.8.6 Expandable Connectors for Information Buses 

It is common in engineering to have so-called information buses with the purpose of transporting information 
between various system components, for example, sensors, actuators, and control units. Some buses are even 
standardized (e.g., IEEE), but are usually rather generic to allow many kinds of different components. 

This is the key idea behind the expandable connector construct in Modelica. An expandable 
connector acts like an information bus since it is intended for connection to many kinds of components. 
To make this possible, it automatically expands the expandable connector type to accommodate all the 
components connected to it with their different interfaces. If an element with a certain name and type is 
not present, it is added. 

All fields in an expandable connector are seen as connector instances even if they are not declared as 
such, that is, it is possible to connect to a Real variable for example. 

Moreover, when two expandable connectors are connected, each is augmented with the variables that 
are only declared in the other expandable connector. This is repeated until all connected expandable 
connector instances have matching variables, that is, each of the connector instances is expanded to be 
the union of all connector variables. If a variable appears as an input in one expandable connector, it 
should appear as a non-input in at least one other expandable connector instance in the connected set. 
The following is a small example: 

expandable connector EngineBus 
end EngineBus; 
block Sensor 

RealOutput speed; 
end Sensor; 
block Actuator 

Reallnput speed; 
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end Actuator; 
model Engine 

EngineBus bus; 
Sensor sensor; 
Actuator actuator; 

equation 
connect(bus.speed, sensor.speed); // provides the non-input 
connect(bus.speed, actuator.speed); 

end Engine; 
There are many more issues to consider when using expandable connectors, see for example Section 

5.9, page 238. 

2.8.7 Stream Connectors 

In thermodynamics with fluid applications where there can be bi-directional flows of matter with 
associated quantities, it turns out that the two basic variable types in a connector—potential variables 
and flow variables—are not sufficient to describe models that result in a numerically sound solution 
approach. Such applications typically have bi-directional flow of matter with convective transport of 
specific quantities, such as specific enthalpy and chemical composition 

If we would use conventional connectors with flow and potential variables, the corresponding 
models would include nonlinear systems of equations with Boolean unknowns for the flow directions 
and singularities around zero flow. Such equation systems cannot be solved reliably in general. The 
model formulations can be simplified when formulating two different balance equations for the two 
possible flow directions. This is, however, not possible using only flow and potential variables. 

This fundamental problem is addressed in Modelica by introducing a third type of connector 
variable, called stream variable, declared with the prefix stream. A stream variable describes a 
quantity that is carried by a flow variable, that is, a purely convective transport phenomenon. 

If at least one variable in a connector has the stream prefix, the connector is called a stream 
connector and the corresponding variable is called a stream variable. For example: 

connector FluidPort 

flow Real mflow "Flow of matter; m_flow>0 if flow into component"; 
stream Real h outflow "Specific variable in component if m flow < 0" 

end FluidPort 

model FluidSystem 

FluidComponent mi, m2, mN; 
FluidPort Ci, c2, . .., cM; 

equation 
connect (mi. c, m2.c); 

connect (mx. c, c„) ; 

end FluidSystem; 
For more details and further explanations, see Section 5.10, page 245, together with an extensive 
example developed from first principles in Section 15.2, page 800. 



Chapter 2 A Quick Tour of Modélica 43 

2.9 Partial Classes 

A common property of many electrical components is that they have two pins. This means that it is 
useful to define a "blueprint" model class, called Two Pin, that captures this common property. This is a 
partial class since it does not contain enough equations to completely specify its physical behavior, and 
is therefore prefixed by the keyword partial. Partial classes are usually known as abstract classes in 
other object-oriented languages. Since a partial class is incomplete it cannot be used as a class to 
instantiate a data object. 

partial class TwoPin11 "Superclass of elements with two electrical pins" 
Pin p, n; 
Voltage v; 
Current i; 

equation 
v = p.v - n.v; 
0 = p. i + n. i ; 
1 = p.i; 

end TwoPin; 
The TwoPin class has two pins, p and n, a quantity v that defines the voltage drop across the com-

ponent, and a quantity i that defines the current into pin p, through the component, and out from pin n 
(Figure 2-13). It is useful to label the pins differently, for example, p and n, and using graphics such as 
filled and unfilled squares, respectively, to obtain a well-defined sign for v and i, although there is no 
physical difference between these pins in reality. 

P ' V P I V > n v 

— t - ? • 
p.i I n.i 

Figure 2-13. Generic TwoPin class that describes the general structure of simple electrical components 
with two pins. 

The equations define generic relations between quantities of simple electrical components. In order 
to be useful, a constitutive equation must be added that describes the specific physical characteristics of 
the component. 

2.9.1 Reuse of Partial Classes 

Given the generic partial class TwoPin, it is now straightforward to create the more specialized 
Resistor class by adding a constitutive equation: 

R*i = v; 
This equation describes the specific physical characteristics of the relation between voltage and current 
for a resistor (Figure 2-14). 

R nij] 
1 V 

Figure 2-14. A resistor component. 

11 This TwoPin class is referred to by the name Modelica.Electrical .Analog. Interfaces .OnePort in the 
Modelica standard libraiy since this is the name used by electrical modeling experts. Here we use the more intuitive 
name TwoPin since the class is used for components with two physical ports and not one. The OnePort naming is 
more understandable if it is viewed as denoting composite ports containing two subports. 
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class Resistor "Ideal electrical resistor" 
extends TwoPin; 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
R*i = v; 

end Resistor; 
A class for electrical capacitors can also reuse TwoPin in a similar way, adding the constitutive equation 
for a capacitor (Figure 2-15). 

C 

P n • • 
+ 

i 
v 

Figure 2-15. A capacitor component. 

class Capacitor "Ideal electrical capacitor" 
extends TwoPin; 
parameter Real C(Unit="F") "Capacitance"; 

equation 
C*der(v) = i; 

end Capacitor; 
During system simulation, the variables i and v specified in the above components evolve as 

functions of time. The solver of differential equations computes the values of v(t) and i(t) (where t is 
time) such thatC • v(t) = i(t) for all values of t, fulfilling the constitutive equation for the capacitor. 

2.10 Component Library Design and Use 

In a way similar to how we previously created the resistor and capacitor components, additional 
electrical component classes can be created, forming a simple electrical component library that can be 
used for application models such as the SimpleCircuit model. Component libraries of reusable 
components are actually the key to effective modeling of complex systems. 

2.11 Example: Electrical Component Library 

Below we show an example of designing a small library of electrical components needed for the simple 
circuit example, as well as the equations that can be extracted from these components. 

2.11.1 Resistor 

IL+ 
i 

p.v 

Figure 2-16. Resistor component. 

Four equations can be extracted from the resistor model depicted in Figure 2-14 and Figure 2-16. 
The first three originate from the inherited TwoPin class, whereas the last is the constitutive equation of 
the resistor. 
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0 = p.i + n.i 
v = p.v - n.v 
1 = p.i 
v = R*i 

2.11.2 Capacitor 

P-i^ + ^ n.i 

p.v • n.v 
v 

Figure 2-17. Capacitor component. 

The following four equations originate from the capacitor model depicted in Figure 2-15 and Figure 
2-17, where the last equation is the constitutive equation for the capacitor. 

0 = p.i + n.i 
v = p.v - n.v 
1 = p.i 
i = C * der(v) 

2.11.3 Inductor 

_P-i + n.i 

p.v • n.v K v 

Figure 2-18. Inductor component. 

The inductor class depicted in Figure 2-18 and shown below gives a model for ideal electrical inductors. 

class Inductor "Ideal electrical inductor" 
extends TwoPin; 
parameter Real L(unit="H") "Inductance"; 

equation 
v = L*der(i); 

end Inductor; 

These equations can be extracted from the inductor class, where the first three come from TwoPin as 
usual and the last is the constitutive equation for the inductor. 

0 = p . i + n . i 
v = p.v - n.v 
1 = p.i 
v = L * der(i) 

2.11.4 Voltage Source 

p.i n.i 

p.v V J y n.v 

Figure 2-19. Voltage source component VsourceAC, where v(t) = VA*sin (2*PI*f*time) . 
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A class vsourceAC for the sine-wave voltage source to be used in our circuit example is depicted in 
Figure 2-19 and can be defined as below. This model as well as other Modelica models specify behavior 
that evolves as a function of time. Note that the built-in predefined variable time is used. In order to 
keep the example, simple the constant PI is explicitly declared even though it is usually imported from 
the Modelica standard library. 

class VsourceAC "Sin-wave voltage source" 
extends TwoPin; 
parameter Voltage VA = 220 "Amplitude"; 
parameter Real f(unit="Hz") = 50 "Frequency"; 
constant Real PI = 3.141592653589793; 

equation 
v = VA*sin(2*PI*f*time); 

end VsourceAC; 
In this TwoPin-based model, four equations can be extracted from the model, of which the first 

three are inherited from TwoPin: 
0 = p.i + n.i 
v = p.v - n.v 
1 = p.i 
v = VA*sin(2*PI*f*time) 

Figure 2-20. Ground component. 

Finally, we define a class for ground points that can be instantiated as a reference value for the voltage 
levels in electrical circuits. This class has only one pin (Figure 2-20). 

class Ground "Ground" 
Pin p; 

equation 
p.v = 0; 

end Ground; 
A single equation can be extracted from the Ground class, 

p.v = 0 

2.12 The Simple Circuit Model 

Having collected a small library of simple electrical components, we can now put together the simple 
electrical circuit shown previously and in Figure 2-21. 

2.11.5 Ground 

p y y I pi 
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Figure 2-21. The simpleCircuit model. 

The two resistor instances R1 and R2 are declared with modification equations for their respective 
resistance parameter values. Similarly, an instance c of the capacitor and an instance L of the inductor 
are declared with modifiers for capacitance and inductance respectively. The voltage source AC and the 
ground instance G have no modifiers. Connect equations are provided to connect the components in the 
circuit. 

class SimpleCircuit 
Resistor R1(R=10); 
Capacitor C(C=0.01); 
Resistor R2(R=100); 
Inductor L(L=0.1); 
VsourceAC AC; 
Ground G; 

equation 
connect(AC.p, R1.p); 
connect(R1.n, C.p); 
connect(C. n, AC.n); 
connect(R1. p, R2.p); 
connect(R2.n, L.p); 
connect(L.n, C.n); 
connect(AC.n, G.p); 

end SimpleCircuit; 

// Wirel, Capacitor circuit 
// Wire 2 
// Wire 3 
// Wire4, Inductor circuit 
// Wire 5 
// Wire 6 
// Wire7, Ground 

2.13 Arrays 

An array is a collection of variables all of the same type. Elements of an array are accessed through 
simple integer indexes ranging from a lower bound of 1 to an upper bound being the size of the 
respective dimension, or by Boolean indexes from false to true, or by enumeration indexes. An 
array variable can be declared by appending dimensions within square brackets after a class name, as in 
Java, or after a variable name, as in the C language. For example: 

Real[3] positionvector = {1,2,3}; 
Real[3,3] identitymatrix = {{1,0,0}, {0,1,0}, {0,0,1}}; 
Real[3,3,3] arr3d; 

This declares a three-dimensional position vector, a transformation matrix, and a three-dimensional 
array. Using the alternative syntax of attaching dimensions after the variable name, the same 
declarations can be expressed as: 

wirel wire4 

n n 
R1=10 R2=100 

4 n 6 n 
AC=220 C ^ J W i r e 2 Wir®5 

^ ^ H P IIP 

T " \ 
C=0.01 L=0.1 < 

wire3 I l 
• n n n 
| wire6 I 

wire7 • p 
— I — G 
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Real positionvector[3] = {1,2,3}; 
Real identitymatrix[3,3] = {{1,0,0}, {0,1,0}, {0,0,1}}; 
Real arr3d[3,3,3]; 

In the first two array declarations, declaration equations have been given, where the array constructor {} 
is used to construct array values for defining p o s i t i o n v e c t o r and i d e n t i t y m a t r i x . Indexing 
of an array A is written A [ I , J , . . . ], where 1 is the lower bound and SI ZE (A, K) is the upper bound of 
the index for the kth dimension. Submatrices can be formed by utilizing the : notation for index ranges, 
for example, A [ i 1: i 2, j 1: j 2 ], where a range i 1: i 2 means all indexed elements starting with i 1 up 
to and including i2. 

Array expressions can be formed using the arithmetic operators +, *, and /, since these can operate 
on either scalars, vectors, matrices, or (when applicable) multidimensional arrays with elements of type 
Real or integer. The multiplication operator * denotes scalar product when used between vectors, 
matrix multiplication when used between matrices or between a matrix and a vector, and element-wise 
multiplication when used between an array and a scalar. As an example, multiplying positionvector 
by the scalar 2 is expressed by: 

positionvector*2 
which gives the result: 

{2,4,6} 
In contrast to Java, arrays of dimensionality > 1 in Modelica are always rectangular as in Matlab or 
Fortran. 

A number of built-in array functions are available, of which a few are shown in the table below. 

transpose(A) Permutes the first two dimensions of array A. 
zeros(nl,n2,n3,...) Returns an ni x n2 x n3 x... zero-filled integer array. 
ones(nl,n2,n3,...) Returns an ni x n2 x n3 x ... one-filled integer array. 
fill(s,nl,n2,n3, ...) Returns the ni x n2 x n3 x ... array with all elements filled with the 

value of the scalar expression s. 
min (A) Returns the smallest element of array expression A. 
max (A) Returns the largest element of array expression A. 
sum (A) Returns the sum of all the elements of array expression A. 

A scalar Modelica function of a scalar argument is automatically generalized to be applicable also to 
arrays element-wise. For example, if A is a vector of real numbers, then cos (A) is a vector where each 
element is the result of applying the function cos to the corresponding element in A. For example: 

cos({1, 2, 3}) = {cos(1), cos(2), cos(3)} 
General array concatenation can be done through the array concatenation operator cat(k,A,B,c,...) 
that concatenates the arrays A , B , C , . . . along the kth dimension. For example, cat(L,{2,3}, 
{5,8,4}) gives the result {2,3,5,8,4}. 

The common special cases of concatenation along the first and second dimensions are supported 
through the special syntax forms [A; B; c ; . . . ] and [A, B, c , . . . ] respectively. Both of these forms can 
be mixed. In order to achieve compatibility with Matlab array syntax, being a de facto standard, scalar 
and vector arguments to these special operators are promoted to become matrices before performing the 
concatenation. This gives the effect that a matrix can be constructed from scalar expressions by 
separating rows by semicolons and columns by commas. The example below creates an m x n matrix: 

[exprn, expr12, ... exprln; 
expr2i, expr22, • • • expr2n; 

exprml, exprm2, ... expr^] 
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It is instructive to follow the process of creating a matrix from scalar expressions using these operators. 
For example: 

[1,2; 
3,4] 

First each scalar argument is promoted to become a matrix, giving 

[{{1}}, {{2}}; 
{{3}}, {{4}}] 

Since [... , ...] for concatenation along the second dimension has higher priority than [... ; ...], which 
concatenates along the first dimension, the first concatenation step gives 

[{{1, 2}}; 
{{3, 4}}] 

Finally, the row matrices are concatenated giving the desired 2 x 2 matrix: 

{{1, 2}, 
{3, 4}} 

The special case of just one scalar argument can be used to create a 1 x 1 matrix. For example: 

[ l ] 

gives the matrix: 

{{1}} 

See also Chapter 7, page 311, for a complete overview of Modelica arrays. 

2.14 Algorithmic Constructs 

Even though equations are eminently suitable for modeling physical systems and for a number of other 
tasks, there are situations where nondeclarative algorithmic constructs are needed. This is typically the 
case for algorithms, that is, procedural descriptions of how to carry out specific computations, usually 
consisting of a number of statements that should be executed in the specified order. 

2.14.1 Algorithm Sections and Assignment Statements 

In Modelica, algorithmic statements can occur only within algorithm sections, starting with the keyword 
algorithm. Algorithm sections may also be called algorithm equations, since an algorithm section can 
be viewed as a group of equations involving one or more variables, and can appear among equation 
sections. Algorithm sections are terminated by the appearance of one of the keywords equation, 
public, protected, algorithm, end, or annotation, 

algorithm 

<statements> 

<some other keyword> 

An algorithm section embedded among equation sections can appear as below, where the example 
algorithm section contains three assignment statements. 

equation 
x = y*2; 
z = w; 

algorithm 
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xl := z+x; 
x2 := y-5; 
xl x2+y; 

equation 
u = xl+x2; 

Note that the code in the algorithm section, sometimes denoted algorithm equation, uses the values of 
certain variables from outside the algorithm. These variables are called input variables to the 
algorithm—in this example x, y, and z. Analogously, variables assigned values by the algorithm define 
the outputs of the algorithm—in this example xl and x2. This makes the semantics of an algorithm 
section quite similar to a function with the algorithm section as its body, and with input and output 
formal parameters corresponding to inputs and outputs as described above. 

See also Chapter 9, page 421, regarding algorithms and functions. 

2.14.2 Statements 

In addition to assignment statements, which were used in the previous example, a few other kinds of 
"algorithmic" statements are available in Modelica: if-then-else statements, for-loops, while-loops, 
return statements, and so on. The summation below uses both a while-loop and an if-statement, where 
size(a,l) returns the size of the first dimension of array a. The elseif- and else-parts of if-statements 
are optional. 

sum := 0; 
n := size(a,1); 
while ri>0 loop 

if a [n] >0 then 
sum := sum + a[n] ; 

elseif a[n] > -1 then 
sum := sum - a[n] -1; 

else 
sum := sum - a[n]; 

end if; 
n := n-1; 

end while; 
Both for-loops and while-loops can be immediately terminated by executing a break-statement inside 
the loop. Such a statement just consists of the keyword break followed by a semicolon. 

Consider once more the computation of the polynomial presented in Section 2.6.1 on repetitive 
equation structures, page 35: 

y := a[1]+a[2]*x + a[3]*xAl + ... + a[n+l]*xAn; 
When using equations to model the computation of the polynomial, it was necessary to introduce an 
auxiliary vector xpowers for storing the different powers of x. Alternatively, the same computation can 
be expressed as an algorithm including a for-loop as below. This can be done without the need for an 
extra vector—it is enough to use a scalar variable xpower for the most recently computed power of x. 

algorithm 
y := 0; 
xpower := 1; 
for i in 1:n+1 loop 

y := y + a[i]*xpower; 
xpower := xpower*x; 

end for; 

See Section 9.2.3, page 425, for descriptions of statement constructs in Modelica. 
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2.14.3 Functions 

Functions are a natural part of any mathematical model. A number of mathematical functions like abs, 
sqrt, mod,sin, cos, exp, and so on are both predefined in the Modelica language and available in the 
Modelica standard math library Modelica .Math. The arithmetic operators +, *, / can be regarded as 
functions that are used through a convenient operator syntax. Thus it is natural to have user-defined 
mathematical functions in the Modelica language. The body of a Modelica function is an algorithm 
section that contains procedural algorithmic code to be executed when the function is called. Formal 
parameters are specified using the input keyword, whereas results are denoted using the output 
keyword. This makes the syntax of function definitions quite close to Modelica block class definitions. 

Modelica functions are mathematical functions, that is, without global side-effects and with no 
memory (except impure Modelica functions marked with the keyword impure). A Modelica function 
always returns the same results given the same arguments. Below we show the algorithmic code for 
polynomial evaluation in a function named polynomialEvaluator. 

function polynomialEvaluator 
input Real a[:]; // Array, size defined at function call time 
input Real x := 1.0; // Default value 1.0 for x 
output Real y; 

protected 
Real xpower; 

algorithm 
y := 0; 
xpower 1; 
for i in l:size(a,l) loop 

y := y + a[i]*xpower; 
xpower := xpower*x; 

end for; 
end polynomialEvaluator; 
Functions are usually called with positional association of actual arguments to formal parameters. 

For example, in the call below the actual argument { 1 , 2 , 3 , 4 } becomes the value of the coefficient 
vector a, and 21 becomes the value of the formal parameter x. Modelica function formal parameters are 
read-only, i.e., they may not be assigned values within the code of the function. When a function is 
called using positional argument association, the number of actual arguments and formal parameters 
must be the same. The types of the actual argument expressions must be compatible with the declared 
types of the corresponding formal parameters. This allows passing array arguments of arbitrary length to 
functions with array formal parameters with unspecified length, as in the case of the input formal 
parameter a in the polynomialEvaluator function: 

p = polynomialEvaluator({1, 2, 3, 4}, 21); 
The same call to the function polynomialEvaluator can instead be made using named association of 
actual arguments to formal parameters, as in the next example. This has the advantage that the code 
becomes more self-documenting as well as more flexible with respect to code updates. 

For example, if all calls to the function polynomialEvaluator are made using named parameter 
association, the order between the formal parameters a and x can be changed, and new formal 
parameters with default values can be introduced in the function definitions without causing any 
compilation errors at the call sites. Formal parameters with default values need not be specified as actual 
arguments unless those parameters should be assigned values different from the defaults: 

p = polynomialEvaluator(a={1, 2, 3, 4}, x=21); 
Functions can have multiple results. For example, the function f below has three result parameters 
declared as three formal output parameters rl, r2, and r3: 

function f 
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input Real x; 
input Real y; 
output Real rl; 
output Real r2; 
output Real r3; 

end f; 
Within algorithmic code, multiresult functions may be called only in special assignment statements, as 
the one below, where the variables on the left-hand side are assigned the corresponding function results: 

(a, b, c) := f(1.0, 2.0); 
In equations a similar syntax is used: 

(a, b, c) = f(1.0, 2.0) ; 
A function is returned from by reaching the end of the function or by executing a return-statement inside 
the function body. 

See also Section 9.3, page 438, for more information regarding functions. 

2.14.4 Operator Overloading and Complex Numbers 

Function and operator overloading allow several definitions of the same function or operator, but with a 
different set of input formal parameter types for each definition. This allows one, for example, to define 
operators such as addition and multiplication of complex numbers, using the ordinary + and * operators 
but with new definitions, or provide several definitions of a solve function for linear matrix equation 
solution for different matrix representations such as standard dense matrices, sparse matrices, and 
symmetric matrices. 

In fact, overloading already exists predefined to a limited extent for certain operators in the Modelica 
language. For example, the plus (+) operator for addition has several different definitions depending on 
the data type: 

• 1+2— means integer addition of two integer constants giving an integer result, here 3. 
• 1.0+2.0— means floating point number addition of two Real constants giving a floating-point 

number result, here 3.0. 
• "ab"+"2"— means string concatenation of two string constants giving a string result, here 

" ab2 . " 
• {l,2}+{3,4}— means integer vector addition of two integer constant vectors giving a vector 

result, here {4,6}. 

Overloaded operators for user-defined data types can be defined using operator record and 
operator function declarations. Here we show part of a complex numbers data type example: 

operator record Complex "Record defining a Complex number" 

Real re "Real part of complex number"; 
Real im "Imaginary part of complex number"; 

encapsulated operator 'constructor' 
inqport Complex; 
function fromReal 

input Real re; 
output Complex result = Complex(re=re, im=0.0); 
annotation(Inline=true); 

end fromReal; 
end 'constructor'; 
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encapsulated operator function '+' 
import Complex; 
input Complex cl; 
input Complex c2; 
output Complex result "Same as: cl + c2"; 
annotation(Inline=true); 

algorithm 
result := Complex(cl.re + c2.re, cl.im + c2.im); 

end '+'; 

end Complex; 
In the above example we start as usual with the real and imaginary part declarations of the re and im 
fields of the Complex operator record definition. Then comes a constructor definition fromReal with 
only one input argument instead of the two inputs of the default Complex constructor implicitly defined 
by the Complex record definition, followed by overloaded operator definition for ' + ' . 

How can these definitions be used? Take a look at the following small example: 

Real a; 
Complex b; 
Complex c = a + b; // Addition of Real number a and Complex number b 

The interesting part is in the third line, which contains an addition a+b of a Real number a and a 
Complex number b. There is no built-in addition operator for complex numbers, but we have the above 
overloaded operator definition of ' + ' for two complex numbers. An addition of two complex numbers 
would match this definition right away in the lookup process. 

However, in this case we have an addition of a real number and a complex number. Fortunately, the 
lookup process for overloaded binary operators can also handle this case if there is a constructor 
function in the Complex record definition that can convert a real number to a complex number. Here we 
have such a constructor called fromReal. 

Note that the Complex is already predefined in a Modelica record type called Complex. This is 
distributed as part of the standard Modelica library (MSL) but defined at the top level outside of MSL. It 
is referred to as Complex or .Complex, and is automatically preloaded by most tools, enabling direct 
usage without the need for any import statements (except in encapsulated classes). There is a library 
ComplexMath with operations on complex numbers (Section 16.3, page 923). See Section 9.5, page 481 
for more information regarding this topic. 

The following are some examples of using the predefined type Complex: 
Real a = 2; 
Complex j = Modelica.ComplexMath.j; 
Complex b = 2 + 3*j; 
Complex c = (2*b + a)/b; 
Complex d = Modelica.ComplexMath.sin(c); 
Complex v[3] = {b/2, c, 2*d}; 

2.14.5 External Functions 

It is possible to call functions defined outside of the Modelica language, implemented in C or Fortran. If 
no external language is specified, the implementation language is assumed to be C. The body of an 
external function is marked with the keyword external in the Modelica external function declaration: 

function log 
input Real x; 
output Real y; 

external 
end log; 
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The external function interface supports a number of advanced features such as in-out parameters, local 
work arrays, external function argument order, and explicit specification of row-major versus column-
major array memory layout. For example, the formal parameter Ares corresponds to an in-out 
parameter in the external function leastsquares below, which has the value A as input default and a 
different value as the result. It is possible to control the ordering and usage of parameters to the function 
external to Modelica. This is used below to explicitly pass sizes of array dimensions to the Fortran 
routine called dgels. Some old-style Fortran routines like dgels need work arrays, which is 
conveniently handled by local variable declarations after the keyword protected. 

function leastSquares "Solves a linear least squares problem" 
input Real A[:, : ] ; 
input Real B[:,:]; 
output Real Ares[size(A, 1),size(A, 2)] := A; 

//Factorization is returned in Ares for later use 
output Real x[size(A, 2),size(B,2)]; 

protected 
Integer lwork = min(size(A, 1),size(A,2)) + 

max(max(size(A, 1),size(A, 2)),size(B,2))*32; 
Real work[lwork]; 
Integer info; 
String transposed="NNNN"; // Workaround for passing CHARACTER data to 

// Fortran routine 
external "FORTRAN 77" 
dgels(transposed, 100, size(A,l), size(A,2), size(B,2), Ares, 

size (A, 1), B, size(B,l), work, lwork, info); 
end leastSquares; 

See also Section 9.4, page 466, regarding external functions. 

2.14.6 Algorithms Viewed as Functions 

The function concept is a basic building block when defining the semantics or meaning of programming 
language constructs. Some programming languages are completely defined in terms of mathematical 
functions. This makes it useful to try to understand and define the semantics of algorithm sections in 
Modelica in terms of functions. For example, consider the algorithm section below, which occurs in an 
equation context: 

algorithm 
y := x; 
z 2*y; 
y := z+y; 

This algorithm can be transformed into an equation and a function as below, without changing its 
meaning. The equation equates the output variables of the previous algorithm section with the results of 
the function f. The function f has the inputs to the algorithm section as its input formal parameters and 
the outputs as its result parameters. The algorithmic code of the algorithm section has become the body 
of the function f. 

(y,z) = f(x); 

function f 
input Real x; 
output Real y,z; 

algorithm 
y := x; 
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y := z+y; 
end f; 

2.15 Discrete-Event and Hybrid Modeling 

Macroscopic physical systems in general evolve continuously as a function of time, obeying the laws of 
physics. This includes the movements of parts in mechanical systems and current and voltage levels in 
electrical systems, chemical reactions. Such systems are said to have continuous dynamics. 

On the other hand, it is sometimes beneficial to make the approximation that certain system 
components display discrete behavior, that is, changes of values of system variables may occur 
instantaneously and discontinuously at specific points in time. 

In the real physical system, the change can be very fast, but not instantaneous. Examples are 
collisions in mechanical systems, for example, a bouncing ball that almost instantaneously changes 
direction, switches in electrical circuits with quickly changing voltage levels, and valves and pumps in 
chemical plants. We talk about system components with discrete-time dynamics. The reason to make the 
discrete approximation is to simplify the mathematical model of the system, making the model more 
tractable and usually speeding up the simulation of the model several orders of magnitude. 

For this reason it is possible to have variables in Modelica models of discrete-time variability, that 
is, the variables change value only at specific points in time, so-called events. There are two kinds of 
discrete-time variables: unclocked discrete-time variables, which keep their values constant between 
events, and clocked discrete-time variables, which are undefined between associated clock-tick events; 
see Figure 2-22. Examples of discrete-time variables are Real variables declared with the prefix 
discrete, clock variables and clocked variables, or Integer, Boolean, and enumeration variables, 
which are discrete-time by default and cannot be continuous-time. 

. z1 

i 
• • z2 

I I I • 
event 1 event 2 event 3 t j m e 

Figure 2-22. Discrete-time variables zl and z2 change value only at event instants, whereas continuous-
time variables like y may change value both between and at events. An unclocked discrete-time variable 
zl is defined also between events, whereas a clocked discrete-time variable z2 is defined only at 
associated clock-tick events. 

Since the discrete-time approximation can only be applied to certain subsystems, we often arrive at 
system models consisting of interacting continuous and discrete components. Such a system is called a 
hybrid system and the associated modeling techniques hybrid modeling. The introduction of hybrid 
mathematical models creates new difficulties for their solution, but the disadvantages are far outweighed 
by the advantages. 

Modelica provides four kinds of constructs for expressing hybrid models: conditional expressions or 
equations to describe discontinuous and conditional models, when-equations to express equations that 
are valid only at discontinuities (e.g., when certain conditions become true), clocked synchronous 
constructs, and clocked state machines. For example, if-then-else conditional expressions allow 
modeling of phenomena with different expressions in different operating regions, as for the equation 
describing a limiter below: 
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y = if v > limit then limit else v; 
A more complete example of a conditional model is the model of an ideal diode. The characteristic 

of a real physical diode is depicted in Figure 2-23 and the ideal diode characteristic in parameterized 
form is shown in Figure 2-24. 

r 
i 

Figure 2-23. Real diode characteristic. 

Figure 2-24. Ideal diode characteristic. 

Since the voltage level of the ideal diode would go to infinity in an ordinary voltage-current 
diagram, a parameterized description is more appropriate, where both the voltage v and the current i, 
same as il, are functions of the parameter s. When the diode is off, no current flows and the voltage is 
negative, whereas when it is on there is no voltage drop over the diode and the current flows. 

model Diode "Ideal diode" 
extends TwoPin; 
Real s; 
Boolean off; 

equation 
off = s < 0; 
if off 
then v=s; 
else v=0; // conditional equations 

end if; 
i = if off then 0 else s; // conditional expression 

end Diode; 
When-equations have been introduced in Modelica to express instantaneous equations, equations that 
are valid only at certain points in time that, for example, occur at discontinuities when specific 
conditions become true, so-called events. The syntax of when-equations for the case of a vector of 
conditions is shown below. The equations in the when-equation are activated when at least one of the 
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conditions becomes true, and remain activated only for a time instant of zero duration. A single 
condition is also possible. 

when {condition!, condition!, ...} then 
<equations> 

end when; 
A bouncing ball is a good example of a hybrid system for which the when-equation is appropriate 

when modeled. The motion of the ball is characterized by the variable height above the ground and the 
vertical velocity. The ball moves continuously between bounces, whereas discrete changes occur at 
bounce times, as depicted in Figure 2-25. When the ball bounces against the ground its velocity is 
reversed. An ideal ball would have an elasticity coefficient of 1 and would not lose any energy at a 
bounce. A more realistic ball, as the one modeled below, has an elasticity coefficient of 0.9, making it 
keep 90 percent of its speed after the bounce. 

Figure 2-25. A bouncing ball. 

The bouncing ball model contains the two basic equations of motion relating height and velocity as well 
as the acceleration caused by the gravitational force. At the bounce instant, the velocity is suddenly 
reversed and slightly decreased—velocity (after bounce) = -c*velocity (before bounce)—which is 
accomplished by the special reinit syntactic form of instantaneous equation for reinitialization: 
reinit (velocity, -c*pre (velocity) ), which in this case reinitializes the velocity variable. 

model BouncingBall "Simple model of a bouncing ball" 
constant Real g = 9.81 "Gravity constant"; 
parameter Real c = 0.9 "Coefficient of restitution"; 
parameter Real radius=0.1 "Radius of the ball"; 
Real height(start = 1) "Height of the ball center"; 
Real velocity(start = 0) "Velocity of the ball"; 

equation 
der(height) = velocity; 
der(velocity) = -g; 
when height <= radius then 

reinit(velocity,-c*pre(velocity)) ; 
end when; 

end BouncingBall; 
Note that the equations within a when-equation are active only during the instant in time when the 
condition(s) of the when-equation become true, whereas the conditional equations within an if-
equation are active as long as the condition of the if-equation is true. 

If we simulate this model long enough, the ball will fall through the ground. This strange behavior of 
the simulation, called shattering or the Zeno effect (explained in more detail in Section 18.2.5.6, page 
1015), is due to the limited precision of floating-point numbers together with the event-detection 
mechanism of the simulator, and occurs for some (unphysical) models where events may occur 
infinitely close to each other. The real problem in this case is that the model of the impact is not 
realistic—the law new velocity = -c*velocity does not hold for very small velocities. A simple 
fix is to state a condition when the ball falls through the ground and then switch to an equation stating 
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that the ball is lying on the ground. A better but more complicated solution is to switch to a more 
realistic material model. 

See also Section 8.3.4, page 355; Section 9.2.10, page 433; and Chapter 13, page 591, regarding 
discrete and hybrid issues. 

2.15.1 Synchronous Clocks and State Machines 

Starting from Modelica version 3.3, two main groups of discrete-time and hybrid modeling features are 
available in the language, built-in synchronous clocks with constructs for clock-based modeling and 
synchronous clock-based state machines. 

As depicted in Figure 2-22, clocks and clocked discrete-time variable values are only defined at 
clock-tick events for an associated clock and are undefined between clock ticks. 

Synchronous clock-based modeling gives additional advantages for real-time and embedded system 
modeling in terms of higher performance and avoidance and/or detection of certain kinds of errors. 

To give a very simple example, in the model below the clock variable e l k is defined with an interval 
of 0.2 seconds. This clock is used for sampling the built-in t ime variable, with result put in x and 
defined only at clock ticks. Finally the variable y is defined also between clock ticks by the use of the 
hold operator. 

model BasicClockedSynchronous 
Clock elk "A clock variable"; 
discrete Real x "Clocked discrete-time variable"; 
Real y "Unclocked discrete-time variable"; 

equation 
elk = Clock(0.2); // Clock with an interval of 0.2 seconds 
x = sample(time,clk); // Sample the continuous time at clock ticks 
y = hold(x)+l; // Hold value is defined also between clock ticks 

end BasicClockedSynchronous; 
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Figure 2-26. Simulation of model BasicClockedSynchronous showing clocked discrete-time variable 
x and unclocked discrete-time variable y. 

2.16 Packages 

Name conflicts are a major problem when developing reusable code, for example, libraries of reusable 
Modelica classes and functions for various application domains. No matter how carefully names are 
chosen for classes and variables, it is likely that someone else is using some name for a different 
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purpose. This problem gets worse if we are using short descriptive names since such names are easy to 
use and therefore quite popular, making them quite likely to be used in another person's code. 

A common solution to avoid name collisions is to attach a short prefix to a set of related names, 
which are grouped into a package. For example, all names in the X-Windows toolkit have the prefix Xt, 
and most definitions in the Qt GUI library are prefixed with Q. This works reasonably well for a small 
number of packages, but the likelihood of name collisions increases as the number of packages grows. 

Many programming languages, for example, Java and Ada as well as Modelica, provide a safer and 
more systematic way of avoiding name collisions through the concept of package. A package is simply 
a container or name space for names of classes, functions, constants, and other allowed definitions. The 
package name is prefixed to all definitions in the package using standard dot notation. Definitions can 
be imported into the name space of a package. 

Modelica has defined the package concept as a restriction and enhancement of the class concept. 
Thus, inheritance could be used for importing definitions into the name space of another package. 
However, this leads to conceptual modeling problems since inheritance for import is not really a 
package specialization. Instead, an import language construct is provided for Modelica packages. The 
type name Voltage together with all other definitions in Modelica.Slunits is imported in the 
example below, which makes it possible to use it without prefix for declaration of the variable v. By 
contrast, the declaration of the variable i uses the fully qualified name Modelica. Slunits. Ampere 
of the type Ampere, even though the short version also would have been possible. The fully qualified 
long name for Ampere can be used since it is found using the standard nested lookup of the Modelica 
standard library placed in a conceptual top-level package. 

package MyPack 
import MyTypes.*; 
import Modelica.Slunits.*; 
class Foo; 
Voltage v; 
Modelica.Slunits.Ampere i; 

end Foo; 
end MyPack; 

Importing definitions from one package into another class as in the above example has the drawback 
that the introduction of new definitions into a package may cause name clashes with definitions in 
packages using that package. For example, if a type definition named Voltage is introduced into the 
package MyTypes, a compilation error would arise in the package MyPack since it is also defined in the 
package Modelica.Slunits. 

An alternative solution to the short-name problem that does not have the drawback of possible 
compilation errors when new definitions are added to libraries is introducing short, convenient name 
aliases for prefixes instead of long package prefixes. This is possible using the renaming form of 
import statement as in the package MyPack below, where the package name SI is introduced instead 
of the much longer Mode 1 i ca. Slunits. 

Another disadvantage of the above package is that the Ampere type is referred to using standard 
nested lookup and not via an explicit import statement. Thus, in the worst case we may have to do the 
following in order to find all such dependencies and the declarations they refer to: 

• Visually scan the whole source code of the current package, which might be large. 
• Search through all packages containing the current package, that is, higher up in the package 

hierarchy, since standard nested lookup allows used types and other definitions to be declared 
anywhere above the current position in the hierarchy. 

Instead, a well-designed package should state all its dependencies explicitly through import 
statements that are easy to find. We can create such a package, for example, the package MyPack below, 
by adding the prefix encapsulated in front of the package keyword. This prevents nested lookup 



60 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

outside the package boundary (unfortunately with one exception—names starting with a dot . , see 
Section 3.17.3, page 112), ensuring that all dependencies on other packages outside the current package 
have to be explicitly stated as import statements. This kind of encapsulated package represents an 
independent unit of code and corresponds more closely to the package concept found in many other 
programming languages such as Java or Ada. 

encapsulated package MyPack 
import SI = Modelica.Slunits; 
import Modelica; 
class Foo; 

SI.Voltage v; 
Modelica.Slunits.Ampere i; 

end Foo; 

end MyPack; 
See Chapter 10, page 495, for additional details concerning packages and import. 

2.17 Annotations 

A Modelica annotation is extra information associated with a Modelica model. This additional 
information is used by Modelica environments for supporting documentation or graphical model 
editing. Most annotations do not influence the execution of a simulation—the same results should be 
obtained even if the annotations are removed—but there are exceptions to this rule. The syntax of an 
annotation is as follows: 

annotation {annotation elements) 

where annotation elements is a comma-separated list of annotation elements that can be any kind of 
expression compatible with the Modelica syntax. The following is a resistor class with its associated 
annotation for the icon representation of the resistor used in the graphical model editor: 

model Resistor 

annotation(Icon(coordinateSystem(preserveAspectRatio = true, 
extent = {{-100,-100},{100,100}}, grid = {2,2}), 
graphics = { 

Rectangle(extent = {{-70,30},{70,-30}}, lineColor = {0,0,255}, 
fillColor = {255,255,255}, fillPattern = FillPattern.Solid), 

Line(points = {{-90,0},{-70,0}}, color = {0,0,255}), 
Line(points = {{70,0},{90,0}}, color ={0,0,255}), 
Text(extent = {{-144,-40},{142,-72}}, lineColor = {0,0,0}, 
textString - "R=%R"), 

) ) ; 
end Resistor; 

Another example is the predefined annotation choices, used to generate menus for the graphical user 
interface: 

annotation(choices(choice=l "P", choice=2 "PI", choice=3 "PID")); 
The annotation Documentation is used for model documentation, as in this example for the 
Capacitor model: 

annotation( 
Documentation(info = "<HTML> 
<P> 
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The linear capacitor connects the branch voltage <i>v</i> with the 
branch current <i>i</i> by <i>i = C * dv/dt</i>. 
The Capacitance <i>C</i> is allowed to be positive, zero, or negative. 
</p> 
</HTML> 

) 

The external function annotation arrayLayout can be used to explicitly give the layout of arrays, e.g., 
if it deviates from the defaults rowMajor and columnMajor order for the external languages C and 
Fortran 77 respectively. 

This is one of the rare cases of an annotation influencing the simulation results, since the wrong 
array layout annotation obviously will have consequences for matrix computations. An example: 

annotation(arrayLayout = "columnMajor"); 
See also Chapter 11, page 519. 

2.18 Naming Conventions 

You may have noticed a certain style of naming classes and variables in the examples in this chapter. In 
fact, certain naming conventions, described below, are being adhered to. These naming conventions 
have been adopted in the Modelica standard library, making the code more readable and somewhat 
reducing the risk for name conflicts. The naming conventions are largely followed in the examples in 
this book and are recommended for Modelica code in general: 

• Type and class names (but usually not functions) always start with an uppercase letter, for 
example, Voltage. 

• Variable names start with a lowercase letter, e.g., body, with the exception of some one-letter 
names such as T for temperature. 

• Names consisting of several words have each word capitalized, with the initial word subject to 
the above rules, for example, Elect ricCur rent and body Part. 

• The underscore character is only used at the end of a name, or at the end of a word within a 
name, often to characterize lower or upper indices, for example, body low up. 

• Preferred names for connector instances in (partial) models are p and n for positive and negative 
connectors in electrical components, and name variants containing a and b, for example, 
flange a and flange b, for other kinds of otherwise-identical connectors often occurring in 
two-sided components. 

For more details on naming conventions see Appendix D, page 1095, and the documentation inside the 
package. 

2.19 Modelica Standard Library 

Much of the power of modeling with Modelica comes from the ease of reusing model classes. Related 
classes in particular areas are grouped into packages to make them easier to find. 

A special package, called Modelica, is a standardized predefined package that together with the 
Modelica Language is developed and maintained by the Modelica Association. This package is also 
known as the Modelica Standard Library, abbreviated MSL. It provides constants, types, connector 
classes, partial models, and model classes of components from various application areas, which are 
grouped into subpackages of the Modelica package, known as the Modelica standard libraries. 

The following is a subset of the growing set of Modelica standard libraries currently available: 
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Modélica.Constants 
Modelica.Icons 

Modelica.Math 
Modelica.SlUnits 
Modelica.Electrical 
Modelica.Blocks 
Modelica.Mechanics.Translational 
Modelica.Mechanics.Rotational 
Modelica.Mechanics.MultiBody 
Modelica.Thermal 

Common constants from mathematics, physics, etc. 
Graphical layout of icon definitions used in several 
packages. 
Definitions of common mathematical functions. 
Type definitions with SI standard names and units. 
Common electrical component models. 
Input/output blocks for use in block diagrams. 
ID mechanical translational components. 
ID mechanical rotational components. 
MBS library—3D mechanical multibody models. 
Thermal phenomena, heat flow, etc. components. 

Additional libraries are available in application areas such as thermodynamics, hydraulics, power 
systems and data communication. 

The Modelica Standard Library can be used freely for both noncommercial and commercial purposes 
under the conditions of The Modelica License as stated in the front pages of this book. The full 
documentation as well as the source code of these libraries appear at the Modelica web site. 

So far the models presented have been constructed of components from single-application domains. 
However, one of the main advantages with Modelica is the ease of constructing multidomain models 
simply by connecting components from different application-domain libraries. The DC (direct current) 
motor depicted in Figure 2-27 is one of the simplest examples illustrating this capability. 

Figure 2-27. A multidomain DCMotorCircuit model with mechanical, electrical, and signal block 
components. 

This particular model contains components from the three domains, mechanical, electrical, and 
signal blocks, corresponding to the libraries Modélica.Mechanics, Modelica.Electrical, and 
Modelica.Blocks. 

Model classes from libraries are particularly easy to use and combine when using a graphical model 
editor, as depicted in Figure 2-28, where the DC-motor model is being constructed. The left window 
shows the Modelica.Mechanics.Rotational library, from which icons can be dragged and 
dropped into the central window when performing graphic design of the model. 

See Chapter 16, page 909, for an overview of many of the current Modelica libraries, and Appendix 
D, page 1095, for samples of source code. 
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Figure 2-28. Graphical editing of an electrical DC-motor model, with part of the model component 
hierarchy at the right and icons of the Modelica standard library in the left window. 

2.20 Implementation and Execution of Modelica 

In order to gain a better understanding of how Modelica works, it is useful to take a look at the typical 
process of translation and execution of a Modelica model, which is sketched in Figure 2-29. Note that 
this is the typical process used by most Modelica tools. There are alternative ways of executing 
Modelica, some of which are currently at the research stage, that often keep more of the object-oriented 
structure at the later stages of translation and execution. 

First the Modelica source code is parsed and converted into an internal representation, usually an 
abstract syntax tree. This representation is analyzed, type checking is done, classes are inherited and 
expanded, modifications and instantiations are performed, connect equations are converted to standard 
equations, and so on. The result of this analysis and translation process is a flat set of equations, 
constants, variables, and function definitions. No trace of the object-oriented structure remains, apart 
from the dot notation within names. 

After flattening, all of the equations are topologically sorted according to the data-flow dependencies 
between the equations. In the case of general differential algebraic equations (DAEs), this is not just 
sorting, but also manipulation of the equations to convert the coefficient matrix into block lower 
triangular form, a so-called BLT transformation. Then an optimizer module containing algebraic 
simplification algorithms, symbolic index reduction methods, and so on, eliminates most equations, 
keeping only a minimal set that eventually will be solved numerically. 

Then independent equations in explicit form are converted to assignment statements. This is possible 
since the equations have been sorted and an execution order has been established for evaluation of the 
equations in conjunction with the iteration steps of the numeric solver. If a strongly connected set of 
equations appears, this set is transformed by a symbolic solver, which performs a number of algebraic 
transformations to simplify the dependencies between the variables. It can sometimes solve a system of 
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differential equations if it has a symbolic solution. Finally, C code is generated, and linked with a 
numeric equation solver that solves the remaining, drastically reduced, equation system. 

The approximations to initial values are taken from the model definition or are interactively 
specified by the user. If necessary, the user also specifies the parameter values. A numeric solver for 
differential-algebraic equations (or in simple cases for ordinary differential equations) computes the 
values of the variables during the specified simulation interval [t0, tj]. The result of the dynamic system 
simulation is a set of functions of time, such as R2 . v(t) in the simple circuit model. Those functions 
can be displayed as graphs and/or saved in a file. 

Modelica model 

— Flat model 
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Optimized sorted 
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C Code 
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Figure 2-29. The typical stages of translating and executing a Modelica model. 

In most cases (but not always) the performance of generated simulation code (including the solver) 
is similar to handwritten C code. Often Modelica is more efficient than straightforwardly written C 
code, because additional opportunities for symbolic optimization are used by the system, compared to 
what a human programmer can manually handle. 

2.20.1 Hand Translation of the Simple Circuit Model 

Let us return once more to the simple circuit model, previously depicted in Figure 2-7, but for the 
reader's convenience also shown below in Figure 2-30. It is instructive to translate this model by hand, 
in order to understand the process. 
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Figure 2-30. The simpleCircuit model once more, with explicitly labeled connection nodes Nl, N2, 
N3, N4, and wires 1 to 7. 

Classes, instances, and equations are translated into a flat set of equations, constants, and variables 
(see the equations in Table 2-1), according to the following rules: 

1. For each class instance, add one copy of all equations of this instance to the total differential 
algebraic equation (DAE) system or ordinary differential equation system (ODE)—both 
alternatives can be possible, since a DAE in a number of cases can be transformed into an ODE. 

2. For each connection between instances within the model, add connection equations to the DAE 
system so that potential variables are set equal and flow variables are summed to zero. 

The equation v=p.v-n.v is defined by the class TwoPin. The Resistor class inherits the TwoPin 
class, including this equation. The SimpleCircuit class contains a variable Rl of type Resistor. 
Therefore, we include this equation instantiated for Rl as Rl.v=Rl.p.v-Rl.n.v into the system of 
equations. 

The wire labeled 1 is represented in the model as connect (AC.p, Rl.p) . The variables AC.p 
and Rl. p have type Pin. The variable v is a potential variable representing voltage potential. Therefore, 
the equality equation Rl.p.v=AC.p.v is generated. Equality equations are always generated when 
potential variables are connected. 

Notice that another wire (labeled 4) is attached to the same pin, Rl.p. This is represented by an 
additional connect-equation: connect (Rl.p.R2.p) . The variable i is declared as a flow variable. 
Thus, the equation AC. p. i+Rl. p. i+R2. p. i=0 is generated. Zero-sum equations are always generated 
when connecting flow variables, corresponding to Kirchhoff s second law. 

The complete set of equations (see Table 2-1) generated from the SimpleCircuit class consists of 
32 differential-algebraic equations. These include 32 variables, as well as time and several parameters 
and constants. 

Table 2-1. The equations extracted from the simple circuit model—an implicit DAE system. 

AC 0 = AC.p.i+AC.n.i 
AC.v = Ac.p.v-AC.n.v 
AC.i = AC.p.i 
AC . v = AC. VA* 

sin(2*AC.PI* 
AC.f*time); 

L 0 = L .p.i+L.n.i 
L.v = L.p.v-L.n.v 
L.i = L.p.i 
L.v = L.L*der(L.i) 

Rl 0 = Rl.p.i+Rl.n.i 
Rl.v = Rl.p.v-Rl.n.v 
Rl.i = Rl.p.i 
Rl.v = Rl.R*R1.i 

G G.p.v = 0 

R2 0 = R2.p.i+R2.n.i wires Rl.p.v = AC.p.v // wire 1 

4 N1 i 

1 1 I 
R2 R1 

1 Ì + f N 4 + II N 3 ^ 

< 2 T 
L < C 
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6 o X 7 3 



66 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

R2.v = R2.p.v-R2.n.v 
R2.i = R2.p.i 
R2.v = R2.R*R2.i 

C.p.v = Rl.n.v //wire 2 
AC.n.v = C.n.v // wire 3 
R2.p.v = Rl.p.v // wire 4 
L.p.v = R2.n.v // wire 5 
L.n.v = C.n.v // wire 6 
G.p.v = AC.n.v //wire 7 

C 0 = C.p.i+C.n.i 
C.v = C.p.v-C.n.v 
C.i = C.p.i 
C.i = C.C*der(C.v) 

flow 
at 
node 

0 = AC.p.i+Rl.p.i+R2.p.i // N1 
0 = C.n.i+G.p.i+AC.n.i+L.n.i // N2 
0 = Rl.n.i + C.p.i // N3 
0 = R2.n.i + L.p.i // N4 

Table 2-2 gives the 32 variables in the system of equations, of which 30 are algebraic variables since 
their derivatives do not appear. Two variables, c.v and L.i, are dynamic variables since their 
derivatives occur in the equations. In this simple example, the dynamic variables are state variables, 
since the DAE reduces to an ODE (also see Section 18.2.6, page 1016). 

Table 2-2. The variables extracted from the simple circuit model. 

Rl.p.i Rl.n.i R1.p.v Rl.n.v Rl.v 
Rl.i R2.p.i R2 . n. i R2.p.v R2.n. v 
R2 .v R2.i C.p.i C.n.i C.p.v 
C.n.v C.v C.i L.p.i L.n.i 
L.p.v L.n.v L.v L.i AC.p.i 
AC.n.i AC.p.v AC .n.v AC.v AC.i 
G.p.i G.p.v 

2.20.2 Transformation to State-Space Form 

The implicit differential algebraic system of equations (DAE system) in Table 2-1 should be further 
transformed and simplified before applying a numerical solver. The next step is to identify the kind of 
variables in the DAE system. We have the following four groups: 

1. All constant variables which are model parameters, thus easily modified between simulation 
runs and declared with the prefixed keyword parameter, are collected into a parameter vector 
p. All other constants can be replaced by their values, thus disappearing as named constants. 

2. Variables declared with the input attribute, that is, prefixed by the input keyword, that appears 
in instances at the highest hierarchical level, are collected into an input vector u. 

3. Variables whose derivatives appear in the model (dynamic variables), that is, the d e r ( ) operator 
is applied to those variables, are collected into a state vector * (for exceptions see Section 18.2.6, 
page 1016). 

4. All other variables are collected into a vector^ of algebraic variables, that is, their derivatives do 
not appear in the model. 

For our simple circuit model these four groups of variables are the following: 

p = {Rl.R, R2.R, C.C, L.L, AC.VA, AC.f} 
U = {AC.v} 
X = {C.v,L.i} 
y = {Rl.p.i, Rl.n.i, Rl.p.v, Rl.n.v, Rl.v, Rl.i, R2.p.i, R2.n.i/ 
R2.p.v, R2.n.v, R2.v, R2.i, C.p.i, C.n.i, C.p.v, C.n.v, C.i, L.n.i, L.p.v, 
L.n.v, L.v, AC.p.i, AC.n.i, AC.p.v, AC.n.v, AC.i, AC.v, G.p.i, G.p.v} 

We would like to express the problem as the smallest possible ordinary differential equation (ODE) 
system (in the general case a DAE system) and compute the values of all other variables from the 
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solution of this minimal problem. The system of equations should preferably be in explicit state space 
form as below: 

x = f ( x , t ) (2-3) 

That is, the derivative x with respect to time of the state vector * is equal to a function of the state vector 
x and time. Using an iterative numerical solution method for this ordinary differential equation system, 
at each iteration step, the derivative of the state vector is computed from the state vector at the current 
point in time. 

For the simple circuit model we have the following: 

x = {c. v, L. i}, w = {AC. v} (with constants: 
Rl.R, R2.R,C.C,L.L, (2-4) 

X — {der(C.v), der(L.i)} AC. VA,AC.f, AC.Pi) 

2.20.3 Solution Method 

We will use an iterative numerical solution method. First, assume that an estimated value of the state 
vector JC ={C.v,L.i} is available at t=0 when the simulation starts. Use a numerical approximation 
for the derivative x (der (jc) ) at time t : 

der {x) = U(t+h) - jc(t) )/h (2"5) 
giving an approximation of jc at time t + h : 

JC (t+h) = jc(t) + der (JC) *h (2"6) 
In this way, the value of the state vector x is computed one step ahead in time for each iteration, 
provided der(x) can be computed at the current point in simulated time. However, the derivative 
der (x) of the state vector can be computed from JC = f ( x , t ) by selecting the equations involving 
der (x) and algebraically extracting the variables in the vector JC in terms of other variables, as below: 

der(C.v) = C.i/C.C (2-7) 
der(L.i) = L.v/L.L 

Other equations in the DAE system are needed to calculate the unknowns c. i and L. v in the above 
equations. Starting with c. i, using a number of different equations together with simple substitutions 
and algebraic manipulations, we derive equations (2-8) through (2-10) below. 

C.i = Rl.v/Rl.R 
using: C.i = C.p.i = -Rl.n.i = Rl.p.i = Rl.i = Rl.v/Rl.R (2-8) 

Rl.v = Rl.p.v - Rl.n.v = Rl.p.v - C.v 
using: Rl.n.v = C.p.v = C.v+C.n.v = C.v + AC.n.v = C.v + G.p.v (2-9) 

= C.v + 0 = C.v 

Rl.p.v = AC.p.v = AC.VA*sin(2*AC.f *AC.PI*t) 
using: AC.p.v = AC.v+AC.n.v = AC.v+G.p.v = (2-10) 

= AC.VA*sin(2*AC.f*AC.PI*t)+0 
In a similar fashion we derive equations (2-11) and (2-12) below: 

L.v = L.p.v - L.n.v = Rl.p.v - R2.v 
using: L. p. v = R2 . n. v = Rl.p.v-R2.v (2-11) 
and: L.n.v = C.n.v = AC.n.v = G.p.v = 0 
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R2.v = R2.R*L.p.i 
using: R2.v = R2.R*R2.i = R2.R*R2.p.i = R2. R* (-R2. n . i ) = (2-12) 
R2.R*L.p.i = R2.R*L.i 

Collecting the five equations together: 

C.i = Rl.v/Rl.R 
Rl.v = Rl.p.v - C.v 
Rl.p.v = AC.VA*sin (2*AC. f *AC. PI* time) (2-13) 
L.v = Rl.p.v - R2.v 
R2.v = R2.R*L.i 

By sorting the equations in data-dependency order, and converting the equations to assignment 
statements—this is possible since all variable values can now be computed in order—we arrive at the 
following set of assignment statements to be computed at each iteration, given values of c. v, l . i, and 
t at the same iteration: 

R2.v := R2.R*L.i 
Rl.p.v := AC. VA*sin(2*AC.f*AC.PI*time) 
L.v := Rl.p.v - R2.v 
Rl.v := R1.p.v - C.v 
C.i := Rl.v/Rl.R 
der(L.i) := L.v/L.L 
der(C.v) C.i/C.C 

These assignment statements can be subsequently converted to code in some programming language, for 
example, C, and executed together with an appropriate ODE solver, usually using better approximations 
to derivatives and more sophisticated forward-stepping schemes than the simple method described 
above, which, by the way, is called the Euler integration method. The algebraic transformations and 
sorting procedure that we somewhat painfully performed by hand on the simple circuit example can be 
performed completely automatically, and is known as BLT partitioning—conversion of the equation 
system coefficient matrix into block lower triangular form (Figure 2-31). 

CN <H • r-H • • cc cc a cc u a u 

R2.v = R2.R*L.i 1 0 0 0 0 0 0 
Rl.p.v = AC.VA*sin(2*AC.f*AC.PI*time) 0 1 0 0 0 0 0 
L.v = Rl.p.v - R2.v 1 1 1 0 0 0 0 
Rl.v = Rl.p.v - C.v 0 1 0 1 0 0 0 
C.i = Rl.v/Rl.R 0 0 0 0 1 0 0 
der(L.i) = L.v/L.L 0 0 1 0 0 1 0 
der(C.v) = C.i/C.C 0 0 0 0 1 0 " 1 

Figure 2-31. Block lower triangular form of the simpleCircuit example. 

The remaining 26 algebraic variables in the equation system of the simple circuit model that are not 
part of the minimal 7-variable kernel ODE system solved above can be computed at leisure for those 
iterations where their values are desired—this is not necessary for solving the kernel ODE system. 

It should be emphasized that the simple circuit example is trivial. Realistic simulation models often 
contain tens of thousands of equations, nonlinear equations, hybrid models, and so on. The symbolic 
transformations and reductions of equation systems performed by a real Modelica compiler are much 
more complicated than what has been shown in this example, including index reduction of equations 
and tearing of subsystems of equations. 

simulate(SimpleCircuit,stopTime=5)] 
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plot(C.v/ xrange={0,5}) 
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Figure 2-32. Simulation of the SimpleCircuit model with a plot of the voltage c . v over the capacitor. 

2.21 Tool Interoperability through Functional Mockup Interface 

Even though Modelica is a universal modeling language that covers most application domains, there are 
many established existing modeling and simulation tools in various application domains. There is a 
strong industrial need for interoperability and model interchange between tools. The Functional Mockup 
Interface standard (FMI, www.fmi-standard.org) has been developed to fulfill this need. It allows 
exporting models compiled into C-code combined with XML-based descriptors, which can be imported 
and simulated in other tools, both Modelica and non-Modelica tools. The standard also supports co-
simulation between tools and is already supported by a number of tool vendors. For more information, 
see Appendix G, page 1165. 

2.22 History 

In September 1996, at the initiative of Hilding Elmqvist, Lund, Sweden, a group of tool designers, 
application experts, and computer scientists joined forces to work together in the area of object-oriented 
modeling technology and applications. The group included specialists behind the object-oriented 
modeling languages Dymola, Omola, ObjectMath, NMF (Neutral Modeling Format), Allan-U.M.L, 
SIDOPS+, and Smile, even though not all were able to attend the first meeting. Initially the goal was to 
write a white paper on object-oriented modeling language technology including possible unification of 
existing modeling languages, as part of an action in the ESPRIT project Simulation in Europe Basic 
Research Working Group (SiE-WG). 

However, the work quickly focused on the more ambitious goal of creating a new, unified object-
oriented modeling language based on the experience from the previous designs. The designers made an 
effort to unify the concepts to create a common language, starting the design from scratch. This new 
language is called Modelica. 

WM: 
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Figure 2-33. The Modelica Design group at the time of releasing Modelica 1.0. 
Photo during Modelica design meeting at DLR, Oberphaffenhofen, Germany. 
Upper row from left: Mattias Klose, Peter Fritzson, Dag Briick, Jan Broenink, Kaj Juslin, Hilding 
Elmqvist, Alexandre Jeandel, Thilo Ernst, Pieter Mosterman, Hans Vangheluwe; 
lower row from left: André Schneider, Sven-Erik Mattsson, Hubertus Tummescheit, Martin Otter. 

The group soon established itself as Technical Committee 1 within EuroSim, and as the Technical 
Chapter on Modelica within Society for Computer Simulation International (SCS). In February 2000, 
Modelica Association was formed during a Modelica Design meeting in Linkòping, Sweden, as an 
independent nonprofit international organization for supporting and promoting the development and 
dissemination of the Modelica Language and the Modelica Standard Libraries. 

The first Modelica language description, version 1.0, was put on the web in September 1997, by a 
group of proud designers (Figure 2-33), after a number of intense design meetings. 

In 2014, at the date of this writing, the Modelica 3.3 specification has been released with Modelica 
3.3 revision 1 on the way—the result of a large amount of work including 82 three-day design meetings. 
Nine complete (or mostly complete) commercial tools supporting textual and graphical model design 
and simulation with Modelica are currently available, as well as two rather complete open-source 
implementations, and several partial university prototypes. A large and growing Modelica Standard 
Library is also available. The language is quickly spreading both in industry and in academia. 

If we trace back a few steps and think about the Modelica technology, two important points become 
apparent: 

• Modelica includes equations, which is unusual in most programming languages. 

• The Modelica technology includes graphical editing for application model design based on 
predefined components. 

In fact, concerning the first point, equations were used very early in human history—already in the third 
millennium B.C. At that point, the well-known equality sign for equations was not yet invented. That 
happened much later—the equation sign was introduced by Robert Recorde in 1557, in a form depicted 
in Figure 2-34. However, it took a while for this invention to spread in Europe. Even a hundred years 
later, Newton (in his Principia, vol. 1, 1686) still wrote his famous law of motion as text in Latin, as 
shown in Figure 2-35. Translated to English this can be expressed as: "The change of motion is 
proportional to the motive force impressed." 
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Figure 2-34. Equation sign invented by Robert Recorde 1557. Reproduced from Figure 4.1-1 on page 81 
in (Gottwald, Gellert, Kuestner 1989), courtesy Thompson Inc. 

Figure 2-35. Newton's famous second law of motion in Latin. Translated to English this becomes "The 
change of motion is proportional to the motive force impressed". Reproduced from Figure "Newton's 
laws of motion" on page 51 in (Fauvel, Flood, Shortland, and Wilson 1990), courtesy Oxford University 
Press. 

In modern mathematical syntax, Newton's law of motion appears as follows: 

This is an example of a differential equation. The first simulators to solve such equations were analog. 
The idea is to model the system in terms of ordinary differential equations and then make a physical 
device that obeys the equations. The first analog simulators were mechanical devices, but from the 
1950s electronic analog simulators became predominant. A number of electronic building blocks such 
as adders, multipliers, and integrators, could be interconnected by cables, as depicted in Figure 2-36. 

Concerning the further development, for a long time equations were quite rare in computer 
languages. Early versions of Lisp systems and computer algebra systems were being developed, but 
mostly for formula manipulation rather than for direct simulation. 

However, a number of simulation languages for digital computers soon started to appear. The first 
equation-based modeling tool was Speed-Up, a package for chemical engineering and design introduced 
in 1964. Somewhat later, in 1967, Simula 67 appeared—the first object-oriented programming 
language, with profound influence on programming languages and somewhat later on modeling 
languages. The same year, the CSSL (Continuous System Simulation Language) report unified existing 
notations for expressing continuous system simulation models and introduced a common form of causal 
"equation": 

variable = expression ^ ^ 

v = INTEG(F) / m 

The second equation is a variant of the equation of motion: the velocity is the integral of the force 
divided by the mass. These are not general equations in the mathematical sense since the causality is 
from right to left, that is, an equation of the form expression = variable is not allowed. However, it is 
still a definite step forward toward a more general executable computer representation of equation-based 
mathematical models. ACSL, first introduced in 1976, was a rather common simulation system initially 
based on the CSSL standard. 

An important pioneering predecessor to Modelica is Dymola (Dynamic Modeling Language—not 
today's Dymola tool meaning Dynamic Modeling Laboratory), described in Hilding Elmqvist's PhD 
thesis in 1978. This was the first work to recognize the importance of modeling with acausal equations 
together with hierarchical submodels and methods for automatic symbolic manipulation to support 
equation solution. The GASP-IV system in 1974, followed by GASP-V a few years later, introduced 
integrated continuous-discrete simulation. The Omola language (1989) is a modeling language with full 

L e x . H. 

Mxtationem moins propertionalem e f f e vi nMrtci imprtft, & fieri fc-
cmdum ¡meant re&am qua vis Ms wtprimitxr. 

(2-14) 
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object orientation including inheritance as well as hybrid simulation. The Dymola language was later 
(1993) enhanced with inheritance, as well as with mechanisms for discrete-event handling and more 
efficient symbolic-numeric equation system solution methods. 

Other early object-oriented acausal modeling languages include NMF (Neutral Model Format, 
1989), primarily used for building simulation; Allan-U.M.L, SIDOPS+, supporting bond graph 
modeling; and Smile (1995)—influenced by Objective C. Two other important languages that should be 
mentioned are ASCEND (1991) and gPROMS (1994). 

This author's acquaintance with equation-based modeling and problem solving started in 1975 by 
solving the Schrodinger equation for a very specific case in solid-state physics, using the 
pseudopotential approximation. Later, in 1989, I initiated development of a new object-oriented 
modeling language called ObjectMath together with my brother, Dag Fritzson. This was one of the 
earlier object-oriented computer algebra and simulation systems, integrated with Mathematica and with 
a general parameterized generic class concept, as well as code generation to C++ for efficient simulation 
of industrial applications. The fourth version of ObjectMath was completed in the fall of 1996 when I 
decided to join the Modelica effort instead of continuing with a fifth version of ObjectMath. Later, 
1998, we did the first formal executable specification (in Operational Semantics using the RML tool) of 
part of the Modelica language, which eventually developed into the OpenModelica open source effort. 
We eventually designed a Modelica version of the RML language called MetaModelica. This was used 
starting from fall 2006 for the OpenModelica effort. In December 2007, this author initiated the creation 
of the Open Source Modelica Consortium with, initially, 7 members, which has expanded to 46 
members in 2014. Several research efforts in the Modelica community were pioneered within 
OpenModelica, including compilation of equation models to parallel code, meta-modeling, and 
requirement modeling, and integration of UML-Modelica for cyber-physical hardware-software system 
modeling. 

Concerning the second aspect mentioned earlier—graphical specification of simulation models— 
Figure 2-36 is tells an interesting story. The left part of the figure shows the circuitry of an analog 
computer with its building blocks connected by cables. The right figure is a block diagram of very 
similar structure, directly inspired by the analog computing paradigm but executed on digital computers. 
Such block diagrams are typically constructed by common tools available today such as Simulink or 
SystemBuild. Block diagrams represent causal equations since there is a specified data-flow direction. 

The connection diagrams used in Modelica graphical modeling include connections between 
instances of classes containing acausal equations, as first explored in the Hibliz system. This is a 
generalization inspired by the causal analog computing circuit diagrams and block diagrams. The 
Modelica connection diagrams have the advantage of supporting natural physical modeling since the 
topology of a connection diagram directly corresponds to the structure and decomposition of the 
modeled physical system. 

Figure 2-36. Analog computing vs. graphical block diagram modeling on modern digital computers. 
Courtesy Karl-Johan Astrom and Hilding Elmqvist. 



Chapter 2 A Quick Tour of Modélica 73 

2.23 Summary 

This chapter has given a quick overview of the most important concepts and language constructs in 
Modelica. However, Chapter 3 to Chapter 11 together with Chapter 13 give a much more complete 
description of the language, with many examples including a number of language and usage aspects not 
covered by this quick tour. We have also defined important concepts such as object oriented 
mathematical modeling and acausal physical modeling, and briefly presented the concepts and Modelica 
language constructs for defining components, connections, and connectors. The chapter concludes with 
an in-depth example of the translation and execution of a simple model, and a short history of equations 
and mathematical modeling languages up to and including Modelica from ancient times until today. 

2.24 Literature 

Many programming language books are organized according to a fairly well-established pattern of first 
presenting a quick overview of the language, followed by a more detailed presentation according to the 
most important language concepts and syntactic structures. This book is no exception to that rule, where 
this chapter constitutes the quick overview. As in many other texts, we start with a HelloWorld 
example, as in the Java programming language book (Arnold and Gosling 1999), but with a different 
contents since printing an "Hello World" message is not very relevant for an equation-based language. 

The most important reference document for this chapter is the Modelica tutorial (Modelica 
Association 2000), of which the first version, including a design rationale (Modelica Association 1997), 
was edited primarily by Hilding Elmqvist. Several examples, code fragments, and text fragments in this 
chapter are based on similar ones in the tutorial, for example the simpleCircuit model with the 
simple electrical components, the polynomialEvaluator, the low pass filter, the ideal Diode, and the 
BouncingBall model. Figure 2-8 on block oriented modeling is also from the tutorial. Another 
important reference document for this chapter is the Modelica language specification (Modelica 
Association 2012) Some formulations from the Modelica specification regarding operator overloading 
and stream connectors are reused in this chapter in order to state the same semantics. 

The hand translation of the simple circuit model is inspired by a similar but less elaborated example 
in a series of articles by Martin Otter et al (Otter 1999). The recent history of mathematical modeling 
languages is described in some detail in (Astrom, Elmqvist, and Mattsson 1998), whereas bits and 
pieces of the ancient human history of the invention and use of equations can be found in (Gottwald, 
Gellert, and Kuestner 1989), and the picture of Newton's second law in latin in (Fauvel, Flood, 
Shortland, and Wilson 1990). Early work on combined continuous/discrete simulation is described in 
(Pritsker 1974) followed by (Cellier 1979). A very comprehensive overview of numeric and symbolic 
methods for simulation is available in (Cellier and Kofinan 2006). This author's first simulation work 
involving solution of the Schrodinger equation for a particular case is described in (Fritzson and 
Berggren 1976). 

Current versions of several Modelica tools are described in Chapter 19, including OpenModelica, 
Wolfram SystemModeler (called MathModelica before 2012), and Dymola (meaning the Dynamic 
Modeling Laboratory). The predecessors of the Modelica language are briefly described in Appendix F, 
including Dymola (meaning the Dynamic Modeling Language): (Elmqvist 1978; Elmqvist, Briick, and 
Otter 1996), Omola: (Mattsson, Andersson, and Astrtim 1993; Andersson 1994), ObjectMath: (Fritzson, 
Viklund, Herber, Fritzson 1992), (Fritzson, Viklund, Fritzson, and Herber 1995; Viklund and Fritzson 
1995), NMF: (Sahlin, Bring, Sowell 1996), Smile: (Ernst, Jahnichen, and Klose 1997). 

Speed-Up, the earliest equation-based simulation tool, is presented in (Sargent and Westerberg 
1964), whereas Simula-67—the first object-oriented programming language—is described in 
(Birtwistle, Dahl, Myhrhaug, and Nygaard 1974). The early CSSL language specification is described in 
(Augustin, Fineberg, Johnson, Linebarger, Sansom, and Strauss 1967), whereas the ACSL system is 
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described in (Mitchell and Gauthier 1986). The Hibliz system for an hierarchical graphical approach to 
modeling is presented in (Elmqvist 1982). 

Software component systems are presented in (Assmann 2002; Szyperski 1997). 
The Simulink system for block oriented modeling is described in (MathWorks 2001), whereas the 

MATLAB language and tool are described in (MathWorks 2002). 
The DrModelica electronic notebook with the examples and exercises from this book has been 

inspired by DrScheme (Felleisen, Findler, Flatt, and Krishnamurthi 1998) and DrJava (Allen, 
Cartwright, and Stoler 2002), as well as by Mathematica (Wolfram 1997), a related electronic book for 
teaching mathematics (Davis, Porta, and Uhl 1994), and the MathModelica (renamed to Wolfram 
SystemModeler in 2012) environment (Fritzson, Engelson, and Gunnarsson 1998; Fritzson, Gunnarsson, 
and Jirstrand 2002; Fritzson 2006). The first version of DrModelica is described in (Lengquist-Sandelin 
and Monemar 2003; Lengquist-Sandelin, Monemar, Fritzson, and Bunus 2003). 

The OpenModelica version of notebook, called OMNotebook, is described in (Fernstrdm, Axelsson, 
Fritzson, Sandholm, and Pop 2006; Asghar, Tariq, Torabzadeh-Tari, Fritzson, Pop, Sjolund, Vasaiely, 
and Schamai 2011). Applications and extensions of this notebook concept are presented in (Sandholm, 
Fritzson, Arora, Delp, Petersson, and Rose 2007; Torabzadeh-Tari, Fritzson, Pop, and Sjolund 2010; 
Torabzadeh-Tari, Sjolund, Pop, and Fritzson 2011; Torabzadeh-Tari, Remala, Sjolund, Pop, and 
Fritzson 2011; Torabzadeh-Tari, Hossain, Fritzson, and Richter 2011). 

General Modelica articles and books: (Elmqvist and Mattsson 1997; Fritzson and Engelson 1998; 
Elmqvist, Mattson, and Otter 1999), a series of 17 articles (in German) of which (Otter 1999) is the first, 
(Tiller 2001; Fritzson and Bunus 2002; Elmqvist, Otter, Mattsson, and Olsson 2002; Fritzson 2004; 
Fritzson 2011). 

The proceedings from the following conferences, as well as several conferences not listed here, 
contain a number of Modelica related papers: the International Modelica Conference: (Fritzson 2000; 
Otter 2002; Fritzson 2003, Schmitz 2005; Krai and Haumer 2006; Bachmann 2008; Casella 2009; ClauB 
2011; Otter and Zimmer 2012) and the Equation-Based Object-Oriented Languages and Tools (EOOLT) 
workshop series: (Fritzson, Cellier, Nytsch Geusen 2007; Fritzson, Cellier, Broman 2008; Fritzson, Lee, 
Cellier, Broman 2010; Cellier, Fritzson, Lee, Broman 2011; Nilsson 2013). the Scandinavian Simulation 
Conference, e.g.: (Fritzson 1999) and some later conferences in that series, two special conferences with 
focus on biomedical (Fritzson 2005a) and safety issues (Fritzson 2005b), respectively. 

2.25 Exercises 

Exercise 2-1: 

Question. What is a class? 

Creating a Class. Create a class, Add, that calculates the sum of two parameters, which are Integer 
numbers with given values. 

Exercise 2-2: 

Question. What is an instance? 

Creating Instances: 

class Dog 
constant Real legs = 4; 
parameter String name = "Dummy"; 

end dog; 
• Create an instance of the class Dog. 
• Create another instance and give the dog the name "Tim". 
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Exercise 2-3: 

Write a function, average, that returns the average of two Real values. 

Make a function call to average with the input 4 and 6. 

Exercise 2-4: 

Question: What do the terms partial, class, and extends stand for? 

Exercise 2-5: 

Inheritance: Consider the Bicycle class below. 

record Bicycle 
Boolean has_wheels = true; 
Integer nrOfWheels = 2; 

end Bicycle; 
Define a record, ChildrensBike, that inherits from the class Bicycle and is meant for kids. Give the 
variables values. 

Exercise 2-6: 

Declaration Equations and Normal Equations: Write a class, Birthyear, which calculates the year of 
birth from this year together with a person's age. 

Point out the declaration equations and the normal equations. 

Modification Equation: Write an instance of the class Birthyear above. The class, let's call it 
MartinsBirthyear, shall calculate Martin's year of birth, call the variable martinsBirthyear, who 
is a 29-year-old. Point out the modification equation. 

Check your answer, e.g. by writing as below12 

val(martinsBirthday.birthYear,0) 

Exercise 2-7: 

Classes: 

class Ptest 
parameter Real x; 
parameter Real y; 
Real z; 
Real w; 

equation 
x + y = z; 

end Ptest; 
Question. What is wrong with this class? Is there something missing? 

Exercise 2-8: 

Create a record containing several vectors and matrices: 

• A vector containing the two Boolean values true and false. 
• A vector with five Integer values of your choice. 
• A matrix of three rows and four columns containing string values of your choice. 

12 In OpenModelica, the expression val (martinsBirthday. birthYear, 0) means the birthYear value at 
time=0, at the beginning of the simulation. Interpolated values at other simulated time points can also be obtained. 
Constant expressions such as 33+5, and function calls, can also be evaluated interactively. 
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• A matrix of one row and five columns containing different Real values, also those of your 
choice. 

Exercise 2-9: 

Question. Can you really put an algorithm section inside an equation section? 

Exercise 2-10: 

Writing an Algorithm Section: Create the class, Average, which calculates the average between two 
integers, using an algorithm section. 

Make an instance of the class and send in some values. 

Simulate and then test the result of the instance class by writing 
instanceVariable.classVariable. 
Exercise 2-11: (A harder exercise) 

Write a class, AverageExtended, that calculates the average of 4 variables (a, b , c , and d). 
Make an instance of the class and send in some values. 

Simulate and then test the result of the instance class by writing 
instanceVariable.classVariable. 
Exercise 2-12: 

If-equation: Write a class Lights that sets the variable switch (integer) to one if the lights are on and 
zero if the lights are off. 

When-equation: Write a class LightSwitch that is initially switched off and switched on at time 5. 

Tip: sample (start, interval) returns true and triggers time events at time instants and rem(x, 
y) returns the integer remainder of x/y, such that div (x, y) * y + rem (x, y) = x. 
Exercise 2-13: 

Question: What is a Package? 

Creating a Package. Create a package that contains a division function (that divides two Real numbers) 
and a constant k = 5. 
Create a class, containing a variable x. The variable gets its value from the division function inside the 
package, which divides 10 by 5. 
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Chapter 3 

Classes, Types, Declarations, and Lookup 

The fundamental unit of modeling in Modelica is the class. Classes provide the structure for objects, also 
known as instances, and serve as templates for creating objects from class definitions. Classes can contain 
equations that provide the basis for the executable code that is used for computation in Modelica. 
Conventional algorithmic code can also be part of classes. Interaction between objects of well-structured 
classes in Modelica is usually done through so-called connectors, which can be seen as "access ports" to 
objects. All data objects in Modelica are instantiated from classes, including the basic data types—Real, 
Integer, string, Boolean—and enumeration types, which are built-in classes or class schemata. 

A class in Modelica is essentially equivalent to a type. Declarations are the syntactic constructs needed 
to introduce classes and objects. 

This chapter is organized into two parts. The first part comprising Sections 3.1 to 3.6 gives a tutorial 
introduction to the Modelica class concept using the moon landing example as well as the contract idea. 
The rest of the chapter is presented in a somewhat more formal style, giving a complete description of 
most aspects of Modelica classes, types, declarations, and lookup, except inheritance, covered in Chapter 
4, and component aspects, covered in Chapter 5. 

3.1 Contract between Class Designer and User 

Object-oriented modeling languages try to separate the notion of what an object is from how its behavior is 
implemented and specified in detail. The "what" of an object in Modelica is usually described through 
documentation including graphics and icons, together with possible public connectors, variables, and other 
public elements, and their associated semantics. For example, the "what" of an object of class Resistor 
is the documentation, that it models a "realistic" ideal resistor coupled with the fact that its interaction with 
the outside world is through two connectors n, p of type Pin, and their semantics. This combination— 
documentation, connectors and other public elements, and semantics—is often described as a contract 
between the designer of the class and the modeler who uses it, since the "what" part of the contract 
specifies to the modeler what a class represents, whereas the "how" provided by the class designer 
implements the required properties and behavior. 

An incorrect, but common, assumption is that the connectors and other public elements of a class (its 
"signature") specify its entire contract. This is not correct since the intended semantics of the class is also 
part of the contract even though it might only be publicly described in the documentation, and internally 
modeled through equations and algorithms. Two classes e.g., a Resistor and a temperature-dependent 
Resistor, may have the same "signature" in terms of connectors but still not be equivalent since they 
have different semantics. The contract of a class includes both the signature and the appropriate part of its 
semantics together. 

79 



80 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

The "how" of an object is defined by its class. The implementation of the behavior of the class is 
defined in terms of equations and possibly algorithmic code. Each object is an instance of a class. Many 
objects are composite objects, that is, they consist of instances of other classes. 

3.2 A Class and Instance Example 

The basic properties of a class are given by: 

• Data contained in variables declared in the class. 
• Behavior specified by equations together with possible algorithms. 

Here is a simple class called Celestial Body that can be used to store data related to celestial bodies 
such as the earth, the moon, asteroids, planets, comets, and stars: 

class CelestialBody 
constant Real g = 6.672e-ll; 
parameter Real radius; 
parameter String name; 
Real mass; 

end CelestialBody; 
The declaration of a class starts with a keyword such as class or model, followed by the name of the 

class. A class declaration creates a type name in Modelica, which makes it possible to declare variables of 
that type, also known as objects or instances of that class, simply by prefixing the type name to a variable 
name: 

CelestialBody moon; 
This declaration states that moon is a variable containing an object/instance of type CelestialBody. The 
declaration actually creates the object, that is, it allocates memory for the object. This is in contrast to a 
language such as Java where an object declaration just creates a reference to an object. 

This first version of CelestialBody is not very well designed. This is intentional since we will 
demonstrate the value of certain language features for improving the class in this and the following two 
chapters. 

3.3 Variables 

The variables belonging to a class are sometimes called record fields or attributes; the CelestialBody 
variables radius, name, and mass are examples. Every object of type CelestialBody has its own 
instances of these variables. Since each separate object contains a different instance of the variables, this 
means that each object has its own unique state. Changing the mass variable in one CelestialBody 
object does not affect the mass variables in other CelestialBody objects. 

Certain programming languages, for example, Java and C++, allow so-called static variables, also 
called class variables. Such variables are shared by all instances of a class. However, this kind of variable 
is not available in Modelica. 

A declaration of an instance of a class, for example moon being an instance of CelestialBody, 
allocates memory for the object and initializes its variables to appropriate values. 

In Modelica, variables store results of computations performed when solving the equations of a class 
together with equations from other classes. During solution of time-dependent problems, the variables 
store results of the solution process at the current time instant. 

As the reader may have noted, we use the terms object and instance interchangeably with the same 
meaning; we also use the terms record field, attribute, and variable interchangeably. Sometimes the term 
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variable is used interchangeably with instance or object, since a variable in Modelica always contains an 
instance of some class. 

3.3.1 Constants 

Three of the variables in the class CelestialBody have special status. The gravitational constant g is a 
constant that never changes and can be substituted by its value. 

The simulation parameters radius and name are examples of a special kind of "constant" denoted by 
the keyword parameter in Modelica. Such simulation parameter "constants" are assigned their values 
only at the start of the simulation and keep their values constant during simulation. Most simulation tools 
provide functionality to make it easy for users to change such simulation parameters before simulation. 

3.3.2 Duplicate Variable Names or Type Names 

Duplicate variable names or type names are not allowed in class declarations. The name of a declared 
element, for example a variable or a local class, must be different from the names of all other declared 
elements in the class. For example, the following class is illegal: 

class IllegalDuplicate 
Real duplicate; 
Integer duplicate; // Error! Illegal duplicate variable name 

end IllegalDuplicate; 

3.3.3 Identical Variable Names and Type Names 

The name of a variable is not allowed to be identical to its type specifier. Consider the following erroneous 
class: 

class IllegalTypeAsVariable 
Voltage Voltage; // Error! Variable name must be different from type 
Voltage voltage; // Ok! Voltage and voltage are different names 

end IllegalTypeAsVariable; 
The first variable declaration is illegal since the variable name is identical to the type specifier of the 
declaration. The reason this is a problem is that the Voltage type lookup from the second declaration 
would be hidden by a variable with the same name. The second variable declaration is legal since the 
lowercase variable name voltage is different from its uppercase type name Voltage. 

3.3.4 Initialization of Variables 

The suggested default (the solver may choose otherwise, if not fixed) initial variable values are the 
following, if no explicit start values are specified (see Section 2.3.2, page 28, and Section 8.4, page 363): 

• The value zero as the default initial value for numeric variables. 
• The empty string " " for String variables. 
• The value false for Boolean variables. 
• The lowest enumeration value in an enumeration type for enumeration variables. 

However, local variables to functions have unspecified initial values if no defaults are explicitly given. 
Initial values can be explicitly specified by setting the start attributes of instance variables equal to some 
value, or providing initializing assignments when the instances are local variables or formal parameters in 
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functions. For example, explicit start values are specified in the class Rocket shown in the next section for 
the variables mass, altitude, and velocity. 

3.4 Behavior as Equations 

Equations are the primary means of specifying the behavior of a class in Modelica, even though 
algorithms and functions also are available. The way in which the equations interact with equations from 
other classes determines the solution process, that is, program execution, where successive values of 
variables are computed over time. This is exactly what happens during dynamic system simulation. During 
solution of time-dependent problems, the variables store results of the solution process at the current time 
instant. 

Figure 3-1. Apollo 12 rocket for landing on the moon. 

The class Rocket embodies the equations of vertical motion for a rocket (as depicted in Figure 3-1), 
which is influenced by an external gravitational force field gravity, and the force thrust from the 
rocket motor, acting in the opposite direction to the gravitational force, as in the expression for 
acceleration below: 

. thrust - mass • gravity acceleration = — 
mass 

The following three equations are first-order differential equations stating well-known laws of motion 
between altitude, vertical velocity, and acceleration: 

mass' = -massLossRate • abs (thrust) 
altitude' = velocity 
velocity' = acceleration 

All these equations appear in the class Rocket below, where the mathematical notation (') for derivative 
has been replaced by the pseudo function der() in Modelica. The derivative of the rocket mass is negative 
since the rocket fuel mass is proportional to the amount of thrust from the rocket motor. 

class Rocket "rocket class" 
parameter String name; 
Real mass(start=1038.358); 
Real altitude(start= 59404); 
Real velocity(start= -2003); 
Real acceleration; 
Real thrust; // Thrust force on the rocket 
Real gravity; // Gravity forcefield 
parameter Real massLossRate=0.000277 ; 

equation 
(thrust-mass*gravity)/mass = acceleration; 

^ a p o H o i a ^ t h m s t 

f /l\ ^ 
altitude 
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der(mass) = -massLossRate * abs(thrust); 
der(altitude) = velocity; 
der(velocity) = acceleration; 

end Rocket; 
The following equation, specifying the strength of the gravitational force field, is placed in the class 
MoonLanding in the next section since it depends on both the mass of the rocket and the mass of the 
moon: 

gravity = Smoon 'maSSmoon 
V opo/Zo + radiusmooJ 

The amount of thrust to be applied by the rocket motor is specific to a particular class of landings, and 
therefore also belongs to the class MoonLanding: 

thrust = if (time < thrustDecreaseTime) then 
forcel 

else if (time < thrustEndTime) then 
forcel 

else 0 

3.5 Access Control 

Members of a Modelica class can have two levels of visibility: public or protected. The default is 
public if nothing else is specified, for example regarding the variables forcel and force2 in the class 
MoonLanding below. The public declaration of forcel, force2, apollo, and moon means that any 
code with access to a MoonLanding instance can read or update those values. 

The other possible level of visibility, specified by the keyword protected for example, for the 
variables thrustEndTime and thrustDecreaseTime, means that only code inside the class as well as 
code in classes that inherit this class are allowed access. Code inside a class includes code from local 
classes; see Section 3.7.2 on page 86. However, only code inside the class is allowed access to the same 
instance of a protected variable; classes that extend the class will naturally access another instance of a 
protected variable since declarations are "copied" at inheritance. This is different from corresponding 
access rules for Java. 

Note that an occurrence of one of the keywords public or protected means that all member 
declarations following that keyword assume the corresponding visibility until another occurrence of one of 
those keywords. 

The variables thrust, gravity, and altitude belong to the apollo instance of the Rocket class 
and are therefore prefixed by apollo in references such as apollo. thrust. The gravitational constant 
g, the mass, and the radius belong to the particular celestial body called moon on which surface the 
apollo rocket is landing. 

class MoonLanding 
parameter Real forcel = 36350; 
parameter Real force2 = 1308; 

protected 
parameter Real thrustEndTime = 210; 
parameter Real thrustDecreaseTime = 4 3.2; 

public 
Rocket apollo(name="apollol2M); 
CelestialBody moon (name=,,moon" ,mass=7 . 382e22, radius=l. 738e6) ; 

equation 
apollo.thrust = if (timecthrustDecreaseTime) then forcel 

else if (time<thrustEndTime) then force2 
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else 0; 
apollo.gravity = moon.g * moon.mass / (apollo.altitude + moon.radius)A2; 

end MoonLanding; 
For more details on access control, see Section 3.11.1, page 98. 

3.6 Simulating the Moon Landing Example 

We simulate the MoonLanding model during the time interval {0, 230} by the following command, using 
the OpenModelica simulation environment: 

simulate(MoonLanding, stopTime=230) 
Alternatively, we click on the simulation button in the graphic user interface. Since the solution for the 
altitude of the Apollo rocket is a function of time, it can be plotted in a diagram (Figure 3-2). It starts at an 
altitude of 59404 (not shown in the diagram) at time zero, gradually reducing it until touchdown at the 
lunar surface when the altitude is zero. Note that an OpenModelica plot command refers to the results of 
the most recent simulation. If there is need to plot results of some previous simulation, for example, from a 
Mars landing, the values returned by previous simulation commands can accessed for plotting, both in 
OpenModelica OMEdit and in several other tools. The range of the x-axis in the plot is set to the interval 
{0,208}. 

plot(apollo.altitude, xrange={0,208}) 

Figure 3-2. Altitude of the Apollo rocket over the lunar surface. 

The thrust force from the rocket is initially high but is reduced to a low level after 43.2 seconds, that is, 
the value of the simulation parameter thrustDecreaseTime, as shown in Figure 3-3. 

plot(apollo.thrust, xrange={0,208}) 
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Figure 3-3. Thrust from the rocket motor, with an initial high thrust f 1 followed by a lower thrust f 2. 
The mass of the rocket decreases from initially 1038.358 to around 540 as the fuel is consumed (Figure 

3-4). 
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plot(apollo.mass, xrange={0,208}) 

Figure 3-5. Gradually increasing gravity when the rocket approaches the lunar surface. 

The rocket initially has a high negative velocity when approaching the lunar surface. This is reduced to 
zero at touchdown, giving a smooth landing, as shown in Figure 3-6. 

plot(apollo.velocity, xrange={0,208}) 
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Figure 3-6. Vertical velocity relative to the lunar surface. 

When experimenting with the MoonLanding model, the reader might notice that the model is 
nonphysical regarding at least one important aspect of the landing. After touchdown, when the speed has 
been reduced to zero, if the simulation is allowed to continue the speed will increase again and the lander 
will accelerate toward the center of the moon. This is because we have left out the ground contact force 
from the lunar surface acting on the lander after it has landed, which will prevent this from happening. It is 
left as an exercise to introduce such a ground force into the MoonLanding model. 
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Figure 3-4. Rocket mass decreases when the fuel is consumed. 

The gravity field increases when the rocket gets closer to the lunar surface, as depicted in Figure 3-5, 
where the gravity has increased to 1.63 after 200 seconds. 

plot(apollo.gravity, xrange={0,208}) 
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3.6.1 Object Creation Revisited 

As already pointed out, objects are created implicitly in Modelica just by declaring instances of classes. 
This is done simply by prefixing the type name to the variable name, for example, the variable apollo of 
type Rocket below. This is in contrast to object-oriented languages like Java or C++, where object 
creation on the heap is specified using the new keyword. 

Rocket apollo; 
There is one remaining problem, however. In what context, that is, within which class, should the apollo 
object be instantiated, and how do we ensure that it actually becomes instantiated? It could be that the 
MoonLanding class is just a library class, which is not instantiated if not part of some existing instance. 

As explained previously (Section 2.3.1 on page 27), this problem is solved by regarding the class 
specified in the simulation command as a kind of "main" class that is always instantiated, implying that its 
variables are instantiated, and that the variables of those variables are instantiated, and so on. Therefore, to 
instantiate Rocket as an object called apollo, it is declared as a variable in the simulation model to be 
simulated, which in this example happens to be MoonLanding. 

3.7 Short Classes and Nested Classes 

Modelica also has a very concise way of declaring classes, called short class definition. Moreover, it is 
possible to declare classes locally within another class, so-called nested classes. 

3.7.1 Short Class Definitions 

There is a short syntax using equality for defining classes in terms of other classes, commonly used to 
introduce more informative type names for existing classes, which, for example, is similar to the typedef 
construct in the C language. For example: 

class Voltage = Real; 
It is possible to use any other specialized class, including type, instead of class: 

type Voltage = Real; 
The short class definition is the only way of introducing a "class" name for an array type, for example: 

type MatrixlO = Real[10,10]; 
When using class in the short class definition 

class MyClass = ExistingModel; 
If the inherited class (on the right-hand side) is partial, the new class will also be partial: 

class MyPartialClass = ExistingPartialModel; 

3.7.2 Local Class Definitions—Nested Classes 

In Modelica, it is possible to define local classes nested inside a class, to an arbitrary level of nesting if 
desired. For example, the classes Lpin and Voltage below are locally defined: 

class CI 
class Lpin 
Real p; 

end Lpin; 
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class Voltage = Real(unit="kV"); 
Voltage vl, v2; 
Lpin pn; 

end CI; 
All declarations of a class, even protected ones, are accessible from within a local nested class, 

except when that local class or a class enclosing that class is encapsulated. For more details, see the rules 
for scoping and lookup described in Section 3.16 on page 108. 

3.8 Specialized Classes 

The class concept is fundamental to Modelica, and is used for a number of different purposes. Almost 
anything in Modelica is a class. However, in order to make Modelica code easier to read and maintain, 
special keywords have been introduced for specific uses of the class concept. The keywords model, 
connector, record, block, type, package, operator, operator record, operator function, 
and function can be used under appropriate conditions. 

For example, a record is a class used to declare a record data structure and may not contain 
equations. A block is a class with fixed causality, that is, each part of its interface must have causality 
equal to input or output. A connector class is used to declare the structure of connection points and 
may not contain equations. A type is a class that can be an alias or an extension to a predefined type, 
record, or array. A function is a kind of class, but has quite a number of restrictions and enhancements, 
which makes it quite different from the usual class concept. For example, a function has the 
enhancement that it can be called. 

A class that inherits a specialized class needs to be of the same specialized class kind, or have the same 
or more restrictions than the parent class, which is described in more detail in Chapter 4, page 145. 

The idea of specialized classes is useful since the modeler does not have to learn several completely 
different concepts, but only one: the class concept. Many properties of a class, such as the syntax and 
semantics of definition, instantiation, inheritance, and generic properties, are identical to all kinds of 
specialized classes. Furthermore, the construction of Modelica translators is slightly simplified because 
only the syntax and semantics of the class concept have to be implemented along with some additional 
checks on restrictions and enhancements of specialized classes. 

Below we briefly summarize the typical usage, restrictions, and enhancements for each kind of 
specialized class compared to the generic Modelica class construct, as well as give a few simple examples. 

3.8.1 Specialized Class: model or class 

The model specialized class is the most commonly used kind of class for modeling purposes. Its semantics 
is the same as the basic Modelica class concept specified with the class keyword except its inheritance 
properties (Section 4.1.4, page 139). Any specialized class including model can inherit from class, 
whereas only model can inherit from model. The previous example classes CelestialBody, Rocket, 
and MoonLanding could very well have been defined as models. A trivial example: 

model Resistor "Electrical resistor" 
Pin p, n "positive and negative pins"; 
Voltage v; 
Current i; 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
v = i*R; 

end Resistor; 
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3.8.2 Specialized Class: record 

A record is a class for specifying data without behavior. Its restrictions are the following: 
No equations or algorithms—no equation, algorithm, initial equation, initial algorithm 

sections—are allowed in the definition of a record or in any of its elements, for example, in local classes or 
record fields. 

Only public sections are allowed in the record definition or in any of its elements, that is, protected 
sections are not allowed. Instances (record fields) declared in a record may only be of specialized classes 
record or type. For example, all basic types Real, Integer, and so on, are special cases of type. 

The elements of a record may not have prefixes input, output, inner, outer, stream or flow, 
since otherwise a record instance could not, for example, be passed as argument to a function. The 
restrictions also apply to classes that inherit a record, since classes with fewer restrictions are not allowed 
to inherit a record class. 

The enhancements include the implicitly available record constructor function, see Section 9.3.8, page 
452. Additionally, record variables can be referenced in expressions and in the left-hand side of 
assignments, subject to normal type compatibility rules. An example: 

record Person 
Real age; 
String name; 

end Person; 

3.8.3 Specialized Class: type 

The type specialized class is typically used to introduce new type names using short class definitions, 
even though short class definitions can be used to introduce new names also for other kinds of classes. 

The restrictions are that a type specialized class may only be identical or an extension to one of the 
predefined types, enumerations, arrays of type, or classes extending from type. Note that all kinds of 
classes define types in Modelica, not only those using the type keyword, but only types defined with the 
type keyword have the corresponding restrictions and enhancements. Its enhancement is that it can extend 
from predefined types. This is unique, since no other specialized class has this property. 

The general concepts of Modelica types and type checking are described in Section 3.18 on page 115. 
Example: 

type Matrix = Real[3,3]; 

3.8.4 Specialized Class: connector 

Connector classes are typically used as templates for connectors, i.e., a kind of "port" for communicating 
data between objects. Therefore no equations or algorithm sections are allowed in the definition of a 
connector class or within any of its elements. Only public declarations are allowed since connector 
clases are used to define interfaces. The declarations in a connector class may not have the prefixes inner 
or outer. Instances declared in a connector class may only be of specialized class connector, record 
and type . 

The connector specialized class is enhanced to allow connect(...) between instances of connector 
classes. 

We examine connector classes, connectors, and connections more closely in Chapter 5. The following 
connector class, called Flange, is from the standard Modelica mechanical library for translational motion: 

connector Flange 
Position s; 
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flow Force f; 
end Flange; 

3.8.5 Specialized Class: block 

A block is a class for which the causality, that is, data-flow direction being either input or output, is 
known for each of its variables. Thus, blocks are typically used for signal-related modeling since in that 
case the data-flow direction is always known. The prefixes input and output define that the 
corresponding connectors can only be connected according to block-diagram semantics (Section 5.7.3, 
page 211 or Section 12.5, page 582); for example, a connector with an output variable can only be 
connected to a connector for which the corresponding variable is declared as input. 

The main restriction of a block is that all variables declared in a block must have one of the prefixes 
input or output. A trivial example: 

block Multiply 
input Real x; 
input Real y(start=0); 
output Real result; 

equation 
result = x*y; 

end Multiply; 

3.8.6 Specialized Class: function 

The function concept in Modelica corresponds to mathematical functions without external side effects, 
and can be regarded as a specialized class with some enhancements. Its syntax and semantics are 
somewhat related to that of the block specialized class. Function results are returned by those formal 
parameters prefixed by the keyword output. A function has the following restrictions (see also Section 
9.3.15, page 464) compared to a class: 

• Each input formal parameter of the function must be prefixed by the keyword input, and each 
result formal parameter by the keyword output. All public variables are formal parameters. 

• Input formal parameters are read-only after being bound to the actual arguments or default values, 
that is, they may not be assigned values in the body of the function. 

• A function may not be used in connections, may have no equations, may have no initial algorithm, 
and can have at most one algorithm section, which, if present, is the body of the function. 

• A function may have zero or one external function interface, which, if present, is the external 
definition of the function. 

• For a function to be called, its output formal parameters must be assigned either in declaration 
assignments (Section 9.3.1, page 438) or in an algorithm section, or it must have an external 
function interface as its body or be defined as a function partial derivative (Section 9.3.10, page 
459), and it may not be partial, that is, may not have the partial prefix. 

• A function cannot contain calls to the Modelica built-in operators der, initial, terminal, 
sample, Subtask.activated, Subtask.lastlnterval, pre, edge, change, reinit, 
delay, cardinality, inStream, actualStream, the operators of the built-in package 
Connections, and is not allowed to contain when-statements. 

• The dimension sizes not declared with ( : ) of each array result or array local variable of a function 
must be either given by the input formal parameters, or given by constant or parameter 
expressions, or by expressions containing combinations of those (Section 9.3.2.8, page 445). 
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• The local variables of a function are not automatically initialized to the implicit default values of 
the corresponding data types (Section 3.9.1, page 94 and Section 9.3.15, page 464; for example, 
0.0 for Real and 0 for integer) for performance reasons. It is the responsibility of the user to 
provide explicit defaults or to define the values of such variables before they are referenced. 

• Local variables and formal parameters of a function will behave inside the function as though they 
have discrete-time variability. 

• A subtype of a function type must be almost type equivalent to the function type itself, that is, 
fulfill function subtyping (Section 3.19.6, page 130). This is more restrictive than the usual 
subtyping rules (Section 3.19.3, page 125) between Modelica classes. 

A Modelica function has the following enhancements compared to a general Modelica class: 
• A function may be called using the conventional positional calling syntax for passing arguments. 
• A function can be recursive. 
• A formal parameter or local variable may be initialized through an assignment ( :=) of a default 

value in its declaration. Initialization through an equation is not possible. 
• A function is dynamically instantiated, creating an activation record when it is called, rather than 

being statically instantiated by an instance declaration, which is the case for other kinds of classes. 
• A function may have an external function interface specifier as its body. 
• A function may be defined in a short function definition to be a function partial derivative. 
• A function allows dimension sizes declared with ( : ) to be resized for array results or array local 

variables, see Section 9.3.2.8, page 445. 

The above Multiply example is shown below reformulated as a function, where we have changed the 
name to multiply, following the convention that a function name should start with a lowercase letter: 

function multiply 
input Real x; 
input Real y := 0; 
output Real result; 

algorithm 
result := x*y; 

end multiply; 
Additional information regarding Modelica functions is available in Chapter 8, page 438. 

3.8.7 Specialized Class: package 

A package is a specialized and enhanced class that is primarily used to manage name spaces and organize 
Modelica code. A package has the restrictions of only containing declarations of classes including all 
kinds of specialized classes, and constants, that is, no variable declarations. A package has the 
enhancement of being allowed to import from. The prefix encapsulated makes a package an 
independent unit of code, where dependencies to definitions in other packages are explicitly visible 
through import clauses. A trivial example package: 

package SmallPack 
import OtherPackage; 
constant Real mypi = 3.14159; 

connector Pin 

end Pin; 

function multiply 
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end multiply; 
end SmallPack; 

More information on packages is available in Chapter 10. 

3.8.8 Specialized Class: operator record 

The operator record specialized class is similar to a record class except that definition of user-
defined overloaded operators is possible, which makes the typing rules different from ordinary records 
(Section 3.8.2, page 88). 

It is not legal to extend from an operator record, except as a short class definition modifying the 
default attributes for the record fields declared directly inside the operator record. Moreover, it is currently 
not legal to extend from any of its enclosing scopes, that is, scopes containing the operator record 
definition. A short example is given below: 

operator record Complex 
Real re; 
Real im; 

encapsulated operator function '*' 
import Complex; 
input Complex cl; 
input Complex c2; 
output Complex result 
annotation(Inline=true); 

algorithm 
result = Complex(re=cl.re*c2.re - cl.im*c2.im/ 

im=cl.re*c2.im + cl.im*c2.re); 
end ' * '; 

end Complex; 

// Allowed inheritance via a short class definition 
operator record ComplexVoltage" = 
operator record Complex (re (unit="V") , im (unit="V") ) ; 

// Disallowed inheritance from an enclosing scope 
record MyComplex 
extends Complex; // not allowed, since extending from enclosing scope 
Real k; 

end MyComplex; 
The restrictions on extends are intended to avoid combining two variants inheriting from the same 

operator record but with possibly different operations; thus ComplexVoltage and ComplexCurrent still 
use the operations from Complex. The restriction that it is not legal to extend from any of its enclosing 
scopes also implies the following: 

package A 
extends Icon; // Ok. 
operator record B ... end B; 

end A; 
package A2 

extends A(...) ; // Not legal 
end A2; 
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package A3=A(...) ; // Not legal 
More information on user-defined, overloaded operators with the operator record specialized class is 
available in Section 9.5, page 481. 

3.8.9 Specialized Class: operator 

The operator specialized class is similar to p a c k a g e but may only contain declarations of functions or 
operators. It is used for user-defined overloaded operators. An operator definition may only be placed 
within a record or a package. It is currently not legal to extend from any scope containing an operator 
definition. For example: 

encapsulated operator '+' 
import Complex; 
function add "Binary addition, e.g. cl+c2" 

input Complex cl; 
input Complex c2; 
output Complex result "Same as: cl + c2"; 

annotation(Inline=true); 
algorithm 

result := Complex(cl.re + c2.re, cl.im + c2.im); 
end add; 

end 1+1; 
More information on user-defined overloaded operators with the operator specialized class is available 

in Section 9.5, page 481. 

3.8.10 Specialized Class: operator function 

The operator function specialized class is shorthand for an operator class with exactly one function. 
The same restrictions as for function class apply. Moreover, it may only be placed inside a record or 
package and it is not legal to extend from any of its enclosing scopes. This example is from within the 
Complex example in the previous section: 

encapsulated operator function '*' 
import Complex; 
input Complex cl; 
input Complex c2; 
output Complex result 
annotation(Inline=true); 

algorithm 
result = Complex(re=cl.re*c2.re - cl.im*c2.im, 

im=cl.re*c2.im + cl.im*c2.re); 
end ' * '; 

In general, the operator function definition has the following form: 

encapsulated operator function 'op' 

end 'op'; 
Such a definition is conceptually the same as, for example, the following: 

encapsulated operator 'op' 
function foo 

end foo; 
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end 'op'; 
More information on the operator function declaration is available in Section 9.5.2.1, page 485. 

3.9 Predefined Types/Classes 

The basic predefined, built-in types of Modelica are Real, Integer, Boolean, String, Clock, and the 
basic enumeration type. These types have some of the properties of a class, that is, they can be inherited, 
modified, and so on, but, on the other hand, have a number of restrictions and somewhat different 
properties compared to normal classes. At type checking, variables of these types are regarded as scalar 
types. Only the value attribute can be changed at run-time, and is accessed through the variable name 
itself, not through dot notation; for example, use x and not x. value to access the value of the variable x. 
There is also a type Complex, predefined in a library and thus not a built-in type. 

The primitive types of the machine representations of the values of these predefined types have the 
following properties: 

Real IEC 60559:1989 (ANSI/IEEE 754-1985) double format, at least 64-bit 
floating point precision. 

Integer Typically two's-complement 32-bit integer. 
Boolean true or false. 
String String of Unicode characters. 
Enumeration types Distinct from Integer but values are internally represented as a positive 

integers. 
Clock Built-in clock type for clocked synchronous models. 

Note that for argument passing of values when calling external functions in C from Modelica, Real 
corresponds to double and Integer corresponds to int. Below, we use 'RealType', 'BooleanType', 
'integerType', 'StringType', and 'EnumType' as mnemonics corresponding to the above-mentioned 
primitive types. These mnemonics are enclosed in single quotes to emphasize that they are not available in 
the Modelica language. 

Apart from being built-in types containing machine representations of values, the predefined Modelica 
types can also be inherited and modified similarly to ordinary Modelica classes, but with the restrictions 
that variable declarations and equations cannot be added in the derived class, that is, the class that 
inherits/extends some other class. See Section 4.1.6, page 141, for a detailed presentation of these 
restrictions. Another restriction is that attributes cannot be redeclared (see Section 4.3, page 156, regarding 
redeclaration). Apart from the value attribute, the predefined types also have a number of additional 
attributes that are parameters, that is, cannot be modified at run-time during simulation. These parameter 
attributes are accessed through ordinary dot notation, for example, x.unit for the attribute unit of the 
variable x. The only way to define a subtype of a predefined Modelica type is through inheritance into a 
specialized type class, usually expressed as modifications. 

For example, a Real variable has a set of attributes such as unit of measure, initial value, and minimum 
and maximum value. Some of these attributes can be modified when declaring a new type, for example, 
through a short type definition: 

type Voltage = Real(unit= "V", min=-220.0, max=220.0); 
The same definition can also be expressed using the standard inheritance syntax (see Chapter 4 for more 
details): 

type Voltage 
extends Real(unit= "V", min=-220.0, max=220.0); 

end Voltage; 
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The attributes (the class attributes) of the predefined variable types are described below with Modelica 
syntax as part of pseudo-type class declarations. These are "pseudo declarations" since they cannot be 
declared and processed by standard Modelica. Also, as already stated, redeclaration of any of the 
predefined attributes is not allowed. If the values of these attributes are not explicitly specified, the 
defaults given below are used. 

3.9.1 Real Type 

The predefined Real type is described by the following pseudo class declaration: 

type Real "Pseudo class declaration of predefined Real type" 
'RealType' 'value'; // Accessed without dot-notation 
parameter 'StringType' quantity = ""; 
parameter 'StringType' unit = "" "Unit used in equations"; 
parameter 'StringType' displayUnit = "" "Default display unit"; 
parameter 'RealType' min=-Inf, max=+Inf; //Inf denotes a large value 
parameter 'RealType' start = 0 ; // Initial value 
parameter 'BooleanType' fixed = true, // default for parameter/constant 

= false; // default for other variables 
parameter 'RealType' nominal; // Nominal value equation 
parameter StateSelect stateSelect = StateSelect.default; 

equation 
assert('value' >= min and 'value' <= max,"Variable value out of limit"); 
assert(nominal >= min and nominal <= max, "Nominal value out of limit"); 

end Real; 
The attributes of the Real predefined type have the following meaning: 

• 'value'—not a class attribute in the usual sense but rather the scalar value of a variable declared as 
having the type Real. The value is accessible directly via the variable name and is not accessible 
using dot notation, which is indicated by enclosing this attribute within single quotes. Thus, use x 
and not x. value to access the value of the variable x. 

• quantity—a string describing what physical quantity the type represents. Example quantities could 
be "force," "weight," "acceleration," and so on. 

• unit—a string describing the physical unit of the type. Examples are "kg", "m", "m/s", and so on. 
See also Section 11.16.1, page 559. 

• displayUnit—gives the default unit used by a Modelica tool for interactive input/output. For 
example, the displayUnit for angle might be "deg", but the unit might be "rad". Values 
interactively input or output as "deg" are then automatically converted to/from "rad". See also 
11.16.1,page 559. 

• min—the minimum scalar value representable by the type. 
• max—the maximum scalar value representable by the type. 
• start—the initial value of a variable declared as being an instance of the type. The start value is 

assigned to the variable before starting time-dependent simulation. See also Section 8.4, page 363. 
• fixed—determines whether the start value of a variable having this type is fixed or can be 

adjusted by the simulator before actually starting the simulation. The default for the attribute 
fixed is true for constants and parameters but false for other variables, which in practice 
means (unless fixed is explicitly set to true) that the specified start value is treated as an initial 
guess for the variable that can be changed by the simulator in order to find a consistent set of start 
values before proceeding with dynamic simulation forward in time. See also Section 3.13, page 
105. 

• nominal—a nominal value of the "typical" value type that can be used, for example, by a 
simulation tool to determine appropriate tolerances or for scaling purposes by giving a hint of the 
order of magnitude for typical values. The user need not set this value even though a default value 
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is not specified. The reason is that in cases such as a=b, where b has a nominal value but not a, the 
nominal value can be propagated to the other variable. 

• stateSelect—this attribute is used for manual control of which variables should be selected as state 
variables for numerical solution of equation systems (see Section 18.2.6.1, page 1016, for more 
information). The default value for this attribute is the enumeration value 
StateSelect .default, which gives automatic state variable selection. This usually works well 
in almost all applications and the user should therefore normally not need to set this attribute. 

3.9.2 Integer, Boolean, and String Types 

Analogously to the Real predefined type, pseudo class declarations for the types Integer, Boolean, and 
String are given below: 

type Integer "Pseudo class declaration of predefined Integer type" 
'IntegerType' 'value'; // Accessed without dot-notation 
parameter 'StringType' quantity = ""; 
parameter 'IntegerType' min=-Inf, max=+Inf; 
parameter 'IntegerType' start = 0; // Initial value 
parameter 'BooleanType' fixed = true, // default for parameter/constant; 

= false; // default for other variables 
equation 
assert('value'= min and 'value'<= max, "Variable value out of limit"); 

end Integer; 
type Boolean "Pseudo class declaration of predefined Boolean type" 

'BooleanType' 'value'; // Accessed without dot-notation 
parameter 'StringType' quantity = ""; 
parameter 'BooleanType' start = false; // Initial value 
parameter 'BooleanType' fixed = true, // default for parameter/constant 

= false; // default for other variables 
end Boolean; 
type String "Pseudo class declaration of predefined String type" 

'StringType' 'value'; // Accessed without dot-notation 
parameter 'StringType' quantity = ""; 
parameter 'StringType' start = ""; // Initial value 

end String; 

3.9.3 Enumeration Types 

Conceptually, an enumeration type is a type whose values can be enumerated using a finite enumeration. 
In theory, finite ranges of integers are also enumeration types. 

However, in Modelica we reserve the concept of enumeration type for types defined using a special 
enumeration-type construct, in which each possible enumeration value of the type is explicitly named. For 
example, an enumeration type ShirtSizes can be defined as follows: 

type ShirtSizes = enumeration(small, medium, large, xlarge); 
Enumeration types are regarded as simple predefined types with many properties in common with 

integers apart from the fact that their values, so-called enumeration literals, are explicitly named. 
An optional comment string can be specified with each enumeration literal in the enumeration type 

declaration as follows: 

type ShirtSizes = enumeration(small "1st", medium "2nd", large "3rd", 
xlarge "4th"); 
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Here the enumeration literals are ShirtSizes. small, ShirtSizes .medium, ShirtSizes. large, and 
ShirtSizes.xlarge. 

To show a simple example of using this type we declare a variable my shirtsize of enumeration 
type ShirtSizes and set its start value to the constant enumeration literal value ShirtSizes .medium: 

ShirtSizes my_shirtsize(start • ShirtSizes.medium); 
Values of enumeration types can be used in many ways analogous to integer values for indexing, 
comparison, and so on, but excluding arithmetic operations. Iteration over ranges of enumeration values is 
especially useful (Section 9.2.5, page 427). Arrays indexed by enumeration values can currently only be 
used in two ways: array element indexing (Section 7.4.1.1, page 322) or in array declaration equations or 
assignments (Section 7.6.1, page 327). Enumeration values can be stored as array elements. It is possible 
to use an enumeration type name to represent the possible index elements of array dimensions in 
declarations (see Section 7.6.1, page 327 and this example): 

Real w[ShirtSizes] "Weight of shirts depending on size"; 
There exists an unspecified enumeration type that is a supertype of all possible enumeration types: 

type SuperEnumeration = enumeration(:); 
The only practical uses of the unspecified enumeration supertype enumeration ( : ) are as a 

constraining type of replaceable enumeration types (see Section 4.3.7, page 162) and in enumeration 
subtyping rules. Thus it can be used as a replaceable enumeration type that can be freely redeclared to any 
other enumeration type. There can be no enumeration variables declared using enumeration ( : ) in a 
simulation model. In general we declare an enumeration type e as follows: 

type E = enumeration(el, e2, en) ; 

Here the enumeration literals el, e2, ... en must have different names within the enumeration type. The 
names of the enumeration literals are defined inside the scope of the enumeration type E. Each 
enumeration literal in the list has type E. 

The enumeration type E can be viewed as conceptually defined according to the following predefined 
type schema: 

type E "Pseudo class declaration of any enumeration type E" 
'EnumType' 'value'; // Accessed without dot-notation 
parameter 'StringType' quantity = ""; 
parameter 'EnumType' min=el, max=en; 
parameter 'EnumType' start = el; II Initial value 
parameter 'BooleanType' fixed = true, // default for parameter/constant; 

= false; // default for other variables 
constant 'EnumType' el =...; 

constant 'EnumType' en =...; 
equation 

assert('value' >= min and 'value' <= max, "Variable value out of limit"); 
end E; 

However, even though the above enumeration type schema is similar to an ordinary class declaration, 
enumeration types are sub-range types that do not follow the usual subtyping rules for classes (see Section 
3.18.2, page 117, and Section 3.19, page 123, for more details). 

One can obtain the ordinal integer value of an enumeration value by using integer as a conversion 
function. The call integer (e) returns the ordinal number of the enumeration value E.enumvalue to 
which e is evaluated, where integer {E. el) =1 and integer (E. en) =n, for an enumeration type E = 
enumeration (el, e2, ..., en). Referring to our previous example, Integer (ShirtSizes .Medium) = 
2. 

There is also a conversion function string that returns the string representation of an enumeration 
value. For example, String (ShirtSizes .Large) = "Large". 
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3.9.4 Clock Type 

The predefined Clock type is used for synchronous clock-based system modeling and is described in 
detail in Section 13.6, page 694. 

3.9.5 Other Predefined Types 

The predefined StateSelect enumeration type is the type of the stateSelect attribute of the Real 
type. It is used to control state selection, and is defined and explained in Section 18.2.6.1, page 1016. 

The predefined partial class ExternalObject is used to define opaque references to data structures 
created outside Modelica (see Section 9.4.8, page 476). 

A number of "predefined" record types and enumeration types for graphical annotations are described 
in Chapter 11. However these types are not predefined in the usual sense since they cannot be referenced 
in ordinary Modelica code, only within annotations. 

The Complex type is predefined, but not in the Modelica language. Instead it is predefined in a 
Modelica record type called Complex. This is distributed as part of the standard Modelica library (MSL) 
but defined at the top-level outside of MSL. It is referred to as Complex or .Complex, and is 
automatically preloaded by most tools, enabling direct usage without the need for any import statements 
(except in encapsulated classes). There is a library ComplexMath with operations on complex numbers 
(Section 16.3, page 923). See also Section 9.5, page 481. 

The following are some examples of using the predefined type Complex: 
Real a = 2; 
Complex j = Modelica.ComplexMath.j; 
Complex b = 2 + 3*j; 
Complex c = (2*b + a)/b; 
Complex d = Modelica.ComplexMath.sin(c); 
Complex v[3] = {b/2, c, 2*d}; 

3.9.6 Types for Symbolic Programming 

Data types such as trees and lists used for symbolic programming and modeling in Modelica are described 
in Section 6.15, page 296. These constructs are at the time of this writing not part of the Modelica 
Language standard but are available implemented in the MetaModelica language extension, which is 
supported by the OpenModelica compiler. 

3.10 Structure of Variable Declarations 

A Modelica variable, that is, a class instance, is always a member of some other class instance or function 
instance. The declaration of a variable states the type, access, variability, data flow, and other properties of 
the variable. A declaration can be divided into three parts: zero or more prefixes, followed by a type, and 
followed by a list of variable specifiers. A variable specifier can be a single identifier, or an identifier 
optionally followed by a modifier and/or an array dimension descriptor, optionally followed by an 
initializer or declaration equation right-hand side, optionally followed by an ifcondition for conditional 
instance declarations, that is, the keyword if and a Boolean expression. Thus, the structure of a 
declaration is as follows: 

<prefixes> <type-specifier> <variable specifier list> 

A variable specifier has the following structure, where all elements apart from the identifier are optional: 
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<identifier> <array dimension descriptor> <modifiers> <declaration equation/initializer> <ifcondition> 

The type specifier part of a declaration describes the kind of values that can be represented by the 
declared variable(s). It consists of a type name optionally followed by an array dimension descriptor. 

There is no difference between variables declared in a single declaration or in multiple declarations. 
For example, regard the following single declaration of two matrix variables: 

Real[2,2] A, B; 
That declaration has the same meaning as the following two declarations together: 

Real[2,2] A; 
Real[2,2] B; 

The array dimension descriptors may instead be placed after the variable name in the variable specifier, 
giving the two declarations below, with the same meaning as in the previous example: 

Real A[2,2]; 
Real B [ 2, 2 ]; 

The following declaration is different, meaning that the variable a is a scalar and B is a matrix as above: 

Real a, B[2,2]; 

3.11 Declaration Prefixes 

Both class and variable declarations can contain various qualifier prefixes. These prefixes associate certain 
properties with the declaration and are placed at the beginning of the declaration. The following sections 
give an overview of the Modelica declaration prefixes. 

3.11.1 Access Control by Prefixes: public and protected 

As was already described in the introductory Section 3.5 on access control, page 83, an optional access 
prefix may be specified at the beginning of a declaration. The access prefixes available in Modelica are 
public and protected, giving two possible levels of visibility for Modelica variables. This is illustrated 
by the class AccessDemo below. 

Note that an access prefix is implicitly applied to all subsequent declarations without access prefix 
following the current declaration until the next declaration with an access prefix in the same scope. This 
makes it natural to view an access prefix as a heading for a section of declarations. The initial default is 
public if nothing yet has been specified within the current scope. Thus, the variables a, x, y, z, u3 are 
public, whereas w, u, u2 and class Clocal are protected. 

class AccessDemo "Illustration of access prefixes" 
Real a; 

public 
Real x; 
Real y, z; 

protected 
Real w, u[3]; 
Real u2; 
class Clocal 
end Clocal; 

public 
Real u3; 
class Caccess 
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Clocal c; // Legal use of protected class Clocal from enclosing scope 
end Caccess; 

end AccessDemo; 

class AccessDemoUse 
AccessDemo a; 
Real x2 = a.x; // Legal use of public x through dot notation 
Real x3illegal = a.w; // Illegal use of protected w through dot notation 

end AccessDemoUse; 
The public declaration of variables a, x, y, z, u3 means that any code with access to, directly within 

the current scope or via dot notation, an Acce ss Demo instance can read or update those variables. The 
other possible level of visibility, specified by the keyword protected, means that only code inside the 
class AccessDemo as well as code in classes that inherit this class are allowed access to the variables w, u, 
and u2. In fact, only code inside the class AccessDemo has access to the same instances of the protected 
variables w, u, and u2. 

Elements are inherited with their own protection, that is, public and protected elements keep being 
public and protected, respectively, after being inherited into another class. However, the access 
prefixes public and protected from a parent class are not inherited as elements themselves and can 
therefore never influence the protection status of the declarations in a child class. 

To summarize, a protected class or instance P, which is part of a class or instance, may not be accessed 
via dot-notation as in the illegal examples A. P, a. P, a [ 1 ] . P, a. b. P, . A. P, but there is no restriction on 
using p or P. x for a protected element P in a scope where p is visible. 

Regarding inheritance of protected elements see also Section 4.1.11, page 145, and regarding their 
modification see Section 4.2.9, page 154. 

3.11.2 Variability Prefixes: constant, parameter, and discrete 

The prefixes constant, parameter, discrete of a variable declaration are called variability prefixes 
and define in which situations the value of variable may change and when it is kept constant. The term 
variability here should be interpreted as time variability. See also Section 6.8.1.3, page 278 for more 
details regarding variability. The variability prefixes can be used to define the following four kinds of 
variables (see Figure 3-7): 

• Named constants—variables with the constant prefix that never change value once they have 
been defined. They can, for example, be used to define mathematical constants. The derivative of a 
constant is zero. A constant definition can be modified using a modifier (Section 4.2.3, page 149) 
if it is not final (Section 3.11.6, page 103). A named constant can be defined in a package, can be 
imported from a package (Section 10.2.1, page 497), and can be accessed by nested lookup 
(Section 3.16.1, page 109) from inside a subclass to the class where the constant is defined. See 
also Section 6.9.1, page 280, regarding constant variability expressions. 

• Named constant parameters—variables with the parameter prefix, that remain constant during 
time-dependent simulation and have time derivative equal to zero. These "constants" may be 
assigned values, for example, during the initialization phase or interactively by the user via a 
simulation tool immediately before time-dependent simulation starts. Interactive setting of 
simulation parameters is usually done very conveniently via the graphical user interface of the 
simulation tool. The built-in der(...) derivative operator need not be applied to such variables 
since the result is always zero. A parameter cannot be defined in a package, it cannot be imported 
from a package, and cannot be accessed implicitly from a scope inside the model where it is 
defined. See also Section 6.9.2, page 281, regarding parameter variability of expressions. 

• Discrete-time variables with the optional associated prefix discrete change their values only at 
event instants during simulation (see Section 13.2.2 in Chapter 13), and have time derivative equal 
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to zero. However, it is illegal to apply the der() operator to a discrete-time variable. There are two 
kinds of discrete-time variables: unclocked discrete time and clocked discrete time. Unclocked 
discrete-time variables are piecewise constant signals that change only at event instants, whereas 
clocked discrete-time variables are defined and changed only at clock tick events for an associated 
clock (Section 13.2.5.5, page 603 and Section 13.6, page 694 regarding clocks) and are undefined 
between clock ticks. Boolean, Integer, string, and enumeration variables are unclocked 
discrete time by default and cannot be continuous time according to the Modelica language rules. 
A Real variable with the prefix discrete is a discrete-time variable. Any variable defined only 
at ticks of a clock is a clocked discrete-time variable. However, note that a Real variable without 
the discrete prefix but assigned a value in a when-statement or when-equation is an unclocked 
discrete-time variable. See also Section 6.9.3, page 281, regarding discrete-time variability of 
expressions. 

• Continuous-time variables evolve their values continuously during simulation. This is default for 
Real variables if no variability prefix is specified and they are not assigned in a when-equation or 
when-statement. This is the most common kind of variable in continuous models. 

— A continuous-time variable 

— An unclocked discrete-time variable 

A clocked discrete-time variable 

A parameter variable 
A constant "variable" 

• 
event 1 event 2 event 3 time 

Figure 3-7. Illustrating variables with different variability. 

Named constants can be defined in Modelica by using the prefixes constant or parameter in 
declarations and providing declaration equations as part of the declarations. For example: 

constant Real PI = 4*arctan(l); 
constant String redcolor = "red"; 
constant Integer one = 1; 
parameter Real mass = 22.5; 
constant Real tobespecified; // to be given value through a modification 
A constant or parameter cannot be defined to cyclically depend on itself; the definition must be acyclic 

(Section 8.2.3, page 350). The following illegal declaration is cyclic: 

parameter Real x = 3*exp(x); // Illegal, since x = 3*exp(x) is cyclic 
Parameter "constants" can be declared without a declaration equation containing a default value since 

their value can be defined, for example, by reading from a file, before simulation starts. For example: 

parameter Real mass, gravity, length; 
Parameter "constants" may also be used as structural parameters, parameters whose values influence the 
structure of the model, that is, the set of active equations. For example, in the model Inertia below, two 
equations are effectively removed from influencing the simulation if the user sets condflg to false 
before simulation starts. 

model Inertia 
parameter Boolean condflg; 
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equation 
J*a = tl - t2; 
if condflg then 
der(v) = a; // Two conditional equations, 
der(r) = v; // deactivated if condflg=false 

end if 

end Inertia; 
Variables of type Real are normally continuous-time variables as the default, without explicit 

declaration of a more restrictive variability prefix. Piecewise constant (discrete) Real variables can be 
declared but are rarely needed. However, unclocked Real variables that are explicitly assigned in when-
statements or implicitly assigned values through solution of equations in when-equations are also 
discrete, that is, piecewise constant. 

Variables of type integer, Boolean, string, or enumeration have data types that change value in 
discrete steps. Such variables may change their values only at events (or during function evaluation for 
local variables in functions), which makes the default variability discrete natural. 

Variables and expressions in functions behave as though they were discrete-time expressions since a 
function is always called and evaluated at some point in time that is, time does not go forward during 
evaluation of a function call, similar to the evaluation of a when-equation at an event. Function calls can, 
however, occur at any point in time, not only at events. 

3.11.3 Causality Prefixes: input and output 

One of the major advantages of an equation-based language such as Modelica is that acausal mathematical 
models can be specified since equations do not prescribe a certain data-flow direction. However, certain 
model components such as functions and blocks have specified causality. When calling a function, data are 
supplied as actual input arguments and results are returned from the function. The same is true for blocks 
since a block is a kind of specialized Modelica class with specified causality for all variables in its 
interface. 

The prefixes input and output are mainly available for specifying, thus restricting the direction of 
data flow for declared variables. This is required for interface variables of blocks and functions but can be 
used for a variable in any class, for example, to simplify the solution process when the data-flow direction 
is known. However, the data-flow direction is allowed to be reversed in equation-based models, including 
blocks, if that enables solution. A simple block with one input and one output variable is shown 
below: 

block SquareDance 
input Real x; 
output Real squared; 

equation 
squared = x*x; 

end SquareDance; 
The prefixes input and output when used on a variable which is structured, e.g., a record variable, are 
also applied to the elements (e.g. record fields) of the variable. This is done after verifying that the prefixes 
occurring on the elements of the variable are correct. The input and output prefixes shall only be 
applied to a structured variable if no element of the variable has a prefix which is input or output. 
The prefixes input and output have slightly varying semantic meanings depending on the context in 
which they are used: 

• In functions, these prefixes define the computational causality of the function body, that is, given 
the variables declared as input, the variables declared as output are computed in the function 
body (Section 9.3.1, page 438). 

• At the top level of a model that is to be simulated, these prefixes define the interaction with the 
environment in which the simulation model is used, that is, data from environment provided as 
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input to the simulated model, or output data from the simulation provided to the environment. Thus 
the input prefix defines those values for such a variable that have to be provided from the 
simulation environment and the output prefix defines that the values of the corresponding 
variable can be directly utilized in the simulation environment. See also the notion of globally 
balanced in Section 8.9.2.5, page 393. 

• In model instances, the input prefix defines that a binding equation, that is, a declaration equation 
or modifier, has to be provided to define the input value of the corresponding variable when the 
instance is used in order to guarantee a locally balanced model; that is, the number of local 
equations is identical to the local number of unknowns (Section 8.9.2.1, page 389). The output 
prefix does not have any effect in a model instance and is ignored. Note that in model instances the 
input or output prefixes do not necessarily specify causality since causality can be reversed 
even in block models because they contain equations (see comment in Section 8.9.3.4, page 398, 
regarding computational causality). A binding equation is shown here: 
block Fum 

input Real x; // An input variable x in a model 
end Fum; 
model UseFum 

Fum fum(x=time); // A binding equation x=time for x in instance fum 
end UseFum; 

• In connectors the prefixes input and output define that the corresponding connectors can only 
be connected according to block diagram semantics, that is, a connector with an output variable 
can only be connected to a connector where the corresponding variable is declared as input, and 
vice versa (Section 5.7.3, page 211). There is also the restriction that connectors that have at least 
one variable declared as input must be externally connected in order to get a locally balanced 
model, where the number of local unknowns is identical to the number of unknown equations 
(Section 8.9.2, page 389). Together with the block diagram semantics rule, this means that such 
connectors must be connected exactly once externally. 

• In records the prefixes input and output are not allowed, since otherwise a record could not be, 
for example, passed as input argument to a function. 

3.11.4 Flow Prefix: flow 

The flow prefix when used on a variable which is structured, e.g. a record variable, is also applied to 
the elements (e.g. record fields) of the variable. This is done after verifying that the prefixes occurring on 
the elements of the variable are correct; e.g. the flow prefix can be used on a record field and all the 
record fields will generate zero-sum equations, even if elements of a record may not be declared with the 
flow prefix. The flow prefix shall only be applied to a structured variable if no element of the variable 
has a prefix which is flow or stream. For more in-depth information concerning the flow prefix 
including examples, see Chapter 5, page 190. A small example of a flow variable declaration inside a 
connector class: 

connector Pin 
Voltage v; 
flow Current i; 

end Pin; 

3.11.5 Stream Prefix: stream 

The stream prefix is required in front of stream variables in stream connector definitions, see Section 
5.10, page 245, which are useful in models with reversible flows. Stream variables must be a subtype of 
Real. The stream prefix when used on a variable which is structured, e.g. a record variable, is also 
applied to the elements (e.g., record fields) of the variable. This is done after verifying that the prefixes 
occurring on the elements of the variable are correct. The stream prefix shall only be applied to a 
structured variable if no element of the variable has a prefix which is flow or stream. A small example of 
a stream variable declaration inside a stream connector class is: 
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connector FluidPort 
AbsolutePressure p; 
flow MassFlowRate m_flow; 
stream SpecificEnthalpy h_outflow; 

end FluidPort; 

3.11.6 Modification Prefixes13: replaceable, redeclare, and final 

Modification prefixes control modification of declared elements in classes. What is a modifier? It can be 
regarded as a kind of (incomplete) declaration that is used to change certain declarations from an inherited 
class. We have already seen several examples of simple modifiers that are used to change default class 
attribute values. For example, the following type declaration contains three modifiers to the built-in class 
Real that modifies the attributes unit, min, and max. 

type Voltage = Real(unit="V", min=-220.0, max=220.0); 
The final prefix used at the front of a declaration or modifier prevents all modifications of a declared 

element and further modifications of a modified element. The motivation behind the final prefix is to 
prevent users from unknowingly introducing certain errors, which can be avoided by forbidding 
modifications of sensitive elements. The use of final also prevents interactive setting of parameter 
variables in the simulation environment since this is a kind of modification. The final prefix prohibits 
further modification of the unit attribute in the next example: 

type Angle = Real(final unit = "rad"); 
Angle al(unit="deg"); // Error, since unit declared as final! 
The modification prefix replaceable used in front of a declaration enables modification in the form 

of a redeclaration of that declaration. The following is an example of a replaceable declaration from the 
class C below of the example variable pobj 1, where pob j 1 also has a local modifier pl=5 : 

replaceable GreenClass pobjl(pl=5); 
However, modification of the default attribute value of a declared element is allowed also without the 
replaceable prefix, as for the unit attribute in the above Voltage declaration. 

The class c, also presented previously in Chapter 2, Section 2.5.1, page 32. 
class C 
replaceable GreenClass pobjl(pl=5); 
replaceable YellowClass pobj2; 
replaceable GreenClass pobj3; 
RedClass obj4 ; 

equation 

end C; 
When a modifier contains a complete declaration including type and/or prefixes, the redeclare prefix 

is required at the front of the modifier, which then replaces the original declaration. Such a modifier is 
called a redeclaration, and usually (but not always—see Chapter 4, page 156) requires the original 
declaration to be declared with the prefix replaceable. For example: 

class C2 = C(redeclare RedClass pobjl); 
The modification prefix replaceable when used in a modifier enables further modification of the 
resulting modified element. For example, in class C3 this is used to enable further modification of pobj 1 
when creating C4 : 

13 The reader who wants a more accessible and in-depth treatment of this topic should read Chapter 4 instead of the short 
presentation in this section. 
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class C3 = C(redeclare replaceable RedClass pobjl); 
class C4 = C3(redeclare YellowClass pobjl); // OK, since replaceable 
class C4 = C2(redeclare YellowClass pobjl); // Error, not replaceable 
Modelica classes and packages can be parameterized in a general way, corresponding to generic classes 

or packages (see Chapter 2, page 31, and Chapter 10, page 508). Both classes and variables that are 
members of some class can be used as a kind of class parameter by attaching the prefix replaceable in 
front of their declarations. It is required to have the prefix replaceable in an element declaration to 
allow replacing the declaration, except when only changing the default attribute value, and/or restricting 
the variability and possible dimension sizes. 

For more details and examples regarding modifiers, see Chapter 4, page 148, regarding redeclaration 
and generic classes see Chapter 4, page 156 and page 168 respectively, and on the semantics of final see 
page 161 in the same chapter. 

3.11.7 Class Prefix: partial 

The class prefix partial is used to indicate that a class is incomplete such that it cannot be instantiated. 
The keyword is optional—a class can be incomplete without having the prefix partial. On the other 
hand, the partial prefix is required for those partial classes for which type checking of the class 
declaration cannot be performed without generating type errors, for example, because a type used by the 
partial class might not be available where the class is declared, only where it is used. Partial classes are 
aimed at reuse through inheritance (see Chapter 4, page 173 for more details). The common terminology 
for partial class in other programming languages is abstract class. 

3.11.8 Class Encapsulation Prefixes: encapsulated 

The class encapsulation prefix encapsulated is used to achieve lookup encapsulation of classes, that is, 
the lookup stops at the class boundary. This mechanism is primarily intended for Modelica packages, since 
the common concept of packages entails an independent software unit used for organization of large 
software systems. An encapsulated package (or class) has no implicit dependencies on the declaration 
context within which it is placed. All dependencies are explicit via import clauses. See Chapter 10 on 
packages, page 497, for more information. 

3.11.9 Instance Hierarchy Lookup Prefixes: inner and outer 

Lookup of names in Modelica is normally done in the usual way for lexically scoped languages with 
nested scopes. First the current scope containing the name reference is searched for a definition of the 
name; if not found, the next outer scope is searched, and so on. 

However, lookup through the instance hierarchy instead of through the class nesting hierarchy is more 
suitable when a pervasive object property such as a force field or an environment temperature should affect 
all parts of the object. In Modelica such a common property can be declared as a definition declaration 
using the inner prefix, and subsequently accessed by reference declarations using the outer prefix. The 
lookup is performed through the instance hierarchy instead of through the nested class declaration 
hierarchy. 

See Section 5.8 on page 224 for a comprehensive description of applications of this concept and 
Section 3.17.5 on page 113 in this chapter for a presentation of the instance hierarchy lookup mechanism. 
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3.11.10 Ordering and Placement of Prefixes 

The ordering of Modelica declaration prefixes within a declaration is strictly specified according to the list 
below. Not all combinations of prefixes are meaningful; for example, a constant input variable is not 
very interesting since it can never change value. The modification prefix redeclare may occur in 
modifiers or in declarations (Section 4.3.1, page 157), whereas the access prefixes public and 
protected may never occur in a modifier. 

The prefixes encapsulated and partial may be used only for classes, whereas flow, stream, 
discrete, parameter, constant, input, and output may be used only in variable declarations. 

The prefixes are placed at the beginning of a declaration element and should be used in the following 
order whenever more than one prefix occurs in the same declaration: 

1. Access prefixes public and protected. 
2. Modification prefix final. 
3. Instance hierarchy lookup prefixes inner and outer. 
4. Modification prefix redeclare. 
5. Modification prefix replaceable. 
6. Class encapsulation prefix encapsulated. 
7. Class prefix partial. 
8. The flow prefix flow or the stream connector prefix stream. 
9. Variability prefixes constant, parameter, and discrete. 
10. Causality prefixes input and output. 
A subset of the prefixes are denoted type prefixes i.e., flow, stream, discrete, parameter, 

constant, input, output, and are considered part of the class type when type checking. See also 
Section 3.18.7, page 120, in this chapter. 

3.12 Variable Specifiers 

After having discussed declaration prefixes in detail in the previous sections, it is useful to recall the 
structure of a declaration: 

<prefixes> <type> <variable specifier lisf> 

Each variable specifier also has a structure, where all parts apart from the identifier are optional: 

<identifier> <array dimension descriptor> <modifiers> declaration equation/initializer> <ifcondition> 

As previously stated, an array dimension descriptor can either be part of the type or be put directly after 
the identifier in the variable specifier. The modifiers should always be placed after the array dimension 
descriptor if present, otherwise directly after the identifier. More information on modifiers is available in 
Chapter 4, page 148. The next section shows examples of modifications of start values for specifying 
default initial values of variables. 

The optional if condition is used in conditional instance declarations, see Section 3.14, page 107. 

3.13 Initial Values of Variables 

A Modelica variable is either statically allocated and instantiated, which is normally the case for 
instantiations of models, or is dynamically instantiated, as is the case for function formal parameters and 
local variables. The start value of a variable is the default initial value of the variable normally used at 
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the beginning of a simulation. The simulation tool, the solver, is, however, free (unless specifically 
prohibited in each declaration by setting the built-in attribute fixed to true) to choose another start value 
for the variable if this is necessary to be able to solve the systems of equations. 

If nothing else is specified, the default start value of all statically allocated numerical variables is zero 
or an array containing elements of the value zero, apart from function results and local variables, where the 
initial value is unspecified. Start values other than the default zero can be specified by setting the start 
attribute of instance variables. For example, a start value can be specified in the class MyPoints: 

class MyPoints 
Point pointl(start={1,2,3}); 
Point point2; 
Point point3; 

end MyPoints; 
Alternatively, the start value of pointl can be specified when instantiating MyPoints as below: 

class Main 
MyPoints pts(pointl.start={1,2,3}); 
fool fl; 

end Main; 
Note that the start attribute of an array variable has the same dimensionality as the variable itself. Single 
elements of the start value can be modified by indexing the attribute in the modification equation, for 
example, start [ 2 ,1 ] in the array A5 example. Below are a few declarations with different combinations 
of array dimension descriptors and modifiers. 

Real A3 [2,2]; // Array variable 
Real A4 [2,2] (start={{1,0},{0,1}}); // Array with explicit start value 
Real A5 [2,2] (start[2,1]=2.3); // Array with single element modification 
Do not make the mistake of using declaration equations for specifying initial values since this will set 

the variable equal to a constant value throughout the simulation. This is fine for constants or parameters 
since their values should be fixed during simulation, but is usually not what is expected for a normal 
variable. For example: 

class test2 
parameter Real xl = 35.2; /* OK, since xl has a fixed value */ 
Real x2 = 99.5; /* Probably a mistake */ 

end test2; 
No equations are present in functions, not even equations for start values, since functions can contain 

only algorithmic code. Instead, assignment statements can be used to specify default initial values of 
formal parameters, function results, or local variables. Consider the example function f 2 below: 

function f2 
input Real x; 
input Real y 2; 
output Real rl; 
output Real r2 := 3; 

algorithm 
rl := 2*x; 
if rl>5 then r2 := 2*y; 

end f2; 
A call to f 2 using positional parameter passing always requires specifying values of all the arguments, 

which leaves the default value of y unused: 

(zl,z2) := f2(33.3,44 .4) ; 
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On the other hand, a call to f 2 using named parameter passing as below can leave out the second argument 
since the default is available for this argument. Note that because the conditional assignment to r2 will 
never take place as a result of the call below, the default result of 3 will be used for the second result r 2: 

(zl,z2) := f2(x=l); 

3.14 Conditional Instance Declarations 

A variable/instance declaration can be made conditional by attaching the keyword if followed by a 
condition that is a Boolean parameter expression. This expression must be possible to evaluate at compile 
time. 

If the condition is false, the instance, its modifiers, and any connect equation involving the instance 
are removed. 

For example, the following model instantiates either ri or R2 and selects the relevant connection: 

model ConditionalResistorCircuit 
parameter connectRl = false; 
Resistor R1(R=100) if connectRl; 
Resistor R2(R=200) if not connectRl; 
Resistor R3(R=300); 

equation 
connect(Rl.p, R3.p); // Selected if connectRl = true 
connect(R2.p, R3.p); // Selected if connectRl = false 

end ConditionalResistorCircuit; 
model RICircuit = 

ConditionalResistorCircuit(connectRl=true); 
model R2Circuit = 

ConditionalResistorCircuit(connectRl=false); 
If connectRl=true, the flattened RICircuit would appear as follows: 

model RICircuitFlat 
parameter connectRl = true; 
Resistor R1(R=100) if connectRl; 
Resistor R3(R=300); 

equation 
connect(Rl.p, R3.p); // Selected if connectRl = true 

end RICircuitFlat; 
If the condition is true for a public conditional connector containing flow variables the connector must be 
connected from the outside. The reason for this restriction is that the default flow equation is probably 
incorrect (since it could otherwise be an unconditional connector) and the model cannot check that the 
connector is connected. 

An instance declared with a condition attribute can only be modified and/or used in connections. Thus, 
the following equation, which directly refers to the conditional instance Rl, is illegal: 

Rl.p.v = w; // Illegal since conditional instance Rl only in connections 
Regarding redeclaration of conditional instances, see Section 4.3.8, page 165. The following example 
shows issues regarding modifiers and conditional instances: 

parameter Integer level(min=l)=1; 
Motor motor; 
Levell instancel(J=J) if level==l "Conditional instance"; 
Level2 instance2 if level==2 "Conditional instance"; 
Level3 instance3(J=instancel.J) if level<2 "Conditional instance"; 

// Illegal modifier on instance3 since instancel.J is conditional 
// Even if we can see that instancel always existx if instance3 existx 
equation 
connect(instancel..., ...) "Connection to conditional instance 1"; 
connect(instance2.n, motor.n) "Connection to conditional instance 2"; 
connect(instance3.n, motor.n) "Connection to conditional instance 3"; 
instancel.u=0; // Illegal 
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3.15 Declaration Order and Use before Declaration 

In Modelica, as well as for classes in Java, variables and classes can be used before they are declared. This 
gives maximum flexibility in organizing the code to achieve logical structuring and maximum readability. 
For example, the well-known top-down design methodology emphasizes the major building blocks at the 
top level of the system structure and puts less emphasis on low-level details. A declaration before use 
constraint, common in several older programming languages, would force the low-level model 
components to be declared first, making it harder to use top-down design. 

In fact, in Modelica declaration order is significant only in the following two cases: 

• Declaration order is significant for input or output formal parameter declarations in functions with 
more than one input formal parameter or more than one result. The reason is that functions may be 
called with positional parameter passing, for example, as in the examples in the previous section. 

• Declaration order is significant for the variable declarations within record classes. The reason is 
that any record can be passed as an argument to an external function, in which case the variable 
ordering in the Modelica record is reflected in the variable ordering of the corresponding external 
record data structure. 

In the example class below, which is perfectly legal, the types Voltage and Current are used before they 
are declared, and variable x can use a reference to variable y before it is declared: 

class UseBeforeDecl 
Voltage vl; 
Current il; 
Voltage v2; 
type Voltage = Real(unit="kV") ; 
type Current = Real (unit="mA"); 
Real x = y; 
Real y = x; 

end UseBeforeDecl; 

3.16 Introduction to Scoping and Name Lookup 
The scope of a name in Modelica is the region of the code where the name has a meaning corresponding to 
its intended use. For example, we may have declared a Real variable x in a class RC and an integer 
variable x in another class i c : 

class RC 
Real x; 
class IC 

Integer x; 
equation 

x = 2; 
end IC; 
class BC 
Real y; 

equation 
x = y; 

end BC; 
equation 
x = 3.14; 

end RC; 
The scope of the Real variable x includes the whole class RC apart from the class i c where the Real x is 
hidden by a local declaration of an integer variable x within ic, which has a scope that is precisely IC. 
Thus, scopes usually correspond to class declarations. 
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3.16.1 Simple Nested Name Lookup 

Modelica uses nested lookup of names like most other programming languages. The lookup procedure 
searches for declarations of names within local nested scopes before going out to enclosing scopes. This is 
the reason why the Real x is hidden within ic—the search procedure finds the declaration of the integer x 
first; it does not even need to investigate the declarations within RC. 

However, even if there was no local declaration of the variable x, it would still be illegal to refer to the 
Real x in the enclosing scope RC—references to variables and parameters in enclosing scopes is illegal in 
Modelica. Such nested lookup is only allowed for names of constants and declared classes. For example: 

package A 
constant Real z = 2; 
model 5 

Real z; 
function foo 

output Real y 
algorithm y := z; // Illegal since reference to non-constant z in B 

It is not only classes that introduce declarations with local scopes. The iteration variable in Modelica 
for-loops has a scope that extends throughout the for-loop, and hides declarations of variables with the 
same name in enclosing scopes. For example: 

function PolynomialEvaluator3 
input Real a[:]; 
input Real x; 
output Real y; 

protected 
Real xpower; 
Integer i; (* Declared local variable i *) 

algorithm 
y := 0; 
xpower := 1; 
for i in 1:size (a, 1) loop (* Iteration variable i *) 

y := y + a[i]*xpower; 
xpower := xpower*x; 

end for; 
end PolynomialEvaluator3; 

The iteration variable i introduced by the for-loop in the body of the function PolynomialEvaluator3 
has a scope that extends throughout that for-loop, thus preventing access to the declared local variable i 
from within the for-loop. 

3.16.2 Scope Preprocessing Needed for Lookup 

Some preprocessing/flattening needs to be done on declarations and other elements in each enclosing 
scope/class before lookup can be performed in that scope. Modifiers and redeclarations, when present, are 
applied to the declarations where they appear. Extends clauses are processed by lookup and copying of 
inherited class contents into the current class. The detailed procedure is described in Section 4.1.7, page 
143. 

For example, the following class TemperatureDepResistorCircuit is expanded/flattened into the 
class TempDepResistorCircuitFlattened below. The contents of GenericResistorCircuit is 
copied and the two redeclarations are performed, giving a class scope where all named elements are 
explicitly available for lookup. This example is explained in more detail in Section 4.4.2, page 169. 

model GenericResistorCircuit 
replaceable Resistor Rl{R=100); 
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replaceable Resistor R2(R=200); 
replaceable Resistor JTF(R=300); 

equation 
connect(Rl. p, R2.p) ; 
connect(Rl.p, R3.p); 

end GenericResistorCircuit; 
model TemperatureDepResistorCircuit 

Real Temp; 
extends GenericResistorCircuit( 
redeclare TempResistor i?2(RT=0.1, Temp=Temp), 
redeclare TempResistor R2 

); 

end TemperatureDepResistorCircuit; 
The following is the expanded/flattened version of TemperatureDepResistorCircuit: 

model TempDepResistorCircuitFlattened 
Real Temp; 
TempResistor i?l (R=100, RT=0.1, Temp=Temp) ; 
TempResistor fl2(R=200); 
replaceable Resistor R3(R=300); 

equation 
connect(Rl.p, R2.p); 
connect(Rl. p, R3.p); 

end TempDepResistorCircuitFlattened; 

3.17 Nested Lookup Procedure in Detail 

The following stepwise procedure specifies the semantics of lookup for a name used within some piece of 
Modelica code. The lookup starts in the innermost scope containing the code, usually a class, and proceeds 
through the sequence of enclosing scopes until the outermost scope or an encapsulated package or class is 
encountered. The notion of class should be interpreted in the general sense, that is, it can also be a function 
or package. 

Implicitly defined names of record constructor functions are ignored during type name lookup, since a 
record and its implicitly created record constructor function (Section 9.3.8, page 452) have the same name. 
Names of record classes are ignored during function name lookup. 

Certain language constructs referred to below such as import clauses, encapsulated packages, and 
encapsulated classes are explained in more detail in Chapter 10, page 495. To summarize, regarding the 
following clause: 

import A.B.Myclass; 
This clause makes it possible to access Myclass using the short name Myclass instead of A. B .Myclass. 
A more concise way of importing several definitions is the following: 

import A.B.{Myclassl,Myclass2,Myclass3}; 
This unqualified import makes it possible to refer to the classes only using the short names Myclass 1, 
Myclass2, Myclass3 instead of long names such as A. B. Myclass 1. 

Qualified import of a whole package A. B can be done as below: 

import A.B; 
This qualified package import makes it possible to use the name B.Myclass with a short package prefix B 
for access, whereas the following unqualified import has a different effect: 

import A . B . * ; 

Such an unqualified import allows the use of short names such as Myclass for all classes in A. B. 
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3.17.1 Lookup of Simple Names 

The lookup procedure for simple unqualified names (without dot notation) is as follows, excluding lookup 
of names with the prefix outer, which is described in Section 3.17.5, page 113: 

1. First look for implicitly declared iteration variables in possible enclosing for-equations (Section 
8.3.2, page 352) or for-statements (Section 9.2.5, page 427) if the analyzed code is inside the body 
of a for-construct, or within iterator expressions in array constructors (Section 7.2.2, page 316), or 
reduction expressions (Section 7.9.4, page 337). 

2. When a piece of Modelica code is analyzed, for example, a class or variable declaration, an 
extends clause, an equation or algorithm, encountered names in the code are looked up. Each 
such name is looked up in the sequence of enclosing scopes starting at the innermost scope. The 
search continues until a match is found or the outermost scope or a scope corresponding to an 
encapsulated class or encapsulated package has been reached. (However, even if found, it is illegal 
to reference a variable or parameter declaration in an enclosing scope, whereas constants and 
classes can be accessed, similar to the rules for definitions in packages.) 

If not found, the lookup continues in the global scope containing the predefined Modelica types, 
functions, and operators. (For example, the predefined function abs is searched upwards in the 
hierarchy as usual. If an encapsulated boundary is reached, abs is searched for in the global scope 
instead. The operator abs cannot be redefined in the global scope, because an existing class cannot 
be redefined at the same level.) Certain operators are denoted by reserved words or special 
characters and therefore do not need lookup (see the Modelica Grammar in Appendix B, page 
1073). 

As stated above, references to variables successfully looked up in an enclosing class are only allowed 
for variables declared as constant, illustrated by the example in Section 3.16.1, page 109. The values of 
identifiers in modifier expressions (Section 4.2.1, page 148) are thus resolved in the scope in which the 
modifier appears. 

The lookup in each scope is performed in the following order until a match is found: 

• Search among declared named elements, that is, classes and variables declared in the scope, 
including elements inherited from other classes. Note that import clauses are not inherited from 
other classes. Regarding inheritance see Chapter 4, and concerning import see Chapter 10, page 
497. 

• Search among the import names of single or multiple definition import clauses in the scope. Such 
an import name may refer only to an imported package, class, or constant. The import name of the 
single definition import clause import A. B . C; is c and the import name of the renaming import 
clause import D=A.B.C; is D. The import names of the multiple definition import 
A. B. {Def 1, Def 2 , . . . } ; are Defl, Def2, and Def3. In all cases, A. B must be a package. 
Regarding the special case import E;, E can be any class or package as an element of the 
unnamed top-level package. 

• Search among the public members of packages imported via unqualified import clauses in the 
current scope e.g., import A. B . * ; . It is an error if this step produces matches from several 
unqualified imports. Unqualified import clauses may only import from packages, that is, A. B must 
be a package in the clause import A. B. *;. 

Lookup of the name of an imported package or class e.g., A. B. c in the import clauses import A. B. C; 
import D=A.B.C; import A.B. {Def 1, Def2, . ..}; import A.B.C.*; deviates from the normal 
lookup by starting the lookup of the first part of the package/class name at the top level of the hierarchy. 
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3.17.2 Lookup of Qualified Names 

The lookup procedure for qualified names, that is, names like c . x and A. B . D . y with dot notation, is a 
somewhat more involved procedure. The lookup for the first part of a name, such as c in c . x, or A in 
A. B. D. y, proceeds as described above, starting with the current scope. If no matching variable declaration 
is found, the first part of the name is assumed to be a package name. 

For a qualified name of the form A. B, or A. B . c, etc., lookup is performed as follows: 
1. The first part of the name e.g., A, is looked up as defined in lookup of simple names above. 
2. If the first part of the name matches the name of a declared variable, the rest of the name, for 

example, B or B. c, is looked up among the named attributes (variables) of that variable, since the 
variable must be an instance of a record or other kind of class. 

3. If not found, and if the first identifier denotes a scalar instance and if the composite name is used as 
a function call, the lookup is also performed among the declared named class elements of the scalar 
instance and must find a nonoperator function. All identifiers of the rest of the name (e.g., B and 
B. c) must be classes of which the last one must denote a function. Note that this is a member 
function call via dot notation, for example, inst.func (argl,arg2). See also Section 9.3.2.4, 
page 443. 

4. If the first part of the name denotes a class, typically a package, that class declaration is analyzed 
and partially flattened, that is, flattened without any modifiers on that class. Partially flattening 
means performing inheritance and modifications of the class in the lookup context of the hierarchy 
of enclosing classes of that class. The rest of the name, for example, B or B. c, is looked up among 
the declared named elements of that partially flattened class declaration. 

In case 4, if the class is not a package or does not fulfill the requirements for a package, the lookup of 
the rest of the name is restricted to elements that are encapsulated packages or encapsulated classes of any 
kind of restricted class. Such lookup can be used, e.g. to access a local version of the Modelica library 
embedded within a model specialized class that is not a package. See also Chapter 10, page 514. 

Morover, the class within which lookup is performed may not be a partial class when compiling a 
simulation model, that is, a model that is assumed to be compiled to executable simulation code and not 
just inherited. This check on simulation models is needed, for example in class extends, as mentioned at 
the end of Section 4.6.5, page 180. 

The top level of the package/class hierarchy referred to above can be viewed as an unnamed package 
containing declared elements loaded into the current workspace together with packages stored in the file 
system at positions specified by MODELICAPATH. See Chapter 10, page 506, for more information on 
MODELICAPATH. 

3.17.3 Absolute Global Name Lookup 

A special case of qualified name lookup involves names starting with a dot, which denote absolute global 
names at the top level of the package/class hierarchy mentioned in the previous section. For such names, 
for example, .A, or .A.B, . A. B. c, lookup is performed in the following way: 

• The first identifier (A) in the name is looked up in the global scope. This is possible even if the 
current class is encapsulated. Import clauses are not considered in this kind of lookup. If there does 
not exist a class A in the global scope this is an error. 

• If the name is simple then the class A is the result of lookup. 
• If the name is a qualified name then the class A is temporarily flattened with an empty lookup 

context (i.e., no modifiers) and using the enclosing classes of the denoted class A. The rest of the 
name, for example, B or B. c, is looked up among the declared named elements of the temporary 
flattened class A. If the class A does not satisfy the requirements for a package, the lookup is 
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restricted to encapsulated elements only. The class we look inside may not be partial. The package 
restriction ensures that global name lookup of variables can only find global constants. 

3.17.4 Imported Name Lookup 

Lookup of imported simple names is described in the above Section 3.17.1, page 111. A complete 
description of imported name lookup, both simple and qualified, is available in Section 10.2.1, page 497. 

3.17.5 Instance Hierarchy Lookup Using inner and outer 

As we already stated briefly in Section 3.11.9, standard nested lookup as described in the previous sections 
is not convenient in some situations where a pervasive object property should be accessible to all 
components of the object. For example: 

• The components of a planetary system influenced by a common gravitational field. 
• Electrons influenced by an electromagnetic field. 
• An environmental temperature or pressure influencing the components of the system in question. 

Section 5.8, page 224, contains a more thorough discussion of such applications, including the modeling of 
gravitational fields. 

As an example, the temperature of a circuit board (see the example below) should be accessible to all 
components on the board even though the classes of those components are not declared inside, that is, 
nested inside, the class of the board itself. 

Regarding the circuit board model, it is not practical to place the class definitions of the components 
inside a specific board class, since they should be usable also for models of other boards. Rather, the 
common property belongs to the object which contains the components in question. This leads us to the 
concept of lookup within the instance hierarchy. 

Based on these considerations, the inner/outer concept has been introduced in Modelica to provide 
access to common properties by specific definition and reference declarations, with lookup through the 
instance hierarchy that overrides the usual nested lookup: 

• A declaration with the prefix inner is a definition declaration of an element that defines an object 
property or element in common to the components of the object, and therefore should be accessible 
from within those components. 

• A declaration with the prefix outer is a reference declaration of an element that references a 
common property or element defined by a definition declaration in the enclosing instance 
hierarchy. 

• A declaration with both inner outer prefixes combines definition and reference declarations 
under the same name, which is more concise than two separate declarations. This is used in 
complex systems with several levels of nested subsystems. See Section 5.8.3, page 228 for more 
details. 

Note that the enclosing instance hierarchy is the hierarchy of parts/instances that the current instance is a 
member of. 

The following holds for an instance hierarchy lookup of the name of a reference declaration: 

• The search for a matching definition declaration (inner) with the same name as in the reference 
declaration (outer) is from the current instance to containing instances within the instance 
hierarchy of the reference declaration, not necessarily within the class nesting hierarchy. 

• The definition declaration (inner) can be shadowed by nested declarations with the same name. 
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• The item declared in the definition declaration (inner) should be a subtype (see Section 3.18, page 
115 in this chapter) of the type of the corresponding reference declaration (outer) or a subtype of 
an explicitly given constraining type. Also, the reference declaration should not have any 
modifications. 

• The reference declaration instance (outer) may be of a partial class, but the referenced definition 
declaration instance (inner) must be of a nonpartial class. 

• A modeler can use the missinglnnerMessage annotation to provide a good error message if the 
lookup fails, see Section 536, page 536. 

Note that instance hierarchy lookup is more selective than conventional lookup of global variables found 
in many other programming languages, since the search is only in the hierarchy starting at a specific 
instance. 

We give a simple example in terms of an electric circuit board CircuitBoardl containing 
temperature-dependent components that depend on a common board temperature. 

The two kinds of hierarchies, the usual class nesting hierarchy as well as the instance hierarchy, are 
depicted in Figure 3-8 for the BoardExample class shown in the following. 

CircuitBoardl boardl: 

boardl BoardExample 

A 7 \ 
c r / 

CircuitBoardl TempCapacitor TempResistor 

b) Class nesting hierarchy 

Figure 3-8. Instance hierarchy (a) and class nesting hierarchy (b) for the electric circuit board example. 

All components in the electric circuit board should reference exactly the same board temperature variable 
boardTemp, which is defined by an inner declaration within the CircuitBoardl class. Each 
component contains an outer reference declaration referring to the board temperature boardTemp, 
which is found during the instance hierarchy lookup to be the inner board temperature boardTemp of 
CircuitBoardl since the components c and r belong to boardl. 

class BoardExample 
class CircuitBoardl 
inner Real BoardTemp; // Definition of the board temperature variable 
TempCapacitor c "Component within CircuitBoardl instance"; 
TempResistor r "Component within CircuitBoardl instance"; 

end CircuitBoardl; 

class TempCapacitor 
outer Real BoardTemp; // Reference to the board temperature variable 
Real T; 

equation 
T = BoardTemp; 

end TempCapacitor; 

class TempResistor 
outer Real BoardTemp; // Reference to the board temperature variable 
Real T; 

equation 
T = BoardTemp; 

inner Real boardTemp; 

TempCapacitor c:l 
o u t e r • :Rea:¿- : • boa rüT-emp ? 

TempResistor r: 
outer Real boardTemp; 

a) Instance hierarchy 
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end TempResistor; 

CircuitBoardl boardl "CircuitBoardl instance"; 
end BoardExample; 

For additional examples on how to use this facility see Section 5.8.5 in Chapter 5, page 233. 

3.18 The Concepts of Type and Subtype 

What is a type and what is it useful for? This is a relevant question in the context of programming 
languages. We are talking about the type of variables, of values, of classes, and so on, making it important 
to convey some intuition about the concept. Types have primarily two main uses in Modelica: 

• Checking type compatibility—checking compatibility of data and objects in many situations for 
example binary arithmetic operations on two data objects which need to be of compatible type, or 
assignment of an expression value to a variable. For example, it is typically not allowed to add a 
Boolean value to a real number. 

• Checking substitutability, that is, when an object or class can be used instead of another object or 
class, such as TempResistor being used instead of Resistor. This is the case when using 
replaceable classes (Section 4.4, page 168), which is the main mechanism in Modelica for creating 
very flexible parameterized classes. Another example is implicit connections using inner-outer 
(Section 5.8, page 224). 

The uses of types are discussed in more detail in Section 3.19, page 123. 
A type can conceptually be viewed as a set of values. When we say that the variable x has the type 

Real, we mean that the value of x belongs to the set of values represented by the type Real, that is, 
roughly the set of floating point numbers representable by Real, for the moment ignoring the fact that 
Real is also viewed as a class with certain attributes. Analogously, the variable b having Boolean type 
means that the value of b belongs to the set of values {false, true}. The built-in types Real, integer, 
string, Boolean are considered to be distinct types. 

The subtype relation between types is analogous to the subset relation between sets. A type Asub being 
a subtype of type A means that the set of values corresponding to type Asub is a subset of the set of values 
corresponding to type A. 

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values 
is a subset of the primitive real values since there are some attributes of Real that are not part of integer 
(Section 3.9.2, page 95). 

A common way to define a subtype (subset), for example, called Asub in relation to another type A, is 
by requiring that the elements of the set corresponding to Asub is a subset of the set corresponding to A. 
Such a subset can be characterized by the elements having additional attributes or properties. 

Thus the type TempResistor from the class declared below is a subtype of Resistor since the set of 
temperature-dependent resistors is the subset of resistors having the additional variables (attributes) RT, 
Tref, and Temp. 

The type Integer is not a subtype of Real in Modelica even though the set of primitive integer values 
is a subset of the primitive real values since there are some attributes of Real that are not part of Integer 
(see Figure 3-9). 
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Figure 3-9. Relation between the concepts of subtype and subset in the domains of electrical components 
and animals. 

The supertype relation is the inverse of the subtype relation. Since TempResistor is a subtype of 
Resistor, then Resistor is a supertype of TempResistor. 

model Resistor "Electrical resistor" 
Pin p, n "positive and negative pins"; 
Voltage v; 
Current i; 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
v - i*R; 

end Resistor; 
model TempResistor "Temperature dependent electrical resistor" 

Pin p, n "positive and negative pins"; 
Voltage v; 
Current i; 
parameter Real R(unit="Ohm") "Resistance at reference Temp."; 
parameter Real RT(unit="Ohm/degC")=0 "Temp, dependent Resistance."; 
parameter Real Tref(unit="degC")=20 "Reference temperature."; 
Real Temp=20 "Actual temperature"; 

equation 
v = i*(R + RT*(Temp-Tref)); 

end TempResistor; 
The definitions of Pin, Voltage, and Current that are used in the resistor classes above were previously 
defined in Section 2.8.3, page 39. 

3.18.1 Types and Subtypes Characterized by Public Interfaces 

In the previous section we defined the notion of type as a set of values, and the subtype relation as a subset 
relation. A convenient way of characterizing such a set (a type) is by describing the essential common 
properties of all elements that belong to the set. These properties can be viewed as the public interface of 
the elements. In this way, one can think of a type as an interface descriptor. 

For example, the record type x depicted in Figure 3-10 is characterized by its public fields x and b, 
which define the data access interface to instances of this record type. Moreover, the record Xs is a subtype 
of the record x since it has the same fields x and b, augmented by the additional field w. This is analogous 
to the previous case of TempResistor being a subtype of Resistor since instances of TempResistor 
have the same fields augmented by the additional attributes RT, Tref, and Temp. The records x and Xs as 
well as a few instances of these are declared below. 

/ - ^ B e c t r i c a l C o m p o n e n t s ^ - ^ Animals 

p a p a c i t ^ ^ R e s i s t o r s A / B i r d s X^Mammals \ 
I ( StandardResistors ) I f Bear Elephant ) 
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Figure 3-10. The type X can be defined as the set of record values containing r and b. The subtype Xs is the 
subset of values (instances) that contain r, b, and w. 

record X 
Real r; 
Boolean b; 

end X; 
record Xs 

Real r; 
Boolean b; 
Real w; 

end Xs; 
X xl,x2; // Instances xl and x2 
Xs xs; // Instance xs 

Returning to the set interpretation of types, the type x can be viewed as the set of all record values 
containing the attributes defined by x, for example, the infinite set {X(r=2.l,b=true), 
X(r=3.4,b=true), X(r=2.5,b=false), Xs (r=2 .1,b=false,w=2) , Xs(r=2.2,b=false, 
w = 3 ) , . . . ) . The statement that x l has the type x means that the value x l belongs to this infinite set. 

The type Xs is a subtype of x since its instances fulfill the additional property of having the attribute 
Real w; in all its values. Only a subset of values fulfills this property, as depicted in Figure 3-10. 

3.18.2 Inheritance Type versus Object Type 

It is relevant to distinguish between the so-called object type of a class and its inheritance type. The 
inheritance type is also called class type in certain literature but we do not use that term here because of 
confusion with the type of a class. The object type is based on the public attributes of a class, that is, its 
public interface, and used in situations related to data access, whereas the inheritance type also includes 
the protected attributes since both public and protected attributes are inherited. Thus a class declaration 
will give rise to two different types. 

3.18.3 Conceptual Subtyping of Subranges and Enumeration Types 

Conceptually, a subrange is a subset of an ordered set of elements, defined as the ordered set of all 
elements from the first to the last element in the subrange. A number of programming languages, including 

Type X: Records with at least 
/ fields named r and b 

/ instancesxl,x2 v n , ., , \ / Xs: Records with at least \ 
\ f fields r, b, w ) 

\ instance xs \ J 
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Ada and Pascal, allow the user to define subrange types of enumerable types, for example integer, 
subranges that appear as follows in Pascal: 

2. .10 

This subrange is conceptually a subtype of Integer and also a subrange type of integers from 2 to 10. 
The general idea of subrange subtypes as subsets of ordered enumerable elements is illustrated in Figure 
3-11, where SmallSizes is a subtype of AllSizes, int_l_2 is a subtype of lnt_l_4, and 
FalseBoolean a subtype of Boolean. 

Figure 3-11. Conceptual subtyping examples of enumeration types, Integer ranges, and Boolean ranges. 
However, general subrange subtyping as illustrated in this figure is not in the current version of Modelica. 

In Modelica we can define enumeration types e.g., as follows: 

type AllSizes = enumeration(small, medium, large, xlarge); 
type SmallSizes = enumeration(small, medium); 

According to the examples in Figure 3-11 and general subset relations, SmallSizes should be a subtype 
of AllSizes. However, this is not the case in the current version of Modelica, which does not support 
definition of subrange subtypes. 

Instead, subtyping of enumeration types usually requires type equivalence (Section 3.19, page 123), 
based on the fact that two identical sets are subsets of each other. This restrictive subtyping rule might be 
extended in the future, but that will require enhancements in several places of the Modelica language. 
There is also a special enumeration type enumeration ( : ) , which is a supertype of all possible 
enumeration types. For example: 

51 = enumeration(small,medium); // SI not subtype of S2 
52 = enumeration(small,medium,large); // S2 is not a supertype of SI 
53 = enumeration(small,medium,large); // S3 is a subtype of S2 
54 = enumeration(:); // SI, S2, S3 are subtypes of S4 

3.18.4 Tentative Type Representation of Records/Classes 

As just mentioned, a record type in Modelica is conceptually the (possibly infinite) set of all possible 
record values of that record type, where each value contains named values for the variables (also known as 
fields or attributes) of that record. Thus, both the record field names and the record field types are 
significant when defining a record type. Duplicate field names in a type are not allowed. In general, a 
tentative representation of the type of a record/class with N elements can be given by a descriptor that is a 
set of pairs of the form (field-name, field-type) where field ordering is unspecified, analogous to several 
type systems for object-oriented languages by Abadi and Cardelli: 

{namel.typel, name2:type2y ... nameN.typeN] 

We will gradually develop this tentative type representation into a more general type representation 
suitable for all type aspects of the Modelica language. However, returning to the view of a record type as a 
set of record values, consider the Person record declaration below: 

AUSizes Int_l_4 ^ 

/ \ / yr Boolean >v 

/ l a r g e X S m a l l S i z e s \ \ f 3 / Int_l_2 \ \ / t r u e / v \ 

I smal l m e d i u m J ^ ^ I f 1 2 / 4 ( / F a l s e B o o l e a n N J 

X J X V . ) J V V . false J J 
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record Person 
String name; 
Real weight; 
Real length; 

end Person; 
A set of Person values might appear as follows, using pseudo syntax for record values (not conforming to 
Modelica syntax), where both the field name tag and the field data value are part of a Person value: 

{{name:"Eve", weight:65, length:170}, 
{name:"Adam", weigth:80, length:180}f ... } 

In general, the ordering between the variables of a class is not considered significant except in two 
cases: 

1. The ordering within the two sets: function formal parameters and function results. 
2. The ordering between the variables of a record being passed to an external function. 

However, except for the case of function types, the ordering between variables (fields) is not considered 
significant for type checking. Therefore the following record value is also considered compatible with type 
Person: 

{weight:65, length:170, name:"Carl"} 

3.18.5 Array Type 

An array type is conceptually a set of array values, where each array value can be considered as a set of 
pairs (<array-element-index, array-value), analogous to the set of pairs (record-field-name, record-field-
value) that make up a record value. Thus, for a vector type with four elements, with the possible array 
indices '1', '2', '3', '4', where the array index is used as a name instead of the field name in a record, a set of 
three or more array values with labeled array elements could appear as follows in pseudo code: 

{ { 111 : 35 .1, '2 ' : 77, '3':38, M':96}, 
{111:5.1, '2':11, '3':305,'4':83 }, 
{'11:4.2, '2':10, '3':55, ,4':44}/ ... } 

Following our informal definition of array type, each possible index value for an array should also be part 
of the array type in the same way as all variable names of a record are significant. However, this is 
impractical or impossible when there is a large number of array elements and in cases where the number 
of array elements is unknown. Instead, we will soon turn to a more compact type representation. 

Unspecified dimension sizes is generally the case for library functions operating on arrays. For 
example, the library function for inverting a matrix should work on any size of matrix and therefore has 
the dimension sizes unspecified, causing the number of array elements to be unspecified. It would not 
make sense to have a separate inverting function for 2 x 2 matrices, another for 3 x 3 matrices, and so on. 
Thus it must be possible to define array types for which certain array dimension sizes are unspecified. Two 
vector types in Modelica are shown below: 

type Vec2 = Real[2]; // Vector type with specified dimension size 
type Vec = Real[:]; // Vector type with unspecified dimension size 

We now replace our informal set definition of array type above with a more compact type descriptor still 
with the same form as the one used for record types. This descriptor is a set containing a single pair {index-
specifier, element-type), which can be used since all array elements share the same element type, in 
contrast to records where variables (fields) usually have different types. In this array type representation, 
the element-type is the type of the array elements and the index-specifier represents all possible legal 
indices for the array where each dimension in an index is represented by a nonnegative size expression for 
the maximum index value of that the dimension, or a colon (:) representing unspecified dimension size: 

{ (index-specifier, element-type), ...} 
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The array type descriptors for the two types Vec2 and Vec would then become the following: 

{ (12 ', Real) } 
{ (': Real) } 
Turning to the problem of representing multidimensional arrays, we observe that in Modelica as well as 

in many programming languages a multidimensional array is defined as an array of arrays. Thus a 2 x 3 
matrix type is viewed as a 2-sized vector of 3-sized vectors. For example: 

type Mat23 = Real[2,3]; // Matrix type with specified dimension size 
type Mat = Real[:, :]; // Matrix type with unspecified dimension size 

These two matrix types will have the following type representation given the array of arrays 
representation: 

{ ( ' 2 ', { ('3', Real)} ) } 
{ («:', {(':', Real)} ) } 

The subtype relation between two array types, Asub subtype of A, requires that the element-type of Asub 
is a subtype of the element-type of A and each corresponding dimension specifier in the index-specifier is 
either identical size or the dimension specifier of A is a colon (:). Thus, Mat23 is a subtype of Mat. This is 
reasonable since arrays of type Mat 2 3 can be used in places where type Mat is required, but not vice versa. 

3.18.6 Tentative Function Type 

The definition of a function type is analogous to our previous definition of general class type with the 
additional properties that the ordering between the fields (variables), that is, the formal parameters of the 
function, is significant and that the prefixes input and output for each formal parameter are also part of 
the type of each formal parameter and thus part of the function type. A function with three input formal 
parameters and one result is actually quite different from a function with two input formal parameters and 
two results, even if the names and types of the formal parameters are the same in both cases. 

3.18.7 Complete Type Representation for Classes and Instances 

Regarding function types, in the previous section we concluded that the prefixes input and output are 
also part of the type of each element and thus part of the function type. In fact, all type prefixes when 
present in the variable declarations within a class declaration—flow, stream, discrete, parameter, 
constant, input, output, as well as the final element prefix—are considered part of the class type 
not only for functions but for all kinds of classes in Modelica. The variability prefixes discrete, 
parameter, constant are considered part of the type since they influence the semantics and type 
checking of assignment statements and equations. The flow and stream prefixes are part of the type 
since they affect the semantics of connection equations. Also, the f i n a l prefix influences the semantics of 
inheritance and modifications, described in more detail in Chapter 4. 

Thus, our tentative representation of the type of a class or instance is generalized to be a tuple of a set 
of attributes and a sequence ofpairs (<element-name, element-prefixes&type) for all N public elements in 
the class, where element ordering is part of the type but not used in type checking except in certain 
situations such as regarding functions, and index-specifier is used instead of element-name for array types: 

(type-attributes, {namel. prefixesl&typel, name2: prefixes2&type2, ... nameN: prefixesN&typeN}) 

Given the simple example function multiply below: 

function multiply; 
input Real x; 
input Real y; 
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output Real result; 
algorithm 

result := x*y; 
and multiply; 

Using our general definition of type to represent this function, we obtain the following tuple: 

({specialized-class: function, is-class: true, is-replaceable: false,...}, 
{x: input&Real, y: input&Real, result: output&Real) 

Regarding the general type attributes of multiply, it is a function and a class (not an instance) so it is 
not replaceable. Moreover, it contains a number of named elements that comprise two input formal 
parameters of type Real and one output result of type Real. 

3.18.7.1 Type Representation in Detail 

Below we show the type representation of a class or instance in even more detail, represented as a tuple: 

(itype-attributes, name-type-pairs) 

The first part of the type representation, the type attributes, contains the following information: 

• Whether it is an instance or a class. 
• The kind of specialized class. 
• Whether it is replaceable or not. 
• The flow or stream prefix, if present. 
• Declared variability prefix, constant, parameter, discrete, if present. 
• The prefixes input and output. 
• The prefixes inner and/or outer. 
• Whether the declaration is final, and in that case its contents represented in a way that avoids 

dependence on minor syntactic variations. 
• Array sizes (if any). 
• The condition(s) of conditional instance declarations (if any). 
• For an enumeration type or instance of enumeration type the names of the enumeration literals in 

order. 
• Whether it is a built-in type and in that case the built-in type name, one of (RealType, 

IntegerType, StringType or BooleanType. 
• Whether the class itself or the class of the instance is transitively nonreplaceable (Section 3.18.7.3, 

page 122), and if not, a reference to the replaceable class (Section 4.4, page 168) it refers to. 
• Only for an operator record class and (subclasses of) classes derived from ExternalObject: 

the full name of the operator record base-class, that is, the one containing the definition of the 
operations, or the class derived from ExternalObject, respectively. The second part of the type 
representation, the name-type pair sequence, is empty for an operator record class or a class 
derived from ExternalOb j ect, since the type is already uniquely defined by the full name of the 
operator record or the class derived from ExternalObject, respectively. This is sometimes 
called nominal typing. See also Section 9.5, page 481, regarding operator overloading and Section 
9.4.8, page 476, regarding ExternalObject. 

• Only needed for inheritance types: visibility (public or protected). 
The second part of the type representation consists of name-type pairs, a sequence containing one pair 

for each named public element defined in the class or instance. This kind of type representation is often 
called structural typing. This part is not needed and is empty for the type of operator record classes. 

The type contains a sequence of name-type pairs, one for each named element of the class or instance, 
including both local and inherited named elements. For object types, only include the public elements. 
For inheritance types needed for inheritance of classes, also include protected elements. Each pair 
(tuple) contains the following: 
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• The name of the element. 
• The type of the element as defined in this section and, regarding functions, also Section 9.3, page 

438; also see subtyping of functions in Section 3.19.6, page 130. This might have been modified 
by modifiers and is thus not necessarily identical to the type of the original declaration. 

Note that the public elements do not contain all of the information about the class or instance. When using 
a class as an inherited base class, we also need protected elements for the inheritance type, and for 
internal type checking we need, for example, import elements. However, the public information is 
sufficient for checking type compatibility of instances. 

3.18.7.2 Constraining Type 

Replaceable declarations in a class can be replaced by so-called redeclare operations to give a new 
modified class (Section 4.3, page 156). All replaceable declarations have a constraining type (Section 
4.3.7, page 162), which can be given explicitly after the constrainedby keyword, if present, or use 
otherwise defined as the type of the replaceable element itself. 

3.18.7.3 Transitively Nonreplaceable Classes 

In several cases, it is important to avoid that new elements can be added to the type of a class during 
redeclaration, especially considering short class definitions. Such classes are called transitively 
nonreplaceable. 

If it were possible to add an element to a replaceable class that is redeclared, that element when 
inherited from the replaceable class could in some cases conflict with an element with the same name in 
the enclosing class (Section 4.1.5.1, page 140). Being transitively nonreplaceable prevents such errors. 

See also the definition of transitively nonreplaceable in Section 4.3.10, page 166, and some usage 
examples and motivation for this feature in Section 4.1.5, page 140. Replaceable declarations are briefly 
explained in Section 3.11.6, page 103, and redeclarations are presented in detail in Section 4.3, page 156. 

A class reference is transitively nonreplaceable if and only if all parts of its name satisfy the following: 

• If the class definition is long it is transitively nonreplaceable if not declared replaceable (Section 
4.3.10, page 166). 

• If the class definition is short (e.g., class A=P.B) it is transitively nonreplaceable if it is 
nonreplaceable and equal to a class reference (P. B) that is transitively nonreplaceable. 

According to Section 4.1.5, page 140, for a hierarchical name reference, all parts of the name must be 
transitively nonreplaceable, that is, in extends A.B.C this implies that A.B.C must be transitively 
nonreplaceable, as well as A and A. B, with the exception of the class extends redeclaration mechanism, 
(Section 4.6, page 175) where the class reference must always be replaceable. 

3.18.8 Discussion on Types of Classes that Contain Local Classes 

So far we have primarily shown examples of classes that only contain attributes or fields (variables) that 
can contain data ("data fields"), similar to a classical record type. However, in Modelica it is possible to 
declare local classes inside a class, as, for example, the classes IC and BC inside the class RC2 below. 

class RC2 
Real x; // field x 
class IC 

Integer x; 
equation 

x = 2; // Refers to local x inside IC 
end IC; 
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class BC 
Real y; 

equation 
x = y; 

end BC; 
IC ix; 
BC bx; 

equation 
x = ̂  

end RC2; 

// Refers to x in RC2 

// field ix, 
// field bx, 

instance of IC 
instance of BC 

3 . 1 4 ; 

RC2 

The three variables ("data fields") of class RC2 are x, ix, and bx. There are also two local classes (not 
"data fields") ic and BC inside RC2. They can be referred to only within the local scope of RC2, but in 
principle they could be moved outside RC2 with some changes of names. An outside class BC could appear 
as follows: 

class RC2_BC 
Real y; 

equation 
z . b x . x = y; 

end RC2 BC; 

// Hypothetical BC outside RC2 

// Refers to x in the z instance of RC2 

A version of RC2 referring to such external classes would appear as follows: 

class RC2_v2 
Real x; 
RC2_IC ix; 
RC2_BC bx; 

equation 
x = 3.14; 

end RC2 v2; 

// Hypothetical RC2 referring to outside IC and BC 
// field x 
// field ix, instance of RC2_IC 
// field bx, instance of RC2_BC 

From this perspective it would be natural to include only the three "data fields" x, ix, and, bx in the type 
of RC2. Operations on and use of data objects of type RC2 involve only these three "data fields." 

On the other hand, the class RC2 BC is not very general since it refers only to the z instance of RC2 in 
its equation z. bx. x = y. The hypothetical notation RC2. bx. x in that equation is not possible since that 
would imply that bx is a class variable (see page 80), which is not the case. Also, class variables are not 
currently allowed in Modelica. 

Furthermore, one might argue that a class containing local classes is different from a class without local 
classes, and that the local types IC and BC need to be included anyway since they are referred to by ix and 
bx. These considerations have led to the design decision that in Modelica local classes are considered as 
elements of the type of the class within which they are declared. The "field name" of such a local class is 
the class name, and the type is the type representation of the local class as a tuple of attributes and a set of 
pairs according to our general type representation, but for brevity denoted by names such as RC2. ic and 
RC2.BC. The general type representation of class RC2 then becomes as follows, with unspecified type 
attributes: 

(type-attributes, {x: Real, IC: RC2.IC, BC: RC2.BC, ix: RC2.IC, bx: RC2.IC} ) 

3.19 Use of Subtyping and Type Compatibility 

Having defined the notion of type for the different kinds of classes and objects that can occur in Modelica, 
we need to turn to the issue of how and when are used. 
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Type equivalence is needed to ensure compatibility of data objects in different situations such as 
equality between the left-hand side and the right hand-side in equations, ensuring that the types of all 
arguments to the array constructor are equivalent since the types of all elements in array must be the same, 
and so on. 

We have informally defined the notion of subtype as analogous to the notion of subset, for example, 
with the example of TempResistor being a subtype of Resistor. The notion of subtype is usually 
associated with the idea of specialization and substitutability: if T2 is a subtype of Tl , then an object or 
class of type T2 should usually be allowed to be substituted instead of an object of Tl , or assigned to a 
variable of type Tl e.g., a TempResistor being substituted for a Resistor. 

Below we will discuss the use of subtyping and type equivalence, and provide more precise definitions 
of those notions. 

3.19.1 Uses of Type Compatibility of Expressions 

Type compatibility (equivalence) has the following main uses: 

• The types of the left- and right-hand sides of equations (e.g., x = y) must be equivalent after first 
doing type coercion, for example, an integer expression at one side of an equation is 
automatically converted to a Real expression if the other side has type Real. Regarding the 
variability properties (Section 6.8.1.3, page 278) which are part of the type of the variable a and 
expression expr in declaration equations or modifier equations such as a = expr, the variability of 
expr must be equal or lower compared to that of expr, the same rule as for assignments below. The 
variability of expr is converted to be the same as that of a, to make their types equivalent. 

• Assignment statements. In an assignment statement e.g., a := expr, the type T2 of the right-hand 
side must be equivalent to the type Tl of the left-hand side after possible type coercions. For 
example, type conversions makes assignments such as Real [: ] vec : = {1,2} possible, where 
the right-hand side has type Real [ 2 ], and the left side has type Real [ : ], where the type of the 
left-hand side is coerced into Real [2]. Additionally, the standard coercion rule of converting an 
Integer expression to a Real expression when it occurs at the right-hand side of an assignment 
to a Real variable is automatically applied in order to satisfy type equivalence. Moreover, the 
variability (Section 6.8.1.3, page 278) of the expression expr must be equal or lower than that of 
variable a, (e.g., an expr of parameter variability can be assigned to a variable of continuous-time 
variability, but not vice versa) and is converted to the variability of variable a. 

• The types of the arguments to the array construction function {} as well as to the relational 
operators (==, <>, <=, >=, <, >) must be equivalent, integer arguments are converted to Real 
arguments when needed to achieve type equivalence. Relational operators are defined only for 
scalar arguments, that is, not for arrays and user-defined class types. 

3.19.2 Checking Type Compatibility of Expressions 

Certain expressions consist of an operator applied to two or more type compatible subexpressions (here 
denoted A and B), including binary operators, e.g. A + B, B * A, if-expressions, e.g. if x then A else 
B, and array expressions, e.g. {A, B}. The resulting type of the expression in case of two type compatible 
subexpressions A and B is defined as follows: 

• If A is a record-expression B must also be a record-expression with the same named elements. The 
type compatible expression is a record comprised of named elements that are compatible with the 
corresponding named elements of both A and B. 
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• If A is an array expression then B must also be an array expression, and ndims(A)=ndims(B). The 
type compatible expression is an array expression with elements compatible with the elements of 
both A and B. If both size(A) and size(B) are known and size(A)=size(B) then this defines the 
size of the type compatible expression, otherwise the size of the expression is not known until the 
expression is about to be evaluated. In case of an if-expression, the size of the type compatible 
expression is defined based on the branch selected, and for other cases size(A)=si ze(B) must hold 
at this point. 

• If A is a scalar expression of a simple type B must also be a scalar expression of a simple type. 
• If A is a Real expression then B must be a Real or Integer expression and the type of the resulting 

expression is Real. 
• If A is an Integer expression then B must be a Real or Integer expression and the type of the 

resulting expression is Real or Integer (same as B). 
• If A is a Boolean expression then B must be a Boolean expression and the type of the resulting 

expression is Boolean. 
• If A is a String expression then B must be a String expression and the type of the resulting 

expression is String. 
• If A is an enumeration expression then B must be a enumeration expression and the resulting 

expression is an enumeration expression, and all enumeration expressions must be defined in terms 
of an enumeration type with the same enumeration literals in the same order. 

• If A has an operator record (Section 9.5.2, page 483) base class then B must also have an 
operator record base class, and the base class must be the same for both A and B. Otherwise 
neither A nor B may have an operator record base-class. This is also the operator record 
base class for the expression, for example, for if (cond) then A else B. 

• If A is derived from (is a subclass of, inheriting) ExternalOb j ect (Section 9.4.8, page 476) then B 
must also be derived from ExternalObject and they must have the same full name. Otherwise 
neither A nor B may be derived from ExternalObject. The common full name also defines the 
type of the expression, for example, for if (cond) then A else B. 

3.19.3 Uses of Subtyping 

Subtyping has the following uses, assuming that T2 is a subtype of T1: 

• Redeclarations. For explanations of redeclaration, modification, and inheritance see Chapter 4, 
page 135. The type of a class member can be changed through a redeclaration when the class is 
inherited through a modification. In a replaceable declaration, there can be an optional 
constraining type. In a redeclaration of a replaceable element the type T2 of the variable must 
be a subtype of the constraining type Tl . Furthermore, the constraining type of a replaceable 
redeclaration, that is, a redeclaration that can be further redeclared, must be a subtype of the 
constraining type of the declaration it redeclares. 

• Instance hierarchy lookup. The type of a definition declaration with prefix inner must be a 
subtype of the type of the corresponding reference declaration with prefix outer that references 
the definition declaration. 

• Argument passing at function calls. The type T2 of an argument passed to a formal parameter (of 
type T l ) of some function needs to be a subtype of the type Tl after possible type coercions. For 
example, a subtype of a record with additional fields can be passed to a parameter having the 
record type. An array of specific size can be passed to a parameter with unspecified dimension 
size. Passing a 2D array where a ID array is expected is not allowed. However, a ID array slice, 
for example, a row or column, can be extracted from the 2D array and passed in that case. 
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A class T2 that inherits a class Tl naturally becomes a subtype of Tl . However, inheritance is not required 
for subtyping. In one of our previous examples, TempResistor is a subtype of Resistor even though it 
does not inherit Resistor. 

3.19.4 Checking Subtyping 

As mentioned in the previous section, checking subtyping is needed where a class or instance Asub is 
substituted for another class or instance A in redeclarations, instance hierarchy lookup, and argument 
passing. Intuitively, for this to hold, all relevant elements of A must be present in Asub since all operations 
applied to A must automatically work also for Asub. 

A type of a class or instance Asub is a subtype of a class or instance A (or the constraining type of A), if 
and only if the type properties (Section 3.18.7.1, page 121) of A and Asub are identical, except in the 
following cases where additional considerations hold: 

• If A is not replaceable then Asub may not be replaceable. See Section 4.4, page 168 regarding the 
replaceable concept. 

• If A is transitively nonreplaceable (Section 3.18.7.3, page 122) then Asub must be transitively 
nonreplaceable. For each element in the inheritance type of A there must exist a type compatible 
(subtype of) element with the same name and visibility in the inheritance type of Asub. The type of 
Asub may not contain any other elements. We might even extend this to say that Asub and A 
should have the same contents, as in the additional restrictions below. 

• If A is replaceable then for all elements of the object type of A there must exist a plug-compatible 
element with the same name in the object type of Asub. 

• If A is neither transitively nonreplaceable (Section 3.18.7.3, page 122) nor replaceable then Asub 
must be linked to the same class, and for all elements of the object type of A there must thus exist a 
plug-compatible element with the same name in the object type of Asub. 

• If A is a nonreplaceable long class definition, Asub must also be a long class definition. 
• If Asub has an operator record (Section 9.5.2, page 483) base-class then A must also have one 

and it must be the same. If Asub does not have an operator record base-class then A may not have 
one. 

• If Asub is derived from (is a subclass of, is inheriting) ExternalObject (Section 9.4.8, page 
476), then A must also be derived from ExternalOb j ect and have the same full name. If Asub is 
not derived from ExternalOb j ect then A may not be derived from ExternalOb j ect. 

• Variability is ordered constant < parameter < discrete < (no prefix: continuous-time for 
Real), and Asub is only a subtype of A if the declared variability in Asub is less than or equal the 
variability in A. For a redeclaration of an element the variability prefix is by default inherited by 
the redeclaration. For example, there is no need to repeat parameter when redeclaring a parameter 
to be a parameter. 

• The input and output prefixes must be matched. This ensures that the rules regarding 
inputs/outputs for matching connectors and (nonconnector inputs) are preserved, as well as the 
causality restriction on blocks. For a redeclaration of an element the input or output prefix is 
inherited from the original declaratioa 

• The inner and/or outer prefixes must be matched. For a redeclaration of an element the inner 
and/or outer prefixes are inherited from the original declaration since it is not possible to have 
inner and/or outer as part of a redeclare. 

• The number of array dimensions in Asub and A must be matched. Furthermore, the following must 
be valid for each array dimension: either the array size in A is unspecified (":") or the content of the 
corresponding array dimension in Asub is identical to the one in A. 
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• A conditional instance can only be a subtype of a conditional instance. The condition must have 
equivalent contents, analogous to array sizes, except there is no ":" for conditional instances. For a 
redeclaration of an element the conditional part is inherited from the original. 

• A and Asub must have identical specialized class for function, package, connector. 
Moreover, a model or block class can only be a subtype of a model or block class, and a type 
or record class only a subtype of a type or record class. 

• If A is an enumeration type Asub must also be an enumeration type and vice versa. If A is an 
enumeration type not defined as (:) then Asub must have the same enumeration literals in the same 
order, whereas if A is an enumeration type defined as (:) then there is no restriction on to 
enumeration type Asub. 

For a replaceable declaration or modifier, the default class must be a subtype of the specified 
constraining class, if present. For a modifier, the following must apply: 

• The modified element should exist in the element being modified. 
• The modifier should be a subtype of the element being modified, and in most cases also fulfill 

plug-compatible subtyping (Section 3.19.5, page 127). 

If the original constraining class is legal, that is, there are no references to unknown elements, no illegal 
use of class/instance, and all modifiers are legal as above, then the resulting flat class will be legal, that is, 
there are no references to unknown elements and no illegal use of class/instance, the type is a subtype of 
the original constraining class, and references refer to similar entities. 

Moreover, plug-compatible subtyping (Section 3.19.5, page 127) is a further restricted variant of the 
above subtyping, whereas function subtyping (Section 3.19.6, page 130) is a further restricted version used 
for functions. 

3.19.5 Plug-Compatible Subtyping 

Plug-compatible subtyping is stricter than standard subtyping and is used to prevent undefined connection 
errors when "plugging in" a model, that is, passing a class or model instance (Asub) with connectors as an 
argument to a parameterized model (A). Declaring such formal model parameters is done using the 
replaceable construct (Section 4.4.1, page 169), whereas the argument passing is done using 
redeclare. A simple example of passing model instances as arguments is presented in Section 4.4.2, 
page 169. 

Regarding plug-compatible subtyping, in the model example below the Clutch model is a subtype, but 
not a plug-compatible subtype, of FrictionElement since it introduces a pressure connector not 
present in FrictionElement at the top instance level within Clutch. 

If a connector instance declared within another instance is redeclared (Section 4.3, page 156) it is not 
allowed to connect it to any new connector. The reason is that it is not allowed to connect to a connector 
more than one level down in the instance hierarchy (Section 5.3.2, page 191). Therefore it should not be 
allowed to introduce such a connector at a level where a connection is not possible. 

To avoid accidentally introducing such illegal connectors when performing redeclarations, we 
introduce the notion of plug-compatible subtyping, which is stricter than standard subtyping and requires 
the use of default connections. All connector instances with input prefix must be connected. Therefore all 
public declared connector instances which are present in Asub but are not present in A must be connected 
by default. 

The type of Asub is a plug-compatible subtype of the type of A (or the constraining type of A) if and 
only if: 

• As ub is a subtype of A. 
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• All public components which are present in Asub but not in A must be default connectable (defined 
below). 

An instance is default connectable if and only if: 

• All of its instance elements are default connectable. 
• The connector instance must not be an input, otherwise a connection to the input will be missing. 
• The connector instance must not be of an expandable connector class since an expandable 

connector potentially has inputs. 
• A parameter, constant, or nonconnector input must either have a binding declaration equation or all 

of its subinstances must have binding equations. 

Based on the above definitions, there are the following rules: 

• Case 1: A redeclaration of an inherited top-level instance declaration must be a subtype of the 
constraining type of the element being redeclared. 

• Case 2, the main case: In all other cases redeclarations must have plug-compatible subtypes of the 
constraining types of the elements being redeclared. 

The reason for the difference is that for an inherited top-level instance it is possible to connect this instance 
to the additional connectors, either in this class or in a derived class. However, for instances further down 
in instance hierarchies this is not possible and we have to rely on default connections guaranteed by plug-
compatible subtyping. 

For example, in the example below Clutch is a subtype, but not a plug-compatible subtype of 
FrictionElement, since it introduces the input connector pressure. 

The example uses extends, replaceable, and redeclare which are introduced in Chapter 4, page 
135. A flattened version of the same example is provided further below to make it easier to follow the 
effects of inheritance and redeclarations. Take special notice of the classes FlatDriveLine and 
FlatUseDriveLine compared to DriveLine and UseDriveLine. 

partial model TwoFlanges 
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 
Modelica.Mechanics.Rotational.Interfaces.Flange__b flange_b; 

end TwoFlanges; 
partial model FrictionElement 

extends TwoFlanges; 

end FrictionElement; 

model Clutch "Subtype - but not plug-compatible subtype of FrictionElement" 
Modelica.Blocks.Interfaces.Reallnput pressure; // An input, not a flow var 
extends FrictionElement; 

end Clutch; 

model DriveLineBase 
extends TwoFlanges; 
Inertia Jl; 
replaceable FrictionElement friction; 

equation 
connect(flange_a, Jl.flange_a); 
connect(Jl.flange_b, friction.flange_a); 
connect(friction.flange_b, flange_b); 

end DriveLineBase; 

model DriveLine "Case 1, Clutch must be subtype of FrictionElement" 
extends DriveLineBase(redeclare Clutch friction); // Redeclaration OK 
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Constant const; //Introduced and used in the connection 
equation 
connect(const.y, friction.pressure); // Legal connection to new 
// input connector pressure because inherited from top-level of DriveLine 

end DriveLine; 

model UseDriveLine "Illegal model" 
// Case 2, Clutch must be a plug-compatible subtype but is not 
// Hierarchical connection to base.friction.pressure would be illegal 

DriveLineBase base(redeclare Clutch friction); // Redeclaration not OK 
Constant const; //Introduced and used in the connection 

equation 
connect(const.y, base.friction.pressure); // Illegal hierarchical connect 

end UseDriveLine; 

The above model has been partially flattened below, where all inheritance (extends) and 
redeclarations have been expanded. 

partial model FrictionElement 
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b; 

end FrictionElement; 

model Clutch "Subtype - but not plug-compatible subtype of FrictionElement" 
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b; 
Modelica.Blocks.Interfaces.Reallnput pressure; // An input, not a flow var 

end Clutch; 

model DriveLineBase 
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b; 
Inertia Jl; 
replaceable FrictionElement friction; 

equation 
connect(flange_a, Jl.flange_a); 
connect(Jl.flange_b, friction.flange_a); 
connect(friction.flange_b, flange_b); 

end DriveLineBase; 

model FlatDriveLine "Redeclaration of friction in Driveline done" 
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 
Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b; 
Inertia Jl; 
Clutch friction; 
Constant const; //Introduced and used in the connection 

equation 
connect(const.y, friction.pressure); // Legal connection to new 
// input connector pressure because inherited from top-level of DriveLine 

end Flat DriveLine; 

model FlatUseDriveLine "Redeclaration of friction component done, needing 
a flattened class DriveLineBaseClutch for base" 

DriveLineBaseClutch base; 
Constant const; //Introduced and used in the connection 

equation 
connect(const.y, base.friction.pressure); // Illegal hierarchical connect 

end FlatUseDriveLine; 

model DriveLineBaseClutch "Introduced class needed in FlatUseDriveLine" 
Modelica.Mechanics.Rotational.Interfaces.Flange_a flange_a; 
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Modelica.Mechanics.Rotational.Interfaces.Flange_b flange_b; 
Inertia Jl; 
Clutch friction; 

equation 
connect(flange_a, Jl.flange_a); 
connect(Jl.flange_b, friction.flange_a); 
connect(friction.flange_b, flange_b); 

end DriveLineBaseClutch; 
To summarize, if a declared subinstance is redeclared, it is impossible to connect it to any new connector 
introduced by the redeclaration since connecting to a connector more than one level down is illegal 
(Section 5.3.2, page 191). Thus any new connectors must work without being connected, that is, use the 
default connection of flow-variables. That fails for inputs, and expandable connectors may contain inputs. 

For parameters and nonconnector inputs, it would be possible to provide bindings in a derived class, 
but that would require hierarchical modifiers and this would be bad modeling practice because a 
hierarchical modifier (with several levels of dot-notation) must be used in order to make a model valid. 

A replaceable class might be used as the class for a subinstance; therefore plug-compatibility is 
required not only for replaceable subcomponents, but also for replaceable classes in a class. For constraints 
on redeclarations in general, see Section 4.3.7, page 162 and Section 4.3.11, page 166. 

3.19.6 Function Subtyping 

Functions may be called with either named or positional arguments, and thus both the names and the order 
of the arguments are significant. If a function (A) is redeclared to another function (Asub) (Section 4.3, 
page 156), any new formal parameters (in Asub) must have declaration assignments to default values and 
be placed at the end of the formal parameter list in order to preserve the meaning of existing calls without 
arguments passed to these new formal parameters. 

The (type of) a function class Asub is a function subtype of a function class A if and only if: 

• The type of Asub is a subtype of A according to the general class subtyping (Section 3.19.4, page 
126). 

• All input formal parameters of A have correspondingly named input formal parameters of Asub in 
the same order and preceding any additional input formal parameters of Asub. 

• All result formal parameters of A have correspondingly named result formal parameters of Asub in 
the same order and preceding any additional result formal parameters of Asub. 

• An input formal parameter of Asub must have a declaration assignment to a default value if the 
corresponding input formal parameter has a declaration assignment to a default value in A. 

• An input formal parameter of Asub not present in A must have a declaration assignment to a 
default value. 

Based on the above definition the following subtyping restriction holds for redeclaration of functions: 

• The type of a function (Asub) supplied in a redeclaration must be a function subtype of the 
constraining type of the function (A) being redeclared. 

The following example demonstrates the use of function subtyping. In the PlanetSimulation model 
the gravitational force field function gravity, declared in model Body, is redeclared to two variants of 
force field functions which must be function subtypes of Gravitylnterface. 

partial function Gravitylnterface 
input Modelica.Slunits.Position position[3]; 
output Modelica.Slunits.Acceleration acceleration[3]; 

end Gravitylnterface; 

function PointMassGravity 
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extends Gravitylnterface; 
input Modelica.Slunits.Mass m; 

algorithm 
accelerations -Modelica.Constants.g*m*position/(position*position)A1.5; 

end PointMassGravity; 

model Body 
Modelica.Mechanics.MultiBody.Interface.Frame_a frame_a; 
replaceable function gravity=GravityInterface; // NOTE: gravity must be a 

// subtype of Gravitylnterface. 
equation 

frame_a.f = gravity(frame_a.rO); // or gravity(position=frame_a.rO) ; 
frame_a.t = zeros(3); 

end Body; 

model PlanetSimulation 
function sunGravity = PointMassGravity(m=2e30); 
Body pianeti(redeclare function gravity=sunGravity) ; 
Body planet2(redeclare function gravity=PointMassGravity(m=2e30)); 

end PlanetSimulation; 
Note that PointMassGravity by itself is not a function subtype of Gravitylnterface since there is 
no default binding assignment for m. However, PointMassGravity (m=2e30) is a function subtype of 
Gravitylnterface since it has a default value for m through the modification m=2e30. Moreover, 
sunGravity inside PlanetSimulation is a function subtype of Gravitylnterface since it has a 
default value for m. 

3.20 Summary of Type Concepts 

In this section the most important type concepts introduced in previous sections are summarized. 

Term Description 
type The notion of type can be defined as a set of values (objects). A 

convenient way of characterizing such a set (a type) is by describing the 
essential common properties of all elements which belong to the set, 
e.g., the set of all Integer values or all Real values. These properties can 
be viewed as the public interface of the elements. In this way one can 
think of a type as an interface descriptor. 

Thus, a type (sometimes called object type) used to describe the 
objects which can be created from a certain class can be defined by the 
public declarations of that class. Note that certain elements of a class 
such as import clauses do not belong to the essential public declarations. 

The "essential" public declarations of a class are those elements 
needed to decide whether a class Asub can be used instead of a class A. 
For example, a declaration Real x is part of the type but an import 
clause such as import Foo is not. See also Section 3.18, page 115. 

inheritance type The inheritance type of a class is defined by the public and protected 
declarations of a class that are needed to decide whether Asub can be 
used instead of A. The inheritance type, also known as class type in the 
literature, is used when inheritance takes place since both protected and 
public declarations are inherited. See also Section 3.18.2, page 117. 

subtype The subtype relation is basically a subset relation between types 
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defined as sets. Since a type is usually defined by the common interface 
property of all objects in the type, Asub is a subtype of A, if the public 
declarations of A are also available in Asub. For example, if A has a 
declaration Real x, this declaration must also be present in Asub. If 
Asub has a declaration Real y, this declaration need not be present in A. 

When subtyping between inheritance types is determined, both the 
public and protected declarations must be considered. See also Sections 
3.18.1,3.18.7 and3.19. 

plug-compatible 
subtype 

Asub is a plug-compatible subtype of A, if Asub is a subtype of A and 
if connector instances in Asub that are not in A, are default connectable. 
For example, it is not allowed that such connectors have variables with 
the input prefix, because then they must be explicitly connected. 

A model or block Asub containing additional connectors cannot be 
used instead of A if the particular situation does not allow making a 
connection to these additional connectors. In such a case the stricter 
plug-compatible subtyping requirement is required for a redeclaration. 
See also Section 3.19.5, page 127. 

function subtype Asub is a function subtype of A, if Asub is a subtype of A and if the 
additional formal parameters of function Asub that are not in function A 
are defined in such that Asub can be called at places where A is called. 
For example each additional formal parameter in Asub compared to A 
must have a default value. See also Section 3.19.6, page 130. 

3.21 Summary 

This chapter has its focus on the most important structuring concept in Modelica: the class concept. We 
started with a tutorial introduction of the idea of contract between designer user together with the basics of 
Modelica classes as exemplified by the moon landing model, but excluding inheritance, which is presented 
in Chapter 4. We continued by presenting the idea of specialized classes, the predefined types in Modelica, 
and the structure of declarations—both class declarations and variable declarations. We concluded with a 
presentation of the two kinds of lookup in Modelica: nested lookup and instance hierarchy lookup, 
followed by a description of the typing and subtyping concepts of Modelica and their usage. 

3.22 Literature 

The primary reference document for this chapter is the Modelica language specification (Modelica 
Association 2012), (Modelica Association 2013). Several examples in this chapter are based on similar 
examples in that document, and in (Modelica Association 2000). Some formulations and pieces of text 
from the Modelica specification are reused in this chapter in order to state the same semantics. 

At the beginning of this chapter, we mention the idea of a contract between software designers and 
users. This is part of methods and principles for object-oriented modeling and design of software described 
in (Rumbaugh 1991; Booch 1991; Booch 1994; Meyer 1997). The moon landing example is based on the 
same formulation of Newton's equations as in the lunar landing example in (Cellier 1991). 

The typing and subtyping concepts of Modelica are inspired by some of the simpler type systems 
described in the introductory part of (Abadi and Cardelli 1996). The concepts of inheritance type vs. object 
type in the Modelica context were first described in (Broman, Fritzson, Furic 2006). Type safety in general 
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for such languages is discussed in (Broman and Fritzson 2006). Dimensional inference and unit checking 
is presented in (Broman, Aronsson, and Fritzson 2008). 

3.23 Exercises 

Exercise 3-1: 

Creating a Class. Create a class, Multiply, that calculates the product of two variables, which are Real 
numbers with given values. 

Make the previous class into a model. 

Exercise 3-2: 

Creating a Function and Making a Function Call: Write a function, AddTen, that adds 10 to the input 
number. Make a function call to AddTen with the input 3.5. 
Exercise 3-3: 

Creating a Local Class: Here you should test that local classes are possible. For example, given the trivial 
class Add below, create a new empty class AddContainer, and place Add as a local class inside 
AddContainer. 

class Add 
Real x = 1; 
Real y = 2; 
Real z; 

equation 
x + y = z; 

end Add; 
Exercise 3-4: 

Creating Instances: Consider the class Student below: 
class Student 
constant Real legs = 2; 
constant Real arms = 2; 
parameter Real nrOfBooks; 
parameter String name = "Dummy"; 

end Student; 
Create an instance of the class Student. 
Create another instance and give the student the name Alice. This student has 65 books. 

You also want to create a student called Burt who owns 32 books. 

Exercise 3-5: 

Question: What is a variable? 
Question: Which are the two kinds of variables and what is the difference between them? 
Question: What is a parameter? 

Exercise 3-6: 

Declaring Variables. Define a class Matrices that declares the variables ml, m2, m3, m4 all being 
matrices with integer respectively Real numbers. Make at least one of them an array. Let ml and m2 be 
parameters, m3 a regular variable, and m4 a constant. 

Exercise 3-7: 
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Question: How can a variable be initialized? 

Initializing Variables. Declare the variables lengthl, length2, and length3 of type Real with 
different initial values. One of the variables should have the value 0. Name the class Variables. 
Exercise 3-8: 

Creating a Record: Create a record Dog with the value nrOfLegs which is an Integer, and name which 
is a String. Give the variables some values. 

Exercise 3-9: 

Question: What is a type? 
Question: What is a subtype? 
Question: What is a supertype? 

Subtype and Supertype: 

class House 
Real length; 
Real width; 

end House; 
Define a class Room that is a subtype of the class House. This also means that House is a supertype of 
Room. Also give some values to the variables. 

Exercise 3-10: 

Access Control: Complete the classes Access and Access Inst below by adding simple equations. The 
variable acc is an instance of the class Access, which contains the variables a, b, c, d and e, of which d 
and e are protected. Where can the variables be referenced e.g., in equations setting them equal to some 
numeric constant values? (Set a = 7 .4 in the class AccessInst.) 

class Access 

equation 

end Access; 
class Accesslnst 
Acc acc; 

end Accesslnst; 
Exercise 3-11: 

Introduce a ground force into the classes of the MoonLanding model to make the lander stand still after 
the landing, thus avoiding accelerating toward the center of the moon. 



Chapter 4 

Inheritance, Modifications, and Generics 

One of the major benefits of object orientation is the ability to extend the behavior and properties of an 
existing class. The original class, known as the base class or superclass, is extended to create a more 
specialized version of that class, known as the derived class or subclass. In this process, the data and 
behavior of the original class in the form of variable declarations, equations, and certain other contents are 
reused, or inherited, by the subclass. In fact, the inherited contents is copied from the superclass into the 
subclass, but before copying certain operations, such as type expansion, checking, and modification, are 
performed on the inherited contents when appropriate. 

In Chapter 2, page 30, we briefly described how classes can be extended through inheritance using the 
extends clause in Modelica. For example, a class Point was extended to a more specialized class called 
ColoredPoint containing additional variables and equations dealing with the color aspects. Classes can 
also be extended through modifications in Modelica, which is just a variant of inheritance by which the 
contents of the superclass is copied in "expanded" form into the subclass apart from certain elements that 
are modified or replaced. 

In Chapter 3 we defined the notion of contract between the designer of the class and the 
modeler/programmer who uses it. The contract is essentially what the class designer has promised that the 
class will do, that is, its semantics. This is described by documentation as well as by connectors, variables, 
and other public elements of the class. The equations of a class together with possible algorithmic parts 
define the behavior and are therefore an important part of its semantics. 

When a class is extended/inherited by adding new variables and additional behavior, for example, 
through extra equations, a new class is created with an extended contract. However, one should avoid 
changing the part of the contract the subclass inherits from the superclass since otherwise an instance of 
the subclass cannot be used in place of an instance of the superclass—the subclass would not be a true 
specialization (and thus subtype) of the superclass. It is reasonable to change the way the superclass's 
contract is implemented but we should avoid making changes that violate the contract of the superclass. 

Violating the contract of the superclass usually does not occur when extending a Modelica class using 
extends clauses that add new variables and equations. Still, it is possible to add equations in a subclass 
that invalidate the behavior of a superclass, for example, by creating an unsolvable system of equations. 
Also, when using inheritance through modification, it is even possible to change the type of inherited 
members of the superclass, provided that those members have been declared replaceable by the 
superclass designer. Therefore, to make visible for the user the possible danger that the semantics of the 
subclass may not be compatible with the superclass, it is required to use the special keyword redeclare 
in such modifications. 

In the rest of this chapter we first examine the basic method of inheritance in Modelica, including 
application to moon landing and other examples, followed by a description of the concept of modification 
and inheritance through modification. Then we present how to do generic parameterized classes in 
Modelica. Finally, we discuss how a class should be designed to be extended. 

135 
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4.1 Inheritance 

Inheritance from a superclass (also called base class) into a subclass (derived class) is specified by an 
extends clause containing a superclass identifier and possibly modifiers (Section 4.2.6, page 152): 

extends superclass identifter> <optional modifiers> ; 

The extends clause is placed within some subclass: 

class <subclass identifier> 
extends <superclass identifier <optional modifiers> ; 

end <subclass identifier ; 

As mentioned, the inherited contents is copied from the superclass into the subclass at the place of the 
extends clause. However, before copying certain operations, such as type expansion, checking, and 
modification, might be performed on the inherited contents. 

Let us regard an example of extending a very simple Modelica class, for example, the class 
ColorData introduced in Chapter 2, Section 2.4 on page 30. We show two classes named ColorData 
and Color, where the derived class (subclass) Color inherits the variables to represent the color from the 
base class (superclass) ColorData and adds an equation as a constraint on the color values. 

record ColorData 
Real red; 
Real blue; 
Real green; 

end ColorData; 
class Color 
extends ColorData; 

equation 
red + blue + green = 1; 

end Color; 
In the process of inheritance, the data and behavior of the superclass in the form of variable and 

attribute declarations, equations, and certain other contents, excluding import clauses, are copied into the 
subclass. However, as already mentioned, before the copying is done certain type expansion, checking, and 
modification operations are performed on the inherited definitions. The contents of the expanded inherited 
class are copied into the subclass at the position of the extends clause. The expanded Color class is 
equivalent to the following class: 

class ExpandedColor 
Real red; 
Real blue; 
Real green; 

equation 
red + blue + green = 1; 

end ExpandedColor; 

4.1.1 Inheritance of Elements with the Same Name as an Existing Element 

What happens if a variable or attribute declaration is inherited which has the same name as a local variable 
or other element already present in the derived class? This is illegal if the local variable or attribute 
declaration and the inherited declaration are different, for example, have different types, different 
protection level public or protected, or some other difference. However, this is legal if the local 
declaration and the inherited one are identical, in which case they are subsumed into a single declaration, 
i.e., one is discarded since they are identical. 
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For example, the locally declared variable blue in the class ErrorColor is identical to the inherited 
variable blue, which is no problem since they are identical and are subsumed into a single blue variable. 
On the other hand, the local variable red conflicts with the inherited variable red since one is a Real and 
the other is an integer, which is impossible to have within the same class. 

class ErrorColor 
extends ColorData; 
Real blue; // Legal, since identical to the inherited variable blue 
Integer red; // Illegal, since same name but different type 

equation 
red + blue + green = 1; 

end ErrorColor; 

4.1.2 Inheritance of Equations 

In the previous section we mentioned that inherited equations are copied from the superclass or base class 
and inserted into the subclass or derived class. What happens if there already is an equivalent equation 
locally declared in the derived class? Then we may obtain an underdetermined system of equations which 
makes the system unsolvable if there are not enough additional equations for the variables. Remember that 
there must be the same number of independent equations as the number of variables, in order to solve a 
system of equations. 

class Color2 
extends Color; 

equation 
red + blue + green = 1; 

end Color2; 
The inherited class Color already contains an equation, which makes Color2 contain two identical 
equations. A Modelica tool may give a warning when an identical equation is inherited, for example, as 
below. 

red + blue + green = 1; 
red + blue + green = 1; 

4.1.3 Multiple Inheritance 

Multiple inheritance, that is, several extends clauses, is supported in Modelica. This is useful when a 
class wishes to include several orthogonal kinds of behavior and data, for example, combining geometry 
and color. 

For example, the new class ColoredPoint inherits from multiple classes, that is, uses multiple 
inheritance, to get the position variables from class Point, as well as the color variables together with the 
equation from class Color. 

class Point 
Real x; 
Real y, z; 

end Point; 
class ColoredPoint 
extends Point; 
extends Color; 

end ColoredPoint; 
In many object-oriented programming languages multiple inheritance causes problems when the same 
definition is inherited twice, but through different intermediate classes. A well-known case is so-called 
diamond inheritance (Figure 4-1): 
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Point 

/ \ VerticalLine HorizontalLine 

\ Rectangle 

Figure 4-1. Diamond inheritance. 

The class Point contains a coordinate position defined by the variables x and y.- The class 
VerticalLine inherits Point but also adds the variable vlength for the line length. Analogously, the 
class HorizontalLine inherits the position variables x, y and adds a horizontal length. Finally, the class 
Rectangle is intended to have position variables x, y; a vertical length, and a horizontal length. 

class Point 
Real x; 
Real y; 

end Point; 
class VerticalLine 
extends Point; 
Real vlength; 

end VerticalLine; 
class HorizontalLine 
extends Point; 
Real hlength; 

end HorizontalLine; 
class Rectangle 
extends VerticalLine; 
extends HorizontalLine; 

end Rectangle; 
The potential problem is that we have diamond inheritance since the coordinate position defined by the 
variables x and y is inherited twice: both from VerticalLine and from HorizontalLine. Should the 
position variables from VerticalLine be used, or the ones from HorizontalLine? Is there some way 
to resolve the problem? 

In fact, there is a way. In Modelica, diamond inheritance is usually not a problem since there is a rule 
stating that if several identical declarations are inherited, only one of them is kept. Thus, there will be only 
one set of position variables in the class Rectangle, making the total set of variables in the class the 
following: x, y, vlength, and hlength. The same is true for the classes Rectangle2 and Rectangle3 
below. 

class Rectangle2 
extends Point; 
extends VerticalLine; 
extends HorizontalLine; 

end Rectangle; 
class Rectangle3 

Real x, y; 
extends VerticalLine; 
extends HorizontalLine; 

end Rectangle; 
The reader might perhaps think that there could be cases where the result depends on the relative order 

of the extends clauses. However, this is in fact not possible in Modelica, which we shall see in Section 
4.1.8 below. 
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4.1.4 Restrictions on the Kind of Inherited Base Class 
Since specialized classes of different kinds have different properties (Section 3.8, page 87) only 
specialized classes that are "in some sense compatible" to each other can be derived from each other via 
inheritance. Table 4-1 shows which kind of specialized class can be used in an extends clause of another 
kind of specialized class (the "grey" cells mark the few exceptional cases, where a specialized class can be 
derived from a specialized class of another kind). 

Table 4-1. Allowed combinations of base classes and derived classes. 

Base Class 

Derived 
Class 

package operator function operator 
function 

type record operator 
record 

expandable 
connector 

connector block model 

package yes 
operator yes 
function yes 
operator 
function 

yes yes 

type yes 
record yes 
operator 
record 

yes 

expandable 
connector 

yes 

connector yes yes yes yes 
block yes yes 
model yes yes yes 

Some specialized classes can also be derived from, that is, inherit from, other kinds of classes. Those 
cases of inheritance are marked with a grey background in the table. If a derived class is inherited from 
another type of specialized class, then the result is a specialized class of the derived class type. For 
example, if a block inherits from a record, then the result is a block. 

All specialized classes can be derived from class, provided the resulting class fulfills the restriction(s) 
of the specialized class. It is recommended to use the most specific specialized class. 

The specialized classes package, operator, function, type, record, operator record, and 
expandable connector can only be derived from their own kind. For example, a package can only be a 
base class for packages. All other kinds of classes can use the import clause to use the contents of a 
package and from class. 

Below we show some examples of inheritance, 

record RecordA 

end RecordA; 

package PackageA 

end PackageA; 

package PackageB 
extends PackageA; // Fine, a package can inherit a package, 

end PackageB; 

model ModelA 
extends RecordA; // Fine, a model can inherit a model, 

end ModelA; 
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model ModelB 
extends PackageA; // Error, a model cannot inherit a package! 

end ModelB; 

4.1.5 Restrictions on Base Classes and Constraining Types to be 
Transitively Nonreplaceable 

The class name used after extends for base classes and after constrainedby for constraining classes 
(Section 4.3.7, page 162) must use a class reference considered transitively nonreplaceable (see definition 
in Section 3.18.7.3, page 122), meaning approximately that there are no replaceable elements in the 
referenced class or any of its base classes or constraining types transitively at any level 

For example, in this extends clause BaseClass must be transitively non-replaceable: 
extends BaseClass; 
In this example from Section 4.3.7, page 162, the constraining type Two Pin must be transitively 

nonreplaceable: 

replaceable type CompType = Resistor constrainedby TwoPin; 
For a replaceable variable declaration without constraining clause the class must use a class reference 

considered transitively nonreplaceable. For example, here the class Voltage must be transitively 
nonreplaceable. 

replaceable Voltage u; 
Constraining classes are always transitively nonreplaceable, either if given explicitly after a 

constrainedby keyword or derived implicitly as in the above Voltage example. 
However the rule regarding transitively nonreplaceable does not apply to class extends, where the 

inherited class must be replaceable (Section 4.6, page 175). 

4.1.5.1 Motivation for Transitively Nonreplaceable 

What is the motivation for the restriction of being transitively nonreplaceable? The main reason is to avoid 
errors/conflicts with existing elements in an enclosing class if an inherited class would be redeclared to 
contain additional elements with the same name(s) as existing elements in that enclosing class. 

On the other hand, one might argue that the special restriction for transitively nonreplaceable is 
unnecessary since an inheritance conflict is detected anyway by the requirement that an inherited element 
with the same name must have identical type (Section 4.1.1, page 136). This is the case for the variable y 
in the example below. 

However, there is one remaining reason for keeping the restriction of transitively nonreplaceable: early 
detection of errors. Errors such as the inheritance conflict can be prevented just by checking a library 
containing models such as A below, rather than waiting for some future usage of the library to trigger an 
error. 

Consider the following example: 

model A 
extends M; // Inherits replaceable M below - Error! 

// since M is not transitively non-replaceable 

replaceable model M // Inherited into A 
Real x; 

end M; 

Real y = 1.0; // Element y in the enclosing scope of M 
end A; 
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model B 
A al; 
A a2(redeclare model M = M2); // Not OK, creates an inheritance conflict 

// between Integer y and Real y 

model M2 // M2 is a subtype of M 
Real x; 

// Avoid conflict: must be the same when inherited 
Integer y; // M2.y will conflict with A.y when inherited into A 

// M2.y has Integer type, A.y has Real type 
// Real y = 1.0; // This would be OK, A.y is the same as M2.y 

end M2; 
end B; 

The instance a l will contain: 

Real x; 
Real y = 1.0; 

The instance a2 will contain: 

Real x; 
Integer y; // Inheritance conflict!, two different definitions of y 
Real y = 1.0; 

4.1.6 Restrictions on Combining Inherited Classes and other Declarations 

Predefined simple types such as Real, integer, and so on (Section 3.9, page 93), and arrays of those are 
allowed to be inherited in a limited way, for example: 

type Voltage 
extends Real(unit= "V", min=-220.0, max=220.0); 

end Voltage; 
Here we just changed the default values of the attributes unit, min, and max for the new subtype called 
Voltage. 

Another example of allowed inheritance from simple predefined types or arrays of simple types is the 
declaration of an overdetermined type such as Orientation (Section 8.5.1, page 374): 

type Orientation "Transformation matrix rotating frame 1 into frame 2" 
extends Real[3,3]; 
function equalityConstraint 

input Orientation R1 "Rotation of inertial frame to frame 1"; 
input Orientation R2 "Rotation of inertial frame to frame 2"; 
output Real residue[3]; 

end equalityConstraint; 

end Orientation; 
On the other hand, when creating subtypes of the simple types it is important that the basic properties 

of the types are preserved. For example, it should always be possible to map a subtype of Real to a double 
precision floating point variable. 

This would be violated if we allow the combination of inherited predefined types with additional 
variable declarations. Such a resulting subtype might need several floating point variables, integer 
variables, or other data structures, which would violate several of the assumptions about the Real type, for 
example, performance, size, and numerical behavior. Therefore such a combination is disallowed. 
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Another case that is not allowed because of undefined semantics is a combination of a class with a 
nonempty type prefix such as flow, stream, discrete, parameter, constant, input, or output. 

To summarize, it is not allowed within the same class to combine variable declarations or inheritance 
from other classes with inheritance from the following. 

1. A simple type (Real, Boolean, Integer, String and enumeration types). 
2. An array type. 
3. A class with non-empty type prefix. 
4. Any class transitively inheriting from cases 1 to 3. 

The following is an illegal model that combines inheritance from a simple type and another class. 

model IllegalCombinedExtends // Illegal combination of extends 
extends Real; // Inheritance from a simple type 
extends MyClass; // Inheritance from another class 

end IllegalCombinedExtends; 
The illegal models below illustrate cases 1,2, and 3 mentioned above. 

model Foo2 
Real xl, x2; 

end Foo2; 

model Foo2Input = input Foo2; 

model Real3 = Real[3]; 

connector IllegalModell // Case 1 
extends Real; 
Real y; // Illegal combination of variable and inherited simple type 

end IllegalModell; 

model IllegalModel2 // Case 2 
extends Real3; 
Real x; // Illegal combination of variable and inherited array class 

end IllegalModel2; 

model IllegalModel3 // Case 3 
extends Foo2Input; 
Real x; // Illegal combination of variable and inherited prefixed class 

end IllegalModel3; 
Another restriction is that a name of an inherited class (such as C below) may not be inherited from any 

base class (such as B below): 

class BaseClassExtendsConflict 
class B 
class C end C; 

end B; 

class C end C; 

class D 
extends B; 
extends C; // Incorrect, since the name C is inherited from B 

end D; 
end BaseClassExtendsConflict; 
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4.1.7 Processing Declaration Elements and Use Before Declare 

In order to guarantee that declared elements can be used before they are declared and that they do not 
depend on their order of declaration, the lookup and analysis of element declarations within a class 
proceeds as follows: 

1. The names of declared local classes, variables, and other attributes are found. Also, modifiers are 
merged with the local element declarations, and redeclarations are applied. 

2. Extends clauses are processed by lookup and expansion of inherited classes. Their contents is 
expanded and inserted into the current class. The lookup of the inherited classes should be 
independent, that is, the analysis and expansion of one extends clause should not be dependent on 
another. 

3. All element declarations are expanded and type checked. 
4. A check is performed that all elements with the same name are identical. 

The reason that all the names of local types, variables, and other attributes need to be found first is that 
a use of an element can come before its declaration. Therefore the names of the elements of a class need to 
be known before further expansion and type analysis are performed. 

For example, the classes Voltage and Lpin are used before they are declared within the class C2: 

class C2 
Voltage vl, v2; 
Lpin pn; 
class Lpin 

Real p; 
end Lpin; 
class Voltage = Real(unit="kV"); 

end C2; 

4.1.8 Declaration Order of extends Clauses 

We have already stated in Chapter 2 and in the previous section that in Modelica the use of declared items 
is independent of the order in which they are declared, except for function formal parameters and record 
fields (variables). Thus variables and classes can be used before they are declared. This also applies to 
extends clauses. The order in which extends clauses are stated within a class does not matter with 
regards to declarations and equations inherited via those extends clauses. 

4.1.9 The MoonLanding Example Using Inheritance 

In the MoonLanding example from Chapter 3, page 83, the declaration of certain variables like mass and 
name were repeated in each of the classes CelestialBody and Rocket. This can be avoided by 
collecting those variable declarations into a generic body class called Body, and reusing these by inheriting 
Body into CelestialBody and Rocket. This restructured MoonLanding example appears below. We 
have replaced the general keyword class by the specialized class keyword model, which has the same 
semantics as class. The reason is that it is more common practice to use the keyword model for 
modeling purposes than to use the keyword class. The first model is the generic Body class designed to 
be inherited by more specialized kinds of bodies. 

model Body "generic body" 
Real mass; 
String name; 

end Body; 
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The CeiestiaiBody class inherits the generic Body class and is in fact a specialized version of Body. 
Compare with the version of CeiestiaiBody without inheritance previously presented in Chapter 3, page 
83. 

model CeiestiaiBody "celestial body" 
extends Body; 
constant Real g = 6.672e-ll; 
parameter Real radius; 

end CeiestiaiBody; 
The Rocket class also inherits the generic Body class and can of course be regarded as another 

specialized version of Body. 
model Rocket "generic rocket class" 

extends Body; 
parameter Real massLossRate=0.000277; 
Real altitude(start- 59404); 
Real velocity(start- -2003); 
Real acceleration; 
Real thrust; 
Real gravity; 

equation 
thrust - mass * gravity = mass * acceleration; 
der(mass) = -massLossRate * abs(thrust); 
der(altitude) = velocity; 
der(velocity) = acceleration; 

end Rocket; 
The MoonLanding class below is identical to the one presented in Chapter 3, page 83, apart from the 

change of keyword from cl a s s to mode 1. 
model MoonLanding 
parameter Real forcel = 36350; 
parameter Real force2 = 1308; 
parameter Real thrustEndTime = 210; 
parameter Real thrustDecreaseTime = 4 3.2; 
Rocket apollo(name="apollol2", mass(start=1038.358) ); 
CeiestiaiBody moon(mass=7.382e22,radius=l.7 38e6,name="moon"); 

equation 
apollo.thrust = if (timecthrustDecreaseTime) then forcel 

else if (timecthrustEndTime) then force2 
else 0; 

apollo.gravity = moon.g*moon.mass /(apollo.altitude+moon.radius)A2; 
end Landing; 
We simulate the restructured MoonLanding model during the time interval {0, 230}: 

simulate(MoonLanding, stopTime=230) 
The result is identical to the simulation of MoonLanding in Chapter 3, page 84, which it should be. See, 
for example, the altitude of the Apollo rocket as a function of time, plotted in Figure 4-2. 

plot(apollo.altitude, xrange={0,208}) 



Chapter 4 Inheritance, Modifications, and Generics 145 

Figure 4-2. Altitude of the Apollo rocket over the lunar surface. 

4.1.10 Inheritance and Subtyping 

As we already remarked in Chapter 3, inheritance is not the basic mechanism for defining subtype 
relationships in Modelica. On the other hand, inheritance in the form of a modification or an extends 
clause (almost) always creates a subtype relationship between a derived class and a base class by 
inheriting all declared elements of the base class with their original types. 

The only exception to the rule that a derived class is a subtype is when the derived class contains 
redeclarations of replaceable elements with explicit constraining types in the base class. For example, the 
replaceable type might be a Resistor, the constraining type a TwoPin, and the new type a Capacitor 
that is not a subtype of Resistor. This is explained in more detail in the section on generalizing 
constraining types of class parameters on page 170. 

A subtype relationship can also be created without inheritance. As has already been covered in detail in 
Chapter 3, an arbitrary class B, for example, a temperature-dependent resistor class, is defined to be a 
subtype of a class C, for example, a resistor class, if and only if the class B contains all the public elements 
of class c. In other words, class c contains a subset of the elements declared in class B. 

To conclude, an inheritance relationship between two classes (almost) always gives rise to a subtype 
relationship between the classes. On the other hand, a subtype relationship can exist between two classes 
without an inheritance relationship between these classes. 

4.1.11 Inheritance of Protected Elements 

If an extends clause is used preceded by the protected keyword (Section 3.11.1, page 98), all inherited 
elements from the superclass become protected elements of the subclass. If an extends clause is a 
public element, all elements of the superclass are inherited with their own protection. For example: 

class Point2 
public Real x; 
protected Real y, z; 
end Point2; 
class ColoredPoint2 
protected 

extends Color; 
public 

extends Po i n12; 
end ColoredPoint2; 

30000 v 
25000 \ 
20000 \ 

15000 \ 
10000 V. 

5000 ^ ^ ^ ^ ^ ^ 

50 100 150 200 
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The color variables red, green, blue that are inherited from Color via an extends clause preceded by 
the protected keyword become protected variables of ColoredPoint2. On the other hand, the inherited 
variables from Point2 keep their protection status since that extends clause is preceded by public. 

The possible prefixes protected and public used within the superclass do not affect the consequent 
elements of the subclass, that is, the prefixes protected and public are not inherited. 

A protected element cannot be accessed via dot notation from outside its scope—this is the essence of 
being protected. Additionally, protected elements may not be modified or redeclared in class modifications 
(except elements directly declared within an inherited base class, see Section 4.2.9, page 154), since 
otherwise this would be a way to get around the access restrictions of protected elements. 

4.1.12 Short Class Definition as Inheritance 

The short class definition in Modelica provides a concise way of defining classes based on inheritance, 
often used to introduce more descriptive type names for already existing classes. For example: 

class SpecialReal = Real; 
One may apply modifiers (see page 148) in short class definitions to adapt the type for a specific use, as 

for the types Current and Voltage defined below: 

type Current = Real(unit="A"); 
type Voltage = Real(unit="V", min=-220.0, max=220.0); 

In fact, a short class definition is in most cases just a shorter syntax for defining a class that could just as 
well be defined using an ordinary class definition containing an extends clause. Thus, the same Voltage 
definition as above could also be expressed using the standard inheritance syntax: 

type Voltage 
extends Real(unit= "V", min=-220.0, max=220.0); 

end Voltage; 
In general, given a short class definition of the following form: 

class <class identifier = superclass identifier> <modifiers> ; 

Such a class definition is usually identical to the longer form that uses a standard extends clause: 

class <class identifier 
extends <superclass identifier <modifiers> ; 

end <class identifier ; 

The only differences are that in the short class definition the identifier Superclass identified may be 
replaceable and regarding modifiers where the short class definition does not introduce an additional 
lexical scope for modifiers which is the case in the longer form. 

Regarding array types, this does not work since the short type definition is the only way in Modelica to 
define a named array type, which in its general form has the following structure: 

type TN = T[nl, n2, n3,...] (optional modifiers); 
Here nl,n2,n3,... represents arbitrary array dimensions, T represents a type name, that is, the superclass 
identifier, and TN the name of the type to be defined. Even though this is not correct Modelica, such a type 
definition could conceptually be expanded to a kind of array class with the keyword array and exactly 
one anonymous variable, here denoted by the placeholder <arr>\ 

array TN //A conceptual array class, not correct Modelica 
T[nl, n2, n3,...] <arr> (optional modifiers); 

end TN; 

The type of a variable declared using a type defined via a short type definition (e.g., Force3 below) is 
identical to the type of a variable declared with the same base type (e.g., Real below), array dimensions, 
and optional modifiers as in the short type definition. Thus the type of the variable vl is the same as the 
type of the variable v2. 
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type Force3 = Real[3](unit={"N","N","N"}); 
Force3 vl; 
Real v2[3](unit={"N","N","N"}); 

4.1.13 Extending Predefined Types/Classes 

The predefined Modelica types Real, integer, Boolean, and String can be inherited and modified 
similarly to ordinary Modelica classes, but with certain restrictions: 

• Variables/attributes and equations cannot be added in a derived class that inherits a predefined 
class. 

• Variables/attributes cannot be redeclared. 

The only way to define a subtype of a predefined Modelica class is through inheritance, usually 
expressed as a set of modifications. For example, a Real variable has a set of attributes such as unit of 
measure, initial value, minimum and maximum value. A complete list of these attributes is available in 
Chapter 3, page 98. It is possible to modify these attributes when declaring a new type, for example, 
through a short type definition with modifiers. This is exemplified by the type Voltage in the previous 
section. 

4.1.14 Redefining Declared Elements at Inheritance 

In most object-oriented languages, including Java, the default rule is to allow redefinition of declared 
elements at inheritance. A locally declared element in a Java class overrides an inherited element with the 
same name. This is not the case in Modelica. A locally declared element that is different from an inherited 
element with the same name obtained through an extends clause constitutes an error, as in the example 
below. 

class BaseBl 
Real bl; 

end BaseBl; 
class ErroneousExtends 
extends BaseBl; 
Integer bl; // Error! Local bl clashes with inherited bl 

end ErroneousExtends; 
The only way in Modelica to locally redefine an inherited element is to use inheritance through 
modification, which is described in detail in Section 4.2. 

4.1.15 The class extends Inheritance Mechanism 

The class extends inheritance mechanism has been introduced to simplify adapting and extending 
libraries to different usage situations. 

The general structure ofaclass extends declaration is as follows, where the class keyword can be 
replaced by any of the specialized class keywords model, block, type, function, package, etc.: 

class extends className class_modification0i>t class__body 

See Section 4.6, page 175, for a detailed description of class extends including examples. 
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4.2 Inheritance through Modification 

The class concept with inheritance is the key to reuse of modeling knowledge in Modelica. However, in 
contrast to many other object-oriented languages, Modelica also provides inheritance through modification 
via so-called modifiers. This makes reuse even easier, and can be expressed very concisely. In fact, the 
three operations; inheritance, specialization through modifications, and object instantiation, can be 
expressed within a single Modelica declaration. 

There are three kinds of constructs in the Modelica language in which modifications can occur: 

• Variable declarations. 
• Short class declarations. 
• extends clauses. 

What does a modifier do? It modifies one or more declarations from an (implicitly) inherited class by 
changing some aspect(s) of the (implicitly) inherited declarations. The most common kind of modifier just 
changes the default value or the start value in a declaration equation. We have already seen many 
examples of such modifiers, for example, modifying the default start value of the altitude variable 
from the Rocket class: 

Real altitude(start- 59404); 
A more dramatic change is to modify the type and/or the prefixes and possibly the dimension sizes of a 

declared element. This kind of modification is called a redeclaration and requires the special keyword 
redeclare to be used in the modifier in order to reduce the risk for accidental programming errors. In 
most cases a declaration that can be redeclared must include the prefix replaceable. Section 4.3.4 about 
redeclaration (page 160) covers this topic in quite some detail. This mechanism is often used to create 
generic classes with formal parameters, see Section 4.4, page 169 and Section 2.5, page 31. 

There is also a general restriction about what can be modified: 

• Any element declared final (Section 3.11.6, page 103) is not allowed to be modified. 

4.2.1 Modifiers in Variable Declarations 

Before getting into more details concerning modifiers in variable declarations it is useful to recall the 
structure of such a declaration: 

<prefixes> <type> <variable specifier list> 

Each variable specifier has the following structure, where all elements apart from the identifier are 
optional: 

<identifier> <array dimension descriptor> <modifiers> declaration equation/initializer> 

As stated in Chapter 2, an array dimension descriptor can either be part of the type or be put directly 
after the identifier in the variable specifier. The modifiers should always be placed after the array 
dimension descriptor if present, otherwise directly after the identifier. 

Modifiers change the type of a declared variable by modifying specified member declarations of the 
unmodified type. This can be regarded as conceptually creating an unnamed modified child class used only 
for the instance(s) created by the variable declaration. For example, the Real type of the variable A2 has 
its default declaration equations for its members unit and fixed replaced by those given by the modifiers 
unit-"Voltage", fixed-true. 

Real Al; // Scalar variable 
Real A2(unit="VoltageH,fixed-true); // Scalar with modifiers 
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One apparent difficulty regarding a modification as a special short syntactic form of class inheritance 
might be the absence of an explicit named child class. However, we can view a modification as 
conceptually creating an invisible anonymous (unnamed) child class. In most cases, but not all, a 
declaration of an instance (such as A2) of a modified class can be expressed by the introduction of an 
explicit intermediate modified child class (such as ModifiedReal), for example: 

ModifiedReal = Real (unit="Voltage,,/fixed=true) ; 
ModifiedReal A2; 

4.2.2 Modifiers for Continuous-time or Discrete-time Variables 

Are there any restrictions regarding which kinds of variables can be modified? There are several examples 
in the previous and the following sections of modifications of constants, parameters, and attributes with 
parameter variability (Section 3.11.2, page 99 and Section 6.8.1.3, page 278), for example, attributes 
start, unit, and fixed in predefined types (Section 3.9, page 93). For such variables and attributes 
there are no restrictions, apart from the general restriction that elements declared final (Section 3.11.6, 
page 103) can never be modified. 

However, for variables with higher levels of variability such as continuous-time or unclocked discrete-
time we have the following restriction: 

• A (noninput) variable with continuous-time or unclocked discrete-time variability without a 
declaration binding equation is not allowed to be modified. 

The reason is that if there is not already a declaration equation for a variable in a model with balanced 
equation count (Section 8.9, page 387), adding a new equation via a modifier will increase the number of 
equations and thus destroy the balancing of the modified model. This does not apply to constants and 
parameters which are not variables to be solved for during simulation, have defaults of value zero and 
anyway always have to be defined at compile-time for a model to be compiled and simulated. It does not 
apply to variables with an input prefix since they are assumed to be defined by some connection or actual 
parameter passed at function calls. For example: 

model Vars 
parameter xO; 
Real xl; 
discrete Real x2; 
Real x3 = 35.7; 

end Vars; 

model VarsModify 
Vars yO(x0=8.33); 
Vars yl(xl=7.1); 
Vars y2(x2=3.77); 
Vars y3(x3=55.1) ; 

end VarsModify; 

// Legal modification, xO is a parameter 
// Illegal modification, xl is without binding equation 
// Illegal modification, x2 is without binding equation 
// Legal modification, x3 has a binding equation 

4.2.3 Modifiers for Constant Declarations 

Modifiers for named constants declared with the constant keyword are allowed in Modelica. This might 
appear as a contradiction since a constant always keeps the same value. However, the apparent 
contradiction is resolved if we remember that modification is a form of inheritance. What is modified is 
not the original "parent" class definitions but rather the inherited definitions in the new conceptual "child" 
class, as for the named constants unit and fixed in the examples of the previous section. 

Moreover, modifier equations for constants and parameters must be acyclic (Section 8.2.3, page 350). 
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4.2.4 Modifiers for Array Variables 

Regarding modifiers for array variables, it is important to be aware of the fact that each attribute or 
variable has the same dimensionality and extent as the array itself, possibly combined with the extent of 
the attribute if it is an array. See also Section 7.4.3 on page 323 regarding such array record field slices for 
arrays of records. The second line in the example below modifies the start value for the whole array. It is 
illegal to modify an indexed element of an array. 

Real A3 [2,2]; // Array variable 
Real A4[2,2](start={{1,0},{0,1}}); // Array with modifier 
Real A5 [2,2] (unit={{"Voltage","Voltage"},{"Voltage","Voltage"}}) ; 

Modification of an indexed element of an array is illegal: 

Real A6[2,2](start[2,1]=2.3); // Illegal! single element modification 

4.2.4.1 Iterative Array Element Modification Using each 

In the previous section we noted that an attribute of the element type of an array is itself an array of the 
same extent as the array itself. This is apparent in the whole array attribute modifier for the above array 
A4, repeated below. The start attribute of the Real type which is the element type for array A4 has the 
same extent as A4 itself, i.e., a 2 x 2 array. It is modified as a whole: 

Real A4 [2,2] (start={{1,0},{0,1}}) ; // Array with modifier 
However, there are cases where this scheme is too inflexible and clumsy. Consider the array A7 with 
extent 2 x 3 , containing records of type Crec: 

record Crec 
Real b[4]; 

end Crec; 
model B 

Crec A7 [2,3] (b = { {{1,2,3,4},{1,2,3,4},{1,2,3,4}}, 
{{1,2,3,4},{1,2,3,4},{1,2,3,4}} } ); 

end B; 
The array denoted by A7. b, or only by b inside the modifier, has an extent of 2 x 3 x 4, since the extent 2 
x 3 of the array A7 is augmented by the size 4 of the single dimension of the vector b declared as an 
attribute or field of the record Crec. We wish to give each instance of the vector b inside all Crec record 
elements of the array A7 the value {1,2,3,4}. To write down the whole array value as in the above 
example is rather clumsy and would be quite impractical for large arrays of records. 

However, by using iterative array element modification specified by the each keyword as a prefix to 
the modified attribute, the modifier value will be set equal to each array element individually: 

model CI 
Crec A7 [2,3] (each b = {1,2,3,4}); 

end C; 
In this way, we do not need to repeat the desired array element value in the array modifier as in the 
previous example. The same effect can be achieved by using an array constructor with iterators, see 
Section 7.2.2 on page 316, which creates the whole array value: 

model D 
Crec A7 [2,3] (b = { {1,2,3,4} for i in 1:size(A7,1), j in l:size(A7,2) }; 

end D; 
The disadvantage of this solution is the verbose syntax needed for the iteration variable range 

expressions with the size functions, or analogous verbosity using other array construction variants. This 
verbosity has motivated the introduction of the each facility into the Modelica language. 
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The each keyword only applies to the modified element it is a prefix for. In the example below each 
instance of b is individually set equal to the modifier value, whereas e without the each keyword is set 
equal to the array d . e a s a whole. 

model Dree 
Real b[4]; 
Real e; 

end Dree; 
model E 

Dree d[5](each b ={1,2,3,4}, e={1,2,3,4,5}) ; 
end E; 

A common use of the each facility is to assign a common parameter value for each element of an array, 
for example, in a connector array as described in Section 5.7.5, page 214 

If the modified element is a vector and the modifier does not contain the each-attribute, the 
modification is split such that the first element in the vector is applied to the first element of the vector of 
elements, the second to the second element, until the last element of the vector-expression is applied to the 
last element of the array ; it is an error if these sizes do not match. Matrices and general arrays of elements 
are treated by viewing those as a vectors of vectors and so on. 

If the modified element is a vector with subscripts the subscripts must be Integer literals. 
If a nested modifier is split, the split is propagated to all elements of the nested modifier, and if they are 

modified by the each-keyword the split is inhibited for those elements. It is illegal if the nested modifier 
that is split in this way contains redeclarations that are split. 

4.2.4.2 Modification of Arrays with Non-constant Sizes of Array Dimensions 

An apparent problem might be the modification of arrays of nonconstant extent (sizes of array 
dimensions). Remember that modification is a short syntactic form of inheritance which is a compile-time 
operation. The extent of an array, however, need not be fixed at compile-time, but is fixed after the array 
has been created, for example, at run-time. The following are more flexible variants of the above array 
examples A4 and A 6 where the arrays are not instantiated until run-time: 

Real A4b[n,n](start=identity(n)); 
Real A6b[n,n](start={{i+j+1.3 for j in l:n} for i in l:n}); 

In example A4b we call the function identity (Section 7.9.3, page 336) to create an identity matrix of 
the right size. The array declaration for A6b uses an array constructor with iterators (Section 7.2.2, page 
316) to create a matrix containing element values i+j+1.3 where i and j are row and column indices, 
respectively. 

4.2.5 Modifiers in Short Class Definitions 

Modifiers may occur in short class definitions after the optional array dimension descriptor if present, 
otherwise directly after the superclass identifier. The class keyword can either be class or one of the 
keywords for specialized classes. The general structure of short class definitions with modifiers is as 
follows: 

<class keyword> <identifier> = Superclass identified <array dimension descriptor> <modifiers> 

A few simple examples of short class definitions with modifiers are shown below, all being modifications 
of the superclass Real: 

class Current = Real(unit="mA"); 
type Force3 = Real[3](unit={"N","N","N"}); 
type Voltage = Real(unit="V", min=-220.0, max=220.0); 
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The mechanism of modifiers in a class definition is to replace inherited element declarations with the 
same names as in the modifiers by appropriately modified element declarations, where the modifications 
are merged with the original declarations. We show an example based on the class LowPassFilterl 
below. 

model LowPassFilterl 
constant Real ystart = 1; 
parameter Real T = 1; 
Real u, y(start=ystart); 

equation 
T*der(y) + y = u; 

end LowPassFilterl; 
The contents of the class LowPassFilterl is inherited into LowPassFilter20, for which the 

declarations of ystart and T are modified. 

model LowPassFilter2 0 = LowPassFilterl(ystart=0, T=20); 
The resulting class LowPassFilter20 is equivalent to the class LowPassFilter20B. 

model LowPassFilter2OB 
constant Real ystart = 0; 
parameter Real T = 20; 
Real u, y(start= ystart); 

equation 
T*der(y) + y = u; 

end LowPassFiIter2OB; 

4.2.6 Modifiers in extends Clauses 

Modifiers may also occur in extends clauses, and are applied to inherited element declarations in a 
similar way as modifiers in short class definitions. Consider the previous example class 
LowPassFilterl. We inherit the contents of this class into the class LowPassFilter20C below, and 
give the same modifiers as in the short class definition of LowPassFilter2 0 above. The result is the 
same, and is equivalent to the class LowPassFilter20B. 

model LowPassFilter20C 
extends LowPassFilterl(ystart-0, T=20); 

end LowPassFiIter20C; 
Another example demonstrates that modifiers in extends clauses can be applied to elements that are 

local classes such as Voltage within the class LowVoltage below. 

class LowVoltage 
type Voltage = Real(unit="V"); 
Voltage vl; 
Voltage v2; 

end LowVoltage; 
class HighVoltage 
extends LowVoltage(Voltage(unit="kV")); 

end HighVoltage; 
HighVoltage vhigh; 

The class HighVoltage has a local type Voltage with unit "kv", since it was modified compared to the 
original version of Voltage in class LowVoltage. Thus, both variables vhigh. vl and vhigh. v2 have 
the unit "kv". 
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4.2.7 Modification of Nested extends Clauses 

The possibilities to apply modifiers are not limited to declared elements that are variables or local classes. 
In the example below we have a modifier in an extends clause: 

class A 
parameter Real a; 
parameter Real b; 

end A; 
class B 
extends A(b=3); 

end B; 
The class B inherits the class A and applies the modifier b=3 in the extends clause. The result is 
equivalent to the class Bexpanded. 

class Bexpanded 
parameter Real a; 
parameter Real b=3; 

end Bexpanded; 
It is actually possible to modify elements that are extends clauses in superclasses, so-called nested 

extends clauses, even though such clauses disappear in the expanded subclass, as shown below in 
Section 4.2.8, page 153. 

4.2.8 Priority of Modifications including extends Clauses 

The more recent "outermost" modifications in a chain of modifications have priority over earlier 
modifications. 

However, consider the class c below with the modifier A (b=2 ) that modifies the nested extends clause 
extends A(b=3)of class B from the previous section, which can be considered to be nested one level 
down in the inheritance chain where C inherits B, which inherits A. The modified extends clause then 
becomes extends A(b=2 ), giving a class C that is equivalent to Cexpanded with b=2. 

The most recent, that is, "outermost", modifiers in the inheritance chain have priority over previous 
modifiers. In other words, the "innermost" extensions are expanded first. 

class C 
extends B(a=l, A(b=2)); 

end C; 
class Cexpanded • 
parameter Real a=l; 
parameter Real b=2; 

end Cexpanded; 
The class ci below illustrates the rule that the most recently applied "outermost" modifications like b=l 
override "inner" modifications such as A (b=2 ) of a nested extends clause, since b=2 is further down in 
the modification chain. The instance bcomp has bcomp.b=l, which overrides b=2 from the nested 
modifier. 

class CI 
B bcomp(b=l, A(b=2)); 

end CI; 
Another example: the "outermost" modifier in the chain, b=66 in the class C4 below, overrides the 

nested modification of b in extends C2 (b=6). Thus, merging the modifications (b=66 ), (b=6) gives the 
result (b=6 6). 

class C2 
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parameter Real b; 
parameter Real c; 

end C2; 
class C3 
extends C2(b=6,c=77); // Inherited b gets default value 6 

end C3; 
class C4 
extends C3(b=66); // The most recent modification of b 

end C4; 

4.2.9 Modification of Protected Elements 

Protected elements may not be modified or redeclared in class modifications, despite the fact that protected 
elements are inherited. Consider the class D below, inherited by class DL, which is correct. On the other 
hand, the definition of class D2 is illegal since it tries to modify the declaration of the variable b, which is 
protected, 

class D 
Real a=0; // a is a public element 

protected 
Real b=0; // b is a protected element 

end D; 

class Dl = D(a=10); // Ok, since a is public 
class D2 = D(b=20); // Illegal since b is protected, access outside D! 
A protected class or instance may not be modified or redeclared except for the following. It is allowed 

to have modifiers applied to protected classes or instances directly within an inherited base class, but not 
inside any instance or class within that base class. Modifiers on the declaration of the protected element 
are also allowed. Further examples are shown below. 

package A 
model B 
protected 
parameter Real x; 

end B; 
protected 
model C end C; 

public 

model D 
C c; // Legal use of protected class C from enclosing scope 
extends A.B(x=2); // Legal modifier for x in inherited base class A.B 

// also x.start=2 and x(start=2) are legal. 
Real y=x; // Legal use of x in derived class 

end D; 

model E 
A.B a(x=2); // Illegal modifier, also x.start=2 and x(start=2) illegal 
A.C c; // Illegal use of protected class C 
model F=A.C; // Illegal use of protected class C 

end E ; 
end A; 
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4.2.10 Hierarchical Modification 

Hierarchical modification means that elements one or more levels down in the instantiation hierarchy are 
modified. Such modifiers can use nested notation using parentheses or dot notation. We use a slightly 
enhanced version of the low-pass filter model from Section 2.3.4 on page 29 as an example. 

model LowPassFilter 
parameter Real T=l; 
parameter Real k=l; 
Real u, y(start=l); 

equation 
T*der(y) + y = k*u; 

end LowPassFilter; 
Two instances of the filter with different time constants T are put together to form the class 

FiltersInSeries: 
model FiltersInSeries 

LowPassFilter F1(T=2), F2(T=3); 
equation 

Fl.u = sin(time); 
F2.u = Fl.y; 

end FiltersInSeries; 
Finally, two different instances F12 and F34 of FiltersInSeries are created in the class 

ModifiedFiltersinSeries with modified time constants. Both instances have identical time constants, 
but the first uses nested notation and the second uses dot notation for hierarchical modification. 

model ModifiedFiltersinSeries 
FiltersInSeries F12(F1(T=6), F2(T=11, k=2)); // nested notation 
FiltersInSeries F34(F1.T=6, F2.T=11, F2.k=2); // dot notation 

end ModifiedFiltersinSeries; 
Another example of hierarchical modification is shown for the class C5, where the instance anest uses 

nested syntax and the instance adot dot notation. Both of them produce identical results. 

class C5 
Real x; 

end C5; 
C5 anest (x (unit = "V", displayUnit=,,mV") = 5.0)); 
C5 adot(x.unit = "V", x.displayUnit="mV", x=5.0); 

When using qualified names, the different qualified names starting with the same identifier are merged 
into one modifier during analysis of the modifiers. In the above example this would have the effect of 
converting the modifiers with dot notation in the declaration of adot to the nested notation used in the 
declaration of anest. 

4.2.11 Single Modification Rule 

Two arguments of a modification are not allowed to denote and modify the same element, attribute, or 
string comment. This is usually self-evident, but in the context of classes with record variables one may 
sometimes forget that the variable name denotes a record. Moreover, when using qualified names the 
different qualified names starting with the same identifier are merged into one modifier. 

For example, the first modifier argument to CI below, x=Foo(l,1,l), means that all three record 
elements x. xl, x. x2, x. x3 are set equal to 1, which is in conflict with the second modifier x. x2=2. 

record Foo 
Real xl; 
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Real x2; 
Real x3; 

end Foo; 
class CI 

Foo x = Foo(0,0,0); 
end CI; 
class C2 = CI(x=Foo(1,1,1), x.x2=2); // Error: x.x2 designated twice 

class C3 
class C4 
Real x — 0; 

end C4; 
C4 a (x.unit = "V", x.displayUnit="mV", x=5.0); // OK, different 

// attributes designated (unit, displayUnit and value) 
C4 b(x(unit = "V", displayUnit="mV") =5.0)); // Identical to the above 

end C3; 
More examples of incorrect multiple modifications follow: 

ml(r=1.5, r=1.6) // Multiple modifier for r (its value) 
ml(r=1.5, r=l.5) // Multiple modifier for r (its value) - even if identical 
ml(r.start=2, r(start=3)) // Multiple modifier for r.start 
ml(x.r=1.5 "x", x.r (start=2.0) "y")) // Multiple string-comment for x.r 
ml (r=R (), r (y=2)) / / Multiple modifier for r. y - both direct value and part of record 

Some modifications that are correct follow: 

ml(r=l.5, r(start=2.0)) 
ml(r=l.6, r "x") 
ml(r=R(), r(y(min=2))) 

4.3 Redeclaration 

So far we have primarily dealt with modifiers that change the default value in a declaration. A more 
dramatic change is to modify the type and/or the prefixes of a declared element, that is, the original 
declaration is actually replaced by the "new declaration" given in the modifier merged with the modifiers 
of the original declaration if such modifiers are present. 

This kind of modification is called a redeclaration and requires the special keyword redeclare to be 
used in the corresponding modifier in order to reduce the risk for accidental modeling errors. There also 
exists a kind of redeclaration that appears as an element directly in a class; see Section 4.3.1, page 157. 

The element to be redeclared has to be declared replaceable, except for the rather specific case 
where the only change is to restrict its variability (e.g. from continuous-time to parameter variability; see 
Section 4.3.4 on page 160) and/or dimension sizes. Redeclaration with an element which is the same type isi 
possible to restrict variability and/or array dimension sizes. The following contrived example illustrates a re-
declaration. The used definitions of Resistor and TempResistor are available on page 115 in Chapter 3. 

class MiniCircuit 
replaceable discrete Resistor Rl; 

end MiniCircuit; 
MiniCircuit tempcircuitl(redeclare parameter TempResistor Rl); 
The redeclaration of the Rl element changes its type from Resistor to TempResistor and its prefix 

from discrete to parameter. The resulting anonymous modified class, which is the type of 
tempcircuitl, is equivalent to MiniCircuit2. 

class MiniCircuit2 
parameter TempResistor Rl; 
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end MiniCircuit2; 
The element that is provided in a redeclaration must have a type that is a subtype of the corresponding 

replaceable element in the modified class or a subtype of an explicitly given (optional) constraining type. 
This is fulfilled in the above example since TempResistor is a subtype of Resistor., Regarding 
subtyping and other restrictions on redeclarations, see Section 4.3.11, page 166, and how to check 
subtyping in general, see Section 3.19.4, page 126. 

The next example illustrates a redeclaration redeclare A2 z(y=2) used in an extends clause to 
replace the original declaration A z (x=l) from class B, but merging the original nested modifier (x=l) 
with the modifiers in the redeclaration to effectively get A2 z (x=l,y=2). The type of the redeclared 
variable z in class B is changed from A to A2 in class B2, which is correct since A2 is a subtype of A. 

class A 
parameter Real x; 

end A; 
class A2 // A2 is a subtype of A 
parameter Real x=3.14; 
parameter Real y; 

end A2; 
class B 
replaceable A z(x=l); 

end B; 
class B2 
extends B(redeclare A2 z(y=2)); 

end B2; 
The class B2 is equivalent to the class B2expanded below: 

class B2expanded 
A2 z(x=l,y=2) ; 

end B2expanded; 

4.3.1 Redeclaration as an Element in a Class 

At the beginning of Section 4.3, page 156, we stated that a redeclaration is a kind of modifier with a 
redeclare keyword. This is the main case and the most common form of redeclaration. 

However, it is also possible to have a redeclare clause directly within a class. Such a redeclaration 
requires that the redeclared element is inherited, and cannot be combined with a modifier of the same 
redeclared element in the extends-clause. For example: 

class C5Base 
replaceable Real y2=10; 

end C5Base; 

class C6 
extends C5Base; 
redeclare Integer y2=5; 

end C6; 

class C6expanded 
Integer y2=5; 

end C6expanded; 
This redeclaration replaces the inherited Real y2 declaration with an integer y2 declaration. However, 
the following example is illegal since it combines a modifier in the extends clause with a redeclaration of 
the same element y2: 
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class C7illegal 
extends C5Base(y2=5); // Illegal y2 redeclare. Cannot be combined 
redeclare Integer y2; // with modifier of y2 in extends clause 

end C7illegal; 
A redeclaration clause directly in a class is particularly useful in combination with class extends; 

see Section 4.3.9, page 165. 

4.3.2 Redeclaration of Elements not Declared Replaceable 

Redeclarations usually require the modified element to be declared with the replaceable prefix. There 
are only two kinds of redeclarations that do not require the modified element to be declared 
replaceable: 

1. Restricting the variability of a declared variable, e.g., from parameter to constant. 
2. Restricting array dimension sizes, e.g., from ( : ) to a specified size. 

The following example demonstrates these kinds of redeclarations: 

class C3 
Real xl; 
Real[:] vec; 

end C3; 
class C4 = C3(redeclare parameter Real xl, redeclare Real vec[20]); 

The class C4 is equivalent to the class C4expanded below. The variable xl has been restricted from 
continuous-time to parameter variability. 

class C4expanded 
parameter Real xl; 
Real[20] vec; 

end C4expanded; 

4.3.3 Preserving Properties from Redeclared Original Declarations 

Some properties from the original declaration are preserved if they are not explicitly changed in the 
redeclared version of the declaration. This feature is intended to make it easier to write redeclarations by 
not having to repeat many of the original declaration properties in the redeclaration. 

For example, given two declarations: 

replaceable input flow Real y3 = 15.3; 
replaceable type InVoltage = input Real; 

Below we give redeclarations of both of these, excluding modifier syntax and the enclosing class: 

redeclare Current y3 = 22; // Allowed, since Current is a subtype of Real 
redeclare InVoltage = Voltage; // and Voltage is a subtype of Real 

Then the result will be as follows, since properties such as the flow and input prefixes are preserved: 

input flow Current y3 = 22; 
type InVoltage = input Voltage; 

Preservation of declaration properties applies to declaration prefixes which must be identical (excluding 
variability prefixes) according to the subtyping rules (Section 3.19.4, page 126) and the redeclaration 
restrictions (Section 4.3.11, page 166). 

• The general rule is that if no property within one of the following groups is present in the new 
declaration the old properties of the same kind are preserved. 
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• Preserving properties only applies to the declaration itself and not to elements of the declaration. 

The following groups of properties are preserved for both class and variable redeclarations: 

• public,protected 
• inner,outer 
• constraining type according to Section 4.3.7, page 162. 

These groups of properties are only preserved for variable declaration redeclarations: 

• flow, stream 
• discrete, parameter, constant 
• input, output 
• array dimensions 
The above rules ensure that parts in / * . . . * / in the example below are automatically added to the 

redeclared elements in HeatExchanger2 from the original declarations in HeatExhanger. 
model HeatExchanger 

replaceable parameter GeometryRecord geometry; 
replaceable input Real u[2]; 

end HeatExchanger; 
model HeatExchanger2 = HeatExchanger( 

redeclare replaceable /^parameter */ GeoHorizontal geometry, 
redeclare /* input */ Modelica.Slunits.Angle u /*[2]*/ ); 

Remember that preserving array dimensions only applies to variable declarations, not to classes. Thus, 
if the original declaration was a short class definition with array dimensions the array dimensions are not 
automatically preserved, and thus have to be repeated in those cases they are used. 

class C8Base 
replaceable type OrigType = input Real[4]; 

end C8Base; 
class C8 
type newType = C8Base(redeclare OrigType = Real); 

end C8; 
class C8expanded 
type newType = input Real; // Array dimensions not preserved! 

class C8expanded; 
In order to preserve the array dimensions for the redeclared type, they would need to be supplied 

explicitly as below: 

type NewTypeComplete = C8Base(redeclare OrigType = Real[4]); 
Moreover, note that preservation of properties is always from the original declaration, not from replaced 
ones. This is a strange language rule which is different from essentially all other rules in Modelica where 
the most recent definition of a property is always referred to. 

In most cases replaced or original does not matter. However, it does matter for example if a user 
redeclares a variable to be a parameter and then subsequently redeclares it without parameter. 

class C9Base 
replaceable discrete Real x = 10.2; 

end C9Base; 
class C9A = C9Base(redeclare parameter Real x); 
class C9Aexpanded 
parameter Real x = 10.2; 

end C9Aexpanded; 
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If we subsequently redeclare C9A without parameter, it will get the discrete prefix of the original 
declaration in c9Base, not the replaced one in C9A. 

class C9B = C9A(redeclare Real x); 
class C9Bexpanded 
discrete Real x = 10.2; 

end C9Bexpanded; 
There is ongoing discussion whether to remove this special nonintutive rule from the language. 

However, if the rule to preserve properites of the original declaration is removed and instead merge 
properties when merging modifiers (Section 4.2.8, page 153) there can be certain properties that cannot be 
removed by a modifier. That issue may have to be resolved. For example, if we redeclare a variable to be 
parameter we cannot add another modifier that removes that parameter property: 

model CI3 
extends C12(redeclare parameter Real b=2, c=C.PARAMETER); 

end C13; 
model CI4 

extends CI3(redeclare Real b=4, d=4); 
end C14; 
If these modifiers are merged, where the most recent is to the left: 

((redeclare Real b=4, d=4), (redeclare parameter Real b=2, c=C.PARAMETER)) 
then we obtain the following where the parameter property is still present despite the redeclaration without 
parameter in model C14. 

(redeclare parameter Real b=4, d=4, c=C.PARAMETER) 

4.3.4 Modification Prefix: replaceable 

In the introduction to the topic of redeclaration, we mentioned that the prefix replaceable usually must 
be attached at the front of those declarations in a superclass that are enabled for redeclaration in a 
subclass. This corresponds to virtual in some other object-oriented languages like C++ and Simula. Note 
that, for example, in Java, the default rule is to allow redeclaration of all members at inheritance, that is, all 
members are replaceable. Only members declared final in Java are not allowed to be redeclared. 

In Modelica the default is to disallow redeclaration of class members unless they have been explicitly 
declared as replaceable, apart from the exceptions mentioned in Section 4.3.1, page 157. The main 
motivation for this rule is that a class needs to be designed for inheritance that includes redeclaration. 
Otherwise unexpected errors may occur. 

We have previously stated that the element that is provided in a redeclaration must have a type that is a 
subtype of the corresponding replaceable element in the modified class or a subtype of an explicitly given 
(optional) constraining type (see Section, 4.3.7, page 162). The motivation to this rule is similar to the 
above—to prevent errors. An element that fulfills the subtype condition has a reasonable chance of 
keeping the contract of the original element to be replaced. 

Summarizing the main points of the replaceable prefix: 

• A declared element of a class must have the prefix replaceable in order to be redeclared, apart 
from redeclarations that only change the attribute value and/or restrict the variability and possibly 
the dimension sizes. 

A trivial example of a class with a replaceable element is: 

class MicroCircuit 
replaceable Resistor Rl; 

end MicroCircuit; 
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Replaceable elements of a class can be regarded as a kind of formal parameters of that class. The use 
of such class parameters is described in more detail in Section 4.4 regarding generic classes on page 168. 

The keyword replaceable in a modification automatically adds a redeclare if not present. See 
Section 4.3.5, page 161. 

4.3.5 Modification Prefix: redeclare 

The modification prefix redeclare is used only in modifiers and is needed when a whole declaration is 
included in the modifier. Those modifiers that use the prefix redeclare are known as redeclarations. To 
summarize the main points: 

• The redeclare prefix is used at the front of a modifier containing a new variable or type 
declaration that replaces the original variable or type declaration element in the modified class. 

The reason for requiring a special keyword like redeclare to be used in a redeclaration is to reduce 
the risk for accidental programming errors that otherwise might occur when whole declarations are 
replaced by declarations of different types. A correct example is shown below where the variable Rl of 
type Resistor is redeclared as a TempResistor, which is a subtype of Resistor, obtaining a 
temperature-dependent circuit: 

TempMicroCircuit = MicroCircuit(redeclare TempResistor Rl); 
In order to allow further redeclaration of a redeclared element the replaceable prefix should be 

present also in the modifier: 

TempMicroCircuit2 = MicroCircuit(redeclare replaceable TempResistor Rl); 
A modifier with the keyword replaceable implicitly adds a redeclare keyword if not present, which 
makes the following somewhat shorter redeclaration equivalent: 

TempMicroCircuit2 = MicroCircuit(replaceable TempResistor Rl); 
Modifiers prefixed with replaceable allow further redeclaration as below, which otherwise would not 
be possible: 

SuperTempMicroCircuit = TempMicroCircuit2(redeclare SuperTempResistor Rl); 
Redeclarations can sometimes be regarded as a kind of actual arguments to classes when modifying 

generic classes in order to create more specialized classes; see Section 4.4 regarding generic classes on 
page 168. 

4.3.6 Modification Prevention Prefix: final 

The class designer may wish to prevent certain modifications since the correct semantics of a class can be 
dependent on details of its declared members. A user who is not aware of those details can otherwise 
unknowingly introduce errors. The final prefix can be used to prevent such modifications. 

A variable declared as final in a member modification cannot be further modified by another 
modification. All members of a final member are also final, e.g., the variables of a final member 
that is a record are final. To summarize the rules for final: 

• The final prefix in front of a variable, a constant, or class declaration prevents modification and 
redeclaration of the variable, the constant, the class, and the members of the class. 

• The final prefix in a modifier prevents further modifications of the modified element. 

In the example with the type Angle below, the members quantity and unit are declared final and 
cannot be further modified, whereas it is fine to modify the declaration of the variable displayUnit. 



162 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

type Angle = Real(final quantity = "Angle", 
final unit = "rad", 
displayUnit = "deg"); 

Angle al(unit="deg"); // Error, since unit declared as final! 
Angle a2(displayUnit="rad"); // Fine! 
Another slightly more advanced example of the use of final involves a model that is used as a 

transfer function within a PI controller. The numerator and denominator coefficient vectors b and a of the 
transfer block instance tf in the PI controller cannot be modified since they have been declared final. 
For a detailed explanation of the array notation see Chapter 7. 

block TransferBlock // works like a transfer function 
parameter Real b[:] = {1} "numerator coefficient vector"; 
parameter Real a[:] = {1,1} "denominator coefficient vector"; 

protected 
constant Integer nb(max=na) = size (b, In-
constant Integer na sizeia,!;; 
constant Integer n = na-1; 
Real[n] x "State vector"; 
Real[na] bO = cat(1,zeros(na-nb), b); 

equation 

end TransferBlock; 
model PI "PI controller" 
parameter Real k=l "gain"; 
parameter Real T=1 "time constant"; 
TransferBlock tf(final b={T,l}, final a={T,0}); 

end PI; 
model Test 

PI cl(k=2, T=3); // Fine! 
PI c2(tf.b={l}); // Error, b is declared as final 

end Test; 
A final declaration of a variable also has implications for interactive setting of parameter variables in 

the simulation environment, since setting of the value of a parameter in a simulation environment is 
conceptually treated as a modification. This implies that a final declaration or modification of a 
parameter cannot be changed in a simulation environment. 

4.3.7 Constraining Type of Replaceable Elements 

A declaration of a replaceable element of a class can have one of the following two forms, where the 
element declaration represents either a variable or a local class declaration. 

1. replaceable <element declaration> 
2. replaceable <element declaration> constrainedby <constraining type> 

So far, we have only seen examples of the first form of replaceable element. However, it will soon be 
apparent that the second form is quite useful in certain situations. It is, however, recommended to avoid 
modifiers in the constraining type. Regarding modifications the following holds: 

• Any modifications following the constraining type name are applied both for the purpose of 
defining the actual constraining type and they are automatically applied in the declaration and in 
any subsequent redeclaration. The precedence order is that declaration modifiers override 
constraining type modifiers. 

We state once more the subtyping condition of a redeclaration: 
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• The element declaration that is provided in a redeclaration must have a type that is a subtype of 
the type of the corresponding replaceable element in the modified class or a subtype of an 
explicitly given (optional) constraining type. 

• Moreover, in many cases the declaration element must fulfill the stricter plug-compatible subtyping 
condition (Section 3.19.5, page 127), instead of just standard subtyping. Plug-compatible 
subtyping often is needed for classes or instances containing connectors. 

Thus, the constraining type is either stated explicitly or otherwise defined as the type of the replaceable 
element. Being a subtype of the replaceable element is fulfilled in the example below, for example, when 
replacing the resistor component compl with a temperature-dependent resistor: 

class MicroCircuit 
replaceable Resistor compl; 

end MicroCircuit; 
TempMicroCircuit = MicroCircuit(redeclare TempResistor compl); 
We turn MicroCircuit into a more generic circuit called GenMicroCircuit. The type CompType of 

the component compl has been made replaceable. 
class GenMicroCircuit 
replaceable type CompType = Resistor; 
replaceable CompType compl; 

end GenMicroCircuit; 
The idea is to be able to specialize the generic circuit into a circuit that can use types of components other 
than resistors, for example, capacitors or inductors. We try to define an inductor circuit class below, but 
this fails since Inductor is not a subtype of CompType, which currently is Resistor! 

// Type error! Inductor is not subtype of Resistor! 
class InductorMicroCircuit = 
GenMicroCircuit(redeclare type CompType = Inductor); 

The problem is that the constraining type of CompType is too restrictive just using its current default value, 
which is Resistor. Instead, we would like to express that CompType can be any electrical component 
type with two pins—CompType—should be a subtype of TwoPin. Here the second form of replaceable 
element declaration comes into play, which allows us to express the constraining type explicitly by adding 
constrainedby TwoPin. 

class GenMicroCircuit 
replaceable type CompType = Resistor constrainedby TwoPin; 
// No inheritance! 
replaceable CompType compl; 

end GenMicroCircuit; 
After this change, there is no problem to define a more specific circuit, for example, using the component 
type Capacitor: 

class CapacitorMicroCircuit = 
GenMicroCircuit(redeclare type CompType = Capacitor); 

However, this capacitor circuit has no replaceable CompType declaration left since the original replaceable 
declaration was replaced. To keep CompType replaceable, we need to perform a redeclaration with 
redeclare replaceable as in the class below. In this case, we might want to set the constraining type 
to GenCapacitor in order to have a more specific constraint than TwoPin. 

class GenCapacitorMicroCircuit = GenMicroCircuit( 
redeclare replaceable type CompType = 

Capacitor constrainedby GenCapacitor); 
Further redeclaration is now possible, for example, using a temperature-dependent capacitor: 
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class TempCapacitorMicroCircuit = 
GenCapacitorMicroCircuit(redeclare type CompType = TempCapacitor); 

There is also a subtyping condition for the constraining type optionally provided in a replaceable 
redeclaration: 

• The constraining type of a replaceable redeclaration must be a subtype of the constraining type of 
the declaration it redeclares. 

This condition is fulfilled for GenCapacitorMicroCircuit above since the constraining type 
GenCapacitor is a subtype of TwoPin. 

The following rule applies to modifications of replaceable elements with constraining types: 

• In an element modification of a replaceable element the modifications are applied to the actual 
type and also to the constraining type provided the modified attribute exists in the constraining 
type-

Thus the modifier R=20 in the definition of MicroCircuit 3 is propagated to both the declaration and the 
constraining type, which is apparent in the class MicroCircuit3expanded. 

class MicroCircuit2 
replaceable TempResistor Rl constrainedby Resistor; 

end MicroCircuit2; 
class MicroCircuit3 - MicroCircuit2(Rl(R=20)); 
class MicroCircuit3expanded 
replaceable TempResistor R1(R=20) constrainedby Resistor(R=20); 

end MicroCircuit3expanded; 
There is one additional rule concerning propagation of modifiers for the case of modifiers in the 

constraining type: 

• In an element redeclaration of a replaceable element the modifiers of the replaced constraining 
type are merged both to the new declaration and to the new constraining type, using the normal 
rules where the most recent "outermost" modifiers override earlier modifiers (see Section 4.2.8). 

The modifier R-30 for the constraining type Resistor is merged into Rl, see 
MicroCircuit5expanded below. 

class MicroCircuit4 
replaceable TempResistor Rl constrainedby Resistor(R=30); 

end MicroCircuit4; 
class MicroCircuit5 = MicroCircuit4( 
redeclare replaceable TempResistor2 Rl constrainedby Resistor2); 

class MicroCircuit5expanded 
replaceable TempResistor2 R1(R=30) constrainedby Resistor2(R=30); 

end MicroCircuit5expanded; 
This rule concerns the use of a class as a constraining type, in case the class contains replaceable elements: 

• When a class is elaborated as a constraining type, the elaboration of its replaceable elements will 
use the constraining type and not the actual default types. 

The following two rules regarding array dimensions are just special cases and follow directly from the 
previously mentioned subtyping rules of constrained elements, their constraining types, and the types of 
elements in redeclarations: 

• The number of array dimensions of a constraining type (T2) must be the same as the number of 
dimensions of the type (T l [ n ]) of the constrained element. 
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• The type (T3) used in a redeclaration must have the same number of array dimensions as the type 
(T1 [ n ]) of the redeclared element. 

In the examples below the number of array dimensions of the types T1 [ n], T2, and T3 must be equal. 

replaceable T1 x[n] constrainedby T2; 
replaceable type T=T1[n] constrainedby T2; 
replaceable Tl[n] x constrainedby T2; 
redeclare T3 x; 
redeclare type T=T3; 

Note that the variable declarations of the form T 1 x [ n ] and T l [ n ] x are two syntactic variations of array 
declarations with the same meaning (Section 7.1, page 311). In both cases the type of x is T1 [ n ]. 

4.3.8 Redeclaration of Conditional Instance Declarations 

A conditional instance declaration (Section 3.14, page 107), can be redeclared just like any other instance 
declaration. However, the redeclaration cannot supply a new condition and the existing condition from the 
original declaration is kept. 

For example, in the following model we can choose either R1 or R2 to be instantiated. Only 
connections to existing instances are kept. The Resistor is changed to a TempResistor by the 
redeclaration. 

model ConditionalResistorCircuit2 
parameter connectRl = false; 
replaceable Resistor R1(R=100) if connectRl; 
replaceable Resistor R2(R=200) if not connectRl; 
replaceable Resistor R3(R=300); 

equation 
connect(R1.p, R3.p); // Selected if connectRl - true 
connect(R2.p, R3.p); // Selected if connectRl = false 

end ConditionalResistorCircuit2; 
model RlCircuit2 = 

ConditionalResistorCircuit2(connectRl=true, redeclare TempResistor Rl); 
model R2Circuit2 = 

ConditionalResistorCircuit2(connectRl=false, redeclare TempResistor R2); 
If connectRl=true, the expanded partially flattened RlCircuit2 would appear as follows: 

model RlCircuit2Expanded 
parameter connectRl = true; 
TempResistor R1(R=100) if connectRl; 
replaceable Resistor R3(R=300); 

equation 
connect(Rl.p, R3.p); // Selected since connectRl = true 

end RlCircuit2Expanded; 

4.3.9 class extends Redeclarations 
The class extends mechanism has been created to simplify adapting a library to a usage situation 
without changing the original library itself by allowing modifications and redeclarations to be conveniently 
applied to an implicit copy of the inherited library. 

The general structure of a class extends declaration is as follows, where the class keyword can be 
replaced by any of the specialized class keywords model, block, type, function, package, and so on: 
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class extends className class_modificationopt class_body 

The class extends construct can be used by itself, but is very often combined with redeclare: 
redeclare class extends className class_modificationopt class_body 

See Section 4.6, page 175, for a detailed description of class extends including examples. 

4.3.10 Transitively Nonreplaceable Classes 

In several cases, it is important that no new elements can be added to the type of a class during 
redeclaration, especially considering short class definitions. 

The main reason for this requirement is early prevention of errors/conflicts with existing elements in 
the type or class if an inherited class would be redeclared to contain additional elements with the same 
name(s) as existing elements in that class. 

Such classes are called transitively nonreplaceable. See Section 4.1.5, page 140, for some examples 
and detailed motivation. See also Section 3.18.7.3, page 122, for the same definitions as this section. 

Either the class is declared without the replaceable keyword (thus being nonreplaceable) or defined 
using a short class definition to be the same as another class which also must be nonreplaceable 
transitively to any level. 

More formally, a class reference is transitively nonreplaceable if and only if all parts of its name satisfy 
the following: 

• If the class definition is long it is transitively nonreplaceable if not declared replaceable. 
• If the class definition is short (e.g., class A=P.B) it is transitively nonreplaceable if it is 

nonreplaceable and equal to a class reference (P. B) that is transitively nonreplaceable. 

According to Section 4.1.5, page 140, for a hierarchical name reference all parts of the name must be 
transitively nonreplaceable. In extends A.B.C this implies that A.B.C must be transitively 
nonreplaceable, as well as A and A. B, with the exception of the class extends redeclaration mechanism, 
(Section 4.6, page 175) where the class reference must always be replaceable. 

4.3.11 Summary of Restrictions on Redeclarations 

The following is a summary of the constraints that apply to redeclarations apart from the restrictions 
related to constraining types and redeclarations described in the previous section. Several constraints are 
stated explicitly for clarity even though they follow automatically from the subtyping constraint, given the 
general definition of type described in Chapter 3, page 115. How to check subtyping is described in 
Section 3.19.4, page 126. 

• Only classes and instances declared as replaceable can be redeclared with a different type, 
which must be a subtype of the constraining type of the original declaration. To allow further 
redeclarations of the redeclared element one must use redeclare replaceable. Redeclaration 
of elements not declared as replaceable is allowed with the same type and the same or more 
restrictive variability and array dimension sizes. 

• Moreover, in many cases (when the element contains connectors) the element provided in the 
redeclaration must fulfill the stricter plug-compatible subtyping condition (Section 3.19.5, page 
127), instead of just standard subtyping. Plug-compatible subtyping usually makes a difference for 
classes or instances containing connectors. Very briefly stated: plug-compatible subtyping requires 
that additional connectors in the subtype interface must be default connectable. 

• A replaceable class used in an extends clause, for example, the ResistorModel below, must 
contain only public elements. If the replaceable class were to contain protected elements, for 
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example, the protected variables of the replaceable default class, it cannot be guaranteed that those 
variables would be kept after redeclaration. 
class GenResistor 

replaceable class ResistorModel=Resistor; 
extends ResistorModel; 

end GenResistor; 
• An element declared as constant or final cannot be redeclared. 
• The variability of a declared element must be kept the same or decrease at redeclaration, for 

example, parameter may change to parameter or constant; discrete may change to 
discrete, parameter, or constant; continuous-time may change to continuous-time, 
discrete,parameter, or constant. 

• A function can only be redeclared as a function. 
• The flow properties of an element cannot be changed at redeclaration. 
• The access properties of an element, i.e., public or protected, cannot be changed at 

redeclaration. 
• A class redefined by class extends must be replaceable. See Section 4.6.2, page 177 for detailed 

restrictions. 

4.3.12 Annotation Choices for Redeclarations 

Apart from textual Modelica programming, redeclarations may also be specified through a graphical user 
interface (GUI) of a Modelica modeling tool, for example, via menu choices. The user interface can suggest 
reasonable redeclarations, where the string comment in the choice declaration can be used as a textual 
explanation of a choice. Based on the interactions with the user, the GUI then generates the appropriate 
Modelica code. The annotation can also be used as a hint to the user doing textual Modelica programming. 

In order to support this mode of operation, an annotation (see Section 11.5.8, page 541) called 
choices containing choice elements is predefined to be recognized with certain semantics in Modelica, 
including recognition of redeclaration statements in the annotation. 

Choices menus of replaceable elements can be automatically constructed showing the names of all 
classes that are either directly or indirectly derived by inheritance from the constraining class of the 
declaration. This can be recommended by having annotation choicesAHMatching = true; and 
disabled by having annotation choicesAHMatching = false. The behavior when 
choicesAHMatching is not specified; ideally it should present (at least) the same choices as for 
choicesAHMatching = true; but if it takes (too long) time to present the list it is better to have 
choicesAHMatching = false. 

For example, consider the following replaceable model with a choices annotation: 

replaceable model MyResistor=Resistor 
annotation(choices( 
choice (redeclare MyResistor=lib2 .Resistor (a= {2 }) "..."), 
choice (redeclare MyResistor=lib2 .Resistor2 "..."))); 

If the user would choose the first alternative, the following code might be produced if MyResistor is part 
of the class MyCircuit and the chosen name of the instantiated component is x: 

MyCircuit x(redeclare MyResistor=lib2.Resistor(a={2})) 
Additional examples of replaceable class declarations with redeclaration choices are shown below: 

replaceable Resistor Load(R=2) extends TwoPin 
annotation(choices( 

choice (redeclare lib2 .Resistor Load(a={2}) "..."), 
choice (redeclare Capacitor Load(L=3) "..."))); 

replaceable FrictionFunction a(func=exp) extends Friction 
annotation(choices( 

choice (redeclare ConstantFriction a(c=l) "..."), 
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choice (redeclare TableFriction a (table="...") "..."), 
choice (redeclare FunctionFriction a(func=exp) "..."))); 

replaceable package Medium 
Modelica.Media.Water.ConstantPropertyLiquidWater 

constrainedby Modelica.Media.Interfaces.PartialMedium 
annotation (choicesAHMatching=true) ; 

The choices annotation is not restricted to replaceable elements. It is also applicable to 
nonreplaceable elements, simple variables, and types used for enumerations. For a Boolean variable, a 
choices annotation may contain the definition checkbox = true, meaning to display a checkbox to input 
the values false or true in the graphical user interface. 

For example, consider the following Integer type called KindOfController used to represent a 
choice of controller in the modeling process out of the following enumeration of three recommended 
alternatives: 

type KindOfController = Integer(min = l,max = 3) 
annotation(choices( 

choice = 1 "P", 
choice = 2 "PI", 
choice = 3 "PID")); 

Assume that KindOfController is used in a model A as below: 

model A 
KindOfController x; 

end A; 
An interactive choice of the third alternative from a menu containing the alternatives {"P","Pi",nPiD"} 
would result in the default value 3 for the instantiated variable x in the following code for an instance a2 
of the model A: 

A a2(x=3 "PID"); 
It can also be applied to Boolean variables to define a check box. 

parameter Boolean useHeatPort=false annotation(choices(checkBox=true)); 

4.4 Parameterized Generic Classes 

In many situations it is advantageous to be able to express generic patterns for models or programs. 
Instead of writing many similar pieces of code with essentially the same structure, a substantial amount of 
coding and software maintenance can be avoided by directly expressing the general structure of the 
problem and providing the specific information as parameters. 

Such generic constructs are available in several programming languages, for example, templates in C++, 
generics in Ada, functions and packages with type parameters in functional languages such as Haskell or 
Standard ML. Similar capability is provided in Modelica. In fact, the Modelica class concept is sufficiently 
general to handle both generic programming and object-oriented modeling within a single construct. 

There are essentially two main cases of generic class parameterization in Modelica: 

1. Instance formal parameters, for which variable declarations are supplied as actual arguments. 
2. Type formal parameters, for which classes are supplied as actual arguments. 

Interface parameterization of a class is a natural consequence where the class formal parameters are 
connector classes or connector variables belonging to the class. 

Note that by class parameterization in this context we do not mean simulation parameter variables 
prefixed by the keyword parameter, even though such variables can also be class formal parameters. 
Instead we mean formal parameters to the class. Such formal parameters are prefixed by the keyword 
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replaceable. The special case of replaceable local functions is roughly equivalent to virtual methods in 
some object-oriented programming languages. 

4.4.1 Class Parameterization Using Replaceable and Redeclare 

Modelica classes and packages can be parameterized in a general way, corresponding to generic classes or 
packages. Both classes and variables which are members of some class can be used as a kind of formal 
class parameter by attaching the prefix replaceable in front of their declarations. 

As we have seen in the previous Section 4.3 about redeclaration on page 156 in this chapter, a declared 
variable can be replaced by a variable of a different type that must be a subtype of the constraining type of 
the replaced variable. Additionally, a locally declared type can be replaced by another type. The 
replaceable prefix must be put in front of declared elements that can be replaced. To summarize: 

• Formal class parameters are replaceable variable or type declarations within the class (usually) 
marked with the prefix replaceable. 

• Actual arguments to classes are modifiers, which when containing whole variable declarations or 
types are preceded by the prefix redeclare. 

In Section 2.5, page 31, we gave two examples of parameterized classes: in the first case the formal 
parameters were colored objects, that is, class parameters being components or variables. In the second 
example, the color type itself was the class parameter. 

Here we use the simple ResistorCircuit of three resistors connected at one node, (see Figure 4-3), 
as an example of a class that can be converted into different variants of generic classes. More details about 
the connections semantics of this class is available in Section 5.4.3, page 198. 

- t j ] R1 —|—c|] R2 [j]-

—i^J R3 [ j h 

Figure 4-3. Schematic picture of the ResistorCircuit. 
model ResistorCircuit // Circuit of 3 resistors connected at one node 

Resistor R1(R=100); 
Resistor £2(R=200); 
Resistor R3(R=300); 

equation 
connect(R1.p, R2.p); 
connect(R1.p, R3.p); 

end ResistorCircuit; 
In the next two sections, the two main kinds of class parameterization are discussed, using the resistor 

circuit as the primary example. 

4.4.2 Class Parameters Being Instances 

First we present the case when class parameters are components, that is, instances or objects, also called 
variables. Also compare this to the color class example in Section 4.1 on page 136. The class 
ResistorCircuit has been converted into a parameterized generic class Generic ResistorCircuit 
in the example below with three formal class parameters Rl, R2, R3 marked by the keyword 
replaceable. These class parameters are declared as having the default type Resistor. 
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model GenericResistorCircuit // The resistor circuit made generic 
replaceable Resistor Rl (R=100); 
replaceable Resistor i?2(R=200) ; 
replaceable Resistor R3(R=300); 

equation 
connect(R1.p, R2.p); 
connect(Rl.p, R3.p); 

end GenericResistorCircuit; 
Subsequently, a more specialized class TemperatureDependentResistorCircuit is created by 

changing the types of R1 and R2 to TempResistor, which is a subtype of Resistor, by supplying 
TempResistor declarations of R1 and R2 as actual arguments when creating a modified class out of 
GenericResistorCircuit. The keyword redeclare must precede a whole declaration actual 
argument to a formal class parameter: 

model TemperatureDependentResistorCircuit = 
GenericResistorCircuit( redeclare TempResistor Rl, 

redeclare TempResistor R2 
); 

We also add a temperature variable Temp for the temperature of the resistor circuit, and modifiers for the 
component Rl, which now is a TempResistor, to set the temperature-dependent resistance parameter RT 
to 0 .1 and the resistor temperature Temp to the circuit temperature Temp. The standard class syntax is 
used rather than the previous short class definition. 

model TemperatureDependentResistorCircuit 
Real Temp; 
extends GenericResistorCircuit( 
redeclare TempResistor Rl(RT=0.1, Temp=Temp), 
redeclare TempResistor R2 

); 
end TemperatureDependentResistorCircuit; 
This class is equivalent to the class below. The prefix replaceable has been lost for Rl and R2, since 

we did not use redeclare replaceable. 
model TempDepResistorCircuitInherited 

Real Temp; 
TempResistor Rl{R=100, RT=0.1, Temp=Temp) ; 
TempResistor i?2(R=200); 
replaceable Resistor i?3(R=300); 

equation 
connect(Rl.p, R2.p); 
connect(Rl.p, R3.p); 

end TempDepResistorCircuitInherited; 

4.4.3 Generalizing Constraining Types of Class Parameters 

Sometimes, it can be useful to allow a more general constraining type of a class parameter, for example, 
TwoPin instead of Resistor for the formal class parameters and components compl and comp2 below. 
This allows replacement by another kind of electrical component than a resistor in the circuit. 

model GeneralResistorCircuit 
replaceable Resistor compl(R=100) constrainedby TwoPin; 
replaceable Resistor comp2(R=200) constrainedby TwoPin; 
replaceable Resistor R3(R=300); 

equation 
connect(Rl.p, R2.p); 
connect(Rl.p, R3.p); 

end GeneralResistorCircuit ; 
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Here, the resistors Rl and R2 can be replaced by any electrical component which is a subtype of model 
TwoPin, as in the following redeclaration. 

The generalized parameterization properties of GeneralResistorCircuit are used below when 
replacing the circuit components compl and comp2 with components of the types Capacitor and 
Inductor that are subtypes of TwoPin. 

model RefinedResistorCircuit 
extends GeneralResistorCircuit(redeclare Capacitor compl(C=0.003), 

redeclare Inductor comp2(L=0.0002) ); 
end RefinedResistorCircuit; 

4.4.4 Class Parameters Being Types 

A formal class parameter can also be a type, which is useful for changing the type of many objects. For 
example, by providing a type parameter ResistorModel in the generic class below it is easy to change 
the resistor type of all objects of type ResistorModel, for example, from the default type Resistor to 
the temperature-dependent type TempResistor. The class GenericResistorCircuit2 is denoted as 
generic since it is valid for many possible values of the class parameter ResistorModel. Also compare to 
the ColoredClass class parameter example in Section 2.5.2 on page 33. 

model GenericResistorCircuit2 // A generic resistor circuit 
replaceable model ResistorModel = Resistor; 
ResistorModel Rl(R=100); 
ResistorModel R2(R=200); 
ResistorModel R3(R=300); 

equation 
connect(Rl.p, R2.p); 
connect(Rl.p, R3.p); 

end GenericResistorCircuit2; 
A more specialized temperature-dependent circuit RefinedResistorCircuit2 (which is not 

generic) can be created where the resistor type TempResistor is supplied as an actual argument value for 
the formal class parameter ResistorModel: 

model RefinedResistorCircuit2 -
GenericResistorCircuit2(redeclare model ResistorModel = TempResistor); 

This class is equivalent to the following "expanded" class: 

model RefinedResistorCircuit2expanded // A generic resistor circuit 
TempResistor Rl(R=100); 
TempResistor i?2(R=200); 
TempResistor R3{R=300); 

equation 
connect(Rl.p, R2.p); 
connect(Rl.p, R3.p); 

end RefinedResistorCircuit2expanded; 

4.4.5 Parameterization and Extension of Interfaces 

External interfaces to component classes are defined primarily through the use of connectors. The topic of 
connectors and connections is primarily dealt with in Chapter 5, but here we describe parameterization and 
extensions of such interfaces. 

For example, assume that we have a definition of a Tank model in a model library. The Tank model is 
depicted in Figure 4-4 and as the class Tank declared below. The model has an external interface in terms 
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of the connectors inlet and outlet, as well as a formal class parameter TankStream, which is a 
connector class with its default class value being the Stream connector class . 

Figure 4-4. A tank with connectors inlet and outlet. 

model Tank 
parameter Real Area=l; 
replaceable connector TankStream = Stream; // Class parameterization 
TankStream inlet, outlet; // The connectors 
Real level; 

equation 
// Mass balance 
Area*der (level) = inlet. volumeFlowRate + outlet.volumeFlowRate; 
outlet.pressure = inlet.pressure; 

end Tank; 
connector Stream // Connector class 

Real pressure; 
flow Real volumeFlowRate; 

end Stream; 
We would like to extend the Tank model to include temperature-dependent effects, analogous to how 

we extended a resistor to a temperature-dependent resistor. This involves extension both of the connector-
based external interface of the class Tank and of its model equations. The result is the temperature-
dependent Tank model called HeatTank. A new connector class HeatStream is defined as an extension 
of the previous connector class Stream, and provided as an actual argument, i.e., redeclaration, when 
defining the class HeatTank. 

model HeatTank 
extends Tank(redeclare connector TankStream = HeatStream); 
Real temp; 

equation 
// Energy balance for temperature effects 
Area*level*der(temp) = inlet.volumeFlowRate*inlet.temp + 

outlet.volumeFlowRate*outlet.temp; 
outlet.temp = temp; // Perfect mixing assumed, 

end HeatTank; 
connector HeatStream 
extends Stream; 
Real temp; 

end HeatStream; 
The definition of HeatTank is equivalent to the following class definition: 

model HeatTankExpanded 
parameter Real Area=l; 
TankStream inlet, outlet; 
Real level; 
Real temp; 
connector TankStream 
Real pressure; 
flow Real volumeFlowRate; 

Tank 
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Real temp; 
end TankStream; 

equation 
// Mass balance: 
Area*der(level) = inlet.volumeFlowRate + outlet.volumeFlowRate; 
outlet.pressure = inlet.pressure; // Energy balance: 
Area*level*der(temp) = inlet.volumeFlowRate * inlet.temp + 

outlet.volumeFlowRate * outlet.temp; 
outlet.temp = temp; 

end HeatTankExpanded; 

4.5 Designing a Class to Be Extended 

At this stage, it should be apparent to the reader that a class needs to be carefully designed to be extended. 
Otherwise, it will often be misused by derived classes, or may not be possible to extend at all. One 
example is our by now well-known Resistor class, also shown below. It has a lot in common with the 
TempResistor class, also shown below. Unfortunately, Resistor cannot be inherited by 
TempResistor since the constitutive resistor equation v=i*R would still be kept together with the new 
temperature-dependent Resistor equation if we try to inherit from Resistor, giving conflicts between 
the two equations and an overdetermined system of equations. 

The conclusion is that the Resistor class should be designed for extending only its data declarations 
since the behavior in terms of equation(s) creates problems, or otherwise be designed to allow replacement 
also of the behavior. Thus there are at least two design goals when designing a class to be extended: 

• Reuse of data, i.e., variable declarations. 
• Reuse of behavior, i.e., equations. 

We will explore both of these possibilities. 
Another aspect to consider is that any non-final class, i.e., any class not declared final, has two 

interfaces. The public interface is for code referring to the class, for example, through its connectors or 
other public elements. The protected interface is for code inheriting the class since protected declarations 
are inherited. Both interfaces are real contracts between the class designer and user, and should be 
designed carefully. 

If a class can be extended we should also design its protected parts carefully and especially consider 
whether protected elements really are necessary. The result might be to have no protected elements in the 
superclass, if it does not need any special access. 

4.5.1 Reuse of Variable Declarations from Partial Base Classes 

One way of getting around the problems of inheriting and specializing behavior, exemplified with the 
Resistor class below, is to create incomplete, that is, partial, base classes that can be inherited. 

model Resistor "Electrical resistor" 
extends TwoPin; // TwoPin, see Section 2.8.5, page 40. 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
v = i*R; 

end Resistor; 
model TempResistor "Temperature dependent electrical resistor" 

extends TwoPin; // TwoPin, see Section 2.8.5, page 40. 
parameter Real R(unit="Ohm") "Resistance at reference Temp."; 
parameter Real RT(unit="Ohm/degC")=0 "Temp, dependent Resistance."; 
parameter Real Tref(unit="degC")=20 "Reference temperature."; 
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Real Temp=20 "Actual temperature"; 
equation 
v = i*(R + RT*(Temp-Tref)); 

end TempResistor; 
Such partial base classes can be made to contain only the data declarations that can be reused. 

partial model BaseResistor "Electrical resistor" 
Pin p, n; "positive and negative pins"; 
Voltage v; 
Current i; 
parameter Real R(unit="Ohm") "Resistance"; 

end BaseResistor; 
This is a partial class since it does not contain enough equations to completely specify its physical 
behavior, and is therefore prefixed by the keyword partial. The keyword is optional when items referred 
to by the class are available. Partial classes are usually known as abstract classes in other object-oriented 
languages. 

Using the BaseResistor partial class the two classes Resistor2 and TempResistor2, equivalent 
to the Resistor and TempResistor above, can be defined to reuse all common variable declarations in 
the base class. 

model Resistor2 "Electrical resistor" 
extends BaseResistor; 

equation 
v = i*R; 

end Resistor2; 
model TempResistor2 "Temperature dependent electrical resistor" 

extends BaseResistor; 
parameter Real RT(unit="0hm/degC")=0 "Temp, dependent Resistance."; 
parameter Real Tref(unit="degC")=20 "Reference temperature."; 
Real Temp=20 "Actual temperature"; 

equation 
v = i*(R + RT*(Temp-Tref)); 

end TempResistor; 
The drawback of this approach is that we have essentially given up on reuse and inheritance of 

behavior when part of the behavior needs to be redefined. In the next section, we examine a way to get 
around that problem. 

4.5.2 Extending and Redefining Behavior 

Redefining behavior when classes are extended is not a problem in standard object-oriented languages 
such as Java and C++ since behavior is contained in named methods. One named method of a class can be 
replaced by another method with the same name in the extended class. 

This solution is not possible in Modelica since behavior is primarily represented by unnamed 
equations. There is no general simple mechanism to name equations in Modelica, but fortunately there are 
two ways to indirectly associate a name with equation(s): 

• A declaration equation named by its variable. 
• A group of equations stored in a named replaceable local class. 

The first possibility is to use the fact that a declaration equation is implicitly named by the variable that 
is declared in the declaration. However, such equations are seldom useful for general representation and 
specialization of behavior since they are closely tied to the declaration of the variable that is declared, for 
example, the variable might be declared in an inherited class but the equation may refer to variables in the 
current class. 
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The second method is to put the class's equation(s) that might need replacement into a replaceable 
local class that is inherited into the class itself. The local class ResistorEquation within the class 
Resistor3 below is an example of this technique. Resistor3 has the same variables and behavior as 
Resistor, but allows redeclaration of its equations since they are defined in the replaceable class 
ResistorEquation. 

model Resistor3 "Electrical resistor" 
Pin p, n; "positive and negative pins"; 
parameter Real R(unit="Ohm") "Resistance"; 
replaceable class ResistorEquation 
Voltage v; 
Current i; 

equation 
v = i*R; 

end ResistorEquation; 
extends ResistorEquation; 

end Resistor3; 
The temperature-dependent resistor class Temp Resistor 3, essentially equivalent to the previous 

TempResistor, can inherit Resistor3 by declaring its temperature-dependent equation in a 
redeclaration class ResistorEquation that replaces the original local class ResistorEquation. Note 
that in this case we have supplied a whole new class declaration within the redeclaration 

model TempResistor3 "Temperature dependent electrical resistor" 
extends Resistor3( redeclare class ResistorEquation 

Voltage v; 
Current i; 

equation 
v = i*(R + RT*(Temp-Tref)); 

end ResistorEquation; 
) ; 
parameter Real RT(unit="Ohm/degC")=0 "Temp, dependent Resistance."; 
parameter Real Tref(unit="degC")=20 "Reference temperature."; 
Real Temp=2 0 "Actual temperature"; 

end TempResistor3; 

The described method of redefining behavior at inheritance by collecting equations into replaceable 
local classes works, but is somewhat clumsy. It is possible to allow further redefinition of the behavior of a 
derived class such as TempResistor3 by using redeclare replaceable in the redeclaration instead of 
just redeclare. A more elegant approach of extending and redefining behavior of classes and libraries is 
provided by the class extends mechanism described in Section 4.6 below. 

4.6 Adapting and Extending Libraries by class extends 

A common problem when using libraries is that they often need to be adapted somewhat before they fit a 
particular application. A brute force approach would be to copy the library and make the necessary 
changes and additions. However, this creates maintenance problems when new versions of the same 
library appear. Manually redoing the same changes and enhancements over and over again for each new 
version of the library is time consuming, tedious, and error prone. 

The Modelica class extends mechanism has been created to simplify adapting a library to a usage 
situation without changing the original library itself by allowing modifications and redeclarations to be 
applied to an implicit copy of the inherited library. 

The general structure of a class extends declaration is as follows, where the class keyword can be 
replaced by any of the specialized class keywords model, block, type, function, package, and so on: 
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class extends className class_modificationopt class_body 

Expressed somewhat formally, a class extends declaration has the following effect: 

• A class declaration of the form class extends Bclass (class_modificationopi) replaces a 
replaceable inherited class (Bclass) with another declaration with the same name (BClass) that 
inherits the optionally modified original inherited class Bclass {class_modificationovi). Since all 
definitions are inherited with modifiers already applied, they need not be applied later. 

The class extends can be used by itself, but is very often combined with redeclare: 

redeclare class extends className class_modificationopt class_body 

As usual, a redeclaration (Section 4.3, page 156) of a definition is applied within an implicit copy of the 
class/package containing the definition; in this case a copy of the inherited class/package where the 
definition named className is originally defined. 

When should we use class extends and when should we use redeclare class extends? These 
are approximate guidelines: 

• Use class extends to add new definitions to an existing inherited library after it is inherited. 
• Use redeclare class extends to replace definitions in an existing inherited library in an 

implicit copy of the library before it is inherited. 

The class extends mechanism might appear to be rather abstract and complicated. Below we give some 
examples of its use to make it easier to understand. Note that it is rather easy to use. 

4.6.1 A Simple Example of Adding Definitions to an Inherited Library 

Regard the following simple class extends example without modifiers, where we have replaced the 
class keyword by package: 

package extends InheritedLib ... 
Assume that we have the following definition of InheritedLib inside BasePackage: 
package BasePackage 

replaceable package InheritedLib 
model A1 ... end A1; model A2 ... end A2 ; 

end InheritedLib; 

end BasePackage; 
InheritedLib is inherited by some other class, e.g.: 

class OtherClass 
extends BasePackage; 
package extends InheritedLib 
model C3 ... end C3; model D4 ... end D4; model E5 ... end E5; 

end InheritedLib; 
end OtherClass; 
The class extends mechanism gives the following result when all inheritance has been expanded, 

since it replaces the original InheritedLib containing A1 and A2 with the new InheritedLib which 
inherits the original InheritedLib but also contains C3, D4, and E5. 

class OtherClassExpanded 
package InheritedLib 
model Al ... end A1; model A2 ... end A2; 
model C3 ... end C3; model D4 ... end D4; model E5 ... end E5; 
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end InheritedLib; 
end OtherClassExpanded; 
The following PowerTrain example is very similar. The clause package extends Gearboxes adds 

new definitions to the already inherited subpackage Gearboxes. Note that GearBoxes must have been 
declared replaceable. 

package PowerTrain // Library from someone else 
replaceable package GearBoxes 

... // Some library classes 
end GearBoxes; 

end PowerTrain; 

package MyPowerTrain 
extends PowerTrain; // Inherit all classes from PowerTrain 

// including the sublibrary GearBoxes 

package extends GearBoxes // Add more classes to the sublibrary 
model G5 ... end G5; // Here G5 and G6 are added to GearBoxes 
model G6 ... end G6; 

end GearBoxes; 
end MyPowerTrain; 

4.6.2 General Mechanism and Restrictions for Class Extends 

As already shown, a class extends declaration has the following form: 

class extends InheritedClass class_modificationopt class_body 

The following general rules and restrictions apply to class extends declarations: 

• InheritedClass is a class that has been inherited from some base class. 
• InheritedClass is subject to the same restrictions, for example constraining type, as a standard 

redeclare of InheritedClass. 
• InheritedClass should always be declared replaceable. 
• The new inherited class is only replaceable if the class extends definition has been declared as 

replaceable, for example replaceable class extends InheritedClass class_modificationopt 

classbody. 
• The restriction in short class definitions, e.g., class Aclass=Bclass, that Bclass should be 

transitively nonreplaceable (Section 3.18.7.3, page 122), i.e., that no new elements can be added to 
the interface of a class, does not apply to an InheritedClass inherited via class extends 
since InheritedClass is required to be replaceable. 

Conceptually, a Modelica compiler implementing support for the class extends mechanism has to 
perform the following steps: 

• Step 1. Make a copy of the inherited enclosing class/package containing InheritedClass with 
the enclosing class modifiers applied. 

• Step 2. Before inheriting, if there are any redeclare extends class definitions, redeclare those 
in the copy. 

• Step 3. After inheriting, replace the inherited definitions by their corresponding extends class 
definitions if present. 
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4.6.3 Redeclarations with redeclare class extends in a Parameterized 
Inherited Class 

We continue with a more advanced example which demonstrates a combination of parameterization of an 
inherited class and redeclarations of definitions within that class. The A model is parameterized by the 
Integer constant n. The replaceable model M is replaced both using class extends and redeclare 
class extends to demonstrate the difference. 

model A 
constant Integer n=l; 
replaceable model M 

Real x; 
end M; 
M[n] mA; 

end A; 
The UserB model inherits a copy of A where the modifier n=2 has been applied to replace n=l by n=2. 

model UserB 
extends A(n=2); 
model extends M // This will not change M in the modified A 

VoltageB x; 
end M; 
M[n] mB; 

end UserB; 
This results in the expanded/flattened model below, where we use dot notation like mA. x to show that this 
is the x from the inherited A model, and mB. x to show that this x originates from the mB instance in UserB. 

The UserB model inherits a copy of A where with the modifiers (here n=2) have been applied. This 
copy contains mA of type M[n] where M contains x of type Real. The effect of model extends M in 
UserB is to locally replace the inheritedM by an M containing VoltageB which is used by the mB instance, 
giving the following expanded result. Arrays are shown without expansion to scalar elements. 

model UserB_Expanded 
Real[2] mA.x; 
VoltageB[2] mB.x; 

end UserB_Expanded; 
The UserC model inherits A with a redeclare model extends clause referring to the inherited M. 

The difference compared to the previous case is that we have a redeclare in front of the model 
extends M declaration. 

model UserC 
extends A(n=3); 
redeclare model extends M // This will replace M in the modified A 
VoltageC x; 

end M; 
M[n] mC; 

end UserC; 
The redeclare has the effect of redefining M in a copy of the modified package A before it is inherited 

into UserC. The applied modification is n=3. The redefined M is used by the mA instance declared in A as 
well as by mC in UserC, resulting in the following expanded/flattened model, here shown with arrays not 
expanded: 

model UserC_Expanded 
VoltageC[3] mA.x; 
VoltageC[3] mC.x; 
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end UserC_Expanded; 
Similarly, the UserD model also inherits the modified A, but with a different modification n=4, with a 

redeclare model extends clause referring to the inherited M: 

model UserD 
extends A(n=4); 
redeclare model extends M 
VoltageD x; 

end M; 
M[n] mD; 

end UserD; 
This will result in the following expanded/flattened model, here shown with arrays not expanded: 

model UserD_Expanded 
VoltageD[4] mA.x; 
VoltageD[4] mD.x; 

end UserD_Expanded; 

4.6.4 Redeclarations with redeclare class extends in a Media Application 

The following example is an advanced type of package structuring typical in media applications. 
First we show a generic but incomplete partial package called PartialMedium which is defined 

containing both a partial model for the basic properties of the medium and a partial function that defines 
the dynamic viscosity of the medium. 

partial package PartialMedium "Generic medium interface" 
constant Integer nX "number of substances"; 

replaceable partial model BaseProperties 
Real X[nX]; 

end BaseProperties; 

replaceable partial function dynamicViscosity 
input Real p; 
output Real eta; 

end dynamicViscosity; 
end PartialMedium; 

We use the PartialMedium package as a basis for creating our own specialized package for the moist air 
medium, MoistAir, where BaseProperties has been specialized according to its redeclare model 
extends definition. 

Note that since MostAir extends from PartialMedium in the example below, the constant definition 
nX = 2, the model BaseProperties, and the function dynamicViscosity are present in MoistAir. 

By the following definitions, the available partial BaseProperties model is replaced by the given 
definition which inherits the original modified partial BaseProperties model that has been temporarily 
constructed during the inheritance of PartialMedium from the package MostAir. 

The redeclared BaseProperties model references the constant nX which is 2, since by construction 
the redeclared BaseProperties model is in the modified PartialMedium package with nX = 2, where 
the modification has been applied before the package is inherited. 

package MoistAir "Special type of medium" 
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extends PartialMedium(nX = 2); // Inherits BaseProperties and 
// dynamicVisosity redeclared below 

redeclare model extends BaseProperties(T(stateSelect=StateSelect.prefer)) 
// Replaces BaseProperties by this new definition and extends from 
// the previous partial BaseProperties with a modification on T 
// Note that nX = 2 since BaseProperties is inherited as an element in 
// the PartialMedium which is inherited with modifier nX = 2 

equation 
X = {0, 1}; 

end BaseProperties; 

redeclare function extends dynamicViscosity 
// Replaces partial dynamicViscosity by this new implementation and 
// extends from the previous partial dynamicViscosity 

algorithm 
eta = 2*p; 

end dynamicViscosity; 
end Moist Air; 
The above definition is compact but perhaps a bit difficult to understand. However, a possible 

alternative approach is impractical and/or erroneous, which is explained below (Section 4.6.5, page 180). 

4.6.5 A Conventional Approach with Erroneous Modifiers 

At a first glance, an alternative modeling approach with conventional redeclarations might exist that could 
be more straightforward and easier to understand. The MostAir2 example demonstrates this approach. 

partial package PartialMedium "Generic medium interface" 
constant Integer nX "number of substances"; 

replaceable partial model BaseProperties 
Real X[nX]; 

end BaseProperties; 

replaceable partial function dynamicViscosity 
input Real p; 
output Real eta; 

end dynamicViscosity; 
end PartialMedium; 

package MoistAir2 "Alternative definition with duplicate definitions" 
extends PartialMedium( // Standard modifiers/redeclarations: 

nX = 2, 
redeclare model BaseProperties = MoistAir_BaseProperties, 
redeclare function dynamicViscosity = MoistAir_dynamicViscosity ); 

model MoistAir_BaseProperties // Additional BaseProperties model 
extends PartialMedium.BaseProperties(nX = 2); 

// Error! Modifier nX is not declared in BaseProperties 
equation 
X - {1,0}; 

end MoistAir_BaseProperties; 
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function MoistAir_dynamicViscosity // Used in above redeclaration 
extends PartialMedium.dynamicViscosity(nX = 2); 

// Modifier nX=2 is duplicated 
algorithm 

eta :=p; 
end MoistAir_dynamicViscosity; 

end MoistAir2; 
Here the usual approach is used to inherit, for example from PartialMedium, where all redeclarations 

are performed in the modifiers. In order to perform these redeclarations, the corresponding 
implementations of all elements of PartialMedium, e.g. BaseProperties, dynamicViscosity, etc., 
have to be given under different names, such as MoistAir2.MoistAir_BaseProperties, and so on, 
since BaseProperties already exists as a local class since it has been inherited via extends 
PartialMedium. Then it is possible in the modifier to redeclare PartialMedium. BaseProperties to 
MoistAir 2 .MoistAir_Base Proper ties through a short class definition. 

One drawback is that the namespace is polluted by elements that have different names but the same 
implementation, for example MoistAir2 .BaseProperties is identical to MoistAir2 .MoistAir_Base-
Properties, and MoistAir2 .dynamicViscosity is identical to MoistAir2 .MoistAi^dynamic-
Viscosity. 

However more serious is that the whole construction does not work if arrays are present that depend on 
constants in PartialMedium, for example, x [ nX] that depends on the value of the constant nX. 

The problem is that MoistAir_BaseProperties extends from PartialMedium. BaseProperties 
where the constant nX does not yet have a value and cannot be give a value through a modification since 
nX has no definition inside MoistAir_BaseProperties. This means that the dimension of the array X is 
undefined and the model MoistAir BaseProperties is wrong. 

Thus, with this construction, all constant definitions have to be repeated whenever these constants are 
to be used, especially in MoistAir_BaseProperties and MoistAir_dynamicViscosity. 

For larger models it is not very practical to repeat definitions of the same constants for reasons of 
maintainability. Therefore the preferred practically useful approach is the construction used in the previous 
example with redeclare model extends BaseProperties. 

To detect the issue of erroneous lookup in partial packages such as for PartialMedium. 
dynamicViscosity, the rule of lookup of composite names (Section 3.17.2, page 112) has an extra 
condition that the class within which lookup is done may not be a partial class when we are performing the 
lookup in the context of compiling a simulation model, i.e., a model being compiled to executable code. 

4.7 Summary 

In this chapter, we presented the Modelica version of one of the major benefits of object orientation: the 
ability to inherit behavior and properties from an existing class. The presentation started by reorganizing 
the previous moon landing example to use inheritance, and thereby achieving a certain degree of reuse. We 
continued by presenting the concepts of modification and redeclaration in Modelica, which provide 
particularly concise and elegant ways of expressing inheritance in many situations. We concluded by 
describing how to define and use generic classes in Modelica, as well as designing a class to be extended. 

4.8 Literature 

The primary reference documents for this chapter are the Modelica language specification (Modelica 
Association 2012), (Modelica Association 2013), and tutorial (Modelica Association 2000). Modelica 
inheritance is quite similar to Java inheritance, e.g. as described in (Arnold and Gosling 1999). Diamond 
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inheritance is mentioned, e.g. in (Szyperski 1997). Inheritance in conjunction with the idea of a contract 
between a software designer and user is discussed in for example (Booch 1994; Meyer 1997). 

4.9 Exercises 

Exercise 4-1: 

Inheritance: 

class Animal 
Boolean isAlive = true; 
Boolean talks = false; 

end Animal; 
Define a class, Bird, that inherits from the class Animal. Give the variables values. 

Question: What value has the variable talks in the class Bird? 
Exercise 4-2: 

Create Subclasses and Superclasses: In this exercise you should create a partial class Vehicle with the 
variable speed. You should also create four classes; Car, Boat, Train, and Bicycle, which inherit 
from Vehicle. Remember the variables for each subclass, which you can see in the figure below. 

Let's write an instance of Train! 

Exercise 4-3: 

Using Inheritance and Access Control: Write a class, Person, with the variables name, weight, and ID, 
where ID should be protected. The next class Employed should inherit from Person and have a protected 
variable, salary. The last class, Programmer, contains the variables favProgLang (favorite programming 
language) and drinks JoltCola. 
Question: Which protected variable(s) does the class Employed have? 

Use the same class Person, but use this changed class Employed below: 

class Employed2 
protected 

extends Person; 
protected 

Real salary; 
end Employed2; 

Now which protected variable(s) does the class Employed have? 

Exercise 4-4: 

Question: What does a modifier do? 

Easy Modifying Example: Modify 

Vehicle 

speed 

Car Boat Train Bicycle 

motorEffectl boatWeight n r 0 fCarriages n r 0 f G e a r s 
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• the start value to 3, 
• the min value to -22 and 
• the fixed value to true 

of the variable test in the class Test below. 

class Test 
parameter Integer test; 

end Test; 
Exercise 4-5: 

Modifiers for Array Values: In this exercise you should modify different values of the following variables: 

• Set fixed to true in A1. 
• Set the start value to false in truthvalues. 
• Set unit to "kv" in the position: first row and second column of A2. 
• Set the start value on the first row in A3 to the values 3, 5, and 8. In the second row of the matrix 

the values should be set to 3, 10, and 22. 
• Set the matrix elements to " p ipp i" in A4. 
class ModArray 

Integer A1 [5]; 
Boolean truthvalues[2]; 
Real A2 [2,2] ; 
Integer A3[2,3] ; 
Real A4[2,2] ; 

end ModArray; 

Tip: Remember that each attribute has the same dimensionality as the array itself. Read more about 
predefined types/classes in Section 3.9. Read more about array construction in Chapter 7. 

Exercise 4-6: 

Modification and Access Control. The class Mod, below, contains five variables. Are you allowed to 
modify all of them? Why or why not? 

class Mod 
parameter Real x; 
parameter Real y; 
parameter Real z; 

protected 
parameter Real w; 
parameter Real s; 

end Mod; 
Exercise 4-7: 

Inheritance Through Modification. Declare a Real variable temp with the unit "degC" in the class 

Temperature. 
class Temperature 
end Temperature; 

Use short class definition and create a new class Temp20 that modifies the variable temp in Temperature 
to be equal to 20. 

Do the same thing as in Temp2 0, but this time Temp20 should inherit from Temperature. 
Tip: The variable temp must be a parameter so it can be modified in the short class definition. 

Exercise 4-8: 



184 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

Applying Hierarchical Modification. Today you are going on a lunch date! To help you, several classes are 
created below. 

The first class is DayName, contains the parameter nameOfDay, a certain day written as a String. 
The second class, LunchAppointment, contains the variables lunchTime (what time you are going to 
lunch) and lunchDate (whom you are going to lunch with). 

And finally, the class Date, with parameters dayName (where you can set the variable in the class 
DayName; for fun it is now Funday) as well as date, month, and year. 

class DayName 
parameter String nameOfDay; 

end DayName; 
class LunchAppointment 
parameter Integer lunchTime; 
parameter String lunchDate; 

end LunchAppointment; 
class Date 

DayName dayName(nameOfDay = "Funday"); 
parameter Integer date; 
parameter String month; 
parameter Integer year; 

end Date; 
Now create a class, Today, in which you can modify the values in the class Date as well as in the class 
LunchAppointment. First, write the class using nested notation. 

Now write the class, Tomorrow, going with another date, using dot notation. 

Exercise 4-9: 

Using Replaceable and Redeclare on Class Point: Point is a built-in type in Modelica. 

class Point 
parameter Real x; 
parameter Real y; 
parameter Real z; 

end Point; 
Create a class Redeclaration, containing a Point P as a variable. You should set the values of x, y, 
and z as well. 

In the class below you should redeclare p as the type myPoint, which is a subtype of Point (you can 
write myPoint further below). 

class PointRed 
end PointRed; 

You can declare the class myPoint. 
Tip.The variable p must be declared replaceable in class Redeclaration. 
Question. If you instead had a class MyPoint with z as an Integer, would that work? 

class MyPoint 
parameter Real x; 
parameter Real y; 
parameter Integer z = 4; 

end MyPoint; 
Exercise 4-10: 
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Using the Extends Clause in Redeclarations: The next exercise will test if you know how to use an 
extends clause when redeclaring. 

First write a class A with a Real parameter salt. We also need a class Asub , extending A and having two 
Real parameters: pepper and basil. The parameter salt shall be set to 20. Then we need a class 
Ainst, containing a variable a, which is an instance of A, in which you should set salt to 100. 

Write a class Aired, extending Ainst. Also, change the type of the component a to Aisub and set the 
pepper parameter to 200. 

Write a similar class Aired2 that instead of extending Ainst, declares a component of type Ainst. As 
above, the type of component a should be changed to Aisub. 
Exercise 4-11: 

More on Redeclaration. Write a class MoreRed that declares two variables vl and v2 being vectors and 
one variable x being an integer. Set x to a value. 

Use the class above to redeclare the dimension sizes of vl and v2 and the type of x. 

Tip\ In the redeclaration-statement of the variables, you have to include the term "parameter" so that they, 
as parameters, can be modified. 

Exercise 4-12: 

Prefix Final: We have a type Banana. Imagine you want to make two instances of this banana, 
lightBanana and swedishBanana. 

type Banana = Real(unit = "kg",final fixed = false); 
Is this allowed? Why or why not? 

class Bananas 
Banana lightBanana(unit = "hg"); 
Banana swedishBanana(fixed = true); 

end Bananas; 
Tip: Attribute fixed is declared final. 
Exercise 4-13: 

Question. What is a generic parameterized class? Why is that good? 
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Chapter 5 

Components, Connectors, and Connections 

For a long time, software developers have looked with envy on hardware system builders, regarding the 
apparent ease with which reusable hardware components are used to construct complicated systems. With 
software, there seems too often to be a need or tendency to develop from scratch instead of reusing 
components. Early attempts at software components include procedure libraries, which unfortunately have 
too limited applicability and low flexibility. The advent of object-oriented programming has stimulated the 
development of software component frameworks such as CORBA, the Microsoft COM/DCOM component 
object model, and JavaBeans. These component models have considerable success in certain application 
areas, but there is still a long way to go to reach the level of reuse and component standardization found in 
the hardware industry. 

5.1 Software Component Models 

What have software component models to do with Modelica? In fact, as we already stated in Section 2.8, 
Modelica offers quite a powerful software component model that is on par with hardware component 
systems in flexibility and potential for reuse. The key to this increased flexibility is the fact that Modelica 
classes are based on equations. What is a software component model? It should include the following three 
items: 

• Components. 
• A connection mechanism. 
• A component framework. 

Components are connected via the connection mechanism realized by the Modelica system, which can 
be visualized in connection diagrams. The component framework realizes components and connections, 
and ensures that communication works over the connections. For systems composed of acausal 
components the direction of data flow, that is, the causality, is initially unspecified for connections 
between those components. Instead the causality is automatically deduced by the compiler when needed. 
Components have well-defined interfaces consisting of ports, also known as connectors, to the external 
world. These concepts are illustrated in Figure 5-1. 

187 
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Interface Acausai coupling 
\ Connector Causal coupling 

Component Connection Component 

Figure 5-1. Connecting two components within a component framework. 

Modelica uses a slightly different terminology compared to most literature on software component 
systems: connector and connection, rather than port and connector respectively in software component 
literature. 

5.1.1 Components 

In the context of Modelica class libraries, software components are Modelica classes. However, when 
building particular models, components are instances of those Modelica classes. Classes should have well-
defined communication interfaces, sometimes called ports, in Modelica called connectors, for 
communication between a component and the outside world. 

A component class should be defined independently of the environment where it is used, which is 
essential for its reusability. This means that in the definition of the component including its equations, only 
local variables and connector variables can be used. No means of communication between a component 
and the rest of the system, apart from going via a connector, is allowed. A component may internally 
consist of other connected components, that is, hierarchical modeling. 

5.1.2 Connection Diagrams 

Complex systems usually consist of large numbers of connected components, of which many components 
can be hierarchically decomposed into other components through several levels. To grasp this complexity, 
a pictorial representation of components and connections is quite important. Such graphic representation is 
available as connection diagrams, of which a schematic example is shown in Figure 5-2. We have already 
(e.g., on page 38 in Chapter 2) seen connection diagrams of simple electrical circuits and as well as a few 
models from other domains. 

{j] Componenti [j] [j] Component2[j] 

-tj]Component3[j3— 

Figure 5-2. Schematic picture of a connection diagram for components. 

5.2 Connectors and Connector Classes 

Modelica connectors are instances of connector classes, that is, classes with the keyword connector. See 
Figure 5-3 to Figure 5-5. Such connectors declare variables that are part of the communication interface of 
a component defined by the connectors of that component. Thus, connectors specify the interface for 
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interaction between a component and its surroundings. For example, the by now well-known class Pin is a 
connector class that can be used to specify the external interface for electrical components that have pins 
as interaction points: 

v + ! 
— — — • p i n 

Figure 5-3. A component with an electrical pin connector. 

connector Pin 
Voltage v; 
flow Current i; 

end Pin; // From Modelica.Electrical.Analog.Interfaces 
Pin pin; // An instance pin of class Pin 
Connector classes have certain restrictions (Section 3.8.4, page 88) compared to other classes. Only 

public variables and other public declaration elements may be declared within a connector class. No 
equations or algorithm sections are allowed within a connector class. The declarations in a connector class 
may not have the prefixes inner or outer. 

Since Modelica is a multidomain language, connector classes can be formulated for a number of 
different application domains. The Flange connector class below, analogous to Pin, is used to describe 
interfaces for one-dimensional interaction in the mechanical domain by specifying the position s and force 
f at a point of interaction. 

s 
• flange ! 

f ^ i. 

Figure 5-4. A component with a mechanical flange connector. 

connector Flange 
Position s; 
flow Force f; 

end Flange; // From Modelica.Mechanical.Translational.Interfaces 
Flange flange; // An instance flange of class Flange 
Most examples of connector classes previously presented in this book are aimed at acausal modeling. 

Causal connections usually arise when there is a signal flowing in a specified direction. For example, the 
connector class Real input when instantiated as u is a signal input port that can be connected to receive 
signals. 

i . i 
0 ; u 
I 

Figure 5-5. A component with an u input connector for signals. 

connector Reallnput = input Real; // Reallnput is subtype of Real 
// From Modelica.Blocks.Interfaces 
Reallnput u; // An instance u with one signal 
Connector classes often use special types for standard physical quantities represented by Real values, 

for example, Voltage, and so on, used above. The types Voltage, Current, Position, Force and 
Distance shown below and used in this chapter are just five of the classes available in the Modelica 
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standard library Modelica.Slunits. This library contains more than four hundred predefined types 
comprising the complete set of ISO standard units. 

type Voltage = Real(final quantity="ElectricPotential", final unit="V"); 
type Current = Real(final quantity="ElectricCurrent", final unit= "A"); 
type Position = Real(final quantity="Length", final unit="m"); 
type Force = Real(final quantity="Force", final unit="NM); 
type Distance = Length(min=0); 

5.3 Connections 

There are two general kinds of connections that can be represented in Modelica: 

• Explicit connections between pairs of connectors that are represented by lines in connection 
diagrams and connect-equations (see Section 5.3.2) in Modelica code. 

• Implicit connections between a declared element in an object and corresponding elements in 
components of the object. This is useful in cases when too many explicit connections would be 
needed, for example, when modeling implicit interaction between bodies and a force field, or 
access of common shared object properties. 

In the following sections, when we speak about connections we just refer to explicit connections, until 
Section 5.8, page 224, where implicit connections are introduced. 

Explicit connections between components can be established only between connectors of equivalent 
type and compatible causality. Relying on our definition of Modelica type from Chapter 3, the typing 
constraints for allowing connections can be formulated approximately as follows: 

• The names must be identical and corresponding types of declared variable members in the classes 
of the explicitly connected connectors must be equivalent, but the ordering between the member 
declarations in the connector classes need not be the same. 

The typing constraints are actually slightly more relaxed than the above when connecting connectors 
containing arrays, but are stricter concerning array subscripts (Section 5.7.4, page 214). 

There are also special restrictions (Section 5.7.3, page 211) regarding connections of causal connectors 
with input/output prefix (Section 5.3.5, page 193) and connections involving expandable connectors 
(Section 5.9, page 238) as well as stream connectors (Section 5.10, page 245). 

It is important to note that explicit connections can be established only between connectors, that is, 
instances of connector classes. Instances of class or the specialized classes record, block, model, 
operator, operator record, operator function, function, and package are not allowed in 
explicit connections. 

5.3.1 The flow Prefix and Kirchhoff's Current Law 

As we have already noted in the above example, there are basically two kinds of variables in connectors: 

• Potential variables representing some kind of "potential' or energy level, for example, voltage, 
pressure, or position. 

• Flow variables prefixed by the keyword flow that represent some kind of flow, for example, 
electrical current, force, or fluid flow. 

Two different types of coupling are established by connections depending on whether the variables in 
the connected connectors are potential variables (default) usually representing some kind of potential, or 
flow variables declared using the flow prefix: 

• Equality coupling, for potential (also called effort) variables. 
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• Sum-to-zero coupling, for flow variables, according to Kirchhoffs current law in the electrical 
domain, i.e., conservation of charge makes the sum of all charge flows into a point be zero.. 

Analogous laws apply in other domains, for example, for hydraulic systems the sum of mass flows into 
a point is zero (conservation of mass), for mechanical systems Newton's third law (action and reaction). 

In order to ensure that sum-to-zero coupling always works for flow variables we need a rule for 
consistent assignment o f f l o w direction or sign to flow variables in a connector: 

• The value of a flow variable is positive when the current or the flow is into the component to which 
the connector belongs. 

One might question the exact meaning of the term " f low into a component" for flow variables. This is 
fairly obvious for charge, mass, or energy flow. However, what does "flow into" mean for forces and 
torques? In such cases the connector should contain variables that represent forces and torques applied to 
the component and not reaction forces and torques. This topic is discussed to some extent in Section 5.4.5, 
page 201. 

5.3.2 Connect-Equations and General Restrictions 

Connections between connectors are realized as equations in Modelica. These equations are specified by 
connect-equations, and are stated in an equation section of a class as for other kinds of equations. Note 
that connect-equations are regarded as equations despite the fact that the syntax is different from normal 
equations. The reason is that connect-equations are eventually expanded into normal equations. The 
general form of a connect-equation is as follows: 

connect (connector I , connector 2) 

The two arguments connector I and connector2 of the connect-equation must be references to connectors, 
and are restricted to one of the following two forms: 

• Structured (nested) connector references C1.C2.C3 cn, where ci is a connector of the class 
containing the connect-equation, n>=l and q+i is a connector element of Cj for i=l:(n-l). For 
example, if c l contains the connector c2 which contains the connector c3, we may use a connector 
reference such as cl. c2 . c3. The simplest and most common case is when there is just a simple 
unstructured connector, for example, connector 1, immediately within the class instance. 

• Local element connectors, m. d, where m is a non-connector element instance within the class and d 
is a connector element of m. This means that it is not allowed to connect to a connector which 
belongs to an instance more than one level down in the hierarchy of non-connector instances, see 
Figure 5-6, where m is one level down. 

There may optionally be array subscripts on any of the instances within the class instance; the array 
subscripts must be parameter expressions or the symbol colon ":". The arguments connector I and 
connector2 can be arrays of connectors, see Section 5.7.5, page 214. There are additional restrictions and 
detailed semantics of connections, see Section 5.7, page 208. 
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rifh instance 
connector 1 

cl 
m 

d 

Figure 5-6. Different forms of allowed connectors of a class instance. A direct connectorl, a local 
element m containing a connector dl, referred to as m. dl, and a connector c3 within a connector c2 within a 
connector cl, referred to as cl. c2. c3. 

5.3.3 Electrical Connections 

In Figure 5-7, there is an example of two connected electrical pins pinl and pin2 . The connectors pinl 
and pin2 are instances of the connector class Pin. 

Figure 5-7. Connecting two electrical pins. The connected voltages are equal, and the sum of the currents is 
zero. 

The connection equation: 

connect(pinl, pin2 ) 
connects the two pins so that they form one node. This produces two equations, namely: 

pinl.v = pin2.v 
pinl.i + pin2.i = 0 

The first equation says that the voltages at the connected wire ends are the same, leading to equality 
coupling. 

The second equation corresponds to Kirchhoff s current law saying that the currents sum to zero at a 
node (assuming positive value while flowing into the component), that is, sum-to-zero coupling, since the 
keyword flow is used for the variable i of type Current in the Pin connector class. 

Since connectors are instances of connector classes they can be declared anywhere a declaration is 
allowed, for example, as above. However, connectors define the interfaces of components and are 
therefore usually declared inside those components. This has consequences for the naming of the 
connectors, but does not change anything else. Instead of pinl and pin2 as above, we would, for 
example, have El .pin and E2 .pin as names for two connectors of type Pin in the electrical components 
El and E2, when referring to those components from the outside. 

5.3.4 Mechanical Connections 

Connecting mechanical components, as in Figure 5-8 below, is somewhat different but still quite similar to 
the previous examples with electrical components. The filled and nonfilled squares on a mechanical 
component represent identical mechanical flanges. 

The only difference is the sign of the flange variables in relation to the current coordinate system (see 
also Section 5.4.2 on page 196), analogous to positive and negative electrical pins for electrical 
components, but with the difference that in ID translational mechanics there is also a global coordinate 

pini Ù-
! + v v + 

•q pin2 



Chapter 5 Components, Connectors, and Connections 193 

system in which displacements 5 and forces /are defined. Regarding why forces are flow quantities, flow 
of momentum in mechanical systems, see Section 5.4.5, page 201. 

Drawing a line between such squares means that the corresponding flanges are rigidly attached to each 
other. The instances of classes in the Modelica mechanical translational library used here as examples 
(from Modelica .Mechanical. Translational) can usually be connected together in an arbitrary way. 

f 1 r , 
1 S S 1 1 

flangel [ j ] [j]flange2 I 
, | • i 
1 • -m m ' • 
Figure 5-8. Connecting two mechanical flanges. The positions at the connection point are identical, and the 
sum of the forces is zero since the connection point has no mass. The displacement s is defined relative to 
the global 1D coordinate system. The force f is usually viewed as a vector quantity in that system, here 
positive in the direction into flange2. The two force values get opposite signs to make their sum equal zero. 

Given instances f 1 angel and flange2 of the connector class Flange: 
Flange flangel; 
Flange flange2; 

We connect these flanges using a connect-equation so that they form one node: 

connect(flangel, flange2) 
This produces two equations, namely: 

flangel.s = flange2.s // Identical positions 
flangel.f + flange2.f = 0 // Sum of forces is zero 
These equations are analogous to the corresponding equations for the electrical pins apart from the fact 

that they deal with positions (s) and forces (f). 

5.3.5 Acausal, Causal, and Composite Connections 

There are actually two basic and one composite kind of connection in Modelica: 

• Acausal connections, for which the data flow in the connection is not explicitly specified. 
• Causal connections, also called signal connections, where the direction of data flow is specified 

using the prefixes input or output in the declaration of at least one of the connectors in the 
connection. 

• Composite connections, also called structured connections, composed of basic or composite 
connections. 

Most examples of connections so far in this book have been acausal. Causal connections usually arise 
when there is a signal flowing in a specified direction. For example, the connector class Real Output 
below when instantiated in a signal generator connected to an electrical circuit as in the DCMotorCircuit 
example in Section 5.6, page 207, creates a causal connection since the signal flows from the signal 
generator into the circuit. 

connector RealOutput = output Real; // From Modelica.Blocks.Interfaces 
The third kind of connection is the composite connection, where composite connectors, also called 

structured connectors, composed of several subconnectors, are connected. Such a structured connection 
can consist of several basic connections, both acausal and causal. 
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5.4 Connectors, Components, and Coordinate Systems 

Many components have a kind of internal coordinate system to which the connectors of the components 
need to relate. This is very apparent for mechanical components, but is also present in components from 
other domains like the electrical domain. 

The coordinate direction is by convention defined from "left" to "right" for simple two-connector 
components such as resistors and compressed springs as shown in Figure 5-9. A positive flow, for example, 
current i or force |f|, is propagated from left to right through the component. How can a force be a flow? 
For explanation see Section 5.4.5, page 201. The flow leaves the component from the right connector. 

This is true for electrical components, because they cannot store net charge; even a capacitor has 
positive and negative charges on its two plates, that is, no storage of net charge. Thus p . i + n. i - 0, 
(Section 5.3.3, page 192). However, this is not true in general for mechanical components with mass since 
flange a. f+flange_b. f = m*der (v). In such as case the "flow of force" entering from the right is 
in general different from the "flow of force" going out from the other side, unless the component is at rest, 
or has no mass, like a spring. 

The compressed massless spring (Figure 5-9) exerts a force with absolute value |f| from its right 
"driven" flange to some other component that is placed at its right side. 

Note that the labels "left" and "right" are somewhat arbitrary. We could turn around the electrical 
component and it would still work the same and have the same current values. Regarding the mechanical 
component, the situation is slightly different. For ID translational mechanical systems, all positions and 
forces are defined relative to a global ID coordinate system. Thus, if we turn the spring around, the force 
f , which is a vector quantity in that system, would change sign. However, the rules with positive flow 
values for flows into a component still apply also for the mechanical system; therefore we use the absolute 
value |f | of the force vector f in Figure 5-9. The flange forces can be defifned as vectors in that global 
coordinate system. 

p resistorl n 

spring1 ( 

- T ^ W ^ " - ? - - W - 1 
Ifl 

Figure 5-9. Positive values of current flow i and force flow f means propagation from left to right through 
the resistor and the compressed spring respectively. Solid arrows indicate the direction of actual flow 
transmitted through the component; dashed arrows positive flow direction into the component but opposite 
to the transmitted flow. ID mechanical systems have a global reference coordinate system in which 
positions s and forces f are defined, with f as a vector quantity. 

The positive direction of the flow variables directly belonging to the resistor and spring is indicated by 
the arrow from left to right under each component. Regarding connectors, we have earlier stated that 
positive flow direction of connectors is always into the component where they belong, which is indicated 
by the arrows into the connectors. Since positive flow direction for the right-hand side connectors is in the 
opposite direction, that is, from right to left, the values of the right-hand side connector flow variables are 
negative, for example, -i and -|f |. However, as we shall soon see, the conventions for flow direction of 
mechanical components are somewhat different from the electrical counterparts. 
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5.4.1 Coordinate Direction for Basic Electrical Components 

In the electrical domain, several idealized electrical components extend the base class Two Pin, which has 
two connectors p and n for positive and negative pins respectively (Figure 5-10). The "coordinate system" 
or coordinate direction here is that the positive direction of current flow i for a component is defined to be 
from p to n, with i=p. i. 

p.v j ^ j + 

p.i 

Figure 5-10. TwoPin base class for simple electrical components with two pins. Solid arrows indicate the 
direction of actual current flow; dashed arrows positive direction into the component but opposite to the 
flow through the component. 

The connector classes PositivePin and NegativePin are identical to Pin apart from having different 
icons (see Modelica.Electrical .Analog. Interfaces) and can be used in electrical components to 
help distinguish positive and negative pins. Disregarding the icons they can be defined as follows: 

connector PositivePin = Pin; // Current p.i flowing into positive pin 
connector NegativePin = Pin; // Current n.i flowing into negative pin 
The partial base class TwoPin, known from Chapter 2, is stated below in a form that uses the 

connector classes PositivePin and NegativePin: 
partial model TwoPin 

"Component with two electrical pins p and n and current i from p to n" 
Voltage v "Voltage drop between the two pins (= p.v - n.v)"; 
Current i "Current flowing from pin p to pin n"; 
PositivePin p; 
NegativePin n; 

equation 
v = p.v - n.v; 
0 = p . i + n . i ; 
1 = p.i; 

end TwoPin; 
// Same as OnePort in Modelica.Electrical.Analog.Interfaces 
The familiar idealized resistor class is depicted in Figure 5-11. The "coordinate system", that is, the 

direction of current flow in the resistor, is from p to n as inherited from TwoPin. Four equations are 
present in the resistor model. The first three originate from the inherited TwoPin class, whereas the last is 
the constitutive equation for ideal resistors v=R*i, which is specific for the resistor class. 

— • 
p.i I— 

Figure 5-11. Resistor component including the resistor equation v=R* i. 
model Resistor 

extends TwoPin; 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
v = R*i; // Resistor equation 

end Resistor; 

TwoPin - ¡i 
n p -

Tiè-J? 
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5.4.2 Mechanical Translational Coordinate Systems and Components 

Each mechanical component has an associated coordinate system, called frame. This is relevant especially 
for frames in 3D mechanical systems. Regarding the flanges in the 1D mechanical translational domain, 
this is possible, especially for the flange forces, but not very practical, for example, the position value 
would always be zero in that system. 

For the simple ID mechanical translational domain, there is always a global coordinate system in 
which positions s and forces f can be defined 

The connector classes Flange_a and Flange_b used for flanges in the ID translational mechanical 
domain are identical but have slightly different roles, somewhat analogous to the roles of PositivePin 
and Negative Pin in the electrical domain. 

A flange a connector is used at the "left" side of a component represented by the filled square in 
Figure 5-12, whereas a flange_b connector is used at the "right" side of the component, represented by 
the empty square. Each flange could be interpreted as having an internal coordinate system characterized 
by the unit vector n from left to right, depicted by a small arrow above each flange in Figure 5-12. Internal 
vectors such as position and forces could be interpreted in the positive direction along the unit vector. 
However, a simpler approach is to regard the flange positions and forces as defined in the global ID 
coordinate system, see also the discussion in Section 5.4.5, page 201. 

// From Modelica.Mechanical.Translational.Interfaces 
connector Flange_a = Flange; // "left" flange class 
connector Flange_b = Flange; // "right" flange class 
The partial base class PartialCompliant depicted below is extended by classes for compliant 

flexible mechanical components with two flanges, for example, springs and dampers. It can be regarded as 
a ID mechanical analogue of the Two Pin base class from the electrical domain. However, 
PartialCompliant is not the only base class for two-flange components—there is also, for example, the 
partial class Rigid for rigid mechanical components. The coordinate system used in components 
instantiated from classes extended from PartialCompliant is characterized by the unit vector N from 
flange_a (the driving flange) to flangejo (the driven flange) shown in Figure 5-12 and Figure 5-14: 

s rel • 
flange_a.s „ !" PartialCompliant ] „ fiange_b.s 

rjflange_a flange_b Q , , • 
flange_a.f j flange_b.f 

N~f > 

Figure 5-12. PartialCompliant is a base class for simple compliant (flexible) ID mechanical 
components with two flanges. The vector N with the arrow indicates positive direction in the component 
coordinate system or frame, where here has the same positive direction unit vectors as the global ID 
coordinate system. The vectors n with small arrows indicate positive direction in the flange coordinate 
systems. Solid arrows for forces f indicate positive value in the associated coordinate system; dashed arrow 
negative values. The relative distance between the flanges is represented by s rel. 
Note that the filled arrows for the force variables have positive direction according to the global 

coordinate system. This is seemingly in contradiction to the rule that positive flow direction is always into 
the component, see discussion in Section 5.4.5, page 201. However, the choice of flow variable is in some 
sense somewhat arbitrary. If we instead would choose - f as our force variable, the arrows would change 
direction and the rule of positive flow direction into the component would be satisfied. 

The designers of the ID mechanical translational library have defined the force variable f of models 
derived from PartialCompliant is equal to the force in the right flange, that is, f=flange_b. f. This is 
different from the design choice of the electric library, where the current i of the component is equal to the 
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current into its left connector, that is, i=p.i. However, as long as this new design choice is used 
consistently for mechanical components it works fine since the original rule for connectors can always be 
fulfilled by multiplying forces by - 1 when forming the connection equations. The base class 
Partial Compliant for flexible ID two-flange mechanical components is available below. 

partial model PartialCompliant 
"Compliant connection of two translational ID flanges" 
Flange_a flange_a "Left flange of compliant 1-dim. translation component" 
Flange_b flangejo "Right flange of compliant 1-dim. translation component" 
SI.Position s_rel(start=0) "Relative distance (= flange_b.s-flange_a.s)"; 
SI.Force f "Force between flanges (positive direction of flange axis R)"; 

equation 
s__rel = flange_b.s - flange_a.s; 
flange_b.f = f; 
flange_a.f = -f; 

end PartialCompliant; // from Modelica.Mechanics.Translational.Interfaces 
Springs are one kind of compliant component with two flanges. Figure 5-13 shows a spring in three 

different configurations: compressed (a), neutral (b), and stretched (c). In the compressed configuration a 
force f applied at the left "driving" flange called flange a in Figure 5-14 propagates through the spring, 
and leaves the spring at the right "driven" flange, called f lange b. 

s rel 

|f| V V -|f| 
s relO 

(a) 

^ W ^ (b) 

s_rel 

(c) 

Figure 5-13. Compressed (a), neutral (b), and stretched (c) spring. The flange arrows indicate the actual 
direction of forces applied to flanges. Solid arrows represent positive values in the global and component 
coordinate systems; dashed arrows negative values. 

For the compressed spring the external force applied at the left flange, f langea. f = |f |, has positive 
sign since it is directed from left to right in the same direction as the normal vector of the global coordinate 
system, whereas the force exerted on the right flange, flange b. f = -|f|, has negative sign since it points 
in the opposite direction, as indicated by the dashed arrow. 

s_rel 
flange_a.s n A A n AangeJj.s 

flange_a.f flange_b.f 
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Figure 5-14. Linear I D translational spring. 

When the spring is stretched its actual length, s rel becomes greater than s relO, which is its length 
in the neutral state when the applied forces are zero. In the stretched state, the force direction is reversed 
compared to the compressed state. The force variable f = c* (s_rel-s_relO) is positive, and since 
flange_b. f = f, the right flange is dragged by the component attached at the right side in the positive 
coordinate direction to the right. The external force applied at the left flange, flange a.f = -f, is 
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negative since it drags the left flange in the opposite compared to the normal vector n. The Spring class 
below inherits all equations apart from the constitutive spring equation from its base class 
PartialCompliant. 

model Spring "Linear ID translational spring" 
extends Translational.Interfaces.PartialCompliant; 
parameter SI.TranslationalSpringConstant c(final min=0, start = 1) 

"Spring constant"; 
parameter SI.Distance s_rel0=0 "Unstretched spring length"; 

equation 
f = c*(s_rel ~ s_relO); // spring equation 

end Spring; 

5.4.3 Multiple Connections to a Single Connector 

In almost all previous examples, we connected only two connectors. In fact, there is in general no 
limitation to the number of connections that can be made to a single connector. Two examples of multiple 
connections to the same node are shown below, where three components are being connected. The first 
example is a resistor circuit, and the second consists of three mechanical springs connected together. 

5.4.3.1 ResistorCircuit 

The class ResistorCircuit connects three resistors at one node using two connect-equations (Figure 
5-15). 

Figure 5-15. Schematic picture of the ResistorCircuit containing three resistors connected at one 
node. The connection laws on voltages v and currents i at that node give vl=v2=v3 and il + i2+i3=0. 
model ResistorCircuit "Three connected resistors" 

Resistor R1(R=100); 
Resistor R2(R=200); 
Resistor R3(R=300); 

equation 
connect(R1.p, R2.p); 
connect(R1.p, R3.p); 

end ResistorCircuit; 
As usual, the special operator conned produces equations by taking into account what kind of 

variables, flow or potential, are involved. The generated equations, based on equal potentials at a 
connection point and Kirchhoff s current law, are as follows for this particular example: 

R1.p.v = R2.p.v; 
Rl.p.v = R3.p.v; 
Rl.p.i + R2.p.i + R3.p.i - 0; 

Moreover, equations are automatically generated for unconnected flow variables which always have zero 

Rl.n.i = 0; 
R2.n.i = 0; 
R3.n.i = 0; 

[j]n R1 P C p n ^ l P R2 "lp 

R3 n[j] 
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5.4.3.2 TripleSprings 

The TripleSprings model connects three springs at one node using two connect-equations (Figure 
5-16). This model is quite similar in structure to the Resistercircuit model presented in the previous 
section. 

springl 
-•VNAD-

spring2 

spring3 Figure 5-16. Schematic picture of the mechanical connection of three springs. 
model TripleSprings "Three connected springs" 

Spring springl(c=l, s_rel0=0.1); 
Spring spring2(c=l, s_rel0=0.1); 
Spring spring3(c=l, s_rel0 = 0. In-

equation 
connect(springl.flange_a, spring2.flange_a); 
connect(springl.flange_a, spring3.flange_a); 

end TripleSprings; 
Also the equations generated from the two connect-equations in the TripleSprings model are 

analogous to the corresponding equations from the ResistorCircuit model. We have the connector 
f langea instead of the connector p, position s instead of voltage v, and force f instead of current i. 

Identical positions of the connected flanges of the three springs give the first two equations. The last 
equation is force equilibrium where the sum all forces applied at the connection node is zero. 

springl.flange_a.s = spring2.flange_a.s; 
springl.flange_a.s = spring3.flange_a.s; 
springl.flange_a.f + spring2.flange_a.f + spring3.flange_a.f = 0; 

Moreover, equations are automatically generated for unconnected flow variables which always have zero 
flow: 

springl.flange_b.f = 0; 
spring2.flange_b.f = 0; 
spring3.flange_b.f = 0; 

5.4.4 An Oscillating Mass Connected to a Spring 

The following model is a somewhat more interesting example from the ID mechanical domain since it 
gives rise to some dynamic movement when simulated. A mass is hanging in a spring, which is connected 
to a fixed housing. Those objects are instances of the classes Mass, Spring, and Fixed, respectively, 
which are declared farther down. The mass mas si is subject to the gravitational force -mg and the force 
from the spring. It is given an initial position s=-0.5, which is offset from the equilibrium position and 
therefore starts an oscillating movement up and down. 

model Oscillator 
Mass massl(L = 1, s(start = -0.5)); 
Spring springl(s_rel0 = 2, c = 10000); 
Fixed fixedl(sO = 1.0); 

equation 
connect(springl.flange_b, fixedl.flange_b); 
connect(massl.flange_b, springl.flange_a); 

end Oscillator; 
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Figure 5-17. The oscillator model contains a mass hanging in an ideal spring which is fixed at a housing. 
The mass which is subject to the gravitational force -mg performs an oscillating movement up and down. 
Positive coordinate direction is upward. 

The model with its three components massi, s p r i n g l , and f i x e d l is depicted in Figure 5-17, 
including certain absolute and relative positions and the gravitational force -mg. The positive coordinate 
direction is upward in the figure, which applies to both positions and forces. 

The absolute position of the center of mass for the massi component is represented by the variable 
mass i . s, which is plotted in Figure 5-18. The model is idealized since there is no damping, causing the 
amplitude of the oscillations to remain the same instead of the gradual decrease that would occur in a more 
realistic model. 

ill. 
Figure 5-18. Plot of the absolute position mass 1. s (t) of the center of the hanging mass. 

The velocity mas s i . v of the hanging mass is plotted in Figure 5-19. It is the same as the derivative 
of s. Both s and v are declared in the class Mass below. 
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Figure 5-19. Plot of the absolute velocity mass i . v ( t ) of the hanging mass. 
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In addition to the previous declarations of Spring, Oscillator, and so on, the following three 
classes are needed to simulate the Oscillator model. The class Mass is a specialization of the class 
Rigid, which is a base class for rigid objects of fixed length L. The class Fixed represents a housing 
with a fixed position and a flange where other objects can be attached. 

model Mass "Hanging mass object" 
extends PartialRigid; 
parameter Real m = 1 "mass of the hanging mass"; 
constant Real g = 9.81 "gravitational acceleration"; 
Real v "absolute velocity of component"; 
Real a "absolute acceleration of component"; 

equation 
v = der(s); 
a = der(v); 
flange__b.f - m*g = m*a; 

end Mass; 
partial model PartialRigid "Rigid connection of two translational ID 

flanges" 
Real s "absolute position s of center of component 

(s = flange_a.s + L/2 = flange_b.s - L/2)"; 
parameter Real L = 0 "length L of component from left to right flange 

(L = flange_b.s - flange_a.s)"; 
Flange_a flange_a; 
Flange_b flange_b; 

equation 
flange_a.s = s - L/2; 
flangejo.s = s + L/2; 

end PartialRigid; // From Modelica.Mechanics.Translational.Interfaces 
model Fixed "Fixed flange at a housing" 
parameter Real sO = 0 "fixed offset position of housing"; 
Flange flange_b; 

equation 
flange_b.s = sO; 

end Fixed; // From Modelica.Mechanics.Translational 

5.4.5 Coordinate Systems and Forces with Spring-Damper Example 

In the previous discussion, the reader might have been slightly confused by the two rules or abstractions: 

• The rule that there is a positive flow direction into a connector. 
• The rule for ID mechanical systems that the forces (i.e., flows) are defined in a global ID 

coordinate system, where the positive direction is defined by that coordinate system. 

The problem is simply that levels of abstraction might interfere with each other (in the reader's head). In 
Modelica, flows in mechanical systems (here forces) from different directions in a model diagram do not 
mean forces acting in different directions in the geometry of the resulting system. This is what is creating 
the potential misunderstanding. 

In this section, we try to eliminate such possible confusion, and also explain why forces are flow 
quantities. 

In an electrical system the flow variable is the current which describes a flow of charge. What is then 
flow in a mechanical system? 

The flow in mechanical systems is represented by a flow of momentum p(t) = m • v(t): 

d , . d . . .. dm / x d 
— p(t) = T (m • v(0) = — • v (0 + m • — v ( 0 
dt dt dt dt 

(5-1) 
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As can be seen by this equation, the flow of momentum has two parts. In fluid systems, where the mass 
contents of a component can change, both parts can be relevant. In a rigid body system, the mass of a 
component is constant and only the second part remains. This is equal to the force f(t) according to 
Newton's law: 

m-—-v(t) = f ( t ) (5-2) 
dt 

In ID translational mechanics the flow is also pointing into the component. A positive flow of momentum (a 
positive force) means an increase in velocity. It does not matter if there flow is coming by a "left" or a "right" 
connector. A positive sum of flows (sum of forces) leads to a positive acceleration of mass. 

Consider the following system: a body hanging on a spring damper. The following diagram depicts the 
geometry of the system for two possible states. The first state (a) represents the initial point at time=0 
when the body is released at the resting length of the spring. The second state (b) represents the final state. 
Here the body is at rest again and the spring forces are in equilibrium with the gravity force of -ION. 

Figure 5-20. A body hanging on a spring damper. The first state (a) represents the initial point at time=0 
just when the body is released. The second state (b) represents the final state when the body is at rest and the 
spring forces are in equilibrium with the gravity force of-ION. 

The plot below (Figure 5-21) depicts the trajectory of the body leading from state (a) to state (b). The 
body performs a damped oscillation until it comes to a final resting state. 
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Figure 5-21. Plot of body hanging on a spring-damper, performing damped oscillations. 
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To model this system behavior we create model diagram of Figure 5-22 in Modelica. As shown before, the 
potential variable of the connector is position and the force represents a flow of momentum. The flow of 
momentum is therefore always defined to flow into the component. 

This means that the forces in the positive x direction acting on a component remain with a positive sign 
whereas the corresponding reaction forces get a negative sign. 

This is sometimes confusing but best explained by means of an example. The two diagrams in Figure 
5-23 include the values of all force variables in the connectors for state (a) and (b). The forces values are 
always defined in the positive x-coordinate direction acting on the component. Thus, the connector of the 
force that is pulling with ION in the negative x direction contains a positive force value. This is strange in 
the first place but absolutely in accordance with the rule. 

The force that is acting on the body is found at the bodies connector and is correctly -ION. The 
connector of the force model component must thus represent the reactive part and this is +10N. In this 
way, the balance of flows is maintained. 

Figure 5-22. Connection diagram of the spring-damper system. 

ON 

b) 

, J 0 N - l O N ^ O N 

+ 1 0 N - 1 0 N + 1 0 N 
faroti mjs»2 

- * = f > H D K ~ ~ 
' ar ^ 

0 N - ^ 0 N 

ON 

ON 

7 ^ 7 

-10N 

- l O N - ^ + I O N 7 7 
'««42 

Figure 5-23. Force values at the connectors in state (a) just before the spring is released, and in the final 
state (b) when damped oscillations have stopped and the gravity force and the spring force are in 
equilibrium. 

5.5 Design Guidelines for Connector Classes 

So far, the above-mentioned connector classes have always consisted of a pair of one potential variable 
and one flow variable, apart from the RealOutput class briefly mentioned in the context of causal 
connections. One might ask whether this is a coincidence or a general pattern for connector class design. 
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We shall soon see that this is no coincidence; but on the other hand there exist many connector classes that 
do not follow this pattern for various reasons. 

More important is to identify the basic requirements behind the design of component interfaces, that is, 
connector classes which influence their structure. These requirements can be briefly stated as follows: 

1. It should be easy and natural to connect components provided this is possible for the 
corresponding physical components. 

2. Component interfaces should facilitate reuse of existing model components in class libraries. 

Fulfilling these requires careful design of connector classes. The number of connector classes should be 
kept small in order to avoid unnecessary mismatches between connectors due to different names and types 
of variables in the connectors. 

Experience shows that it is surprisingly difficult to design connector classes that satisfy these 
requirements. There is a tendency for extraneous details that are created during software (model) 
development for various computational needs to creep into the interfaces, thereby making them harder to 
use and preventing component reuse. Therefore one should keep the connector classes as simple as 
possible, and try to avoid introducing variables that are not really necessary. 

A good rule of thumb when designing connector classes for models of physical components is to 
identify the characteristics of (acausal) interaction in the physical real world between these components. 
The interaction characteristics should be simplified and abstracted to an appropriate level and reflected in 
the design of the connector classes. For nonphysical components, for example, signal blocks and software 
components in general, one has to work hard on finding the appropriate level of abstraction in the 
interfaces and trying these in practice for feedback on ease of use and reusability. The Modelica standard 
library contains a large number of well-designed connector classes which can serve as inspiration when 
designing new interfaces. 

There are basically three different kinds of connector classes, reflecting three design situations: 
1. Often, but not always, if there is some kind of interaction between two physical components 

involving energy flow, a combination of potential and flow variables in the appropriate domain 
should be used for the connector class. In some cases other combinations may be more natural, 
e.g., the choice of temperature and heat flow in the Modelica .Thermal. HeatTransfer library. 

2. If information or signals are exchanged between components of clearly defined causality, 
input/output signal variables should be used in the connector class. 

3. For complex interactions between components, involving several interactions of type (1) and (2) 
above, a hierarchically structured composite connector class is designed that includes one or more 
connectors of the appropriate type (1), (2), or (3). 

When all the connectors of a component have been designed according to the three principles above, 
the formulation of the rest of the component class follows partly from the constraints implied by these 
connectors. However, these guidelines should not be followed blindly. There are several examples of 
domains with special conditions that deviate slightly from the above rules. In the next three sections we 
will discuss the basic design situations for connector classes in more detail. 

5.5.1 Physical Connector Classes 

The first design situation with interaction between physical components usually based on some kind of 
generalized energy flow leads to the following generic structure of a connector class: 

connector <classname> "Physical connector class" 
Real <e> "potential variable"; 
flow Real <f> "flow variable"; 

end <class name>; 
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This structure corresponds to the physical connectors presented so far, for example, the Pin connector class for 
the electrical domain from the library Modelica .Electrical .Analog. Interfaces with the voltage 
variable v as the potential variable and the current i as the flow variable, or the Flange a connector class from 
the library Modelica.Mechanics.Translational. Interfaces for the translational mechanical domain 
with the position s as the potential variable, and the force f as the flow variable. 

We talk about this design method being based on energy or energy flow. Energy flow is the change of 
energy per time unit, i.e., power p=e*f the product of the potential or effort variable e and the flow 
variable / In electrical systems the power p=v*i. In translational mechanical systems the energy E=s*f. 
These correspond to our choices of variables in the previously presented connector classes. Another choice 
of potential variable in translational mechanical systems is the velocity v, which, however, can be easily 
obtained by differentiating s. The kind of potential variable must always be chosen in such a way that at 
energy flow connection points all potential variables of connected components are equal. 

Energy is always transported using some carrier, which in the case of electrical current is charged 
particles, and in the case of translational or rotational mechanical systems is linear or angular momentum 
respectively. 

When energy flows together at a certain point, without storing energy at that point, the sum of all 
energy flows into that point is zero. This is the explanation for the sum-to-zero rule for flow variables at 
connection points, which thus is based on the principle of conservation of energy. In the electrical domain 
this corresponds to Kirchhoff s current law, and in the mechanical domain Newton's law that the sum of all 
forces acting at a specific point is zero. 

Table 5-1 describes possible choices for potential, flow, and energy carrier for some common physical 
domains, as well as the names of certain corresponding Modelica libraries, which should be prefixed by 
the name Modelica. Connectors for these domains are available in the Interfaces part of the 
corresponding Modelica library. There are also libraries for additional domains, e.g., the MBS (multibody 
systems) library described in Section 15.10, page 877, for mechanical bodies in three dimensions. 

Table 5-1. Common physical domains with appropriate connector quantities. (See also Table 14-1) 

Domain Type Potential Flow Carrier Modelica Library 

Electrical Voltage Current Charge Electrical 

Translational Position Force Linear 
momentum 

Mechanical. Transla 
tional 

Rotational Angle Torque Angular 
momentum 

Mechanical. Rotatio 
nal 

Magnetic Magnetic 
potential 

Magnetic flux rate Magnetic flux Magnetic.Fluxtubes 

Hydraulic, 
thermo-hydraulic 

Pressure Volume flow rate Volume Open Hydraulics, 
Fluid 

Heat Temperature Heat flow rate Heat Thermal 

Chemical Chemical 
potential 

Particle flow rate Particles 

Regarding the mechanical rotational domain it should be mentioned that in addition to the previously 
presented translational Flange_a there is also a rotational Flange a connector class, shown renamed 
below, from the library called Modelica.Mechanics .Rotational. Interfaces for one-dimensional 
rotational mechanical systems (drive trains). This class has the rotation angle phi as a potential variable 
and the torque tau as a flow variable. To avoid confusion with the translational Flange a connector class 
we have renamed it RotFlange_a in this text. 
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connector RotFlange__a "ID rotational flange" 
Angle phi "Absolute rotation angle"; 
flow Torque tau "Cut torque in the flange"; 

end rotFlange_a; 
type Angle = Real(final quantity="Angle", final unit="rad", 

displayUnit="deg"); 
type Torque = Real(final quantity="Torque", final unit="N.m"); 
Returning to the question posed at the beginning of this section—whether all physical connector classes 

consist of the same number of acausal potential and flow variables—the answer is yes, in Modelica 3 .0 
and later versions all connector classes must be balanced (Section 5.7.7, page 217). 

However, the following three situations make it necessary to have different numbers of potential and 
flow variables. In order to fulfill the balancing restrictions for the acausal connector variables some of 
them can be made causal by attaching an input or output prefix. 

• The same energy carrier for several associated domains. For example, the energy flow of a one-
dimensional compressible fluid, P = dE/dt = m\h+ 0.5*v2), where m' is the mass flow being the 
same energy carrier, h the enthalpy, and v the fluid velocity. Here m' is the flow variable. In this 
case stream connectors (Section 5.10, page 245) is the best choice with h being a stream variable, 
i.e., a domain property carried with the flow. There are also older connector variants with causal 
input/output prefixes, for exmaple, in the ThermoPower library (Section 5.10.3.2, page 249). 

• Singularities of variable sets, e.g., rotation matrices. For example, the orientation of a 3D 
mechanical connector can be described by a 3 x 3 rotation matrix, which causes singularities at 
certain orientations based on transformations using three separate rotations. This problem can be 
solved, for example, by introducing 4 x 4 transformation matrices through Euler parameters or 
Quaternions (see Section 14.8), but this adds at least one extra potential variable in the connector 
class. 

• Singularities caused by connections, for example, in so-called higher index systems (see Chapter 
18). In some cases the connection of components leads to higher index systems that cannot be 
transformed to solvable (state space) form using only algebraic transformations. For example, in 
3D mechanical systems almost all connections lead to higher index systems. The solution is to 
differentiate the equations, causing differentiated variables to be added as extra variables. 
Sometimes it is practical to store some of these extra variables in the connectors, thereby 
increasing the number of potential variables. Examples of such connector classes, for example, the 
illegal one presented below, can be found in the old Modelica MBS library. 

The connector class Frame illegal below renamed from Frame b in an old simpler version 
(ModelicaAdditions from MSL 2.2) of the Modelica multibody systems (MBS) library without 
overdetermined connectors is an example of a connector class of the kind that contains extra potential 
variables to get around problems caused by connections that cause higher index systems. Several extra 
potential variables, e.g., velocity and acceleration, are derivatives of the basic potential variables. There 
are six potential variables, r0, s, v, w, a, and z, whereas there are only two flow variables, f and t. 

connector Frame_illegal "Frame b of a 3D mechanical element, old version" 
import Modelica.Slunits; 
output Slunits.Position r0 [ 3] "Frame origin in inertial system"; 
Real S[3,3] "Transformation matrix"; 
Slunits.Velocity v[3] "Absolute velocity of frame origin"; 
Slunits.AngularVelocity w[3] "Absolute angular velocity of frame a"; 
Slunits.Acceleration a[3] "Absolute acceleration of frame origin"; 
Slunits.AngularAcceleration z[3] "Absolute angular acceleration"; 
flow Slunits.Force f [ 3 ] ; 
flow Slunits.Torque t[3] ; 

end Frame_illegal; // From ModelicaAdditions.MultiBody.Interfaces 
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However, the Frame illegal connector is illegal since the number of flow and potential variables do 
not match. The solution is to create two connector classes, where two 3-vectors (e.g., a and z) are acausal 
Real [3] vectors and the other variables are matching pairs of input and output. See Section 5.7.7, 
page 217 for a solution with balanced connector classes. 

5.5.2 Signal-based Connector Classes 

Signal-based connector classes are very simple. All that is needed is a vector of input signals or output 
signals. Most application models where signal connectors are needed can be satisfied with the connector 
classes Reallnput and RealOutput below, both from the library Modelica. Blocks . Interfaces. 

connector Reallnput = input Real; 
connector RealOutput = output Real; 

The Reallnput and RealOutput connector classes can be specialized to different numbers of signals 
when instantiated, as in the class MISO below. This is a partial block that captures the generic features 
of multiple-input-single-output continuous control blocks (Figure 5-24). 

The definition of this block reflects the fact that any connection with a set of only inside connectors can 
contain exactly one output and zero or more inputs (Section 5.7.3.1, page 213). 

Figure 5-24. A MISO block with an input signal type Real Input and an output signal RealOutput. 
partial block MISO 

"Multiple Input Single Output continuous control block" 
parameter Integer nin=l "Number of inputs"; 
input Reallnput u[nin] "Connector of Real input signals"; 
output RealOutput y "Connector of Real output signal"; 

end MISO; // From Modelica.Blocks.Interfaces 
Signal connector types for other basic types are available in Modelica. Blocks. interfaces: 
connector Booleanlnput = input Boolean; 
connector BooleanOutput = output Boolean; 
connector IntegerInput = input Integer; 
connector IntegerOutput = output Integer; 

5.5.3 Composite Connector Classes 

A composite connector class is an aggregation of one or more connectors, not just variables as in simple 
connectors. Such connector classes can represent more complex interactions by combinations of a number 
of simple connectors. Here it is especially important to choose an appropriate level of abstraction. 

For example, consider the interface between the mechanical body of an aircraft and the aircraft engine. 
This might be represented as a composite connector class containing a connector for the rigid coupling 
between the aircraft body and the engine, a hydraulic connector for the fuel flow between the aircraft tank 
and the engine, and a signal connector for controlling the engine from the cockpit. 

5.6 Connecting Components from Multiple Domains 

So far most of the presented models have been of the single domain type being constructed of components 
from a single application domain. However, one of the main advantages with Modelica is the ease of 
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constructing multidomain models simply by connecting components from different domains. A DC (direct 
current) motor as depicted in Figure 5-25 is one of the simplest examples illustrating this capability. 

Figure 5-25. A multidomain DCMotorCircuit model with mechanical, electrical, and signal block 
components. 

This particular model contains components from the three domains discussed previously in this 
chapter: mechanical components such as inertial, the electrical components resistor 1, inductorl, 
signalVoltagel, and groundl, as well as pure signal components such as stepl. The 
DCMotorCircuit model together with several of the needed Modelica classes is presented in detail in 
Chapter 15, page 793, together with a simulation of the model. 

5.7 Detailed Connection Semantics 

At the beginning of this chapter we introduced the concepts of connector class, connector, and connection, 
primarily by means of examples from the electrical and mechanical domains. The general form and 
restrictions on connections, i.e., connect-equations, were given in Section 5.3.2, page 191. However, some 
details regarding the meaning of connections, generation of connection equations, and certain special 
situations have not yet been specified. The rest of this chapter fills this gap and gives a rather complete and 
somewhat more formal description of connection semantics. 

5.7.1 Hierarchically Structured Components with Inside and Outside 
Connectors 

Complex systems are naturally described as hierarchical structures of components which internally consist 
of components, and so on, often many levels deep. Components that have an internal structure of other 
components are called structured components. Those are natural for modeling large reusable components. 

Let us return to the DCMotorCircuit example. We would like to create a structured library 
component class that captures most of the essentials of the DC motor circuit and allows us to connect 
different signal generators and different loads when instantiating a real DC motor. This library class is 
shown in Figure 5-26 and as the declaration of the class DCMotorKernel. It is of course incomplete and 
nonphysical since no real motor is without inertia. 

j j res istori inductorl 

7 W ) r ^ C - r ^ 
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 T inertia 1 

^ groundl 
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Figure 5-26. A DC motor kernel packaged as a structured component class with the outside connectors u 
and rotFlange b. (Note that in the Modelica standard library the rotational flange class is called 
Rotational. Flange_b and the connector is named flange b, which we here call rotFlange_b to 
avoid confusion with other kinds of flanges.) 
model DCMotorKernel 

Reallnput u; // Outside signal connector 
RotFlange_b rotFlange_b; // Outside rotational flange connector 
Inductor inductor1; 
Resistor resistorl; 
Ground groundl; 
EMF emfl; 
SignalVoltage signalVoltagel; 

equation 
connect(u, signalVoltagel.voltage); 
connect(signalVoltagel.n, resistorl.p); 
connect(resistorl.n, inductorl.p); 
connect(signalVoltagel.p, groundl.p); 
connect(groundl.p, emfl.n); 
connect(inductorl.n, emfl.p); 
connect(emfl.rotFlange_b, rotFlange_b); 

end DCMotorKernel; 
The class DCMotorKernel has the internal components inductorl, resistorl, groundl, emfl, 

and signalVoltagel. Connectors belonging to the internal components or any non-connector top-level 
component are called inside connectors, whereas connectors that constitute the external interface of a 
structured component class are called outside connectors. 

• An outside connector is a connector that is part of the external interface of a structured class 
instance. 

Note that all connectors declared at the hierarchical level directly within that class instance are 
outside connectors with respect to that instance. Connectors directly within outside connectors are 
also outside connectors, recursively. 

• An inside connector is a connector that does not belong to the external interface of a structured 
class instance. 

Connectors belonging to an internal component that is not connector of a structured component 
class instance are inside. Any connector that is hierarchically inside a class instance is an inside 
connector if it is not an outside connector. 

The classification of connectors as inside or outside is done before mapping outer connectors to 
corresponding inner connectors, see Section 5.8.5, page 233, regarding inner/outer. 

DCMotorKernel 

Nn
 P resistor/ Pinductor1 " 

^ -.̂ rotFlange_b 
u u " V y signalVoltagel emf1 Q Y ^ s rotFiange b 

"P nY 

P n groundl 
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Regarding the class DCMotorKernel, its outside connectors are u and rotFlange b, whereas its 
inside connectors are signalVoltagel .voltage, emf1.rotFlange_b, signalVoltagel. n, 
resistorl .p, resistorl .n, inductorl .p, etc. 

Using this class it is trivial to construct a full DC motor circuit called DCMotorCircuit2 as in Figure 5-27, 
for example, by connecting a step signal generator block stepl and an inertia instance called inertial. 

[ ] ^ dCMotorKernell [ w dCMotorKernell w dCMotorKernell 

i 

l 
T l 
J 

s t e p l inertial 

Figure 5-27. Connecting the structured component dCMotorKernell to a signal generator called stepl 
and an inertial load called inertial to form the complete DCMotorCircuit2 model. 

model DCMotorCircuit2 
stepl; 
dCMotorKernell; 
inertial; 

Step 
DCMotorKernel 
Inertia 

equation 
connect(stepl.y, dCMotorKernell.u); 
connect(dCMotorKernell.rotFlange_b, inertial.rotFlange_a); 

end DCMotorCircuit2; 

5.7.2 Restrictions for Connect-Equations 

Here we first give a short overview of the restrictions on where and how connect-equations can be used. 
More detailed explanations with examples are presented in subsequent sections. 

The connector references in connect-equations can take two syntactic forms'. 

• The connect-equation construct only accepts the two forms of connector references, structured and 
local connector references, as previously described in Section 5.3.2, page 191. 

There is a general restriction on compatible types of connected connectors: 

• In a connect-equation the two connectors must have the same named instance elements with the 
same dimensions; recursively down to the instances of primitive type. The primitive elements with 
the same name are matched and belong to the same connection set. 

• In a connect-equation the corresponding primitive elements of the two connectors must have the 
same basic built-in types (Section 5.3.2, page 191), flow-variables may only connect to other flow-
variables, and causal variables (input/output) only to other causal variables (input/output). 

Moreover, there are restrictions regarding the use of connect-equations in if-equations and when-
equations: 

• Connect-equations cannot be used inside if-equations with Boolean conditions that do not have 
parameter or constant variability, or in when-equations. The same restrictions apply for 
overconstrained equation operators (Section 8.5.3, page 379) 

The reason for this restriction is that connect-equations have to be expanded during the process of 
generating connection equations (Section 5.7.8, page 219), which takes place at compile time. It is fine to 
for example have connect-equations inside for-equations since they always have parameter expressions for 
their array range expression and are expanded into normal equations at compile time. 

The following restriction forbids the connection of outer elements: 

• A connect-equation may not {directly or indirectly) connect two connectors of outer elements. 

The meaning of the term indirectly connect is similar to stating that the connectors are being part of the 
same connection set. However, there is the difference that connections to outer elements are "moved up" 
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(Section 5.8.5, page 233) before forming connection sets. Otherwise the connection sets could contain 
"redundant" information breaking the equation count for locally balanced models (Section 5.7.7, page 
217). 

There are constraints on connection sets of causal variables: 

• A connection set of causal variables (variables with input/output prefix) must contain at most 
one source of a signal, see Section 5.7.3.1, page 213. 

The quantity attribute must be the same for the elements within a connection set: 

• In a connection set all variables having non-empty quantity attribute must have the same quantity 
attribute. 

There are also restrictions regarding variables from protected outside connectors. Such a variable 
may not be an implicitly defined part of an expandable connector (Section 5.9, page 238): 

• Variables from a protected outside connector must be part of a connection set containing at least 
one inside connector or one declared public outside connector. That is, such a variable may not be 
an implicitly defined part of an expandable connector—otherwise it would not be possible to 
deduce the causality for the expandable connector element. 

The following holds regarding the connection of arrays of connectors or array elements which are 
connectors: 

• Array subscripts in a connector reference must be parameter expressions or the special operator ":", 
see Section 5.7.4.1, page 214 for more explanations and details. 

Regarding restrictions for conditional connectors, i.e., connectors declared with an if keyword followed 
by a conditional expression, see Section 3.14, page 107 and Section 5.7.6, page 216. 

5.7.3 Connection Restrictions on Input/Output, Inside/Outside Connectors 

The introduction of structured instances with inside and outside connectors described in Section 5.7.1, 
page 208, introduces some additional complexity in the rules for connecting causal connectors with input 
or output causality, that is, connectors declared with the input or output type prefix. Examples are 
instances of the connector classes Real Input and Real Output. 

In this section we first give a simplified intuitive description that covers most cases, excluding some 
cases of connections to connectors hierarchically within connectors and expandable connectors (Section 
5.9, page 238) and connection set related rules (Section 5.7.3.1, page 213). If we temporarily ignore the 
inside/outside issues the following rules apply: 

• Two acausal connectors can be connected to each other (Section 5.3.2, page 191). 
• An input connector can be only connected to one output connector, but an output connector 

can be connected to many input connectors, except when inside!outside aspects are taken into 
account (see below). 

• An input or output connector cannot be connected to an acausal connector, i.e., a connector 
without input/output prefixes. The reason is balanced connectors (Section 8.9, page 387, and 
Section 5.7.7, page 217). 

It is not possible to connect an input to an input or an output to an output, except when outside 
connectors are involved. The reason is data-flow consistency. A variable with an input prefix on one side 
of an equation will eventually be on the receiving side of an assignment statement (or receive a value as a 
result of solving an equation system) when causality analysis has been performed on the total system of 
equations. 

Therefore, connecting an input inside connector to another input inside connector is not possible 
since then only one of the two input connectors would be on the receiving side in the data flow. 

Analogously, connecting an output inside connector to another output inside connector is not 
allowed. In more general terms, one can say that there should be a single source when connecting a set of 
causal connectors, see also Section 5.7.3.1, page 213. 
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The situation is somewhat different with outside connectors since they play different roles in outside 
and inside connections. This is especially apparent for outside connectors that have input or output 
causality, for which the following rules apply for internal use inside a structured model instance: 

• An outside input connector behaves approximately like an output connector internally. 
• An outside output connector behaves approximately like an input connector internally. 

This might at first glance appear rather strange, but is easy to understand when examining the simple 
example in Figure 5-28. 

Figure 5-28. Two essentially equivalent example circuits of four connected components with connectors of 
input or output causality, in the figure labeled input and output, but in most signal connectors named u 
and y. Within the lower circuit two components have been embedded in the structured component Ml. 
The figure shows two almost-identical circuits of four connected components CI, C2, C3, and C4, 

which are instances of the class c declared below. The signal connectors, usually named u and y but in the 
figure marked input and output, are instances of Real input and RealOutput which have input and 
output causality respectively. 

connector Reallnput = input Real; // subtype of input Real; 
connector RealOutput = output Real; // subtype of output Real; 
class C 

Reallnput u; // input connector 
RealOutput y; // output connector 

end C; 
class CInst 

C CI, C2, C3, C4; // Instances of C 
equation 
connect(CI.y, C2.u); 
connect(C2.y, C3.u); 
connect (C3 . y, -C4.u); 

end CInst; 
class M "Structured class M" 

Reallnput u; // Outside input connector 
RealOutput y; // Outside output connector 
C C2 ; 
C C3; 

end M; 
class MInst 
M Ml; 

equation 
connect(CI.y, Ml.u); 
connect(Ml.u, C2.u); 
connect(C2.y, C3.u); 
connect(C3. y, Ml.y); 
connect(Ml.y, C4.u); 

end MInst; 

// Instance Ml of M 

// Normal connection of y to u 
// Outside u connected to inside u 
// Inside y connected to inside u 
// Inside y connected to outside y 
// Normal connection of y to u 

C I C 2 C 3 C 4 
o input output > E> input output > p> input output > [> input output > 

I , - , Ml 1 
C I , n p u t C 2 C 3 output (^4 

0 input output > [> —1> input output > £> input output > - > input output > 
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Data flow is from left to right in both circuits. In fact, the only difference in the lower circuit compared to 
the upper is that the middle components C2 and C3 have been placed inside a structured component Ml to 
which two outside connectors Ml.u and Ml.y have been attached. 

The "input" connection from CI into C2 in the upper circuit: 
connect(CI.y, C2.u) 

is therefore equivalent to: 

connect(CI.y, Ml.u) 
// Normal connection of y to u 

connect(Ml.u, C2.u) 
// Outside u connected to inside u 

Analogous rules apply to "output" connections. The connection out of C3 to C4 in the upper circuit: 

connect(C3.y, C4.u) 
is equivalent to: 

connect(C3.y, Ml.y) // Inside y to outside y 
connect(Ml.y, C4.u) 

// Normal connection of y to u 
We are now ready to formulate the approximate connection constraints for input and output 

connectors. The first two rules state the approximate special circumstances when an input can be 
connected to an input and an output can be connected to an output: 

• The "only case" when it is allowed to connect an input connector to an input connector is when 
one of them is an inside connector and the other is an outside connector. 

• The "only case" when it is allowed to connect an output connector to an output connector is 
when one of them is an inside connector and the other is an outside connector. 

Note that these two rules are intuitive but approximate connection restrictions. The precise restrictions are 
formulated below in terms of connection sets, see Section 5.7.3.1, page 213. 

This is a special case of data-flow consistency constraint mentioned previously, which here is 
expressed more generally: 

• A set of connected causal connectors may contain at most one source of a signal. 

This restriction is elaborated in more detail in the next section (Section 5.7.3.1, page 213). 

5.7.3.1 Single-Source Restriction of Connected Causal Connectors 

In order to more precisely express the constraint that a set of connected causal connectors may contain at 
most one source of a signal, we need to use the concept of connection set, which can be thought of as the 
set of variables connected through a set of connected connectors, and is more precisely defined in Section 
5.7.8.1, page 219. 

The single-source restriction is stated more precisely by explicitly mentioning the different cases of 
connected sources. Two common cases of sources are inside output connectors or outside input 
connectors (see also examples in Figure 5-28, page 212). 

Remember that all connectors declared at the hierarchical level directly within a class instance are 
outside connectors (part of the external interface), whereas 

• A connection set of causal variables (input/output) may at most contain variables from one 
inside output connector or one public outside input connector. 

This rule means that there may be at most one such source in a connection set. This also applies to 
connection sets from partial models. 
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Furthermore, at least one of the following must hold for a connection set containing causal variables 
and originating from a non-partial model: 

• The connection set includes variables from an outside public expandable connector. 
• The connection set contains variables from protected outside connectors. 
• The connection set contains either (a) variables from one inside output connector, or (b) from one 

public outside input connector, or (c) the set is comprised solely of variables from an inside 
input connector that is not part of an expandable connector. 

The last item (c) covers the case where a connector of the block is left unconnected and the source given 
textually as an equation. 

5.7.4 Connection Constraints Regarding Arrays, Subscripts, and 
Constants 

As stated earlier in this chapter in the first section on connections, the main constraint between connected 
connectors is that they should have equivalent type. 

5.7.4.1 Constant/Parameter or Colon Subscript Constraint 

In order to simplify the analysis of connections and make the generation of connection equations possible 
at compile time, the following constraint applies: 

• Subscripts in a connector reference must be constant or parameter expressions, or the special 
s y m b o l ( c o l o n ) . 

For example: 

class ConnectTest 
Pin x[3]; 
Pin y[3]; 
Integer i=2; 

equation 
connect(x[2], y[2]); // Ok! Constant subscripts, 
connect(x[i], y[2]); // Error! Non-constant subscript, 

end ConnectTest; 

5.7.4.2 Connecting Connectors with Constant Elements 

Connectors with constant or parameter primitive elements (fields) can be declared and connected. In such 
connections, connection equations need not and are not generated. Instead, appropriate assert statements 
are generated by the Modelica compiler to check that the connected values are the same. Moreover, 
parameter elements can only be connected to parameters and constant elements only to constants. 

Constants and parameters are not allowed to have flow or stream prefix. 

5.7.4.3 No Parameter of Constant Connectors 

Connectors may not be declared with parameter or constant prefix. 

5.7.5 Connecting Arrays of Connectors 

As mentioned in Section 5.7.4, page 214, connections between scalar connectors are automatically 
vectorized, which for example is quite useful when using components from the Modelica.Blocks 
library, which can be used in both scalar and vector contexts. 
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The connect construct can be used to directly connect arrays of connectors. For such array 
connections the following holds: 

• The array dimensions of the connected arrays of connectors must match. 
• Each corresponding pair of elements is connected as a pair of scalar connectors. 

We demonstrate this functionality in the ArrayConnects class below, for which the connections are 
graphically depicted in Figure 5-29. 

sinSource[4] 
u y 

gain44 
u y 

sinSource[4] 
u y 

> f 

gain44 
u y 

gain42 x[2] 

Figure 5-29. Example of connections between arrays of connectors. 

The sinSource signal generator produces a vector of 4 sinusoidal signals, which are connected to the 
input vector gain4 4 .u of the gain4 4 block. This gain block multiplies the signal by its gain factor, here 
5, which is present in the diagonal elements of the matrix gain4 4 .A. 

(5 
p u n 
U i i i 

g a i n 4 4 . A : g a i n 4 2 . A : (5-3) 

Moreover, we connect the output vector gain4 4 .y of length four to the input vector gain4 2 .u of the 
gain42 block. This block transforms its input signals into the two output signals gain42.y, which we 
finally connect to the vector x [ 2 ]. 

The corresponding Modelica code follows: 

connector RealInput 
connector RealOutput 

input Real; 
output Real; 

block MatrixGain 
parameter Real A[:,:] = [1]; 
input RealInput u[size (A, 1)]; 
output RealOutput y[size (A, 2)] 

equation 
y=A*u; 

end MatrixGain; 
model ArrayConnects 

import Modelica.Math.sin; 
sin sinSource[4]; 
MatrixGain gain44(A=5*identity(4) 
MatrixGain gain42(A=ones (4,2)); 
RealOutput x [2 In-

equation 
connect(sinSource.y, gain4 4.u); 
connect(gain44.y, gain42.u); 
connect(gain42.y, x); 

end ArrayConnects; 
Quite often when symbolically instantiating models with arrays of connectors there is a need to modify 

a common attribute of each array element to a single value. The iterative array element modification 
construct with the each keyword, described in Section 4.2.3.1, page 150, has been designed with such 
applications in mind. 

We show an example below with the frequency attribute of the source vector elements being 
modified to the common value 50 in the ConnectUseEach model. 

// 4x4 identity matrix 
// 4x2 matrix of ones 
// 2-vector 
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model ConnectUseEach 
import M o d e l i c a . B l o c k s . S o u r c e s . S i n e ; 
Sine b a s e [ 3 ] ; 
Sine source[3](each frequency=50, phase={0,2,-2}); 
CrossProduct a; 
block CrossProduct 

import Modelica.Blocks.Interfaces.MI2MO; 
extends MI2MO(final n=3); // Two multiple input to multiple output block 

equation 
y = c r o s s ( u l , u 2 ) ; 

end C r o s s P r o d u c t ; 

equation 
connect(source.y, a.ul); 
connect(base.y, a.u2); 

end ConnectUseEach; 

5.7.6 Connecting Conditional Instances 

Variables and instances, including connectors, can be declared conditionally on the value of a Boolean 
expression being true, as described in Section 3.14, page 107. If the Boolean expression is false, the 
instance is not present in the flattened system of equations to be simulated, and connections to/from 
associated connector(s) are removed. 

The Boolean expression must have parameter variability so that the conditional instance with 
associated connections can be removed during compilation of the model. 

There are also restrictions regarding connection of conditional connectors. 

• If the condition is true for a public conditional connector containing flow variables the connector 
must be connected from the outside. The reason for this restriction is that the default flow equation 
is probably incorrect (since it could otherwise be an unconditional connector) and the model 
cannot check that the connector is connected.. 

In Figure 5-30 we have adapted the previous ResistorCircuit model (Section 5.4.3.1, page 198) to contain 
a conditional component R3Cond. The conditionally active connection to R3Cond is shown as a dashed line. 

Figure 5-30. A ResistorCircuitCond containing three resistors connected at one node. One of the 
resistors, R3Cond, is declared conditionally, with the conditional connection shown as a dashed line. 

model ResistorCircuitCond 
parameter Integer control = 1; 
Resistor R1(R=100); 
Resistor R2(R=200); 
Resistor R3Cond(R=300) if control == 2; 

equation 
connect(R1.p, R2.p); 
connect(R1.p, R3Cond.p); 

end ResistorCircuitCond; 
model R e s i s t o r C o n d T e s t 

n ñ RI P D ~ ¡ g p R2 ñ i 
L J^1 ' v í J 

' • - ^ P R3Cond n[j] 
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ResistorCircuitCond circuitl; // This circuit has 2 resistors 
ResistorCircuitCond circuit2(controi=2); // This circuit has 3 resistors 

end ResistorCondTest; 
The ResistorCondTest example contains two instances, circuitl and circuit2. The first has two 
resistors, since the control parameter has a default value 1, making the conditional expression in the 
R3Cond component declaration false. The second circuit instance, circuit2, has three resistors and one 
additional connection, since the Boolean expression in that case has the value true. 

5.7.7 Balancing Restrictions on Connector Classes 

The model balancing restrictions (Section 8.9, page 387) of Modelica 3.0 and later versions of the 
language have special implications for connector classes, described in more detail in Section 8.9.2.3, page 
392. For a model to be balanced, its connector classes must have the same number of acausal flow 
variables and potential variables. This can be expressed more precisesly as follows: 

• For each nonpartial connector class the number of variables with prefix flow must be equal to the 
number of variables which have neither of the prefixes parameter, constant, input, output, 
stream, nor flow. As usual the number of variables is counted in the connector class after 
expanding all records and arrays to a set of scalars of basic types as described in Section 8.9.2.1, 
page 389. 

Note that stream variables work almost like output variables which is why they are not counted in the 
balancing counts: "A model using a stream connector must expose the outflow value, which is known from 
internal storage or from inflow values of other connectors, independently of the flow direction. The inflow 
value can be obtained by a model on demand by using the operator ins t r earn (hout flow) 

For example, the following unbalanced connector class is illegal in Modelica 3.0 but was legal in 
Modelica 2.2: 

connector NotValid // Illegal connector, one flow and two potential 
Real rl; 
Real r2; 
flow Real r3; 

end NotValid; 
It is not easy to understand how the above connector class restriction can make the model balanced. We 

need to invoke another rule (Section 5.7.8.2, page 221) to make that happen: 

• A connection set is added for each primitive (unconnected) flow variable as an inside (Section 
5.7.1, page 208) connector. 

A balancing example including the use of this rule is presented in Section 8.9.2.3, page 392. Several 
examples of balanced and unbalanced connector classes are shown below: 

connector Pin // A connector class from Modelica.Electrical.Analog 
Real v; 
flow Real i; 

end Pin; 

connector Plug // A connector class from Modelica.Electrical.MultiPhase 
parameter Integer m=3; 
Pin p[m]; 

end Plug; 

connector InputReal = input Real; // A causal input connector class 

connector OutputReal = output Real; //A causal output connector class 
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connector Framelllegal // Illegal connector class since not balanced 
Modelica.Slunits.Position r0[3] "Position vector of frame origin"; 
Real S[3,3] "Rotation matrix of frame"; 
Modelica.Slunits.Velocity v[3] "Abs. velocity of frame origin"; 
Modelica.Slunits.AngularVelocity w[3] "Abs. angular velocity of frame"; 
Modelica.Slunits.Acceleration a[3] "Abs. acc. of frame origin"; 
Modelica.Slunits.AngularAcceleration z[3] "Abs. angular acc. of frame"; 
flow Modelica.Slunits.Force f[3] "Cut force"; 
flow Modelica.Slunits.Torque t[3] "Cut torque"; 

end Framelllegal; 
The Framelllegal connector, which is used in the earlier Modelica 2.2 compatible MultiBody 

package without over-determined connectors, is illegal in Modelica 3.0 and later versions of the language 
since the number of flow and potential variables do not match. 

The current Modelica.MultiBody package uses the Frame connector class defined below. It is inherited 
into the two classes Frame a and Frame b, which are identical except having different icons. The Frame 
connector class contains a basic definition of a coordinate system that is fixed to a mechanical component. 
The cut-force and the cut-torque are acting at the origin of the coordinate system, 

connector Frame 
"Coordinate system fixed to the component with one cut-force & cut-torque" 
import SI = Modelica.Slunits; 
SI.Position r_0[3] "Position vector from world frame to the 

connector frame origin, resolved in world frame"; 
Frames.Orientation R "Orientation object to rotate the world frame into 

the connector frame"; 
flow SI.Force f[3] "Cut-force resolved in connector frame" 
flow SI.Torque t[3] "Cut-torque resolved in connector frame"; 

end Frame; 
connector Frame_a 

"Coordinate system fixed to the component with one cut-force and 
cut-torque (filled rectangular icon)" 

extends Frame; 
end Frame_a; 
connector Frame_b 

"Coordinate system fixed to the component with one cut-force and 
cut-torque (non-filled rectangular icon)" 

extends Frame; 
end Frame_b; 
The subsequent connector classes PlugExpanded and PlugExpanded2 are correct, but 

PlugExpandedillegal can be illegal since the number of potential and flow variables are different if n 
and m become different through a redeclaration of n to something else. 

It is not clear how a Modelica tool in general at an early stage can detect that connectors such as 
PlugExpandedillegal can become illegal. However, it is always possible to detect this defect after 
actual values of parameters and constants are provided in the simulation model. 

connector PlugExpanded // Correct connector class 
parameter Integer m=3; 
Real v[m]; 
flow Real i[m]; 

end PlugExpanded; 
connector PlugExpanded2 // Correct connector class 

parameter Integer m=3; 
final parameter Integer n=m; 
Real v[m]; 
flow Real i[n]; 

end PlugExpanded2; 
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connector PlugExpandedlllegal // Connector class can become illegal 
parameter Integer m=3; 
parameter Integer n=m; // Not illegal if n=m, but illegal if n#m 
Real v[m]; 
flow Real i[n]; 

end PlugExpandedlllegal; 

5.7.8 Generation of Connection Equations 

By generating connection equations we mean the conversion of connect-equations to the two different 
forms of normal equations to be used for potential and flow variables respectively, even though the 
connect-equation itself is a kind of equation. This was described to some extent in Section 5.3 on page 190 
but is presented here in more detail. The process of converting connect-equations can be divided into two 
steps: 

• Building connection setss from connect-equations. 
• Generating connection equations for the complete model. 

Connection sets and generation of connection equation for "normal" connections and connectors are 
described here, whereas the corresponding for implicit connections with inner/outer matching is 
presented in Section 5.8.5, page 233, and for stream connectors in Section 5.10.5, page 254. 

Constants or parameters in connected instances give rise to the appropriate assert equations/statements 
asserting equality (or sum-to-zero) of such connected constants or parameters—connection equations are 
not generated. 

5.7.8.1 Connection Sets from Connect-Equations 

Connections sets are needed to generate the connection equations of a model. They are formed for every 
usage of a connect-equation, such as the following: 

connect{a, b); 
Connection sets are sets of variables of built-in type from expanded connector instance arguments in 

connec- equations, e.g. a and b from the above connect-equation: 

• A connection set is a set of variables connected by means of connect-equations. Each variable in 
the set needs to have associated information indicating if it is from an inside or outside connector. 

• If there are variables having structured connector types, those variables are expanded into their 
primitive elements until all variables have primitive built-in Modelica types, except variables of 
operator record types. This means that an instance of an operator record type is not split 
into its parts. 

• All variables in one connection set will either be flow variables or potential variables due to the 
restriction on connect-equations that flow connects to flow and potential connects to potential. 

The fact that connection sets are formed from the primitive elements, that is, variables of basic type and 
not from the connectors, handles connections to parts of hierarchical connectors and also makes it easier to 
generate equations directly from the connection sets. 

There are special rules regarding the generation of connection sets in the presence of inner or outer 
prefixes on connected objects; see Section 5.8.5, page 233. 

A practical way to represent the associated information is to use pairs/tuples consisting of the variable 
name together with an indication whether the variable is from an inside or an outside connector (Section 
5.7.1, page 208), for example, (variablename, inside) or (variablename, outside). For simple models 
without structured components all connectors can be regarded as inside. 
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These sets are generated by first creating a number of small connection sets from the expanded two 
arguments to each connect-equation. Arguments which are not of basic type such as Real, integer, and 
so on, except operator record types, are expanded into its elements of basic type. In the second step, if 
any of the elements are also members of other connection sets, the corresponding connection sets are 
merged. We demonstrate this on the small ResistorCircuit example. 

-[j]n R1 "pEJ]——[^p" R2 nlj]-

—tj3P R3 n[jh 

Figure 5-31. Schematic picture of ResistorCircuit, also in Figure 5-15. 

model ResistorCircuit 
Resistor R1,R2,R3; 

equation 
connect(R1.p,R2.p); 
connect(R2.p,R3.p); 

end ResistorCircuit; 
For example, the connection sets corresponding to the connect-equations in the ResistorCircuit 

model in Figure 5-31 are the following, where each connector contains a current i and a voltage v: 
{ (R1.p.v, inside), 
{ (R1.p.i, inside), 
{ ( R2 . p. v, inside), 
{ (R2.p.i, inside), 

(R2.p.v, inside) 
( R2 . p . i, inside) 
(R3.p.v, inside) 
(R3.p.i, inside) 

} // from first connect 
} // from first connect 
} // from second connect 
} // from second connect 

There are also single-element connection sets for unconnected flow variables, since the flow for such 
variables eventually must be set to zero by generated equations: 

{ (Rl.n.i, inside) } // from unconnected port Rl.n 
{ (R2.n.i, inside) } // from unconnected port R2.n 
{ (R3.n.i, inside) } // from unconnected port R3.n 
These sets are merged into the following connection sets, for potential and flow variables respectively: 

(R1.p.v, 
(Rl.p.i, 
(R1.n.i, 
( R2 . n . i, 
(R3.n.i, 

inside), 
inside), 

inside) } 
inside) } 
inside) } 

(R2 .p .v , 
( R2 . p . i, 

inside) , 
inside) , 

(R3.p.v, 
( R3 . p. i, 

inside) 
inside) 

II potential 
// flow 

// flow into unconnected port Rl.n 
// flow into unconnected port R2.n 
// flow into unconnected port R3.n 

The connected variables in the set are reachable in a graph defined by the three connector nodes and the 
two connect-equations connect (Rl.p/R2.p) and connect (R2.p,R3.p) given in the model 

The situation is somewhat different regarding the ECircuit model in Figure 5-32 since it contains a 
structured component El that contains both inside and outside connectors (Section 5.7.1, page 208). 

Figure 5-32. The ECircuit model. 

class E 
Resistor R2; 
Resistor R3; 

equation 

E l 
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connect(El.p, R2.p); 
connect(R2.n, R3.p); 
connect(R3.n, El.n); 

end E; 
model ECircuit; 

Resistor Rl; 
Resistor R4; 
E El; 

equation 
connect(Rl.n,E1.p); 
connect(El.n,R4.p); 

end ECircuit; 
The ECircuit model contains three components Rl, El, and R4 at the topmost hierarchical level of 

the model. All connectors in ECircuit have the type Pin with the two members; v of type voltage, and 
i which is a flow variable of type Current. The two connections at the topmost level of the model 
between Rl. n and El. p as well as between El.n and R4 . p give rise to the following connection sets. 

{ (Rl.n.v, inside), (El.p.v, inside) } 
{ (Rl.n.i, inside), (El.p.i, inside) } 
{ (El.n.v, inside), (R4.p.v, inside) } 
{ (El.n.i, inside), (R4.p.i, inside) } 
On the other hand, the structured component El with three internal connect-equations gives rise to the 

following connection sets that also include variables from the outside connectors El. p and El.n: 
{ (El.p.v, outside), (El.R2.p.v, inside) } 
{ (El.p.i, outside), (El.R2.p.i, inside) } 
{ (El.R2.n.v, inside), (El.R3.p.v, inside) } 
{ (El.R2.n.i, inside), (El.R3.p.i, inside) } 
{ (El.R3.n.v, inside), (El.n.v, outside) } 
{ (El.R3.n.i, inside), (El.n.i, outside) } 

Since all tuples occur only in one connection set, the merged sets are the same as these sets. 

5.7.8.2 Connection Sets from Inside or Augmented Flow Variables 

Recall our ResistorCircuit example shown in the previous section and in Figure 5-31. Single-element 
connection sets for unconnected inside flow variables are also generated since the flow for such variables 
is zero which must be represented as an equality to zero in generated equations: 

{ (Rl.n.i, inside) } // from unconnected port Rl.n 
{ (R2.n.i, inside) } // from unconnected port R2.n 
{ (R3.n.i, inside) } // from unconnected port R3.n 

In general, the following connection sets with just one member should also be generated and merged: 

• Each primitive (unconnected) flow-variable as an inside (Section 5.7.1, page 208) connector. 
• Each flow variable added during augmentation of expandable connectors (Section 5.9.6, page 242), 

both as inside and as outside. 

Instead of adding sets only for unconnected flow variables, it is possible to add sets for all inside 
connector flow variables from the start. The connected ones will then disappear (be merged) during the 
merging process, and only the unconnected ones will be left as they are initially, giving the same result. 

Regarding connection sets for flow variables that are added to an expandable connector during 
augmentation (Section 5.9.6, page 242), this refers to flow variables which are elements in structured 
connectors since it is not possible (Section 5.9.4, page 241) to explicitly declare flow variables as members 
of expandable connectors. 
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5.7.8.3 Restrictions on Connection Sets Containing Causal Variables 

There are special restrictions on connection sets containing causal (input/output) variables since a 
connection set may contain at most contain one source of a signal; see Section 5.7.3 .1, page 213. 

5.7.8.4 Generating Connection Equations for Potential Variables 

Each primitive connection set of potential variables (ai) is used to generate equations of the form: 

There are five primitive connection sets of potential variables from the model ECircuit, generating the 
following equations: 

Rl.n.v - El.p.v; El.p.v = El.R2.p.v; 
El.R2.n.v - El.R3.p.v; 
El.R3.n.v = El.n.v; El.n.v = R4.p.v; 
Regarding the ResistorCircuit model, the connection equations for potential variables become: 

Rl.p.v = R2.p.v = R3.p.v 

5.7.8.5 Generating Connection Equations for Flow Variables 

Each primitive connection set of flow variables ( z j is used to generate sum-to-zero equations of the form: 

Zi + z2 + ... + (-Zk) + ... + zn = 0; 
In order to generate equations for flow variables, the sign used for the connector variable zj above is +1 for 
inside connectors and - 1 for outside connectors, for example, zk in the above equation. 

For each flow variable zj in a connector that is not connected as an inside connector in any element 
instance belonging to the model, the following zero-equation is generated: 

Z j - 0 ; 

The bold-face 0 represents a scalar zero or a zero-valued array of appropriate dimensions (i.e., the same 
dimensionality and size as Zj). 

Regarding the model ECircuit, the following sum-to-zero equations with flow variables are 
generated: 

Rl.n.i + El.p.i - 0; (-El.p.i) + El.R2.p.i = 0; 
El.R2.n.i + El.R3.p.i = 0; 
El.R3.n.i + El.n.i = 0; (-El.n.i) + R4.p.i 
The reason that a negative sign is used for outside connector variables such as El.p. i and El.n.i is 

rather apparent when looking at Figure 5-32 of the ECircuit model. The positive flow into the El 
component via the connector El. p continues in the same direction out of El. p when used internally as an 
outside connector in El. Since the positive flow direction is into a component and the actual flow is in the 
opposite direction out of E. p, a negative sign has to be used. 

If we expand the structured component El into its parts, that is, effectively remove its component 
boundary, this will eliminate the outside connectors. Such a transformation corresponds to merging 
equations, e.g., adding the first two flow equations above: 

Rl.n.i + El.p.i + (-El.p.i) + El.R2.p.i - 0; 
This equation is easily simplified using the negative sign of the flow variable from the outside connector. 
The resulting merged equation below closely corresponds to a situation where the resistors R1 and R2 
would be directly connected to each other without the existence of the structured component El: 

Rl.n.i + El.R2.p.i - 0; 
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Returning to the matter of zero-equations, there are two connectors R1 .p and R4 . n in ECircuit that 
are not connected anywhere. The following zero-equations are generated for the flow variables in those 
connectors. The flow will of course be zero since nothing will flow into an unconnected port. Another 
example of this rule is presented in Section 15.2.5.4, page 817: 

Rl.p.i - 0; 
R4.n.i - 0; 

This also means that it is not possible to have additional equations (would be too many equations!) that 
define unconnected flow variables like Rl.p.i and R4.n.i since they are already equal to zero. 
Returning to the ResistorCircuit model once more, the connection equation and the zero-equations for 
the flow variables become: 

Rl.p.i + R2.p.i + R3.p.i = 0; 
Rl.n.i = 0; 
R2.n.i = 0; 
R3.n.i = 0; 

5.7.8.6 Generating Connection Equations for Constants and Parameters 

Constants and parameters sometimes occur in connectors, e.g., the parameter n declared in the connector 
classes RealinVec and RealOutVec. It does not make much sense to generate constant connection 
equations to be solved by an equation solver. On the other hand, it must be guaranteed that corresponding 
constants or parameters have the same value. This can be done through assert statements instead of 
connection equations: 

• Constants or parameters in connected connectors produce assert statements instead of 
connection equations. 

For example, the following class has the connectors ip and op, which both contain the parameter n: 
class ConnectedParameter "Example class with parameter connectors" 

RealOutVec op; // connector with parameter n 
RealinVec ip; // connector with parameter n 

equation 
connect(op,ip); 

end ConnectedParameter; 

connector RealinVec "Vector Integer input connector" 
parameter Integer n = 1; 
input Real vec[n]; 

end TestReallnput; 

connector RealOutVec "Vector Integer input connector" 
parameter Integer n = 1; 
output Real vec[n]; 

end TestReallnput; 
The equation connect (op, ip) generates the usual connection equation for the variables op and ip: 
op = ip; 

However, regarding the parameter n the following assert statement is produced, 

assert(op.n=ip.n, ""); 

5.7.9 Cardinality and Direction of Connections 

Note that the cardinality operator has been deprecated (removed) from Modelica language releases after 
Modelica 3.1 for the following reasons: such a reflective operator may make early type checking more 
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difficult, it is almost always abused in strange ways, and it is not used for Bond graphs even though it was 
originally introduced for that purpose. 

In old versions of Modelica, it was possible to let the behavior of a model be dependent on the number 
of connections to certain connectors of the model. This can be achieved by using a built-in function 
cardinality that returns the number of connections that have been made to a connector. This is an 
example of a self-inspecting (reflecting) language construct. 

The cardinality is counted after removing conditional components, and may not be applied to 
expandable connectors, elements in expandable connectors, or to arrays of connectors, but can be applied 
to the scalar elements of an array of connectors. The cardinality operator should only be used in the 
condition of assert and if-statements - that do not contain connect and similar operators. 

• The function cardinality(c) with formal parameter c returns the total number of (internal and 
external) occurrences of the connector c in connect-equations in the total model. 

For example, a model library might be built with the assumption that only one connection can be made to 
each connector. Another example is to specify connection-dependent equations in a model, for example, as 
in the model Cardinal ityRes is tor below, where each case with no connections to a connector or a 
group of connectors is treated in a special way. 

model CardinalityResistor 
extends TwoPin; 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
// Handle cases if pins are not connected 
if cardinality(p) == 0 and cardinality(n) == 0 then 
p.v - 0; n.v = 0; 
elseif cardinality(p) == 0 then 
p.i = 0; 

elseif cardinality(n) == 0 then 
n.i - 0; 

end if; 
// Resistor equation 
v = R*i; 

end CardinalityResistor; 

5.7.9.1 The Direction of a Connection 

Note that the direction operator has been deprecated (removed) from Modelica language releases after 
Modelica 1.4 for the same reasons as for the cardinality operator. 

In very old versions of Modelica it was possible to get information about the direction of a connection 
by using the built-in function direction (c) on a connector c, provided that cardinality (c) = 1, i.e., 
the connector c is involved in exactly one connection. 

Given a connection of the following form: 

connect(cl, c2) ; 

calls passing the two connector arguments give the following results: 

direction ( cl ) returns - 1 
direction (c2) returns 1 

The cardinality and direction operators were intended to be used when building certain kinds of 
libraries, for example, libraries of bond graph components or components for modeling discrete event 
systems. However, it turned out that they were not actually used for that purpose. 

5.8 Implicit Connections with the inner/outer Construct 

So far in we have focused on explicit connections between connectors where each connection is explicitly 
represented by a connect-equation and a corresponding line in a connection diagram. However, when 
modeling certain kinds of large models with many interacting components this approach becomes rather 
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clumsy because of the large number of potential connections—a connection might be needed between each 
pair of components. This is especially true for system models involving force fields, which lead to a 
maximum of n xn connections between the n components influenced by the force field or 1 x n 
connections between a central object and n components if intercomponent interaction is neglected. 

For the case of 1 x n connections, instead of using a large number of explicit connections, Modelica 
provides a convenient mechanism for implicit connections between an object and n of its components 
through the inner and outer declaration prefixes. 

These language constructs force lookup for implicit connections through the instance hierarchy instead 
of the usual nested lookup in the class hierarchy, as described briefly in the next section and more formally 
in Section 3.17.5, page 113. Another difference compared to explicit connections is that the inner/outer 
mechanism can be applied to any declared element in a class, not only to connectors. 

5.8.1 Access of Shared inner Environment Variables 

A rather common kind of implicit interaction is where a shared attribute of a single environment object is 
accessed by a number of components within that environment. For example, we might have an 
environment including house components, each accessing a shared environment temperature, or a circuit 
board environment with electronic components accessing the board temperature. 

A Modelica environment-component example model along these lines is shown below, where a shared 
environment temperature variable TO is declared as a definition declaration marked by the keyword 
inner. This declaration is implicitly accessed by the reference declarations of TO marked by the prefix 
outer in the components compl and comp2. 

model Environment 
inner Real TO; // Definition of actual environment temperature TO 
Component compl, comp2; // Lookup match makes compl.TO = comp2.T0 = TO 
parameter Real k=l; 

equation 
TO = sin(k*time); 

end Environment; 

model Component 
outer Real TO; // Reference to temperature TO defined in the environments 
Real T; 

equation 
T - TO; 

end Component; 

model EnvironmentInstances 
Environment envl(k=l); 
Environment env2(k=4); 

end EnvironmentInstances 
The instance hierarchy lookup is from an outer reference declaration to a matching inner definition 

declaration with the same name. The search is upward in the instance hierarchy starting from the current 
instance. In this example, the search starts at the components compl or comp2 upward to the 
Environment instances envl or env2 where the matching inner definition declaration of TO is found, 
as depicted in Figure 5-33. 

Note that there exists only one actual instance of TO in each environment, marked by the prefix inner. 
All outer reference declarations of TO within the components of an environment are just references to this 
single instance. 
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Figure 5-33. Two Environment instances envl and env2, each containing a definition of a temperature TO 
which is implicitly accessed by the reference declarations of TO in the components compl and comp2. 
A nice property of the instance hierarchy lookup mechanism provided by the inner/outer language 

feature is its selectiveness. Thus we can have several simultaneously existing environment hierarchies as 
shown in Figure 5-33, with independent lookup within each hierarchy. 

We simulate the Environmentinstances model containing the two environments envl and env2: 
simulate(Environmentinstances, stopTime=2) 
plot({envl.compl.TO, env2.compl.TO}) 

— envl.canpl.TO(t) 
— env2.ccmpl.TO(t) 
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Figure 5-34. Plot of envl. TO and env2 . TO for the two environments envl and env2 respectively. 

Both environments have a sine-shaped temperature profile TO as a function of time (Figure 5-34), but the 
second environment temperature is varying faster in time since the coefficient k=4 compared to k=l for 
the first environment. 

5.8.2 Implicit versus Explicit Connection Structures 

As mentioned above, the inner/outer mechanism can be applied to any kind of element, not only to 
connectors. However, this mechanism is especially useful when applied to connectors to establish implicit 
connections between a single environment object and their components, i.e., a case of 1 xn interaction. 

An implicit connection structure has the nice property that additional components can be added to the 
structure without the need for additional explicit connections. A new component becomes automatically 
connected to the system. 
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Figure 5-35. circuitBoard heat exchange with implicit connections between inner/outer connectors 
shown as dotted lines. 

Consider the CircuitBoard example depicted in Figure 5-35, with Modelica code below. New 
components added to the compvec vector within the compTwo model instance become automatically 
connected. The reason is that all outer envHeat connectors within the compvec vector automatically 
reference the inner envHeat definition connector declared in the CircuitBoard. 

connector HeatPort 
Modelica.Slunits.Temp_K T "Temperature in [K]"; 
flow Modelica.Slunits.HeatFlux q "Heat flux"; 

end HeatPort; 
model Component "Component within a circuit board in an environment" 

outer HeatPort envHeat; // Reference to environment heat interface 
HeatPort heat; // Local heat connector of component 

equation 
connect(heat, envHeat); 

end Component; 
model TwoComponents "Two Components together" 

Component compvec[2]; 
end TwoComponents; 

model CircuitBoard 
inner HeatPort envHeat; // Definition of environment heat interface 
Component . comp; 
TwoComponents compTwo; 

end CircuitBoard; 
As a comparison, we show the same example modeled using traditional explicit connections depicted in 

Figure 5-36, with corresponding Modelica code below. 
CircuitBoard: i 1 

H TenvHeat 

comp: |—I—. compTwo: —I—. 
I -^J- : - U-T-1 heat 
heat [ I 

heat .• : : ' hea.i: 

; • compvec [:i J; ;' compvec [2 J; 

Figure 5-36. CircuitBoard heat exchange model with explicit connections. 
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Each time we add a new component to the compvec vector in the compTwo instance, an additional 
explicit connection has to be added into the TwoComponents class as a connect-equation. 

connector HeatPort 
Modelica.Slunits.Temp_K T "Temperature in [K]"; 
flow Modelica.Slunits.HeatFlux q "Heat flux"; 

end HeatPort; 
model Component 

HeatPort heat; 
end Component; 
model TwoComponents 

Component compvec[2]; 
HeatPort heat; 

equation 
connect(compvec[1].heat, heat); 
connect(compvec[2].heat, heat); 

end TwoComponents; 
model CircuitBoard 

HeatPort envHeat; 
Component comp; 
TwoComponents compTwo; 

equation 
connect(comp.heat, envHeat); 
connect(compTwo.heat, envHeat); 

end CircuitBoard; 

5.8.3 Nested Hierarchical Subsystems with Simultaneous inner/outer 

The previous sections show how inner definition declarations, for example in the Environment model, are 
implicitly connected to and propagated to outer reference declarations, e.g. in components of the environment. 

What happens if we have a more complex system structure, with possibly several levels of nested 
subsystems? Can we propagate across the subsystem boundaries? The answer is yes, but it is a bit clumsy. 
We would need to have different inner and outer declarations for the same entity in each subsystem, 
introduce a new name for each additional declaration, and couple these through additional equations. This 
is complicated and makes model re-use harder. 

To avoid these drawbacks when modeling with nested subsystems, the simultaneous inner-outer 
declaration has been introduced. This eliminates the need for extra names and equations, and increases 
reusability, e.g. as needed by libraries such as Modelica.Stategraph. The declaration has both keywords 
inner and outer as depicted below: 

inner outer <Type> <variable>; 
This declaration conceptually introduces two declarations with the same name, both an inner and an 

outer declaration: 
• An element declared with both the prefixes inner and outer conceptually introduces two 

declarations with the same name: one that follows the above rules for inner and another that 
follows the rules for outer. 

• Local uses of elements in declarations with simultaneous prefixes inner and outer use the outer 
element. That in turn references the corresponding inner definition declaration in an enclosing scope. 

• Simultaneous inner/outer declarations may have modifications, including declaration equations 
in the modifier. Those modifications are only applied to the inner part of the declaration. 
Modifiers or declaration equations on pure outer declarations are not allowed. 

• Outer class declarations should be defined using the short class definition. Modifiers to such 
outer class declarations are only allowed if the inner keyword is also present, i.e., a 
simultaneous inner outer class declaration. 
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The last point is illustrated by the following erroneous model: 

class A 
outer parameter Real p=2; // Error, since declaration equation needs inner 

end A; 
To demonstrate the use of simultaneous inner outer declarations we have introduced a subsystem 

level, SubEnvironment, with instance subEnv, in the previous Environment model. The new model is 
called EnvironmentsWithSubsystem and is shown below and in Figure 5-37. 

The model contains two environment instances envl and env2, each containing an inner definition of a 
temperature TO and a subsystem subEnv. The top-level environment temperatures envl .TO and env2. TO 
respectively are picked up by the reference (outer) part of the simultaneous inner outer TO in subEnv, 
transferred to its definition (inner) TO part which is implicitly accessed by the reference declarations of 
TO in the components compl and comp2. 

model Environment 
inner Real TO; // Definition of actual environment temperature TO 
SubEnvironment subEnv; // Lookup makes subEnv.compl.T0=subEnv.comp2.T0=T0 
parameter Real k=l; 

equation 
TO = sin(k*time); 

end Environment; 
model SubEnvironment 

inner outer TO; // Inner TO used by compl,comp2 
Component compl, comp2; // Lookup makes compl.TO 

equation 
end SubEnvironment; 
model Component 

outer Real TO; // References temperature TO defined in the subenvironment 
Real T; 

equation 
T - TO; 

end Component; 
model EnvironmentsWithSubsystem 

Environment envl(k=l); 
Environment env2(k=4); 

end EnvironmentsWithSubsystem; 

envl: env2: 

; outer ref to envl/2.T0 
= comp2.TO - subEnv.TO 

inner Real T0=sin(time) 
k-1 

subEnv: * <. 

inner Real T0=sin (4*time) 

Figure 5-37. The structure of the EnvironmentsWithSubsystem model. Two Environment instances, 
envl and env2, each containing an inner definition of a temperature TO and a subsystem subEnv. The 
envl. TO and env2. TO are picked up by the reference (outer) part of the simultaneous inner outer TO in 
subEnv, transferred to its definition (inner) TO part which is implicitly accessed by the reference 
declarations of TO in the components compl and comp2. 

subEnv: subEnv: V, 
inner outer Real TO; inner outer Real TO; 
compl: /' '*», compl: /' '•>. 

— coiop2: v . — comp2 : • *, _ •outer'Real'TO"•' l o'uter'Reel'TO-'• [• ' 1 ' ' '*' '.I 
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We simulate the EnvironmentsWithSubsystem model containing the two environments envl and 
env2: 

simulate(EnvironmentsWithSubsystem, stopTime=2) 
plot({envl.subEnv.compi.TO, env2.subEnv.compi.TO}) 

— e n v l . s u b E n v . c o m p i . T O ( t ) 

Figure 5-38. Plot of envl. subEnv. compl .TO and env2 . subEnv. compl. TO for the two environments 
envl and env2, respectively, where the TO is propagated via subEnv to compl and comp2. 

The plots for the simulation of the EnvironmentsWithSubsystem model in Figure 5-38 are the 
same, as they should be, compared to the previous Environmentlnstances simulation in Figure 5-34. 
Propagating the temperature TO via the simultaneous inner outer declaration in subsystem subEnv to 
the components compl and comp2 works just as well as direct propagation to compl and comp2 in the 
previous example. 

5.8.4 Implicit Interaction within a Gravitational Force Field 

An interesting case of implicit interaction is when a force field interacts with a number of components. In 
some cases the exact nature of the force field is unknown when the components are described. For 
example, we might not know a priori whether a uniform gravity field or a central gravity field should be 
applied as depicted in Figure 5-39. 

Uniform parallel gravity field Central point gravity field 

Figure 5-39. Uniform gravity field and point gravity field. 

To model this situation, we start by defining a generic gravity field through the partial function 
gravi ty inter face, for which only the interface to the function is defined. Since the function is partial it 
cannot be called. Instead it is used as a superclass for other functions with the same interface, in particular 
the functions uniformGravity and pointGravity defined below. 
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partial function gravitylnterface 
input Real r[3] "position"; 
output Real g[3] "gravity acceleration"; 

end gravitylnterface; 
function uniformGravity 
extends gravitylnterface; 

algorithm 
g := {0, -9.81, 0}; 

end uniformGravity; 

function pointGravity 
extends gravitylnterface; 
parameter Real k=l; 

protected 
Real n[3]; 

algorithm 
n := -r/sqrt(r*r); 
g := k/(r*r) * n; 

end pointGravity; 
We would like to compute the position and velocity of a particle moving in a gravity field, as depicted 

in Figure 5-40. However, at this stage we do not yet know the exact form of the gravity field. The idea is to 
use the partial function gravitylnterface as an interface for gravity fields when defining a general 
model of a particle moving in an unspecified gravity field. 

Figure 5-40. Position r, velocity v, and gravitational acceleration g for a point mass P with respect to a 
Cartesian coordinate system. 

Here we can use the inner/outer mechanism by defining an interface function as an outer reference 
function gravity, being type compatible with its default gravitylnterface, and intended to match a 
corresponding inner function definition that specifies the actual gravity field: 

model Particle 
parameter Real m = 1; 
outer function gravity = gravitylnterface; 
Real r [ 3] (start = {1,1,0}) "position"; 
Real v[3] (start - {0,1,0}) "velocity"; 

der(r) = v; 
m*der(v) = m*gravity(r); 

end Particle; 
In the following models of a particle in a point gravity field or a uniform gravity field, we specify 

inner definitions of the gravity function as a pointGravity or a uniformGravity function 
respectively. The outer reference function declaration in the Particle model will refer to one of these 
inner definitions. 

model ParticlesInPointGravity 

equation 

x2 j f T 

I I g=gravity(r) 

o ¥ — • X, / 
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inner function gravity = pointGravity(k=l); 
Particle pi, p2(r(start={1,0,0 } )) ; 

end ParticlelnPointGravity; 

model ParticlesInUniformGravity 
inner function gravity = uniformGravity; 
Particle pi, p2(v(start={0,0.9,0})); 

end ParticlelnUniformGravity; 

model ParticleSystem 
ParticlesInPointGravity pP; 
ParticlesInUniformGravity pU; 

end ParticleSystem; 
We simulate the ParticleSystem model containing two particle pairs. The pP.pl and pP.p2 particles 

move in a point source gravity field whereas the pu. pi and pU. p2 particles move in a uniform field. 

simulate(ParticleSystem, stopTime=0.2) 
First we show a plot of the two particles that move in a uniform field (Figure 5-41). The pu. p i particle 

has a default start velocity vector of {0,1,0} specified in class Particle, whereas pu.p2 has a start 
velocity vector {0,0.9,0} given by the modification of p2 in the ParticlesInUniformGravity class. 
We can see that the particle pU.pl with the slightly higher start velocity moves a bit farther than pu.p2 
before it falls down, which is to be expected, 

plot({pU.pi.r[2], pU.p2.r[2]} ) 

-pU.pl. r [2] [t] 
pU .p2 . r [2 ] [t] 
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Figure 5-41. Two parabolic trajectories of particles moving in a uniform gravitational field, where the 
particle pu. pi represented by the higher curve has a slightly higher initial velocity than pu. p2. 

In our second simulation, we are interested in studying the two particles pP.pl and pP. p2 moving in a 
central gravity field, which is typical of satellites in orbits around the earth. The simulation is during a 
longer time period, 25 seconds, to cover full orbital periods for the particles. 

Both particles have a default start velocity vector {0 ,1 ,0} specified in the Particle class. However, 
they have different start positions: the r vectors are {1 ,1 ,0} and { 1 , 0 , 0 } for pP.pl and pP.p2 
specified in the classes Particle and ParticlesInPointGravity respectively. 

We perform the simulation and show plots of the second position coordinate r [ 2 ] of both particles in 
Figure 5-42. 

simulate(ParticleSystem, stopTime=25) 
plot({pP.pl.r[2], pP.p2.r[2]} ) 
We can see that the particle pP.pl has a longer orbital period than pp.p2 partly because its initial 

position is farther away from the gravity point source. 
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Figure 5-42. Particles moving in a central gravity field. The particle pP. p i has a longer orbital period than 
pP. p2 since it initially had a position farther away from the gravity point source. 

We perform parametric plots of the particle trajectories based on the x (=r [ l ]) and y (=r [ 2 ]) 
coordinates of the particles as a function of time, shown in Figure 5-43. This gives a better visual display 
of the shape of the trajectories than the previous plots. The time periods for the plots have been chosen to 
be slightly less than the orbital periods of the particles, which causes small gaps in the plotted trajectories. 

parametricPlot({pP.pl.r[1], pP.pl.r[2]}, xrange={0,23.3}) 
parametricPlot({pP.p2.r[1], pP.p2.r[2]}, xrange={0,6.2}) 

Figure 5-43. Elliptic and circular particle trajectories around a central gravitational point source for the 
particles pP.pl and pP. p2 respectively. 

The first particle (pP . p i ) has an elliptic orbit around the central gravitational point source for two reasons: 
the particle's initial position {1 ,1 ,0} is a bit further away from the point source, and its initial velocity vector 
{0 ,1 ,0} is not perpendicular to its position vector relative the point source. However, the second particle is at 
the appropriate distance and has a perpendicular initial velocity vector, resulting in a circular orbit. 

We conlude that implicit 1 x n interaction with an unspecified force field acting on n bodies can be 
conveniently modeled using the inner/outer language mechanism applied to functions that represent the 
actual shape and type of force interaction. 

5.8.5 Generating Connection Equations Involving inner/outer Connectors 

Certain connectors might have been declared with one of the prefixes inner and outer, which are 
described in detail in Section 5.8, page 224, and in the section on reference lookup using inner and 
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outer (Section 3.17.5, page 113). A connector declared as outer is essentially just a reference to a 
corresponding connector declared as inner higher up in the instance hierarchy. 

However, recall the locality constraint on connected connectors, that both connector arguments are 
hierarchically contained within the class of the current instance (Section 5.3.2, page 191). 

This constraint has implications for the interpretation of connect-equations where one or more of the 
arguments are connectors with the outer prefix. Since a connector declared as outer is just a reference to 
a corresponding inner connector declared higher up in the instance hierarchy, the connect-equation has to 
be conceptually moved up in the instance hierarchy until the locality constraint is fulfilled. This has to be 
done before generating the connection sets and the connection equations. To summarize: 

• outer objects (that are not connectors) are handled by mapping the objects to the 
corresponding inner objects higher up in the instance hierarchy. 

• outer connectors are handled by mapping the connectors to the corresponding inner 
connectors. They are treated as outside connectors before being moved up since they (5-5) 
refer to (via an outer reference) to a corresponding inner connector outside and 
above the current hierarchy level. 

• The mapping from an outer to an inner element must occur before merging the ^ 
connection sets in order to get one zero-sum equation. 

A simple LoadCircuitInnerOuter model presented further below will be used to demonstrate 
generation of connection equations in conjunction with connectors and inner/outer matching. As a 
comparison, we first demonstrate generation of connection equations for almost the same model without 
inner/outer, called LoadCircuit. 

Figure 5-44. The LoadCircui t model without inner/outer. The resistor. n and the load. n are 
unconnected. 

model Load 
extends TwoPin; // TwoPin, Resistor are defined in Section 5.4.1, page 

195 
Resistor resistor; 

equation 
connect(p, resistor.p); 
connect(resistor.n, n); 

end Load; 
model LoadCircuit 

Ground ground; 
Load load; 
Resistor resistor; 

equation 
connect(load.p , ground.p); 
connect(resistor.p, ground.p); 

end LoadCircuit; 
The connection sets before merging are shown below. Note that the connector load.n and the 

connector of the resistor, resistor. n, are not connected to anything and thus give rise to connection sets 
with just one member. 

{ (load.p.i, outside), (load.resistor.p.i, inside) } // flow 
{ (load.p.v, outside), (load.resistor.p.v, inside) } // potential 

^ p ^ — — ï ô ^ ^ l — 
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(load.n.i, outside), (load.resistor.n.i, inside) 
(load.n.v, outside), (load.resistor.n.v, inside) 
(load.p.i, inside), (ground.p.i, inside) } 
(load.p.v, inside), (ground.p.v, inside) } 
(resistor.p.i, inside), (ground.p.i, inside) } 
( resistor.p.v, inside), (ground.p.v, inside) } 

/ / 

// flow 
// potential 
flow 

// potential 
// flow 
// potential 

{ 
(load.n.i, inside) } 
( resistor.n.i, inside) 

// flow 
// flow 

} // flow 
} // potential 
} // flow 
} // potential 

After merging, these sets are obtained: 

{ (load.p.i, outside), (load.resistor.p.i, inside) 
{ (load.p.v, outside), (load.resistor.p.v, inside) 
{ (load.n.i, outside), (load.resistor.n.i, inside) 
{ (load.n.v, outside), (load.resistor.n.v, inside) 

{ (load.p.i, inside), (ground.p.i, inside), (resistor.p.i, inside) } // flow 
{ (load.p.v, inside), (ground.p.v, inside), (resistor . p. v, inside) } //potential 

{ (load.n.i, inside) } // flow 
{ (resistor.n.i, inside) } // flow 
The following equations are generated from the sets, equality equations for potential connection sets, 

and sum-to-zero equations for connection sets of flow variables. Negative sign (-) is used for outside flow 
variables, whereas inside flow variables have positive sign (+). 

load.p.v = load.resistor.p.v; 
load.n.v = load.resistor.n.v; 
load.p.v = ground.p.v; 
load.p.v = resistor.p.v; 
0 
0 
0 

0 = 

(-load.p.i) + load.resistor.p.i ; 
(-load.n.i) + load.resistor.n.i; 
load.p.i + ground.p.i + resistor.p.i; 

// potential 
// potential < 
// potential 
// potential 
// flow 
// flow 
// flow 

load.n.i; 
resistor.n.i; 

// flow default equation for unconnected port 
// flow default equation for unconnected port 

The example is now changed to use inner/outer and renamed to LoadCircuitinnerOuter. The 
load.resistor has become an outer resistor component that is mapped to the corresponding 
inner resistor at the next level up in the instance hierarchy. This means that what is actually being 
connected is the inner resistor. We still have the unconnected connectors inner resistor.n and 
load.n, as well as the now unconnected inner resistor.p that was previously connected to 
ground. p. 

JLin'er resistor! 2 r 0 ™ d 

- ? " "T £ 
Figure 5-45. The LoadCircuitinnerOuter model, with an outer resistor hierarchically within the 
load mapped to an inner resistor higher up in the hierarchy, and the connection resistor, p to 
ground. p removed. 

Below is the Modelica code for the LoadCircuitinnerOuter model: 

model Load 
extends TwoPin; 
outer Resistor resistor; 

equation 

load ~ " - — ; 1 
E _L outer resistor I _ " 
a Hp n d - n 
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connect(p, resistor.p); 
connect(resistor.n, n); 

end Load; 
model LoadCircuitInnerOuter "Load circuit with outer mapping to inner" 

Ground ground; 
Load load; 
inner Resistor resistor; 

equation 
connect(load.p, ground.p); 

end LoadCircuitInnerOuter; 
The internal instance hierarchy of the LoadCircuitinnerOuter model is shown in Figure 5-46. 

Level I inner resistor ground load 

/ \ / \ X \ \ 
Level 2 resistor.p resistor.n ground.p outer load.resistor load.p load.n 

Level 3 
/ \ 

load.resistor.p load.resistor.n 

Figure 5-46. The LoadCircuitinnerOuter model together with its instance hierarchy. The outer 
resistor at Level 2 is mapped to the inner resistor at Level 1 through instance hierarchy lookup, and the 
previous connection of resistor .p to ground, p has been removed . 

An inner resistor instance is first added to the instance hierarchy at Level 1 when creating an 
instance of the LoadCircuitinnerOuter model, based on the following declaration within that model: 

inner Resistor resistor; 
Subsequently, the ground and load instances are added at Level 1. Note that the Load class contains 

the following connect-equations: 

connect(p, resistor.p); 
connect(resistor.n, n); 

When the load instance is created from Load, we first generate the following preliminary sets of virtual 
outer connections from the connected variables inside load. By the term virtual, we indicate that these 
connections are not the final ones, since the mapping of the outer load.resistor to the inner 
resistor is not yet done. 

The connectors load, resistor .p and load, resistor. n are labeled outside because of the rule 
(5-5), page 234, that outer connectors are labeled as outside since they define an interface referring to 
something outside the current model level. The connectors load.p and load.n are outside since they 
constitute the external interface to load. 

{ (load. p. v, outside), (load, resistor .p.v, outside/* because outer */) } 
{ (load.p. i, outside), (load. resistor .p. i, out side /* because outer */) } 

{ (load, resistor. n .v, outside /* because outer */) , (load, n.v, outside) } 
{ (load, resistor . n . i, outside /* because outer */) , (load. n. i, outside) } 

Via lookup in the instance hierarchy, Figure 5-46, we find the inner resistor corresponding to the 
outer load, resistor. Therefore the connection set is moved up from Level 2 where load, resistor 
is found to Level 1 where we find the inner resistor, and references to load, resistor are replaced 
by resistor. 
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At the same time the "moved up" outer outside connector references are changed to inside since they 
now refer to connectors of a component (the inner resistor) at the same hierarchical level and not 
something outside (above) the current level. We need to switch outside to inside only for outer 
components; all the other components stay the same as before, either inside or outside. 

{ (load.p.v, outside), (resistor. p. v, inside /* because moved up to same level */) } 
{ (load.p.i, outside), (resistor .p. i, inside /* because moved up to same level */) } 

{ (resistor. n .v, inside /* because moved up to same level */) , (load.n.v, outside) } 
{ (resistor .n.i, inside /* because moved up to same level */) , (load.n.i, outside) } 

Note that no connection sets are generated for load any longer because connections involving the outer 
components and connectors in load do not belong in load! They belong to the hierarchy level of the 
corresponding inner component, and the connection set has been moved up as in the current example. 

The LoadCircuitinnerOuter model has only one connect-equation at its own hierarchy level, 
connect(load.p, ground.p); 

That connect-equation generates the following two connection sets. 

{ (load. p. v, inside), /* inside because load.p is qualified; i.e., load.p is not an external interface */ 
(ground.p. v, inside) /* inside because ground.p is qualified */ } 

{ (load.p.i, inside), /* inside because load.p is qualified */ } 
(ground.p. i, inside) /* inside because ground.p is qualified */ } 

The connectors load.p and ground.p have qualified names so they are not interface connectors, that is, 
they are inside connectors. 

Now we merge the previous connection set originating from the virtual outer components of the load 
instance with the local connection set inside LoadCircuitinnerOuter and obtain: 

{ (load.p.v, outside), (resistor. p. v, inside /* because moved up to same level */) } 
{ (load.p. i, outside), (resistor. p. i, inside /* because moved up to same level */) } 

{ (resistor .n.v, inside /* because moved up to same level */) , (load.n.v, outside) } 
{ (resistor .n.i, inside /* because moved up to same level */) , (load.n.i, outside) } 

{ (load.p.v, inside), /* inside because load.p is qualified */ 
(ground.p. v, inside) /* inside because ground.p is qualified */ } 

{ (load.p.i, inside), /* inside because load.p is qualified */ } 
(ground.p. i, inside) /* inside because ground.p is qualified */ } 

Now we can generate the equations. The potential v stays the same as in the same connection set, the 
flow i sums to zero in the same connection set and depending on inside /outside has + sign for inside and -
sign for outside. First the potential equations: 

Set: 
{ (load. p. v, inside) , /* inside because load.p is qualified */ 

(ground.p. v, inside) /* inside because ground.p is qualified */ } 

Generates equation: 

load.p.v = ground.p.v; 
Set: 

{ (load.p.v, outside), /* Interface connector in Load */ 
(resistor .p. v, inside) /* outer moved one level up */ } 

Generates equation: 

load.p.v = resistor.p.v; 
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Set: 

{ (resistor .n.v, inside /* outer moved one level up */ ) , 
(load.n.v, outside) /* Interface connector in Load */ } 

Generates equation: 

resistor.n.v = load.n.v; 
Then we generate the flow equations originating from the connect-equations: 

Set: 
{ (load. p. i, inside), /* inside because load.p is qualified */ 

(ground.p. i, inside) /* inside because ground.p is qualified */ } 

Generates equation: 

load.p.i + ground.p.i = 0; 
Set: 

{ (load.p. i, outside), /* Interface connector in Load */ 
(resistor .p. i, inside) /* outer moved one level up */ } 

Generates equation: 

(-load.p.i) + resistor.p.i = 0; 
Set: 

{ (resistor .n.i, inside) /* outer moved one level up */, 
(load.n.i, outside) /* Interface connector in Load */ } 

Generates equation: 

(-load.n.i) + resistor.n.i = 0; 
To summarize, in the final system of equations, the potential connection equations are. 

load.p.v = ground.p.v; 
load.p.v = resistor.p.v; 
resistor.n.v = load.n.v; 
The flow equations generated by the connections are: 

load.p.i + ground.p.i = 0; 
(-load.p.i) + resistor.p.i = 0; 
(-load.n.i) + resistor.n.i = 0; 
As a final phase we go through all the connectors, fetch the unconnected inside flow variables and set 

them to zero: 

load.n.i = 0; 
Remember that the basic idea of handling explicit connections to inner/outer connectors is that 

connect{outerComponent, localConnector), does not generate a connection set in the local scope, but is 
"moved up" to the corresponding innerComponent scope higher up in the instance hierarchy where there is 
an innerComponent with the same name as the outerComponent. This will generate a connection set in the 
innerComponent scope. 

5.9 Expandable Connectors for Information Buses 

It is common in engineering to have so-called information buses with the purpose of transporting 
information between various system components, e.g. sensors, actuators, control units. Some buses are 
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even standardized (e.g., IEEE 488), but are usually rather generic to allow many kinds of different 
components. 

vehic leContro lBus 

- O - ^ F ^ i r ^ Û — : 

' çïiraàteGtri | engiiieGfcrï • krakjaçCîtrl- ' ' d r 'i ve ' l i rie C t r l -

Figure 5-47. Example of a conceptual vehicle control bus, with connected components such as climate 
control unit, engine control, brakes control, driveline control, etc. 

The main motivation behind expandable connectors is to be able to easily control complex hierarchical 
systems. For example, given a hierarchically structured system with many control signals—dozens, 
hundreds, or more. If the system is structured so that the physical components and the control components 
are located in different models, then an unbelievable tangle of individual connections would be needed to 
be carried around in the model. This would be very complex and totally unpractical. With expandable 
connectors it is possible to use a single data bus to carry around all the required signals through complex 
hierarchies. 

Flexible construction of information buses is the key idea behind the expandable connector 
construct. An expandable connector acts like an information bus since it is intended for connection to 
many kinds of components. To make this possible it automatically expands the expandable connector type 
to accommodate all the components connected to it with their different interfaces. If an element with a 
certain name and type is not present, it is added. All variables/fields in an expandable connector are seen 
as connector instances even if they are not declared as such, i.e., it is possible to connect to, for example, a 
Real variable. 

The syntax of an expandable connector class declaration is simple, just put the expandable keyword 
in front of the connector keyword: 

expandable connector MyExpandableConnectorClass 

end MyExpandableConnectorClass; 
If the expandable prefix is present on a connector definition, for example, as above, all instances of that 
connector class are referred to as expandable connectors. Instances of connector classes without the 
expandable keyword are called non-expandable connectors. 

There are two categories of connections in the context of expandable connectors: 

• Connections between expandable connector instances, see Section 5.9.1 below. 
• Connections between variables within expandable connector instances and other connectors or 

variables, for example, see Sections 5.9.2, 5.9.3, and 5.9.6. 

5.9.1 Connecting Expandable Connector Instances 

When two or more expandable connectors are connected, each is augmented with the variables that are 
only declared in the other expandable connector. The added new variables are neither input nor output 
even if the original variable has an input/output prefix. 

This is repeated until all connected expandable connector instances have matching variables. The final 
effect is that each of the connector instances will be expanded to contain the union of all sets of variables 
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from the declarations of the corresponding expandable connector classes. Each union set of variables 
without attached input or output prefixes is called an augmentation set. For example: 

expandable connector Busl 
Real x; 
Integer y; 

end Busl; 
expandable connector Bus2 

Real z; 
end Bus2; 
expandable connector Bus3 

Real w; 
end Bus3; 
model CombiningBuses 

Busl busl; 
Bus2 bus2; 
Bus3 bus 3; 
connect(busl, bus2); 
connect(bus2, bus3); 

end CombiningBuses; 
After the connection in the CombiningBuses example has been processed, busl, bus2, and bus3 

will contain variables x, y, z and w. The corresponding so-called augmentation sets are as follows: 
setl: {busl.x, bus2.x, bus3.x} 
set2: {busl.y, bus2.y, bus3.y} 
set3: {busl. z, bus2 . z, bus3 . z} 
set4: {busl.w, bus2.w, bus3.w} 

5.9.2 Connecting Simple Variables in Expandable Connectors 

All variables/fields in an expandable connector are treated as connector instances even if they are not declared 
as such, i.e., it is possible to connect to, for example, a Real variable such as speed. For example: 

expandable connector EngineBus // EngineBus has predefined signals: speed, T 
import SI=Modelica.Slunits; 
SI.AngularVelocity speed; 
SI.Temperature T; 

end EngineBus; 
block Sensor 

RealOutput speed; 
end Sensor; 
model Engine 

EngineBus bus; 
Sensor sensor; 

equation 
// connection to non-connector speed is possible in expandable connectors 
connect(bus.speed, sensor.speed); 

end Engine; 

5.9.3 Connecting Inputs and Non-Inputs 

If a variable appears as an input in one expandable connector or in a component connected to it, it should 
appear as a non-input in at least one other expandable connector associated with a variable in the same 
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augmentation set. See Section 5.9.1 for augmentation when connecting expandable connectors themselves, 
and Section 5.9.6 when connecting variables in expandable connectors. For example, in the augmentation 
set related to the speed variable, {bus . speed, sensor. speed, actuator. speed}, actuator. speed 
is the input and sensor. speed the non-input. The causality of bus . speed, input or output, is according 
to Section 5.9.6, page 242. 

connector RealOutput = output Real; 
connector RealInput = input Real; 
expandable connector EngineBus // Initially empty expandable connector 
end EngineBus; 
block Sensor 

RealOutput speed; // Non-input since it is an output 
end Sensor; 
block Actuator 

Reallnput speed; // Input 
end Actuator; 
model Engine 

EngineBus bus; 
Sensor sensor; 
Actuator actuator(speed=10); 

equation 
connect (bus . speed, sensor . speed) ; // sensor. speed provides the non-input 
connect (bus . speed, actuator . speed) ; //actuator . speed is the input 

end Engine; 
The Engine model can be simulated , with the not so surprising result that the speed has been 

propagated to the expandable connector bus, giving bus. speed the constant value 10. 

simulate(Engine, stopTime=l) 
plot(bus.speed) 
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Figure 5-48. The sensor and actuator have been connected via the expandable connector bus, and both 
actuator. speed and sensor. speed are connected via that expandable connector which has expanded to 
include speed. 

5.9.4 No Flow Variables Directly in Expandable Connectors 

An expandable connector may not contain a variable declared with the prefix flow, but may contain non-
expandable connectors that contain flow variables. For example, the connectors p4 2 and n4 2 in the 
Battery model are non-expandable connectors that contain flow variables: 
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import Interfaces=Modelica.Electrical.Analog.Interfaces; 
expandable connector ElectricalBus 

Interfaces.PositivePin pl2, nl2; // OK, non-expandable connectors 
flow Modelica.Slunits.Current i; // flow variable not allowed 

end ElectricalBus; 
model Battery 

Interfaces.PositivePin p42, n42; // p42, n42 are non-expandable connectors 
ElectricalBus bus; 

equation 
connect(p42, bus.p42); // Adds new electrical pin p42 to expandable conn 
connect(n42, bus.n42); // Adds another pin n42 to expandable connector 

end Battery; 

5.9.5 Potentially Present Variables and Restrictions 

Variables that are not parameters and are declared in an expandable connector are only potentially present. 
This means that they will not be present in the final compiled model if there are no connections to them. 
For example, if there are no connections to any element of the vector x or to the scalar y in the example 
below, they will not be present in the compiled model used for simulation. The parameters z and v will 
however be present even if there are no connections to them. 

expandable connector C 
Real x [ :]; 
Real y; 
parameter Real z; 
parameter Real v[10] 

end C; 
However, note the following restrictions: 

• It is an error if there are modifiers for potentially present variables or array elements. 
• It is an error if there are expressions referring to potentially present variables or array elements that 

are not actually present, since the expressions can only access variables from the bus that are 
actually declared in the connector, in order that the types of the variables can be determined in the 
local scope. This elaboration implies that expandable connectors can be connected even if they do 
not contain the same variables. 

Note that the introduction of potentially present variables, as described above, is conceptual and does not 
necessarily impact the flattening hierarchy in any way. 

5.9.6 Augmentation when Connecting Declared and Undeclared Variables 

One connector of the two connectors in a connect-equation involving expandable connector(s) must 
reference a declared variable. The (other) undeclared variable is handled as follows. 

• The expandable connector instance is automatically augmented with a new variable having the 
used name and corresponding type. For example, connect (speed,busl. speed) below 
introduces the new variable speed in busl. 

• If the undeclared variable is subscripted, an array variable is created, and a connection to the 
specific array element is performed. For example, connect (speed,bus2. speed[2] ) below 
introduces a speed vector in bus2. 

• If the variable on the other side of the connect-equation is input or output the new variable will 
be either input or output to satisfy the restrictions in Section 5.7.2, page 210. If the existing side 
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of the connect-equation refers to an inside connector (i.e., a connector belonging to the instance in 
which class the connect-equation occurs) the new variable will copy its causality, i.e., input if 
input and output if output, since the expandable connector must always be an outside connector. 
For an array the input/output property can be deduced separately for each array element. 

If a connect-equation references a potentially present variable or variable element in an expandable 
connector, the variable or variable element is marked as being present, and due to the above paragraph it is 
possible to deduce whether the bus variable shall be treated as input or output in the connect-equation. 
For example: 

expandable connector EmptyBus 
end EmptyBus; 
model Controller 

EmptyBus busl; 
EmptyBus bus2; 
Reallnput speed; 

equation 
connect (speed, busl. speed) ; // OK, only one undeclared and it is unsubscripted 
connect (busl .pressure, bus2 .pressure) ; //Not allowed, since both are undeclared 
connect (speed, bus2 . speed [ 2 ] ) ; // introduces speed array (with element speed[2]). 

end Controller; 
After this elaboration, the expandable connectors are treated as normal connector instances, and the 

connections as normal connections. 
All potentially present variables and array elements that are not actually present are undefined. A 

Modelica compiler may remove them or set them to their default value, for example zero for Real 
variables. 

5.9.7 Issues with Modifiers, Inside/Outside, Nesting, and Protected 

Furthermore, it is important to note that the elaboration/expansion rules for expandable connectors must 
consider the following: 

• Expandable connectors which are nested hierarchically. This means that both outside and inside 
connectors must be included at every level of the hierarchy in the elaboration process. 

• When processing an expandable connector that possesses the inner scope qualifier, all outer 
instances must also be taken into account during elaboration. 

• A variable from a protected outside connector may not be an implicitly defined part of an 
expandable connector, see Section 5.7.2, page 210. 

5.9.8 Engine System Example with Nested Buses 

The following is an EngineSystem4 model example with sensors, controllers and actuator as part of the 
ignition system for each cylinder, and a plant (the spark plug) that exchange information via a bus, that is, 
an engine bus created using expandable connectors. 
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engineBus 

Figure 5-49. Engine system with engineBus, speedSensor, tempSensor and four nested cylinder 
buses which connect the cylinders with the engineBus Each cylinder contains a spark plug. 

The following is the engine system model: 

import SI=Modelica.Slunits; 
import Modelica.Blocks.Interfaces.*; 
// Plant Side 
model SparkPlug 

Real sparkAdvance; 

end SparkPlug; 
expandable connector EngineBus 
end EngineBus; 
expandable connector CylinderBus 

Real sparkAdvance; 
end CylinderBus; 
model Cylinder 

CylinderBus cylinderBus; 
SparkPlug sparkPlug; 

equation 
connect(sparkPlug.sparkAdvance, cylinderBus.sparkAdvance); 

end Cylinder; 
model EngineSystem4 

EngineBus engineBus; 
Modelica.Mechanics.Rotational.Sensors.SpeedSensor speedSensor; 
Modelica.Thermal.Sensors.Temperaturesensor tempSensor; 
parameter Integer nCylinder = 4 "Number of cylinders"; 
Cylinder cyl[nCylinder]; 

equation 
connect (speedSensor .w, engineBus . engineSpeed) ;// addengineSpeed (as output) 
connect(tempSensor.T, engineBus . engineTemp) ; II addengineTemp (as output) 
for i in 1: nCylinder loop II add cylinder Bus [i] (a nested bus) 
connect(cyl[i].cylinderBus, engineBus.cylinderBus[i]); 

end for; 
end EngineSystem4; 
Due to the connections in the above model, conceptually a connector consisting of the union of all 

connectors is introduced. Thus, the engineBus contains the following variable declarations: 

RealOutput engineSpeed; 
RealOutput engineTemp; 
CylinderBus cylinderBus[1]; 
CylinderBus cylinderBus[2]; 
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CylinderBus cylinderBus[3]; 
CylinderBus cylinderBus[4]; 

5.10 Stream Connector Concept for Fluid Systems 

Previously, we have introduced two basic variable types in a connector—potential variables and flow 
variables (Section 5.3.1, page 190), with associated Kirchhoffs laws (known under other names in 
nonelectrical domains) how to generate connection equations. This works well for a number of application 
domains (Section 5.5.1, page 204). 

However, for some applications involving bidirectional flows of matter with associated properties the 
standard connector approach gives rise to problematic nonlinear systems of equations with Boolean 
unknowns for the flow directions and singularities around zero flow that so far, despite substantial efforts, 
have proven not possible to solve reliably. An example application in the thermohydraulic domain with 
such properties can be found in Figure 5-50 below. 

As an example of discontinuous change, the temperature at a certain point can change discontinuously 
for a flowing fluid that reverses its flow direction, that is, the flow is changing continuously but it passes 
through zero, at some point in time to the opposite direction in an idealized model. 
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Figure 5-50. A schematic picture (not a connection diagram) of a power plant system consisting of four 
control volumes: pump boiler, turbine, and condenser. Some arrows denote flow of matter, others 
flow of energy. 

5.10.1 Stream Variables and Operators inStream() and actualStreamQ 

To solve the abovementioned problems, the concept of stream connector has been introduced in Modelica. 
It introduces a third kind of variable in connectors, so-called stream variables, in addition to flow and 
potential variables. 

For a discussion of the background to stream connectors and comparison to the classical approach, see 
below (Section 5.10.3, page 247). A comprehensive example in two variants using either classical 
connectors or stream connectors is presented in Section 15.2, page 800. 

The following three language elements are introduced for the stream connector concept: 

• A prefix keyword stream, only used in front of stream variables in stream connector definitions 
(see below). 

• A built-in operator instream (c. v), which when applied to a stream variable c.v in a stream 
connector c, returns its value close to the connection point for c provided that the associated mass 
flow is positive in the direction into the component. 
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• A built-in operator actuaistream (c. v), which when applied to a stream variable c. v returns its 
value close to the connection point for c regardless of the direction of the associated mass flow 
c.m_flow. It is equivalent to the expression if c.m_flow > 0 then inStream (c. v) else 
c. v where c. v belongs to the same connector c as the mass flow variable c.m_f low. 

We define stream connector and stream variable concepts as follows: 

• A stream variable is a variable with the stream prefix declared in a stream connector class. 
• A stream connector is an instance of a stream connector class. Such a class has at least one stream 

variable and exactly one flow variable that must be a scalar, i.e., a variable with the flow prefix. 

The idea is that the stream variables in the connector are associated with the flow variable which usually 
specifies a mass flow. The stream variables are used for additional properties of the flowing mass, e.g., 
enthalpy and chemical composition. The flowing mass is of some kind of medium, e.g., a certain kind of 
gas, fluid, etc., with associated medium properties. An example stream connector class definition is the 
FluidPort class from the Modelica. Fluid package shown below: 

connector FluidPort 
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium; 
Medium.AbsolutePressure p "Pressure in connection point"; 
flow Medium.MassFlowRate m_flow "> 0, if flow into component"; 
stream Medium.SpecificEnthalpy h_outflow "h close to port if m_flow<0"; 
stream Medium.MassFraction X_outf low [Medium. nX] "X close to port if m_flow<0"; 

end FluidPort; 
FluidPort is a stream connector class, because some connector variables have the stream prefix. The 
Medium definition and the stream variables are associated with the only flow variable (m flow) that 
defines a fluid stream. The Medium mass flow and the stream variables (i.e., the properties they represent) 
are transported with this flow variable. 

The stream variables h outflow (specific enthalpy flow) and X outflow (mass fraction flow for 
medium number nX) are the stream properties inside the component close to the component boundary at 
the connection point, assuming that matter flows out of the component into the connection point/volume. 
In other words, it is the value the carried quantity/property would have if the fluid was flowing out of the 
connector, irrespective of the actual flow direction. One can also say that a stream variable describes a 
quantity that is carried by a flow variable, i.e., a mass flow transport phenomenon where the quantities of 
the stream variables are carried by the mass flow. 

As mentioned, the stream properties for the opposite flow direction, that is, into the component, can be 
inquired using the built-in operator inStream (). 

For example, in Figure 5-51, the three stream connectors cl, c2, and c3 are connected via a small 
triangular control volume (Section 5.10.2) where mass flows are mixed. Then the stream property specific 
enthalpy for the connector c2 can be computed by inStream (c2 .h outflow) according to the above 
definition since there is positive mass flow from the control volume into the connector c2. For the 
connectors cl and c2, the values of the specific enthalpy are given by cl.h outflow and 
c2 . hout f low since the mass flows are in the negative direction out of the components. 

Regardless of the flow direction, the value of the stream variable corresponding to the actual flow 
direction can be inquired through the built-in operator actuaistream () , however, see Section 5.10.4.4, 
page 254, for advice regarding its usage. 
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Figure 5-51. Three stream connectors cl, c2, and c3 connected together via an infinitesimally small 
control volume. The flow is out of the components Compl and Comp3, and into the component Comp2. Thus, 
the stream variable value can be obtained by instream (c.2. h outf low) for connector c2, and by 
cl. h_outf low and c2. h_outf low for cl and c2 respectively. 

5.10.2 Control Volumes and Basic Thermodynamics 

Thermodynamics is a part of natural science in which the storage of energy, the transformation of energy 
between different forms, and the transfer of energy (and mass) between subsystems is studied. For more 
details see Section 14.7.1, page 759. One of the primary energy forms dealt with in thermodynamics is 
thermal energy. Mass flows and transformation and transfer of energy are often part of thermodynamic 
models. In thermodynamics we speak about thermodynamic systems, their surroundings, and control 
volumes embedded in systems, as depicted in an abstract way in Figure 5-52 below. 

Figure 5-52. A control volume allows transfer of energy and mass across its boundaries, whereas a closed 
system contains a definite quantity of matter and only allows energy transfer to and from its surroundings. 

Basic laws regarding conservation of mass and energy hold for control volumes, see Section 14.7.5.4, 
page 766. Only energy is allowed to cross the boundaries of a closed system, whereas both mass and 
energy can cross the boundaries of a control volume. 

5.10.3 Classical Fluid Connectors and their Problems 

In Section 15.2.5.1, page 811, we introduce a classical style mass flow connector based on potential and 
flow variables. For this we need a connector class containing the variables that describe interaction at the 
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mass flow inlets and outlets of the control volume. In that same section we also discuss a version of that 
model with stream connectors. 

5.10.3.1 Basic Fluid Connectors 

Not only mass is flowing, the flowing substance also has some energy content represented by its enthalpy. 
Moreover, the pressure influences the interactions of the flowing substance at the inlets and outlets. 
Therefore the following variables need to be included in the interface: 

• Mass flow rate m, represented by the Modelica variable m_f low. 
• Specific enthalpy h, a measure of the energy content per mass unit in the substance, represented by 

the Modelica variable h, see also Section 14.7.5.2, page 764. 
• Pressure P, represented by the Modelica variable P. 
The first attempt at a corresponding connector class for mass flow, called FlowConnector, appears as 

follows, but is unfortunately unbalanced with two acausal potential variables and one flow variable: 

connector FlowConnector "Unbalanced flow connector, illegal!" 
import Modelica.Slunits.*; 
Pressure P; 
SpecificEnthalpy h; 
flow MassFlowRate m_flow; 

end FlowConnector; 
We can make it balanced by splitting it into two connector classes, for inflow and outflow respectively: 

connector FlowConnectorln "connector with incoming flow" 
import Modelica.Slunits.*; 
Pressure P; 
input SpecificEnthalpy h; 
flow MassFlowRate m_flow(min = 0); 

end FlowConnector; 
connector FlowConnectorOut "connector with outgoing flow" 
import Modelica.Slunits.*; 
Pressure P; 
output SpecificEnthalpy h; 
flow MassFlowRate m_flow(max = 0); 

end FlowConnector; 
However, here is a limitation in that you can only have one FlowConnectorOut connector in a 
connection set, that is, one outflow can fan out into several inputs, but several outflows at a connection 
point cannot mix. 

The application model in Section 15.2.6, page 825, is also further prepared for thermal interaction with 
its environment using a connector class from the Modelica. Thermal library. This connector is for purely 
thermal interaction between components without a convective mass flow and is defined as: 

connector HeatPort "Thermal port for 1-dim. heat transfer" 
import Modelica.Slunits; 
Slunits.Temperature T "Port temperature"; 
flow Slunits.HeatFlowRate Q_flow "Heat flow rate (positive if flowing"+ 

"from outside into the component)"; 
end HeatPort; 
Classical connectors such as the FlowConnectorln and FlowConnectorOut can work for models of 

simple systems, which do not allow arbitrary connections, sometimes avoids mass flows as in the above 
HeatPort, and do not involve reverting flows (i.e., changing flow direction). 
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5.10.3.2 Requirements on a General Fluid Library vs. Previous Approaches 

For a long time there has been work in the Modelica community to create a general easy-to-use fluid 
modeling library that fulfills the following conditions: 

• Single definition of one general fluid connector class. 
• Intuitive semantics for hierarchical, device oriented modeling, for example, the outer connectors of 

a functional unit model (e.g., a steam generator) should correspond to physical flanges of the unit. 
• Numerical robustness at zero and reversing flows. 
• Arbitrary connections between multiple fluid connectors should be possible; automatically 

generated connection equations represent idealized flow junctions. 

No fluid library before the introduction of stream connectors fulfills these conditions. First we take a 
look at the ThermoPower library from 2003. It provides rather robust signal-oriented fluid modeling. Its 
connector has the following definition; there is also a corresponding FluidPort_SignalB variant: 

connector FluidPort_SignalA 
import SI = Modelica.Slunits; 
SI.Pressure p; 
flow SI.MassFlowRate m_flow; 
input SI.SpecificEnthalpy hBA; 
output SI.SpecificEnthalpy hAB; 

end FluidPort_SignalA; 
connector FluidPort_SignalB 

import SI = Modelica.Slunits; 
SI.Pressure p; 
flow SI.MassFlowRate m_flow; 
output SI.SpecificEnthalpy hBA; 
input SI.SpecificEnthalpy hAB; 

end FluidPort_SignalA; 
However, the use of signals for physical modeling restricts the connection semantics and complicates the 
device-oriented modeling of fluid systems. Another approach is used in an early version (2003) of the 
Modelica_Fluid library where transported quantities such as specific enthalpy are modeled as potential 
variables, complemented by an enthalpy flow rate variable as in the following connector class: 

connector FluidPort_Potential 
import SI = Modelica.Slunits; 
SI.Pressure p; 
flow SI.MassFlowRate m_flow; 
SI.SpecificEnthalpy h_mix; 
flow SI.EnthalpyFlowRate H_flow; 

end FluidPort_Potential; 
This does not have restrictions of connecting components together as in the signal-oriented approach. 
However, there are problems with the mixing enthalpy h mix in solving the resulting connection 
equations for the control volume, as we shall soon see. 

5.10.3.3 Mixing Enthalpy in Connector Definitions Gives Unstable Solutions 

In order to illustrate the problems with the classical approach with a common mixing enthalpy h mix in 
solving the resulting connection equations for the control volume, we consider a connection set with n 
connectors which can be regarded as a very small mixing control volume for matter entering and exiting 
that volume. An example with three connected components is shown in Figure 5-53 below. The specific 
enthalpy h_mix from the above FluidPort_Potential connector class is the mixing enthalpy for 
arbitrary flow directions in this control volume. 
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Figure 5-53. Example connection set with three connected components and a common mixing enthalpy for 
all flow directions using the classical approach, which in the general case gives rise to numerical problems 
during simulation due to discontinuous residual equations with reversing flows. 

The mass balance equation (5-7) and the energy balance (5-8) follow from the Modelica connection 
semantics for the flow variables m flow ( m f ) and H flow ( / / . ) . The mixing enthalpy hmix can be 
obtained by solving the equation system containing equations (5-7), (5-8), and (5-9). 

° = I *J 
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The energy balance where enthalpy flows are summed to zero: 

Each enthalpy flow is defined depending on the mass flow direction, positive or negative: 
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Here, mass flow rates mi are positive for flow entering models, that is, exiting the connection set for the 
infinitesimally small control volume. Since the flow in that case is from the control volume into the 
component, the mixing enthalpy hmix defined for that control volume is used. 

The other case, m. <0 represents outflow from the component, using the specific enthalpy hmitJ]ow 

that represents the specific enthalpy inside the component close to the connector boundary. 
Expressed with variables used in the balance equations we arrive at 
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While these equations are suitable for device-oriented and signal oriented modeling, the straightforward 
usage of this definition leads to models with discontinuous residual equations, which violates the 
prerequisites of several solvers for nonlinear equation systems. 

This is the reason why the actual mixing enthalpy should not be modeled directly in the model 
equations. The stream connectors provide a suitable alternative. 
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5.10.4 Usage of Stream Connectors 

Stream connectors are used extensively, for example in the Modelica.Fluid library that has been included 
in the Modelica Standard Library starting from version 3.1. In that library, stream connectors are used to 
model the convective transport of energy and substances. Generally, Modelica.Fluid provides interfaces 
and basic components for the device-oriented modeling of one-dimensional thermo-fluid flow in networks 
containing vessels, pipes, fluid machines, valves, and fittings. The medium models are treated separately in 
Modelica.Media. 

Thermo-fluid models are built from model components each representing a control volume. There are 
two basic kinds of such models: 

• Volume models that define the thermodynamic state for a lumped medium, i.e., in a lumped 
medium the medium state is approximated by a single value, thus ignoring its physical distribution. 

• Transport or flow models that serve to connect volume models. 

Such models do not define their own thermodynamic state. Instead they define the transport of fluid for 
thermodynamic states given at their ports. Multiple volume and transport models can be assembled to 
build component models hierarchically. The following examples use the FluidPort connector definition: 

connector FluidPort = Modelica.Fluid.Interfaces.FluidPort; 

connector FluidPort // from MSL 3.2.1 Modelica.Fluid.Interfaces.FluidPort 
"Interface for quasi one-dimensional fluid flow in a piping network 
(incompressible or compress, one or more phases, one or more substances)" 

replaceable package Medium = Modelica.Media.Interfaces.PartialMedium 
"Medium model" 

flow Medium.MassFlowRate m_flow 
"Mass flow rate from the connection point into the component"; 

Medium.AbsolutePressure p "Thermodynamic pressure in the connection point"; 
stream Medium.SpecificEnthalpy h_outflow 

"Specific thermodynamic enthalpy close to the connection point if m_flow<0"; 
stream Medium.MassFraction Xi_outflow[Medium.nXi] 

"Independent mixture mass fractions m_i/m close to the connection point 
if m_flow < 0"; 

stream Medium. Extr'aProperty C_out flow [Medium. nC] 
"Properties c_i/m close to the connection point if m_flow < 0"; 

end FluidPort; 

5.10.4.1 Volume Model with actualStreamO 

A basic example model of an ideally mixed lumped volume is defined below: 

model Volume "Generic Lumped volume, e.g. vessel" 
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium; 
parameter Integer nPorts=0 "Number of ports"; 
Modelica.Fluid.Interfaces.FluidPort[nPorts] ports; 
parameter Modelica.Slunits.Volume 
Modelica.Slunits.Mass 
Modelica.Slunits.Energy 
Medium.BaseProperties 

equation 
// Definition of port variables 
for i in 1:nPorts loop 
ports[i].p = medium.p; 
ports[i].h_outflow = medium.h; 

end for; 
// Mass and energy balance 
m = V*medium.d; 
U = m*medium.u; 

V "Volume of device"; 
m (start=0.01) "Mass in device"; 
U "Inner energy in device"; 
medium; 
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der(m) = sum(ports.m_flow); 
der(U) = ports.m_flow*actualStream(ports.h_outflow); 

end Volume; 

// The generic volume specialized to a constant incompressible 
// liquid water medium 
model WaterVolumeConstant = Volume(nPorts=l, V = le-3, 

Medium = Modelica.Media.Water.ConstantPropertyLiquidWater); 
We try to simulate the model with an incompressible constant water medium: 

simulate(WaterVolumeConstant, endTime=l); 
However, a Modelica compiler typically will give the message: 

"The model is structurally singular ..." 
The reason is that ConstantPropertyLiquidWater. BaseProperties has constant density which 
means that m is constant, thus der (m) is identically zero. Therefore the mass balance equation der (m) = 
sum (ports .m_f low) becomes 0 = 0, which of course is singular. 

If we instead use a compressible medium model, e.g., Modélica .Media. CompressibleLiquids . 
LinearColdWater, as in the model below, simulation works fine. 

// The generic volume specialized to a compressible liquid water medium 
model WaterVolumeCompressible = Volume(nPorts=l, V = 0.001, 

redeclare Medium = Modelica.Media.CompressibleLiquids.LinearColdWater); 
A simulation of WaterVolumeCompressible is shown below: 

simulate(WaterVolumeCompressible,endTime=l); 
plot({medium.p,medium.T}) 
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Figure 5-54. Simulation of WaterVolumeCompressible with plot of pressure medium, p and temperature 
medium.T. 
However, despite the above problems with the WaterVolumeConstant model, the problem is not the 

model itself, nor the ConstantPropertyLiquidWater medium. If this volume is connected to, for 
example, a flow source on one port, a valve on the other port, it would simulate. The problem is that if an 
insulated stand-alone volume is desired a compressible fluid model is needed, otherwise the mass balance 
equation becomes singular. In other words, if the fluid is compressible, then the value of the mass allows 
determining the pressure from the equations, but if it is incompressible, the pressure remains 
undetermined. 

In principle, the volume model can be used with an arbitrary medium model out of Modelica .Media. 
The mass balance and the energy balance sum up the contribution of flows going through nPorts fluid 
ports. 
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Alternatively, the volume model could be defined with only one fluid port as multiple connections can 
be made to it. Then, however, ideal mixing would take place in the port outside the volume. Using unary 
connections to multiple ports ensures that the mixing takes place inside the volume. This is the generally 
intended behavior for multi-way connections to a volume. Nonlinear systems of mixing equations are 
avoided. 

The actuaistreamo operator used to define the energy balance is a shorthand notation for: 

actualStream(port.h_outflow) == 
if port.m_flow > 0 then inStream(port.h_outflow) else port.h_outflow; 

Note that with stream variables the Boolean unknown for the flow direction appears in the energy 
balance, where the flow dependent value of the specific enthalpy is multiplied with the mass flow rate. 
This is why a reversing flow, that is, m_f low crossing zero, does not cause jumping values in the model 
equations. 

5.10.4.2 IsoenthalpicFlow Transport Model with inStreamO 

The flows are defined with transport models. A basic model for isenthalpic flow, that is, with fixed 
enthalpy, is given below: 

model IsoenthalpicFlow "Flow model without storage of mass or energy, 
e.g. a fitting or valve" 

replaceable package Medium = Modelica.Media.Interfaces.PartialMedium; 
FluidPort port_a, port_b: 
Medium.ThermodynamicState state_a "State at port_a if inflowing"; 
Medium.ThermodynamicState state_b "State at port__b if inflowing"; 

equation 
// Medium states for inflowing fluid 
state_a = Medium.setState_phX(port_a.p, inStream(port_a.h_outflow)); 
state_b = Medium.setState_phX(port_b.p, inStream(port_b.h_outflow)); 
// Mass balance 
0 = port_a.m_flow + port_b.m_flow; 
// Isoenthalpic energy balance 
port_a.h_outflow = Medium.SpecificEnthalpy(state_b); 
port_b.h_outflow = Medium.specificEnthalpy(state_a); 
// (Regularized) Momentum balance 
port_a.m_flow = f(port_a.p, port_b.p, Medium.density(state_a), 
Medium.density(state_b)); 

end IsoenthalpicFlow; 
The flow model does not define own thermodynamic states as it has no storage of mass or energy. Instead, 

the mass flow rate is defined for thermodynamic states seen through the ports for the case of inflow. 
These are generally the (transformed) states defined by connected volume models. The flow model 

defines steady-state mass, energy, and momentum balances. The function f gives the relationship between 
pressure drop and mass flow rate. 

The use of the ThermodynamicState records state a and statejo also ensures that appropriate 
equation systems are generated by a Modelica tool for medium models that do not use pressure and 
enthalpy as independent variables, such as gas models often using pressure and temperature instead. 

5.10.4.3 TemperatureSensor Model with inStreamO 

Ideal sensor models are used to pick up fluid properties, such as temperatures. They do not contribute to 
the fluid flow. A basic model for a temperature sensor is given below. 

model TemperatureSensor "Ideal temperature sensor" 
replaceable package Medium = Modelica.Media.Interfaces.PartialMedium; 
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FluidPort port(m_flow(min=0)) "Port with no outflow ever since min=0"; 
Modelica.Blocks.Interfaces.RealOutput T "Upstream temperature"; 

equation 
T = Medium.temperature(Medium.setState_phX(port.p, 

inStream(port.h_outflow)); 
port.m_flow = 0; 
port.h_outflow = Medium.specificEnthalpy(Medium.setState_pTX( 
Medium.reference_p,Medium.reference_T)); 

end TemperatureSensor; 
The mass flow rate in the port is defined to be nonnegative with its min value set to 0. This tells the 

translation tool that the outflow enthalpy defined by the sensor must not be used in any mixing equations, 
as outflow never happens; see also Figure 5-57, page 262, showing an attached sensor. 

5.10.4.4 Operator actualStream—Definition and Usage 

The actualStream (v) operator is provided for convenience, in order to return the actual value of the 
stream variable, depending on the actual flow direction. The only argument of this built-in operator needs 
to be a reference to a stream variable. The operator is vectorizable, in the case of vector arguments. For 
the following definition it is assumed that an (inside or outside) connector c contains a stream variable 
h_outf low which is associated with a flow variable m_f low in the same connector c: 

actualStream(port.h_outflow) = 
if port.m_flow > 0 then inStream(port.h_outflow) else port.h_outflow; 

The actual St ream(v) operator is typically used in two contexts: 

der(U) = c.m_flow*actualStream(c.h_outflow) ; / /Energy balance 

h port = actualStream (port. h) ; / / Monitoring the enthalpy at a port 

In the case of equation (5-11), although the actualStream () operator is discontinuous by construction 
when the flow is zero, the product with the flow variable is not. Therefore, a tool might infer that the expression 
is smooth(0,...) automatically, and decide whether or not to generate an event. If a user wants to avoid events 
entirely, he/she may enclose the right-hand side of (5-11) with the noEvent() operator. 

Equations like (5-12) might be used for monitoring purposes (e.g. plots), in order to inspect what the 
"actual" enthalpy of the fluid flowing through a port is. In this case, the user will probably want to see the 
change due to flow reversal at the exact instant, so an event should be generated. 

If the user does not bother, then he/she should enclose the right-hand side of (5-12) with noEvent(). 
Since the output of actualStream() will be discontinuous, it should not be used by itself to model 
physical behavior, for example, to compute densities used in momentum balances, instead, inStream() 
should be used for that purpose. The operator actuaistream() should be used to model physical behavior 
only when multiplied by the corresponding flow variable, like in the above energy balance equation, 
because this removes the discontinuity. 

5.10.5 Generating Connection Equations for Stream Connectors 

If at least one variable in a connector has the stream prefix, the connector is called stream connector and 
the corresponding variable is called stream variable. The following definitions hold: 

• For every outside connector, Section 5.7.1, page 208, one equation is generated for every variable 
with the stream prefix in order to describe the propagation of the stream variable along a model 
hierarchy. For the exact definition, see Section 5.10.7, page 257. 

• For inside connectors, Section 5.7.1, page 208, variables with the stream prefix do not lead to 
connection equations. 

(5-11) 

(5-12) 
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• Connection equations with stream variables are generated in a model when using the inStream () 
operator, Section 5.10.6, page 255, or the actualStream () operator, see Section 5.10.4.4, page 
254. 

5.10.6 Generation of inStream() Connection Equations for Inside/Outside 

This section describes the generation of connection equations of inStream () for hierarchical 
inside!outside connections involving stream connectors. .The definitions below are only for the 
inside!outside interaction, and are dependent on the equation-based definition of inStream () described in 
Section 5.10.7, page 257. 

As already mentioned, in combination with the stream variables of a connector, the inStream () 
operator is designed to describe the bi-directional transport of specific quantities carried by a flow of 
matter in a way that makes the solution of resulting equations numerically stable. 

The operator inStream (v) is only allowed to be used on stream variables, i.e., variables with the 
stream prefix, and is informally the flow value of the stream variable assuming that the flow is from the 
connection point into the component. This value is computed from the stream connection equations of the 
flow variables and of the stream variables. 

For the following definition of inStream() it is assumed that we have 3 inside connectors m-j.c 
(j = l, 2, 3) which can be generalized to N connectors for the general case, and 2 outside connectors c* 
(k=l,2) which can be generalized to M connectors. These belong to the same connection set and are 
connected together. A stream variable h_outflow is associated with a flow variable m_flow in the 
connector c. 

See also the definition of connection set, Section 5.7.8.1, page 219, as a set of variables connected by 
means of connect-equations, containing either only flow variables or only potential variables. 

connector FluidPort 
flow Real m_flow "Flow of matter; m_flow > 0 if flow into component"; 
stream Real h_outflow "Specific variable in component if m_flow < 0" 

end FluidPort 

model FluidSystem 
FluidComponent ma, m2, m3; 
FluidPort Ci, c2, c3; 

equation 
connect (mi.c, m2.c); 
connect (mx. c, m3.c); 
connect(mi. c, Ci) ; 
connect(m1. c, c2) ; 

end FluidSystem; 

Figure 5-55. Example FluidSystem model with three (N=3) inside connectors mi.c, m2.c, m3.c and two 
(M=2) outside connectors Ci and c2. 
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The connection set represents an infinitesimally small control volume, for which the stream connection 
equations are equivalent to the mass and energy balance equations. 

With these prerequisites, the semantics of the expression inStream (mi. c. h_outf low) is given 
implicitly by defining an additional variable h mix ini, and by adding to the model the conservation 
equations for mass and energy corresponding to the infinitesimally small volume spanning the connection 
set. The connection equation for the flow variables has already been added to the system according to the 
standard connection semantics of flow variables, that is, the sum of all flows into a point are summed to 
zero, as defined in Section 5.7.8.5, page 222. 

Thus, the standard connection equation for flow variables is generated as follows for N inside 
connectors and M outside connectors (Figure 5-55): 

0 = sum (mj. c.m_f low for j in 1:N) + sum (~ck.m_flow for k in 1:M); 
Whenever the inStream () operator is applied to a stream variable of an inside connector, the balance 

equation of the transported property must be added under the assumption of flow going into the connector. 
The implicit definition below of the inStream () operator corresponds to the balance equation of the 

transported quantity at the connection point, where for example the transported quantity can be energy for 
the specific enthalpy stream variables or mass of single chemical components for composition stream 
variables. 

The following is an implicit definition of the inStream () operator applied to the inside connector i: 
0 = sum (mj. c .m_f low* (if mj.c.m_flow > 0 or j==i then h_mix_ini else 

mj.c.h_outflow) for j in 1:N) + 
sum (-ck.m_flow* (if -ck.m_flow > 0 then h_mix_ini else 

inStream(ck.h_outflow) for k in 1:M); 
inStream (m̂ . c. h_out f low) = h_mix_ini; 

Note that the result of the inStream (iru. c. hout f low) operator is different for each port i, because the 
assumption of flow entering the port is different for each port. 

Additional implicit equations need to be generated for the stream variables of outside connectors: 

for q in 1:M loop // Additional implicit connection equations for outside 
0 = sum (mj. c .m_f low* (if mj.c.m_flow > 0 then h_mix_outq else mj. c. h_outf low) 

for j in 1:N) + 
sum (-ck.m_flow * (if -ck.m_flow > 0 or k==q then h_mix_outq else 
inStream(ck.h_outflow) for k in 1:M); 

cq.h_outflow = h_mix_outq; 
end for; 
Neglecting zero flow conditions, the solution of the above-defined implicit stream connection 

equations for inStream values of inside connectors and outflow stream variables of outside connectors is 
the following (for a derivation, see Section 5.10.7, page 257). 

The solution equation is a mixing rule that only weights in flows entering the connection point, i.e., 
negative flows from the point of view of inside connectors and positive flows from the point of view of 
outside connectors, and assumes that the flow is entering the connector to which inStream () is applied. 

inStream (mi. c. h_out flow) : = 
(sum(max(-mj. c.m_flow,0)*mj.c.h_outflow for j in cat(l,l:i-l, i + l:N) 
+ sum (max ( ck.m_flow, 0) *inStream (ck.h_outflow) for k in 1:M))/ 

(sum(max(-mj.c.m_flow,0) for j in cat(l,l:i-l, i+l:N) 
+ sum (max ( ck.m_flow ,0) for k in 1:M)); 

Additional explicit solution equations to be generated for outside connectors q: 
for q in 1:M loop 

cq.h_outflow := 
(sum (max (-mj. c.m_flow, 0) * n\j. c.h_outflow for j in 1:N) 
+ sum (max (ck.m_flow, 0) * inStream (ck. h_out flow) for k 

in cat(1,1:q-1, q+1:M))/(sum(max(-mj. c.m_flow, 0) for j in 1:N) 
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+ sum(max( ck.m_flow ,0) for k in cat(l,l:q-l, q+l:M))); 
end for; 

Note that inStream (ck. h_out f low) is computed from the connection set that is present one hierarchical 
level above. At this higher level ck. h_outf low is no longer an outside connector, but an inside connector 
and then the formula from above for inside connectors can be used to compute it 

If the argument of inStream () is an array, the implicit equation system holds element-wise, i.e., 
inStream () is vectorizable. 

Note that the stream connection equations have singularities and/or multiple solutions if one or more of 
the flow variables become zero. See Section 5.10.7, page 257 below, regarding how equations are handled 
in that case. 

5.10.7 Definition of inStream() Using Basic Equations 

Here we describe in detail how the uses of inStream ()can be defined in terms of generated "normal" 
basic equations, in the context of a general connection, see Figure 5-55, with N inside and M outside 
connectors. This section can be skipped by the reader who is mainly interested in application modeling. 
The mathematical derivation for the general case is presented further below in Section 5.10.8, page 259, 
and in Section 5.10.9, page 261, for some special cases. 

Remember that the solution equation for inStream () below is a mixing rule that only weights in 
flows entering the connection point, i.e., negative flows from the point of view of inside connectors and 
positive flows from the point of view of outside connectors, and assumes that the flow is entering the 
connector to which inStream () is applied. 

The stream connection equations have singularities and/or multiple solutions if one or more of the flow 
variables become zero. When all the flows are zero, a singularity is always present, so it is necessary to 
approximate the solution in an open neighborhood of that point. For example assume that m3. c.m_flow = 
ck.m_flow = 0, then all equations above are identically fulfilled and inStream () can have any value. It 
is required that the inStream () operator is appropriately approximated in that case and the 
approximation must fulfill the following requirements: 

• inStream (mi. c. h_outflow) and inStream(ck.h_outflow) must be unique with respect to 
all values of the flow and stream variables in the connection set, and must have a continuous 
dependency on them. 

• Every solution of the implicit equation system above must fulfill the equation system up to the 
usual numerical accuracy, provided the absolute value of every flow variable in the connection set 
is greater as a small value ( |mi.c.m_flow| > eps and |m2 .c.m_flow| > eps and ... 
and |cM.m_flow| > eps ). 

Based on the above requirements, the following definition of inStream () is recommended: 

Case where N = 1, M = 0: 

inStream(mx. c . h_out flow) = mi. c. h_outflow; 
Case where N = 2, M = 0: 

inStreamiiri!. c . h_outf low) = m2. c. h_outflow; 
inStream(m2. c. h_outflow) = m2. c. h_outflow; 

Case where N = 1, M = 1: 

inStream (m!.c.h_out flow) = inStream ( . h_out flow) ; 
Additional equation to be generated for this case: 

cx.h_outflow = mx.c.h_outflow; 
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All other cases: 

if rrij. c.m__flow.min >= 0 for all j = 1:N with j <> i and 
ck.m_flow.max <= 0 for all k = 1:M 

then 
inStream(irii. c . h_out flow) = n^ . c. h_outf low; 

else 
Si = sum(max(-mj.c.m_flow,0) for j in cat(l,l:i-l, i+l:N) + 

sum(max( ck.m_flow ,0) for k in 1:M); 
inStream (mi. c. h_outflow) = 
(sum (posit iveMax (-mj. c.m_flow/ sx) *mj. c. h_outf low) + 
sum (positiveMax (ck.m_flow,s±) *inStream(ck. h_outflow)))/ 
(sum(positiveMax(-mj.c.m_flow#sx) ) + 
sum(positiveMax(ck.m_flow/Si) ) ) 

for j in 1:N and i <> j and m-,. c.m_f low.min < 0, 
for k in 1:M and ck.m_flow.max > 0 

Additional equations to be generated for all other cases: 

for q in 1:M loop 
if mj.c.m_flow.min >= 0 for all j = 1:N and 

ck.m_flow.max <= 0 for all k = 1:M and k <> q 
then 

Cq.h out flow = 0; 
else 

sq ss (sum (max (-rrij. c.m_flow, 0) for j in 1:N) + 
sum(max( ck.m_flow ,0) for k in cat(l,l:q-l, q+l:M))); 

Cq. h out flow = (sum (positiveMax (-mj. c .m_f low, sq) * mj. c. h_outf low) + 
sum (positiveMax (ck .m_f low, sq) * inStream(ck.h_outflow) ) ) / 

(sum (positiveMax (-mj. c. .m_flow, sq) ) + 
sum (positiveMax (ck.m__flow, sq) ) ) 

for j in 1:N and mj. c .m_flow.min < 0, 
for k in 1:M and k <> q and ck.m__flow.max > 0 

end for; 
The operator positiveMax (-mj. c.m flow, s±) should be defined such that: 

• positiveMax(-mj. c.m_flow, Si) =-mj. c_m_flow if -mj. c .m_flow>epslj>=0, where 
epslj are small flows, compared to typical problem-specific values. 

• All denominators should be > eps2 > 0, where eps2 is also a small flow, compared to typical 
problem-specific values. 

The following trivial definition of positiveMax guarantees the continuity of inStream (): 
positiveMax (-mj .c.m_flow, ŝ ) = max (-mj. c.m_f low, epsl); // so Si is not needed 

A more sophisticated definition is given below, with a smooth approximation that is applied only when 
all flows are small: 

Define a "small number" eps where nominal(v) is the nominal value of v: 

eps := relativeTolerance*min (nominal (mj. c.m_f low) ) ; 
Define a smooth curve, such that alpha (s±>=eps) -1 and alpha (si<=0) =0 

alpha := smooth(1, if Si > eps then 1 else 
if Si > 0 then (si/eps)A2*(3-2* ( s ± / e p s )) else 0); 

Define the function positiveMax (v, Si) as a linear combination of max (v, 0) and of eps along alpha 
positiveMax((-mj.c.m_flow, Si) := alpha*max(-mj.c.m_flow,0) + (1-alpha)*eps; 
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Note that in the cases N = 1, M =0 (unconnected port, physically corresponding to a plugged-up flange), 
and N = 2, M=0 (one-to-one connection), the result of inStream () is trivial and no non-linear equations 
are left in the model, despite the fact that the original definition equations are nonlinear. 

The following properties hold for this definition: 

• inStream(...) is continuous and differentiate, provided that mj.c.h_outflow, m-j. c.mflow, 
ck.h_outflow, and ck.m_flow are continuous and differentiate. 

• A division by zero can no longer occur (since sum(positiveMax (-mD .c.m_flow, s±) ) >=eps2 
> 0), so the result is always well-defined. 

• The balance equations are exactly fulfilled if the denominator is not close to zero 
(since the exact formula is used, if sum (positiveMax (-mj. c.m_f low, si) ) > eps). 

• If all flows are zero, inStream (mi. c . h_out flow) = sum (rrij. c . h_outf low for joi and 
mj. c .m_flow.min < 0)/Np, that is, it is the mean value of all the Np variables 
mj •c• h_outflow, such that joi and mj.c.m_flow.min < 0. This is a meaningful 
approximation, considering the physical diffusion effects that are relevant at small flow rates in a 
small connection volume (thermal conduction for enthalpy, mass diffusion for mass fractions). 

The value of relativeTolerance should be larger than the relative tolerance of the nonlinear solver 
used to solve the implicit algebraic equations. 

As a final remark, further symbolic simplifications could be carried out by taking into account 
equations that affect the flows in the connection set (i.e., equivalent to mj .c.m flow = 0, which then 
implies mj. c .m_f low.min >= 0). This is interesting, e.g., in the case of a valve when the stem position is 
set to closed by its controller. 

5.10.8 Mathematical Derivation of Stream Equations and inStream() 

This section contains a derivation of the equations for stream connectors shown in Section 5.10.5, page 
254. It could be skipped by the reader not interested in this mathematical background. 

For simplicity, the derivation of the instream() operator is shown at hand for 3 model components 
that are connected together. The case for N connections follows correspondingly. 

By using the energy (5-8) and mass (5-7) balance equations in Section 5.10.3.3, page 249, and 
substituting (5-9) into (5-8), we arrive at the following two balance equations for the connection set for 
three connected components according to Figure 5-56: 

0 = m{+m2+m3
 (>14' 

The balance equations can also be expressed using the max() operator in place of the piecewise 
expressions, taking care of the different flow directions: 

(5-13) 

n . í Kix i f 

0 = m, •<! 
{KutflOW.i if ^ < o 

. { Kix Íf ™2>0 

+ m2 •< 
[Ktflo.,2 lf — 

+ m J kmix Íf 
\houtfloW,3 Íf 
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0 = max(m,,0)hmjx -max(-m],0)houi/lowl 

+ max(rn2,0)hmix-max(-m2,0)houtMow2 (5_15) 

+ max(m3,0)/?m(V - max(-m3,0)houtf]r)W-, 

0 = max(w1,0)-max(-w1,0) 

+ max(w2,0)-max(-m2,0) (5-16) 

+ max(w3,0) - max(-w3,0) 

Equation (5-15) is solved for hmjx 

ma x(-w, ,0)houtJlowX + max(-m2,0)houtflow2 + max(-m3,0)/^,„ , 

max(/^ ,0) + max(/w2,0) + max(w3,0) (5-17) 

Using (5-16), the denominator can be changed to: 

h _ + max(-m2,0)hourflow2 + max(-m„0)hou[Jlow3 (5_]8) 

max (-mx, 0) + max (-m2, 0) + max (-w3,0 ) 

Above, it was shown that an equation of this type does not yield properly formulated model equations. 
In the streams concept we therefore decide to split the energy balance, which consists of different 
branches depending on the mass flow direction. 

Note that the energy balance is split for every single connector, assuming the flow is entering in that 
specific connector, according to the semantics of the inStream( ) operator. This is the basic mechanism 
to avoid discontinuities and undeterminacy at zero or reversing flows 

Consequently, separate energy balances are the result; each valid for specific flow directions, for each 
connector. 

In a model the governing equations have to establish the specific enthalpy houtfIow , of fluid leaving the 
model based on the specific enthalpy of fluid flowing into it. Whenever the mixing enthalpy is used in a 
model it is therefore the mixing enthalpy under the assumption of fluid flowing into said model. 

We establish this quantity by defining a dedicated operator inStream(houtjjow ,) = hmix(mi >0 ) . This 
leads to three different incarnations of hmix (n incarnations in the general case). This is illustrated in 
Figure 5-56 below. For the present example of three components in a connection set, this means the 
following: 

• \ max (~m2,0) houtJlowl +mzx(-m3,0) houtf1ow3 
inStream[houiJiowA ) = / , , 

/ « ^ ( / ^ . Q ^ ^ ' 0 ^ ^ ^ ^ ' 0 } ^ (5-19) 
v ' max( -m 1 , 0 ) + max( -m 3 , 0 ) 

inStreamlh \ m a x H ^ °) Kutflow. i + max (-m2,0) houtJlow2 
\ outflow J, ) ^ Q^ + m a x ^ 
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Figure 5-56. Example connection set with three connected components, where inflow into one port is 
computed via instream() from the quantities and outflows from the other two connected ports, shown for 
port 1 at Comp I and port 3 at Comp 3. 

In the general case of a connection set with n components, similar considerations lead to the following. 

inStream{houlj]uw,,) = J ^ t L (5-20) 
X m a x ( - m / ? o ) 

7=1 »•./*< 

5.10.9 Derivation of Special Cases of the inStreamQ Definition 

The following are common special cases where the definition of inStream() can be simplified. This 
mathematical derivation can be skipped by the reader primarily interested in the modeling aspects. 

5.10.9.1 Stream Connector is NOT Connected 

In this case, N=l, only one connector, i.e., unconnected. For this case, the return value of the inStream() 
operator is arbitrary. Therefore, it is set to the outflow value. 

5.10.9.2 Connection of Two Stream Connectors, One-to-one Connections 

In this case N=2, two connected connectors. 

• c, (u \ max ( - m 2 , 0 ) Kutjiow,! , 
inStream(houtfIowA) = max(_^z Q) = hou^i 

(5-21) 

l i - f M ) 

. ( u \ max (~mx, 0 ) houli]owX 
inStream{hou(flowl ) = = houtJlowl 

\ ^ / A tf / 
\ ^WÊm \w>*y yÊÊÊm- / 

y inStream( 
/ h_outfbw ) 

I r" m_flow 
h_outflow 

( Comp 3 ) 
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In this case, inStream() is continuous (contrary to hmix) and does not depend on flow rates. The latter 
result means that this transformation may remove nonlinear systems of equations, which requires that 
either simplifications of the form "a*b/a = b" must be provided, or that this case is treated directly. 

5.10.9.3 Connection of Three Stream Connectors where One Mass Flow Rate is Zero 

In this case, N=3 and m3 = 0 if we select the third mass to have zero mass flow rate. This case occurs 
when a one-port sensor (like a temperature sensor) is connected to two connected components. For the 
sensor, the min attribute of the mass flow rate fn^ has to be set to zero since no fluid is exiting or entering 
the component via this connector. The suggested modeling results in the following equations, assuming 
n\ - -rii2 since m^ - 0: 

/ ; \ max (~m2,0)houljlow2 + max (~m3,0) houti]ow3 
inStreamih tf] Y1 = ( , , . , . = houtflnw2 

/ , \ max (-W,, 0) holilJ]owl + max ( -m 3 , 0 ) h(mlflow3 
inStreamyhmtflOW 2) = m a x ( _ < 0 ) + m a x ( - ^ , 0 ) = ^ ^ 

/ , \ max (-W!, 0) houtJlowA + max (~m2,0)hou 

mStreamyhoutjjow 3J = m a x , 0 ) + max ( - m 2 , 0 ) 

KuijloW,l i f 

KutflovA if 

A - l_a l_b- 2_a 2_b-b 

Figure 5-57. Example series connection of multiple models with stream connectors. 

For the two components with finite mass flow rates (not the sensor), the properties discussed for two 
connected components still hold. The connection set equations reflect that the sensor does not have any 
influence by discarding the flow rate of the latter. In several cases a non-linear equation system is removed 
by this transformation. However, inStream () results in a discontinuous equation for the sensor, which is 
consistent with modeling the convective phenomena only. The discontinuous equation is not critical if the 
sensor variable is not used in a feedback loop with direct feed through, since the discontinuous equation is 
then not part of an algebraic loop. Otherwise, it is advisable to regularize or filter the sensor signal. 

5.10.9.4 Connection of Three Stream Connectors where Two Mass Flow Rates are Positive 

This is an ideal splitting junction for unidirectional flow. If unidirectional flow is present and an ideal 
splitter is modeled, the required flow direction should be defined in the connector instance with the "min" 
attribute (the "max" attribute could also be defined, however it does not lead to simplifications): 

o ft $ Sensor 

N E «•= 

m si 
£ to 0) 

Volume A F l o w l c Flow 1 Volume B 

f ^ inStream(hl a) 7 — i n S t r e a m ( h 2 a) - „ , 

hl_a ^ ^ 
inStream(hl_b) inStream(hl_b) ^ J J J P 

Connection Connection Connection 
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model m2 
Fluidport c(m_flow(min=0)); 

end m2; 

Consider the case of m x < 0 and all other mass flow rates positive (with the min attribute set 
accordingly). Connecting ml. c with m2 . c and m3. c, such that 

m2.c.m_flow.min = 0; // Note that max(-m2.c.m_flow,0) = 0 
m3.c.m_flow.min = 0; // Note that max(-m3.c.m_flow,0) = 0 

results in the following equation: 

inStreamih m a x ( - ^ ° ) W 2 + m a x ( - m 3 , 0 ) ^ , 3 0 
m S t r e a m y h ^ ) m a x ( _ ^ > 0 ) + max( -m 3 , 0 ) 0 

Thus, the inStream () operator cannot be evaluated for a connector on which the mass flow rate has to be 
negative by definition. The reason is that the value is arbitrary, which is why it is instead defined as (5-24) 
below: 

inStream (houiflow]) := houlflowA (5-24) 

For the remaining connectors the inStream () operator reduces to a simple result. 

( v max (~mx, 0) houlJ]ow, + max , 0) hout/Iow3 
m S * * a m ( ^ ) = m a x ( _ / , i , 0 ) + m a x ( ^ 3 , 0 ) 

/ \ / \ ( 5 _ 2 5 ) 

( V max (~m{ ,0)houtflmi,A + max (-m2,0) houtfJowl 
mStrearn{h0UlJl^ ) = m a x ( ^ i , 0 ) + m a x ( ^ 2 , 0 ) ~ 

Again, the previous non-linear algebraic system of equations is removed. This means that utilizing the 
information about unidirectional flow is very important. 

To summarize, if all mass flow rates are zero, the balance equations (5-13) and (5-14) for stream 
variables and for flows (5-15), (5-16) are identically fulfilled. In such a case, any value of h mix fulfills 
(5-13), (5-14), that is, a unique mathematical solution does not exist. This specification only requires that a 
solution fulfills the balance equations. Additionally, a recommendation is given to compute all unknowns 
in a unique way, by providing an explicit formula for the inStream () operator. 

Due to the definition, that only flows where the corresponding min attribute is neither zero nor positive 
enter this formula, a meaningful physical result is always obtained, even in the case of zero mass flow rate. 
As a side effect, non-linear equation systems are automatically removed in special cases, like sensors or 
unidirectional flow, without any symbolic transformations (no equation must be analyzed; only the "min"-
attributes of the corresponding flow variables). 

5.11 Overconstrained Connection Graphs 

Depending on the formulation of connector classes, certain connection graphs that represent fairly 
common physical systems may give rise to overdetermined equation systems, i.e., systems with more 
equations than variables. One example is multibody system models with so-called kinematic loops, see 
Section 15.10.8, page 894. 
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For this reason, Modelica includes equation operators for overconstrained connection-based equation 
systems (Section 8.5, page 374), which can be used to state information that allows a Modelica 
environment to deduce which equations resulting from an overconstrained connection graph are 
superfluous and should be removed. 

5.12 Summary 

In this chapter we presented how the basic object oriented mathematical modeling concept in Modelica is 
enhanced with mechanisms for defining, using, and connecting components, thereby promoting even more 
reuse than is possible by just inheritance. 

We started with a general overview of software component models, followed by a presentation of 
components, connectors and connector classes, as well as connections defined using an equation based 
semantics. Then we gave examples of both electrical and mechanical components and connectors to show 
the ability of Modelica to handle multiple application domains. 

We gave a short presentation of design guidelines for connector classes together with some physical 
quantities used when defining connector classes in a some common physical domains. We also discussed 
connecting components from different domains, hierarchical connections, and the generation of equations 
from the connect construct. 

We presented connection semantics in detail, e.g. including hierarchical connections, and how to define 
implicit connection structures for force fields such as gravitational fields with the inner outer constructs. 

Finally we concluded by a presentation of expandable connectors for information buses and a detailed 
presentation of stream connectors for fluid systems. 

5.13 Literature 

The book on invasive software composition (Assmann 2002) gives a comprehensive overview of many 
aspects of software components, composition, and component systems. The component software book 
(Szyperski 1997) discusses software component technology, but mostly conventional component systems 
like CORBA, COM, and Java Beans. 

The main Modelica related reference documents are the Modelica language specification (Modelica 
Association 2003), (Modelica Association 2013) and tutorial (Modelica Association 2003) concerning 
language properties and several examples, e.g. including the circuit board example in Section 5.8.2 and the 
gravitational field examples in Section 5.8.3. Tables comparing energy flow and potential quantities for 
different application domains can for example be found in (Cellier 1991; Ljung and Glad 1994; Otter 
1999). Francesco Casella gave important feedback which led to revision of Section 5.4. Dirk Zimmer 
contributed most of the contents of Section 5.4.5. 

Expandable connectors were initially proposed by Michael Tiller, developed by several people and 
described in (Modelica Association 2003) and (Modelica Association 2010) from which most of the text in 
Section 5.9 has been cited and adapted. Applications of expandable connectors are described e.g. in 
(Batteh and Tiller 2009). 

Stream connectors were proposed, designed, and implemented as described in (Franke, Casella, Otter, 
Sielemann, Elmqvist, and Olsson 2009). The design conditions for a general Fluid library in Section 
5.10.3.2 as well as the three example models in Section 5.10.4 and some associated text have been cited 
from that paper. A detailed review and analysis of this and earlier thermo-fluid connectors appears in 
(Sielemann 2012). Stream connectors have been used for improvement and standardization of the 
Modelica.Fluid library as described in (Franke, Casella, Sielemann, Proelss, Otter, and Wetter 2009), 
which is a collective effort where 17 persons have contributed over 6 years, 2003-2009. Most of the text in 
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Section 5.10 has been cited from (Modelica Association 2013) and slightly adapted, with some more 
explanations added. 

Regarding earlier approaches, the ThermoPower library is described in (Casella and Leva 2003) and in 
more detail especially the connector design (Casella and Leva 2006), whereas early versions of libraries 
such as Modelica_Fluid and Modelica_Media are presented in (Elmqvist, Tummescheit, and Otter 2003), 
and more developed versions of Modelica Fluid and Media Libraries are described in (Casella, Otter, 
Proelss, Richter, and Tummescheit 2006). 

5.14 Exercise 

Exercise 5-1: 

Question: How can connections between components be established in Modelica? What are requirements 
for connections? How many connectors can you connect? 

Exercise 5-2: 

For the model below: 
• Name the inside and outside connectors for M. 
• Question. What connection equations are generated when components CI, C2, and C3 are 

connected? 

connector RealInput = input RealSignal; 
connector RealOutput = output RealSignal; 

model C 
RealInput u; 
RealOutput y; 

end C; 

model M 
RealInput u; 
RealOutput y; 
C CI, C2, C3; 

equation 
connect(CI.y, C3.u); 
connect(CI.y, C2.u); 

end M; 

model System 
M Ml; // Instance Ml of M 
C C4, C5, C6; 

equation 
connect(C4.y, Ml.Cl.u); 
connect(Ml.C2.y, C6.u); 
connect(Ml.C3.y, C5.u); 

end System; 

Exercise 5-3: 

Inner/outer 
• By relying on the inner/outer mechanism, define a class NResistors, which contains n Resistors 

connected in parallel. 
• Create two instances of the class with 5 and 6 resistors in parallel, respectively, without having to 

modify the connections. 
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Exercise 5-4: 

Expandable connectors. 
• What are expandable connectors? 
• What are they used for? 
• Can expandable connectors contain flow variables? 



Chapter 6 

Literals, Operators, and Expressions 

This chapter describes several of the basic building blocks of Modelica such as characters and lexical 
units, including identifiers, literals, and operators. Without question, the smallest building blocks in 
Modelica are single characters belonging to a character set. Characters are combined to form lexical units, 
also called tokens. These tokens are detected by the lexical analysis part of the Modelica translator. 
Examples of tokens are literal constants, identifiers, and operators. Comments are not really lexical units 
since they are eventually discarded. On the other hand, comments are detected by the lexical analyzer 
before being thrown away. 

The lexical units are combined to form even larger building blocks such as expressions according to the 
rules given by the expression part of the Modelica grammar. Expressions may occur in many places in 
Modelica classes, for example, in the equation part or in the declaration part. 

The rest of this chapter describes the evaluation rules for expressions, type conversions, the concept of 
expression variability, built-in mathematical operators and functions, and, finally, the set of built-in special 
Modelica operators with function syntax. 

Additional information regarding certain kinds of expressions is available in some other chapters. 
Array expressions are described in more detail in Chapter 7. A thorough description of the meaning of 
names and name lookup is available in Chapter 3. 

6.1 Character Set 

The character set of the Modelica language is Unicode, but restricted to the Unicode characters 
corresponding to 7-bit ASCII characters in several places, such as keywords and identifiers; for details see 
Appendix B. 

Modelica files are UTF-8 encoded (see the Unicode Consortium; http://www.unicode.org), and 
can start with the UTF-8 encoded byte order mark (Oxef Oxbb Oxbf) to indicate that it may contain UTF-8 
characters; this is treated as white-space in the Modelica grammar which defined in Appendix B. 

6.2 Comments 

There are two kinds of comments in Modelica that are not lexical units in the language and therefore are 
treated as white-space by a Modelica translator. The white-space characters are space, tabulator, and the 
line separators carriage-return and line-feed. 

267 



268 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

White-space cannot occur inside tokens such as operators, identifiers and numbers; for example, a <= 
must be written as two characters without space or comments between them. The comment syntax is 
identical to that of Java and C++. The following comment variants are available: 

// comment Characters from / / t o the end of the line are ignored. 
/* comment */ Characters between /* and */ are ignored, including line terminators. 

Modelica comments do not nest, that is, / * * / cannot be embedded within / * * /. The following is invalid. 

/* Commented out - erroneous comment, invalid nesting of comments! 
/* This is a interesting model */ 
model interesting 

end interesting; 
* / 

There is also a kind of "documentation comment," really a documentation string, that is part of the 
Modelica language and therefore not ignored by the Modelica translator. Such "comments" may occur at 
the ends of declarations or at the beginnings of class definitions. For example: 

model TempResistor "Temperature dependent resistor" 

parameter Real R "Resistance for reference temp."; 

end TempResistor; 
There is also a Documentation annotation (Section 11.911.8.2, page 545), which is often used for 

more detailed documentation of models. 

6.3 Identifiers, Names, and Keywords 

Identifiers are sequences of letters, digits, and other characters such as underscore, which are used for 
naming various items in the language. Certain combinations of letters are keywords represented as 
reserved words in the Modelica grammar and are therefore not available as identifiers. 

6.3.1 Identifiers 

Modelica identifiers, used for naming classes, variables, constants, and other items, are of two forms. The 
first form always start with a letter or underscore (_), followed by any number of letters, digits, or 
underscores. Case is significant, that is, the names inductor and inductor are different. 

The second form (Q-1 DENT) starts with a single quote, followed by a sequence of any characters, where 
a possible single quote must be preceeded by a backslash, and terminated by a single quote, for example, 
' 12H', ' 13\' H', ' +foo1. The single quotes are part of the identifier, i.e., 'z' and z are distinct identifiers. 

The following BNF-like rules define Modelica identifiers, where curly brackets {} indicate repetition 
zero or more times, and a vertical bar | indicates alternatives. A full BNF definition of the Modelica syntax 
and lexical units is available in Appendix B. 

IDENT - NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT 
Q-IDENT = ""' { Q-CHAR | S-ESCAPE } 
NONDIGIT = "_" | letters "a" to "z" | letters "A" to "Z" 
DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 
Q-CHAR = NONDIGIT | DIGIT | "!" | "#" | "$" | "%" | "&" | "(" | ")" | "*" | 

"+" I I I I " / " I I I "<" I ">" I I "?" I 
I " [ " I " ] " I I "{" I "}" I " I " I I " " 

S-ESCAPE = "V" | "\"" | "\?" | "\\" | 
"\a" | "\b" | "\f" | "\n" | "\r" | "\t" | "\v" 
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6.3.2 Names 

A name is an identifier with a certain interpretation or meaning. For example, a name may denote an 
Integer variable, a Real variable, a function, a type, and so on. A name may have different meanings in 
different parts of the code, that is, different scopes. The interpretation of identifiers as names is described 
in more detail in Chapter 3, page 81. Package names are described in more detail in Chapter 10. 

6.3.3 Built-in Predefined Variable time 

All declared variables are functions of the independent variable time. This is a built-in predefined variable 
that can be referenced in the specialized classes model, class, and block. The variable time is from the 
Modelica language point of view treated as an input variable. It is implicitly defined as: 

input Real time (final quantity = "Time", final unit = "s"); 
The value of the start attribute of time is initially set to the time instant at which the simulation is 
started. The variable time can be used to trigger events a specific time points after the start of simulation. 
In the example below an event is triggered at time 0.5 seconds of simulated time. 

The TimeEventTest example model has a variable x with an initial value of 1.0. At the time point 
0.5s, the when-equation (Section 8.3.5, page 357, and Section 13.2.6, page 613) is triggered and the 
equation x = 2.0 becomes active. Note that the event happens at the time point 0.5s, not after 0.5s of 
simulation (unless the simulation started at 0s). 

model TimeEventTest 
Real x(start = 1.0, fixed = true); 

equation 
when time >= 0.5 then 

x - 2.0; 
end when; 

end TimeEventTest; 
We simulate and plot: 

simulate(TimeEventText, startTime = 0.2, stopTime = 0.6); 
plot({x, time}) 

1.5 

Figure 6-1. The variable x gets the value 2.0 when time reaches the value 0.5 causing the when-equation to 
be triggered which makes the variable x get the value 2.0. 

The variable time is not available in functions since Modelica functions are mathematical functions, 
that is, the same input should always give the same output. This means that time is not allowed to be 

1 

time 

O 1 . . . . t . . . . J . • t .'»'..[ r . » . j 
0,2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 
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accessed inside a function, but can still be passed as a function argument as in the call to mySinNoTime in 
the model SinTest below: 

function mySinNoTime 
input Real x; 
output Real y; 

algorithm 
y := sin(x*10); // sin(time) would be an error here, 

end mySinNoTime; 

model SinTest 
Real z = mySinNoTime(time); 

end SinTest; 
We simulate and plot: 

simulate(SinTest, stopTime=2); 
plot(z) 

-n A A I i \ / \ / \ i 
-0.5 - \ \ \ / 

- J . . . s / . , . , V ,. 
0 0.5 1 15 2 

Figure 6-2. The built-in variable time cannot be referenced directly within a function but can be passed as 
an argument to a function as in the model SinTest. 

6.3.4 Modelica Keywords 

The following Modelica keywords are reserved words and may not be used as identifiers: 

algorithm each final model record 
and else flow not redeclare 
annotation elseif for operator replaceable 
block elsewhen function or return 
break encapsulated if outer stream 
class end import output then 
connect enumeration impure package true 
connector equation in parameter type 
constant expandable initial partial when 
constrainedby extends inner protected while 
der external input public within 
discrete false loop pure 
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6.4 Predefined Types 

The predefined built-in types of Modelica are Real, Integer, Boolean, String, and enumeration, 
which are presented in more detail in Section 3.9 of Chapter 3, page 93. These types have some of the 
properties of a class—can be inherited, modified, and so on—but, on the other hand, have a number of 
restrictions and somewhat different properties compared to normal classes. 

Redeclaration of any of these predefined types is an error, and the type names are reserved such that it 
is illegal to declare something using these names. 

At type checking, variables of these types are treated similarly to variables with nonclass scalar types in 
other programming languages. Only the value attribute can be changed at run-time, and is accessed 
through the variable name itself, and not through dot notation; for example, use x and not x. value to 
access the value of the variable x. The machine representations of the values of these predefined types 
typically have the following properties: 

Real I EC 60559:1989 (ANSI/IEEE 754-1985) double format, at least 64-bit precision, 
integer typically two's-complement 32-bit integer. 
Boolean true or false. 
String string of Unicode characters, UTF-8 encoded, 
enumeration Enumeration values represented internally as integers. 

Note that for argument passing of values when calling external functions in C from Modelica, Real 
corresponds to double and integer corresponds to int. 

6.5 Literal Constants 

Literal constants are unnamed constants that have different forms depending on their type. Each of the 
predefined types in Modelica has a way of expressing unnamed constants of the corresponding type, which 
is presented in the ensuing subsections. Additionally, array constant values and record constant values can 
be expressed. 

6.5.1 Floating Point Numbers 

A floating point number is expressed as a decimal number in the form of an optional sign (+ or - ) , a 
sequence of decimal digits optionally followed by a decimal point and one or more digits, optionally 
followed by an exponent. At least one digit must be present. The exponent is indicated by an E or e, 
followed by an optional sign (+ or - ) and one or more decimal digits. The range is that of IEEE double 
precision floating point numbers, for which the largest representable positive number is 
1.7976931348623157E+308 and the smallest positive number is 2.2250738585072014E-308. For 
example, the following are floating point number literal constants: 

22.5, 3.141592653589793, 1.2E-35, -56.08 

The same floating point number can be represented by different literals. For example, all of the 

following literals denote the same number: 

13.0, 13E0, 1.3el, 0.13E2 
The following numbers are illegal: 

13., .13E2 
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6.5.2 Integers 

Literals of type integer are sequences of decimal digits, for example, as in the integer numbers 33, 0, 
10 0, and 30030044, or negative numbers such as -998. The range depends on the C compiler 
implementation of integers (Modelica compiles to C), but typically is from -2,147,483,648 to 
+2,147,483,647 for a two's-complement 32-bit integer implementation. 

6.5.3 Booleans 

The two Boolean literal values are true and false. 

6.5.4 Strings 

String literals appear between double quotes as in "between". Any character in the Modelica language 
character set apart from double quote (") and backslash (\), but including nonprintable characters like 
new-line, backspace, null, etc., can be directly included in a string without using an escape code. Certain 
characters in string literals are represented using escape codes, i.e., the character is preceded by a 
backslash ( \ ) within the string. Those characters are: 

\ ' single quote—may also appear without backslash in string constants. 
\ " double quote 
\ ? question mark—may also appear without backslash in string constants. 
\ \ backslash itself 
\a alert (bell, code 7, ctrl-G) 
\b backspace (code 8, ctrl-H) 
\ f form feed (code 12, ctrl-L) 
\n new-line (code 10, Ctrl-J) 
\r return (code 13, ctrl-M) 
\t horizontal tab (code 9, ctrl-1) 
\ v vertical tab (code 11, ctrl-K) 

For example, a string literal containing a tab, the words: This is, double quote, space, the word: 
between, double quote, space, the word: us, and new-line, would appear as follows: 

"\tThis is\" betweenV us\n" 
Concatenation of string literals in certain situations (see the Modelica grammar) is denoted by the + 

operator in Modelica, for example, "a" + "b" becomes "ab". This is useful for expressing long string 
literals that need to be written on several lines. 

6.5.5 Enumeration Constant Values 

Enumeration value constants are introduced by declaration of an enumeration type: 

type Color = enumeration(red, blue, green); 
This makes the enumeration literal values Color.red, Color.blue, and Color.green available for 
use. 
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6.5.6 Array Constant Values 

Array values can be expressed using the array constructor { } or the array concatenation operator [ ]. For 
example, the following are one-dimensional array constants, that is, vector literals: 

{1,2,3}, {3.14, 58E-6} 
Two-dimensional array constants, that is, matrix literals, may appear as below, where the same constant 

matrix is expressed in two ways: 

{{1,2},{3,4}} or [1,2; 3,4] 
More information concerning arrays and array values is available in Section 7.2, page 315, and in Section 
7.11.1 concerning empty array values. 

6.5.7 Record Constant Values 

Record values can be expressed using the record constructor functions automatically defined as a 
consequence of record declarations (Section 3.18.4, page 118). Below is an example record value of a 
complex number based on the record Complex: 

Complex(1.3, 4.56) 
ComplexO; // Use argument default values of the constructor function 

6.6 Operator Precedence and Associativity 

Operator precedence determines the order of evaluation of operators in an expression. An operator with 
higher precedence is evaluated before an operator with lower precedence in the same expression. For 
example, relational operators have higher precedence than logical operators: 

Xwithin := x>35.3 and x<=999.6; 
Assuming x has the value 55.0, then both relational terms are first evaluated to true, eventually giving 

the value true to be assigned to the variable Xwithin. The multiplication operator * has higher 
precedence than the subtraction operator, causing the following expression to have the value 45, not zero: 

10 * 5 - 5 
Parentheses can be used to override precedence, e.g. causing the expression below to evaluate to zero: 

10 * (5 - 5) 
The associativity determines what happens when operators with the same precedence appear next to each 
other. Left-associative operators evaluate the leftmost part first, for example, the expression: 

x + y + w 
is equivalent to 

(x + y) + w 
The following table presents all the operators in order of precedence from highest to lowest. All 

operators are binary except the postfix operators and those shown as unary together with expr, the 
conditional operator, the array construction operator {} and concatenation operator [], and the array range 
constructor which is either binary or ternary. Operators with the same precedence occur at the same line of 
the table: 
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Table 6-1. Operators. 

Operator Group Operator Syntax Examples 
postfix array index operator [] arr[index] 
postfix access operator a. b 
postfix function call fbncName(function-arguments) sin(4.36) 
array construct/concat {expressions} [expressions] {2,3} [5,6] 

[expressions; expressions...] [2,3; 7,8] 
exponentiation 

A 2 A 3 
multiplicative and array * / . * . / 2*3 2/3 
elementwise multiplicative [1,2;3,4].*[2,3;5,6] 
additive and array + - +expr -expr a+b, a-b, +a, -a 
elementwise additive [1,2;3,4].+[2,3;5,6] 
relational < < = > > = = = < > a<b, a<=b, a>b, . . . 

unary negation not expr not bl 
logical and and bl and b2 
logical or or bl or b2 
array range expr : expr 1:5 

expr : expr : expr start:step:stop 
conditional if expr then expr else expr if b then 3 else x 
named argument ident - expr x = 2.26 
Equation equality = and assignment : - are not expression operators since they are allowed only in 

equations and in assignment statements respectively. All binary expression operators are left associative, 
except exponentiation which is non-associative. The array range operator is also non-associative. For 
example: 

xAyAz // Not legal, use parentheses to make it unambiguous 
a:b:c:d:e:f:g // Not legal, use parentheses to make it unambiguous 
The unary plus and minus operators may not be directly combined with arithmetic operators in 

Modelica without intervening spaces or parentheses, whereas this is allowed in some languages, such as 
Mathematica and MATLAB. For example: 

3*-3 // - -9 in Mathematica/MATLAB is illegal in Modelica; 
— 3 // = 3 in Mathematica/MATLAB is illegal in Modelica; 
++3 // = 3 in Mathematica/MATLAB is illegal in Modelica; 
3--3 // = 6 in Mathematica/MATLAB is illegal in Modelica; 

6.7 Order of Evaluation 

A Modelica tool is free to solve equations, to reorder expressions, and to avoid evaluating expressions if 
their values do not influence the result. For example, a tool can choose to evaluate only the first argument 
of the and-operator in the following expression, the so-called short-circuit evaluation: 

false and true 
Alternatively, both arguments can be evaluated. Therefore, the order of evaluation, for example, regarding 
variable references and function calls in expressions, cannot be guaranteed. This is normally not a problem 
since Modelica is a declarative language. However, the user should be careful not to call external functions 
with side-effects where the order of evaluation of such function calls may influence the simulation result. 
Typical side effects might be storing values in global variables, or performing output, that will later 
influence the value of some function call. 

instead : 3*(-3) 
instead: -(-3) 
instead: +(+3) 
instead: 3- (-3) 
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Constructs such as if-statements and if-expressions, however, guarantee that their then- or else-parts are 
only evaluated if the corresponding condition is true. Except for the operators and, or, and if-t hen-else 
(to be described later in this chapter), every operand of an operator will always be evaluated before the 
operation is performed. 

Of course, the usual rules for arithmetic expressions are observed, where operators with higher 
precedence are evaluated before those with lower precedence, and where the laws of commutativity and 
associativity are obeyed. In algorithmic code, that is, code within algorithm sections or function bodies, 
assignment statements are usually present, giving more constraints for code rearrangements. In all cases of 
code transformations the data-flow dependencies between all parts of the code have to be preserved to 
keep the same meaning of the code. 

6.7.1 Guarding Expressions Against Incorrect Evaluation 

Only constructs like if-statements and if-expressions can be used to guard expressions against evaluation 
since the bodies of these constructs are evaluated only if the corresponding condition is true. 

Boolean operators such as logical and cannot be used for evaluation protection, since there is no 
prescribed short-circuit evaluation of Boolean expressions, for example, as in Java. The reason is that a 
Modelica compiler should be free to perform advanced symbolic manipulation of logical expressions. 
Code corresponding to short-circuit evaluation can be produced by the compiler, but this is not required. 

The first equation in the class GuardTest below can generate an error such as index out of bounds. 
Even if the boolean expression (I>=1 and i<=n) evaluates to false, the evaluation of v[i] is not 
necessarily prevented. 

The second equation is correct since the use of an if-expression guarantees that the condition ( i>=i 
and I<=n) is always evaluated before then- or else-parts of the if-expression. 

class GuardTest 
Boolean v[n]; 
Boolean x; 
Integer I; 

equation 
x = v[I] and (I>=1 and K=n) ; 
x = if (I>=1 and I<=n) then v[I] else false; 

end GuardTest; 

6.7.1.1 Guards with Discrete-Time Conditions 

The condition (i>=l and i<=n) in the GuardTest class example contains only so-called discrete 
variables, that is, variables that change value only at specific points in time when events are handled. 
Boolean, integer, String, and enumeration variables are always discrete-time and cannot be 
continuous. We say that these variables have discrete-time variability (see also Section 6.8.1.3 about 
variability on page 278 in this chapter and Section 3.11.2 about variability prefixes on page 99 in Chapter 
3). 

6.7.1.2 Guards with Continuous-Time Conditions 

Variables that can change value continuously at any time during the simulation are said to have 
continuous-time variability. When such variables are used in conditions, for example, h in h>0 below, the 
Modelica simulator needs to find the exact value for which h performs a zero-crossing (see Section 
18.2.5.5, page 1015) that causes the expression to change between false and true. This is a 
discontinuous change that might cause a discontinuous change of der (h) and/or its derivatives according 
to the first equation in the class GuardContinuousVar below. 

An event (see Chapter 13, page 591) is normally generated at a zero-crossing to help the simulator to 
efficiently handle possible discontinuities. In the iterative process of finding the exact value of h for which 

// Invalid 
// Correct 
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an event should be generated, h will be varied both above and below the possible point of zero crossing. 
One problem with the iterative zero-crossing search is that if-expressions in Modelica do not behave 
exactly as most people expect based on experience with conventional programming languages. During this 
iterative process, small negative values of h can be actually supplied to the body of the if-expression, for 
example, c*sqrt (h) below, causing an attempt to compute the square root of a negative number, which 
is an error. 

To guard sqrt against a negative argument one can use the built-in pseudofunction noEvent (see 
Section 6.14, page 291) that prevents generation of events (see Section 13.2.5.10, page 606) for argument 
expressions. In this way it is possible to use if-expressions to guard against taking the square root of a 
negative number. The only drawback of avoiding generating an event is that an adaptive equation solver 
will temporarily perform its computations substantially slower if there is a discontinuity since the 
numerical solver must switch to a much smaller step size when encountering a discontinuity. 

Discontinuities, events, and similar issues are discussed in more detail in Chapter 13. 

class GuardContinuousVar 
Real h, ad-

equation 
der(h) = if h>0 then -c*sqrt(h) else 0; // Incorrect 
der(h) = if noEvent(h>0) then -c*sqrt(h) else 0; // Correct 

end GuardContinuousVar; 

6.8 Expression Type and Conversions 

All expressions have a type. The expression type is obtained from the types of its constituent parts, for 
example, variables, constants, operators, and function calls in an expression. Recall the definition of the 
notion of type in Modelica, previously presented in Chapter 3 page 115. For example, an addition of two 
Integer variables gives a result of type Integer. Similarly, a multiplication of two Real values gives a 
result of type Real. 

If either operand of an arithmetic operator has Real type, the operation is performed in double 
precision floating point arithmetic, integer operands in such cases are converted to Real before the 
floating point operation is performed. If either operand is an array, the result is an array. The detailed 
typing rules when array operands are involved are explained in more detail in Chapter 7. 

6.8.1 Type Conversions 

Modelica is a strongly typed language. This means that type compatibility is checked at compile time in 
almost all cases, and at run-time in the remaining cases. Modelica prevents incompatible left-hand and 
right-hand sides in equations as well as incompatible assignments by not allowing anything questionable. 

The language also provides a few checking and type conversion operations for cases when the 
compatibility of a type can be determined only at run-time, for example, to check the size of a variable-
length array, or when we want to explicitly convert a type, for example, when assigning a Real value to an 
integer variable. We discuss these conversions in terms of assignment, sometimes called assignment 
conversion, but what is said here is also applicable to conversions between left-hand sides and right-hand 
sides of equations, and conversions when passing actual arguments to formal parameters at function calls. 

6.8.1.1 Implicit Type Conversions 

Sometimes a type can be converted without any explicit action from the Modelica modeler or programmer. 
The only case in Modelica when this happens is implicit conversion of integer operands when used 
together with floating point operands in an expression. For example, consider the following expression 
where x has the type Real, being added together with the integer 66: 
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x + 66 
In this case the integer 66 is converted to the floating point number 66.0, which in turn is added to x 
using floating point addition. 

6.8.1.2 Functions for Explicit Conversion 

Explicit (type) conversions are needed when implicit conversions are not enough or are not available, for 
example, when converting from a Real to an integer. Then there are two options: rounding to the 
integer value closest above the current value, or rounding to the integer value closest below the current 
value. Using the built-in conversion functions below the first alternative is achieved by 
integer (ceil (x) ) for a real value x, and the second alternative is obtained by just using integer(x). 

ceil(x) Returns the smallest integer not less than x, i.e., the closest integer above 
x. Result and argument have type Real. Note that outside of a when-
clause or clocked discrete-time partition state events are triggered when 
the return value of this function changes discontinuously. 

floor (x) Returns the largest integer not greater than x, i.e., the closest integer 
below x. Result and argument have type Real. Note that outside of a 
when-clause or clocked discrete-time partition state events are triggered 
when the return value of this function changes discontinuously. 

integer(x) Returns the largest integer not greater than x, i.e., the closest integer 
below x. The argument has type Real. The result has type Integer. 

Note that outside of a when-clause or clocked discrete-time partition 
state events are triggered when the return value of this function changes 
discontinuously. 

Integer(e) Returns the ordinal integer value corresponding to the enumeration value 
e which evaluates to E. ev of the enumeration type E = enumeration (..., 
ev, ...). For example, if E=enumeration (el, e2, e3), then 
Integer (E . e2) is 2. 

String(e) Returns the string "ev" corresponding to the enumeration value e which 
evaluates to E. ev of the enumeration type E = enumeration (..., ev,...). 
This is just a special case of the string function described below: 

String(b, <options>) 

String(i, <options>) 

String(r, 
significantDigits=d, 

<options>) 

String(r, format=s) 

String(e, <options>) 

Convert a scalar non-string expression to a string representation. The 
first argument maybe a Boolean b, an integer i, a Real r, or an 
Enumeration e (see above). The other arguments must use named 
arguments. The optional arguments <options> are: 

• Integer minimumLength=0: minimum length of the resulting 
string. If necessary, the blank character is used to fill up unused 
space. 

• Boolean lef t Justif ied-true: if true, the converted result is 
left justified in the string; if false it is right justified in the string. 

For Real expressions the output shall be according to the Modelica 
grammar. Integer significantDigits=6: defines the number of 
significant digits in the result string. For example: "12.34 5 6", 
"0.0123456", "12345600", "1. 23456E-10 ". 
The format string corresponding to options is: 

• for Reals: (if left Justified then "-" else 
"")+String(minimumLength)+"."+ 



278 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

String(signficantDigits)+"g", 
• for Integers: (if left Justified then "-" else 

"")+String(minimumLength)+"d". 
Format string. According to ANSI-C (Section 6.8.1.3 below) the format 
string specifies one conversion specifier (excluding the leading %), may 
not contain length modifiers, and may not use "*" for width and/or 
precision. 

For all numeric values the format specifiers f, e, E, g, G are allowed. 
For integral values it is also allowed to use the d, i, o, x, x, u, and c-
format specifiers (for non-integral values a tool may round, truncate or 
use a different format if the integer conversion characters are used). 

• The x,x-formats (hexa-decimal) and c (character) for Integers 
does not lead to input that agrees with the Modelica-grammar. 

6.8.1.3 ANSI-C Format String for String Explicit Conversion 

The Modelica String (...) conversion function described above accepts an optional format string 
according to the ANSI-C standard, of which the applicable parts are described below. 

Formatting takes place via placeholders within the format string. For example, if a program wanted to 
print out a person's age, it could present the output by prefixing it with "Your age is " . To denote that 
we want the integer for the age to be shown immediately after that message, we may use the format string: 

"Your age is %d." 
The syntax for a format placeholder in the format string is: 

%[parameter] [flags] [width] [.precision] [length] type 

The type part at the end must be present and can be one of the following single format characters: 
• 'd', 'i' - a integer value as a signed decimal number. '%d' and '%i' have the same meaning for 

numeric to string conversion. 
• 'u' - produce a string with a decimal unsigned integer. 
• 'f', 'F' - real number in normal (fixed-point) notation, 'f' and 'F* only differs in how the strings for 

an infinite number or NaN are produced ('inf', 'infinity' and 'nan' for 'f', 'INF', 'INFINITY' and 
'NAN' for 'F'). 

• 'e', 'E' - a real value in standard form ( [ -] d.ddd e [ + /-] ddd). An E conversion uses the letter E 
(rather than e) to introduce the exponent. The exponent always contains at least two digits; if the 
value is zero, thé exponent is 00. In Windows, the exponent contains three digits by default, for 
example, 1. 5e002, but this can be altered by Microsoft-specific set output f ormat function. 

• 'g', 'G' - a real number in either normal or exponential notation, whichever is more appropriate for 
its magnitude, 'g' uses lower-case letters, 'G' uses upper-case letters. This type differs slightly from 
fixed-point notation in that insignificant zeroes to the right of the decimal point are not included. 
Also, the decimal point is not included on whole numbers. 

• V - unsigned integer in octal. 
• 's' - null-terminated string. 
• 'a', 'A' - real value produced in hexadecimal notation, starting with "Ox" or "OX", 'a' uses lower-

case letters, 'A* uses upper-case letters. 
• '%' - a literal '%' character (this type doesn't accept any flags, width, precision or length). 

The parameter part can be omitted or can be n$. For Modelica, n is always 1 since String () only 
accepts one numeric argument. 

In n$, n is the number of the parameter to display using this format specifier, allowing the arguments 
provided to be output multiple times, using varying format specifiers or in different orders. If any single 
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placeholder specifies a parameter, all the rest of the placeholders must also specify a parameter. For 
example: 

String(16, format="%l$d %l$#x; %l$d %l$#x") 
produces 

"16 0x10; 16 0x10" 
The flags part can be zero or more (in any order) of the single characters V , ' '#', * o': 

• '+' - always denote the sign '+' or of a number (the default is to omit the sign for positive 
numbers). This is only applicable to numeric types. 

• ' ' - space prefixes non-negative signed numbers with a space. 
• - left-align the output of this placeholder (the default is to right-align the output). 
• '#' - Alternate form. For 'g' and 'G', trailing zeros are not removed. For 'f', 'F', 'e', 'E', 'g', 'G', the 

output always contains a decimal point. For 'o', 'x', and 'x', a 0, Ox, and OX, respectively, is 
prepended to non-zero numbers. 

• '0' - use 0 instead of spaces to pad a field when the width option is specified. For example, 
String (3, format="%2d" ) results in " 3", while String ( 3, format = "%02d", 3)resultsin 
"03". 

The width part specifies a minimum number of characters to output, and is typically used to pad fixed-
width fields in tabulated output, where the fields would otherwise be smaller, although it does not cause 
truncation of oversized fields. A leading zero in the width value is interpreted as the zero-padding flag 
mentioned above, and a negative value is treated as the positive value in conjunction with the left-
alignment flag also mentioned above. 

The precision part usually specifies a maximum limit on the output, depending on the particular 
formatting type. For floating point numeric types, it specifies the number of digits to the right of the 
decimal point that the output should be rounded. For the String type, it limits the number of characters 
that should be output, after which the string is truncated. 

The length part is omitted since it is not relevant for Modelica. 

6.9 Variability of Expressions 

We have already briefly encountered the concept of variability in the above section on guarding 
expressions against incorrect evaluation in Section 6.7.1 on page 275 in this chapter, and in the section on 
variability prefixes in Section 3.11.2, page 99. See also Section 13.2.2, page 595, regarding this matter. 

The variability of an expression essentially means the freedom of the expression to change value during 
simulation. There are four degrees of expression variability in Modelica from the lowest to the highest 
degree of variability: 

• constant variability 
• parameter variability 
• discrete-time variability in two forms: unclocked discrete-time and clocked discrete-time. 
• continuous-time variability 
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event 2 event 3 

- A continuous-time variable 

An unclocked discrete-time variable 

A clocked discrete-time variable 

- A parameter variable 
- A constant "variable" 

time 

Figure 6-3. Illustrating expressions with different variability. See also Figure 3-7. 

Regarding assignments such as v:=expr (Section 9.2.3, page 425) or declaration and modifier 
equations such as v=expr (Section 8.2, page 349), the variable v must have the same or higher variability 
than expr. This is described in more detail below in Section 6.9.5, page 283. 

6.9.1 Constant Expressions 

Constant expressions have constant variability, that is, never change value (but the definition of a non-
final named constant can be redeclared, see below) and have time derivative equal to zero. For example, 
constant expressions can include literal constant expressions such as 3+5, false, "hello!", constant 
"variables" that have been declared with the prefix constant, enumeration values, and applications of 
operators or functions with constant expressions as arguments, where parameter variable declarations may 
not be present in those functions. 

Additionally, applications of the following special operators (with function syntax) initial, 
terminal, der, edge, change, sample, pre, are not allowed in constant expressions since those 
operators imply discrete-time or continuous-time variability. 

To summarize, a constant expression is one of the following: 

• Real, Integer, Boolean, String, and enumeration literals. 
• Variables declared as constant. 
• A function or operator with constant subexpressions as argument (and no parameters defined in the 

function) is a constant expression, except for applications of the special built-in operators 
initial, terminal, der, edge, change, sample, and pre. 

Examples of constant expressions: 

3.14 - 27 * 83 
sin(35.6) 
false or true 
"this is a constant string literal" 
one + 2 // one from the declaration: constant Real one = 1; 
Color.red // from the declaration Color = enumeration(red,blue,green) 

Variables declared as constant (constant variable, Section 3.11.2, page 99) must have an associated 
declaration equation with a constant expression if the constant is directly in the simulation model or used 
in the simulation model. The value of a declared constant can be modified after it has been given a value, 
unless the constant is declared final or modified with a final modifier. A constant declared without an 
associated declaration equation can be given one by using a modifier. 

1 
event 1 
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A named constant can be defined in a package, can be imported from a package (Section 10.2.1, page 
497), and can be accessed by nested lookup (Section 3.16.1, page 109) from inside a subclass to the 
current class where the constant is defined 

6.9.2 Parameter Expressions 

Parameter expressions have parameter variability, remain constant during time-dependent simulation, and 
have time derivative equal to zero. Parameter expressions may include constant expressions or parameter 
variables declared with the prefix parameter, or applications of operators and functions with parameter 
expressions as arguments. Parameter variables may be assigned values immediately before time-dependent 
simulation starts, either in a declaration equation or interactively through a simulation tool. This implies 
that the value of a parameter expression becomes available immediately before simulation starts and 
remains constant throughout the simulation. 

However, in contrast to named constants, a named parameter cannot be defined in a package, cannot be 
imported from a package (Section 10.2.1, page 497), and cannot be accessed by nested lookup (Section 
3.16.1, page 109) from inside a subclass to the class where the parameter is defined. 

Analogous to constant expressions, applications of the special operators initial, terminal, der, 
edge, change, sample, pre are not allowed in parameter expressions since those operators imply 
discrete-time or continuous-time variability. 

To summarize, expressions with parameter variability can be the following: 

• Constant expressions. (This may appear as a contradiction since constant and parameter 
expressions have different variability but means that a constant expression can be used in a context 
that requires parameter variability.) 

• Variables declared as parameter. 
• A function or operator with parameter subexpressions is a parameter expression, e.g. 4+n, except 

for the special built-in operators initial, terminal, der, edge, change, sample, and pre. 
Example of an expression with parameter variability: 

3 + n // Where n comes from: parameter Integer n = 10; 
Example of a named parameter variable: 

parameter Real height = 186; 
See Section 3 .11.2, page 99 for restrictions regarding the definition and use of named parameters. 

6.9.3 Discrete-Time Expressions 

Discrete-time expressions have discrete-time variability, may change their values only at event instants 
during simulation (see also Chapter 13 about hybrid modeling, starting on page 591), and have time 
derivative equal to zero. However, it is not allowed to apply the der-operator to a discrete-time variable. 
Discrete-time expressions may include constant or parameter expressions, discrete-time variables, as well 
as applications of operators and functions with discrete-time arguments. 

There are two kinds of discrete-time expressions: 

• Unclocked discrete-time expressions which have unclocked discrete-time variability and keep 
defined values between events (i.e., are piecewise constant). 

• Clocked discrete-time expressions which have defined values only at clock tick events for an 
associated clock. See Section 13.6.15.1, page 722 and Section 13.6.3, page 697. 
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Boolean, integer, String, and enumeration variables are discrete-time by default and cannot be 
continuous-time according to the language rules. However, note that there is no mathematical necessity 
behind the decision that such variables must be discrete-time in Modelica, it would be perfectly possible to 
have a different language rule which lets integer variables change value at any point in time. 

An unclocked Real variable declared with the prefix discrete has discrete-time variability and must 
be assigned in some when-statement or be on the left-hand side of an equation inside a when-equation. 
Additionally, an unclocked Real variable without the discrete prefix but assigned a value in a when-
equation or when-statement, either through an assignment statement or by being on the left-hand side of an 
equation in a when-equation, is a discrete-time variable. 

Expressions in unclocked when-equations and when-statements have unclocked discrete-time 
variability. This is a natural consequence of the fact that when-equations and when-statements are 
executed only at event instants, causing expressions inside the when constructs to change value only at 
events. 

Applications of the functions pre, edge, and change are always unclocked discrete-time expressions. 
Provided that they do not occur within argument expressions to the special function noEvent () , relational 
expressions involving the relational operators (>, <, >=, <=) as well as applications of the functions ceil, 
floor, and operators div, mod, and rem are discrete-time expressions, even if their argument expressions 
have continuous-time variability. This follows from the fact that the result of these relational operators and 
special functions remain piecewise constant and cause events to be generated when they change value, that 
is, they change value only at events. However, remember that relational expressions and function 
applications when enclosed by noEvent () are continuous-time rather than discrete-time expressions; for 
example, x<2 is a discrete-time expression whereas noEvent (x<2) is a continuous-time expression. 

Expressions in functions behave as though they were discrete-time expressions since a function is 
always called and evaluated at some point in time, that is, time does not go forward during evaluation of a 
function call, similar to the evaluation of a when-equation or a when-statement at an event. Function calls 
can, however, occur at any point in time, not only at events. 

To summarize, discrete-time expressions can be either: 

• Clocked discrete-time expressions (Section 13.6.15.1, page 722). 
• Unclocked discrete-time expressions. 

Unclocked discrete-time expressions can be one of the following: 

• Parameter expressions. (It might appear as a contradiction that parameter expressions can be part of 
discrete-time expressions even though they do not change during simulation. However, this is fine, 
since a discrete-time expression may change at event instants, it does not necessarily have to 
change.) 

• Unclocked discrete-time variables, that is, Integer, Boolean, String variables and 
enumeration variables, as well as Real variables assigned in when-clauses 

• Function calls where all input arguments of the function are unclocked discrete-time expressions. 
• Expressions where all the subexpressions are unclocked discrete-time expressions. 
• Expressions in the body of a when-clause, initial equation, or initial algorithm. 
• Unless inside noEvent: Ordered relations (>,<,>=,<=) if at least one operand is a subtype of Real 

(i.e.. Real elementary relations, see Section 6.11.1, page 287) and the functions ceil, floor, div, 
mod, rem. These will generate events if at least one sub-expression is not a discrete-time 
expression. In other words, relations inside noEvent (), such as noEvent (x>l), are not discrete-
time expressions. 

• The functions pre, edge, and change result in unclocked discrete-time expressions. 
• Expressions in functions behave as though they were discrete-time expressions. 

These are some examples of unclocked discrete-time expressions: 
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y >= 35.2 
div(x,2) + 5 
b2 and b3 // Where b2 and b3 are booleans: Boolean b2, b3; 

Moreover, inside an if-expression, if-clause, while-statement, or for-clause, that is controlled by a non-
discrete-time (i.e., a continuous-time expression that is not discrete-time) condition or range expression 
and not in the body of a when-clause, it is not legal to have assignments to unclocked discrete-time 
variables, equations between unclocked discrete-time expressions, or real elementary relations/functions 
that should generate events. This restriction is necessary in order to guarantee that all equations for 
unclocked discrete-time variables are unclocked discrete-time expressions, and to ensure that crossing 
functions do not become active between events. 

6.9.4 Continuous-Time Expressions 

Continuous-time expressions have continuous-time variability and may change their values continuously 
during simulation. 

Continuous-time expressions may include constant, parameter, unclocked discrete-time expressions as 
well as continuous-time Real variables and applications of operators and functions. 

Note that expressions involving continuous-time variables like x are still continuous-time even when 
combined with constant or parameter expressions; for example if x is continuous-time, then 2*x is also 
continuous-time. The fact that a variable has continuous-time variability does not mean that it will 
necessarily change, only that it has the possibility to change. For example, if there is an equation x=2 in 
the model then x will have a constant value but still keeps its continuous-time variability property. 

Variables declared as Real have the default variability continuous-time if no variability prefix is 
specified and they are not assigned values in any when-statement or on the left-hand side of any equation 
in a when-equation. 

Examples of continuous-time expressions: 

x + y - 2 // Where x, y are continuous-time: Real x, y; 
noEvent(z+2 >= 37) 

6.9.5 Variability and Subtyping 

We have learned that the variability of an expression governs the degree of freedom with which the 
expression may vary during simulation. Variability is a specific property but has clear connections with the 
notion of data type, for example, variables of the built-in type Real have default variability continuous-
time whereas integer, Boolean, and String variables have default variability unclocked discrete-time. 

The question is whether variability should be considered as part of a total type concept. In fact, we have 
already included variability as part of the notion of type in our definition of general class type on page 118 
in Chapter 3. There are clear advantages of including variability in a total type concept, as well as being 
necessary for class types since variability prefixes can occur in declarations of class members. 

The rules regarding assignment of expressions with different variability as well as inheritance relations 
between classes containing members of different variability become special cases of the general subtyping 
rules (Section 3.19, page 123) about the definition and use of subtyping. 

According to these rules for definition and use of type equivalence, type coercion, and variability in an 
assignment statement, e.g. a := expr, or a declaration equation, for example, a = expr, the following holds: 

• The type T2 of the right-hand side (expr) must be equivalent to the type T1 of the left-hand side (a) 
after type coercion. 

• The variability of type T2 is lower than or equal to the variability of type Tl , where constant is the 
lowest variability and continuous-time is the highest. 
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For example, this has the consequence that the right-hand side expression (expr) in a declaration equation 
of a parameter variable (a, and its attributes such as start) need to be of parameter variability (which 
also includes constant variability). If the left-hand side (a) would have unclocked discrete-time variability, 
the right-hand side (expr) must also have unclocked discrete-time variability (which also includes constant 
and parameter variability). 

For normal equations exprl = exprl, type equivalence holds between both sides of the equation as 
defined in Section 3.19.1, page 124. This poses no special constraints on variability. However, there is one 
additional rule regarding variability in equations stemming from the existence of the noEvent operator 
and the fact that Integer, Boolean, String, and enumeration expressions are never allowed to have 
continuous-time variability: 

• For an equation exprl = expr2 where the two expressions have a type derived from integer, 
Boolean, String, or enumeration, both expressions must be either unclocked discrete-time 
expressions or clocked discrete-time expressions. 

For equations involving expressions of records or other user-defined types, the above rule is applied to 
each element equation, where, for example, a record has been broken down into elements corresponding to 
its fields with built-in basic types. This rule prevents the use of the noEvent operator on one side of 
integer. Boolean, String, and enumeration equations outside of a when-equation, since otherwise 
one of the two expressions would not have unclocked discrete-time variability. 

The example classes below illustrate the subtyping and variability rules for declaration equations and 
normal equations. 

model ParConstants 
parameter Real pi = 1; 
// constant Real cl - pi + 2; // Error! - not a constant expression, 
parameter 'Real p2 = pi + 2; // Fine! - pl+2 has same variability. 

end ParConstants; 
model TestEquations 

ParConstants cl(pl=3); // Fine! 
ParConstants c2(p2=7); // Fine, declaration equation can be modified. 
Boolean b; 
Real x; 

equation 
b = noEvent(x > 1); // Error, since b is a discrete-time and 
// noEvent(x >1) is a continuous-time expression. 

end TestEquations; 

6.10 Arithmetic Operators 

Modelica supports five binary arithmetic operators that operate on any numerical type: 

Exponentiation 
* Multiplication 
/ Division 
+ Addition 

Subtraction 

Some of these operators can also be applied to a combination of a scalar type and an array type, which 
means an operation between the scalar and each element of the array. Addition and subtraction are also 
defined between two arrays. In the case of multiplication the operation is also defined between two arrays 
being interpreted as matrix multiplication. More details about the array versions of these operators are 
available in Chapter 7. 
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Unary versions of the addition and subtraction operators are available, for example, as in -35 and +84. 

6.10.1 Element-Wise Arithmetic Operators 

Modelica also supports five element-wise binary arithmetic operators that operate on arrays of any 
numerical type, as well as on scalars: 

. * Element-wise multiplication 

. / Element-wise division 

. + Element-wise addition 
Element-wise subtraction 
Element-wise exponentiation. 

See Section 7.8 , page 329, for more details. 

6.10.2 Integer Arithmetic 

When Modelica is compiled into C, integer arithmetic in Modelica is the same as in the ISO C language 
standard. However, even though compiling into C is quite common this is not required since Modelica can 
also be compiled into other languages. The most common representation of integers is 32-bit two's 
complement (e.g. see a definition in C—A Reference Manual, Section 5.1.1 (Harbison and Steele 1991)). 
This representation is used on widespread modern microprocessors such as Pentium, Sparc, and so on. In 
Modelica, at least a minimum representable value of -2,147,483,648 and a maximum value of 
2,147,483,647 must be supported. Note, however, that other Integer representations are also allowed 
according to the ISO C standard. 

For certain arithmetic operations, regarding both integer and floating point numbers, it can be the case 
that the true mathematical result of the operation cannot be represented as a value of the expected result 
type. This condition is called overflow, or in some cases underflow. 

In general, neither the Modelica language nor the C language specify the consequences of overflow of 
an arithmetic operation. One possibility is that an incorrect value (of the correct type) is produced. Another 
possibility is that program execution is terminated. A third possibility is that some kind of exception or 
trap is generated that could be detected by the program in some implementation-dependent way. 

For the common case of two's complement representation, integer arithmetic is modular—meaning that 
integer operations are performed using a two's-complement integer representation, but if the result exceeds 
the range of the type it is reduced modulo the range. Thus, such integer arithmetic never overflows or 
underflows but only wraps around. 

Integer division, that is, division of two integer values, truncates toward zero with any fractional part 
discarded (e.g., div(5,2) becomes 2, div(-5,2) becomes -2). This is the same as in the C language 
according to the C99 standard. According to the earlier C89 standard, integer division for negative 
numbers was implementation dependent. 

Division by zero in Modelica causes unpredictable effects, that is, the behavior is undefined. 

6.10.3 Floating Point Arithmetic 

Floating point arithmetic in Modelica is specified as double precision floating point arithmetic. Since 
Modelica can be compiled into different languages, the only formal requirement by the Modelica language 
specification is that the minimal recommended Real number range corresponds to the range of IEEE 
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double precision floating point numbers, for which the largest representable positive number is 
1.7976931348623157E+308 and the smallest positive number is 2.2250738585072014E-308. 

When compiled into C, values of the Modelica Real type are represented as values of the double type 
in ISO C, and floating point operations in Modelica are compiled into corresponding double precision 
floating point operations in C. Even if not strictly required by the ISO C standard, most C implementations 
have adopted the IEEE standard for binary floating point arithmetic (ISO/IEEE Std 754-1985), which 
completely dominates the scene regarding C implementations as well as floating point instructions 
provided by modern microprocessors. Thus, we can for practical purposes assume that Modelica follows 
ISO/IEEE Std 754-1985. Real values are then represented as 64-bit IEEE floating point numbers. The 
largest representable positive number in that representation is 1.7976931348623157E+308, whereas the 
smallest positive number is 2.2250738585072014E-308. 

The effects of arithmetic overflow, underflow, or division by zero in Modelica are implementation 
dependent, depending on the C compiler and the Modelica tool in use. Either some value is produced and 
execution continues, or some kind of trap or exception is generated which can terminate execution if it is 
not handled by the application or the Modelica run-time system. 

6.11 Equality, Relational, and Logical Operators 

Modelica supports the standard set of relational and logical operators, all of which produce the standard 
boolean values true or false: 

> greater than 
> = greater than or equal 
< less than 
< = less than or equal to 
= = equality within expressions 
< > inequality 

The equality and relational operators apply only to scalar arguments. Currently there is a restriction in 
Modelica models (but not in functions) that the equality = and inequality <> operators may not be 
directly applied to arguments that have a type which is Real or a subtype of Real. 

The reason for this rule is that relations with Real arguments are transformed to state events (see 
events, Section 13.2.4.4, page 600, and crossing functions, Section 18.2.5.5, page 1015) and this 
transformation becomes unnecessarily complicated for the = and <> relational operators, for example, 
two crossing functions instead of one crossing function needed. Even inside functions where these 
operations are allowed testing of equality of Real variables is questionable on machines where the number 
length in registers is different to the number length in main memory. 

These operations, e.g. x==y, x<>y, however, can for example be reformulated as abs (x-y) <le-10, 
abs(x-y)>le-10 respectively or using some other small number instead of le-10. 

Relational operators are typically used within if-statements or if-equations, or to compute the value of a 
Boolean variable, for example: 

if vl<v2 then ... 
boolvar2 :== v3 >= v35; 
A single equality sign = is never used in relational expressions, only in equations and in function calls 

using named parameter passing. 

= equality within equations 
= single assignment of named arguments at function call 

The following logical operators are defined: 
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or 

not 
and 

negation, unary operator 
logical and 
logical or 

As stated in the section about evaluation order on page 274, Modelica is free to use any order in 
evaluation of expression parts as long as the evaluation rules for the operators in the expression are 

Concerning the logical operators and, or in boolean expressions, one possibility is short-circuit 
evaluation, that is, the expression is evaluated from left to right and the evaluation is stopped if evaluation 
of further arguments is not necessary to determine the result of the boolean expression. Thus, if the 
variable bl in the expression below has the value true, then evaluation of b2 and b3 would not be 
necessary since the result will be true independent of their values. On the other hand, we cannot rely on 
this order—evaluation might start with b3 and involve all three variables. However, this does not really 
matter for the user since Modelica is a declarative language, and the result of evaluation is the same in all 
these cases. See also Section 6.7.1, page 275, for guarding evaluation. 

boolvar := true and false; 
boolvar2 := not boolvar; 
boolvar3 := bl or b2 or b3; 

6.11.1 Real Elementary Relations 

Relations of the form vl rel op v2, where vl and v2 are variables and rel op a relational operator 
(Section 6.11, page 286) are called elementary relations. If either vl or v2 or both variables are a subtype 
of Real, the relation is called a Real elementary relation. 

See also noEvent(...) (Section 0, page 293) which suppresses event generation at Real elementary 
relations; dicrete-time expressions and event generation (Section 6.9.3, page 281); 

The numerical solution process is halted and an event occurs whenever a Real elementary relation, for 
example, x > 2, changes its value (Section 18.2.5.4, page 1014). 

All operators are not arithmetic or logical operators. There also exist a string concatenation operator, a 
conditional operator for conditional expressions, and a member access operator for accessing fields of 
variables. There is also time, which is a built-in variable, that is, not an operator. 

6.12.1 String Concatenation 

The + operator is also a built-in string concatenation operator in Modelica, both for string variables and 
literal string constants. For example, long comment strings can be constructed using the + operator for 
concatenation of string constants, for example: 

Real longval = 1.35E+300 "This is" + " a " + "rather " + " long comment"; 
Another example using string variables and string literals in expressions returning string values: 

String vail = "This is"; 
String val2 = " a "; 
String concatvalue = vail + val2 +"rather " + " long string"; 
// The value becomes: "This is a rather long string" 

fulfilled. 

6.12 Miscellaneous Operators 
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Element-wise concatenation of arrays of strings is also available using the + operator (see Section 7.3, 
page 318). 

6.12.2 The Conditional Operator—if-expressions 

The conditional if-expression operator in Modelica provides a single expression that computes one out of 
two expressions dependent on the value of the condition. The general syntactic form is shown below: 

if condition then expression 1 else expression2 

Both the then-part and the else-part of the conditional if-expression must be present. Conditional if-
expressions can be nested, that is, expression2 can itself be an if-expression. 

A conditional if-expression is evaluated as follows: 

• First the condition is evaluated, which must be a Boolean expression. If condition is true, then 
expressionl is evaluated and becomes the value of the if-expression. Otherwise expression2 is 
evaluated and becomes the value of the if-expression. 

• The result expressions, i.e., expressionl and expression2, must have assignment-compatible types. 
This means that the type of one result expression must be assignable to the type of the other result 
expression, which defines the type of the conditional expression. 

The following equation contains a conditional if-expression operator on the right-hand side: 

value = (if a+b<5 then firstvalue else secondvalue); 
This is equivalent to the following conditional equation (see also Chapter 8, page 347, and Section 13.2.6, 
page 613): 

if (a+b<5) then 
value = firstvalue; 

else 
value = secondvalue; 

end if; 
It is a matter of taste as to which form is used. Whether to use parentheses around the conditional if-

expression operator is a matter of personal style since this is not required by the language. 
A nested conditional if-expression can have one of the following two equivalent forms: 

if condition 1 then expression2 else if condition2 then expressions else expression4 
if condition 1 then expression2 elseif condition2 then expression3 else expression4 

In the second form, the keywords else if have been replaced by the single keyword elseif, which also 
is the case in the second variant in the example below: 

Integer i; 
Integer sign_of_i_v2 = if i<0 then -1 else if i==0 then 0 else 1; 
Integer sign_of_i_vl = if i<0 then -1 elseif i==0 then 0 else 1; 
The conditional if-expression operator is one of the two ternary operators in Modelica—the operator 

basically has three arguments (regarding elseif as nested application). The other ternary operator is the 
range operator expr : expr : expr. 

Moreover, inside an if-expression that is controlled by a non-discrete time (i.e., a continuous-time 
expression that is not discrete-time) switching expression and not in the body of a when-clause, it is not 
legal to have real elementary relations/functions that should generate events, see Section 6.8.1.3, page 278. 
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6.12.3 Member Access Operator 

It is possible to access members of a class instance using dot notation, that is, the . operator, as in R1. R 
for accessing the resistance field R of resistor Rl. Local types and inner classes which are members of a 
class can of course also be accessed using dot notation on name of the class, not on instances of the class. 

6.12.4 User-Defined Overloaded Operators 

Mechanisms to define the standard Modelica operators for user-defined data types are described in Section 
9.5, page 481. 

6.13 Built-in Intrinsic Mathematical Functions 

The following are built-in intrinsic mathematical functions in Modelica. Their result(s) are in principle 
dependent only on the value(s) of the input argument(s), apart from possible unwanted effects such as 
square root of negative numbers or division by zero caused by the combination of event generation and 
unguarded use of sqrt or division operators. See the section on guarding expressions against incorrect 
evaluation on page 275 to avoid such problems. 

Passing integer arguments to functions requiring Real argument type is of course possible: the 
integer arguments are automatically promoted to Real type. Most of these standard mathematical 
functions are also available in the standard Modelica library Modelica .Math (Section 16.2, page 920). In 
fact, most functions defined in Modelica .Math behave as built-in functions (Section 6.13.2, page 291) 
and can be called using the short function names without package prefix. There are also a few, e.g., atan3, 
asinh, acosh, etc., which are in Modelica .Math but are not built-in functions. 

There are three groups of built-in intrinsic mathematical functions, of which two are listed further 
below: 

• Functions that may give rise to state events (Section 6.13.1, page 289). 
• Continuous functions (Section 6.13.2, page 291) which never give rise to state events. 
• Type conversion functions, e.g., integer and String, (Section 6.8.1.2, page 277). 

6.13.1 Special and/or Event Generating Intrinsic Mathematical Functions 

When used outside when-equations, when-statements, or clocked discrete-time partitions (Section 13.6, page 
694) and not within Modelica function bodies, certain built-in mathematical functions in the table below will 
cause events to be triggered at points where the function or its derivative are discontinuous, for example, at 
zero crossings of the argument. This is stated explicitly for each such function. Some functions do not 
generate events but have special properties, for example, s q r t which is not defined for negative arguments. 

It is possible to avoid generating events by enclosing the function call by noEvent () , for example, 
noEvent (abs (x)), at the cost of less efficient operation of the numerical equation solver. On the other 
hand, if an expression or function together with its derivatives to an appropriate degree is known to be 
continuous despite containing event-generating constructs, it will be more efficient to enclose the 
expression or function within noEvent () since in that particular case unnecessary event-handling code 
will be avoided. 

Gives the absolute value of expression v. Expanded into "noEvent (if v >= 0 
then v else -v)", i.e. no events are triggered. The argument must have 
Integer or Real type. If the argument has Integer type, then the result has 
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Integer type; otherwise, if the argument has Real type, then the result has Real 
type. 

sign(v) 
Gives the sign of the expression v. Expanded into "noEvent (if v > 0 then 1 
else if v < 0 then -1 else 0) ." The argument must have Integer or 
Real type. The result has Integer type. No events are triggered. 
Examples: sign (-1.7) =-1, sign(5.1)=l, sign(0)=0 

sqrt(v) Returns the square root of v if v>=0, otherwise an error occurs. Result and 
argument have type Real. No events are triggered. 

div(x, y) 

Returns the algebraic quotient x/y with any fractional part discarded (also known 
as truncation toward zero). Result and arguments have type Real or integer. If 
any of the arguments have type Real, the result is a Real, otherwise an integer. 
Note that outside of a when-clause or clocked discrete-time partition state events 
are triggered when the return value of this function changes discontinuously. 

Examples: div(10,2) = 5, div(10,3)=3, div(-2,3)=0, 
div(-4,3)=-1, div(10.2,3)=3.0, div(-7.1,2)=-3.0 

mod(x,y) 

Returns the integer modulus of x / y , i.e., mod(x,y)=x-floor(x/y)*y. Result and 
arguments shall have type Real or integer. If either of the arguments has type 
Real, the result is a Real, otherwise an Integer. Note that outside of a when-
clause or clocked discrete-time partition state events are triggered when the return 
value of this function changes discontinuously. 

Examples: mod (7, 5) =2, mod (13, 5) =3, mod (10, 5) = 0, 
mod(-7,5) - -7-(-2)*5 = 3, 
mod(7,-5) = 7-(-2)*(-5) = -3, 
mod(2,0.9)=0.2, mod(-2,0.9)=0.7, mod(2,-0.9)=-0.7 

rem(x, y) 

Returns the integer remainder of x / y , such that div(x,y) * y + rem(x,y) = 
x. Result and arguments shall have type Real or Integer. If either of the 
arguments have type Real, the result is a Real, otherwise an Integer. Note that 
outside of a when-clause or clocked discrete-time partition state events are triggered 
when the return value of this function changes discontinuously. 

Examples: rem(10, 2) =0, rem(ll,2)=l, 
rem(2,0.8) = 0.4, rem(-3,1.4)=-0.2. 

ceil(x) 

Returns the smallest integer not less than x as a floating point number, i.e., the 
closest integer above x. Result and argument have type Real. Note that outside of a 
when-clause or clocked discrete-time partition state events are triggered when the 
return value of this function changes discontinuously. 

Examples: ceil (3) =3. 0, ceil (3.5) =4 . 0, ceil (-1.7) =-l. 0 

floor(x) 

Returns the largest integer not greater than x as a floating point number, i.e., the 
closest integer below x. Result and argument have type Real. Note that outside of a 
when-clause or clocked discrete-time partition state events are triggered when the 
return value of this function changes discontinuously. 

Examples: floor (3) =3 . 0, floor (3 .5) =3 . 0, 
floor(-1.7)=-2.0 
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Returns the largest integer not greater than x as an integer, i.e., the closest integer 
below x. The argument has type Real. The result has type integer. Note that 
outside of a when-clause or clocked discrete-time partition state events are triggered 
when the return value of this function changes discontinuously. 

Examples: integer ( 3 . 5) =3, integer (-1. 7 ) =2 

6.13.2 Continuous Intrinsic Mathematical Functions 

The following are the continuous built-in common mathematical functions which do not generate events: 

sin (u) sine 
cos (u) cosine 
tan (w) tangent (u shall not be: ..., - ; r / 2 , /r/2, 3x/2,...) 
asin(tt) inverse sine (—1 < m < 1) 

acos(w) inverse cosine ( -1 < w < 1) 
atan(w) inverse tangent 
atan2(w7,w2) The atan2(w7,«2) function calculates the principal value of the arc tangent of ul/u2, 

using the signs of the two arguments to determine the quadrant of the result. 
sinh(w) hyperbolic sine 
cosh(w) hyperbolic cosine 
tanh(w) hyperbolic tangent 
exp(u) exponential, base e 
log (u) natural (base e) logarithm (u > 0) 
loglO (u) base 10 logarithm (u > 0) 

6.14 Built-in Special Operators and Functions 

The following built-in special operators in Modelica have the same syntax as a function call. However, 
they do not behave as mathematical functions since the result depends not only on the input arguments but 
also on the status of the simulation. The non-event-related operators are described below in Section 6.14.1 
and the event-related special operators are given further below in Section 0, page 293. Several operators 
are vectorized for non-scalar arguments according to Section 7.10, page 340. 

6.14.1 Non-Event-Related Special Operators and Functions 

This table describes a number of special operators and functions which are not specifically event related. 

The time derivative of expression expr: The expression expr must have 
a type which is a subtype of Real, and cannot have discrete-time 
variability, i.e., it must have continuous-time variability. For example, 
der (m*h) is interpreted as der (m) *h + m*der(h). The expression 
and all its subexpressions must be differentiable. 

If x is an array, the operator is applied to all elements of the array. For 
a Real argument expr with parameter or constant variability, the result is 
a zero-valued scalar or zero-valued array of the same size as x. 

n 
b 

integer(x) o 
v 

der(expr) 
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delay(expr r 
delayTime, 
delayMax) 

delay(expr, 
delayTime) 

Returns the value of expr at the time {time-delayTime) for 
time > time, start + delayTime and the value of expr at the time 
time . start for time <= time, start + delayTime. 

The arguments, i.e. expr, delayTime and delayMax, need to be 
subtypes of Real. The expression delayMax must be a parameter 
expression, and is used to avoid excessive storage requirements and 
enhance efficiency by storing the delayed expression for a maximum 
delay time given by DelayMax. 

The following relation must hold: 0 <= delayTime <= delayMax, 
otherwise an error occurs. If delayMax is not supplied in the argument 
list, delayTime needs to be a parameter expression. 

For more details, see Section 13.2.5.17, page 612. 

cardinality(c) 

Returns the number of (internal and external) occurrences of connector 
instance c in connect-equations of the current model as an integer 
number. 

For an example on the use of cardinality, see Section 5.7.9, page 
223. 

Note: this construct should no longer be used since it is deprecated in 
the current Modelica version. 

Returns the number of (internal and external) occurrences of connector 
instance c in connect-equations of the current model as an integer 
number. 

For an example on the use of cardinality, see Section 5.7.9, page 
223. 

Note: this construct should no longer be used since it is deprecated in 
the current Modelica version. 

direction(c) 

The function direction (c) gives information about the direction of the 
connection, provided that cardinality (c) == 1, i.e., the connector c is 
involved in exactly one connection. 

For a connection clause connect ( c l , c2) fulfilling that constraint, 
direction (cl) returns - 1 and direction (c2) returns 1. See also 
Section 5.7.9.1 on page 224. 

Note: this construct should no longer be used since it is deprecated in 
the current Modelica version. 

semiLinear(x, 
positiveSlope, 
negativeSlope) 

Returns: if x>=0 then positiveSlope*x else 
negatives lope* x. 
The result is of type Real. For more details, especially for the case when x 
= 0, see Section 8.8.1, page 386. For non-scalar arguments the function is 
vectorized according to Section 7.10, page 340. 

homotopy( 
actual^actual, 
simpli fied=simpli f 
ied) 

The scalar expressions actual and simplified are subtypes of Real. A 
Modelica translator should map this operator into either of the two forms: 
1. Returns actual (i.e., a trivial implementation). 
2. In order to solve algebraic systems of equations, the operator might 

during the solution process return a combination of the two 
arguments, ending at actual, e.g., 

actual*lambda + simplified*(1-lambda), 
where lambda is a homotopy parameter going from 0 to 1. 
The solution must fulfill the equations for homotopy returning 
actual. 

For a more detailed explanation, see Section 8.4.7, page 372. For non-
scalar arguments the function is vectorized according to Section 7.10, 
page 340. 

inStream(v) The operator inStream (v) is only allowed on stream variables v defined 
in stream connectors, and is the value of the stream variable v close to the 
connection point assuming that the flow is from the connection point into 
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the component. This value is computed from the stream connection 
equations of the flow variables and of the stream variables. The operator 
is vectorizable. For more details see Section 5.10.1, page 245. 

actualStream(v) The actualStream (v) operator is provided for convenience, and 
returns the actual value of the stream variable v for any flow direction. It 
is equivalent to the expression if c.m flow > 0 then inStream(v) 
else v where v belongs to the same stream connector c as the flow 
variable c.m flow. The operator is vectorizable. For more details see 
Section 5.10.1, page 245. 

spatialDistributio 
n(inO, inl, x, pv, 
iP, iV) 

The spatial Distribution (...) operator allows modeling of ID PDEs 
especially for transport phenomena, see Section 8.10.3, page 412. 

getlnstanceName() 
The getlnstanceName () operator is called with no input arguments 
and returns a string with the name of the model that is simulated (subject 
to the simulation command), appended with the fully qualified name of 
the instance in the simulated model within which this function is called. 
For example, if a Vehicle model is simulated, and this function is called 
within the controller instance which is part of the engine instance, the 
string "Vehicle.engine.controller" is returned. For more details 
see Section 6.14.1.1, page 293. 

6.14.1.1 getlnstanceName 

The getinstanceName() is called with no arguments. It returns a string with the name of the model that 
is simulated, for example, subject to a simulation command, appended with the fully qualified name within 
that model of the instance within which the getlnstanceName function is called, 

package MyLib 
model Vehicle 

Engine engine; 

end Vehicle; 

model Engine 
Controller controller; 

end Engine; 

model Controller 
equation 
Modelica.Utilities.Streams.print("Info from: " + getlnstanceName()); 

end Controller; 
end MyLib; 
If MyLib. Vehicle is simulated, the call getlnstanceName () returns "Vehicle.engine. 

controller" since Vehicle is the model subject to simulation and engine. controller is the fully 
qualified name within Vehicle of the instance within which getlnstanceName is called. 

If the getlnstanceName function is not called inside a model or block, for example, the function is 
called in a function or within an expression used in a constant definition in a package, the return value is 
not specified. 
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Moreover, the Modelica language standard requires that the simulation result should not depend on the 
return value of this function. It is primarily intended for information messages or error messages. 

6.14.2 Event-Related Special Operators 

The following event-related special operators with function syntax are available. Note that there are even 
more operators and functions that are event-related in the sense that they generate events; see Section 
6.13.1, page 289. The operators noEvent, pre, edge, and change are vectorized if applied to a non-
scalar argument, see Section 7.10, page 340. 

A clocked discrete-time equation partition may not contain calls to these event-related special operators 
with the exception of noEvent, see Section 13.6.15.1, page 722. 

initial() 
An initial () call returns true at the beginning of the simulation 
(when time is equal to time . start, the start time of the simulation) and 
returns false otherwise. This is during the initialization phase. See also 
Section 13.2.5.1, page 601. 

terminal() Returns true at the end of a successful simulation. See also Section 
13.2.5.2, page 601. 

noEvent(expr) 

By placing noEvent around expr, no events are generated from expr. 
Relational expressions involving real variables or function calls within 
expr are evaluated exactly as stated, i.e., no events are triggered at 
possible discontinuities of expr or its derivatives, thus avoiding 
generating events and event iteration. The operator is vectorized if applied 
to a non-scalar argument. 

See below in Section 6.14.2.1, page 296, about event iteration, or 
(Section 13.2.6.7, page 623, and Section 18.2.5, page 1012), for more 
detailed information regarding events and event-iteration. 

smooth(p,expr) 

By placing a call to smooth around expr, we state that expr is continuous 
and its derivatives up to order p are continuous. This information can be 
used by the Modelica environment to avoid event generation and thus 
increase performance. However, smooth does not prohibit event 
generation from expr. 

If p>=0, then smooth (p, expr) returns expr, and declares that expr 
is p times continuously differentiate, i.e., expr is continuous in all real 
variables appearing in the expression and all partial derivatives with 
respect to all appearing real variables exist and are continuous up to order 
P-

The argument p should be a scalar integer parameter expression. The 
only allowed types for expr in smooth are Real expressions, arrays of 
allowed expressions, and records only containing components of allowed 
expressions. For more details see Section 13.2.5.11, page 608. 

By placing a call to smooth around expr, we state that expr is continuous 
and its derivatives up to order p are continuous. This information can be 
used by the Modelica environment to avoid event generation and thus 
increase performance. However, smooth does not prohibit event 
generation from expr. 

If p>=0, then smooth (p, expr) returns expr, and declares that expr 
is p times continuously differentiate, i.e., expr is continuous in all real 
variables appearing in the expression and all partial derivatives with 
respect to all appearing real variables exist and are continuous up to order 
P-

The argument p should be a scalar integer parameter expression. The 
only allowed types for expr in smooth are Real expressions, arrays of 
allowed expressions, and records only containing components of allowed 
expressions. For more details see Section 13.2.5.11, page 608. 

sample{s tar t , 
interval) 

Returns true and triggers time events at time instants start + 
i* interval (1=0,1,...). During a numerical solution of the 
continuous part of the equation system, i.e., between the time events, the 
operator always returns false. The starting time start and the sample 
interval interval need to be parameter expressions and need to have 
types which are subtypes of Real or Integer. See also Section 13.2.5.4, 
page 602. 
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pre (y) 

Returns the "left limit" y(tpre) of variable y(t) at a time instant t. The left 
limit is the value immediately before the event is triggered. At an event 
instant, y(tpre) is the value of y after the most recent event iteration at time 
instant t. The value pre (y) can be thought of as the "predecessor value" 
of y. The argument y must be a variable and not a general expression. The 
operator is vectorized if applied to a non-scalar argument. Regarding 
event iteration see Section 6.14.2.10, page 296 below, or (Section 
13.2.6.7, page 623, and Section 18.2.5, page 1012) for more detailed 
information. 

The pre operator can only be applied if the following three conditions 
are fulfilled simultaneously: (a) the variable y has a type which is record 
type, or a subtype of Boolean, Integer, Real, or String, or an array 
type of one of those subtypes, (b) the variable y has unclocked discrete-
time variability, (c) the pre operator is not used within a function. At the 
initial time pre (y) = y. start, i.e. the left limit of y is identical to the 
start value. See Chapter 13, especially Section 13.2.5.12, page 609, for 
more information regarding pre, event iteration and events. 

edge(jb) • 

The expression edge {b) is expanded into (b and not pre(jb)) for 
the Boolean variable b. The same three restrictions as for the pre () 
operator apply. The argument b must be a Boolean variable and not a 
general expression. The operator is vectorized if applied to a non-scalar 
argument. See also Section 13.2.5.15, page 611. 

change(v) 
The expression change (v) is expanded into (vopre(v)). The same 
three restrictions as for the pre () operator apply. The argument v must 
be a variable and not a general expression. The operator is vectorized if 
applied to a non-scalar argument. See also Section 13.2.5.16, page 611. 

reinit{x r expr) 

In the body of a when-equation reinitializes the state variable x with expr-
at an event instant, i.e., a kind of assignment. 

The argument x is a Real (or subtype of Real) variable or an array of 
Real variables, which is implicitely defined to have 
StateSelect. always, i.e., it must be selected as a state, (or states), 
respectively. It is an error if it is not possible to select x as a state. 

It can only be applied within a when-equation. A variable is a state 
variable if the der-operator is applied to it somewhere in the model, or it 
is selected by stateSelect (Section 18.2.6.1, page 1018). 

The second argument expr must be an Integer or Real expression 
(or array of such expressions, respectively). 

The reinit operator can only be used once on the same variable x, 
i.e., single assignment, either to an individual variable or to a part of an 
array of variables. The reinit operator does not break the single 
assignment rule for equations since reinit (x, expr) makes the 
previously known state variable x unknown and has the same effect as 
introducing a new state variable x with the equation x = expr. 

For a simple example of the use of reinit, see the bouncing ball 
example in Chapter 2, page 57. For more details on the use of reinit 
among equations, see Section 8.3.6, page 359. 
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6.14.2.1 Event Iteration and the pre Function 

Regarding event iteration, a new event is triggered automatically if at the time instant t of the current event 
it is the case that for at least one variable v, "pre (v) <>v" after the active model equations have been 
evaluated. Typically a discontinuity causes the value of a discontinuous variable v to be different from its 
predecessor value pre (v). In this case the model equations are reevaluated, until for all variables v used 
in pre-operators it is the case that "pre (v) =v." This evaluation sequence is called event iteration. After 
such an evaluation sequence, the solution process for the continuous part of the equation system is 
resumed, also known as "continuous integration." More detailed information regarding this subject is 
available in Section 13.2.6.7, page 623, but especially in Chapter 18, Section 18.2.5, page 1012. 

6.15 Match-Expressions and Symbolic Programming 

General computational modeling and programming languages often have the ability to perform both 
numeric and symbol computations. Examples are computer algebra languages such as Mathematica, 
Maple, and Macsyma, which can mix numeric and symbolic computations. 

Such powerful capabilities are also relevant for Modelica now and in the future, to be able to address 
problems that may be both numerical and symbolic in character. 

An important motivation is to extend the expressive power of Modelica with functional programming 
features for scripting as well as control algorithms. The latter would introduce safe programming 
constructs especially for embedded software, that is, complement the declarative constructs for physical 
modeling with corresponding constructs for advanced embedded control software. 

Such extensions can also provide symbolic programming and modeling constructs needed to model 
some of the Modelica language semantics using symbolic transformations or elaborations from those 
constructs to lower level primitives by Modelica functions. Match-expressions discussed in this section 
can be used to build and process models represented as symbolic data structures such as trees and lists. 

Note that, at the time of this writing, all constructs discussed in this section are non-standard Modelica, 
they have not yet been standardized by Modelica Association. The MetaModelica language extension 
supports all of these constructs and a few more, and has been in regular use since 2006. OpenModelica 
provides an efficient implementation of these constructs. About three hundred thousand lines of code has 
so far been written in MetaModelica (see also Section 19.3.1.1, page 1038). 

6.15.1 Case Records and Union Types for Tree Data Structures 

The most common data type used to represent programs and models in compilers are tree structures. 
Typical operations are transformations of such trees into other trees during the translation process. Lists 
are a special case of tree data types, but are typically given special support in many symbolic programming 
languages. Tree data types typically have two interesting properties: 

• Union type - the type of a tree data type is typically the union of a number of node types, each 
representing a tree node. 

• Recursive type - the children of a tree node may have a type which is the tree data type itself. 

A small arithmetic expression tree, of the expression 12+5*13, is depicted in Figure 6-4. Using the 
record constructors PLUS op, MULop, RCONST, this tree can be constructed by the expression 
PLUSop (RCONST (12), MULop( RCONST (5), RCONST (13))). Such trees are usually called abstract 
syntax trees. 
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Figure 6-4. Abstract syntax tree of the expression 12+5*13. 

Recursive types are currently missing from the Modelica language, which so far has been a conscious 
decision in order to avoid heap-allocated objects. 

The MetaModelica 1.0 language introduced the uniontype restricted class construct. The example 
below declares a small expression tree type Exp containing 6 different node types represented as ordinary 
Modelica record types. 

uniontype Exp // Note: Non-standard Modelica 
record RCONST Real rval; end RCONST; 
record INTconst Integer int; end INTconst; 

PLUSop Exp expl; Exp exp2; end PLUSop; 
Exp expl; 
Exp expl; 
Exp expl; 
Exp expl; 

record 
record SUBop 
record MULop 
record 
record 

end Exp; 

DIVop 
NEGop 

Exp exp2; end SUBop; 
Exp exp2; end MULop; 
Exp exp2; end DIVop; 

end NEGop; 

A similar but slightly different design would be to introduce a parent class that denotes the tree data 
type. All record types that belong to that union type must inherit this class. This approach is called case 
classes, which is used in the Scala language. Thus we introduce the language construct case record. 

It is important to introduce a case record or uniontype construct in order that the compiler gets 
information to check which member records are allowed and to compile such record structures internally 
using references/pointers which are needed for efficient internal implementations of such tree data 
structures. 

In the following, we will interchangeably use the constructs uniontype that are implemented in 
current MetaModelica, and case record, which is inspired by Scala. Both are currently discussed for 
standardization in Modelica, but at most one will be chosen. Each has pros and cons. 

case record Exp // Note: Non-standard Modelica 
end Exp; 

record RCONST extends 
Real rval; 

end RCONST; 

Exp; 

record INTconst extends 
Integer int; 

end INTconst; 

Exp; 

record PLUSop extends Exp; 
Exp expl; Exp exp2; 

end PLUSop; 
record SUBop extends Exp; 

Exp expl; Exp exp2; 
end SUBop; 
record MULop extends Exp; 

Exp expl; Exp exp2; 

PLUSop 

1 2 RCONST RCONST 
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end MULop; 
record DIVop extends Exp; 

Exp expl; Exp exp2; 
end DIVop; 
record NEGop extends Exp; 

Exp expl; 
end NEGop; 
The case record or uniontype construct currently has the following properties: 

• Such record types can be recursive, i.e., reference themselves. That is the case in the above Exp 
example, where Exp is referenced inside its member record types. 

• A member record type may only belong to one case record (uniontype) type. This restriction may 
be removed in the future. 

• The typing rules for a case record is similar to operator records, i.e., nominal typing comparing 
type names. To check subtyping of two member records, it is tested whether they belong to a 
subtype with the same name. 

This is very similar to corresponding constructs in functional languages such as Haskell, Standard ML, 
OCaml, and Scala. 

To provide a type-safe implementation, case records or uniontype records internally in their 
implementation need an extra hidden record field (here called tag) to identify which record it belongs to. 
For example: 

// Internal implementation approach: 
record PLUSop Tagtype tag; Exp expl; Exp exp2; end PLUSop; 
record NEGop Tagtype tag; Exp expl; end PLUSop; 

6.15.2 Match Expressions for Processing Complex Data 

Pattern matching and transformation of structured data representations such as trees is one of the central 
facilities in symbolic modeling and programming languages. The matching provided by the match-
expression construct is very close to similar facilities in many functional languages, but is also related to 
switch statements in C or Java. It has two important advantages over traditional switch statements: 

• A match-expression can appear in any of the three Modelica contexts: expressions, statements, or 
in equations. 

• The selection in the case branches is based on pattern matching, which reduces to equality testing 
(Section 6.15.2.1, page 301) or switch in simple cases, but is much more powerful in the general 
case. 

A very simple example of a match-expression is the following code fragment, which returns a number 
corresponding to a given input string. The pattern matching is very simple - just compare the string value 
of s with one of the constant pattern strings "one", "two" or "three", and if none of these matches 
return 0 since the wildcard pattern value any matches anything. In MetaModelica an underscore (_) 
usually used as wildcard pattern. 

String s; // Note: Non-standard Modelica 
Real x; 

algorithm 
x := match s 
case "one" then 1; 
case "two" then 2; 
case "three" then 3; 
case any then 0; 
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end match; 
Alternatively, an else-branch can be used instead of the wildcard pattern: 

String s; 
Real x; 

algorithm 
x match s 
case "one" then 1; 
case "two" then 2; 
case "three" then 3; 
else 0; 

end match; 
Another example with named integer constants is: 

Integer i; 
Real x; 
constant Integer One=l, Two=2, Three=3; 

algorithm 
x := match i 
case One then 10; 
case Two then 20; 
case Three then 30; 
else 0; 

end match; 

The keyword any (or _) is used to match one item, it is part of the so-called pattern expression language. 
The above simple examples are trivial special cases of match expressions. 

The general structure of match-expressions starting with the match keyword is indicated by the outline 
below. The else-branch is optional and is identical to a case any branch. The <opt-local-decl> can 
be left out if there are no local declarations, e.g. local Real. The equations <opt-local-equations> 
are also optional. 

match <m-expr> <opt-local-decl> 

case <pat-expr> 
<opt-local-equations> 
then <expr>; 

case <pat-expr> 
<opt-local-equations> 
then <expr>; 

else 
<opt-local-equations> 
then <expr>; 

end match; 
A set of optional local equations <opt-local-equations> start with the equation keyword 

followed by local algebraic single-assignment equations. This example shows a case branch with three 
local equations. 

case BINARY(el,binop,e2) 
equation 
vl = eval(el); 
v2 - eval(e2); 
v3 = applyBinop(binop, vl, v2); 

then v3; 
The above match-expression outline without local equations: 
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match <m-expr> <opt-local-decl> 

case <pat-expr> 
then <expr>; 

case <pat-expr> 
then <expr>; 

else 
<expr>; 

end match; 
A slightly more advanced usage of match-expressions compared to the above trivial cases with constant 

case patterns is in a small expression evaluator, the function eval below. The first version binds the 
variable x (which as a very short name) to the result of the match in each case branch. However, in 
MetaModelica 2.0, instead of the equality sign in x = RCONST () , the syntax x as RCONST () is 
currently used: 

function eval "Small expression evaluator" // Note: Non-standard Modelica 
input Exp inExpression; 
output Real result; 

algorithm 
result := match inExpression 
case x = RCONST() then x.rval; 
case x = ADDop() then eval(x.expl) + eval(x.exp2); 
case x = SUBop() then eval(x.expl) - eval(x.exp2); 
case x as MULop () then eval(x.expl) * eval (x .exp2 ) ; 
case x as DIVop () then eval(x.expl) / eval (x. exp2 ) ; 
case x =s NEGop () then -eval (x. exp) ; 

end match; 
end eval; 

Alternatively, binding x to inExpression in the match expression: 

function eval "Small expression evaluator" // Note: Non-standard Modelica' 
input Exp inExpression; 
output Real result; 

algorithm 
result := match x = inExpression 
case RCONST() then x.rval; 
case PLUSopO then eval(x.expl) + eval(x.exp2) ; 
case SUBop() then eval(x.expl) - eval(x.exp2); 
case MULop (). then eval(x.expl) * eval (x.exp2 ) ; 
case DIVop() then eval(x.expl) / eval(x.exp2); 
case NEGop() then -eval(x.exp); 

end match; 
end eval; 

Alternatively have a short named variable x as an input formal parameter: 

function eval "Small expression evaluator" // Note: Non-standard Modelica 
input Exp x; 
output Real result; 

algorithm 
result := match x 
case RCONST() then x.rval; 
case PLUSopO then eval(x.expl) + eval (x. exp2 ) ; 
case SUBop() then eval(x.expl) - eval(x.exp2); 
case MULop() then eval(x.expl) * eval(x.exp2); 
case DIVop() then eval(x.expl) / eval(x.exp2); 
case NEGop() then -eval(x.exp); 
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end match; 
end eval; 

Alternatively, using pattern variables (Section 6.15.2.2, page 301) rv, x and y which become bound to the 
arguments of the constructor during the matching: 

function eval "Small expression evaluator" // Note: Non-standard Modelica 
input Exp inExpression; 
output Real result; 

algorithm 
result match inExpression 
local Exp x,y; Real rv; 
case RCONST(rv) then rv; 
case PLUSop(x, y) then eval(x) + eval(y); 
case SUBop(x,y) then eval(x) - eval(y); 
case MULop(x,y) then eval(x) * eval(y); 
case DIVop(x,y) then eval(x) / eval(y); 
case NEGop(x) then -eval(x); 

end match; 
end eval; 

6.15.2.1 Simple Implementation of Pattern Matching 

A match with simple patterns as above can be expanded to if-then-else as below. However, this example is 
not type correct Modelica, it just shows a low-level implementation approach. 

if tag(x) == Exp_RCONST then x.rval 
else if tag(x) == Exp_PLUSop then eval(x.expl) + eval(x.exp2) 
else if tag(x) == Exp_SUBop then eval(x.expl) - eval(x.exp2) 

A more complicated pattern is CALL ( IDENT ("sin") , {any}): 
case x = CALL(IDENT("sin"),{any}) 

then MUL (CALL (IDENT ( "cos ") , {x. e2 [ 1 ] } ) , ... 
This can be expanded to the following not type correct Modelica: 

if tag(x) == Exp_CALL and tag(x.expl) == Exp IDENT and x.expl.id=="sin" and 
size ( (x. exp2 . args) , 1-)==1 then MUL (CALL (IDENT ( "cos") , {x.e2[l] }), ... 

6.15.2.2 Pattern Variables 

Most the examples shown so far are without pattern variables. What then is a pattern variable? Such a 
variable can occur inside a pattern expression and will be bound to a value during pattern matching. This 
feature is present in almost all languages with pattern matching, including OCaml, Haskell, RML, 
MetaModelica, Scala, and often enables rather compact notation. The main alternative to pattern variables 
is to use standard dot notation to extract field values. 

The following is an example of a case with a PLUSop pattern without pattern variables: 

case x=PLUSop() then eval(x.expl) + eval(x.exp2); 
This is an example of a PLUSop pattern with pattern variables el and e2 which become bound to 

values during matching: 

case PLUSop(el,e2) then eval(el) + eval(e2); 
This is an example of a PLUSop named pattern mentioning field names expl and exp2 with pattern 

variables el and e2 which become bound to values during matching: 

case PLUSop(expl=el,exp2=e2) then eval(el) + eval(e2); 
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Named pattern variable arguments are slightly more verbose, but have advantages when a program is 
updated such as being not sensitive to changes in the argument order or to adding extra arguments. They 
are usually more readable and self-documenting, especially for constructors with long argument lists. 

Pattern variables, both positional and named patterns, are implemented in MetaModelica, and are also 
available in most functional languages. 

6.15.2.3 Guarded Patterns 

A pattern can also include an optional Boolean conditional expression preceded by the guard keyword as 
specified by the following grammar rule for a pattern expression: 

<pat-expr> ::= <pattern-no-guard> [guard <bool-expr>] 
The matching process of such a pattern first performs structural matching of the part without guard, the 
<pattern-no-guard>. If that is successful, the guard conditional expression, <bool-expr>, is 
evaluated. If it evaluates to true, the whole pattern is considered matching successfully, otherwise the 
matching fails. 

For example, regard the following two cases with guarded patterns obtained from the function 
numberAbs below: 

case REAL() guard x.value > 0 then x.value; 
case REAL() guard x.value <= 0 then -x.value; 
Given a constructor REAL(-3.14) containing a Real number -3.14. This is passed in the call 

numberAbs (REAL (-3.14) ). The first case will match OK structurally but the guard expression 
x. value>0 will evaluate to false which makes the matching fail. Therefore the next case is tried which 
matches structurally and also has a guard expression x.value<=0 which evaluates to true, making the 
match succeed. 

function numberAbs "Returns the absolute value of a Number as a Real." 
input Number x; 
output Real result; 

algorithm 
result := match x 
case INTO then abs(x.int); 
case RATIONAL() then abs(x.dividend/x.divisor); 
case REAL() guard x.value>0 then x.value; 
case REAL() guard x.value<=0 then -x.value; 
case COMPLEX() then abs(sqrt(x.imA2+x.reA2)); 

end match; 
end numberAbs; 

6.15.3 Additional Data Structures 

Apart from the tree data structures already discussed there also lists, tuples, and option data structures. 

6.15.3.1 List Data Structures 

Lists are common data structures in declarative languages since they conveniently allow representation and 
manipulation of sequences of elements. Elements can be efficiently (in constant time) added to beginning 
of lists in a declarative way. Lists are immutable meaning that the list is not updated. When an element is 
added a new list is created. All elements of a list have the same type. The following basic list construction 
operators are available, presented below through several examples. 

In the examples, on the first line the expression to be evaluated is shown, on the following line the 
evaluated result. 

{} // The empty list 
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{} 

{1, 2, 3} // The list constructor 
{1, 2, 3} 

1 :: {2, 3} // The cons :: operator to add an element to a list 
{1, 2, 3} 

1 :: "2" :: {} //An illegal expression 
OMC-ERROR: 
"Error: Failed to match types of cons expression 1::"2" : : { } . The head has 
type Integer and the tail list<String>. 

Appending lists is expensive; it uses the cons operation once for each element in the first argument 
since the contents of the first argument is copied: 

listAppend( {1, 2, 3}, {4}) 
{1, 2, 3, 4} 

The types of lists often need to be specified. Named list types can be declared using MetaModelica type 
declarations, e.g.: 

type StringList = List<String>; 
An example of a list type for lists of Real elements: 

type RealList = List<Real>; 
The most readable and convenient way of accessing elements in an existing list or constructing new 

lists is usually through pattern matching operations, used in the string Delimit List function below. 

function stringDelimitList 
input StringList stringList; 
input String delimiter; 
output String outString; 

algorithm 
outString := match stringList 
local 
String head; 
StringList tail; 

// Remember to match the empty list 
case {} then "" ; 
// The last element does not need the delimiter 
case {head} then head; 
// Pattern-matching using the cons operator 
case head::tail then head + delimiter + 

stringDelimitList(tail,delimiter); 
end match; 

end stringDelimitList; 
Calling the function: 

stringDelimitList( {"1", "2", "3", "4"}, ) 
with result 

"1,2,3,4" 

6.15.3.2 Tuples 

Tuples are represented by parenthesized, comma-separated sequences of items each of which may have a 
different type. For example: 
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( 1, 2.0, "3" ) 
( 12, 2.6, "mine" ) 

Named tuple types can be declared explicitly through the type declaration using the tuple type constructor. 

type ThreeTup = Tuplednteger, Real, String>; 
A tuple data type can be viewed as a kind of light-weight record type, where names of the fields do not 

need to be declared. The values of a tuple are easiest accessed through pattern-matching. 

function threeTupString 
input ThreeTup tup; 
output String str; 

algorithm 
str := match tup 
local Integer int; Real real; String string; 
case (int,real,string) 

then stringAppendList({"(", String(int), ", ", 
String (real), ", ", string, ")"}); 

end match; 
end threeTupString; 

Calling the function: 

threeTupString( ( 1, 2.5, "3" ) ) 
" (1, 2 . 5 , 3 ) " 

6.15.3.3 Option Types 

Option types have been introduced in MetaModelica to provide a type-safe way of representing the 
common situation where a data item is optionally present in a data structure. 

The constructor NONE () is used to represent the case where the optional data item is not present, 
whereas the constructor SOME () is used when the data item is present in the data structure. 

We start by defining an Option type and a function using it: 
type StringOption = Option<String>; 
function stringOrDefault 

input StringOption strOpt; 
input String default; 
output String str; 

algorithm 
str := match strOpt 
case SOME(str) then str; 
else default; 

end match; 
end stringOrDefault; 

Calling the function a few times: 

stringOrDefault(NONE(),"default") 
"default" 
stringOrDefault(SOME("string"),"default") 
"string" 

6.15.4 Parameterized Data Structures 

A parameterized data type in MetaModelica is a type that may have another type as a formal parameter. A 
parameterized type available in most programming languages is the array type which is usually 
parameterized in terms of its array element type. For example, we can have integer arrays, string arrays, or 



Chapter 6 Literals, Operators, and Expressions 305 

real arrays, and so on, depending on the type of the array elements. The size of an array may also be 
regarded as a formal parameter or attribute of the array. 

The MetaModelica language extension provides three basic kinds of parameterized types as well as 
user-defined parameterized union types and record types. 

• Lists - the List built-in predefined type constructor, parameterized in terms of the type of the list 
elements (Section 6.15.3.1, page 302). For example, the type of a list of integers is denoted 
List<Integer>. 

• Arrays - parameterized in terms of the array element type. 
• Option types - the Option built-in predefined type constructor, parameterized in terms of the type 

of the optional value (Section 6.15.3.3, page 304). An example of an option type is 
Option<String>. 

• Parameterized user-defined union types and record types. 

Note that all basic parameterized types in MetaModelica are monomorphic. all elements must have the 
same type, that is, you cannot mix elements of type Real and type string within the same array or list. 
Certain languages provide polymorphic arrays, i.e., array elements may have different types. 

However, arrays of elements of "different" types in MetaModelica can be represented by arrays of 
elements of union types, where each "type" in the union type is denoted by a different record constructor. 

6.15.4.1 Parameterized Union Types and Record Types 

Records and other classes in standard Modelica 3.2 are parameterizable using the replaceable and redeclare 
constructs. For example, we could make the above iNTconst record in Section 6.15.1, page 296, 
parameterized by adding a type variable Int Type, where Any is a built-in supertype of all types. 

record INTconst "Version with replaceable syntax" 
replaceable type IntTypeVar constrainedby Any; 
IntType int; 

end INTconst; 
In Modelica, by using INTconst (redeclare IntTypeVar=Integer) we will get a result which is 

equivalent to the previous INTconst class with a field int of type Integer. If instead we would use 
INTconst (redeclare IntTypeVar=LongInt) the result would be equivalent to: 

record INTconst 
Longlnt int; 

end INTconst; 
In MetaModelica we can use the more concise angle-bracket syntax < > to express type variables in 

parameterized classes. The following short syntax version is equivalent to the above INTconst record 
with replaceable: 

record INTconst<IntTypeVar> "Version with short angle-bracket syntax" 
IntType int; 

end INTconst; 
It is also possible to parameterize union types. The above Number union type parameterized by a type 

variable IntTypeVar appears as follows: 

uniontype Number<IntTypeVar> 
record INTconst IntTypeVar int; end INT; 
record RATIONAL IntTypeVar intl; IntTypeVar int2; end RATIONAL; 
record REAL Real re; end REAL; 
record COMPLEX Real re; Real im; end COMPLEX; 

end Number; 
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6.15.5 Example of Symbolic Differentiation 

Symbolic differentiation of expressions is a translational mapping that transforms expressions into 
differentiated expressions. The following Exp record type is used, first declared using the case record 
syntax variant, then using the union type: 

case record Exp // Note: Non-standard Modelica 
end Exp; 

record RCONST extends Exp; Real el; end RCONST; 
record PLUS extends Exp; Exp el; Exp e2 ; end PLUS; 
record SUB extends Exp; Exp el; Exp e2 ; end SUB; 
record MUL extends Exp; Exp el; Exp e2 ; end MUL; 
record DIV extends Exp; Exp el; Exp e 2 ; end DIV; 
record NEG extends Exp; Exp el; end NEG; 
record IDENT extends Exp; String name; end IDENT; 
record CALL extends Exp; Exp id; Exp [ '.:] args; end CALL; 
record AND extends Exp; Exp el; Exp e2 ; end AND; 
record OR extends Exp; Exp el; Exp e2 ; end OR; 
record LESS extends Exp; Exp el; Exp e2 ; end LESS; 
record GREATER extends Exp; Exp el; Exp e2 ; end GREATER; 

Here using the union type syntax: 

uniontype Exp 
record RCONST Real el; end RCONST; 
record PLUS Exp el; Exp e2 ; end PLUS; 
record SUB Exp el; Exp e2 ; end SUB; 
record MUL Exp el; Exp e2 ; end MUL; 
record DIV Exp el; Exp e2 ; end DIV; 
record NEG Exp el; end NEG; 
record IDENT String name; end IDENT; 
record CALL Exp id; Exp [ ; :] args; end CALL ; 
record AND Exp el; Exp e 2 ; end AND; 
record OR Exp el; Exp e2 ; end OR; 
record LESS Exp el; Exp e2 ; end LESS; 
record GREATER Exp el; Exp e2 ; end GREATER; 

end Exp; 
An example function dif ft performs symbolic differentiation of the expression expr with respect to 

the variable time, returning a differentiated expression. In the patterns, any is a reserved word that can be 
used as a placeholder instead of a pattern variable when the particular value in that place is not needed 
later as a variable value. The equations such as elprim = dif ft (x.el, timevars) in the fourth case-
branch is used to bind the additional identifiers elprim and e2prim to the relevant expressions. 

We can recognize the following well-known derivative rules represented in the match-expression code: 

• The time-derivative of a constant RCONST () is zero. 
• The time-derivative of the time variable is one. 
• The time-derivative of a time dependent variable id is der (id), but is zero if the variable is not time 

dependent, i.e., not in the list timevars. 
• The time-derivative of the sum ADD (x.EL, x.e2) of two expressions is the sum of the expression 

derivatives. 
• The time-derivative of sin (x) is cos (x) *x' if x is a function of time, and x' its time derivative. 
• etc... 

In the following example we use the any keyword as a placeholder of any argument in one of the 
patterns, CALL(IDENT ("sin"), {any}). This is a function call to sin with the argument list being an 
array of exactly one element {any}. We also use constructors with empty parentheses like ADD() to 
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match for zero or more arguments. Some arithmetic operator nodes have been excluded in the dif ft 
example below in order to make it more compact. 

function difft "Symbolic differentiation of expression with respect to time" 
input Exp expr; // Note: Non-standard Modelica 
input String[:] timevars; 
output Exp diffexpr; 

algorithm 
diffexpr := match x = expr 
local Exp elprim, e2prim; // Two variables local to the match expression 
// der of constant 
case RCONST() then RCONST(0.0); 
// der of a variable 
case IDENT() 
then 
if x.id == "time" then RCONST(1.0) // der of time variable 
else if member(x.id,timevars) // der of any variable id 

then CALL(IDENT("der"),{x.id}) 
else RCONST(0.0); 

// (x.el + x.e2)' => x.el' + x.e2' 
case ADD() 

then ADD(difft(x.el,timevars), difft(x.e2,timevars)); 
// (x.el - x.e2)' => x.el' - x.e2' 
case SUB() 
equation // introducing local single-assignment equations 

elprim = difft(x.el,timevars); 
e2prim = difft(x.e2,timevars); 

then SUB(elprim,e2prim); 
// (x.el * x.e2)' => x.el' * x.e2 + x.el * x.e2' 
case MULO 

then PLUS(MUL(difft(x.el,timevars),x.e2), MUL(x.el, 
difft(x.e2,timevars);)); 

// (x.el / x.e2)' => (x.el' * x.e2 - x.el * x.e2') / x.e2 * x.e2 
case DIV() 

equation 
elprim = difft(x.el,timevars); 
e2prim = difft(x.e2,timevars); 

then DIV(SUB(MUL(elprim,x.e2), MUL(x.el,e2prim)), MUL(x.e2,x.e2)); 
// (-x.el)' => -x.el' 
case NEGO 

then NEG(difft(x.el,timevars); 
// sin(x.el)' => cos(x.el) * x.el' 
case CALL(IDENT("sin"),{any}) 

then MUL(CALL(IDENT("cos"),{x.e2[1]}), 
difft(x.e2[1],timevars)); //pick first elem from 2nd arg, an array 

// (x.el and x.e2)' => x.el'and x.e2' 
case AND() 

then AND(difft(x.el,timevars), difft(x.e2,timevars)); 
// (x.el or x.e2)' => x.el' or x.e2' 
case OR() 
then OR(difft(x.el,timevars), difft(x.e2,timevars)); 

// (x.el<x.e2)' => x.el' < x.e2' 
case LESS() 

then LESS(difft(x.el,timevars), difft(x.e2,timevars)); 
// (x.el > x.e2)' => x.el' > x.e2' 
case GREATER() 

then GREATER(difft(x.el,timevars), difft(x.e2,timevars)); 
// etc... 

end match; 
end difft; 
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6.16 Summary 

We have presented the structure of expressions in Modelica, together with the building blocks used to 
construct expressions. These building blocks include literal constants, names, and operators. We have 
briefly described properties of operators, the order of evaluation, guarding against incorrect evaluation, 
and the rules for deriving expression types and performing type conversions. This chapter also includes 
tables of the Modelica built-in intrinsic mathematical functions together with the built-in special operators 
and functions, excluding built-in array functions which are described in Section 7.9, page 335. Moreover, 
we have also briefly described the MetaModelica language extensions for symbolic programming and 
modeling. 

6.17 Literature 

The main reference document for this chapter is the Modelica Language Specification (Modelica 
Association 2012) and (Modelica Association 2013), whereas expressions and the style of presentation is 
common to many other programming language books, e.g. for the C language in (Harbison and Steele 
1991). The tables describing intrinsic functions and operators are close to those in the Modelica Language 
Specification, but have been slightly improved, and some examples have been added. The text in Section 
6.8.1.3 about ANSI-C format string specifiers is from (Wikipedia 2013) and has been slightly adapted for 
Modelica use. 

The MetaModelica language extension is presented in more detail in (Fritzson, Pop, and Aronsson 
2005; Pop and Fritzson 2006; Fritzson and Pop 2011; Fritzson, Pop, and Sjolund 2011). The compilation 
of the whole OpenModelica compiler using itself (i.e., bootstrapping) is described in (Sjolund, Fritzson, 
and Pop 2011; Sjolund, Fritzson, and Pop 2014). Haskell is described in (Hudak 2000), Standard ML in 
(Milner, Tofte, Harper, and MaQueen 1997), OCaml in (OCaml 2010), and Scala in (Odersky, Spoon, 
Venners 2008). 

6.18 Exercises 

Exercise 6-1: 

Quiz: 

• What is a keyword? 
• What is so special about them? 
• Name some Modelica keywords that you have come across. 
• Certainly by now you have come across some of the predefined types of Modelica, if not all of 

them. Which are they? 
• What is a literal constant? 
• Give an example of a literal constant. 
• Describe what the variability of an expression means. 
• Which are the degrees of expression variability? Describe the properties of the expressions having 

the different degrees. 

Exercise 6-2: 

Variability and Sub typing: What is wrong with this class? 

class Happy 
boolean right(fixed = true); 
parameter Integer h = 15; 
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constant Integer m = h + 28; 
parameter Real k = 32; 

end Happy; 
Exercise 6-3: 

Are the following initializations allowed in Modelica? 
• a) Real rl = i +5; 
• b)Integer il = r +5; 

Here r and i are Real and integer parameters respectively. 
• Explain why/why not. 

• What needs to be changed to make both initializations correct? 

Exercise 6-4: 

What is a conditional expression? 
Rewrite the conditional equation below in the form of a conditional expression: 

if (a > 0) then 
der(x) = x; 

elseif (a == 0) then 
der(x) = 0; 

else 
der(x) - -x; 

end if; 
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Chapter 7 

Arrays 

An array can be regarded as a collection of scalar variables all of the same type. Modelica arrays can be 
multidimensional and are "rectangular," which in the case of matrices has the consequence that all rows in 
a matrix have equal length, and all columns have equal length. This is also the case for languages like 
FORTRAN, C, and MATLAB, permitting efficient implementation for computational numeric 
applications. However, this is in contrast to Java arrays, which can be ragged, that is, different rows of a 
Java array need not contain the same number of elements. 

Each array has a certain dimensionality, that is, number of dimensions. The degenerate case of a scalar 
variable is not really an array, but can be regarded as an array with zero dimensions. Vectors have one 
dimension; matrices have two dimensions, and so on. So-called row vectors and column vectors do not 
exist in Modelica and cannot be distinguished since vectors have only one dimension. If distinguishing 
these is desired, row matrices and column matrices are available, being the corresponding two-dimensional 
entities. However, in practice this is seldom needed since the usual matrix arithmetic and linear algebra 
operations have been defined to give the expected behavior when operating on Modelica vectors and 
matrices. 

Modelica is a strongly typed language, which also applies to array types. The number of dimensions of 
an array is fixed and cannot be changed at run-time in order to permit strong type checking and efficient 
implementation. However, the sizes of array dimensions can be computed at run-time, allowing fairly 
generic array manipulation code to be written as well as interfacing to standard numeric libraries 
implemented in other programming languages. 

An array is allocated by declaring an array variable or calling an array constructor. Elements of an 
array can be indexed by Integer, Boolean, or enumeration values. 

7.1 Array Declarations and Types 

An array variable can be declared by appending dimension size and index type information within square 
brackets after a type name or after a variable name. The dimension information is a comma-separated list 
of elements, where each element is an integer expression, a colon (:), or a type name denoting a 
Boolean type, or an enumeration type. Colon (:) means that the dimension upper bound is unknown 
and is a subtype of Integer. Each integer expression specifies the size of the dimension where it occurs. For 
example: 

Real[3] positionvector = {1,2,3}; 
Real[3,3] identitymatrix = {{1,0,0}, {0,1,0}, {0,0,1}}; 
Integer[n,m,k] arr3d; 
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Voltage[10] voltagevector; 
String[3] str3 = {"one", "two", "blue"}; 

This declares a three-dimensional position vector, a transformation matrix, a three-dimensional array, a 
Boolean vector, a vector of Voltage values where Voltage is a specialization of the Real type, and a 
String vector. Using the alternative syntax of attaching dimensions after the variable name, the same 
declarations can be expressed as: 

Real positionvector[3] = {1,2,3}; 
Real identitymatrix[3,3] = {{1,0,0}, {0,1,0}, {0,0,1}}; 
Real arr3d[n,m,k]; 
Boolean truthvalues[2] = {false,true}; 
Voltage voltagevector[10] 
String str3[3] = {"one", "two", "blue"}; 

Four of the array declarations contain declaration equations, where the array constructor {} is used to 
construct array values for defining positionvector, identitymatrix, truthvalues, and str3. 
More information about array constructors is available in Section 7.2, page 315, and Section 7.3, page 318. 

It is possible to mix the two declaration forms, but the code becomes less readable. For example: 

Real[3,2] A[4,5]; // A has type Real[4,5,3,2]; 
Column matrices and row matrices can be declared, for example as below, but are seldom needed since 

the common matrix operations work well with vectors. Note that both column matrices and row matrices 
are 2D data structures, i.e., have two dimensions of which one has size 1, whereas vectors are ID data 
structures with just one dimension. 

Real[n,l] colmat; // Column matrix 
Real[l,n] rowmat; // Row matrix 
Declaration of empty arrays is allowed in Modelica. An empty array has at least one dimension of size 

0 and contains no array elements. One might question whether there is any use for such a strange language 
feature. Surprisingly enough, the answer is yes; see Section 7.11 on page 341 for more information on the 
usage of empty arrays. 

Real[0,3] M; // An empty matrix M 
Integer x[0]; // An empty vector x 
An array can be declared to be indexed by values of an enumeration or by Boolean values. The 

index range is implicitly specified by an enumeration type name or the type Boolean. For example: 

type Sizes = enumeration(small, medium, large); 
Real[Sizes] sz - {1.2, 3.5, 7}; 
Real[Boolean] bv = {3.1, 3.2}; 

7.1.1 Array Dimension Lower and Upper Index Bounds 

The lower and upper index bounds for a dimension of an array indexed by Integer, Boolean, or 
enumeration values are as follows: 

• An array dimension indexed by integers has a lower bound of 1 and an upper bound being the size 
of the dimension. 

• An array dimension indexed by Boolean values has the lower bound false and the upper bound 
true. 

• An array dimension indexed by enumeration values of the type E=enumeration(el, e2,..., en) 
has the lower bound E. el and the upper bound E . en. 
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7.1.2 Flexible Array Sizes 

The possibility to declare arrays with unspecified dimension sizes is quite important in order to design 
flexible models that can adapt to different problem sizes. This is absolutely necessary for implementing 
general numeric procedure libraries involving arrays, or for interfacing to existing libraries in other 
languages such as C or Fortran through the Modelica external function mechanism. 

An unspecified dimension size is stated by using a colon ( : ) instead of the usual expression, and means 
that the dimension size is unknown and that its type is a subtype of integer (i.e., not an enumeration 
value). In the third example we call the built-in function size that returns the size of an array dimension. 
For example: 

Real [:,:] Y; // A matrix with two unknown dimension sizes 
Real[:,3] Y2; // A matrix where the number of columns is known 
Real M[:,size(M,1)] // A square matrix of unknown size 

Several arrays with unknown sizes can of course be declared in the same declaration: 

Real[:] vl, v2; // Vectors vl and v2 have unknown sizes 
The actual sizes of vl and v2 need not be the same even though they are part of the same declaration, 
since the above declaration is equivalent to two separate declarations: 

Real[:] vl; 
Real[:] v2; 
The unspecified dimension sizes will eventually be determined when the array variable is bound to 

some value, for example by passing an array value to a Modelica function having an array formal 
parameter with unspecified size, or assigning an array value to an array variable in a function. Moreover, 
function array results and local variables with dimension sizes declared with ( : ) can be resized. See 
Section 9.3.2.8, page 445, for examples and more details regarding arrays with flexible sizes in functions. 

Array variables in classes (not functions) that are instantiated in order to be used in a simulation must 
have known sizes, that is, sizes must be defined by expressions of constant or parameter variability, or by a 
declaration equation (declaration assignment in an algorithm section) setting the variable equal to (or 
assigned to, respectively) an array expression of known size, for example: 

Real[:] v3 = fill(3,14, n); // A vector v3 of size n filled with 3.14 
An array variable in a partial class can however use unspecified dimension sizes given by colon ( : ) 
without a defining declaration equation, since the size will eventually be defined by a modification or 
redeclaration of the array variable before it is used. 

7.1.3 Array Types and Type Checking 

It is possible to declare user-defined array types analogously to other user-defined types. For example, a 
type ColorPixel can be defined as a three-element vector representing the three base colors, and a 
variable image declared as a matrix of such pixels: 

type ColorPixel = Real[3]; 
ColorPixel[512,512] image; 

However, for the purpose of type checking and selecting the right version of overloaded array operators 
and functions it is important to determine the expanded type of a variable. The term overloaded means that 
the same (or similar) operation, for example, "*" is defined for several different types. The variable image 
can superficially be regarded as a matrix of pixels but since each pixel is a vector its expanded type is 
really Real [512, 512, 3]. 
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The expanded type of an array of arrays is the multidimensional array, which is constructed by taking 
the first dimensions from the variable declaration and subsequent dimensions from the maximally 
expanded array element type of the declaration. A type is maximally expanded, if it is either one of the 
built-in types (Real, Integer, Boolean, String, enumeration) or not defined by a type definition. 

Consider this definition of the notion of expanded type in the example below. The user-defined types 
Voltage and Current are defined using type definitions, whereas Pin is defined through the 
declaration of a connector, which is a specialized class. 

type Voltage = Real(unit = "V"); 
type Current = Real(unit = "A"); 

connector Pin 
Voltage v; // Type of v is Voltage, expanded type of v is Real 
flow Current i; // Type of i is Current, expanded type of i is Real 

end Pin; 
type MultiPin = Pin[5]; 
MultiPin[4] p; // Type of p is MultiPin[4], expanded type is Pin[4,5] 
The types of the variables v and i in this example are Voltage and Current respectively, whereas 

the expanded types of those variables are both Real since the expansion continues through type 
definitions. Concerning the variable p, its type is MultiPin [4 ], whereas its expanded type is Pin [4,5] 
according to the above rules. Pin is not expanded further since it is a class definition. 

type Point = Real[3]; 
Point[10] pi; 
Real[10,3] p2; 

The array variables pi and p2 have identical expanded types of Real [10, 3] which makes the two 
equations below type correct. The colon notation, e.g. p2 [5, : ] denoting the fifth row of p2, is further 
explained in Section 7.4.2 on array slices, page 322. 

p2[5] = pi[2]+ p2[4]; // equivalent to p2[5,:] - pl[2,:] + p2[4,:] 
Real r[3] = pl[2]; // equivalent to r[3] = pi[2,:] 

7.1.4 Modifiers for Array Variables and the each Operator 

Array variables can be initialized using modifiers. See Section 4.2.4, page 150 for a detailed description of 
array modifiers. Note that every array attribute or variable has the same dimensionality and extent as the 
array itself, possibly combined with the extent of the attribute if it is an array. See also Section 7.4.3 on 
page 323 regarding such array record field slices for arrays of records. 

The second line in the example below modifies the start value for the whole array. 

Real A3 [2,2]; // Array variable 
Real A4 [2,2] (start={{1,0},{0,1}}); // Array with modifier 
Real A5 [2,2] (unit={{"Voltage","Voltage"},{"Voltage","Voltage"}}); 
Modification of an indexed element of an array is illegal: 

Real A6[2,2](start[2,1]=2.3); // Illegal! indexed element modification 
The each operator can only be used inside modifiers, e.g., as in the modifier A7 [2, 3] (each b = 

{1,2,3,4}) in the model CI below . This gives a more compact syntax for certain kinds of initializations 
and/or declaration equations. Consider the array A7 with extent 2 x 3 , containing records of type Crec: 

record Crec 
Real b[4]; 

end Crec; 
model B 
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Crec A7[2,3](b = { {{1,2,3,4},{1,2,3,4},{1,2,3,4}}, 
{ { 1 , 2 , 3 , 4 } , { 1 , 2 , 3 , 4 } , { 1 , 2 , 3 , 4 } } } ) ; 

end B; 
An equivalent, more compact, way is the following, where each instance of the vector b inside all Crec 

record elements of the array A7 gets the value { 1 , 2 , 3 , 4 } : 
model CI 

Crec A7[2,3](each b = {1,2,3,4}); 
end C; 
A more detailed description and explanation is available in Section 4.2.4.1, page 150. 

An array constructor provides a convenient way of constructing array values, giving concise and readable 
code. The clumsier alternative is to declare an extra array variable, write code for assignment of values to 
this array, and then use it as the needed array value. 

An array constructor is just a function accepting scalar or array arguments and returning an array result. 
The array constructor function array(A, B, c , . . . ) , with short-hand notation {A, B, C, ...}, constructs an 
array from its arguments according to the following rule: 

• Each application of this constructor function adds a dimension to the left in the result array 
compared to the dimensions of the arguments. The size of this dimension is equal to the number of 
arguments to {}. For example, {1,2} has dimensionality 1 with dimension size 2, {{1,2}} has 
dimensionality 2 with dimension extents 1x2, {{{1,2}}} has dimensionality 3 with dimension 
extents 1 x 1 x 2 . In general, ndims(array(A)) = ndims(A)+l, where ndims(A) gives the number 
of dimensions of A. 

Thus, it is straightforward to construct multidimensional arrays as arrays of arrays by repeated application 
of the array constructor {}. 

The following conditions must be fulfilled for the arguments to the array constructor function: 

• Equal dimensionality of arguments, i.e., all arguments must have the same number of dimensions 
and sizes of dimensions, e.g. size(A) = size(B) = size(C) = ..., where size(A) is a vector 
containing the dimension sizes of A. For example, size({{ 1},{2},{3}}) is {3,1}. 

• All arguments must be type equivalent, requiring the expanded types of the arguments to be 
equivalent. For example, the expanded type of a subtype of Real such as Angle below is Real. 
Arguments to {} with Real and Integer subtypes can be mixed, resulting in a Real result array 
with Real elements where the integer numbers have been converted to Real numbers. This is 
the case for {1, 2, 3.0}, which has an expanded type Real [3] since it is converted to {1.0, 2.0, 

• There must currently be at least one argument, i.e., array() and {} are not defined at the time of 
this writing, but might be defined as an empty array literal (see also Section 7.11.1, page 342) in a 
future version of Modelica. 

7.2 General Array Construction 

3.0}. 

{1,2,3} 
array(1.0,2.0,3) 

// A 3-vector of type Integer[3] 
// A 3-vector of type Real[3] 

{{11,12,13}, {21,22,23}} 
{{{1.0, 2.0, 3.0}}} 

// A 2x3 matrix of type Integer[2,3] 
// A 1x1x3 array of type Real[1,1,3] 
// Illegal, arguments have different size { {1}, {2,3} } 

Real[3] v = array(l, 2, 3.0); // The vector v is equal to {1.,2.,3 . } 
type Angle = Real(unit="rad"); // The type Angle is a subtype of Real 
parameter Angle alpha - 2.0; // The expanded type of alpha is Real 
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array(alpha, 2, 3.0) // A 3-vector of type Real[3] 
Angle[3] A - {1.0,alpha,4}; // The expanded type of A is Real[3] 

7.2.1 Range Vector Construction 

A range vector is a vector containing a range of numeric values increasing or decreasing by a fixed 
increment or decrement value for each additional element. For example, {1,2,3} is an Integer range 
vector starting at 1 and increasing by 1 for each element. Such ranges are useful, for example in iterative 
constructs such as algorithmic for-loops, or in for-equations when expressing regular sets of equations. 

A colon operator expression in one of its two forms, startexpr : endexpr, or startexpr : deltaexpr : 
endexpr, is a convenient way of constructing Real, Integer, Boolean, or enumeration range vectors. 
The colon operator is defined as follows: 

• The range vector j : k is the integer vector {j, j+1,..., k}, if j and k are of type integer, or the 
Real vector {j,j+1.0,... j+n}, w i t h n = floor(k-j), i f j or k are of type Real. 

• The range vector j : d : k is the integer vector {j, j+d,..., j+n*d}, with n = div((k - j),d), i f j , d, 
and k are of type integer, or the Real vector {j,j+d, ..., j+n*d}, with n = floor((k-j)/d), i f j , d, 
or k are of type Real. 

• The range vector false : true is the Boolean vector {false, true}. 
• The range vector j : j is {j} if j is of type Real, Integer, Boolean, or enumeration. 
• The range vector E.ei : E.ej is the enumeration type vector {E.ei, ... E.ej} where E.ej> 

E .ei, and ei and ej belong to some enumeration type E=enumeration (...ei, ...ej, ...). 
In the following cases, the range vector constructor gives rise to an empty vector without any elements: 

• The range vector j : k is an empty Real, integer, Boolean, or enumeration vector containing 
no elements i f j > k. 

• The range vector j : d: k is an empty Real or integer vector containing no elements if d > 0 and 
j >k, o r i f d < 0 a n d j < k. 

For example: 

Real vl[5] = 2.7 : 6.8; // vl is {2.7,3.7,4.7,5.7,6.7} 
Real v2[5] = {2.7, 3.7, 4.7, 5.7, 6.7}; // v2 is equal to vl 
Integer v3[3] = 3 : 5; // v3 is {3,4,5} 
Integer v4empty[0] = 3 : 2 ; // v4empty is an empty Integer vector 
Real v5[4] = 1 . 0 : 2 :8; // v5 is {1.0,3.0,5.0,7.0} 
Integer v6[5] = 1 : -1 : -3; // v6 is {1,0,-1,-2,-3} 
Real[0] v7none =2.0 : -1 : 3; // v7none is an empty Real vector 

Boolean bl[2] = false:true; 
Colors ec[3] = enumeration(red,blue,green); 
Colors ec[3] = Colors.red : Colors.green; 

7.2.2 Set Formers—Array Constructors with Iterators 

Set formers are common in the area of mathematics that deals with sets. The following mathematical 
notation allows declarative specification of the creation of a set of expressions: 

{ expr-x | i e A) 

This expression can be read as follows: create a set of values of exprx for all i such that i belongs to A. 
Assuming the se t^ = {1, 3, 4, 6...}, this specifies the creation of the following set: 
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{ exprj , expri, expr4 , expr^... } 

In Modelica we do not have sets in the usual mathematical sense. However, sets can be represented as 
arrays, which in the mathematical sense are ordered multisets. Modelica has an array constructor with 
iterators, which is quite similar to the above mathematical notation, but with the vertical bar | replaced by 
the keyword for and the symbol e replaced by the keyword in. In functional programming languages 
this kind of construct is usually known as an array comprehension. 

{expr\ for i in A} 

We can have multiple iterators in the same array constructor: 

{ expnj for i in A, j in B } 

The general syntax is as follows: 

{ expression for iterators } 

where iterators is a comma-separated list of items, each of which is an iterator. As we have seen from the 
above examples, an iterator has the following structure: 

ident in range-expression 

The range-expression inside an iterator should be a vector expression where elements can have a subtype 
of Real, Integer, Boolean, enumeration or be of a record type. The range-expression can alternatively be 
an enumeration type name or the Boolean type, Section 9.2.5, page 427. It is evaluated once for each array 
constructor in the local scope immediately enclosing the array constructor. 

The scope of the iterator variable ident is the expression inside {expression for iterators}. The iterator 
variable ident has the same type throughout all iterations and may hide variables with the same name in 
enclosing scopes, analogous to for-loops or for-equations. 

If only one iterator is present, the result is a vector of values constructed by evaluating the expression 
for each value of the iterator variable. For example: 

{r for r in 1.0 : 1.5 : 5.5} // The vector 1.0:1.5:5.5={1.0, 2.5, 4.0, 5.5} 
{iA2 for i in {1,3,7,6}} // The vector {1, 9, 49, 36} 
{b for b in Boolean} // The vector {false, true} 
{not b for b in Boolean} // The vector {true, false} 
There is an alternative syntax for an array constructors with iterators, using the array () function style 

syntax instead of curly brackets: 

array(i for i in 1:10) // The vector 1:10={1,2,3, . ..,10} 
The rangeexpression in an iterator may be left out if the range can be implied from the use of the 

iteration variable ident in an index position of an array with known dimension size (see the example 
below, or Section 9.2.5.1, page 428 for more information). 

Real x[3] = {2,1,4}; 
Real si [3] = {x[i]*3 for i in 1:size(x,1)}; // result is {6,3,12} 
Real s2 [3] = {x[i] for i}; // result is {2,1,4}, range deduced to be 1:3 

Multiple iterators in an array constructor, for example as in the first example below, have the advantage of 
having the iterators appear in the same order as the dimensions of the constructed array. When using 
nested constructors (as in the second example below), the iterators appear in the opposite order. The 
following two definitions are equivalent: 

{(l/(i+j-l) for i in l:m, j in l:n}; // Multiple iterators 
{{(l/(i+j-l) for j in l:n} for i in l:m} // Nested constructors 

In fact, by first reversing the order of the iterators and then replacing each comma between the iterators by 
'} for' together with putting a left curly bracket '{ ' to the left of the whole array constructor, we can 
convert the multiple iterators form as in the example in the first line above, to the nested form used in the 
second example. 

One can, of course, use an array constructor with iterators in any place where an array expression is 
allowed, for example, as in the right-hand side of a declaration equation for an array: 
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Real hilb[:,: ] = {(l/(i+j-l) for i in l:n, j in l:n}; 
Array constructors with iterators are useful for defining special matrices. The following defines a 

matrix with 1 on the diagonal and the rest of the elements equal to the sum of row and column index. 

{if i=j then 1 else i + j for i in 1:size (A, 1), j in 1:size(A, 2) } 
Such an array of dimensions 4 x 4 appears as follows: 

' 1 3 4 

3 1 5 

4 5 1 

5 6 7 

f « n «12 «13 « 1 4 Ï 

«21 «22 «23 «24 

«31 «32 «33 «34 

, «41 «42 «43 «44 j 

or with values: 

Array constructors with iterators can be useful for initialization of special matrices: 

Integer[n,m] A := {if i==l or i==n or j==l or j==m then 0 else 3 
for i in l:n, j in l:m}; 

which gives the array A the following value for n=4 and m=4: 
(0 0 0 

0 3 3 0 

0 3 3 0 

0 0 0 0, 

An array constructor with iterators can of course also be used in equations, for example, as in the right-
hand side of an equation for a discretized partial differential equation in one dimension: 

model DiscretePDElD 
Real U[15](start={0,0.7,...}); 

equation 
U [ 1]=0; 
der(U[2:14]) = {196*(U[i-1] - 2*U[i] + U[i+1] for i in 2:14} 
U[15]=0; 

end DiscretePDElD; 
The same equation expressed as a for-equation appears as follows: 

for i in 2:14 loop 
der(U[i])=196*(U[i-1] - 2*U[i] + U[i+1]); 

end for; 

7.3 Array Concatenation and Construction 

General array concatenation can be done through the array concatenation operator cat(k,A,B,C,...) that 
concatenates the arrays A,B,C,... along the kth dimension. For example: 

cat(1, {1,2}, {10,12,13} ) // Result: {1,2,10,12,13} 
cat(2, {{1,2},{3,4}}, {{10}, (11}} ) //Result: {{1,2,10 }, {3,4,11} } 

The common special cases of concatenation along the first and second dimensions are supported through 
the special syntax forms [A;B;C;...] and [A,B,C,...] respectively. Both of these forms can be mixed. 

In order to achieve compatibility with MATLAB array syntax, being a de facto standard, scalar and 
vector arguments to these special operators are promoted to become matrices before performing the 
concatenation. This gives the effect that a matrix can be constructed from scalar expressions by separating 

(0 0

0

0

0
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rows by semicolon and columns by comma. The example below constructs an m x n matrix assuming that 
all expressions are scalar: 

[exprxl, expr12, ... exprln; 
expr2i, expr22, ... expr2n; 

exprml/ expr^, ... expr^] 
The previous example of concatenation along the second dimension can then be expressed: 

[ [1,2; 3,4], [10; 11] ] // Result: [1,2,10; 3,4,11] 
cat(2, [1,2; 3,4], [10; 11] ) // Same result: [{1,2,10}, {3,4,11}} 
It is instructive to follow the process of creating a matrix from scalar expressions using these operators. 

For example: 

[ 1 , 2 ; 
3,4] 

Since [...,...] for concatenation along the second dimension has higher priority than [. . . ; . . .] , which 
concatenates along the first dimension, this is parsed as follows: 

[ [ 1 , 2 ] ; 
[3,4]] 

Then each scalar argument is promoted to become a matrix, giving: 

[ [ { {1} }, { { 2 } } ] ; 
[{{3}},{{4}}]] 

Evaluating the first concatenation step along the second dimension gives: 

[{{1, 2}}; 
{{3, 4}}] 

Finally, the row matrices are concatenated along the first dimension, giving the desired 2 x 2 matrix: 

{{1, 2}, 
{3, 4}} 

The special case of just one scalar argument can be used to create a 1 x 1 matrix. For example: 

[ 2 ] 

This gives the matrix: 

{{2}} 

7.3.1 Type Rules for Concatenation 

The function cat(k,A,B,c, . . .) concatenates arrays A,B,c,... along dimension k. The type and size 
constraints for the arguments to the concatenation function are expressed by the following rules: 

• Arrays A, B, C, ... must have the same number of dimensions n, i.e., n = ndims(A) = ndims(B) 
= ndims(C), etc. 

• The concatenation dimension k must exist, i.e., 1 <= k <= ndims(A), where k shall be an integer 
number. 

• Size matching: arrays A, B, c, ... must have identical dimension sizes with the exception of the 
size of dimension k, i.e., size (A, j ) = size(B,j) = size(C,j) = ..., for 1 <= j <= n and j 
<>k. 
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• Argument arrays A, B, c, ... must have equivalent maximally expanded element types. The 
element type of the result array is the element type of the maximally expanded type of the 
arguments. Real and integer subtypes can be mixed, resulting in a Real result array where the 
integer numbers have been transformed to Real numbers. 

The above rules make it possible to mix integers and real numbers as in the example below: 

Real[2,3] rl=cat(l, {{1.0, 2.0, 3}}, {{4, 5, 6}}); 
Real[2,6] r2 = cat(2, rl, rl); 
The sizes of the dimensions of the result array R = cat(k, A, B, c , . . . ) are the same as in each of the 

array arguments, apart from the Ath dimension where size(R,k) = size (A, k) + size(B,k) + 
size (C, k) +..., and so on. For example, concatenating along the 3rd dimension and adding the sizes of 
that dimension: 

Real[1,1,1] A = {{{1}}}; 
Real[1,1,2] B = {{{2,3}} }; 
Real[1,1,3] C = {{{4,5,6}}}; 
Real[1,1,6] R = cat(3,A,B,C); // Result value: {{{1,2,3,4,5,6}}} 

7.3.2 More on Concatenation Along the First and Second Dimensions 

Earlier in this chapter, we introduced special operators for concatenation along the first and second 
dimensions. Below is a more precise definition of these operators in terms of the general cat function. The 
function promote used below is a pseudo function that keeps the contents of its array argument unchanged 
but increases its dimensionality by adding one-sized dimensions to the right in the list of dimensions, for 
example, if M has dimension Real[3,4] then promote^M,4) has the type Real[3,-4,1,1]. The function 
promote{A,n) cannot be a function in Modelica since the number of dimensions of the returned array is not 
known at compile time when n is variable. 

• Concatenation along the first dimension: 
[A; B; C; ...] = cat(l, promote(A,n), promote(B,n), promote(C,n), ...) 

where 
n = max(2, ndims(A), ndims(B), ndims(C), ....). 

• Concatenation along the second dimension: 
[A, B, C, ...] = cat(2, promote(A,n), promote(B,n), promote(C,n), ...) 

where 
n = max(2, ndims(A), ndims(B), ndims(C), ....). 

The following additional rules apply to these operators: 

• The two forms can be mixed. The form [...,...] has higher precedence than [...;...]; e.g. [a, b; c, d] 
is parsed as [[a,b]; [c,d]]. 

• The form [A] with just one argument is allowed. The argument A is promoted to at least two 
dimensions, i.e., [A] = promote^A,n) where n = max (2, ndims (A) ) . 

• There must currently be at least one argument, i.e., [] is not yet defined, but it may soon be 
defined and will then be equivalent to {{}}, i.e., with dimensionality 1x0. 

7.3.2.1 Examples 
Real si, s2; // Scalars 
Real vl[nl], v2[n2]; // Vectors 
Real Ml[ml,n], M2[m2,n], M3[n,ml], M4[n,m2]; // Matrices 
Real Kl[ml,n,k], K2[m2,n,k]; // 3-dimensional arrays 



C hapter 7 Array s 321 

[vl;v2] // A matrix of type Real[nl+n2, 1] 
[Ml;M2] // A matrix of type Real[ml+m2, n] 
[M3,M4] // A matrix of type Real[n, ml+m2] 
[K1;K2] // An array of type Real[ml+m2, n, k] 
[s1;s2] // A matrix of type Real[2, 1] 
[si,si] // A matrix of type Real[l, 2] 
[si] // A matrix of type Real[l, 1] 
[vl] // A matrix of type Real[nl, 1] 
Real[3] vl = [1, 2, 3}; 
Real [3] v2 = {4, 5, 6}; 
Real[3,2] K1 = [vl, v2]; 
Real[3,2] K2 = [vl, [4;5;6]]; // Indentical values in K1 and K2 
Real[2,3] K3 = [1, 2, 3; 4, 5, 6]; 
Real [1,3] K4 = [1, 2, 3] ; 
Real [3,1] K5 = [1; 2; 3] ; 

7.4 Array Indexing 

The array indexing operator ...[...] , for example, as in arr [4, 2], is used to access array elements for 
retrieval of their values or for updating these values. An indexing operation is assumed to take constant 
time, that is, largely independent of the size of the array. The indexing operator takes two or more 
operands, where the first operand is the array to be indexed and the rest of the operands are index 
expressions: 

arrayname[indexexprl, indexexpr2, ...] 

For example: 
Real[2,2] A = {{2,3},{4,5}}; // Definition of Array A 
A[2,2] // Retrieves the array element value 5 
A[l,2] := ... // Assignment to the array element A[l,2] 
Index expressions can be either scalar integer, Boolean, or enumeration expressions; or integer, 

Boolean, or enumeration vector expressions. The type of an index expression must be the same as the type 
of the array dimension it is indexing. For example, if an array is declared with a dimension that is an 
enumeration as in the Real [Sizes] example below, the index expression must have the same 
enumeration type. 

Scalar index expressions is the common case and is usually used to access single array elements, 
whereas vector index expressions are always used to access array slices, i.e., subsections of arrays. 

The array indexing operator is currently restricted to array variables and cannot be applied to general 
array expressions. For example, consider a function f returning an array: 

f(x)[2] // Illegal, indexing is only allowed for array variables! 
Arrays can be indexed by integers as in the above examples, or Booleans and enumeration values, for 
example: 

type Sizes = enumeration(small, medium); 
Real[Sizes] sz = {1.2, 3.5}; 
Real[Boolean] bb = {2.4, 9.9}; 

sz[Sizes.small] // Ok, gives value 1.2 
bb[true] // Ok, gives value 9.9 
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7.4.1 Indexing with Scalar Index Expressions 

Array indexing using scalar integer index expressions is usually used to retrieve or update single array 
elements. The value of the index expression for the /th dimension of an array x must be within the bounds 
of the size of that dimension, that is, 1 <= indexvalue <= size(x, i). For example: 

Real[2,3] B = {{1,2,3},{4,5,6}} 
Real[3] v = {10,11,12}; 
B [ 1,3] // Retrieves the value 3 
v[2] // Retrieves the value 11 
v [ 4] // Error, index out of range! 

However, since multidimensional arrays are defined as arrays of arrays in Modelica it is also possible to 
access sub-arrays using simple scalar indexing. For example, the array B in the previous example can also 
be regarded as a one-dimensional array of vectors: 

B[2] // Retrieve B[2] giving {4,5,6} 
B[1] := v; // Update B to become {{10,11,12},{4,5,6}} 

7.4.1.1 Indexing with Boolean or Enumeration Values 

As already mentioned above, arrays can be indexed using values of enumeration types or the Boolean 
type, not only by integers. For example: 

type ShirtSizes = enumeration(small, medium, large, xlarge); 
Real[ShirtSizes] w; 
Real[Boolean] b2; 
w[ShirtSizes.large] := 2.28; // Assign a value to an element of w 
b2[true] 10.0; 
b2 [ShirtSizes.xlarge] := 5; // Error, b2 was declared with Boolean dimension 
w[2] := 8; // Error, w was declared with ShirtSizes dimension 

7.4.1.2 I ndexi ng with end 

We observe that array index expressions involving calls to the built-in function size(...) are fairly 
common. Such expressions, e.g. A [size (A, l) -l, size (A, 2) ] when indexing the matrix A, can 
sometimes become rather complicated and hard to read. 

To enable more concise and readable notation, the end keyword in Modelica can also be used as a 
scalar expression within array subscripts, equivalent to a call to size(...), under the following conditions: 

• The expression end may only appear inside array subscript expressions. 
• If used within the /th subscript of an array A, end is equivalent to size (A, i), provided the /th 

subscript index type is a subtype of Integer. 
• If end is used inside nested array subscripts, it refers to the most closely nested array. 

For example: 

A[end-l,end] // Same as: A[size(A,1)-1,size(A,2)] 
A[v[end],end] // Same as: A[v[size(v,1)],size(A,2)] 

The second line in the example contains an end inside a nested array subscript v [end], where end refers 
to the most closely nested array v and therefore is equivalent to s i z e (v, 1). 

7.4.2 Accessing Array Slices with Index Vectors 

When at least one of the index expressions in an array indexing operation is a vector expression, a slice or 
subsection of the array is accessed rather than a single element. Such an index vector must be a vector of 
integer, Boolean, or enumeration values, where each value must be within the size bounds for the 
particular array dimension. An index vector can be constructed in any way but it is often convenient to use 
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the colon operator to construct a range vector of index values. A single colon without operands (:) used as 
an index expression at a dimension k of an array of x denotes all indices of that dimension and is 
equivalent to the index vector l:size(X,k). 

The number of dimensions and dimension sizes of the returned array slice is determined by how many 
index expressions are vectors rather than scalars, and the sizes of those vectors. For example: 

Real[3,2] X = {{1,2},{3,4},{8,9}}; 
Real [4] w = {15,16,17,18}; 
X [ 2,1] // Retrieves the value 3 
X [ : ,1] // Gets the first column of X as the vector {1,3,8} 
X[2,:] // Gets the second row of X as the vector {3,4} 
X [2,1:2] // Same as above, i.e. {3,4} 
X [ 2,{1,2}] // Same as above, i.e. {3,4} 
X [ 2,{2 } ] // Half of the above vector, i.e. {4} 
X [ :,1:1] // Gets the first column of X as column matrix {{1},{2 },{8}} 
X [ {2}, : ] // Gets the second row of X as the row matrix {{3,4}} 
X[{2,3},{1,2}] // Extract submatrix giving {{3,4},{8,9}} 
w [ 2 : 4] // Get the 2:nd through 4:th elements as {16,17,18} 
w [ {1,3 } ] // Get the l:st and 3:rd elements as {15,17} 
w [ 1: 2 : 4] // Get the 1:st to 4:th step 2 elements as {15,17} 
w[3:4] := {1,2}; // Assignment causing w to become {15,16,1,2} 

7.4.3 Array Record Field Slices of Record Arrays 

If A is an array of records and m is a field of that record type, the expression A.m is interpreted as an array 
field slice operation of that record array. It returns the array of fields: {A[\].m, A[2].m, A[?>}.m, ...}. 

For example, assume a record Person with three fields: name, age, and children: 
record Person 

String name; 
Integer age; 
String[2] children; 

end Person; 
For the purpose of this example, we use the record constructor function Person(name, age, children) 
returning a Person record, which in Modelica is automatically defined as a byproduct of the Person 
record declaration (see Section 3.18.4, page 118). This function is used to define the contents of a small 
array persons consisting of Person records. 

Person[3] persons = 
{Person("John", 35, {"Carl", "Eva"} ), 
Person("Karin", 40, {"Anders","Dan"}), 
Person("Lisa", 37, {"John","Daniel"}) 
}; 

The record field slices persons . name and persons . age contain the following results: 

persons.name // Returns: {"John","Karin","Lisa"} 
persons.age // Returns: {35,40,37} 

If the field m is an array, the slice operation is valid only if size(^[l].m)=size(,4[2].w)=... to ensure that 
the returned array is rectangular. This is fulfilled for the array field slice persons. children since: 

size(persons[1].children) = size(persons[2].children) = {2} 
The field slice evaluates as follows: 

persons.children // Returns: {{"Carl", "Eva"}, 
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// {"Anders","Dan"}, 
// {"John","Daniel"}) 

It is also possible to mix slicing and indexing: 

persons.children[1] // Returns: {"Carl", "Anders", "John"} 

7.5 Using Array Concatenation and Slices 

In order to properly use Modelica arrays and array operations, especially concatenation and slices, it is 
useful to review some of the existing properties of Modelica arrays and compare with other languages 
often used for array computation, with emphasis on MATLAB. 

The Modelica array concatenation and slice operations have been designed for multidimensional arrays 
and therefore can produce arrays of various dimensions, from one-dimensional vectors to matrices and 
multidimensional arrays. The special-purpose [...,...] and [...;...] concatenation operators are applicable to 
multidimensional arrays but are primarily intended for matrices and always produce arrays of at least two 
dimensions. Row vectors and column vectors do not exist in Modelica since vectors are one-dimensional 
entities. However, most array operators have been defined to implicitly treat a vector as a column vector 
since this is common in matrix algebra, with the exception of vector*matrix, where the vector is treated as 
a row vector. 

7.5.1 Advice for Users with MATLAB Background 

Modelica arrays and array operations have been carefully designed to provide a rather high degree of 
MATLAB compatibility in syntax and semantics, while still conforming quite well to mainstream strongly 
typed programming languages. However, there are important differences stemming from the fact that 
Modelica has strongly typed multidimensional arrays, whereas MATLAB was designed for matrix 
computation: 

• MATLAB scalars and vectors are in reality matrices, and behave as such. So-called row vectors 
are in fact row matrices (matrices with one row), and column vectors are column matrices. 
MATLAB does not have strong type checking. Array slices always produce matrices. 

• Modelica has strongly typed multidimensional arrays. Scalars are true zero-dimensional entities, 
vectors are one-dimensional entities, matrices are two-dimensional entities, and so on. Array 
slices produce vectors, matrices, or multidimensional arrays depending on the form of the slice 
operation. This is standard for strongly typed programming languages, for example, Fortran90 or 
C++, with array data types and/or libraries. 

The following properties give a high degree of MATLAB compatibility: 

• Vectors are implicitly treated as column vectors with the exception of vector*matrix where vector 
is treated as a row vector. 

• The special-purpose [...,...] and [...;...] square bracket concatenation operators primarily intended 
for matrices promote scalar arguments to 1 x 1 matrices and vector arguments to column matrices. 
This allows the use of MATLAB notation for creating matrices from scalar arguments. 

The user with a MATLAB background should watch out for the following language differences that 
can cause mistakes: 

• The {...} curly bracket operator is an array constructor—not a concatenation operator. It always 
increases the dimensionality of the result by 1 compared to its arguments. Thus it can be used to 
create vectors from scalar arguments, e.g. {1,2,3}, but not to concatenate vectors since application 
of {} on vectors will create a matrix. 
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• The [vl,v2] and [v/;v2] concatenation operators cannot be used to concatenate two vectors vl and 
v2 into a result vector since a matrix always will be returned. Instead use cat(l,v/,v2), which 
returns a vector. 

• The array slice operator when used on a matrix can return a matrix, a vector, or a scalar depending 
on whether two of its arguments are vectors, one argument is a vector, or no arguments are 
vectors. It is advisable to make sure that all arguments to an array slice operation used together 
with the special-purpose concatenation operators [...] are vectors since the slice then will return an 
array instead of a vector that unintentionally might be promoted to a column matrix. For example, 
use [M2[{2},:]; M3[{3},:] or [M2[2:2,:]; M3[3:3,:] rather than [M2[2,:]; M3[3,:] to concatenate 
row matrices from M2 and M3. Alternatively use the cat(...) function. 

Certain notation in MATLAB, for example, the apostrophe ' operator has not been introduced in 
Modelica since it has a different meaning in mathematics (differentiation) and is easy to miss when 
reading code. Instead a built-in transpose function is available in Modelica. 

7.5.2 Usage Examples 

The following usage examples show a few common programming situations where both array 
concatenation and array slices are involved, and how to do this correctly in order to avoid certain mistakes. 

7.5.2.1 Appending an Element to Vectors and Row/Column Matrices 

The first equations set XA1, XA2, XA3, and XA4 equal to row matrices and XB1, XB2 equal to column 
matrices respectively, created by appending an additional element to row/column matrices PA and PB. 

Real[1,3] PA = [1,2,3] 
Real[3,1] PB = [1;2;3] 
Real[3] q = {1,2,3} 

// A row matrix value 
// A column matrix value 
// A vector value 

Real[1,4] XA1,XA2,XA3,XA4 ; // Row matrix variables 
Real[4,1] XB1,XB2; // Column matrix variables 
Real[4] y; // Vector variable 
equation 
XA1 = [PA, 4]; // Append OK, since 4 is promoted to {{4}} 
XA2 = cat(2,PA,{{4}}); // Append OK, same as above but not promoted 

XBl = [PB; 4]; // Append OK, result is {{1},{2},{3 } ,{4 } } 
XB2 = cat(l,PB,{{2}}); // Append OK, same result 

y - cat(1,q,{4}); // Vector append OK, result is {1,2,3,4} 
//y = (q,4}; ERROR! {...} not a concatenation operation 
XA3 = [-1,zeros(1,2),1]; //Append OK. result: {{-1,0,0,1}} 
XA4 - cat(2,{{-1}},zeros(1,2),{{1}}); 
// Append OK result: {{-1,0,0,1}} 

//XA4 = {-1,zeros(1,2),1}; Error! args have incompatible dimensions 

7.5.2.2 Composing a Blocked Matrix from Sub-matrices 

The following example shows three very similar ways of constructing a blocked matrix from sub-matrices. 
The first two variants follow the rule of always making sure that returned array slices as arguments to the 
special-purpose concatenation operators are matrices. The third variant breaks this rule, since two of the 
array slices return vectors, causing an error. The first vector -Q[L:3, 3] happens to be promoted to a 
column matrix according to the default promotion rules for [...,...], which is fine. However, the second 
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vector -Q [3,1:3] is also promoted to column matrix, which is wrong since a row matrix was intended, 
causing the error. 

Real[3,3] P = [1,2,3; 
4, 5,6; 
7,8,9]; // A 3x3 matrix value 

Real[6,6] Q; // Q consists of four 3x3 matrix blocks 
// to be defined by P apart from sign 

equation / / Variant 1 - OK 
Q [ 1: 3, 1 3] - P; // Upper left block 
Q [ 1: 3, 4 6] = [Q [ 1 : : 3, . 1: :2] , - -Q[1: 3, {3}]]; // Upper right block 
Q[4 : 6, 1 3] = [Q[l: : 2, , 1; : 3 ] ; r —Q [ { 3 }, 1:3]]; // Lower left block 
Q [4 : 6, 4 6] = P; // Lower Right block 

equation / / Variant 2 - OK 
Q[1: 3, 1 3] = P; // Upper left block 
Q[l:3, 4 6] = [Q[l: : 3, , 1: :2], - -Q[1: 3, 3:3]]; // Upper right block 
Q [4 : 6, 1 3] = [Q[1 : . 9 , 1: :3] , ' -Q[3 : 3, 1:3]]; // Lower left block 
Q[4 : 6, 4 6] = P; // Lower Right block 

equation // Variant 3 - ERROR! 
Q[l:3, 1: :3] = P; // OK! 
Q[1: 3, 4 : :6] - [Q[l: : 3, , 1: :2] , - -Q[l:3, 3] ] ; // OK, correct promotion 
Q[4:6, 1: :3] = [Q[l: : 2, , 1: :3] , ' -Q[3, 1 . : 3 ] ] ; // ERROR! 1 
Q[4 : 6, 4 ; : 6] = P; // OK! 

7.5.2.3 Cyclic Permutation of Matrix Rows or Columns 

Cyclic permutation can be achieved by a combination of concatenation operations and array slices or just 
array slices using a permutation vector. 

Real[1,3] WO = [1,2,3]; 
Real[2,3] XO = [1,2,3; 4,5,6]; 
Real[1,3] W; 
Real[2,3] X; 
Integer[3] p = {2,3,1}; 
algorithm 
W := [[2,3], 1]; 
W [{{2,3}}, {{1}}]; 

W := [WO[{1},2 : 3], WO[{1},{1}]]; 
W := [WO[1:1,2:3]# WO[1:1,1:1]]; 

// Row matrix 
// Matrix with two rows 
// Permuted Row matrix 
// Permuted Matrix with two rows 
// Permutation vector 

// OK, result: [2,3,1] = {{2,3,1}} 
// OK, same result: {{2,3,1}} 

// OK, result: {{2,3,1} } 
// OK, same result: {{2,3,1}} 

W := WO[:,p]; // OK, same result: {{2,3,1}} 

W := cat(2, WO[1:1,2:3], WO[1:1,1:1]); // OK, same result {{2,3,1}} 
//W := [WO[1,2:3], WO[1,1]]; ERROR, since W0[l,2:3] is a vector 

X := [XO[:,2:3], X0[:,{1}]]; // OK, X becomes [2,3,1; 5,6,4] 
X := X0[:,p]; // OK, X becomes [2,3,1; 5,6,4] 

X [ {1},:3 := [XO[{1},2:3],XO[{1},{1}]]; 
// OK, X becomes [2,3,1; 4,5,6] 

//X[1,:] := [X0[l,2:3],X0[1,1]]; 
// ERROR! Incompatible dimensions 
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7.6 Array Equality and Assignment 

Both of the operators denoting equation equality (=) and assignment (:=) are defined for arrays as well as 
for scalars. These operators are defined elementwise for arrays, that is, corresponding elements in the array 
operands are set equal or assigned. The dimensionality and size of the operands must be identical, and the 
element types must be equivalent. The element types can be simple built-in types and all types satisfying 
the requirements for a record. In case of record array elements the operations are applied element-wise for 
each declared record field element of the records. 

Note that relational operators such as —, <>, <=, etc. for use in Boolean expressions are not defined 
for arrays, only for scalars. The table below indicates the definitions of the operators = and := for various 
combinations of scalar and array types. The notation = / := means one of the operators = or := 

Table 7-1. Equality and assignment of arrays and scalars. 

Equality/Assign men t: Scalar b Array b [n,m,...] 

Scalar a Scalar, a = / := b -

Array a [n,m,...] elementwise: 
a [ j , k,...] = / := b [ j , k,...] 
j=l:n, k=l:m, ... 

Type of a Type o/b Result of a = b or a := b Operation (j=l :n, k=l :m) 
Scalar Scalar Scalar a = b or a := b 
Vector[ n] Vector[ n] Vector[ n] a[j] = b[j] or a£j] :=b[j] 
Matrix[n, m] Matrix[n, m] Matrix[n, m] a[j, k] = b[j, k] (also :=) 
Array[n, m, ... ] Array[n, m, ... ] Array[n, m, ... ] a[j, k, ... ] = b[j, k, ...] (also :=) 

The example below contains a vector equation for vl and a vector assignment for v2: 
Real[3] vl,v2; 
equation 
vl = {1,2,3}; 

algorithm 
v2 : - { 4 , 5 , 6 } ; 

The above vector equation and vector assignment are equivalent to the expanded scalar version below: 

Real[3] vl,v2; 
equation 
vl[l] - 1; 
vl [ 2] - 2; 
vl [ 3] = 3; 

algorithm 
v2 [1] := 4 ; 
v2[2] := 5; 
v2 [ 3 ] := 6; 

7.6.1 Declaration Equations and Assignments for Arrays Indexed by 
Enumerations and Booleans 

Arrays with the same element type, dimensionality, and dimension sizes can be used in declaration 
equations or declaration assignments, independent of whether the index types of dimensions are subtypes 
of Integer, Boolean, or enumeration types. Necessary type conversions of index types are done 
automatically. These are the only kind of equations and assignments allowed for whole arrays indexed by 
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enumeration and Boolean values. However, array elements of such arrays can still be used in any kind 
of equation or statement. 

In the following example the vector x, indexed by Booleans, is set equal to the value {22.4,33.5}: 
Real[Boolan] x = {22.4, 33.5}; 
The vectors w, w2, w3, and y are all indexed by values of the enumeration type Shirt Sizes. For 

example, the vector w, indexed by ShirtSizes, is set equal to the vector expression ones (4), which is 
indexed by integers (analogously for the other vectors). 

type ShirtSizes = enumeration(small, medium, large, xlarge); 
Real[ShirtSizes] w - ones (4); 
Real[ShirtSizes] w2 := ones(4); // Ok, declaration assignment (in function) 
Real[ShirtSizes] y = {1.4, 3.5, 2.8, 3.1}; 
Real[ShirtSizes] w3,w4; 
w3 = ones(4); // Error, equation only allowed in declaration equations 
w4 = ones(4); // Error, assignment only allowed in declaration assignments 

7.7 String Concatenation Array Operator 

Elementwise string concatenation operations on scalars or arrays of strings is available through the 
standard plus (+) operator or the element-wise plus ( .+) operator. The ( .+) operator is equivalent to (+) 
when both operands are scalars. 

The dimensionality and dimension sizes of both arguments must be the same. Elementwise 
concatenation of a scalar string with an arcay of strings is not defined with the (+) operator which is 
indicated by the tables below. A vector is a 1-dimensional array and a matrix is a 2-dimensional array. 

Table 7-2. Concatenation of strings and arrays of strings. 

String Concatenation: + Scalar b Array b [n,m,...] 
Scalar a scalar, a + b -

Array a [n,m,...] - elementwise: a[j,k,...] + b[j,k,...] 
j=l:n, k=l:m, ... 

Type of a Type of b Result of a + b Operation c := a + b (j=l:n., k=l:m) 

Scalar Scalar Scalar c :=a + b 

Vector[ n] Vector[ n] Vector[ n] c[j] ™ a[j] + b[j] 
Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j,k] := a[j, k] + b[j, k] 

Array[n, m, ... ] Array[n, m, ... ] Array[n, m, ... ] c [j, k, . . . ] := a[j, k , . . . ] + b[j, k, ...] 

Examples: 

{"a","b","c"} + "d" // Not allowed! 
{ "a ", "b", "c " } + {"d","d","d"} // Result: {"ad","bd","cd"} 
{"a","b","c"} + {"a","b"} // Not allowed, different array sizes! 

However, elementwise concatenation of a scalar string with an array of strings is defined with the ( . +) 
operator: 

Table 7-3. Element-wise concatenation of strings and arrays of strings. 

String Concatenation: . + Scalar b Array b [n,m,...] 
Scalar a scalar a . + b elementwise: a . + b [ j , k,... ] 

j =1 :n, k=l:m, ... 
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Array a [n,m,...] elementwise. Elementwise: a[j,k,.„] .+ b[j,k,...] 
a [ j , k,...] .+ b j=l:n, k=l:m, ... 
j=l:n, k=l:m, 

Type of a Type ofb Result of a . + b Operation c := a . + b (j=l:n, k=l:m) 

Scalar Scalar Scalar c := a .+ b 

Vector[ n] Vector[ n] Vector[ n] c [ i ] : = a [ j ] . + b [ j ] 

Matrtt[n, m] Matrix[n, m] Matrix[n, m] c [ j ,k ] :=a[ j ,k ] .+ b[j, k] 

Array[n, m, ... ] Array[n, m, ...] Array[n, m, ... ] c [j, k, . . . ] := a[j, k, . . . ] .+ b[j, k, . . . ] 

Examples: 

{"a","b","c"} .+ "d" // Result: {"ad","bd","cd"} 
"d" .+ {"a","b","c"} // Result: {"da","db","dc"} 
{"a","b","c"} .+ {"d","d","d"} // Result: {"ad","bd","cd"} 
{"a","b","c"} .+ {"a","b"} // Not allowed, different array sizes! 

7.8 Arithmetic Array Operators and Elementwise Operators 

Arithmetic operations on arrays and certain combinations of arrays and scalars are available through the 
standard arithmetic operators, addition (+), subtraction (-), division (/), and multiplication (*), as well as 
through the exponentiation (A) operator. The semantics of the array versions of these operators are of 
course different from the scalar case. 

Moreover, there are also five special elementwise arithmetic operators which are always performed 
elementwise: elementwise addition (.+), elementwise subtraction ( . - ) , elementwise division ( . / ) , 
elementwise multiplication ( . *), and elementwise exponentiation ( .A) . 

Addition (+) , subtraction(-) , and division (/) are defined as elementwise operations on elements of 
array operands. Elementwise operations for the combination of an array and a scalar operand are defined 
for multiplication (*) and division (/) but not for addition (+) and subtraction (-) where we instead have to 
use elementwise addition ( . +) and elementwise subtraction ( . -). 

The array multiplication operator (*) is defined only for vectors and matrices and is overloaded, that is, 
has several different definitions depending on the type of its arguments, see also Section 7.8.3, page 332. 
If both operands are vectors, then array multiplication means scalar product; otherwise, if the operands are 
vectors or matrices, then it means matrix multiplication. If one of the operands is a scalar, then the 
multiplication operation is defined as elementwise multiplication, which, however, is not available when 
both operands are arrays despite the fact that analogous elementwise operations are defined for addition 
and subtraction. The reason is that we have already used the multiplication notation (*) for the more 
common operation of matrix multiplication. Instead we can use (. *) for elementwise multiplication. 

Array exponentiation (A) is the same as repeated matrix multiplication and is therefore defined only 
when the first operand is a square matrix and the second operand is a nonnegative integer. Elementwise 
array exponentiation ( . A) is however available. 

7.8.1 Array Addition and Subtraction 

Elementwise addition and subtraction of scalars and/or arrays can be done with the (+), ( . +), and (-), ( . - ) 
operators. The operators ( . +) and ( . - ) are defined for combinations of scalars with arrays, which is not the 
case for (+) and (-). The ( . +) operator is equivalent to (+) and the ( . - ) operator is equivalent to ( - ) when 
both operands are scalars. 
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Table 7-4. Array addition and subtraction. 

Addition/Subtraction: 
+ / -

Scalar b Array b[n,m,...] 

Scalar a Scalar, a +/- b -

Array a [n,m,...] - elementwise. a[j,k,...] +/- b[j,k,...] 
j =1 :n, k=l:m, ... 

Type of a Type of b Result of a +/- b Operation c ;= a +/- b (j=l:n, k=l:m) 

Scalar Scalar Scalar c := a +/- b 

Vector[ n] Vector[ n] Vector[ n] c[j] := a[j] +/- b[j] 

Matrix[n, m] Matrix[n, m] Matrix[n, m] c[j,k] := a[j, k] +/-b[j, k] 

Array[n, m, ... ] Array[n, m, ... ] Array[n, m, ... ] c ü , k , . . . ] : = a [ j , k , . . . ] + / - b [ j , k , . . . ] 

Examples: 

{1,2,3} + 1 // Not allowed! 
{1,2,3} - {1,2,0} // Result: {0,0,3} 
{1,2,3} + {1,2} // Not allowed, different array sizes! 
{{1,1},{2,2}} + {{1,2},{3,4}} // Result: {{2,3},{5,6}} 

Table 7-5. Elementwise array and scalar addition and subtraction. 

Addition/Subtraction: 
.+ / .-

Scalar b Array b[n,m,...] 

Scalar a scalar: a .+/.- b elementwise: a . + /.- b[j,k,.„] 
j =1 :n, k=l:m, ... 

Array a [n,m,...] elementwise: 
a [ j , k,...] .+/.- b 
j=l:n, k=l:m, 

elementwise: 
a [ j , k,...] . + /.- b [ j , k,...] 

j=l:n, k=l:m, 

Type of a Type of b Result of a . + /. - b Operation c := a .+/.- b (j=l:n, k=l:m) 

Scalar Scalar Scalar c := a .+/.- b 

Scalar Array[n, m, ... ] Array[n, m, ...] c[j, k, . . . ] := a .+/.- b[j, k , . . . ] 

Array[n, m, ... ] Scalar m, ... ] c[j, k, ... ] := a[j, k, ... ].+/.- b 

Array[n, m, ... ] Array[n, m, ... ] m, ... ] c [ j , k , . . . ] := aD,k, . . . ] .+/ . - b[ j ,k , . . . ] 

Examples: 

{1,2,3} .+ 1 // Result: {2,3,4} 
1 •+ {1, ,2,3} / / Result: {2,3,4} 
{1,2,3} {1,2,0} // Result: {0,0,3} 
{1,2,3} -+ {1,2} // Not allowed, different array sizes 
{{1,1},' [2,2}} .+ {{1,2},{3,4} } // Result: {{2,3},{5,6}} 

7.8.2 Array Division 

Element-wise division between scalars and/or arrays can be done with the ( / ) and ( . / ) operators. The ( . / ) 
operator is equivalent to ( / ) when both operands are scalars. The operator ( . / ) is defined for all 
combinations of scalars with arrays, which is not the case for (/). 

Array[n, m, ... ] 

Array[n, m, ... ] 
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Table 7-6. Array and scalar division. 

Division: / Scalar b Array b [n,m,...] 
Scalar a scalar: a / b -

Array a [n,m,...] elementwise : a [ j, k,...] / b 
j=l:n, k=l:m, ... 

-

Type of a Type of s Result of a / s Operation c := a / s (j—l:n, k~l:m) 

Scalar Scalar Scalar c := a / s 

Vector[ n] Scalar Vector[ n] c[k] a[k] / s 

Matrix[n, m] Scalar m] c[j,k] := a[j, k] / s 

Array[n, m, ... ] Scalar m, ... ] c[j> k, ...] := a[j, k, ...] / s 

Examples: 

{2,4,6} / 2 
6 / {1,2,3} 
{1,2,3} / {1,2,2} 

/ / {1 /2 ,3} 
// Not allowed! 
// Not allowed! 

Table 7-7. Elementwise array and scalar division. 

Division: . / Scalar b b [n,m,...] 
Scalar a Scalar a . / b elementwise: a . / b [ j, k,...] 

j=l:n, k=l:m, ... 

Array a [n,m,...] elementwise: 
a [ j , k,...] ./ b 
j=l:n, k=l:m, 

elementwise: 
a [ j / k,...] ./ b[j,k,...] 

j=l:n, k=l:m, 

7>p<? o/a o/b o/a./ b Operation c:=a ./ b <j=l k=l:m) 

Scalar Scalar Scalar c := a / b 

Scalar Array[n, m, ... ] Array[n, m, ... ] c[ j ,k , . . . ] = a ./b[j, k , . . . ] 

Array[n, m, ...] Scalar m, ...] = a[j, k, . . . ] . / b 

^4rray[n, m, ... ] Array[n, m,...] [n, m, ...] = a[j, k, . . . ] . /b[ j , k , . . . ] 

Examples: 

{2,4,6} ./ 2 // Result: {1,2,3} 
12 ./ {2,4,6} // Result: {6,3,2} 
{2,4,6} ./ {1,2,2} // Result: {2,2,3} 
{1,2,3} ./ {1,2} // Not allowed, different array sizes! 

Sometimes an extra space is needed before an elementwise operator to clarify the difference compared to a 
number with a decimal point. 

Example: 

4./ [1,2;2,4] // Error, the dot in 4. makes: 4.0 / [1,2;3,4], not allowed! 
4 ./[1,2;2,4] // Fine, element-wise division, result: [4,2;2,1] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 

Array[n, m, ... ] 
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7.8.3 Linear Algebra Array Multiplication 

The multiplication operator (*) is interpreted as scalar product or matrix multiplication depending on the 
dimensionality of its array arguments. 

Table 7-8. Linear algebra array multiplication. 

Multiplication: * Scalar b Array b [n,m,...] orb[m,p] 
Scalar a 
Array a [n,m,...] scalar product a*b: 

Vector[n] * Vector[n] : S UM k ( a [ k ] * b [ k ] ) , 
k=l : n 

matrix multiplication c := a*b 

Vector[m] := Vector[n]*Matrix[n,m]\ 
c[k] SUMj(a[j]*b[j, k] ) , 
j=l:n, k=l:m 

Vector[n] : = Matrix[n,m] * Vector[m] : 
c[j] := SUMk(a[j,k]*b[k]), j=l:n, k=l:m 

Matrix[n,p] := Matrix[n,m]*Matrix[m,p]: 
c[j,r] := SUMk(a[j , k]*b[k,r]), j=l:n, 
k=l:m, r=l:p 

Type of a Type of b Type of a * b Operation c : = a *b 
Vector [n] Vector [n] Scalar c := sumk(a[k]*b[k]), k=l :n 

Vector [n] Matrix [n, m] Vector [m] c[j] := sumk(a[k]*b[k, j]), j=l:m, k=l:n 

Matrix [n, m] Vector [m] Vector [n] c[j] :=sumk(a[j,k]*b[k]) 
Matrix [n, m] Matrix [m, p] Matrix [n, p] c[i, j] = sumk(a[i, k]*b[k, j]), i=l :n, k=l :m, j=l :p 

Examples: 

{1 ,2 ,3} * { 1 , 2 , 2 } 

{{1,2},{3,4}} * {1,2} 
{1,2,3} * {{1},{2},{10}} 
{1,2,3} * [ 1; 2; 10] 

// Scalar product: 11 

// Matrix mult: {5,11} 
// Matrix mult: {35} 
// Matrix mult: {35} 

{{1,2},{3,4}} * {{1,2},{2,1}} // Matrix mult: {{5,4},{11,10}} 
[1,2; 3,4] * [1,2; 2,1] // Matrix mult: {{5,4},{11,10}} 
{{1,2 },{3,4}} * {1,2,3} // Error, incompatible array sizes! 

7.8.4 Elementwise Array Multiplication 

Elementwise multiplication between scalars and/or arrays can be done with the (*) and ( . *) operators. The 
( .* ) operator is equivalent to (*) when both operands are scalars. The elementwise operator ( . * ) is 
defined for all combinations of scalars with arrays, and also between arrays, which is not the case for (*). 
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Table 7-9. Scalar and scalar to array multiplication with *. 

Multiplication: * Scalar b Array b [ n,m,...] 
Scalar a Scalar. a*b elementwise: a*b[j,k,...] 

j =1 :n, k=l:m, ... 
Array a [n,m,...] elementwise : 

a [ j , k,...] * b 
j=l:n, k=l:m, ... 

Type of s Type of a Type of s *a and a* s Operation c := s*a or c := a*s (j=l:n, k=l:m) 

Scalar Scalar Scalar c := s * a 

Scalar Vector [n] Vector [n] c[j] :=s* a[j] 
Scalar Matrix [n, m] Matrix [n, m] c[j,k] := s* a[j, k] 

Scalar Array[n, m, ...] Array [n, m, ...] c[j, k,...] := s*a[j, k,...] 

Examples: 

{1,2,3} * 2 // Result: {2,4,6} 
2 * {1,2,3} // Result: {2,4,6} 

Table 7-10. Elementwise array and scalar multiplication with . *. 

Multiplication: . * Scalar b Array b[n,m,...] 
Scalar a Scalar , a . * b elementwise: a . * b [ j , k,...] 

j =1 :n, k=l:m, ... 

Array a [n,m,...] elementwise: 
a [ j , k,...] .* b 
j = 1 : n, k= 1 : m, 

elementwise: 
a [ j , k,...] .* b[j,k,...] 

j=l:n, k=l:m, 

Type of a Type of b Type of a . * b Operation c:=a .* b (j=l:n, k=l:m) 

Scalar Scalar Scalar c := a .* b 

Scalar Array[n, m, ... ] Array[n, m, ... ] c[ j ,k , . . . ] = a.* b[j, k, ...] 

Array[n, m, ... ] Scalar Array[n, m, ... ] = a[j, k, ...].* b 

Array[n, m, ...] Array[n, m,...] Array [n, m,...] = a[j, k, ...].* b[j, k , . . . ] 

Examples: 

{1,2,3} .* 2 
2 .* {1,2,3} 
{2,4,6} .* {1,2,2} 
{1,2,3} .* {1,2} 

// Result: {2,4,6} 
// Result: {2,4,6} 
// Result: {2,8,12} 
// Not allowed, different array sizes! 

7.8.5 Square Matrix Array Exponentiation 

Array exponentiation of a square matrix with an integer exponent is defined as repeated matrix 
multiplications. 

Exponentiation of two scalars a and b, aAb, is defined as equivalent to pow (double a, double b) 
in the ANSI C library if both a and b are Real scalars. A Real scalar value is returned. If a or b are 
Integer scalars, they are automatically promoted to Real. 
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The consequences of exceptional situations, such as a==0. 0 and b<=0 . 0, a<0 and b is not an integer, 
or overflow, are undefined. 

Table 7-11. Square matrix array and scalar exponentiation. 

Exponentiation: A Scalar b Array b [n, n] 
Scalar a Scalar, a A b -

Array a [n, n] 
(square matrix) 

a A b = a*a*a*... 
b multiplications, b>=0 
aA0 = identity(size(a,1)) 
aAl = a 

Examples: 

{{1,2},{1,2}} A 0 //Result: {{1,0 },{0,1} } 
[1,2; 1,2] A 1 // Result: {{1,2},{1,2} } 
[1,2; 1,2] A 2 // Result: {{3,6},{3,6} } 
[1,2; 1,2] A 2.5 // Error, non-integer exponent! 
[1,2,3; 1,2,3] A 2 // Error, non-square array! 
aA3 = a*a*a; 
aA0 = identity(size(a,1)); 
assert(size(a,1)==size(a,2),"Matrix must be square"); 
aAl = a; 
Elementwise exponentiation between scalars and/or arrays can be done with the ( . A ) operator. The 

( . A ) operator is equivalent to (A) when both operands are scalars. The element-wise operator ( . A ) is 
defined for all combinations of scalars with arrays, and arrays with arrays, which is not the case for (A). 

Table 7-12. Elementwise array and scalar exponentiation. 

Exponentiation: . Scalar b Array b[n,m,.„] 
Scalar a Scalar, a .A b elementwise: a . A b [ j, k,...] 

j =1 :n, k=l:m, ... 
Array a [n,m,...] elementwise. 

a [ j , k,...] .A b 
j=l:n, k=l:m, 

elementwise: 
a [ j , k,...] .A b[j,k,...] 

j=l:n, k=l:m, 

Type of a Type of h Type of a A b Operation c:=a .A b (j=l:n, k=l:m) 

Scalar Scalar Scalar c :=a A b 

Scalar Array[n, m, .. . ] Array[n, m, ... ] cU,k, . . . ] = a ,A b[j, k, ...] 

Array[n, m, ... ] Scalar Array[n, m, ... ] cLj> k, ...] = a[j, k , . . . ] A b 

Array[n, m, . . .] Array[n, m,...] Array [n, m,...] = a[j, k , . . . ] Ab[j , k , . . . ] 

Examples: 

{2,4,6} .A 2 
2 .A {1,2,3} 
{2,4,6} .A {1,2,2} 
{1,2,3} .A {1,2} 

// Result: {4,16,36} 
// Result: {2,4,8} 
// Result: {2,16,36} 
// Not allowed, different array sizes! 

Sometimes an extra space is needed before the elementwise exponentiation operator to clarify the 
difference compared to a number with a decimal point. 

Examples: 

2 . ' 
2 . 

[1,2;2,4] // Error, the dot in 2. makes: 2.0 A [1,2;3,4], not allowed! 
v [1,2;2,4] // Fine, element-wise exponentiation, result: [2,4;4,16] 
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7.9 Built-in Array Functions 

A number of built-in functions for array expressions are provided in Modelica. These functions are directly 
available and need not be imported from some package in the standard library before being used. The 
built-in array functions can be divided into six groups: 

• Dimension and size functions. 
• Conversion functions for changing the dimensionality of scalars and arrays. 
• Constructor functions for creating array values. 
• Reduction functions for computing scalar values from arrays. 
• Matrix and vector algebra functions. 
• Array concatenation functions. 

In the following subsections we use boldface for built-in array function names in examples for 
visibility, even if this is not according to the Modelica code formatting conventions. 

7.9.1 Array Dimension and Size Functions 

The following built-in functions return the number of dimensions of an array, the sizes of its dimensions, 
or the size of a specific dimension. 

ndims (A) Returns the number of dimensions k of array A, with k >= 0. 
size (A, i) Returns the size of dimension i of array A where 1 <= i <= ndims (A) . 
size (A) Returns a vector of length ndims (A) containing the dimension sizes of A. 

Examples: 
Real[4,1,6] x; 
ndims(x); II 
size(x,1); // 
size(x); // 
size(2*x+x) = size(x); // 

returns 3 
returns 4 
returns the vector {4, 1, 6} 
this equation holds 

7.9.2 Dimensionality Conversion Functions 

The following conversion functions convert scalars, vectors, and arrays to scalars, vectors, or matrices by 
adding or removing one-sized dimensions. 

scalar(A) Converts the array A containing a single element to a scalar by returning 
this element. All dimensions of array A must have size 1, i.e., 
size (A, i) = 1 for l <= i <= ndims (A) . The operation removes 
all those dimensions. 

vector(A) Converts A to a vector. If A is a scalar, then returns the one element 
vector {A}. Otherwise, if A is an array with at most one dimension of 
size > 1, then returns a vector containing all the elements of the 
array. 

matrix(A) Converts A to a matrix. If A is a scalar, then returns {{A}}. If A is a 
vector {a, b, c,...}, then returns the column matrix 
{{A}, {B}, {C},...}. Otherwise, if A is an array for which all but the 
first two dimensions must have size 1, i.e., size (A, i) - l for 3 
<= i <= ndims (A), then returns a matrix obtained by eliminating all 
but the first two dimensions of A. This matrix contains all the elements 
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1 l ° f A -

Examples: 

Real [3] vl - {1.0, 2.0, 3.0}; 
Real[3,1] ml = matrix(vl); r // ml contains {{1.0}, {2.0}, {3.0 
Real[3] v2 = vector(ml); r // v2 contains {1.0, 2.0, 3.0} 
Real[1,1,1] m2 - {{{4.0}}}; 
Real si = scalar(m2); : // si contains 4 .0 
Real[2,2,1] m3 - {{{1.0}, {2. .0}}, {{3.0},{4.0}}} 
Real[2,2] m4 = matrix(m3) // m4 contains { {1.0,2.0}, {3.0,4.0 

7.9.3 Specialized Constructor Functions 

An array constructor function constructs and returns an array computed from its arguments. Most of the 
constructor functions in the table below construct an array by filling in values according to a certain 
pattern, in several cases just giving all array elements the same value. The general array constructor with 
syntax array (...) or {...} is described elsewhere in this chapter in more detail, and is just included here 
for completeness. 

Note that even though the functions zeros(...), ones(...), and identity(...) return Integer arrays, 
they can also be used in a context requiring Real arrays, since the integer elements of the returned array 
then will be converted to real numbers. 

array (xl,x2,...) 
{xl,x2,...} 

This is the general array constructor function described in the separate 
section on array constructors, with the alternative syntax {xl,x2,...}, 
constructing an array containing the elements xl, x2, etc. Repeated 
application of this function constructs multidimensional arrays. 

zeros(ni,n2,n3,...) Constructs and returns an ni x n2 x n3 x ... integer array with all elements 
equal to zero (ni >= 0). The function has at least one argument. 

ones(ni,n2,n3,...) Constructs and returns an ni x n2 x n3 x ... integer array with all elements 
equal to 1 (n* >=0). The function has at least one argument. 

fill(s,nhn2,n3,...) Creates and returns the ni x n2 x n3 x ... array (nj >= 0) with all elements 
equal to the value of the expression s, which can have any simple type, 
record type, or array type. The returned array has the same element type as s. 
A recursive definition of fill is: fill(s,ni,n2,n3, ...)= fill(f ill(s,n2,n3, ...), 
ni); f ill(s,n)={s,s,..., s}. The function has at least two arguments. 

identity(n) Creates and returns the n x n integer identity matrix, with ones on the 
diagonal and zeros at all other places. 

diagonal(v) Constructs and returns a square matrix with the elements of vector v on the 
diagonal and all other elements zero. 

linspace(xl,x2,n) Constructs and returns a Real vector with n equally spaced elements, 
such that if v : =linspace(xl,x2,n), then 
v[i] = xl + (x2-xl)*(i-l)/(n-l) for 1 <= i <= n, n >= 2. 

Examples of using the specialized array constructor functions in the above table: 

zeros(2,3) // Constructs the matrix {{0,0,0}, {0,0,0}} 
ones(3) // Constructs the vector {1,1,1} 
fill(2.1,2,2) // Constructs the matrix 
{ { 2 . 1 , 2 . 1 } , { 2 . 1 , 2 . 1 } } 
Boolean check[3,4] = fill(true, 3, 4); // Fills a Boolean matrix 
identity(3) // Creates the matrix {{1,0,0}, {0,1,0}, 
{0 ,0 ,1}} 
diagonal({1,2,3}) // Creates the matrix {{1,0,0}, {0,2,0}, {0,0,3}} 
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linspace(0.0,8.0,5) 11 Computes the vector {0.0, 2.0, 4.0, 6.0, 8.0} 

7.9.4 Array Reduction Functions and Operators 

An array reduction function "reduces" an array to a scalar value, that is, computes a scalar value from the 
array. The only allowed Modelica array reduction functions are the four built-in functions specified in the 
table below, based on the corresponding associative elementary arithmetic operations (+, *) and functions 
(min, max). Note that none of these four reduction functions give rise to events, even though arguments to 
the functions could do that. 

min(A) Returns the smallest element of array A as defined by the < operator. 
max(A) Returns the largest element of array A as defined by the > operator. 
sum(A) Returns the sum of all the elements of array A. 
product(A) Returns the product of all the elements of array A. 

Below are a few example calls to these 
min ({1, -1, 7}) 
max{[1,2,3; 4,5,6]) 
sum ({{1,2,3},{4,5,6}}) 
product({3.14, 2, 2}) 

functions returning scalar results: 

/ / Gives the value -1 
/ / Gives the value 6 
/ / Gives the value 21 
/ / Gives the value 12.56 

7.9.4.1 Array Reduction Operators with Iterators 

The array reduction functions min, max, sum, and product mentioned in the previous section are not just 
ordinary functions; they can also be used in a more general form as reduction operators with iterators: 

The general syntax for a reduction operator is as follows: 

functionname ( expression for iterators ) 

where iterators is a comma-separated list of elements, each of which is an iterator, and functionname is 
either min, max, sum, or product, each representing an associative operator as in these examples: 

min(iA2 for i in {1,3,7}) // min(min(1, 9), 49)) = 1 
max(iA2 for i in {1,3,7}) // max(max(1, 9), 49)) = 49 
sum(iA2 for i in {1,3,7}) // 1+9+49 = 59 
product(iA2 for i in {1,3,7}) // 1*9*49 - 441 
The evaluation order of the expressions ( i A 2 in the above examples) is not specified and should 

not matter. The result is of the same type as expression, and is constructed by evaluating expression 
for each value of the iterator variable and computing the sum, product, min, or max of the computed 
elements. 

The syntax and evaluation rules for the iterators are identical to those for array constructors with 
iterators (see Section 7.2.2, page 316). 

As we have seen from the above examples, an iterator has the following structure: 

ident in range-expression 

The range-expression inside an iterator should be a vector expression, that is, a one-dimensional array, (or 
be a vector deduced from a type or the context, see comment at the end of this section), and is evaluated 
once for each reduction operator in the local scope immediately enclosing the reduction operator. The 
reason it needs to be a vector expression is because the value of the iterator needs to be a scalar. The scope 
of the iterator variable ident is the expression inside the reduction operator. The iterator variable ident may 
hide variables with the same name in enclosing scopes, analogous to for-loops or for-equations. 

By expanding the iterators inside the reduction operator syntax we obtain: 
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functionname ( expression for ident in range-expression, . . . ) 

where the following restrictions and conditions apply depending on the values of expression and range-
expression: 

Function name Restriction on expression Result if range-expression is an empty vector 
min Scalar enumeration, Boolean, 

Integer, or Real. 
Maximum value of the type (e.g. 
Modelica. Constants . inf for Real) 

max Scalar enumeration, Boolean, 
Integer, or Real. 

Minimum value of the type (e.g. 
-Modelica. Constants . inf for Real) 

sum Real or Integer. 0 or zeros (...) 
product Scalar Integer or Real. 1 

We show a few additional examples. A standard sum of the variable / for i in the range 1 to 10, 

V 1 0 • -

can be expressed as the following sum reduction operator expression: 

sum(i for i in 1:10) 
A sum of the squares of i for i in the set {1,3,7,5}, 

X'-2 = 

¿-e6{i,3,7,5} 1+9+49+25 = 84 
is represented as follows: 

sum(i

A

2 for i in {1,3,7,5}) 

A product of expressions like (a • bn - bl2), 

n (a-bn-bi2) = 
<=' (a-bu-bl2)+(a-b2l-b22) + ...+(a-btll-bn2) 

can be expressed as a product reduction expression: 

product(a*b[i,1]-b[i,2] for i in l:n) 
We can combine the product reduction operator and the array constructor {} for collecting products 

into a vector. Note that the product for an empty iteration vector l : 0 is 1 according to the above table. 

{product(j for j in l:i) for i in 0:4} // Gives {1,1,2,6,24} 
The range expression in an iterator may be left out if the range can be deduced from the use of the 

iteration variable ident in an index position of an array with known dimension size, e.g.: 

Real x[5] = {1,2,3,4,10}; 
Real xsuml = sum(x[i] for i in 1:size<x,1)); // result is 20 
Real xsum2 = sum{x[i] for i); // same result, range deduced to be 1:5 
See Section 9.2.5.1, page 428, for more details regarding automatic deduction of iteration ranges. 

Boolean or enumeration types can also be used as ranges, see Section 9.2.5, page 427. 

7.9.5 Matrix and Vector Algebra Functions 

The following set of functions are rather common in matrix and vector algebra, but are not associated with 
any Modelica operator symbol. The function transpose can be applied to any matrix. The functions 

sum(iA2 for i in {1,3,7,5}) 

A product of expressions like (a • bn - bl2), 

A product of expressions like (a • bn - bl2), 

A product of expressions like (a • bn - bl2), 
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outerProduct, symmetric, cross and skew require Real/Integer vector(s) or matrix as input(s) and 
returns a Real vector or matrix. 

transpose(A) Permutes the first two dimensions of array A. It is an error if array A 
does not have at least two dimensions. 

outerProduct(vl,v2) Returns the outer product of vectors vl and v2 equal to 
matrix(vl)* transpose(matrix(v2)). 

symmetric (A) Returns a matrix where the diagonal elements and the elements 
above the diagonal are identical to the corresponding elements of 
matrix A and where the elements below the diagonal are set equal to 
the elements above the diagonal of A, i.e., 
B := symmetric (A) B[ij] := A[i,j], if i <=j , B[i,j] := A[j,i], if i > 
1 

cross (x,y) Returns the 3-vector cross product of the 3-vectors x and y, i.e., 
cross(x,y) = {x[2]*y[3]-x[3]*y[2], x[3]*y[l]-x[l]*y[3], 
xrn*y[2i-x[2]*yrn} 

skew(x) Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, 
i.e., 
skew(x) = {{0, -x[3], x[2]}, {x[3], 0, -x[l]}, {-x[2], x[l], 0}} and 
cross (x,y) = skew(x)*y 

Returns the 3 x 3 skew symmetric matrix associated with a 3-vector, 
i.e., 
skew(x) = {{0, -x[3], x[2]}, {x[3], 0, -x[l]}, {-x[2], x[l], 0}} and 
cross (x,y) = skew(x)*y 

Examples: 

transpose([1,2; 3,4]) // Gives [1,3; 2,4] of type Integer[2,2] 
transpose( {{{1},{2}}, {{3},{4}}} ) 

// Gives {{{1},{3 } }, {{2},{4}}} of type Integer[2,2,1] 
outerProduct({2,1}, {3,2}) // Gives {{6,4}, {3,2}} 
symmetric ( {{1,2}, {3,1}} ) // Gives {{1,2}, {2,1}} 

cross ( {1,0,0}, {0,1,0} ) // Gives {0,0,1} 
skew ( {1,2,3} ) // Gives {{0,-3,2}, {3,0,-1}, {-2,1,0}} 

7.9.6 Array Concatenation Functions Once More 

The Modelica array concatenation functions have been described in detail in Section 7.3 on page 318 in 
this chapter and are mentioned in this section on built-in functions only for completeness. 

cat(k,A,B,...) General concatenation function that concatenates arrays A,B,... along 
the kih dimension. 

[A, B,...] Concatenation of arrays A,B,. .. along the second dimension. 
[ A; B,...] Concatenation of arrays A,B,... along the first dimension. 

cat(l,{1,2}, {3,4}) // Concatenates two vectors into {1,2,3,4} 
[ {{1},{2}}, {{3},{4}}] // Concatenates two column matrices into 

// the square matrix {{1,3},{2,4 } } 
// which is the same as [1,3; 2,4] 
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7.10 Vectorization via Application of Scalar Functions to Arrays 

In certain situations it is useful to be able to apply a function to array values even if it has not been defined 
for such arguments. This is possible if an obvious generalization/vectorization to elementwise application 
of the function is possible. 

Modelica functions with one scalar return value can be applied to arrays elementwise, for example, if v 
is a vector of reals, then sin (v) is a vector where each element is the result of applying the function sin 
to the corresponding element in v. For example: 

sin({a,b,c}) // Vector argument, result: {sin(a),sin(b),sin(c)} 
sin([l,2; 3,4]) // Matrix argument, result: [sin(1),sin(2); sin(3),sin(4)] 
Functions with more than one argument can be generalized/vectorized to elementwise application. If 

more than one argument is generalized to an array, all of the arguments have to be of the same size, and 
they are traversed in parallel. This is the case in the example with the function atan2(xj>) below: 

atan2({a,b,c},{d,e,f}) // Result: {atan2(a,d), atan2(b,e), atan2(c,f)} 
All function arguments need not be generalized to arrays, only those that are actually applied to 

arrays of higher dimension than the declared types of the corresponding formal function parameters. 
Consider the function atan2AddO,jcjO = w+atan2(jc,>>) that adds a value w to each application of 
atan2, for example: 

atan2Add(2,{a,b},{d,e}) // Result: {2+atan2(a,d), 2+atan2(b,e)} 
Formal function parameters that are generalized to higher dimension arrays need not necessarily be scalars. 
For example, the function atan2SumVec (vl, v2) =atan2 (sum (vl) , sum (v2) ) used below has two 
formal parameters vl and v2 of type Real [ : ], computing atan2 on the sums of the argument vectors. 
Applying this function on a matrix which is a vector of vectors gives a result which is a vector. Calling this 
function with two matrices Ml and M2 as arguments gives the following result: 

Real[3] vl,v2,v3,v4; 
Real[2,3] Ml - {vl,v2}; 
Real[2,3] M2 = {v3,v4}; 
atan2SumVec(Ml,M2) // is: atan2SumVec([vl,v2},{v3,v4}) 

// is: {atan2(sum(vl),sum(v2)), atan2(sum(v3),sum(v4))} 
atan2SumVec({{l,2},{3,4}}, {{6,7},{8,9}}) 
// which is: {atan2(sum({1,2}),sum({3,4})), atan2(sum( {6,7}),sum( {8,9}))} 
// which is: {atan2(3,7), atan2(13,17) } 

7.10.1 General Formulation of Elementwise Function Application 

Consider the expression f (argl,...,argn) . Then an application of the function f to the arguments argl, 
..., argn is defined as follows. 

For each passed argument, the type of the argument is checked against the type of the corresponding 
formal parameter of the function. 

1. If the types match, nothing is done. 
2. If the types do not match, and a type conversion can be applied, it is applied and then continued 

with step 1. 
3. If the types do not match, and no type conversion is applicable, the passed argument type is 

checked to see if it is an array of the formal parameter type. If it is not, the function call is invalid. 
If it is, we call this a foreach argument. 
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4. For all foreach arguments, the number and sizes of dimensions must match. If they do not match, 
the function call is invalid. If no foreach argument exists, the function is applied in the normal 
fashion, and the result has the type specified by the function definition. 

5. The result of the function call expression is a multidimensional array with the same dimension 
sizes as the foreach arguments, that is, arguments generalized to arrays. Each element eiv.j is the 
result of applying f to arguments constructed from the original arguments in the following way. 

• If the argument is not a foreach argument, it is used as-is. 
• If the argument is a foreach argument, the element at index [i,...,j] is used. 

7.11 Empty Arrays 

It might appear ridiculous to have empty arrays, that is, arrays that do not contain any elements. However, 
there is actually some use for such strange creatures. They can function as a kind of null element for 
certain general operations, such as, for example, concatenation operations or general formulations of 
certain kinds of equation systems. It makes sense to have empty arrays when representing sets as arrays in 
order to represent the empty set. 

An empty array cannot at the time of this writing be constructed in Modelica by {} or [] since in 
those cases the type of the array would be unknown, for example, it would not be known whether the 
empty array is an array of integers, of real numbers, or of some other type. One idea would to 
automatically infer the type from the surrounding context, which however has not yet been formally 
accepted in the Modelica language standard. Instead, an empty array is created using some other array 
constructor, for example, fill, from which the type can be deduced, or explicitly declared as a 
variable. For example: 

fill (1., 0) // An empty vector of type Real[0] since 1. is Real 
Real x[0]; // An empty vector variable x of type Real[0] 
Real[0,3] A; // An empty matrix variable A 
Real B[5, 0] , C[0,0]; // Empty matrices B and C 

Array variables of unspecified size can be set equal to or assigned empty array values, for example: 

Real A[ :, : ] = fill(0.0, 0, 1) // A Real 0 x 1 matrix 
Boolean B[:,:,:] = fill(false, 0, 1, 0) // A Boolean 0 x 1 x 0 array 

It is not possible to perform an indexing operation, for example, A [ i, j ], on an empty array since it does 
not contain any elements that can be accessed and returned by the indexing operation. 

Many array operations require certain constraints to be fulfilled by their operands. Built-in array 
operators such as elementwise addition (+), subtraction (-), equation equality (=), and assignment (:=) 
require that the operands have the same dimensionality and size of dimensions. Matrix multiplication (*) 
requires that the size of the second dimension of the first operand is equal to the size of the first dimension 
of the second operand. These size and dimensionality constraints also apply to array operands which are 
empty arrays. For example: 

Real[3,0] A, B; 
Real[0,0] C; 
A + B // Fine, the result is an empty matrix of type Real[3,0] 
A + C // Error, incompatible types Real[3,0] and Real[0,0] 

Concerning matrix multiplication, the above-mentioned constraints on operands together with the size and 
dimensionality of the result can be expressed as follows: 

• Matrix[n,m]* Matrix[m,p] giving a result matrix of size and dimension Matrix[n,p] 

For the case of empty arrays this definition gives the following result: 
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• Matrix[n,0]*Matrix[0,p] giving a result matrix of size and dimension Matrix[n,p] 

What is remarkable here is that matrix multiplication of two empty arrays sometimes gives rise to a 
nonempty array filled with zero values, which is somewhat counterintuitive but according to a general 
definition of matrix multiplication. The behavior of matrix multiplication of empty matrices and vectors is 
summarized in the following table. 

Table 7-13. Matrix multiplication of empty arrays. 

Type of argl Type of arg2 Type of argl *arg2 Value 
Real [01 Real [0,ml Real f ml zeros(m) 
Real[n] Real [n,01 ReairOl empty vector 
Real[0,ml Real (ml Real [01 empty vector 
Real[m,0] Real [01 Real[m] zeros(m) 
Real [0,m] Real[m,nl Real[0,nl empty matrix 
Real[m,0] Real[0,n] Real[m,01 empty matrix 
Real [m,01 Real[0,nl Real[m,n] zeros(m,n) 

One might ask why such a general and somewhat nonintuitive definition of matrix multiplication 
should be allowed. Is there some practical usage for this feature? Surprisingly, the answer is yes. Consider 
the following linear ordinary differential equation system model formulated in A-B-C-D matrix form with 
a state vector x, an input vector u, and an output vector y: 

model ABCDsystem 
Real u[p], x[n], y[q]; 
Real A[n,n], B[n,p], C[q,n], D[q,p]; 

equation 
der(x) - A*x + B*u; 
y = C*x + D*u; 

end ABCDsystem; 
Assume that n=0, that is, the state vector is empty, the input vector u is nonempty with size p>0, and 

the output vector y is empty with size q>0. Using the definitions in the above table, the first equation will 
disappear since x is empty, causing der(x) to be an empty vector with type Real [ 0 ], with A*x and B*u 
also being empty vectors with type Real[0]. In the second equation the term c*x becomes a vector 
zeros (m) of type Real [m] containing m zero-valued elements. Since zero-valued elements can be 
eliminated in addition operations the second equation simplifies to 

y = D*u 

7.11.1 Empty Array Literals 

As mentioned in the previous section, empty array literals can be constructed by the fill array 
constructor function: 

• The call fill {constelem, nl, n2, nS,...) returns an empty array literal of dimension nl * n2 * n3 * 
etc., provided at least one of the dimensions ni is zero, with element type being the type of 
constelem, which can be of any Modelica type expressible as a constant literal. 

For example: 

fill(0.0, 0, 1) // A Real 0 x 1 matrix 
fill(false, 0, 1, 0) // A Boolean 0 x 1 x 0 array 
fill(Person("Jane", 54.5, 170), 1, 0) // A Person 1 x 0 array 
Two other possibilities, which, however, are not part of the Modelica language standard at the time of 

this writing (but might be included later), would be: 
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• {}—denoting an empty array of dimension size 0, where the element type is inferred from the 
context. As a consequence, {{}} would be an 0 * 1 matrix of inferred element type. 

• [ ] —denoting an empty array identical to {{}}, i.e. an 0 * 1 matrix of inferred element type. This 
is natural since [ x ] is the same as {{x}} which has dimensions 1 x 1. 

Such a notation would be somewhat more concise and readable compared to using fill, for example: 

Person x[:]; 
equation 
x = {} ; 

7.12 Summary 

This chapter has presented most aspects of arrays in Modelica, starting with the declaration of arrays and 
array types, arrays sizes, and type checking for arrays. We continued by presenting the general array 
construction operator, the special array constructor for range vector construction, array constructors with 
iterators, and the MATLAB compatible combined array concatenation and construction operator. We also 
presented array indexing with different kinds of arguments, as well as accessing and constructing array 
slices. One section gave special advise for users with MATLAB background regarding the use of array 
concatenation and slices, including the construction of block matrices. We presented the four common 
arithmetic operators and their interpretation when used on arrays as well as on combinations of arrays and 
scalars. A set of built-in array functions were described, including four array reduction operators that can 
have iterator arguments. The chapter was concluded by presenting how scalar functions are automatically 
promoted to work for arrays, and how empty arrays can be declared and array literals created. 

7.13 Literature 

The description of arrays given here is directly based on the Modelica Language Specification (Modelica 
Association 2012), including most examples. The array design of Modelica has primarily been influenced by 
MATLAB (MathWorks 2002), Fortran90 (Adams, Brainerd, Martin, Smith, and Wagener 1992), C 
(Harbison and Steele 1991), and Mathematica (Wolfram 1997). Array constructors with iterators in Modelica 
are analogous to array comprehensions in several functional languages, e.g. Haskell (Hudak 1989), Standard 
ML (Myers, Clack, and Poon 1993), or the Table array constructor in Mathematica (Wolfram 1997). 

7.14 Exercises 

Exercise 7-1 : 

Constructing Arrays: Create a record containing several vectors and matrices. It is your choice what types 
and values the variables should have: 

• a vector with seven values, 
• a matrix of four rows and two columns, 
• a matrix of one row and five columns, 
• two unspecified matrices, 
• and an empty matrix. 

Exercise 7-2: 

Expanded Type: Consider the classes Student, Class and GraduateClass below. Which is the 
expanded type of GraduateClass? 

class Student 
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constant Real legs = 2; 
constant Real arms = 2; 
parameter Real nrOfBooks; 
parameter String name = "Dummy"; 

end Student; 
type Class = Student[35]; 
class GraduateClass 

Class[42] c; 
end GraduateClass; 

Exercise 7-3: 

Question. What is a range vector? Give an example of a range vector with 5 Integers with increasing by 5 
for each additional element. 

Exercise 7-4: 

Considering Array Ranges. Which result do the vl, v2, v3, v4 and v5 have below? 

class RangeVectors 
Integer vl[6] = 3 : 8; 
Integer v2[10] = -20 : -11; 
Real v3[5] = 11.3 : 15.3; 
Integer v4[0]; 
Real v5[3] = 1.1 : 3.1; 

end RangeVectors; 
Wider Ranges: How can you construct the range vectors below? 

{15.0, 18.0, 21.0, 24.0, 27.0}, 
{-6.5, -8.5, -10.5} 

and an empty Integer vector. 

Exercise 7-5: 

Question: Which are the type rules for concatenation? 

Considering Array Concatenation: What will be the result of the arrays below? 

class ArrayConcatenation 
Real[2, 3] arrayl - cat(2, [22, 34; 66, 78], [15; 52]); 
Real[2, 3] array2 - cat(2, {{22, 34}, {66, 78}}, {{15}, {52}}); 
Real[2, 2] array3 = cat(l, {{11, 12}}, {{13, 14}}); 
Real[3, 2] array4 = cat(l, {{7, 2}, {5, 42}}, {{24, 74}}); 
Real[3, 2] arrayS = cat(l, [7, 2; 5, 42], [24, 74]); 
Real[4, 2] array6 = cat(l, {{1, 2}, {11, 12}}, {{13, 14}, {3, 4}}) 

Real[2, 4] array7 = cat(2, {{1, 2}, {72, 51}}, {{35, 73}, {12, 23}}); 
end ArrayConcatenation; 

Using cat. Now it is your turn to concatenate arrays using cat: 

• Concatenate two 1 x2-arrays along the first dimension. 
• Concatenate the arrays you just concatenated, but along the second dimension. 
• Concatenate one 2x3-array with a 2x 1 -array along the second dimension. 
• Concatenate two 2x2-arrays along the first dimension. 

What are the results of the array concatenations? 

class MyArrayConcat 

end MyArrayConcat; 
Exercise 7-6: 
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More Dimensions. The final thing you should do now is concatenate three arrays with higher dimension. 

So, the arrays you should concatenate are of size 1x2x1, 1x2x2 and 1x2x3 and they should be 
concatenated along the first dimension. Do the concatenation in the class MoreConcat below. 

What is the result after the concatenations? 

class MoreConcat 

end MoreConcat; 
Exercise 7-7: 

Array Indexing: In the class Array indexing below, you should first define a 2x3-array and set values to 
every position in the array. Also define a second array while you're at it, with the same size but with 
different values. The final thing you should do is to change a few values in each array. Then you're done! 

Oh, one more thing; what are the results after changing the values? 

class Arraylndexing 

end Arraylndexing; 
Tip. When you set the values in the arrays you can use the fill function to fill a whole array with a value. 
fill(value, nrOfRows, nrOfColumns). 
Indexing with Scalar Expressions: In the class Arraylndexing2 below you should first define a 2x2-
array and set values to every position in the array. Then define a second 2x4-array with different values. 
This time you should change a whole row in each array. 

What are the results after changing the values? 

class Arraylndexing2 

end Arraylndexing2; 
Accessing Array Slices with Index Vectors: What is the result of the vectors vl , v2, v3, v4, v5, v6, v7, v8 
and v9 below? 

class Slice 
Real [3, 3] V = {{22, 14, 71}, {33, 41, 17}, { 44 , 11, 77 }}; 

{23, 88}, {99, 43}}; 
24, 25, 26, 27}; 

Real [3, 2] W = { { 12, 13}, 
Real[5] Y - {23, 

Real vl [ 3 ] = V [ : , l] ; 
Real v2[3] = V [.3, :] ? 
Real v3 [ 1 ] = V [ 3, { 2 } ] ; 
Real v4 [ 3 ] = W[ :, 2] ; 

Real v5[2] = Y[{1, 2}] ; 
Real v6[2] = W [ 3, {1, 2}]; 
Real v7[2] = V[3, 1:2]; 

Real v8[2] = Y [ 3 : 4] ; 
Real v9 [ 3 ] = Y [ 1 : 2:5] ; 

end Slice; 
Exercise 7-8: 

Concatenate: Complete the class, Concatenate, like this: 
(i) Create a new variable VI in which you append 60 to A. 
(ii) Append 50 to VI. 
(iii) If you didn't use the cat-operator before, use this to append 60 to A. 
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(iv) Append the set of 60 to B. 
(v) If you didn't use the cat-operator before, use this to append 60 to B. 
(vi) Append the set of 18 to v, using the cat-operator. 

class Concatenate 
Real[1, 2] = [50, 32]; 
Real [2, 1] = [3; 7]; 
Real[5] = [4, 9, 7, 5, 2}; 

end Concatenate; 
Question. Which are the results of your newly created variables? 

Exercise 7-9: 

Question. Is this allowed? If not, why not? If it is, what is the result? 

class Addl 
Real Al [2] = {2, 3} + 1; 

end Addl; 
Is this allowed? If not, why not? If it is, what is the result? 

class Sub5 
Real A5 [3] = {3, 45, 6} - 5; 

end Sub 5; 
Is this allowed? If not, why not? If it is, what is the result? 

class Mult2 
Real A2 [ 3] = {11, 14, 12} * 2; 

end Mult2; 
Exercise 7-10: 

Matrix Multiplication. Write a class that multiplies two matrices using the multiplication operator for 
matrices. 

Exercise 7-11: 

Question. Is this allowed? If not, why not? If it is, what is the result? 

class MultMany 
Real mult 1 = {1, 1, 1, 1} * {1, 1, 1, 1}; 
Real mult2[2] = {{2, 2}, {2, 2}} * {2, 2}; 
Real mult3[2, 2] = {{1, 1}, {1, 1}} * {{2, 2}, {2, 2}}; 
Real mult4[1] - {1, 3, 5, 7} * {{1}, {3}, {5}, {7}}; 

end MultMany; 
Is this allowed? If it is, what is the result? 

class Div4 
Real A4[5] = {16, 14, 10, 18, 12} / 4; 

end Div4; 
Is this allowed? If it is, what is the result? 

class Div7 
Real A4 [ 5] = 7 / {16, 14, 10, 18, 12}; 

end Div7; 
How would you write {{1, 3}, {4, 5}} A 2in Modelica? Write the expression in a class. What is the 
result? 



Chapter 8 

Equations 

Equations are the foundation of Modélica. This should be rather apparent to the reader at this stage, with 
equations and equation-based class examples appearing in each of the previous chapters. As already has 
been emphasized, equations are more flexible than traditional programming constructs such as assignment 
statements since they do not prescribe a certain data-flow direction. This is the key to the physical 
modeling capabilities and increased reuse potential of Modélica classes. 

The goal of this chapter is to give an overview in one place of all kinds of equations that can occur in 
Modélica models. Certain kinds of equations are primarily described here, whereas other equation types 
are treated in more detail in other parts of this book. For example, declaration equations and modification 
equations are described extensively in Chapter 3 and Chapter 4, respectively, whereas the topic of 
connection equations occupies a large part of Chapter 5. Conditional equations like if-equations and when-
equations are only briefly covered here but are presented in more detail in Chapter 13. 

8.1 General Equation Properties 

Equations are different in many ways compared to traditional programming constructs such as assignment 
statements and control structures. Equations are used in several different ways and are rather expressive. 
There are also certain necessary conditions for the total system of equations to be solvable, such as having 
the same number of variables and equations. Some of these aspects are discussed briefly below. 

8.1.1 Equation Categories and Uses 

Thinking in equations is a bit unusual for most programmers. The reason is that equations express relations 
and constraints in a declarative way, rather than forcing the programmer to handle control flow and data 
flow more or less explicitly as in conventional imperative and object-oriented languages. In Modélica 
equations are used for many tasks: 

• Assignment statements in conventional languages are usually represented as equations in 
Modélica. 

• Attribute assignments are represented as equations. 
• Connections between objects generate equations. 

Equations in Modélica can informally be classified into three different categories depending on the 
syntactic context in which they occur: 

347 
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• Normal equations occurring in equation sections, including connect-equations and other equation 
types of special syntactic form. 

• Declaration equations, which are part of variable, parameter, or constant declarations. 
• Modification equations, which are commonly used to modify attributes of classes. 
• Initial equations, which are used to express equations for solving initialization problems. 

Each of these equation types will be covered in separate sections in this chapter. 
Equations are declarative and express relations between expressions. Therefore, they are not allowed in 

algorithm sections and functions that contain only algorithmic imperative code, that is, sequences of 
statements that are "commands." Conversely, assignment operations (:=) are allowed in algorithm sections 
and in functions, but not in equation sections. 

8.1.2 Expressivity of Equations 

Equations are more expressible than assignment statements. For example, consider the well-known resistor 
equation once more, where the resistance R multiplied by the current i is equal to the voltage v: 

R*i = v; 
This equation can be used in three ways corresponding to three possible assignment statements: computing 
the current from the voltage and the resistance, computing the voltage from the resistance and the current, 
or computing the resistance from the voltage and the current. This is expressed in the following three 
assignment statements: 

i := v/R; 
v := R*i; 
R := v/i; 

8.1.3 Single-Assignment Rule for Equations 

All of the equations of a Modelica model to be simulated form a total system of equations. These equations 
usually come from a number of classes that comprise the total system model, and only in very simple cases 
from a single class. It is essential that this system of equations can be solved; otherwise, the model cannot 
be simulated. One important prerequisite for solution is that the system is neither underdetermined nor 
overdetermined, that is, the number of equations is equal to the number of unknowns. This can be 
formulated as the single-assignment rule for equations, which can be understood as having one equation 
assigned to each unknown: 

• Single-assignment rule for equations: the total number of "equations" is identical to the total 
number of "unknown" variables to be solved for. 

By counting "equations" according to this rule we mean counting both equations and assignment 
statements, including assignments within when-equations and when-statements. Multiple assignments to a 
variable within the same algorithm section is counted as a single assignment. Assignment statements 
within function bodies are not counted. 

If the equations in the system are "unique", that is, not trivial combinations of each other, the system is 
not underdetermined and there are usually good chances for solution. This rule also prevents a variable 
from being defined by two equations, which would give rise to conflicts or nondeterministic behavior. 

The single-assignment rule is valid for all Modelica models of systems to be simulated, including 
hybrid models that contain conditional equations, where certain equations are typically activated or 
deactivated dynamically during simulation. Modelica imposes certain constraints on the form of such 
conditional equations in order to guarantee that this rule is always obeyed. This is discussed briefly here 
and in more detail in Chapter 13 on hybrid and discrete event modeling. Note that the single-assignment 
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rule need not apply to single classes, since these might require combination with other classes to form a 
model that can be simulated. 

8.1.4 Synchronous Data-flow Principle for Modelica 

The single-assignment rule is a necessary but not sufficient condition for the solvability of a system of 
equations. Another principle, called the synchronous data-flow principle, is the basis for the design of the 
hybrid part of the Modelica language, that is, the handling of events and interaction between the 
continuous and the discrete parts of a model during simulation. This principle together with the single-
assignment rule makes it possible for the Modelica compiler to perform compile-time consistency checks 
that, for example, usually can prevent deadlocks caused by cyclic dependencies from occurring during a 
Modelica simulation. The drawback is that certain "asynchronous" models cannot be expressed. The 
synchronous data-flow principle can be expressed in the following way for Modelica: 

• All variables keep their actual values until these values are explicitly changed. Variable values can 
be accessed at any point in time during "continuous integration" (i.e., numerical solution of the 
continuous part of the system of equations), and at event instants. 

• At every point in time, during "continuous integration" and at event instants, the active equations 
express relations between variables which have to be fulfilled concurrently. Equations are not 
active if the corresponding if-branch or when-equation in which the equation is present is not 
active because the corresponding branch condition currently evaluates to false. 

• Computation and communication at an event instant does not take time. (If computation or 
communication time has to be simulated, this property has to be explicitly modeled.) 

It is useful to keep this principle in mind when understanding hybrid models containing conditional 
equations, as, for example, in the sections on conditional equations with if-equations and when-equations 
below. The principle is just stated here as background information, and is explained in more detail in 
Section 13.2.3 on page 597 in Chapter 13 on discrete-event and hybrid modeling. 

8.2 Equations in Declarations 

There are two kinds of equations that occur as parts of declarations: declaration equations and modifier 
equations, where redeclaration equations are classified as a kind of modifier equations. The term binding 
equation is sometimes used to denote both declaration equations and modifier equations. Additional 
aspects of declaration equations are described in Section 3.10, page 97, and modifier equations in Section 
4.2, page 148. 

8.2.1 Declaration Equations 

Declaration equations (see also Section 3.10, page 97) are usually given as part of declarations of constants 
or parameters, of the form variable = expression, for example: 

constant Integer one = 1; 
parameter Real mass = 22.5; 

Such equations are actually required for constants if the constant is used in a model, but are optional for 
parameters. However, if is allowed to declare a constant without a declaration equation if it is associated 
with a value by a modifier equation (Section 8.2.2, page 350). 

An equation always holds, which means that the mass in the above example never changes value 
during simulation. It is also possible to specify a declaration equation for a normal variable, for example: 
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Real speed = 72.4; 
However, this does not make much sense since it will constrain the variable to have the same value 
throughout the computation, effectively behaving as a kind of constant. Therefore, a declaration equation 
is quite different from a variable initializer in other programming languages. 

The types of the left-hand-side and right-hand sides of a declaration equation must be equivalent after 
type coercion (Section 3.19.1, page 124) and the variability (Section 6.8.1.3, page 278) of the left-hand-
side must be greater or equal to the variability of the right-hand side. 

8.2.2 Modifier Equations 

Modifier equations (Section 4.2, page 148) occur, for example, in a variable declaration when there is a 
need to modify or specify the default value of an attribute of the variable. A modifier equation replaces the 
declaration equation, if present, for an attribute of the type in question. A common usage is modifier 
equations for the start attribute of variables, for example: 

Real speed(start=72. 4) ; 
Modifier equations also occur in type definitions, for example as below: 

type Voltage = Real(unit="V", min=-220.0, max=220.0); 
Note that it is possible to replace a whole declaration equation involving the modified variable. 

The types of the left-hand-side and right-hand sides of a declaration equation must be equivalent after 
type coercion (Section 3.19.1, page 124) and the variability (Section 6.8.1.3, page 278) of the left-hand-
side must be greater or equal to the variability of the right-hand side. 

Modifier equations for constants and parameters must be acyclic (Section 8.2.3, page 350). 

8.2.3 Acyclic Declaration Equations for Constants and Parameters 

Declaration equations for parameters and constants in a translated model must be acyclic after flattening, 
except that cycles are allowed if the cycles disappear when evaluating parameters having the annotation 
Evaluate=true that are not part of the cycle. Thus it is not possible to introduce equations for constants 
or parameters which have cyclic dependencies except in that special case. For example, consider the 
following two declarations: 

constant Real p=3*q; 
constant Real q=cos(p); // Illegal since p=2*q, q=sin(p) are cyclical 

The second declaration equation is erroneous since p has already been defined to depend on q, and now q 
is defined to depend on an expression containing p. 

The following example illustrates that a cyclic dependency between the dimension size parameter m in 
the declaration of matrix A and the size of the same matrix obtained through the size() call is not allowed. 

model Amat 
parameter Real A[m,m]; 
parameter Integer m=size(A,1); 

end Amat; 

Amat a; 
// Illegal since there are cyclic dependencies between size(a.A,1) and a.m 
Amat b(redeclare Real A[2,2] = [1,2;3,4]) ; 
// Legal since size of A is no longer dependent on m. 
Amat c(m=2); // Legal since m is no longer dependent on the size of A. 
A cyclic dependency within the same equation is of course not allowed, as in the example below: 

parameter Real w = 2*sin(w); // Illegal, since w = 2*sin(w) is cyclic 
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The following cyclic dependency is allowed since it disappears when evaluating use T start 
(Evaluate=true): 

partial model PartialLumpedVolume 
parameter Boolean use_T_start = true 

"= true, use T_start, otherwise h_start" 
annotation(Dialog(tab = "Initialization"), Evaluate=true); 

parameter Medium.Temperature T_start = if use_T_start 
then system.T_start else Medium.temperature_phX(p_start,h_start,X_start) 
annotation(Dialog(tab = "Initialization", enable = use__T_start) ) ; 

parameter Medium.SpecificEnthalpy h_start = if use_T_start then 
Medium.specificEnthalpy__pTX(p_start, T_start, X_start) else 
Medium.h_de fault 
annotation(Dialog(tab = "Initialization", enable = not use_T_start)); 

end PartialLumpedVolume; 
// This is a cycle for T_start and h_start, but ok since it disappears 
// when evaluating use_T_start 

8.3 Equations in Equation Sections 

As stated previously, normal equations appear in equation sections started by the keyword equation and 
terminated by one of the keywords or keyword combinations end, equation, algorithm, protected, 
public, or initial equation. Thus, the general structure of an equation section appears as follows: 

equation 

equations 

some other allowed keyword 

The following kinds of equations can be present in equation sections: 

• Simple equality equations. 
• Repetitive equation structures with for-equations. 
• Connect-equations. 
• Conditional equations with if-equations. 
• Conditional equations with when-equations. 
• The reinit equation. 
• assert and terminate. 
• Overconstrained equation operators, see Section 8.5.3, page 379. 

Simple equality equations containing an equal sign (=) are the most basic and common kinds of 
equations in Modelica models, and the only ones known from mathematics. In fact, the other syntactic 
forms of equations (except for the last) are transformed by the Modelica compiler to this basic kind of 
simple equation often combined with some event-handling code. 

8.3.1 Simple Equality Equations 

Simple equality equations are the traditional kinds of equations known from mathematics that express an 
equality relation between two expressions. There are two syntactic forms of such equations in Modelica. 
The first form below is equality equations between two expressions, whereas the second form is used when 
calling a function with several results. 

• exprl = expr2; 
• (outl, out2, out3, ...) = function_name(inexprl, inexpr2, ...); 

The second form is equivalent to several simple equations setting the variables outl, out2, out3, etc. in the 
parenthesized list equal to the results of the function call in that order. No expressions are allowed in the 
parenthesized list on the left-hand side, only variables. 
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For example, the first equation in the class EqualityEquations below involving the function f with 
two inputs and three results is correct, whereas the second equation is illegal since there are expressions in 
the left-hand side: 

class EqualityEquations 
Real x,y,z; 

equation 
(x, y, z) = f(1.0, 2.0); // Correct! 
(x+1, 3.0, z/y) = f(1.0, 2.0); // Illegal! Not a list of variables 

// on the left-hand side 
end EqualityEquations; 
Type equivalence is required between the expressions on the left-hand side and the right-hand side of 

equations (Section 3.19.1, page 124). Variability can be different on the two sides. However, for equations 
where both the left-hand side and the right-hand side are of subtypes of Integer, Boolean, 
enumeration, or string, the variability of both sides cannot be higher than discrete-time (see also 
Section 6.8.1.3 on variability, page 278). For equations involving record or array expressions, this rule is 
applied to corresponding parts of these data structures broken down to elements of built-in types. 

8.3.2 Repetitive Equation Structures with for-Equations 

Repetitive equation structures can be expressed rather compactly with the special syntactic form of 
equation called a for-equation. Such a structured equation can be expanded to a sometimes large number 
of simple equations. The syntactic form of a for-equation with a single iterator is as follows: 

for iteration-variable in range-expression loop 
equation 1 
equation2 

end for; 
The iteration-variable ranges over the set of values in the range-expression, which must be a vector 

expression with parameter or constant variability, and has the same type as the elements in the range-
expression. This expression is evaluated once in each for-equation, and is evaluated in the scope 
immediately enclosing the for-equation. Such a scope can typically be the scope of an enclosing class 
definition or the scope of an enclosing for-equation. 

The iteration-variable is defined within the scope of the for-equation itself. One copy of the equations 
in the body of the for-equation is effectively generated for each value of the iteration variable. Consider 
the following simple class example with a for-equation: 

class FiveEquations 
Real[5] x; 

equation 
for i in 1:5 loop 
x [ i] = i+1; 

end for; 
end FiveEquations; 

That class is equivalent in behavior to the class below, where the for-equation has been unrolled into five 
simple equations: 

class FiveEquationsUnrolled 
Real [5] x; 

equation 
x[l] = 2; 
x[2] = 3; 
x[3] = 4; 
x[4] = 5; 
x [ 5 ] = 6; 

end FiveEquationsUnrolled; 



Chapter 8 Equations 353 

Nested for-equations can be represented by a single for-equation with multiple iterators: 

for iteration-variable\ in range-expression\, iteration-variable2 in range-expression,... loop 

end for 

The range expression can be an integer or Real vector, a vector of enumeration values of some 
enumeration type, or a Boolean vector. In the case of a vector of enumeration or Boolean values, the 
type name (e.g. Boolean or Sizes in the example below) can be used to denote the range expression, 
meaning the full range from the lowest to the highest value of the type in question. For example: 

type Sizes = enumeration(small, medium, large); 
for e in Sizes loop // e takes values Sizes.small, Sizes.medium, Sizes.large 
for e in Sizes.small : Sizes.large loop // Same sizes as above 
for e in Boolean loop // e takes the values false, true 

Since the scope of the iteration variable is the enclosing for-equation, it may hide other variables with the 
same name, for example, the constant k declared in the class HideVariable. Note that the k used in the 
iteration expression 1: k+1 is the constant k declared in the class, whereas the k used in the equations 
inside the for-equation is the iteration variable k. One should avoid this style of modeling even if it is legal 
since it is confusing and hard to read such code. 

class HideVariable 
constant Integer k=4; 
Real x[k+1]; 

equation 
for k in l:k+l loop // The iteration variable k gets values 1,2,3,4,5 
x[k]=k; // Uses of the iteration variable k 

end for; 
end HideVariable; 

8.3.2.1 Implicit Iteration Ranges 

The iteration range of a loop variable may sometimes be inferred from its use as an array index, as in the 
example below. See Section 9.2.5.1, page 428, for more information on iteration range inference. 

Real x[n],y[n]; 
for i loop // Same as: for i in l:size(a,l) loop 
x [ i ] = 2 * y [ i ] ; 

end loop; 

8.3.2.2 Polynomial Equations Using for-Equations 

Consider a polynomial equation: 

n + l 

i=1 
This equation can be used to obtain the value of a polynomial, given a set of coefficients c\ in a vector c of 
length n+l, where c[i] = q. The powers o f * are stored in a vector xpowers, where xpowers[i]= x1"1. 

xpowers: {1, x, xA2, ... xAn} 
The contents of the vector xpowers is defined by the following set of equations: 

xpowers[1] = 1; 
xpowers[2] = xpowers[1]*x; 
xpowers[3] = xpowers[2]*x; 

xpowers[n+l] = xpowers[n]*x; 
This can be expressed more compactly as a simple equation together with a for-equation: 

xpowers[1] = 1; 
for i in 1:n loop 
xpowers[i+1] = xpowers[i]*x; 

end for; 
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Finally, the polynomial equation can be expressed using a scalar product between the vectors: 

y = c * xpowers; 
Everything is packaged into the class PolynomialEvaluator below. This can be a specialized class 

of the block kind since both public variables have specified causality input or output. 
block PolynomialEvaluator 
parameter Real c[:]; 
input Real x; 
output Real y; 

protected 
parameter Integer n = size(c,1)-1; 
Real xpowers[n+l]; 

equation 
xpowers[1] = 1; 
for i in 1:n loop 
xpowers[i+1] = xpowers[i]*x; 

end for; 
y = c * xpowers; 

end PolynomialEvaluator; 
We can, for example, use this class to evaluate a simple polynomial in terms of the built-in variable time, 
by instantiating the class with the coefficient vector c={l,2,3,4}: 

class PolyEvaluatel 
Real p; 
PolynomialEvaluator polyeval(c = {1,2,3,4}); 

equation 
polyeval.x = time; 
p = polyeval.y; 

end PolyEvaluatel; 
An alternative way is to bind the inputs and the outputs using modifier equations in the declaration of the 
polyeval instance of PolynomialEvaluator: 

class PolyEvaluate2 
Real p; 
PolynomialEvaluator polyeval(c ={1,2,3,4}, x=time, y=p); 

end PolyEvaluate2; 

8.3.3 Connect-Equations 

In Modelica, we use connect-equations to establish connections between variables via connectors. The 
general form of a connect-equation is as follows: 

connect(connector1,connector2) 
The following constraints apply to the two arguments connector 1 and connector2 of a connect-equation: 

• The two arguments of a connect-equation must be references to connectors, each of which either 
has to be declared directly within the same class where the connect-equation occurs, or has to be a 
member of one of the declared variables in that class. 

This implies a locality constraint on connections: it is not possible within a class to connect connectors 
declared outside a class to connectors within the class. This is natural since the connectors of a class 
should be the external interface of that class, implying that external connections should be via that 
interface. 

Connect-equations can be placed inside for-equations and if-equations provided the indices of the for-
loop and conditions of the if-equation are parameter expressions that do not depend on cardinality, 
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rooted, Connections. rooted, or Connections. isRoot. The for-equations/if-equations are 
expanded by the compiler during model elaboration. 

The ResistorCircuit class example below (also in Figure 5-15 on page 198 in Chapter 5) connects 
connectors called p belonging to variables Rl, R2, and R3. This fulfills the locality constraint mentioned 
above. 

model ResistorCircuit 
Resistor Rl(R=100); 
Resistor R2(R=200); 
Resistor R3(R=300); 

equation 
connect(Rl.p, R2.p); 
connect(Rl.p, R3.p); 

end ResistorCircuit; 
Connect-equations are described in more detail in Chapter 5. See also Section 8.5, page 374, regarding 

equation operators for overconstrained connections. 

8.3.3.1 Repetitive Connection Structures 

We can also use connect-equations together with the for-equation construct described previously to 
establish repetitive connection structures consisting of a number of connections between connectors 
belonging to array elements. This is a very important use of for-equations in combination with connect-
equations. For example, in the class RegVariables below there is an array called variables in which 
each element outlet has been connected to an inlet from its neighbor element, apart from the outlet of the 
Hth element, which is still free for external connections: 

class RegVariable 
Variable variables[n]; 

equation 
for i in l:n-l loop 
connect(variables[i].Outlet, variables[i+1].Inlet); 

end for; 
end RegVariable; 

8.3.4 Conditional Equations with if-Equations 

Modelica can be used for expressing hybrid models, that is, models with mixed continuous and discrete 
parts. One can use two kinds of equation constructs for such models: conditional equations with if-
equations and conditional equations with when-equations. How can we know which one to use in different 
hybrid modeling situations? The following guidelines are useful: 

• If-equations (see also Section 13.2.6, page 613) or //-expressions (see Section 6.12.2, page 288) are 
used for conditional models with different behavior in different operating regions. The conditional 
equations may contain continuous-time expressions. 

• When-equations are used to express instantaneous equations that are valid (become active) only at 
events, for example, at discontinuities or when certain conditions become true. The conditional 
equations automatically contain only discrete-time expressions since they become active only at 
event instants. 

The general form of the if-equation is specified below. The elseif-part is optional and can occur zero or 
more times. The else-part is also optional and can occur at most once. 

if <condition> then 
<equations> 

elseif <condition> then 
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<equations> 
else 

<equations> 
end if; 

For example, the if-equation below specifies different equations for the variable y in three different 
operating regions, limiting values of y such that: uMin <= y <= uMax: 

if u > uMax then 
y = uMax; 

elseif u < uMin then 
y = uMin; 

else 
y = u; 

end if; 
During solution of the continuous part of the equation system ("continuous integration"), the same 

branch of the if-equation with its equations is always included in the total equation system. The solution 
process is temporarily halted whenever u-uMax or u-uMin crosses zero. When this happens an event is 
generated. At the event instant the conditions are reevaluated, the correct if-branch is selected, and 
continuous integration is restarted. 

There is also a constraint regarding the number of equations in each part of an if-equation: 

• If-equations for which the conditions have higher variability than constant or parameter must 
have the same number of equations in each branch (then-, elseif-, and else-parts). A missing else-
part is counted as zero equations and the number of equations is defined after the compiler has 
expanded the equations to scalar equations. 

This constraint is a consequence of the single-assignment rule stated previously. If this constraint is 
violated the number of equations might change during simulation when different then-, elseif-, and else-
parts become active even though the number variables remain the same. 

This constraint need not be fulfilled if the conditions in the if-equation have at most parameter-
variability since then the active branch of the if-equation is selected before simulation starts, allowing the 
number of variables and the number of equations to be kept the same. 

Below is an example class (also shown in Section 5.7.9) containing a conditional if-equation with a 
condition that is a parameter expression (the built-in function cardinality has parameter variability), 
that is, the condition does not change during simulation: 

model CardinalityResistor 
extends TwoPin; 
parameter Real R(unit="Ohm") "Resistance"; 

equation 
// Handle cases if pins are not connected 
if cardinality(p) == 0 and cardinality(n) == 0 then 
p.v = 0; n.v = 0; 

elseif cardinality(p) == 0 then 
p.i = 0; 

elseif cardinality(n) == 0 then 
n.i = 0; 

end if; 
// Resistor equation 

v = R* i; 
end CardinalityResistor; 

Moreover, inside an if-equation that is controlled by a nondiscrete time (i.e., a continuous-time expression 
that is not discrete-time) condition expression and not in the body of a when-clause, it is not legal to have 
equations between discrete-time expressions (Section 6.9.3, page 281), or real elementary 
relations/functions that should generate events. 

The use of if-equations, events, and related topics is described in more detail in Chapter 13, page 591. 
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8.3.5 Conditional Equations with when-Equations 

In the previous section, we stated that when-equations are used when we need to specify what should hold 
at event instants through conditional equations. 

• When-equations are used to express instantaneous equations that are valid (become active) only at 
events, for example, at discontinuities or when certain conditions become true. The conditional 
equations automatically contain only discrete-time expressions since they become active only at 
event instants. 

The structure of an unclocked when-equation is specified below, where conditions is a Boolean scalar 
or vector expression which automatically has variability discrete-time because of its type. The elsewhen-
part is optional and can be repeated zero or more times. 

• There is also a clocked when-equation (Section 13.6.6, page 700), without the optional elsewhen-
part, in which the <conditions> is replaced by a clock expression. 

The equations within the when-part are activated when the scalar condition expression becomes true, or 
in the case of a Boolean vector expression, when at least one of the vector elements becomes true. 

The equations in a subsequent elsewhen-part are activated if at least one of the associated conditions 
becomes true and no preceding when- or elsewhen-part of the same when-equation has been activated. 

when <conditions> then 
<equation$> 

elsewhen <conditions> then 
<equations> 

end when; 
For example, the two equations in the when-equation below become active at the event instant when the 
Boolean expression x > 2 becomes true. 

when x > 2 then 
yl = sin(x); 
y3 - 2*x + yl+y2; 

end when; 
If we instead use a Boolean vector expression containing three elements as the conditions, then the two 
equations will be activated at event instants when either of the three conditions: x > 2, sample (0,2), or 
x < 5 becomes true. Typically, each condition in the vector gives rise to its own event instants. 

when {x > 2, sample(0,2), x < 5} then 
yl = sin(x); 
y3 = 2*x + yl+y2; 

end when; 
Special behavior can be specified by when-equations when a simulation starts and finishes by testing 

the built-in predicates initial () and terminal (). The predicate initial () returns true during 
initialization at the beginning of the simulation (or before) when time is equal to time. start, and the 
predicate terminal () returns true at the end of the simulation. For example: 

when initial() then 
... // Equations to be activated during initialization at beginning, 

end when; 

when terminal() then 
... // Equations to be activated at the end of the simulation, 

end when 
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Additional events are not generated from relations or discontinuous functions within when-equations, 
for example, from the use of relations in if-expressions or if-equations within when-equations. This is 
unnecessary since we are already at an event by being in a when-equation. 

8.3.5.1 Restrictions on Equations within Unclocked when-Equations 

How should equations within unclocked when-equations be solved together with all other discrete and 
continuous equations in the total system of equations of a model? This is possible by first locally solving 
the system of equations within a when-equation at the event, and then keeping the result variables from 
this local solution constant during solution of the continuous part of the rest of the system of equations, 
i.e., during "continuous integration." Thus, it is essential to know which variables are results from the 
local solution of equations within a when-equation. Such result variables will of course have variability 
unclocked discrete-time. 

To make it possible both for a Modelica tool and a person to determine which variables are results from 
a when-equation, and to guarantee an effective and simple solution process for such results, Modelica 
restricts the allowed equations within an unclocked when-equation to the forms below, except for the 
clocked when-equation described in Section 13.6.6, page 700. 

The result variables on the left-hand side of the equation forms shown below, for example, variable, 
out I, out2, and so on, are immediately obvious: 

• variable = expression, 
• {outI, out2, out3,...) = function_name{inexprl, inexpr2,...), 
• Special equation forms: assert (), terminate (), reinit(), 
• Repetitive and conditional structured equations such as for-equations and if-equations if the 

equations within the for-equations and if-equations satisfy these requirements. 

Regarding the variables on the left hand side, for example, variable, outl, and so on, if they are 
array elements, the array indices must be parameter expressions. 

The need for this restriction on the form of equations in unclocked when-equations is especially 
obvious in the following example: 

model WhenNotValid 
Real x, y; 

equation 
x + y = 5; 
when sample(0,2) then 

2*x + y = 7; // Error: not valid Modelica. 
end when; 

end WhenNotValid; 
When the equations within the when-equation are not active, it is not clear which variable, either x or y, 

is a "result" from the when-equation to keep constant outside the when-equation. A corrected version of 
this when-equation appears in the class WhenValidResult below: 

model WhenValidResult 
Real x,y; 

equation 
x + y = 5; // Equation to be used to compute x. 
when sample(0,2) then 

y = 7 - 2*x; // Correct, y is a result variable from the when! 
end when; 

end WhenValidResult; 
Here it is clear that y is a result variable from the when-equation since it appears alone at the left-hand side 
of an equation. The variable y is kept constant when the when-equation is deactivated. This allows 
computing x from the first equation during "continuous integration" as (5-y) using the value of y 
computed at the previous event instant. 
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The following restrictions also apply to when-equations: 

• When-equations are not allowed in initial equation sections, but when initial() is possible. 
• When-equations are not allowed to be nested. 

For example: 

model ErrorNestedWhen 
Real x,yl,y2; 

equation 
when x > 2 then 
when yl > 3 then // Error! when-equations cannot be nested 

y2 = s i n ( x ) / 
end when; 

end when; 
end ErrorNestedWhen; 

8.3.5.2 Application of the Single-Assignment Rule on when-Equations 

Two when-equations may not define the same variable. Without this rule that may actually happen for the 
erroneous model DoubleWhenConflict below, since there are two equations (close = true; close 
= false;) defining the same variable close. A conflict between the equations will occur if both 
conditions would become true at the same time instant. 

model DoubleWhenConflict 
Boolean close; // Erroneous model: close defined by two equations! 

equation 

when conditionl then 
close = true; 

end when; 
when condition2 then 

close = false; 
end when; 

end DoubleWhenConflict 
One way to resolve the conflict would be to give one of the two when-equations higher priority. This is 

possible by rewriting the when-equation using elsewhen, as in the WhenPriority model below or using 
the algorithmic version of the when-construct shown in Chapter 9, Section 9.2.10, page 433. 

The when-equation involving an elsewhen-part resolves the conflict since the first of the two event 
handlers is given higher priority: 

model WhenPriority 
Boolean close; // Correct model: close defined by two equations! 

equation 

when conditionl then 
close = true; 

elsewhen condition2 then 
close = false; 

end when; 

end WhenPriority; 
Here it is well defined what happens if both conditions become true at the same time instant since 
conditionl with associated conditional equations has a higher priority than condition2. 

8.3.6 reinit 

The following is a rather special form of equation (also available as an operator, see Table 6-1, page 274 in 
Chapter 6), and also briefly mentioned in Section 13.2.5.18, page 613. 
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The reinit equation can only be used within the body of a when-equation. It reinitializes the first 
argument statevariable with the value of valueexpression at an event instant The reinit 
equation has the following form: 

reinit (statevariable, valueexpression) ; 

The first argument, statevariable, is a Real (or subtype of Real) continuous-time variable (or an array 
of such variables), which must be selected as a state (or states, respectively). Note that reinit on 
statevariable implies stateSelect=StateSelect.always for statevariable. In general, a 
variable is a state variable if the der-operator is applied to it somewhere in the model, or it is selected by 
stateSelect, see Section 18.2.6.1, page 1014. 

The second argument, valueexpression, must be an integer or Real expression (or array of such 
expressions, respectively), and be type compatible with the first argument statevariable. 

This "equation" effectively "removes" (deactivates) the previously active equation defining 
statevariable and "adds" a new instantaneous equation statevariable = valueexpression that 
gives a new definition to statevariable, which is valid at the current event instant and is used to 
reinitialize the variable. 

The reinit operator does not break the single assignment rule, because reinit ( s t a t e v a r i a b l e , 
valueexpression) in equations evaluates valueexpression to a value, then at the end of the current 
event iteration step it assigns this value to statevariable. This copying from values to reinitialized 
state(s) is done after all other evaluations of the model and before copying statevariable to 
pre( s t a t e v a r i a b l e ) . 

Neither the number of variables nor the number of equations is changed. The single-assignment rule is 
therefore not violated. 

The reinit equation can for the same variable (or array of variables) only be applied in one equation, 
but having reinit of the same variable in when and elsewhen is allowed. 

The BouncingBall example already seen in Figure 2-25, page 57 in Chapter 2 illustrates the use of 
reinit: 

model BouncingBall "The bouncing ball model" 
parameter Real g=9.81; // gravitational acceleration 
parameter Real c-0.90; // elasticity constant of ball 
Real height(start=0); // height above ground 
Real v(start=10); // velocity 

equation 
der(height) = v; 
der(v) = -g; 
when heightcO then 

reinit(v, -c*v); 
end when; 

end BouncingBall; 
For the benefit of the critical reader; note that the behavior of reinit is suspiciously close to an 

assignment statement even if it is not one. 
If instead of reinit we would have used an equation section containing the equation "v = -c*v" 

there would have been an error message of too many equations since the previous equation was not 
removed. The following class BouncingBallError gives rise to an error since the equation v=-c*v is 
used instead of reinit (v, -c*v), thereby creating an over-determined system of equations. 

model BouncingBallError "Bouncing ball model with error" 
parameter Real g=9.81 "since reinit is not used"; 
parameter Real c=0.90; 
Real height(start=0); 
Real v(start=10); 

equation 
der(height) = v; 
der(v) = -g; 
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when height<0 then 
v = -c*v; // Error, old "equation" not "removed" leads to 

end when; // an overdetermined system of equations 
end BouncingBallError; 
Another example of the use of reinit is in the self-initializing block class FilterBlockl below, 

which at initialization time when initial () becomes true defines x to be u, which causes der (x) to 
initially be zero according to its defining equation: 

block FilterBlockl "First order filter block" 
parameter Real T "Time constant"; 
parameter Real k "Gain "; 
input Real u; 
output Real y; 
protected 
Real x; 

equation 
der (x) = (u - x) / T; 
y = k*x; 
when initial() then 

reinit(x, u); // Initialize such that der(x) becomes 0 if x is u 
end when // since der(x) = (u-x)/T; 

end FilterBlockl; 
Finally, if a higher index (Section 18.2.3, page 1003) system of equations is present in the model, that 

is, constraints between state variables, some state variables need to be redefined to nonstate variables. 
During simulation, nonstate variables should be chosen in such a way that variables with an applied 
reinit operator are selected as states at least when the corresponding when-equations become active. If 
this is not possible, an error occurs, since otherwise the reinit operator would be applied to a non-state 
variable. 

8.3.7 assert and terminate 

The special equation clauses assert and terminate are not really equations in the usual sense, but are 
declarative since they do not cause side-effects such as updates or input/output to variables. Therefore they 
can still be used among equations in equation sections. 

8.3.7.1 assert 

The intention behind assert is to provide a convenient means for specifying checks on model validity 
within a model. There is also a statement version of assert (Section 9.2.11, page 445). It can be called as 
a function with three formal parameters and may refer to values of the predefined type AssertionLevel: 

type AssertionLevel = enumeration(warning, error); 
An assert equation has the following structure: 

assert {assert-expression, message-string); // Uses level=AssertionLevel.error or 
assert [assert-expression, message-string, assertionlevel) ; or 
assert {assert-expression, message-string, level - assertionlevel) ; 

The assert-expression in an assert equation should normally evaluate to true, in which case 
the message-string argument is not evaluated and the procedure call to assert is ignored. A failed 
assertion, that is, when the assert-expression evaluates to false, should be reported back to the user 
in some way which is dependent on the third argument to assert, called level, which has a default value 
level = AssertionLevel.error. 

In that case, AssertionLevel.error, the default behavior is to report some problem back to the 
user, stop the simulation, and then possibly (which is tool-dependent) continue simulation, for example, 
after some adjustment such as choosing smaller step-size for numerical solution (if an adaptive solver that 
will adjust step sizes automatically was not already used). The default AssertionLevel. error case 
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can, for example, be used to avoid evaluating a model outside its limits of validity. The following class 
AssertTest2 contains an example of the use of assert: 

class AssertTest2 
parameter Real lowlimit = -5; 
parameter Real highlimit = 5; 
Real x; 

algorithm 
assert(x >= lowlimit and x <= highlimit, "Variable x out of limit"); 

end AssertTest2; 
Alternatively, if the input variable level = AssertionLevel .warning, the current evaluation is not 

aborted. Instead, message indicates the cause of the warning. The warning is reported only once when the 
assert-expression becomes false, and it is also be reported that the assert-expression is no 
longer violated when it returns to true. In all cases, the assert(...) equation must not have any influence 
on the behavior of the model. 

The AssertionLevel .warning case can be used when the boundary of validity is not hard. For 
example, a fluid property model based on a polynomial interpolation curve might give accurate results 
between the temperatures 240 K and 380 K, but still give reasonable results in the range 200 K and 500 K. 
When the temperature gets out of the smaller interval, but still stays in the larger one, the user should be 
warned, but the simulation should continue without any further action. The corresponding assert 
equations would be: 

assert(T > 240 and T < 380, "Medium model outside full accuracy range", 
AssertionLevel.warning); 

assert(T > 200 and T < 500, "Medium model outside feasible region"); 

8.3.7.2 terminate 

The terminate equation successfully terminates the current simulation, that is, no error condition is 
indicated. A string argument is used to indicate the reason for successful termination, which can be 
reported back to the user in some appropriate way by the simulation tool. 

The most common usage of terminate is to give more appropriate stopping criteria for terminating a 
simulation than a fixed point in time, such as when a certain fixed simulation duration time is supplied to a 
simulation command. 

Recall the MoonLanding model from Chapter 4, page 143. We can use terminate to stop the 
simulation when the lander touches the surface in order to avoid the lander descending into the interior of 
the moon. This is the case for the version of the MoonLanding class below. 

model MoonLanding 
parameter Real forcel = 36350; 
parameter Real force2 - 1308; 
parameter Real thrustEndTime = 210; 
parameter Real thrustDecreaseTime = 4 3.2; 
Rocket apollo(name="apollol3", mass(start=1038.358) ); 
CelestialBody moon(mass=7 .382e22,radius=l.738e6,name="moon"); 

equation 
apollo.thrust = if (time<thrustDecreaseTime) then forcel 

else if (timecthrustEndTime) then force2 
else 0; 

apollo.gravity = moon.g * moon.mass /(apollo.height + moon.radius)A2; 
when apollo.height < 0 then // termination condition 

terminate("The moon lander touches the ground of the moon"); 
end when; 

end MoonLanding; 
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8.4 Initialization and Initial Equation 

A dynamic model describes how model variables evolve over time. For the model to be well specified it 
must be possible to define the variable values at the initial time, for example, time - 0 , in order to 
compute their values at a time > 0, dependent on these initial values. 

This initialization phase takes place at the initial time but before the actual simulation starts, and 
assigns consistent initial values to all variables in the model, including derivative "variables" der (x) and 
pre-"variables" pre (v) for continuous-time Real variables x and unclocked discrete-time variables v 
respectively. Note that during this initialization phase der (x) and pre (v) are treated as variables with 
unknown values. Initialization requires an initialization equation system to be solved, including all 
equations and algorithm sections used during the simulation as well as special initial constraints. 

Previously, for example, in Section 2.3.2, page 28, we have shown a way of specifying initial 
constraints as initial values of variables through the start attribute available for all kinds of variables in 
Modelica. However, this is not enough to cover all situations. The initial equation construct 
described in Section 8.4.2 shows us a way of specifying initial values, for example, for derivatives, which 
is not possible by just giving start values. In fact, we have three ways of specifying initial constraints 
necessary to solve certain initialization problems: 

• Specifying initial values through the start attribute, often together with the fixed attribute. 
• Specifying initial constraints as equations in initial equation sections. 
• Specifying initial values through assignments in initial algorithm sections. 

The first two methods are shown further below; whereas initial algorithm sections are briefly 
described in Section 9.2.2, page 424. However, all special considerations mentioned for initial equations 
also apply analogously for initial algorithms. 

Moreover, the following equations are implicitly added to the initialization equation system: 

• For all non-discrete continuous-time Real variables vc, the equation pre (vc) = vc is added to 
the initialization equations. If pre (vc) is not present in the flattened model, a Modelica compiler 
may choose not to introduce this equation, or if it was introduced it can eliminate it to avoid the 
introduction of many dummy variables pre (vc). 

8.4.1 Initialization Constraints and Hints through the start Attribute 

As pointed out earlier, the start attribute available for any variable can be used to specify initial value 
information. For example: 

parameter Real xO = 0.5; 
Real x (start = x-0); 

The modification equation start=x0 gives a hint that xO is a good guess value when solving the 
initialization problem. It does not specify that x must have the initial value xO. Moreover, the value of a 
start attribute must be a parameter or constant expression. 

On the other hand, we also have an attribute called fixed available for all variables. If fixed is true 
for a continuous-time variable (see example below), it must have the specified start value at the initial 
time, i.e., a constraint equivalent to an equation at the initial time. The default is fixed= false for all 
variables except for parameters and constants which have the default f ixed=true. For variables declared 
as constant it is an error to have fixed = false. For example: 

Real x (start = xO, fixed=true); 
This declaration with the attribute fixed=true for a continuous-time variable implies that the 

following equation is added to the initialization equation system to be solved: 

x = xO 
Taking a look at a slightly larger model: 

model Init2 
constant Real a =2; 
parameter Real xO = 0.5; 
Real x (start = xO, fixed = true); 



364 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

equation 
der(x) = a*x; 

end Init2; 
We make a separate group of definition equations for parameters and constants since they have 

f ixed=true by default, already have defined values, and need not be part of the initial equation system: 

a = 2 
xO = 0.5 

Thus, the following initial equation system is obtained: 

x = xO; 
der(x) = a*x; 
The solution for initialization at the initial time is as follows: 

x — xO // = 0.5 
der (x) = a*x // - 2*x0 = 1 
Regarding unclocked discrete-time variables the situation is slightly different. Here a start value 

equation for pre(xd) is added to the initialization equation system for each unclocked discrete-time 
variable xd. For example: 

Boolean b (start=false, fixed=true); 
Integer k(start=3, fixed=true); 

This implies the following initialization equations for enforcing start-value constraints: 

pre(b) - false; 
pre(k) = 3; 

Thus, the unclocked discrete-time variable itself does not get the start value, only the pre-value of the 
variable is defined. However, for any unclocked discrete-time variable xd the following equation holds, 
keeping its value constant, except when the instantaneous equations defining that variable are active: 

pre(xd) = xd 
This will in practice define the value also for the variable xd itself except when a defining equation 

such as xd ̂ expression is active during the initialization phase, for example, inside a when-equation during 
initialization, which then instead will define the value (see Section 8.4.2 below). For a more thorough 
discussion of events, instantaneous equations, and when-equations see Section 13.2.6, page 613. 

To summarize, by using the attribute modifiers start=value and fixed=true in the declaration of 
variables, we get the following initialization equations: 

• For any non-discrete continuous-time Real variable v, the equation v=start_expression is added to 
the system of initialization equations, if the modifier equations start=start_expression and 
f ixed=true are present for the variable v. 

• For any unclocked discrete-time variable vd, the equation pre (vd) -start expression is added to 
the system of initialization equations, if the modifier equations start =s tart express ion and 
f ixed=true are present for the variable vd. 

• For any variable declared as constant and parameter, with fixed = true, no equation is added to 
the initialization equations. 

For constants and parameters, the attribute fixed is by default true. For other variables fixed is by 
default false.Non-discrete continuous-time Real variables vc have exactly one initialization value since 
the rules assure that during initialization vc = pre (vc) = vc. startExpression if f ixed= true. 

8.4.1.1 Recommended Selection of non-fixed start-Values by Modelica Tools 

Start-values of variables having fixed = false can be used as initial guesses in case iterative solvers are 
used by the simulator in the initialization phase. In case of iterative solver failure, it is recommended for a 
Modelica simulator to specially report those variables for which the solver needs an initial guess, but 
which only have the default value of the start attribute since the lack of appropriate initial guesses is a 
likely cause of the solver failure. 

In general many variables have start values that are not fixed. Selecting an appropriate subset of 
these start values as guess values can provide a consistent set of start values close to user expectations. 
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• Each instance within a model can be given a unique instance hierarchy level number. The top level 
model has a level number of 1. The level number increases by 1 for each level down in the model 
instance hierarchy. 

• The model instance hierarchy level number is used to give start values a confidence number, where 
a lower number means that the start value is more confident. Roughly stated, if the start value 
is set or modified at level i then the confidence number is i. 

• If a start value is set by a possibly hierarchical modifier at the top level, then this start value 
has the highest confidence, namely 1 irrespectively at what level the variable itself is declared. 

8.4.2 Initialization Constraints through initial equation 

The syntax of an initial equation section is the same as for an equation section (see Section 8.3, page 351) 
apart from using the keywords initial equation instead of just equation: 

initial equation 
<equations> 

<some other allowed keyword> 

The following holds for an initial equation section: 

• Any kind of equation is allowed inside an initial equation section, except for when-equations. 
• In the equations inside an initial equation section der (x) and pre (v) are treated as variables with 

unknown values in the initialization system of equations. 
• All expressions inside an initial equation section have unclocked discrete-time variability (Section 

6.9.3, page 281). 

However, certain when-equations outside an initial equation section can contribute to the initialization 
system of equations (see Section 8.4.3 below.) 

We can use an initial equation section to specify the initialization constraint for a derivative: 

initial equation 
der(x) = 0; 

This is useful when we want to investigate and initialize a system in steady state, i.e., variables do not 
change with time (their derivatives are zero) if the system inputs do not change. For example: 

model ContinuousController "Continuous Proportional Controller" 
Real y(fixed = false); // fixed=false is redundant since it is default 

equation 
der(y) = a*y + b*u; 

initial equation 
der(y) = 0; 

end ContinuousController 
The start value from y gives no additional constraint since fixed=false. The extracted equations for 

the initialization problem are as follows: 

der(y) = a * y + b * u; 
der(y) - 0; 

This system has the following solution for initialization: 

der(y) = 0; 
y = -b/a * u; 
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8.4.3 Using when-Equations during Initialization 

During the initialization phase, the equations inside a when-equation are included in the initialization 
system of equations only if they fulfill the following condition: 

• The equations inside a when-equation are included in the initialization equation system if and only 
if they are explicitly enabled with the initial () operator, either in the scalar predicate form 
when initial(), or in the array predicate form when {..., initial(), ...}: 

Thus, even if a when-equation is active during simulation at an initial time=0, its equations are not 
included if the initial () operator is not used among the predicates of the when-equation. The 
initialization phase is actually executed before simulation starts at time=0. 

In case of a reinit (x,expr) being active during initialization by being inside when initial (), 
this is interpreted as adding x=expr, i.e., the reinit-equation, as an initial equation. 

For example, the following when-equation from the ProcessControl2 model below explicitly 
enables its equations for initialization by its use of the initial () operator: 

when {initial (), sample(0,Ts) } then 
xd = pre(xd) + Ts/T*(xref-x); 
u = k*(xd + xref - x); 

end when 
Note that this when-equation is also active during the simulation phase at the initial time=0 by its use 

of sample (0, Ts), which generates its first sample at time=0. 
If the initial () is removed from the when-equation predicate, its equations are not included in the 

initialization system of equations. Instead the two default equations related to the variables defined in the 
when-equation are used. These equations hold when the when-equation is not active: 

xd = pre(xd); 
u = pre(u); 

8.4.4 Explicit and Implicit Specification of Parameter Values for 
Initialization 

By far the most common way of specifying parameter values is through explicit declaration equations, 
where the right-hand sides are literal constants or parameter expressions, for example, g, m, and L in the 
Pendulum model below: 

model Pendulum 
import Modelica.Math.*; 
parameter Real g = 9. 
parameter Real m - 1 
parameter Real L = 1 
Real phi 
Real w 
Real x,y 

equation 
der(phi) = w; 
m*der(w) - -(m*g/L)*sin(phi); 
x = L*sin(phi); 
y = -L*cos(phi) 

end Pendulum; 

"mass"; 
"Pendulum Length; 
"Angle";, 
"Angular velocity"; 
"Point mass coordinates" 

The pendulum is depicted in Figure 8-1. 



Chapter 8 Equations 367 

Figure 8-1. A simple planar pendulum. 

The variables x and y are not independent since the pendulum point mass coordinates x and y are 
constrained to positions on a circular path, fulfilling the following Pythagorean condition: 

x2 +y2 = L2 (8-1) 

Now consider that we would like to specify the initial position of the point mass, for example, as follows: 

Real x (start = 0.3, fixed = true); 
Real y(start = 0.4, fixed = true); 

The length L, computed according to equation (8-1), becomes 
V0.32 + 0.42 = 0.09 + 0.16 = 0.25 = 0.5, which contradicts the specified initial value L=l, which cannot 
be changed since its default attribute fixed-true according to the above model. 

However, if we let its attribute fixed=false, the initial value of the length L is implicitly computed 
from the initial values of x and y in the following variant of the model: 

model PendulumlmplicitL 
import Modelica.Math.*; 
parameter Real g = 9.81; 
parameter Real m = 1 "mass"; 
parameter Real L(fixed=false); "Pendulum Length; 
Real phi "Angle";, 
Real w "Angular velocity"; 
Real x(start = 0.3, fixed = true); 
Real y(start = 0.4, fixed = true); 

equation 
der(phi) = w; 
m*der(w) = -(m*g/L)*sin(phi); 
x = L*sin(phi); 
y = -L*cos(phi) 

end PendulumlmplicitL; 
Implicit specification of a parameter value may appear strange. However, recall the definition of a 

parameter variable in Modelica: a parameter is a variable that is constant during simulation. 
Letting the parameter value depend on the initial values of time-dependent variables does not violate 

this definition. 
This feature is actually quite useful in certain modeling situations. For example, when modeling power 

systems it is common to specify initial conditions such as power dissipation levels, which then implicitly 
may specify parameter values such as resistance that are related to the power dissipation. 

Parameter values may also be specified by reading from a file, e.g. as in the ReadParameterData 
model below. 

model ReadParameterData 
parameter Real A(fixed=false); 
parameter Real w(fixed=false); 
Real x; 
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initial equation 
(A,w) = readSineData("init.txt"); 

equation 
der(x) = -A*sin(w*x); 

end ReadParameterData; 
Single start attribute values can also be read directly from a file, for example: 

parameter Real A(start = readAdata("initA.txt")); 
All variables declared as parameters having fixed = false are treated as unknowns during the 

initialization phase, i.e., there must be additional equations for them and the start-value can be used as a 
guess-value during initialization. 

In the case in which a parameter has both a declaration equation and fixed = false, diagnostics 
from the Modelica tool is recommended. However, the parameter should still be solved using the 
declaration equation. 

8.4.4.1 Default Parameter start-values for Preliminary Test Simulations 

There is often a need for users to investigate and test library models by quickly combining library models 
and performing preliminary test simulations. If all parameters would be required to be specified during 
such a preliminary stage this would be rather cumbersome for the user. To simplify preliminary 
exploratory simulation using libraries, a mechanism is provided to let the library author specify 
preliminary parameter expressions through the following mechanism: 

• If a parameter has a start-expression, it does not have fixed-false, and neither has a 
declaration equation nor is part of a record having a binding equation, the start-expression can be 
used during simulation as a parameter-expression. 

However, it is recommended that a Modelica tool issues a diagnostic message when initializing the model 
without setting the parameter value to make it apparent for the user that a parameter expression should 
eventually be provided for that parameter. 

This is used in libraries to give non-zero defaults so that users can quickly combine library models and 
do preliminary test simulations without explicitly setting parameters; but still easily find the parameters 
that eventually need to be set for the real simulations. String parameters are also covered by this rule, since 
they lack a fixed-attribute they can never have fixed=false. 

8.4.5 The Number of Equations Needed for Initialization 

How many equations are needed to solve an initialization problem? 
In general, for the case of a pure ordinary differential equation (ODE) system with n state variables and 

m output variables, explained in more detail in Section 2.20.2, page 66, or in Section 12.6, page 584, we 
will have n+m unknowns in the simulation problem. The ODE initialization problem has n additional 
unknowns corresponding to the derivative variables. At initialization of an ODE we will need to find the 
values of 2n+m variables, in contrast to just n+m variables to be solved for during simulation. 

Consider the following simple equation system: 

der(xl) = fl(xl); 
der(x2) - f2(x2) ; 
y = xl+x2+u; 

Here we have three variables with unknown values: two dynamic variables that also are state variables, xl 
and x2, i.e., n=2, one output variable y, i.e., m= 1, and one input variable u with known value. A consistent 
solution of the initial value problem providing initial values for xl, x2, der (xl), der (x2), and y needs 
to be found. Two additional initial equations thus need to be provided to solve the initialization problem. 
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Regarding differential algebraic equation systems (DAEs, see Section 12.7.3, page 586, and Section 
17.1, page 979), the situation concerning the number of equations needed for initialization is more 
complex than for ODEs in whcih exactly n additional equations are required for n state variables. Here we 
can assert only that at most n additional equations are needed to arrive at 2n+m equations in the 
initialization system. The reason is that in a so-called higher index DAE problem (see 18.2.3, page 1003), 
the number of dynamic continuous-time state variables might be less than the number of state variables n. 

For complex models it might be hard for the user to know how many initial equations should be added. 
This is especially true since a Modelica tool usually performs index reduction (see Section 18.2.4, page 
1007) on the equations of high index problems, thereby producing additional equations. Fortunately, the 
Modelica environment is usually able help the user to correct a mistake by giving helpful hints, or by 
automatically adjusting the number of active initial equations to the desired number. 

8.4.6 System Initialization Examples—Discrete Controller Models 

It is quite instructive to apply the above rules to extract initialization systems of equations from a series of 
similar models. Here we use models of an extremely simple industrial process coupled to an unclocked 
discrete-time proportional-integrating (PI) controller in four variants. 

To find these examples useful for illustration of initialization you need not actually understand the 
concept of a Pi-controller. However, if you would like to read about that topic before continuing, 
continuous PI controllers are discussed in detail in Section 12.2.3, page 573, whereas discrete PI 
controllers in a Hybrid Tank system are covered in Section 13.4.1, page 676. Simple periodic sampled 
systems like the process control models corresponding to Figure 8-2 are described in Section 13.3.1, page 
625. 

u Process 
state: x 

x . Process 
state: x 

Controller 
xd, k, T, Ts 

«— Controller 
xd, k, T, Ts 4 — xref 

Figure 8-2. An industrial process with state x coupled to a discrete sampling PI controller. 

In the first model variant, called ProcessControll, the initial values are given explicitly through 
start values with the fixed attribute being true, giving rise to explicit initialization equations. 

Ts 

model ProcessControll "Initial 
parameter Real k = 10, T = 1 
parameter Real 

Real 
Real 
Real 
Real 

.01 
x( fixed=true, 
xref 
xd(fixed=true, 
u (fixed=true, 

input 
discrete 
discrete 

equation 
// Process model: 
der(x) = -x + u; 
// Discrete PI controller: 
when sample(0,Ts) then 

xd = pre(xd) + Ts/T*(xref-x) 
u = k*(xd + xref - x) ; 

end when; 
end ProcessControll; 

values given Explicitly" 
"PI controller parameters 
"Sample time"; 

start=2) "Process state"; 
"Reference input"; 

start=0) "Controller state"; 
start=0) "Process input"; 

k, T, Ts" 



370 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

The equations inside the when-equation are not included in the initialization since the enabling condition 
initial () is missing. Instead the two default equations that hold when the when-equation is not active 
are included: 

xd = pre(xd); 
u = pre(u); 

Thus the initialization system of equations becomes the following, excluding the parameters k, T, and Ts: 

pre(xd) 
pre(u) 
xd 
u 
der(x) 

= x.start 
= xd.start 
= u.start 
= pre(xd) 
= pre(u) 
= -x + u 

// 
// 
// 
// 
// 
// 

= 2 
- 0 
= 0 
- 0 
= 0 
= - 2 

The obtained solution of the initial variable values is indicated in the comments to the right. 
In the second model variant, ProcessControl2, the when-equation is enabled by the presence of the 

initial () predicate. Initial values are still given explicitly through start values. 

model ProcessControl2 "Enabled when-equation and explicit start values" 
"PI controller parameters k, T, Ts"; 
"Sample time"; 

start=2) "Process state"; 
"Reference input"; 
"Controller state"; 
"Process input"; 

- 1 k = 10, T 
Ts - 0.01 
x( fixed=true, 
xref 
xd(fixed=true, 
u (fixed=true, 

start 
start: 

parameter Real 
parameter Real 

Real 
input Real 
discrete Real 
discrete Real 

equation 
// Process model: 
der(x) = -x + u; 
// Discrete PI controller: 
when {initial(), sample(0,Ts) 

xd = pre(xd) + Ts/T*(xref-x); 
u = k*(xd + xref - x); 

end when; 
end ProcessControl2; 

The extracted initialization system of equations becomes as follows, with solutions at the right: 

then // initial() added 

pre(xd) 
pre(u) 
xd 
u 
der(x) 

= x.start 
= xd.start 
= u.start 
= pre(xd) H 

/ / = 2 
/ / - 0 
/ / - 0 

Ts/T*(xref-x) 
k* (xd 
-x 

+ xref 
u 

// = 0+0.01/1*(xref-2) = 0.01*(xref-2) 
// = 10*(0.01*(xref-2)+xref-2) 
// = -2 + u 

The third process control model, ProcessControl3, is similar to the second but uses two equations in 
an initial equation section to define the initial values of xd and u instead of the start value definitions 
we used in the previous variants. 

model ProcessControl3 "Enabled when-equation and initial equation section" 
parameter Real k = 10, T = 1 
parameter Real Ts = 0.01 

Real x(fixed=true, start=2) 
input Real xref 
discrete Real xd 
discrete Real u 

equation 
// Process model: 
der(x) = -x + u; 
// Discrete PI controller: 
when {initial(), sample(0,Ts)} then 

xd = pre(xd) + Ts/T*(xref-x); 

"PI controller parameters 
"Sample time"; 
"Process state"; 
"Reference input"; 
"Controller state"; 
"Process input"; 

Ts" 
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u = k*(xd + xref - x); 
end when; 

initial equation 
pre(xd) = 0; 
pre(u) = 0; 

end ProcessControl3; 
The system of initialization equations from the ProcessControl3 model is almost the same as in the 

second variant. The only difference is the presence of the two equations from the initial equation section. 

X = x.start // = 2 
pre(xd) = 0 // = 0 
pre(u) = 0 // = 0 
xd = pre(xd) + Ts/T*(xref-x) // = 0+0.01/1*(xref-2) - 0.01*(xref-2) 
u = k*(xd + xref - x) // = 10* (0.01*(xref-2)+xref-2) 
der(x) = - x + u // = -2 + u 
In the fourth model, ProcessControl4, we give initialization constraints using the following steady-

state conditions within an initial equation section: 

der(x) = 0 
pre(xd) = xd 

These conditions imply that the system should be in a state where the state variables x and xd do not 
change with time, that is, steady-state. 

model ProcessControl4 "Enabled when-equation and steady state init" 
parameter Real k = 10, T = 1 "PI controller parameters k, T, Ts"; 
parameter Real Ts = 0.01 "Sample time"; 

Real x(start=2) "Process state"; 
input Real xref "Reference input"; 
discrete Real xd "Controller state"; 
discrete Real u "Process input"; 

equation 
// Process model: 
der(x) = -x + u; 
// Discrete PI controller: 
when sample(0,Ts) then; 

xd = pre(xd) + Ts/T*(xref-x); 
u = k*(xd + xref - x); 

end when 
initial equation 
der(x) = 0; // Steady state condition 
pre(xd) = xd; 

end ProcessControl4; 
The obtained system of when-equations for initialization is as follows: 

der(x) - 0 
pre(xd) = xd 
xd = pre(xd) + Ts/T*(xref-x) 
u = k*(xd + xref - x) 
der(x) = -x + u 
The stationary initialization system is a linear system of equations in the following unknowns: der(x), 

xd, pre (xd), u, and x. Simplifying by using der (x) =0, pre (xd) =xd, and 0=-x+u, we obtain: 

der(x) = 0 
x = xref 
u = xref 
xd = xref/k 
pre(xd) = xd 
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By using the numerical values k=10 and the guess value x. start=2 we obtain xref=2, xd=2/10, which 
when substituted gives a consistent stationary solution of the initialization problem: 

d e r ( x ) = 0 
x = 2 
u = 2 
xd =0.2 
p r e ( x d ) = 0 . 2 

8.4.7 Initialization of Nonlinear Systems Using the homotopy Operator 

During the initialization phase of a dynamic simulation problem, it often happens that large nonlinear 
systems of equations must be solved by means of an iterative solver. The convergence of such solvers 
critically depends on the choice of initial guesses for the unknown variables. The process can be made 
more robust by providing an alternative, simplified version of the model, such that convergence is possible 
even without accurate initial guess values, and then by continuously transforming the simplified model 
into the actual model. This transformation has the following syntax and is usually called a homotopy 
transformation. The syntax is as follows: 

homotopy (actual =actual, simplified ^simplified) 

The operator can also be called using positional calling syntax: 

homotopy {actual, simplified) 

The types of the scalar expressions actual and simplified are subtypes of Real. The following usage 
example is from the idealDiode model further below: 

Goff2 = homotopy(actual=Goff, simplified=Goff_flat); 
A Modelica translator should map this operator into either always returning actual (the trivial 

implementation) or alternatively the operator might during the solution process return a combination of the 
two arguments as below, where lambda is a homotopy parameter going from 0 to 1. When lambda=l the 
homotopy operator should return actual, e.g.: 

1 ambda * actual + (1 - lambda) * simplified (8-2) 

If the simplified expression is chosen carefully, the solution of the problem changes continuously with 
lambda, so by taking small enough steps it is possible to eventually obtain the solution of the actual 
problem. The homotopy operator can be called with positional parameter passing or preferably with 
named arguments for improved readability. 

It is recommended that a Modelica tool (conceptually) performs one homotopy iteration over the whole 
model, and not several homotopy iterations over the respective non-linear algebraic equation systems that 
might be present. The reason is that the following structure can be present in the total system of equations: 

w = fi(x) / / has homotopy operator 
0 = f2(der(x), x, z, w) 

Here, a nonlinear equation system f2 is present. The homotopy operator is, however, used on a variable 
that is an "input" to the non-linear algebraic equation system, and modifies the characteristics of the non-
linear algebraic equation system. Thus, the only meaningful way is to perform the homotopy iteration over 
fi and Í2 together. 

The suggested approach is "conceptual", because more efficient implementations are possible, e.g. by 
determining the smallest iteration loop that contains the equations of the first BLT (Section 17.1.6, page 
984) block in which a homotopy operator is present and all equations up to the last BLT block that 
describes a non-linear algebraic equation system. 
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A trivial implementation of the homotopy operator by a Modelica tool can be obtained by making the 
following function predefined in the global scope: 

function homotopy 
input Real actual; 
input Real simplified; 
output Real y; 

algorithm 
y := actuals-
annotation (Inline = true); 

end homotopy; 
Example 1: 

In electrical systems it is often difficult to solve nonlinear algebraic equations if switches are part of an 
algebraic loop in the system of equations. An idealized diode model might be implemented in the 
following way, by starting with a "flat" diode characteristic and then move with the homotopy operator to 
the desired "steep" characteristic: 

model IdealDiode 

parameter Real Goff = le-5; 
protected 

Real Goff_flat = max(0.01, Goff); 
Real Goff2; 

equation 
off = s < 0; 
Goff2 = homotopy(actual=Goff, simplified=Goff_flat); 
u = s*(i£ off then 1 else Ron2) + Vknee; 
i = s*(if off then Goff2 else 1 ) + Goff2*Vknee; 

end IdealDiode; 
Example 2: 

In electrical systems it is often useful that all voltage sources start with zero voltage and all current sources 
with zero current, since steady state initialization with zero sources can easily be obtained. A typical 
voltage source would then be defined as: 

model ConstantVoltageSource 
extends Modelica.Electrical.Analog.Interfaces.OnePort; 
parameter Modelica.Slunits.Voltage V; 

equation 
v = homotopy(actual=V, simplified=0.0); 

end ConstantVoltageSource; 
Example 3: 

In fluid system modeling, the pressure/flowrate relationships are highly nonlinear due to the quadratic 
terms and due to the dependency on fluid properties. A simplified linear model, tuned for the nominal 
operating point, can be used to make the overall model less nonlinear and thus easier to solve without 
accurate start values. Named arguments are used here in order to further improve the readability. 

model PressureLoss 
import SI = Modelica.Slunits; 

parameter SI.MassFlowRate m_flow_nominal "Nominal mass flow rate"; 
parameter SI.Pressure dp_nominal "Nominal pressure drop"; 
SI.Density rho "Upstream density"; 
SI.DynamicViscosity lambda "Upstream viscosity"; 

equation 
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m_flow = homotopy(actual = turbulentFlow_dp(dp, rho, lambda), 
simplified = dp/dp_nominal*m_flow_nominal); 

end PressureLoss; 
Example 4: 

Note that the homotopy operator shall not be used to combine expressions which are not related, since this 
can generate singular systems from combining two well-defined systems. The following is an example of 
such illegal usage of homotopy: 

model DoNotUse 
Real x; 
parameter Real xO = 0; 

equation 
der(x) = 1-x; 

initial equation 
0 = homotopy(der(x), x - xO); 

end DoNotUse; 
The initial equation is expanded into 

0 = lambda*der(x) + (1-lambda)*(x-xO) 
and you can solve the two equations 

der(x) = 1-x; 
0 = lambda*der(x) + (1-lambda)*(x-xO) 

by substituting der (x) = 1-x and rearranging terms to give 
X =• (lambda+ (lambda-1) *x0) / (2*lambda - 1) 

which has the correct value of xO at lambda = 0 and of 1 at lambda = 1, but unfortunately has a 
singularity at lambda = 0.5. 

8.5 Equation Operators for Overconstrained Connection-Based 
Equation Systems 

There is a special problem regarding equation systems resulting from loops in connection graphs in which 
the connectors contain potential variables dependent on each other. When a loop structure occurs in such a 
graph, the resulting equation system will be overconstrained, that is, have more equations than variables, 
since there are implicit constraints between certain potential variables in the connector in addition to the 
connection equations around the loop. At the current state of the art, it is not possible to automatically 
eliminate the unneeded equations from the resulting equation system without additional information from 
the model designer. 

The purpose of this section is to describe a set of equation operators for such overconstrained 
connection-based equation systems which makes it possible for the model designer to specify enough 
information in the model to allow a Modelica environment to automatically remove the superfluous 
equations. 

8.5.1 An Example of an Overconstrained Connection Loop 

We first take a look at the typical case of a connector containing dependent potential variables. For 
example, the Frame connector class for three-dimensional mechanical systems defined in the Modelica 
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multi-body library (see also Section 15.10.5.1, page 884), and shown below, contains a rotation matrix R in 
the Frame connector class of type Orientation—basically a Real [3,3] matrix type. 

connector Frame "3-dimensional mechanical connector" 
import SI = Modelica.Slunits; 
SI.Position r_0[3] "Vector from inertial frame to Frame"; 
Orientation R "Rotation matrix from inertial frame to Frame"; 
flow SI.Force f[3] "Cut-force resolved in Frame"; 
flow SI.Torque t[3] "Cut-torque resolved in Frame"; 

end Frame; 
This matrix contains nine elements that are potential variables in the connector. However, the matrix 

can be completely defined by three independent variables as shown in Section 14.8.4.2, page 776, meaning 
that there are six implicit constraint equations between the nine variables, in addition to the nine equation 
equality equations between R matrices from two connected connectors, that is, more equations than 
variables if no other variables were available. 

Let us investigate a realistic physical example of a mechanical pendulum-like system of four connected 
bars in a loop, described by the model MultiBody. Examples . Loops . Fourbar 1 shown in Figure 8-3. 

Breaking loop here 

Figure 8-3. Loop in the connection graph (left) of model MultiBody. Examples. Loops. Fourbarl, (see 
also Section 15.10.8, page 894) with overdetermined connectors, and 3D visualization (right) of the loop 
structure of the mechanical mechanism. The loop can be automatically broken at the connection between bar 
b3 and the joint to the right in the connection graph, to eliminate superfluous equations and create a tree. 

In the virtual connection graph shown in Figure 8-4, we have marked each connect (...) equation 
with a dotted arrow, and each bar or joint with a filled arrow, indicated by the presence of a 
Connections . Branch () in the equation section of each bar or joint. 

There are basically two ways of arriving at the branch position in the loop where we have indicated that 
the loop dependency chain could be broken (there might also be other possible places to cut branches) to 
obtain the desired tree structure that would eliminate the overconstraining problems. The sequence of 
transformation matrices R* can be computed successively, starting at the inertial world frame root node at 
the lower left with R\ and following the graph at the left and at the top, arriving at R13, through a sequence 
of equalities at connections and via bars, and rotations by angles cpi, q>2, q>3, <p4 at re volute joints: 

Ri=identity(3); R2=Ri; R 3 = R32(cpi) ^2; R4=R3; Rŝ R*; R6=R5 ; R?= R76(q>2) 1*6? R8=R7; 

R9=R98(cp3)R8;Rio=R9; Rn= Ri 1,10(94)Rio; R ^ R n ; Rd=R i2 
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Figure 8-4. Kinematic loop (left) in model MultiBody. Examples . Loops . Fourbarl, (see also Section 
15.10.8, page 894) with an overdetermined connection, rotation matrices, and connection graph, and the 
virtual connection graph with only arrows (right) for clarity. Each dotted arrow represents a connect (), 
and each solid line a Connections. branch(). The inertial frame has a Connections. root (), whereas 
each joint or bar contains a Connections. branch (). Rotation matrices R̂  are shown at joints and bars. 

If we perform a similar exercise starting from the inertial root but in the other direction around the loop 
starting at the bottom, and then to the right, we transform Ri into R23 through the following sequence: 

Ri=identity(3); RI4=RI; Ri5=Ri4; Ri6=Ris; Ri7=Ri7.i6(s)Ri6; Ri8=Ri?; Ri9=Ris; R2o=Ri9; 

R21 = R21,20(95) R20; R22 =R2i; R23 = R23,22(95) R22 

The final connection, the one we indicate as the candidate to break, results in the following equation 
containing 9 scalar equations (from the 3 * 3 matrix), where we have indicated that the transformation 
matrices are functions of certain variables: 

Thus we have nine scalar algebraic equations, and seven scalar variables (<pl9<P29<PS1<P4isi<P^<P(>)»that is, 
an overconstrained equation system! Moreover, there are also differential equations implying constraints. 

However, the nine matrix elements are not independent of each other. In fact, as we remarked 
previously, there are three "real" equations and six "redundant" equations since the transformation matrix 
can be computed from just three variables. 

• Solution: At the connection to be broken, replace the nine equality equations by the three essential 
equations using a function with the predefined name equalityConstraint! 

To perform this replacement, we need to find the three essential scalar equations. This is possible by using 
the fact that the matrices R13 and R2 3 are equal or almost equal at the connection and expressing the 
equation by a user-defined function with the predefined name equal ityConstraint returning a vector 
residue (i.e., a kind of difference or rest value which is a vector of zeroes at equality) between the two sets 
of variables to be able to express their equality. This is a local function declared within the type of the 
variables (here the Orientation data type, essentially a matrix) to be set equal to a vector of zeroes: 

{0,0,0} - Orientation.equalityConstraint(R13,R23); (8-5) 

(8-4) .i6(s)Ri6; Ri8=Ri?; Ri9=Ris; R2o=Ri9; 
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The declaration of the example matrix type Orientation including the local function 
equal ityConstraint follows below. Declaring such a type which inherits from a basic type or an array 
of a basic type is allowed according to Section 4.1.6, page 141. 

type TransformationMatrix = Real[3,3]; 

type Orientation "Orientation from frame 1 to frame 2" 
extends TransformationMatrix; 

function equalityConstraint 
input Orientation R1 "Rotation from inertial frame to frame 1"; 
input Orientation R2 "Rotation from inertial frame to frame 2"; 
output Real residue[3]; 

protected 
Orientation R_rel "Relative Rotation from frame 1 to frame 2"; 

algorithm 
R_rel = R2*transpose(R1); 
/* If frame_l and frame_2 are identical, R_rel must be 

the unit matrix. If they are close together, R_rel can be 
linearized yielding: 
R_rel = [ 1, phi3, -phi2; 

-phi3, 1, phil; 
phi2, -phil, 1 ]; 

where phil, phi2, phi3 are the small rotation angles around 
axis x, y, z of frame 1 to rotate frame 1 into frame 2. 
The atan2 is used to handle large rotation angles, but does not 
modify the result for small angles. 

* / 
residue :•= { Modelica .Math. atan2 (R_rel [2, 

Modelica.Math.atan2(R_rel[3, 
Modelica.Math.atan2(R_rel[1, 

end equalityConstraint; 
end Orientation; 

connector Frame "3-dimensional mechanical connector" 
import SI = Modelica.SIunits; 
SI.Position r[3] "Vector from inertial frame to Frame"; 
Orientation R "Orientation from inertial frame to Frame"; 
flow SI.Force f[3] "Cut-force resolved in Frame"; 
flow SI.Torque t[3] "Cut-torque resolved in Frame"; 

end Frame; 
A fixed translation from a frame A to a frame B may be defined as: 

model FixedTranslation 
parameter Modelica.Slunits.Position r[3] ; 
Frame frame_a, frame_b; 

equation 
Connections.branch(frame_a.R, frame_b.R); 
frame_b.r = frame_a.r + transpose(frame_a.R)*r; 
frame_b.R = frame_a.R; 
zeros(3) = frame_a.f + frame_b.f; 
zeros(3) = frame_a.t + frame_b.t + cross(r, frame_b.f); 

end FixedTranslation; 
Since the transformation matrix f rame a. R is algebraically coupled with f rame b. R, a branch in the 

virtual connection graph has to be defined. At the inertial system, the orientation is consistently initialized 
and therefore the orientation in the inertial system connector has to be defined as root: 

model InertialSystem 
Frame frame_b; 

equation 

3], R_rel[1, 1]), 
1], R_rel[2, 2]), 
2] , R_rel[3, 3] ) } ; 
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Connections.root(frame_b.R); 
frame_b.r = zeros(3); 
frame_b.R = identity(3); 

end InertialSystem; 

8.5.2 Overdetermined Types and Variables 

Regarding types such as the Orientation type described above in Section 8.5.1, in general the following 
applies: 

• A type class with an equalityConstraint function declaration is called overdetermined type. 
• A record class with an equalityConstraint function definition is called overdetermined 

record. 
• A connector that contains instances of overdetermined type and/or record classes is called 

overdetermined connector. 
• An instance of an overdetermined type class is called an overdetermined variable. 
• An overdetermined type or record may neither have flow variables nor may be used as a type of 

flow variables. 

Thus, in general, a type or record declaration may contain an optional definition of the function 
equalityConstraint ( . . . ) which must have the form shown below. The residue output of the 
equalityConstraint function must have known size, here defined by the constant n. 

type Type // Overdetermined type 
extends <base type>; 

function equalityConstraint // Equality without redundant equations 
input Type Tl; 
input Type T2; 
output Real residue[ n ]; 

algorithm 
residue := ... 

end equalityConstraint; 
end Type; 

record Record 
<declaration of record fields> 

function equalityConstraint // Equality without redundant equations 
input Record Rl; 
input Record R2; 
output Real residue[ n ]; 

algorithm 
residue := ... 

end equalityConstraint; 
end Record; 

If the elements of a record, e.g., Record, are not independent of each other, the equation Rl = R2 contains 
redundant scalar equations, which would make it hard to solve the system of equations. 

By instead using a function such as equalityConstraint the Rl = R2 can be transformed into a 
form with n independent variables. 

The function equalityConstraint must be able to express the equality between the two type 
instances Tl and T2 or two record instances Rl and R2, respectively, using a number n > 0 of equations, 
which should be the same as the number of independent unknowns. In this way redundancy is eliminated 
and the subsystem of equations becomes nonredundant. 
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The residues of these equations, that is, differences between equation left-hand sides and right-hand 
sides, are returned in a vector (here called residue) of size n as the result of the function. 

The set of n nonredundant equations stating equality between the records Rl and R2 is given by the 
equation 0 = Record.equalityConstraint (Rl, R2), where 0 characterizes a vector of zeros of 
appropriate size n. Inside a model this might appear as follows: 

Record Rl, R2; 
equation 

0 = Record.equalityConstraint(Rl,R2); 

8.5.3 Overconstrained Equation Operators for Connection Graphs 

The overconstrained equation operators for connection graphs, with the prefix Connections, should be 
used to specify additional model information that allows a Modelica environment to break loops in a 
virtual connection graph for converting it into a tree structure that can be compiled into efficient 
simulation code. 

Below we assume that there are variables A.R and B .R of connector instances A and B, and that the 
type of R is an overdetermined type. In the above example we have used the following overconstrained 
equation operators, which can be placed in the equation section of a model containing the connector 
instances A and/or B. 

However, remember the following important fact: overconstrained equation operators should only be 
used when needed to specify information to be used for breaking of dependency loops of relevant 
overdetermined variables. For example, if the dependency loop is mechanical, an operator such as 
Connections. branch should only be used if there is an algebraic equation in the loop involving relevant 
overdetermined mechanical variables, and not if there are only equations for other purposes, for example, 
equations within an electronic controller unit that is connected to the mechanical structure. 

• Connections .root (A.R) ;. Put this definition in a model where the relevant overdetermined 
variable A.R is {consistently) assigned, e.g. from a parameter expression. This is true for our 
previous example where A. R is set equal to the identity matrix. This definition states that A. R is a 
(definite) root node in a virtual connection graph 

• Connections .branch (A. R, B. R) ; Put this definition in a model where there is an algebraic 
equation between relevant overdetermined variables A.R and B. R, e.g. of the form B. R = f(A. R, 
...). This defines a non-breakable branch from A.R to B.R in a virtual connection graph, and can 
be used at all places where a connect (...) equation is allowed, e.g. not in a when-equation and 
not in an if-equation with more than parameter variability.. 

• connect (A, B ) ; This is used as usual for standard connections between connectors. In the virtual 
connection graph such connections are represented as breakable branches between corresponding 
variables in the connectors A and B. 

There are also three additional operators available that we have not yet used in our example: 

• Connections.potentialRoot(A.R, priority = prioexpr); where the priority 
argument is an optional nonnegative Integer parameter expression (default 0). Use this definition 
if a relevant overdetermined variable a .r appears differentiated (i.e., der (A.R)) in an equation. 
In a virtual connection subgraph without a Connections. root definition, one of the potential 
roots with the lowest priority number is selected as root. 

• b = Connections.isRoot (A.R) ; Returns true if A.R is selected as a root in the virtual 
connection graph. 

• b = Connections, rooted (A.R) or the deprecated older version b = rooted (A.R). If the 
operator Connections. rooted (A. R) is used, or the equivalent but deprecated operator 
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rooted (A.R), then there must be exactly one statement Connections, branch (A.R, B.R) 
involving A.R (the argument of Connections. rooted must be the first argument of 
Connections .branch). In that case Connections . rooted (A.R) returns true, if A.R is closer 
to the root of the spanning tree than B. R; otherwise false is returned. This operator can be used to 
avoid equation systems by providing analytic inverses, see for example 
Modelica.Mechanics.MultiBody.Parts.FixedRotation. 

Overconstrained equation operators are not allowed to be used in certain contexts: 

• Overconstrained equation operators cannot be used inside if-equations with Boolean conditions 
that do not have parameter or constant variability, or in when-equations. Use in for-equations is 
fine since the array range expression has parameter variability. The same restrictions apply for 
connect-equations (Section 5.7.2, page 210). 

Note that Connections .branch, Connections . root, and Connections .potentialRoot do not 
generate equations. They only generate nodes and branches in the virtual graph, and thereby indirectly 
influence the generation of equality equations from connect (...) equations. 

Below we give two simple examples of using the Connections . root and Connections .branch 
operators in model classes. 

In the inertial system model, the variable frame Jo. R is consistently initialized and is also an instance 
of the overdetermined connector type Orientation (see also the class Frame, Section 15.10.5.1, page 
884). Therefore the orientation matrix R in the inertial system connector frame_b has to be defined as 
root: 

model InertialSystem 
Frame frame_b; 

equation 
Connections.root(frameb.R); // Use of connection operator! 
frame_b.r_0 = zeros (3); 
frame_b.R = identity(3); // Always consistent initialization => root 

end FixedTranslation; 
A model for fixed ID mechanical translational motion from a frame A to a frame B is defined as follows: 

model FixedTranslation 
import SI = Modelica.Slunits; 
parameter SI.Position r_rel[3] "Vector from A to B, resolved in A"; 
Frame frame_a, frame_b; 

equation 
Connections.branch(framea.R, frameb.R); // Use of connection operator! 
frame_b.r__0 = frame_a.r_0 + transpose(frame_a.R)*r_rel; 
frame__b.R =.frame_a.R; 
zeros(3) = frame_a.f + frame_b.f; 
zeros(3) = frame_a.t + frame_b.t + cross(r_rel, frame_b.f); 

end FixedTranslation; 
Since the transformation matrices frame a.R and frame b.R are related through the algebraic 

equation frame b.R = frame a.R, a branch in the virtual connection graph is defined by using the 
Connections . branch () equation operator. 

8.5.4 Converting the Connection Graph into Trees and Generating 
Connection Equations 

After having built a virtual connection graph based on connect-equations and overdetermined connection 
operators as described previously, the Modelica environment converts the graph into one or more trees: 

• Break connect () branches in the graph until the graph has been converted into trees. 
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When the trees have been obtained, equality equations are generated from the connect () equations: 

• A connect () branch (i.e., not broken) in a tree is converted to ordinary equality equations 
according to the usual rules, see Section 5.7.8, page 219. 

• A connect (A. R, B. R) branch that has been broken, with A and B containing a variable R that is 
an instance of an overdetermined connector type, is converted to equations of the form 
0=equalityConstraint (A. R, B. R) where 0 is a vector of zeroes, e.g. as equation (8-5) 
in our previous example. However, if R is an ordinary type, standard equality equations such as 
A. R=B . R are generated. 

The process of cutting connect () branches from the virtual connection graph is illustrated by Figure 
8-5. 

Legend 

Q node 

O root 

0 potential root 

— — nonbreakablc branch 
(Connections.branch) 
breakable branch 
(connect) 

cut branch 

Figure 8-5. Cutting breakable branches in virtual connection graphs to obtain trees. 

The following additional considerations apply to the conversion of the virtual connection graph into a 
set of trees: 

1. Every root node defined via a Connections. root () operator is a definite root of one tree. 
2. The virtual connection graph may consist of sets of unconnected sub-graphs, each of which should 

have at least one root node or one potential root node. If a graph of this set does not contain any 
root node, then one potential root node in this sub-graph with the lowest priority number is 
selected to be the root of that sub-graph. The selection can be inquired in a class with the function 
Connections.isRoot(). 

3. If there are n selected roots in a sub-graph, then breakable branches have to be broken such that 
the result becomes a set of n trees with the selected root nodes as roots. 

8.6 Synchronous Clock-Based Equations 

This section briefly summarizes language elements for describing synchronous clock-based equations. The 
full description is available in Section 13.6, page 694. However, to get the full picture including several 
examples, start reading from the beginning of Chapter 13, page 591. 

As depicted in Figure 8-6, clocks and clocked discrete-time variable values are only defined at clock 
tick events for an associated clock and are undefined between clock ticks. 

To give a very simple example of a model with clock-based equations, in the model below the clock 
variable e l k is defined with an interval of 0.2 seconds. This clock is used for sampling the built-in time 
variable, with result put in x and defined only at clock ticks. Finally, the variable y is defined also between 
clock ticks by the use of the hold operator. 
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model BasicClockedSynchronous 
elk "A clock variable"; 

"Clocked discrete-time variable"; 
"Unclocked discrete-time variable" 

Clock 
discrete Real 
Real 

equation 
elk = Clock(0.2); // Clock with an interval of 0.2 seconds 
x = sample(time,elk); // Sample the continuous time at clock ticks 
y = hold(x)+l; // Hold value is defined also between clock ticks 

end BasicClockedSynchronous; 
We simulate and plot: 

simulate(BasicClockedSynchronous, stopTime=l.0) 
plot({x,y}) 
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Figure 8-6. Simulation of model BasicClockedSynchronous showing clocked discrete-time variable x 
and unclocked discrete-time variable y. 
How is it possible to know whether an equation is clocked or unclocked? The clocked when-equation 

(Section 13.6.6, page 700) is one simple case. It is itself a clocked equation and all equations inside a 
clocked when-equation are clocked with the same clock. 

For other equations, it is more complicated. It is necessary to look inside the equation regarding to 
occurrence of clocked-based operators such as Clock, sample, subsample, etc. If such operators occur 
the equation is clocked, otherwise unclocked. 

In fact, the analysis is even more involved. All clocked equations and variables belong to different 
clocked partitions depending on their clock frequency, where all in the same partition are synchronized to 
the same base clock frequency. Unclocked variables and equations belong to the unclocked continuous-
time partition. The precise rules (Section 13.6.14.2, page 719) are as follows: 

• A variable u in sample (u) and a variable y in y=hold (ud) is in a continuous-time partition. 
• Correspondingly, variables u and y in y = sample (uc), y = subSample (u), y = 

superSample(u), y = shiftSample(u), y = backSample(u),y = previous(u), are in a 
clocked partition. Equations in a clocked when-equation are also in a clocked partition. 

• Other partitions where none of the variables in the partition are associated with any of the operators 
above have an unspecified partition kind and are considered continuous-time partitions. 

• Finally, for the resulting final partitioning all continuous-time partitions are collected together and 
form "the" single continuous-time partition. 
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8.7 Equation Operators for Clocked State Machines 

This section briefly summarizes equation operators for synchronous clocked state machines. The full 
description is available in Section 13.7, page 729. Several usage examples of clocked state machines are 
presented in Chapter 13, starting from Section 13.3.2, page 635. 

The following equation operators for clocked state machines are available, described in Section 8.7.2 
below: 

• transition^..) 
• initialState(...) 
• activeState(...) 

8.7.1 States for State Machines 

Any Modelica block instance without continuous-time equations or algorithms can potentially be a state 
of a state machine. All equations in such a state have to be clocked; a continuous-time clock is not 
allowed. 

A state in a state machine might contain clocked or clocked discretized continuous-time equations. In 
the latter case the equations are numerically solved between the previous and the next clock tick if the 
corresponding state is active. 

This section is essentially the same as Section 13.7.1, page 729. 

8.7.2 Transitions and State Operators for State Machines 

A cluster of instances that are coupled by transition equations makes a state machine. All parts of a 
state machine must have the same clock. All transitions leaving one state must have different priorities. 
One and only one instance in each state machine must be marked as initial by appearing in an 
initialState equation. 

This section is essentially the same as Section 13.7.2, page 729. 
The following special kinds of state machine equations are used to define transitions between states and 

to define the initial state: 

Equation Operators to define a state machine 

transi t ionf from, to, 
condition, immediate, reset, 
synchronize, priority) 

The arguments from and to are block instances and condi tion is a 
Boolean argument. The optional arguments immediate, reset, and 
synchronize are of type Boolean, have parameter variability and 
default values true, true, false respectively. The optional 
argument priori ty is of type Integer, has parameter variability, and 
a default value 1. 

The transition(...) operator defines a transition from instance 
from to instance to. The from and to instances become states of a 
state machine. The transition fires when condition = true if 
immediate = true (this is called an " i m m e d i a t e transition") or 
previous(co/idLi tion) when immedia te=false (this is called a 
"delayed transition"). The argument priority defines the priority of 
firing when several transitions could fire, priority^ 1 is the highest 
priority. If reset-true, the states of the target state are reinitialized, 
i.e., state machines are restarted in initial state and state variables are 
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reset to their start values. If synchronize^true, any transition is 
disabled until all state machines of the from-state have reached final 
states, i.e., states without outgoing transitions. For the precise details 
about firing a transition, see Section 13.7.4, page 732. 

initialState(state) 
The argument state is the block instance that is defined to be the 
initial state of a state machine. At the first clock tick of the state 
machine, this state becomes active. 

The transition and initialState equation operators may not be used inside if-equations with 
nonparametric conditions, or in when-equations. 

It is possible to query the status of the state machine by using the following operators: 

activeState(state) 
The argument state is a block instance. The operator returns true if this 
instance is a state of a state machine and this state is active at the actual clock 
tick. If it is not active, the operator returns false. It is an error if the instance is 
not a state of a state machine. 

ticksInState() 
The operator returns the number of clock ticks since a transition was made to the 
currently active state. This function can only be used in transition conditions of 
state machines not present in states of higher level state machines. 

timelnStateQ 
The operator returns the time duration as Real in [s] since a transition was made 
to the currently active state. This function can only be used in transition 
conditions of state machines not present within states of higher level state 
machines. 

An example state machine model in textual form (without graphical annotations) is shown below. This 
is exactly the same model as presented in Section 13.7.5, page 735, where its graphical representation is 
also shown. 

block HierarchicalAndParallelStateMachine 

inner Integer v(start=0); 

Statel statel; 
State2 state2; 

equation 
initialState(statel); 
transition(statel,state2,activeState(statel.stateD) and 
activeState(statel.stateY), immediate=false); 

transition(state2/statel,v >= 20, immediate=false); 

public 
block Statel 

inner Integer count(start=0); 
inner outer output Integer v; 

block StateA 
outer output Integer v; 

equation 
v = previous(v) + 2; 

end StateA; 
StateA stateA; 

block StateB 
outer output Integer v; 

equation 
v = previous(v) - 1; 
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end StateB; 
StateB stateB; 

block StateC 
outer output Integer count; 

equation 
count = previous(count) + 1; 

end StateC; 
StateC stateC; 

block StateD 
end StateD; 
StateD stateD; 

equation 
initialState(stateA); 
transition(stateA, stateB, v >= 6, immediate=false); 
transition(stateB, stateC, v == 0, immediate=false); 
transition(stateC, stateA, true, immediate=false, priority=2); 
transition(stateC, stateD, count >= 2, immediate=false); 

public 
block StateX 

outer input Integer v; 
Integer i(start=0); 
Integer w; // = v; 

equation 
i = previous(i) + 1; 
w = v; . 

end StateX; 
StateX stateX; 

block StateY 
Integer j(start=0); 

equation 
j = previous(j) + 1; 

end StateY; 
StateY stateY; 

equation 
initialState(stateX); 
transition(stateX, stateY, stateX.i > 20, immediate=false, reset=false); 

end Statel; 

block State2 
outer output Integer v; 

equation 
v = previous(v) + 5; 

end State2; 
end HierarchicalAndParallelStateMachine; 

8.8 Special Operators for Enabling Equation System Solution 

In addition to the special operators for overconstrained connection graphs described in Section 8.5, page 
374, there are other special operators which have been introduced into Modelica in order to enable 
modeling in a way that supports symbolic transformations of models as well as stable and efficient 
simulation during the solution process. One such operator is semiLinear which is used to model fluid 
system applications in a way that enables handling reversing flows. The homotopy operator is another 
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case, which, however, is used for initialization and therefore is described in Section 8.4.7, page 372. See 
also the table in Section 6.14, page 291, which includes brief descriptions of these operators. 

8.8.1 semiLinear for Handling Reversing Flows in Fluid Systems 

The built-in function semiLinear(...), see also a short definition in Section 6.14, page 291, is intended for 
modeling fluid system applications, for example, the Modelica Fluid library, in a way that enables 
handling reversing flows in a mathematically clean way. To achieve this, the semiLinear function is 
used to define characteristics with two slopes and a set of rules for symbolic transformations. These rules 
are especially relevant when the function becomes underdetermined. The syntax is as follows: 

semiLinear(x,positiveSlope, negativeSlope) 
The function effectively returns the value of this expression: 

if x>=0 then positiveSlope*x else negativeSlope*x 
The result is of type Real. For nonscalar arguments, the function is vectorized according to Section 7.10, 
page 340. An example of using the semiLinear function for reversing flows in fluid systems is the 
following: 

H_flow = semiLinear(m_flow, port.h, h); 
Here the enthalpy flow rate H flow is computed from the mass flow rate m flow and the upstream 
specific enthalpy depending on the flow direction. Another example can be found in Section 8.9.3.5, page 
399. Using semiLinear works well for one-to-one connections. For connections with more than two 
flows the stream connector (Section 5.10, page 245) leads to more robust solutions and is recommended 
for use instead of semiLinear. 

In some situations, equations with the semiLinear () function become underdetermined if the first 
argument (x) becomes zero, that is, there is an infinite number of solutions. It is recommended that the 
following rules are used by a Modelica tool to transform the equations during the translation phase in order 
to select one meaningful solution in such cases: 

Rule 1: 

The equations 

y = semiLinear(x, sa, si); 
y = semiLinear(x, si, s2); 
y = semiLinear(x, s2, s3); 

y = semiLinear(x, sN, sb); 

may be replaced by 

si = if x >= 0 then sa else sb 
s2 - si; 
s3 = s2; 

Sn = SN-I ; 
y = semiLinear(x, sa, sb); 

Rule 2: 

The equations 

x = 0; y - 0; 
y = semiLinear(x, sa, sb); 



Chapter 8 Equations 387 

may be replaced by 

X = 0 
y = 0; 
sa - sb; 
For symbolic transformations, the following property is useful (this follows from the definition): 

semiLinear(m_flow, port_h, h); 
It is identical to 

-semiLinear(-m_flow, h, port_h); 

8.9 Balanced Model Equation Systems 

A basic property of Modelica models is that each Modelica model that can be simulated can be 
transformed into a system of equations with the same number of equations and variables/unknowns. Such a 
system is called balanced. Being balanced is a necessary but not always sufficient condition for an 
equation system being structurally nonsingular and solvable. A system of equations with more equations 
than variables is called over-constrained, whereas a system of equations with fewer equations than 
variables is called under-constrained. 

A basic approach to checking whether a model is balanced is to expand the model into a flat system of 
equations and variables, count the number of equations and variables, and check if they are equal. We 
always count scalar variables and equations. Array variables and equations will need to be expanded into 
their scalar variants. 

However, if the system contains thousands of equations it can be very hard for the modeler to 
determine the root cause(s) of a system being unbalanced and how to correct such a problem. The 
difficulty partially comes from the many symbolic transformations including inheritance and substitution 
operations on the way from the original model to the expanded version. It can be very hard to recognize 
original equations in the expanded form, and even harder to realize the appropriate way to convert an 
unbalanced model into a balanced one. 

Specialized debugging tools (Section 18.3.1, page 1016) have been developed to help localize and 
correct sources of balancing problems. Even better would be to prevent these problems from ever 
occurring, at least for large models where it is difficult to understand and correct the causes of being 
unbalanced. It would be good if balancing problems were detected and reported early during the analysis 
of a model instead of at a late stage when the model has been expanded into a system of equations that is 
not very recognizable in terms of the original model. 

One simple idea is based on the fact that if all model components in a large model are balanced, the 
whole model will also be balanced. Having balanced model components would also simplify combining 
separately compiled model components into a correct total model. A possible drawback of balanced 
models may be less freedom in expressing models and decreased reuse of models, since the balancing 
condition will put constraints on the forms of allowed models. However, one kind of model component 
that should be excluded from the balancing requirement is partial models, since they are anyway meant to 
be incomplete. 

Balanced models and model components is a requirement of Modelica 3.0 and later versions of the 
language. Modelica 2.2 and earlier versions allow unbalanced model components but still (of course) 
require that the final simulation model always must be balanced. 

This section including several subsequent subsections describes the concept of balanced models and 
specifies the rules which are necessary to ensure that the resulting simulation model is balanced. 
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8.9.1 Problems Detecting Causes of Unbalanced Models 

As mentioned in the introduction, the causes(s) of a model being unbalanced are often hard to understand 
for large models. However, even for small parameterized models it can be a bit tricky as demonstrated in 
the following very simple examples. 

partial model BaseCorrelation // Unbalanced but correct since partial 
input Real x; 
Real y; 

end BaseCorrelation; 
model SpecialCorrelation // Correct in both Modelica 2.2 and Modelica 3.0 

extends BaseCorrelation(x=2); 
equation 

y = 2/x; 
end SpecialCorrelation; 
model SpecialCorrelationExpanded 

input Real x=2; 
Real y; 

equation 
y = 2/x; 

end SpecialCorrelationExpanded; 
The first model, BaseCorrelation, is a partial model and obviously unbalanced with two variables 

and no equations. 
The second model, SpecialCorrelation, inherits BaseCorrelation and is balanced since it adds 

one declaration equation x=2 through the modifier and another one y=2/x in the equation section, giving 
two equations and two variables. The balanced property of two equations and two variables becomes even 
more clear when looking at the expanded model SpecialCorrelationExpanded. 

We now turn to a model called useCorrelation containing a replaceable model which by default is 
BaseCorrelation. 

model UseCorrelation // Correct according to Modelica 2.2 
// Not valid according to Modelica 3.0 

replaceable model Correlation=BaseCorrelation; 
Correlation correlation; 

equation 
correlation.y = time; 

end UseCorrelation; 
model UseCorrelationExpanded 

input Real correlation.x; 
Real correlation.y; 

equation 
correlation.y = time; 

end UseCorrelationExpanded; 
The useCorrelation model inherits BaseCorrelation with two variables as a default for its 
replaceable model Correlation. It adds one equation, giving a total of one equation and two variables 
which is unbalanced. This model is correct in Modelica 2.2 if it is not used as a simulation model. It is 
incorrect in Modelica 3.0 which requires that all nonpartial models are balanced irrespective of whether 
they are used as simulation models or not. 

However, the model Broken below gives an error in both Modelica 2.2 and Modelica 3.0: 
model Broken / / After redeclaration there is one equation too much in both Modelica 2.2 and 3.0 

UseCorrelation example(redeclare Correlation=SpecialCorrelation); 
end Broken; 
model BrokenExpanded 

input Real example.correlation.x=2; 
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Real example.correlation.y; 
equation 

example.correlation.y = 2/x; 
example.correlation.y = time; 

end BrokenExpanded; 
Where is the error? The redeclaration seems to be correct since SpecialCorrelation is a subtype of 

BaseCorrelation which acts as the constraining type of Correlation at redeclarations (Section 4.3, 
page 156). 

In Modelica 2.2, the model Broken will work with some models provided in the redeclaration but not 
with others. Just by redeclaring it to the model SpecialCorrelation an error will occur. It will be very 
difficult to find the source of such an error in a large model. 

Thus, by combining correct models in Modelica 2.2 in a correct way one can still produce an incorrect 
model which is very unsatisfactory. 

By introducing strict language rules about balanced models in Modelica 3.0 and later versions the 
model UseCorrelation is no longer allowed and will be indicated as erroneous by a Modelica tool. In 
fact, those rules now guarantee that a redeclaration cannot give rise to an unbalanced model any more. 

8.9.2 Conditions for Balanced Models 

Certain conditions must be fulfilled by a model in order to be balanced. These conditions apply after 
partial model expansion, that is, inherited variables are included and possibly modified by modification 
equations. The following concepts explained in subsequent sections are needed to precisely express the 
conditions for balanced models: 

• Local number of variables/unknowns 
• Local equation size 
• Locally balanced model 
• Balancing restriction for connector classes 

8.9.2.1 Local Number of Unknowns 

In the following, we only consider counting scalar variables. Array variables, record variables, and 
operator record variables are expanded into sets of scalar variables of primitive basic types before 
counting. The number of counted variables of an overdetermined type or record class (Section 8.5.2, page 
378) is the size of the output result vector of the corresponding equalityConstraint() function. 

function equalityConstraint // Equality without redundant equations 
input Type Tl; 
input Type T2; 

output Real residue[n]; // Output vector of size n 
algorithm 

residue := ... 
end equalityConstraint; 

The local number of scalar unknowns in a model, that is, in a class, model, or block specialized 
class, the sum is based on counting the variables directly or indirectly (via local instances) declared in the 
class according to the following rules: 

• Count scalar variables without the outer prefix declared as (parts of) basic types, arrays, records, 
and subtypes of those e.g. defined using the Modelica type construct. Basic types include Real, 
Integer, String, Boolean, and enumeration. Parameters and constants are excluded in the 
counting since they are not unknowns in the system of equations to be solved and get their values 
through declaration equations or modifiers. 



390 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

• Ignore outer variables of basic types, arrays, records, and subtypes of those. The reason is that 
variables with prefix outer are treated as known since they are just references to inner variables 
(Section 5.8, page 224) and will get their values through these corresponding inner variables. 

• Count variables declared inside connector instances, excluding parameters and constants. 
• Count variables with prefixes input or flow which belong to public (top level) connectors within 

local instances of model, class, or block. See for example the connectors pi and p2 in the 
Upart model below. Top level means that only connectors directly within the local instances are 
considered, not connectors within connectors or further down in the instance hierarchy. The reason 
that only such inputs and flow variables are counted is that these are unknowns of the local 
instances within the current instance. 

Examples: 

type Voltage = Real(unit="V); 
record Reel 

Real al; 
constant Boolan b2; 

end Reel; 
connector Pinl 

Real v; 
flow Real i; 

end Pinl; 
connector Pin2 // Illegal unbalanced connector class 

input Real v; 
flow Real i; 

end Pin2; 
model Upart 

Pinl pi; 
Pin2 p2; 

end Upart; 
model U1 

Real xl; // Counted as 1 scalar 
Voltage x2; // Counted as 1 scalar 
Integer[3] x3; // Counted as 3 scalars 
outer Integer x4; // Not counted since it is outer 
parameter Real x5; // Not counted since it is a parameter 
Upart x6; // Counted as 3; 1 from pi and 2 from p2 in Upart 
Reel x7; // Counted as 1 since the record contains one constant 

end Ul; 

8.9.2.2 Local Equation System Size 

In the following, we only consider counting scalar equations. Array or record equations will have to be 
expanded into scalar equations for counting. The local equation system size of a model, class, or block 
class is the sum of the equation counts from the class according to the following rules: 

• Count the number of equations directly defined at the top-level in the class, that is, not in any local 
model or block instance within the class. This includes counting equations in equation 
sections—both simple equations and the contents of structured equations typically containing 
several simple equations, declaration equations, and inherited modifier equations. 

The count also includes equations generated from connect-equations with standard connectors 
(Section 5.2, page 188, and Section 5.7, page 208), expandable connectors (Section 5.9, page 238), 
and stream connectors (Section 5.10, page 245). when-equations (Section 8.3.5, page 357) and 
when-statements (Section 9.2.10, page 433) are counted according to the number of variables 

// Count 1 scalar from the flow variable in pi 
// Count 2 from the input and the flow variables in p2 
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which are defined by the equations or statements in their bodies. The equation count of an 
algorithm section (see below) is also according to the number of variables it defines. 

• Count the number of input and flow variables present in each (top-level) public connector instance 
declared in the class. This represents the number of connection equations that will be generated 
when the class is used, since inputs will be connected to outputs and flow variables will always 
give rise to equations even when they are not connected—in the latter case default zero-flow 
equations are generated. 

• Count the number of (top level) public input variables that are not connectors and do not have 
binding equations. The concept of binding equations is explained below. Top-level input variables 
are treated as known variables since they represent the number of binding equations that must be 
provided to define values for these input variables when the class is used. 

A binding equation for a variable can appear directly as a declaration equation, but also includes the 
case when a binding equation is provided as a modifier. For example, this is the case if another model 
inherits or uses the model M below and has a modifier on u that specifies the value of u. 

model M 
input Real u; // u is a top-level input since defined directly in M 
input Real u2=2; // u2 is another top-level input variable 

end M; 
Here u and u2 are top-level public input variables in the model M and not connectors. The variable u2 has 
a declaration equation u2=2, but u does not have a declaration equation. However, in the equation count it 
is assumed that an equation for u is supplied when using the model. Thus the equation count for the model 
M is considered as two, even though only one equation is visible in the example. 

Another issue briefly mentioned above is counting equations in algorithm sections. An algorithm 
section does not contain equations even though it behaves as if it contains equations, and can be mixed 
with equation sections. Variables assigned values by the algorithm define the outputs of the algorithm—in 
the example below, y and z. This makes the semantics of an algorithm section quite similar to an equation 
section calling a function with the algorithm section as its body, with input and output function formal 
parameters corresponding to inputs and outputs of the algorithm section. For example, consider the 
algorithm section below which occurs in a model intermixed with equation sections: 

algorithm 
y : = x; 
z 2*y; 
y z+y; 

This algorithm can be transformed into an equation section and a function as below, without changing 
its meaning. The equation equates the output variables of the above algorithm section with the results of 
the function f. The function f has the inputs to the algorithm section as its input formal parameters and the 
outputs as its result parameters. The algorithmic code of the algorithm section has become the body of the 
function f. 

equation 
(y, z) = f (x) ; 

function f 
input Real x; 
output Real y,z; 

algorithm 
y : = x; 
z 2*y; 
y := z+y; 

end f; 
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How do we count equations regarding computation of array elements, that is, the number of assigned-to 
array elements, inside an algorithm section? There might for example be if-statements containing 
conditional assignments to array elements with indices that are evaluated at run-time, making it impossible 
to statically determine if a particular array element is assigned. However, there is the rule regarding 
assigned-to variables in algorithm sections (Section 9.2.1, page 423) that all continuous-time variables are 
(conceptually) initialized to their start values and all discrete-time variables to their pre-values or previous-
values at the beginning of the algorithm section. Thus the whole array is always considered to be assigned 
if it cannot be statically determined that assignments to the array elements in the algorithm section are 
always to certain fixed indices or within array slice(s) with specific lower and upper index bounds. 

8.9.2.3 Connector Class Balancing Restrictions 

What happens if there are several connectors with flow variables and all of these are connected to generate 
a single sum-to-zero equation based on Kirchhoffs current law (Section 5.7.8.5, page 222)? Then we have 
several flow variables but only one sum-to-zero equation. Would not this make the model unbalanced? 

Fortunately, as we explain further below, the model will still be balanced if all connector classes obey 
the following balancing rule: 

• For each non-partial connector class the number of variables with prefix flow must be equal to the 
number of variables which have neither of the prefixes parameter, constant, input, output, 
stream, nor flow. As usual the number of variables is counted in the connector class after 
expanding all records, operator records, and arrays to a set of scalars of basic types. 

For example, the following connector class is illegal in Modelica 3.0 and later versions but was legal in 
Modelica 2.2: 

connector NotValid // Illegal connector, one flow and two potential 
Real rl; 
Real r2; 
flow Real r3; 

end NotValid; 
The connector class balancing restriction is discussed in more detail in Section 5.7.7, page 217, including 
several larger examples. 

It is still not easy to understand how the above connector class restriction can make the model 
balanced. We need to invoke another rule (Section 5.7.8.2, page 221) to make that happen: 

• A connection set is added for each primitive (unconnected) flow variable as an inside (Section 
5.7.1, page 208) connector. 

A connection set for an unconnected inside flow variable will give rise to a set-to-zero equation. If the 
variable is connected there will be a connection equation. In any case there will be an equation for each 
flow variable, n equations if there are n flow variables. There will also be one zero-sum equation for all 
outside flows according to Kirchhoffs current law. Finally there will be n-1 equations corresponding to the 
n-1 connections between the n potential variables, giving a total of 2n equations for the 2n variables, n 
flow and n potential. This is demonstrated in the following example model. 

// CIO must have the same number of potential and flow variables, 
connector CIO 

Real e; 
flow Real f; 

end CIO; 

model M10 
CIO cl, c2, 

equation 
connect(c1, 
connect(c2, 

c3, c4; 

c2) ; 
c3) ; 
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connect(c3, c4) ; 
end Ml 0; 

The model M10 will expand into the following: 

class MlOexpanded // 8 variables and 8 equations 
Real cl.e; 
Real cl.f; 
Real c2.e; 
Real c2.f; 
Real c3.e; 
Real c3.f; 
Real c4.e; 
Real c4.f; 

equation 
// Unconnected inside connector flows 
cl.f - 0.0; 
c2.f = 0.0; 
c3.f = 0.0; 
c4.f = 0.0; 
// Equality equations for potential variables 
cl.e = c2.e; 
cl.e = c3.e; 
cl.e = c4.e; 
// Zero-sum equation for flows, in this case all outside connectors 
-cl.f + -c2.f + -c3.f + -c4.f = 0.0; 

end MlOexpanded; 
The model M10 is not a simulation model, that is, it cannot be simulated. This is not surprising since it 

just consists of four connectors connected in series, with two open endings. Moreover, it is not connected 
to a ground-like model instance. The model has three equations involving the four potential variables and 
five equations involving the four flow variables, which makes the model unsolvable. 

8.9.2.4 Locally Balanced 

A model or block class is locally balanced if the local number of unknowns is identical to the local 
equation size for all legal values of constants and parameters. The legal values of constants and parameters 
(which are always constant during simulation) must obey possible final prefixes and min/max-
restrictions of those declarations. 

Modelica tools should verify the locally balanced property for the actual values of parameters and 
constants in the particular simulation model being checked. 

It is a quality of implementation for a Modelica tool how well this property is verified in general for 
arbitrary legal constant and parameter values, due to arrays of (locally) undefined sizes, conditional 
declarations, for-loops, and so on. 

8.9.2.5 Globally Balanced 

The property of a model being globally balanced is similar to being locally balanced, but includes all 
unknowns and equations from all instances in the model. 

The global number of unknowns is computed by expanding all unknowns, excluding parameters and 
constants, into a set of scalar variables of primitive types. It is defined as the sum of the following items 
below, but could also be done by summing the local number of unknowns and the local equation system 
sizes for all model instances in the model. 

• The number of equations defined, including equations in any model instance and equations 
generated from connect-equations. 

• The number of input and flow-variables present in each (top-level) public connector variable. 
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• The number of (top level) public input variables that neither are connectors nor have binding 
equations, i.e., such top-level input are treated as known variables that are assumed to be set by the 
environment (Section 3.11.3, page 101). 

The number of unknowns and the number of equations should be equal globally for the whole model. 
The following restrictions hold for globally balanced models: 

• In a nonpartial model, all non-connector variables with prefix input within model instances must 
have binding equations (Section 8.9.2.2, page 390). For example, if the model contains an instance, 
e.g., inst, and inst contains input Real u, then there must be a binding equation for inst .u. 
This is because input variables are assumed to have known values, and these values must be 
defined somewhere using binding equations. 

• An instance declared with the inner or outer prefix must not be an instance of a class having 
top-level public connectors containing inputs. This restriction is present to avoid introducing 
complex semantic rules for the combination of input and inner/outer, for which no use-case 
yet has been found. 

• A nonpartial model may not contain an instance of a partial model. 
• In a declaration of an instance of a record, connector, or simple type, modifiers can be applied to 

any element. These modifiers are also considered for the equation count since they are equations. 
For example: Flange support(phi=phi2, tau=torquel+torque2) if useSupport; 
If the condition useSupport=true there are two equations for support. phi and support. tau 
provided via the modifiers. 

• In other cases, that is, declaration of an instance of a model or block type, modifiers on extends, 
and modifier on short-class-definitions: modifiers for instances shall only contain redeclarations of 
replaceable elements and binding equations. The binding equations in modifiers for instances may 
in these cases only be for parameters, constants, inputs, and variables having a default binding 
equation. 

• All nonpartial model and block classes must be locally balanced, that is, the local number of 
unknowns equals the local equation size. 

Based on the above restrictions, the following statement can be given for simulation models (see also 
Section 3.11.3, page 101, regarding simulation models): 

• All simulation models are globally balanced. 

Therefore, the number of unknowns is equal to the number of equations of a simulation model. Moreover, 
without being globally balanced it would not simulate. 

8.9.3 Balanced Model Examples 

Below we present three examples of balanced models and how the balancing conditions are checked by 
counting variables and equations in the models. The models are presented roughly in order of increasing 
complexity: 

• Capacitor model 
• Circuit model 
• S imp 1 eAi r medium model 
• DynamicVolume medium model 
• FixedBoundary_pTX medium model 
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8.9.3.1 Balancing Analysis for Capacitor 

The following is a very simple Capacitor model which illustrates the basics of performing checks on 
model balancing. 

connector Pin 
Real v; 
flow Real i; 

end Pin; 

model Capacitor 
parameter Real C; 
Pin p, n; 
Real in-

equation 
0 = p. i + n.i; 
u = p.v - n.v; 
C*der(u) = p.i; 

end Capacitor; 
The model Capacitor is a locally balanced model according to our analysis below. These five local 
variables can be found in the model: 

p.i, p.v, n.i, n.v, u 
The following three local equations can be extracted from the equation section: 

0 = p . i + n . i ; 
u = p.v - n.v; 
C*der(u) = p.i; 

Two equal-to-zero equations as below are implicitly generated from the connection sets of the two 
(unconnected) inside flow-variables p.i and n.i. If they would be connected there would also be two 
equations, but different. In either case there will be two equations. 

p.i = 0; 
n.i = 0; 

Thus, there are five equations and five unknowns in the model which makes it locally balanced. 
If the equation u = p.v - n.v would be missing in the Capacitor model, there would be four 

equations and five unknowns and the model would be locally unbalanced. Simulation models in which 
such a model is used would usually not be solvable. 

If the equation u = p.v - n.v would be replaced by the equation u = 0 and the equation c*der (u) 
= p.i would be replaced by the equation c*der(u) = 0, there would be five equations and five 
unknowns, i.e., the equation system would be locally balanced. However, the system of equations would 
be singular (not solvable) regardless of how the equations corresponding to the flow-variables are 
constructed because the two equations would be two variants of almost the same equation setting u equal 
to a constant value, that is, since integrating der (u) =0 would give u = some constant value. 

8.9.3.2 Balancing Analysis for Circuit 

The second example, the Circuit model, is also very simple. It contains a Capacitor as previously but 
also adds a Circuit, inheritance from the partial model Two Pin, connections between connectors, and an 
instance tp within Circuit. Note that tp is an instance of a replaceable partial model. 

connector Pin 
Real v; 
flow Real i; 

end Pin; 

partial model TwoPin 
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Pin p , n ; 
end TwoPin; 

model C a p a c i t o r 
parameter Real C; 
extends TwoPin; 
Real in-

equation 
0 = p . i + n . i ; 
u = p . v - n . v ; 
C*der(u) = p . i ; 

end Capacitor; 

model C i r c u i t 
extends TwoPin; 
replaceable TwoPin t p ; 
C a p a c i t o r c (C=12) ; 

equation 
connect(p, t p . p ) ; 
connect(tp.n, c.p); 
connect(c.n, n); 

end C i r c u i t ; 

Since t p in C i r c u i t is an instance of a partial model it is not possible to check whether C i r c u i t is a 
globally balanced model. The reason is that it does not fulfill all the conditions for globally balanced 
models in Section 8.9.2.5. 

However, we can still check whether the model is locally balanced, and count variables and equations. 
Regarding variables, there are eight local variables according to the following analysis: 

• Four variables from the connectors p and n: p . i , p .v , n . i , n.v—according to the rule "count 
variables declared inside c o n n e c t o r instances". 

• Two flow variables for tp : t p . p . i , tp .n . i—accord ing to the rule "count variables, with 
prefixes i n p u t or f low which belong to public (top level) connectors within local instances of 
model, c l a s s , or b lock" , here the connectors p and n in the local instance tp . 

• Two flow variables for c: c . p . i , c .n . i—according to the rule "count variables with prefixes 
i n p u t or f low which belong to public (top level) connectors within local instances of model, 
c l a s s , or b lock ," here connectors p and n in the local instance c. 

There are eight local equations in the C i r c u i t model according to the following analysis: 

• Six equations from the expanded connect-equations: 

p . v = t . p . v ; / / from c o n n e c t ( p , t p . p ) ; 
0 = p . i - t . p . i ; 

c . p . v = l o a d . n . v ; / / from c o n n e c t ( t p . n , c . p ) 
0 = c . p . i + l o a d . n . i ; 

n . v = c . n . v ; / / from c o n n e c t ( c . n , n) 
0 = n . i - c . n . i ; 

• Two implicitly generated equal-to-zero equations from the (unconnected) flow variables p . i , n . i 
or alternatively two expanded connection equations if they are connected. 

p . i - 0 

n . i = 0 

In total we have eight scalar unknowns and eight scalar equations, that is, this is a locally balanced model. 
It is quite nice that the local balancing property holds in general for any model used for the replaceable 
instance tp . 
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8.9.3.3 Balancing Analysis for the SimpleAir Medium Model 

The third example is slightly more complex. It is a medium model containing a partial model 
BaseProperties which is inherited by SimpleAir being a special case of a medium. 

import SI = Modelica.Slunits; 
partial model BaseProperties 

"Interface of medium model for all types of media" 

connector InputAbsolutePressure = input SI.AbsolutePressure; 
connector InputSpecificEnthalpy = input SI.SpecificEnthalpy; 
connector InputMassFraction = input SI.MassFraction; 

parameter Boolean preferredMediumStates=false; 
constant Integer nXi "Number of independent mass fractions"; 
InputAbsolutePressure p; // input 
InputSpecificEnthalpy h; // input 
InputMassFraction Xi[nXi]; // input; The sum of fractions is 1 
SI.Temperature T; 
SI.Density d; 
SI.SpecificInternalEnergy u; 

end BaseProperties; 
The use of connectors in the BaseProperties model is an example of a special modeling pattern which 
can be useful in many similar cases. 

The instances p, h, and x i are marked as input to get the correct equation count. Since they are 
connectors they should neither be given binding equations in derived classes inheriting BaseProperties 
nor when using BaseProperties to create instances. 

The idea behind the modeling pattern is to give textual equations for them (as below). Using connect-
equations for these connectors would be possible (and would work) but is not part of this modeling pattern. 

This partial model defines that T , d, u can be computed from the medium model, provided that p, h, x i 
are given. Each medium with one or more substances and one or more phases, including incompressible 
media, has the property that T,d,u can be computed from p , h , x i , or from p, h if there is only one 
substance/phase and nXi=o. We use nXi=o below for one substance to get fewer equations but the same 
result. Using n x i = l would just involve x i [ 1 ] = 1 , i.e., a factor 1 that can be eliminated anyway. 

A particular medium may have different "independent variables" from which all other intrinsic 
thermodynamic variables can be recursively computed. For example, a simple air model could be defined 
as follows: 

model SimpleAir "Medium model of simple air. Independent variables: p,T" 
extends BaseProperties(nXi = 0, 

p (stateSelect = if preferredMediumStates then StateSelect.prefer 
else StateSelect.default), 

T(stateSelect = if preferredMediumStates then StateSelect.prefer 
else StateSelect.default)); 

constant SI.SpecificHeatCapacity R = 287; 
constant SI.SpecificHeatCapacity cp - 1005.45; 
constant SI.Temperature TO = 298.15; 

equation 
d = p/(R*T); 
h = cp*(T-TO); 
u = h - p/d; 

end SimpleAir; 
The local number of unknowns in the SimpleAir model after expansion is 5+nXi as follows: 

• Three variables—the T, d, u variables defined in BaseProperties and inherited into SimpleAir. 
• 2+nXi variables—the p, h, Xi[nXi] variables in connectors defined in BaseProperties and 

inherited into SimpleAir. 
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The local equation count below is 5+nXi which is the same as the obtained variable count: 

• Three equations—the equations defined in the equation section of s impl eAi r. 
• 2+nXi equations—implicitly generated from the input variables in the connectors inherited from 

BaseProperties. 
Therefore the model SimpleAir is locally balanced. 

What about possible global balancing of this model (Section 8.9.2.5, page 393)? The connector 
variables p, T, and xi[nxi] in SimpleAir which are inherited from BaseProperties are all inputs. 
Input variables are expected to implicitly obtain their values from the environment if not given explicitly. 

However, to obtain a model that can be simulated we explicitly provide the properties of air at a given 
temperature and pressure in the model Air Properties 1 using explicit equations and in 
Air Proper ties 2 using modifier equations. 

model AirPropertiesl 
SimpleAir air; 
SI.Temperature T_amb "Ambient temperature"; 
SI.Pressure p_amb "Ambient pressure"; 

equation 
T_amb = 273.15 + 20; 
p_amb = 101325; 
air.p = p_amb; 
air.T = T_amb; 

end AirPropertiesl; 
The model Air Properties 2 provides ambient temperature and pressure through modifier equations. 

model AirProperties2 
SimpleAir air(p = p_amb, T - T_amb); 
SI.Temperature T_amb "Ambient temperature"; 
SI.Pressure p_amb "Ambient pressure"; 

equation 
T_amb = 273.15 + 20; 
p_amb = 101325; 

end AirProperties2; 

8.9.3.4 Balancing Analysis for the DynamicVolume Medium Model 

The generic medium model BaseProperties can be used as a replaceable model in different usage 
models, like a dynamic volume or a fixed boundary condition. 

These use cases are exemplified by the parameterized model DynamicVolume, shown in this section, 
and the model FixedBoundary_pTX presented below in Section 8.9.3.5, page 399. Both models are 
parameterized in terms of the choice of medium with the default medium being defined by the partial 
model BaseProperties. 

Such models can be checked for local balancing but not for global balancing since they contain the 
instance medium of the partial model Medium. 

import SI = Modelica.Slunits 
connector FluidPort 
replaceable model Medium = BaseProperties; 

SI.AbsolutePressure p; 
flow SI.MassFlowRate m_flow; 

SI.SpecificEnthalpy h; 
flow SI.EnthalpyFlowRate H_flow; 

s i .MassFraction x i [Medium.nXi] "Independent mixture mass fractions" 
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flow si.MassFiowRate mxi_flow [Medium. nXi ] "Independent subst. mass flow rates" ; 
end FluidPort; 

model DynamicVolume 
parameter SI.Volurne V; 
replaceable model Medium = BaseProperties; 
FluidPort port(redeclare model Medium = Medium); 
Medium medium(preferredMediumStates=true); // No modifiers for p,h,Xi 
SI.InternalEnergy U; 
SI.Mass M; 
SI.Mass MXi[medium.nXi]; 

equation 
U = medium.u*M; 
M = medium.d*V; 
MXi = medium.Xi*M; 
der(U) = port.H_flow; // Energy balance 
der(M) = port.m_flow; // Mass balance 
der(MXi) = port.mXi_flow; // Substance mass balance 

// Equations binding to medium (inputs) 
medium.p = port.p; 
medium.h = port.h; 
medium.Xi = port.Xi; 

end DynamicVolume; 
The local number of unknowns of DynamicVolume is 8 + 4nXi given from the following: 

• 4 + 2*nXi variables—from inside the port connector. • 2+nXi variables—the variables u, M and MXi [ nXi ]. 
• 2 + nXi variables—the input variables in the connectors of the medium model. 

The number of local equations is also 8+4nXi as follows: 

• 6+3*nXi equations from the equation section. 
• 2+nXi implicitly generated equations from the flow variables in the port connector. 

DynamicVolume is therefore a locally balanced model. 
An interesting observation can be made for this example regarding state selection (Section 18.2.6, page 

1014) and computational causality (Section 2.7, page 36, and Section 3.11.3, page 101). 
When the DynamicVolume is used and the replaceable Medium model is redeclared to a concrete 

model such as SimpleAir, then a Modelica tool will try to select p and T as states. The reason is that 
these variables have the StateSelect.prefer property in the SimpleAir model which implies that the 
default states U,M are derived quantities. If this state selection is performed all intrinsic medium variables 
will be computed from medium.p and medium.T, although medium.p and medium.h are the arguments 
with input prefix in the medium model instance called medium in DynamicVolume. 

This demonstrates that in Modelica input and output prefixes do not always necessarily define the 
computational causality. Instead they require that equations have to be provided here for p, h, Xi in order 
for the equation count to be correct and the model properly balanced. The actual computational causality 
can be different from the prefixes in certain situations which is demonstrated with the SimpleAir model. 

8.9.3.5 Balancing Analysis for the FixedBoundary_pTX Medium Model 

The model FixedBoundary_pTX defines fixed boundary conditions for the medium by defining pressure 
p, temperature T, and mass fractions Xi, thereby the suffix pTX in the model name. The model is 
parameterized in terms of the choice of medium and can be checked for local balancing but not for global 
balancing since it contains the instance medium of the partial model Medium. 
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Regarding the use of semiLinear (Section 8.8.1, page 386), this is used to handle reversing flows in a 
numerically stable way. If the mass flow port .m_f low is positive (into the connector), then semiLinear 
will return port .m_flow*port .h, whereas if the flow is negative it returns port .m_flow*medium.h. 
This works well for one-to-one connections. For connections with more than one connector connected the 
use of stream connectors (Section 5.10, page 245) is more robust. 

model FixedBoundary_pTX 
parameter SI.AbsolutePressure p "Predefined boundary pressure"; 
parameter SI.Temperature T "Predefined boundary temperature"; 
parameter si.MassFraction xi [medium.nxi] "Predefined boundary mass fraction"; 
replaceable model Medium = BaseProperties; 
FluidPort port(redeclare model Medium = Medium); 
Medium medium; 

equation 
port.p = p; 
port.H_flow = semiLinear(port,m_flow, port.h , medium.h); 
port.MXi_flow = semiLinear(port.m_flow, port.Xi, medium.Xi); // Vector eq 

// Equations binding parameters to medium (note: T is not an input) 
medium.p = p; 
medium.T = T; 
medium.Xi = Xi; // Vector equation 

end FixedBoundary_pTX; 
The number of local variables in FixedBoundary_pTX is 6+3*nXi: 

• 4+2*nXi variables—from inside the port connector. 
• 2+nXi variables—the input variables in the connectors of the medium model. 

The number of local equations in the model is 6+3*nXi, the same as the number of variables, based on 
the following: 

• 4+2*nXi equations from the equation section—4 scalar equations and 2 array equations involving 
(some of) the vectors Xi, medium.Xi, port .Xi, and port .MXi_f low. 

• 2+nXi implicitly generated equations from the flow variables in the port connector. 

Therefore, FixedBoundary pTX is a locally balanced model. The predefined boundary variables p and 
Xi are provided via equations to the input arguments medium, p and medium.Xi. Additionally, there is an 
equation for T in the same way, even though T is not an input. 

Depending on the flow direction, either the specific enthalpy in the port (port.h) or h is used to 
compute the enthalpy flow rate H_f low. The variable h is provided in a binding equation to the medium. 
With the equation medium. T = T, the specific enthalpy h of the reservoir is indirectly computed via the 
medium equations. 

Once more this demonstrates that inputs often just define the number of equations that have to be 
provided, but not necessarily define the computational causality. 

8.10 Partial Differential Equations14 

Before reading this section you should be aware of that parts of this section present Modelica design work 
in progress. There is a new Modelica indomain construct mentioned in this section that is not part of 
standard Modelica. Consult the book web page for the current status, since this preliminary design of 

14 This section includes the usage of a generalized indomain operator that at the time of this writing is not accepted in the 
Modelica language specification. See the book web page at www.openmodelica.org for future updates. 
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PDEs in Modelica will change. However, the spatialDistribution operator described in Section 
8.10.3, page 412, is part of the Modelica language since version 3.3. 

The kind of equations that can be directly represented in Modelica models in the current version of the 
language are hybrid differential algebraic equations, hybrid DAEs (see Chapter 17, page 979), containing 
algebraic relations and differential equations with time derivatives that might be conditionally active. The 
quantities in such models are just functions of time, and do not vary depending on spatial position. 

On the other hand, many physical phenomena are dependent on quantities that are physically 
distributed and therefore functions of spatial coordinates. Typical examples of such quantities are 
temperature distributions in a material, electromagnetic field strength, material density, tension, and so on. 
In fact, the kind of variables that have no spatial variation are typically approximations of distributed real 
variables, for example, by computing the mean value of the quantity over some region. 

Equations expressing relations involving variations of quantities over spatial coordinates, for example, 
x and.y, usually involve derivatives with respect to those coordinates, so-called partial derivatives. Systems 
of equations including both partial differential equations and hybrid DAEs can be denoted hybrid PDAEs 
or even HP DAEs. 

Partial derivatives of both space variables and time appear in the heat flow equation (8-6) below: 

du f d2u d2u -c\ i 2 + ^ | = / ( x , y ) e O (8-6) 
dt [dx2 dy 

Here the quantity u, denoting the temperature at the position in the material, is a dependent variable 
being a function of the time t and the independent 2D spatial coordinate variables x and y, that is, u{t, x, y). 
Such a function defined over a certain region is called a field. 

The quantities c and f are constant model parameters in the following models but could also be 
functions of x and y. The derivatives occurring in the equation include a time derivative, duldt, and two 
second-order partial derivatives d2u/dx2 and d2u/dy2 with respect to the independent space variables x 
and y of the field. By introducing the pder () partial differentiation operator as an ordinary user-defined 
function, partial derivatives can be represented in Modelica according to Table 6-1. Using this notation, 
equation (8-6) will appear as follows: 

der(u)-c*(pder(u,D.x2)+pder(u,D.y2)) = f 
Ideally, we would have preferred a Modelica notation such as pder(u,x,l) and pder(u,x,2) for 
du / dx and d2uldx2, respectively. Since this is not possible in the current Modelica language, we instead 
use pder (u, D.x) and pder (u, D. x2) or pder (u, x=l) and pder (u, x=2), which come quite close in 
terms of notation. 

Table 8-1. Partial differentiation operators applied to the 2D field u up to the second degree. Since a 
notation such as pder(u,x,2) cannot be realized in the current Modelica language, we use pder(u,D.x2) or 
pder(u,x=2) instead. The first representation is used here, and the second in Section 8.10.5. 

Operator Modelica Representation 1 Modelica Representation 2 

du / dx pder(u,D.x) pder(u,x=l) 

d2u/dx2 pder(u,D.x2) pder(u,x=2) 

du/dy pder(u, D. y) pder(u,y=l) 

d2u/dy2 pder(u,D.y2) pder(u,y=2) 

d2u/dxdy pder(u,D.xy) pder(u,x=l,y=l) 

duldt der(u) or pder(u,D.t) der(u) 
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In the first pder () representation we use literal constants from D=enumerat ion (x, x2, y, y2, xy, t) to 
indicate the order and variable for differentiation. In the second variant, used in Section 8.10.5, the 
function pder {fieldname, x,y) lets the two integer formal parameters * and y specify the 
differentiation order of the derivative with regards to the first and second independent space variable x and 
y of the field u. The formal parameters to pder () should have the same names as the independent space 
variables of the field. 

Equation (8-6) holds on a region with some geometric shape. Such a region is called the domain 
of the PDE problem. In the two-dimensional heat flow problem depicted in Figure 8-7 the domain has 
rectangular shape. 

Region of rectangular 
geometry—the domain Q 

Insulated boundaries: 
rhj 

Poorly insulated boundary: 

c-~- = q + h(Text-u) 
ox 

PDE for heat diffusion within the interior: 
du 
dt \dx2+dy: i ) -

Figure 8-7. A PDE defined on the rectangular domain Q, i.e., a rectangular geometry for the region where 
the PDE is defined, with insulated boundaries at the top and bottom, a poorly insulated boundary to the left, 
and a conducting boundary to the right. The PDE refers to the temperature field u(time,x,y) and c, q, h,f, and 
rext. which in this example are constant parameters, but in general could be functions of * and y. Heat flows 
from right to left since the external temperature Texi is only 20°C, i.e., cooler than the right boundary. 

In Figure 8-7 we observe that certain equations, so-called boundary conditions, apply at the four 
different boundary segments of the domain. The top and bottom boundaries are insulated, that is, there is 
no heat flow through the boundaries, and du/dy = 0. The right boundary is conducting. It keeps a fixed 
temperature u = 50 °C at the boundary. The left boundary is poorly insulated and therefore allows some 
heat leakage through the boundary, since the external temperature Text has the lower value 20°C compared 
to the 50°C of the right boundary. We should also mention that equation (8-6) can be stated 
somewhat more compactly using the gradient (V ) and divergence (V •) differential operators defined in 
(8-7) below: 

— - V . ( c V i / ) = / in Q (8-7) 
dt 

This equation coul be represented in Modelica using the functions gradient () and divergence (): 
der(u) - divergence(c*gradient(u)) = f indomain Omega; 

Here we have used the 2D vector definitions of the gradient and divergence differential operators: 

V = g r a d i e n t v - = ( d / d x dldy) divergence (8-8) 
\P/dy) 
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8.10.1 Structuring a PDE Problem 

After the introductory example in the previous section we are now ready to define the structure of a PDE 
problem in general. We have a result to be computed based certain problem elements: 

• Compute a field—that is, a function of time and the independent (spatial) coordinates, returning a 
real number—a scalar field, or multiple real numbers—e.g. a vector field. 

• The field computation is based on the following PDE problem elements. 
1. A partial differential equation (PDE). 
2. A domain, i.e., the region on which interior the PDE is defined. 
3. Boundary conditions, defined on the boundary of the domain. 
4. Initial conditions. 

Our PDE heat diffusion problem on a rectangular domain, previously depicted in Figure 8-7, can be 
formulated as follows according to this structure: 

• Field. u(t, x, y) to be solved for. 

nr.„ du (d2u d2u I r 

• A domain Q , in this case the interior of a rectangle: (0 < x < Lx, 0 < y < Ly). 

• Bo undary conditions: 

l e f t : c — = q + h(Text -u) x = 0 
dx 

right: w = 50 X ~ L X 

d u A / top: — = 0 y = Lv 
dy 

bottom: — = 0 y = 0 
dy 

• Initial condition: u(t, x,y) = 0 i = 

The obvious question is how such a problem could be expressed in Modelica. We will first show the 
boundary conditions: 

c*pder(u,D.x) = q + h*(T_ext - u); // left 
u = 50; // right 
pder(u,D.y) =0; // top 
pder(u,D.y) =0; // bottom 
In the next section, we turn to the problem of how to represent the geometry information of the domain 

as well as the field itself. We will include the boundaries in the full domain representation, since both 
boundaries and the interior then can be extracted by simple subset operations. The main PDE equation is 
however only applied at the interior of the domain as it should be. 

8.10.1.1 Basic Definitions of Domain, Field, Boundary, and Interior 

We recapitulate some definitions: 

• Domain—region (with some geometry) on which the whole PDE problem is defined. 
• Field—function of time (except for stationary problems) and independent spatial variables. This 

function is the desired solution to the PDE problem. 

— - V . ( c V i / ) = / i
dt 

— - V . ( c V i / ) = / i
dt 

— - V . ( c V i / ) = / i
dt 
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• Boundary—subset of the domain (usually with one dimension less than the domain) on which the 
boundary conditions are defined. 

• Interior—subset of the domain on which the "main PDE" is defined. 

It is desirable to have a general approach for constructing domains, applicable to ID, 2D, or 3D 
regions, with one, two, or three independent spatial variables respectively. 

A domain is a geometrical object that can be constructed in various ways. For example: 

• Defining a domain from a mesh data structure, e.g. created by some external tool. 
• Defining a domain using a discrete grid (i.e., array) representation— where a set of points on the 

grid belong to the domain. 
• Defining a domain as the region enclosed by two points (the ID case), by a parametric curve (the 

2D case), or a parametric surface (the 3D case). If we want to specify both the interior points and 
the boundaries, a parametric function with 1, 2, or 3 arguments, for the ID, 2D, or 3D cases 
respectively, can be used to generate all points in the interior or on the boundary. The geometric 
shape of a domain often needs a composition of several parts or segments to be completely defined. 

The first approach is typically used by finite-element method (FEM) tools that solve PDE problems on 
domains represented by meshes usually consisting of triangles (2D, see Figure 8-13, page 414) or 
pyramidal shapes (3D). The second approach is commonly used by tools and solution schemes based on 
finite difference PDE solution methods, shown in several of the following examples. 

The third approach is often used when domains have simple shapes that are easy to describe 
mathematically, e.g. lines, rectangles, circles, cubes, spheres, etc., or regions consisting of a combination of 
those. It is also used when high-accuracy scalable (to arbitrary resolution) domain definitions are needed, for 
example, in high resolution 3D graphics. Arbitrary scalable shapes can be described by parametric spline 
polynomials (called Nurbs in the OpenGL graphic standard). When needed, grids or meshes can be generated 
automatically based on parametric function domain definitions, and discretization parameters. 

• We should emphasize that our final goal is to allow the definition of domains and fields in 
Modelica models to be completely independent of low level implementation details such as grids 
or meshes, even though this is only partially (or not at all) realized for the examples in the 
following. 

8.10.1.2 The Method of Lines Approach to Spatial Discretization 

In the so-called method of lines the PDE equations and boundary conditions are discretized on a grid over 
the independent spatial variables, but not over the independent time variable. Thus each remaining variable 
is a function of time only: 

• All partial derivatives are expanded and approximated by sets of algebraic equations and 
differential equations at discrete points in space, yielding a set of DAEs that usually can be solved 
(for well-posed problems) using the current Modelica language. 

See also the discretization example with a PDE solution for pressure distribution in ID ducts described in 
Section 15.9, page 875, as another example of using the method of lines. 

As an example, regard the boundary condition at the bottom of the rectangular region previously shown 
in Figure 8-7: 

^ = 0 y = 0 (8-9) 

We would like to solve the PDE problem described in Section 8.10.1, for example, by discretizing the 
domain and the equations on a grid as shown in Figure 8-8. 

The boundary condition (8-9) can be discretized along the bottom boundary, by expressing the 
condition at several discrete points (u is still time-dependent, but not shown in the formulas): 
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du(x-xx) ^ du(x = x2)^ du(x = x3) = du(x = x„x) _Q (g ]()) 

dy dy dy dy 

x=0 top x=Lx 
y=Ly 0 0 0 0 KC: 0 0 0 0 y=Ly 

0 0 0 0 0 0 0 0 Ô 
0 0 0 0 0 0 0 0 i l r 

left 0 0 0 0 0 0 0 0 0 right 
0 0 0 0 0 0 0 0 0 ny=7 

Ul,2 ~ 0 0 0 0 0 0 0 0 0 
y=0 , 0 0 0 0 0 0 0 0 0 ^ y=0 
/ x=0 bottom x = L x \ 

ui.i nx=9 u°x-1 

Figure 8-8. DomainRectangle2D is a rectangular domain spanned by rect2Dfunc. We also show a grid 
discretization with nx=9, ny=7, on which a field containing zeroes is defined. The elements uu, Ui2, and u^i 
of the discretized field represented as a matrix are specially marked. The boundary elements of the grid are 
shown in grey color. 

The derivatives in (8-10) can for example be approximated using the following simple first-order 
differences: 

U n ~ U n _ Q U22 ~ U2l _ q U32 ~U3l _ Q Unx,2 ~ Unx,\ _ q (8-11) 
Ay ' Ay ' Ay A.y 

For example, here uX2 -uu is the field value difference between the two vertically adjacent elements at 
the lower left corner, and Ay is the difference in y-coordinate between those elements. The resulting 
variables uu,ul2,... in equation (8-11) are all functions of time, as is it should be using the method of 

One should be aware of the fact that numerical stability problems can occur for certain combinations of 
PDEs, boundary conditions, step sizes, and numerical approximation method. Consult the literature 
concerning relevant results for the method-of-lines. See also the comment on numerical diffusion in 
Section 8.10.3, page 412. 

However, ID PDEs have already been used successfully in Modelica libraries since several years, e.g. 
in the Modelica. Fluid library (Section 16.12, page 957), using method-of-lines approximations similar 
in style to the example in Section 15.9, page 875. The ID problem formulations shown here look much 
nicer, but expands to the same kind of discretized equations. 

8.10.1.3 Range and Domain Geometry Types and Generalized indomain Operator 

We will need range types that are used in the following models to represent parameter ranges of arguments 
to shape functions that define the boundary (and interior) points of a domain. 

type RangelD = Real [2] "Defines ID ranges {{xl,x2} TV-
type Range2D - Real[2,2] "Defines 2D ranges {{xl,x2},{yl,y2}}"; 
type Range3D = Real[3,2] "Defines 3D ranges {{xl,x2},{yl,y2},{zl,z2}}"; 
The following unspecified types represent the data structures used for discretized domains (e.g., meshes 

or grids) in 1, 2, and 3 dimensions respectively. 

type DomainGelD = ... "Domain Geometry representation for ID domains"; 
type DomainGe2D = ... "Domain Geometry representation for 2D domains"; 
type DomainGe3D = ... "Domain Geometry representation for 3D domains"; 
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We sometimes also need a generalized indomain operator to express that an equation holds on a 
domain or on a subset of a domain. For example, the equation below holds on omega. interior which is 
a subset of omega: 

der(u) = pder(u,D.x2)+ pder(u,D.y2) indomain omega.interior; 

8.10.1.4 Summary of Operators and Types Needed for PDEs in Modelica 

We have in the preceding sections introduced several operators and types needed for PDE representation in 
Modelica, and demonstrated their application to a 2D heat diffusion problem on a rectangular domain. It 
can be useful to summarize the needed features (Table 8-2): 

Table 8-2. Operators and data structures, their usage and realization for PDEs in Modelica. 

Operators and Data 
structures 

Usage Modelica Realization 

pder() Partial derivatives. User defined Modelica 
function with inline 
semantics. 

Generalized indomain 
operator 

Mathematical style syntax for 
expressing on which domain or part of a 
domain a PDE or boundary condition 
applies to. 

Not yet standard. Language 
extension needed. 

Grid functions Grid or mesh dependent alternative to 
the indomain operator for expressing 
on which domain or part of a domaina 
PDE or boundary condition applies to. 

User defined Modelica 
functions with inline 
semantics. 

Domain data structures Geometry of region or boundaries on 
which a PDE problem is defined. 

Record or array data 
structure. 

Field data structure Representation of the solution to the 
PDE problem as a "function" of 
independent spatial variables and time. 

Record or array data 
structure. 

Shape functions Define the geometry of a domain with 
boundaries in a way that is independent 
of low-level grid or mesh 
approximations. 

User defined Modelica 
functions. 

spatialDistribution Modeling of ID PDE problems for 
variable-speed transport of properties. 

Part of Modelica 3.3 or 
later. 

Note that inline semantics is needed for the pder () function and the grid functions. This means that 
the functions compute results in exactly the same way as any Modelica function, but is expanded inline, 
that is, the function call is replaced by the returned expression. This makes it possible to put calls to such a 
function at places where function calls are usually not allowed. Most Modelica environments support 
inline semantics for functions where the function body is a single assignment with the inlined expression 
as its right hand side. 
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8.10.2 Modelica PDE Examples of Domains, Fields, and Models in ID, 2D, 
and 3D 

In the following four subsections we will show partial examples of PDE problem definitions in Modelica 
for 2D, ID, 2D, and 3D problems, respectively. We start with our familiar heat diffusion problem on a 
rectangular domain. 

8.10.2.1 Modelica Heat Diffusion Model on a Rectangular Domain 

We are now ready to formulate a Modelica model of the heat diffusion PDE problem described in Section 
8.10.1, page 403, and in Figure 8-7. The model instantiates a domain omega and a field u defined on this 
domain. The domain and field have the types DomainRectangle2D and FieldRectangle2D, 
respectively. 

model HeatRectangle2D 
// Uses non-standard Modelica indomain operator 
import SI= Modelica.Slunits; 
replaceable package DifferentialOperators = DifferentialOperators2D; 
import DifferentialOperators.pder; 
parameter Integer nx = 50, ny = 50; 
parameter Real Lx = 2, Ly = 1; 
parameter DomainRectangle2D omega(nx=nx, ny=ny, Lx=Lx, Ly=Ly, 

FieldValueType=SI.Temperature); 
parameter Real c = 1; 
parameter Real q = 1; 
parameter Real h = 1; 
parameter Real T_ext = 2 0 "External temperature"; 
FieldRectangle2D u(domain=omega); 

equation 
der(u) = pder(u,D.x2)+ pder(u,D.y2) indomain omega.interior; 
c*pder(u,D.x) = q + h*(T_ext-u); indomain omega.left; 
u = 50; indomain omega.right; 
pder(u,D.y) = 0; indomain omega.top; 
pder(u,D.y) = 0; indomain omega.bottom; 

end HeatRectangle2D; 
The model is still incomplete since the package DifferentialOperators2D is not yet available, 

(one operator is however shown in Section 8.10.5.1, page 418), and the record GeomRect for shape 
parameters is not declared. 

The domain type DomainRectangle2D for rectangular geometries can be defined as a record: 

record DomainRectangle2D 
parameter Integer nx = 50, ny = 50; 
parameter Real Lx = 2, Ly = Ir-
replaceable function shapeFunc = rect2Dfunc; 
replaceable record Ge = GeomRect "Record with rect geometry information"; 
DomainGe2D bottom(shape=shapeFunc,range={{0,Lx},{0,0}}, 

geom=Ge(nx,ny,Lx,Ly)); 
DomainGe2D right( shape=shapeFunc, range={{Lx,Lx},{0,Ly}}, 

geom=Ge(nx,ny,Lx,Ly)); 
DomainGe2D top( shape=shapeFunc, range={{0,Lx},{Ly,Ly}}, 

geom=Ge(nx,ny,Lx,Ly)); 
DomainGe2D left ( shape=shapeFunc, range={{0,0},{0,Ly}}, 

geom=Ge(nx,ny,Lx,Ly)); 
DomainGe2D interior(shape=shapeFunc, range={{0,Lx},{0,Ly}}, 

geom=Ge(nx,ny,Lx,Ly)); 
end DomainRectangle2D; 
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The boundaries as well as the interior are represented by instances of the DomainGe2D data structure. 
The parametric shape function returning {x, y} can generate all points in the domain or in subsets of the 
domain such as the interior and the boundary segments bottom, right, top, and left, by letting the 
inputs vary over the specified ranges for the function arguments vl and v2. In this case the shape function 
is the trivial identity function rect2Dfunc, but in other cases the mapping can be nontrivial. 

function rect2Dfunc "2D Identity function to span rectangular region" 
input Real vl, v2; 
output Real x := vl; 
output Real y := v2; 

algorithm 
end rect2Dfunc; 
Finally, we define the field type FieldRectangle2D used for the field u in the above 

HeatRectangle2D model. The actual field values, being subtypes of Real, are stored in the val 
attribute, here a matrix. The field is initially zero over the whole domain. 

record FieldRectangle2D 
parameter DomainRectangle2D domain; 
replaceable type FieldValueType = Real; 
replaceable type FieldType = FieldValueType[domain.nx,domain.ny]; 
parameter FieldType start = zeros(domain.nx,domain.ny); 
FieldType val; // Actual field values 

end FieldRectangle2D; 
In the following three sections we will show simple examples of a heat diffusion models with 

temperature fields defined on ID, 2D, and 3D domains respectively. We also assume that the following 
import clause is present for these models.: 

import SI = Modelica.Slunits; 
For simplicity, we use grid representations of the domains in these examples. However, other data 

structures could be used. For example, the 2D and 3D models could instead be formulated based on an 
external mesh representation. 

Figure 8-9. DomainLinelD can be used for one-dimensional domains like rods. 

The domain data structure DomainLinelD is defined using a shape function over a range, but in this 
case specialized to a grid representation. An instance rod with length L=2, and nx=100 discretization 
intervals is declared: 

DomainLinelD rod(L=2, nx=100); 
The heat diffusion PDE with boundary conditions can be stated in the following way: 

8.10.2.2 One-dimensional Domains 

A 1D domain is can be specified by its length, for example, as depicted in Figure 8-9. 

C H 
left Length L right 

3 

du d2u 
dt dx2 

u = 20 sin(;r • t /12) + 300 jc e Q, 

.2 

(8-12) 

— - V . ( c V i / ) = / i
dt 

— - V . ( c V i / ) = / i
dt 

— - V . ( c V i / ) = / i
dt 
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The corresponding Modelica heat diffusion model is defined on the ID line geometry of a rod, where 
we use rod instead of omega for the domain name: 

model HeatLinelD 
import DifferentialOperatorslD.pder; 
parameter DomainLinelDGrid rod; 
FieldLinelDGrid u(domain=rod, FieldValueType=SI.Temperature); 

equation 
der(u) = pder(u,D.x2) indomain rod.interior; 
u = 20*sin(PI*time/12)+300 indomain rod.left; 
pder(u,D.x) = 0 indomain rod.right; 

end HeatLinelD; 
The Modelica model DomainLinelDGrid with interior and two boundaries left and right: 
record DomainLinelDGrid "Domain being a line segment region" 
parameter SI.Length L =1; 
parameter Integer nx = 100; 
replaceable function shapeFunc = linelDfunc "Span ID line region"; 
replaceable record Ge = GeomLine "Record with geometry information"; 
DomainGelD interior(shape=shapeFunc,range={{0,L}},geom=Ge(nx,L)); 
DomainGelD left(shape=shapeFunc,range={{0,0}},geom=Ge(nx,L)); 
DomainGelD right(shape=shapeFunc,range={{L,L}},geom=Ge(nx,L)); 

end DomainLinelDGrid; 
The trivial identity parametric function that spans a line region: 

function linelDfunc "ID identity function to span line region" 
input Real v; 
output Real x := v; 

algorithm 
end linelDfunc; 
The field FieldLinelDGrid with a grid representation (a vector) of the field values: 

record FieldLinelDGrid 
parameter DomainLinelDGrid domain(L=l, nx=100); 
replaceable type FieldValueType = Real; 
replaceable type FieldType = FieldValueType[domain.nx]; 
parameter FieldType start = zeros(domain.nx); 
FieldType val; // Actual field values 

end FieldLinelDGrid; 

8.10.2.3 Two-dimensional Domains 

Two-dimensional domains have two independent spatial variables, for example, x and y if Cartesian 
coordinates are used. A simple 2D domain is the circular region depicted in Figure 8-10. Mapping to polar 
coordinates would have been natural in this special case. However, here we just want to illustrate the shape 
function approach using a simple 2D domain, and keep the Cartesian coordinates for simplicity. 

Figure 8-10. DomainCircular2D domain spanned by the shape function circular2Dfunc. The normal vector n of 
the boundary is used for the normal vector derivative operator nder (). 
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We state the two-dimensional version of the heat diffusion equation, with the boundary condition 
expressed as the partial derivative along the normal vector n perpendicular to the boundary: 

du d2u d2u , . ^ 
~Z7 = T T + 1 T T (*> y ) e interior 

dt dx dy
 (8.13) 

^ = °
 (x9y)eCl t™^, 

This problem can be specified in a model, using the operators pder () and nder () imported from the 
package DifferentialOperators2D: 

model HeatCircular2D 
// Uses non-standard Modelica indomain operator 
import DifferentialOperators2D.*; 
parameter DomainCircular2DGrid omega; 
FieldCircular2DGrid u(domain=omega, FieldValueType=SI.Temperature); 

equation 
der(u) = pder(u,D.x2)+ pder(u/D.y2) indomain omega.interior; 
nder(u) = 0 indomain omega.boundary; 

end HeatCircular2D; 
The shape of the circular domain is defined by a general parametric shape function circular2Dfunc. 

This selects a circular subset of the grid representation of the domain. 

record DomainCircular2DGrid "Domain being a circular region" 
parameter Real radius = 1; 
parameter Integer nx = 100; 
parameter Integer ny = 100; 
replaceable function shapeFunc = circular2Dfunc "2D circular region"; 
DomainGe2D interior(shape=shapeFunc,range={{0,radius},{0,1}},geom=...); 
DomainGe2D boundary(shape=shapeFunc,range={{radius,radius},{0,1}},geom=); 
function shapeFunc = circular2Dfunc "Function spanning circular region"; 

end DomainCircular2DGrid; 
The parametric shape function spanning a circular region: 

function circular2Dfunc "Spanned circular region for v in range 0..1" 
input Real r,v; 
output Real x,y; 

algorithm 
x := r*cos(2*PI*v); 
y := r*sin(2*PI*v); 

end circular2Dfunc; 
Finally, we declare the field type using a grid representation of values on the circular domain. Note 

that we are not using polar coordinates in this particular grid example. 

record FieldCircular2DGrid 
parameter DomainCircular2DGrid domain; 
replaceable type FieldValueType = Real; 
replaceable type FieldType = Real[domain.nx,domain.ny,domain.nz]; 
parameter FieldType start = zeros(domain.nx,domain.ny,domain.nz); 
FieldType val; // Actual field values 

end FieldCircular2DGrid; 

8.10.2.4 Three-dimensional Domains 

The third example illustrates the heat diffusion problem on a three-dimensional domain. We choose a 
spherical domain for simplicity, but keep Cartesian coordinates instead of switching to spherical 
coordinates, since this shape could be replaced by a shape with more complicated geometry. 
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Figure 8-11. The spherical DomainSphere3D domain is spanned by the shape function sphere3Dfunc. The 
normal vector n of the boundary is used to define the normal vector derivative operator nder (). 

The PDE is similar to the 2D case, but with three partial derivative since there are three independent 
spatial variables of this domain: 

du d2u d2u d2u , . ~ 
— = T T + T T + T T i x 9 y 9 z ) s Q in tenor 

ot dx dy oz
 (8-14) 

= 0
 (x,y,z)eQhomdmr 

on 
The 3D heat diffusion problem in a sphere expressed in the HeatSphere3D Modelica model: 

model HeatSphere3D 
import DifferentialOperators3D.*; 
parameter DomainSpherical3DGrid omega; 
FieldSphere3DGrid u(domain=omega, FieldValueType=SI.Temperature); 

equation 
der(u) = pder(u,D.x2)+pder(u, D. y2 )+pder(u, D. z2 ) indomain omega.interior; 
nder(u) = 0 indomain omega.boundary; 

end HeatSphere3D; 
The interior and boundary parts of the spherical domain are characterized as follows: 

• Interior. 0 < r < radius 
• Boundary: r = radius 

The corresponding domain type declaration is: 

record DomainSphere3DGrid "Domain spanning a sphere, with grid parameters" 
parameter Real radius = 1; 
parameter Real•nx = 100; // Gives x discretization, for fields on grid 
parameter Real ny = 100; // Gives y discretization, for fields on grid 
parameter Real nz = 100; // Gives z discretization, for fields on grid 
function shapeFunc = sphere3Dfunc "Function spanning the sphere"; 
DomainGe3D interior(shape=shapeFunc,{{0,radius},{0,1},{0,1}},geom=...); 
DomainGe3D boundary(shape=shapeFunc,{{radius,radius},{0,1},{0,1}},geom=); 

end DomainSphere3DGrid; 

And the parametric shape function spanning the spherical domain is: 

function sphere3Dfunc "Span a Sphere for u,v in range 0..1, r in 0..R" 
input Real r,u,v; 
output Real x,y,z; 

algorithm 
x := r*sin(2*PI*v)*cos(2*PI*u); 
y := r*sin(2*PI*v)*sin(2*PI*u); 
z := r*cos(2*PI*v); 

end sphere3Dfunc; 

— - V . ( c V i / ) = / i
dt 
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Finally, we declare the field on the spherical domain as a Modelica data structure, using a grid 
representation of the field data: 

record FieldSphere3DGrid "Field on a Sphere with Cartesian grid" 
parameter DomainSphere3DGrid domain; 
replaceable type FieldValueType = Real; 
replaceable type FieldType=FieldValueType[domain.nx,domain.ny,domain.nz]; 
parameter FieldType start=zeros(domain.nx,domain.ny,domain.nz); 
FieldType val; // Actual field values 

end FieldSphere3DGrid; 

8.10.3 PDEs on ID Domains Using the spatialDistribution Operator 

Many applications involve the modeling of variable-speed transport of properties. One option to model this 
one-dimensional PDE system is to approximate it by an ODE using the method of lines described in 
Section 8.10.1.2, page 404, but this requires a large number of state variables and in some cases might 
introduce either numerical diffusion (reference in Section 8.12, page 418) or numerical oscillations. 
Numerical diffusion tends to create more diffusion in the simulation than in the real physical system due to 
the constraint that the computed quantity has to be represented on a finite grid. 

Another option is to use a built-in operator that keeps track of the spatial distribution of z(y, tj, by 
suitable sampling, interpolation, and shifting of the stored distribution. In this case, the internal state of the 
operator is hidden from the ODE solver. 

The Modelica spatialDistribution() operator allows to efficiently approximate the solution of the 
following ID PDE problem: 

= 0.0 
dt dy 

z{0.0,t) = ino(t)ifv>0 (8"15) 

z(1.0,/) = inx(t)if v< 0 

Here z(y, t) is the transported quantity, y is the normalized spatial coordinate (0.0 < y < 1.0), t is the time, 
v(t)=der(x) is the normalized transport velocity and the boundary conditions are set at either y = 0.0 o r y = 
1.0, depending on the sign of the velocity. The calling syntax is as follows: 

(outO, outl) = spatialDistribution(inO, inl, x, positiveVelocity 
initialPoints = {0.0, 1.0}, 
initialValues = {0.0, 0.0}); 

Here inO, inl, outO, outl, x, v are all Real or subtypes of Real, positiveVelocity is a Boolean, 
initialPoints and initialValues are equal-sized arrays of Real elements, containing the y 
coordinates and the z values of a finite set of points describing the initial distribution of z(y, tO). The outO 
and outl are given by the solutions at z(0.0, t) and z(1.0, t)~, and inO and inl are the boundary conditions 
at z(0.0, t) and z(1.0, t) (at each point in time only one of inO and inl is used). 

Elements in the initialPoints array must be sorted in nondescending order, that is, elements 
increasing or equal in value. The operator cannot be vectorized according to the vectorization rules 
described in Section 7.10, page 340. It can be vectorized only with respect to the arguments inO and inl 
(which must have the same size), returning vectorized outputs outO and outl of the same size; the 
arguments initialPoints and initialValues are vectorized accordingly. 

The solution, z(...), can be described in terms of a characteristics z(y,t), for all p , as long as staying 
inside the domain: 

z(y,t) = z(y+ f '+b v(a)da,t + b) (8"16) 

— - V . ( c V i / ) = / i
dt 
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This allows us to directly compute the solution based on interpolating the boundary conditions. The 
spatialDistribution operator can be described in terms of the pseudo-code given as a block: 

block spatialDistribution 
input Real inO; 
input Real inl; 
input Real x; 
input Boolean positiveVelocity; 
parameter Real initialPoints(each min=0, each max=l)[:] = {0.0, 1.0}; 
parameter Real initialValues[:] = {0.0, 0.0}; 
output Real outO; 
output Real outl; 

protected 
Real points[:]; 
Real values[:]; 
Real xO; 
Integer m; 

algorithm 
if positiveVelocity then 

outl:=interpolate(points, values, l-(x-xO)); 
outO:^values[1]; // similar to inO but avoiding algebraic loop 

else 
outO : interpolate (points, values, (x-xO) ) ; 
outl:=values[end]; // similar to inl but avoiding algebraic loop 

end if; 
when acceptedStep then 

if x>x0 then 
m:=size(points, 1) ; 
while (if m>0 then points[m]+(x-xO)>=1 else false) then 

m :=m-1; 
end while; 
values :=cat(1, {inO}, values[l:m], 

{interpolate(points, values,1-(x-xO))} ); 
points :=cat(1, {0}, points[l:m] .+ (xl-xO), {1} ); 

elseif x<x0 then 
m : = 1 ; 
while (if m<size(points,1) then points[m]+(x-xO)<=0 else false) then 

m :=m+1; 
end while; 
values :=cat(1, 

{interpolate(points, values, 0-(x-x0))}, values[m:end],{inl}); 
points :=cat(1, {0}, points[m:end] .+ (xl-xO), {1}); 

end if; 
xO:=x; 

end when; 
initial algorithm 
xO:=x; 
points :^initialPoints ; 
values :^initialValues; 

end spatialDistribution; 
The PDE problem stated above can then be formulated in the following way: 

der(x) = v; 
(out0,outl) = spatialDistribution(in0, inl, x, v>=0, initialPoints, 

initialValues); 
Events are generated at the exact instants when the velocity changes sign. If this is not needed, 

noEvent ( ) can be used to suppress event generation. If the velocity is known to be always positive, then 
outO can be omitted, for example, as follows: 

der(x) = v; 
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(,outl) = spatialDistribution(inO, 0, x, true, initialPoints,initialValues); 
Technically relevant use cases for the use of the spatialDistribution() operator are modeling of 

electrical transmission lines, pipelines and pipeline networks for gas, water and district heating, sprinkler 
systems, impulse propagation in elongated bodies, conveyor belts, and hydraulic systems. Vectorization is 
needed for pipelines where more than one quantity is transported with velocity v in the example above. 

8.10.4 A PDE on a 2D Domain with General Shape and FEM Solution 

Many realistic domains have more complicated shapes (see Figure 8-12) than the simple lines, circles, 
spheres, rectangles, and so on, presented in the previous sections. Such shapes are usually specified by a 
mesh in two or three dimensions (e.g., left part of Figure 8-13), which has been created by a special mesh-
generating tool. 

Figure 8-12. Heat diffusion problem on a 2D domain with complicated geometry, and boundary sections 
which are insulated, poorly insulated, or conducting. 

The heat diffusion problem has been modeled in a PDE extension of Modelica similar to the approach 
outlined in the previous sections, but with an external mesh defining the geometry. An external PDE solver 
using the finite element method (FEM) was employed to produce the solution depicted in Figure 8-13 
(right). 

Figure 8-13. Solution of a 2D heat flow problem specified in a PDE extension of Modelica on a domain 
with complicated shape. The shape is defined by an external mesh (left). The problem is solved using a 
version of the finite element method (FEM). The solution is shown to the right. 
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8.10.5 Grid Function Finite Difference Approach to ID Heat Diffusion 

In the previous Modelica PDE examples we have relied on an extension called indomain related to the in 
operator in Modelica to express which part of the domain an equation applies to (here using the second 
pder () representation in Table 4-1), e.g., using the non-standard indomain operator: 

der(u) = pder(u,x=2) indomain rod.interior; //non-standard 
u = 2 0*sin(PI*time/12)+300 indomain rod.left; 
pder(u,x=l) = 0 indomain rod.right; 

Another approach is to use so-called grid functions, common in many finite difference packages. A 
grid function applies some operation to a field defined on a grid, including arithmetic operations and 
selection operations such as left, right, or interior, that return part of a field. Using grid functions, 
the above equations can be expressed as follows: 

interior(der(u.val)) = interior(4*pder(u.val,x=2)); 
left(u.val) = 2 0*sin(PI/12*time) + 300; 
right(pder(u.val,x=l)) = 0; 

Here we need to use u. val instead of u, since the der () operator currently is not defined for records. The 
use of overloaded function and operator definitions (Section 9.5, page 481) would remove that restriction. 

The whole model appears as follows, and can be executed in ordinary Modelica using function 
inlining: 

model HeatDiffusionlD 
import SI=Modelica.Slunits; 
parameter SI.Length L=l; 
import Fields.*; 
import Domains.*; 
import FieldDomainOperatorslD.*; 
import DifferentialOperatorsID.*; 
constant Real PI=Modelica.Constants.PI; 
DomainlD rod(left=0, right=L, n=50); 
FieldlD u(domain=rod, 

redeclare type FieldValueType = SI.Temperature, 
start={20*sin(PI/2*x) + 300 for x in rod.x}); 

equation 
interior(der(u.val)) = interior(4*pder(u,x=2)); 
left(u.val) - 20*sin(PI/12*time) + 300; 
right(pder(u,x=l)) = 0; 

end HeatDiffusionlD; 
The drawback is that part of the model has to be formulated in terms of the grid, and therefore is dependent 
on the domain and field data structures. 

The grid functions left, right, and interior for field selection on the grid, are defined below: 

package FieldDomainOperatorslD "Selection operators of field on ID domain" 
function left "Returns the left value of the field vector vl" 

input Real[:] vl; 
output Real v2; 

algorithm 
v2:= vl[1]; 

end left; 
function right "Returns the right value of the field vector vl" 

input Real[:] vl; 
output Real v2; 

algorithm 
v2 := vl[end]; 

end right; 
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function interior "Returns the interior values of the field as a vector" 
input Real vl[:]; 
output Real v2[size(vl,1)-2]; 

algorithm 
v2 := vl[2:end - 1]; 

end interior; 
end FieldDomainOperatorslD; 
The domain and field definitions are: 
package Domains 

import SI = Modelica.Slunits; 
record DomainlD "ID spatial domain" 
parameter SI.Length left=0.0; 
parameter SI.Length right=1.0; 
parameter Integer n=100; 
parameter SI.Length dx = (right-left)/(n-1); 
parameter SI.Length x[n] = linspace(right, left, n); 

end DomainlD; 
end Domains; 
package Fields 

record FieldlD "Field over a ID spatial domain" 
replaceable type FieldValueType = Real; 
parameter Domains.DomainlD domain; 
parameter FieldValueType start[domain.n] = zeros(domain.n); 
FieldValueType val[domain.n](start=start); 

end FieldlD; 
end Fields; 
The differential operators for numerical approximations to the partial derivatives. Both first and 

second-order versions are available: 

package DifferentialOperatorslD "Finite Difference differential operators" 
function pder "Returns vector of spatial derivative values of a ID field" 

input Fields.FieldlD f; 
input Integer x=l "Diff order - first or second derivative"; 
output Real df[size(f.val, 1)]; 

algorithm 
df := if x == 1 then SecondOrder.diff1(f.val, f.domain.dx) 

else SecondOrder.diff2(f.val, f.domain.dx); 
end pder; 

package FirstOrder "First order polynomial derivative approximations" 
function diffl "First derivative" 

input Real u[:]; 
input Real dx; 
output Real du[size(u,1)]; 

algorithm // Left, central, and right differences 
du := cat(1, {(u[2] - u[l])/dx}, (u[3:end] - u[1:end-2])/2/dx, 

{(u[end] - u[end-1])/dx}); 
end diffl; 

end FirstOrder; 

package SecondOrder "Second order polynomial derivative approximations" 
function diffl "First derivative" 

input Real u[:]; 
input Real dx; 
output Real du[size(u,1)]; 

algorithm 
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du := cat(1, {(-3*u[l] + 4*u[2] - u[3])/2/dx }, 
(u[3 : end]- u[1 :end-2])/2/dx, 
{ ( 3*u[end] - 4*u[end-l] + u[end-2])/2/dx} ); 

end diffl; 
function diff2 "Second derivative" 

input Real u[:]; 
input Real dx; 
output Real du2[size (u,1)]; 

algorithm 
du2 := cat ( 1, { (2*u[l] - 5*u[2] + 4*u[3] - u[4])/dx/dx }, 

(u[3 : end] - 2*u[2:end-l] + u[1 :end-2])/dx/dx, 
{(2*u[end] - 5*u[end-l] + 4*u[end-2] - u[end-3])/dx/dx} ); 

end diff2; 
end SecondOrder; 

end DifferentialOperatorslD; 
We simulate and plot theHeatDiffusionlD model using the Mathematica command mode available 

in the Wolfram SystemModeler, with results as interpolation functions (Section 19.4.5.1, page 1052). The 
plot of the temperature profile is as follows at the fourth grid point (i.e., x=0.08), out of a total of n=50 
grid points. 

res = WSMSimulate["HeatDiffusionlD",{0,1}]; 
uVal = 
"u.val 
"u.val 
"u.val 
"u.val 
"u.val 
"u.val 
"u.val 
"u.val 
"u.val 
"u.val 
}] ; 

res 
[1 ]" 
[7]" 
[11] 
[17] 
[21] 
[27] 
[31] 
[37] 
[41] 
[47] 

[{ 
,"u.val[2]", 
, "u.val[8]", 
","u.val[12]" 
", "u.val[18] 
","u.val[22]" 
", "u.val[28] 
","u.val[32] " 
", "u.val[38] 
","u.val[42]" 
", "u.val[48] 

u.val[3]", "u.val[4]", "u.val[5]", "u.val[6]", 
"u.val[9]", "u.val[10]", 
"u.val[13]"u.val[14]", "u.val[15]"u.val[16]' 
, "u.val[19]", "u.val[20]", 
"u.val[23]", "u.val[24]", "u.val[25]"f "u.val[26]' 
, "u.val[2 9]", "u.val[30]", 
"u.val[33]", "u.val[34]", "u.val[35]", "u.val[36]' 
, "u.val[39]", "u.val[40]", 
"u.val[43]", "u.val[44]", "u.val[4 5]", "u.val[46]' 
, "u.val[49]", "u.val[50]" 

Plot[uVal[[4] 
32 0 . 0 j-
317.5 
315.0 
312.5 
310.0 
307.5 

[t] {t, 0, 1}] 

Figure 8-14. Plot of the temperature field u at fourth grid point for the HeatDiffusionlD model. 

By forming an interpolated polynomial from the matrix representation of the solution, we can create a 
continuous 3D-plot of the solution as a function of both x and time, as depicted in Figure 8-15. 

intp=Interpolation[ 
Flatten[Table[{k,t,uVal[[k]][t]},{k,1,50,1}, {t,0,1,0.1}],1]]; 

Plot3D[intp[x,t],{x,l,50},{t,0,1},PlotPoints->30, 
AxesLabel->{"x","t","u(x,t)"},ViewPoint->{-4 ,2.4,2}] 

Plot[uVal[[4] [t] {t, 0, 1}] Plot[uVal[[4] [t] {t, 0, 1}] 
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Figure 8-15. The temperature distribution field of the rod as a function of time and the spatial x 
coordinate—a solution to the HeatDiffusionlD problem. 

8.10.5.1 2D Grid Functions 

The grid function approach to modeling PDEs can of course be generalized to grids in two and three 
dimensions, grids for polar coordinates, etc. As an illustration, we show a 2D finite difference operator as a 
grid function for a 2D grid: 

function diff22D "Second order finite difference operator on 2D grid" 
input Real u[:,:]; 
input Real dx; 
output Real du2[size(u, 1), size(u, 2)]; 

algorithm 
du2 := cat(1, {(2*u[l,:] - 5*u[2,:] + 4*u[3,:] - u[4,:])/dx/dx}, 

(u[3 rend,:] - 2*u[2:end-l, :] + u[l:end-2, :])/dx/dx, 
{ (2*u [end, : ] - 5*u[end-l,:] + 4*u[end-2,:] - u [end-3, :])/dx/dx}.) ; 

end diff22D; 

8.11 Summary 

Equations are the foundation of Modelica. In this chapter we have presented the different forms of 
equations that can be expressed in Modelica, including normal mathematical equations, declaration 
equations, modification equations, and initial equations that are used to state equations for solving 
initialization problems. We have described several ways of specifying the initialization equation system 
together with some examples. We have also presented equation operators for overconstrained connection 
based equation systems that allows elimination of superfluous equations which would otherwise result 
from certain kinds of connection graphs, for example, certain graphs involving connection loops. 

8.12 Literature 

Equations can be found in any Mathematics textbook, whereas they are quite rare in programming 
language books. The description of Modelica equations in this chapter is primarily based on the Modelica 
language specification (Modelica Association 2003; Modelica Association 2013). 

The description of initialization and the initial equation construct in Section 8.4 is to a large extent 
based on (Mattsson, Elmqvist, Otter, and Olsson 2002) both regarding the presentation and the examples. 
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Moreover, (Casella 2012) gives a description of steady-state initialization problems in object-oriented 
models of closed thermo-hydraulic systems, and (Sielemann 2012) presents robust initialization using 
homotopy. (Bachmann, Aronsson, and Fritzson 2006) presents a method for robust initialization of DAEs. 

The presentation of overconstrained connection operators is based on (Otter, Elmqvist, and Mattsson 
2003) and (Otter 2003). 

The summary description in Section 8.7, page 383, (a more detailed version is available in Section 
13.6, page 694), of the approach to synchronous clock-based equations and state machines in Modelica 3.3 
is directly based on the text in Chapters 16 and 17 of (Modelica Association 2012) and was developed by 
Hilding Elmqvist, Martin Otter, Sven-Erik Mattson, Fabien Gaucher, Francois Dupont and Bernhard 
Thiele, as well as additional contributions, see (Elmqvist, Otter, and Mattsson 2012; Elmqvist, Gaucher, 
Mattsson, and Dupont 2012; Otter, Thiele, and Elmqvist 2012). It is based on the clock calculus and 
inference system proposed by (Colaco and Pouzet 2003) that was implemented in Lucid Synchrone 
version 2 and 3 (Pouzet 2006). However, the Modelica approach also uses multi-rate periodic clocks based 
on rational arithmetic introduced by (Forget et. al. 2008) as an extension to the Lucid Synchrone 
semantics. These approaches belong to the class of synchronous languages (Benveniste et al 2002). 

The current Modelica approach to balanced model checking which required a rather large language 
change, is described in (Olsson, Otter, Mattsson, and Elmqvist 2008). A slightly earlier approach 
addressing almost the same issue, keeping track on the degree of balancing through the notion of structural 
constraint delta, is described in (Broman, Nystrom, and Fritzson 2006). 

Modelica PDE extensions and related work is presented in (Wrangsjo, Fritzson, and Sheshadri 1999; 
Saldamli and Fritzson 2001; Sheshadri and Fritzson 2001; Saldamli, Fritzson, and Bachmann 2002; 
Saldamli 2002; Elmqvist 2003a; Saldamli and Fritzson 2004; Saldamli, Bachmann, Wiesmann, and 
Fritzson 2005; Saldamli 2006). A method to import FEM-based PDE solvers into Modelica using FMI is 
presented in (Stavaker, Ronnas, Wlotzska, Heuveline, and Fritzson 2013). Automatic generation of inlined 
PDE solvers using explicit and implicit finite difference schemes together with a short discussion of 
stability criteria is presented in (Sheshadri and Fritzson 2003a; Sheshadri and Fritzson 2003b; Sheshadri 
and Fritzson 2011), whereas a similar approach using FEM is presented in (Sheshadri and Fritzson 2003c). 
Object oriented PDE software is described in (Mossberg, Otto, and Thune 1997; Ahlander 1999; 
Langtangen 1999). The grid function approach is used in the Cogito system (Mossberg, Otto, and Thune 
1997), in the Overture system (Henshaw 2000), and recently in some Modelica examples (Jonasson, 
Elmqvist, Mattson, and Olsson 2003; Elmqvist 2003b). The topic of PDE numerical methods in general 
including stability criteria is presented in several books, e.g. (Gustafsson, Kreiss, and Oliger 1995) and 
(Ames 1992). Numerical diffusion mentioned for finite difference schemes used in method-of-lines is 
described in (Glover 2002). 

8.13 Exercises 

Exercise 8-1: 

Question: 

• What is specific about equations in Modelica? 
• What is a declaration equation? 
• What is a modifier equation? 

Exercise 8-2: 

Using the for-Loop: Write a class Repetitive, with an array rep, with 7 Integer values. The class 
should set all values in the array to 15, using a for-loop. 

Without Using the for-Loop. Write the class RepetitiveWithoutFor, doing the same thing as 
Repetitive above, though not using a for-loop. 
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Exercise 8-3: 

Using the for-Loop. This time write a class Repeat, with an array repeater containing 4 Real values. The 
values in the array shall be set to 1,4, 7, 10, using a for-loop. 

Function with for-Loop. Write a function, Rapper, which calculates the sum of the values in the array. 

Write an instance, where the values of that array shall be set. Then simulate the instance class and plot the 
result. 

Exercise 8-4: 

Question: Why is it better not to have the same name on the variable in the iteration expression as a 
variable inside the for-clause in an equation? 

Exercise 8-5: 

Question: What is a hybrid model? What do hybrid models have to do with if- and when-equations? 

Exercise 8-6: 

Nested for-Loop: Write a function, MatrixAddition, for adding two two-dimensional matrices. Do a 
function call to MatrixAddition with two arrays. Then simulate the class with the function call and plot 
the result. 



Chapter 9 

Algorithms and Functions 

Equations are very well suited for physical modeling, but there are situations in which computations are 
more conveniently expressed as algorithms, that is, sequences of instructions, also called statements. In 
this chapter, we describe the algorithmic constructs that are available in Modelica as well as the Modelica 
function concept. 

Since this is the first point at which we introduce nondeclarative algorithmic constructs in Modelica, 
apart from the short introduction in Chapter 2, we start this chapter with a section containing a somewhat 
philosophical discussion about the difference between declarative and nondeclarative constructs and their 
pros and cons. 

9.1 Declarative versus Nondeclarative Constructs 

An algorithm is a recipe or stepwise procedural description containing instructions on how to achieve a 
certain goal. This is in contrast to declarative constructs such as equations and declarations, which describe 
what holds, for example, by stating relations and properties. 

K An algorithm describes how to reach a certain goal. 
H A declarative construct states and describes what the goal is. 

So far, we have emphasized the advantages of declarative constructs such as equations in Modelica. 
It is usually more concise and understandable to use declarative constructs than algorithmic ones, which 
is why equations have a prominent role in mathematics. Algorithms have the disadvantage of often 
bringing a clutter of details. Also, it is usually not immediately clear what is the exact result of an 
algorithm, that is, what holds after the execution of an algorithm. Being declarative implies another 
important advantage: 

£3 Declarative constructs are referentially transparent, that is, keep the same semantics or meaning 
independently of where they are referenced. 

For example, a declarative construct such as an equation or an expression states a fact or computation that 
holds independently of where the construct is placed or referenced (for the moment ignoring details such 
as name scoping), that is, it is transparent with respect to where it is referenced. For example, it is possible 
to change the ordering within a set of equations without changing their meaning since they are referentially 
transparent. Consider the following systems of three equations: 

x = y+2; 
z-3 = x+5; 

421 
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y+8 = z; 
The meaning, that is, the solution of this system of equations, is unchanged even if the equations are 
reordered as below since equations are referentially transparent. The solution is the same in both cases. 

y+8 = z; 
x = y+2; 
z-3 = x+5; 

By contrast, if we change the placement order of nonreferentially transparent constructs like assignment 
statements, this usually changes their meaning and thereby introduces errors. For example, consider the 
following two assignment statements, where we assume that all variables have well-defined initial values 
before the statements are executed: 

y := x-8; 
x := y+2; 

The result of executing these assignment statements is different if the order is changed, that is, the 
semantics or meaning of the group of statements has changed: 

X := y+2; 
y x-8; 

What is the case regarding the declarativity of functions in Modelica? Functions can be called from within 
expressions which are declarative. Therefore function calls must be declarative. On the other hand, a 
Modelica function can internally within its function body contain locally nondeclarative algorithmic 
constructs. We have the following situation: 

• Modelica functions without the impure keyword (Section 9.3.14, page 462) are call declarative15, 
that is, from the caller's point of view behave as mathematical functions meaning that the same 
function results are always returned given the same input argument values. 

Thus, function calls are referentially transparent, whereas the statements inside a function body are not 
referentially transparent. The declarative behavior of function calls implies that functions have no memory 
(not being able to store values that can be retrieved in subsequent calls) and no side effects (e.g., no update 
of global variables and no input/output operations). The declarative behavior of function calls is actually a 
necessary (but not sufficient) prerequisite for guaranteeing the continuity and differentiability conditions 
required by the solver for solution of the continuous part of the total system of equations (see Section 9.3, 
page 438, regarding functions for further details). 

After this list of disadvantages of algorithmic constructs, why bother introducing them in the Modelica 
language? After all, Modelica is supposed to be a mathematical modeling language. 

The reason is that certain computations of algorithmic character are hard to express using only 
equations. This is typically the case for many numerical algorithms, whereas equations work well for 
modeling physical phenomena. We have earlier remarked that mathematics is mostly declarative. 
However, there is a branch of mathematics called constructive mathematics which has algorithmic flavor. 
Also, numerical analysis to a large extent deals with numerical algorithms for computation. 

On the other hand, there exist declarative programming languages, for example, the pure functional 
language Haskell, in which any kind of algorithm can be expressed in a declarative way. Why does not 
Modelica incorporate the same facilities? The reasons are twofold. There is currently a performance 
penalty in implementations of pure functional languages that is not acceptable for Modelica since it is 
intended for large engineering applications where maximum performance is essential. The second reason 

15 There is currently an exception to this rule: impure Modelica functions called in when-equations/when-statements or 
during some parts of initialization are allowed to return different values at different calls. In certain when-equations/when-
statements this is needed for communication with external systems, e.g. during hardware-in-the-loop simulation, but may 
eventually be replaced by a cleaner declarative construct. See also Section 9.3.14, page 41, regarding impure functions. 
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is that the special programming styles needed for pure functional algorithmic programming are not yet 
well-known in the intended user community for Modelica. 

Despite not being a pure declarative language, Modelica still enjoys most of the advantages of a 
declarative language since function calls are declarative. In fact, a function call returning n result values 
can be viewed as a coupled subsystem of n equations and thus fits well together with the equation part of 
the Modelica language. 

9.2 Algorithms and Statements 

Algorithms are expressed as sequences of commands or instructions, henceforth called statements. Such 
statements may occur in algorithm sections and in function bodies. 

9.2.1 Algorithm Sections 

In Modelica, algorithmic statements can occur only within algorithm sections, starting with the keyword 
algorithm. Algorithm sections could also be called algorithm equations, since an algorithm section 
externally is treated as a group of equations involving one or more variables, and can appear among 
equation sections. An algorithm section is terminated by the appearance of one of the five keywords 
equation, public, protected, algorithm, initial, or end. 

algorithm 

<statements> 

<some keyword> 

An algorithm section embedded among equation sections can appear as below, where the example 
algorithm section contains three assignment statements. 

equation 
x = y*2; 
z = w; 

algorithm 
xl := z+x; 
x2 y-5; 
xl := x2+y; 

equation 
u = xl+x2; 

Note that the code in the algorithm section uses the values of certain variables from outside the 
algorithm section. These variables are so-called inputs to the algorithm section—in this example x, y, and 
z. Analogously, variables assigned values by the algorithm section define the outputs of the algorithm 
section—in this example x l and x2. This makes the semantics of an algorithm section quite similar to a 
function with the algorithm section as its body, and with input and output formal parameters 
corresponding to inputs and outputs as described above. Such inputs and outputs from operations on arrays 
and records are obtained by expanding them into scalars. 

Regarding the size of the conceptual system of equations created by an algorithm section, see also the 
discussion in Section 8.9.2.2, page 390. 

9.2.1.1 Execution of an Algorithm Section 

An algorithm section is conceptually a code fragment that remains together. The statements of an 
algorithm section are executed in the order of appearance. This applies to algorithm sections in both 
models and functions. 

However, for algorithm sections in models (not in functions) the following also applies: whenever an 
algorithm section is invoked, all variables appearing on the left hand side of the assignment operator : = in 
assignment statements are initialized (at least conceptually): 
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• A non-discrete continuous-time variable is initialized with its start value (i.e., the value of the start-
attribute). 

• An unclocked discrete-time variable v is initialized with pre (v). 
• A clocked discrete-time variable v is initialized with previous (v). 
• If at least one element of an array appears on the left hand side of the assignment operator, then the 

complete array is initialized in this algorithm section. 

Initialization of variables in an algorithm section in a function is not done automatically for performance 
reasons; if needed this must be done explicitly in the function. 

Regarding algorithm sections in models (not in functions) the following also applies: 

• Initialization of an algorithm section is performed in order that an algorithm section cannot 
introduce "memory" from one numerical solver iteration step to the next (except in the case of 
discrete states which are explicitly given), which could invalidate the assumptions of a numerical 
integration algorithm. Note that a Modelica tool may change the evaluation of an algorithm section 
provided the result is identical to the case as if the above conceptual processing is performed. 

• To be more precise, from the point of view of the equational part of Modelica an algorithm section 
with n outputs is treated as an indivisible subsystem of n equations that are dependent on each 
other, i.e., each equation directly or indirectly depends on all inputs and all outputs of the 
algorithm section. This is identical to the treatment of an equation with a function call with n 
results, e.g.: (lhsl, lhs2, ...) = someFunction (nonLhsl, nonLhs2, ...) where lhs are 
the variables assigned by statements in the algorithm section and nonLhs are other appearing 
variables. See also Section 17.6 regarding BLT. 

Below an example of initialization of algorithm sections based on start values: 

model AlgTest // wrong Modelica model; it has 4 equations for 2 unknowns 
Real x[2] (start={-ll, -22}); 

algorithm 
x [ 1] := 1; // conceptually: x becomes {1,-22} 

algorithm 
x [ 2] := 2; // conceptually: x becomes {-11,2} 

end AlgTest; 

9.2.1.2 Usage Constraints Related to Statements and Special Operators 

All the statement types in Modelica can be used within algorithm sections, that is, simple assignment 
statements, assignment statements calling functions with multiple results, for-statements, while-statements, 
if-statements, when-statements, and the special statements assert () and terminal () . Multiple 
assignments to the same variable are allowed. Function bodies may not contain when-statements. Nested 
when-statements are not allowed, that is, when-statements may not contain when-statements. For 
additional details regarding constraints on when-statements, see Section 9.2.10, page 433. 

One difference between algorithm sections and functions is that the following special operators and 
functions; der (), edge (), change (), sample (), pre (), initial (), terminal (), noEvent (), and 
smooth (), as well as when-statements, which can be used in algorithm sections are disallowed in 
functions. 

9.2.1.3 Local Initialization and Output Consistency 

It is guaranteed that the outputs of an algorithm section always have well-defined values. This is achieved 
by initializing all conditionally assigned variables to their start-values (to initial default values regarding 
variables in functions) whenever the algorithm is invoked. For local variables or formal parameters to 
functions the initialization is instead given by the default initialization assignment of the corresponding 
variable declaration. Even if the conditional assignments are not executed, the variables will always have 
well-defined values. This eliminates the possibility of writing a function that uses some kind of memory 
from previous calls, which is one of the requirements of declarative function calls. 
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9.2.2 initial algorithm Sections 

An initial algorithm section contains statements that are executed only during initialization, at the initial 
time, just before simulation starts. It is strongly related to initial equation sections, described in detail in 
Section 8.4, page 363. In fact, since most of the rules for initial algorithms are analogous to those for initial 
equations, we just give a short presentation here and refer the reader to the description of initial equations 
for remaining issues. 

The syntax of an initial algorithm section is the same as for an algorithm section apart from using the 
keywords initial algorithm instead of just algorithm: 

initial algorithm 

<statements> 

<some allowed keyword> 

The following holds for an initial algorithm section: 

• Any kind of statement is allowed inside an initial algorithm section, except for when-statements. 
• In the statements inside an initial algorithm section der (x) and pre (v) are treated as variables. 
• All expressions inside an initial algorithm section have unclocked discrete-time variability (Section 

6.9.3, page 281). 

However, when-statements outside an initial algorithm section, but with initial () in the list of 
predicates, can contribute to the initialization (see Section 8.4.3, page 366, for analogous examples ). 

Below we show the use of an initial algorithm section to specify the initial value for a derivative, for a 
pre-value of a variable, and an ordinary variable. However, the first model initAlgl is incorrect since 
der () and pre () are not allowed on left-hand sides of assignments. This restriction is not present for 
initial equation sections, as exemplified in the model initAlg2. 

model InitAlgl "Erroneous initial algorithm model" 
Real x, x2; 
discrete Real xd; 

initial algorithm 
der(x) 
pre (xd) 
x2 

0; // Error! only variables on left-hand side of := 
5; // Error! only variables on left-hand side of := 
der(x)-10; 

end InitAlgl; 
This model has a correct initial algorithm section with variables on left-hand sides of assignments. 

model InitAlg2 "Correct initial algorithm model" 
Real x, x2; 
discrete Real xd; 

initial algorithm 
x2 := der(x)-10; 

initial equation 
der(x) - 0; 
pre(xd) = 5; 

end InitAlg2; 

9.2.3 Simple Assignment Statements 
Simple assignment statements are probably the most common kind of statements in algorithm sections.1 

use the term simple to distinguish from assignments of called functions with multiple results, which 
described in the next section. 

The assignment operator : - is used to denote assignment to distinguish from the equation operato 
which is used in equations, and the equality operator == used for comparisons in Boolean expressions, 
assignment statement has the structure depicted below, where the value of an expression (expr) on 
right-hand side is assigned to a variable (v) on the left-hand side. 

v := expr; 

The causality is from the right-hand side to the left-hand side since data flows in that direction. One < 
make several assignments to a variable within the same algorithm section. 
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The type constraint of assignment statements is that the type of the right-hand side (expr) must be a 
subtype of the type of the left-hand side (v). Additionally, Integer expressions are automatically 
converted to Real expressions when needed to fulfill the subtyping constraints. Thus one can assign an 
integer value to a Real variable. More details regarding subtyping and assignment are available in 
Section 3.18 on page 115 in Chapter 3. 

A few examples of assignment statements are shown below: 

x := 35 - y + 5; 
y [ 3] := sin(x)-14.31; 
z.name := "Maria"; 
x := y[3]-1; 
onoff := false; 

Assignment statements may also occur as initializers in the declaration of local variables (after the 
keyword protected) or formal parameters of Modelica functions. In the case of formal parameters the 
value of the expression on the right-hand side is just a default value that is used only if the corresponding 
argument is not supplied at the function call. Below is an example function foo containing a declaration of 
the local variable yl with an initializing assignment and the formal parameter x with a default value 
assignment: 

function foo; 
input Real x := 2.0; 

protected 
Real yl := cos(1.84) + x - 1.2E-2; 

end foo; 

9.2.4 Assignments from Called Functions with Multiple Results 

There is a special form of assignment statement that is used only when the right-hand side contains a call 
to a function with multiple results. The left-hand side contains a parenthesized, comma-separated list of 
variables receiving the results from the function call. A function with n results can have at most n 
receiving variables on the left-hand side; receiving variables can be omitted (Section 9.3.2.3, page 442). 

(outl, out2, out3, ...) := function_name(inl, in2, in3, in4, ...); 
For example, the function f called below has three results and two inputs: 

(a, b, c) := f(1.0, 2.0); 
(x[1], x[2], x[3]) f(3,4) ; 

The example function f has three results declared as three output formal parameters r 1, r2, and r3: 
function f 

input Real x; 
input Real y; 
output Real rl; 
output Real r2; 
output Real r3; 

algorithm 
r 1 : = x ; 
r2 := y; 
r3 := x*y; 

end f; 
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9.2.5 Iteration Using for-statements 

The for-statement, also called for-loop, is a convenient way of expressing iteration. This fits well when we 
know how to express the range of values, the range-expression, over which the iteration-variable should 
iterate. The general structure of a for-statement with a single iterator is shown below. 

for iteration-variable in range-expression loop 
statements 

end for; 
The range-expression is a vector expression which is first evaluated once before the loop iteration 

starts and is evaluated in the scope immediately enclosing the for-loop. This scope is typically the class or 
function containing the algorithm section with the for-loop. The enclosing scope can also be another for-
loop in case of nested loops. The rest of the for-loop is executed in the following way: 

1. The iteration-variable is assigned the next element from the range-expression vector 
2. The body {statements) of the for-loop is executed. 
3. If there are no more elements in the range expression (or if a break statement, see Section 9.2.7, 

page 430, or return statement, see Section 9.3.2.6, page 444, is executed) the loop is exited, 
otherwise execution continues at step 1. 

A very simple for-loop summing the five elements of the vector z within the class Sumz: 
class SumZ 
parameter Integer n = 5; 
Real[n] z(start = {10,20,30,40,50}); 
Real sum; 

algorithm 
sum : = 0; 
for i in 1:n loop // 1:5 is {1,2,3,4,5} 

sum := sum + z[i]; 
end for; 

end SumZ; 
Below are some examples of for-loop headers with different range expressions: 

for k in 1:10+2 loop // k takes the values 1,2,3,...,12 
for i in {1,3,6,7} loop // i takes the values 1, 3, 6, 7 
for r in 1.0 : 1.5 : 5.5 loop // r takes the values 1.0, 2.5, 4.0, 5.5 

The range-expression can be any vector, i.e., a one-dimensional vector of elements of any type. For 
example, a vector of string values is allowed. 

If the range-expression is created using a colon-based range vector constructor (Section 7.2.1, page 
316) as in the above examples, it can be an integer or Real vector, a vector of enumeration values of 
some enumeration type, or a Boolean vector. In the case of a vector of enumeration or Boolean values, 
the type name (e.g., Boolean or Colors in the example below) can be used to denote the range 
expression, meaning the full range from the min-to the max-value of the type in question. For example: 

type Colors = enumeration(red, green, blue); 
Real c[Colors]; 
for e in Colors loop // e takes values Colors.red, Colors.green, Colors.blue 
for e in Colors.red : Colors.blue loop // Same colors as previous 
for e in Boolean loop // e takes the values false, true 
The example below uses the type name to represent the range vector as the range expression. We also 

demonstrate the conversion function Integer, converting from enumeration value to ordinal value. In this 
example the numbers Integer (e) become 1, 2, and 3, corresponding to red, green, and blue: 

for e in Colors loop 
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c[e] := 1.2 + 0.2*Integer(e); 
end loop; 

The scope of the iteration variable is inside the for-statement. One may not make an assignment to such an 
iteration variable. For example: 

for i in l:n loop // Illegal for-loop, since 
sum := sum + z[i]; 
i := i+1; // the iteration variable i may not be assigned to! 

end for; 
Since the scope of the iteration variable is the body of the for-statement, it may hide other variables 

with the same name, for example, the constant k declared in the class HideVariable2. Note that the k 
used in the iteration expression 1: k+1 is the constant k declared in the class, whereas the k used in the 
statements inside the for-loop is the iteration variable k. It is recommended to avoid this style of 
programming even if it is legal since it is confusing and hard to read such code. 

class HideVariable2 
constant Integer k=4; 
Real z[k+1]; 

equation 
for k in l:k+l loop // The iteration variable k gets values 1,2,3,4,5 

z[k] := k; // Uses of the iteration variable k 
end for; 

end HideVariable2; 
Moreover, inside a for-statement that is controlled by a non-discrete-time (i.e., a continuous-time 
expression that is not discrete-time) range expression and not in the body of a when-statement, it is not 
legal to have assignments to unclocked discrete-time variables, or real elementary relations/functions that 
should generate events. This restriction is necessary in order to guarantee that all equations for unclocked 
discrete-time variables only contain unclocked discrete-time expressions, and to ensure that crossing 
functions do not become active between events. See also Section 6.9.3, page 281. 

9.2.5.1 Implicit Iteration Ranges 

The standard for-loop presented in the previous section has an explicit iteration range-expression, as 
follows: 

for ident in range-expression loop 
However, Modelica also allows a short form of the loop header with implicit iteration range: 

for ident loop 
where the range-expression is inferred from the use of the iteration variable ident inside the loop body. 
The iteration range-expression is inferred according to the following method: 

• For an iteration variable ident that occurs alone as an index of an array in the loop body, e.g. 
arr[..., ident, ...], the range-expression of the iteration variable is inferred to be 
1: si z e(arr,indexpos) if the indices are a subtype of Integer, or as E. el: E. en if the indices are 
of an enumeration type E=enumeration(el, ..., en), or as false: true if the indices are of 
type Boolean. The inferred range is the full range of the indexed array dimension. 

• If the iteration variable is used as an index to several arrays within the loop body, their ranges must 
be identical; otherwise the range expression must be given explicitly. 

• The iteration variable can be used in the loop body without being an index. Such a usage does not 
contribute to inferring its range expression. 

For example: 

Real a[n],b[n],c[n+l]; 
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for i loop // Same as: for i in l:size(a,l) loop 
a[i] := 2*b[i]; 

end loop; 
for i loop // Illegal since a and c have different dimension sizes 
a [ i] := 2*c[i]; // Instead use: for i in l:size(a,l) loop 

end loop; 
Some examples of range inference for arrays indexed by enumerations: 

type FourEnums = enumeration(one,two,three, four); 
Real x[4]; 
Real xe[FourEnums] = x; 
Real xsquaredl[FourEnums] = {xe[i]*xe[i] for i}; 
Real xsquared2[FourEnums] = {xe[i]*xe[i] for i in FourEnums}; 
Real xsquared3[FourEnums] = {x[i]*x[i] for i}; 
Implicit iteration ranges can be used in for-statements (Section 9.2.5, page 427), for-equations (Section 

8.3.2, page 352), array constructors with iterators (Section 7.2.2, page 316), and reduction operator 
expressions with iterators (Section 7.9.4.1, page 337). 

9.2.5.2 Nested for-loops with Multiple Iterators 

A nested for-loop may be expressed compactly using multiple iterators in the same loop: 

for iterators loop 
statements 

end for; 
where iterators is a comma-separated list of iterators. Each iterator has the structure: 

iteration-variable in range-expression 

For example, regard a standard nested for-loop where each loop has a single iterator: 

Real[n,m] A,B; 
for i in l:size(A, 1) loop 
for j in 1:size (A, 2) loop 

A[i,j] := B[i,j]A3; 
end for; 

end for; 
This can be represented more compactly using a nested for-loop with two iterators: 

for i in l:size(A, 1), j in 1:size(A,2) loop 
A [ i,j] := B[i,j]A 3; 

end for; 
The loop can be made very compact using implicit iteration ranges in the iterators: 

for i,j loop 
A [ i,j] := B[i,j]A 3; 

end for; 

9.2.6 Iteration Using while-statements 

When using the for-loop for iteration we must be able to express the range of values over which the 
iteration variable should iterate in a closed form as an iteration expression. For cases where this is not 
feasible there is also a while-loop iteration construct in Modelica where the termination condition is just a 
Boolean expression and the range of iteration values need not be expressed in closed form as an 
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expression. One must declare the iteration variable separately if such a variable is used, as well as handle 
the increment or decrement of this variable. The general structure of a while-loop is shown below: 

while condition loop 
statements 

end while 
where the condition expression must be of Boolean type. The while-statement has the following meaning: 

1. The condition of the while-statement is evaluated. 
2. If the condition is f ai se, the execution continues after the while-statement. 
3. If the condition is true, the entire body {statements) of the while-statement is executed (except if a 

break statement, see Section 9.2.7, page 430, or return statement, see Section 9.3.2.6, page 444, 
is executed), after which execution continues at step 1. 

The example class SumSeries shows the while-loop construct used for summing a series of exponential 
terms until the loop condition is violated, that is, the terms become smaller than eps. In this case it would 
be quite impractical to use a for-loop. 

class SumSeries 
parameter Real eps = l.E-6; 
Integer i; 
Real sum; 
Real delta; 

algorithm 
i 1; 
delta := exp(-0.01*1); 
while delta>=eps loop 

sum := sum + delta; 
i := i+1; 
delta := exp(-0.01*i); 

end while; 
end SumSeries; 

Moreover, inside a while-statement that is controlled by a non-discrete-time (i.e., a continuous-time 
expression that is not discrete-time) condition and not in the body of a when-statement, it is not legal to 
have assignments to unclocked discrete-time variables or real elementary relations/functions that should 
generate events. This restriction is necessary in order to guarantee that all equations for unclocked 
discrete-time variables are unclocked discrete-time expressions, and to ensure that crossing functions do 
not become active between events. See also Section 6.9.3, page 281. 

9.2.7 Breaking Iteration Using break-statements 

When executing for-statements or while-statement the iteration can be terminated by executing a break-
statement somewhere within the loop: 

• A break-statement executed within an iteration statement such as a for- or while-statement 
terminates the enclosing iteration immediately without executing the rest of the iteration statement 
body. In the case of a while-loop, the loop is terminated without executing the while-predicate. 

A break-statement has the following syntax, and is only allowed inside a for-loop or a while-loop: 

break; 
For example, the following function f indElement searches an Integer array for a specific element. The 
search is done by a for-loop, which is terminated by a break-statement when the correct index position has 
been found and assigned to the result variable called position, 

function findElement 
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input Integer element; 
input Integer v[:]; 
output Integer position; 

algorithm 
for i in l:size(v,l) loop 

if v[i] == element then 
position := i; 
break; 

end if; 
end for; 

end findElement; 

9.2.8 Returning from Functions Using return-statements 

It is possible to return from a function using a return-statement of the following form: 

return; 
The return-statement is described in more detail in Section 9.3.2.7, page 444. 

9.2.9 if-statements 

The general structure of if-statements is given below, where the elseif-part is optional and can occur zero 
or more times whereas the optional else-part can occur at most once. 

if <condition> then 
<statements> 

elseif <condition> then 
<statements> 

else 
<statements> 

end if 
The semantics of an if-statement is as follows: if the condition after the keyword if evaluates to true 

the statements after then are executed; otherwise if there are one or more elseif-parts their conditions are 
evaluated in order. The first that evaluates to true causes the corresponding statements to be executed; 
otherwise, if present, the statements in the else-part are executed. 

Below is an example of an if-statement used in the class SumVector, which performs a combined 
summation and computation on a vector v. 

class SumVector 
Real sum; 
parameter Real v[5] = {100,200,-300,400,500}; 
parameter Integer n = size(v,1); 

algorithm 
sum := 0; 
for i in l:n loop 

if v[i]>0 then 
sum := sum + v[i]; 

elseif v[i] > -1 then 
sum := sum + v[i] -1; 

else 
sum := sum - v[i]; 

end if; 
end for; 

end SumVector; 
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9.2.9.1 Assignments within if-statements 

There is a special feature regarding conditional assignments, that is, assignment statements inside if-
statements. Modelica guarantees that all the outputs of an algorithm section always have well-defined 
values, and that an algorithm section does not have memory of previous invocations. This is achieved by 
initializing all conditionally assigned variables to their start-values whenever the algorithm is invoked. 

Remember that a function or algorithm section is said to have memory if its results are dependent not 
only on the inputs but also on some value(s) that may have been stored away during some previous call. 
Since conditionally assigned variables are not always assigned they could preserve memory from previous 
calls or be undefined if it were not for this rule of automatically giving such variables their start-value on 
entry. Thus it is impossible for a Modelica function or algorithm section to have memory. 

For example, the algorithm section in the class CondAssign below automatically assigns the start 
values 35 and 45 to the variables x and y respectively when entering the algorithm section since these 
variables are conditionally assigned within the algorithm section. This means that the condition x>5 
becomes 35>5 which is always true. On the other hand, the variable z is not given its start value when 
entering the algorithm section since it is not conditionally assigned; it is actually an input to the algorithm 
section. 

class CondAssign 
Real x(start=35); 
Real y(start=45); 
Real z(start=0) = time; 

algorithm 
if x>5 then 
x := 80; // The condition x>5 will always be true 

end if; // since 35>5 
if z>10 then 

y := 100; 
end if; 

end CondAssign; 
We simulate for 30 seconds and plot (see Figure 9-1). 
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Figure 9-1. Simulation of the CondAssign model. 

The function CondAssignFunc below behaves similarly; here the local variables x and y are 
automatically assigned the default initial values 35 and 45 on entry to the algorithm section that comprises 
its function body. 

function CondAssignFunc 
input Real z; 

protected 
Real x := 35; 
Real y := 45; 
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algorithm 
if x>5 then 
x := 80; 

end if; 
if z >10 then 
y := 100; 

end if; 
end CondAssignFunc; 

9.2.9.2 Restriction Regarding Unclocked Discrete-Time Variables and Events 

Inside an if-statement that is controlled by a non-discrete-time (i.e., a continuous-time expression that is 
not discrete-time) condition and not in the body of a when-statement, it is not legal to have assignments to 
unclocked discrete-time variables or real elementary relations/functions that should generate events. This 
restriction is necessary in order to guarantee that all equations for unclocked discrete-time variables only 
include unclocked discrete-time expressions, and to ensure that crossing functions do not become active 
between events. See also Section 6.9.3, page 281. 

9.2.10 when-statements 

When-statements are used to express actions at event instants and are closely related to when-equations 
earlier described in Section 8.3.5, page 357. An obvious difference is that when-statements are statements 
containing other statements (actions) and can be used only in algorithm sections (but not in functions) 
whereas when-equations are equations which are allowed only in equation sections. 

• When-statements are used to express actions (statements) that are executed only at events, for 
example, at discontinuities or when certain conditions become true. The executed statements 
contain unclocked discrete-time expressions since they are computed only at event instants, even 
expressions that otherwise would be classified as continuous-time. 

The general structure of a when-statement is given below where the elsewhen-part is optional and can be 
repeated zero or more times. The conditional expression conditions is a Boolean scalar or vector 
expression which automatically has variability unclocked discrete-time because of its type. The statements 
within the when-statement are executed when the scalar conditions expression becomes true, or in the 
case of a Boolean vector expression, when at least one of the vector elements becomes true. The 
statements in a subsequent elsewhen-part are executed if at least one of the associated conditions becomes 
true and no preceding when- or elsewhen-part of the same when-statement was executed. 

when <conditions> then 
<statements> 

elsewhen <conditions> then 
<statements> 

end when 
For example, the two statements in the when-statement below are executed at the event instant when the 
Boolean expression x > 2 becomes true. We should note that this is different from an if-statement with 
the same condition which executes its body each time when invoked provided that the condition of the if-
statement is true. This difference is easier to understand if we consider the definition of when-statements 
in terms of if-statements and the edge operator in the section below. 

when x > 2 then 
y 1 : = s i n (x) ; 
y3 := 2*x + yl + y2; 

end when; 
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If we instead use a Boolean vector expression containing three elements as the conditions, then the two 
statements will be executed at event instants when at least one of the three conditions: x > 2, 
sample (0,2), or x < 5 becomes true. Typically each condition in the vector generates its own event 
instants. 

when {x > 2, sample(0,2), x < 5} then 
yl := sin(x); 
y3 := 2*x + yl + y2; 

end when; 
The order between the statements in the body of the when-statement is of course significant. If we 

would put the assignment to y3 before the assignment of yl we would get a different result and thus 
different model behavior. 

In general, it is advisable to try to put only one assignment within each when-statement and instead 
have several when-statements with identical conditions. This has been done in the example below, 
allowing the solver the flexibility to arrange the computation in data-dependency order. We should note, 
however, that this is not an absolute requirement. There are situations where several assignment statements 
within the same when-statement is more convenient. 

algorithm 
when x > 2 then 

yl := sin(x); 
end when; 

equation 
y2 = sin(yl); 

algorithm 
when x > 2 then 

y3 := 2*x + yl + y2; 
end when; 

9.2.10.1 Defining when-statements by if-statements 

A when-statement can be defined as a combination of the following: 

• An if-statement. 
• Boolean variables with appropriate start-values. 
• Calls to the edge operator in the conditional expressions (i.e., conditions) of the if-statement. 

We can easily understand the mapping from when-statement to if-statement by regarding the following 
schematic when-statement example: 

algorithm 
when {x>l, . y>p} then 

elsewhen x > y.start then 

elsewhen x+3 < z then 

end when; 
This when-statement is equivalent to the following special if-statement. The Boolean variables bl, b2, 
and b3 are necessary since the edge operator can be applied only to Boolean variables. Each conditional 
expression of the when-statement is assigned to a Boolean variable which becomes the argument to one 
of the edge operators in the conditional expressions of the if-statement. 

Boolean[N] bl(start = {x.start>l, ..., y.start>p.start}); 
Boolean b2(start = x.start > y.start); 
Boolean b3(start = x.start+3 < z.start); 

algorithm 
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bl := {x>l, . . . , y>p}; 
b2 := x > y.start; 
b3 := x+3 < z; 
if edge(bl[1]) or edge(bl[2]) or ... edge(bl[N]) then 

elseif edge(b2) then 

elseif edge(b3) then 

end if; 

Remember the definition of edge as "edge (x) = x and not pre (x)S e e also the table of special 
operators and functions in Section 6.14 on page 291. The edge operators in the conditions of the if-
statement ensure that the statements within the if-statements are executed only when the original 
conditions become true, that is, these statements are evaluated only at event instants. 

9.2.10.2 Avoiding Multiple-Definition Conflicts for when-statements 

Recall the erroneous model DoubleWhenConflict in Section 8.3.5.2, page 359, where two when-
equations try to define the same variable. A similar model DoubleWhenConflict2 using when-
statements in separate algorithm sections instead of when-equations is shown below. 

Two when-statements in different algorithm sections may define the same variable, but this is not 
recommended modeling practice since the simulation may become dependent on the choice of execution 
order between the when-statements. See the model below, where there are two assignments (close : = 
true; close := false;) defining the same variable close. 

model DoubleWhenConflict2 
Boolean close; // not recommended: close defined by two statements! 

algorithm 
when condition 1 then 

close := true; 
end when; 
algorithm 
when condition2 then 

close false; 
end when; 

end DoubleWhenConflict2; 
One possible way to resolve the conflict would be to put both when-statements within the same 

algorithm section, as in the DoubleWhenSequential model below. The sequential execution semantics 
of algorithm sections allow several assignments to the same variable. 

If there are several when-statements with assignments active at the same time instant, they will be 
executed in sequential order, and the result of the last assignment will prevail. However, this method is not 
recommended since the modeling style is less clear than the alternative method presented in the next 
section. Another disadvantage is the nondeclarative style of using when-constructs by relying on multiple 
sequential assignments. 

model DoubleWhenSequential 
Boolean close; // Possible conflicting definitions resolved by 

algorithm // sequential assignments in an algorithm section 
when time<=2 then 

close := true; 
end when; 
when time<=2 then 

close := false; 
end when; 

end DoubleWhenSequential; 
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A more explicit and therefore better way to resolve the conflict would be to give one of the two event 
handlers higher priority, which is possible using the elsewhen construct, for example, as shown below: 

model WhenPriority 

algorithm 
when condition 1 then 

close := true; 
elsewhen condition2 then 

close := falser-
end when; 

end WhenPriority; 
Here it is well defined what happens if both conditions become true at the same time instant since 
condition 1 has a higher priority than condition2. 

9.2.10.3 Restrictions on when-statements 

The following restrictions apply to when-statements: 

• when-statements are not allowed in functions. 
• when-statements cannot be nested. 
• when-statements are not allowed in initial algorithm sections, but when initial() can be used outside 

initial algorithm or initial equation sections. 

The reader might find it strange that when-statements are allowed in algorithm sections but not allowed in 
functions since algorithm sections can be seen as a special case of functions. The main reason is that the 
analysis to determine when events should be generated would be very complicated, in certain cases 
infeasible, since functions can be recursive, functions can call other functions, and the same function can 
be called from many places. The special case of algorithm sections is much simpler and can be handled, 
since an algorithm section can be "called" from only one place, cannot be called from functions, and is 
nonrecursive. The restriction of not nesting when-statements is both to keep it closer to the allowable 
forms of when-equations, and to simplify the analysis needed for event generation. 

9.2.11 assert 

The assert statement provides a convenient means for specifying checks on model validity within a 
model. There is also an equation version of assert (see Section 8.3.7.1, page 361). An assert statement 
has the following structure; 

assert (assert-expression, message-string); or 
assert {assert-expression, message-string, , level = assertionlevel) ; 

The assert-expression in an assert statement should normally evaluate to true, in which case the 
message-string argument is not evaluated and the procedure call to assert is ignored. A failed 
assertion, that is, when the assert-expression evaluates to false, should be reported back to the user 
in some way that is dependent on the third argument to assert, called level, which has a default value 
level = AssertionLevel. error. In that case the default behavior is to report some problem back to 
the user, stop the simulation, and then possibly (which is tool-dependent) continue simulation, for 
example, after some adjustment such as choosing smaller step-size for numerical solution. The default 
AssertionLevel .error case can for example be used to avoid evaluating a model outside its limits of 
validity. The following class AssertTest2 contains an example of the use of assert: 

class AssertTest2 
parameter Real lowlimit = -5; 
parameter Real highlimit = 5; 
Real x; 
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algorithm 
assert(x >= lowlimit and x <= highlimit, "Variable x out of limit"); 

end AssertTest2; 
Alternatively, if the input variable level = AssertionLevel .warning, the current evaluation is not 
aborted. Instead, message indicates the cause of the warning. The warning is reported only once when the 
assert-expression becomes false, and it should also be reported that the assert-expression is 
no longer violated when it returns to true. In all cases, the assert(...) statement must not have any 
influence on the behavior of the model. 

The AssertionLevel .warning case can be used when the boundary of validity is not hard. For 
example, a fluid property model based on a polynomial interpolation curve might give accurate results 
between the temperatures 240 K and 380 K, but still give reasonable results in the range 200 K and 500 K. 
When the temperature gets out of the smaller interval, but still stays in the larger one, the user should be 
warned, but the simulation should continue without any further action. The corresponding assert 
statements would be: 

assert(T > 240 and T < 380, "Medium model outside full accuracy range", 
AssertionLevel.warning); 

assert(T > 200 and T < 500, "Medium model outside feasible region"); 

9.2.12 terminate 

The terminate statement successfully terminates the current simulation, that is, no error condition is 
indicated. There is also an equation version of terminate (see Section 8.3.7.2, page 362). A string 
argument is used to indicate the reason for successful termination, which can be reported back to the user 
in some appropriate way by the simulation tool. The structure of a terminate statement is as follows: 

terminate ( message-string ) ; 

The most common usage of terminate is to give more appropriate stopping criteria for terminating a 
simulation than a fixed point in time. This is exemplified in the terminate statement within the when 
statement below, which is a slightly modified version of the termination code of the MoonLanding model 
in Section 3.5, page 83. 

algorithm 
when apollo.height < 0 then // termination condition 

terminate("The moon lander touches the ground of the moon"); 
end when; 

9.2.13 Print Statements 

As mentioned earlier (Section 9.1, page 421), Modelica functions are pure, that is, given the same 
arguments will always return the same value(s), and are not allowed to have side effects that influence the 
simulation state. 

However, calls to impure functions (Section 9.3.14, page 462) are allowed in some special cases if the 
side effects of these calls do not influence the simulation state. 

Two cases which are sometimes useful in algorithmic code are print functions (Section 16.4.3, page 
926) and timing functions for performance measurements. Some calls like that can be without arguments 
(Section 9.3.2.5, page 444). 
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9.3 Functions 

Functions are a natural part of any mathematical model. A small number of standard mathematical 
functions like abs, sqrt, sin, cos, exp, etc. are predefined in the Modelica language. Most of these 
functions and a few more, including sin, cos, exp, and so on, are also available in the Modelica standard 
math library Modelica.Math, (Section 16.2, page 920), which also makes it possible to associate 
graphical annotations with these functions. The arithmetic operators +, -,*, / can be regarded as functions 
that are referred to through a convenient operator syntax. Thus it is natural to have user-defined 
mathematical functions in the Modelica language. 

At the beginning of this chapter (Section 9.1, page 421), we discussed the issues as well as pros and 
cons of declarative versus nondeclarative algorithmic constructs including functions. Modelica functions 
are declarative mathematical functions, that is, a Modelica function always returns the same results given 
the same argument values. Thus a function call is referentially transparent, which means that it keeps the 
same semantics or meaning independently of from where the function is referenced or called. 

The declarative behavior of function calls implies that functions have no memory (not being able to 
store values that can be retrieved in subsequent calls) and no side effects (e.g., no update of global 
variables and no input/output operations). This is actually a prerequisite for guaranteeing the continuity 
and differentiability conditions required by the solver for solution of the continuous part of the total system 
of equations. However, it is possible that external functions could have side effects or input/output 
operations. If we call such a function the simulation will still work well if the external function behaves as 
a mathematical function, that is, the same inputs always give rise to the same results16. 

On the other hand, whereas functions behave in a declarative way, that is, are call declarative, the 
statements inside the function body are algorithmic and therefore non-declarative. The nondeclarativeness 
of statements is, however, local, and does not influence the global properties of Modelica functions. 

9.3.1 Function Declaration 

The body of a Modelica function is a kind of algorithm section that contains procedural algorithmic code 
to be executed when the function is called. A function body can alternatively consist of an external 
function specifier (Section 9.4, page 466). Formal parameters are specified using the input keyword, 
whereas results are denoted using the output keyword. This makes the syntax of function definitions 
quite close to Modelica class definitions, but using the keyword function instead of class. 

The structure of a typical function declaration is sketched by the following schematic function 
example: 

function <functionname> 
input TypeII inl; 
input TypeI2 in2; 
input TypeI3 in3 := <default expr> "Comment" annotation (...) ; 

output TypeOl outl; 
output Type02 out2 := <default expr> ; 

protected 
<local variables> 

algorithm 

<statements> 

16 There is an exception to this rule for external functions called in when-equations or when-statements. See the footnote in 
Section 9.1, page 3. 
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end <functionname> ; 

Optional explicit default values can be associated with any input or output formal parameter as well as 
local variable through declaration assignments. Such defaults are shown for the third input parameter and 
the second output parameter in our example. 

Initialization of output formal parameters and local variables from associated default values in 
declaration assignments, for example, the assignment in 3 : = ... above, is done at the start of the function 
invocation before the function algorithm section or associated external function is evaluated. Such 
initializations must be executed in an acyclic order where a variable is not used before its declaration 
assignment has been executed. It is an error if such an acyclic execution order does not exist. 

Comment strings and annotations can be given for any formal parameter declaration, as usual in 
Modelica declarations. 

All internal parts of a function are optional; that is, the following is also a legal function: 

function <functionname> 
end <functionname> ; 

9.3.1.1 Ordering of Formal Parameters 

The relative ordering between input formal parameter declarations is important since that determines the 
matching between actual arguments and formal parameters at function calls with positional parameter 
passing. Likewise, the relative ordering between the declarations of the outputs is significant since that 
determines the matching with receiving variables at function calls of functions with multiple results. 
However, the declarations of the inputs and outputs can be intermixed as long as these internal orderings 
are preserved. Mixing declarations in this way is not recommended, however, since it makes the code hard 
to read. For example: 

function <functionname> 
output TypeOl outl; // Intermixed declarations of inputs and outputs 
input Typell inl; // not recommended since code becomes hard to read 
input TypeI2 in2; 

output Type02 out2; 
input TypeI3 in3; 

end <functionname>; 

9.3.2 Function Call 

There are two basic forms of argument to formal parameter association in Modelica function calls: 

• Positional association of actual arguments to formal parameters. 

• Named association of actual arguments to formal parameters. 
These two forms can be mixed: 

• Mixed positional and named association of actual arguments to formal parameters. 

As an example we will use the function polynomialEvaluator that computes the value of a 
polynomial given two arguments: a coefficient vector A and a value of x. 

function polynomialEvaluator 
input Real A[ : ] ; // Array, size defined at function call time 
input Real x := 1.0; // Explicit default value 1.0 for x 
output Real sum; 

protected 
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Real xpower; // Local variable xpower 
algorithm 

sum := 0; 
xpower := 1; 
for i in l:size(A, 1) loop 

sum := sum + A[i]*xpower; 
xpower xpower*x; 

end for; 
end polynomialEvaluator; 
A function call with positional association of actual arguments to formal parameters is the most common 

form of function call in Modelica as well as in other programming languages. The actual arguments are 
associated with the formal parameters according to their position in the argument list. Thus, the nth actual 
argument is passed to the nth input formal parameter based on the ordering of the input formal parameter 
declarations in the function definition. However, formal parameters with default values need not be given 
actual arguments unless those parameters should be assigned values different from the defaults. 

The number of actual arguments can be less than the number of formal parameters in such a function 
call if the remaining formal parameters have specified default values. Otherwise the number of actual 
arguments and the number of formal parameters must be the same. 

Using positional association, in the call below the actual argument { 1 , 2 , 3 , 4 } becomes the value of 
the coefficient vector A, and 21 becomes the value of the formal parameter x. 

p := polynomialEvaluator({1, 2, 3, 4}, 21); 
The same call to the function polynomialEvaluator can instead be made using named association of 
actual arguments to formal parameters, as in the next example. Here the actual argument is associated with 
the formal parameter through an equation in the argument list with the name of the formal parameter on 
the left-hand side and the actual argument on the right-hand side: 

p := polynomialEvaluator(A={1, 2, 3, 4}, x=21); 
or, since the order of named arguments does not matter: 

p polynomialEvaluator(x=21, A={1, 2, 3, 4}); 
Named association has the advantage that the code becomes more self-documenting as well as more 

flexible with respect to code updates, but the drawback is less concise code. For example, assume that we 
make all calls to the function polynomialEvaluator using named parameter association. Then we can 
change the order between the formal parameters A and x and introduce new formal parameters with default 
values in the function definition without causing any compilation errors at the call sites. 

The default value of 1 .0 for the x input formal parameter makes the following three calls equivalent: 

p := polynomialEvaluator({1, 2, 3, 4}, 1.0); 
p := polynomialEvaluator({1, 2, 3, 4}; 
p := polynomialEvaluator(A={1, 2, 3, 4}); 
For both kinds of function argument passing, type compatibility of arguments and formal parameters 

applies: 

• The types of the actual argument expressions at a function call must be compatible with the 
declared types of the corresponding formal parameters, except where the standard type conversions 
can be used to make the types agree. See also Section 3.19, page 124, regarding type compatibility 
for argument passing, and the section on applying scalar functions to arrays, Section 9.3.2.8 on 
page 445, in this chapter. 

9.3.2.1 Mixed Positional and Named Function Argument Passing 

We mentioned briefly that the positional and named argument passing styles can be mixed in a function 
call. The placement of the positional and named arguments must adhere to the following rule: 



Chapter 9 Algorithms and Functions 441 

• A function application has optional positional arguments followed by zero or more named 
arguments. 

Such a mixed call to some example function f might appear as follows: 

f ( 3 . 5 , 5.76, arg3=5, arg6=8.3); 
or in the case of our well-known polynomialEvaluator function: 

p := polynomialEvaluator({1, 2, 3, 4}, x=21); 
We are now ready to state the complete rules for binding values to the input formal parameters of a 

Modelica function based on a combination of positional arguments, named arguments, and explicitly given 
default values: 

1. First, a list of unfilled "slots" is created corresponding to all formal input parameters, where the 
order of the slots is given by the order of the formal input parameter declarations in the function 
definition. 

2. If there are n positional arguments, they are placed in the first n slots, which thereby become filled. 
3. Next, for each named argument "identifier = expressionthe identifier is used to determine the 

corresponding slot. This slot must be unfilled, otherwise an error occurs. The value of the argument 
is placed in this slot, thereby filling it. 

4. When all arguments have been processed, the slots that are still unfilled are filled with the 
corresponding explicit default values (if present) of the function definition. The default values may 
depend on other inputs; these dependencies must be acyclical in the function. The values for those 
other inputs will then be substituted into the default values. This process may be repeated if the 
default value for that input depend on another input. The default values for inputs may not depend 
on non-input variables in the function. 

5. At this stage there must not be any remaining unfilled slots, otherwise an error occurs. The 
contents of the complete list of filled slots can now be used as the input formal parameter values 
for the call. 

We illustrate this procedure with an example. Assume that a function realToString is defined as 
follows for converting a Real number to a String: 

function realToString 
input Real number 
input Real precision 
input Real length 
output String string 

end realToString; 
Then the following function calls are equivalent: 

String ns; 
ns realToString(2.0); 
ns realToString(2.0, 6, 0); 
ns := realToString(2.0, 6); 
ns := realToString(2.0, precision=6); 
ns := realToString(2.0, length=0); 

As stated in the argument-passing procedure, it is an error to pass the same argument twice. We show an 
erroneous example call below where the argument value 6 is passed twice to the precision formal 
parameter, first using positional association and then using named association: 

ns := realToString(2.0, 6, precision=6); // Error: precision passed twice 

9.3.2.2 Returning Single or Multiple Function Results 

A function with one output formal parameter always returns a single result. Our previously presented 
example functions polynomialEvaluator and realToString are single result functions. 

However, a function with more than one output formal parameter has multiple results. An example is 
the function pointOnCircle below, which computes the Cartesian coordinates of a point located at a 

"Real value to be converted to a string"; 
:= 6 "Number of significant digits"; 
:= 0 "Minimum length of field"; 

"Result number as a string"; 
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certain angle on a circle with a specific radius. The Cartesian coordinates are returned via the two result 
variables x and y. 

function pointOnCircle "Computes cartesian coordinates of a point" 
input Real angle "angle in radians"; 
input Real radius; 
output Real x; // l:st result formal parameter 
output Real y; // 2:nd result formal parameter 

algorithm 
x := radius*Modelica.Math.cos(phi); 
y := radius*Modelica.Math.sin(phi); 

end pointOnCircle; 
If we call a function with just one result we can put the call anywhere within an expression. This is also 

the case when calling a function with multiple results if we only want to access its first result. 
On the other hand, if we wish to call a Modelica function with multiple results and want to obtain more 

than the first result, there are just two syntactic forms to choose from depending on whether the function 
call should occur in an equation section or in an algorithm section: one equation form and one statement 
form, as specified below: 

(outl,out2,out3,...) = function_name(inl, in2, in3, in4, ...); // Equation 
(outl,out2,out3,...) := function_name(inl, in2, in3, in4, ...); // Statement 

The left-hand side of both the equation and the assignment statement contains a parenthesized, comma-
separated list of variables receiving the results from the function call. A called function with n results can 
have at most n receiving variables on the left-hand side. Fewer than n receiving variables means that some 
function results are discarded. 

For example, when calling our example function pointOnCircle with two receiving variables px and 
py on the left-hand side, such calls can appear as follows: 

(px,py) = pointOnCircle(1.2, 2); // Equation form 
(px,py) := pointOnCircle(1.2, 2); // Statement form 

Any kind of variable of compatible type is allowed in the list on the left-hand side, e.g. array elements: 

(arr[1],arr[2]) := pointOnCircle(1.2, 2); 
However, the parenthesized list on the left-hand side must contain variables, not general expressions: 

(a+3, b/c) := pointOnCircle(1.2, 2); // Error! Should be variables 
// on the left-hand side 

To summarize, the following rules apply when returning results from a multiple-result function: 

• The variables in the list on the left-hand side of the equation or assignment containing the call are 
associated with the returned function results according to the order of the variables in the list and 
the corresponding declaration order of the output result variables in the function. 

• Only the first result is returned when calling a function with multiple results from inside an 
expression not being the right-hand side of a statement or equation. 

• As in any standard equation or assignment, the type of each variable on the left-hand side must be 
compatible with the type of the corresponding function result on the right-hand side, with or 
without type coercion. 

9.3.2.3 Optional Function Results 

In the previous section we mentioned briefly that selected results from a multiple-result function can be 
discarded depending on the form of the function call. This is useful since we might not always be 
interested in all results returned from a function call. 
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By leaving out variables in the com ma-separated list on the left-hand side of a multiple-result call 
equation or assignment, or calling a multiple-result function within an expression context, we can control 
which results are actually obtained according to the following rules. 

• A multiple-result function can be called as a single-result function within an expression. In such a 
case the value and type of the function call are given by the value and type of the first result, and 
the rest of the results are discarded. 

• Selected function results can be discarded by leaving out the corresponding variables in the 
comma-separated list on the left-hand side of multiple-result function call equation or assignment. 
Enough commas must be retained to determine the position of each variable, counting from the 
left. 

A typical case is the following example function eigen, which computes both eigenvalues and 
eigenvectors, whereas the user would like to obtain only one or two of these results. 

function eigen "calculate eigenvalues and eigenvectors" 
discrete Integer n = size (A, 1); 
input Real A[ :, n]; 
output Real eigenvalues[n,2]; 
output Real leftEigenVectors [n,n]; 
output Real rightEigenVectors[n,n]; 

algorithm 
// The function body computes eigenvalues, right and left eigenvectors 
// An optimizing Modelica compiler may recognize that the result variables 
// can be computed separately (and not, e.g., by one 
// single call to an external Fortran function) in order to remove 
// unnecessary computations if one or more output arguments are missing. 
// 1. compute eigenvalues 
// 2. compute right eigenvectors using the computed eigenvalues 
// 3. compute left eigenvectors using the computed eigenvalues 

end eigen; 
This function may be called in different ways depending on which results should be returned or discarded, 
e.g. as in the example calls below: 

// 1st result 
// 2nd result 
// 3rd result 

eigen(A); // Return all results 
eigen(A); // Eigenvalues and left eigenvectors 
eigen(A); // Only eigenvalues 
2*eigen(A); // Eigenvalues in an expression 
eigen(A) ; // Eigenvalues and right eigenvectors 
eigen(A); // Only left eigenvectors 

An optimizing Modelica compiler having access to both the actual function calls and the Modelica 
source code of the called multiple-result function, for example, eigen, may avoid computing unused 
results by doing analysis of the code and compiling the multiple-result function to special optimized 
versions that avoid computation of unused results depending on the function call context. 

(evalues,vleft,vright) 
(evalues,vleft) 

evalues 
X 

(evalues,,vright) 
(,vleft) 

9.3.2.4 Call via an Instance Name 

A function declared in a class can be called via a reference to an instance of that class using dot notation. 
Such locally declared functions are sometimes called member functions. An example of such a call is 
foo. func (33.5) below. Regarding the lookup rules to find the definition of such a function, see Section 
3.17.2, page 112. 

model Foo 
Real xl; 
function func 

input Real x; 
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output Real y; 
algorithm 
y 3*x; 

end func; 
end Foo; 

model FuncTest 
Real z; 
Foo foo(xl=5); 

equation 
z = foo.func(33.5); // Call to function func via instance foo 

end FuncTest; 

9.3.2.5 Empty Function Calls 

An "empty" function call is a call that does not return any results. An empty call is not of much use in 
equation-based Modelica models since a function call without results does not contribute to the simulation, 
and is not allowed to have side-effects that influence the simulation state. 

However, this degenerate case of function call is still allowed and can be of use for calls to impure 
functions (Section 9.3.14, page 462) called from algorithmic code, e.g., calls to print functions (Section 
16.4.3, page 926) or timing functions for performance measurements. It can occur either as a kind of "null" 
equation or "null" statement, for example, as in the empty calls to eigen () in the example below: 

equation 
eigen(A); // Empty function call as an equation 

algorithm 
eigen(A); . // Empty function call as a statement 

9.3.2.6 Scalar Functions Applied to Array Arguments 

In certain situations, it is useful to be able to apply a function to array values even if it has not been defined 
for such arguments. This can be done if an obvious generalization to elementwise application of the 
function is possible. 

Modelica functions with one scalar return value can be applied to arrays elementwise, for example, if v 
is a vector of reals, then cos (v) is a vector where each element is the result of applying the function cos 
to the corresponding element in v. For example: 

cos({a,b,c}) // Vector argument, result: {cos(a),cos(b),cos(c)} 
cos([l,2; 3,4]) // Matrix argument, result: [cos(1),cos(2); cos(3),cos(4)] 

Functions with more than one argument can be generalized to elementwise application. If more than one 
argument is generalized to an array, all of the arguments have to be of the same size, and they are traversed 
in parallel. 

For more information regarding the application of scalar functions to array arguments, see Section 7.10 
on page 340 in Chapter 7. 

9.3.2.7 Function return-statement 

A function is returned from when reaching the end of the function body. However, immediate return from 
anywhere inside a function body can be done by executing a return-statement with the following syntax 
(Also mentioned in Section 9.2.8, page 431): 

return; 
For example, the following function findMatrixElement searches an Integer matrix for a specific 
element. The search is done by a doubly nested for-loop, which is immediately exited when the function is 



Chapter 9 Algorithms and Functions 445 

returned from by executing a return-statement. At this point, the correct index position has been found and 
assigned to the result variables row and column. 

function findMatrixElement 
input Integer element; 
input Integer M[:,:]; 
output Integer column; 
output Integer row; 

algorithm 
for r in l:size(M,l) loop 
for c in 1: size (£4,2) loop 

if M[r,k]== element then 
row:=r; 
column:=c; 
return; 

end if; 
end for; 

end for; 
end findMatrixElement; 

9.3.2.8 Flexible Array Sizes and Resizing of Arrays in Functions 

In Section 7.1.2, page 313, we briefly discussed flexible array dimension sizes. For example, a dimension 
size of an input array formal parameter specified with a colon(:) is flexible—it is unknown and becomes 
known when an argument is bound to such a formal parameter during a function call. Moreover, a function 
array result variable or local variable with a dimension size specified with a colon(:) needs to get its size 
defined through an array assignment. 

A dimension size not specified with colon(:) for an array variable declared in a function must be given 
by an expression only dependent on the input formal parameters and/or constants. For example: 

function concatFourVectors "Concatenate four Real vectors of any length" 
input Real vl[:],v2[:],v3[:],v4[:]; 
output Real vres[ size(vl,1)+size(v2,1)+size(v3,1)+size(v4,1) J; 

algorithm 
vres := cat(1,vl,v2,v3,v4); 

end concatFourVectors; 
The following example function concatenates three vectors which must be of equal length: 

function concatThreeEqualSizeVectors "Concatenate 3 vectors of equal length" 
input Real vl[:],v2[size(vl,1)],v3[size(vl,1)]; 
output Real vres[size(vl,1)+size(v2,1)+size(v3,1)]; 

algorithm 
vres := cat(1,vl,v2,v3); 

end concatThreeEqualSize Vectors; 
Certain arrays declared in functions can even be resized one or more times. An array result variable or 

local variable declared in a function with a flexible dimension size specified by colon(:) and no 
declaration assignment, can change size according to the following: 

• Prior to execution of the function algorithm the flexible dimension size(s) of such an array is (are) 
defined to be zero. 

• The entire array (array variable without any subscripts) may be assigned a corresponding array 
with arbitrary dimension size. This will cause the array variable to be resized if its size is different 
from the array assigned to it. 

These rules also apply if the array variable is an element of a record variable in a function. The following 
example shows a function that collects the negative elements in a vector and resizes the result vector each 
time a new element is added to the result: 
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function collectNegative 
input Real x[:]; 
output Real xneg[:]; 

algorithm 
for i in l:size(x,l) loop 

if x[i]<0 then 
xneg := cat(1,xneg,x[i:i]); 

end if; 
end for; 

end collectNegative; 

9.3.3 Extending Base Functions 

Since a function is a specialized class, that is, a restricted and enhanced kind of class (see Section 3.8.6 on 
page 89 in Chapter 3), it is possible to inherit an existing function declaration in the declaration of a new 
function. In this way we can declare the common structure of a set of functions as a partial base function 
(analogous to base class) which we subsequently inherit into the functions we want to define. The 
drawback to this approach is that the number of formal parameters as well as their types are not 
immediately visible when reading the code of a function that inherits another function. In the example 
below, the common structure of having one input parameter and one result is declared as a base function 
which is extended and reused by several functions: 

partial function oneArgBaseFunction 
input Real x; // Base function with one argument 
output Real result; // and one result, 

end oneArgBaseFunction; 
function myTan 
extends oneArgBaseFunction; 

algorithm 
result := sin(x)/cos(x); 

end myTan; 
function addTen 
extends oneArgBaseFunction; 

algorithm 
result := x+10; 

end addTen; 
There is clearly some benefit of reuse of oneArgBaseFunction in the above example. On the other hand, 
we will find the code harder to read as we just explained. The drawbacks are probably greater than the 
benefits in this case. 

9.3.4 Functional Input Arguments to Functions 

Allowing functions to be passed as arguments to a function is a useful feature that allows greater generality 
and re-use. For example, a sorting function may have a comparison function as a formal parameter. This 
makes the sorting function more general and reusable, since it can adapt to different comparison schemes. 
For example, the sort function below sorts an array in decreasing or increasing order depending on the 
passed compare function: 

function sort "Sorting function using the bubblesort algorithm" 
input Real[:] arr; 
input CompareFunc compare; 
output Real[size(arr,1)] sortedarr; 
protected Real t; 

algorithm 

// Inherits a base function. 
// The code becomes harder to read 
// since the formal parameter list is not 
// available in the function. 
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sortedarr := arr; 
for i in 1:size (arr,1) loop 
for j in 1:size (arr,1) loop 
if not compare(sortedarr[i], sortedarr[j]) then 
t:= sortedarr[i]; sortedarr[i]:= sortedarr[j]; sortedarr[j]:= t; 

end if; 
end for; 

end for; 
end sort; 

partial function CompareFuncType "Function type of the comparison function" 
input Real x; input Real y; output Boolean comp; 

end CompareFuncType; 

function greaterThan 
input Real x; input Real y; output Boolean comp := x>y; 

end greaterThan; 

function lessThan 
input Real x; input Real y; output Boolean comp := x<y; 

end lessThan; 

model SortApplication "Example calls of the sort function" 
parameter Real[:] ax = {4.0,6.0,2.0,5.0,8.0}; 
Real[size(ax,1)] xGt; 
Real[size(ax,1)] xLt; 

equation 
xGt = sort(ax, lessThan); // Decreasing order: {8.0,6.0,5.0,4.0,2.0} 
xLt = sort(ax, greaterThan); // Increasing order: {2.0,4.0,5.0,6.0,8.0} 

end SortApplication; 
From the above sort function example we can observe the following: 

• A formal parameter of function type, that is, a functional argument, is declared in the usual syntax 
with a type (e.g., CompareFunc) followed by the formal parameter name (e.g., compare). 

• The type of a function, that is, its interface or signature with input and output formal parameters, is 
declared using a partial function, (e.g., CompareFunc). 

• A function (e.g., lessThan) can be passed to a formal parameter at a function call just by 
mentioning its function name (e.g., as in the call: sort (ax, lessThan) ). 

There are some restrictions on function types that are allowed to be used in this context: 

• The declared type of an input formal parameter of function type must be the name of a partial 
function that has no replaceable elements. 

• The function type name cannot be the name of a record constructor function automatically obtained 
from the declaration of a record type. This is because of ambiguity: a record type name is usually 
interpreted as the type of record data objects. 

Moreover: 

• When placing a type prefix such as input in a variable declaration of function type, e.g. a formal 
parameter, this input prefix is not applied to the elements of the function variable and is allowed 
even if the elements of the function variable have input or output prefixes. 

What happens when a function is passed as a functional argument in a function call? Since function calls 
usually occur at run-time, some representation of the function needs to be passed efficiently. This cannot be 
the function type, since the representation of types (currently) is only handled at compile-time. A common 
solution is that a "function instance" is created in addition to the function type when a function is declared. A 
pointer to this "function instance," sometimes referred to as a "function pointer" can then be passed as an 
argument to the called function. This technique is also used by low-level languages such as C. 

An input formal parameter of function type can also have an optional function default value in the form 
of a short class definition with = replaced by : =. The assignment : = is used since it is a default, not a 
binding that always holds which would be the case with the equality sign. For example: 

function quadrature "Integrate function y=integrand(x) from xl to x2" 
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input Real x1; 
input Real x2; 
input Integrand integrand := Modelica.Math.sin; // With default integrand 
// Case without default: input Integrand integrand; 
output Real integral; 

algorithm 
integral :=(x2-xl)*(integrand(xl) + integrand(x2))/2; // Approximate 

end quadrature; 
partial function Integrand "Function type of Integrand functions" 

input Real x; 
output Real y; 

end Integrand; 
The function parabola is passed as an input positional input argument in the call to quadrature below: 

function parabola 
extends Integrand; 

algorithm 
y = x*x; 

end parabola; 

model IntegrateParabolal 
Real area; 

equation 
area = quadrature(0, 1, parabola); // Integration of area under parabola 

end IntegrateParabolal; 

9.3.4.1 Forms of Functional Arguments to Functions 

There are four possible forms of functional arguments in function calls: 

a) a function name (as in the above sort and IntegrateParabolal examples), 
b) a function partial application (see examples in Section 9.3.4.2 below), 
c) a function that has been declared as an instance (see the example integrateParabola2 below), 
d) a function partial application of a function that has been declared as an instance (see example 

quadratureOnce in Section 9.3.4.2 below). 

In all cases, the provided function must have a type which is a function subtype (Section 3.19.6, page 130) 
of the corresponding function formal parameter. 

The IntegrateParabola2 example below uses a function integrand that is a declared function 
instance, i.e., integrand, as an input argument according to case (c) above: 

function Integra'teParabola2 "Integrate func y=integrand(x) from xl to x2" 
input Real xl; 
input Real x2; 
input Integrand integrand; // Integrand is a partial function type 
output Real integral; 

algorithm 
// Approximate integration by quadrature over two intervals 
integral := quadrature(xl, (xl+x2)/2, integrand)+ 

quadrature((xl+x2)/2, x2, integrand); 
end IntegrateParabola2; 

9.3.4.2 Function Partial Application 

A function partial application has the form of a function call with certain formal parameters bound to 
expressions. A function partial application returns a partially evaluated function that is also a function, 
with the remaining not bound formal parameters still present in the same order as in the original function 
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declaration. A function partial application is specified by the function keyword followed by a function 
call to func_name giving named formal parameter associations for the formal parameters to be bound: 

function func_name(..., formal_parameter_name = expr, ...) 
Note that the keyword function in a function partial application differentiates the syntax from a normal 
function call where some parameters have been left out and instead are supplied via default values. 

The function created by the function partial application acts as the original function but with the bound 
formal input parameters(s) removed, that is, they cannot be supplied arguments at function call. The 
binding occurs when the partially evaluated function is created. A partially evaluated function is type 
compatible (see section 6.5) to the same function with all bound arguments removed. 

The following examples show a function partial application function Sine (A=2,w=3) with the two 
extra arguments A and w bound and thus eliminated, that is, the resulting function is type compatible to 
Integrand with only formal parameters x and y left. The first example below, QuadratureSinel, has a 
call with a named input argument, according to case (b) in Section 9.3.4.1. 

function Sine "y = Sine(A,w,x)" 
input Real A; 
input Real w; 
input Real x; // Note: x is currently last in the argument list, 
output Real y; 

algorithm 
y:=A*Modelica.Math.sin(w*x); 

end Sine; 
partial function Integrand "Function type of Integrand functions" 

input Real x; 
output Real y; 

end Integrand; 
model QuadratureSinel "Coarse approximation with one quadrature call" 

Real area; 
equation 

area = quadrature(0, 1, integrand = function Sine(A=2, w=3)); 
end QuadratureSinel; 
Instead of repeating the declaration of input formal parameter x and output formal parameter y, they 

can be inherited from integrand, which is fine despite A and w now being at the end of the parameter list: 

function Sine "y = Sine(x,A,w)" 
extends Integrand; 
input Real A; 
input Real w; 

algorithm 
y:=A*Modelica.Math.sin(w*x); 

end Sine; 
The second example, QuadratureSine2, shows a function partial application being passed as a 

positional argument. The numeric approximation of the integral will be better since a number of calls to 
quadrature on many short intervals are summed. The quadrature approximation that the integrated function 
is a straight line is typically more true over a short interval. 

model QuadratureSine2 "Finer approximation, N quadrature calls" 
parameter Integer N; 
Real area; 

algorithm 
area := 0; 
for i in 1:N loop 

area := area + quadrature(0, 1, function Sine(A=2, w=i*time)); 
end for; 

end QuadratureSine2; 
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Below is an example of a function partial application of the function integrand which is an instance, 
according to case (d) above: 

partial function Surfacelntegrand 
input Real x; 
input Real y; 
output Real z; 

end Surfacelntegrand; 

function quadratureOnce 
input Real x; 
input Real yl; 
input Real y2; 
input Surfacelntegrand integrand; 
output Real z; 

algorithm 
z quadrature(yl, y2, function integrand(y=x)); 
// This is according to case (d) and needs to bind the 2nd argument y in 
// order to be type compatible to Integrand 

end quadratureOnce; 

function surfaceQuadrature 
input Real xl; 
input Real x2; 
input Real yl; 
input Real y2; 
input Surfacelntegrand integrand; 
output Real integral; 

algorithm 
integral := quadrature(xl, x2, 
function quadratureOnce(yl=yl, y2=y2, integrand=integrand); 
// Case (b) and (c) 

end surfaceQuadrature; 

9.3.4.3 Nested Functional Arguments and Propagation of Function Arguments 

The following example demonstrates nested functional arguments, that is, functional arguments in 
functional arguments, and propagation of functional arguments through two call levels. 

In this example the goal is to solve the equation sin(x) = x to obtain a solution for x. This is 
performed by calling the generic function solveScalarEquation with the function sineEqualX as 
input argument, in which the desired equation is present: 

x = solveScalarEquation(f=sineEqualX, xO=l); 

function sineEqualX "residue = sin(w*x) - x" 
extends ScalarEquationType; 
input Real w=l; 

algorithm 
residue := Modelica.Math.sin(w*x) - x; 

end sineEqualX; 

partial function ScalarEquationType "Type for residue=f(x)" 
input Real x "Independent variable"; 
output Real residue "Residue (should be zero)"; 

end ScalarEquationType; 
The generic function solveScalarEquation is implemented by using a general iterator function 

iterate that iterates over NewtonStep: 
function solveScalarEquation "solve 0 = fi(x) for scalar x" 

input ScalarEquationType fi; // The scalar equation to solve 
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input Real xO; 
output Real x; 

protected 
Real x; 

algorithm 
x := iterate(f=function NewtonStep(g=fi), xO=xO); 
// g=fi is function propagation where the supplied fi is bound 
// to g in NewtonStep 

end solve; 

function iterate "Iterate until recursive function call converges" 
input IteratorType f "Iterator function" 
input Real xO "Initial value of independent variable x"; 
input Real defaultRelativeTolerance := 100*Modelica.Constants.eps; 
output Real x "Solution (final value of x)"; 

protected 
Boolean converged; 
Real x_last, err; 

algorithm 
converged := false; 
x_last := xO; 
while not converged loop 

x := f(x_last); 
err := abs(x - x_last)/max(1, abs(x_last)); 
x_last := x; 
converged := err < getRelativeTolerance(defaultRelativeTolerance); 

end while; 
end iterate; 

partial function IteratorType "Type of the iteration function" 
input Real x_last "Last value of x in the iteration"; 
output Real x "New value of x in the iteration"; 

end IteratorType; 

function NewtonStep "Perform one Newton step to solve g(x)=0 for x" 
extends IteratorType; 
input ScalarEquationType g; 

protected 
Real h = le-5; 

algorithm 
x := x_last - h*g(x_last) / (g(x_last + h) - g(x_last)); 

end NewtonStep; 

9.3.5 Ways of Defining Functions 

Apart from the standard way of declaring a Modelica function described in Section 9.3.1, functions can 
also be defined (or be predefined) in some other ways. Below we summarize the different ways a function 
can be defined (or be predefined) in Modelica: 

• Standard function definitions, described previously in Section 9.3.1, page 438. 
• Function definition through short class definition, Section 9.3.6, page 452. 
• Built-in functions, Section 9.3.7, page 452. 
• Record constructor functions, Section 9.3.8, page 452. 
• Defining function derivatives of functions, Section 9.3.9, page 455 
• Defining partial derivatives of functions, Section 9.3.10, page 459. 
• Defining inverses of functions, Section 9.3.11, page 459. 
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• External functions, Section 9.4, page 466. 

The additional ways of defining functions are described in the following sections. 

9.3.6 Short Function Definition 

Since functions have many properties in common with general Modelica classes, they can be defined using 
a short function definition in the same way as a short class definition (Section 3.7.1, page 86), which also 
can contain modifications or redeclarations. For example, we can define our own sin function called 
mySin to be identical to sin: 

function mySin = sin; 

9.3.7 Built-in Functions 

Certain functions are built into the Modelica language and need not be made available for example, by 
being imported from some package. There are basically four groups of built-in functions in Modelica: 

• Conversion functions. 
• Intrinsic mathematical functions. 
• Special operators and functions. 
• Built-in Array functions. 

It is possible to declare built-in functions as external "builtin" functions as described in Section 9.4.1.1 
on page 467. This is already done in the Modelica Standard Library for all Modelica built-in functions, 
giving the benefit for the user of being able to access function signature and comment information in a 
Modelica browser. 

Functions for explicit conversion of values of built-in types are described in Section 6.8.1.2, page 277. 
These functions include ceil and floor for converting from an integer to a real value, integer () for 
converting from real to integer, the integer function for getting the ordinal integer value of an 
enumeration value, and the string () function for converting the built-in data types into string values. 

The following intrinsic mathematical functions are built into Modelica: abs, sign, sqrt, div, mod, 
rem, ceil, floor, and integer, as well as sin, cos, exp, and so on. These functions are described in 
Section 6.13 on page 289 in Chapter 6. All functions in the standard Modelica library Modelica.Math 
behave as built-in functions and can be called using short names such as sin, cos, exp, and so on. 

The special operators and functions have function syntax even though many of these are not really 
functions in the usual sense. They are described in Section 6.14 on page 291 in Chapter 6 and include e.g. 
the following: der, initial, terminal, noEvent, smooth, sample, pre, edge, change, reinit, 
delay, and so on. 

The built-in array functions are described in Section 7.9 starting on page 335 in Chapter 7. These 
include dimension and size functions such as size and ndims, conversion functions for changing the 
dimensionality of scalars and arrays, for example, vector and matrix, constructor functions for creating 
array values, reduction functions for computing scalar values from arrays, matrix and vector algebra 
functions, and array concatenation functions. 

See also Chapter 16, page 909, for a list of the built-in functions and operators. 

9.3.8 Record Constructor Functions 

A record constructor function is a function that creates and returns a record. For example, consider a 
record called Person with three fields: name, age, and children: 
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record Person 
String name; 
Integer age; 
String[2] children; 

end Person; 
We would like to have a record constructor function Pezson(name, age, children) returning a Person 

record. However, it is normally illegal in Modelica to declare a function with the same name as a record 
type within the same scope. If declared, it might be something similar to the following: 

function Person 
input String name; 
input Integer age; 
input String[2] children; 
output Person p; 

algorithm 
p.name := name; 
p.age := age; 
p.children := children; 

end Person; 
Fortunately we do not need to declare a Person constructor function explicitly in Modelica since such 

a function is automatically defined as a byproduct of the Person record declaration. In this special case, 
both a record and a function with the same name is allowed. The name Person is overloaded with two 
different meanings. 

The different uses of the Person record type name and the Person function name can be distinguished 
since the first is used in a type context and the second in a function call context. See also Section 7.4.3, 
page 323, where we compute record field slices of arrays of Person records. 

We declare a Person instance called john where its value is created by a call to the Person 
constructor function: 

Person john = Person("John", 35, {"Carl", "Eva"}); 
Another use of record constructors is to create complex numbers, as in the example model 

AddComplex below. The declaration of the record Complex also gives rise to a record constructor 
function, which in the add function is called to create and return a value for the w output formal parameter. 
It is also called in the equation involving the variable c2: 

model AddComplex 
record Complex "Complex number" 

Real re "real part"; 
Real im "imaginary part"; 

end Complex; 
function add 

input Complex u, v; 
output Complex w = Complex(re = u.re+v.re, im = u.im+v.re); 

end add; 
Complex cl, c2; 

equation 
c2 = add(cl, Complex(sin(time), cos(time)); 

end AddComplex; 
A third example of using record constructors is in the package Motors below. Here records are used to 

define a data sheet library for use in motor components. The record constructor functions represent data 
sheets used for creation of the different motor instances: motor 1, motor2, and motor 3. 

encapsulated package Motors 
record MotorData "Generic data sheet of a motor" 



454 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

parameter Real inertia; 
parameter Real maxSpeed; 

end MotorData; 
model Motor "Motor model" 
MotorData data; // Using the generic MotorData 

equation // Realistic motor model would need more variables and equations 
end Motor; 
// Data sheets for motors 1123 and 1145 
record MotorDataI123 = MotorData(inertia 
record MotorDataI145 = MotorData(inertia 

end Motors 
model Robot 

import Motors.*; // Just refer to data sheets as constructor functions 
Motor motorl(data = MotorDataI123 ()); 
Motor motor2(data = MotorDataI123(inertia=0.0012)); 
Motor motor3(data = MotorDataI145 ()); 

end Robot; 
After these introductory examples we are ready to formulate the general rules for automatic creation of 

record constructor functions from corresponding record declarations. 
Whenever a record is defined, a record constructor function with the same name and in the same scope 

as the record class is implicitly defined according to the following rules: 
1. The declaration of the record is first elaborated and expanded. This includes inheritance, 

modifications, redeclarations, and expansion of all names referring to declarations outside of the 
scope of the record to their fully qualified names. 

2. All record elements, i.e., record fields and local class definitions, of the expanded record 
declaration are used as declarations in the record constructor function. All public record fields 
become input formal parameters except fields which do not allow modifications, that is, 
constant and final declarations as well as protected declarations, which all become 
protected declarations in the function. The detailed conversion procedure is specified below. 

3. An output result formal parameter is declared using the record as its type and a name that is not 
used by any of the other elements in the record. The result formal parameter has modifiers, which 
set the record variables to the corresponding input formal parameters of the function. 

The detailed rules according to (2) above for converting record field declarations to input formal 
parameters or local protected variables and constants within the constructor function are as follows: 

1. Record field declarations which do not allow modifications, for example, final parameter 
Real, as well as protected declarations, are declared as protected local variables and 
constants in the record constructor function. 

2. Prefixes (e.g., constant, parameter, discrete, ...) of the remaining record fields (being public 
and modifiable) are removed. 

3. The prefix input is added to the public variables declared in the record constructor function. 

In the above examples, we show several uses of such constructor functions converted from records. For 
example, the function add in the AddComplex example has an elegant use of modifiers in its result 
parameter of type Complex. 

The following rather contrived Demo package contains two records, RecordBasel and Record2, 
which illustrate most of the situations that may occur in implicit record constructor function creation 
according to the above rules. 

encapsulated package Demo; 
record RecordBasel; 
parameter Real rO = 0; 

end RecordBasel; 

= 0.0010, maxSpeed = 2800) 
= 0.0015, maxSpeed = 3600) 
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record Record2 
import Modelica.Math.*; 
extends RecordBasel; 
constant Real cl = 2.0; 
constant Real c2; 
parameter Integer nl = 5; 
parameter Integer n2; 
parameter Real rl "comment"; 
parameter Real r2 = sin(cl); 
final parameter Real r3 = cos(r2); 
Real r4; 
Real r5 = 5.0; 
Real r 6[n1]; 
Real r7[n2]; 

end Record2; 
end Demo; 
From the above declarations of the records RecordBasel and Record2, the following record 

constructor functions are implicitly defined within the same Demo package: 
encapsulated package Demo; 

function RecordBasel 
input Real rO := 0; 
output Recordl result(rO = rO); 

end RecordBasel; 

function 
input 
input 
input 
input 
input 
input 
input 
input 
input 
input 
output 

Record2 
Real 
Real 
Integer 
Integer 
Real 
Real 
Real 
Real 
Real 
Real 
Record2 

:= 5; 

comment"; // The comment is also copied from record 
:= Modelica.Math.sin(cl); 

rO := 0; 
c2 ; 
nl 
n2 ; 
rl 
r2 
r4 ; 
r5 := 5 . 0 ; 
r6[nl]; 
r7[n2] ; 
result(r0=r0,c2=c2,nl=nl,n2=n2,rl=r1,r2=r2 

r4=r4, r5=r5,r6=r6,r7=r7); 
protected 

constant 
final parameter 

end Record2; 
end Demo; 

Real 
Real 

cl := 2.0; // Referenced from r2 
r3 Modelica.Math.cos(r2); 

For example, the Demo. Record2 constructor function can be called as below to construct a value for the 
instance r l, where we have used mixed positional and named parameter passing: 

Demo.Record2 rl = Demo.Record2(1, 2, 
r4 = 5, 

2, n2=3, rl=l, r2=2, 
r5=5, r6=1 : 5, r7={l,2,3}); 

However, the use of a record constructor function in the special case of declaring rl is not very 
meaningful since it would have been simpler to use modifiers directly on r 1 to specify its field values. 

9.3.9 Function Derivatives 

A Modelica compiler usually needs to differentiate functions called in equations and expressions of a 
model when transforming the model into a form that is better suited (performance, numeric accuracy) for 
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execution. A function defined in Modelica can be automatically differentiated based on symbolic 
differentiation of the statements in the body of the function. However, this option is not possible for 
external functions, for which the only alternative for the system usually is to resort to numerical 
approximations of the derivatives. Also, even for Modelica functions the automatically obtained symbolic 
derivatives may sometimes (but rather seldom) be inefficient or have numerical instabilities. 

For these reasons, an annotation called derivative (also briefly mentioned in Section 11.13.1, page 
554) with associated optional attributes order, noDerivative, and zeroDerivative is available for 
Modelica functions, that is, for both external functions and functions implemented in Modelica. This 
allows us to explicitly state the computation of the derivatives of a function to any desired order. 

A derivative annotation can state that it is only valid under certain conditions on the input arguments. 
These restrictions are defined using the following optional attributes: order (only a restriction if 
order>1, the default for order is 1), noDerivative, and zeroDerivative. The given derivative-
function can only be used to compute the derivative of a function call if these restrictions are satisfied. 
There may be multiple restrictions on the derivative, in which case they must all be satisfied. The 
restrictions also imply that some derivatives of certain inputs are excluded from the call of the derivative 
(since they are not necessary). A function may supply multiple derivative functions subject to different 
restrictions. 

We should point out that the derivative annotation is seldom needed, but is useful in certain cases 
where accuracy and/or performance need to be improved. For example, the function hO below specifies its 
time derivative to be given by the function hi, which in turn specifies its derivative (of order 2) to be 
computed by the function h2. 

function hO annotation(derivative=hl); 

end hO; 
function hi annotation(derivative(order=2)=h2); 

end hi; 
function h2 

end h2; 
The formal parameter list of a derivative function of order 1 is constructed as follows: 

• First comes all the input formal parameters of the original function. After those we will in order 
append one derivative input formal parameter for each input formal parameter containing Real-
typed values, for example, scalars, arrays, or records. 

• The outputs are constructed by starting with an empty list and then in order appending one 
derivative formal parameter for each output containing reals. 

The formal parameter list of a derivative function of order n+1 >1 is defined as follows: 

• If the Modelica function for which the derivative function is specified is an «th derivative (n>=l), 
the derivative annotation should indicate the (n+l)th derivative by setting the attribute 
order=n+l. 

• The list of input formal parameters is amended by the (n+l)th derivative formal parameters, which 
are constructed in order from the nth order derivatives. 

• The output formal parameters are similar to the output formal parameters for the nth derivative 
function, but each output is one higher in derivative order. 

An input or output formal parameter to a function with a derivative annotation may be of any 
predefined type (Real, Boolean, integer, and String) or a record, or array thereof, provided the 
record does not contain fields of both Real and non-Real predefined types. The function must have at 
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least one input formal parameter containing reals. The set of output formal parameters of the derivative 
function may not be empty. 

We apply this construction to a function hO with three formal parameters: the integer-valued il, the 
Real-valued x (implicitly a function x(t) of time as all Real variables), and the Boolean-valued b. Let 
y(t) be the return value of hO: 

y(t) = h0{ix,x{t\b) (9-D 

By differentiating twice, using inner derivatives, we obtain: 

dy{t) . , , , dx(t)s 

dt dt (9_2) 

dt2 2 1 dt dt2 

Applying this to the example function y{t) - hO(t) = exp(x(t))+il when specifying the first- and second-
order derivative functions gives the following definitions of hO, hi, and h2: 

function hO // exp(x(t)+il) 
annotation(derivative=hl); 
input Integer il; 
input Real x; 
input Boolean linear; // not used 
output Real y; 

algorithm 
y := exp(x)+il; 

end hO; 
function hi // (d/dt)(exp(x(t)) 
annotation(derivative(order=2)=h2); 
input Integer il; 
input Real x; 
input Boolean linear; 
input Real der_x; 
output Real der_y; 

algorithm 
der_y := exp(x)*der_x; 

end hi; 
function h2 // (d/dt)(exp(x(t)*der_x(t)) 

input Integer il; 
input Real x; 
input Boolean linear; 
input Real der_x; 
input Real der_2_x; 
output Real der_2_y; 

algorithm 
der_2_y exp(x)*der_x*der_x + exp(x)*der_2_x; 

end hi; 
The noDerivative optional annotation attribute is: 

• noDerivative^input^ar 1 
The derivative of input varl is excluded from the argument list of the derivative-function. This 

relies on assumptions on the arguments to the function and the function should document these 
assumptions. However, it is not always straightforward to verify such assumptions. In many cases even 
the undifferentiated function will only behave correctly under these assumptions. 

Assume for example that the function fg is defined as a composition f (x, g (x)). When differentiating 
f it is useful to give the derivative under the assumption that the second argument is defined in this way: 

Plot[uVal[[4] [t] {t, 0, 1}] 

Plot[uVal[[4] [t] {t, 0, 1}] 
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function fg 
input Real x; 
output Real z; 

algorithm 
z := f(x, g(x)) ; 

end fg; 

function f 
input Real x; 
input Real y; 
output Real z; 
annotation(derivative(noDerivative=y)) = f_der) ; 

algorithm 

end f; 

function fder 
input Real x; 
input Real x_der; 
input Real y; 
output Real z_der; 

algorithm 

end f_der; 
This is useful if g represents the major computational effort of f g. 

The zeroDerivative optional annotation attribute has the following form: 

• zeroDerivative=input_varl 
This attribute states the condition that the derivative function is only valid if input varl is independent 
of the variables the function call is differentiated with respect to (i.e., that the derivative of input varl 
is "zero"). The derivative of inputvarl is excluded from the argument list of the derivative-function. 

For example, assume that a function f has a matrix y and a scalar x as arguments. Since in this 
particular example the matrix argument y usually is a parameter expression (i.e., constant during 
simulation) it is then useful to define the function as follows. The additional derivative = fgeneralder 
is optional and can be used when the derivative of the matrix is nonzero. 

function f "Simple table lookup" 
input Real x; 
input Real y[:, 2]; 
output Real z; 
annotation(derivative(zeroDerivative=y) = f_der, 

derivative=f_general_der); 
algorithm 

end f; 
function f_der "Derivative of simple table lookup" 

input Real x; 
input Real y[:, 2]; 
input Real x_der; 
output Real z_der; 

algorithm 

end f_der; 

function fgene raider "Derivative of table lookup taking into account varying tables" 
input Real x; 
input Real y[:, 2] ; 
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input Real x_der; 
input Real y_der[:, 2]; 
output Real z_der; 

algorithm 

end f_general_der; 

9.3.10 Function Partial Derivatives 

A function defined using a short function definition can be defined by a partial derivative of another 
function with respect to one or more variables: 

function fund = der(func2, idl, id2, ...) "optional comment" 
This means that the function fund is defined to be the partial derivative of the function func2 with 
respect to the variables idl, id2, etc., in order, starting with the first variable. The variables idl, id2, 
etc., must have type Real or a subtype of Real. 

For example, the specific enthalphy (function specificEnthalpy) can be computed from a Gibbs 
function by a partial derivative with respect to the temperature T as below: 

function Gibbs 
input Real p,T; 
output Real g; 

algorithm 

end Gibbs; 
function Gibbs_T = der(Gibbs, T); 
function specificEnthalpy 

input Real p,T; 
output Real h; 

algorithm 
h: = Gibbs(p,T) - T*Gibbs_T(p,T); 

end specificEnthalpy; 

9.3.11 Function Inverses 

Inverses of functions are sometimes useful in symbolic processing, for example, during solution of 
systems of equation. Therefore it is possible for every Modelica function with one output (result) formal 
parameter to have one or more inverse annotations to define inverses of this function: 

function f1 
input Ai ux ; 

input Tx uk; 

input Am um = am; 

input An un; 
output T2 y; 
annotation(inverse(uk 
annotation(inverse(up 

algorithm 

f 2 ( • • • , U± = f3 ...)); (... ...), 

end fi; 
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The meaning is that function f2 is an inverse to function fj where the previous output y is now an input 
and the previous input uk is now an output. More than one inverse can be defined within the same inverse 
annotation. Several inverses are separated by commas. 

For example, function f3 is an inverse to function f 1 where the previous output y is now an input and 
the previous input m is now an output, and function £4 is an inverse to function f \ where the previous 
output y is now an input and the previous input up is now an output. 

The inverse requires that for all valid values of the input arguments of f2(.-,y, •••) and uk being 
calculated as uk := f2(..., y, ...), this implies that the equality y = f i(..., uk, ...,) should be valid to a certain 
precision as computed by the function f 1 . 

The function f 1 can have any number and types of formal parameters with and without default value. 
The restriction is that the number of unknown variables (i.e., the number of array elements in the case of 
an array, record components in the case of a record, or just 1 in the case of a single scalar) in the output 
formal parameter of both f j and f 2 must be the same and that f 2 must have exactly the same formal 
parameters as f 1 (with the same defaults, if an argument um has a default) excluding the input/output 
prefixses, but the order of the formal parameters may be permuted. For example: 

function h__pTX 
input Real p "pressure"; 
input Real T "temperature"; 
input Real X[:] "mass fractions"; 
output Real h "specific enthalpy"; 
annotation (inverse (T = T__phX (p, h, X) ) ) ; 

algorithm 

end h_pTX; 

function T_phX 
input Real p "pressure"; 
input Real h "specific enthalpy' 
input Real X[:] "mass fractions"; 
output Real T "temperature" ; 

algorithm 

end T_phX; 
See also Section 11.13.2, page 555 for a short summary. 

9.3.12 Function Inlining 

Function inlining is a technique that replaces each function call with a copy of its function body with the 
actual arguments substituted for the formal function parameters. The advantage is more efficient execution 
because the function call overhead is eliminated. This can be noticeable for small functions which are 
called many times. The disadvantage is code expansion, since a copy of the function body is inserted for 
each call. 

Function inlining is controlled by setting the Inline, Latelnline, or inlineAfterlndex-
Reduction annotations to true or false. All three annotations only have effect within function 
declarations and should be stated at the end of the function. 

If Inline-true, the model developer proposes to inline the function. This means that the function call 
is replaced by the body of the function at all places where the function is called. This makes the execution 
more efficient by avoiding the overhead of a function call but increases memory usage since the function 
body is duplicated at each call site. If inline-false, the model developer proposes not to inline the 
function. 

The setting Inline=true is for example used in Modelica .Mechanics .MultiBody. Frames and 
in functions of Modelica .Media to have no overhead for function calls such as resolving a vector in a 
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different coordinate system. At the same time the inlined function can be analytically differentiated, e.g., 
for index reduction needed for mechanical systems. 

If Lateinline=true, the model developer proposes to inline the function after all symbolic 
transformations have been performed, especially symbolic differentiation and inversion of functions. For 
efficiency reasons it is then useful to replace all function calls with identical input arguments by one 
function call, after the late inlining. 

If Lateinline=false, the model developer proposes to not inline the function after symbolic 
transformations have been performed. 

The Lateinline annotation is used in certain models to provide, in combination with common 
subexpression elimination, the automatic caching of function calls. One such model is 
Modelica.Media.Water. iF97_utilities .T_props_ph. Furthermore, it is used in order to enable 
Modelica compilers to propagate specific enthalpy over connectors in the Modelica. Fluid library. 

A function is only inlined once, either early or late. Lateinline has priority over (early) Inline, 
since if a function is inlined early, there are no function calls left to be inlined by Lateinline. This has 
the following consequences regarding combinations of the inline and Lateinline annotations: 

• The combination Inline=true, Latelnline=false is identical to Inline=true. 
• The combination lnline=true, Latelnline=true is identical to Latelnline=true. 
• The combination lnline=false, Latelnline-true is identical to Latelnline=true. 

The inline or Lateinline annotations are stated at the end of the function definition as in the following 
examples: 

function homotopy 
input Real actuals-
input Real simplified; 
output Real y; 

algorithm 
y actuals-
annotation (Inline = true); 

end homotopy; 

function fromReal 
input Real re; 
input Real im 0; 
output Complex result(re=re, im=im); 
annotation(Inline=true); 

end fromReal; 
If InlineAfterlndexReduction = true, the model developer proposes to inline the function after 

the function is differentiated for index reduction, and before any other symbolic transformations are 
performed. This annotation cannot be combined with annotations Inline and Lateinline. 

This annotation is for example used in Modelica .Mechanics . Rotational. Sources .Move to 
define that an input signal is the derivative of another input signal. 

See also Section 11.13.3, page 555 for a short summary of these annotations. 

9.3.13 smoothOrder for Continuous Function Differentiation 

Sometimes it is very useful for a Modelica compiler to have access to information about how many times a 
function is continuously differentiale, for example when the derivative of a function is needed for index 
reduction or to compute an analytic Jacobian, 

The smoothOrder annotation can be used to state such information. The smoothOrder=«ww6er 
annotation within a function states that the function can be symbolically differentiated with continuous 
results at least number times, which defines the maximum number of differentiations of the function for 
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which it is guaranteed that all of its differentiated outputs are continuous provided all input arguments and 
their derivatives up to order smoothOrder are continuous. 

This means that the function is at least csmooth0rder, that is, differentiate with continuous results at least 
smoothOrder times. The setting smoothOrder=l means that the function can be differentiated at least 
once and still keep all its output arguments continuous, provided that the input arguments are continuous. 
If a Modelica compiler needs the derivative of a function, e.g. for index reduction or to compute an 
analytic Jacobian, the function can be differentiated analytically at least smoothOrder times. Examples: 

annotation(smoothOrder=2) 
annotation(smoothOrder(normallyConstant=FARG)=1) 
annotation(smoothOrder(normallyConstant=FARGl,normallyConstant=FARG2)=2) 

The optional argument normallyConstant of smoothOrder defines that the function argument FARG is 
usually constant. 

A Modelica compiler might check whether the actual argument to FARG is a parameter expression at 
the place where the function is called. If this is the case, the derivative of the function might be constructed 
under the assumption that the corresponding argument is constant, to enhance efficiency. 

Typically, a tool would generate at most two different derivative functions of a function: One, under 
the assumption that all normallyConstant arguments are actually constant. And one, under the 
assumption that all input arguments are time varying. 

Based on the actual arguments of the function call either of the two derivative functions is used. 
This annotation is used by many functions of the Modelica. Fluid library, such as 

Modelica . Fluid. Dissipation. PressureLoss . Straight Pipe . dp_laminar_DP, since geometric 
arguments to these functions are usually constant. 

See also Section 11.13.4, page 555 for a short summary. 

9.3.14 Impure Functions 

It is possible to declare an impure, that is, nondeclarative, Modelica function by prefixing a Modelica 
function by the impure keyword. This is in contradiction to the properties of a typical Modelica function 
which is declarative—"pure" (see Section 9.1, page 421) by default. A pure function has the following 
properties: 

• It is a mathematical function, i.e., calls with the same input arguments always give the same output 
results. 

• It is side-effect free with respect to the internal Modelica simulation state—the set of all Modelica 
variables in a total simulation model. Specifically, the ordering of function calls and the number of 
calls to a function shall not influence the simulation state. 

The declarative "pure" property makes it possible for Modelica compilers to freely perform algebraic 
manipulation of expressions containing function calls while still preserving their semantics. For example, a 
Modelica compiler may use common subexpression elimination to eliminate all except one of the calls to 
the same function with identical input arguments. 

A Modelica translator is responsible for maintaining the purity property for pure non-external Modelica 
functions, that is, functions without the impure keyword written in the Modelica language. Regarding 
external functions, the external function implementer is responsible for maintaining the purity property. Note 
that impure external functions can have side-effects as long as they do not influence the internal Modelica 
simulation state, for example, caching variables for performance or printing trace output to a log file. 

A Modelica compiler is not allowed to perform certain optimizations on function calls to an impure 
function. For example, reordering calls or common subexpression elimination is not allowed. 

The following are examples of typical use cases for using impure functions: 
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• Functions doing input-output. Such functions typically return different results in different calls 
despite having the same input arguments (Section 16.4.3, page 926). Calls to such functions can 
typically not be reordered. 

• Functions for communication with external systems, e.g., during hardware-in-the-loop simulation. 
• Functions doing data caching, e.g., for performance. Some results is computed in one call, and 

stored for re-use in a later call. 

Where in a Modelica model can then impure functions be called and where should they not be called"} 

• Except for the case of when-equations/when-statements, impure functions should not be called 
within equation sections or algorithm sections. For example, such sections can be re-ordered 
(sorted) relative to each other, and equations re-ordered with respect to each other. 

• An impure function can be called from within when-equations/when-statements. In such cases the 
point of execution is determined by an event. 

• Impure functions can be called from a function marked with the impure prefix. 
• Impure functions can be called from within a function with the pure prefix if the side-effects from 

the called impure functions cancel out before returning from the pure function. 

For example, if two impure functions are being called from a function with the pure prefix, a temporary 
side-effect by the first function call may be restored by the second function call. 

By using the pure prefix, the modeler guarantees that the function is pure, despite calling impure 
functions or using external objects. Moreover, a function inheriting an impure function must be marked 
impure or pure by the modeler. To summarize: 

• An impure function must be marked with the impure prefix. 
• It is only allowed to call an impure function from within another function marked impure or 

pure, or from within a when-equation or when-statement. 
• The prefix pure is used to state that a function is pure even though it may call impure functions. 

The following are two example functions, one pure and one impure: 

function evaluateLinear // pure function, the standard Modelica case 
input Real aO; 
input Real al; 
input Real x; 
output Real y; 

algorithm 
y = aO + al*x; 

end evaluateLinear; 

impure function receiveRealSignal // impure function 
input HardwareDriverlD id; 
output Real y; 
external "C" y = receiveSignal(id); 

end receiveRealSignal; 

9.3.14.1 Impure Functions as Function Arguments 

Furthermore, note that functions can be passed as arguments to other functions, as described in Section 
9.3.3, page 446. A natural question is under what conditions can an impure function be passed as an 
argument? 

To allow such argument passing we require that the corresponding function formal parameter is 
marked impure to make its impure properties visible in the context (i.e., the function body) where the 
impure function parameter is called. 

Moreover, a function having a formal function parameter marked impure must itself be marked pure 
or impure. The reason is that the modeler must take a conscious decision regarding the purity of the 
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function itself. The first case (pure) means that the modeler guarantees that the side-effects of the function 
parameter cancel out; in the second case (impure) they don't. For example: 

partial function Functype 
input Real a; 
output Real b; 

end FuncType; 
pure function foo 

input Real x; 
input impure FuncType formalFunc; 
output Real res; 

algorithm 
res formalFunc(x+2); 

end foo; 
Call 1, pass a pure function s i n . 

w := foo(5.1, sin) ; 
Call 2, pass an impure function sinTrace: 

w := foo(9.4, sinTrace); 

9.3.15 Additional Function Properties, Restrictions, and Enhancements 

A number of additional properties and issues of Modelica functions also need be pointed out. We start by 
comparing functions to general Modelica classes and continue with a discussion on how algorithm sections 
can be viewed as functions. 

9.3.15.1 Comparison of Functions with General Modelica Classes 

The function concept in Modelica is a specialized class with some restrictions and enhancements, for 
example, see the section on specialized classes in Section 3.8 on page 87 in Chapter 3, which contains a 
shortened description compared to the one below. The syntax and semantics of a function have many 
similarities to those of the block specialized class. A function also has many of the properties of a general 
class, for example, being able to inherit other functions, or to redeclare or modify elements of a function 
declaration. However, a function has the following restrictions compared to a general Modelica class: 

• Each input formal parameter of the function must be prefixed by the keyword input, and each 
result formal parameter by the keyword output. All public variables are formal parameters. 

• Input formal parameters are read-only after being bound to the actual arguments or default values, 
i.e., they may not be assigned values in the body of the function. 

• A function may not be used in connections, may have no equations, may have no initial algorithm, 
and can have at most one algorithm section, which, if present, is the body of the function. 

• A function may have zero or one external function interface, which, if present, is the external 
definition of the function. 

• For a function to be called in a simulation model, it must have an algorithm section or an external 
function interface as its body or be defined as a function partial derivative (Section 9.3.10, page 
459), and it may not be partial. Moreover, the output variables must be assigned inside the function 
either in declaration assignments or in an algorithm section, or via an external function body or 
function partial derivative. 

• Function output variables should be computed. It is a quality of implementation to what degree a 
Modelica tool can perform analysis to determine if an output variable is computed. 
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• A function may only contain variables/instances of the restricted classes type, record, 
operator record, and function; i.e., no model or block instances. 

• The elements of a function may not have prefixes inner, or outer. 
• A function cannot contain calls to the Modelica built-in operators der, initial, terminal, 

sample, pre, edge, change, reinit, delay, cardinality, inStream, actualStream, the 
operators of the built-in package Connections, the synchronous operators (Section 13.6, page 
694, the state machines operators (Section 13.7, page 729), and is not allowed to contain when-
statements. 

• The dimension sizes not declared with ( : ) of each array result or array local variable of a function 
must be either given by the input formal parameters, or given by constant or parameter 
expressions, or by expressions containing combinations of those. See also Section 8.2.3, page 350 
and Section 9.3.2.8, page 445, regarding dimension sizes of arrays in functions. 

• The local variables of a function are not automatically initialized to the implicit default start values 
of the data type (Section 3.9, page 93); e.g. 0.0 for Real, 0 for integer, and false for Boolean) 
for performance reasons. It is the responsibility of the user to provide explicit defaults or to define 
the values of such variables before they are referenced. 

• Local variables and formal parameters of a function will inside the function behave as though they 
have discrete-time variability. 

• A subtype of a function type must fulfill the rules for function subtyping (Section 3.19.6, page 
130). This is more restrictive than the usual subtyping rules between Modelica classes. 

A Modelica function has the following enhancements compared to a general Modelica class: 
• A function may be called using the conventional positional calling syntax for passing arguments, 

as well as mixed positional and named calling. 
• A function may be called through a reference to an instance name, see Section 9.3.2.4, page 443. 
• A function can be recursive. 
• A formal parameter or local variable may be initialized through an assignment (: =) of a default 

value in its declaration. Initialization through an equation is not possible. 
• A function is dynamically instantiated, that is, creating an activation record when it is called, rather 

than being statically instantiated by an instance declaration, which is the case for other kinds of 
classes. 

• A function may have an external function interface specifier as its body. 
• A function may be defined in a short function definition to be a function partial derivative. 
• A function allows dimension sizes declared with ( : ) to be resized for array results or array local 

variables, see Section 9.3.2.8, page 445. 

9.3.15.2 Viewing Algorithms as Functions 

The function concept is a basic building block when defining the semantics or meaning of programming 
language constructs. Some programming languages are completely defined in terms of mathematical 
functions. This makes it useful to try to understand and define the semantics of algorithm sections in 
Modelica in terms of functions. We have already mentioned several times in this chapter that algorithm 
sections are special cases of functions. 

For example, consider the algorithm section below, which occurs in an equation context: 

algorithm 
y := x ; 
z := 2 *y; 
y z+y; 

This algorithm can be transformed into an equation and a function as below, without changing its meaning. 
The equation equates the output variables of the previous algorithm section with the results of the function 
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f. The function f has the inputs to the algorithm section as its input formal parameters and the outputs as 
its result parameters. The algorithmic code of the algorithm section has become the body of the function f. 

(y,z) = f(x) ; 

function f 
input Real x; 
output Real y,z; 

algorithm 
y := x; 
z := 2*y; 
y z + y; 

end f; 

9.4 External Functions 

It is possible to call functions defined outside of the Modelica language, implemented in C or Fortran 77, 
in the C subset of C++, or in the Fortran 77 subset of Fortran 90. Other languages, for example, Java, may 
be supported in the future. If no external language is specified, the implementation language for the 
external function is assumed to be C. The body of an external function is marked with the keyword 
external in the Modelica external function declaration, for example: 

function log 
input Real x; 
output Real y; 

external 
end log; 

The external function interface supports a number of advanced features. 

• Support for external functions written in C and FORTRAN 77. Other languages, for example, C++ 
and Fortran 90, may be supported in the future. 

• Mapping of argument types from Modelica to the target language and back. 
• Natural type conversion rules in the sense that there is a mapping from Modelica to standard 

libraries of the target language. 
• Arbitrary formal parameter order for the external function. 
• Passing arrays to and from external functions where the dimension sizes are passed as explicit 

integer parameters. 
• External function formal parameters which are used both for input and output. 
• Explicit specification of row-major versus column-major array memory layout. 
• Local work arrays. 

9.4.1 Structure of External Function Declarations 

The standard structure of a Modelica external function declaration is basically the same as that of a 
standard Modelica function. The only difference is that we have replaced the algorithm body of the 
function with the keyword external possibly followed by any of the optional items language spec, 
externalJunctioncallspec, external call spec annotation, and externalJunction annotation. The 
structure is as follows: 

function <functionname> 
<formal parameters> 

protected 



Chapter 9 Algorithms and Functions 467 

<local variables> 
external <language__spec> <external_function_call__spec> 

<external_call_spec_annotation>; 
< externalJunction_annotation> ; 

end <functionname>; 

The local variables in the optional protected part allow for temporary storage, for example, work arrays 
needed for certain Fortran library routines. 

If we just use the keyword external without any of the optional items, a number of default rules 
apply. If there is no language spec, the external implementation language is assumed to be C. If there is 
no externalJunction call spec, a default call structure mapping, see below, from the Modelica function 
formal parameters to the external function parameters and return value applies. 

The language spec in an external function specification gives the implementation language of the 
external function and must currently be one of the following strings if specified: 

• "C" 
• "FORTRAN 77" 
• "builtin" 
• "Java " II Currently not part of the Modelica standard, but supported by some implementations. 

Note that uppercase letters and one space character must be used in the string "FORTRAN 7 7 ". Otherwise, 
if the language is not specified, the default external language "C" is assumed. 

9.4.1.1 The "builtin" External Language Specification 

The "builtin" specification is only used for functions that are defined to be built-in in Modelica. The 
external-function call mechanism for "builtin" functions is implementation-defined. Typically, for 
functions from the standard C-library, the prototype of the function is provided but no library annotation. 
Currently, there are no other builtin functions defined in Modelica. For example: 

package Modelica 
package Math 

function sin 
input Real x; 
output Real y; 
external "builtin" y=sin(x); 

end sin; 
end Math; 

end Modelica; 

model UserModel • 
parameter Real p=Modelica.Math.sin(2); 

end UserModel; 

9.4.1.2 Default Call Structure Mapping 

The following default mapping rules apply if no external Junction call spec is provided: 

• The default external function name is the same as the Modelica function name. 
• The default ordering of the formal parameters in the external function prototype in the external 

programming language is the same as the ordering of the Modelica function input and output 
formal parameter declarations. There is one exception, however. If there is just one Modelica 
output parameter, the default assumption is that it corresponds to the return value of the external 
function and not to an output formal parameter. 

• An array argument is passed by default for both C and Fortran 77 as the address of the array 
followed by the array dimension sizes. 
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• The default array layout mapping is conversion to "rowMajor" when calling a C function and to 
"columnMajor" when calling a Fortran 77 function. This can be overridden by the 
arrayLayout annotation (Section 9.4.6, page 475). 

• Automatic mapping of Modelica types to C or Fortran 77 and back, according to the table in 
Section 9.4.2 on page 470. 

The function tan2 below is a very simple external function specification just using the single keyword 
external, which implies that the default mapping rules apply. 

function tan2 
input Real xl; 
input Real x2; 
output Real y; 

external 
end tan2; 

This Modelica external function specification gives rise to the following C function prototype, shown 
below together with an example call in Modelica and the corresponding translated call. 

C-prototype: double tan2(double, double); 
Example call in Modelica: z := tan2(5.5, 4); 
Translated call in C: z = tan2(5.5, 4) ; 
We will now illustrate the default mapping of array arguments to external C and Fortran 77 functions 

according to the type translation table in Section 9.4.2 on page 470. First we show a simple Modelica 
external function that maps to an external C function: 

function foo 
input Real a [:,:,:]; 
output Real x; 

external; 
end foo; 

This corresponds to the following C function prototype and example calls: 

C-prototype: double foo(double *, size t, size t, size t); 
Example call in Modelica: w := foo( {{{1,2},{3,4}},{{5,6},{7,8}}} ); 
Translated call in C: double temp[] [] [] = {{{1,2},{3,4}},{{5,6},{7,8 }} } ; 

w = foo(&temp, 2,2,2); 
The same external function foo can instead be specified as mapping to a Fortran 77 function: 

function foo 
input Real a[:,:,:]; 
output Real x; 

external "FORTRAN 77"; 
end foo; 
The default mapping corresponds to a Fortran 77 function defined as below: 

FUNCTION foo(a, nl, n2, n3) 
DOUBLE PRECISION a(nl,n2,n3) 
INTEGER nl 
INTEGER n2 
INTEGER n3 
DOUBLE PRECISION foo 

END 
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9.4.1.3 Explicit Call Structure Mapping 

The externalJunction_call_spec allows calling external functions that do not match the default mappings 
of function name, external formal parameter ordering, input or output parameters, return value, and array 
arguments. The structure of the external Junction_call_spec is one of the following two variants: 

1. externalfuncname(argumentlist) 
2. output_parameter = externalfuncname(argumentlist) 

The only kinds of expressions allowed in the argumentlist are variable references, scalar constants, and the 
function s i z e (arr,i) applied to an array and a constant array dimension number. A reference to a 
variable that is part of an input or output, e.g. reference to a record field that is part of a record variable, is 
treated the same way as a top-level input or output in the external call. 

The optional external Junction_annotation is used to pass additional information to the compiler when 
necessary. Currently the only supported annotation is arrayLayout, which can be either "rowMajor" 
or "columnMa j or", being defaults for C and Fortran array layout respectively. 

We use the simple external C function j oinThreeVectors below as an example of the first variant of 
externalJunction_call_spec. A Modelica implementation joinThreeVectorsM of the same function is 
shown as a comparison. 

function joinThreeVectorsM "Modelica version" 
input Real vl[:],v2[:],v3[:]; 
output Real vres[size(vl,1)+ size(v2,1)+size(v3,1)]; 

algorithm 
vres := cat(1,vl,v2,v3); 

end joinThreeVectorsM; 
The external C function in this case happens to have a different name join3vec in C compared to its 
Modelica name j oinThreeVectors. The parameter list of the C function does not follow the default 
mapping rules, and returns its result in an output parameter and not as a return value. Therefore an 
externalJunction_call_spec of the first of the above two variants is appropriate. The array layout 
annotation is really not needed here since " rowMa j or " is default for C. It is just shown as an example. 

function joinThreeVectors "Modelica external function version" 
input Real vl[:],v2[:],v3[:]; 
output Real vres[size(vl,1)+size(v2,1)+size(v3,1)]; 

external "C" join3vec(vl, v2, v3, vres,size(vl,1),size(v2,1),size(v3,1)); 
annotation(arrayLayout = "rowMajor"); 

end joinThreeVectors; 
The above Modelica external function version of j oinThreeVectors corresponds to the following C-

prototype with example calls, where the predefined C type size t is the same as the C type unsigned 
int, and is used to pass array dimension sizes. 

C-prototype: void join3vec(double*, double*, double*, 
double*,size t, size t, size t) ; 

Example call in Modelica: vjoined := joinThreeVectors(va,vb,vc); 
Translated call in C: joi.n3vec (&va, &vb, &vc, &vjoined, nl, n2, n3) ; 

The next example shows how arrays can be passed an external Fortran 77 function using explicit call 
structure mapping. 

function 
input 
input 
input 
output 
output 

external 
end fum; 

fum 
Real 
Real 
Integer 
Real 
Integer 
"FORTRAN 

X [ : ] ; 
y[size(x, 1) , 

ul[size(y,1)]; 
u2[size(y,2)]; 
77" myfum(x, y, size(x,l), size(y,2), ul, i, u2); 
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The corresponding Fortran 77 subroutine would be declared as follows: 

SUBROUTINE myfum(x, y, n, m, ul, i, u2 ) 
DOUBLE PRECISION(n) x 
DOUBLE PRECIS ION(n,m) y 
INTEGER 
INTEGER 

n 
m 
ul 
I 
u2 

DOUBLE PRECISION(n) 
INTEGER 
DOUBLE PRECISION(m) 

END 
The second form of external Junction call spec is output_parameter = externalfuncname(argumentlist). 

It is needed in situations where additional information about how to map the external function value is 
required. The following external function returns two results: one function value and one output parameter 
value. Both are mapped to Modelica function results as specified. This situation requires the second form of 
external function call specification. 

function dualResults 
input Real x; 
input Integer y; 
output Real funevalue; 
output Integer outl; 

external "C" funcvalue = doubleresults(x, y, outl); 
end dualResults; 

This corresponds to the following: 

C-prototype: double doubleresults(double, int, int *); 
Example call in Modelica: (zl,i2) := dualResults(2.4, 3); 
Translated call in C: zl = doubleresults(2.4, 3, &i2); 

9.4.2 Argument and Result Type Mapping 

Arguments and result values are mapped from Modelica types to corresponding C or Fortran 77 types and 
back when calling an external function from Modelica. The table shows the mapping of argument and 
result types at external function calls between Modelica, and C or FORTRAN 77. Here T, TC, and TF 
denote corresponding Modelica, C, and Fortran array element types respectively; see further explanations 
in the table below. 

There are two ways for an external function to return results: 

1. Through output formal parameters. 
2. As a function return value. 

The external types for output parameters are indicated in the table when different from the input parameter 
types. The external types for function return values should be declared in the same way in the external 
function as for input formal parameters of the same type, except for arrays where array dimension sizes are 
to be left out. 

If there is a single output parameter and no external Junction call spec, or if there is an explicit 
external Junction call spec, in which case the left-hand side must be one of the output formal parameters, 
the external routine is assumed to be a value-returning function. Otherwise, the external function is 
assumed not to return anything, i.e., it is a void-function in C or a subroutine in Fortran. 
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Modelica C FORTRAN 77 
Real double (double* for output) DOUBLE PRECISION 
Integer int (int* for output) INTEGER 
Boolean int (int* for output) LOGICAL 
String const char* 

(const char** for output, 
may need Model icaAllocat est ring) 

CHARACTER 
(Not yet in the Modelica standard; 
tool dependent availability) 

Enumeration 
type 

int (int* for output) INTEGER 

T[dlf ..., dn] 

Input or 
output 
forma1 
parameter 

TC *, size_t di, ..., size__t dn 

This is the default argument mapping of 
an array including dimension sizes used if 
no external Junctioncallspec is present. 

If such a call specification is present 
only the address of the array, of type TC*, 
is passed since we explicitly specify 
dimension size arguments in the 
externalJunctioncallspec. 

TF, 
INTEGER di, ..., INTEGER dn 

Default mapping of an array 
including dimension sizes used if no 
external Junction call spec is 
present. 

If such a call specification is 
present only the address of the array 
is passed since we explicitly specify 
dimension size arguments in the 
externalJunctioncallspec. 

T[dlf ..., dn] TC * TF 

Return value No dimension sizes are included when 
mapping return types since the sizes are 
already known by the caller. 

record struct * (struct** for output) Not available for Fortran. 

Only records with 
Real, Integer, 
Boolean, 
enumeration 
fields, or record 
fields. Array 
fields are not 
allowed. 

Each Modelica record field is mapped 
into a C struct field with the same field 
ordering. The mapping is according to the 
translation of types in this table. 

The following general and simple-type related considerations apply for argument- and return-type 
mapping at external function calls: 

• Formal parameters of the primitive C types double and int are declared as double* and int* 
for output formal parameters in C function prototypes, since addresses of receiving variables are 
needed for output. 

• If we call an external Fortran function or subroutine, addresses are passed for both input and output 
formal parameters since Fortran always uses call by reference. 

• When an argument in a C externalJunction call spec is of the form size(..., ...), then the 
corresponding C formal parameter type is size t, usually defined as unsigned int, instead of 
the usual i n t . 

• Values of enumeration types used as arguments are mapped to type int when calling an external C 
function, and to type INTEGER when calling an external Fortran function. The ith enumeration 
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literal is mapped to integer value i, starting at 1. Return enumeration values in integer form are 
mapped to enumeration types analogously: the integer value 1 is mapped to the first enumeration 
literal, 2 to the second, etc. Returning a value which does not map to an existing enumeration 
literal for the specified enumeration type is an error. 

The following applies to strings passed and returned to/from external functions: 

• Modelica string arguments can be passed to input formal parameters in C and for certain Modelica 
implementations to Fortran 77 even if not yet officially in the Modelica standard. Strings are NULL-
terminated, i.e., ending with a null character 1 \0 *, to simplify calling of C functions. 

• When returning a nonliteral string as an output formal parameter or return value, the memory for 
this string can be allocated with the function ModelicaAllocateString (see Section 9.4.7, page 
475). The C malloc function should not be used because a Modelica simulation environment may 
have its own allocation scheme, e.g. a special stack for local variables of a function. After return of 
the external function the Modelica environment is responsible for the memory allocated with 
ModelicaAllocateString, e.g. to free this memory when appropriate. It is not allowed to 
access memory that was allocated using ModelicaAllocateString in a previous call of the 
external function since it might have become deallocated. 

Regarding arrays and records we have the following considerations: 

• Array arguments of type T[du ..., d„] can be passed as input as well as output formal parameters, 
where the element type T is one of the basic Modelica types Real, Integer, Boolean, String 
as well as record (but record is not supported for Fortran 77) and dL, ..., dn are the sizes of the 
1st to the nth array dimensions. TC and TF are the corresponding C and Fortran 77 versions of the 
element type according to the above table. An array is generally passed as the address of the array 
followed by n integers for the n dimension sizes. In the case of C these integer formal parameters 
are declared with the type size t which normally is the same as unsigned int. 

• An array or record can also be returned as a function return value. In that case only the address of 
the array or record is returned since storage for the returned data must be preallocated by the caller. 
Dimension sizes are not returned since the dimensions of a preallocated returned array are set by 
the caller. A record can be returned from a C function but not from a Fortran 77 function. 

• When we pass record, array, and string arguments or return records and arrays, these are passed or 
returned by reference, i.e., a pointer to each argument is passed or returned, which is evident from 
the above type translation table. 

As an example, a Modelica record Rec below is mapped to a corresponding C struct: 
record Rec struct Rec { 

Real z; mapped to double z; 
Boolean b; int b; 

end Rec; } ; 

9.4.3 A Large Example 

The external function interface supports a number of advanced features such as in/out parameters and 
declaration of temporary work variables, which are illustrated by the following rather complicated 
example. For example, the formal parameters Ares, Bres, Cres, and Dres correspond to in/out 
parameters in the external function bilinearSampling below, which has the values A, B, c, and D as 
input defaults and different values as results. The ordering and usage of formal parameters to the external 
Fortran function is handled through explicit call structure mapping. This is used below to explicitly pass 
sizes of array dimensions to the Fortran routine called ab04md. Some old-style Fortran routines like 
ab04md need work arrays, which are conveniently handled by local variable declarations after the 
keyword protected. A string constant is also passed to the Fortran function, even though passing strings 
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to Fortran functions is not yet officially in the Modelica standard. In fact, almost all Fortran functions or 
subroutines available in common numerical libraries require at least one string argument. 

function bilinearSampling 
"Function for Discrete-time <--> continuous-time systems conversion by a 

bilinear transformation." 
input Real alpha := 1, beta := 1; 
input Real A[ :,size(A, 1)], B[size(A, 1),:], 

C[:,size(A, 1)], D[size(C,1),size(B,2)]; 
input Boolean isContinuous := true; 
output Real Ares [size (A, 1), size (A, 2)] := A, // Ares is in-out 
Bres[size(B,1), size(B,2)] := B, // to the Fortran function 
Cres[size(C,1), size(C,2)] := C, 
Dres[size(D,1), size(D,2)] D; 
output Integer info; 

protected 
Integer iwork[size(A,1)]; // Work arrays 
Real dwork[size(A,1)]; 
String c2dstring := if isContinuous then "C" else "D"; 

external "FORTRAN 77" ab04md(c2dstring,size(A,1),size(B,2),size(C,1), 
alpha,beta,Ares,size(Ares,1),Bres,size(Bres, 1) , 
Cres,size(Cres,1),Dres,size(Dres,1), 
iwork,dwork,size(dwork,1),info); 

end bilinearSampling; 
The following Modelica class contains an example call to bilinearSampling, which via the external 

function interface is transformed to a call to ab04md. 
class BilinearSamplingTest 
parameter Real alpha=l, beta=l; 
parameter Real A[:,:] = [0, 1; 2, 4], // Coefficients 

B[:, : ] - [5, 6; 7, 8], 
C[ :, : ] = [9, 10; 11,12] , 
D [ : , : ] - [13,14; 15,16]; 

Real Ares[size(A, 1), size(A,2)], // Results 
Bres[size(B,1), size(B,2)], 
Cres[size(C,1), size(C,2)], 
Dres[size(D,1), size(D,2)]; 

Integer info; 
equation 

(Ares,Bres,Cres,Dres,info) = bilinearSampling(alpha,beta,A,B,C,D,true); 
end BilinearSamplingTest; 

If the external function ab04md would have been a C function instead of a Fortran function the 
corresponding C function prototype would become: 

void ab04md(const char *, size_t, size_t, size_t, double, double, 
double *, size_t, double *, size_t, double *, size_t, 
double *, size_t, int *, double *, size_t, int *); 

9.4.4 Preventing External Functions from Changing their Inputs 

Modelica functions disallow changing input formal parameters. An external function called from Modelica 
must behave in the same way as if the function had been implemented in Modelica. Therefore an external 
function is not allowed to internally change its inputs, even if they are restored before the end of the 
function. For efficiency reasons, for example, to avoid copying of large arrays, the Modelica function 
formal parameters are mapped directly to the external function formal parameters. When calling Fortran 
functions all arguments are passed by reference, and when calling C functions arrays and records are 
passed by reference. Such input arguments could theoretically be changed by the external function and 
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thus violate the above rule. If the external function interface programmer suspects that the external 
function may change some of its inputs, those inputs should be copied in the interface function to prevent 
any problems on the Modelica side. 

For example, consider the following Modelica function f, which calls an external Modelica function 
efunc that is mapped to the external Fortran function forfunc. 

function f 
input Real a; 
output Real b; 

algorithm 
b:=efunc(a,a); 
b:=efunc(b,2*b) ; 

end f; 
The Modelica compiler will usually translate the function f to the C function f below, which in turn calls 
the external function efunc that has been mapped from forfunc. The extra underscore in forfunc_ is 
usually added when calling a Fortran function from C. 

double f(double a) { 
extern void forfunc_(double*,double*,double*); 
double b,tempi,temp2; 
forfunc_(&a,&a,&b); 
templ=2*b; 
temp2=b; 
forfunc_(&b,&templ,&temp2); 
return temp2; 

} 
A straightforward external function declaration of efunc being mapped to forfunc can appear as 

follows: 

function efunc "Straightforward version of interface function" 
input Real x; 
input Real y; 
output Real z:=x; 
external "FORTRAN 77" forfunc(x,y,z); 

end efunc; 
If the first input is changed internally within forfunc, the designer of the interface would have to 

change the interface function efunc to the following by inserting a copying operation in order to protect 
against unwanted change of that input formal parameter: 

function efunc "Version that protects first argument against change" 
input Real x; . 
input Real y; 
output Real z; 

protected 
Real xtemp:=x; // Temporary since forfunc changes l:st input 
external "FORTRAN 77" forfunc(xtemp,y,z); 

end efunc; 

9.4.5 External Function Formal Parameter Aliasing 

Variable aliasing means that two variables may refer to the same memory area. Thus, if two variables x 
and y are aliased, if the variable x is changed, the variable y will also be changed. Such changes are 
sometimes unintentional, which is a source of programming errors. 

Modelica does not allow aliasing between variables. However, this may occur in languages such as C 
or Fortran. When calling external functions from Modelica, there is a small danger that there is aliasing 
between the external function formal parameters, which is not allowed when called from Modelica. If there 
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is uncertainty about the aliasing properties of certain external function formal parameters it is possible to 
do copying of such parameters to avoid the problems, as described in Section 9.4.4. 

9.4.6 External Function Array Layout rowMajor columnMajor 

Regarding specific annotations only for external function declarations, there is an optional arrayLayout 
annotation, which can have one of the values "rowMaj or " or "columnMaj or". These are the defaults for 
C and Fortran 77 array layouts, respectively. This annotation causes additional information to be passed to 
the compiler when necessary. It is needed only when the array storage layout deviates from the default for 
the external language. This is the case for the function joinThreeVectors2 below where the C function 
uses column-major array representation, which is different from the default row-major layout that 
normally is used for C. A summary of this feature is given in Section 11.13.5, page 556. 

function joinThreeVectors2 "External C function with column-major arrays" 
input Real vl[:],v2[:],v3[:]; 
output Real vres[size(vl,1)+ size(v2,1)+size(v3,1)]; 

external "C" join3vec(vl,v2,v3,vres,size(vl,1),size(v2,1),size(v3,1)); 
annotation(arrayLayout = "columnMajor"); 

end joinThreeVectors2; 

9.4.7 Utility Functions Callable in External Functions 

Within external functions called from Modelica we often need access to the following two kinds of generic 
mechanisms: 

• Reporting errors in a way compatible with the Modelica error-handling mechanism. 
• Allocating memory for variable-sized results such as strings that are passed back from the external 

function for use by Modelica code and therefore need to be Modelica-managed data. This is not 
needed for known-size results, e.g. arrays, since that memory is preallocated by the caller. 

This kind of functionality is different from most other user-defined external code in that it needs to be 
compatible with and interact closely with the Modelica run-time system, which usually is not accessible to 
the user. However, note that the getinstanceName function, Section 6.14.1.1, page 293, useful for some 
error reporting, is only callable within Modelica code, not within external functions. 

For these reasons the following utility functions are provided. They can be called within external 
Modelica functions implemented in C if ModelicaUtilities . h is included into the C-file. 

ModelicaMessage void ModelicaMessage(const char* string) 
Output the message string as is without format control. 

ModelicaFormatMessage void ModelicaFormatMessage(const char* fstring, ...) 
Output the message using the same format control as used by the C-
function printf, with fstring as the format control string and . . . 
representing the arguments to be printed. 

ModelicaVFormatMessage void ModelicaVFormatMessage(const char*string,va list) 
Output the message under the same format control as the C-function 
vprint f. 

ModelicaError void ModelicaError(const char* string) 
Output the error message string as is without format control. This 
function never returns to the calling function, but handles the error 
similarly to an assert in Modelica code. 

ModelicaFormatError void ModelicaFormatError(const char* fstring, ...) 
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Output the error message using the same format control as the C-function 
printf, with fstring as the format control string and . . . representing 
the arguments to be printed. This function never returns to the calling 
function, but handles the error similarly to an assert in Modelica code. 

ModelicaVFormatError void ModelicaVFormatError(const char* string, va_list) 
Output the error message under the same format control as the C-function 
vprintf. This function never returns to the calling function, but handles 
the error similarly to an assert in the Modelica code. 

ModelicaAllocateString char* ModelicaAllocateString(size_t n) 
Allocate memory for a Modelica string of length n, which is used as a 
result formal parameter or a return function value of an external Modelica 
function. An extra byte for a terminating NUL-character is automatically 
allocated. Note that the storage for string arrays (i.e., pointer to string 
array) is still provided by the calling program, as for any other array. If an 
error occurs, this function does not return, but calls ModelicaError. 

ModelicaAllocateString 
WithErrorReturn 

char* ModelicaAllocateStringWithErrorReturn(size_t len) 
Same as ModelicaAllocateString, except that in case of error, the 
function returns 0. This allows the external function to close files and free 
other open resources in case of error. After cleaning up resources use 
ModelicaError or ModelicaFormatError to signal the error. 

We illustrate the use of one of these utility functions by the following example. A Modelica external 
function filistring returns a string filled with characters of the specified 8-bit ASCII-code: 

function filistring 
input Integer charCode(min=0,max=255); 
input Integer n(min=0); 
output String result; 
external "C" 

result = filistring(charCode,n); 
end filistring; 

The C code for the filistring external function might be written as follows: 

#include "ModelicaUtilities.h" 

char* filistring(int charCode, int n) 
/* Create and return string with n characters of code charCode */ 
char* str = ModelicaAllocateString(n); 
int i; 
for (i=0; i<n; i++) 

str[i] = (char)charCode; 
str[n] = '\0'; /* Terminate string with a NUL character */ 
return str; 

}; 
Note that the Modelica interface provides extra checking, for example, that n>0 and 0<=charCode<=255, 
which therefore need not be done by the C-function. 

9.4.8 External Data Structures—External Objects 

External functions sometimes need to access and manipulate external data structures without being forced 
to expose the details of those data structures to Modelica. We. say that such data structures are opaque from 
the Modelica point of view—the internal structure of the data is not accessible from Modelica, only from 
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the external code. The Modelica external objects facility allows the user to define and access such external 
data structures, satisfying the following three requirements: 

• Passing opaque references, references to external data can be passed to Modelica and back to the 
external code as argument values in external function calls. 

• Data preserved between calls: an important requirement of external data structures—to be 
preserved between external function calls—is satisfied by the above facility. As long as the 
reference to the external object exists in Modelica the data structure is kept. 

• Limited updating: for efficiency reasons we would also like to allow limited updating of the 
external data structure, for example, for caching purposes, as long as the external function behaves 
as a mathematical function that returns the same outputs given the same inputs. 

Our simple example model Test interpolate below demonstrates all of these properties: 

• An opaque reference to an external table data structure is returned by MyTable, which reads table 
data from a file in a user-defined format and creates the table instance. The reference is of type 
MyTable, a subclass of ExternalObject. 

• The table data structure is preserved between calls since it is kept by the table variable in the 
model. It is passed to external functions, e.g. to interpolateMyTable. 

• The table data structure caches/preserves the most recent row index (by updating the variable 
lastindex) to speed up the interpolation computation for the case when the current call to the 
interpolation function accesses the same table row as in the previous call. 

The Modelica code of Testlnterpolate is as follows, referring to the subclass MyTable and the 
external function interpolateMyTable defined further below: 

model Testlnterpolate "Define a new table and interpolate in it" 
Real y; 
MyTable table-MyTable(fileName = "testTables.txt", 

tableName = "tablel"); // Call initMyTable below 
equation 

y = interpolateMyTable(table, time); 
end Testlnterpolate; 
An ExternalObj ect subclass such as MyTable should be a subclass of (derived from) the predefined 

class ExternalObj ect according to the following rules: 

• The class definition for the user-defined external data type should directly inherit the predefined 
partial class ExternalObject. Since the ExternalObject class is partial, it is not possible to 
define an instance of that class. 

• Classes derived from ExternalObj ect can be used neither in extends clauses nor in short class 
definitions. 

An ExternalObject subclass contains exactly two local functions, constructor and destructor: 
• Classes derived from ExternalObject should have exactly two local external function 

definitions, named constructor and destructor respectively, and should not contain any other 
elements. The functions constructor and destructor must not be replaceable. 

• The constructor external function is called by the Modelica run-time system exactly once 
before the first use of the object. The constructor should have exactly one output formal 
parameter in which the constructed instance of a type derived from ExternalObject is returned. 
Only the constructor function may return external objects. 

• For each completely constructed object, the destructor is called exactly once after the last use of 
the object, even if an error has occurred. The destructor should have no output formal 
parameters. The only input formal parameter of the destructor should be the external object of a 
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type derived from ExternalObject. It is not legal to explicitly call the constructor and 
destructor functions. 

Moreover: 

• An external object can only be bound in instance declarations and can neither be modified later nor 
assigned to. 

• In addition to the usual type prefixes such as input, output, flow, etc., variables declared in 
classes extending from ExternalObject may also have prefixes parameter and constant, 

The following applies to external functions referring to instances of subclasses of ExternalObject: 
• External functions may be defined which update the internal memory of instances of subclasses of 

ExternalObject, as long as the external functions behave as mathematical functions that return 
the same outputs given the same inputs. 

• External functions should declare their input formal parameters as well as result formal parameters 
and return values of subclasses of ExternalOb j ect using the C-type void* in their C code. 

The user-defined table class MyTable mentioned above can be defined in the following way as a 
subclass of the predefined class ExternalObject, including definitions of its constructor and 
destructor functions: 

class MyTable 
extends ExternalObject; 
function constructor 
input String fileName = ""; 
input String tableName = ""; 
output MyTable table; 
external "C" table = initMyTable(fileName, tableName); 

end constructor; 
function destructor "Release storage of table" 
input MyTable table; 
external "C" closeMyTable(table); 

end destructor; 
end MyTable; 
The above Testlnterpolate model calls the function interpolateMyTable defined below that 

performs interpolation in the table created by the constructor function of the class MyTable: 
function interpolateMyTable "Interpolate in table" 
input MyTable table; 
input Real u; 
output Real y; 
external "C" y = interpolateMyTable(table, u); 

end interpolateTable; 
The external C-functions referred to in the above Modelica code could be defined in the following way: 

typedef struct { /* User defined data structure of the table */ 
double* array; /* nrow*ncolumn vector */ 
int nrow; /* number of rows */ 
int ncol; /* number of columns */ 
int type; /* interpolation type */ 
int lastlndex; /* most recent row index for search */ 

} MyTable; 

void* initMyTable(char* fileName, char* tableName) { 
MyTable* table = malloc(sizeof(MyTable)); /* Allocate Table! */ 
if ( table == NULL ) ModelicaError("Not enough memory"); 
// read table from file and store all data in *table 
return (void*) table; 
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void closeMyTable(void* object) { /* Release table storage */ 
MyTable* table - (MyTable*) object; 
if ( object == NULL ) return; 
free(table->array); /* Free table storage */ 
free(table); 

double interpolateMyTable(void* object, double u) { 
MyTable* table = (MyTable*) object; 
double y; 
// Interpolate using "table" data (compute y) 
return y; 

9.4.9 External Libraries and Include Files 

There are several useful annotations for specifying external libraries and include files in the context of 
calling external functions from Modelica. These annotations are called Library, include, 
includeDirectory, and LibraryDirectory and should occur on the external clause and no other 
standard annotations should occur on the external-clause. They have the following meaning: 

• The annotation (Library="libraryName") is used to give information to the linker to 
include the library file where the compiled external function is available. 

• The annotation(Library={"libraryNamel","libraryName2"}) is used to give 
information to the linker to include the library files where the compiled external function is 
available and additional libraries which are used to implement it. 

• The annotation (lnclude="includeDirective"), used to include source files, for example, 
header files or source files that contain the functions referenced in the external function declaration, 
needed for calling the external function in the code generated by the Modelica compiler. 

• The annotation(IncludeDirectory="modelica://LibName/Resources/Include") can 
be used to specify a location for header files. The location "modelica: //LibName/ 
Resources/include" is the default and need not be specified. However, another location could 
be specified by using an URI name (Section 11.15, page 556) for the include directory. 

• The annotation(LibraryDirectory="modelica://LibName/Resources/Library") can 
be used to specify a location for library files. The location "modelica: //LibName/ 
Resources/Library" is the default and need not be specified. However, another location could 
be specified by using an URI name (Section 11.15, page 556) for the library directory. Different 
versions of an object library can be provided, e.g. one for Windows and one for Linux, by 
providing a "platform" directory below the LibraryDirectory. If no platform directory is 
present, the object library must be present in the LibraryDirectory. The following platform 
directory names are standardized: 

Win32 (Microsoft Windows 32 bit) 
w i n 6 4 (Microsoft Windows 64 bit) 
linux32 (Linux Intel 32 bit) 
linux64 (Linux Intel 64 bit) 

The LibraryName used for includeDirectory and LibraryDirectory indicates the top-level class 
where the annotation is found in the Modelica source code. The example below shows the use of external 
functions together with object libraries. 

The function ExternalFuncl is defined by the external C function ExternalFuncl_ext in the 
statically linked library ExternalLibl together with the header file ExternalFuncl. h. 

ExternalFunc2 is defined by the C function ExternalFunc2_ext in the dynamically linked library 
ExternalLib2 together with the header file ExternalFunc2 . h. 

The function ExternalFunc3 is defined in the C source include file ExternalFunc3. c. 
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package ExternalFunctions 
model Example 

Real x(start=l.0),y(start=2.0),z (start=3.0); 
equation 
der(x)=-ExternalFuncl(x); 
der(y)=-ExternalFunc2(y); 
der(z)=-ExternalFunc3(z); 

end Example; 
function ExternalFuncl 

input Real x; 
output Real y; 

external "C" 
y=ExternalFuncl_ext(x) annotation(Library="ExternalLibl", 

Include="#include \"ExternalFuncl.h\""); 
end ExternalFuncl; 
function ExternalFunc2 

input Real x; 
output Real y; 

external 
y=ExternalFunc2_ext(x) annotation(Library="ExternalLib2", 

Include="#include \"ExternalFunc2.h\n"); 
end ExternalFunc2; 
function ExternalFunc3 

input Real x; 
output Real y; 
external "C" annotation(Include="#include \"ExternalFunc3.c\""); 

end ExternalFunc3; 
end ExternalFunctions; 

The following directory structure: 
ExternalFunctions // Dir, 

package.mo // File, contains the Modelica code from above 
Resources // Dir, contains include files and library resources 

Include // Dir, contains the include files 
ExternalFuncl.h // C-header file 
ExternalFunc2.h // C-header file 
ExternalFunc3.c // C-source file 

Library // Dir, contains the object libraries for different platforms 
Win32 // Dir, contains Windows versions of libraries 

ExternalLibl.lib // statically linked library for VisualStudio 
ExternalLib2.lib // statically linking the dynamic linked library 
ExternalLib2.dll // dynamically linked library (with manifest) 

linux32 // Dir, contains Linux versions of libraries 
libExternalLibl.a // statically linked library 
libExternalLib2.so // shared library 

Below is the header file ExternalFunc2 .h e.g. for the function ExternalFunc2 in the dynamically 
linked / shared library ExternalLib2 so that the desired functions are defined to be exported for the 
Microsoft VisualStudio C compiler and for the GNU C compiler. Regarding the GNU compiler on Linux it 
is recommended to use the compiler option " - f P i c " to build shared libraries or object libraries that are 
later transformed to a shared library. 

// File ExternalFunc2.h 
#ifdef cplusplus 
extern "C" { 
#endif 
#ifdef _MSC_VER 
#ifdef EXTERNAL FUNCTION EXPORT 
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# define EXTLIB2_EXP0RT declspec( dllexport ) 
#else 
# define EXTLIB2_EXP0RT declspec( dllimport ) 
#endif 
#elif GNUC >= 4 

/* In gnuc, all symbols are by default exported. It is still often useful 
to not export all symbols but only the needed ones */ 

# define EXTLIB2_EXP0RT attribute ((visibility("default"))) 
#else 
# define EXTLIB2_EXP0RT 
#endif 

EXTLIB2_EXPORT void ExternalFunc2(<function arguments>); 

#ifdef _cplusplus 
} 
#endif 
The Library name and the LibraryDirectory name specified in the function annotation are 

mapped to a linkage directive in a compiler-dependent way thereby selecting the object library suited for 
the respective computer platform. 

A short summary of these library and include file annotations is also given in Section 11.14, page 556. 

9.5 User-Defined Overloaded Operators and Constructor Functions 

What does it mean to have overloading of operators and functions in a language, and why do we need it? 
The main reason to have this mechanism in a programming language is economy of notation—overloading 
allows us to reuse well-known notation and names for more than one kind of data structure. This is 
convenient and gives more concise and readable code. The concept of overloading can be defined roughly 
as follows: 

• A function or operator is overloaded if it has several definitions, each with a different type 
signature. 

The concept of Modelica function type signature is the same as the Modelica class type of the function 
(see Section 3.18.6, page 120), and can be defined roughly as follows: 

• A Modelica function type signature consists of the set of input formal parameter and result types 
together with the names of the formal parameters and results, in the order they are defined. To 
avoid certain lookup and type resolution difficulties, overloading is defined based on the input 
formal parameters only. 

In fact, overloading already exists predefined to a limited extent for certain operators in the Modelica 
language as described elsewhere in this book. For example, the plus (+) operator for addition has several 
different definitions (see also Section 6.10, page 284, and Section 6.12.1, page 287) depending on the data 
type: 

• 1+2— means integer addition of two integer constants giving an integer result, here 3. 
• 1.0+2.0— means floating point number addition of two Real constants giving a floating-point 

number result, here 3.0. 
• "ab"+"2 "— means string concatenation of two string constants giving a string result, here "ab2 ". 
• {l,2}+{3,4}— means integer vector addition of two integer constant vectors giving a vector result, 

here {4,6}. 
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Overloading of certain built-in functions also exists. For example, the size function is defined for 
arrays of different functionality and occurs in two variants: with one or two arguments (see Section 7.9.1, 
page 335). Scalar functions of one or more (scalar) arguments are implicitly defined also for arrays, see 
Section 7.10, page 340. 

However, the above examples are just special cases. In some situations it is very desirable for the user 
to be able to define the standard operators as overloaded for user-defined data structures of choice. One 
prime example is operations on complex numbers, which will be presented further down. However, 
remember that operator overloading is only a short-hand notation for function calls. 

In the following subsections, we will describe mechanisms for user-defined overloaded constructors 
and operators: 

• Overloaded binary operations ( ' + ' , (subtraction), ' / ' , , A ' , ' = = ' , ' < > ' , ' > ' , ' < ' , 
»>=', '<=', 'and', 'or ' ) , Section 9.5.3.2, page486. 

• Overloaded unary operations ( ' - ' (negation), ' not'), Section 9.5.3.3, page 487. 
• Overloaded constructors ('constructor '0'), Section 9.5.3.4, page 488. 
• Overloaded string conversions, string, Section 9.5.3.6, page 488. 

9.5.1 Allowed Overloaded Operators and Constructors 

The mechanism for overloading operators is only defined for the standard operators mentioned in Table 
9-1 below. Adding arbitrary new operators is not possible. The full set of Modelica operators, including 
precedence and associativity, is described in Section 6.6, page 273, Table 6-1. 

Note that equality = and assignment := are not expression operators since they are allowed only in 
equations and in assignment statements respectively. Equality and assignment are automatically available 
between values of the same record type, which makes overloading definitions for those operators 
unnecessary. Overloading of the array indexing operator [ ] would have been useful e.g. for specialized 
array libraries, but this is not yet available in Modelica. 

Table 9-1. Overloaded operators. 

Operat 
or 

Operator 
Example 

+ a+b 
- a-b 
- -a 
* a*b 
/ a/b 
A a Ab 
< a<b 
<= a<=b 
= a==b 
>= a>=b 
> a>b 
<> a o b 
and a and b 
or a or b 
not not a 

9.5.1.1 Overloaded Constructor Functions 

Overloaded constructor functions are allowed in the following two cases: 
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• For any user-defined record type it is possible to define additional overloaded constructors with the 
same name (but different input formal parameters) compared to the default record constructor. 

• The string constructor (also viewed as a data conversion function) can be given additional 
definitions within a user-defined record type. 

This is also summarized in Table 9-2, where we can see examples of using an overloaded definition of the 
Complex ( . . . ) constructor with only one real valued argument, compared to the standard constructor 
with two arguments automatically derived from the Complex record type. 

Table 9-2. Overloaded constructor functions. 

Constructor Constructor Example 
record name Complex(3.2) 
String String(Complex(2.1)) 
'0' Complex.'01() 

9.5.2 Definition of Overloaded Operators and Constructors 

Overloaded operator definitions can only be given inside declarations of a new specialized class called 
operator (See also the short description in Section 3.8.9, page 92). The operator specialized class is 
similar to a package, but may only contain function definitions. Moreover, operator classes may only be 
defined inside operator records, for example, as in the definition of the Complex operator record below.. 

The operator keyword in the new specialized class declaration is followed by the name of the 
operation within single quotes. 

'constructor', '+', ' > ', ' < ', ' > = ' , ' < = ', 

'and', 'or', 'not', 'String', '0' . 

The properties of overloaded operators are summarized below: 

• Function definitions for overloaded operators can only be given inside an operator class. 
• Operator classes can only be defined inside an operator record, which also may contain 

additional functions and fields/variables of the record. 
• The functions defined inside an operator class must have one formal output parameter and at least 

one formal input parameter with type being the operator record type, except the constructor 
functions which must have exactly one output result of the corresponding operator record type. 

• It is sufficient to define overloading for operator records. Overloaded operations on arrays of 
operator records are automatically derived from the overloaded operator record operations by 
vectorization (Section 7.10, page 340). 

• It is not legal to extend from an operator record except as a short class definition modifying the 
default attributes of the record fields directly inside the operator record.. (This restriction is 
currently in place because all implications of extending from an operator record have not yet been 
analyzed by the Modelica language design group). See Section 3.8.8, page 91, for an example. 

• If an operator record is derived by a short class definition, the overloaded operators of this operator 
record are the operators that are defined in its base class. For information on subtyping in this case 
see Section 3.19.4, page 126. 

• The precedence and associativity of an overloaded operator is identical to what is defined in Table 
6-1 in Section 6.6, page 273. 

• The functions defined in an operator class must be encapsulated. 
• A function defined in an operator class can either be called as shown in this section, or can be 

called directly using its full hierarchical name. 
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• There is a shorthand notation called operator function for defining an operator with only one 
function. 

We start with a small example extracted from the Complex numbers example: 

operator record Complex "Record defining a Complex number" 

Real re "Real part of complex number"; 
Real im "Imaginary part of complex number"; 

encapsulated operator 'constructor' 
import Complex; 
function fromReal 

input Real re; 
output Complex result = Complex(re=re, im=0.0); 
annotation(Inline=true); 

end fromReal; 
end 'constructors-

encapsulated operator '+' 
import Complex; 
function add "Binary addition, e.g. cl+c2" 

input Complex cl; 
input Complex c2; 
output Complex result "Same as: cl + c2"; 
annotation(Inline=true); 

algorithm 
result Complex(cl.re + c2.re, cl.im + c2.im); 

end add; 
end '+'; 

encapsulated operator '-' 
import Complex; 
function negate "Unary negation, e.g. -c" 

input Complex c; 
output Complex result "Same as: -c"; 
annotation(Inline=true); 

algorithm 
result := Complex(-c.re, -c.im); 

end negate; 

function subtract "Binary subtraction, e.g. cl-c2" 
input Complex cl; 
input Complex c2; 
output Complex result "Same as: cl - c2"; 
annotation(Inline=true); 

algorithm 
result := Complex(cl.re - c2.re, cl.im - c2.im); 

end subtract; 
end '-'; 

end Complex; 
In the above example, we start as usual with the real and imaginary part declarations of the re and im 

fields of the Complex operator record definition. Then comes a constructor definition fromReal with 
only one input argument instead of the two inputs of the default Complex constructor implicitly defined by 
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the Complex record definition, followed by overloaded operator definitions for * + ' and ' - ' , where ' - ' 
has both a binary and a unary definition. 

How can these definitions be used? Take a look at the following small example: 

Real a; 
Complex b; 
Complex c = a + b; // Addition of Real number a and Complex number b 

The interesting part is in the third line, which contains an addition a+b of a Real number a and a 
Complex number b. There is no built-in addition operator for complex numbers, but we have the above 
overloaded operator definition of ' + ' for two complex numbers. An addition of two complex numbers 
would match this definition right away in the lookup process. 

However, in this case we have an addition of a real number and a complex number. Fortunately, the 
lookup process for overloaded binary operators (Section 9.5.3.1, page 486) can also handle this case if 
there is a constructor function in the Complex record definition that can convert a real number to a 
complex number. Here we have such a constructor called fromReal. 

Since we are using the inline annotation, the expression a+b is transformed in the following way: 

a+b => Complex.'+'.add(ComplexconstructorfromReal(a), b); 
=> Complex.' + '.add(Complex(re=a,im=0), b) 
=> Complex(re=a+b.re, im=b.im); 

If we insert this into the record equation c=a+b and expand into equations for each record field according 
to the usual rules for record equations, we obtain: 

c.re = a + b.re; 
c.im = b.im; 

These equations have thus been converted into the standard form which only uses built-in types, and 
can be further symbolically processed by the Modelica compiler in the usual way for equations. This 
example should also work without the inline annotation, but with some more function call overhead. 

9.5.2.1 The Operator Function Short-Hand Notation 

Instead of introducing the function add as in the above example, one can use the operator function 
short-hand two-keyword notation to define the + operator since it only contains one function. In general, 
for any operator op with a single function definition the following short-hand notation can be used: 

encapsulated operator function 'op' 

end 'op'; 
Such a definition is conceptually the same as, for example: 

encapsulated operator 'op' 
function foo 

end foo; 
end 'op'; 
Using this short-hand notation for the above operator + , its definition can be expressed as follows: 

encapsulated operator function '+' 
import Complex; 
input Complex cl; 
input Complex c2; 
output Complex result "Same as: cl + c2"; 
annotation(Inline=true); 

algorithm 
result := Complex(cl.re + c2.re, cl.im + c2.im); 

end '+'; 
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9.5.3 Lookup and Evaluation of Overloaded Operators 

As mentioned in Section 9.5.2, page 483, all functions defined inside one operator class must have exactly 
one output, but may also include optional arguments with default values, e.g., in3 and in4 below: 

function f 
input Typell ini; 
input Typel2 in2 ; 
input TypeI3 in3 : 
input TypeI4 in4 : 

output TypeOl out 1 ; 
algorithm 

end f; 

9.5.3.1 Matching Lookup of Operators 

A constructor function call or operator application converted to function syntax is equivalent to a function call 
which can have positional or named arguments, or a mix of positional and named arguments, for example: 

f(exprl, expr2, in3 = valuel, in4 = value2, ...) 
At lookup, the overloaded operator application or constructor function call is matched against the function 
definitions inside the corresponding operator definition. 

• The matching succeeds if the types of the call arguments are the same as the types of the 
corresponding formal parameters (treating Integer and Real as equivalent types), and the named 
arguments in the call (e.g., in3, in4 in the above call to f) are defined. 

• At most one matching function definition for the same operator is allowed 

As we have seen in the case of the Complex example, it is possible to have a match even if some 
arguments are not type compatible if there is a constructor that can provide implicit type conversion to the 
needed type. 

In general, a valid call requires that all inputs have some value given by a positional argument, named 
argument, or default value (and that positional and named arguments do not overlap). This corresponds to 
the normal treatment of function calls with named arguments (Section 9.3.2, page 439). 

9.5.3.2 Overloaded Binary Operators 

There are special considerations for binary operators. The following restrictions apply, i.e., a function is 
allowedfor a binary operator if and only if: 

• It has at least two input formal parameters; at least one of which is of the operator record type. 
• The first two input formal parameters shall not have default values. 
• All input formal parameters after the first two must have default values. 

Let op denote a binary operator and consider an expression a op b where a is of type Atype and b is 
of type Btype. 

1. If Atype and Btype are basic types, e.g. integer, Real, Boolean, String, or an enumeration, 
or arrays of such types (Section 7.10 on page 340), then the corresponding built-in basic type 
operation is performed. 

2. Otherwise, if there exists exactly one function f in the union of the sets of function definitions in 
the operator classes Atype. op and Btype. op such that f (a, b) is a valid match for the function 
f, then a op b is evaluated using this function. It is an error if multiple functions match. If Atype 
is not an operator record type, Atype. op is regarded as an empty set of functions, and similarly for 

function f 
input Typel
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Btype. Note that having a union of the sets of functions from the operator classes ensures that if 
Atype and Btype are the same, each function only appears once in the resulting union set. 

3. Otherwise, if there is no direct match of a op b, then it is tried to find a direct match by automatic 
type casts of a or b, by converting either a or b to the needed type using an appropriate constructor 
function from one of the operator record types of the arguments of the overloaded op functions. 

For example using the Complex definition (below and in Section 9.5.4) a multiplication is tried 
between a real number a and a complex number b. Fortunately there is a constructor fromReal 
that can convert the real number a to a Complex, thereby matching the multiply function 
between two complex numbers: 

Real a; 
Complex b; 
Complex c = a*b; 

The multiplication a*b is interpreted as: 
// Complex.'* 1.multiply(Complex.'constructor'.fromReal(a),b); 

4. If Atype or Btype is an array type, then the expression is conceptually evaluated according to the 
rules for application of scalar functions to array arguments (Section 7.10 on page 340), with the 
following exceptions concerning the array multiplication table in Section 7.8.3, page 332: 

(a) vector*vector must be left undefined, since the scalar product defined by the array 
multiplication table does not generalize to the expected linear and conjugate linear scalar 
product of complex numbers. The reason is that scalar product of two complex vectors, c := 
sumk(a[k]*conj(b[k]), k=l:n, involve conjugates of complex numbers, where 
conj(a+i*b)=a-i*b. 

(b) vector*matrix must be left undefined since the corresponding definition of the array 
multiplication table does not generalize to complex numbers in the expected way, analogous 
to case (a). 

(c) If the inner dimension for matrix*vector or matrix*matrix is zero, this uses the 
overloaded ' 0 ' operator of the result array element type. If the operator ' 0 ' is not defined 
for that operator record class it is an error. 

5. Otherwise, if the expression a op b does not match any of the above cases, it is erroneous. 

9.5.3.3 Overloaded Unary Operators 

There are also special rules for unary operators. A function is allowedfor a unary> operator if and only if: 

• It has at least one input formal parameter, which has to be of the operator record type. 
• The first input formal parameters must not have a default value. 
• All input formal parameters after the first must have default values. 
• If the operator is used both as a unary and a binary operator (such as ' - 1 ) , the operator class must 

contain definitions of corresponding functions for both the unary and the binary operator. 

Regarding the evaluation of a unary operator application op a, (e.g. -a), where a is of type Atype, the 
following applies: 

1. If Atype is a basic type, e.g. Integer, Real, Boolean, , String, or an enumeration, then the 
corresponding built-in operation for this type is performed. 

2. If Atype is an operator record type and there exists a unique function f in Atype. op such that 
Atype . op. f (a) is a valid match, then op a is evaluated to Atype . op. f (a). It is an error if there 
are multiple valid matches. 

3. If Atype is an array type, then the expression is conceptually evaluated according to the rules of 
Section 7.10 on page 340. 

4. Otherwise the expression is erroneous. 
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9.5.3.4 Overloaded Record Constructors 

Let ctype denote an operator record type and consider a constructor call such as below: 

Ctype(exprl, expr2, . .., in3=valuel, in4=value2, ...) 
Then the following rules apply: 

1. If there exists a unique function f in Ctype. 'constructor' such that the argument list to 
Ctype is a valid match for the formal parameter types of function f, then the call to ctype is 
resolved to a call to Ctype. ' constructor'. f. 

2. If there is no operator Ctype . 'constructor ' the automatically generated record constructor is 
called. 

3. Otherwise the expression is erroneous. 

The following restrictions apply to overloaded record constructors: 

• The operator definition of Ctype. ' constructor' must only contain functions that declare one 
output formal parameter of the operator record type ctype. 

• For an operator record type there must not exist any possible call that leads to multiple matches in 
(1) above. 

• For a pair of operator record types Ctype and Dtype and variables c and d of these types, the calls 
Ctype. 'constructor' (d) and Dtype. 'constructor' (c) cannot simultaneously be legal, 
i.e., one of the two constructor definitions must be removed. 

The last restriction avoids the following problem for binary operators. 
Assume that there are two operator records types ctype and Dtype which both have a constructor 

f romReal. If we want to extend c+c and d+d to support mixed operations c+d and d+c, one variant 
would be to define special operations for c+d and d+c; but then c+2.0 becomes ambiguous, since it is 
not clear to which type ctype or Dtype the Real constant 2.0 should be converted. 

Instead, without mixed operations, c+2. 0 is converted to c+fromReal (2.0). However, in that case 
expressions such as c+d are only ambiguous if both conversion from ctype to Dtype and back from 
Dtype to Ctype are both available. This possibility is not allowed by the above restriction. 

9.5.3.5 Zero-Element '0' Record Constructor 

There is also a record constructor operator ' 0 ' which can be used to defined a zero-value for an operator 
record. This can also be used to construct an element. 

The operator '0 ' for an operator record ctype can contain only one function, having no inputs and 
exactly one output of type Ctype, making the lookup of the called function ' 0 ' unambiguous. It should 
return the identity element of addition, and is used for generating flow-equations for connect-equations and 
zero elements for matrix-multiplication. 

Below is an example zero-element constructor for the Complex operator record: 

encapsulated operator function '0' 
import Complex; 
output Complex c; 

algorithm 
c := Complex(0,0); 
annotation(Inline=true); 

end '0'; 

9.5.3.6 Overloaded String Constructor / Data Converter 

Consideran expression String (aexprl, expr2, . . ., in3=valuel, in4=value2, . . .), where the first 
argument aexprl in the argument list is of type Atype: 
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1. If Atype is a basic type, that is, Boolean, Integer, Real, String or an enumeration, or a type 
derived from these, then the corresponding built-in string operation is performed. 

2. If Atype is an operator record type and there exists a unique function f in Atype. 'String' such 
that the argument list in the above call to String is a valid match for f, then the call to string is 
evaluated to the call Atype. ' string' . f. 

3. Otherwise the expression is erroneous. 

The following restrictions apply: 

• The operator Atype. 'String' must only contain functions that declare one output formal 
parameter, which must be of the string type, and the first input argument must be of the operator 
record type Atype. 

• For an operator record type there shall not exist any call that leads to multiple matches in (2) 
above. 

9.5.4 The Complete Complex Numbers Example 

Below we show the complete definition of the Complex numbers example including a simple use case: 
operator record Complex "Record defining a Complex number" 

Real re "Real part of complex number"; 
Real im "Imaginary part of complex number"; 

encapsulated operator 'constructor' 
function fromReal 

ixnport Complex; 
input Real re; 
input Real im := 0.0; 
output Complex result(re=re, im=im); 
annotation(Inline=true); 

end fromReal; 
end 'constructors-

encapsulated operator function '+' // See the above Section 9.5.2.1 

encapsulated operator '-' // See the above Section 9.5.2 

encapsulated operator function '*' 
import Complex; 
input Complex cl; 
input Complex c2; 
output Complex result "i.e., = cl * c2"; 
algorithm 

result Complex(cl.re*c2.re - cl.im*c2.im, cl.re*c2.im +cl.im*c2.re); 
annotation(Inline=true); 

end ' * '; 

encapsulated operator function '/' 
import Complex; 
input Complex cl; 
input Complex c2; 
output Complex result "i.e., = cl / c2"; 

algorithm 
result := Complex(( cl.re*c2.re + cl.im*c2.im)/(c2.reA2 + c2.imA2), 

(-cl.re*c2.im + cl.im*c2.re)/(c2.reA2 + c2.imA2)); 
annotation(Inline=true); 
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end ' / '; 

encapsulated operator function '==' 
input Complex cl; 
input Complex c2; 
output Boolean result "= cl == c2"; 

algorithm 
result := cl.re == c2.re and cl.im == c2.im; 
annotation(Iniine=true); 

end '=='; 

encapsulated operator function 'String' 
import Complex; 
input Complex c; 
input String name="j" 

"Name of variable representing sqrt(-l) in the string"; 
input Integer significantDigits=6 

"Number of significant digits to be shown"; 
output String s; 

algorithm 
s := String(c.re, significantDigits^significantDigits); 
if c.im <> 0 then 

s := if c.im > 0 then s + " + " else s + " - "; 
s := s + String(abs(c.im), significantDigits=significantDigits) + 

name; 
end if; 

end 'Strings-

encapsulated function j 
import Complex; 
output Complex c; 
annotation(Iniine=true); 

algorithm 
c := Complex(0,1); 

end j ; 

encapsulated operator function '0' 
import Complex; 
output Complex c; 

algorithm 
c := Complex(0,0) ; 
annotation(Iniine=true); 

end '0'; 

end Complex; 
The above is the complete definition of Complex, including its operators, constructors, and additional 

functions such as the function j . Now we turn to the simple use case. 

function eigenvalues 
input Real A[:,:]; 
output Complex eigenComplex[size(A, 1)]; 

protected 
Integer nx=size(A, 1); 
Real eigenvalues[nx,2]; 
Integer i; 

algorithm 
eigenvalues := Modelica.Math.Matrices.eigenvalues(A); 
for i in 1: nx loop 
eigenComplex[i] := Complex(eigenvalues[i,1], eigenvalues[i, 2]); 

end for; 
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end eigenvalues; 
The function eigenvalues in the use case below returns a vector of complex numbers defining the 

eigenvalues of the input matrix argument A. 

// Use case of Complex numbers: 
Complex j = Complex.j(); // Variable j to avoid clumsy expr Complex. j() 
Complex cl — 2 + 3*j; 
Complex c2 = 3 + 4*j; 
Complex c3 = cl + c2; 
Complex c4 [ :] = eigenvalues([1,2; -3,4]); 

algorithm 
Modelica.Utilities.Streams.print("c4 = " + String(c4)); 

This results in the following printed output string showing a vector of the two eigenvalues computed from 
the example matrix [ 1 , 2 ; - 3 , 4 ] : 

c4 = {2.5 + 1.93 64 9j, 2.5 - 1.9364 9j} 
Complex can also be used in a connector: 

operator record ComplexVoltage = Complex(re(unit="V"), im(unit="V")); 
operator record ComplexCurrent = Complex(re(unit="A"), im(unit="A")); 

connector ComplexPin 
ComplexVoltage v; 
flow ComplexCurrent i; 

end ComplexPin; 

ComplexPin pl,p2,p3; 
equation 
connect(pi,p2); 
connect(pi,p3); 

The two connect-equations connect (pi,p2) and connect (pi,p3) expand into the following 
equations: 

pi.v = p2.v; 
pl.v = p3.v; 
pl.i + p2.i + p3.i = Complex.'0' (); 
// Complex .' + ' (pl.i, Complex .' + ' (p2.i, p3.i)) = Complex .' 0' () ; 

Note that the Complex type is already predefined in a Modelica record type called Complex. This is 
distributed as part of the standard Modelica library (MSL) but defined at the top-level outside of MSL. It is 
referred to as Complex or .Complex, and is automatically preloaded by most tools, enabling direct usage 
without the need for any import statements (except in encapsulated classes). There is a library 
ComplexMath with operations on complex numbers (Section 16.3, page 923). 

The following are some examples of using the predefined type Complex: 
Real a = 2; 
Complex j = Modelica.ComplexMath.j; 
Complex b = 2 + 3*j; 
Complex c = (2*b + a)/b; 
Complex d = Modelica.ComplexMath.sin(c); 
Complex v[3] = {b/2, c, 2*d}; 
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9.6 Summary 

As indicated by the title, this chapter is approximately equally divided between the topics of algorithms 
and functions, even though functions is a special case of algorithms. We started by a discussion of the pros 
and cons of declarative versus non-declarative constructs. Then followed a description of algorithm 
sections and initial algorithm sections, together with descriptions of the kinds of statements allowed in 
Modelica. Subsequently we presented the function concept in Modelica, how to declare and call functions, 
positional and named argument passing, returning single or multiple results, as well as optional function 
results. We also described empty function calls, the function return statement, as well as record constructor 
functions. We discussed how to inherit base functions, as well as the similarity between the algorithm and 
function concepts in Modelica. Finally we presented the Modelica external function concept with possible 
mapping to C or Fortran 77, the mechanism for declaring external data structures accessed via opaque 
references, and user-defined overloaded operators and record constructors including a complex number 
example. 

9.7 Literature 

The idea of declarative programming language constructs and the notion of referential transparency 
discussed at the beginning of the chapter can be found in many functional language textbooks as well as in 
the survey article (Hudak 1989). 

The rest of the description including many examples is mostly based on the Modelica language 
specification (Modelica Association 2013) even though the bilinearSampling external function 
example is from (Modelica Association 2000). 

9.8 Exercises 

Exercise 9-1: 

Using Algorithm Sections: Write a function, Sum, which calculates the sum of numbers, in an array of 
arbitrary size. Write a function, Average, which calculates the average of numbers, in an array of arbitrary 
size. Average should make a function call to Sum. 
Write a class, LargestAverage, that has two arrays and calculates the average of each of them. Then it 
compares the averages and sets a variable to true if the first array is larger than the second and otherwise 
false. 

Exercise 9-2: 

Using Algorithm Sections: Write a class, FindSmallest, that finds the value and position of the smallest 
element in an arbitrary array. Write a class that makes an instance of the FindSmallest class and give 
the array values. 

Exercise 9-3: 

while-statements: Write a class that calculates the sum: —— + — + — + —— + — + —— 
1*1 2*2 3*3 4*4 5*5 6*6 

Follow the algorithm: 

• Initialize the sum to 0 and the first term to 1. 
• If the absolute value of next term >= 0.000001, do the next two steps: 
• 1. Add next term to the sum. 
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• 2. Calculate a new next term. 

Tip: Every term in the sum is of the form 1/ (k*k), where k increases by one for each step. Set a variable 
to keep track of whether the next term is negative or positive. When the program is run the sum will be 
0.82247. 

Exercise 9-4: 

When-statement: Let us go back to the class LightSwitch, (Exercise 2-12), which is initially switched off 
and switched on at time 5. Change this class to contain a when-statement instead of a when-equation. 

Now change the LightSwitch class so that in the time interval 5—20 it turns the light on every fifth 
second for one second and then it is switched off again. 

Tip: sample (start, interval) returns true and triggers time events at time instants and rem (x, y) 
returns the integer remainder of x / y, such that div(x,y) * y + r em (x, y) = x. 
Exercise 9-5: 

reinit. Write a model BilliardBalls with two billiard balls that are rolling from opposite directions and 
bounce into each other. 

Tip: reinit (x, value) is the same thing as x := value, but reinit reinitializes the value of x at a 
specific time and the equations still holds. 

Exercise 9-6: 

Functions. Write a function faculty, such that f acul t y (n) = 1*2*3*4*. . .. * n. 
Write a class that contains a function call to faculty. 
Exercise 9-7: 

Functions. We want to search through an array of names and find the position of a particular name. The 
function should have two arguments, an array of names and the name we are looking for. The output will 
be the index where the name was found, or an error will occur if the name was not found. 

Write a class that tests the previous function. 

Tip: Assert can be used to check whether the result has been found, and, if it has not been found, the 
message in the second argument will be shown otherwise. 

Exercise 9-8: 

Vector Orthogonality. Write a function, ScalarProduct, that calculates the scalar product of two 
arbitrary vectors (ul, u2, u3, ..., un) and (vl, v2, v3, ... , vn). The result should be: 
ul*vl + u2*v2 + ... + un*vn. 
Two vectors (ul, u2, u3, . .., un) and (vl, v2, v3, ... , vn) are orthogonal if the scalar 
product is equal to 0. 

Write a class, Orthogonal, that decides if two integer vectors are orthogonal. The vectors must have the 
same number of elements, but the number of elements should be arbitrary. 

Tip: Applying the multiplication operator between two vectors gives the scalar product. 
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• 2. Calculate a new next term. 

Tip: Every term in the sum is of the form 1/ (k*k), where k increases by one for each step. Set a variable 
to keep track of whether the next term is negative or positive. When the program is run the sum will be 
0.82247. 

Exercise 9-4: 

When-statement: Let us go back to the class LightSwitch, (Exercise 2-12), which is initially switched off 
and switched on at time 5. Change this class to contain a when-statement instead of a when-equation. 

Now change the LightSwitch class so that in the time interval 5—20 it turns the light on every fifth 
second for one second and then it is switched off again. 

Tip: sample (start, interval) returns true and triggers time events at time instants and rem (x, y) 
returns the integer remainder of x / y, such that div(x,y) * y + r em (x, y) = x. 
Exercise 9-5: 

reinit. Write a model BilliardBalls with two billiard balls that are rolling from opposite directions and 
bounce into each other. 

Tip: reinit (x, value) is the same thing as x := value, but reinit reinitializes the value of x at a 
specific time and the equations still holds. 

Exercise 9-6: 

Functions. Write a function faculty, such that f acul t y (n) = 1*2*3*4*. . .. * n. 
Write a class that contains a function call to faculty. 
Exercise 9-7: 

Functions. We want to search through an array of names and find the position of a particular name. The 
function should have two arguments, an array of names and the name we are looking for. The output will 
be the index where the name was found, or an error will occur if the name was not found. 

Write a class that tests the previous function. 

Tip: Assert can be used to check whether the result has been found, and, if it has not been found, the 
message in the second argument will be shown otherwise. 

Exercise 9-8: 

Vector Orthogonality. Write a function, ScalarProduct, that calculates the scalar product of two 
arbitrary vectors (ul, u2, u3, ..., un) and (vl, v2, v3, ... , vn). The result should be: 
ul*vl + u2*v2 + ... + un*vn. 
Two vectors (ul, u2, u3, . .., un) and (vl, v2, v3, ... , vn) are orthogonal if the scalar 
product is equal to 0. 

Write a class, Orthogonal, that decides if two integer vectors are orthogonal. The vectors must have the 
same number of elements, but the number of elements should be arbitrary. 

Tip: Applying the multiplication operator between two vectors gives the scalar product. 
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Packages 

Packages in Modelica may contain definitions of constants and classes including all kinds of specialized 
classes, functions, and subpackages. By the term subpackage we mean that the package is declared inside 
another package and no inheritance relationship is implied. Parameters and variables cannot be declared in 
a package. The definitions in a package should be related in some way, which is the main reason they are 
placed in a particular package. Packages are useful for a number of reasons: 

• Definitions that are related to some particular topic are typically grouped into a package. This 
makes those definitions easier to find and the code more understandable. 

• Packages provide encapsulation and coarse-grained structuring that reduces the complexity of large 
systems. An important example is the use of packages for construction of (hierarchical) class 
libraries. 

• Name conflicts between definitions in different packages are eliminated since the package name is 
implicitly prefixed to names of definitions declared in a package. 

• Information hiding and encapsulation can be supported to some extent by declaring protected 
classes, types, and other definitions that are available only inside the package and therefore 
inaccessible to outside code. 

• Modelica defines a method for locating a package by providing a standard mapping of package 
names to storage places, typically file or directory locations in the file system. 

• Identification of packages. A package stored separately for example, in a file, can be (uniquely) 
identified. 

We will gradually cover all these aspects throughout the chapter. First we present a simple example of a 
package with related definitions and discuss the notions of information hiding and abstract data types in 
relation to Modelica packages. 

10.1 Packages as Abstract Data Types 

The notion of a package is related to and partly originates from the notion of abstract data type. The 
classical definition of a data type, for example, Real with its associated operations +,-,*, / , ==, is as a data 
structure together with operations on that data structure. An abstract data type is just like an ordinary data 
type, that is, definitions of data and operations, together with a method for collecting the implementations 
of the operations in one place and hiding the details of those implementations. 

As an example, consider the package ComplexNumbers below, which contains a data structure declaration, 
the record Complex, and associated operations such as Add, Multiply, MakeComplex, and so on. The package 
is declared as encapsulated, (Section 3.11.8, page 104), which is the recommended software engineering 
practice to keep our software well structured as well as being easier to understand and maintain. 

encapsulated package ComplexNumbers 

495 
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record Complex 
Real re; 
Real im; 

end Complex; 
function Add 

input Complex x; 
input Complex y; 
output Complex z; 

algorithm 
z.re := x.re + y.re; 
z.im := x.im + y.im 

end Add; 
function Multiply 

input Complex x; 
input Complex y; 
output Complex z; 

algorithm 
z.re := x.re*y.re - x.im*y.im; 
z. im := x.re*y.im + x.im*y.re; 

end Multiply; 
function MakeComplex 

input Real x; 
input Real y; 
output Complex z; 

algorithm 
z.re := x; 
z.im := y; 

end MakeComplex; 
// Declarations of Subtract, Divide, RealPart, ImaginaryPart, etc. 
// (not shown here) 
end ComplexNumbers; 
How can we make use of the package ComplexNumbers? We can find one example in the class 

ComplexUser below, where both the type Complex and the operations Multiply and Add are referenced 
by prefixing them with the package name ComplexNumbers. 

class ComplexUser 
ComplexNumbers.Complex a(re=1.0, im=2.0); 
ComplexNumbers.Complex b(re=1.0, im=2.0); 
ComplexNumbers.Complex z,w; 

equation 
z = ComplexNumbers.Multiply(a,b) ; 
w = ComplexNumbers.Add(a,b); 

end ComplexUser; 
What about information hiding in the package? The type Complex must be made available for use in 

classes and packages for allocation and initialization of variables of that type, for example, the variables a, 
b, z, and w in ComplexUser. The implementation details of Complex are exposed and used, for example, 
to initialize the variables a and b via their fields x and y. It would not work if we declared x and y 
protected in Complex since then these fields would not be available for the implementation of Add and 
Multiply, and so on. However, by declaring the operations on Complex inside the class Complex itself as 
in the operator record version of Complex in Section 9.5.4, page 489, these fields can be accessed even 
if they are protected. 

We can increase the degree of data abstraction by using the function MakeComplex for initialization 
instead of modifiers, for example, as in ComplexUser2 below, thus avoiding exposing the fields x and y. If 
we apply the programming convention that all direct access to these fields is avoided in user code it would be 
possible to change the internal implementation, for example, to polar coordinates, without changing any of the 
user code. However, avoiding such internal access to the fields is not checked by Modelica. 

class ComplexUser2 
ComplexNumbers.Complex a=MakeComplex(1.0,2.0); 
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ComplexNumbers.Complex b=MakeComplex(1.0,2.0); 
ComplexNumbers.Complex z,w; 

equation 
z = ComplexNumbers.Multiply(a,b); 
w = ComplexNumbers.Add(a,b); 

end ComplexUser2; 

10.2 Package Access 

There are essentially two ways of accessing the definitions of a package: 

• Direct reference by prefixing the package name to definition names. 
• Importing definitions from the package. 

We have already used the first method in the previous examples. It is usually more convenient and often 
necessary to use the import mechanism, which is the subject of the next section. 

The two access levels in Modelica, public and protected, also apply to definitions declared in a 
package since package is a specialized class that shares most properties of general Modelica classes. 
Protected definitions of a package cannot in general be accessed by other packages and classes, except for 
local packages and classes, and packages inheriting the current package. For discussions of these 
exceptions, see the sections on local packages on page 514 and inheriting packages on page 509 in this 
chapter. 

10.2.1 Importing Definitions from a Package 

The import statement makes public classes and other public definitions declared in some package 
available for use in a class or a package. It is also the only way of referring to definitions declared in some 
other package for use inside an encapsulated package or class. To summarize, import statements in a 
package or class fill the following two needs: 

• Making definitions from other packages available for use in a package or class without needing to 
prefix the definitions with the full names of the packages where they are defined. 

• Explicit declaration of usage dependences on other packages. This is important for reducing the 
complexity of understanding and maintaining large systems consisting of many packages. 

An import statement can occur in one of the following six syntactic forms which are explained in more 
detail in the following sections: 

import packagename; (qualified import) 
import [packagename. ] defmitionname; (single definition import) 
import packagename. {defl, def2, def3,...}; (multiple definition import) 
import packagename. *; (unqualified import) 
import shortpackagename = packagename; (renaming import) 
import shortdefname = [packagename .]definitionname; (renaming single def. import) 

The parts within [... ] are optional. Here packagename is the fully qualified name of the imported package 
including possible dot notation. For example, if the package ComplexNumbers would have been declared 
as a subpackage inside the package Modelica .Math, its fully qualified name would be 
Modelica. Math. ComplexNumbers. Defmitionname is the simple name without dot notation of a single 
definition that is imported. A shortpackagename is a simple name without dot notation that can be used to 
refer to the package after import instead of the presumably much longer packagename. 

The six forms of import are exemplified below assuming that we want to access the addition operation 
(in one case also the subtraction operator) of the package Modelica .Math. ComplexNumbers: 

import Modelica.Math.ComplexNumbers; // Access by ComplexNumbers.Add 
import Modelica.Math.ComplexNumbers.Add; // Access by Add 
import Modeli ca.Math.ComplexNumbers.{Add,Subtract}; // Access by Add,Subtract 
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import Modelica.Math.ComplexNumbers.*; 
import Co = Modelica.Math.ComplexNumbers; 
import MyAdd = Modelica.Math.ComplexNumbers.Add; 

// Access by Add 
// Access by Co.Add 
// Access by MyAdd 

The following rules also apply to import statements: 

• Import statements are not inherited. 
• Import statements are not named elements of a class or package. This means that import 

statements cannot be changed by modifiers or redeclarations. 
• The order of import statements does not matter. 
• One can only import from packages, not from other kinds of classes. Packages and all other forms 

of (specialized) classes can be imported into, that is, they may contain import statements. 
• An imported package or definition should always be referred to by its fully qualified name in the 

import statement. 

10.2.1.1 Qualified Import 

The qualified import statement import optpackageprefix.simplepackagename; imports all definitions in a 
package, which subsequently can be referred to by (usually shorter) names simplepackagename and 
definitionname, where the simple package name is the full package name without its (optional) prefix. For 
example, if the package ComplexNumbers would have been a subpackage of Modelica .Math, the 
import statement in the package ComplexUser 1 would appear as import Modelica. 
Math. ComplexNumbers; but the rest would be the same, that is, we write ComplexNumbers .Add for the 
addition operation. This is the most common form of import that eliminates the risk for name collisions 
when importing from several packages. 

encapsulated package ComplexUserl 
import ComplexNumbers; 

class User 
ComplexNumbers.Complex a(x=1.0, y=2.0); 
ComplexNumbers.Complex b(x=1.0, y=2.0); 
ComplexNumbers.Complex z,w; 

equation 
z - ComplexNumbers.Multiply(a,b); 
w = ComplexNumbers.Add(a,b); 

end User; 

end ComplexUserl; 

10.2.1.2 Single Definition Import 

The single definition import of the form import packagename.definitionname; allows us to import a 
single specific definition (a constant, (specialized) class, or function) from a package and use that definition 
referred to by its definitionname without the package prefix. The statement import 
ComplexNumbers .Add; allows us to just write Add for the addition operation as in the class User within 
ComplexUser2 below. The drawback is that we have to write an import statement for each imported 
definition which can be a bit cumbersome. There is no risk for name collision as long as we do not try to 
import two definitions with the same short name. 

encapsulated package ComplexUser2 
import ComplexNumbers.Complex; 
import ComplexNumbers.Multiply; 
import ComplexNumbers.Add; 

class User 
Complex a(x=l.0, y=2.0); 
Complex b(x=1.0, y=2.0); 
Complex z,w; 

equation 
z = Multiply(a,b) ; 
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w = Add(a,b); 
end User; 
end ComplexUser2; 

10.2.1.3 Multiple Definition Import 

The multiple definition import of the form import packagename. {defl, def2, def3,...}; allows us to 
import multiple specific definitions (constants, (specialized) classes, functions, or subpackages) from a 
package and use those definitions referred to by their short names defl, defl, de/3, etc., without the package 
prefix. The statement import ComplexNumbers . {Add,Multiply, Complex}; allows us to just write 
Add for the addition operation as in the class User within ComplexUser2 below. Similarly for Multiply 
and Complex. This is more concise and convenient than having to write an import statement for each 
imported definition which can be a bit cumbersome. The multiple definition import is equivalent to 
multiple single definition imports with corresponding packagename and definition names. There is no risk 
for name collision as long as we do not try to import two definitions with the same short name. 

encapsulated package ComplexUser2 
import ComplexNumbers.{Complex,Multiply,Add}; 

class User 
Complex a(x=l.0, y=2.0); 
Complex b(x=l.0, y=2.0); 
Complex z,w; 

equation 
z = Multiply(a,b); 
w = Add(a,b); 

end User; 
end ComplexUser2; 

10.2.1.4 Unqualified Import 

The unqualified import statement of the form import packagename. * imports all definitions from the 
package using their short names without qualification prefixes. This might appear convenient for the lazy 
programmer but has a high risk for name collisions when importing from several packages. Another 
problem is that future compilation errors may occur if new definitions are added to the imported packages. 
For example, if a new definition named w would be added to the package ComplexNumbers there would 
be a name collision causing a compilation error in the class ComplexUser3 below since there is already an 
imported variable w with the same name. For these reasons, the unqualified import statement is not 
recommended for code that is intended to be stable and maintainable. Its main use is in small examples 
where conciseness is important. None of the other forms of import has these problems. This example also 
shows direct import into a class instead of into an enclosing package. 

class ComplexUser3 
import wpackage.w; // Importing w from a package with a constant called w 
import ComplexNumbers.*; 
Complex a(x=l.0, y=2.0); 
Complex b(x=l.0, y=2.0); 
Complex z; 

equation 
z = Multiply(a,b); 
w = Add(a,b); 

end ComplexUser3; 

10.2.1.5 Renaming Import 

The renaming import statement has two forms. The first of the form import shortpackagename = 
packagename; imports a package and renames it locally to shortpackagename. The second variant: 
import shortdefname = packagename.defmitionname; imports a definition and renames it locally to 
shortdejhame. 
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One can refer to imported definitions using shortpackagename as a presumably shorter package prefix. 
For example, the statement import Co = ComplexNumbers; in the class ComplexUser4 below, allows 
us to refer to the addition operation by Co .Add. There is also the variant with renaming the operation to 
MyAdd. Both of these are as safe as qualified import but give more concise code. 

class ComplexUser4 
import Co = ComplexNumbers 
import MyAdd = ComplexNumbers.Add; 
Co.Complex a(x=1.0, y=2.0); 
Co.Complex b(x=1.0, y=2.0); 
Co.Complex z,w,w2; 

equation 
z = Co.Multiply(a,b); 
w = Co.Add(a,b); 
w2 = MyAdd(w,b); 

end ComplexUser4; 

10.3 Package and Library Structuring 

A well-designed package structure is one of the most important aspects that influences the complexity, 
understandability, and maintainability of large software systems. There are many factors to consider when 
designing a package, for example: 

• The name of the package 
• Structuring of the package into subpackages 
• Reusability and encapsulation of the package 
• Dependencies on other packages 

Modelica defines a standard mapping of hierarchical package structures onto file systems or other storage 
mechanisms such as databases, which provides us with a simple and unambiguous way of locating a 
package. The Modelica library path mechanism makes it possible to make multiple packages and package 
hierarchies simultaneously available for lookup. 

All of these mechanisms give us considerable flexibility and power in structuring a package. This 
freedom should, however, be used in an appropriate way. 

10.3.1 Package Naming and Subpackages 

The name of a package should be descriptive and relate to the topic of the definitions in the package. The 
name can be chosen to be unique within a project, within an organization, or sometimes in the whole world, 
depending on the typical usage scope of the package. 

Since classes can be placed in packages, and packages is a specialized form of class, Modelica allows 
packages to contain subpackages i.e., packages declared within some other package. This implies that a 
package name can be composed of several simple names appended through dot notation, for example, 
"Root package"." Package level two"." Package level threeand so on. Typical examples can be found 
in the Modelica standard library, where all level-one subpackages are placed within the root package called 
Modelica. This is an extensive library containing predefined subpackages from several application 
domains as well as subpackages containing definitions of common constants and mathematical functions. 
See also Chapter 16, page 909, for a more complete description of the Modelica standard libraries, and 
Section 2.17 on page 60 in Chapter 2 for naming conventions in general recommended for Modelica code. 
A few examples of names of subpackages in this library follow here: 

Modelica.Mechanics.Rotational.Interfaces // Four levels of packages 
Modelica.Electrical.Analog.Basic // Basic electrical definitions 
Modelica.Blocks.Interfaces // Interfaces to Blocks library 
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Choosing meaningful and unique names for packages within a large organization can be a problem. 
Sometimes one can choose the name by the help of an internal arbiter in an organization to ensure that two 
projects will not pick conflicting names. 

However, in the world at large this approach is insufficient. One way to ensure unique package names 
over the whole world is to use an Internet domain name as a prefix. For example, for a company with a 
domain name xcompany.com, the prefix would be org. xcompany. The use of uppercase letters in the 
first part of the name further reduces the risk for name conflicts. Regarding the Modelica Association 
having the domain name modelica.org, this kind of package prefix becomes org .modelica. For 
example, the Mechanics part of the Modelica standard library could be denoted: 

org.modelica.library.Modelica.Mechanics 
Package names can become quite long using this method, but it is relatively safe against name conflicts. No 
one else using this scheme will take the same name as us, and for those who do not follow these 
conventions it is very unlikely that they will choose the first part of the name containing only uppercase 
letters. 

10.3.2 Subpackages and Hierarchical Libraries 

The main use for Modelica packages and subpackages is to structure hierarchical model libraries, of which 
the standard Modelica library is a good example. Below is a small example of a hierarchical package 
structure which has been extracted and adapted from the Modelica standard library. We have taken the 
liberty of making all subpackages encapsulated, which corresponds to good software engineering practice. 
This library consists of a number of subpackages like Modelica. Blocks, Modelica .Mechanics, 
Modelica.Electrical, and so on, which in turn usually are divided into subpackages to an appropriate 
level. The Modelica .Mechanics subpackage is divided into subpackages corresponding to different 
kinds of mechanical model components, for example, rotational components are in 
Modelica. Rotational, translational components in Modelica. Translational, etc. 

The example is a bit misleading since these packages are quite large and are normally stored on separate 
files and directories and not seen as a single piece of code as below. The fully qualified names of each 
package or model component are shown as comments. 

encapsulated package Modelica // Modelica 
encapsulated package Mechanics // Modelica.Mechanics 

encapsulated package Rotational // Modelica.Mechanics.Rotational 
model Inertia // Modelica.Mechanics.Rotational.Inertia 

end Inertia; 
model Torque // Modelica.Mechanics.Rotational.Torque 

end Torque; 

end Rotational; 

end Mechanics; 

end Modelica; 
Public components in hierarchical libraries can be accessed through their fully qualified name. As 

pointed out previously, the Modelica standard library is always available for use, for example, as in the 
contrived model inertiaUser below, where we instantiate an inertia component where the type is 
directly referred to by its fully qualified name Modelica.Mechanics .Rotational. Inertia. 

model InertiaUser 
Modelica.Mechanics.Rotational.Inertia w; 

end InertiaUser; 
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10.3.2.1 Encapsulated Packages and Classes 

An encapsulated package or class for example, the model TorqueUser below,prevents direct reference 
to public definitions outside itself, (with one exception, names starting with a dot (Section 3.17.3, page 
113)), but as usual allows access to public subpackages and classes inside itself. Instead used packages 
from outside must be imported. As we have already emphasized in the preceding sections and examples, 
this is standard practice for packages in order to eliminate the possibility of implicit dependencies. 
However, sometimes it is also useful to have encapsulated models where there is no danger of implicit 
dependencies, e.g., application examples that are intended to be self-consistent and might be sent around to 
other users and developers. 

encapsulated model TorqueUserExample1 
import Modelica.Mechanics.Rotational; // Import package Rotational 
Rotational.Torque t2; // Use Torque, OK! 
Modelica.Mechanics.Rotational.Inertia w2 ; 

//Error! No direct reference 
... //to outside an encapsulated class 

end TorqueUserExamplel; 

10.3.2.2 Name Lookup in Hierarchically Structured Packages 

Name lookup in a hierarchical package structure follows the same rules as for general name lookup in 
(nested) Modelica classes that are described in Section 3.16.1 on page 109 in Chapter 3. Since you might 
find that description rather detailed and technical, it can be useful to point out the main issues of name 
lookup in package structures. 

A name to be looked up consists of one or more parts, for example, Modelica. Blocks. Interfaces 
consists of the three parts Modelica, Blocks, and Interfaces. The first part of the name in this case is 
simply Modelica. The procedure for lookup of such a name consists of the following phases: 

• Search for the first part of the name until it is found, starting in the innermost scope and upward 
recursively through the package and class hierarchy until we reach the top or an encapsulated 
package or class boundary. If not found, search the roots of other package hierarchies in the 
MODELICAPATH (see Section 10.3.4 in this chapter); otherwise, if not found, it is an error "missing 
declaration." 

• If the first part of the name matches an import statement, locate the corresponding imported 
package or definition. 

• Locate the rest of the name, if necessary, within the found package, class, or other kind of 
definition. 

We apply this lookup algorithm for the lookup of Interfaces.Flange_a in the declaration of al 
within the model inertia in the package hierarchy below. Note that inertia is declared within the 
package Modelica.Mechanics.Rotational. We search for the first part of the name, which is 
interfaces, and find it declared within the same package, that is, within Rotational. The rest of the 
name, that is, Flange a, is subsequently found as a connector class declared within Interfaces. 

encapsulated package Modelica // Modelica 
encapsulated package Blocks // Modelica.Blocks 

encapsulated package Interfaces // Modelica.Blocks.Interfaces 

end Interfaces; 
end Blocks; 

encapsulated package Mechanics // Modelica.Mechanics 
encapsulated package Rotational // Modelica.Mechanics.Rotational 
import Modelica; // Import Modelica 

encapsulated package Interfaces 
// Modelica.Mechanics.Rotational.Interfaces 

connector Flange_a 
// Define Modelica.Mechanics.Rotational.Interfaces.Flange_a 
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end Flange_a; 
end Interfaces; 

model Inertia 
Interfaces.Flange_a al; 
// Use Modelica.Mechanics.Rotational.Interfaces.Flange_a 
Modelica.Mechanics.Rotational.Interfaces.Flange_a a2; 
// Same type 

end Inertia; 

end Rotational; 
end Mechanics; 

end Modelica; 
The declaration of a2 uses the same connector class Flange a as al, but the lookup is a bit different 

since it refers to Modelica .Mechanics . Rotational. Interfaces . Flange_a. The first part of the 
name in this case is Modelica, which is found in the import statement import Modelica; before 
hitting the boundary of the encapsulated package Rotational. The rest of the name, that is, 
Mechanics .Rotational. Interfaces . Flange a, is located within the found Modelica package by 
searching from the root and downward. First Mechanics is located within Modelica, then Rotational 
is located within Mechanics, then Interfaces is located within Rotational, and finally Flange a is 
found within Interfaces. 

10.3.3 Mapping Package Structures to a Hierarchical File System 

Packages and classes are usually stored in a file system, or sometimes, but this is less common, in a 
database. Each Modelica file in the file-system is stored in UTF-8 format (defined by The Unicode 
Consortium; http: / /www.Unicode. org) and may start with the UTF-8 encoded byte order mark (Oxef 
Oxbb Oxbf); this is treated as white-space in the grammar, see Appendix B. Modelica defines a mapping 
that unambiguously locates the storage place of a package or class from its fully qualified name. This gives 
us the following advantages: 

• From its fully qualified name we can easily find the file and directory where the definition of a 
package or class is stored, for example, when you need to edit it. 

• The Modelica environment can automatically locate and load referenced packages and classes from 
the file system into the simulation environment when needed. 

A package can be stored either as a file or as a directory, whereas classes are stored either as separate 
files or as part of a package file. This gives more flexibility than the related storage scheme for Java where 
classes are always stored on separate files and packages are always represented by directories. 

10.3.3.1 The within Statement 

The Modelica syntax does not allow a package or class to use its fully qualified name with dot notation 
when declaring the package or class in question, for example, on a separate file or storage unit. Therefore 
the within statement has been introduced, which states the prefix needed to form the fully qualified name, 
and thereby provides a "unique" identification of the declared package or class. Note that the within 
statement is effective only for a package or class stored at the corresponding place in the package 
hierarchy, that is, it cannot be used to introduce a modified package or class without actually storing it. The 
within statement has the following syntax: 

within packageprefix; 

For example, the subpackage Rotational declared within Modelica .Mechanics has the fully qualified 
name Modelica .Mechanics. Rotational, which is formed by concatenating the packageprefix with the 
short name of the package. The declaration of Rotational is given below as it appears stored on a file: 

within Modelica.Mechanics; 
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encapsulated package Rotational // Modelica.Mechanics.Rotational 

encapsulated package Interfaces 
import ...; 
connector Flange_a; 

end Flange_a; 

end Interfaces; 

model Inertia 

end Inertia; 

end Rotational; 
Note that a within statement always appears first in a file containing a package or class declaration. 

10.3.3.2 Mapping a Package Hierarchy into a Directory Hierarchy 

A Modelica package hierarchy can be mapped into a corresponding directory hierarchy in the file system. 
The most visible part of this mapping is the translation of package or class names into similar or identical 
directory or file names. A package can be stored either as a directory or as a file: 

• A package can be stored as a directory with the same short name as the package. This directory must 
contain a file named package.mo which starts with a within statement (see the previous section), 
and a (possibly empty) declaration of the package in question, for example, "encapsulated 
package Modelica end Modelica;" exemplified by the package Modelica. The file 
package.mo typically contains documentation and graphical information for the package but may 
also contain import statements and declarations of constants and classes in the package. 

• The classes (including functions) or subpackages in a package mapped as a directory are usually 
stored as their own files with extension .mo or subdirectories within this directory. Such files or 
subdirectories must not correspond to classes or packages with identical names, for example, there 
should not be a file Rotational .mo and a subdirectory Rotational within the same directory. 

• A package or class can be stored as a file with the same short name as this package or class, and 
with the extension .mo. This file must start by a within statement (see above), stating where the 
package or class belongs. A class or subpackage can of course also be stored within some package 
file. 

• The ordering of classes, constants, and subpackages within the package mapped to a directory can 
be specified by a file called package. order within the directory. Each line of that file contains 
the name of one class, subpackage, or constant. The file package.order may be automatically 
created by a modeling and simulation tool. It is recommended to create this file, since without it, 
the order of classes and constants in the package is file system and tool dependent, and may change 
from time to time. The classes and constants stored in package.mo are also mentioned in 
package . order, but their relative order should be the same as in package .mo to ensure that the 
relative order is preserved between classes and constants stored in different ways. 

In order to give the reader some visual intuition about this mapping, a small part of the Modelica 
standard library is depicted below, both graphically as a package hierarchy, and as an example file 
directory hierarchy using directory syntax from Microsoft Windows file systems. It appears almost the 
same using Unix or Linux, just replace backslashes with slashes and remove "c : " . 

The packages Modelica, Blocks, Examples, and Mechanics are all represented as directories 
containing the required file package.mo. The packages Continuous, Interfaces, and Rotational 
are stored as the corresponding files Continuous .mo, Interfaces .mo, and Rotational .mo. The class 
Example 1 is stored in its own file Examplel .mo within the package subdirectory Examples. 

In this example, the directory corresponding to the root package Modelica happens to be placed within 
the directory C: \library. A root directory such as Modelica can be placed anywhere—the system will 
be able to find it through the MODELICAPATH as explained in the next section. 
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Directory 
and file 
structure: 

C:\library 
\Modelica 

package.mo 
\Blocks 

package.mo 
Continuous.mo 
Interfaces.mo 

\Examples 
package.mo 
Examplel.mo 

\Mechanics 
package.mo 
Rotational.mo 

Modelica 

Blocks y .Mechanics 

Continuous Interfaces 

Below we show the contents and names of a few files resulting from this mapping. First is the file 
package.mo within the root package directory C: \library\Modelica. It contains an empty Modelica 
package declaration since all subpackages under Modelica are represented as subdirectories of their own. 
The empty within statement can be left out if desired. 

File: C:\library\Modelica\package.mo 
Contents: within; 

encapsulated package Modelica "Modelica root package"; 
end Modelica; 

Below is the file package.mo in the directory C: \library\Modelica\Blocks\Examples that stores 
the Examples package. It might be convenient to place import statements in the package declaration that 
can be used by example classes like Examplel that are stored as separate files in the directory. 

File: C:\library\Modelica\Blocks\Examples\package.mo 
Contents: within Modelica.Blocks; 

encapsulated package Examples "Examples for Modelica.Blocks"; 
import ...; 

end Examples; 
Here is the class Examplel stored in a separate file Examplel .mo. 

File: C:\library\Modelica\Blocks\Examples\Examplel.mo 
Contents: within Modelica.Blocks.Examples; 

model Examplel "Usage example 1 for Modelica.Blocks"; 

end Examplel; 
Finally, we show the subpackage Rotational stored as the file Rotational .mo. Note that 

Rotational contains the subpackage interfaces, which also is stored in the same file since we chose 
not to represent Rotational as a directory. 

File: C:\library\Modelica\Mechanics\Rotational.mo 
Contents: within Modelica.Mechanics; 

encapsulated package Rotational 
// Modelica.Mechanics.Rotational 

encapsulated package Interfaces 
import ...; 
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connector Flange a; 

end Flange_a; 

end Interfaces; 

model Inertia 

end Inertia; 

end Rotational; 

10.3.3.3 Mapping a Package Hierarchy or Class into a Single File 

A complete package hierarchy can be stored as a single file according to the rules described in the previous 
sections. It is possible, but not very common, to store the whole Modélica standard library as a single file, 
as shown in the example below. One reason could be to package a special version of the standard library 
into a file that can be easily distributed to other users, for example, for debugging purposes. 

File: C:\lib3\Modelica.mo 
Contents: within ; 

encapsulated package Modelica 
encapsulated package Blocks 

end Blocks; 

encapsulated package Mechanics 

end Mechanics; 

end Modelica; 
Below is a small application model that refers to the Inertia class in the Rotational subpackage of 

the above Modelica standard library. It does not contain a within statement since it is not placed within 
any package. First it has to be loaded into the Modelica environment in order to be used. 

File: C:\applications\InertiaUser.mo 
Contents: model InertiaUser 

Modelica.Mechanics.Rotational.Inertia w; 

end InertiaUser; 

10.3.4 The Modelica Library Path—MODELICAPATH 

The Modelica environment has an unnamed top-level scope which contains classes and packages that have 
been loaded into the Modelica workspace. Models to be simulated can refer to such classes or packages 
since they can be accessed through the normal lookup rules. For classes with version information, see also 
Section 11.10.1, page 547. 

However, Modelica also provides a facility to access libraries stored externally as package hierarchies. 
This facility is called the MODELICAPATH, which on a typical computer system is an environment variable 
containing a string with a semicolon-separated ordered list of names of directories where package 
hierarchies corresponding to Modelica model libraries are stored. 
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If during lookup a top-level name is not found in the unnamed top-level scope, the search continues in 
the package hierarchies stored in these directories. Figure 10-1 shows an example MODELICAPATH = 
"C:\library; C:\libl; C:\lib2", with three directories containing the roots of the package 
hierarchies Modelica, MyLib, and ComplexNumbers. The first two are represented as the subdirectories 
C:\library\Modelica and C:\libl\MyLib, whereas the third is stored as the file 
C:\lib2\ComplexNumbers.mo. 

MODEL ICAPATH 

Figure 10-1. Roots of package hierarchies, e.g., Modelica, MyLib, and ComplexNumbers in 
MODELICAPATH = "C:\library; C:\libl; C:\lib2". 
Assume that we want to access the package MyLib.Pack2 in Figure 10-1, for example, through an 

import statement import MyLib. Pack2;. During lookup we first try to find a package MyLib 
corresponding to the first part of the import name. It is not found in the top-level scope since it has not 
previously been loaded into the environment. 

Since the name was not found in the top-level scope the search continues in the directories in the 
MODELICAPATH in the specified order. For the search to succeed, there must be a subdirectory MyLib or a 
file MyLib. mo in one of the directories mentioned in the MODELICAPATH. If there is no such subdirectory 
or file, the lookup fails. If MyLib is found in one of the directories, the rest of the name, in this case Pack2, 
is located in MyLib. If that fails, the entire lookup fails without continuing the search in possibly remaining 
directories. 

In this example the name matches the subdirectory named MyLib in the second directory "C:\libl" 
mentioned in the MODELICAPATH. This subdirectory must have a file package .mo containing a definition 
of the package MyLib, according to the Modelica rules on how to map a package hierarchy to the file 
system. The subpackage Pack2 is stored in its own subdirectory or file in the subdirectory MyLib. In this 
case the search succeeds and the package MyLib. Pack2 is loaded into the environment. 

10.3.5 Packages versus Classes 

In the preceding sections we have mostly discussed various properties of packages. In fact, many of these 
properties also apply to classes in general, e.g. the possibility of mapping to storage places such as 
directories or files in the file system. This follows from the fact that a package is a specialized class that is 
largely a restricted form of class in Modelica, apart from the enhancement of being imported from. This 
does not imply that we should use classes instead of packages just because there are few restrictions in 
Modelica. Use packages for libraries and coarse-grained structuring of systems, and classes for models and 
model components. 

10.4 Package Variants and Operations 

In the following sections we will examine certain variants of packages that can be created through 
operations such as instantiation of generic packages, inheritance of packages, and manual editing. In 
addition we will examine two special types of packages local packages and non-encapsulated packages, as 
well as their usage and some associated inherent problems. 
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10.4.1 Generic Packages 

Generic packages are packages with some kind of formal parameter, e.g. a replaceable type. They are really 
a special case of parameterized generic classes described in Section 4.4 on page 168, where several 
examples of parameterized models are given. 

In the beginning of this chapter we presented the view of a package as an abstract data type containing a 
data structure with associated operations. Generic packages can often be regarded as parameterized abstract 
data types, for example, the package GeneralStack below, which is parameterized in terms of the type of 
the elements in the stack—the type parameter Element. This example is rather algorithmic in contrast to 
the parameterized generic models presented in Chapter 4. 

package GeneralStack 
replaceable class Element 
end Element; 
record Stack 
parameter Integer maxsize = 0; 
Integer size = 0; 
Element[maxsize] vec; 

end Stack; 
function Push 

input Stack si; 
input Element e; 
output Stack so; 

algorithm 
so := si; 
so.size := so.size+1; 
so.vec[so.size] := e; 

end Push; 
function Pop 

input Stack si; 
output Stack so; 

algorithm 
so := si; 
so.size := so.size-1; 

end Pop; 
function Top 

input Stack si; 
output Element e; 

algorithm 
e := si.vec[si.size] ; 

end Top; 
end GeneralStack; 
By "instantiating" the package GeneralStack with different values of the type parameter Element we 

can create specialized stack packages containing elements of a specified type. This is a different meaning of 
instantiation compared to our previous use of the term for creating data instances from classes. In this case 
instantiation means the creation of a more specialized package. For example, below we have instantiated 
GeneralStack with a type argument integer creating the specialized stack called integerStack, and 
with Real giving the stack RealStack. 

package IntegerStack = GeneralStack(redeclare type Element = Integer); 
package RealStack = GeneralStack(redeclare type Element = Real); 
Finally, the package IntegerStack is used in the class intStackUser into which it is imported. A 

stack with room for a maximum of two hundred integers is allocated. Some stack operations are performed 
such as pushing three numbers on the stack, getting the top element, and popping the top element. 

class IntStackUser 
import IS = IntegerStack; 
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IS.Stack stk(maxsize 200 ) ; 

Integer 
algorithm 

stk 
stk 
stk 
item 
stk 

item; 

IS.Push(stk,35); 
IS.Push(stk, 4 00) 
IS.Push(stk,4 4); 
IS.Top(stk); 
IS.Pop(stk); 

// Push three numbers on the stack 

// Get the top element, i.e. 44 
// Pop the top element from the stack 

end IntStackUser; 

10.4.2 Inherited Packages 

Since packages are specialized classes they can be inherited and specialized in the same way as classes in 
general. For example, a double-ended queue, sometimes called deque, is an (abstract) data type that 
combines the actions of a stack and a queue. To create a package for this data type, we can inherit all stack 
operations together with the data structure declaration Element from Generaistack, and add operations 
to insert, remove, and access a data element at the other end of the stack/queue, i.e. at the bottom, as in the 
example package DoubleEndedQueue below. 

encapsulated package DoubleEndedQueue "Combined stack and queue" 
extends Generaistack; 
function AddBottom "Add element at the bottom / the end" 

input Stack si; 
input Element e; 
output Stack so; 

algorithm 
so.size := si.size+1; 
for i in 1:si.size loop 

so.vec[i+l] := si.vec[i] 
end loop; 
so.vec[l] := e; 

end AddBottom; 
function RemoveBottom "Remove element at the bottom / the end" 

input Stack sir-
output Stack so; 

algorithm 
so.size si.size-1; 
for i in 1:so.size loop 

so.vecfi] :=' si.vec[i+1] 
end loop; 

end RemoveBottom; 
function Bottom "Get bottom element" 

input Stack si; 
output Element e; 

algorithm 
e : = s i . ve c [ 1 ] ; 

end Bottom; 
end DoubleEndedQueue; 
Below is an "instantiation" of the double-ended queue together with a small usage example. Two 

integers are inserted at the beginning of the queue and one integer at the end of the queue. Then the end 
element is accessed and the first element is removed. 

package IntDeQueue = DoubleEndedQueue(redeclare type Element = Integer); 
class DeQueueUser 

import ID = IntDeQueue; 
ID.Stack q(maxsize = 200); 
Integer item; 

algorithm 
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q 
q 
q 

item 

ID.Push(q,65); 
ID.Push(q,500); 
ID. AddBottom(q,4 55) 
:= ID.Bottom(q); 
ID.Pop(q); 

// Insert two numbers at the beginning 

// Insert at the end of the queue 
// Get the end element, i.e. 445 
// Remove the first element from the queue 

end DeQueueUser; 

10.4.3 Local Packages 

A local package in Modelica is simply a package that is declared directly inside a class that is not a 
package. This is in contradiction to the usual role of packages as coarse-grained independent structuring 
units. However, there are situations where it can be convenient to have access to a local package which has 
been adapted to the specific needs within a certain model. For example, in the model MyCircuit below we 
use a local specialized version of the package Electrical. Components which is parameterized in terms 
of the type ResistorModel being replaced by the local type MyResistorModel in MyCircuit. Several 
classes from this local package MyComponents are subsequently used for instantiating variables. 

model MyCircuit 
model MyResistorModel 
extends Electrical.Interfaces.ResistorModel; 

... //My special declarations and equations 
end MyResistorModel; 

encapsulated package MyComponents = 
Electrical.Components(redeclare ResistorModel = MyResistorModel); 

MyComponents.Transformer trl 
MyComponents.Transducer td2; 

end MyCircuit; 
In a similar way, the class DeQueueLocalUser below uses the local package P that is a version of the 

package DoubleEndedQueue from the previous section parameterized by the local type VerySecret. 
class DeQueueLocalUser 
protected 
type VerySecret = Integer; 
package P = DoubleEndedQueue(redeclare type Element = VerySecret); 
P.Stack q(maxsize = 200); 
Integer item; 

algorithm 
q := P.Push(q,65) ; 
q := P.Push(q,500); 
q := P.AddBottom(q,455) 
item P.Bottom(q); 
q := P.Pop(q); 

end DeQueueLocalUser; 

// Insert two numbers at the beginning 

// Insert at the end of the queue 
// Get the end element, i.e. 445 
// Remove the first element from the queue 

10.4.4 Nonencapsulated Packages 

A nonencapsulated package is a package declared without the prefix encapsulated. Such a package has 
the disadvantage of being implicitly dependent on packages in the environment through nested lookup, as 
discussed in the next section. However, there is one case where nonencapsulated packages are useful. Large 
encapsulated packages containing protected declarations can internally be structured into 
nonencapsulated subpackages. This is the only way protected declarations of a parent package can be 
accessed by subpackages since declarations imported into encapsulated subpackages have to be public. 

For example, below the encapsulated package Blocks has been internally structured into three 
nonencapsulated packages Interfaces, Continuous, and Examples that all can access the protected 
type MySecret. 
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encapsulated package Modelica 
encapsulated package Blocks 

protected 
type MySecret = ... ; 

public 
package Interfaces 

end Interfaces; 

package Continuous 
MySecret x; 

end Continuous 

package Examples 

end Examples; 
end Blocks; 

end Modelica; 
It might be argued that it is against the principle of information hiding and the concept of packages as 

independent code units to let other packages access protected variables. This is true, but the damage is 
hopefully limited if nonencapsulated packages are seldom used and used only for internal structuring of 
large packages, at most one level down in the package hierarchy. 

You might think that non-encapsulated packages are more convenient than encapsulated ones since one 
avoids some typing, that is, the keyword encapsulated and certain import statements. However, this is 
not true in general, since experience shows that people spend much more time reading code than writing it, 
and implicit dependencies implied by nonencapsulated packages makes the code harder to understand. 

10.4.4.1 Problems with Nonencapsulated Packages 

We have already noted that nonencapsulated packages may create problems of understanding and 
maintaining code. This is caused by implicit dependencies on declarations in the environment. The usual 
nested lookup rules for classes apply to nonencapsulated packages and classes, rather than explicit, easily 
visible, import dependencies. In fact, in order to find a name used in a nonencapsulated package we may 
have to do the following: 

• Visually scan the whole source code of the current package, which might be quite large. 
• Search through all packages containing the current package, that is, higher up in the package 

hierarchy, since standard nested lookup allows used types and other definitions to be declared 
anywhere above the current position in the hierarchy. This amount of code is even larger. 

The following example consisting of three levels of nested non-encapsulated packages illustrates these 
problems: 

package MyModelica 
package Mechanics 

package Rotational 
model Inertia 

MyType x; 

end Inertia; 
end Rotational; 

end Mechanics; 
package Blocks 

end Blocks; 
end MyModelica; 
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The type MyType used inside the inertia model can be declared anywhere within the package 
Rotational, the package Mechanics, or the package MyModelica, or be one of the classes already 
loaded into the current workspace. 

10.4.5 Moving Packages 

Copying or moving a nonencapsulated subpackage such as MyModelica .Mechanics . Rotational in the 
above example might be a bit problematic since used declarations, for example, MyType declared in 
MyModelica, may not be available in the new location for Rotational, if for example we place it within 
the package YourModelica that probably lacks MyType. 

The situation is much better for encapsulated (i.e., self-contained) packages since all dependencies 
are explicit through import statements: 

• When copying or moving an encapsulated package or class, at most the import statements 
inside this package or class, including subpackages and local classes, need to be updated. 

The reason this works is that lookup stops at the package or class boundary for encapsulated packages 
and classes, and all internal references to declarations in other packages and classes are via import 
statements. In the example below, the subpackage Modelica .Blocks. Interfaces is imported into 
Rotational, which uses Interfaces . InPort: 

encapsulated package Modelica 
encapsulated package Blocks 

encapsulated package Interfaces 
connector InPort 

end InPort; 
end Interfaces; 

end Blocks; 

encapsulated package Mechanics 
encapsulated package Rotational 

import Modelica.Blocks.Interfaces; // Import 
model Torque 

Interfaces.InPort inPort; // Use 

end Torque; 

end Rotational; 
end Mechanics; 

end Modelica; 

If we move the package Rotational inside YourModelica as below, it will continue to work without 
changes since its import statement still refers to Modelica. Blocks . Interfaces. If we would like it to 
instead refer to the package YourModelica. Blocks . Interfaces, just update the import statement as 
we have done below: 

encapsulated package YourModelica 
encapsulated package Blocks 

encapsulated package Interfaces 
connector InPort 

end InPort; 
end Interfaces; 

end Blocks; 

encapsulated package Mechanics 
encapsulated package Rotational 

import YourModelica.Blocks.Interfaces; // Updated import 
model Torque 
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Interfaces.InPort inPort; // Use 

end Torque; 

end Rotational; 
end Mechanics; 

end YourModelica; 

10.5 A Comparison Between J ava and Modelica Packages 

You might find it useful to do a brief comparison between the Java package concept and the Modelica 
counterpart. The Java package concept is without question currently the best-known package concept, and 
the Java programming language is taught in many, perhaps the majority, of introductory programming 
courses around the world. It might be the case that you have been acquainted with the Java language before 
learning Modelica. The Modelica package concept has been considerably influenced by Java—it can 
almost be considered as a superset of the corresponding Java concept. There are a number of differences 
between the two concepts with regard to the following aspects: 

• Import 
• Subpackages 
• Encapsulation and independence of packages 
• Local packages 
• Inheritance of packages 
• Lookup 
• Mapping to the file system 
• Identification of packages 

We briefly compare and discuss each of these aspects. 

10.5.1 Import 

Java has two forms of import statement: single definition import and unqualified import, whereas 
Modelica also provides qualified import of whole packages, multiple definition import, and renaming 
import. 

10.5.2 Subpackages 

Java packages are always "independent" entities. Even a subpackage in Java has to be explicitly 
imported or its definitions referenced by their fully qualified names in order to be used within its parent 
package or by some other package. The subpackage relation is just a relation between the names of two 
packages and an organizational tool for storage in the file system, for example, java. lang. reflect is 
a subpackage of java. lang, but this does not imply any special access rights between those packages. 
By contrast, a nested subpackage in Modelica can actually be placed inside its parent package and can in 
its non-encapsulated form use nested lookup for access of definitions in its parent package or higher 
up in the hierarchy. This may create implicit dependencies between packages, for example, 
Modelica. Blocks . Interfaces may implicitly use definitions in Modelica. Blocks. 

Encapsulated Modelica packages are close to the Java notion of packages as independent entities. In 
fact, an encapsulated Modelica package is somewhat more "independent" and "encapsulated" than a 
corresponding Java package, since all use of other packages declared outside itself must be via import 
statements. Direct use of definitions via fully qualified names is not allowed in that case in Modelica. This 
makes package dependencies very clear. However, a Modelica package can use definitions declared in its 
own subpackages without import, for example, code in Modelica. Blocks, which can use definitions in 
Modelica. Blocks . Interfaces without explicit import. 
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10.5.3 Encapsulation and Independence of Packages 

Java packages are more independent than Modelica packages in the sense that no other Java package, not 
even a subpackage, can access protected or private definitions of a Java package. A non-encapsulated 
Modelica subpackage may access protected definitions in its parent package—there is no way a parent 
package can prevent that. 

On the other hand, an encapsulated Modelica package always requires import for access of 
definitions in other packages that are not subpackages. Therefore such Modelica package dependences 
become cleaner and more visible than in Java where direct references using fully qualified names of 
definitions in other packages often occur. 

10.5.4 Local Packages 

Local packages are packages that are declared inside a class and not directly inside a package. Such 
packages are allowed in Modelica but are disallowed in Java and most other programming languages. 

10.5.5 Inheritance of Packages 

Modelica packages can be specialized and extended through inheritance, whereas Java packages cannot. 
Using inheritance on packages can be quite useful and encourages reuse, as we saw in the example where a 
stack was extended to become a double-ended queue. 

10.5.6 Lookup 

In Java there are only two modes of lookup of definitions from other packages: lookup via import 
statements or lookup through direct references using fully qualified names. The Modelica package concept 
supports both of those mechanisms. Additionally, in Modelica nested lookup is possible from non-
encapsulated packages. Also, definitions in subpackages can be used or imported without giving fully 
qualified names. Thirdly, local packages can be defined inside classes in Modelica, which is not allowed in 
Java. 

10.5.7 Mapping to the File System 

Java has a simpler convention for mapping packages and classes to storage places in the file system, 
whereas Modelica's mapping gives increased flexibility. In fact, the Modelica mapping is approximately a 
superset of the Java mapping. A Java class is always mapped to a file and Java packages to different levels 
of directories corresponding to the dot notation in the package name, e.g. j ava. util. Date is mapped to a 
two-level directory structure such as C: \ java\util \ containing the file Date. j with the class Date. 

In Modelica we have the choice of either mapping each class to a separate file as in Java, or storing 
whole packages including all their classes, and possibly subpackages, on a single file. For example, the 
package Modelica.Blocks. Interfaces might be stored on the single file C:\Modelica\ 
BlocksMnterfaces .mo, be part of some file, for example, C: \Modelica\Blocks .mo, or be 
represented as the directory C:Modelica\Blocks\lnterfaces\ containing a number of files, one for 
each class. 

10.5.8 Identification of Packages 

This property concerns the ability to (unambiguously) identify a class or package from its declaration, for 
example, as stored on a file. A Java class file always contains a package statement that identifies which 
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package the class belongs to and in which directory it is stored in the file system. For example, the Java 
class BitSet in the package j ava. util can be declared on a file as follows: 

package java.util; 
class BitSet { 

} 
A corresponding declaration in Modelica with the util package represented as a directory and BitSet 

as a file BitSet .mo could be: 

within Modelica.Util; // The file BitSet.mo 
class BitSet 

end BitSet; 
If the Util subpackage is instead represented as a whole file util .mo, we will have: 

within Modelica; // The file Util.mo 
package Util; 

class BitSet 

end BitSet; 

end Util; 

10.5.9 Remarks 

The Modelica package concept is an improvement over the Java package concept by being more flexible 
and powerful. On the other hand, the Java concept is simpler—simplicity versus power. It is almost the 
case that the Modelica package concept is a superset of the Java concept. The Modelica import mechanism 
is more convenient and solves some problems often caused by unqualified import in Java. The file mapping 
algorithm in Modelica is slightly more complicated but gives possibilities for better structuring by allowing 
the grouping of classes, and even subpackages, on the same file in addition to the usual directory mapping. 
The concept of non-encapsulated packages in Modelica can provide some increased flexibility in internal 
structuring of encapsulated packages, but can on the other hand easily be misused to create package 
structures and hierarchies with many implicit dependencies that are hard to understand and maintain. 

This matter to some extent depends on personal taste, but if we want to keep most of the simplicity and 
style of Java packages and still get the advantages of Modelica packages, the following coding conventions 
might be a good compromise: 

• Avoid unqualified import and use the increased possibilities of qualified and renaming import in 
Modelica. 

• Always use encapsulated packages with explicit import of used packages even including 
subpackages. The extra typing will be paid off by increased readability through easily visible and 
unambiguous package dependencies. 

• Avoid the use of nonencapsulated packages if there are not very strong reasons to use them. 

Remember that saving a few keystrokes of typing is not the most important factor. Experience has shown 
that code is read approximately 10 times more often than written. Structuring our models in a way that 
reduces complexity is one of the most important design goals, for which the package mechanism is a quite 
valuable tool. 
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10.6 External Resources and Libraries 

Models may reference external resources and call functions defined in external libraries. 

10.6.1 External Resources in Packages 

Modelica models may reference external resources such as files or documents accessed via internet links, 
identified by so-called Uniform Resource Identifiers (URIs). Moreover, a Modelica related URI scheme 
called modelica is defined for accessing resources associated with a certain package. See Section 11.15, 
page 556, for more information regarding this topic. 

10.6.2 External Library Packages and Include Files 

Functions in another programming language defined in external libraries and/or include files may be called 
by referring to that library or include file as described in Section 9.4, page 466. 

10.7 Summary 

This chapter is mainly devoted to the Modelica package concept, which is used for constructing libraries of 
reusable model definitions. We started by discussing packages as abstract data types, followed by a 
description of different mechanisms for accessing packages and importing definitions from packages. We 
also described the structuring of packages and libraries, as well as the notion of encapsulated packages and 
classes. The mapping of package structures to a hierarchical file systems was described, as well as the 
Modelica library path for searching externally stored package hierarchies. We presented generic packages, 
inherited packages, local packages, non-encapsulated packages and gave a comparison between the Java 
and Modelica package concepts. Finally, the chapter was concluded by a presentation how resources 
identified by URIs can referred to in Modelica models. 

10.8 Literature 

Further reading on the topic of abstract data types and their relation to the module and package concept can 
for example be found in (Louden 1993). A classic article on information hiding is (Parnas 1972). 

The package presentation briefly relates to the Modelica language specification (Modelica Association 
2003), but with a substantially expanded explanatory text. The example of a package structure has been 
adapted from the Modelica.Mechanics .Rotational example in (Modelica Association 2000) and the 
corresponding part of the Modelica standard library. The comparison between Modelica packages and Java 
packages relates to the Java package presentation in (Arnold and Gosling 1999) concerning the Java 
language. Information about Uniform Resource Identifiers (URIs) can be found in (Wikipedia-URI 2011), 
and the concept of resource in (Wikipedia-Resource 2011). 

10.9 Exercises 

Exercise 10-1 : 

Question: Packages are nice to use in Modelica, but what exactly is a package? Why use the word 
encapsulated when creating packages? 

Exercise 10-2: 
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Creating a Package: Create a package that contains a constant PI, a type Distance, a function 
RectangleArea, a function TriangleArea, a function CirclePerimeter, and a function 
CircleArea. 
Write a class, GeometryUser, which uses the package and calls the functions. 

Exercise 10-3: 

Question: What is important to consider before designing a package? 

Exercise 10-4: 

Question. There are different kinds of packages. What is a generic package? What is a local package? Is 
there something called a non-encapsulated package? If so, explain it. Why might it be a problem to move 
packages? 

Exercise 10-5: 

Question: Is it really possible to inherit packages? 

Inheriting Packages'. Inherit the package Geometry into a class GeometryUser, which is calling functions 
from Geometry. 

class GeometryUser 

end GeometryUser; 
package Geometry 

constant Real PI = 3.1415926536; 
type Distance = Real (unit = "non-
function RectangleArea 

input Distance B; 
input Distance H; 
output Distance area; 

algorithm 
area := B*H; 

end RectangleArea; 
function TriangleArea 

input Distance B; 
input Distance H; 
output Distance area; 

algorithm 
area := RectangleArea(B, H)/2; 

end TriangleArea; 
function CirclePerimeter 
input Distance radius; 
output Distance perimeter; 

algorithm 
perimeter := 2*PI*radius; 

end CirclePerimeter; 
function CircleArea 

input Distance radius; 
output Distance area; 

algorithm 
area := PI*radiusA2; 

end CircleArea; 
end Geometry; 
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Creating a Package: Create a package that contains a constant PI, a type Distance, a function 
RectangleArea, a function TriangleArea, a function CirclePerimeter, and a function 
CircleArea. 
Write a class, GeometryUser, which uses the package and calls the functions. 

Exercise 10-3: 

Question: What is important to consider before designing a package? 

Exercise 10-4: 

Question. There are different kinds of packages. What is a generic package? What is a local package? Is 
there something called a non-encapsulated package? If so, explain it. Why might it be a problem to move 
packages? 

Exercise 10-5: 

Question: Is it really possible to inherit packages? 

Inheriting Packages'. Inherit the package Geometry into a class GeometryUser, which is calling functions 
from Geometry. 

class GeometryUser 

end GeometryUser; 
package Geometry 

constant Real PI = 3.1415926536; 
type Distance = Real (unit = "non-
function RectangleArea 

input Distance B; 
input Distance H; 
output Distance area; 

algorithm 
area := B*H; 

end RectangleArea; 
function TriangleArea 

input Distance B; 
input Distance H; 
output Distance area; 

algorithm 
area := RectangleArea(B, H)/2; 

end TriangleArea; 
function CirclePerimeter 
input Distance radius; 
output Distance perimeter; 

algorithm 
perimeter := 2*PI*radius; 

end CirclePerimeter; 
function CircleArea 

input Distance radius; 
output Distance area; 

algorithm 
area := PI*radiusA2; 

end CircleArea; 
end Geometry; 



Chapter 11 

Annotations, Units, and Quantities 

This chapter presents some additional constructs and attributes that are not really part of the Modelica core 
language but still belong to Modelica in a broad sense, and therefore are part of the Modelica language 
definition. Here we will present the following features: 

• Annotations 
• Units and quantities 

What is an annotation'? It can be understood as an attribute or property containing information 
associated with some element of a Modelica model. Examples are model documentation and graphical 
layout information concerning icons and connections associated with models. This is needed, for example, 
by graphical connection editors used to combine Modelica model components. The graphical view usually 
makes models easier to understand as we have seen in many examples earlier in this book. The Modelica 
annotation construct is similar to the concept of pragma known from the Ada programming language. It 
has the following syntactic structure: 

annotation (annotationelements) 

where annotation elements is a comma-separated list of annotation elements that can be any kind of 
expression compatible with the Modelica syntax. In the rest of this chapter we will present a number of 
predefined standard annotations that should be recognized by Modelica environments. 

Below is an example of an annotation containing information about documentation and the graphical 
layout of both the icon and the diagram layer representing a capacitor model (Modelica. Electrical. 
Analog . Basic. Capacitor): 

model Capacitor "Ideal linear electrical capacitor" 
extends Interfaces.OnePort; 
parameter SI.Capacitance C(start = 1) "Capacitance"; 

equation 
i = C * der(v); 
annotation( 
Documentation(info = "<HTML> 
<P> 
The linear capacitor connects the branch voltage <i>v</i> with the 
branch current <i>i</i> by <i>i = C * dv/dt</i>. 
The Capacitance <i>C</i> is allowed to be positive, zero, or negative. 
</p> 
</HTML> 
", revisions = "<html> 
<ul> 
<lixi> 1998 </i> 

by Christoph Clauss<br> initially implemented<br> 
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</li> 
</ul> 
</html>"), 
Icon(coordinateSystem(preserveAspectRatio = true, 
extent = {{-100,-100},{100,100} }, grid = {2,2}), 
graphics = { 
Line(points={{-14,28},{-14,-28}}, thickness = 0.5,color = {0,0,255}), 
Line(points={{14,28},{14,-28}}, thickness = 0.5,color = {0,0,255}), 
Line(points = {{-90,0},{-14,0}},color = {0,0,255}), 
Line(points = {{14,0},{90,0}},color = {0,0,255} ), 
Text(extent = {{-136,-60},{136,-92}}, textString - "C=%C", 

lineColor={0,0,0} ), 
Text(extent = {{-150,85},{150,45}}, textString - "%name", 

lineColor = {0,0,255}) } ), 
Diagram(coordinateSystem(preserveAspectRatio = true, 

extent = {{-100,-100},{100,100}}, grid = {2,2}), 
graphics = { 
Line(points={{-20,40},{-20,-40}}, thickness=0.5, color = {0,0,255}), 
Line(points={{20,40},{20,-40}}, thickness=0.5, color = {0,0,255}), 
Line(points={{-96,0},{-20,0} }, color = {0, 0, 255}), 
Line(points-{{20,0},{96,0}}, color = {0,0,255}) } 

) ) ; 
end Capacitor; 
The annotations in this example have the names Documentation, Icon, and Diagram. The Icon and 

Diagram annotations contain instances of the graphical annotation elements Text, Line, and so on. The 
whole annotation is expressed using Modelica modifier syntax. 

Neither the majority of annotations (except a few) nor the above-mentioned units and quantities are 
supposed to influence the simulation of a Modelica model. Apart from some exceptional cases such as the 
external function arrayLayout annotation described later, one should in theory be able to remove both 
annotations and unit and quantity information from a model and be able to rerun the simulation of the 
model without any change of results. In practice, certain annotations are necessary to give information to 
the Modelica compiler and simulator to make the symbolic manipulation and simulation efficient enough. 

Annotations are needed primarily by tools such as programming environments for Modelica, which 
access the annotation information associated with models. A typical example of a tool in a Modelica 
environment is the already-mentioned graphical connection editor, which reads the model together with 
graphical annotations about the layout including icons and arrows, allows the user to graphically edit the 
model, and saves the edited result, including possibly changed values of the annotations. 

The usual strong type checking of Modelica models is not applied to annotations. This is motivated by 
the fact that annotations are automatically generated and read by tools, and not manually edited by 
humans. Therefore the information is presumably correct. Another reason for avoiding type checking in 
this case is to make it simple for tools to support and extend their own annotation notation without undue 
constraints. 

Apart from annotations, the rest of this chapter deals with the topic of units and quantities. The unit 
attribute of a variable can be seen as some kind of more precise type information, whereas the quantity 
attribute defines the physical category of the variable, like Length, Mass, and Pressure. Several units 
are possible for the same quantity, for example, a variable measuring Length could have one of the 
units "m" (meter), "mm," or "km." A Modelica tool is not required to do any unit analysis based on the 
unit information. Certain tools may offer dimension analysis, including unit checking, which is an 
analysis related to type checking that may help the user to find certain modeling errors based on 
inconsistent use of quantities and units, for example, in equations or expressions. 
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11.1 Standard Annotations 

In order to maintain portability of models, all Modelica tools should recognize a minimum set of 
annotations, that is, the annotations described in this chapter. All Modelica tools are free to add their own 
annotations, but other tools may not recognize these. 

However, all tools are able to parse annotations of any kind since they follow the Modelica modifier 
syntax, including attribute values that are Modelica expressions. The following are the names of the 
predefined standard Modelica annotations, annotation elements, and annotation attributes, to be described 
in more detail in subsequent sections. First we show the standard annotation names: 

absoluteValue 
arrayLayout 
Authorization 
choices 
conversion 
dateModified 
defaultComponentName 
defaultComponentPrefixes 
defaultConnection-
Structural ly Inconsistent 
derivative 
Diagram 
DiagramMap 
Dialog 
Documentation 

Evaluate 
experiment 
HideResult 
Icon 
IconMap 
Include 
IncludeDirectory 
Inline 
InlineAfterIndexReduction 

inverse 
Latelnline 
Library 
LibraryDirectory 

License 
missinglnnerMessage 
obsolete 
Protection 
revisionld 
singlelnstance 
smoothOrder 
unassignedMessage 
uses 

version 
versionBuild 
versionDate 

The following predefined graphical annotation elements are typically used within the graphics 
attribute of icon or Diagram annotation elements: 

Line, Polygon, Rectangle, Ellipse, Text, Bitmap 
A few additional graphical annotation elements: 

Placement, transformation, iconTransformation 

11.2 Annotation Syntax 

The syntax of a Modelica annotation is the keyword annotation followed by a parenthesized comma-
separated list of elements. These elements have the same syntax as Modelica modifiers. There are two 
kinds of annotation elements: 

• Simple annotation elements. 
• Redeclaration annotation elements. 

Simple annotation elements have the same syntax as simple modifiers described in more detail in 
Section 11.2.1, and redeclaration annotation elements comply with the syntax of redeclaration modifiers 
described in Section 11.2.2. Both forms of annotation elements can be nested to any level. 

11.2.1 Simple Annotation Elements 

An annotation with simple annotation elements consists of pairs associating a name with an expression, for 
example, according to the following structure where possible prefixes and other details are left out: 
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annotation(name1 = exprl, name2 = expr2, ...) 
An example derivative annotation containing a simple annotation element: 

annotation(derivative=fool); 
Annotations can be nested to any level. The following is a common structure for two-level simple 

annotations: 
annotation(name(name1 = exprl, name2 = expr2, ...), ...) 
Here is an example of a two-level simple annotation called choices, where the elements on the second 

level contain string comments that can be used by tools to generate menu alternatives: 
annotation(choices(choice=l "P", choice=2 "PI", choice=3 "PID")); 

11.2.2 Redeclaration Annotation Elements 

Annotation elements also can be structured as redeclarations, e.g. as in the example structure below 
containing a redeclaration of a short class definition: 

annotation(Name1(Name2(redeclare class Name3 = Name2, ...))) 
Here is an example of a level-three nested choices redeclaration annotation using short class 

definitions in the redeclarations: 

annotation(choices( 
choice(redeclare MyResistor=lib2.Resistor(a={2}) "..."), 
choice(redeclare MyResistor=lib2.Resistor2 "..."))); 

The choices annotation in this case is used to generate menus with redeclaration alternatives for 
replaceable models. The user interface can suggest reasonable redeclarations, where the string 
comment in a choice annotation element is used as a textual explanation of the choice alternative. Based 
on the interactions with the user, the graphical user interface then generates the appropriate Modelica code. 
For more details, see Section 11.5.8.2, page 542. 

Redeclaration annotations also can be like variable declarations: 

annotation (name (redeclare Typel variable 1) ) ; 

11.3 Annotation Placement 

Annotations can be placed at the end of class definitions, and at the end of variable declarations, import 
clauses, extends clauses, equations, and statements. 

11.3.1 Class Annotations 

A class annotation contains information associated with a class. One class annotation may be placed at the 
end of the list of elements in a long class declaration. Remember that the class can contain elements such 
as local classes, variable declarations, import statements, extends statements, equation sections, and 
algorithm sections. 

Icon, Diagram, and Documentation annotations are only allowed directly in classes, for example, 
not on instances or connections. The allowed annotations for a short class definition is the union of the 
allowed annotations in classes and on extends-clauses. 

For example here is a Documentation annotation inside a long class declaration: 
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<class keyword> <class identifier 
<elementl>; 
<element2> ; 

annotation(Documentation(info = " ... ")) 
end < class identifier ; 

This also can be used to attach documentation information to a package: 

package Modelica 

annotation(Documentation(info = " ... ")) 
end Modelica; 
The Res is tor 2 example below illustrates that a class level annotation element can only occur at the 

end of a class: 

model Resistor2 
Pin p; 
Pin n; 
parameter R "Resistance in [Ohm]"; 

equation 
R*p.i = p.v - n.v; 
n . i = p. i; 

public 
annotation(Icon( 

graphics - {Rectangle(extent={{-70,30},{70,-30}}, lineColor={0,0,255}, 
... }, ... 

) ) ; 
end Resistor2; 
Class annotations for declarations, including long and short class definitions, are always placed at the 

end of the declaration, for example, first a short class definition: 

<class keyword> identifier 1> = < identifier2> <array dims> <modifiers> <comment> <annotatiori> 

and a long class declaration: 

<class keyword> <identifierl> 

<annotation> 
end identifier 1> 

For example, the icon annotation is placed at the end of the Velocity declaration below, after the 
optional string comment: 

type Velocity = Real[3](unit="m/s") "a comment" annotation(Icon(...)); 
A class level annotation at the end of a class within an algorithm or equation section is not associated 

with that section, instead it is associated with the class as a whole. However, an equation or statement can 
have its own associated annotation if the annotation occurs before the semicolon that marks the end of the 
respective equation or statement. 

11.3.2 Variable Annotations 

A variable annotation associates information with a declared variable. Such an annotation is placed at the 
end of the variable declaration after the optional string comment. For example: 

Pin p annotation(Placement(transformation(extent = {{-110,-10},{-90,10}}, 
rotation = 0))); 
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11.3.3 Import Annotations 

Analogous to variable annotations, import annotations are placed in the end of the import statement after 
the optional string comment, for example, as below. Such an annotation can be any annotation for which it 
is meaningful to associate it with an import statement. 

import Modelica.Mechanics.Rotational "Rotational import" annotation (...); 

11.3.4 Equation Annotations 

Any equation can have an associated annotation. The most common form of equation annotation is 
annotations to connection equations. It is natural to associate graphical attributes such as lines with a 
certain position, length, and color to such equations. As in the previous cases, the annotation is placed at 
the end, after the optional comment. For example: 

connect(pi.n,p2.p) "comment" annotation(Line(points=[-90, 0; -70, 0] ) ) ; 

11.3.5 Statement and Algorithm Annotations 

Statements can also be annotated, even though the need is less obvious than for connection equations. As 
for equations, statement annotations are placed at the end of the statement after the optional string 
comment, for example: 

name := x+2*y "comment" annotation( ); 

11.4 Graphical Annotations 

Graphical annotations is the most common form of annotation in typical Modelica models. All models 
created using a graphic model editor and saved as Modelica text usually contain annotations that describe 
the graphical layout of the model components, including positions and sizes of icons and lines representing 
connections between the components. 

The predefined graphical annotations, annotation elements, and annotation attributes in Modelica 
provides a notation to express and save this kind of graphical information. 

The description given here specifies the meaning for a subset of standard graphic annotations that 
should be supported by all Modelica environments. 

Remember that a Modelica environment is free to define and use other annotation attributes in addition 
to those defined here. The only requirement is that any environment must be able to save files with all 
attributes intact, including those that are not used. To ensure this, annotations must be represented with 
constructs according to the Modelica syntax. 

11.4.1 Graphical Representation of Models 

Graphical annotation information is normally given together with five different kinds of Modelica entities. 
We have the following cases where graphical annotations can appear: 

• Annotations of a class to specify the graphical representation of its icon as a diagram and common 
properties such as a local coordinate system. 

• Annotations associated with an instance of a class, typically to specify the position and size of the 
graphical representation of the instance. 
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• Annotations of connectors. 
• Annotations of extends clauses. 
• Annotations associated with a connection, that is, its line representation, the color of the 

connection line, etc. 

The example below shows the use of such graphical attributes in the form of annotations to define the 
different parts of the Resistor icon in Figure 11-1. 

Hljlp R n [ | l -

Figure 11-1. A Resistor icon defined by graphical annotations. 

The class annotation named Icon in the Resistor model below defines the graphical layout of its 
icon, which in this case is a rectangle. This rectangle is specified by the Rectangle annotation element in 
which its two opposite corners are given by the extent attribute, and its visual pattern by the 
fillPattern attribute (see the graphical annotation attributes described in a subsequent section). 

Additionally, the resistor icon contains a text label given by the Text annotation elements with its 
attributes extent and string. The resistor also has two line segments, given by the two Line annotation 
elements, to visually emphasize its pins. 

The resistor has two Pin connectors represented by the two small squares. The left filled square 
represents the p connector whereas the right unfilled square represents the n connector. This square is the 
graphical icon for the Pin class. 

The icon image for Pin is positioned and scaled to the right size by the Placement annotation for the 
component, for example, p and n in Figure 11-1 and in the code below. The icon is first drawn in the 
master coordinate system specified in the component's class, for example, Pin. The graphical image is 
subsequently rotated and translated so that the coordinate system is mapped to the region defined by the 
transformation or iconTransformation attributes in the components declaration. 

model Resistor 
Pin p annotation(Placement( 

transformation(extent - {{-110,-10},{-90,10}}, rotation - 0))); • 
Pin n annotation(Placement( 

transformation(extent = {{110,-10},{90,10}}, rotation = 0))); 
parameter Real R "Resistance in [Ohm]"; 

equation 
R*p. i = p. v - n. v; 
n . i = p. i; 

public 
annotation( 
Icon(coordinateSystem(preserveAspectRatio = true, 
extent = {{-100,-100},{100,100}}, grid = {2,2} ), 
graphics = { 
Rectangle(extent - {{-70,30},{70,-30}}, lineColor = {0,0,255}, 

fillColor = {255,255,255}, fillPattern - FillPattern.Solid), 
Line(points = {{-90,0},{-70,0}}, color - {0,0,255}), 
Line(points = {{70,0},{90,0}}, color - {0,0,255}), 
Text(extent={{-144,-40},{142,-72}},textstring - "R=%R", 

lineColor = {0,0,0}), 
Text (extent={ {-152,87},{148,47}}, t.extString="%name ", 

lineColor ={0,0,255})})); 
end Resistor; 

11.4.1.1 Icon and Diagram Layers of Graphical Annotations 

The graphical representation abstraction of a class consists of two graphical layers: 

• The icon graphical layer. 
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• The diagram graphical layer. 

Both representations show graphical objects such as icons to represent class instances, connectors, and 
connection lines. 

• The icon representation typically visualizes an instance by hiding hierarchical details. 
• The diagram graphical layer typically describes the hierarchical decomposition by showing icons 

of subcomponents. 

A graphical layer description is represented as an icon or a Diagram annotation element. The 
structure of an icon annotation element is given by one of these expressions: 

I c o n (coordsys specification, graphics) 
Icon (graphics) 

A Diagram annotation element has one of the following two analogous forms: 

D i a g r am (coordsys specification, graphics) 
D i a g r am (graphics) 

Here is an example of a simple icon with a coordsys specification element and a graphics element 
defining the appearance through a list of two graphical primitives: 

annotation ( 
Icon(coordinateSystem(extent={{-100,-100}, {100,100}}), 

graphics={Rectangle(extent={{-100,-100}, {100,100}}), 
Text(extent={{-100,-100},{100,100}}, textString="Icon")})); 

The graphics of an icon is specified as an ordered sequence of graphical primitives, which are 
described further in Section 11.4.5 below. Note that such an ordered sequence is a syntactically valid 
Modelica annotation, although there is currently no mechanism in Modelica for defining an array of 
elements of heterogeneous types. 

icon, Diagram, and Documentation annotations are only allowed directly in classes, for example, 
not on instances or connections. The allowed annotations for a short class definition is the union of the 
allowed annotations in classes and on extends-clauses. 

11.4.2 Graphical Annotation Attributes 

There are a number of predefined graphical annotation attributes, which can be divided into basic 
attributes; attributes to classes, instances, and connections; and attributes that are graphical elements to 
specify the appearance of class icons. 

The attributes represent component positions, connections, and various graphical primitives for 
building icons as shown below. The attribute structures are described through Modelica classes. Points are 
denoted by vectors, and extents (two opposite points) are described using vectors of two points. 

11.4.3 Basic Graphical Attributes 

These definitions of basic graphical attributes are used for the specification of the graphical annotation 
elements in the subsequent sections. 

type DrawingUnit = Real(final unit="mm"); 
type Point = DrawingUnit[2] "{x, y}"; 
type Extent = Point[2] "Defines a rectangular area {{xl, yl}, {x2, y2}}"; 

The interpretation of unit is with respect to printer output in natural size (not zoomed). On the screen, one 
mm in "natural size" is typically mapped to some pixels for a common value of screen resolution. 
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All graphical entities inherit the partial record Graphicitem that has a visible attribute which 
indicates if the entity should be displayed or not. 

partial record Graphicitem 
Boolean visible = true; 
Point origin = {0, 0}; 
Real rotation(quantity="angle", unit="deg")=0; 

end Graphicitem; 
The origin attribute specifies the origin of the graphical item in the coordinate system of the layer in 

which it is defined. The origin is used to define the geometric information of the item and for all 
transformations applied to the item. All geometric information is given relative the origin attribute, 
which by default is {0, 0}. 

The rotation attribute specifies the rotation of the graphical item around the point defined by the 
origin attribute. 

11.4.3.1 Coordinate Systems for Icon and Diagram Graphical Layers 

Each graphical layer is a graphical object that has its own coordinate system. 
A coordinate system is defined by the coordinates of two points: the lower-left corner and the upper-

right corner, where the coordinates of the first point shall be less than the coordinates of the second point, 
implying a first quadrant coordinate system. 

This is represented by the extent attribute, of type Extent-Point [2], where each Point is a two-
dimensional coordinate. 

The attribute preserveAspectRatio specifies a constraint on the shape of components of the class. 
If preserveAspectRatio is true, changing the extent of components shall preserve the aspect ratio of 
the coordinate system of the class. 

The attribute initialscale specifies the default component size as initialscale times the size of 
the coordinate system of the class. An application may use a different default value of initials cale. 

The attribute grid specifies the spacing between grid points which can be used by tools for alignment 
of points in the coordinate system, for example, "snap-to-grid". Its use and default value is tool dependent. 

record CoordinateSystem "Attribute to graphical layer" 
Extent extents-
Boolean preserveAspectRatio=true; 
Real initialScale = 0.1; 
DrawingUnit[2] grid; 

end CoordinateSystem; 
For example, a coordinate system for an icon could be defined as: 

CoordinateSystem(extent = {{-10, -10}, {10, 10}}); 
that is, a local coordinate system extent with width 20 units and height 20 units, with the local x coordinate 
from -10 to 10 and the local y from -10 to 10. The exact interpretation of the units is to a certain extent 
tool dependent. 

The coordinate systems for Icon and Diagram are by default defined as follows. The graphics 
attribute being an array of Graphicitem represents an ordered list (a sequence) of graphical primitives. 

record Icon "Representation of Icon graphical layer" 
CoordinateSystem coordinateSystem(extent = {{-10, -10}, {10, 10}}); 
Graphicitem[:] graphics; 

end Icon; 
record Diagram "Representation of Diagram graphical layer" 

CoordinateSystem coordinateSystem(extent - {{-100, -100}, {100, 100}}); 
Graphicitem[:] graphics; 

end Diagram; 
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For example, a coordinate system with extent for a connector icon could be defined as: 

CoordinateSystem(extent = {{-1, -1}, {1, 1}}); 

11.4.3.2 Color and Appearance of Graphical Objects 

Color and pattern properties of graphical objects and connection lines are described using the following 
attribute types: 

type Color = Integer[3](min=0, max=255) "RGB representation"; 
constant Color Black = zeros (3); // Default color 
type LinePattern = enumeration(None, Solid, Dash, Dot, DashDot, DashDotDot); 
type FillPattern = enumeration(None, Solid, Horizontal, Vertical, 

Cross, Forward, Backward, CrossDiag, 
HorizontalCylinder, VerticalCylinder, Sphere); 

type BorderPattern = enumeration(None, Raised, Sunken, Engraved); 
type Smooth = enumeration(None, Bezier); 

The FillPattern attribute values Horizontal, Vertical, Cross, Forward, Backward, and 
CrossDiag specify fill patterns drawn with the border lineColor over the f illColor. 

The attributes HorizontalCylinder, VerticalCylinder, and Sphere specify color intensity 
gradients that represent a horizontal cylinder, a vertical cylinder, and a sphere, respectively. 

The border pattern attributes Raised, Sunken and Engraved represent frames which are rendered in a 
tool-dependent way. 

The smooth attribute specifies that a line can be drawn as straight line segments (None) or using a 
spline (Bezier), where the line's points specify control points of a quadratic Bezier curve. For lines with 
only two points, the smooth attribute has no effect. 

Figure 11-2. Bezier curve with control points. 

For lines with three or more points (Pi, P2, . . ., Pn), the middle point of each line segment (Pu, P23, • ••, 
P(n-i)n) becomes the starting point and ending points of each quadratic Bezier curve. For each quadratic 
Bezier curve, the common point of the two line segment becomes the control point. For instance, point P2 

becomes the control point for the Bezier curve starting at P12 and ending at P23. A straight line is drawn 
between the starting point of the line and the starting point of the first quadratic Bezier curve, as well as 
between the ending point of the line and the ending point of the last quadratic Bezier curve. 

In the illustration in Figure 11-2, the square points (Pi, P2, P3, and P4) represent the points that define 
the line, and the circle points (P12, P23, and P34) are the calculated middle points of each line segment. 
Points P12, P2, and P23 define the first quadratic Bezier curve, and the points P23, P3, and P34 define the 
second quadratic Bezier curve. Finally a straight line is drawn between points Pi and P12 as well as 
between P34 and P4. 
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type Arrow = enumeration(None, Open, Filled, Half); 
type TextStyle = enumeration(Bold, Italic, UnderLine); 
type TextAlignment = enumeration(Left, Center, Right); 
Filled-shape graphical objects, for example, rectangle, polygon, and ellipse, inherit the record 

FilledShape that has the following attributes for the border and the interior: 

record FilledShape "Style attributes for filled shapes" 
Color lineColor = Black "Color of border line"; 
Color fillColor = Black "Interior fill color"; 
LinePattern pattern = LinePattern.Solid "Border line pattern"; 
FillPattern fillPattern = FillPattern.None "Interior fill pattern"; 
DrawingUnit lineThickness = 0.25 "Border line thickness" 

end Style; 
When a color gradient is specified, the color fades from the specified fill color to white and black using 

the hue and saturation of the specified color. 

11.4.4 Graphical Representation of Certain Model Elements 

So far we have primarily discussed the graphical representation of a whole class in the icon or diagram 
graphical layer, as well as a set of basic graphical attributes. Now we turn to the graphical representation 
of certain elements appearing in classes, such as instances, extends clauses, connectors, and connections. 

11.4.4.1 Components 

Graphical representations of components, i.e., class instances, can be placed within a diagram or icon 
graphical layer. Each kind of graphical element has an annotation with a Placement modifier to describe 
its placement. 

record Placement 
Boolean visible = true; 
Transformation transformation "Placement in the diagram layer"; 
Transformation iconTransformation "Placement in the icon layer"; 

end Placement; 
Placements are defined in terms of coordinate system transformations, defining the position and 

orientation of a graphic object with its local coordinate system, relative to the coordinate system of the 
graphic object associated with the enclosing class. 

For example, icon placement is defined by the record Transformation so that the actual coordinates 
of the icon of a model instance are defined in the class where the instance is declared. 

record Transformation 
Point origin = {0, 0}; 
Extent extent; 
Real rotation(quantity="angle", unit="deg")=0; 

end Transformation; 
The origin attribute defines the position of the component in the coordinate system of the enclosing class. 

The extent defines the position, size, and flipping of the component, relative to the origin attribute. 
The extent is defined relative to the origin attribute of the component instance. Given an extent 

{{xl,yl}, {x2,y2}}, x2<xl defines horizontal flipping and y2<yl defines vertical flipping around the 
point defined by the origin attribute. The rotation attribute specifies rotation of the extent around 
the point defined by the origin attribute. 
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The graphical operations are applied in the order: scaling, flipping and rotation. If no 
iconTransformation is given the transformation is also used for placement in the icon layer. 
Figure 11-3 illustrates scaling and rotation of a rectangle. 

11.4.4.2 Connectors 

A connector can be displayed in both an icon graphical layer and a diagram graphical layer of a class. 
Since the coordinate systems typically are different, placement information needs to be given using two 
different coordinate systems. More flexibility than just using scaling and translation is needed since the 
abstraction views might need different visual placement of the connectors. 

The transformation attribute of a Placement annotation element gives the placement in the 
diagram graphical layer and the iconTransformation attribute gives the placement in the icon graphical 
layer. For example: 

Pin p annotation(Placement( 
transformation (extent - { {-110,-10}, {-90,10 }•}, rotation - 0), 
iconTransformation(extent = {{-110,-10},{-90,10}}, rotation - 0); 

Recall that if no iconTransformation is given the transformation is also used for placement in 
the icon layer, as in the connector p2 below: 

Pin p2 annotation(Placement(transformation(extent = {{-110,-10},{-90,10}}, 
rotation = 0))); 

When a connector is shown in a diagram graphical layer, its diagram graphical layer is displayed to 
facilitate opening up a hierarchical connector to allow connections to its internal subconnectors. 

For connectors, the icon graphical layer is used to represent a connector when it is displayed in the icon 
graphical layer of the enclosing model. The diagram graphical layer of the connector is used to represent it 
when shown in the diagram graphical layer of the enclosing model. 

Protected connectors are shown only in the diagram graphical layer. Public connectors are shown in 
both the diagram graphical layer and the icon graphical layer. Nonconnector components are shown only 
in the diagram graphical layer. 

11.4.4.3 Extends Clause 

Each extends clause may have layer specific annotations, i.e., for the Icon or Diagram layer, which 
describe the rendering of the base class' icon and diagram layers in the subclass. 

record IconMap 
Extent extent = {{0, 0}, {0, 0}}; 
Boolean primitivesVisible = true; 

end IconMap; 
record DiagramMap 

Extent extent - {{0, 0}, {0, 0}}; 
Boolean primitivesVisible = true; 

end DiagramMap; 

Figure 11-1. A Resistor icon defined by graphical annotations. Figure 11-1. A Resistor icon defined by graphical annotations. 
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All graphical objects are by default inherited from a base class. If the primitivesVisible attribute 
is false, components and connections are visible but graphical primitives are not. 

The base class coordinate system is mapped to the region specified by the attribute extent. If the 
extent defines a null region (the default), the base class coordinate system shall be fitted to the derived 
class coordinate system with center alignment and respected preserveAspectRatio of the base class. 
For example: 

model A 
extends B annotation( 

IconMap(extent={{-100,-100}, {100,100}},primitivesVisible=false), 
DiagramMap(extent={{-50,-50}, {0,0}},primitivesVisible=true) 

) ; 
end A; 

model B 
extends C annotation(DiagramMap(primitivesVisible=false)); 

end B; 

In this example the diagram of A contains the graphical primitives from A and B, but not from c since they 
were hidden in B. The ones from B are rescaled, and the icon of A contains the graphical primitives from A, 
but neither from B nor from c. 

11.4.4.4 Connections 

A connection is specified with an annotation containing a Line primitive, and optionally a Text-primitive, 
as exemplified below: 

connect(a.x, b.x) 
annotation(Line(points={{-25,30}, {10,30}, {10, -20}, {40,-20}})); 

The optional Text-primitive defines a text that will be written on the connection line. It has the 
following definition. However, it is not the same as the Text-primitive (Section 11.4.5.5, page 533) that is 
part of the graphics, the differences are marked as bold lines: 

record Text 
extends Graphicltem; 
extends FilledShape; 
Extent extent; 
String strings-
Real fontSize = 0 "unit pt"; 
String fontName; 
TextStyle textStyle[:]; 
TextAlignment horizontalAlignment = if index<0 then TextAlignment.Right 

else TextAligment.Lefts-
Integer index; 

end Text; 
The index is one of the points of Line (numbered 1, 2, 3, ... where - 1 can be used to indicate the last 

one). The string may use the special symbols "%first" and "%second" to indicate the connectors in the 
the connect-equation. For example: 

connect(controlBus.axisControlBusl, axisl.axisControlBus) annotation ( 
Text(string="%first", index=-l, extent=[-6,3; -6,3]), 
Line(points={{-80,-10},{-80,-14.5},{-79,-14.5},{-79,-17}, 

{-65,-17},{-65,-65}, {-25,-65}})); 
This draws a connection line and adds the text "axisControlBusl" ending at {-6, 3}+{-25, -65}. 
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11.4.5 Definitions of Graphical Elements 

The following predefined graphical elements are used as graphical annotation elements when describing 
the appearance of graphical objects in annotations. This includes annotation attributes used when defining 
the appearance of class icons. The Line graphical element can also be used for connection lines, 

A list of such graphical elements whose types are subtypes of Graphicitem occur as the value of the 
graphics attribute. The following elements are available: 

• Line 
• Polygon 
• Rectangle 
• Ellipse 
• Text 
• Bitmap 
In the subsequent sections we specify the structure of each graphical element in more detail. 

11.4.5.1 Line 

The properties of a line are described by the following record definition: 

record Line 
extends Graphicitem; 
Point[:] points ; 
Color color = Black; 
LinePattern pattern = LinePattern.Solid; 
DrawingUnit thickness = 0.25; 
Arrow[2] arrow = {Arrow.None, Arrow.None}; 
DrawingUnit arrowSize = 3; 
Smooth smooth = Smooth.None 

end Line; 

"{start arrow, end arrow}" 

"Spline"; 

Remember that the Line primitive is also used to directly specify the graphical representation of a 
connection, as described in Section 11.4.4.4 above. 

11.4.5.2 Polygon 

The properties of a polygon are specified by the following record definition: 

record Polygon 
extends Graphicitem; 
extends FilledShape; 
Point[:] points; 
Smooth smooth = Smooth.None "Spline outline"; 

end Polygon; 
A polygon is closed by definition. This is obvious if the first and the last points are the same. However, 

if the first and the last points are not identical, the polygon is automatically closed by generating a line 
segment between these two points. 

11.4.5.3 Rectangle 

A rectangle is described as follows: 

record Rectangle 
extends Graphicitem; 
extends FilledShape; 
BorderPattern borderPattern = BorderPattern.none; 
Extent extent; 
DrawingUnit radius = 0 "Corner radius"; 
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end Rectangle; 
The extent attribute specifies the bounding box of the rectangle. If a nonzero radius value is specified, 
the rectangle is drawn with rounded corners of the given radius. 

11.4.5.4 Ellipse 

An ellipse graphic element is specified by the following record type: 

record Ellipse 
extends Graphicitem; 
extends FilledShape; 
Extent extent; 
Real startAngle(quantity="angle", unit="deg")=0; 
Real endAngle(quantity="angle", unit="deg")=360; 

end Ellipse; 
The extent attribute of the record specifies the bounding box of the ellipse. For elliptic arcs, 

startAngle and endAngle specify the arc prior to the stretch and rotate operations. The arc is drawn 
counter-clockwise from startAngle to endAngle, where startAngle and endAngle are defined 
counter-clockwise from "3 o'clock". 

11.4.5.5 Text 

The graphical properties of a text string are described by the Text record: 

record Text 
extends Graphicitem; 
extends FilledShape; 
Extent extent; 
String textString; 
Real fontSize = 0 "unit pt"; 
String fontName; 
TextStyle textStyle[:]; 
Color textColor^lineColor; 
TextAlignment horizontalAlignment = TextAlignment.Center; 

end Text; 
The textColor attribute defines the color of the text. The text is drawn with transparent background 

and no border around the text (and without outline). The contents inherited from FilledShape is 
deprecated. 

There are a number of common macros that can be used in the text, and they should be replaced by the 
tool when displaying the text as follows: 

• %par replaced by the value of the parameter par. The intent is that the text is easily readable, thus 
if par is of an enumeration type, replace %par by the item name, not by the full name. 
For example: if par="Modelica. Blocks. Types. Enumeration. Periodic", then %par 
should be displayed as Periodic. 

• %% replaced by %. 
• %name replaced by the name of the instance, i.e., the identifier for it in the enclosing class. 
• % class replaced by the name of the class. 

The style attribute fontSize specifies the font size. If the fontSize attribute is 0 the text is scaled to 
fit its extent. Otherwise, the fontSize specifies the absolute size in pt. The text is vertically centered in 
the extent. 

If the string fontName is empty, the tool may choose a font. The style attribute textStyle specifies 
variations of the font. 
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11.4.5.6 Bitmap 

A bitmap image is specified as follows: 

record Bitmap 
extends Graphicltem; 
Extent extents-
String fileName "Name of bitmap file"; 
String imageSource "Base64 representation of bitmap"; 

end Bitmap; 
The Bitmap primitive renders a graphical bitmap image. The data of the image can either be stored on 

an external file or in the annotation itself. The image is scaled to fit the extent. Given an extent {{xl, yl}, 
{x2, y2}}, x2<xl defines horizontal flipping and y2<yl defines vertical flipping around the point defined 
by the origin attribute. 

When the attribute fileName is specified, the string refers to an external file containing image data. 
The mapping from the string to the file is specified for some URIs (Section 11.15, page 556). The 
supported file formats include PNG, BMP, and JPEG. Other supported file formats are unspecified. 

When the attribute imageSource is specified, the string contains the image data. The image is 
represented as a Base64 encoding of the image file format (see RFC 4648, http:// 
tools .ietf.org/html/rfc4 64). 

The image is uniformly scaled to preserve aspect ratio so that it exactly fits within the extent, 
touching the extent along one axis. The center of the image is positioned at the center of the extent. 

11.4.6 Variable Graphics and Schematic Animation using DynamicSelect 

Any value (coordinates, color, text, etc.) in graphical annotations can be dependent on class variables using 
the DynamicSelect expression. DynamicSelect has the syntax of a function call with two arguments, 
where the first argument specifies the value of the editing state and the second argument the value of the 
non-editing state. The first argument must be a literal expression. The second argument may contain 
references to variables to enable a dynamic behavior. 

For example, the level of a tank could be animated by a rectangle expanding in vertical direction and its 
color depending on a variable overflow: 

annotation ( 
Icon(graphics={Rectangle( 
extent=DynamicSelect({{0,0},{20,20}},{{0,0},{20,level}}), 
fillColor=DynamicSelect({0,0,255}, 

if overflow then {255,0,0} else {0,0,255}))} 
) ; 

11.4.7 User Input and Interaction 

It is possible to interactively modify variables during a simulation. The variables may either be parameters, 
discrete variables, or states. New numeric values can be given, a mouse click can change a Boolean 
variable, or a mouse movement can change a Real variable. Input fields may be associated with a 
Graphicltem or a component as an array named interaction. The interaction array may occur as 
an attribute of a graphic primitive, an attribute of a component annotation, or as an attribute of the layer 
annotation of a class. 

11.4.7.1 Mouse Input 

A Boolean variable can be changed when the cursor is held over a graphical item or component and the 
selection button is pressed if the interaction annotation contains OnMouseDownSetBoolean: 
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record OnMouseDownSetBoolean 
Boolean variable "Name of variable to change when mouse button pressed"; 
Boolean value "Assigned value"; 

end OnMouseDownSetBoolean; 
For example, a button can be represented by a rectangle changing color depending on a Boolean variable 
on and toggles the variable when the rectangle is clicked on: 

annotation(Icon(graphics={Rectangle( 
extent=[0,0; 20,20]), 
fillColor - if on then {255,0,0} else {0,0,255}, 
interaction = { OnMouseDownSetBoolean (on, not on)} ) } 

) ; 
In a similar way, a variable can be changed when the mouse button is released. 

record OnMouseUpSetBoolean 
Boolean variable "Name of variable to change when mouse button released"; 
Boolean value "Assigned value"; 

end OnMouseUpSetBoolean; 
Note that several interaction objects can be associated with the same graphical item or component, for 
example: 

interaction={OnMouseDownSetBoolean(on,true), OnMouseUpSetBoolean(on,false) } ; 
The OnMouseMoveXSetReal interaction object sets the variable to the position of the cursor in the X 

direction in the local coordinate system mapped to the interval defined by the minValue and maxValue 
attributes. 

record OnMouseMoveXSetReal 
Real xVariable "Name of variable to change when the cursor is moved 

in the x direction"; 
Real minValue; 
Real maxValue; 

end OnMouseMoveXSetReal; 
The OnMouseMoveYSetReal interaction object works in a similar way to the OnMouseMoveXSetReal 

object but in the Y direction. 

record OnMouseMoveYSetReal 
Real yVariable "Name of variable to change when the cursor is moved 

in the y direction"; 
Real minValue; 
Real maxValue; 

end OnMouseMoveYSetReal; 

11.4.7.2 Edit Input 

The OnMouseDownEditinteger interaction object presents an input field when the graphical item or 
component is clicked on. The field shows the actual value of the variable and allows changing the value. If 
a too small or a too large value according to the min and max parameter values of the variable is given, the 
input is rejected. 

record OnMouseDownEditInteger 
Integer variable "Name of variable to change"; 

end OnMouseDownEditInteger; 
The OnMouseDownEditReal interaction object presents an input field when the graphical item or 

component is clicked on. The field shows the actual value of the variable and allows changing the value. If 
a too small or too large value according to the min and max parameter values of the variable is given, the 
input is rejected. 
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record OnMouseDownEditReal 
Real variable "Name of variable to change"; 

end OnMouseDownEditReal; 
The OnMouseDownEditString interaction object presents an input field when the graphical item or 

component is clicked on. The field shows the actual value of the variable and allows changing the value. 

record OnMouseDownEditString 
String variable "Name of variable to change"; 

end OnMouseDownEditString; 

11.5 Annotations for Customizing Library GUIs 
A class, that is, in most cases a library package, may use special annotations to define a customized 
graphical user interface for that particular library. 

11.5.1 defaultComponentName Annotation 

One such annotation called defaultComponentName can be used when creating a component of the 
given class by default, where the recommended default component name is name, as specified below: 

annotation(defaultComponentName = "name") 

11.5.2 defaultComponentPrefixes Annotation 

Moreover, the annotation defaultComponentPrefixes can be used to set the default prefixes: 

annotation(defaultComponentPrefixes = "prefixes") 

When creating a component, it is recommended for the tool to generate a declaration of the form: 

prefixes class-name component-name 
The following prefixes may be included in the prefixes string: inner, outer, replaceable, 

constant, parameter,discrete. 
In combination with the defaultComponentName the defaultComponentPrefixes annotation can 

be used to make it easy for users to create inner components matching the outer declarations. See also 
the World model example below. 

11.5.3 missinglnnerMessage Annotation 

During instance hierarchy lookup (Section 3.17.5, page 113), when an outer component of the class does 
not have a corresponding inner component, this is an error. In such cases the string "message" in the 
missinglnnerMessage annotation may be used as a diagnostic message to the modeler. Moreover, the 
tool may also temporarily automatically add the corresponding inner component during translation, 
visible to all of the outer components. 

annotation(missinglnnerMessage = "message") 
For example, consider the following World model: 

model World 
annotation(defaultComponentName = "world", 

defaultComponentPrefixes = "inner replaceable", 
missinglnnerMessage = "The World object is missing"); 
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end World; 
When an instance of World model is dragged into the diagram layer the following declaration is 

generated: 

inner replaceable World world; 

11.5.4 unassignedMessage Annotation 

A declaration may also have an unassignedMessage annotation: 

annotation(unassignedMessage = "message"); 
This is used when the variable to which this annotation is attached in the declaration cannot be computed 
due to the structure of the equations. In such cases the string "message" can be used as a presumably 
informative diagnostic message to the modeler. 

When the Modelica compiler uses BLT partitioning (Section 17.1.6, page 984), this means that if a 
variable x or one of its aliases y=x, y=-x, cannot be assigned, the message is displayed. This annotation is 
used to provide library specific error messages in such cases. 

For example: 

connector Frame "Frame of a mechanical system" 

flow Modelica.Slunits.Force f[3] annotation(unassignedMessage = 
"All Forces cannot be uniquely calculated. The reason could be that the 
mechanism contains a planar loop or that joints constrain the 
same motion. For planar loops, use in one revolute joint per loop 
the option PlanarCutJoint=true in the Advanced menu. 

end Frame; 

11.5.5 absoluteValue Annotation 

A simple type or variable of a simple type may have: 

annotation(absoluteValue=false); 
If false, then the variable defines a relative quantity, and if true an absolute quantity. When converting 
between units (in the user-interface for plotting and entering parameters), the offset must be ignored, for a 
variable defined with annotation absoluteValue=false. This annotation is used in the Modelica 
Standard Library for example in Modelica .Slunits for the type definition TemperatureDif ference. 

11.5.6 defaultConnectionStructurallyinconsistent Annotation 

A model or block definition may contain: 

annotation(defaultConnectionStructurallyInconsistent=true); 
If true, it is stated that a default connection will result in a structurally inconsistent model or block. For a 
definition of structurally inconsistent, see (Pantelides 1988). 

A "default connection" is constructed by instantiating the respective model or block and for every 
input u providing an equation 0=f (u), and for every (potential,flow) pair of the form (v, i), providing an 
equation of the form 0=f (v, i). 
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It is useful to be able to check all models/blocks of a Modelica package in a simple way. One check is 
to default connect every model/block and to check whether the resulting class is structurally consistent (= a 
stronger requirement than "balanced"). 

This is rarely needed; but is for example used in Modelica. Blocks .Math. 
inverseBlockConstraints in order to prevent a wrong error message. Additionally, when a user-
defined model is structurally inconsistent, a Modelica tool should try to pinpoint in which class the error is 
present. This annotation avoids then to show a wrong error message. 

11.5.7 The Dialog Annotation and the connectorSizing Attribute 

The Dialog annotation allows a tool to produce customized dialogs in the graphic user interface for 
specifying parameter values. An example is shown below in Figure 11-4 for the DialogDemo model. A 
parameter dialog is a sequence of tabs, where each tab may contain a sequence of groups. 

When clicking on an instance of the model DialogDemo, a menu pops up that may have the following 
layout. Other layouts are possible since the layout is tool specific. 

Generalj | Tab 1 i 
Parameters Parameters 

b j true J * Boolean parameter 

length f » m Real parameter with unit 

Group 1 Group 1 ,1 r l Real parameter in Group 1 

,2 |—. Disabled Real parameter in group 1 

General j jfab l] J 

r3 [ » Real parameter in Tab 1 

Group 2 

r4 { » Real parameter in Tab 1 and Group 2 

Figure 11-4. Possible menu layout for interaction with the DialogDemo model. 

The DialogDemo example model that uses the Dialog annotation appears as follows: 

model DialogDemo 
parameter Boolean b = true "Boolean parameter"; 
parameter Modelica.Slunits.Length length "Real parameter with unit"; 
parameter Integer nlnports=0 annotation(Dialog(connectorSizing=true)); 
Stepln stepln[nlnports] "Vector of input ports"; 
parameter Real rl "Real parameter in Group 1" 

annotation(Dialog(group="Group 1")); 
parameter Real r2 "Disabled Real parameter in group 1" 

annotation(Dialog(group="Group 1", enable = not b)); 
parameter Real r3 "Real parameter in Tab 1" 

annotation(Dialog(tab="Tab 1")); 
parameter Real r4 "Real parameter in Tab 1 and Group 2" 

annotation(Dialog(tab="Tab 1", group="Group 2")); 

end DialogDemo; 
An example of the Dialog annotation with possible attribute values is shown below: 

annotation(Dialog( 
enable = true, 
tab = "General", 
group = "Parameters", 
showStartAttribute = false, 
colorSelector = false, 

grouplmage = "modelica://MyPackage/Resources/Images/switch.png", 
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connectorSizing = false)); 
The Dialog annotation attributes including default values are defined by the following record: 

record Dialog 
parameter String tab = "General"; 
parameter String group = "Parameters"; 
parameter Boolean enable = true; 
parameter Boolean showStartAttribute = false; 
parameter Boolean colorSelector = false; 
parameter Selector loadSelector; 
parameter Selector saveSelector; 
parameter String grouplmage = ""; 
parameter Boolean connectorSizing = false; 

end Dialog; 
The annotation attributes tab and group define the placement of the component or of variables in a 

dialog with optional tab and group specifications. 
If enable = false, the input field is disabled, and no input can be given (read-only). 
If showStartAttribute = true, the dialog should allow the user to set the start value and the 

fixed attribute for the variable instead of the usual value attribute. This is primarily intended for non-
parameter values and avoids introducing a separate parameter for the start value of the variable. 

If colorSelector=true, it indicates that an rgb-value selector can be presented for a vector of three 
elements and generate values 0..255. The annotation should be useable both for vectors of integers and 
vectors of reals. 

The annotation attribute grouplmage references an image using an URI, see Section 11.15, page 556. 
The image is intended to be shown together with the parameter group. Only one image per group is 
supported. Disabling the input field will not disable the image. 

The parameter ninports is not visible in the menu example in Figure 11-4 since it has the 
connectorSizing annotation attribute (see below Section 11.5.7.1, page 539) and therefore should not 
be modified by the user. An alternative is to show the parameter ninports in the menu but as a read-
only field disabled for input. 

record Selector 
parameter String filter^""; 
parameter String caption=""; 

end Selector; 
A Selector displays a file dialog to select a file. Setting filter only shows files that fulfill the given 

pattern defined by "textl (*.extl) ;;text2 (*.ext2) " to show only files *.extl and *.ext2 
and displaying a description text "textl" and "text2", respectively. Parameter caption is the text 
displayed in the dialog menu. The parameter loadSelector is used to select an existing file for reading, 
whereas the parameter saveSelector is used to define a file for writing. 

11.5.7.1 connectorSizing Annotation Attribute 

The connectorSizing annotation attribute is used in cases where connections to a vector of connectors 
are made and a new connection requires resizing of the vector and to connect to the new index (unary 
connections). This annotation attribute allows a tool to perform these two actions automatically in many 
cases. This is for example very useful for state machine models and for certain models of fluid libraries. 

The value of the connectorSizing annotation attribute must be one of the literal values false or 
true. If the value would be allowed to be an expression, the connectorSizing functionality would be 
conditional and this could easily lead to erroneous models. 

If connectorSizing = false, it has no effect, i.e., the same as if the attribute would not be present. 
If connectorSizing = true, the variable to which the corresponding Dialog annotation is 

attached must be declared with the parameter prefix, must be a subtype of Integer and must have a 
literal default value of zero. The reason for the zero default value of the parameter variable is that the 
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connectorSizing annotation attribute is designed for a parameter that is used as a vector dimension. 
The default dimension of the vector should be zero when the component is dragged or redeclared, since if 
a tool does not support the connectorSizing annotation attribute dragging should still result in a correct 
model because the default size is zero. 

If connectorSizing = true, a Modelica tool may automatically set the dimension size parameter 
value in a modifier when used as a dimension size of a vector of connectors. 

11.5.7.2 Rules for Handling the connectorSizing Attribute 

The following example describes a useful way for a tool to handle the connectorSizing annotation 
attribute of the dimension size of a vector of connectors. However, tools may use other strategies and/or 
may handle other cases than those described below. The recommended rules are clarified by the use of the 
following example which represents a connector and a model from the Modelica. StateGraph library: 

connector Stepln // Only 1:1 connections are possible since input used 
output Boolean occupied; 
input Boolean set; 

end Stepln; 

model Step 
// nln cannot be set in the parameter dialog (but maybe shown) 
parameter Integer nln=0 annotation(Dialog(connectorSizing=true)); 
Stepln inPorts[nln]; 

end Step; 
If the parameter is used as a dimension size of a vector of connectors it is automatically updated 

according to the following rules: 

• Rule 1. If a new outside connection line is drawn to the connector dimensioned with the 
connectorSizing associated parameter, the parameter is incremented by one and the connection 
is performed for the new highest index. For example, assume that three connections are present and 
a new connection is performed. The result is: 

Step stepl(nln=4); // index changed from nln=3 to nln=4 
equation 

connect(.., stepl.inPorts[4]); // new connect-equation 
In some applications, like state machines, the vector index is used as a priority, for example, to 
define which transition is firing if several transitions become active at the same time instant. It is 
then not sufficient to only provide a mechanism to always connect to the last index. Instead, some 
mechanism to select an index conveniently should be provided. 

• Rule 2. If an existing outside connection line is deleted, then the connectorSizing associated 
parameter is decremented by one and all connections with index above the deleted connection 
index are also decremented by one. For example, assume that there are four connections: 

Step stepl(nln=4); 
equation 
connect(al, stepl.inPorts[1]); 
connect(a2, stepl.inPorts[2]); 
connect(a3, stepl.inPorts[3]); 
connect(a4, stepl.inPorts[4]); 

Further, assume that the connection from a2 to stepl. inPorts [2] is deleted, resulting 
in: 

Step stepl(nln=3); 
equation 
connect(al, stepl.inPorts[1]); 
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connect(a3, stepl.inPorts[2]); 
connect(a4, stepl.inPorts[3]); 

• Rule 3. If a new inside connection line is drawn between two vectors of connectors dimensioned 
with the connectorSizing associated parameters, a connection between the two vectors is 
performed and the connectorSizing associated parameter is propagated. Other types of inside 
connections do not lead to an automatic update of a connectorSizing associated parameter. For 
example, assume that there is a connector vector inPorts and a component stepl. 

parameter Integer nln=0 annotation(Dialog(connectorSizing=true)); 

Stepln inPorts[nln]; 
Step stepl(nln=0); 

Drawing a connection line between the connector vectors inPorts and stepl. inPorts results 
in the following: 

parameter Integer nln=0 annotation(Dialog(connectorSizing=true)); 

Stepln inPorts[nln]; 
Step stepl(nln=nln); // nln=0 changed to nln=nln 

equation 
connect(inPorts, stepl.inPorts); // new connect-equation 

• Rule 4. If an inside connection line between two vectors of connectors dimensioned with the 
connectorSizing associated parameters is deleted, the connect-equation is removed and the 
connectorSizing associated parameter of the component is set to zero or the modifier is 
removed. For example, assume that the connection line in drawn according to rule 3 is removed, 
which results in: 

parameter Integer nln=0 annotation(Dialog(connectorSizing=true)); 

Stepln inPorts[nln]; 
Step stepl; // modifier nln=nln is removed 

• Rule 5. If a new inside or outside connection line is drawn to the connector dimensioned with the 
connectorSizing associated parameter and this connector is defined in a superclass, then rule 1 
and rule 3 are correspondingly applied in the subclass. For example, assume that stepl is defined 
in the superclass Compos it eStep with three connections, and a new connection is performed in a 
subclass. The result is as follows: 

extends CompositeStep(stepl(nln=4)); // new modifier nln=4 

equation 
connect(..., stepl.inPorts[4]); // new connect-equation 

11.5.8 Annotations Defining Interactive Menus 

Most Modelica environments allow us to specify simulation parameter values through interactive graphical 
menus and forms. This is commonly used to interactively assign numerical values for parameters of model 
components before a specific simulation run, for example, to give a resistance parameter value for a 
certain resistor component. 

In certain situations, e.g. when there is a small number of predefined choices of a simulation parameter, 
it is more user-friendly to be able to choose among alternatives in a menu containing easy-to-understand 
descriptive menu items. For example, we might have a parameter that specifies the kind of controller to be 
used, where alternative 1 is a proportional controller, the second alternative is a proportional and 
integrating controller, and the third alternative is a PID controller. Instead of giving the number 2 to 
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choose the second alternative, we interactively choose the PI alternative in a menu containing the three 
items: P, PI, and PID. 

In order to specify such menus Modelica supports a standard annotation called choices. This 
annotation can be associated either directly with a parameter declaration or with a declaration of a type in 
some class or package. The choices annotation contains a number of choice annotation elements, one 
for each menu item. 

11.5.8.1 Choices Annotations for Variables and Enumeration Types 

The choices annotation is applicable to both replaceable and nonreplaceable elements. Examples of the 
latter are simple parameter variables and types used for enumerations. 

For a Boolean variable, a choices annotation may contain the definition checkbox = true, meaning 
to display a checkbox to input the values false or true in the graphical user interface. 

An an example, consider the following Integer type called KindOfController used to represent a 
choice of controller in the modeling process. This choice is made from the following enumeration of 
three recommended alternatives: 

type KindOfController=Integer(min=l,max=3) 
annotation(choices( 

choice^l "P", 
choice=2 "PI", 
choice=3 "PID")); 

Assume that KindOfController is used in a model A as below: 

model A 
parameter KindOfController x; 

end A; 
Without the choices annotation an interactive Modelica environment would present us with an integer 

value field for x in the parameter menu of model A. Instead, the choices annotation makes it possible for 
the environment to present a choice selection menu with the entries "P","PI","PID". If we interactively 
choose the third alternative from the menu this corresponds to giving the default value 3 for the 
instantiated variable x in the following code for an instance a 2 of the model A: 

A a2(x=3 "PID"); 
It can also be applied to Boolean variables to define a check box. 

parameter Boolean useHeatPort=false annotation(choices(checkBox=true)); 

11.5.8.2 Choices Annotations for Replaceable Model Elements 

The choices annotation also can be used to generate menus with redeclaration alternatives for 
replaceable models. The user interface can suggest reasonable redeclarations, where the string 
comment in a choice annotation element is used as a textual explanation of the choice alternative. Based 
on the interactions with the user, the graphical user interface then generates the appropriate Modelica code. 

Choices menus of replaceable elements can be automatically constructed showing the names of all 
classes that are either directly or indirectly derived by inheritance from the constraining class of the 
declaration. This can be recommended by having annotation choicesAHMatching = true; and 
disabled by having annotation choicesAHMatching = false. 

See also Section 4.3.12 in Chapter 4 concerning redeclarations. For example, consider the following 
replaceable model with a choices annotation: 

replaceable model MyResistor=Resistor 
annotation(choices( 

choice(redeclare MyResistor=lib2.Resistor "Resistor 1"), 
choice(redeclare MyResistor=lib2.Resistor2 "Resistor 2"))); 
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If the user would choose the first alternative, the following code might be produced if MyResistor is part 
of the class My Circuit and the chosen name of the instantiated component is x: 

MyCircuit x(redeclare MyResistor=lib2.Resistor) 
Additional examples of replaceable class declarations with redeclaration choices are shown 

below. In the first example we can choose between a resistor and a capacitor as choices of components 
with two pins, and in the second example a friction function is implemented as a constant, a table, or 
defined as an exponentiation function depending on our choice. 

replaceable Resistor Load(R=2) extends TwoPin 
annotation(choices( 

choice(redeclare lib2.Resistor Load(a={2}) "Resistor"), 
choice(redeclare Capacitor Load(L=3) "Capacitor"))); 

replaceable FrictionFunction a(func=exp) extends Friction 
annotation(choices( 

choice(redeclare ConstantFriction a(c=l) "Friction-constant"), 
choice (redeclare TableFriction a (table="...") "Friction-table"), 
choice(redeclare FunctionFriction a(func=exp)"Friction-exp")))); 

replaceable package Medium =Modelica.Media.Water.ConstantPropertyLiquidWater 
constrainedby Modelica.Media.Interfaces.PartialMedium 

annotation (choicesAHMatching=true) ; 

11.6 Annotations for Simulation Experiments 

Usually, the user explicitly gives the start time and stop time, and sometimes the relative tolerance 
(precision) for simulation experiments. This can be done either through a command line interface using 
commands such as simulate (), or through the graphical user interface of a Modelica tool. 

However, for many models it can be useful to associate meaningful default values for start time, stop 
time, or tolerance, since the user might not know the values which are valid for a particular model. This is 
the purpose of the experiment annotation 

The experiment annotation defines the default start time (St art Time) in seconds, the default stop 
time (stopTime) in seconds, the suitable time resolution for the result value grid (interval) in seconds, 
and the default relative integration tolerance (Tolerance) for simulation experiments to be carried out 
with a model. For example: 

annotation(experiment(StartTime=0, StopTime=100, lnterval=0.1, 
Tolerance=l.OE-4)) 

annotation(experiment(StartTime=-5, StopTime=10)) 

11.7 Annotation for Single Use of a Class 

For state machines (Section 13.7, page 729) it is useful to have single instances of local classes. This can 
be specified using the singlelnstance annotation: 

annotation(singlelnstance=true) 
The singlelnstance annotation in a class indicates that there should only be one instance of the class, 
and it should be in the same scope where the class is defined. The intent is to automatically remove the 
class when the instance is removed and to prevent duplication of the instance. 
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11.8 Annotations Influencing Code Generation 

Several annotations influence the code generation of the Modelica compiler, that is, the way the model 
code is translated to executable code. This typically has consequences for the performance of the generated 
code, visibility of results, or compatibility with certain external function code. 

• inline—function calls are replaced by corresponding function bodies with actual parameters 
substituted, see Section 11.13.3, page 555. 

• Late inline—function calls are replaced by corresponding function bodies with actual 
parameters substituted after symbolic optimizations. Calls with the same arguments may be 
replaced by a call to a generated specialized function for these arguments. See Section 11.13.3, 
page 555. 

• inlineAfterindexReduction—the function should be inlined after the function is 
differentiated for index reduction, and before any other symbolic transformations are performed, 
see Section 11.13.3, page 555. 

• arrayLayout with rowMajor and columnMajor—determines generated code calling external 
functions with different array layouts. See Section 11.13.5, page 556. 

• Evaluate—evaluate a parameter expression to a value, see Section 11.8.1, page 544. 
• HideResult—controls whether simulation results for a certain variable should be accessible, see 

Section 11.8.2, page 544. 

11.8.1 Annotations for Parameter Evaluation 

The Evaluate annotation allows the model developer to state that a parameter expression should be 
evaluated, which can give rise to more efficient code. It only has effect for variable declarations with the 
parameter prefix. 

The annotation Evaluate can occur in a variable declaration, its type declaration, or a base-class of 
the type-declaration. In the case of multiple conflicting annotations it is handled in a similar way as 
modifiers, i.e., an Evaluate-annotation on the variable declaration takes precedence. 

If Evaluate-true, the model developer proposes to utilize the value for the symbolic processing. 
This means that the parameter name is replaced by its value during symbolic processing which can give 
opportunities to generate more efficient code. In that case it is not possible to change the parameter value 
after symbolic preprocessing. 

If Evaluate=false, the model developer proposes to not utilize the value of the corresponding 
parameter for symbolic processing. 

Evaluate is for example used for the axis of rotation parameters in the Modelica.Mechanics. 
MultiBody library in order to improve the efficiency of the generated code. 

11.8.2 Annotations for Variable Visibility 

The attribute HideResult=true defines that the model developer proposes to not show the simulator 
results of the corresponding variable, e.g., it will not be possible to plot this variable. 

HideResult^false defines that the developer proposes to show the corresponding variable. If a 
variable is declared in a protected section, a tool might not include it in a simulation result. By setting 
HideResult=f alse, the modeler would like to have the variable in the simulation result, even if in the 
protected section. 

HideResult is for example used in the connectors of the Modelica. StateGraph library not to show 
variables to the modeler that are of no interest and would be confusing. 
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11.9 Documentation Annotations 

Documentation is important for any kind of software including Modelica models. The additional 
documentation information helps understanding and reusing code, as well as providing hints for its use in 
different kind of applications. 

Regarding the form of Modelica documentation, we have already mentioned string comments that can 
be associated with various constructs in Modelica and are displayed by most Modelica browser tools. 
Standard Modelica comments can be given everywhere but are not processed by Modelica tools. 

Modelica also defines a Documentation annotation for classes and packages, where information can 
be structured in key-value pairs, for example: 

annotation(Documentation( 
info = "Text string", 
revisions = "Text string", 
userdefined_keyl = "Text string", // Not standardized user defined key 
userdefined_key2 = "Text string" // Not standardized user defined key 

) ) ; 
Currently there is no Modelica standard for the categories (e.g. represented as key-value pairs) in this kind 
of documentation, except the "standard" info attribute described in the next section, which is used for 
general documentation of packages and classes in the Modelica standard library, and the revisions 
attribute used for a log of the revisions (may be left out in printout) of Modelica classes. It is expected that 
most organizations will specify their own documentation guidelines. 

We give the following hints for categories of information that typically should be part of good 
documentation: 

• Revision (development) history and author information. 
• Literature references. 
• Validation information regarding model behavior and comparison with measurement data. 
• Explanations and schematic drawings of models. 
• User advice for reuse and application of models. 

11.9.1 Information and HTML Documentation 

In the Modelica Standard Library and generally in Modelica code the Documentation annotation with 
the info attribute is a standardized way to define documentation. A Modelica environment should 
recognize documentation annotations of the following form: 

Documentation (info = string) 

For example, the documentation of the Modelica standard library package is expressed as the following 
annotation: 

annotation(Documentation(info = " 
<HTML> 
<p> Package <b>Modelica</b> is a <b>standardized</b> and <b>pre-defined</b> 
package that is developed together with the Modelica language from the 
Modelica Association, see 
<a href=\"http://www.Modelica.org\">http://www.Modelica.org</a>. 
It is also called <b>Modelica Standard Library</b>. 
It provides constants, types, connectors, partial models and model 
components in various disciplines.</p> 

<HTML>" ) ); 
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As we can see from the above example, HTML tags can be present in the info text. When extracting 
documentation information from a model, a Modelica tool should store this part of the documentation as 
an HTML-file that, for example, can be displayed by an appropriate HTML-browser. 

11.9.1.1 HTML Links to External Resources and Modelica Classes 

External resources can be linked from the HTML text in the info attribute, see Section 11.15, page 556. 
Links to Modelica classes may be defined with the HTML link command using the URI scheme 

modelica (Section 11.15.1 page 557) for example: 

<a href="modelica://MultiBody.Tutorial">MultiBody.Tutorial</a> 
Together with the URI scheme modelica the (URI) fragment specifiers: #diagram, #info, #text, 
#icon may be used to reference different layers. For example: 

<a href="Modelica://MultiBody.Joints.Revolute#info">Revolute</a> 

11.9.1.2 Preferred Documentation View of a Class 

When viewing a class through a tool there is a need to specify the default view of the class. Certain classes 
have only a textual definition whereas others are easiest to understand using the diagram view. Some 
classes may have a preferred view using the Documentation annotation info attribute contents. Such a 
default view can be specified using the preferredview annotation, which can have one of the three 
values "info", "diagram", or "text". 

The preferredview annotation defines the default view when selecting the class. The annotation 
attribute value "info" means the info layer, that is, the documentation of the class, "diagram" means 
the diagram layer, and "text" means the Modelica text layer. The annotation can be stated in the 
following ways: 

annotation(preferredview = "info") 
or 

annotation(preferredview = "diagram") 
or 

annotation(preferredview - "text") 

11.9.1.3 DocumentationClass Annotation 

The DocumentationClass annotation can be used as follows: 

annotation(DocumentationClass=true) 
It is only allowed as a class annotation on any kind of class and implies that this class and all classes 
within it are treated as having the annotation preferredView="info". If the annotation 
preferredview is explicitly set for a class, it has precedence over a DocumentationClass annotation. 

A Modelica tool may display such classes in special ways. For example, the description texts of the 
classes might be displayed instead of the class names, and if no icon is defined, a special information 
default icon may be displayed in the package browser. 

11.10 Version Handling Annotations 

A top level package or model can specify the version of top level classes it uses, its own version number, 
and if possible how to convert from previous versions. This can be used by a Modelica environment to 
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guarantee that consistent versions are used, and if possible to automatically upgrade usage from an earlier 
version to the current one. 

11.10.1 Version Numbering 

Version numbers are of the following forms, where the notation {} means repetition zero of more time 
(see Appendix B for interpretation of UNSIGNED INTEGER and S-CHAR): 

• Main release versions. """ UNSIGNED_INTEGER { UNSIGNED__INTEGER } " " " , e.g. 
"3.2". 

• Pre-release versions: """ UNSIGNED_INTEGER { "." UNSIGNED_INTEGER } " " {S-
CHAR} """,e.g. "3.2 Beta 1". 

• Unordered versions. """ NON-DIGIT {S-CHAR} """ , e.g. "Test 1". 
The main release versions are ordered using hierarchical numerical names, and follow the 

corresponding prerelease versions. The prerelease versions of the same main release version are internally 
alphabetically ordered. 

11.10.2 Version Handling 

In a top-level class, the version number and the dependency to earlier versions of this class are defined 
using one or more of the following annotations: 

• The annotation ver si on = current-version-number defines the version number (in string form) of 
the model or package. All classes within this top level class have this version number. 

• The annotation conversion (noneFromVersion = version-number) defines that user models 
using the version-number can be upgraded to the current-version-number of the current class 
without any changes. 

• The annotation conversion (from (version = version-number, script = "...") ) defines that 
user models using the version-number can be upgraded to the current-version-number of the 
current class by applying the given script. The semantics of the conversion script is not defined. 

• conversion (from (version = version-number, script = "...") ) or 
conversion (from (version = { version-number, version-number,...}, script = "...")) 
Defines that user models using the version-number or any of the given version-number can be 
upgraded to the current-version-number of the current class by applying the given script. The 
semantics of the conversion script is not defined. 

• The annotation uses {ident{version - version-number) ) defines that classes within this top-
level class uses version version-number of classes within the top-level class I DENT. 

The annotations uses and conversion may contain several different subentries. For example: 

package Modelica 
annotation(version="3.1", 

conversion(noneFromVersion="3.1 Beta 1", 
noneFromVersion="3.1 Beta 2", 
from(version={"2.1", "2.2", "2.2.1"}, 

script="convertTo3.mos"), 
from(version="l.5", 

script="convertFromModelical_5.mos"))); 

end Modelica; 

model A 
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annotation(version="l.0", uses(Modelica(version="l.5"))); 

end A; 

model B 
annotation(uses(Modelica(version="2.1 Beta 1"))); 

end B; 
In this example, the model A uses an older version of the Modelica library and can be upgraded using 

the given script, and model B uses an older version of the Modelica library but no changes are required 
when upgrading. 

11.10.3 Mapping of Versions to the File System 

A top-level class, named ident, with version version-number can be stored in one of the following ways in 
a file system directory given in the MODELICAPATH: 

• The file ident+" .mo", e.g. "Modelica.mo". 
• The file ident+" "+ version-number +" .mo", e.g. "Modelica 2 .1 .mo". 
• The directory ident, e.g. "Modelica", with the file package .mo directly inside it. 
• The directory ident+" "+ version-number, e.g. "Modelica 2.1", with the file package.mo 

directly inside it. 

This allows a Modelica environment to access multiple versions of the same package. 

11.10.4 Version Date and Build Information 

Besides version information (the annotation version, Section 11.10.2, page 547), a top-level class can 
have the following top level annotations to specify information associated to the version number. 

• The string versionDate which is the UTC date of the first version build in the format: YYYY-MM-
DD. 

• The integer version Bui id where a bigger number denotes a more recent maintenance update. 
• The string dateModified which is the UTC date and time of the latest change to the package in 

the following format, with one space between date and time: YYYY-MM-DD hh:MM: ssZ. 
• The string revisionid which is the revision identifier of the version management system used to 

manage this library. It marks the latest submitted change to any file belonging to the package. 

For example: 

package Modelica 
annotation(version 

versionDate 
versionBuild 
dateModified 
revisionid 

end Modelica; 

model Ml 
annotation(uses(Modelica(version = "3.0.1"))); // Common case 

end Ml 

model M2 
annotation(uses(Modelica(version = "3.0.1", versionBuild = 4))); 

- "3.0.1", 
- "2008-04-10", 
= 4, 
= "2009-02-15 16:33:14Z", 
- "$Id:: package.mo 2566 2009-05-26 13:25:54Z #$"); 
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end M2 
The meaning of the annotation attributes in the above example for the library package Modelica is 
explained in more detail as follows. 

• The version is the version number of the released library, in this case the library package 
Modelica. 

• The versionDate is the date in UTC format (according to ISO 8601) when the library was 
released. This string is updated by the library author to correspond with the version number. 

• The versionBuild is the optional build number of the library. When a new version is released 
versionBuild should be omitted or versionBuild =1. There might be bug fixes to the library 
that do not justify a new library version. Such maintenance changes are called a "build" release of 
the library. For every new maintenance change, the versionBuild number is increased. A 
versionBuild number Al that is higher than the versionBuild number A2 is a newer release 
of the library. There are no conversions between the same versions with different build numbers. 

Two releases of a library with the same version but different versionBuild are in general 
assumed to be compatible. In special cases, the uses annotation (Section 11.10.2, page 547) of a 
model may specify versionBuild and/or dateModified. In such a case the tool is expected to 
give a warning if there is a mismatch between the library and the model using the library. 

• The dateModif ied is the UTC date and time (according to ISO 8601) of the most recent 
modification of the package. The intention is that a Modelica tool updates this annotation 
whenever the package or part of it was modified and saved on persistent storage such as a file or 
database. 

• The revisionid is a tool specific revision identifier possibly generated by a source code 
management system (e.g. Subversion or CVS). This information allows exact identification the 
library source code in the source code management system. 

The versionBuild and dateModif ied annotation attributes can also be specified in the uses 
annotation together with the version number. The recommendation is that they are not automatically 
stored in the uses annotation by a tool. 

11.11 Tool Specific Annotations 

Sometimes there is a need for a Modelica tool vendor to add information in a model for a specific purpose. 
One example is an experimental early version of a construct which in some form might become a 
standardized part of the language in the future. Another case is to turn on specific functionality which 
never will be standardized but is useful for a specific purpose, perhaps asked for by a certain customer. 

To fulfill this need, it is possible to introduce nonstandard, so called tool or vendor specific annotations, 
anywhere within an annotation expression. Such annotations are identified by the first characters being 
double underscore concatenated with a vendor name as prefix of the vendor specific annotation identifier, for 
example, a new vendor specific annotation attribute NameOfVendor shadow. 

Vendor specific annotations need not be documented and are not intended to be interpreted by other 
Modelica tools. However, any tool shall save files with all standard annotations and all vendor-specific 
annotations intact. This has the advantage is that a typo in nonvendor annotations can be detected and 
marked as an error. 

There are two variants of vendor specific annotations, one simple variant and one hierarchical. 

The following example introduces a simple vendor specific annotation attribute called 
NameOfVendor_shadow to be used within the Rectangle primitive. 

annotation ( 
Icon(coordinateSystem(extent={{-100,-100}, { 100, 100} } ), 
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graphics={Rectangle(extent={{-5,-5},{7,7}}, 
NameOfVendor_shadow=2)}) 

) ; 

The second example shows a hierarchical vendor specific graphical primitive called Circle which is 
embedded in an expression prefixed by NameOfVendor. 

annotation ( 
Icon(coordinateSystem(extent-{{-100,-100}, {100,100}}), 

graphics-{ NameOfVendor(Circle(center-{0,0}, radius=10))}) 
) ; 

11.12 Annotations for Access Control to Protect Intellectual 
Property 

This section presents annotations to define the protection and the licensing of packages. The goal is to 
unify basic mechanisms to control the access to a package in order to protect the intellectual property 
contained in it. This information is used to encrypt a package and bind it optionally to a particular target 
machine, and/or restrict the usage for a particular period of time. 

Protecting the intellectual property of a Modelica package is considerably more difficult than protecting 
code from a programming language. The reason is that a Modelica tool needs the model equations in order 
that it can process the equations symbolically, as needed for acausal modeling. Furthermore, if a Modelica 
tool generates C-code of the processed equations, this code is then potentially available for inspection by 
the user. Finally, the Modelica tool vendors have to be trusted, that they do not have a backdoor in their 
tools to store the (internally) decrypted classes in human readable format. The only way to protect against 
such misuse are legally binding warranties of the tool vendors. 

The intent of this section is to enable a library vendor to maintain one source version of their Modelica 
library that can be encrypted and used with several different Modelica tools, using different encryption 
formats. 

These terms are used in the following two subsections. 

• Protection— defines what parts of a class are visible. 
• Obfuscation— this means changing a Modelica class or generated code so that it is difficult to 

inspect and understand by a user, e.g. by automatically renaming variables to non-meaningful 
names. 

• Encryption —encoding of a model or a package in a form so that the modeler cannot inspect any 
content of a class without an appropriate key. An encrypted package that has the Protection 
annotation is read-only. The only way to modify it is to generate a new encrypted version. 

• Licensing— restrict the use of an encrypted package for particular users for a specified period of 
time. 

Annotations are defined for Protection and Licensing. Obfuscation and encryption are not 
standardized. Protection and Licensing are both defined inside the Protection annotation, 

annotation(Protection(...)); 

11.12.1 Protection of Classes 

A class may have the following annotations to define what parts of a class are visible. If a class is 
encrypted and no Protection annotation is defined, the access annotation has the default value 
Access. documentation): 

type Access - enumeration(hide, icon, documentation, 
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diagram, nonPackageText, nonPackageDuplicate, 
packageText, packageDuplicate); 

annotation(Protection(access = Access.documentation)); 
The items of the Access enumeration have the following meaning: 

• Access.hide 
Do not show the class anywhere (it is not possible to inspect any part of the class) 

• Access.icon 
The class definition can be flattened, and public parameter, constant, input, and output variables as 
well as public connectors can be accessed, as well as the icon annotation (Section 11.4.1, page 
524). The declared information of these elements can be shown. Moreover, the class name and its 
description text can be accessed. 

• Access.documentation 
This is analogous to Access. icon. Moreover, the documentation annotation (Section 11.9, page 
545) can be accessed. HTML-generation in the documentation annotation is normally performed 
before encryption, but the generated HTML is intended to be used with the encrypted package. 
Thus the HTML-generation should use the same access as the encrypted version, even before 
encryption. 

• Access.diagram 
This is similar to Access .documentation. Additionally the diagram annotation and all 
components and connect-equations that have a graphical annotation can be accessed. 

• Access.nonPackageText 
This is the same as Access. diagram with the additional capability that if it is not a package: the 
whole class definition can be accessed, but cannot be copied. 

• Access.nonPackageDuplicate 
This is the same as Access .nonPackageText with the additional capability that if it is not a 
package: the class, or part of the class, can be copied and pasted. 

• Access.packageText 
This is the same as Access.diagram (but not including all rights of Access. 
nonPackageDuplicate) with the additional capability the whole class definition can be 
accessed, but cannot be copied. 

• Access.packageDuplicate 
This is the same as Access .packageText with the additional capability that the class, or part of 
the class, can be copied and pasted. 

The access annotation holds for the respective class and all classes that are hierarchically on a lower 
level, unless overridden by a Protection annotation with access. For example, if the annotation is 
given at the top level of a package and at no other class in this package, then the annotation holds for all 
classes in this package. Overriding access=Access .hide and access=Access .packageDuplicate 
has no meaningful effect. 

It is currently not standardized which result variables of encrypted package that are accessible for 
plotting. It seems natural to not introduce new flags for this, but instead reuse the Access .XXX definition, 
for example, for Access. icon only the variables can be stored in a result file that can also be inspected in 
the class, and for Access. nonPackageText all public and protected variables can be stored in a result 
file, because all variables can be inspected in the class. 

package CommercialFluid // Access icon, documentation, diagram 
package Examples // Access icon, documentation, diagram 
model PipeExample // Access everything, can be copied 
end PipeExample; 
package Circuits // Access icon, documentation, diagram 
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model ClosedCircuit // Access everything, can be copied 
end ClosedCircuit; 

end Circuits; 
model SecretExample // No access 

annotation(Protection(access=Access.hide)); 
end SecretExample; 
annotation(Protection(access=Access.nonPackageDuplicate)); 

end Examples; 

package Pipe // Access icon 
model StraightPipe // Access icon 
end StraightPipe; 
annotation(Protection(access=Access.icon)); 

end Pipe; 

package Vessels // Access icon, documentation, diagram 
model Tank // Access icon, documentation, diagram, text 
end Tank; 

end Vessels; 

annotation(Protection(access=Access.nonPackageText)); 
end CommercialFluid; 

11.12.2 Licensing 

Annotations within the Protection annotation are defined to restrict the usage of an encrypted package. 

record Protection 

String features[:]=fill("", 0) "Required license features"; 
record License 

String libraryKey; 
String licenseFile="" "Optional, default mapping if empty"; 

end License; 
end Protection; 

The License annotation only has effect at the top of an encrypted class, usually a package, and is then 
valid for that whole package hierarchy. The libraryKey is a secret string from the library vendor and is 
the protection mechanism so that a user cannot generate his/her own authorization file since the 
libraryKey is unknown to the user. 

The features annotation defines the required license options. If the features vector has more than one 
element, then at least a license feature according to one of the elements must be present. As with the other 
annotations, the features annotation holds for the respective class and for all classes that.are hierarchically at 
a lower level, unless further restricted by a corresponding annotation. If no license according to the features 
annotation is provided in the authorization file, the corresponding classes are not visible and cannot be used, not 
even internally in the package. 

For example: 

// Requires license feature "LicenseOption" 
annotation(Protection(features={"LicenseOption"}) ) ; 

// Requires license features "LicenseOptionl" or "LicenseOption2" 
annotation(Protection(features={"LicenseOptionl", "LicenseOption2"})); 

// The following requires license features ("LicenseOptionl" and 
"LicenseOption2") or "LicenseOption3" 

annotation(Protection(features={"LicenseOptionl LicenseOption2", 
"LicenseOption3"})); 
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In order that the protected class can be used either a tool specific license manager, or a license file (called 
license File) must be present. The license file is standardized. It is a Modelica package without classes 
that has a Protection annotation of the following form which specifies a sequence of target records, 
which makes it natural to define start/end dates for different sets of targets individually. 

record Authorization 
String licensor«"" "Optional string to show information about the 

licensor"; 
String libraryKey "Matching the key in the class. Must be encrypted and 

not visible"; 
License license[:] "Definition of the license options and of the access 

rights"; end Authorizations-

record License 
String licensee="" "Optional string to show information about the 

licensee"; 
String id[:] "Unique machine identifications, e.g. MAC addresses"; 
String features[:]=fill("",0) "Activated library license features"; 
String startDat ="" "Optional start date in UTCformat YYYY-MM-DD"; 
String expirationDate="" "Optional expiration date in UTCformat YYYY-MM-DD"; 
String operations[:]«fill("",0) "Library usage conditions"; 

end License; 
The format of the strings used for libraryKey and id are not specified since they are vendor specific. 

The libraryKey is a secret of the library developer. The operations define the usage conditions and 
the following are default names: 

• ExportBinary—Binary code generated from the Modelica code of the library can be can be 
included in binaries produced by a simulation tool. 

• ExportSource—Source code generated from the Modelica code of the library can be included in 
sources produced by a simulation tool. 

Additional tool-specific names can also be used. To protect the libraryKey and the target definitions, the 
authorization file must be encrypted and must never show the libraryKey. 

All other information, especially licensor and license should be visible, in order that the user can get 
information about the license. It is useful to include the name of the tool in the authorization file name 
with which it was encrypted. Note, it is not useful to store this information in the annotation, because only 
the tool that encrypted the Authorization package can also decrypt it. 

An example before encryption: 

// File MyLibrary\package.mo 
package MyLibrary 

annotation(Protection(License(libraryKey="15783-A39323-498222-444ckk411", 
licenseFile="MyLibraryAuthorization_-Tool .mo_lic", 
operations= { "ExportBinary"}) , ...)); 

end MyLibrary; 

// File MyLibrary\MyLibraryAuthorization_Tool.mo 
// (authorization file before encryption) 
package MyLibraryAuthorization_Tool 

annotation(Authorization( 
libraryKey="15783-A39323-498222-444ckk411", 

licensor ="Organization A\nRoad, Country", 
license={ 
License(licensee="Organization B, Mr.X", 

id ={"lie:1269"}), // tool license number 
License(licensee="Organization C, Mr. Y", 

id ={"lie:511"}, expirationDate="2010-06-30") , 
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License(licensee="Organization D, Mr. Z", 
id ={ ,,mac:0019d2c9bfe7"}) / / MAC address 

}) ) ; end MyLibraryAuthorization_Tool; 

11.13 Function Annotations 

Several rather special annotations are defined for functions. These annotations enable the Modelica 
compiler to generate more efficient code or to perform more efficient symbolic manipulation in certain 
situations. 

These annotations are the function derivative annotation, the function inverse annotation, the 
function Inline, Latelnline, and InlineAfterlndexReduction annotations, the function 
smoothOrder annotation, and the external function arrayLayout annotation. The function derivative 
annotation allows us to explicitly specify the computation of the derivatives of a function to any order, 
e.g., in order to gain performance and/or numerical accuracy. 

The function inverse annotation can be used to specify inverses of functions, sometimes useful in 
symbolic processing and solution of equation systems. The Inline, Latelnline, and 
InlineAfterlndexReduction annotations allow replacing function calls by corresponding function 
bodies. The smoothOrder annotation states that symbolic differentiation can be performed on the 
function up to a certain order. The external function annotation arrayLayout can be used to explicitly 
give the layout of arrays, e.g. if it deviates from the default rowMajor and columnMajor order for the 
external languages C and Fortran 77, respectively. 

11.13.1 Function Derivative Annotation 

A Modelica compiler usually needs to differentiate functions called in equations and expressions of a 
model when transforming the model into a form that is better suited for execution. A function defined in 
Modelica can be automatically differentiated based on symbolic differentiation of the statements in the 
body of the function. However, this option is not possible for external functions, for which the only 
alternative for the system usually is to resort to numerical approximations of the derivatives. Also, even for 
Modelica functions the automatically obtained symbolic derivatives may sometimes (but rather seldom) be 
inefficient or have numerical instabilities. 

For these reasons, an annotation called derivative, with an associated optional annotation attribute 
order, is available for Modelica functions, i.e., for both external functions and functions implemented in 
Modelica. This allows us to explicitly state the computation of the derivatives of a function to any desired 
order. We should point out that the derivative annotation is seldom needed, but is useful in certain 
cases where accuracy and/or performance need to be improved. For example, the function hO below 
specifies its time derivative to be given by the function h i , which in turn specifies its derivative (of order 
2) to be computed by the function h2. 

function hO annotation ( d e r i v a t i v e = h l ) ; 

end hO; 
function h i annotation(der ivat ive(order=2)=h2) ; 

end hi; 
function h2 

end h2; 
The function derivative annotation is described in more detail in Section 9.3.9, page 455. 
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11.13.2 Function Inverse Annotation 

Inverses of functions are sometimes useful in symbolic processing, e.g. during solution of systems of 
equation. Therefore it is possible for every Modelica function with one output argument to have one or 
more inverse annotations to define inverses of this function: 

function fi 
input Ax UI, 

input TI Uk. 

input AN um 

input AN Un-
output T2 y; 
annotation(inverse(uk = f2{..., y, . . . . ) , ut = f3 ( . . . , y, . . .) , . . . ) ) ; 
algorithm 

end fit 
The meaning is that function f2 is an inverse to function f i where the previous output y is now an input 
and the previous input uk is now an output. 

See Section 9.3.11, page 459, for more details including examples, of function inverse annotations. 

11.13.3 Function Inline, Latelnline, InlineAfterlndexReduction Annotations 

There are three annotations that control possible inlining of function calls, called inline, Latelnline, 
and InlineAfterlndexReduction respectively. All three annotations only have effect within function 
declarations. 

If lnline=true, the model developer proposes to inline the function. This means that the function call 
is replaced by the body of the function at all places where the function is called. This makes the execution 
more efficient by avoiding the overhead of a function call at each place but increases memory usage since 
the function body is duplicated at each call site. If inline»false, the model developer proposes not to 
inline the function. 

If Lateinline=true, the model developer proposes to inline the function after all symbolic 
transformations have been performed, especially symbolic differentiation and inversion of functions. 

Since a function call can only be inlined at most once, Latelnline has priority over inline, giving 
the following combination results: 

• The combination Inline=true, Latelnline=false is identical to Inline=true. 
• The combination Inline=true, Latelnline=true is identical to Latelnline=true. 
• The combination lnline=false, Latelnline=true is identical to Latelnline=true. 

If InlineAfterlndexReduction = true, the model developer proposes to inline the function after the 
function is differentiated for index reduction, and before any other symbolic transformations are 
performed. This annotation cannot be combined with annotations inline and Latelnline 

See Section 9.3.12, page 460, for a more detailed description with examples of function inlining. 

11.13.4 Function smoothOrder Annotation 

The smoothOrder annotation set to an unsigned integer value gives the number of differentiations of the 
function for which it is guaranteed that all of its differentiated outputs are continuous provided all input 
arguments and their derivatives up to order smoothOrder are continuous. This information is useful for a 
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Modelica compiler when performing certain symbolic transformations. For a more detailed description, 
see Section 9.3.13, page 461. 

11.13.5 External Function Annotation arrayLayout with rowMajor and 
columnMajor 

Regarding specific annotations only for external function declarations there is an optional arrayLayout 
annotation, which can have one of the values "rowMajor" or "columnMajor". These are the defaults for 
C and Fortran 77 array layout, respectively. This annotation causes additional information to be passed to 
the compiler when necessary. It is needed only when the array storage layout deviates from the default for 
the external language. This is the case for the function joinThreeVectors2 below where the C function 
uses column-major array representation, which is different from the default row-major layout that 
normally is used for C. For more information on external functions, see Section 9.4, page 466, specifically 
Section 9.4.6, page 475. 

function joinThreeVectors2 "External C function with column-major arrays" 
input Real vl[:],v2[:],v3[:]; 
output Real vres[size(vl,1)+size(v2,1)+size(v3,1)]; 

external "C" join3vec(vl,v2,v3,vres,size(vl,1),size(v2,1),size (v3,1) ) ; 
annotation(arrayLayout = "columnMajor"); end joinThreeVectors2; 

11.14 Annotations for External Libraries and Include Files 

There are several useful annotations for specifying external libraries and include files in the context of 
calling external functions from Modelica. See Section 9.4.9, page 479, for a more detailed description with 
examples on how to use these annotations. Below is a short summary: 

• The a n n o t a t i o n ( L i b r a r y = " l i b r a r y N a m e " ) is used to give information to the linker to 
include the library file where the compiled external function is available. 

• The a n n o t a t i o n ( L i b r a r y = { " l i b r a r y N a m e l " , " l i b r a r y N a m e 2 " } ) is used to give 
information to the linker to include the library files where the compiled external function is 
available as well as additional libraries used to implement it. For shared libraries it is 
recommended to include all non-system libraries in this list. 

• The annotation (lnclude="includeDirective") is used to include source files, e.g., header 
files or source files that contain the functions referenced in the external function declaration and 
are needed for calling the external function in the code generated by the Modelica compiler. 

• The annotation(IncludeDirectory="modelica://LibName/Resources/Include") can 
be used to specify a location for header files. See also Section 11.15.1, page 557, regarding 
Modelica URIs. 

• The annotation(LibDirectory="modelica://LibName/Resources/Library") can be 
used to specify a location for library files. 

11.15 URI References to External Resources 

Modelica models may reference external resources such as files or documents accessed via internet links, 
identified by so-called Uniform Resource Identifiers (URIs). 

An URI is a more general concept than URL (Uniform Resource Locator) or URN (Uniform Resource 
Name). A URI can be classified as either a URL or a URN or both. For example, an ISBN number that 
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refers to a book (e.g. urn: isbn: 0-4 86-27557-4) is a typical case of a URN, whereas a URL could be 
used to locate where a .pdf file of the book can be found. If the file is stored on a local file system, the 
URL might appear as follows: f i le : ///home/username/BookFileName. 

In the internet literature the term resource has a general meaning, i.e., whatever that might be identified 
by a URI, including more abstract things like services, relationships, and operators. However, in Modelica 
models we limit the term resource to mean files and/or documents. 

Examples of URI references in Modelica models can be found in html documentation annotations 
(Section 11.9, page 545), for example: 

annotation(Documentation(info = " 

<a href=\"http://www.Modelica.org\"> 

Another example of Modelica related URI references are names of files storing bitmaps, referenced in the 
f ileName attribute of BitMap records in graphical annotations (Section 11.4.5.6, page 534): 

record BitMap 
extends Graphicltem; 
Extent extent; 
String fileName "Name of bitmap f i le, specified by URI"; 
String imageSource "Base64 representation of bitmap"; 

end BitMap; 
How does a URI look like? A URI to locate a file, i.e., a URL, takes the following form: 

file://<host>/<path> 
Here f i le is a so-called scheme, <host> is the name of the server where the file resides, and <path> is 
the full path-name of the file on the file system. If it resides on the file system of the local computer the 
<host> can be omitted, but the third slash must be kept. For files with special characters in their names, 
such as spaces in "the f i l e . t x t " , the percent % sign is used as an escape code. A URI to locally access 
that file on the C: disk in a Windows file system can appear as follows: 

file:///c:/path/to/the%20file.txt 
If instead a resource is obtained from the server at example. org through the http protocol, http (hyper 
text transfer protocol) becomes our access scheme, with the following example of a possible URI: 

http://example.org/absolute/path/to/resource.txt 
In general the syntax of most URI variants follows this template: 
<scheme>://[<authority>]/<path_to_resource>[?<query>][#<fragment>] 

The URI starts by a scheme name such as http, ftp, mail to, file, or modelica, followed by a colon 
and then by a scheme-specific part, which has its own syntax and semantics. The parts within [ ], i.e., 
<authority>, ?<query>, and #<fragment> are optional. When <authority> is present, the <path> 
must either be empty or preceded by a slash ( / ) character, whereas if <authority> is not present, the 
<path> is not allowed to be preceded by two slash characters ( / / ) . 

11.15.1 The modelica URI Scheme for Package Related Resources 

As a complement to the common standard URI schemes, a Modelica related URI scheme called model ica 
is defined for accessing resources associated with a certain package. Note that even though scheme names 
are case insensitive, lower-case is preferred. For example, the URI prefix m o d e l i c a : / / is preferred over 
Modelica: //. 

The main advantage of the m o d e l i c a scheme is its ability to reference a hierarchical structure of 
resources associated with packages. The same structure can be used for all kind of resource references, 
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independent of use (external file, image in documentation, bitmap in icon layer, and link to external file in 
the documentation), and regardless of the storage mechanism. 

Consider a top-level package Modelica with a class Electrical inside. A modelica scheme URI 
for referencing the resource D. j pg associated with that package can appear as follows: 

modelica://Modelica.Electrical/D.jpg 
The general structure of m o d e l i c a scheme URIs is given by this template: 

modelica://<authority>/<path> 
The following rules apply to m o d e l i c a scheme URIs: 

• The <authority> portion of the URI is interpreted as a fully qualified package name. 
• The <path> portion of the URI is interpreted as the path (relative to the package) of the resource. 
• Any m o d e l i c a scheme URI containing a slash after the package name is interpreted as a reference 

to a resource. 
• Each storage method can define its own interpretation of the path, but care should be taken when 

converting from one storage method to another, or when restructuring packages for which resource 
references resolve to the same resource. 

• Any storage method should be constrained such that a resource with a given <path> should be 
unique for any package name that precedes it. 

• The first part of the <path> may not be the name of a class in the package given by the 
<authority>. 

• In case the class-name contains quoted identifiers, the single-quote ( x ) and any reserved 
characters ( : , / , ? , # , [, ] , ! , $ , & , ( , ) , * , + , " , " , ; , =) should be percent-
encoded as normal in URIs. 

For example, the following is a legal reference to the resource D. j pg within the Modelica .Electrical 
class: 

modelica://Modelica.Electrical/D.jpg / / this is legal 

This reference is incorrect since Modelica/Electrical is not a legal class name in Modelica: 
modelica://Modelica/Electrical/D.jpg / / this is illegal 

The above uniqueness property that resource should be unique for any package name that precedes it, 
means that the following resource reference 

modelica://Modelica.Mechanics/D.jpg 
must refer to a different resource than this one: 

modelica://Modelica/D.jpg 

11.16 Units and Quantities 

What is the meaning of unit and quantity? These notions are often used in the literature of natural sciences, 
e.g. in physics and chemistry. We speak about measuring physical quantities, and the unit by which we are 
measuring those quantities. Unfortunately the literature is sometimes confusing. Some texts use the terms 
unit, quantity, and dimension more or less interchangeably. Nonetheless one can discern some kind of 
consensus regarding the definition of unit and quantity based on the majority of scientific texts in the area: 

• Quantity, also called dimension, is what we measure, i.e., any measurable extent or magnitude such 
as length, mass, time, and so on. 
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• A unit is a "yardstick" by which we express our measurements. For example, a measurement of the 
length quantity can be expressed as a number of meter units. 

As we just stated, quantity can be interpreted as the basic notion of what we measure. There is a set of 
seven base quantities defined in the ISO SI system, stated below. The associated measurement unit is 
given within parentheses: 

• Length (m). 
• Mass (kg). 
• Time (s). 
• ElectricCurrent (A). 
• Temperature (K). 
• Amount of substance (mol). 
• Luminosity (Cd). 

However, the set of base quantities is not enough for engineering application modeling. For example, 
Angle is not included among the SI system base quantities—it is regarded as dimensionless. A number of 
derived quantities are quite important, e.g. Force (N), Torque (N.m), ElectricPotential (V), Voltage (V), 
Velocity (m/s), AngularVelocity (rad/s), etc.—the list is quite long. Applications in areas such as 
information technology may require additional quantities, for example, information flow with an 
associated unit of bit/second. 

The choice of the SI system base quantities above is somewhat arbitrary, partly influenced by practical 
considerations regarding the complexity of common unit expressions. Some unit systems use 
ElectricCharge as a base quantity instead of ElectricCurrent, since this can be considered as somewhat 
more basic from a physical modeling point of view. However, that leads to longer unit expressions in 
many practical cases when converting to base units. 

Modelica provides somewhat more precise definitions of q u a n t i t y and u n i t compatible with the 
above guidelines, as well as a formal syntax of unit expressions according to guidelines found in the ISO 
SI unit standard. 

11.16.1 Quantity, Unit, and dispiayUnit in Modelica 

The Modelica notions of q u a n t i t y and u n i t correspond to the definitions given in the previous section, 
but with a concrete representation as string attributes to the Rea l predefined class (see below and in 
Section 3.9 on page 93 in Chapter 3). 

type Real "Pseudo class declaration of predefined Real type" 

parameter 'StringType' quantity = "" "Physical quantity"; 
parameter 'StringType' unit = "" "Unit used in equations"; 
parameter 'StringType' dispiayUnit = "" "Default display unit"; 

end Real; 
The quantity, unit, and dispiayUnit attributes of the Real predefined type have the following 
meaning: 

• q u a n t i t y — a string describing what physical quantity the type represents. Example quantities are: 
"Mass," "Force," "Torque," "Acceleration," etc. The quantity attribute defines the 
category of a variable. It is used as a grouping mechanism for different units belonging to the same 
physical quantity. 

• unit—a string describing the physical measurement unit of the type. Examples are "kg", V , 
"m/s", "N.m", "kg.m/s2", "kg.m.s-2", "l/rad", etc. The unit attribute defines the unit of 
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variable values as used for computation in expressions and equations. The numeric values of 
variables are interpreted with respect to their associated units. 

• d i s p l a y U n i t —gives the default unit used by a Modelica tool for interactive input/output. For 
example, the display unit for angle might be "deg," but the unit might be "rad" Values 
interactively input or output as "deg" are then automatically converted to/from "rad." 

Below are examples of definitions and uses of types corresponding to some physical quantities. 
Remember that the f inal prefix on quantity and unit means that these attributes cannot be changed 
by further modification of the types Force and Angle. 

/ / Define quantity types 
type Force = Real(final quantity="Force", final unit="N"); 
type Angle = Real(final quantity=nAngle", final unit="rad", 

displayUnit="deg"); 
/ / Use the quantity types 
Force f l ; 
Force f2(displayUnit="kp"); 
Angle alpha; 
Angle beta(displayUnit="rad"); 
As stated above, the q u a n t i t y attribute can be used as a grouping mechanism in interactive Modelica 

environments. The quantity name is needed because it is in general not possible to determine just from the 
unit whether two different units belong to the same physical quantity. For example, consider the 
following two types: 

type Torque = Real(final quantity="MomentOfForce", final unit="N.m"); 
type Energy = Real(final quantity="Energy" , final unit="J"); 

The units of type Torque and type Energy both can be transformed to the same combination of base 
units, that is, "kg.m2/s2" However, the two types still characterize different physical quantities. In an 
interactive Modelica environment with a menu prompting for a choice of displayUnit for an instantiated 
component of the Torque type, the unit "J" should not appear in the menu. If only the unit of the 
variable is given without any quantity information, it is not possible for the Modelica environment 
to produce a correct list of alternatives in the menu for using a display unit. 

The Modelica standard library package Modelica.Slunits contains predefined quantity and 
connector types in the form shown in the above examples. This library contains approximately 450 
predefined types comprising the complete set of ISO SI standard units, which is quite helpful when 
defining the interfaces of a model. Some additional examples from this library are shown below: 

type ElectricCurrent = Real(final quantity="ElectricCurrent", 
final unit= "A"); 

type Current = ElectricCurrent; 
type Resistance = Real(final quantity="Resistance", 

final unit="Ohm", min=0); 
type Inductance = Real(final quantity="Inductance", 

final unit="H", min=0); 
type Time = Real(final quantity="Time", final unit="s" ); 
type Length = Real(final quantity=nLength", final unit="m" ); 
type Position = Real(final quantity="Length", final unit="m"); 
type AngularVelocity = Real(final quantity="AngularVelocity", 

final unit="rad/s", 
displayUnit="rev/min"); 

type AngularAcceleration = Real(final quantity="AngularAcceleration", 
final unit="rad/s2"); 

type MomentOfInertia = Real(final quantity="MomentOfInertia", 
final unit="kg.m2"); 
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11.16.2 Unit Conversion 

Automatic conversion between units is not required by a conforming Modelica language implementation. 
This is a facility that can be provided by separate tools such as unit and dimension checkers, or special 
high-quality Modelica implementations. Not requiring automatic unit conversion simplifies a Modelica 
translator considerably, partly because it is hard to define a complete unit database with conversion rules. 

As a consequence, the semantics of a correct Modelica model is independent of the unit and 
q u a n t i t y attributes, which are ignored during code generation. It is even the case that the u n i t attributes 
are not checked for connections, that is, connected variables may have different units and quantities. 
However, an interactive Modelica environment, for example, a model connection editor, is free to provide 
support for such automatic unit conversion when two interfaces are connected. If there are conflicting units 
a warning will be issued since this is not really considered an error. As a general rule it will always be 
allowed to connect any variable to a variable without u n i t and q u a n t i t y information. 

11.16.2.1 Dimension and Quantity Checking 

The more common term dimension checking refers to consistency checking regarding compatible 
quantities and units in expressions and equations. For example, a Modelica environment may optionally 
check the consistency of the quantity and unit attributes between the left-hand side and the right hand 
side of an equation. 

Dimension checking is done by transforming the quantity and unit information into combinations 
of the seven base quantities with associated units. For example, consider the equation: 

f = m-a (11-1) 

The quantity of the right-hand side is initially Mass*Acceleration, which is reduced to 
Mass*LengthA2/TimeA2 in terms of base quantities. The corresponding units are converted to 
"kg .m2/s2". If the left-hand side has the quantity Force with the unit "N", this can be converted to the 
same base quantities as in the right-hand side. However, if, for example, the unit o f / instead would have 
been "N . m", a unit inconsistency warning should be issued. 

11.16.3 Unit Expression Syntax 

The Modelica syntax rules for unit expressions determine the structure of Modelica unit attributes 
represented as strings, for example, as in the following example unit strings: "kg", "m", "m/s", "N.m", 
"kg .m/s2", "kg .m. s-2", "1/rad" 

These rules are conformant with the international standards ISO 31/0-1992, "General principles 
concerning quantities, units and symbols" and ISO 1000-1992 "SI units and recommendations for the use 
of their multiples and of certain other units." Unfortunately, neither these standards nor any other previous 
standard define a formal syntax for unit expressions. However, Modelica defines a formal syntax for unit 
expressions based on recommendations in the above standards. These formal syntax rules can be found in 
Appendix B. 

Below we informally describe the Modelica syntax rules for unit expressions together with a few 
examples: 

• The unit of a dimension-free quantity is denoted by "1". 
• The only permitted operators in unit expressions are division, represented by " /" , and 

multiplication, represented by a do t " . " . 
• Implied multiplication between units in unit expressions is not allowed, e.g. "NM" is incorrect, 

instead "N.m" should be used. 
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• There is no operator symbol for exponentiation. Instead a possibly signed number immediately 
after a unit operand is interpreted as an exponent. There should be no space between the operand 
and the exponent, for example, for square meter, m2, write "m2". 

• The ISO standard recommends at most one division where the expression to the right of " / " either 
contains no multiplications or is enclosed within parentheses. It is also possible to use negative 
exponents, for example, " J / (kg. K )" may be written as " J . k g - 1 . K - 1 " . 

• A unit symbol is a string of letters, for example, "kg", "Ohm", etc. A basic support of units in a 
Modelica tool should know the basic and derived units of the SI system. It should be possible to 
support user-defined unit symbols. In the base version, Greek letters are not supported, but full 
names must then be written, for example "Ohm". 

• A unit operand expression should first be analyzed with an interpretation as a unit symbol. Only if 
not successful the second alternative assuming a prefixed operand should be investigated. There 
should be no spacing between the unit symbol and a possible unit prefix. The possible value of the 
prefix is according to the ISO standard, that is, one of Y, Z, E, P, T, G, M, k, h, da, d, c, m, u, p, f, 
a, z, y. The letter u is used as a symbol for the prefix micro. 

Below are some examples of combinations of prefixes, unit symbols, and possible exponents. Prefixes 
have a higher priority than exponents, and may not be used in isolation. 

• The unit expression "m" means meter and not milli (10"3), since prefixes cannot be used in 
isolation. For millimeter use "mm" and for square meter, m2, write "m2" 

• The expression "mm2" means mm2 = (10"3m)2 = 10"6m2. Note that exponentiation includes the 
prefix. 

• The unit expression " T " means Tesla, but note that the letter "T" is also the symbol for the prefix 
tera, which has a multiplier value of 1012. 

11.17 Summary 

In this chapter, we presented the Modelica annotation concept followed by a short overview of units and 
quantities in Modelica. First we described annotation syntax and placement, including annotation elements 
for redeclarations, classes, variables, imports, equations, and algorithms. Then followed a description of 
graphical annotations, which comprise a large part of the predefined annotations in Modelica. We 
subsequently presented the layered structuring of graphical annotations and the different graphical 
annotation attributes. We also defined the graphical annotation elements as record structures in Modelica, 
as well as annotations defining interactive menus, documentation annotations, and different kinds of 
function annotations. Finally we presented the concepts of units and quantities with associated attributes, 
unit conversion, and unit expression syntax. 

11.18 Literature 

The Modelica language specification (Modelica Association 2011) and the tutorial (Modelica Association 
2000) specify the rules for annotations in Modelica, and give the basics of units and quantities. 

More information concerning the general principles of quantities, units and symbols and their use can 
be found in (ISO 31/0-1992; ISO 1000-1992). Information on units and unit conversion is available in 
(Cardarelli 1997). 
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11.19 Exercises 

Exercise 11-1: 

Define a type Acceleration with the associated SI unit m/s2. 

Exercise 11-2: 

To which Modelica elements can annotations be applied? 
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Chapter 12 

Cyber-Physical System Modeling Methodology 

So far in this text we have primarily discussed the principles of object-oriented mathematical modeling, a 
number of Modelica language constructs to support high-level model representation and a high degree of 
model reuse, and presented many model examples that demonstrate the use of these language constructs. 
However, we have not yet presented any systematic method on how to create a model of a system to be 
investigated, nor have we previously presented the underlying mathematical state-space equations in any 
detail. These are the topics of the current chapter. However, the state-space representation presented here 
covers only the simple case for continuous systems. The background for discrete event and hybrid 
continuous-discrete system modeling is explained in Chapter 13, whereas the complete hybrid DAE 
representation that also handles discrete events and hybrid systems is defined in Chapter 17. 

12.1 Building System Models 

A basic question is: How do we arrive at reasonable mathematical models of the systems we want to study 
and possibly simulate? That is, what is an effective modeling process? 

The application domain is of primary importance in all kinds of modeling. We talk about physical 
modeling when the systems to be modeled are described by natural laws in physics, chemistry, biology, 
mechanical and electrical engineering, and so on, and these laws can be represented directly in the 
mathematical model we are constructing. However, it does not really matter whether the application 
domain is "physical" or not. There are laws governing economic systems, data communication, 
information processing, and so on that should be more or less directly expressible in the model we are 
building when using a high-level modeling approach. All of these laws are given by the universe in which 
we exist (but formulated by human beings), and can be regarded as basic laws of nature. An overview of 
common laws for a number of application domains is given in Chapter 14. 

At the start of a modeling effort we first need to identify which application domains are involved in the 
system we want to model, and for each of these domains find out the relevant governing laws that 
influence the phenomena we want to study. 

In order to be able to handle the complexity of large models and to reduce the effort of model building 
by reusing model components, it is quite useful to apply hierarchical decomposition and object-oriented 
component-based techniques such as those advocated in this text. To make this more clear, we will briefly 
contrast the traditional physical modeling approach to the object-oriented, component-based approach. 

However, one should be aware that even the traditional approach to physical modeling is "higher-level" 
than certain other approaches such as block-oriented modeling or direct programming in common 
imperative languages, where the user has to manually convert equations into assignment statements or 
blocks and manually restructure the code to fit the data and signal flow context for a specific model use. 

567 
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12.1.1 Deductive Modeling versus Inductive Modeling 

So far we have dealt almost exclusively with the so-called deductive modeling approach, also called 
physical modeling approach, by which the behavior of a system is deduced from the application of natural 
laws expressed in a model of the system. Such models are created based on an understanding of the 
"physical" or "artificial" processes underlying the system in question, which is the basis for the term 
"physical modeling." 

However, in many cases, especially for biological and economic systems, accurate knowledge about 
complex systems and their internal processes may not be available to an extent that would be needed to 
support physical modeling. In such application areas, it is common to use an entirely different approach to 
modeling. You make observations about the system under study and then try to fit a hypothetical 
mathematical model to the observed data by adapting the model, typically by finding values of unknown 
coefficients. This is called the inductive modeling approach. 

Inductive models are directly based on measured values. This makes such models difficult to validate 
beyond the observed values. For example, we would like to accommodate mechanisms in a system model 
is such a way that disasters can be predicted and therefore possibly prevented. However, this might be 
impossible without first observing a real disaster event (that we would like to avoid by all means) in the 
system. This is a clear disadvantage of inductive models. 

Also notice that just by adding sufficiently many parameters to an inductive model it is possible to fit 
virtually any model structure to virtually any data. This one of the most severe disadvantages of inductive 
models since in this way one can be easily fooled concerning their validity. 

In the rest of this book, we will mainly deal with the deductive or physical modeling approach, except 
for a few biological application examples where we present models that are partly inductive and partly 
have some physical motivation. 

12.1.2 Traditional Approach 

The traditional methodology for physical modeling can be roughly divided into three phases: 
1. Basic structuring in terms of variables 
2. Stating equations and functions 
3. Converting the model to state space form 

The first phase involves identification of which variables are of interest, for example, for the intended 
use of the model, and the roles of these variables. Which variables should be considered as inputs, for 
example, external signals, as outputs, or as internal state variables? Which quantities are especially 
important for describing what happens in the system? Which are time varying and which are 
approximately constant? Which variables influence other variables? 

The second phase involves stating the basic equations and formulas of the model. Here we have to look 
for the governing laws of the application domains that are relevant for the model, for example, conservation 
equations of quantities of the same kind such as power in related to power out, input flow rate related to 
output flow rates, and conservation of quantities such as energy, mass, charge, information, and so on. 
Formulate constitutive equations that relate quantities of different kind, for example, relating voltage and 
current for a resistor, input and output flows for a tank, input and output packets for a communication link, 
and so on. Also formulate relations, for example, involving material properties and other system properties. 
Consider the level of precision and appropriate approximation trade-offs in the relationships. 

The third phase involves converting the model in its current form consisting of a set of variables and a 
set of equations to a state space equation system representation (see page 588 in this chapter) that fits the 
numeric solver to be used. A set of state variables needs to be chosen, their time derivatives (for dynamic 
variables) expressed as functions of state variables and input variables (for the case of state space 
equations in explicit form), and the output variables expressed as functions of state variables and input 
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variables. If a few unnecessary state variables are included, this causes no harm, just some unnecessary 
computation. This phase is completely eliminated when using Modelica since the conversion to state space 
form is performed automatically by the Modelica compiler. 

12.1.3 Object-Oriented, Component-Based Approach 

When using the object-oriented, component-based approach to modeling we first try to understand the 
system structure and decomposition in a hierarchical top-down manner. When the system components and 
interactions between these components have been roughly identified, we can apply the first two traditional 
modeling phases of identifying variables and equations on each of these model components. The object-
oriented approach has the following phases: 

1. Define the system briefly. What kind of system is it? What does it do? 
2. Decompose the system into its most important components. Sketch model classes for these 

components, or use existing classes from appropriate libraries. 
3. Define communication, that is, determine interactions and communication paths between these 

components. 
4. Define interfaces, that is, determine the external ports ¡connectors of each component for 

communication with other components. Formulate appropriate connector classes that allow a high 
degree of connectivity and reusability, while still allowing an appropriate degree of type checking 
of connections. 

5. Recursively decompose tentative model components of assumed "high complexity" further into a 
set of "smaller" subcomponents by restarting from phase 2, until all components have been defined 
as instances of predefined types, library classes, or new classes to be defined by the user. 

6. Formulate new model classes when needed, both base classes and derived classes: 
a. Declare new model classes for all model components that are not instances of existing 

classes. Each new class should include variables, equations, functions, and formulas 
relevant to define the behavior of the component, according to the principles already 
described for the first two phases of the traditional modeling approach. 

b. Declare possible base classes for increased reuse and maintainability by extracting 
common functionality and structural similarities from component classes with similar 
properties. 

To get more of a feeling for how the object-oriented modeling approach works in practice, we will apply 
this method to modeling a simple tank system described in Section 12.2 on page 570, and to a DC motor 
servo in Section 12.3 on page 578. 

12.1.4 Top-Down versus Bottom-Up Modeling 

There are two related approaches to the structuring process when arriving at a model: 

• Top-down modeling. This is useful when we know the application area rather well, and have an 
existing set of library component models available. We start by defining the top-level system 
model at a high level of abstraction. The level of detail of the system model is gradually increased 
by adding subsystems to the model, possibly hierarchically at several levels of abstraction, until we 
arrive at subsystems that correspond to the component models in our library. 

• Bottom-up modeling. This approach is typically used when the application is less well known, or 
when we do not have a ready-made library at hand. First we formulate the basic equations and 
design small experimental models on the most important phenomena to gain a basic understanding 
of the application area. After some experimentation we have gained some understanding of the 
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application area, we can then add more details and restructure our model fragments into a set of of 
low-level model components which can be used as building blocks for further modeling. These 
component models might have to be restructured several times if they turn out to have problems 
when used for applications. We gradually build more complex application models based on our 
component models, and finally arrive at the desired application model. 

Section 12.3, page 578, on modeling of a DC-motor from predefined components gives a typical 
example of top-down modeling. The small tank modeling example described in Section 12.2 has some 
aspects of bottom-up modeling since we start with a simple flat tank model before creating component 
classes and forming the tank model. A better example is the thermodynamic application described in 
Section 15.2, page 800, which is gradually developed, starting from scratch with very simple model 
examples. These examples gradually grow into a set of components that are used for the final application 
models. 

12.1.5 Simplification of Models 

It is sometimes the case that models are not precise enough to accurately describe the phenomena at hand. 
Too extensive approximations might have been done in certain parts of the model. 

On the opposite side, even if we create a reasonable model according to the above methodology, it is 
not uncommon that parts of the model are too complex, which might lead to problems, e.g.: 

• Too time-consuming simulations. 
• Numerical instabilities. 
• Difficulties in interpreting results due to too many low-level model details. 

Thus, there are usually good reasons to consider simplification of a model. It is sometimes hard to get the 
right balance between simplicity and preciseness of models. This is more an art than a science and requires 
substantial experience. The best way to acquire such experience, however, is to keep on designing models 
together with performing analysis and evaluation of their behavior. The following are some hints of where 
to look for model simplifications, e.g. reduction of the number of state variables: 

• Neglect small effects that are not important for the phenomena to be modeled. 
• Aggregate state variables into fewer variables. For example, the temperatures at different points in 

a rod might sometimes be represented by the mean temperature of the whole rod. 

Focus modeling on phenomena whose time constants are in the interesting range, that is: 

• Approximate subsystems with very slow dynamics with constants. 
• Approximate subsystems with very fast dynamics with static relationships, i.e. not involving time 

derivatives of those rapidly changing state variables. 

An advantage of ignoring the very fast and the very slow dynamics of a system is that the order of the 
model, that is, the number of state variables, is reduced. Systems having model components with time 
constants of the same order of magnitude are numerically simpler and more efficient to simulate. On the 
other hand, certain systems have the intrinsic property of having a great spread of time constants. Such 
systems give rise to stiff systems of differential equations, which require certain adaptive numerical 
solvers for simulation (see also Chapter 18). 

12.2 Modeling a Tank System 

Regarding our exercise in modeling methodology, let us consider a simple tank system example containing 
a level sensor and a controller that is controlling a valve via an actuator (Figure 12-1). The liquid level h in 
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the tank must be maintained at a fixed level as closely as possible. Liquid enters the tank through a pipe 
from a source, and leaves the tank via another pipe at a rate controlled by a valve. 

I source | 

maxLevel 

level h 

controller 

Figure 12-1. A tank system with a tank, a source for liquid, and a controller. 

12.2.1 Using the Traditional Approach 

We first show the result of modeling the tank system using the traditional approach. A number of variables 
and equations related to the tank system have been collected into the flat model presented in the next 
section. At this stage we do not explain how the equations have been derived and what exactly certain 
variables mean. This is described in detail in subsequent sections where the object-oriented approach to 
modeling the tank system is presented. 

12.2.1.1 Flat Tank System Model 

The Flat Tank model is a "flat" model of the tank system with no internal hierarchical "system structure" 
visible, that is, just a collection of variables and equations that model the system dynamics. The internal 
system structure consisting of components, interfaces, couplings between the components, and so on, is 
not reflected by this model: 

model FlatTank 
// Tank related variables and parameters 

) = 0 . 0 2 ; 
=1; 
=0.05; 
"Tank level"; 
"Flow through input valve"; 
"Flow through output valve"; 

parameter Real flowLevel(unit="m3/s 
parameter Real area(unit="m2") 
parameter Real flowGain(unit="m2/s") 
Real h(start=0,unit="m") 
Real qlnflow(unit="m3/s") 
Real qOutflow(unit="m3/s") 
/ / Controller related variables and parameters 
parameter Real K=2 "Gain"; 
parameter Real T(unit="s")= 10 "Time constant"; 
parameter Real minV=0/ maxV=10; / / Limits for flow output 
Real ref = 0.25 "Reference level for control"; 
Real error "Deviation from reference level"; 
Real outCtr "Control signal without limiter"; 
Real x; "State variable for controller"; 

equation 
assert (minV>=0,"minV must be greater or equal to zero");// der(h) = (qlnflow-qOutflow)/area; / / Mass balance equation 
qlnflow = if time>150 then 3*flowLevel else flowLevel; 
qOutflow - LimitValue(minV,maxV,-flowGain*outCtr); 
error = ref-h; der(x) = error/T; 
outCtr = K*(error+x); 

end FlatTank; 
A limiter function is needed in the model to reflect minimum and maximum flows through the output 

valve: 
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function LimitValue 
input Real pMin; 
input Real pMax; 
input Real p; 
output Real pLim; 

algorithm 
pLim := if p>pMax then pMax 

else if p<pMin then pMin 
else p ; end LimitValue; 

Simulating the flat tank system model and plotting the results (Figure 12-2): 

simulate(FlatTank, stopTime=250) 

12.2.2 Using the Object-Oriented, Component-Based Approach 

When using the object-oriented, component-based approach to modeling, we first look for the internal 
structure of the tank system. Is the tank system naturally decomposed into certain components? The 
answer is yes. Several components are actually visible in the structure diagram of the tank system in 
Figure 12-3, for example, the tank itself, the liquid source, the level sensor, the valve, and the controller. 

Thus it appears that we have five components. However, since we will choose very simple 
representations of the level sensor and the valve, i.e. just a single scalar variable for each of these two 
components, we let these variables be simple Real variables in the tank model instead of creating two new 
classes containing a single variable each. Thus we are left with three components that are to be modeled 
explicitly as instances of new classes: the tank, the source, and the controller. 

The next stage is to determine the interactions and communication paths between these components. It 
is fairly obvious that fluid flows from the source to the tank via a pipe. Fluid also leaves the tank via an 
outlet controlled by the valve. The controller needs measurements of the fluid level from the sensor. Thus 
a communication path from the sensor of the tank to the controller needs to be established. 

Communication paths need to be connected somewhere. Therefore, connector instances need to be 
created for those components which are connected, and connector classes declared when needed. In fact, 
the system model should be designed so that the only communication between a component and the rest of 
the system is via connectors. 

Finally we should think about reuse and generalizations of certain components. Do we expect several 
variants of a component to be needed? In that case it is useful to collect the basic functionality into a base 
class, and let each variant be a specialization of that base class. In the case of the tank system we expect to 
plug in several variants of the controller, starting with a continuous PI controller. Thus it is useful for us to 
create a base class for tank system controllers. 

Figure 11-1. A Resistor icon defined by graphical annotations. Figure 11-1. A Resistor icon defined by graphical annotations. 

simulate(FlatTank, stopTime=250) 
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12.2.3 Tank System with a Continuous PI Controller 

The structure of the tank system model developed using the object-oriented component-based approach is 
clearly visible in Figure 12-3. The three components of the tank system—the tank, the PI controller, and 
the source of liquid—are explicit in Figure 12-3 and in the declaration of the class TankPI below. 

TankPI 
qOut 

tSensor^- -MActuator 

j piContinuous 
c l n V TcOut 

Figure 12-3. A tank system with a continuous PI controller and a source for liquid. Even though we have 
used arrows for clarity there need not be a signal direction—there are only physical connections represented 
by equations. 

model TankPI 
LiquidSource source(flowLevel=0.02); 
PIcontinuousController piContinuous(ref=0.25); 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qin); 
connect(tank.tActuator, piContinuous.cOut); 
connect(tank.tSensor, piContinuous.cln); 

end TankPI; 
Tank instances are connected to controllers and liquid sources through their connectors. The tank has 

four connectors: qin for input flow, qOut for output flow, tSensor for providing fluid level 
measurements, and tActuator for setting the position of the valve at the outlet of the tank. The central 
equation regulating the behavior of the tank is the mass balance equation, which in the current simple form 
assumes constant pressure. The output flow is related to the valve position by a flowGain parameter, and 
by a limiter that guarantees that the flow does not exceed what corresponds to the open/closed positions of 
the valve. 

model Tank 
ReadSignal tSensor "Connector, sensor reading tank level (m)"; 
ActSignal tActuator "Connector, actuator controlling input flow"; 
LiquidFlow qin "Connector, flow (m3/s) through input valve"; 
LiquidFlow qOut "Connector, flow (m3/s) through output valve"; 
parameter Real area(unit="m2") = 0.5; 
parameter Real flowGain(unit="m2/s") =0.05; 
parameter Real minV=0, maxV=10; // Limits for output valve flow 
Real h(start=0.0, unit="m") "Tank level"; 

equation 
assert (minV>=0,"minV - minimum Valve level must be >= 0 ");// 
der(h) = (qin.lflow-qOut.lflow)/area; // Mass balance 

equation 
qOut.lflow = LimitValue(minV,maxV,-flowGain*tActuator.act) ; 
tSensor.val = h; 

end Tank; 
As already stated, the tank has four connectors. These are instances of the following three connector 

classes: 
connector ReadSignal "Reading fluid level" 
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Real val(unit="m"); 
end ReadSignal; 
connector ActSignal "Signal to actuator for setting valve position" 
Real act; 

end ActSignal; 
connector LiquidFlow "Liquid flow at inlets or outlets" 

Real lflow(unit="m3/s"); 
end LiquidFlow; 

The fluid entering the tank must come from somewhere. Therefore, we have a liquid source component in 
the tank system. The flow increases sharply at time=150 to factor of three of the previous flow level, 
which creates an interesting control problem that the controller of the tank has to handle. 

model LiquidSource 
LiquidFlow qOut; 
parameter Real flowLevel = 0.02; 

equation 
qOut.lflow = if time>150 then 3*flowLevel else flowLevel; 

end LiquidSource; 
The controller needs to be specified. We will initially choose a PI controller but later replace this by 

other kinds of controllers. The behavior of a continuous PI {proportional and integrating) controller is 
primarily defined by the following two equations: 

dx _ error 
~dt~~~T~ (12-D 

outCtr = K * (error + x) 

Here x is the controller state variable, error is the difference between the reference level and the actual 
level of obtained from the sensor, T is the time constant of the controller, outCtr is the control signal to the 
actuator for controlling the valve position, and K is the gain factor. These two equations are placed in the 
controller class PicontinuousController, which extends the BaseController class defined later. 

model PicontinuousController 
extends BaseController(K=2,T=10); 
Real x "State variable of continuous PI controller"; 

equation 
der(x) = error/T; 
outCtr = K*(error+x); 

end PicontinuousController; 
By integrating the first equation, thus obtaining x, and substituting into the second equation, we obtain 

the following expression for the control signal, containing terms that are directly proportional to the error 
signal and to the integral of the error signal respectively, i.e. a PI (proportional and integrating) controller. 

outCtr=K* ( e r r o r ( 1 2 - 2 ) 

Both the PI controller and the PID controller to be defined later inherit the partial controller class 
BaseController, containing common parameters, state variables, and two connectors: one to read the 
sensor and one to control the valve actuator. 

In fact, the BaseController class also can be reused when defining discrete PI and PID controllers 
for the same tank example in Section 13.4.1, page 676. Discrete controllers repeatedly sample the fluid 
level and produce a control signal that changes value at discrete points in time with a periodicity of Ts. 

partial model BaseController 
parameter Real Ts(unit= "s") = 0.1 "Time period between discrete samples"; 
parameter Real K=2 "Gain"; 
parameter Real T(unit = "s") = 10 "Time constant"; 
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ReadSignal cln "Input sensor level, connector"; 
ActSignal cOut "Control to actuator, connector"; 
parameter Real ref "Reference level"; 
Real error "Deviation from reference level"; 
Real outCtr "Output control signal"; 

equation 
error = ref-cln.val; 
cOut.act = outCtr; 

end BaseController; 
We simulate the TankPi model and obtain the same response as for the FlatTank model, which is not 

surprising given that both models have the same basic equations (Figure 12-4). 

simulate(TankPi, stopTime=250) 
plot(tank.h) 

t i m e 
50 100 150 200 250 

Figure 12-4. The tank level response for the TankPi system containing a Pi controller. 

12.2.4 Tank with Continuous PID Controller 

We define a TankPiD system which is the same as the TankPi system except that the PI controller has 
been replaced by a PID controller. Here we see a clear advantage of the object-oriented, component-based 
approach over the traditional modeling approach, since system components can be easily replaced and 
changed in a plug-and-play manner (Figure 12-5). 

TankPID 

tSensor1- -^Actuator 

- ^ p i d C o n t i n u o u s " ^ cOut 

Figure 12-5. The tank system with the P i controller replaced by a PiD controller. 

The Modélica class declaration for the TankPID system appears as follows: 

model TankPID 
LiquidSource source(flowLevel=0.02); 
PIDcontinuousController pidContinuous(ref=0.25) ; 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qln); 
connect(tank.tActuator, pidContinuous.cOut); 
connect(tank.tSensor, pidContinuous.cln); 

end TankPID; 
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A PID {proportional, integrating, derivative) controller model can be derived in a similar way as was 
done for the PI controller. PID controllers react quicker to instantaneous changes than PI controllers due to 
the term containing the derivative. A PI controller on the other hand puts somewhat more emphasis on 
compensating slower changes. The basic equations for a PID controller are the following: 

dx error 
dt T 

derror (12-3) 
v = T y dt 

outCtr = K* (error + x + y) 

We create a PiDcontinuousController class in Modelica containing the three defining equations: 

model PiDcontinuousController 
extends BaseController(K=2,T=10); 
Real x; / / State variable of continuous PID controller 
Real y; / / State variable of continuous PID controller 

equation 
der(x) = error/T; 
y = T*der(error); 
outCtr = K*(error + x + y); 

end PiDcontinuousController; 
By integrating the first equation and substituting x and y into the third equation, we obtain an 

expression for the control signal which contains terms directly proportional, proportional to the integral, 
and proportional to the derivative of the error signal, that is, a proportional integrating derivative (PID) 
controller. 

outCtr = K* (error + f SIBLdt + T ^ - ) (12-4) J T dt } 

We simulate the tank model once more but now including the PID controller (Figure 12-6). The tank 
level as a function of time of the simulated system is quite similar to the corresponding system with a PI 
controller, but with somewhat faster control to restore the reference level after quick changes of the input 
flow. 

simulate(TankPID, stopTime=250) 
plot(tank.h) 

Figure 12-6. The tank level response for the TankPID system containing a PID controller. 

The diagram in Figure 12-7 shows the simulation results from both TankPI and TankPID plotted in 
the same diagram for comparison. 

simulate(compareControllers, stopTime=250) 
plot({tankPI.h,tankPID.h}) 
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Figure 12-7. Comparison of TankPl and TankPiD simulations. 

12.2.5 Two Tanks Connected Together 

The advantages of the object-oriented, component-based approach to modeling become even more 
apparent when combining several components in different ways, as in the example depicted in Figure 12-8, 
where two tanks are connected in series, which is not uncommon in process industry. 

TanksConnectedPI 

qOut qlnj n o l n r ^ -»gout qlnr- ¡nqOut 

p L _ H t a n k 1 B , g= tank2 g ^ 
tSensorC -HActuatorl [tSensörC =HActuator 

L ^ p i C o n t i n u o u s l ^ ^ L ^ p j C o n t i n u o u ^ } ^ -

Figure 12-8. Two connected tanks with PI controllers and a source for liquid connected to the first tank. 

The Modelica model TanksConnectedPI corresponding to Figure 12-8 appears as follows: 

model TanksConnectedPI 
LiquidSource source(flowLevel=0. 02) ; 
Tank tankl(area=l); 
Tank tank2(area=l.3); 
PIcontinuousController piContinuousl(ref=0.25); 
PIcontinuousController piContinuous2(ref=0.4); 

equation 
connect(source.qOut,tankl.qln); 
connect(tankl.tActuator,piContinuousl.cOut); 
connect(tankl.tSensor,piContinuousl.cln); 
connect(tankl.qOut,tank2.qln) ; 
connect(tank2.tActuator,piContinuous2.cOut); 
connect(tank2.tSensor,piContinuous2.cln); 

end TanksConnectedPI; 
We simulate the connected tank system. We clearly see the tank level responses of the first and second 

tank to the changes in fluid flow from the source, where the response from the first tank of course appears 
earlier in time than the response of the second tank (Figure 12-9). 

simulate(TanksConnectedPI, stopTime=400) 
plot({tankl.h,tank2.h}) 
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Figure 12-9. The tank level responses for two tanks connected in series. 

12.3 Modeling of a DC-Motor Servo from Predefined Components 

In this section, we illustrate the object-oriented, component-based modeling process when using 
predefined library classes by sketching the design of a DC motor servo model. We do not go into any 
detail since the majority of the used classes are described in the context of the DC motor application 
presented in Section 15.1, page 794, and the previous tank example was presented in quite some detail. 

What does a DC motor servo do? It is a motor, the speed of which can be controlled by some kind of 
regulator (Figure 12-10). Since it is a servo, it needs to maintain a specified rotational speed despite a 
varying load. Presumably it contains an electric motor, some mechanical rotational transmissions and 
loads, some kind of control to regulate the rotational speed, and some electric circuits since the control 
system needs electric connections to the rest of the system, and there are electric parts of the motor. The 
reader may have noticed that it is hard to define a system without describing its parts, i.e., we are already 
into the system decomposition phase. 

Figure 12-10. A DC motor servo. 

12.3.2 Decomposing into Subsystems and Sketching Communication 

In this phase we decompose the system into major subsystems and sketch communication between those 
subsystems. As already noted in the system definition phase, the system contains rotational mechanical 
parts including the motor and loads, an electric circuit model containing the electric parts of the DC motor 
together with its electric interface, and a controller subsystem that regulates the speed of the DC motor by 
controlling the current fed to the motor. Thus there are three subsystems as depicted in Figure 12-11: 
controller, an electric circuit, and a rotational mechanics subsystem. 

Regarding the communication between the subsystems, the controller must be connected to the electric 
circuit since it controls the current to the motor. The electric circuit also needs to be connected to the 
rotational mechanical parts in order that electrical energy can be converted to rotational energy. Finally, a 

12.3.1 Defining the System 
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feedback loop including a sensor of the rotational speed is necessary for the controller to do its job 
properly. The communication links are sketched in Figure 12-11. 

Figure 12-11. The subsystems and their connections. 

12.3.3 Modeling the Subsystems 

The next phase is to model the subsystems by further decomposition. We start by modeling the controller 
and manage to find classes in the standard Modelica library for a feedback summation node and a PI 
controller. We also add a step function block as an example of a control signal. All these parts are shown 
in Figure 12-12. 

\ 
\ 

Controller 
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""•«Electrical 
C i f t w i ^ 

Rotational 
Mechanics 

\ \ 
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Figure 12-12. Modeling the controller. 

The second major component to decompose is the electric circuit part of the DC motor (Figure 12-13). 
Here we have identified the standard parts of a DC motor such as a signal-controlled electric voltage 
generator, a ground component needed in all electric circuits, a resistor, an inductor representing the coil of 
the motor, and an electromotoric force (EMF) converter to convert electric energy to rotational movement. 

Controller 
/ Electrical \ Rotational 

Controller 
/ Circuit ""Mechanics 

/ j \ 

Figure 12-13. Modeling the electric circuit. 

The third subsystem, depicted in Figure 12-14, contains three mechanical rotational loads with inertia, 
one ideal gear, one rotational spring, and one speed sensor for measuring the rotational speed needed as 
information for the controller. 
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12.3.4 Modeling Parts in the Subsystems 

We managed to find all the needed parts as predefined models in the Modelica class library. If that would 
not have been the case, we would also have needed to define appropriate model classes and identified the 
equations for those classes, as sketched for the parts of the control subsystem in Figure 12-15, the electric 
subsystem in Figure 12-16, and the rotational mechanics subsystem in Figure 12-17. 

e=u> r e f-ujo u t 

\ 

Figure 12-15. Basic equations and components in the control subsystem. 

The electric subsystem depicted in Figure 12-16 contains electrical components with associated basic 
equations, for example, a resistor, an inductor, a signal voltage source, and an electromotoric force (EMF) 
component. 

Figure 12-16. Defining classes and basic equations for components in the electric subsystem. 

The rotational mechanics subsystem depicted in Figure 12-16 contains a number of components such as 
inertias, a gear, a rotational spring, and a speed sensor. 

Figure 12-15. Basic equations and components in the control subsystem. 
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12.3.5 Defining the Interfaces and Connections 

When each subsystem has been defined from predefined models, the interfaces to the subsystem are given 
by the connectors of those components that interact with other subsystems. Each subsystem has to be 
defined to enable communication with the other subsystems according to the previously sketched 
communication structure. This requires the connector classes to be carefully chosen to be type compatible. 
Actually, the selection and definition of these connector interfaces is one of the most important steps in the 
design of a model. 

Control Electric Rotational Mechanics 

Figure 12-18. Finalizing the interfaces and connections between the subsystems, including the feedback 
loop. 

The completed model of the DC motor servo is depicted in Figure 12-18, including the three 
subsystems and the feedback loop. 

12.4 Designing Interfaces—Connector Classes 

As in all system design, defining the interfaces between the components of a system model is one of the 
most important design tasks since this lays the foundation for the communication between the components, 
thereby also heavily influencing the decomposition of the model. 

Most important is to identify the basic requirements behind the design of component interfaces, i.e., 
connector classes, that influence their structure. These requirements can be briefly stated as follows: 

• It should be easy and natural to connect components. For interfaces to models of physical 
components it must be physically possible to connect those components. 

• Component interfaces should facilitate reuse of existing model components in class libraries. 

Figure 12-15. Basic equations and components in the control subsystem. Figure 12-15. Basic equations and components in the control subsystem. 



582 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

Fulfilling these goals requires careful design of connector classes. The number of connector classes should 
be kept small in order to avoid unnecessary mismatches between connectors due to different names and 
types of variables in the connectors. 

Experience shows that it is surprisingly difficult to design connector classes that satisfy these 
requirements. There is a tendency for extraneous details that are created during software (model) 
development for various computational needs to creep into the interfaces, thereby making them harder to 
use and preventing component reuse. Therefore one should keep the connector classes as simple as 
possible, and try to avoid introducing variables that are not really necessary. 

A good rule of thumb when designing connector classes for models of physical components is to 
identify the characteristics of (acausal) interaction in the physical real world between these components. 
The interaction characteristics should be simplified and abstracted to an appropriate level and reflected in 
the design of the connector classes. For nonphysical components, for example, signal blocks and software 
components in general, one has to work hard on finding the appropriate level of abstraction in the 
interfaces and trying these in practice for feedback on ease-of-use and reusability. The Modelica standard 
library contains a large number of well-designed connector classes which can serve as inspiration when 
designing new interfaces. 

There are basically three different kinds of connector classes, reflecting three design situations: 
1. If there is some kind of interaction between two physical components involving energy flow, a 

combination of one potential and one flow variable in the appropriate domain should be used for 
the connector class. 

2. If information or signals are exchanged between components, input/output signal variables 
should be used in the connector class. 

3. For complex interactions between components, involving several interactions of type (1) and (2) 
above, a hierarchically structured composite connector class is designed that includes one or more 
connectors of the appropriate type (1), (2), or (3). 

When all the connectors of a component have been designed according to the three principles above, 
the formulation of the rest of the component class follows partly from the constraints implied by these 
connectors. However, these guidelines should not be followed blindly. There are several examples of 
domains with special conditions that deviate slightly from the above rules. 

The topic of designing connector classes is discussed in more detail, including a number of examples, 
in Section 5.5 on page 203 in Chapter 5. 

12.5 Block Diagram Models 

A block diagram model can be regarded as a special case of model for which the causality of each 
interface variable has been fixed to either input or output. Such models for example, can be represented by 
Modelica models which have the prefixes input or output on all their connector variables, and thereby 
fulfill the requirements for the restricted block class in Modelica. 

Before digital computers became common, analog computers were used for simulation. These were a 
physical realization of block diagrams in terms of building blocks such as multipliers, adders, integrators, 
etc., as depicted in Figure 12-19. These are graphical representations, for example, of basic mathematical 
operations like multiplication, addition, integration, and so on, that also can be expressed in textual 
programming language syntax. The well-known Simulink® product realizes block diagrams on digital 
computers and provides a graphical user interface where block diagrams can be specified, as well as an 
environment where block diagram models can be simulated. 
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f(x,y) 

Integrator Multiplier 

Figure 12-19. Examples of common block diagrams. 

A block diagram is a more primitive model concept than general Modelica classes in the sense that it is 
valid only for specific data-flow context and thereby is less reusable. It represents a signal-oriented way of 
thinking, where the signal direction in terms of data flow is always known. 

Block diagrams consist of blocks that are connected by arrows. A block is a transducer that transforms 
the incoming signals to one or more output signals. A block can represent simple arithmetic operations or 
functions without memory, but also operations whose results are dependent on previous input to the block, 
that is, with memory. Hierarchical decomposition is supported since connected blocks forming a block 
diagram can itself be treated as a block. While a block diagram clearly depicts the data flow in a system, it 
does not preserve any of the structure of the system itself, as can be seen in the block diagram model of the 
DC motor servo in Figure 12-20. 

A small change in the model or in the set of variables we want to study may force us to rearrange the 
entire structure of the block diagram, which may have little similarity to the previous version. This is a 
clear disadvantage of a block diagram that forces many engineers in industry to redesign the block diagram 
models over and over again. 
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These disadvantages are not as noticeable in control engineering, where block diagrams are quite popular. 
The reason is that control engineers force their circuits to behave in such a way that the signal flow 
structure and the topological structure coincide, for example, by effectively decoupling stages and using 
feedback loops. A number of common block classes, for example, for use in control applications, are 
available in the Modelica library Modelica .Blocks, see Section 16.8, page 936). 

12.6 Categories of Variables and Constants in Mathematical Models 

It is rather obvious from the previous discussions of mathematical models and presented examples that 
several different categories of variables and constants can be present in those models. For a certain model 
under some experimental conditions, some variables play roles as inputs, others as outputs, others are 
internal state variables, and some are not variables but constants since they keep the same value over time. 

12.6.1 Input, Output, State Variables, and Constants 

The following is a list of definitions concerning variables and constants having different roles in 
mathematical models (see also Section 17.1.3, page 981). These roles are usually not a property of the 
model or the modeled system as such, but rather a consequence of a combination of a model, some 
experiments, or simulation, and conditions given by what we want to study. However, we should be aware 
that models can be formulated in more or less general or reusable ways. An acausal equation-based model 
fits many different data-flow contexts with different roles of variables, for example, as inputs or outputs, 
whereas a model for which the variables have been fixed in either input or output roles only fits a few 
experimental settings. 

• Constant—a quantity in the model that does not vary with time. Such a quantity is declared with 
the c o n s t a n t prefix in Modelica. 

• Model parameter—a constant in the model that is determined by the system, that is, a system 
parameter, or a constant that can be changed in order to give the system different properties, that 
is, a design parameter. It is declared with the parameter prefix in Modelica, and is constant 
during a simulation run, but can be modified between simulation runs. 

• Variable—a quantity in the model that varies with time, sometimes also called signal. 
• Output variable—a variable whose behavior we want to observe. Usually denoted by y{t). Whether 

a variable is an output variable is not a property of the modeled system, but is determined by what 
we want to study. However, it is often the case that we also want to observe a few state variables 
(see below). 

• Input variable—a variable that affects the model behavior without being affected by the model's 
other variables, that is, an external signal, and whose time variations we can control, usually 
denoted by u(t). 

• Disturbance signal—an external signal whose time variations we cannot affect, usually denoted by 
xv(t), but usually u(t) and w(t) are grouped together into a single input vector denoted u(t). 

• Internal variable—a model variable that is neither an output, an input, nor a disturbance signal. 
• State variable—for continuous-time ODE models: an internal variable whose time derivative 

appears in the model, usually denoted by x(t), and its time derivative by x(t). A state variable must 
be of type Real or a subtype of Real in Modelica. If we want to study some state variable x,(t), we 
can always introduce a corresponding output variable y/t) together with an equation yj(t)=x,(t), or 
directly observe the state variable. For hybrid models containing discrete-time variables, a more 
general but less precise definition might be appropriate: a variable that needs to be stored and 
updated during the simulation in order to compute the output. For DAEs the set of state variables is 
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a selection of some dynamic variables x(t) together with some algebraic variables y(t) (see also 
Section 18.2.6, page 1016). 

• Algebraic variable—a variable that appears in algebraic equations, but whose derivative does not 
appear in the model, usually included in the set of variables denoted by y{t) even if we are not 
interested in observing that variable. 

Any of the above-mentioned model variables—y(t\ u(t), w(t), i ( / )and x(t)—can denote a scalar if 
there is just one variable of that kind in the model, but usually a vector, i.e.: 

x(t) = 
' « • o r 

, " ( 0 = etc. (12-5) 

A block diagram model of a generic system with outputs y(t), internal state variables x(t), controllable 
inputs u{t\ and disturbance inputs w(t) is depicted in Figure 12-21. In the following we group u{t) and w{t) 
together into a single input vector denoted u{t). 

u{t) 

1 
w(t) 

x(t), x(t) - > x o 

Figure 12-21. A simple block diagram model of a generic system. 

12.7 Types of Equations in Mathematical Models 

So far, we have seen many examples of equations in Modelica models. One might ask what is a natural 
classification of different categories of equations in mathematical models intended for simulation, and 
what subset of those categories can be represented in the Modelica language? The form of equations 
derived from simple Modelica models was briefly discussed in Chapter 2, Section 2.20.1, page 64. 

In this section we will give a short overview of different types of equations and their relation to 
Modelica, whereas in Chapter 17, page 979, we will go into more depth concerning the general form of the 
hybrid DAE representation that is used to represent the full range of mathematical models expressible in 
Modelica. We exclude integral equations from this overview. 

12.7.1 Ordinary Differential Equations—ODEs 

Ordinary differential equations (ODEs), arise in most mathematical models of continuous dynamic 
systems since the time dependency in those systems usually is reflected by the presence of time derivatives 
of state variables of the corresponding models. Newton's force law that the force F is equal to the mass m 
times the second-derivative s of the position s with respect to time (i.e., the acceleration) is a simple 
example of a second order ODE: 

ms(t) = F(t) (12-6) 

By introducing an additional variable v(t), we can get rid of the second derivative. After a slight 
rearrangement of the first equation we have all derivatives on the left-hand side (in explicit form) and they 
are all first-order derivatives. This means that we have transformed the system into a first-order ODE 
system in explicit form: 
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¿(0 = v ( 0 

An ODE system in this form is especially efficient to solve numerically. The general structure of an ODE 
system in explicit state space form is the following, with inputs u(t), outputs y(t), and state variables Jt(i): 

= / ( * « , « ( ' ) ) ( 1 2 _ 8 ) 

y(t) = g(x(t)Mi)) 

Here we have also introduced outputs y(t) that are directly computable from the state variables and the 
inputs but do not influence the solution for the state variables x(t). 

12.7.2 Algebraic Equations 

Algebraic equations are relations between variables not involving derivatives of any variables. Such 
equations arise naturally in models of natural and artificial systems, especially when some kind of 
constraint is involved. For example, the Cartesian coordinates {*i, xi) of the mass in the pendulum system 
depicted in Figure 2-2 fulfill the following algebraic equation that the length of the pendulum is L 
according to Pythagoras's law: 

x l + x l = L 2 (12-9) 

Variables that are defined by algebraic equations and whose derivatives do not appear in the model are 
called algebraic variables. Some of those variables may also be output variables. 

The general implicit form of a system of algebraic equations (not including differential equations) is as 
follows: 

g(x(t)Mt),y(t)) = 0 (12-10) 

12.7.3 Differential Algebraic Equations—DAEs 

A system of differential and algebraic equations (DAEs), include both differential and algebraic equations. 
For example, the pendulum model equations below are a DAE system of five differential and two 
algebraic equations, involving the variables xi,*2,vi,V2,(p,a>,F, and the constants L, m, g. We have replaced 
the previous Pythagoras-style algebraic equation by two algebraic equations involving X] and xi 
respectively, which still preserve the length constraint of the pendulum. 



Chapter 12 Cyber-Physical System Modeling Methodology 587 

mvl= -Fs\n((p) 
mv2 = Fcos((p)-mg 
xY =v{ 

x2 = v 2 (12-11) 

q>-(o 

xx =Lsin(<p) 
x2 = - L c o s ( ^ ) 

The general implicit form of a DAE system is as follows, of which the above example is a special case 
wherex = { }, u= {},and>>= {co^F}. 

f(x(t),x(t)At\y(t)) = o (1212) 

g(x(t)Mt),y(t)) = o 

12.7.4 Difference Equations 

Difference equations occur in discrete-time models and typically relate values of quantities at different 
discrete points in time, e.g. between the times f* and tun- The general explicit form of a system of 
difference equations can be expressed as 

x(tk+l) = Ax(tk)Mtk)A) <12"13> 

Difference equations are treated in more detail in Chapter 13. 

12.7.5 Conditional Equations and Hybrid DAEs 

Conditional equations include equations that become active only at certain points in time, or during certain 
time periods. This kind of equation is used to define the notion of event, and is treated in more detail in 
Chapter 13. Hybrid DAEs are DAEs which also may include some conditional equations. The hybrid DAE 
equation form is the basic equation representation behind Modelica, and is described in detail in Chapter 
17, page 979. 

12.7.6 Partial Differential Equations—PDEs 

Partial differential equation (PDE)-based models allow derivatives also by space coordinate variables and 
not only by time, as in ordinary differential equations. Typical space coordinates are x, y, and z in a three-
dimensional Cartesian coordinate system. Phenomena modeled by PDEs are distributed in space in one or 
more dimensions, for example, heat diffusion, fluid flows, and so on. The following is the one-dimensional 
diffusion equation along the z coordinate: 

^ = (12-14) 
dt dz2 

The current version of Modelica cannot directly represent models containing PDEs. However, ongoing 
work is extending Modelica to handle PDEs, see Section 8.10, page 400. Still, simple one-dimensional 
PDEs can rather easily be handled in the current version of Modelica by explicit discretization along a 
space coordinate (see Section 15.9, page 875). 
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12.8 Statespace Equations for Continuous Systems 

We have earlier made a general definition of a state variable as a variable that needs to be stored and 
updated during the simulation in order to compute the output of the model. For continuous-time system 
models, these variables are those whose time derivatives appear in the model. There is a standard 
formulation of the equations of certain mathematical models of dynamic systems called explicit state space 
models, based on the derivatives of state variables (in the discrete-time case the state variable values for 
the next time step) being explicit on the left side of the equations. 

These models are attractive as a basic mathematical representation since they usually are easier and 
more efficient to solve and to analyze than more complicated models, while being able to represent a fairly 
large spectrum of application models. However, we should be aware that many models cannot be 
transformed into an explicit state space form. This simple form is not a requirement of the Modelica 
language, which is based on the more general implicit hybrid DAE form described in Chapter 17, page 
979. 

12.8.1 Explicit State Space Form 

The basic ODE state space explicit form of the continuous equations of a model is presented below, where 
x(t) is the set of state variables, i.e., the variables for which time derivatives occur in the model, u(t) 
represents the input variables, and y(t) represents the output variables and/or algebraic variables. The 
model is said to be in explicit state space form if only the derivatives are present on the left-hand side of 
the first equation. 

x(t) = f(x(t)Mt)) (12_15) 

y(t) = g(x(t),u(t)) 

Here x(t\ u(t), and y(t) are vectors a n d / 0 and g(t) are vector-valued functions. State space models that 
have not been manipulated into this form are in an implicit form. The semi-explicit form of a DAE appears 
as follows: 

x(t) = f{x{t),y(t)Mt)) (12_16) 

y«) = g(x(t)M0) 

Discrete and hybrid versions of DAEs are defined in Section 17.1, page 979. 

12.8.2 Linear Models 

A linear model is an explicit state space model for which the functions fix,u) and g(x,u) can be expressed 
as linear functions of their arguments. This enables a matrix formulation of those functions as expressed 
below, where A, B, C, and D are matrices: 

f(x(t),u(t)) = Ax(t) + Bx(t) (1217) 

g(x(t),u(t)) = Cx(t) + Du(t) 

The dimensions of these matrices are as follows, A: n x n, B: n x m, C: r x n, and D: r x m, which is 
compatible with *(i) being an «-dimensional vector, u(t) being an m-dimensional vector, and y(t) being an 
r-dimensional vector. 
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12.9 Summary 

In this chapter, we have presented an object-oriented, component-based process on how to arrive at 
mathematical models of the systems we are interested in, and compared this to the traditional modeling 
approaches, e.g. based on programming language or block diagram representation. We have also made a 
short overview of different kinds of notation and equations in mathematical models, as well as presenting 
the state space model representation for continuous systems. 

12.10 Literature 

General principles for object-oriented modeling and design are described in (Rumbaugh 1991; Booch 
1991). A general discussion of block oriented model design principles can be found in (Ljung and Glad 
1994), whereas (Andersson 1994) describes object-oriented mathematical modeling in some depth. 
Simulink®, described in (MathWorks 2001), is the currently most well-known tool for block-oriented 
modeling. 

Many concepts and terms in software engineering and in modeling/simulation are described in the 
standard software engineering glossary: (IEEE Std 610.12-1990) together with the IEEE Standard glossary 
of modeling and simulation (IEEE Std 610.3-1989). 

12.11 Exercises 

Exercise 12-1: 

What is the difference between top-down and bottom-up modeling? 

Exercise 12-2: 

What are the rules to follow when defining connector interfaces? 

Exercise 12-3: 

What ar
e
 th

e
 advantages of a component-based model over a flat model? 
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Chapter 13 

Discrete Events and Hybrid and Embedded 
System Modeling 

Physical systems evolve continuously over time, whereas certain man-made systems evolve by discrete 
steps between states. For example, a binary digital computer internally switches between many instances 
of the discrete states 0 and 1. This discrete approximation enormously simplifies the understanding and use 
of a computer, since otherwise one would have to deal with the physics of transistors continuously 
changing voltage between the level representing 0 and the level representing 1. 

These discrete changes, or events—when something happens—occur at certain points in time. We talk 
about discrete event dynamic systems as opposed to continuous dynamic systems directly based on the 
physical laws derived from first principles, for example, from conservation of energy, matter, or momentum. 

A hybrid system contains both discrete parts and continuous parts. A typical example is a digital 
computer system interacting with the external physical world, as depicted schematically in Figure 13-1. 
This is, however, a very simplified picture since the discrete parts usually are distributed together with 
physical components in many technical systems. For example, consider a paper mill where local digital 
controllers are integrated as parts in the paper-making machines. 

Figure 13-1. A hybrid system in which a discrete computer senses and controls the continuous physical world. 

Since hybrid models contain both discrete and continuous components, they are very hard to treat 
analytically. Computer simulation is usually the only way to understand such systems, apart from certain 
simplified cases. 

This chapter gives an introduction to modeling and simulating discrete event dynamic systems and 
hybrid dynamic systems using Modelica. First, the notions of events, use events, and event-based 
formalisms are informally introduced for modeling a number of discrete systems as well as relating several 
well-known discrete event-modeling formalisms to equivalent forms in Modelica. Both clocked and 
unclocked modeling styles are presented, including several model examples presented in clocked and 
unclocked versions. We continue by presenting a few hybrid model examples based on the hybrid DAE 
mathematical representation (differential, algebraic, and discrete equations) used for hybrid models in 

591 
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Modelica. Finally, a detailed presentation of Modelica clocked modeling constructs and clocked state 
machines is given. 

Before going into the details about discrete modeling concepts such as events, we will in the next 
section say a few words about the general characteristics of an important class of discrete event dynamic 
systems that can be modeled using Modelica. 

13.1 Real-Time and Reactive Systems 

Reactive system is an important subclass of real-time computer systems with discrete characteristics, 
usually with a general structure roughly corresponding to that depicted in Figure 13-1. Such systems 
continuously react to their environment at a speed or rate determined by that environment, that is, the 
computer system is subject to time constraints of the environment. Reactive systems differ from ordinary 
batch computational software systems that compute certain results based on some input data without any 
time constraints, and interactive systems that continuously react to users and to the environment, but 
subject to their own constraints, for example, load sharing in an operating system, and without sharp time 
constraints from the environment. Most industrial real-time systems are reactive, for example, control 
systems and supervision and signal processing systems, but also certain communication protocols and 
man-machine interfaces. 

We can generally characterize reactive systems by the following major features: 

• Concurrency. Reactive systems are at least subject to concurrency between the environment and 
the computer system itself. Additional concurrency is usually the case since it is both natural and 
convenient to regard such systems as a number of parallel interacting subsystems that cooperate to 
achieve the desired behavior. Reactive systems are usually decomposed into logically concurrent 
components without this being reflected into an implementation on concurrent hardware, even 
though implementations on such hardware sometimes occur, for example, to achieve increased 
reliability or performance. 

• Time constraints. These systems are subject to strict time requirements that concern both the input 
data rates and the required output response times. These constraints need to be taken into account 
during the system design and expressed in the system specifications, as well as being checked with 
regard to the final implementation. Efficient implementations are often required to fulfill tight time 
constraints. 

• Determinism. The output of a reactive system is entirely determined by the input values and by the 
occurrence times of these inputs, that is, it is deterministic. By contrast, interactive systems such as 
operating systems are usually nondeterministic since their behavior also depends on factors such as 
CPU load. 

• Reliability. Reactive systems are often subject to high reliability requirements. For example, 
control systems for high-speed trains or nuclear reactors cannot be allowed to. fail. For certain 
applications formal verification methods should be considered, which usually require the use of 
clean declarative system specification formalisms. 

• Hardware/software. Reactive systems are often realized by a combination of hardware and 
software, for reasons of performance, cost-effectiveness, and flexibility. For example, a modeled 
control system or modeled physical subsystem can interact directly in real time with hardware 
components together with the surrounding physical environment. 

One might ask how well the Modelica modeling formalism matches these requirements. There is quite 
a good match, as we will see in the rest of this chapter. Concurrency is natural since modeled objects 
evolve concurrently over time. Time aspects can be efficiently modeled, and specified behavior is 
deterministic. Since Modelica is a declarative formalism, models should hopefully be somewhat amenable 
to formal verification techniques for enhancing reliability. Modeled subsystems can be realized as efficient 
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implementations of reactive computer systems that interact directly with the physical environment in real 
time. Alternatively, both the reactive system and the surrounding physical environment can be modeled 
and simulated. A third alternative is to mix simulated subsystems with hardware components, that is, 
hardware-in-the-loop simulation. 

13.2 Events 

What is an event? Using everyday language an event is simply something that happens. This is also true 
for events in the abstract mathematical sense. An event in the real world, for example, a train departure, is 
always associated with a point in time. However, abstract mathematical events are not always associated 
with time but they are usually ordered, that is, an event ordering is defined. By associating an event with a 
point in time, for example, as in Figure 13-2 below, we will automatically obtain an ordering of events to 
form an event history. Since this is also the case for events in the real world we will in the following 
always associate a point in time to each event. However, such an ordering is partial since several events 
can occur at the same point in time. To achieve a total ordering we can also use causal relationships 
between events, priorities of events, or, if these are not enough, simply pick an order based on some other 
event property. 

event 1 event 2 event 3 

Figure 13-2. Events are ordered in time and form an event history. 

The next question is whether the notion of event is a useful and desirable abstraction, that is, do events 
fit into our overall goal of providing an object-oriented declarative formalism for modeling the world? 
There is no question that events actually exist, for example, a cocktail party event, a car collision event, or 
a voltage transition event in an electrical circuit. A set of events without structure can be viewed as a rather 
low-level abstraction—an unstructured mass of small low-level items that just happen. 

The trick to arrive at declarative models about what is, rather than imperative recipes of how things are 
done, is to focus on relations between events, and between events and other abstractions. Relations 
between events can be expressed using declarative formalisms such as equations. The object-oriented 
modeling machinery provided by Modelica can be used to bring a high-level model structure and grouping 
of variables affected by events, relations between events, conditions for events, and behavior in the form of 
equations associated with events. This brings order into what otherwise could become a chaotic mess of 
low-level items. 

Our abstract "mathematical" notion of event is an approximation compared to real events. For example, 
events in Modelica take no time—this is the most important abstraction of the synchronous principle to be 
described later. This abstraction is not completely correct with respect to our cocktail party event example 
since there is no question that a cocktail party actually takes some time. However, experience has shown 
that abstract events that take no time are more useful as a modeling primitive than events that have 
duration. Instead, our cocktail party should be described as a model class containing variables such as the 
number of guests that are related by equations active at primitive events like opening the party, the arrival 
of a guest, ending the party, serving the drinks, etc. 

To conclude, an event in Modelica is something that happens that has the following four properties: 

• A point in time that is instantaneous, that is, has zero duration. 
• A clock variable or Boolean event condition that changes value for the event to happen. 
• A set of variables that are associated with the event, that is, are referenced or explicitly changed by 

equations associated with the event. 
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• Some behavior associated with the event, expressed as conditional equations that become active or 
are deactivated at the event. Instantaneous equations is a special case of conditional equations that 
are active only at events. 

Here we speak about event behavior expressed as equations in a wide sense, since algorithm sections 
containing assignment statements also can be viewed as a kind of equation systems. In the next section, we 
will further motivate the choice of conditional equations to express behavior at events. 

13.2.1 Basing Event Behavior on Conditional Equations 

One of the key issues concerning the use of events for modeling is how to express behavior associated 
with events. The traditional imperative way of thinking about behavior at events is a piece of code that is 
activated when the event condition becomes t r u e and then executes certain actions, for example, as in the 
when-statement skeleton below: 

when event-conditions then 
event-actionl; 
event-action2 ; 

end when; 
However, this contradicts our ambitions to provide a declarative mathematical equation-based way of 
thinking about modeling. Let us instead try to use equations to express what happens at an event. 

If we recapitulate the continuous modeling case, the occurrence of time derivatives in equations, that is, 
differential equations, is enough to provide the modeling power to describe a continuous system, relating 
the past, present, and future, for example, as in the extremely simple one-equation example below where 
the time derivative of x is equal to the constant 1: 

* = 1 (13-1) 

If instead we want to model a similar discrete system example, for example, with a time-discretization 
of one second between events, we will instead of the differential equation need to use a difference equation 
as the one below that relates the current value of x, xk = x(tk), to the value one second ago, 
xk-1 ~ ) •' 

(13-2) 

This difference equation is valid only at the periodic events. Between the events the value of x is 
constant, i.e., its time derivative is zero, as expressed by the equation below: 

x = 0 (13-3) 

We thus have the situation for the discrete system model that different sets of equations are valid at 
different points in time: the difference equation is valid only at events, whereas the equation x = 0 is valid 
between events, as depicted in Figure 13-3. 
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Figure 13-3. A continuous-time model giving a straight line versus a discrete-time model where different 
sets of equations are active during different time periods. 

Through this example we have arrived at the idea of conditional equations as the basis of defining 
behavior at events. Different sets of equations can be active during different time periods as defined by the 
condition associated with each conditional equation or alternatively by clocks defining which equations are 
conditionally active at clock ticks of clocked partitions (Section 13.6.8, page 705). 

To conclude, the behavior of an event can be defined as a combination of: 

• Sets of equations associated with the event, that become active or are deactivated at the event 
• An activation time period determined by the event condition 

This topic is further discussed in the context of specific Modelica language constructs for expressing event 
behavior as presented in Section 13.2.5 on page 600 in this chapter. 

These considerations lead us to the notions of discrete-time variables versus continuous-time variables, 
together with the synchronous data-flow principle for Modelica. These ideas are presented in the following 
two sections. 

Regarding the simple example above, it is easy to see the connection between the discrete-time model 
and the corresponding continuous-time model. Let us use a shorter period of h seconds between events and 
modify the difference equation as follows: 

After a slight rearrangement of the terms in the difference equations, dividing by h on each side, and 
letting h -» 0 , we arrive at a numerical approximation of the derivative x of the continuous-time equation 
at the left-hand side of the difference equation: 

13.2.2 Discrete-Time versus Continuous-Time Variables 

As already mentioned in Section 2.15, page 55, and in Section 6.9.3, page 281, so-called discrete-time 
variables in Modelica only change value at discrete points in time, i.e., at event instants. There are two 
kinds of discrete-time variables: unclocked discrete-time variables keep their values constant between 
events (implicit hold), whereas clocked discrete-time variables (Section 13.6.3, page 697) only have 
defined values at clock tick events for their associated clocks and are undefined between events. This is in 
contrast to continuous-time variables, which usually evolve continuously over time. To summarize: 

• An unclocked discrete-time variable is defined at any point in time, changes value only at events. 

xk=xk_l+h (13-4) 

jc^Xk ~ xk-1 _ | 
h 

(13-5) 
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• A clocked discrete-time variable is defined and changes value only at clock tick events for the 
clock associated to the variable. Such a clock has built-in type Clock. 

• A continuous-time variable is defined and may change value at any point in time. 

Figure 13-4 shows a graph of an unclocked discrete-time variable, Figure 13-5 shows a clocked 
discrete-time variable, whereas Figure 13-6 shows two evolving continuous-time variables. 

event 1 event 2 event 3 time 

Figure 13-4. An unclocked discrete-time variable x changes value only at event instants and keeps its value 
between events. 

Figure 13-5 shows a clocked discrete-time variable which is defined and may change value only at 
clock tick events for its associated clock (here an aperiodic clock). Note that discrete-time variables obtain 
their new values at an event instant by solving the equations (together with algorithm sections viewed as 
sets of equations) active at the event. The previous values can be obtained via the pre function (Section 
13.2.5.11) for unclocked discrete-time variables and via the p r e v i o u s function (Section 13.2.5.13) for 
clocked discrete-time variables. 

event 2 event 3 time 

Figure 13-5. A clocked discrete-time variable x is defined and changes value only at clock tick event 
instants and is undefined between events. 

Variables in Modelica are discrete-time if they are declared using the d i s c r e t e prefix, e.g. d i s c r e t e 
Real y, or if they are of type Boolean, Integer, or String, or of types constructed from discrete types 
or if they are clocked (Section 13.6.3, page 697). A Real unclocked variable assigned in a when-statement 
or being on the left-hand side of an equation in a when-equation is an unclocked discrete-time variable 
even if it is not declared with the discrete prefix, which is somewhat strange. See also in Section 3.11.2, 
page 99, for more information regarding discrete-time and continuous-time variables and expressions. 

A Real variable not assigned in any when-statement and not being on the left-hand side of an equation 
inside a when-equation and not related to a clock is continuous-time. It is not possible to have continuous-
time Boolean, Integer, or String variables. 
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Figure 13-6. Continuous-time variables like y and z may change value both between and at events. The z 
variable looks like a discrete-time variable, but is continuous-time since it also changes between events. 

In Figure 13-6, both y and z are classified as continuous-time variables and are allowed to change at 
any point in time. The y variable is a continuous function of time whereas z is discontinuous at several 
points in time. Two of those points where z is discontinuous are not associated with any events, which will 
create some extra work and possibly numerical difficulties for the numerical equation solver. In this case, 
it would have been better to have z as a discrete-time variable with events at all its points of discontinuity. 

13.2.3 Synchronous Data-flow Principle for Modelica 

Many of the considerations discussed so far in this chapter can be summarized into a few rules as the 
synchronous data-flow principle for Modelica, consisting of the following principles: 

• The synchronous principle that events take no time. 
• The single assignment principle for variables and equations/assignments, also enforced by data-

flow programming languages. 
• The continuous-discrete unification and concurrency principle. 

The synchronous principle is the basis for the event concept, whereas the single assignment rule 
ensures that the variables are always defined by the system of equations. The continuous-discrete 
unification and concurrency principle states how discrete-time and continuous-time variables and behavior 
are unified in the same framework. A more detailed description of the Modelica language rules in this 
matter is available below in Section 13.2.3.3, page 598 in this chapter. 

13.2.3.1 Synchronous Principle 

The synchronous principle has been invented to make modeling and programming of time-related systems 
easier and less error prone, as well as giving more efficient implementations. It can be stated as follows: 

• Computation and communication at an event instant does not take time, i.e., is instantaneous. 
If computation or communication time has to be simulated, this property has to be explicitly 
modeled. 

This principle is the same as used by typical synchronous languages for real-time applications, which 
allow programs to be considered as instantaneously reacting to external events. Each internal or output 
event of the program is precisely dated with respect to the flow of input events. The consequence is that 
the behavior of the program is fully deterministic, that is, gives the same behavior when reexecuted with 
the same inputs occurring at the same times, both from the functional and from the timing point of view. 

The synchronous hypothesis is the same as assuming that the program reacts quickly enough to handle 
all external events in the right order, which, for example, is essential for hardware-in-the-loop simulations. 
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This hypothesis is often quite realistic, and can be checked by a combination of measurements and 
analysis. 

As a counterexample and comparison, consider a small application in the Ada programming language 
which has asynchronous parallel processes. A process A signals "minutes" to a process B by counting 60 
"seconds": 

loop // Small Ada program. Process A is signaling process B 
delay 60; B.Minute; 

end; 
This program does not give the intended behavior of letting process B precisely count minutes, since 

process A first waits 60 seconds, and then signals process B, which eventually receives the Minute signal. 
The total time is more than 60 seconds since the communication to process B takes some time. The 
program is nondeterministic, that is, nonrepeatable, since the communication time is dependent on external 
factors such as operating system load. An additional disadvantage is that the interprocess communication 
overhead in such a language usually is substantial. 

Finally we should not forget that modeling and simulation without real-time constraints also benefits 
considerably from the synchronous principle by simpler and less errorprone modeling, as well as more 
efficient simulation. 

13.2.3.2 Single Assignment Principle 

The single assignment principle, stated below, is the same as you might remember from basic mathematics 
courses: the number of variables and the number of equations must be the same for a system of equations 
to be solvable. This applies to any Modelica model to be simulated, since the model first needs to be 
converted to a total system of equations before simulation. The single assignment principle is also adhered 
to by all pure functional and data-flow languages: a variable can be assigned at most ones. 

• Single assignment principle for equations, the total number of "equations" is identical to the total 
number of "unknown" variables to be solved for. 

There are a number of special considerations in Modelica on how to count equations within conditional 
equations, and how to count assignment statements as equations, that is, within algorithm sections but not 
within function bodies. These rules are described in Section 8.1.3, page 348. 

The single assignment principle also prevents a variable, for example, from being defined by two 
"equations," which would give rise to conflicts (overconstrained, e.g., jc = 2 and jc = 3 ) or nondeterministic 
behavior. Moreover, this principle is the basis for the declarative properties of Modelica by allowing only 
a single defining "equation" for each variable. 

13.2.3.3 Continuous-Discrete Unification and Concurrency Principle 

The following two rules state how the unclocked discrete and continuous parts of a model are unified, that 
is, how the discrete part interprets the continuous part and vice versa. Additionally, the second rule states 
that concurrent behavior can be represented by concurrently active equations. 

• Variables. All variables keep their actual values until these values are explicitly changed. 
Unclocked variable values can be accessed at any point in time during "continuous integration" 
(i.e., during numerical solution of the continuous part of the system of equations), and at event 
instants, whereas clocked variable values can be accessed only at clock tick event instants and are 
not accessible between such event instants except by applying the hold operator to the variables. 

• Behavior. At every point in time, during solution of the continuous part of the equation system 
between events, and at event instants, the active equations express relations between variables 
which have to be fulfilled concurrently. Equations are not active if the corresponding if-branch, 
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when-equation, or clocked partition in which the equation is present is not active because the 
corresponding condition currently evaluates to false or the clock is not currently at a tick point. 

13.2.4 Creating Events 

After this initial discussion of events, the synchronous data-flow principle, and behavior based on 
conditional equations, as well as discrete-time variables that change values at events, a natural question 
remains: How are events created7 In fact, we already have the answer from the previous discussion and 
from earlier chapters: events may occur naturally, created in the physical world external to the modeled 
system, or are created internally in the simulated computer model through various mechanisms. 

Events can be classified according to where they come from, that is, external and internal events, or how 
they are created internally in a simulated model, that is, time events, clock-based events, and state events. 

13.2.4.1 External versus Internal Events 

The question of external versus internal events should be stated relative to a modeled subsystem. An 
external event can be triggered by signals in the external world, as in Figure 13-7 below, or by another 
modeled subsystem in the total system model. Internal events are triggered by changes in time, state 
variables, or output variables of the subsystem in question. 

Figure 13-7. External events are related to external input variables whereas internal events are related to 
internal model variables. 

Thus, to summarize: 

• External events are related to the input variables of a subsystem. 
• Internal events are related to internal state variables or output variables of a subsystem, internal 

clock variables, or the built-in time variable. 

13.2.4.2 Scheduled Time Events 

Time events are directly related to value changes of the built-in continuous evolving variable time in a 
way that makes it possible to predict the point in time for the event some time in advance, before it 
actually happens. Such events can be handled more efficiently by the simulator since they can be 
scheduled in advance. 

A time event can be created by a conditional discrete-time expression involving time which is used in an 
unclocked when-equation or when-statement, or in some other context, for example, expressions of the form: 

time >= discrete-time expression 
time < discrete-time expression 
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The whole conditional expression apart from the variable time needs to have unclocked discrete-time 
variability, that is, contain constants, parameters, and/or unclocked discrete-time variables, in order to be 
able to predict the event ahead of time. 

For example, the condition time>=l0.0 in the when-equation below will cause a time-event at 
time=io. 0 since it becomes true at approximately (floating-point numbers might not be exact) that time 
instant: 

when time>=10.0 then 

end when; 
Another way to cause a time event is to pass a time expression as an argument to one of the built-in 

mathematical functions with discontinuities described in Section 13.2.5.19, page 613 in this chapter, for 
example, as in the function call sign (time-10). The built-in functions sample, initial, and 
terminal described in Section 13.2.5, page 600, can also be used to create time events since they become 
true at well-specified instants in time. Time events are primarily used for model related reasons. 

13.2.4.3 Clock-Based Events 

Clock-based events (Section 13.6, page 694) are directly related to the ticks of clock variables. Thus they 
are similar to time events in the sense that it is usually possible to predict the next clock tick before it 
actually happens, at least for repetitive synchronous clocks. This makes it possible for the simulator to 
efficiently handle repetitive clocked events since they can also be scheduled in advance. 

For example, a clocked when-equation (Section 13.6.6, page 13.6.6) which activates at clock tick 
events from clock can appear as follows: 

when clock then 

end when; 

13.2.4.4 State Events 

State events usually cannot be scheduled in advance, and are related to value changes in the state variables 
of a model in a wide sense, also including input and output variables. A state event can be induced by a 
conditional expression involving at least one state variable, for example, as in the when-equation below 
where an event is generated and handled each time sin (x) becomes greater than 0.5 as a result of value 
changes in the state variable x: 

when sin(x)>0.5 then 

end when; 
A state-event can also be induced by passing an expression containing a reference to a state variable to 

one of the built-in functions described in Section 13.2.5.19, for example, as in mod (x-5,2). 
The Modelica simulator is continually watching event-inducing expressions, for example, the above 

examples sin(x)>0.5 and mod(x-5,2), during the numerical solution of the continuous part of the system 
of equations. For more details, see Section 18.2.5.4, page 1014. 

State events can be created for modeling reasons as in the above when-equation. However, a more 
common use is automatic triggering of state events to get better performance and to avoid numerical 
difficulties for the solver at discontinuities. 

13.2.5 Event-Related Built-in Functions and Operators 

Modelica provides a number of built-in functions and operators related to events and time, which you will 
find quite useful in discrete and hybrid modeling. Some functions generate events, some generate clocks or 
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convert between clocked values and unclocked values, some can be used to express conditions for 
triggering events, one function prevents events, and some operators and functions provide access to 
variable values before the current event as well as causing discontinuous change of variable values at an 
event. 

All clocked event-related operators and functions are not presented here. Some are described in the 
detailed overview of clock-based modeling in Section 13.6, page 694. 

13.2.5.1 Initialization Actions Triggered by initialO 

The function call initialO returns true at an instant immediately before the beginning of the 
simulation, when time still is equal to time. start (usually time=0). By using initial () somewhere 
in the code we can generate a fictitious event immediately before the start of the simulation, for example, 
as depicted in Figure 13-8. 

A initialO 

i k event at start 
w 

time 

Figure 13-8. The function initial () returns true at an event at the start of the simulation. 

The typical use of initial () is in conditions for unclocked when-equations, for example, as below. 
This is sometimes used for possibly needed additional initialization of discrete-time variables in addition 
to the initial values provided by the start attributes of those variables. It can be used for possibly needed 
more elaborate initialization equations for discrete-time variables in addition to the alternative possibility 
of providing initial values by setting the start attribute of variables. Note that setting a start value, if it is 
"fixed", and additionally providing an initial equation for that variable leads to an overdetermined 
system of equations. 

when initial() then 
... // some initialization or other actions 

end; 

In fact, if initial () is part of the conditions of a when-equation or when-statement, the equations within 
the when-equation or statements within the when-statement become part of the initialization equation 
system to be solved before start of simulation. Another way of specifying behavior at the initial time is by 
the initial equation construct. 

A more thorough discussion of initialization based on initial equation, initialO, and the 
start attribute can be found in Section 8.4, page 363. 

13.2.5.2 Using terminalO to Trigger Actions at the End of a Simulation 

The function call terminal () returns true at an instant at the end of a successful simulation. If it is used 
somewhere in the code it can trigger an event as depicted in Figure 13-9. 
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Figure 13-9. The function terminal () returns true at an event at the end of the simulation. 

This is typically used to trigger actions at the end of a simulation, for example, calling an external 
function to store some data on the file system. If the simulation is not successful it will be aborted 
prematurely, and terminal () will never return true during this simulation. 

when terminal() then 
... // some action at 

end when; 
the end of the simulation 

13.2.5.3 Terminating a Simulation Using terminateO 

Since we have been discussing the termination of a simulation in the previous section, it can be useful to 
briefly recapitulate terminate, which is described in more detail in Section 9.2.12 on page 437 in 
Chapter 9. The statement terminate (message) causes a successful termination of the simulation and 
passes the message string to the simulation environment in order to inform the user. The reason might be 
that it is no longer relevant to continue the simulation, for example, as in the moon landing example on 
page 82 in Chapter 3 when the moon lander is starting to sink below the surface because the simulation has 
gone outside the domain where the model is valid. 

If you would like to check for conditions that when violated should cause abortion of the simulation, 
that is, unsuccessful termination, you should instead use the assert () statement, which is described in 
more detail in Section 9.2.11 on page 436 in Chapter 9. 

13.2.5.4 Generating Repeated Events Using Unclocked sample () 

The unclocked function sample {first, interval) returns true and can be used to trigger events at time 
instants first + i*interval (i=0,l,...), where first is a Real number specifying the time of the first event and 
interval is a Real number specifying the time interval between the periodic events. It is typically used in 
models of periodically sampled systems. However, see also the clocked version of sample() in Section 
13.2.5.6, page 604, which is even better for modeling sampled systems. 

sample(tO,d) 

false 
tO tO+d t0+2d t0+3d t0+4d t ¡ m e 

Figure 13-10. The call sample (to, d) returns true and triggers events at times tO+i*d, where i=0,1, etc. 

The function acts as a kind of clock that returns true at periodically occurring time instants (Figure 
13-10), which in the SquareWave model is stored in the Boolean variable elk. We can use this behavior in 
combination with a when-equation to periodically trigger events, for example, when creating a square wave: 
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class SquareWave 
parameter Modelica.Slunits.Time first=0, interval=l; 
Boolean elk; // A Boolean variable representing a kind of clock 
Real x(start=l); 

equation 
elk = sample(first,interval); 
when elk then 

x = -pre(x); 
end when; 

end SquareWave; 
We simulate and plot: 

simulate(SquareWave, stopTime=5) 
plot(x) 
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Figure 13-11. The generated square wave. 

You should note that the unclocked function sample always returns false between the events it 
generates, that is, during the solution of the continuous part of the equation system that is going on as part 
of the simulation between events. The starting time start and the sample interval need to be parameter 
expressions, that is, they are constant during simulation, and need to have Real or Integer types, or 
subtypes of those types, for example, Modelica .Slunits. Time, which is a subtype of Real. 

13.2.5.5 Generating Clock Tick Events Using ClockO 

The following variants of the ciock(...) constructor for generating clock tick events are available: 

• clock() - inferred clock (Section 13.6.7.2, page 702). 
• Clock(intervalCounter, resolution) - clock with Integer quotient (rational number) interval 

(Section 13.6.7.3, page 703). 
• Clock(interval) - clock with a Real value interval (Section 13.6.7.4, page 703). 
• Clock(condition, startlnterval) - Boolean condition clock (Section 13.6.7.5, page 704). 
• Clock - solver clock (Section 13.6.7.6, page 705). 

For more details including several examples, see Section 13.6.7, page 701. A simple example is 
presented below. 

class ClockTicks 
// Integer quotient rational number interval clock 
Clock cl = ClockO, 10); // ticks: 0, 3/10, 6/10, .. 
// Clock with real value interval between ticks 
Clock c2 = Clock(0.2); // ticks: 0.0, 0.2, 0.4, ... 

end ClockTicks; 
We simulate and plot, see Figure 13-13. 

simulate(ClockTicks, stopTime=l) 
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Figure 13-12. The clocks cl and c2 from model ciockTicks, where clock clwith a rational number 
(integer quotient) interval ticks at 0, 3/10, 6/10,... seconds, and clock c2 with a real number interval ticks at 
0.0,0.2,0.4, etc. 

13.2.5.6 Sampling Values at Clock Ticks Using Clocked sample(...) 

The clocked version of sample (...) is quite different from the unclocked version generating events, which 
was described in the previous section. The clocked version of the operator samples a continuous-time 
expression at the ticks of a clock and returns a clocked expression. 

The input argument u to sample(u,c) is a continuous-time expression (Section 6.9.4, page 283). The 
optional input argument c is of type Clock. 

The clocked version, sample(u,c) or sample(u), see also Section 13.6.8.1, page 705, returns a clocked 
variable value that has the associated clock c and the value of the left limit of u when the clock c is active. 
This is the value of u immediately before the event of c is triggered. If the optional argument c is not 
provided the clock is inferred (Section 13.6.14.4, page 721). 

Below a very simple example model using sample is given where the variable x is sampled at 5 Hz. 

class SampleTime 
parameter Modelica.Slunits.Time interval=l; 
Clock elk; // A clock variable 
discrete Real stime(start=l); // A clocked variable for the sample result 
Real x=time; 

equation 
elk = Clock(l,5); // Clocked equation, interval=l/5 s, freq 5Hz 
stime = sample;::, elk); // Clocked equation to perform the sampling 

end SampleTime; 
We simulate and plot, see Figure 13-13: 

simulate(SampleTime, stopTime=l) 
plot(stime) 
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Figure 13-13. The clocked variable stime showing the sampled value of x=time. 
Since the sample (...) operator returns the left limit of u it introduces an infinitesimally small delay 

between the continuous-time and the clocked partition. This corresponds to the reality where a sampled 
data system cannot act infinitely fast and even for a very idealized simulation, an infinitesimal small delay 
is present. 

The input argument u can be a general expression since the argument has continuous-time variability 
and therefore always has a value. It can also be a constant, a parameter, or a piecewise constant expression. 

To summarize, there are three variants of sample(): 
• Unclocked sample(u,r) has two input arguments where the second argument r is of type Real. 

This is the traditional unclocked sample(...) operator described in Section 13.2.5.4, page 602. 
• Clocked sample(u) has one input argument u which is converted to a clocked value according to 

a clock inferred from the context. 
• Clocked sample(u,c) has two input arguments where the second argument if of type Clock. It 

returns a clocked version of the input argument u according to the above description. 

13.2.5.7 Accessing Clocked Values Between Clocked Events Using hold(...) 

Unclocked discrete-time variables are piece-wise constant, may change at events, and have defined values 
also between events. This is however not the case for clocked variables, which are only defined and may 
only change at clock ticks for their associated clock. 

The hold (...) operator (Section 13.6.8.2, page 706) makes clocked values available also in unclocked 
equations and expressions. The operator effectively converts a clocked discrete-time expression into an 
unclocked discrete-time expression which is piece-wise constant and accessible between clock tick events. 

The hold (...) operator is used in the SquareWaveClocked model below to make the variable x 
defined between clock ticks. This model is a clocked version of the previous unclocked SquareWave 
model in Section 13.2.5.4, page 602. In the SquareWaveClocked model we instead use Modelica 
synchronous clocks where the clock variable elk is declared using the builtin Clock type, the clock 
interval is specified using the Clock constructor, and we have introduced a synchronous clocked discrete-
time variable xclocked which is only defined at clock ticks. 

class SquareWaveClocked 
parameter Modelica.Slunits.Time interval=l; 
Clock elk; // A clock variable 
discrete Real xclocked(start=l); // A clocked variable 
Real x; 

equation 
elk = Clock(interval); // Clocked equation 
when elk then 
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xclocked = -previous(xclocked); // Clocked equation 
end when; 
x = hold(xclocked); // Unclocked equation 

end SquareWaveClocked; 
We simulate and plot: 

simulate(SquareWaveClocked, stopTime=5) 
plot(x); plot(xclocked) 
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Figure 13-14. The generated square wave using a clocked when-equation. The variable x is an unclocked 
discrete-time real variable also defined between clock points by the use of hold(), whereas the variable 
xclocked is a clocked discrete-time real variable only defined at clock points. 

The plots in Figure 13-14 clearly shows the difference between the clocked variable xclocked only 
defined at clock ticks and the unclocked variable x defined also between clock ticks and obtained by the 
call hold (xclocked). 

13.2.5.8 Generating Clock Tick Events Using subSample, superSample, shiftSample, 
backSample 

There are additional clock tick generation operators to generate clock ticks based on some existing clock 
or Boolean condition. These operators are mentioned briefly here but described in more detail including 
examples in Section 13.6.9, page 707. 

• subSample—generate a slower (lower frequency) clock based on an existing clock. See Section 
13.6.9.1, page 707. 

• superSample—generate a faster (higher frequency) clock based on an existing clock. See Section 
13.6.9.2, page 708. 

• shiftSample—generate a clock based on an existing clock, where the ticks of the generated 
clock are shifted forward in time. See Section 13.6.9.3, page 709. 

• backSample—generate a clock based on an existing clock, where the ticks of the generated clock 
are shifted backward (earlier) in time. See Section 13.6.9.4, page 710. 

13.2.5.9 Accessing the Time Difference Between Clocked Events Using interval!) 

The interval(u) operator returns the interval between the previous and present tick of the clock of the 
expression within which this operator is called and the clock of the optional argument u. For more details 
including an example see Section 13.6.5, page 699. 

13.2.5.10 Preventing Events Using noEvent(...) 

The function no Event {expr) evaluates and returns the expression expr in a way that prevents generating 
events in unclocked parts of a model. 



Chapter 13 Discrete Events and Hybrid and Embedded Systems 607 

Suppressing events for an expression is useful, e.g. to prevent expressions like log (x) and sqrt (x) 
protected by guards like x>0 from going outside their domain of validity—in this case to prevent negative 
values of x. 

The expression x>0 is an unclocked discrete-time expression with possible values true and false. 
We need to search for the value of x for which the event will occur, that is, when x>0 switches between 
false and true. This occurs at the zero-crossing of the expression x-0, that is, when the expression 
switches from negative to positive value or vice versa. 

To perform this zero-crossing search for an expression, e.g. for sqrt (x), it is necessary to evaluate the 
expression also for small negative values of x, which will cause problems for the above type of 
expressions. By contrast, noEvent (x>0) is an example of a continuous-time expression that does not 
generate events and therefore avoids these problems by not performing any zero-crossing search. See 
Section 18.2.5.5, page 1015, for a more thorough discussion regarding zero-crossing functions. 

Another use for noEvent is to slightly improve performance for expressions that are continuous despite 
the fact that they normally generate events, for example, as in the example below (Figure 13-15). However, 
to improve performance for continuous expressions it is better to call smooth () (see Section 13.2.5.11). 

Figure 13-15. The expression noEvent (expr) avoids generating events that otherwise would be triggered 
by expr. 

For example, consider the equation: 

equation 
z = if x<0 then -xA3 else xA3; 

The conditional expression at the right-hand side together with its derivatives is continuous at x=0. 
However, the condition x<0 will implicitly generate an event since a conditional expression is a suspect 
case that normally gives rise to a discontinuity. To avoid generating an unnecessary event in this case, and 
thereby slightly improving performance, the condition or the whole conditional expression can be enclosed 
within noEvent as below or within smooth as described in the next section: 

equation 
z = if noEvent(x<0) then -xA3 else xA3; 

However, you should avoid using noEvent on an expression that has a genuine discontinuity, since that 
would force the continuous numerical solver to use a very small step size to handle the discontinuity, 
thereby incurring a substantial overhead. 

The noEvent operator can never be used in equations in a way that tries to change the value of a 
Boolean, integer, or string variable outside of an event since by definition such variables are only 
changed at events. Therefore the equation below is invalid, since b is discrete-time but the noEvent-
expression on the right-hand side is continuous-time and can change at any time: 
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Boolean b; 
Real x; 

equation 
b = noEvent(x<0); // Invalid equation! 

13.2.5.11 Preventing Events Using smooth (...) for Continuous Expressions 

The function smooth (p,expr) evaluates and returns the value of the expression expr in a way that can 
avoid event generation. This is similar to noEvent ( ) , but with the difference that smooth () does not 
guarantee preventing events—it lets the Modelica environment decide what is appropriate. 

By placing a call to smooth () around expr, we state that expr is continuous and its derivates up to 
order p are continuous. This information can be used by the Modelica environment to avoid event 
generation and thus increase performance. 

Note that smooth () is intended to be used instead of noEvent () in order to avoid events for 
efficiency reasons. Since smooth () does not guarantee prevention of events it can be necessary to use 
noEvent () inside smooth () to guard subexpressions against erroneous evaluation. The example below 
avoids negative argument values to sqrt () in the expression on the right-hand side of the equation for z: 

model SmoothAndEvents 
Real x,y,z; 
parameter Real p; 

equation 
x = if timed then 2 else time-2; // timed generates events 
y = smooth(0, if time<0 then 0 else time); // may avoid events 
z = smooth (1, noEvent (if x<0 then 0 else sqrt(x)*x)); //noEvent is necessary 

end SmoothAndEvents; 
We can summarize the properties of smooth () as follows: 

• A call such as smooth (p, expr), f o r p > 0 , evaluates expr in a way that can avoid generating 
events. The call also informs the Modelica environment that expr is p times continuously 
differentiate, i.e., expr is continuous in all real variables appearing in the expression, and all 
partial derivatives with respect to all appearing real variables exist and are continuous up to order 
P-

• The only allowed types for expr in smooth {p, expr) are Real, arrays of Real, and record types 
with fields having allowed types. 

• The smooth {p,expr) function call does not guarantee a smooth result if any of the occurring 
variables in expr changes discontinuously. 

• For smooth {p, expr) the liberty to possibly use events in evaluation is propagated to all 
subrelations within expr, but the smooth-property itself is not propagated—it applies only to expr 
as a whole. 

Regarding the difference between noEvent () and smooth (), compare the following three examples: 

xl = if noEvent(u > uMax) then uMax // Events are not generated 
elseif noEvent(u < uMin) then uMin 
else u; 

x2 = noEvent(if u > uMax then uMax // Events are not generated 
elseif u < uMin then uMin 
else u); 

x3 = smooth(0, if u > uMax then uMax // Events might be generated 
elseif u < uMin then uMin 
else u); 

In this case the values of the expressions are the same, i.e., xl=x2=x3, but a Modelica environment is 
allowed to generate events when computing the right-hand side of the x3 equation, but not for x l and x2. 
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13.2.5.12 Obtaining Predecessor Values of a Variable Using pre(...) 

The function call pre (y) gives the "predecessor value" of y. For an unclocked discrete-time variable y at 
an event, pre (y) is the value of y immediately preceding the event, also called the left limit of the value 
of y at the event, that is, taking the limit value of y while letting time t approach time tevent from the left, as 
depicted in Figure 13-16, This holds except for what happens at event propagation through event iterations 
when several events occur at the same point in time, when the value is obtained from the event iteration 
immediately preceding the current one. The argument y to pre (y) must be a variable and not a general 
expression. 

A y 

/ pre(y) t * 

time 

Figure 13-16. At an event, pre (y) gives the previous value of y immediately before the event, except for 
event iteration of multiple events at the same point in time when the value is from the previous iteration. 

The pre operator can be applied only to a variable y, for example, as in the expression pre (y), if the 
following three conditions are fulfilled: 

• The variable y has one of the basic types Boolean, Integer, Real, or String, a subtype of 
those, or an array type of one of those basic types or subtypes. 

• The variable y is an unclocked discrete-time variable. 
• The operator is not used within a function. 

At the initial time when simulation starts, pre (y) = y. start, that is, it is identical to the start attribute 
value of its argument, for example, as depicted in Figure 13-17. For a constant or parameter variable c it is 
always the case that c = pre (c). 

pre(v)*v 

pre(v)=v 

Figure 13-17. Between events, pre (v) gives the value of v obtained at the most recent event that updated 
v, i.e., the same as v. At an event, v and pre (v) can be different, e.g. at event2 in the current figure v=4 .1 
and pre(v)=4.5. 
Immediately after an event when a variable such as v in Figure 13-17 has obtained a new value, the 

expression pre (v) returns the value of the variable v at the most recent event that updated v. This means 
that: 

• Between events pre(v) returns the same value as v. 
• The expressions v and pre(v) can only be different at an event. 
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This behavior of pre outside when-clauses is different from the corresponding behavior of the p r e v i o u s 
operator, see Section 13.2.5.14, page 610. 

13.2.5.13 Obtaining Predecessor Values of a Clocked Variable Using previous(...) 

The function call p r e v i o u s (y) gives the "predecessor value" of a clocked discrete-time variable y. For 
a clocked discrete-time variable y at a clock tick event p r e v i o u s (y) is the value of y immediately 
preceding the event, as depicted in Figure 13-18. The argument y to p r e v i o u s (y) must be a variable that 
fulfills the conditions of an instance expression (i.e., roughly an instance of a class without equations, see 
Section 13.6.11, page 713) and not a general expression. 

Figure 13-18. At a clock tick event, previous (y) gives the previous value (its value at the previous clock 
tick) of a clocked variable y at the current clock tick. 

The previous operator can be applied only to a variable y, for example, as in the expression 
previous (y), if the following three conditions are fulfilled: 

• The variable y is an instance expression (Section 13.6.11, page 713), that is, it has one of the basic 
types Boolean, Integer, Real, or String, a subtype of those, a record of those, or an array type 
of one of those basic types or subtypes, no associated equations, and a defined initial value. 

• The variable y is a clocked discrete-time variable. 
• The operator is not used within a function. 

At the initial time when simulation starts, previous (y) = y. start, that is, it is identical to the start 
attribute value of its argument. It is also described in Section 13.6.4, page 699. Note that 
hold (previous ()) is different from pre () outside when-clauses, see Section 13.2.5.14, page 610. 

13.2.5.14 Different Behavior of pre and previous 

Outside when-clauses the behavior of pre () and hold (previous ()) is very different: 

• pre (y) is the same as y, i.e., the value of y at the most recent event 
• hold (previous (y)) is the value of y at the clock tick before the most recent clock tick 

Consider the following model which compares xpre with yprevious: 
model PreVsPrevious 

Real x(start=0,fixed=true); 
Real xpre; 
Real y(start=0); 
Real yprevious; 

equation 
xpre = pre(x); 
when sample(0,0.1) then 

x = pre(x) + 1; 
end when; 
yprevious = hold(previous(y)); 
when Clock(0.1) then 
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y = previous(y) + 1 ; 
end when; 

end PreVsPrevious; 
Figure 13-19 shows the difference in behavior. 

xpre 

0.00 0.25 0.50 

Figure 13-19. Outside events, the behavior of xpre=pre (x) and yprevious=hold (previous (y) ) is 
different since xpre==pre (x) ==x, whereas yprevious has the value of y at the previous tick, not the most 
recent tick. 

13.2.5.15 Detecting Changes of Boolean Variables Using edge() 

The expression edge (b) for the Boolean variable b is expanded into {b and not pre (b) ) for the 
Boolean variable b. It becomes true for an instant when the variable b changes value from false to 
true (Figure 13-20). To detect a change from true to false, introduce a variable equal to not b. 

true 'edge(b) 

t 
event 

t 
event 

time 

Figure 13-20. The expression edge (b) is true at events when b switches from false to true. 
The argument b must be an unclocked discrete-time Boolean variable and not a general expression. 

The function edge may not be called within Modelica functions. 

13.2.5.16 Detecting Changes of Unclocked Discrete-Time Variables Using changeO 

The expression change (v) is expanded into (vopre(v)) for an unclocked non-Real discrete-time 
variable v. It returns true for an instant when the variable v changes value (Figure 13-21). 
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t t time 
event event 

Figure 13-21. The expression change (v) is true at instants when vchanges value. 

The argument v must be an unclocked discrete-time variable and not a general expression, and should 
be declared as a variable of type Boolean, Integer, or String, or a subtype of those. The function 
change may not be called within Modelica functions. The argument may not be discrete Real since 
change is dependent on the inequality operation that sometimes has spurious behavior for floating point 
numbers due to roundoff errors. 

13.2.5.17 Creating Time-Delayed Expressions Using delay(...) 

The function delay is used to create time-delayed expressions, that is, to obtain the value of an expression 
as it was at an earlier point in time. In fact, applying delay to an expression enables access of values from 
the value history of that expression. 

There are two variants of the delay function, delay (expr, delayTime, delayMax) and delay (expr, 
delayTime). Both variants return the value of expr at the time ( t ime-delayTime ) , that is, its value at a 
point in time delayTime earlier compared to the value of the current simulated time represented by the 
built-in time variable. 

During an initial period of length delayTime at the beginning of the simulation when time .start <= 
time < time. start + delayTime, the function delay returns the start value of expr, that is, the value it 
had at time = time. start, since otherwise the function value would be undefined. This is, for example, 
indicated by the initial dashed section of the graph for delay (v, d) in Figure 13-22. 

4.5 i4.1 
3.2 

4.5 
^delay(v.d) 

3.2 

t t t t t time 
start+d t1 t1+d t2 t2+d 

Figure 13-22. The expression delay (v, d) is v delayed by a delay time d. 
The Modelica run-time system must in principle store the most recent value history of the expression 

expr for the length of time indicated by delayTime. To allow for an efficient implementation, and since 
delayTime is allowed to vary over time, a third optional argument delayMax to delay is provided which 
specifies the maximum delay allowed for delayTime. The argument delayMax must be a parameter 
expression, that is, constant over the simulation, to enable efficient implementation e.g. by allowing 
preallocation of the needed storage. 

From the numerical point of view an implementation of delay can be achieved by interpolating in the 
internal polynomials of the continuous equation solver, or alternatively using the simpler approach of 
linear interpolation in a buffer containing past values of the expression expr. 
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If delayMax is specified then 0 <= delayTime <= delay Max, otherwise an error occurs. If the third 
argument delayMax is not supplied in the argument list, then delayTime needs to be a parameter 
expression, that is, constant for the duration of the simulation. 

13.2.5.18 Reinitialization of Variables at Events Using reinit(...) 

The reinit(jc,̂ /?r) construct is briefly recapitulated here for the sake of completeness of presentation 
regarding the event-related constructs. It reinitializes the state variable x with expr at an event instant, that 
is, a kind of "assignment," but not quite the same since it simultaneously deactivates any existing defining 
equation or assignment to x. Therefore it does not break the single assignment rule (see Section 8.1.3, page 
348 and Section 13.2.3.2, page 598), since the number of defining equations is still the same. The second 
argument expr must be an Integer or Real expression, and is computed from the values of variables 
referenced in expr as they were immediately before the event. The first argument x in a call to reinit 
must be a state variable which also fulfills the following properties: 

• The type of x is Real or a subtype of Real. 
• The der-operator needs to be applied to x somewhere in the model. 

For a simple example of the use of reinit, see the bouncing ball example on page 57 in Chapter 2. 
Regarding the use of reinit among equations, see Section 8.3.6, page 359. 

13.2.5.19 Mathematical Functions Implicitly Causing Events 

The built-in functions abs, sign, div, mod, rem, ceil, floor, and integer, previously described in 
Section 6.13, page 289, may implicitly trigger events since they themselves or their derivatives are 
discontinuous at certain points. Such events are triggered at the points of discontinuity when an argument 
to the function in question contains a continuous-time subexpression and the call to the function is made 
outside of a when-equation or when-statement. When a function call is inside a when construct a new 
event is not triggered since an event is already being processed. 

Remember that Modelica functions cannot cause events even if they contain calls to these functions, 
since the body of a Modelica function is treated as if noEvent () is applied to it. 

13.2.6 Handling Events 

Events arise naturally external to a simulated system or are generated internally in the simulation model. 
These events need to be handled, that is, some behavior should be executed associated with each event. 
Previously we have come to the conclusion that the notion of conditional equations is an appropriate 
declarative formalism to express such behavior. To give you a clear picture, we provide a brief summary 
of the different constructs used to express event-related behavior in Modelica even though the syntax and 
semantics of these constructs is treated in more detail in Chapters 8 and 9. 

13.2.6.1 Expressing Event Behavior in Modelica 

The conditional equations associated with an event become active when the condition of the equations 
switches from the value false to true, or when the clock controlling a set of equations arrives at a clock 
tick There are basically three groups of conditional equation constructs in Modelica: 

• if-equations (Section 8.3.4, page 355), if-statements (Section 9.2.8, page 431), and if-expressions 
embedded in equations or statements (Section 6.12.2, page 288) are used for conditional models 
with different behavior in different operating regions. The conditional equations may contain both 
continuous-time and discrete-time expressions. 

• unclocked when-equations (Section 8.3.5, page 357) and when-statements (Section 9.2.10, page 
433) are used to express instantaneous equations that are valid only (become active) at events, for 
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example, at discontinuities or when certain conditions become true. The conditional equations 
automatically contain only discrete-time expressions since they become active only at event 
instants. 

• clocked equations in clocked partitions (Section 13.6.13, page 715) which become active at clock 
ticks of the associated clocks. 

The if-constructs are more fundamental than the when-constructs, since unclocked when-clauses can be 
expressed in terms of if-constructs as we shall see in Section 13.2.6.3. 

The if-equations are conditional equations with the following general structure, of which the elseif-
parts are optional. The if-statements are similar, but contain statements instead of equations. 

if condition then 
equations 

elseif condition then 
equations 

else 
equations 

end if; 
The if-expressions have the general structure: if condition then expr J else expr2, and can be used to 

express conditional equations when embedded in an equation, for example: 

expr = if condition then exprl else expr2; 

For example, the if-equation in the ideal diode example below from Chapter 2, page 56, specifies different 
equations for the variable v in two different operating regions, the equation v=s in the region s<0 and the 
equation v=0 in the region s>=0. 

model Diode "Ideal diode" 
extends TwoPin; 
Real s; 
Boolean off; 

equation 
off = s < 0; 
if off then // conditional if-equation 
v=s 

else 
v=0; 

end if; 
i = if off then 0 else s; // equation with conditional expression 

end Diode; 
During solution of the continuous part of the equation system ("continuous integration"), the same 

branch of the if-equation with its constituent equations is always included in the total equation system. The 
then-branch of the if-equation in the Diode model has the condition off, whereas the else-branch 
implicitly has the condition not off. The solution process is temporarily halted whenever s crosses zero, 
that is, of f changes value. When this happens an event is generated. At the event instant the conditions are 
reevaluated, the correct if-branch is selected, and continuous integration is restarted. This process is 
described in more detail in Chapter 18. 

The second group of constructs consists of when-equations and when-statements that are used to 
express instantaneous conditional "equations", that is, equations that are active only at events. 

The unclocked when-equation is a conditional equation of the following general form, which can be 
used in equation sections together with other equations. The elsewhen-part is optional. 

when conditions then 
equations 

elsewhen conditions then 
equations 
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end when; 
For example, the two equations in the when-equation below become active at the event instant when the 
Boolean expression x > 2 becomes true. The variables yl and y3 have their values defined by the when-
equation and therefore must have unclocked discrete-time variability. The variables yl and x are only 
referenced. When the when-equation is not active, the equations y3=pre(y3) and yl=pre(yl) hold, 
keeping the number of equations the same and therefore avoiding violation of the single assignment 
principle. 

when x > 2 then 
y3 = 2*x + yl+y2; 
yl = sin(x); 

end when; 
The when-statement is a statement construct, which therefore can be used only in algorithm sections. 

Furthermore, functions cannot contain when-statements. The when-statements have the following general 
structure where the elsewhen-part is optional: 

when conditions then 
statements 

elsewhen conditions then 
statements 

end when; 
The two statements inside the when-statement example below are executed at the event instant when 

the Boolean expression x > 2 becomes true. You should note that this is different from an if-statement 
with the same condition which executes its body each time when invoked provided that the condition of 
the if-statement is true. This difference is easier to understand if you look at the definition of when-
statements in terms of if-statements and the edge operator in Section 13.2.6.3. 

The execution order of the statements within the when-statement is important: the variable yl must be 
computed first since it is used to compute y3. Such ordering does not matter for the previous when-
equation variant of the same example. 

when x > 2 then 
yl := sin(x); 
y3 := 2*x + yl + y2; 

end when; 
The clocked when-equation (Section 13.6.6, page 700) is a conditional equation of the following 

general form, which also can be used in equation sections together with other equations. 

when clock then 
equations 

end when; 
Equations can be in a clocked partition (Section 13.6.13, page 715) and can be governed by a clock 

even without the use of clocked when-equations. If clock-related operators are used, a Modelica tool can 
determine which equations are activated by a certain clock by the use of clock inferencing. 

13.2.6.2 Unclocked versus Clocked Discrete-time Modeling 

Several models with discrete-time parts are presented in this chapter with both unclocked and clocked 
modeling styles. The reader might wonder which modeling style should be chosen in a particular situation. 
This is partly a matter of taste, but some subjective guidelines can be given: 

• If your application contains a digital subsystem controlled by a digital clock, the clocked modeling 
style is the most natural. 

• If your model is mainly continuous-time, the unclocked style might fit better. 
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• If your model mainly uses and interacts with unclocked libraries, the unclocked style might be 
better. 

• If your application needs maximum performance and contains clocked digital parts, the clocked 
style is recommended since the continuous-time numeric solver need not be involved when solving 
the clocked equations. 

The two modeling styles also have different properties: 

• The unclocked style is more flexible since it allows access and solution/assignment of any 
unclocked variables. 

• The clocked style will cause all equations to be put into groups/partitions: an unclocked partition as 
well as a number of clocked partitions, one for each clock rate. Only equations with the same clock 
rate are placed in the same partition. 

• Clocked variables of a certain clock rate can only be solved for/assigned to in the clocked partition 
with that clock rate; in other partitions these variables can not be written only read using the 
appropriate clock operator (sample, hold, subSample, superSample, noClock, ...). 

• The clocked style is more strict in compile-time checks since only equations with the same clock-
rate can be solved in the same partition; this is an advantage to avoid certain errors, but also 
sometimes a disadvantage since it puts more constraints in the way the model can be constructed. 

13.2.6.3 Defining Unclocked when-equations by if-equations 

An unclocked when-equation can be defined as a combination of the following: 

• An if-equation. 
• Boolean variables with appropriate start values. 
• Calls to the edge operator in the conditions of the if-equation. 

An analogous mapping from when-statements to if-statements can be specified (see Chapter 9, Section 
9.2.10.1 on page 434, for a more elaborate example). You can easily understand the mapping from when-
equations to if-equations by regarding the following schematic when-equation example: 

equation 
when x > y.start then 

end when; 
This when-equation is equivalent to the following special if-equation. The Boolean variable b2 is 
necessary since the edge operator can be applied only to Boolean variables. Each condition of the when-
equation is set equal to a Boolean variable, which becomes the argument to one of the edge operators in 
the conditions of the if-equation. 

Boolean b2(start = x.start > y.start); 
equation 
b2 = x > y.start; 
if edge(b2) then 

end if; 
Remember the definition of edge as "edgeU)= x and not pre (x)." The edge operators in the 
conditions of the if-equation ensure that the equations within the if-equation are activated only when the 
original conditions become true, that is, at event instants. 

13.2.6.4 Discontinuous Changes to Variables at Events 

It is often the case that variables change discontinuously at events. Furthermore, the behavior of an event 
often inflicts further direct discontinuous changes to certain variables. Depending on the kind of variable, 
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you can choose between two mechanisms to inflict a direct change to a variable in a when-equation or 
when-statement: 

• The value of an unclocked discrete-time variable can be changed by placing the variable on the 
left-hand side in an equation within a when-equation, or on the left-hand side of an assignment 
statement in a when-statement. 

• The value of a clocked discrete-time variable can be changed by placing the variable in an equation 
within a clocked when-equation (Section 13.6.6, page 700), or in an equation that will solve for the 
variable within a clocked partition (Section 13.6.14, page 719). 

• The value of a continuous-time state variable that also is a dynamic variable, i.e., a variable whose 
derivative appears in the model by having the der () operator applied to it, can be instantaneously 
changed by a reinit () equation within a when-equation (Section 8.3.6, page 359). 

Section 13.2.6.1 contains several examples of the first case. The second case shows that equations in 
clocked when-clauses are just normal equations so that a variable solved for during the solution process 
can also be on the right hand side, like in the following model: 

model ClockedVarWhen 
Real x; 

equation 
when Clock(0.1) then 

3 = x; 
end when; 

end ClockedVarWhen; 
An example of the third case can be found below, taken from our old friend, the bouncing-ball model, 

first presented on page 57 in Chapter 2. The r e i n i t () equation instantaneously reinitializes the variable 
v to a new initial value, which is used as the start value when the continuous equation solver restarts after 
the when-equation has been handled, i.e., after a bounce. 

equation 
der(height) = v; 
der(v) = -g; 
when height<0 then 

reinit(v, -c*v); 
end when; 

13.2.6.5 Using Event Priority to Avoid Erroneous Multiple Definitions 

Two separate unclocked when-equations or when-statements in different algorithm sections may not 
define the same variable, as pointed out e.g. in Section 8.3.5.2, page 359. Without this rule a conflict 
between the equations would occur if both conditions would become true at the same time instant. This 
would happen for the erroneous model whenConf lictx below if we would have the same condition, for 
example, time>=l, in both when-equations since there are two equations, x = pre (x)+1.5 and x = 
pre (x) +1, that define the same variable x. 

In this particular case it would be possible to avoid the conflict by analyzing the conditions since they 
are of a particular simple form for which the time of the events can be predicted in advance. However, in 
the general case it is impossible to perform a compile time analysis that determines whether two or more 
conditions will trigger events at the same time instant. Therefore Modelica always enforces the single 
assignment principle, that is, at most one equation defining a variable, irrespective of the form of the 
conditions in when-equations and when-statements. 

model WhenConflictX // Erroneous model: two equations define x 
discrete Real x; 

equation 
when time>=2 then // When A: Increase x by 1.5 at time=2 

x = pre(x)+1.5; 



618 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

end when; 
when time>=l t h e n 

x = pre(x)+1; 
end when; 

end WhenConf l ic tX; 

// When B: Increase x by 1 at time=l 

The multiple-assignment conflict in the above example can be avoided by giving a higher priority to 
one of the defining equations through the elsewhen construct, as in the same example in converted form 
below. We have put both equations within the same when-equation and ordered the conditions in 
decreasing priority (Figure 13-23). 

model WhenPriorityX 
discrete Real x; 

equation 
when time>=2 then 

x = pre(x)+1.5; 
elsewhen time>=l then 

x = pre(x)+1; 
end when; 

end WhenPriorityX; 

// Higher priority 

// Lower priority 

Figure 13-23. Eliminating the double definition conflict between equations in different when-equations in 
the WhenPriority model by giving the event at time=2 higher priority than the event at time=l through 
the use of elsewhen in the WhenPriorityX model. 

However, note that multiple assignments to the same variable within an algorithm section are allowed 
since only the last assignment to the same variable in an algorithm section is counted according to the 
single assignment principle explained in more detail in Section 8.1.3, page 348, for example: 

algorithm 
when time>=2 then 

x := pre(x)+0.75; // multiple assignments within the same 
x := x+0.75; // when-statement or algorithm section is allowed 

elsewhen time>=l then 
x := pre(x)+1; 

end when; 

13.2.6.6 Event Synchronization and Propagation 

Events often need to be synchronized and propagated. However, Modelica gives no guarantee that two 
different independent events occur at exactly the same time instant if they are not explicitly synchronized, 
for example, via equations or clocks of the built-in type Clock. This has to do with the fact that Modelica 
deals with both continuous and discrete system modeling, in contrast to certain purely discrete modeling 
languages that may provide implicit synchronization of all events using a central clock. 

For example, events triggered by independent calls to the unclocked version of sample, for example, 
sample(0, 3.3), may not necessarily occur at exactly the same time instants as those triggered by 
sample(0,1.1). Numerical roundoff errors can create small differences in the time values even though 
the first sample period appears to be a multiple of the second one. Of course, two or more independent 
events may actually occur at the same time instant, but Modelica gives no guarantee of synchronization if 
the events are not coupled by equations or precise clocks of type Clock. 
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To achieve guaranteed synchronization between two events, we use the synchronous principle that 
computation at an event takes no time. An event can instantaneously via one or more equations change the 
values of certain discrete-time variables used for the synchronization, typically Boolean or integer 
variables. These changes may trigger other events without any elapsed time, which thereby are 
synchronized. 

For example, it is possible to synchronize counters performing their counting behavior at different 
frequencies, for example, as in the SynchCountersUnclocked example below. The equation involving 
slowPulses and count synchronizes the two counters, that is, slowPulses = mod (count, 2) ==0. 

With the introduction of built-in synchronized clock variables in Modelica it has become much easier and 
less error-prone to model clocked event synchronization, for example, as in the SynchCountersClocked 
example further below. Moreover, this gives more efficient simulation. This is now the recommended way to 
model applications involving synchronized clocks in Modelica. However, below the old unclocked modeling 
style is first shown. If you are more interested in the clocked version, skip to the next example. 

model SynchCountersUnclocked "Two unclocked synchronized counters" 
Boolean slowPulses; 
Boolean fastPulses; 
Integer count, slowCount; 

equation 
fastPulses = sample(1,1); 
when fastPulses then // Count every second 

count = pre(count)+1; 
slowPulses = mod(count,2)==0; // true when count=2,4, 6, ... 

end when; 
when slowPulses then // Count every 2nd second 

slowCount = pre(slowCount)+1; 
end when; 

end SynchCountersUnclocked; 
Figure 13-24 shows the two synchronized counters count and slowCount in a simulation of the 

SynchCountersUnclocked model. The slowPulses when-equation is evaluated at every 2nd 
occurrence of the fastPulses when-equation. 

The single assignment rule and the requirement to explicitly model the synchronization of events in 
Modelica allow a certain degree of model checking and error detection already at compile time. For 
example, a kind of "deadlock" between different when-equations is present if there are mutual 
dependencies, a so-called "algebraic loop," between the equations of the when-equations, as in the 
DeadLock example model on page 622 below. This case should be detected by a Modelica compiler. 

count 

slowCount 
5 
4 

3 
2 

time 1 2 3 4 5 6 
Figure 13-24. Simulation of the model SynchCountersUnclocked with two unclocked synchronized 
counters, where the slow counter is incremented every 2nd pulse of the fast counter. 

Below is a version of the previous model using clocked synchronous language primitives (Section 13.6, 
page 694). The new model called SynchCountersClocked has a structure that is very similar to the 
previous model. The unclocked when-equations have been replaced by clocked when-equations. The pre() 
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calls in the difference equations have been replaced by calls to previous(). The slowPulses and 
fastPulses variables have been changed from Boolean to the built-in Clock type. The clock 
constructor call Clock (1) now returns a clock with interval 1 second used for fastPulses. For 
slowPulses we use the built-in subSample() operator to obtain every second clock tick giving an 
interval of 2 seconds. Finally, we have introduced two unclocked "hold" variables hcount and 
hslowCount which are defined also between clock ticks, whereas the clocked variables count and 
slowCount are only defined at clock ticks. 

model SynchCountersClocked "Two clocked synchronized counters" 
Clock slowPulses; // Clock variables 
Clock fastPulses; 
discrete Integer count, slowCount; // Clocked variables 
Integer hcount, hslowCount; 

equation 
fastPulses = Clock(l); 
when fastPulses then // Count every second 

count = previous(count)+1; 
end when; 

slowPulses = subSample(fastPulses,2); // Slow down clock by a factor 2 
when slowPulses then // Count every 2nd second 

slowCount = previous(slowCount)+1; 
end when; 
hcount = hold(count); // Hold variables also defined between ticks 
hslowCount = hold(slowCount); 

end SynchCountersClocked; 
The plot is identical to the plot for the previous model, as it should be. 

hcount 

hslowCount 

0.0 2.5 5.0 

Figure 13-25. Simulation of the model SynchCountersClocked with two explicit hold versions of 
clocked synchronized counters, hcount with an interval of 1 second and hslowCount with an interval of 2 
seconds. 

There is an alternative way of writing this model without clocked when-equations if we make the 
difference equations clocked by other means, as shown in the shorter model SynchCounters-
ClockedShort below. The clocked version of sample() with call sample (1, fastPulses) takes a 
clock as its second argument and returns the value 1 of the first argument only at the clock ticks. This is an 
example of overloading since the unclocked version of sample() also has two arguments but the second 
argument in that case is a real number. 

Since the call sample (1, fastPulses) returns a clocked value, clock inference makes the whole 
equation including the variable count clocked with the same rate. The clocked equation is solved only at 
clock tick events, for example, the same as using the clocked when-equation. 

Moreover, it is possible to declare slowPulses = Clock (2) and still have it synchronized with 
fastPulses without using subsampling since clocks of type Clock which are related by an exact integer 
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or rational number factor are automatically synchronized. Clocked variables of type integer are 
automatically synchronized when possible but not clocked variables of type Real. This is different from 
the unclocked variables in the model SynchCountersUnclocked, which always must be related by 
equations to be synchronized. 

model SynchCountersClockedShort "Two clocked synchronized counters" 
Clock fastPulses = Clock(1) "Clock tick every second"; 
Clock slowPulses = Clock(2) "Clock tick every 2 seconds"; 
discrete Integer count, slowCount; 
Integer hcount, hslowCount; 

equation 
// Sample the constant value 1 at clock ticks of fastPulses or slowPulses 
// The count equation gets updated at every tick of fastPulses 
// Clock inference associates the fastPulses clock to count 
count = previous(count) + sample(1,fastPulses); 
slowCount = previous(slowCount) + sample(1,slowPulses); 
hcount = hold(count); // Hold variables also defined between ticks 
hslowCount = hold(slowCount); 

end SynchCountersClockedShort; 
The simulation results of SynchCountersClockedShort are identical to those of 

SynchCountersClocked. The plots in Figure 13-26 to the left show the clocked count and slowCount 
variables represented by round dots overlaid on top of the hcount and hslowCount variables. The clock 
variables are shown to the right. 

false 

true 

Figure 13-26. Left: two synchronized counters, count with an interval of 1 second and slowCount with an 
interval of 2 seconds, shown as round dots at clock ticks, together with the hold variables hcount and 
hslowCount which also have values between clock ticks. Right: the two clock variables, slowPulses with 
an interval of 2 seconds, and fastPulses with an interval of 1 second. 

If we change the slow clock to make it even slower, with a tick every fourth second, the declaration of 
slowPulses is changed as follows: 

Clock slowPulses = Clock(4) "Clock tick every 4 seconds"; 
Simulation results and plots with the factor four difference in counter frequency appear in Figure 13-27 

below. 



622 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

• • 

Figure 13-27. The same simulation and plots as in Figure 13-26, except that slowCount is now a factor of 
4 slower than count instead of as previously a factor of 2. 

In general, as is well known from process programming theory, deadlocks can occur between mutually 
dependent parallel processes competing for the same resource. In Modelica each when-equation can be 
thought of as specifying a kind of parallel process. However, the great advantage here is that the deadlock 
is detected at compile time in contrast to asynchronous parallel programming languages where deadlocks 
often cause problematic bugs first noticed at run time. 

model DeadLock 
Boolean bl,b2; // by a more realistic example 

equation 
when bl then 

b2 = true; 
end when; 
when b2 then 

bl = true; 
end when; 

end DeadLock; 
After having focused on event synchronization for a while, we will now turn to general propagation of 

events of which synchronization is a special case. Furthermore, we should not forget that an event also 
might involve the change of continuous variables, which might be used in equations and conditions of 
other models and when-equations. Propagation of events thus might require evaluation of both continuous 
equations and conditional equations. 

Regarding simple propagation of events, Boolean variables are quite useful. For example, a level 
sensor in a tank may generate a tank, level measurement value. If the tank, level variable exceeds a 
certain tank .maxLevel, an overflow event should be generated and propagated (Figure 13-28) . 

For propagation of the overflow event we declare a variable called overflowing in the connector out 
belonging to the level sensor, and define the variable by a Boolean equation, for example: 

levelSensor.out.overflowing = tank.level > tank.maxLevel; 

tank 
C 

out in 

pump tank 
C 

pump tank pump 

Figure 13-28. A level sensor in a tank may set the variable overflowing to true, causing an event which 
propagates to the pump via the connection between the connectors out and in. 
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Furthermore, we connect the level sensor to a pump to be able to automatically start pumping when an 
overflow happens in order to reduce the level. This is modeled by connecting the levelSensor .out 
connector to the pump. in connector as below: 

connect(levelSensor.out, pump.in); 
This connection generates an equation for the Boolean variable overflowing, which enables 

propagation of overflow events from the level sensor to the pump: 

levelSensor.out.overflowing = pump.in.overflowing; 
The pump might react on such events by testing its corresponding variable in. overflowing from its 

connector pump .in. The condition for starting pumping, for example, could be either tank overflow or the 
user pushing a start button on the pump: 

startPumping = in.overflowing or startPushed; 
For simulation, these equations need to be solved for the variable pump. startPumping. Equations that 
define boolean variables usually need to have a simple form in order to be solvable. There should be a 
single Boolean variable on the left-hand side or on the right-hand side of such equations. 

13.2.6.7 Multiple Events at the Same Point in Time and Event Iteration 

Multiple events may actually occur at the same point in time, as hinted at in the previous section about 
event synchronization. Two or more independent events may just happen to be fired at the same time 
instant, or additional events may be fired at the time instant as a consequence of handling one of the events 
at that time instant. 

The discussion below concerns unclocked events. Clocked events are handled specially when solving 
equations in the clocked partition of the equation system and do not need event iteration (Section 18.2.5, 
page 1012). 

It is useful to maintain a well-defined ordering between events also if they occur at the same time 
instant when time ordering is not possible. An important reason is to provide a deterministic execution, 
that is, the simulation will always give the same results given the same input data. Two rules can be used 
to define this ordering, where the first is mandatory and the second is somewhat arbitrary since it is not 
supported by the Modelica language specification: 

• Data dependency order. 
• Declaration order. 

The data dependency order is determined by data-flow dependencies from defining equations to event 
conditions. For example, in the model MultipleEvents below the event handler c gives the new value 2 
to the variable x, which in turn causes the event condition x==2 of the event handler A to become true, 
thereby generating an additional event at the same time instant. The handler A subsequently gives x the 
value 3, which triggers the event B. This gives the ordering: C - » A ->B. 

Note that when several events are generated at the same time instant, the value of the pre function, for 
example, pre (x) in the example below, refers to the value of x previous to the current event according to 
the event ordering, and not to the value of x immediately before the current time instant. 

The declaration order or some other deterministic ordering rule could in principle be used to order the 
independent events c and D, which both occur at the same time instant when time=2. However, since 
declaration order is not supported by Modelica we need to use elsewhen for priorities. Using "declaration 
order" and elsewhen, we obtain the ordering c—>D, since the event handler for c occurs before the one 
for D in the elsewhen-sequence in the Modelica code below. 

model MultipleEvents 
discrete Integer x(start=l); 
Boolean signal(start=false); 

equation 
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when x==2 then // 
x = pre(x) +1; 

elsewhen x==3 then // 
x = pre(x)+ 5; 

end when; 
when time>=2 then // 

x = 2; 
elsewhen time>=2 then 

signal = true; 
end when; 

end MultipleEvents; 
The second issue concerns the event-handling order in the queue of events pending at the same time 

instant. For example, the ordered set of events {C,D} is initially pending at time=2. According to the above 
ordering rules, c is serviced first. What happens next is dependent on the event-handling ordering 
algorithm. 

The simplest algorithm would always service the first event according to the event ordering. In theory, 
but not in this example, C might cause the c event to be triggered once more and thereby be serviced first 
again since it comes first in the event ordering, giving the c event unfair advantages. A servicing algorithm 
that is more fair would handle the remaining events in the queue before coming back to the first event. 
Such an algorithm is sketched below, where steps 1-4 are repeated until you exit from the algorithm: 

1. Determine the ordered set of pending events. 
2. If this set is empty, that is, no conditions for conditional equations are true, exit this algorithm 

and continue continuous simulation and/or future time-event handling. 
3. Otherwise handle the first event in the ordered set of pending events. 
4. For each of the remaining events in the ordered set, check if the event condition is still true, and if 

this is the case, handle the event. 

It is possible to formulate models for which this algorithm never terminates. However, in practice, for 
most practical models the algorithm terminates within a few iterations. This kind of iterative procedure is 
also known as event iteration, see also Section 18.2.5, page 1012. Note that according to step 2 in the 
algorithm all event conditions (e.g., typical edge conditions for when-equations) are false at exit. This 
kind of algorithm also assumes that it is possible to compute a consistent state after handling each event. If 
we apply the algorithm to the above MultipleEvents example, the following sets of ordered pending 
events are created and serviced in order: 

1. The initial ordered set of pending events is determined to be {C, D} at time = 2. First service c, 
then D. 

2. The next set of pending events is {A}, since event c triggers A. 
3. The next set becomes {B}, since A triggers B. 
4. The final set is {}, that is, empty, causing exit from the algorithm and continuation of continuous 

simulation and handling of future events. 

This is just an example of an event-servicing algorithm. The Modelica language specification does not 
prescribe any special algorithm, thereby giving freedom to the Modelica language implementor to invent 
even better algorithms. 

13.3 Discrete Model Examples and Related Formalisms 

The purpose of this section is to provide you with a number of model examples of different kinds of 
discrete systems, and to compare with several well-known discrete modeling formalisms. You will see that 
the modeling power of Modelica is quite sufficient to conveniently represent models based on these 

Event handler A 
// x becomes 2+1 = 3 

Event handler B 
// x becomes 3+5 = 8 

Event handler C 
// x becomes 2 

// Event handler D 
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formalisms. A number of examples are presented in two variants, using either unclocked or clocked 
(Section 13.6, page 694) modeling styles. Clocked modeling is especially suitable for sampled systems 
which usually contain digital system parts with built-in digital clocks. 

13.3.1 Sampled Systems 

A simple type of discrete-time model is the sampled data model often used in applications because of its 
simplicity and favorable analytical properties. A sampled model is characterized by its ability to 
periodically sample continuous input variables u(t), calculate new outputs y that can influence the 
physical world as well as continuous parts of the model, and update discrete-time state variables x. Both 
the output variables y and the state variables x keep their values between the sample events since they are 
discrete-time variables. Such a sampled system model is schematically depicted in Figure 13-29. A 
sampled system model has only one kind of event, the sample event, and can be represented by the 
following state space equations: 

xk+l = f(xk»uk»h > tk+\) ( j 
yk = h{xk,uk,tk) 

Here JC* is a sequence of state vectors or scalars, uu is a sequence of sampled input vectors or scalars, and yu 
is a sequence of output vectors or scalars at points in time t = t0,tl9...,tk,tk+l,..., and so on. In a real-time 
environment, periodic sampling is usually assumed withf^ = kT,k = 0,1,2,3,..., where T is the fixed 
sample interval. At any sample event occurring at time 4, the model should compute xk+\ and yk depending 
on Uk and Xk. It is important that the input uk can propagate through the system without any time delay, 
since the input might be the output of another subsystem. 

Computer System 
Xk 

yk 

Sensors Actuators 

Physical World 

Figure 13-29. A sampled system where a computer obtains sampled inputs uk and controls the continuous 
physical world through the output signals yk. The current discrete state is represented by xk, and the 
computed state to be used at the next sample event is xk+1. 

The discrete state space model in equation (13-6) can be derived from the usual continuous-time state 
space model: 

m=xmMt)) 0 3 - 7 ) 

y(t) = h(x(t),u(t)) 

using the Euler approximation of the derivative x(t): 
• ( t v ) - * ( ' * ) (13-8) 

lk+1 lk 

By substituting the above approximation for x(tk) into the continuous state space model equations and 
doing a few rearrangements, we obtain the following approximate state space equations on a difference 
equation form: 
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) * /(*('*). «('*). tk'k+i) = )+ ftt+i ~ h )f(x(tk), u(tk)) (13-9) 
y(tk) = h(x{tk\u(h)) 

Using the definitions below for xk, xk+\, uk, and yk we obtain the previously presented state space 
equations for sampled systems. In the following Modelica models of sampled systems we will use the 
notation u, y, x, and pre (x) (or previous (x)) as defined below: 

u = uk=u(tk) 

y = yk=y(h) 

x = (13-10) 

f = / 

Figure 13-30 illustrates the relationships between the input uk, output yk, and state variables xk at and 
between sampling points tk in a sampled system model. 

Figure 13-30. At a sample point the sampled value uk of u(t) together with the value xk of the discrete 
state variable x are used to compute the output value >>* and the next state value xk+1. The discrete-time 
variable x is an approximation to the continuous-time variable x(t). 

13.3.1.1 Simple Periodic Sampler 

The following model is a simple periodic sampler with a sampling period T that is constant and defined as 
a parameter that can be changed by the model user. As we remarked previously, this model has only one 
kind of event, the sampling event. We use the built-in function sample in the when-condition 
sample (0, T) to periodically generate sampling events with a period time T. This is a simple model using 
the state space equations that were defined in the previous section. 

model SimplePeriodicSamplerUnclockeci 
parameter Real T=1 "Sample period"; 
input Real u "Input used at sample events"; 
discrete output Real y "Output computed at sample events"; 

protected 
discrete Real x; // discrete-time state variable 

equation 
when sample(0,T) then 

x = f(pre(x),u); // state update expression 
y = h(pre(x),u); // output expression 

end when; 
end SimplePeriodicSamplerUnclocked; 
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A clocked version of the same model appears as follows. A clocked output variable yl had to be 
introduced since only equations for clocked variables are allowed inside a clocked when-equation. The 
equation for the unclocked variable y which is just a hold version of yl, had to be placed outside the 
clocked when-equation. 

model SimplePeriodicSamplerClocked 
parameter Real T=1 "Clock period"; 
input Real u "Input used at sample events"; 
discrete output Real yl "Output only defined at sample events"; 
output Real y "hold output y also defined between sample events"; 

protected 
discrete Real x "clocked discrete-time state variable"; 

equation 
when Clock(T) then 

x = f(previous(x),sample(u)); 
yl = h(previous(x),sample(u)); 

end when; 
y = hold(yl); // hold output 

end SimplePeriodicSamplerClocked; 

// state update expression 
// output updated at clock events 

y also defined between events 

We simplify even further by replacing the calls to the functions f and h by simple example 
expressions, removing the protected keyword to make the state variable x accessible for plotting, and 
setting u=time as an example instead of a real input signal: 

model VerySimplePeriodicSamplerClocked 
parameter Real T=1 "Clock period"; 

Real u=time "Use time as input at sample events"; 
discrete output Real yl "Output only defined at sample events"; 
output Real y "hold output y also defined between sample events"; 
discrete Real x(start=0) "clocked discrete-time state variable"; 

equation 
when Clock(T) then 

x = previous(x) + sample(u); // state update expression 
yl = previous(x)+ 3+sample(u); // output updated at clock events 

end when; 
y = hold(yl); // hold output y also defined between events 

end VerySimplePeriodicSamplerClocked; 
Simulating VerySimplePeriodicSamplerClocked for five seconds appears as shown in Figure 13-31. 
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Figure 13-31. Left: Plot of the clocked yl and unclocked y output variables on top of each other, state 
variable x and input u=time. Right: Clocked variables yl, x, and previous (x). 
As a comparison, we show an unclocked version of VerySimplePeriodicSampler: 
model VerySimplePeriodicSamplerUnclocked 
parameter Real T=1 "Sample period"; 

Real u=time "Input used at sample events"; 
discrete output Real y "Output computed at sample events"; 
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discrete Real x; // discrete-time state variable 
equation 
when sample(0,1) then 

x = pre(x) + u; // state update expression 
y = pre(x) + 3*u; // output y updated at sample events 

end when; 
end VerySimplePeriodicSamplerUnclocked; 

As expected, when simulating the unclocked model VerySimplePeriodicSamplerUnclocked the 
output variable y and state variable x to the left in Figure 13-32 appear to be the same as the previously 
simulated clocked model with x, y and yl in the right diagram of Figure 13-32 and in Figure 13-31, apart 
from the usual difference between clocked and unclocked variables. 

Figure 13-32. Left. Plot of the simulation of the unclocked model with output variable y, state variable x, 
and input u=time. Right: Plot from Figure 13-31 of corresponding variables from the clocked model. 

13.3.1.2 Base Classes for Sampling Models 

It is possible to formulate base classes for scalar sampling models using the previously presented state-
space equations. Two base classes are presented, one for unclocked and one for clocked models. The 
general classes BaseSamplerUnclocked and BaseSamplerClocked can, for example, be specialized to 
either periodic or aperiodic sampler models and have replaceable functions f and h to adapt their behavior. 
In the unclocked model a Boolan variable is used to represent a clock, whereas the clocked model uses a 
Clock variable. 

partial class BaseSamplerUnclocked 
Real u "Input used at sample events"; 
discrete output Real y; 
Boolean doSample; 
replaceable function f = Modelica.Math.atan2; // atan2 used as dummy 
replaceable function h = Modelica.Math.atan2; // default function 
discrete Real x(start=0); 

equation 

// state update expression 
// output expression 

when doSample then 
x = f(pre(x),u); 
y = h(pre(x), u); 

end when; 
end BaseSamplerUnclocked; 
The clocked base sample model uses a clock variable doSample of built-in type Clock: 
partial model BaseSamplerClocked 

Real u "Input used at clock events"; 
discrete output Real yl "Output only defined at sample events"; 
output Real y "hold output y also defined between sample events" 
Clock doSample; 
replaceable function f = Modelica.Math.atan2; // atan2 used as dummy 
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// state update expression 
// output updated at clock events 

replaceable function h = Modelica.Math.atan2; // default function 
discrete Real x(start=0) "clocked discrete-time state variable"; 

equation 
when doSample then 

x = f(previous(x),sample(u)) 
y1 = h(previous(x),sample(u) 

end when; 
y = hold(yl); // hold output y also defined between clock events 

end BaseSamplerClocked; 
We use two very simple example functions f 2 and h2 for the redeclarations: 
function f2 
input Real ul; 
input Real u2; 
output Real y; 

algorithm 
y ul+u2; 

end f2; 
function h2 

input Real ul; 
input Real u2; 
output Real y; 

algorithm 
y := ul + 5*u2; 

end h2; 
The base models are extended to periodic sampling models PeriodicSamplerUnclocked and 

PeriodicSamplerClocked with a fixed period time T: 
model PeriodicSamplerUnclocked 

extends BaseSamplerUnclocked(u=time,redeclare function f=f2, 
redeclare function h=h2); 

parameter Real T=1 "sample period"; 
equation 

doSample = sample(0, T); 
end PeriodicSamplerUnclocked; 
model PeriodicSamplerClocked 

extends BaseSamplerClocked(u=time,redeclare function f=f2, 
redeclare function h=h2); 

parameter Real T=1 "sample period"; 
equation 
doSample = Clock(T); 

end PeriodicSamplerClocked; 
Plots of simulations of these two models for five seconds are shown in Figure 13-33 below. 

20-

10-

o-

Figure 13-33. Left: Plot of a simulation of the unclocked model PeriodicSamplerUnclocked. Right: 
Plot of a simulation of an "equivalent" clocked model PeriodicSamplerClocked. 
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13.3.1.3 Aperiodic Sampler 

Besides the above periodic sampler, an aperiodic sampling model with a time-varying sample period can 
be obtained by specializing the base class. 

A variable nextSampling is used for the next sampling time, which is current time + periodTime 
when the current time has reached the previous value of nextSampling. In these examples we increase 
the period time by the logarithm of the current time just to have a time-varying period time. 

As before, a Boolean doSample is used in the unclocked model: 

model APeriodicSamplerUnclocked 
extends BaseSamplerUnclocked(u=time,redeclare function f=f2, 

redeclare function h=h2); 
discrete Real nextSampling(start=0); 
discrete Real periodTime(start=2) "time-varying sample period"; 

equation 
doSample = time>pre(nextSampling); 
when doSample then 

nextSampling = pre(nextSampling) + periodTime; 
periodTime = pre(periodTime) + log(pre(periodTime)); // example 

end when; 
end APeriodicSamplerUnclocked; 
In the clocked model, the clock with a varying increasing interval is created by the expression 

Clock (condition, startinterval) gives a clock triggered by the condition expression (Section 
13.6.7.5, page 704), with an optional startinterval having default 0.0. In the model below only the 
first argument is supplied. The variable doSample has Clock type. 

Note that the clocked model uses Clock (time>hold (nextSampling) ) and not 
Clock (time>hold (previous (nextSampling) ) ) , whereas the unclocked model uses time>pre( 
nextSampling)). See Section 0, page 631, for an explanation. 

model APeriodicSamplerClocked 
extends BaseSamplerClocked(u=time,redeclare function f=f2, 

redeclare function h=h2); 
discrete Real nextSampling(start=0); 
discrete Real periodTime(start=2) "time-varying sample period"; 

equation 
doSample = Clock(time>hold(nextSampling)); 
when doSample then 

nextSampling = previous(nextSampling)+periodTime; 
periodTime = previous(periodTime) +log(previous(periodTime) ) ; 

end when; 
end APeriodicSamplerClocked; 

nextSamphng 

penodTime 

Figure 13-34. Left: Plot of a simulation of the unclocked model APeriodicSamplerUnclocked. Right: 
Plot of a simulation of an "equivalent" clocked model APeriodicSamplerClocked. In both cases the time 
interval periodTime between events slowly increases over time. 
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Simulations and plots of the APeriodicSamplerUnclocked and APeriodicSamplerClocked 
models are shown in Figure 13-34. 

13.3.1.4 Analysis of pre versus previous in Clocked and Unclocked APeriodicSampler 

There is a difference between the clocked and unclocked models. APeriodicSamplerClocked uses 
doSample = Clock(time>hold(nextSampling)) and not doSample = Clock(time>hold( 
previous (nextSampling) ) ). The unclocked model uses doSample = time>pre (nextSampling) ). 

This is due to the different behavior of pre ( ) and hold (previous ( ) ) outside when-clauses (Section 
13.2.5.14, page 610). Let us analyze what is happing with the expression: 

Clock(time > hold(previous(nextSampling))) 
At time == 0 + eps we have: 

hold(previous(nextSampling)) == 0 
(time > hold(previous(nextSampling))) == true // clock tick when true 
nextSampling = 0 + periodTime // updated nextSampling 

After the clock tick we still have the value zero from the previous tick, before the most recent tick: 

hold(previous(nextSampling)) == 0 
Now, let us analyze the unclocked example. The expression pre (nextSampling) outside of a when-

clause just refers to the left limit (Section 13.2.5.12, page 609) of nextSampling which is the same as 
nextSampling between events. It is not the value nextSampling had at the previous event. 

time == 0+eps: 
pre(nextSampling) == 0 
(time > pre(nextSampling)) == true // event is generated when true 
nextSampling = 0 + periodTime; // updated nextSampling 

After the event at time zero: 

pre(nextSampling) == nextSampling // pre(nextSampling) same as nextSampling 
time > pre(nextSampling) == false => no event 

At time O+nextSampling: 
time == O+nextSampling+eps: 
time > pre(nextSampling) == true // generates event 
Since pre (nextSampling) and nextSampling are the same outside when-clauses we can change 

the model: 

model APeriodicSamplerUnclocked2 
extends BaseSamplerUnclocked(u=time,redeclare function f=f2, 

redeclare function h=h2); 
discrete Real nextSampling(start=0); 
discrete Real periodTime(start=2) "time-varying sample period"; 

equation 
doSample = time>pre(nextSampling); // changed here 
when doSample then 

nextSampling = pre(nextSampling) + periodTime; 
periodTime = pre(periodTime) + log(pre(periodTime)); // example 

end when; 
end APeriodicSamplerUnclocked2; 
The simulation of APeriodicSamplerUnclocked2 is the same as APeriodicSamplerUnclocked 

in Figure 13-34, page 630. 
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13.3.1.5 Discrete Scalar State Space Sampling Model 

A discrete first-order scalar state space model with periodic sampling can be formulated as follows, 
essentially being a special case of the BaseSampler models (Section 13.3.1.2, page 628) even though 
they do not inherit from the base classes in this case. Similar models are in Section 13.3.1.1, page 626. 

model DiscreteScalarStateSpaceUnclocked 
parameter Real a=l, b=l, c=l, d=3; 
parameter Real T=1 "Clock period; 

Real u=time; // an external input, here replaced with time 
discrete output Real y; 
discrete Real x; 

equation 
when sample(0,T) then 

x = a*pre(x) + b*u; 
y = c*pre(x) + d*u; 

end when; 
end DiscreteScalarStateSpaceUnclocked; 

The clocked model version is: 
model DiscreteScalarStateSpaceClocked 

parameter Real a=l, b-1, c=l, d=3; 
parameter Real T=1 "Clock period"; 

Real u=time "Use time as input at sample events"; 
discrete output Real yl "Output only defined at sample events"; 
output Real y "hold output y also defined between sample events"; 
discrete Real x(start=0) "clocked discrete-time state variable"; 

equation 
when Clock(T) then 

x = a*previous(x) + b*sample(u); // state update expression 
yl = b*previous(x) + d*sample(u); // output updated at clock events 

end when; 
y = hold(yl); // hold output y also defined between events 

end model DiscreteScalarStateSpaceClocked; 

Figure 13-35. Left'. Plot of a simulation of the unclocked DiscreteScalarStateSpaceUnclocked. 
Right. Plot of a simulation of an "equivalent" clocked model DiscreteScalarStateSpaceClocked. 
Alternatively, the discrete scalar state space model can be expressed by extending the BaseSampler 

model for periodic sampling and redeclaring the functions f and g as below. However, in this case the 
result is not shorter or more readable since the syntax for expressing the local functions f 1 and hi is not 
very concise. On the other hand, if the functions f l and hi instead would be used in several places, the 
modeling style based on replaceable functions is preferable. 
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model DiscreteScalarStateSpace2Unclocked 
extends BaseSamplerUnclocked(u=time,redeclare function f=fl, 

redeclare function h=hl); 
constant Real a=l, b=l, c=l, d=7; 
constant Real T=1 "sample period"; 
function fl 
input Real xl; 
input Real x2; 
output Real yl; 

algorithm 
yl := a*xl + b*x2; 

end fl; 
function hi 

input Real xl; 
input Real x2; 
output Real yl; 

algorithm 
yl := c*xl + d*x2; 

end h; 
equation 
doSample = sample(0,T); 

end DiscreteScalarStateSpace2Unclocked; 
A simulation and plot of the model is shown in Figure 13-34 below. 

Figure 13-36. Simulation and plot of the unclocked model DiscreteScalarStateSpace2Unclocked. 

13.3.1.6 Discrete Vector State Space Sampling Model 

Usually, state space models are expressed using the more general vector form, as in the 
DiscreteVectorStateSpace periodic sampling model below: 

model DiscreteVectorStateSpace 
parameter Integer n,m,p; 
parameter Real A[n,n], B[n,m], C[p,n], D[p,m]; 
parameter Real T=l; 
input Real u[m]; 
discrete output Real y[p]; 

protected 
discrete Real x[n]; 

equation 
when sample(0,T) then 

x = A*pre(x) + B*u; 
y = C*pre(x) + D*u; 

end when; 
end DiscreteVectorStateSpace; 
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13.3.1.7 Two-rate Sampling Model 

A rather general structure for many sampled systems is a common clock together with one or more 
subsystems that are synchronized by this common clock. The sample events are synchronized and the 
sampling frequencies are integer fractions of the common clock frequency (Figure 13-37). 

Sampled System 

Sampler SubSystem 1 SubSystem 2 

Common Clock 

- • 0 

Figure 13-37. A sampled system consisting of a sampler and two subsystems, all synchronized by a 
common clock. 

One of the simplest examples of this structure is a two-rate sampler with a fast sampling system 
coupled to a fast clock, and a slow sampling system with a sampling frequency that is an integer fraction 
of the frequency of the fast clock. At every 5th activation of the fast Sample when-equation is the 
slows ample when-equation evaluated. 

For example, in the TwoRateSamplerUnclocked and TwoRateSamplerClocked models below, the 
slow sampler is five times slower than the fast sampler, i.e., the slowSample when-equation is evaluated 
at every fifth activation of the fast Sample when-equation. 

This model and similar models are very natural to model using the clocked language primitives 
(Section 13.6, page 694) which have the property that clocks related by an integer or rational number or by 
the subS ample or super Sample operators are automatically synchronized. 

model TwoRateSamplerClocked "Two clocked synchronized counters" 
Clock slowPulses; // Clock variable of type Clock 
Clock fastPulses; // Clock variable of type Clock 
discrete Real x,y; // Clocked variables for sampled values 
Real hx,hy; // Hold variables also defined between ticks 
Integer hcount, hslowCount; 

equation 
fastPulses = Clock(1); // Define the fast clock 
slowPulses = subSample(fastPulses,5); // Slow down clock by a factor 5 
when fastPulses then // Sample sin every second 

x = sin(sample(time)+1); 
end when; 
when slowPulses then // Sample log every 5th second 

y = log(sample(time)+1); 
end when; 
hx = hold(x); // Hold variables are also defined between ticks 
hy = hold(y); 

end TwoRateSamplerClocked; 
In the unclocked version of the model, TwoRateSamplerUnclocked, the two samplers are 

synchronized in a more complicated way via equations involving the cyCounter variable. This is an 
example of the synchronization method earlier described in Section 13.2.6.6, page 618. 

model TwoRateSamplerUnclocked 
discrete Real x,y; // Variables for sampled values 
Boolean fastSample; 
Boolean slowSample; 
Integer cyCounter(start=0); // Cyclic count 0,1,2,3,4, 0,1,2,3,4,... 

equation 
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fastSample = sample(0,1); // Define the fast sampling interval 
when fastSample then 

cyCounter = if pre(cyCounter) < 4 then pre(cyCounter)+1 else 0; 
slowSample = pre(cyCounter) == 0; // Define the slow clock 

end when; 
equation 
when fastSample then // Sample sin every second 

x = sin(time+1); 
end when; 

equation 
when slowSample then // Sample log every 5th second 

y = log(time+1); 
end when; 

end TwoRateSamplerUnclocked; 
Both models are simulated for 20 seconds and plotted in Figure 13-38. Even though the sampling is 

very coarse-grained, the sin and log function shapes can be recognized in the sampled variable curves. 

simulation of an "equivalent" clocked model TwoRateSamplerUnclocked. The fast sampler samples the 
sin function 5 times per second, whereas the slow sampler samples the log function once per second. 

13.3.2 Finite State Automata and State Machines 

Finite state automata is a simple and often-used formalism for modeling the behavior of certain discrete 
systems. Applications include digital circuits such as control units, neural networks, lexical analysis of text 
input to compilers, and so on. A finite state automaton consists of the following components: 

• A finite set of states, often denoted Q = {qu qi, • • •} • 
• A finite set or alphabet of values, corresponding to event types, denoting state transitions. An event 

is the arrival of a value e in this finite set. 
• A next state function 8 mapping a state q and a transition value e to a set of states. A deterministic 

finite automaton maps to a set containing a single state, making the choice of the next state 
unambiguous. 

• A set of initial states and a set of final states. 

A pure finite state automaton has no notion of time. However, it is often used as a model component in 
a continuous-time dynamic system where time is relevant. In this case each state transition value 
corresponds to an event type. A specific event is the arrival of a certain value at some point in time. 

A finite state automaton can be viewed as a kind of control unit that always is in some state, denoted q, 
belonging to a finite set of states Q. It continuously receives values, denoted e, thereby switching to new 
states as specified by the next state function £ (q,e). The automaton moves from a state q to a state q', 
where q' e S'(e,q). The automaton is deterministic provided that the following two conditions hold: 

Figure 12-15. Basic equations and components in the control subsystem. Figure 12-15. Basic equations and components in the control subsystem. 
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• The next state funct ion8\e ,q) = {q'}, i.e., the target set contains only one state. 
• There is only one initial state. 

The arrival of values in the alphabet can be viewed as inputs, as outputs, as external control signals, or 
as internal events, depending on how the finite state automaton interacts with the rest of the system. 

control 

Figure 13-39. Three common uses of finite state automatons as model components. 

There are at least three common uses of finite state automatons as model components which are 
depicted in Figure 13-39: 

• In the first configuration, the finite state automaton works as a recognizer for certain sequences of 
input events. A very common application is as a string acceptor in lexical analysis of text, 
typically in compiler frontends. Input events are the arrival of characters in an input stream. For 
example, in Figure 13-40 the arrival of the character values " : " and "=" are accepted and 
recognized as the symbol "assignment operator," generating an output accept " :=" event. The 
automaton moves into a final state when a sequence of characters has arrived that is recognized as 
the string that should be accepted. 

• The second configuration is that the finite state automaton works as a generator, that is, it 
generates a sequence of output events. It is controlled by the environment, for example, via input 
variables or input control events. This control influences the selection of events from the set of 
possible transitions, and the time when a transition should occur. 

• In the third configuration, the finite state automaton works as an input/output process. Certain 
events are considered to be input events generated by the environment, some are output events, and 
some are internal events. The process can be controlled by the environment through external input 
variables or control events. 

Figure 13-40. A finite state automaton that recognizes the assignment operator ":=" from its two characters 
colon and equal sign. 

Several examples of finite state automata are presented below, including an introduction to clocked 
state machines with a counting state machine example in Section 13.3.2.1, page 637, a simple server model 
in Section 13.3.2.2, page 639, and an assignment operator (: =) recognizer related to Figure 13-40 above in 
Section 13.3.2.3, page 642. 



Chapter 13 Discrete Events and Hybrid and Embedded Systems 637 

13.3.2.1 Clocked State Machines 

Starting with the Modelica language version 3.3, constructs for directly creating state machines to model 
finite state automata applications are available in the Modelica language. This section gives a short 
introduction to the use of such clocked state machines. A more complete description is available in Section 
13.7, page 729. 

There are many similarities between finite state automata and clocked state machines, but also some 
differences: 

• Self-transitions are not needed in Modelica clocked state machines. The reason is that a clocked 
state machine stays in its current state if the transition conditions to other states are not fulfilled. 

• Transitions in state machines are made at clock ticks, whereas transitions in finite state automata 
happen at the arrival of events. However, events can be modeled by Boolean transition conditions 
which may become true and cause a transition at the next clock tick. 

The following equation operators are available to define state machines: 

• initialState(state). This equation operator makes the instance state be the initial state in 
the state machine. Only one initial state is allowed in a state machine. 

• transition(jfroi72, to, condition, immediate, reset, synchronize, priority). This 
equation operator defines a transition from instance from to instance to. These instances become 
states in the state machine. 

The transition fires when condition = true if immediate = true (this is called an 
"immediate transition," graphically depicted by a mark close to the arrow tip) or 
previous (condition) when immediate^ false (this is called a "delayed transition," 
graphically depicted by a mark close the beginning of the arrow). 

If reset - true, graphically depicted as a filled arrow tip, the local states of the target state are 
reinitialized, that is, state machines are restarted in initial state and local state variables are reset to 
their start values. Global inner state variables declared as outer variables in the target states are 
not affected by reset. 

If synchronize = true, the transition is disabled until all state machines hierarchically within 
the from state have reached the final states, i.e., states without outgoing transitions. 

These restrictions and properties currently apply: 

• The state machine constructs are only applicable to clocked models which are input-output blocks 
only using clocked equations. No unclocked equations are allowed. Any instances of such blocks 
can be states of a state machine. 

• A state machine is defined by a number of block instances instances at the same hierarchical level 
connected bytransition(...) equations. 

• A state without outgoing transitions is a final state. 
• All parts of the state machine must have the same clock. 
• If no clock is explicitly specified, a default clock starting at 0 with interval 1 is used. 

The restrictions that all parts of a state machine have the same clock and that no unclocked equations 
are allowed are planned to be removed in a future Modelica language version. 

We first define a simple state machine model called CountingStateMachinel. It has two states, the 
initial state state 1 and a second state state2. The default clock with interval 1 applies since there is no 
explicit clock declaration. 

It has a counting variable cn, initially zero, which is declared inner at the model level, and outer in 
each state so that it can be referred to locally within each state. In statel, cn is increased by 1 at each 
clock tick, whereas in state2, cn is decreased by 3 at each clock tick. 
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When the transition condition for the first transition fulfills previous (cn>7) =true (since 
immediate=false) there is a transition to state2 according to the transition(...) equation. 

In state2, when the condition previous (cn<3) =true is fulfilled, there is a transition back to 
st at el. The textual version of the model is shown immediately below, followed by the graphical version 
of the model in Figure 13-41 and a plot from the simulation in Figure 13-42. 

model CountingStateMachinel 
inner Integer cn(start=0); 

block Statel "The initial state" 
outer output Integer cn; 

equation 
cn = previous(cn) + 1; // Increase at each clock tick 

end Statel; 
Statel statel; 

block State2 
outer output Integer cn; 

equation 
cn = previous(cn) - 3; // Decrease at each clock tick 

end State2; 
State2 state2; 

equation 
initialState(statel); // Make statel the initial state starting at time 0 
transition(statel, state2, cn > 7, immediate=false); //transfer to state2 
transition(state2, statel, cn < 3, immediate=false); //transfer to statel 

end CountingStateMachinel; 
The graphical version of the model is depicted in Figure 13-41. As usual, the textual version is 

automatically generated from the graphical one, but often with a different order of the declarations. 

inner integer cn(start=0) 

r statel 
outer output integer cn; 
cn * previous(cn) + 1; 
// Increase at each clock tick 

\ / 

cn > 7 

state2 ) 
outer output integer cn; 
cn - previous(cn) - 3; 
//Decrease at each clock tick 

cn < 3 

Figure 13-41. Connection diagram of the simple clocked state machine model CountingStateMachinel, 
except that reset=true in the transitions. This does not affect the behavior since cn is an outer variable. 

We simulate the model CountingStateMachinel for 18 seconds and plot some results (Figure 13-42). 
Note that if the transition arguments are changed by setting reset=true the behavior is not changed since 
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reset only affects local state variables and not the outer variable cn which is an alias of the 
inner variable cn. 

Figure 13-42. Plot of the counter cn from a simulation of the simple state machine model 
CountingStateMachinel. 

13.3.2.2 Simple Server 

One of the simplest possible examples of an input/output process modeled as a finite state automaton is the 
simple server whose state transition diagram is depicted in Figure 13-43. 

Start 

(Passive 

Done 

Figure 13-43. A finite state automaton model of a simple server system—an example of an input/output 
process with Start as input event and Done as output event. 

The simple server finite automaton has two states, denoted Active and Passive, and a set of values 
{Start, Done} which is an alphabet of two symbols. The system becomes active and provides some 
service after receiving a start event. After finishing the service item, the system emits a Done event and 
returns to the Passive state. This can be described by a next-state mapping function: ^Passive, 
Start) = Active, ̂ Active,Done) = Passive. 

A graphical view of a clocked Modelica state machine model of the simple server automaton is 
depicted in Figure 13-44, whereas the textual version shown further below. 
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Boolean start(start=false); 
Integer i(start=0); 
inner Boolean done(start=falsè); 
inner Integer state(start=0); 

JL 
passive 

outer output Integer state ; 
state = 1 ; 

service 

done 

outer output Boolean done 
outer output Integer state; 
Integer timer(start=0); 
state = 2; 
timer = previous(timer) + 1 
done = timer >= 3; 
doService(); 

A 1 

start 

Figure 13-44. The simple server automaton starts in the passive state (state=l), transfers to the service 
state (state=2) at the event when the start variable becomes true. The filled arrow indicates a reset 
transition, the local variables (including timer) within the service state are reset to their start values. 
When the service is completed (done becomes true) a transition is done to the final state passive. 
The variables state and i have been introduced to illustrate the operation of the simple server 

automaton shown in Figure 13-45 even though they are not needed for correct operation of the automaton. 
The passive state is encoded by state=l and the service state is encoded by state-2. A local 
timer variable in the service state counts the service time, the default clock is 1 Hz since no clock rate 
is specified. When the service activity in the service state is completed, the variable done is set to true. 

model SimpleServer 
function doService "Dummy function to perform service" 
protected 

Integer i,sum := 0; 
algorithm 
for i in 1:10 loop 

sum := sum+i; 
end for; 

end doService; 

Boolean start(start=false); 
Integer i(start=0); 
inner Boolean done(start=false); 
inner Integer state(start=0); 

model Passive "State Passive" 
outer output Integer state; 

equation 
state = 1; // indicate passive state 

end Passive; 
Passive passive; 

model Service "State Service" 
outer output Boolean done; 
outer output Integer state; 
Integer timer(start=0); 

equation 
state = 2; // indicate service state 
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timer = previous(timer) + 1; 
done = timer >= 3; 
doService(); 

end Service; 
Service service; 

equation 
transition(passive, service, start, immediate=true, 

reset=true, synchronize=false, priority=l); 
transition(service, passive, done, immediate=false, 

reset=false, synchronize=false, priority=l); 
i = previous(i) + 1; 
start = (mod(i,2) == 0); // Generate a start service event every 2 ticks 
initialState(passive); 

end SimpleServer; 
The initiaistate(passive) equation makes the passive state the initial state. There are two 

transition equations, the first from passive to service and the second back from service to passive 
which is both the initial and the final state. 

The transition to the service state takes place when the start Boolean variable become true. The 
transition is immediate, and has reset=true which resets the local state variables (e.g., timer) in the 
target state passive. However, the outer variables done and state which are aliases of the same 
inner global variables are not reset since they are not local state variables. The transition back to the 
passive state is not immediate in order to avoid an algebraic loop. 

0.0 2.5 5.0 7.5 

Figure 13-45. The automaton starts in state=l (passive) and transfers to state=2 (service) at the 
event when start becomes true. The service in the service state is ongoing until done becomes true, 
when there is a transition back to the final state=l, the passive state. The cycle repeats when start 
again becomes true. 

It can be useful to point out some modeling alternatives which do not work in this example using state 
machines. When-clauses with Boolean conditions are not allowed in clocked partitions (Section 13.6.15.1, 
page 722), especially not in state machines which currently only allow clocked equations. Thus, 
introducing a variable event and using a when-equation when time>3 then event=Eventtype.done 
end when would not work in the service state. Moreover, if we replace the when-equation with an if-
equation to conditionally set event=Eventtype.done or event=Eventtype.start, there will be 
problems violating the single assignment rule. The solution in the above model is to introduce two separate 
clocked Boolean variables done and start, with the equation done = timer >= 3 in the service state. 
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13.3.2.3 Assignment Recognizer 

The assignment regocnizer is an example of a common application, a string acceptor in lexical analysis of 
text, typically in compiler frontends. Input events are the arrival of characters in an input stream. For 
example, in Figure 13-46 the arrival of the character values " : " and "=" are accepted and recognized as the 
symbol "assignment operator," generating an output accept " : =" event. The automaton moves into a final 
state when a sequence of characters has arrived that is recognized as the string that should be accepted. 

Figure 13-46. A finite state automaton that recognizes the assignment operator ":=" from its two characters 
colon and equal sign. 

The AssignmentRecognizer model below is an example of using Modelica state machines to 
represent the finite state automaton that recognizes the ":=" assignment symbol. It is somewhat simplified 
for practical reasons; the characters represented as enumeration values are picked from the chars array 
instead of an input stream. 

model AssignmentRecognizer 
type Chartypes = enumeration(colon, equals, space); 
constant Chartypes chars[:] = {Chartypes.colon, Chartypes.equals, 

Chartypes.space}; 
inner Integer i(start=0); 

block StateO "The initial state" 
outer output Integer i; 

equation 
i = 0; 

end StateO; 
StateO stateO; 

block Statel "Statel, colon has been seen" 
outer output Integer i; 

equation 
i = 1; 

end Statel; 
Statel statel; 

block State2 "The final state, := has been recognized" 
outer output Integer i; 

equation 
i = 2; 

end State2; 
State2 state2; 

equation 
initialState(stateO); // Make stateO the initial state starting at time 0 
transition(stateO, statel, chars[i+1]==Chartypes.colon, 

immediate=false); // transfer to statel, seen colon 
transition(statel, state2, chars[i+1]==Chartypes.equals, 

immediate=false); // transfer to final state2, seen equal sign 
transition(state2, stateO, true, 

immediate=false); // transfer back to initial stateO 
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end AssignmentRecognizer; 
The model appears as follows (Figure 13-47) using state machine graphical modeling facilities in a 

Modelica tool: 

inner Integer i(start=off 
constant Chartypes chars[:]={Chartypes.colon,Chartypes.equals,Chartypes.space}; 

stateO 1 chars[i + 1] == Chartypes. col on 

f 
outer output Integer i; 
i = 0; 

/ \ 
J 

/ f statel •> 

#chars[i + 1] == Chartypesequals outer output Integer i; 
ll= 1; 

#chars[i + 1] == Chartypesequals 

\ 

\ state2 J 
[ \ 

true' outer output Integer i; 
li = 2; 

Figure 13-47. A graphical view of the AssignmentRecognizer state machine model in a Modelica tool. 

We simulate for 6 seconds and plot the variable i which indicates the current state (see Figure 13-48). 

Figure 13-48. Left. A plot of the state transistion of the AssignmentRecognizer model. The := has been 
recognized in the final state2, after which a transition back to the initial stateO is done at the next tick. 
Right. The same model augmented by an additional state3, which is reached after one more character. 

The above model directly transfers back to the initial stateO at the next clock tick. Another way to 
model is to transfer to a final state when another character, e.g. a space, has been seen. This approach can 
be modeled by adding a fourth state (state3), and another transition. 

// A modified version of the model with a 4th state3 added 
block State3 

"The final state, := has been recognized followed by another character" 
outer output Integer i; 

equation 
i = 3; 

end State3; 
State3 state3; 

equation 

transition(state2, state3, chars[i+1]==Chartypes.space, 
immediate=false); // transfer to final state3 when another char is seen 

transition(state3,stateO,true,immediate=false); // transfer back to stateO 
end AssignmentRecognizer; 



644 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

13.3.2.4 Watchdog System 

A watchdog system is a slightly more elaborate example of an input/output process than the simple server. 
It has two basic states, Passive and Active, but can also enter a third state Alarmed when receiving a 
deadlineSignal event. When entering this third state the watchdog immediately emits an Alarm event. 
In general the function of a watchdog in its active state is to emit an alarm when a deadline is passed. 

Thus, the finite state automaton of the watchdog system in Figure 13-49 has a set of three states 
{Passive, Active, Alarmed} and a set of four values {Off, On, deadlineSignal, Alarm}, of which 
the arrival of any of the first three are input or control events, and emitting the last value is an output 
event. 

On 

Figure 13-49. A finite state automaton of a watchdog system. 

The watchdog system shown in Figure 13-50 consists of the watchdog itself and three event generators, 
emitting On events, Off events, and deadlineSignal events. 

Watch DogSystem 

T watchdog 
tumOffn— • 

Q 
deadlineEmitter 

Figure 13-50. A watchdog system. 

An unclocked Modelica model of the watchdog system follows below, consisting of the watchdog itself 
and the three event generators. The watchdog is formulated using an algorithm section since otherwise the 
multiple when-equations would cause multiple assignments to be reported for the variable 
watchdogActive. 

model WatchDogSystem 
EventGenerator turnOff(eventTime=0.25); 
EventGenerator turnOn(eventTime=l); 
EventGenerator deadlineEmitter(eventTime=l.5); 
WatchDog watchdog; 

equation 
connect(turnOn.dOutput, watchdog.dOn); 
connect(turnOff.dOutput, watchdog.dOff); 
connect(deadlineEmitter.dOutput, watchdog.dDeadline); 

end WatchDogSystem; 
model WatchDog 

EventPortInput dOn; 
EventPortInput dOff; 
EventPortlnput dDeadline; 
EventPortOutput dAlarm; 

f -

Alarm! 
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Boolean watchdogActive(start=false); // Initially turned off 
algorithm 
when dOn then // Event watchdog on 

watchdogActive := true; 
end when; 
when dOff then // Event watchdog off 

watchdogActive := false; 
dAlarm := false; 

end when; 
when dDeadline and watchdogActive then // Event Alarm! 

dAlarm := true; 
end when; 

end WatchDog; 

// Event ports also defined in CustomerGeneration, Section 13.3.4.2 
connector EventPortInput = input Boolean; 
connector EventPortOutput = output Boolean; 

model EventGenerator 
parameter Real eventTime=l; 
EventPortOutput dOutput; 

equation 
dOutput = time>eventTime; 

end EventGenerator; 
We simulate the WatchDogSystem and plot the alarm signal in Figure 13-51, letting true be 

represented by 1 and false by 0 in the diagram. The watchdog receives an Of f event at time = 0.25 and 
an On event at time = 1.0, which causes it to be in the Active state to emit an Alarm at time = 1.5, when 
the dead line Emitter component generates its "deadline reached" event. 

simulate(WatchDogSystem, stopTime=2.6) 
plot(watchdog.dAlarm) 

watchdog. dAlarm 

false 

, , , , . 1 i i 
0 1 2 

Figure 13-51. Simulating the unclocked watchdog system which emits an alarm event at time = 1.5. 

A clocked version of the model called WatchDogSystemClocked, is shown below. The main 
difference is that a global clocked timer variable has been introduced, and that the event generator detects 
when to emit a clocked signal synchronized with the clock ticks of the global clock by the equation 
dOutput = timecmp=true and previous (timecmp) ==false. An if-then-else statement is used 
instead of the when-statements in the unclocked version since clocked when-statements are currently not 
available in the Modelica language. 

model WatchDogSystemClocked "Clocked with synchronous global clocked timer" 
parameter Integer clockfrequency = 5; 
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inner discrete Real timer(start=-l.0/clockfrequency); 
EventGenerator turnOff(eventTime=0.25); 
EventGenerator turnOn(eventTime=l); 
EventGenerator deadlineEmitter(eventTime=l.5); 
WatchDogClocked watchdog; 

model WatchDogClocked 
EventPortlnput dOn; 
EventPortInput dOff; 
EventPortlnput dDeadline; 
EventPortOutput dAlarm(start=false); 
Boolean watchdogActive(start=false); // Initially turned off 

algorithm 
if dOn then // Event watchdog on 
watchdogActive :=true; 

elseif dOff then // Event watchdog off 
watchdogActive :=false; 
dAlarm :=false; 

elseif dDeadline and previous(watchdogActive) then //Event Alarm! 
dAlarm :=true; 

end if; 
end WatchDogClocked; 

connector EventPortlnput = input Boolean; 
connector EventPortOutput = output Boolean; 

model EventGenerator 
parameter Real eventTime=l; 
outer discrete Real timer; 
EventPortOutput dOutput; 
Boolean timecmp(start=false); 

equation 
timecmp = timer > eventTime; // Detect change from false to true 
dOutput = timecmp==true and previous(timecmp)==faise; 

end EventGenerator; 

equation 
connect(turnOn.dOutput, watchdog.dOn); 
connect(turnOff.dOutput, watchdog.dOff); 
connect(deadlineEmitter.dOutput, watchdog.dDeadline); 
timer = sample(time, Clock(1,clockfrequency)); // timer interval 1/freq 

//Alt2: timer = previous(timer)+ 
sample(1.0/clockfrequency,Clock(1,clockfrequency)); 

//Alt3: when Clock(1,clockfrequency) then // interval 1/clockfrequency sec 
//Alt3: timer = previous(timer) + 1.0/clockfrequency; 
//Alt3: end when; */ 

end WatchDogSystemClocked; 
There are several ways to define the clocked variable timer. In the model WatchDogSystemClocked, it 

is currently defined by an equation to sample the built-in variable time. Another option (Alt2) would be to 
add a delta l/clockfrequency, for example, 0.2 for 5Hz, at each tick, which may give rise to numerical 
roundoff errors after many such additions. The reason for sampling the delta value is to make the timer 
variable be clocked via clock inferencing. Yet another option is to use a clocked when-equation (Alt3). 

The model is simulated for 2.6 seconds and results are shown in Figure 13-52 below. When the clock 
frequency is low, 5Hz, this is a rather coarse-grained approximation causing the alarm to be delayed until 
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the next tick at 1.6 seconds, instead of 1.5 seconds as in the unclocked model. If the clock frequency is 
increased to 100Hz, the behavior is much closer to the unclocked model. 

watchdog dAlarm 

Figure 13-52. Simulation and plot of the WatchDogSystemClocked model. At the low sampling 
frequency 5Hz the deadline is detected and the alarm given at the next clock tick at 1.6 sec. At the higher 
frequency 100Hz the alarm is given much closer to the real deadline time at 1.5 sec. 

The algorithm section in WatchDogClock can be replaced by an if-equation as in the model below: 

model WatchDogClocked "Version with equation section, if-then-else" 
EventPortlnput dOn; 
EventPortlnput dOff; 
EventPortlnput dDeadline; 
EventPortOutput dAlarm(signal(start=false)); 
Boolean watchdogActive(start=false); // Initially turned off 

equation 
if dOn then // Event watchdog on 
watchdogActive =true; 
dAlarm = previous(dAlarm); 

elseif dOff then // Event watchdog off 
watchdogActive =false; 
dAlarm =false; 

elseif dDeadline and previous(watchdogActive) then //Event Alarm! 
watchdogActive = previous(watchdogActive); 
dAlarm =true; 

else 
watchdogActive = previous(watchdogActive); 
dAlarm = previous(dAlarm); 

end if; 
end WatchDogClocked; 
A more concise but perhaps less readable version can be formulated using if-expressions: 

model WatchDogClocked "Shorter Version, equation section, if-expressions" 
EventPortlnput dOn; 
EventPortlnput dOff; 
EventPortlnput dDeadline; 
EventPortOutput dAlarm(signal(start=false)); 
Boolean watchdogActive(start=false); // Initially turned off 

equation 
watchdogActive = 

if dOn then true 
elseif dOff then false 
else previous(watchdogActive); 

dAlarm 
if dDeadline and watchdogActive then true 
elseif dOff then false 
else previous(dAlarm); 

end WatchDogClocked; 



648 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

13.3.2.5 Watchdog System—Graphical State Machines Model 

The Watchdog system finite state automaton can also be modeled using the clocked Modelica state 
machines constructs which are quite natural to use for such an application since the concepts of finite state 
automaton and state machines are almost the same. 

We replicate the watchdog system finite state automaton from Figure 13-49 in Figure 13-53 below for 
easy comparison to the state machine diagram in Figure 13-54. It is easy to see that both diagrams have the 
same structure, that is, the same states and transitions. 

On 

Figure 13-53. The finite state automaton of the watchdog system, the same as in Figure 13-49. 

inner Integer i; 
E\«ntPortlnput dOn; 
EuentPortlnput dOff; 
EventPortlnput dDeadline; 
inner EventPortOutput dAlarm(start=falsi 
inner EventPortOutput watchdogActiue(s' 

k 
5:art=f£ false); 

passive 
outer output Integer i; 
outer output Boolean watchdogActive; 
outer output Boolean dAlarm; 
i = 0; 
watchdogActive = false; 
dAlarm = false; 

active 
dOffV 

¡dOn 

N 

outer output Integer i; 
outer output Boolean watchdogActivs; 
i = 1; 
watchdogActive = true; 

alarmed 
dOfK, outer output Integer i; 

outer output Boolean dAlarm; 
i = 2; 
dAlarm = true; 

— 

2: dDeadline 

2: dAlarm 

Figure 13-54. State machine diagram of the WatchDogSystemStateMachine model. 

The whole model in textual form without graphical annotations is packaged into the 
WatchDogSystemStateMachinePack package shown below. Since each state is represented by its own 
model and model instance, the inner outer construct is needed to make the counter i and the Boolean 
condition variables dOn, dOff, dDeadline, and dAlarm accessible from all parts of the state machine 
model including the transition equations. 
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package WatchDogSystemStateMachinePack 
model WatchDogSystemStateMachine 
parameter Integer clockfrequency = 5; 
inner discrete Real timer(start=-l.O/clockfrequency); 
EventGenerator turnOff(eventTime=0.25); 
EventGenerator turnOn(eventTime=l); 
EventGenerator deadlineEmitter(eventTime=l.5); 
WatchDogStatemachine watchdog; 

equation 
connect(turnOn.dOutput, watchdog.dOn); 
connect(turnOff.dOutput, watchdog.dOff); 
connect(deadlineEmitter.dOutput, watchdog.dDeadline); 
timer = sample(time, Clock(1,clockfrequency)); // timer interval 

// 1/clockfrequency sec 
end WatchDogSystemStateMachine; 

model WatchDogStatemachine 
inner Integer i; 
EventPortlnput dOn; 
EventPortlnput dOff; 
EventPortlnput dDeadline; 
inner EventPortOutput dAlarm(start=false); 
inner EventPortOutput watchdogActive(start=false); 

model Passive 
outer output Integer i; 
outer EventPortOutput watchdogActive; 
outer EventPortOutput dAlarm; 

equation 
i = 0; 
watchdogActive = false; 
dAlarm = false; 

end Passive; 
Passive passive; 

model Active 
outer output Integer i; 
outer EventPortOutput watchdogActive; 
equation 

i = 1; 
watchdogActive = true; 

end Active; 
Active active; 

model Alarmed 
outer output Integer i; 
outer EventPortOutput dAlarm; 

equation 
i = 2; 
dAlarm = true; 

end Alarmed; 
Alarmed alarmed; 

equation 
initialState(passive); 
transition(passive, active, dOn, immediate=false); 
transition(active, passive, 
dOff, immediate=false, reset=true, synchronize=false, priority=l); 

transition(active, alarmed, dDeadline, immediate=true, priority=2); 
transition(alarmed, passive, dOff, immediate=false); 
transition(alarmed, alarmed, dAlarm, immediate=false, priority=2); 
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end WatchDogStatemachine; 

connector EventPortlnput = input Boolean; 
connector EventPortOutput = output Boolean; 

model EventGenerator 
parameter Real eventTime=l; 
outer discrete Real timer; 
Boolean timecmp(start=false); 
EventPortOutput dOutput(start=false); 

equation 
timecmp = timer > eventTime; 
dOutput = timecmp == true and previous(timecmp) == false; 

end EventGenerator; 

end WatchDogSystemStateMachinePack; 
However, there are some differences between finite state automata and Modelica state machines, as 

well as compared to state machines expressed using Modelica if-equations: 

• Self-transitions are not needed in Modelica clocked state machines. The arc from the state 
Alarmed back to itself is not actually needed since a clocked state machine stays in the current 
state if the transition conditions to other states are not fulfilled. However, to make the diagram 
identical to the finite state automaton we added a self-transition with a trivial condition 
dAlarm=true. 

• Transitions in state machines are made at clock ticks whereas transitions in finite state automata 
happen at the arrival of events. In the WatchDogSystemStateMachine model we modeled the 
events by Boolean transition conditions which may become true and cause a transition at the next 
clock tick. 

• The equation counts of explicit equations in each state of a state machine need not be the same. 
The reason this works and does not violate the single assignment principle (the same number of 
equations as variables) is that state variables automatically keep the same value if not updated by 
an equation or assignment. Thus, equations like dAlarm = previous (dAlarm) are not needed 
since they are generated automatically. 

Regarding the third point, compare to the clocked watchdog state machine modeled using if-then-else 
equations below extracted from the second version of the WatchDogClocked model in Section 13.3.2.4, 
page 644. Here the Modelica language rules require the same number of explicit equations in each branch 
of the if-then-else equation, that is, no default equations generated. This is an example of some 
inconsistency in the design of the Modelica language. 

if dOn then // Event watchdog on 
watchdogActive =true; 
dAlarm = previous(dAlarm); 

elseif dOff then // Event watchdog off 
watchdogActive =false; 
dAlarm =false; 

elseif dDeadline and previous(watchdogActive) then //Event Alarm! 
watchdogActive =previous(watchdogActive); 
dAlarm =true; 

else 
watchdogActive = previous(watchdogActive); 
dAlarm = previous(dAlarm); 

end if; 
The WatchDogStatemachine model in WatchDogSystemStateMachinePack is simulated for 2.6 

seconds. The results are plotted in Figure 13-55 below and are identical to the results in Figure 13-52. 
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Figure 13-55. Simulation and plot of the WatchDogSystemStateMa chine model. At the low sampling 
frequency 5Hz the deadline is detected and the alarm given at the current clock tick at 1.6 sec. At the high 
sampling frequence 100Hz the alarm is given close to the deadline overrun at 1.5 sec. 

13.3.3 Cellular Automata 

A cellular automaton is a regular spatial array of cells that interact with one another, each of which can be 
in any one of a finite number of states. Thus it is related to finite state automatons. The cells are arranged 
in a configuration, e.g. a one-dimensional line of cells, a 2-dimensional grid, or a 3-dimensional array. 
Other configurations are also possible, such as a honeycomb array of hexagonal cells. Each cell has a 
neighborhood which includes neighboring cells according to a well-defined pattern, which may or may not 
include the cell itself. The following are examples of 1-dimensional and 2-dimensional neighborhoods to 
the cell c marked by the letter n: 

n n n n n n n 

r i C n n C n n C n n C n n 

n n n n n n n 

The state of each cell in the array is updated according to a transition mapping which may depend on 
the state of the cell and its neighbors at the previous time step. Each cell in a cellular automaton could be 
considered to be a finite state machine that takes its neighbors' states as input and outputs its own state. To 
summarize, a finite state automaton is characterized by the following properties: 

• State. Each cell is assigned one of a finite set of state values, e.g. integer values. 
• Neighborhood, which is the set of cells interacting with the cell according to a well-defined pattern. 

The neighborhood of border cells in the array of cells may or may not be determined according to 
"wraparound" semantics, for example, top and bottom cells, and left and right cells respectively in 
a 2-dimensional grid may be treated as "touching" each other. 

• A transition mapping, usually expressed as transition rules and a transition function that take as 
input the present states, that is, the present values, of all of the cells in a given cell's neighborhood 
and generate the next state, that is, the next value, of the given cell. In some cases it is possible for 
different groups of cells in the automaton to have different transition rules and functions. 

For example, regard a very simple cellular automaton consisting of a linear sequence of cells, with the 
neighborhood being the left and right cells, and wraparound semantics for defining the border cells. The 
transition function is simply the sum of the state values of the neighborhood cells, here the border cells and 
the cell itself. 

Step 1 : Create the initial state: 
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0 0 0 1 1 0 0 0 

Step 2: Compute the transition function, i.e., the sum, for each cell: 

0 0 1 2 2 1 0 0 

Step 3: Apply the following transition rules (0 -> 1, 1 -> 0, 2 -»1, 3 0 ): 

1 1 0 1 1 0 1 1 

13.3.3.1 The Game of Life 

An example of cellular automata in Modelica is a simple model representing Conway's game of life 
(Figure 13-78). Life is played on a grid of square cells where a cell can be alive or dead. In our example, 
we represent the grid of square cells as a matrix and a live cell is indicated by placing the value 1 on the 
corresponding element in the matrix. Obviously, each cell in the grid has a neighborhood consisting of the 
eight cells in every direction including the diagonals. We simulate the game of life over a limited time, on 
a grid of 10 x 10 with the help of the following model : 

model GameOfLife 
parameter Integer n=10; 
parameter Integer initialAlive[:,2]={{2,2},{2,1},{1,2},{3,3},{3,2}}; 
Integer lifeHistory[n,n](start=zeros(n,n)); 
Boolean init = initial(); 

equation 
when {init, sample(0.1,0.1)} then 

if edge(init) then 
lifeHistory = firstGeneration(pre(lifeHistory), initialAlive); 

else 
lifeHistory = nextGeneration(pre(lifeHistory)); 

end if; 
end when; 
end GameOfLife; 
We simulate for 1 second, using the wSMSimulate [ ] command input to the Mathematica frontend, 

which is further sent to Wolfram SystemModeler, with results as interpolation functions (Section 19.4.5.1, 
page 1054), and plot using the Mathematica function PlotGameOfLife, creating a new generation every 
0.1th second as specified by the sample (0.1,0.1) expression in the above model. 

res = WSMSimulate["GameOfLife",{0,1}]; 
{lifeHistory} = res[{"lifeHistory"}] 
PlotGameOfLife[lifeHistory] 
PlotGameOfLife[table_] := For[z=0, z<l, s={}; 

For[i=l,i<=10, sl={}; 
For[j=l,j<=10, sl=Append[sl,table[[j,i]][z]];j++ ]; s=Append[s,si]; 

i++] ; 
s=Reverse[ReplaceAll[s,{0.->1.,1.->0.}]]; 
ListDensityPlot[s,Frame->False,AspectRatio->Automatic]; 

z=z+0.1] 

I I S i 
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Figure 13-56. The first eight generations from the simulation of the GameOfLife model. 

The simulation starts with an initial generation represented by the initialAlive parameter which 
updates the lifeHistory variable in the initial equation section. This is done by calling the 
function firstGeneration. 

function firstGeneration 
input Integer M[:,:]; 
input Integer I [:,2]; 
output Integer G[size(M,1),size(M,1)] := M; 

algorithm 
for i in 1:size (1,1) loop 

G[I[i,l],I[i,2]] 1; 
end for; 

end firstGeneration; 
At each event, generated by the sample statement, the nextGeneration function is called, which 

applies the rules of the game to each cell of the grid. To apply one step of the rule we count the number of 
live neighbors for each cell. The value of the cell depends on the number of live neighbors according to the 
following rules: 

• A dead cell with exactly three live neighbors becomes a live cell (birth). 
• A live cell with two or three live neighbors stays alive (survival). 
• In all other cases, a cell dies or remains dead (overcrowding or loneliness). 

The rules of the life game are illustrated by the nextGeneration function, which uses wraparound 
semantics (indices computed by the mod function) for determining neighbors of cells on the border: 

function nextGeneration 
input Integer M[:,:]; 
output Integer G[size(M,1),size(M,1)]; 

protected 
Integer borderSum,iW,iE,jN,jS; // West,East,North,South 
parameter Integer n=size(M,l); 

algorithm 
for i in 1:n loop 
for j in 1:n loop 

iW := mod(i-2+n,n)+1; iE := mod(i+n,n)+1; 
jS := mod(j-2+n,n)+1; jN := mod(j+n,n)+1; 
borderSum := M[iW,j] + M[iE,j] + M[iW,jS] + M[i,jS] + 
M[iE,j S] + M[iW,jN] + M[i,jN] + M[iE,jN]; 

if borderSum==3 then 
G [i,j] := 1; // Alive 

elseif borderSum==2 then 
G [ i,j] := M[i,j]; //Unchanged 

else 
G[i,j] := 0; // Dead 

end if; 
end for; 

end for; 
end nextGeneration; 
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The behavior of the GameOfLife model is dependent on the start configuration. Certain 
configurations, for example, as in Figure 13-57, reach steady state already after a few generations. Other 
configurations never reach a steady state. 

model GameOfLife2 = GameOfLife(initialAlive = 
{{1,1}, {2,2},{3,3},{4,4},{5,5},{6,6},{7,7},{8,8},{9,9},{10,10}, 
{1,10},{2,9},{3,8},{4,7},{5,6},{6,5},{7,4},{8,3},{9,2},{10,1}}); 

res2 = WSMSimulate["GameOfLife2", {0,1}] 
{lifeHistory} = res2[{"lifeHistory"}] 
PlotGameOfLife[lifeHistory] 

Figure 13-57. With another initialAlive start configuration the behavior of the GameOfLife model 
reaches steady state already at the third generation. 

It is not necessary to employ user-written functions like nextGeneration as an aid to model the game 
of life in Modelica, as shown below by GameofLife3, which is equivalent to the previous GameOfLife 
model but is considerably shorter and uses only equations to model its behavior. The borderSum is 
computed by applying the sum reduction function with iterators over each neighborhood including its 
center element, which subsequently is subtracted. 

model GameOfLife3 "Game of Life model only based on equations" 
parameter Integer n=10; 
parameter Integer initialAlive[:,2]={{2,2},{2,1},{1,2},{3,3},{3,2}}; 
Integer lifeHistory[n,n](start=zeros(n,n)); 
Integer M[n,n]; 
Integer borderSum[n,n];//borderSum array because of single assigment 

initial equation 
for i in 1:size(initialAlive,1) loop 

lifeHistory[initialAlive[i,1],initialAlive[i,2]] = 1; 
end for; 

equation 
when sample(0.1,0.1) then 
M = pre(lifeHistory); 
for i in 1:n loop 
for j in 1:n loop 
borderSum[i,j] = -M[i,j] + // West/south, center, east/north 

sum(M[k,p] for k in {mod(i-2+n,n)+1, i, mod(i+n,n)+1}, 
p in {mod(j-2+n,n)+1, j, mod(j+n,n)+1}); 

lifeHistory[i,j] = if borderSum[i,j]==3 then 1 // Alive 
else (if borderSum[i,j]==2 then M[i,j] // Unchanged 

else 0); // Dead 
end for; 

end for; 
end when; 

end GameOfLife3; 
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13.3.4 Models for Event-based Stochastic Processes 

If we generalize a finite state automaton by letting the time between two events be stochastic, and possibly 
also letting the choice of the next state be stochastic, we obtain a model for event-based stochastic 
processes. Such models have many applications, of which one are queuing systems. 

13.3.4.1 Generalized Semi-Markov Processes 

Generalized semi-Markov processes is one model for stochastic processes often used for queuing systems 
in manufacturing industry, or for server models in general with stochastic customer arrival. Such processes 
are generalized in the following major ways compared to finite state automatons: 

• The time between two events is stochastic. 
• The choice of the next state might be stochastic. 
• The set of states to choose from can be an infinite enumerable set instead of a finite set. 

y(t) 

1 

1 1 

1 

1 1 1 • 
to U t2 fe U time 
< • • • • 

Ti 72 T3 r4 

Figure 13-58. An output variable generated by a generalized semi-Markov process. 

We show an example of an output variable from a semi-Markov process in Figure 13-58. The level of 
the output variable XO changes in discrete steps between values in an enumerable set of discrete values. 
The changes occur at events at times t = to, t\, t2, and so on. Both the output level and the time of the events 
may depend on random variables. The time intervals Tx = k - tx. 1 between two successive events are 
stochastic variables with some random distribution. The choice of the output value may depend on 
stochastic variables. This is typical for a queuing system where customers arrive and leave at discrete 
points in time, increasing or decreasing state variables such as the number of customers in the system. 

We regard the output sequence of values yn as being generated from some internal sequence Xn of state 
variable values together with random variables Rn: 

Xn+1 = f(Rn+1») 
^ o = / o ( ^ o ) (13-11) 
y*=hl(Xn) 
Tn=h2{Xn) 

13.3.4.2 Server with Queue 

As a simple example of discrete-time stochastic process simulation we can consider a simple server model 
with a queue. We first start by defining a model which generates customers at random points in time. The 
time delay until the next customer arrival is assumed to be the absolute value of a normally distributed 
stochastic variable Tdiff, here computed by calling the random number function normalvariate (in 
Appendix D, page 1095, Modelica.Math. Random library), where the negative part is folded back on the 
positive side using abs(Tdiff) to avoid unrealistic negative service times. Since this function is side-
effect free as all Modelica functions, it returns a randomSeed value to be used at the next call to 
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normalvariate. The CustomerGeneration model contains an output connector outCustomer that 
transmits the customer arrival events to the rest of the system. 

model CustomerGeneration 
import Random; // See Math.Random package in Appendix D 
EventPortOutput outCustomer; 
BoolView bv; // Only for plotting to see events 
parameter Real mean = 0; 
parameter Real stDeviation = 1; 
discrete Real Tdiff; // Its absolute value is timediff to next customer 
discrete Real nextCustomerArrivalTime(start=0); 
discrete Random.Seed randomSeed(start={23,87,187}); 
Boolean changeflg(start=false); 

equation 
when pre(nextCustomerArrivalTime)ctime then // Customer arrives 

(Tdiff,randomSeed) = 
Random, normalvariate (mean, stDeviation,pre (randomSeed) ) ; 

nextCustomerArrivalTime = pre(nextCustomerArrivalTime) + abs(Tdiff); 
changeflg = not pre(changeflg); // Changes at each customer arrival 

end when; 
outCustomer = change(changeflg); // Signal true only at event 
bv.inv = outCustomer; // Only for plotting, widening event peaks 

// real value comparison to zero not reliable for short durations at events: 
// outCustomer = edge(nextCustomerArrivalTime > 
// pre(nextCustomerArrivalTime) ); — wrong, wsignal always false 
end CustomerGeneration; 

// Eventport connectors also defined in WatchDogSystem, Section 13.3.2.4 
connector EventPortlnput = input Boolean; 
connector EventPortOutput = output Boolean; 

model BoolView "Increase width of Boolean event signal for plotting" 
Boolean inv,outv; 
parameter Real width=0.0001; 
discrete Real TO; 

equation 
when inv then 

T0=time; 
end when; 
outv =(time>=T0) and (time<T0+width); 

end BoolView; 
We simulate the CustomerGeneration model for a while to observe the customer arrival times 

(Figure 13-59). 

simulate(CustomerGeneration, stopTime=10) 
plot({nextCustomerTime, timediff}) plot({nextCustomerTime, bv.outv}) 
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Figure 13-59. Left, next customer arrival time for customers arriving at random points in time, and time 
difference between arrivals; right, the same together with the actual arrivals shown as small peaks. 

We can now design a server model ServerWithQueue which through its inCustomer port will accept 
the arriving customers from the CustomerGeneration model. 

The nrOfCustomersinQueue represents the current number of customers in the queue. Other state 
variables of interest are nrOfArrivedCustomers, the number of customers that have so far arrived, and 
nrOf ServedCustomers, the number of customers that have so far been served. The first when-equation 
services the arrival of a new customer, whereas the second when-equation handles the event when a 
customer is serviced and is ready to leave the queue. 

There are three kinds of events in the ServerWithQueue model: 

• The arrival of a new customer. 
• Starting servicing a customer. 
• Completing service for a customer. 

The event when readyCustomer becomes true represents completed service for the current customer. 
The time needed to serve a customer is serve Time, which is constant in this model but could be varying 
according to some formula or be randomly distributed. The variable recentServeStart represents the 
starting time for servicing the most recently serviced customer. 

model ServerWithQueue 
EventPortlnput inCustomer; 
parameter Real custServeTime=0.1 "Time needed to service a customer"; 
discrete Real nrOfArrivedCustomers; 
discrete Real nrOfServedCustomers; 
discrete Real nrOfCustomersinQueue(start=0); 
discrete Boolean readyCustomer(start=false); 
discrete Boolean serveCustomer(start=false); 
Real lastServeStart "Most recent start servicing"; 

equation 
readyCustomer = serveCustomer and (custServeTime < time-lastServeStart); 
nrOfCustomersinQueue = nrOfArrivedCustomers - nrOfServedCustomers; 
when inCustomer then // Event: New customer arrives 

nrOfArrivedCustomers = pre(nrOfArrivedCustomers)+1; 
end when; 
when readyCustomer then // Event: Customer finished service 

nrOfServedCustomers = pre(nrOfServedCustomers)+1; 
end when; 
when (pre(nrOfCustomersinQueue)==0 and inCustomer) or 
(pre(nrOfCustomersinQueue)>=1 and pre(readyCustomer)) then 
serveCustomer = true; 
lastServeStart = time; 

end when; 
end ServerWithQueue; 
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The simulation of the whole system can be done by defining a test model which connects the 
CustomerGeneration model with the ServerWithQueue model (Figure 13-60). 

testServerl 

customerGen [ 

Figure 13-60. The testServerl model connecting a customer generator to a server. 

model testServerl 
CustomerGeneration 
ServerWithQueue 

equation 
connect(customerGen.outCustomer 

end testServerl; 

customerGen; 
server(serveTime=0.4); 

server.inCustomer); 

We simulate the model for 10 seconds with the customer service time serveTime 
(Figure 13-61). 

simulate(testServerl, stopTime=10) 
plot({server.nrOfArrivedCustomers, 

server.nrOfServedCustomers, server.nrOfCustomersInQueue}) 
plot(customer.bv.outv) 

0.4 seconds 

server. nrOfArrivedCustomers 
server.nrOfServedCustomers 
server.nrOfCustomerslnQueue 
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Figure 13-61. Left, number of arrived customers, number of served customers, and number of customers 
waiting in the queue or being serviced; right, the actual customers arrivals shown as small peaks. 

13.3.5 Discrete Event System Specification (DEVS) 

The discrete event system specification formalism (DEVS), is a modeling style and mathematical 
formalism that has found use in representing and analyzing models for discrete event simulation, for 
example, in job shop manufacturing system applications. 

In a formal mathematical sense, DEVS is closely related to the previously presented generalized semi-
Markov processes, but with two enhancements: 

• In DEVS the state space can also include an infinite uncountable set of Real values—it need not 
be restricted to a countable enumerable set of values. 

• The DEVS formalism also supports hierarchical internal structuring of models. The composition 
of two DEVS models is still a DEVS model. 
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In the following, we will see that DEVS models can be conveniently represented in Modelica, with the 
hierarchical structuring properties preserved and enhanced by Modelica. 

State changes in DEVS models are mathematically represented by transition functions as previously 
done for finite state automatons. For DEVS models we talk about two transition functions: 8int—the 
internal transition functions, and Sex,—the external transition function. Analogous to the case for finite 
state automatons, transition functions are usually represented by equations or assignments, only in 
complicated cases by explicit Modelica functions. Models designed according to the DEVS style 
distinguish two types of events: 

• Internal events are time scheduled. As an example, an internal event can be the completion of the 
current processing of a job in a job shop. State changes at internal events are defined by the 
internal transition function Sint. 

• External events occur upon the arrival of an input value at one of the input ports. For example, an 
external event could be the arrival of a job at a job shop. State changes at external events are 
defined by the external transition function Sext. 

From the mathematical point of view, a basic DEVS model has the following elements, where we use 
the subscript k to denote the state or other properties at event & in a sequence of events, k - 0,1,2,..., and 
have adapted the notation slightly to make it easier to understand compared to the original DEVS notation: 

• The state Xk at time tk In addition there is a local timer variable tiocai which is reset to zero at each 
event, and continuously increases between events. The set of states can be finite, infinite countable, 
or infinite uncountable. 

• Inputs Uk belonging to a finite set of input data values, and outputs belonging to a finite set of 
output data values. 

• A time residual function TR(xk, tiocai), defining the time span from the current time to the next 
internal event, i.e., tk+\=tk+TR(xk,0) if the next event is an internal event. If no internal event is 
scheduled in states, then TR(Xk,0) = inf, i.e., some value representing infinity. 

• An internal transition function Sint used to compute the next state xk+i = Si„t(xk) if at an input event. 
• An external transition function Sext used to compute the next state xk+i - Sext(xk, Uk, tiocai) if at an 

external event. 
• An output function X to compute output values yk=H xk). 

The interpretation of these elements is depicted in Figure 13-62, and can be summarized as follows. 

BasicDEVSTwoPort 

är* or 

Event 
generator 

Uk 
- + Ü - ; 

DEVS state 
Xk 

Internal event time: tk+-\-ti&TR( ) 

Figure 13-62. The base class BasicDEVSTwoPort captures many common properties of basic (atomic) 
DEVS classes. Inputs uk arrive and/or are available at time tk. The current state at event time tk is represented 
by x^ and the computed state to be used at the next event is = 8int(xk) if at an input event, or = 
SexfahUk,tiocai) if at an external event. The output event value is computed: y ^ K **)• 

At any time the system is in some state xk, where k denotes the most recent event. If no input value u is 
received at the input port the system will stay in state Xk for the time TR(xk, tiocai)• When this residual time 
expires the output function A determines the output yk=A( Xk), and the state changes to Xk+i = 8int{Xk). If the 
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arrival of an input uk causes an external event before the expiration time TR(xk, tiOCai) reaches 0 or at any 
other time, the external transition function Sext will specify the next state of the model JĈ+I = Sext(xk, uk, 
tlocal)) after which tiocai is reset to zero. Notice that between events only the local timer t\ocai is changing and 
increasing at a constant rate. 

We will now describe a fairly comprehensive example of how DEVS models can be represented in 
Modelica. One difference in Modelica is that we have a built-in time variable for absolute time rather than 
a local timer tlocal that is reset at the most recent event. This local timer is not really needed for 
modeling purposes since time is available, but is included to show the relation to traditional DEVS 
models. The facilities for model structuring and reuse are in general much greater in Modelica due to its 
object-oriented properties compared to traditional DEVS. In order to simplify comparisons this example 
connects model components such as servers or generators in a way that is analogous to traditional DEVS. 

The base class BasicDEVSTwoPort describes most common properties of DEVS components with 
two ports. It has two connectors, inp and outp, for receiving and emitting Boolean signals. Many DEVS 
components need to keep track of whether they are active or not—this is represented by the state variable 
DEVSactive, sometimes known by the more cryptic name phase. We also have the local timer tlocal 
(t bead and the residual time function represented by t Re si dual (Tr), often labeled e and sigma, 
respectively, using traditional DEVS notation. 

We also need the discrete real variable tNextEvent—the time of the next internal event or some value 
< the current time if there is no scheduled internal event, and tLastEvent—the time of the most recent 
event, in order to define t Re si dual and tlocal. There is one slight difference compared to the above 
theoretical model: the model behaves better if we represent the case where tNextEvent is undefined by 
some value < time instead of the infinite value (inf). 

partial model BasicDEVSTwoPort 
import Modelica.Constants.inf; 
input EventPortlnput inp; // Input port for external events 
output EventPortOutput outp; // Output port for emitted events 
Boolean DEVSactive(start=false); // Start in non-active mode (phase) 
Real tResidual(start=inf); // Time until internal event (sigma) 
Real tlocal(start=0); // Local timer reset at events (e) 
discrete Real tNextEvent(start=0); // Time of next internal event 
discrete Real tLastEvent(start=0); // Time of most recent event 

equation 
tResidual = if tNextEventctime then inf else tNextEvent-time; 
tlocal = if inp or tNextEventctime 

then 0 else time - tLastEvent; 
when {inp, pre(tNextEvent)ctime} then 

tLastEvent = time; // Save the time of this event 
end when; 

end BasicDEVSTwoPort; 

// Eventport connectors also defined in WatchDogSystem, Sec 13.3.2.4 

connector EventPortlnput = input Boolean; 
connector EventPortOutput = output Boolean; 

13.3.5.1 A DEVS J ob Shop Model 

A simple job shop model illustrates DEVS based modeling. A generator for arriving jobs is connected to a 
simple DEVS-based server (Figure 13-63). 
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Figure 13-63. The testDEVSServer model connects a job generator to a simple DEVS-based server. 

The testDEVSServer model contains two main items: a generateJobEvents generator component 
that generates arriving jobs at regular intervals, and a simpleDEVSServer server component being a very 
simple model of a job shop system that services arriving jobs with a normally distributed service time. The 
Signal view class instances are needed to widen sharp peaks for plotting. 

model testDEVSServer 
GenerateJobEvents generateJobEvents(period=l.5,startTime=3) "generator"; 
SimpleDEVSServer simpleDEVSServer "server"; 
SignalView viewSignall; // Just for plotting 
SignalView viewSignal2; // Just for plotting 

equation 
connect(generateJobEvents.outp, simpleDEVSServer.inp); 
connect(simpleDEVSServer.outp, viewSignal2.inp); // Just for plotting 
connect(generateJobEvents.outp, viewSignall.inp); // Just for plotting 

end testDEVSServer; 
model GenerateJobEvents "Generates Job events periodically" 

EventPortOutput outp; // Output port 
parameter Real startTime = 0; 
parameter Real period = 2; 

equation 
outp = sample(startTime,period); 

end GenerateJobEvents; 
The SimpleDEVSServer class is a fairly straightforward extension of the basic DEVS class 

BasicDEVSTwoPort. A randomly distributed service time variable servTime has been added with a 
normal distribution determined by parameters mean and stdev. The discrete randomSeed variable is 
needed to store the seed between calls to normalvariate, which as in all Modelica functions is a 
mathematical function whose value is completely determined by its inputs. The absolute value of 
servTime is used to guarantee positive service times. 

The class also contains three when-equations that model what happens when a job arrives and at 
completion of the servicing of a job. There are two cases of arriving job external events: 

• If the server is not busy (DEVSactive = f al se), servicing the job is started immediately. 
• On the other hand, if the server is already busy (DEVSactive = true), the job is ignored—the 

only thing that happens is that tlocal is reset to zero by the equation inherited from the 
BasicDEVSTwoPort class. 

The internal event of competing service of a job means that the server should not be busy any longer, 
no completion event should be scheduled (tNextEvent < time), and a completed service event is 
generated as an output event via outp. 

model SimpleDEVSServer 
extends BasicDEVSTwoPort; 
Boolean internalEvent; 
Boolean externalEvent; 
parameter Real mean =2.0 "mean of job service time"; 
parameter Real stdev = 0.5; 



662 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

discrete Real servTime "time needed to service current job"; 
discrete Random.Seed randomSeed(start»{23,87,187}); 

equation 
internalEvent = pre(tNextEvent)ctime; 
externalEvent = inp; 
outp = edge(internalEvent) and pre(DEVSactive); 
when {externalEvent,internalEvent} then 

(servTime,randomSeed) = Random.normalvariate(mean,stdev, 
pre(randomSeed)); 

// * External event - job arrives, start service 
if edge(externalEvent) and not pre(DEVSactive) then 

DEVSactive = true; 
tNextEvent = time + abs(servTime);//abs of normal distr servTime 
// * External event - job arrives but is not serviced since busy 
elseif edge(externalEvent) and pre(DEVSactive) then 

DEVSactive = true; 
tNextEvent = pre(tNextEvent); // Next internal event unchanged 

// * Internal event - servicing current job finished 
else // Here effectively: edge(internalEvent) 

DEVSactive = false; 
tNextEvent = pre(tNextEvent); // time now >= tNextEvent 

end if; 
end when; 

end SimpleDEVSServer; 
model SignalView "Increase width of sample trigger signals" 

EventPortlnput inp; 
EventPortOutput outp; 
parameter Real width=0.001; 
discrete Real TO; 

equation 
when inp then 

TO = time; 
end when; 
outp = (time>=T0) and (time<TO+width); 

end SignalView; 
Remember the following two connect-equations from the testDEVSServer model: 

connect(simpleDEVSServer.outp, viewSignal2.inp); 
connect(generateJobEvents.outp, viewSignall.inp); 
When using the currently available Modelica tools, it is necessary to employ some kind of 

SignalView peak-widening facility in order to plot sharp peaks that have zero width, that is, have no time 
duration. Otherwise these peaks would not be visible in the diagram. 

We simulate the testDEVSServer model to be able to view some of the input and output signals. The 
plot agrees with the specification of the generateJobEvents instance, where the first event is generated 
at time = 3 and subsequent events are generated with a periodicity 1.5 seconds (Figure 13-64). 

simulate(testDEVSServer, stopTime=10) 
plot(viewSignall.outp) 
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Figure 13-64. The output signal outp of the generate JobEvents generator component in 
testDEVSServer, with startTime=3 and period=l. 5 as specified. 

The output signal testDEVSServer. simpleDEVSServer. outp of the simple DEVS server instance 
is generated when completing the servicing of a job. Here such events occur only for the first and third 
jobs during this simulation, since the second and fourth jobs arrive while the server is busy and therefore 
are ignored. Servicing the fifth job was not completed before the end of the simulation interval at time = 
10 (see Figure 13-65). 

plot(viewSignal2.outp, stopTime=10) 
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Figure 13-65. A signal is emitted through testDEVSServer. simpleDEVSServer. outp when completing 
service of a job, here Job 1 and Job 3. 

The time periods when the server is active are represented by the variable DEVSactive being true, 
represented by the value 1 in Figure 13-66. Since the service times are drawn from a random distribution 
the widths of the bars in the diagram will vary somewhat. Servicing the first job takes a little bit longer 
than servicing the third arriving job (remember that the second job was ignored). The fifth job is started 
but not finished before the end of the simulation. 

plot(simpleDEVSServer.DEVSactive) 

0 . 6 

Figure 13-66. The variable testDEVSServer. simpleDEVSServer. DEVSactive is true while a job is 
being serviced. 

The service time variable testDEVSServer. simpleDEVSServer. servTime shown in Figure 13-67 
has unclocked discrete-time variability, that is, changes only at events when it is given a new value picked 
from the random distribution. The only events in this model are the arrival and completion of jobs. 

plot(simpleDEVSServer.servTime) 



664 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

Figure 13-67. The service time variable testDEVSServer. simpleDEVSServer. servTime obtains new 
values at events. 

Finally, we take a look at the simpleDEVSServer. internalEvent variable in Figure 13-68, which 
becomes true when completing the servicing of a job. It is reset to false at the next job arrival event, 
i.e., not a service completion event. The variable is initially true. 

plot(simpleDEVSServer.internalEvent) 
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Figure 13-68. The output signal testDEVSServer. simpleDEVSServer. internalEvent. 

13.3.5.2 A Coupled Pipelined DEVS Model 

Several basic DEVS model components can be connected together to form a coupled model, which itself is 
a DEVS model. This is illustrated by the Modelica realization of a simple DEVS coupled model by placing 
three simple servers in series to form a three-server pipeline (Figure 13-69). In the testPipeline model 
further down, the job generator has been attached to the three-server pipeline (of class 
ThreeServerPipeline). The generator outputs events which are considered to be jobs that need some 
time to be processed by the server. Inside the basic server model only the time needed to complete a job is 
represented, not the detailed manner in which the processing is done. When a server receives a job it goes 
into busy mode (DEVSactive = true). Since the server has no buffering capabilities, if it is already busy, 
it ignores incoming jobs. When a server has finished processing a job, a job completed event is emitted and 
the server returns to passive mode (DEVSactive = false). 

ThreeServerPipeline 

— K ] — K | ] S1 fty+tj] S2 [ j l - ^ j ] S 3 [ j l — • [ ] — • 

connect(S 1 ,outp,S2.inp) connect(S2.outp,S3.inp) 

Figure 13-69. Coupled model consisting of three servers SI, S2, and S3, connected in a pipeline. 

The coupled pipelined DEVS model class represented in Modelica can be described as follows: 

model ThreeServerPipeline 
EventPortInput extlnSignal; 
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EventPortOutput outSignal; 
SimpleDEVSServer Sl(mean=2.0) 
SimpleDEVSServer S2(mean=2.5) 
SimpleDEVSServer S3(mean=1.5) 

equation 
connect(extlnSignal,SI.inp); 
connect(SI.outp, S2.inp); 
connect(S2.outp, S3.inp); 
connect(S3.outp, outSignal); 

end ThreeServerPipeline; 
The three-server coupled DEVS pipeline model can be tested using the following model. Plots of 

incoming jobs, DEVSactived, and output signals of the three servers in the simulated model are given in 
Figure 13-70. 

model testPipeline 
ThreeServerPipeline 
GenerateJobEvents 
SignalView 
SignalView 
SignalView 
SignalView 

equation 
connect(j obgenerator 
connect(j obgenerator 
connect(pipeLine. SI. 
connect(pipeLine.S2. 
connect(pipeLine.S3. 

end testPipeline; 
We simulate the model and plot a number of variables: 

simulate(testDEVSServer, stopTime=10 ) 

pipeLine; 
jobgenerator(period=4); 
viewJobGen; // Just for plotting 
viewSl; // Just for plotting 
viewS2; // Just for plotting 
viewS3; // Just for plotting 

.outp, pipeLine.extlnSignal); 

.outp, viewJobGen.inp); // Just for plotting 
outp, viewSl.inp); // Just for plotting 
outp, viewS2.inp); // Just for plotting 
outp, viewS3.inp); // Just for plotting 
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Figure 13-70. Signals for the testPipeline model including a ThreeServerPipeline containing the 
servers s i , S2 and S3. The jobgenerator generates job events starting at time=0 with a period of 4 seconds. 
After servicing by s i in the pipeline, an output event is generated (SI. outp) which is fed to S2 for further 
processing, etc., until S3. Plots are shown from two different tools. 
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13.3.6 Petri Nets 

Petri nets is a widely used formalism17 for modeling and analyzing discrete event systems, with an 
associated intuitive visual representation. Application areas include modeling computer hardware, 
computer software, physical systems, social and economic systems, and so on. Petri nets are primarily used 
to model the occurrence of various events and activities within a system, in particular the flow of 
information or other resources. 

In this section we give a basic introduction to Petri nets within the context of Modelica. More advanced 
Petri nets, for example, including stochastic Petri nets, are available in the Modelica library PNLib, see 
Section 16.18, page 965. 

We demonstrate that the Petri net modeling primitives can be represented as Modelica classes, and that 
discrete model parts represented as Modelica Petri nets can be conveniently connected to continuous 
model parts. 

13.3.6.1 Modeling of Events and Conditions with Petri Nets 

The fundamental Petri net modeling view of a system is based on the two primitive concepts of events and 
conditions. As previously mentioned in this chapter, events can be viewed as actions that take place in a 
system. The state of the system is represented by a set of state variables. The state can also be viewed as a 
set of conditions, where a condition is a predicate or logical formula expressed in terms of state variables, 
that may either hold (be true) or not hold (be false). 

Since events are actions they may or may not happen. For an event to occur it might be necessary that 
certain conditions, preconditions, are true. The event, when it occurs, may change certain state variables 
and thereby cause some preconditions to not hold any longer, but on the other hand cause other conditions, 
postconditions, to become true. 

As an example, consider a variant of a job shop system, which, for example, can be a batch computer 
system that is processing jobs, or a machine shop for processing machine part manufacturing orders. The 
interesting conditions for this job shop system are: 

• C1: the job shop is idle, waiting for work. 
• C2: a job is waiting. 
• C3: the job is being processed. 
• C4: a finished job is waiting to be output. 

The events, that is, actions in the system, would be: 

• El: a job arrives. 
• E2: start processing a job. 
• E3: a job is completed. 
• E4: a finished job is delivered 

The preconditions of event E2, start processing a job, are rather obvious: C2—a job needs to be 
waiting, and CI—the job shop needs to be idle, to start processing a new job. The postcondition of event 
E2 is C3—the job is being processed by the job shop system. In a similar way, we can define the 
preconditions and postconditions for other events in the system, which are collected in the table below. 

0. Event 1. Preconditions 2. Postconditions 

7 StateCharts is another widely used formalism with a visual representation, not covered here, but has a Modelica 
implementation in ModelicaML (Section 13.7.6, page 714). Synchronous state charts can be translated to equation-based 
models in Modelica, whereas asynchronous state charts currently need to be translated to algorithmic Modelica code due 
to their nondeclarative style. Clocked synchronous state machines are available in Modelica since version 3.3 (Section 
13.7, page 703). 
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El — C2 
E2 C1,C2 C3 
E3 C3 C4,C1 
E4 C4 — 

The job shop system is graphically depicted in Figure 13-71, using the Petri net visual formalism to be 
explained in the next section. The black dots within the circles at conditions CI and C2 means that these 
conditions are currently enabled, that is, the preconditions for event E2 hold. 

E1: A job E2: Start E3: A job is E4: A finished 
arrives processing job completed job is delivered 

Figure 13-71. A job shop system modeled as a Petri net, with a job waiting and the shop idle. 

13.3.6.2 Basic Primitives and Mathematical Definition of Petri Nets 

A Petri net can be thought of as a graph containing two kinds of nodes: 

• Places—visually depicted by circles. 
• Transitions—visually depicted by vertical bars. 

Thus, a Petri net contains a finite set of places and a finite set of transitions. Examples of places and 
transitions are shown in Figure 13-72, a Petri net graph modeling the job shop system. Places within a 
Petri net can have markings consisting of one or more tokens, visually represented by black dots. One of 
the most common kinds of Petri net, normal Petri nets, allows at most one token to be contained within a 
place. In the following discussion we restrict ourselves to such Petri nets, with the additional constraints 
(to be explained in more detail in the following and in Section 13.3.6.7) of deterministic execution and of 
immediate firing of enabled transitions without delay. These properties are natural when Petri nets are used 
to model discrete parts of control systems, as well as for many other applications. 

The nodes of a Petri net are connected by arrows. An arrow into a node denotes an input to the node, 
whereas an arrow out of a node denotes an output from the node. A Petri net is a bipartite graph since 
places and transitions appear alternatingly and nodes of the same kind are not allowed to be directly 
connected. Places may be connected only to transitions, and transitions only to places—never places to 
places or transitions to transitions. The execution model of Petri nets maps the state represented as a 
marking (an attribute that represents the number of tokens in each place) to a new state, that is, to a new 
marking. The arrows of a Petri net can be represented by a few functions. Thus a Petri net also needs the 
following items to have a complete mathematical definition: 

• An input function, mapping each transition to a set of input places, and each place to set of input 
transitions. 

• An output function, mapping each transition to a set of output places, and each place to set of 
output transitions. 

• A marking, defining the state of the system as the number of tokens associated with each place. 
Normal Petri nets is a subclass that allows only at most one token per place. 

• A transition function, 8, defining an execution model for Petri nets, mapping a state, that is, a 
marking, to a new state. 
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A Petri net executes by firing transitions, that is, removing tokens from the input places of a transition 
and creating new tokens which are distributed to its output places. A transition can fire only if its input 
places are enabled and its output places are free. The fact that its input places are enabled means that they 
contain a sufficient number of tokens, which is one token per place in normal Petri nets. The output places 
being free means that none of them contain any token so that all of them are able to receive a token during 
the next execution step. 

To understand this execution model consider the example of Petri net execution in Figure 13-72. 

Figure 13-72. An example with three stages of a Petri net execution. 

In Stage 1, both input places Pi and P2 to transition Ti are enabled and its output place P3 is free, making it 
possible for the transition to fire. When the transition fires, the tokens are removed from its input places 
and a token is placed in its output place P3, mapping the state to the situation shown in Stage 2. In the next 
phase, transition T2 fires, putting tokens in its output places P4 and P5, and removing a token from its input 
place P3, as shown in Stage 3 of Figure 13-72. 

13.3.6.3 Petri Net Primitives for Parallelism and Synchronization 

We can easily use Petri nets to model the basic fork and join primitives for parallelism and 
synchronization. The transition Ti in Figure 13-74 is a synchronization primitive, the join operation, for 
the parallel processes represented by Pi and P2. Execution is not allowed to proceed until tokens have 
arrived in both Pi and P2, i.e., when the executions of both processes have reached the desired points. 

Conversely, the transition T2 in Figure 13-74 is a parallelism or concurrency primitive, the fork 
operation. It splits the current thread of execution into two parallel processes represented by P4 and P5. 

13.3.6.4 Equation-Based Hybrid Semantics of Places and Transitions 

Here we present an equation-based execution semantics of places and transitions, which is useful when 
defining our small Modelica library of Petri net modeling primitives. We also extend the basic Petri net 
transition primitive with a continuous-§ condition C, which can be used to link the discrete Petri net parts 
of a system model with its continuous parts. 

As previously mentioned, the state of a Petri net model is maintained as markings in the places, here 
represented by Boolean state variables called state, while decisions to change the state are made in the 
transitions. 

With every connection between a place and a transition we also associate two Boolean variables: is 
and if for input connections or os and of for output connections, for example, as in Figure 13-73, where 
input and output places are connected to a transition T. The letter s in this notation represents setting, and / 
represents firing. The variables is„ and osk report the state of connected input places IPn and output places 
OPk to the transition so that it can determine if it should fire. 
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Figure 13-73. A transition T with three input places I Pn, three output places OPn, and a condition c. 

Recall that the decision to fire a transition is dependent on tokens being present in all its input places 
(represented by state and variables is„ having the value true), all its output places being free (represented 
by state and variables as* having the value f a l s e ) , and sometimes also on a condition C associated with 
the transition. The availability of this condition is an extension provided by the Modelica version 
compared to the standard version of the Petri net transition primitive. Thus the firing condition for the 
transition T in Figure 13-73 can be expressed by the following equation: 

fire = C and (isj and is2 and is3) and not (oS] or os2 or os3) (13-12) 

When the transition fires this must be reported to all input places via the variables i f , so that they can 
remove their tokens, i.e., set their state to false, and to all output places via the variables ofn so that they 
can set their state to true. These variables are also defined by equations, e.g.: 

We now turn to the problem of describing the execution semantics of a place by equations. Remember 
that we have chosen a deterministic execution semantics for our Petri nets. Deterministic execution is 
achieved by assigning a priority ordering to transitions so that only the transition with the highest priority 
may fire if several are enabled simultaneously. This is necessary since a place can hold at most one token, 
requiring synchronization of the transition connections to ensure that at most one token is moved to the 
place and at most one token is removed from it. In Figure 13-74, the transition IT] has higher priority than 
IT2, which in turn has higher priority than IT3. 

Figure 13-74. A place p connected to three input transitions iTn and three output transitions OTn. 
The synchronization and priorities of the transitions connected to the place are represented by the 

equations below, which specify the removal and placement of tokens in the place, as well as reporting to 
the input and output transitions. 

Since the input transition ITi has the highest priority, we start its evaluation first. The state of place P 
in Figure 13-74 is reported to this transition through the variable is\ in the first equation. Only if 
state= false, i.e., the place is free, is there a possibility for the transition ITi to fire and thereby set if1 to 
true, which in turn will prevent transition IT2 from firing by the presence of if in the right-hand side of 
the second equation. 

if = if2 = if3 = of = of2 = of3 =fire (13-13) 
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isx = state 

is2 = isl or if 

is3 = is2 or if j 

dummyx = is3orif3 

osx = state 

os2 = osx and not ofx 

os3 - os2 and not of2 

dummy 2 = os3 and not of3 

newstate = (state and not (ofx orof2)) or (ifx or i f 2 ) 

This will cause is2 to be true, which in turn prevents firing IT3, and so on. Thus, at most one of the input 
transitions will fire, and they are evaluated in priority order with the first transition having the highest 
priority. The equation involving the dummyx variable is not needed to define the semantics of the place, but 
is included anyway since it enables a concise formulation of these input transition equations in terms of the 
two vectors is and if of length 3, and the scalars state and dummyi, as shown in the definition of the class 
Place in the next section. 

There is an analogous situation regarding the three equations that report the state to the output 
transitions through the variables osu os2, and os3. In order to avoid nondeterminism and letting at most one 
output transition fire, each output transition in order gets the chance to fire, starting with OTi, which thus 
gets the highest priority. A precondition for firing is that state=true, which is reported to the first output 
transition through osi. If this transition fires, then of will become true, which through the right-hand side 
of the equation defining os2 will cause os2 to be false. This avoids firing OT2 and trying to remove a 
token from place P since that token already was removed because transition OTi already fired. An 
analogous reasoning applies to transition OT3 through the equation defining os3. 

Finally, the last equation defines the new state new state of the place P in the next iteration of the Petri 
net execution. This new state becomes true if the current state is true and the token is not removed, that 
is, none of the of variables are true. It can also become true if one of the input transitions fires and sets 
an ifn variable to true. 

13.3.6.5 Classes for Connectors, Places, and Transitions 

Based on the above equation-based semantics for the execution taking place at places and transitions, we 
can now define Modelica classes for these entities. Also, the variables isn and if are collected into input 
connectors, whereas osn and of are put into output connectors. Both are intended to be used for 
connections between places and transitions. 

In principle it would be enough with one connector class for these connectors. However, Petri nets are 
bipartite graphs that allow connection only of different kinds of nodes, places to transitions or transitions 
to places. The Modelica type system can ensure that only legal connections are made if we define two 
different connector classes, one class PTPort for places to transitions (with class prefix and variable 
suffixes PT), and another class TPPort for transitions to places (with class prefix and variable suffixes 
TP). Since the variable names are different, the connector types are different in the Modelica type system, 
even though the connector classes in both cases represent the same kind of variables: state and firing 
information. 

In order to have slightly different connector icons for the input version (filled triangle) and the output 
version (unfilled triangle), we also define otherwise-identical input and output versions of these connector 
classes (see below). There is also a ConditionPort connector class for specifying an optional input 
condition to a Transition. 

connector PTPort "Connecting Places to Transitions" 
Boolean sPT "state information"; 
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Boolean fPT "firing information"; 
end PTPort; 
connector PTPortln = PTPort; // Input version of PTPort 
connector PTPortOut = PTPort; // Output version of PTPort 
connector TPPort "Connecting Transitions to Places" 
Boolean sTP "state information"; 
Boolean fTP "firing information"; 

end TPPort; 
connector TPPortln = TPPort; // Input version of PTPort 
connector TPPortOut = TPPort; // Output version of PTPort 
connector ConditionPort "Optional condition to a Transition" 

Boolean c(start=true); 
end ConditionPort; 
We now define Place and Transition classes, using the previously described equations generalized 

to an arbitrary number of input and output ports, 
class Place 
constant Integer nln = 1 "Number of input transition ports"; 
constant Integer nOut = 1 "Number of output transition ports"; 
TPPortln inTrans[nIn] "Vector of input transition connectors"; 
PTPortOut outTrans[nOut] "Vector of output transition connectors"; 
Boolean state; 
Boolean dl, d2; // Dummy variables 

equation 
ostate = pre(state); // ostate is the current state 

// Report state to input transitions, vector equation 
cat(1,inTrans. sTP,{dl}] = cat(1,{ostate},inTrans.sTP or inTrans.fTP); 

// Report state to output transitions, column matrix equation 
[outTrans.sPT,{d2}] = [{ostate}, outTrans.sPT and not outTrans.fPT]; 
// Compute new state for next Petri net iteration 

state = (ostate and not anyTrue(outTrans.sPT)) or 
(anyTrue(inTrans.sTP)); 

end Place; 
class Transition 
ConditionPort condition "Optional condition"; 
constant Integer nln = In-
constant Integer nOut = 1; 
PTPortln inPlaces[nln] "Vector of input place connectors"; 
TPPortOut outplaces[nOut] "Vector of output place connectors"; 
Boolean fire; 

equation 
fire = condition and allTrue(inPlaces.sPT) and not 

anyTrue(outplaces.sTP); 
// Report firing info to input places, vector equation 

inPlace.fPT = fill(fire,nln); 
// Report firing info to output places, vector equation 

outplace.fTP = fill(fire,nOut); 
end Transition; 
We also need utility Boolean reduction functions anyTrue and allTrue: 
function anyTrue "True, if at least one element is true in a vector" 

input Boolean inp[:]; 
output Boolean result; 

algorithm 
result := false; 
for i in 1:size(inp,1) loop 

result := result or inp[i]; 
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end for; 
end anyTrue; 
function allTrue "True, if all elements are true in a vector" 

input Boolean inp[:]; 
output Boolean result; 

algorithm 
result := true; 
for i in 1:size(inp,1) loop 

result := result and inp[i]; 
end for; 

end allTrue; 
All classes and functions are collected into a package called NormalPetriNet: 
encapsulated package NormalPetriNet 

connector PTPort ...; 
connector PTPortIn ...; 
connector PTPortOut 
connector TPPort 
connector TPPortIn ...; 
connector TPPortOut ...; 
connector ConditionPort ...; 
class Place ...; 
class Transition ...; 
function anyTrue ...; 
function allTrue ...; 

end NormalPetriNet; 

13.3.6.6 A Modelica Petri Net Model and Simulation of a J ob Shop System 

We now return to our job shop system example. Its Petri net graph is shown once more below in Figure 
13-75, with the difference that the token has advanced, representing the condition C3, that a job is 
currently being processed. 

E1: A job E2: Start E3: A job is E4: A finished 
arrives processing job completed job is delivered 

idle, waiting for work 

Figure 13-75. The job shop system Petri Net graph once more. The job has now advanced to the stage of 
being processed. 

We would now like to build a Modelica Petri net model of the job shop system, using our recently 
developed NormalPetriNet package. We need modified instances of the general Place and 
Transition classes in order to reflect the different numbers of input and output ports. The 
JobShopSystem model follows below, containing these modified instances of places and transitions, as 
well as connection equations. 
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model JobShopSystem 
import NormalPetriNet.* ; 
// Need to generate some jobs; coupled to time condition in Transitions. 
Transition arrival(nln=0,nOut=l); // El 
Place inwait(nln=l,nOut=l); // C2 
Transition synchronize(nln=2,nOut=l); // E2 
Place processing(nln=l,nOut=l); // C3 
Transition parallel(nln=l,n0ut=2); // E3 
Place idle(nln=l,n0ut=2); // CI 
Place outwait(nln=l,n0ut=l); // C4 
Transition delivery(nln=l,n0ut=0); // E4 

equation 
connect(arrival.inPlaces, inwait.inTrans); 
connect(inwait.outTrans[1], synchroni ze.inPlaces[1]); 
connect(idle.outTrans[1] , synchronize.inPlaces[2]); 
connect(synchronize.outplaces[1], processing.inTrans[1]); 
connect(processing.outTrans[1], parallel.inPlaces[1]); 
connect(parallel.outplaces[1], outwait.inTrans[1]); 
connect(parallel.outplaces[2], idle.inTrans[1]); 
connect(outwait.outTrans[1], delivery.inPlaces[1]); 

end JobShopSystem; 

The connection diagram in Figure 13-76 corresponds to the Modelica Petri Net model of the job shop 
system example. It is quite close to the usual Petri net graphic diagram style that has been used in previous 
figures of the job shop system. Input connectors are clearly depicted as filled triangles, whereas output 
connectors are represented by unfilled triangles. 

Figure 13-76. A connection diagram of the Modelica Petri Net Job Shop System Example. 

Finally, we simulate the job shop system model using the above default settings, for a job that passes 
through the system and is processed (Figure 13-77). 

simulate(JobShopSystem, stopTime=l) 
plot(SI.state) 
plot(PI.state) 
plot(P2.state) 
plot(P3.state) 
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Figure 13-77. Petri Net job shop system. 

13.3.6.7 Finite State Automata Represented as Petri Nets 

It is actually possible to represent finite state automata, previously described in Section 13.3.2, as Petri 
nets. One problem that has to be solved when performing this mapping is to represent communication with 
the outside world. This can be handled by representing each kind of input token as an input place to the 
Petri net, and each kind of output token as an output place. The arrival of an input token to a finite state 
automaton corresponds to putting a token in an input place of the Petri net. An alternative approach not 
used in this example is to use input and output transitions instead of input and output places. The rest of 
the mapping rules from automatons to Petri nets are as follows: 

• Each state in the automaton is represented by a place in the Petri net. The current state is marked 
by a token, whereas all other places corresponding to automaton states are empty. 

• State changes and generating outputs are represented by transitions. For each pair of state and input 
symbol, we define a transition whose input places are the two places corresponding to the state and 
input symbol, and whose output places correspond to the next state and the output. 

S t a r t S t a r t 

Figure 13-78. A finite state automaton model and the corresponding Petri net to the right. 

We apply this mapping to the finite state automaton model of the simple server system model, which 
has start as input event and Done as output event. The result is shown in Figure 13-78. 

13.3.6.8 Flowcharts Represented as Petri Nets 

A flowchart is a common graphic formalism, often used to represent the control structure of programs or 
workflow systems. It is possible to conveniently map flowcharts into Petri nets, including our Modelica-
based Petri nets, as shown in Figure 13-79. 



Chapter 13 Discrete Events and Hybrid and Embedded Systems 675 

Computation R 
Computation R 

© — < \ — K 5 > 
true 

true 

false false 

Figure 13-79. The mapping of computation and decision nodes of a flowchart into Petri net transition 

A convenient way to execute a flowchart translated into a Petri net is to introduce a token which 
represents the current instruction, that is, a kind of program counter. As instructions execute, the token 
moves around in the Petri net. Note that when translating flowcharts into Petri nets, we replace the nodes 
of the flowcharts by transitions and the arcs by places. This is natural, since in the Petri net model, the 
transitions model actions, whereas in the flowchart model, the nodes model actions. What is the meaning 
of the places in the translated Petri net model? The easiest interpretation is to consider the program counter 
role of the token. This means that a token residing in a place corresponds to the program counter being 
positioned ready to execute the next instruction. 

13.3.6.9 Short Overview of Different Petri Net Variants 

As we have already briefly hinted, there are many variants of Petri nets with different properties. The kind 
of Normal Petri nets described previously is only one variant, albeit a rather useful one. There are Petri 
nets where several tokens are allowed to reside in place. It is possible to have multiple arrows between the 
same nodes. If a place is connected to several output transitions and execution is nondeterministic, then it 
is in general not possible to determine which of these transitions should fire—the Petri net is 
nondeterministic. Below we briefly describe a few different kinds of Petri nets with different semantics: 

• Bounded Petri nets. This kind of Petri net enforces an upper bound of the number of tokens that 
can reside in place. This requires a modification of the firing rule, since the transition can fire only 
when the updated number of tokens in each of its output places would not exceed the upper bound 
of the place. 

• Normal Petri nets are bounded Petri nets with an upper bound of at most one token in a place. 
• Inhibitor Petri nets are a kind of Petri net that can contain a special kind of arc from place to 

transition, which can inhibit the transition from firing. 
• Priority Petri nets allow assigning priorities to transitions. If several transitions are enabled, the 

one with the highest priority will fire. This can be used to eliminate nondeterminism and achieve 
deterministic execution of Petri nets. 

• Maximal firing Petri nets require transitions to fire maximally, that is, immediately, as soon as they 
are enabled. This must fire semantics is different from the may fire semantics of a number of other 
forms of Petri nets. 

• Colored Petri nets assign attributes, for example, color, to transitions and tokens. Transitions can 
fire depending on the presence of tokens with specific attributes in their input places. 

• Time Petri nets associate upper and lower time bounds with each transition. A transition may fire 
as soon as time exceeds its lower bound. It must fire before time exceeds its upper time bound 
unless it has been disabled before that time. 

• Timed Petri nets associate a length of time with each transition. When a transition fires, tokens are 
removed from the input places as usual. However, there is a time delay of specified length until 
tokens are moved into the output places of the transition. 

• Stochastic Petri nets—see the Modelica library PNLib, Section 16.18, page 965. 

nodes. 
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Using the above definitions, the kind of normal Petri nets described previously and represented in our 
Modelica library, Normal Pet riNets, can be more precisely characterized as normal priority maximal 
firing Petri nets. 

Note that further generalized Petri nets in Modelica, also including stochastic Petri nets, have become 
available in the Modelica library PNLib, see Section 16.18, page 965. 

13.4 Hybrid System Modeling and Simulation 

At the beginning of this chapter we mentioned the notion of hybrid systems, i.e., systems that contain both 
continuous-time and discrete-time subsystems. There are a number of reasons why such systems and 
models are both appropriate and practical. The following cases of hybrid models and systems are quite 
common: 

• Discrete computer-based components such as discrete-time controllers that interact with 
continuous physical systems. 

• Mode switching systems containing components that have different behavior in different operating 
regions. 

In the following we discuss examples of each of these kinds of hybrid systems. 

13.4.1 Hybrid Tank Model with Clocked and Unclocked Discrete 
Controllers 

Let us once again consider the tank system example previously presented in Chapter 12, page 573, 
containing a proportional-integral (PI) controller (Figure 13-80). 

maxLevel 
level h 

valve 

controller levelSensor 

Figure 13-80. A tank system with a tank, a source for liquid, and a controller. 

For convenience the TankPi and Tank models together with three connector classes from Section 
12.2.3, page 573, are also shown below: 

model TankPI 
LiquidSource source(flowLevel=0.02); 
PIcontinuousController piContinuous(ref=0.25); 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qln); 
connect(tank.tActuator, piContinuous.cOut); 
connect(tank.tSensor, piContinuous.cln); 

end TankPI; 
model Tank 

ReadSignal tSensor "Connector, sensor reading tank level (m)"; 
ActSignal tActuator "Connector, actuator controlling input flow"; 
LiquidFlow qln "Connector, flow (m3/s) through input valve"; 
LiquidFlow qOut "Connector, flow (m3/s) through output valve"; 
parameter Real area(unit="m2") = 0.5; 
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parameter Real flowGain(unit="m2/s") = 0.05; 
parameter Real minV=0, maxV=10; // Limits for output valve flow 
Real h(start=0.0, unit=nm") "Tank level"; 

equation 
assert(minV>=0,"minV - minimum Valve level must be >= 0 ");// 
der(h) = (qln.lflow-qOut.lflow)/area; // Mass balance 

equation 
qOut.lflow = LimitValue(minV,maxV,-flowGain*tActuator.act) ; 
tSensor.val = h; 

end Tank; 
connector ReadSignal "Reading fluid level" 

Real val(unit="m"); 
end ReadSignal; 
connector ActSignal "Signal to actuator for setting valve position" 

Real act; 
end ActSignal; 
connector LiquidFlow "Liquid flow at inlets or outlets" 

Real lflow(unit="m3/s"); 
end LiquidFlow; 

The fluid level h in the tank must be maintained at a fixed level as closely as possible. Fluid can enter 
the tank through a pipe at a rate controlled via a valve, and leaves the tank via another pipe. In the previous 
tank model a continuous controller was used, shown below once more, which we now will replace by a 
discrete controller to illustrate this kind of common hybrid system. 

model PIcontinuousController 
extends BaseController(K=2,T=10); 
Real x; // State variable of continuous controller 

equation 
der(x) = error/T; 
outCtr = K*(x+error); 

end PIcontinuousController; 

The behavior of the continuous PI controller is defined by the following two equations: 

dx _ error 

~dt ~ T 0 3 - 1 5 ) 

outCtr = K * (x + error) 

Here x is the controller state variable, error is the difference between the reference level and the actual 
level obtained from the sensor, T is the time constant of the controller, outCtr is the control signal to the 
actuator for controlling the valve position, and K is the gain factor. Both the continuous controller and the 
discrete controller to be defined inherit the partial controller class BaseController (also defined in 
Section 12.2.3, page 573), containing common parameters, state variables, and two connectors: one to read 
the sensor and one to control the valve actuator. 

partial model BaseController 
parameter Real Ts(unit="s")=0.1 "Time between samples"; 
parameter Real K=2 "Gain"; 
parameter Real T(unit="s")=10 "Time constant"; 
ReadSignal cln "Input sensor level, connector"; 
ActSignal cOut "Control to actuator, connector"; 
parameter Real ref "Reference level"; 
Real error "Deviation from reference level"; 
Real outCtr "Output control signal"; 

equation 
error = ref-cln.val; 
cOut.act = outCtr; 

end BaseController; 



678 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

In order to define the discrete PI controller, we first discretize the above equations to obtain difference 
equations, assuming a sampling period dt, below denoted 7s, and a difference approximation 
dx — xk- xk_}. After some rearrangements we obtain: 

_ xk_l + error * Ts 
Xk ~ t (13-16) 
outCtr = K * (xk + error ) 

These difference equations are reflected in the class definition of the discrete PI controller below, with 
xk replaced by x, and xk_i = pre(x) or previous (x) within a when-equation to obtain the desired 
discrete sampling behavior. First an unclocked controller model: 

model PIdiscreteControllerUnclocked 
extends BaseController(K=2,T=10); 
discrete Real x; // State variable of discrete controller 

equation 
when sample(0,Ts) then 

x = pre(x)+error*Ts/T; 
outCtr = K*(x+error); 

end when; 
end PIdiscreteControllerUnclocked; 

A first version of a clocked controller model has x as a clocked state variable but still keeps the 
unclocked state variables error and outCtr inherited from BaseController. 

model PIdiscreteControllerClockedVl "Hybrid version, clocked PI controller" 
extends BaseController(K=2,T=10); 
discrete Real x; // State variable of discrete controller 

equation 
when Clock(Ts) then 

x = previous(x)+sample(error*Ts/T); 
end when; 
outCtr = K*(hold(x)+error); 

end PIdiscreteControllerClockedVl; 

This version v i of the clocked controller can be simulated together with the tank model, showing the 
results in Figure 13-82, page 680. However, there is a serious problem with this controller model. 

One of the main goal with the clocked language constructs is to be able to write clocked controller 
models that can be downloaded and efficiently executed on clocked digital hardware. 

The desired structure of such a system is depicted in Figure 13-100, page 695, with the following 
typical model parts: 

• A discrete controller—periodically executed control software on clocked digital hardware. 
• A sampling device—an electronic hardware device, typically an analog-digital converter. 
• A hold device—an electronic hardware device, typically a digital-analog converter. 
• The (continuous-time) plant model—here the tank. 

Since the PIdiscreteControllerClockedVl controller model contains a mix of clocked and 
unclocked state variables and internally converts between them, it cannot be compiled for efficient direct 
execution on real-world clocked digital hardware. 

In a real-world implementation the sensor signals are sampled and the actuator signals are held 
constant during one sample period. The sensor input to the model is c In .vai which should therefore be 
sampled before entering the discrete controller model that constitutes the software on the controller. The 
actuator output is cOut which therefore should converted from digital to analog using hold after leaving 
the control software model. 

Below we have made a second version of the clocked controller model with clean separation between 
the clocked controller and the unclocked controlled (physical) tank system. Here all controller state 
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var iables are c locked by m a k i n g a n e w BaseControllerClocked base class. F igure 13-100 in Sect ion 
13.6.1, page 694, s h o w s such a c lean separa t ion be tween control ler and plant. 

The external connec to r in ter face is still cont inuous- t ime, but a sampler (an analog-digi tal conver ter ) 
immedia te ly conver t s the input sensor s ignal into a c locked va lue dCinval, whe reas a hold (a digital-
ana log conver ter ) conver t s the ou tpu t control signal into an unc locked va lue cOut .act. 

model PIdiscreteControllerClocked "Pure clocked version of PI controller" 
extends BaseControllerClocked(K=2,T=10); 
discrete Real x; // State variable of discrete controller 

equation 
when Clock() then // clock frequency inferred from the variable error 

x = previous(x) + error*Ts/T; 
end when; 
outCtr = K*(x+error); 

end PIdiscreteControllerClocked; 

partial model BaseControllerClocked "Controller with clocked states" 
parameter Real 
parameter Real 
parameter Real 
ReadSignal 
ActSignal 
parameter Real 
discrete 
discrete 
discrete 

equation 
dCinval 
error 
cOut.act 

Real 
Real 
Real 

Ts(unit="s")=0.1 "Time between samples"; 
K=2 "Gain"; 
T(unit="s")=10 "Time constant"; 
cln "Input sensor level, connector"; 
cOut "Control to actuator, connector"; 
ref "Reference level"; 
error "Deviation from reference level"; 
outCtr "Output control signal"; 
dCinval "Sampled sensor level"; 

= sample(cln.val, Clock(Ts)); // sampling of sensor Cin.val 
= ref - dCinval; 
= hold(outCtr); // hold clocked output control signal 

end BaseControllerClocked; 

Finally, w e put toge ther the hybr id t ank sys tem by s imply replac ing the cont inuous PI control ler wi th 
the discrete one, cal led piDiscrete, as depic ted in F igure 13-81. 

TankHybridPI 

tSensoh- JtActua 

L-iftft piDiscrete"^-

Figure 13-81. A hybrid tank system consisting of a continuous tank model connected to a source for liquid 
and a discrete PI controller. 

The TankHybridPI mode l s (unc locked and c locked vers ions) connect a discrete PI control ler to a 
l iquid source and a tank (F igure 13-81), bo th de f ined by con t inuous mode l s previously presented in 
Sect ion 12.2.3, p a g e 573. 

model TankHybridPIUnclocked 
LiquidSource source(flowLevel=0.02); 
PIdiscreteControllerUnclocked piDiscrete(ref=0.25); 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qln); 
connect(tank.tActuator, piDiscrete.cOut); 
connect(tank.tSensor, piDiscrete.cln); 

end TankHybridPIUnclocked; 
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model TankHybridPIClocked 
LiquidSource source(flowLevel=0.02); 
PIdiscreteControllerClocked piDiscrete(ref=0.25); 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qln); 
connect(tank.tActuator, piDiscrete.cOut); 
connect(tank.tSensor, piDiscrete.cln); 

end TankHybridPIClocked; 

The hybrid tank system with a discrete PI controller is simulated (Figure 13-82), obtaining essentially 
the same result as when using the continuous PI controller (compare to Figure 12-4 on page 575). The 
same result is obtained from the unclocked and clocked versions. The response shown in the curve is the 
reaction of the controller to an instantaneous increase in the input flow from the source at time t=150. The 
only difference compared to the continuous controller case are a few small squiggles in the curve, probably 
caused by the discrete approximation. 

simulate(TankHybridPIUnclocked, stopTime=250); plot(tank.h) 
simulate(TankHybridPIClocked, stopTime=250); plot(tank.h) 

Figure 13-82. The tank level from a simulation of the TankHybridPIUnclocked and TankHybridPI-
Clocked models, both with a discrete Pi controller (unclocked and clocked versions). The same simulation 
results are obtained from the clocked and unclocked versions. 

The discrete PID (proportional integrating derivative) controller models below can be derived in a 
similar way as was done for the discrete PI controller. A PID controller can react quicker to instantaneous 
changes than a PI controller. 

model PIDdisereteControllerUnclocked 
extends BaseController(K=2,T=10); 
discrete Real x; // State variable of discrete controller 
discrete Real y; // State variable of discrete controller 

equation 
when sample(0,Ts) then 

x = pre(x)+error*Ts/T; 
y=T*(error-pre(error)); 
outCtr = K*(x+error+y); 

end when; 
end PIDdiscreteControllerUnclocked; 

model PIDdiscreteControllerClocked "Clocked PID controller" 
extends BaseControllerClocked(K=2,T=10); 
discrete Real x; // Clocked state variable of discrete controller 
discrete Real y; // Clocked state variable of discrete controller 

equation 
when Clock() then 

x = previous(x)+error*Ts/T; 
y=T*(error-previous(error)); 
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end when; 
outCtr = K*(x+error+y); 

end PIDdiscreteControllerClocked; 

We define a TankHybridPiD system which is the same as the TankHybridPi system except that the 
discrete Pi controller has been replaced by the discrete PID controller (Figure 13-83). 

TankHybridPiD 

tSensor- -MActuator 

Lfclj] pidDiscrete [j] cOut 

Figure 13-83. A hybrid tank system consisting of a continuous tank model connected to a source for 
liquid and a discrete PI D controller. 

The source code of the TankHybridPiD models (both unclocked and clocked) appear as follows: 

model TankHybridPIDUnclocked 
LiquidSource source(flowLevel=0.02); 
PIDdiscreteControllerUnclocked pidDiscrete(ref=0.25); 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qln); 
connect(tank.tActuator, pidDiscrete.cOut); 
connect(tank.tSensor, pidDiscrete.cln); 

end TankHybridPIDUnclocked; 

model TankHybridPIDClocked 
LiquidSource source(flowLevel=0.02); 
PIDdiscreteControllerClocked pidDiscrete(ref=0.25) ; 
Tank tank(area=l); 

equation 
connect(source.qOut, tank.qln); 
connect(tank.tActuator, pidDiscrete.cOut); 
connect(tank.tSensor, pidDiscrete.cln); 

end TankHybridPIDClocked; 

The tank level of the simulated system is quite similar to the corresponding system with a PI controller, 
but with faster control to restore the reference level after quick changes of the input flow (Figure 13-84). 

simulate(TankHybridPIDUnclocked, stopTime=250); plot(tank.h) 
simulate(TankHybridPIDClocked, stopTime=250); plot(tank.h) 
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Figure 13-84. The tank level from a simulation of the TankHybridPIDUnclocked and TankHybridPlD-
Clocked models, both with a discrete Pi D controller (unclocked and clocked versions). The same 
simulation results are obtained from the clocked and unclocked versions. 

Figure 13-85 shows the simulation results from both TankHybridPl and TankHybridPlD plotted in 
the same diagram. 

Figure 13-85. Comparison of TankHybridPl (solid) and TankHybridPlD (dashed) simulations. 

13.4.2 A Mode-Switching Model—DCMotor Transmission with Elastic 
Backlash 

Certain hybrid systems consist of components that are primarily continuous but have different behavior in 
different operating regions, and discontinuously change between these regions. Such systems are called 
mode-switching systems since each operating region can be represented by a specific operating mode, and 
switching between the regions is often modeled by changing value of discrete mode state variables. 

We will illustrate a typical mode-switching system by an example of an elastic transmission with slack, 
connecting a motor with a rotating shaft via an elastic transmission to a driven shaft coupled to a load, as 
depicted in Figure 13-86. 

motor f 
side , drSK/ing shaft transmission p 

with slack driven shaft load 
side 

Figure 13-86. Two rotating shafts connected via an elastic transmission with slack. 
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The elastic transmission with slack transmits torque between the shafts via an elastic spring. For small 
values of the relative angle deviation phidev between the shafts, the transmission exhibits slack, i.e., the 
shafts can rotate freely relative to each other without transmitting any torque. The transmission has three 
basic operating modes: 

• The Forward mode, when the motor side is ahead of the load side (angle deviation phi dev > 
b/2) and transmitting positive torque, i.e., driving the load side. 

• The Backward mode, when the motor side is behind the load side (angle deviation phi dev < -
b/2) and transmitting negative torque, i.e., braking the load side. 

• The Slack mode, when the motor and the load can rotate freely relative to each other within the 
limits -b/2 < phi dev < b/2, without transmitting any torque. 

The three operating modes of the transmission can be discerned in the three different parts of the torque 
characteristics of the transmission, that is, the torque as a function of the relative angle deviation phi dev 
between the shafts as depicted in Figure 13-87. 

Figure 13-87. The characteristics of the elastic transmission with slack. The torque tau between the flanges 
of the shafts is zero in the slack state, and a linear function tau = c*phi_dev outside the slack region 
provided that zero damping (d=0) holds. 

The three operating modes of the elastic transmission can be modeled by a finite state automaton, as in 
Figure 13-88. The state transitions between the modes are caused by detecting when continuous changes of 
the relative angle phi dev cause the system to enter or leave the Slack region. 

Figure 13-88. A finite state automaton illustrates the transitions between the three discrete modes of the 
SimpleElastoBacklash model. In the Backward mode when the relative angle deviation, phi dev, 
between the rotating shafts is less than -b/2, negative torque tau is transmitted. In the Forward mode 
when phi dev > b/2, positive torque is transmitted. When Slack holds, no torque is transmitted. 

Most properties of the elastic transmission with backlash, both continuous and discrete, are represented 
in the partial model SimpleElastoBacklash below. This is a typical hybrid mode-switching model, 
with the finite state automaton represented by the equations for the Boolean variables backward, 
forward, and slack, and the conditional equation for the torque tau having different right-hand side 
expressions in the three operating modes. 

partial model SimpleElastoBacklash 
Boolean backward, slack, forward; // Mode variables 
parameter Real b "Size of backlash region"; 

A 
tau 

phi_dev < -b/2 phi_dev <= b/2 

phi_dev >= -b/2 phi_dev > b/2 
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parameter Real 
Flange_a 
Flange_b 
parameter Real 
Real 
Real 
Real 

equation 
phi_rel 
phi_dev 
backward 
forward 
slack 

c = l.e5 "Spring constant (c>0), N.m/rad"; 
flange_a "(left) driving flange - connector"; 
flange_b "(right) driven flange - connector"; 
phi_relO = 0 "Angle when spring exerts no torque"; 
phi_rel "Relative rotation angle betw. flanges" 
phi_dev "Angle deviation from zero-torque pos"; 
tau "Torque between flanges"; 

flange_b.phi - flange_a.phi; 
phi_rel - phi_relO; 
phi_rel < -b/2; // Backward angle gives torque tau<0 
phi_rel > b/2; // Forward angle gives torque tau>0 
not (backward or forward);// Slack angle gives no torque 

tau = if forward then 
c*(phi_dev - b/2) 

else (if backward then 
c*(phi dev + b/2) 

else 
0 ) ; 

end SimpleElastoBacklash; 

// Forward angle gives 
// positive driving torque 
// Backward angle gives 
// negative braking torque 
/ / 
/ / 

Slack gives 
zero torque 

We now employ the elastic transmission with backlash for the small application shown in Figure 13-89, 
where the DC motor circuit described in Section 5.6, page 207 and Section 15.1, page 794, is connected to 
a load denoted inertia2 via the elastoBacklash instance of the transmission. 

resistor inductor 
Motor side Load side 

elastoBacklash 

ground 

Figure 13-89. A DCMotorCircuitBacklash model including a transmission with elastic backlash. 

The Modelica model corresponding to Figure 13-89 is as follows, using classes from the Modelica 
standard library: 

model DCMotorCircuitBacklash 
import Modelica.Mechanics.Rotational; 
import Modelica.Electrical.Analog; 
import Modelica.Blocks; 
Rotational.Inertia inertial(J=l); 
Rotational.Inertia inertia2(J=6); 
Rotational.ElastoBacklash elastoBacklash(b=3,c=10,d=0.8); 
Analog.Basic.Inductor inductor; 
Analog.Basic.Resistor resistor; 
Analog.Basic.Ground ground; 
Analog.Basic.EMF emf; 
Analog.Sources.SignalVoltage signalVoltage; 
Blocks.Sources.Step step; 

equation 
connect(step.y, signalVoltage.v); 
connect(signalVoltage.n, resistor.p); 
connect(resistor.n, inductor.p); 
connect(signalVoltage.p, ground.p); 
connect(ground.p, emf.n); 
connect(inductor.n, emf.p); 
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connect(emf.flange_b, inertial.flange_a); // rotFlange 
connect(inertial.flange_b, elastoBacklash.flange_a); // rotFlange 
connect(elastoBacklash.flange_b,inertia2.flange_a); // rotFlange 

end DCMotorCircuitBacklash; 
The elastic transmission with backlash that we have used here is an instance of the ElastoBacklash 

model from the Mechanics . Rotational. Components package in the Modelica standard library. 

damper. 

The ElastoBacklash model consists of a backlash element connected in series to a spring and 
damper element, which are connected in parallel (Figure 13-90). This is a slight extension compared to the 
previous SimpleElastoBacklash model since we have introduced a damping element with a damping 
constant d. The damping element contributes to the torque tau equation by the expression d*w_rel that is 
nonzero provided d is nonzero. The spring constant must be nonzero, otherwise the model cannot be used. 
Another extension compared to the simple model is that a constant bEps for minimum backlash has been 
introduced. The backlash behavior of the model is available only if abs (b) > bEps, since if b is too small 
or zero, numeric problems with too many generated state events will occur. 

The following ElastoBacklash model is from the Modelica standard library version MSL3.2.1, 
Mechanics. Rotational. Components package, but slightly reformatted to increase readability. 

model ElastoBacklash 
"Backlash connected in series to linear spring and damper 
(backlash is modeled with elasticity)" 

parameter SI.RotationalSpringConstant c(final min=Modelica.Constants. 
small, start=1.0e5) "Spring constant (c > 0 required)"; 

parameter SI.RotationalDampingConstant d(final min=0, start=0) 
"Damping constant"; 

parameter SI.Angle b(final min=0) = 0 "Total backlash"; 
parameter SI.Angle phi_rel0=0 "Unstretched spring angle"; 
extends Modelica.Mechanics.Rotational. 

Interfaces.PartialCompliantWithRelativeStates; 
extends Modelica.Thermal.HeatTransfer.Interfaces. 

PartialElementaryConditionalHeatPortWithoutT; 
protected 

final parameter SI.Angle bMax=b/2 
"Backlash in range bMin <= phi_rel - phi_rel0 <= bMax"; 

final parameter SI.Angle bMin=-bMax 
"Backlash in range bMin <= phi_rel - phi_rel0 <= bMax"; 

SI.Torque tau_c; 
SI.Torque tau_d; 
SI.Angle phi_diff = phi_rel - phi_rel0; 
// A minimum backlash bEps is defined in order to avoid an infinite 
// number of state events if backlash b is set to zero, 
constant SI.Angle bEps=le-10 "Minimum backlash"; 

equation 
if initial() then 
/* During initialization the characteristic is modified, in order that 

it is a strict monoton rising function. Otherwise, initialization might 
result in a singular system when the characteristic has to be 
inverted. The characteristic is modified in the range 
1.5*bMin <= phi_rel - phi_rel0 <= 1.5 bMax, 

Figure 12-15. Basic equations and components in the control subsystem. Figure 12-15. Basic equations and components in the control subsystem. 
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so that in this range a linear characteristic is present that 
approaches the original function continuously at its limits, e.g., 

original: tau(1.5*bMax) = c*(phi_diff - bMax) 
= c*(0.5*bMax) 

initial : tau(1.5*bMax) = (c/3)*phi_diff 
= (c/3)*(3/2)*bMax 
= (c/2)*bMax 

* / 
tau_c = if phi_diff > 1.5*bMax then c*(phi_diff - bMax) else if 
phi_diff < 1.5*bMin then c*(phi_diff - bMin) else (c/3)*phi_diff; 

tau_d = d*w_rel; 
tau = tau_c + tau_d; 
lossPower = tau_d*w_rel; 

else 
if abs(b) <= bEps then // Less than minimum backlash to avoid 

tau_c = c*phi_diff; // infinite number of state events 
tau_d = d*w_rel; 
tau = tau_c + tau_d; 

elseif phi_diff > bMax then // Forward angle gives positive torque 
tau_c = c*(phi_diff - bMax); 
tau_d = d*w_rel; 
tau = smooth(0, noEvent(if tau_c + tau_d <= 0 then 0 

else tau_c + min(tau_c,tau_d))); 
elseif phi_diff < bMin then // Backward angle gives negative torque 

tau_c = c*(phi_diff - bMin); 
tau_d = d*w_rel; 
tau = smooth(0, noEvent(if tau_c + tau_d >= 0 then 0 

else tau_c + max(tau_c,tau_d))); 
else 

tau_c = 0; // Slack gives zero torque 
tau_d = 0; 
tau = 0; 

end if; 
end ElastoBacklash; 
The class ElastoBacklash extends Rotational. Interfaces. PartialCompliant, which is a 

general base class for flexible, that is, compliant, connection of two rotational one-dimensional flanges. 
One example is the flanges in the ElastoBacklash model. Inertial effects between the two flanges are 
neglected, that is, structures such as springs used for connections are assumed to have negligible mass 
compared to the rest of the rotating system. The torques of the two flanges sum to zero, i.e., they have the 
same absolute value but opposite sign: flange a.tau + flange b.tau = 0. This base class is usually 
inherited when defining models of rotational connecting elements such as springs, dampers, friction 
elements, etc., and is different from the translational version of PartialCompliant, e.g. shown in Figure 
5-12 on page 196. 

The connector classes Flange_a and Flange b used in the class PartialCompliant are from the 
library Modelica.Mechanics .Rotational. Interfaces and are identical to RotFlange_a and 
RotFlange b, respectively, described in Section 5.5.1, page 204. 

partial model PartialCompliant "Partial model for the compliant connection 
of two rotational 1-dim. shaft flanges" 

Flange_a flange_a "Left flange of compliant 1-dim. rotational component" 
Flange_b flange_b "Right flange of compliant 1-dim. rotational component" 
Modelica.Slunits .Angle phi_rel(start=0) 

"Relative rotation angle ( = flange_b.phi - flange_a.phi)"; 
Modelica.Slunits.Torque tau "Torque between flanges (= flange_b.tau)"; 

equation 
phi_rel = flange_b.phi - flange_a.phi; 
flange_b.tau = tau; 
flange_a.tau = -tau; 

end PartialCompliant; // from Modelica.Mechanics.Rotational.Interfaces 
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Now it is time to simulate the DCMotorCircuitBacklash model. Remember that the model has a 
backlash parameter b = 3, i.e., not to the default value 0, otherwise we would not get the backlash 
phenomena demonstrated by the plots in the figures below. We simulate for 25 seconds, and first plot the 
relative rotational speed in Figure 13-91. There are quick changes back and forth in the relative rotation 
speed as the rotating masses hit the boundary of the slack region and recoil. 

simulate(DCMotorCircuitBacklash, stopTime=25) 
plot(elastoBacklash.w_rel) 

Figure 13-91. Relative rotational speed between the flanges of the Elastobacklash transmission. 

We also take a look at the relative angle phi_rel, in Figure 13-92. Initially, the driving flange is ahead 
by a positive angle. Later, the relative angle becomes negative since the driven load tries to continue 
rotating due to inertial effects. 

plot(elastoBacklash.phi_rel) 

Figure 13-92. Relative angle between the flanges of the transmission. 

Finally we plot the rotational speeds of both masses (Figure 13-93a). 

plot({inertial.w,inertia2.w}) 
For comparison, we define a model with less mass in inertia2 (J=l), no damping d, and weaker string 

constant c, to show more even more dramatic backlash phenomena (Figure 13-93b). 

model DCMotorCircuitBacklash2 = DCMotorCircuitBacklash(inertial(J=l), 
inertia2(J=l), elastoBacklash(b=l,c=le-5,d=0)); 

simulate(DCMotorCircuitBacklash2, stopTime=25) 
plot({inertial.w,inertia2.w}) 
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inertial (J=l) 
inertia2 (J=6) 

— inertial (J=l) 
- inertia2 (J=l) 

0.4 t 

- 0 . 2 

- 0 . 8 

-0. € 
-0.4 
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-1 
-1 .2 

20 25 

(a) b=3, c=10, d=0.8 (b) b=l, c=le-5, d=0 

Figure 13-93. Two sets of rotational speeds for the two flanges of the transmission with elastic backlash. 

Modelica is an inherently concurrent language in the sense that objects with behavior specified by 
equations evolve in parallel, concurrently in time. Equations specify how objects evolve and interact, as 
well as giving constraints for the parallel behavior. We can view each object as some kind of parallel 
process. Regarding objects described by discrete events, when-equations and when-statements can be 
viewed as server processes for these objects which evolve their state at discrete points in time. 

As always in parallel activities, concurrent access of shared common resources can lead to problems. 
We will exemplify these resource access and synchronization aspects through the dining philosophers 
problem, and their solution through access via a shared Mutex (mutual exclusion) instance. 

13.5.1 The Dining Philosophers Problem 

The dining philosophers problem is considered to be a classic synchronization problem. This is not 
because of its practical importance—philosophers are not veiy common in real life. The reason this 
problem is interesting is that it represents a large class of concurrency problems. It is a simple example of 
allocation of resources among several concurrent processes. This needs to be done in a deadlock and 
starvation-free manner. 

Let us now describe our dining philosophers, schematically depicted in Figure 13-94. 

Figure 13-94. Five dining philosophers around a table. Only philosophers with two forks can eat. 

There are five dining philosophers who are sitting around a table thinking and eating during their whole 
life. Five plates and five forks are available on the table. A philosopher is either thinking or eating, and can 
eat only if he has two forks in his hands. 

13.5 Concurrent Access to Shared Resources 

• 
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Now and then a philosopher gets hungry and tries to pick up the two forks closest to him. If one of the 
forks is already in the hand of neighbor, he cannot take it. When a hungry philosopher has both forks in his 
hands, he eats without releasing the forks. When he has finished eating, he puts down both forks and starts 
thinking again. The crucial observation is that the philosopher can eat only if he has access to two 
neighboring forks out of the common resource of five forks. 

There are two potential problems associated with the dining philosophers. 

• Deadlock—philosophers wait indefinitely on each other without ever being able to grab two forks. 
• Starvation—certain philosophers are never able to eat because their neighbors always grab the 

forks ahead of them. 

In the next section as we will present a Modelica model of the dining philosophers. The model is 
deadlock free through access via the mutual exclusion Mutex instance, but not starvation free in its current 
form. However, it is possible to improve the model even further to become starvation free. 

13.5.1.1 The Philosopher and DiningTable Models 

Figure 13-95 shows the connection structure of a Modelica model with five philosophers, five forks, and a 
Mutex instance providing mutually exclusive access to the two forks needed for a philosopher to eat. 

Figure 13-95. Connection structure of the dining philosophers model, alternating philosophers and forks, 
together with a central mutex. 

Each philosopher in the DiningTable model is connected to the two forks on his left and right sides. 
He can pick up those forks only if they are not occupied by his left and right neighbor philosophers. 

Each philosopher is connected to the shared mutex. This connection is used to signal if he wants to get 
access to two forks in order to eat, to possibly get OK if the forks are not occupied, and to deny other 
philosophers access to the same forks while he is eating. 

model DiningTable 
parameter Integer n = 5 "Number of philosophers and forks"; 
parameter Real sigma = 5 " Standard deviation for the random function"; 
// Give each philosopher a different random start seed 
// Comment out the initializer to make them all hungry simultaneously. 
Philosopher phil[n](startSeed=[1:n,1:n,1:n], sigma=fill(sigma,n)); 
Mutex mutex(n=n); 
Fork fork[n]; 

equation 
for i in 1:n loop 

connect(phil[i].mutexPort, mutex.port[i]); 
connect(phil[i].right, fork[i].left); 
connect(fork[i].right, phil[mod(i, n) + l].left); 

end for; 
end DiningTable; 
A philosopher is connected to his left and right neighboring forks via ForkPhilosopherConnection 

ports. 
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connector ForkPhilosopherConnection 
Boolean pickedUp(start=false); 
Boolean busy; 

end ForkPhilosopherConnection; 

model Fork 
ForkPhilosopherConnection left "Connection to the philosopher to the "+ 

"left of the fork"; 
ForkPhilosopherConnection right "Connection to the philosopher to the "+ 

"right of the fork"; 
equation 

// If one philosopher picks up the fork then 
// tell the other it is busy 
right.busy = left.pickedUp; 
left.busy = right.pickedUp; 

end Fork; 

Each philosopher is connected to the shared mutex through a mutexPort instance of the 
MutexPortOut connector class. 

Figure 13-96. Switching between three different states: thinking, hungry, and eating. 

All philosophers are initially in the thinking state without any forks picked up, as specified by the 
when initial () clause. The variable timeOfNextChange determines when something is going to 
happen and is increased compared to the current time by abs () of a normal distributed value. 

The equations at the beginning of the equation section define condition variables used in the conditions 
for state changes. From the initial thinking state, a philosopher can move to a hungry state, then to an 
eating state, and finally back to the thinking state, as depicted in Figure 13-96. 

A philosopher moves from the thinking state to the hungry state when timeToGetHungry becomes 
true. However, he can move from the hungry state to the eating state only when canEat is true, which 
is dependent on the condition that the forks on both the left-hand and the right-hand side are not busy. 
When canEat becomes true he requests the mutex in order to reserve both neighboring forks. However, 
the forks might not be available if another philosopher in the meantime has grabbed one of them. 

To be sure that both forks are available the philosopher waits for mutexPort.ok to become true, 
which means that the forks are free and have been reserved for us. At this point the philosopher grabs both 
forks and starts eating, specified by the if pre (canEat) statement. Eventually he stops eating when 
doneEating becomes true, and puts down the forks by setting left .pickedUp and right .pickedUp 
to false. 

connector MutexPortOut "Application mutex port connector for access" 
output Boolean request "Set this to request ownership of the mutex"; 
output Boolean release "Set this to release ownership of the mutex"; 
input Boolean ok "This signals that ownership was granted"; 

end MutexPortOut; 

model Philosopher "A Philosopher, connected to forks and a mutex" 
import Random; // Regarding Random library see Appendix D 
MutexPortOut mutexPort "Connection to the global mutex"; 
parameter Random.Seed startSeed = {1,2,3}; 
parameter Real mu = 2 0 . 0 "mean value"; 
parameter Real sigma = 5.0 "standard deviation"; 
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discrete Integer state "l==thinking, 2==hungry, 3==eating"; 
ForkPhilosopherConnection left; 
ForkPhilosopherConnection right; 

protected 
constant Integer 
constant Integer 
constant Integer 
discrete Real 
discrete Real 
discrete Random.Seed 
Boolean 
Boolean 
Boolean 
Boolean doneEating; 

thinking=0; 
hungry=l; 
eating=2; 
T; 
timeOfNextChange; 
randomSeed; 
canEat; 
timeToChangeState; 
timeToGetHungry; 

equation 
timeToChangeState = timeOfNextChange <= time; 
canEat 
timeToGetHungry 
doneEating 

(state == hungry) and not (left.busy or right.busy); 
(state == thinking) and timeToChangeState; 
(state — eating) and timeToChangeState; 

algorithm 
when initial() then // Philosophers are initially thinking, have no forks 

state := thinking; 
left.pickedUp := false; 
right.pickedUp := false; 
(T,randomSeed) := Random.normalvariate(mu, sigma, startSeed); 
timeOfNextChange := abs(T); 

elsewhen pre(timeToGetHungry) then 
state := hungry; 

end when; 
// Request the mutex to be able to grab the forks 
when pre(canEat) then 

mutexPort.release := false; 
mutexPort.request : = true; 

end when; 
// Got the mutex 
when pre(mutexPort.ok) then 

// if the forks are still available 
II then grab them and decide for how long to eat 
if pre(canEat) then 

left.pickedUp := true; 
right.pickedUp := true; 
(T,randomSeed) := Random.normalvariate(mu, sigma, pre(randomSeed)) ; 
timeOfNextChange := time + abs(T); 
state := eating; 

end if; 
II Release the mutex 
mutexPort.release := true; 
mutexPort.request := false; 

end when; 
II When done eating lay down the forks and set a new time to get hungry 
when pre(doneEating) then 

state := thinking; 
left.pickedUp := false; 
right.pickedUp := false; 
(T,randomSeed) := Random.normalvariate(mu, sigma, pre(randomSeed)); 
timeOfNextChange := time + abs(T); 

end when; 
end Philosopher; 
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In this model, the time between events is randomly distributed as abs () of Random. normalvariate. 
(see Appendix D, page 1095, Modelica libraries, subpackage Math.Random, at the end of the 
Modelica .Math package). 

13.5.1.2 Mutual Exclusion with the Mutex Model 

An instance of the Mutex class provides clients with mutually exclusive access to a shared resource. The 
Mutex instance can be configured for different numbers of clients—in Figure 13-97 it is depicted with five 
access ports corresponding to five clients. In the dining philosophers case the shared resource is five forks, 
of which the two neighboring forks need to be grabbed in order for a philosopher to eat. 

Figure 13-97. Class Mutex for mutual exclusion of a common resource, here configured with 5 mutex ports 
of type MutexPort In. 
The Mutex class operates in the following way. Three of the local variables are always equal to the 

corresponding port variables through the for-equation. The first when-statement is activated when one of 
the philosophers signals that he wants to eat. 

If the mutex is not occupied, then the philosopher is set waiting. If the mutex is still not occupied when 
waiting [ i ] becomes true, the mutex is reserved, that is, occupied=true, and the port [ i ] . ok is set to 
true to signal to the philosopher that the forks can be picked up. Finally, when the philosopher sets 
release [ i ] to false, the mutex is freed. 

connector MutexPortIn "Mutex port connector for receiveing requests" 
input Boolean request "Set by application to request access"; 
input Boolean release "Set by application to release access"; 
output Boolean ok "Signal that ownership was granted"; 

end MutexPortln; 
model Mutex "Mutual exclusion of shared resource" 

parameter Integer n = 5 "The number of connected ports"; 
MutexPortln[n] port; 

protected 
Boolean request[n]; 
Boolean release[n]; 
Boolean ok[n]; 
Boolean waiting[n]; 
Boolean occupied "Mutex is locked if occupied is true"; 

equation 
for i in l:n loop // Locals equal to port variables 
port[i].ok = ok[i]; 
request[i] = port[i].request ; 
release[i] = port[i].release; 

end for; 
algorithm 
for i in 1 :n loop 
when request[i] then // Client requests mutex to get the forks 

if not occupied then 
ok[i] := true; // Got fork access 
waiting[i] := false; 

else 
ok[i] := false; // Denied fork access 
waiting[i] := true; 

end if; 
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occupied := true; 
end when; 
// If a client is waiting it gets access when not occupied 
when pre(waiting[i]) and not occupied then 

occupied := true; 
ok[i] := true; 
waiting[i] := false; 

end when; 
when pre(release[i]) then // Release the forks 

ok[i] := false; 
occupied := false; 

end when; 
end for; 

end Mutex; 

13.5.1.3 Simulating the Philosophers 

As mentioned previously, the philosophers switch between the three states thinking, hungry, and 
eating. The three states with transitions are depicted in Figure 13-96. 

We simulate the DiningTable model containing instances of five philosophers, five forks, one five-
port mutex, and some connector classes for the used ports. Some Mathematica scripting code is used to get 
the diagrams and labels the way we want (Figure 13-98). Results are represented as interpolation functions 
(Section 19.4.5.1, page 1054), for example, n [ 0 ] is the value of n at time 0. 

res = WSMSimulate["DiningTable", {0,500}]; 
{philState} = res[{"phil[1].state", "phil[2].state phil[3].state", 

"phil[4].state", "phil[5].state"A}]; 
{n} = res[{"n"}]; 
expl = Apply[Join, 

{Map[Function[i, Text["Thinking", {550, 4*i}, {-1, 0}]],Range[n[0]]], 
Map[Function[i, Text["Eating", {550, 2 + 4*i}, {-1, 0}]],Range[n[0]]]}]; 

Map[Function[i, philState[[i]] [t] + 4*i ] , Range[n[0]]]; 
Plot(expl,{t,0,500}, Legend->False, Axes->{False,False},Epilog->expl) 

j - n ^ r ^ L i L ^ L A n y " 

j m i u i y i r v ^ j — n _ 

. H i / u r n / i ^ i / v i 
Figure 13-98. Activity diagrams of the five dining philosophers—eating or thinking, and hungry in between. 

No deadlock occurs—this cannot happen since we use the mutex for resource access. In this case, with 
normally distributed thinking times, each philosopher gets a chance to eat. 

However, if the thinking times are constant, starvation can easily occur. For example, one of the 
philosophers will never get any food since a pattern arises where two pairs of philosophers alternate 
between thinking and eating. By setting the sigma parameter to zero all thinking and eating times become 
constant and starvation occurs (Figure 13-99). Here we use the Mathematica command interface to 
Wolfram SystemModeler with scripting functionality in terms of the Mathematica language. 
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Thinking 
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res2 = WSMSimulate["DiningTable", {0,500}, WSMParameterValues -> {sigma -> 
0}]; 
{philState} = res2[{"phil[1].state", "phil[2].state phil[3].state", 

"phil[4].state", "phil[5].state"}]; 
{n} = res2[{"n"}]; 
expl = Apply[Join, 

{Map[Function[i, Text["Thinking", {550, 4*i}, {-1, 0}]],Range[n[0]]], 
Map[Function[i, Text["Eating", {550, 2 + 4*i}, {-1, 0}]],Range[n[0]]]}] ; 

Map[Function[i, philState[[i]][t] + 4*i ] , Range[n[0]]]; 
Plot(expl,{t,0,500}, Legend->False, Axes->{False,False},Epilog->expl) 

Figure 13-99. Activity diagrams of the five dining philosophers where one is starving. 

13.6 Clock-Based Modeling in Detail 

Synchronous clock-based modeling gives additional advantages for real-time and embedded system 
modeling in terms of higher performance and avoidance and/or detection of certain kinds of errors. 

We already introduced several of the most important clock-based features in Section 13.2.5, page 600, 
a number of clock-based example models in Section 13.3, page 624, and briefly compared clocked versus 
unclocked modeling in Section 13.2.6.2, page 615. 

In this section, we give a more detailed presentation including a complete overview of all the Modelica 
clock-based language features. 

A major application area for the clocked language constructs is the modeling and implementation of 
systems with a discrete-time digital controller coupled to a continuous-time "plant" subsystem, as depicted 
below in Figure 13-100 for a small application. This is an instance of the typical general hybrid system 
shown in Figure 13-1, page 591. See also examples of clocked sampled systems in Section 13.3, page 624, 
and clocked controller-plant models in Section 13.4, page 676, e.g., PldiscreteControllerClocked. 
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13.6.1 Introductory Example - Controller and Plant 
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Figure 13-100. A continuous plant and a sampled data controller connected together with sample and hold 
elements. This is an instance of a general hybrid system as depicted in Figure 13-1. A model with clean 
separation between controller PldiscreteControllerClocked and plant is available in Section 13.4.1. 

The plant part of the system model is defined by the MassWithSpringDamper model which is 
incomplete since the force f is unknown, making it a partial model. This partial model is also used by the 
more advanced ControlledMass model in Section 13.6.13.2, page 717. 

partial model MassWithSpringDamper 
parameter Modelica.Slunits.Mass m=l; 
parameter Modelica.Slunits.TranslationalSpringConstant k=l; 
parameter Modelica.Slunits.TranslationalDampingConstant d=0.1; 
Modelica.Slunits.Position x(start=l,fixed=true) "Position"; 
Modelica.Slunits.Velocity v(start=0,fixed=true) "Velocity"; 
Modelica.Slunits.Force f "Force"; 

equation 
der(x) = v; 
m*der(v) = f - k*x - d*v; 

end MassWithSpringDamper; 
The force f is controlled by the output ud of the proportional digital controller in the model 

SpeedControlP MassWithSpringDamper with a control to make the speed close to the reference 
velicity vref. 

model SpeedControlP_MassWithSpringDamper 
extends MassWithSpringDamper; 
parameter Real K = 20 "Gain of P proportional speed controller"; 
parameter Modelica.Slunits.Velocity vref = 100 "Speed reference"; 
discrete Real vd; 
discrete Real ud(start=0); 

equation 
// speed sensor 
vd = sample(v, Clock(0.01)); 
// P Proportional speed controller 
when Clock() then 

ud = K*(vref-vd); 
end when; 
// force actuator 
f = hold(ud); 

end SpeedControlP_MassWithSpringDamper; 
The velocity v of the mass m in the MassWithSpringDamper subsystem is sampled at the clock ticks 

by the speed sensor into the clocked variable vd at a clock frequency of 100 Hz, i.e., a sampling interval of 
0.01 seconds, using the sample (v, Clock (0.01)) operator. For details see Section 13.6.7, page 697. 
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The digital proportional speed controller works with the clocked variables ud and vd and outputs the 
clocked control signal ud. 

Clocked variables such as vd and ud in the speed controller are uniquely associated with a clock and 
can only be directly accessed when the associated clock is active. Since all variables in a clocked equation 
must belong to the same clock it is possible to detect clocking errors at compile time. If variables from 
different clocks are used in an equation then explicit conversion operators such as sample(...) must be 
used to convert from continuous-time to clocked discrete-time, or sample(hold(...)) to convert from a 
clocked variable of a different frequency. 

For a when-equation with an associated clock (Section 13.6.6, page 700), all equations inside the when-
equation are clocked with the given clock. When no argument is defined for clock(), as in the speed 
controller when-equation, the clock is deduced by clock inference. The clock is defined by the call 
Clock (0.01) in the speed sensor and inferred and transferred to the variable ud and the when-equation 
argument Clock (). This clock inference is based on the requirement that all expressions and equations 
solved together must be on the same clock except arguments to some special operators. Such clock 
inference has the advantage that the clock only needs to be defined in a few places and automatically 
propagated by inference, but also the disadvantage that it sometimes can be hard to understand from where 
the clock is propagated. 

General equations can be used within such clocked when-equations, whereas unclocked when-
equations (Section 13.2.6.1, page 613) with Boolean conditions require a variable reference on the left-
hand side of an equation and therefore do not allow general equations. 

Note that in the speed controller the when-equation can be removed and replaced with the single 
clocked equation ud = K* (vref-vd). All equations on an associated clock are treated together and in 
the same way regardless of whether they are inside a when-equation or not. 

The force actuator uses hold(...) to convert the clocked value ud to a continuous-time force f acting 
on the mass m. We simulate the model for 0.2 seconds: 

simulate(SpeedControlP_MassWithSpringDamper, stopTime=0.2) 
plot({vref,vd,v}); plot({f,ud}) 

Figure 13-101. Simulation of SpeedControlP_MassWithSpringDamper model. Left: the velocity v of 
the mass m, the sampled clocked velocity vd, and the reference velocity vref. Right, the clocked controller 
output ud and the actuator force f. 

13.6.2 Built-in Type Clock, Clock Variables, Clocked Expressions, and 
Partitions 

The built-in type Clock is available for clocked synchronous modeling. Clock variables (Section 13.6.3.2, 
page 698) of type Clock can be defined which have certain attributes such as clock interval. Both 
periodic and aperiod clocks are possible. 
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Associated to a clock there are typically clocked expressions and variables (Section 13.6.3, page 697) 
which only have defined values at the ticks of their associated clock, as well as clocked equations which 
are only defined and solved at the clock ticks of their clock. 

Variables and equations which are defined at the ticks of a certain clock are said to belong to the 
clocked partition (Section 13.6.13, page 715) associated to that clock. 

There are clock constructors (Section 13.6.7, page 701) which create clocks with different properties 
such as interval, phase, etc. 

For example, below is a declaration of the clock variable elk of type Clock which is defined to have a 
clock of interval 0.1 seconds (i.e., frequency 10 Hz), by the clock constructor Clock (0.1). 

Clock elk = Clock(0.1); 

13.6.3 Unc locked and C locked Discrete-T ime Var iables 

Modelica defines the concept of expression variability (Section 6.8.1.3, page 278) which essentially means 
the freedom of the expression to change value during simulation. There are several levels of variability. 

In this section, two kinds of discrete-time expressions/variables are defined that are associated to clocks 
and are therefore called clocked discrete-time expressions. 

There are three kinds of discrete-time expressions in Modelica, one unclocked and two kinds of 
clocked discrete-time expressions. Clocked discrete-time variables have recently been introduced in 
Modelica 3.3. 

• Piecewise constant unclocked discrete-time variables, see Section 6.9.3, page 281. 
• Clock variables, see below, Section 13.6.3.2, page 698. 
• Clocked variables, see below, Section 13.6.3.3, page 698. 

13.6.3.1 Piecewise Constant Unclocked Discrete-Time Variables 

These are the traditional discrete-time variables available in Modelica, called unclocked discrete-time 
variables, see Section 6.9.3, page 281. 

Figure 13-102. Piecewise constant unclocked discrete-time variables may change at events and are defined 
also between events. 

Variables m(t) of base type Real, Integer, Boolean, enumeration, and String that have constant value 
inside each interval ti < t < ti+i, i.e., piecewise constant unclocked discrete-time variables. In other words, 
m(t) changes value only at events. This means that w(t) = m(U), for ti < t < ti+i. Such variables are defined 
at all points during the simulation time interval and have unclocked discrete-time variability. 
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13.6.3.2 Discrete-Time Clock Variables 

Clock variables cftj are of base type Clock, and have clocked discrete-time variability. A clock is either 
defined by a constructor call, such as ciock(3), which defines when the clock ticks are active at a 
particular time instant, or it is defined with clock operators relative to other clocks, see Section 13.6.9, 
page 707. For example. 

Clock cl = Clock(. . .) ; 
Clock c2 = cl; 
Clock c3 = subSample(c2,4); 

eft,) i 

.„ t; «; t ; t i m e t 

Figure 13-103. Discrete-time clock variables are only defined at clock tick events. 

13.6.3.3 Discrete-Time Clocked Variables 

The elements of clocked variables r(tj are of base type Real, Integer, Boolean, enumeration, or String that 
are uniquely associated with a clock c(ti). A clocked variable is clocked discrete-time and can only be 
directly accessed at the event instant where the associated clock is active. A constant and a parameter can 
always be used at a place where a clocked variable is required. 

At time instants where the associated clock is not active, the value of a clocked variable can be inquired 
by using an explicit cast operator, see below. In such a case a "hold" semantics is used, in other words the 
value of the clocked variable from the most recent event instant is used. This is visualized in Figure 13-104 
with the dashed horizontal lines. 
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Figure 13-104. Discrete-time clock variables c(t,) as well as clocked variables r(ti) which may be accessed 
between events using the hold operator, indicated by the horizontal dashed line. 
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13.6.4 Clocked State Variable by the previousO Operator 

The previous value of a clocked variable such as u can be accessed with the previous (u) operator. Such 
a variable is also called a clocked state variable. The previous operator has the following properties (see 
also Section 13.2.5.13, page 610, for additional explanations): 

• The input argument u to previous (...) is an instance expression (Section 13.6.11, page 713) or a 
parameter expression. 

• The returned result has the same type as the input argument. 
• The input argument and the returned result are on the same clock. 
• At the first tick of the clock of u or after a reset transition (Section 13.7.4.2, page 733) the start 

value of u is returned, see Section 13.6.12, page 715. At subsequent activations of the clock of u, 
the value of u from the previous clock activation is returned. 

For a simple example of using previous(...), see for example the model SquareWaveClocked 
further below in Section 13.6.6, page 700. 

13.6.5 The interval(u) Operator 

The interval(u) operator returns the interval between the previous and present tick of the clock of the 
expression within which this operator is called and the clock of the optional argument u. At the first tick of 
the clock the following is returned: 

• If the specified clock interval has parameter variability, this value is returned. 
• Otherwise the start value of the variable specifying the interval is returned. 
• For an event clock the additional start Interval argument to the event clock constructor is 

returned. 

The returned interval is returned as a Real number. The following model example ClockedPiEx uses the 
i nt e rva l(...) operator. 

A discrete PI controller is parameterized with the parameters of a continuous PI controller in order that 
the discrete model should be adaptable in terms of the sample period. This is achieved by discretizing a 
continuous PI controller using the implicit Euler method (Section 18.2.1.1, page 998). 

Also compare to a very similar clocked PI controller model, PIdiscreteControllerClocked, 
(Section 13.4.1, page 676). Regarding the model ClockedPiEx below, a clocked when-equation is used 
in this example. It is described in the next section (Section 13.6.6, page 700) using the clock constructor 
Clock () with inferred clock (Section 13.6.7.2, page 702). 

model ClockedPiEx 
parameter Real T=10 "Time constant of continuous PI controller"; 
parameter Real k=2 "Gain of continuous PI controller"; 
// input Real u "Clocked external input variable u — commented out"; 
Real u = sample(2.0*sign(sin(time)),Clock(0.4)) "Clocked square-wave 

variable u instead of input"; 
output Real y "Clocked result variable y"; 
Real x(start=0) "Clocked state variable x"; 

protected 
Real Ts = interval(u); // Obtain interval of clocked variable u 

equation 
/* Continuous PI equations: der(x) = u/T; y = k*(x + u); 

Discretization equation: der(x) = (x - previous(x))/Ts; 
* / 
when Clock() then // Clock() means the clock is inferred 

x = previous(x) + Ts/T*u; 
y = k* (-x + u) ; 
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end when; 
end ClockedPIEx; 
In the model, we have commented out the external input clocked variable u and replaced it with an internal 

clocked variable u in order to conveniently simulate the model without connecting to external sources. 

simulate(ClockedPIEx, stopTime=10) 
plot({u, y}); 

Figure 13-105. Simulation of ClockedPIEx model, with square wave signal u and controlled output 
variable y (uppermost and lowest). 

13.6.6 Clocked When-Equation 

In addition to the traditional conditional when-equation (Section 8.3.5, page 357) or when-statement 
(Section 9.2.10, page 433), a clocked when-equation is available: 

when clock-expression then 
clocked-equation 

end when; 
The clocked when-equation cannot be nested and does not have any elsewhen-part. It cannot be used 

inside an algorithm section, i.e., there is no clocked when-statement. General equations are allowed in a 
clocked when-equation, that is, the restrictions described in Section 8.3.5.1, page 358, do not apply. 

Regarding a clocked when-equation, all equations inside the when-equation are clocked with the same 
clock as given by the clock-expression. 

See also Section 13.3.1, page 625, which contains a number of examples using clocked when-
equations. Below we give a very simple example, also in Section 13.2.5.7, page 605. 

class SquareWaveClocked 
parameter Modelica.Slunits.Time interval=l; 
Clock elk; // A clock variable 
discrete Real xclocked(start=l); //A clocked variable 
Real x; 

equation 
elk = Clock(interval); // Clocked equation 
when elk then 

xclocked = -previous(xclocked); // Clocked equation 
end when; 
x = hold(xclocked); // Unclocked equation 

end SquareWaveClocked; 
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We simulate and plot: 

simulate(SquareWaveClocked, stopTime=5) 
plot(x); plot(xclocked) 
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Figure 13-106. The generated square wave using a clocked when-equation. The variable x is an unclocked 
discrete-time real variable also defined between clock points by the use of hold(), whereas the variable 
xclocked is a clocked discrete-time real variable only defined at clock points. 

13.6.7 Clock Constructors 

The following overloaded Clock constructors are available to generate clocks: 

• clock()—inferred clock (Section 13.6.7.2, page 702). 
• dock(intervalCounter, resolution)—clock with Integer quotient (rational number) interval 

(Section 13.6.7.3, page 703). 
• Clock(interval)—clock with a Real value interval (Section 13.6.7.4, page 703). 
• Clock(condition, startlnterval)—Boolean conditional clock (Section 13.6.7.5, page 704). 
• Clock—solver clock (Section 13.6.7.6, page 705). 

Besides inferred clocks and solver clocks, one of the following mutually exclusive associations of 
clocks are possible in one base partition. 

• One or more Integer quotient interval clocks, provided they are consistent with each other, see 
Section 13.6.14.4, page 721. 
For example, assume y=subSample(u), Clock (1,10) is associated to u, Clock(2,10) is 
associated to y, then this is correct, but it would be an error if y is associated to a Clock (1,3). 

• Exactly one Real interval clock. For example, assume Clock c = Clock (2.5), then variables in 
the same base partition can be associated multiple times with c but not multiple times with 
Clock(2.5). 

• Exactly one condition-based clock. 
• A default clock, if neither a Real interval nor an Integer interval nor a condition-based clock is 

associated with each base partition. In this case the default clock is associated with the fastest sub-
clock partition. Typically, a Modelica tool will use Clock (1.0) as a default clock and will raise a 
warning that it selected a default clock. 

Clock variables can be used in a restricted form of expressions. Generally, every expression containing 
clock variables must have parametric variability in order that clock analysis can be performed when 
translating a model. Otherwise, the following kinds of expressions are allowed: 

• Declaring arrays of clocks, e.g. Clock cl[3] = {Clock (1), Clock (2), Clock (3)} 
• Array constructors of clocks: {}, [ ], cat (...) . 
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• Array access of clocks, e.g. sample (u, cl [ 2 ] ) 
• Equality of clocks. Example: cl = c2. 
• If-expressions of clocks in equations, e.g. Clock c2 = if f>0 then subSample (cl, f) 

elseif f < 0 then superSample(cl, f) else cl. 
• Clock variables can be declared in models, blocks, connectors, and records,. A Clock variable can 

be declared with the prefixes input, output, inner, outer, but not with the prefixes flow, 
stream, discrete, parameter, or constant. 
Example: connector Clocklnput = input Clock; 

13.6.7.1 Exact Periodic Clocks are Automatically Synchronized 

Periodic clocks with intervals exactly defined by integers or integer quotients, i.e., rational numbers, are 
automatically synchronized if they have the same frequency and phase, whereas clocks defined by inexact 
floating point numbers are not synchronized. For example: 

model ClockSynch 
Clock cla = Clock(1,10); // period = 1/10 
Clock c2a = superSample(cla,3); // period = 1/30 
Clock c3a = Clock(1,30); // period = 1/30 

end ClockSynch; 
We simulate and plot for 0.5 seconds: 

simulate(ClockSynch, stopTime=0.5) 
plot ({cla,c2a,c3a}) 

false -

true -

false -

true -

Figure 13-107. Clocks c2a and c3a are automatically synchronized since they are exactly defined by 
rational number intervals and have the same frequency and phase. 

Clocks defined by inexact Real number intervals are not synchronized: 

Clock clb = Clock(0.1); 
Clock c2b = superSample(cl,3); 
Clock c3b = Clock(0.1/3); // Not synchronized with c2b 

13.6.7.2 Inferred Clock 

The Clock () expression returns an clock inferred from the context. For example, since all equations 
inside the clocked when-equation have the same clock, the Clock () expression and the whole when-
equation will get the clock of variable x: 

when Clock() then // equations are with the same clock 
x = A*previous(x) + B*u; 
Modelica.Utilities.Streams.print( 
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"clock ticks at = " + String(sample(time)) ); 
end when; 
Note that in most cases the Clock () operator is not needed and the equations could be written without 

a when-equation, but not in the above example, since the "print" statement is otherwise not associated to a 
clock which is needed for the expression sample (time). This style is useful if a modeler would clearly 
like to mark the equations that must belong to one clock, which also enhances readability and 
understandability. 

However, a Modelica tool could deduce this information as well even if the when-clause is not present, 
but at the cost of a less readable model. To understand such a model the reader would also have to perform 
this deduction using his/her brain, which is an extra effort. 

13.6.7.3 Clock with Integer Quotient Interval 

The clock expression Clock (intervalCounter, resolution) specifies a clock with an exact Integer 
quotient (rational number) interval. 

The first input argument, intervalCounter, is a clocked instance expression (Section 13.6.11, page 
713) or a parameter expression of type Integer with min=0. The optional argument resolution 
(default=l) is a parameter expression of type Integer with min=l and unit="Hz". The interval of the 
clock is defined as previous(intervalCounter) /resolution seconds. 

If intervalCounter is zero, the period of the clock is derived by clock inference (Section 13.6.14.4, 
page 721). The output argument is of base type Clock that ticks when time becomes t^, 
tstart+intervall, tstart+intervall+interval2, ... 

The clock starts at the start of the simulation W or when the controller is switched on. Here the next 
clock tick is scheduled at: 

intervall = previous(intervalCounter)/resolution =interval.start/resolution 
At the second clock tick at time tstan+intervall, the next clock tick is scheduled at interval2 = 

previous (intervalCounter) /resolution, and so on. If interval is a parameter expression, the 
clock defines a periodic clock on which interval must be defined. 

Note that the clock is defined by previous (intervalCounter). Therefore, for equation sorting in 
data dependency order ( Section 17.1.6, page 984) performed by a Modelica tool, the first input argument, 
intervalCounter, is treated as known. The given interval and time shift can be modified by using the 
subSample, super Sample, shift Sample and backSample operators on the returned clock, see Section 
13.6.9, page 707. For example: 

Integer nextlnterval(start=2); // first interval = 2/100 
equation 
when Clock(2,1000) then 

// periodic clock that ticks at 0, 0.002, 0.004, ... 
end when; 

when Clock(nextlnterval, 100) then 
// interval clock that ticks at 0, 0.02, 0.05, 0.09, ... 
nextlnterval = previous(nextlnterval) + 1; 
y = previous(y) + 1; 

end when; 

13.6.7.4 Clock with Real Value Interval 

The expression Clock (interval) gives a clock with a real-valued clock interval. 
The input argument, interval, is a clocked instance expression (Section 13.6.11, page 713) or a 

parameter expression of type Real with min=0.0 and unit "s". The output argument is of base type Clock 
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that ticks when time becomes W , W+ìntervall, W+intervall+interval2,... The clock starts at 
the start of the simulation tsXan or when the controller is switched on. Here the next clock tick is scheduled 
at intervall = previous (interval) = interval. start. At the second clock tick at time 
tstan+interval 1, the next clock tick is scheduled at interval2 = previous (interval), and so on. If 
interval is a parameter expression, the clock defines a periodic clock. 

Note that the clock is defined with previous (interval). Therefore, for equation sorting (Section 
17.1.6, page 984) performed by a Modelica tool the input argument, interval, is treated as known. The 
given interval and time shift can be modified by using the subSample, super Sample, shiftSample, 
and backs ampi e operators on the returned clock, see Section 13.6.9, page 707. There are restrictions 
where this operator can be used, see Clock expressions below. 

13.6.7.5 Condition-Based Clock 

The expression Clock(condition, startinterval) gives a clock triggered by the condition 
expression. The first input argument, condition, is a continuous-time expression of type Boolean. 

The optional startinterval argument (default = 0.0) is the value to be returned by the operator 
interval() (Section 13.6.5, page 699) at the first tick of the clock. 

The output result of the base type Clock ticks when edge(condition) becomes true. 
This clock is used to trigger a clocked partition due to a state event, i.e., a zero-crossing of a Real 

variable in a continuous-time partition, or due to a hardware interrupt that is modeled as a Boolean in the 
simulation model. For example: 

Clock c = Clock(angle >0, 0.1) // before first tick of c: 
// interval(c) = 0.1 

The implicitly given interval and time shift can be modified by using the subsample, superSample, 
shiftSample and backSample operators on the returned clock, see Section 13.6.9, page 707, provided 
the base interval is not smaller than the implicitly given interval. 

A simple example is given below, whereas a slightly more advanced example can be found in Section 
13.3.1.3, page 630. 

model SinConditionClock 
Real xsin = sin(4*Modelica.Constants.pittime); 
Clock w = Clock(xsin > 0, startlnterval=0); // ticks: 0, 0.5, 1.0, 1.5, 

end SinConditionClock; 
simulate(SinConditionClock, 1.6) 
plot({w,xsin}) 

Figure 13-108. Boolean condition clock w and Boolean condition xsin. 
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In the model SinConditionClock the Boolean condition clock w ticks when xsin passes zero from 
negative to positive. 

13.6.7.6 Solver Clock 

A so-called solver clock can be specified by the expression Clock(c, solverMethod). 
The first input argument c is a clock and the operator returns this clock. The returned clock is 

associated with the second input argument of type String containing the name of a numeric solver, e.g., 
"solverMethod". The meaning of solverMethod is defined in Section 13.6.15.2, page 723, including 
an example. If the second input argument solverMethod is an empty String, then no integrator is 
associated with the returned clock. Below are some examples: 

Clock cl = Clock(1,10) // 1/10 sec =100 ms, no solver 
Clock c2 = Clock(cl,"ImplicitTrapezoid"); // 100 ms,ImplicitTrapezoid solver 
Clock c3 = Clock(c2, ""); // 100 ms,no solver ] 

13.6.8 Base-Clock Partitioning Conversion Operators 

A set of clock conversion operators together act as boundaries between different clock partitions. 
The following operators convert between a continuous-time and a clocked-time representation and vice 

versa: 

• sample(w, c)—converts from continuous-time variable u to a clocked version according to the 
clock c. 

• hold(w)—converts from a clocked u to a continuous-time version that is defined between the clock 
ticks. 

13.6.8.1 sample(u, c) and sample(u) 

The operator sample(...) is an overloaded operator with function syntax. The input argument u to 
sample(u,c) is a continuous-time expression (Section 6.9.4, page 6.9.4). The optional input argument c is 
of type Clock. See also Section 13.2.5.6, page 604 for an example. 

The clocked sample operator returns a clocked variable value that has the associated clock c and the 
value of the left limit of u when the clock c is active. This is the value of u immediately before the event of 
c is triggered, see also Figure 13-16, page 609. If the optional argument c is not provided the clock is 
inferred (Section 13.6.14.4, page 721). 

Since the operator returns the left limit of u it introduces an infinitesimally small delay between the 
continuous-time and the clocked partition. This corresponds to the reality where a sampled data system 
cannot act infinitely fast and even for a very idealized simulation, an infinitesimal small delay is present. 
The consequences for the sorting (Section 17.1.7, page 989) of equations performed by Modelica tools are 
discussed below. 

The input argument u can be a general expression since the argument has continuous-time variability 
and therefore always has a value. It can also be a constant, a parameter, or a piecewise constant expression. 

Thus, there are three variants of sample(): 
• Unclocked sample(u,r) has two input arguments where the second argument r is of type Real. 

This is the traditional unclocked sample(...) operator described in Section 13.2.5.4, page 602. 
• Clocked sample(u) has one input argument u which is converted to a clocked value according to 

a clock inferred from the context. 
• Clocked sample(u,c) has two input arguments where the second argument if of type Clock. It 

returns a clocked version of the input argument u according to the above description. 
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The model SampleEx below illustrates both kinds of clocked sample. The call sample (time, elk) 
samples the time variable according to the clock elk, and sample (time) samples according to the 
inferred clock of the equation, inferred from the clocked variable xclocked which has clock elk. 

model SampleEx "Examples of using clocked sample" 
Clock elk = Clock(0.2) "Clock variable"; 
Real xclocked "Clocked variable"; 
Real yclocked "Clocked variable, inferred clock"; 

equation 
xclocked = 1.5 + sample(time,elk); // Clock of xclocked is elk 
yclocked = 0.5 + xclocked + 2*sample(time); // Clock of yclocked inferred 

end SampleEx; 
simulate(SampleEx, 1.0); 
plot({elk,xclocked,yclocked}) 

yclocked 

xclocked 

cSc 

Figure 13-109. Simulation of SampleEx model with clock variable elk lowest, the clocked variable 
xclocked in the middle with explicitly specified clock, and at the top yclocked with inferred clock. 

13.6.8.2 hold(u) 

The input argument u to hold(u) is a clocked instance expression (Section 13.6.11, page 713) or a 
parameter expression. The operator returns a piecewise constant signal of the same type of u. When the 
clock of u ticks, the operator returns u and otherwise returns the value of u from the most recent clock 
activation. Before the first clock activation of u the operator returns the start value of u, see Section 
13.6.12, page 715. 

Since the input argument u is not defined before the first tick of the clock of u, there is a restriction that 
it must be an instance expression or a parameter expression, to enable the initial value of u to be defined 
and used in such a case. 

The HoldEx example model shows the application of the hold operator on the clocked variable 
xclocked, giving an unclocked variable hx that is defined between clock ticks. 

model HoldEx "Example of using hold" 
Clock elk = Clock(0.2) "Clock variable"; 
Real xclocked "Clocked variable"; 
Real hx "Unclocked hold variable"; 

equation 
xclocked = 1.5 + sample(time, elk); // Clock of xclocked is elk 
hx = hold(xclocked); // Unclocked hx, also defined between ticks 

end HoldEx; 
simulate(HoldEx, 1.0); 
plot({clk,hx}) 
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Figure 13-110. Simulation of the HoldEx model with clock variable elk lowest and the unclocked variable 
hx at the top. 

13.6.9 Subclock Conversion Operators 

The following operators with function syntax convert between synchronous clocks: 

• subsample(u, factor) 
• superSample(u, factor) 
• shiftSample(u, shiftCounter, resolution) 
• backSample(u, backCounter, resolution) 
• noClock(u) 

These operators have the following common properties: 

• The input argument u is a clocked expression (Section 13.6.15.1, page 722) or an expression of 
type Clock. Note that these operators can operate on all kinds of clock variables and expressions. 
If u is a clocked expression, the operator returns a clocked variable that has the same type as the 
expression. If u is an expression of type Clock, operator returns a Clock. 

• The optional input arguments factor (default=0, min=0), and resolution (default=l, min=l) 
are parameter expressions of type i n t e g e r . 

• The input arguments shiftCounter and backCounter are parameter expressions of type 
Integer (min=0). 

13.6.9.1 subSample(u, factor) and subSample(u) 

The clock of y = subSample (u, factor) is factor times slower than the clock of u. At each factor 
tick of the clock of u the operator returns the value of u. For example, if factor=3, the value of u is 
returned at every third tick of the clock of u. The variable u can be either a clock variable or a clocked 
variable. 

The first activation of the clock of y coincides with the first activation of the clock of u. If the second 
argument factor is not provided or is equal to zero it is inferred, see Section 13.6.14.4, page 721. 

The example model SubSampleEx shows an explicitly subsampled variable xsub, which samples 
every third sample of xbase, and a subsampled variable xsubinf with an inferred factor 3. 

model SubSampleEx "Examples of using clocked subsample" 
Clock elk = Clock(0.1) "Clock variable"; 
Real xbase "Base clocked variable"; 
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Real xsub "Subsampled clocked variable, explicit clock factor"; 
Real xsubinf "Subsampled clocked variable, inferred clock factor"; 

equation 
xbase = sample(time,elk); 
xsub = 1 + subSample(xbase, 3); // Subsampling, explicit factor 3 
xsubinf = 0.5 + xsub + 2*subSample(xbase);//Subsampling, inferred factor 3 

end SubSampleEx; 
simulate(SubSampleEx, 1.0) 
plot({xbase,xsub,xsubinf}) 

xsubinf 

5 2- xsub 

xbase 

o- > • 

Figure 13-111. At the bottom is the clocked variable xbase, middle is an explicitly subsampled variable 
xsub subsampling factor 3, and at the top the variable xsubinf with an inferred subsampling factor 3. 

13.6.9.2 superSample(u, factor) and superSample(u) 

The clock of y = superSample(u,factor) is factor times faster than the clock of u. At every tick of the 
clock of y, the operator returns the value of u from the most recent tick of the clock of u. The first 
activation of the clock of y coincides with the first activation of the clock of u. The variable u can be either 
a clock variable or a clocked variable. 

If the argument factor is not provided or is equal to zero it is inferred, see Section 13.6.14.4, page 
721. 

The model Super SampleEx illustrates several aspects of supersampling. First, the clock clkl is 
defined with a clock interval which is a rational number, i.e., an integer quotient. Second, the clock clk2 
is defined by supersampling clkl. Finally, xsuper and xsuperinf are defined by supersampling the 
clocked variable xbase with an explicit or implicit clock factor respectively. The example shows 
supersampling both of a clock and of a clocked variable. 

model SuperSampleEx "Examples of using clocked supersample" 
Clock clkl = Clock(1,2) "Clock with ticks at 0, 1/2, 2/2, ..."; 
Clock clk2 = superSample (clkl, 2) "Clock with ticks at 0, 1/4, 2/4, ..."; 
Real xbase "Base clocked variable"; 
Real xsuper "Supersampled clocked variable, explicit clock factor 4"; 
Real xsuperinf "Supersampled clocked variable, inferred clock factor 4"; 

equation 
xbase = sample(time,clk2); 
xsuper = 1 + superSample(xbase, 4); // Supersampling, explicit factor 4 
xsuperinf = 0.5 + xsuper + 2*superSample(xbase); //Inferred factor 4 

end SuperSampleEx; 

simulate(SuperSampleEx, 1.0); 
plot({xbase,xsuper,xsuperinf}); plot({clkl,clk2}) 
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xbase 

Figure 13-112. Left: At the bottom is the clocked variable xbase, middle is an explicitly supersampled 
variable xsuper supersampling factor 4, and at the top the variable xsuperinf with an inferred 
supersampling factor 4. Right. The two clocks clkl and clk2. 
If a Boolean condition clock (Section 13.6.7.5, page 704), for example, Clock (x>0), is associated to a 

base-clock partition all its subclock partitions must have resulting clocks that are subsampled with an 
Integer factor with respect to this base clock. For example: 

Clock u = Clock(x > 0); // A clocked defined by a Boolean condition 
Clock yl = subSample(u,4); 
Clock y2 = superSample(yl,2); // fine. Same as y2 = subSample(u,2) 
Clock y3 = superSample(u ,2); // error 
Clock y4 = superSample(yl,5); // error 

13.6.9.3 shiftSample(u,shiftCounter,resolution) and shiftSample(u,shiftCounter) 

The first activation of the clock of y = shiftSample(u,shiftcounter,resolution) is shifted 
forward in time shiftCounter/resolution*interval (u) compared to the first activation of the 
clock of u. Conceptually, the operator constructs a clock cBase: 

Clock cBase = subSample(superSample(u,resolution),shiftCounter) 
Here the clock of y = shiftSample(...) starts at the second clock tick of cBase. At every tick of the 
clock of y the operator returns the value of u from the most recent tick of the clock of u. 

The call shiftSample (u, shiftCounter) shifts forward shiftCounter*interval (u), with a 
default value resolutions. 

Note that due to the restriction of superSample on Boolean condition clocks (Section 13.6.7.5, page 
704) , shiftSample can only shift the number of ticks of the Boolean condition clock, but cannot 
introduce new ticks. 

In the example below, the clock ul will tick at 0, 3/10, 6/10, etc. The shift introduced by 
ShiftSample (ul, 1,3) according to the above formula is l/3*(3/10) = 1/10, with shiftCounter=l, 
resolution^, interval=3/10. 

The Boolean condition clock u2 ticks when xsin passes zero from negative to positive. 

model ShiftSampleEx 
// Integer quotient rational number interval clock 
Clock ul = Clock(3,10); // ticks: 0, 3/10, 6/10, .. 
Clock yl = shiftSample(ul,1,3); // ticks: 1/10, 4/10, ... 

// Boolean condition clock 
Real xsin = sin(4*Modelica.Constants.pi*time); 
Clock u2 = Clock(xsin > 0, startlnterval=0.0); 

// ticks: 0.0, 0.5, 1.0, 1.5, ... 

Clock y2 = shiftSample(u2,2); // ticks: 1.0, 1.5, ... 
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// Clock y3 = shiftSample(u2,2,3);// error - clock resolution must be 1 
end ShiftSampleEx; 

simulate(ShiftSampleEx, 1.2) 
plot({ul,yl,u2,y2}); plot({u2,xsin}) 

oo-
-0 6-
- 1 0 -

Figure 13-113. Left, the clock ul at 0,3/10, etc., the clock yl shifted 1/10 at 1/10,4/10, etc., the condition-
based clock u2 and the clock y2 which is u2 shifted two intervals of length 0.5. Right. The state variable 
xsin which triggers the condition-based clock u2 when it passes through zero from negative to positive. 

13.6.9.4 backSample(u,backCounter,resolution) 

The first activation of the clock of y = backSample(u,backCounter, resolution) is shifted 
backwards in time backCounter/resolution*interval (u) before the first activation of the clock of 
u. The input argument u must either be an instance expression (Section 13.6.11, page 713) or an 
expression of type Clock. Conceptually, the operator constructs a clock cBase: 

Clock cBase = subSample(superSample(u, resolution), backCounter) 
The clock of y = backSample(u, backCounter, resolution) is shifted backwards a time duration 

before the clock of u, such that this duration is identical to the duration between the first and second clock 
tick of cBase. It is an error, if the clock of y starts before the base clock of u. 

The call backSample (u, shiftCounter) shifts backwards shiftCounter*interval (u), with a 
default value resolutions. 

At every tick of the clock of y, the operator returns the value of u from the most recent tick of the clock 
of u. If u is a clocked instance expression, the operator returns the start value of u (Section 13.6.12, page 
715) before the first tick of the clock of u. 

For example, in the model Ba c ks ample Ex 1 below for backsampling of integer quotient clocks, clock 
yl is shifted forward 3 whole intervals, y2 is shifted backward 2 intervals compared to y 1, y4 is shifted 
forward 2/3 interval, whereas y5 is shifted backward 1/3 interval compared to y4. 

model BackSampleExl "Backsampling of integer quotient clock" 
// Rational number integer quotient interval clock 
Clock u = Clock(3, 10); // ticks: 
Clock yl = shiftSample(u,3); // ticks: 
Clock y2 = backSample(yl,2); // ticks: 
//Clock y3 = backSample(yl,4); // error; 
Clock y4 = shiftSample(u,2,3); // ticks: 
Clock y5 = backSample(y4,1,3); // ticks: 

end BackSampleExl; 

0, 3/10, 6/10, .. 
9/10, 12/10, .. 
3/10, 6/10, ... 
ticks before u not allowed 
2/10, 5/10, .. 
1/10, 4/10, .. 

simulate(BackSampleExl, 1.3) 
plot({u, y4,y5, yl,y2}) 
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Figure 13-114. Five clocks from model BackSampleExl, with u ticking at 0,3/10,6/10, etc., y4 shifted 
forward 2/3 interval, y5 shifted backward 1/3 relative to that, yl shifted forward 3 whole intervals, y2 
shifted backward 2 intervals relative to that. 

The model BackSampleEx2 below shows examples of backSampiing Boolean conditional clocks. 

model BackSampleEx2 "BackSample of Boolean Condition Clock"; 
Real xsin = sin(4*Modelica.Constants.pi*time); 
Clock w = Clock(xsin > 0, startlnterval=0); 

// ticks: 0, 0.5, 1.0, 1.5, ... 
Clock zl = shiftSample(w,2); // ticks: 1.0, 1.5, ... 
Clock z2 = backSample(z1,1); // ticks: 0.5, 1.0, ... 

end BackSampleEx2; 
simulate(BackSampleEx2, 1.6) 
plot({w,zl, z2}); plot({w,xsin}) 

Figure 13-115. Left: Three clocks from the model BackSampleEx2. At the bottom is the Boolean condition 
clock w which ticks when xsin passes from negative to positive; at the middle is the clock zl shifted forward 
2 intervals, and at the top clock z2 which is backward 1 interval compared to z2 but forward 1 compared to 
w. Right. Boolean condition clock w and Boolean condition variable xsin. 
In the model BackSampleEx2 the Boolean condition clock w ticks when xsin passes zero from 

negative to positive. The clock z l is shifted forward 2 intervals, whereas z2 is shifted backward 1 interval 
and thus is only one interval forward compared to clock w. 

Note that due to the restriction of superSample on Boolean condition clocks (Section 13.6.7.5, page 
704), backSample can only shift a whole number of ticks of the Boolean condition clock, but cannot 
introduce new ticks. 
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13.6.9.5 noClock(u) 

The clock of y=noClock (u) is always inferred. At every tick of the clock of y, the operator returns the 
value of u from the most recent tick of the clock of u. If noClock (u) is called before the first tick of the 
clock of u, the start value of u is returned. Consider the following model NoClockEx where the value of 
yl+l at clock ul is returned at ticks of clock u2 using either noClock (...) or sample (hold (...) ). 

model NoClockEx 
// Integer quotient rational number interval clock 
Clock ul = Clock(3,10); // ticks: 0, 3/10, 6/10, .. 
Clock u2 = shiftSample(ul,1,3); // ticks: 1/10, 4/10, ... 

discrete Real yl = sample(time+2, ul); 

discrete Real ynoClock = noClock(yl+l) + sample(0.0,u2); 
discrete Real ysamphold = sample(hold(yl+l)) + sample(0.0,u2); 

end NoClockEx; 
We first simulate the above NoClockEx model: 

simulate(NoClockEx, stopTime=l.0); 
plot({u2,yl,ynoClock}) plot({ul,u2,yl,ysamphold}) 
When inspecting Figure 13-116 one might come to the conclusion that the expressions noClock (u) 

and sample (hold (u) ) are equivalent since the variables ynoClock and ysamphold look the same. 

ynoClock 

y1 • 

u2 

ysamphold 

ul 
u2 

Figure 13-116. Simulation of noClockEx. Left. u2 at the bottom, yl in the middle with clock ul, 
ynoClock at the top with clock u2. Right, ul and u2 at the bottom, yl in the middle with clock ul, 
ysamphold at the top with clock u2. The variables ynoClock and ysamphold look identical. 

Surprisingly, the expressions noClock (u) and sample (hold (u)) are not equivalent in all cases. 
They have slightly different semantics due to the infinitesimal delay of sample at the actual sampling. 
According to Section 13.6.8.1 the semantics of y=sample (u, c) is as follows: "The clocked sample 
operator returns a clocked variable value that has the associated clock c and the value of the left limit of u 
when the clock c is active. This is the value of u immediately before the event of c is triggered". Consider 
following model: 

model NoClockVsSampleHold 
Clock clkl = Clock(0.1); 
Clock clk2 = subSample(clkl,2); 
Real x(start=0), y(start=0), z(start-O); 

equation 
when clkl then 

x = previous(x) + 0.1; 
end when; 
when clk2 then 

y = noClock(x); // most recent value of x 
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z = sample(hold(x)); // Left limit of x (infinitesimally delayed) value! 
end when; 

end NoClockVsSampleHold; 
Due to the infinitesimal delay of sample, that is, the delay between the time of taking the left limit value 

and the event time, z will not show the current value of x at the current event/tick as clk2 ticks, but will 
show its previous value, the left limit. However, y will show the current value at the current clock tick, since 
it has no infinitesimal delay because it does not use sample. This is depicted in Figure 13-117 below. 
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Figure 13-117. Simulation of NoClockVsSampleHold. Left, clkl at the bottom, z in the middle, x at the 
top, where z=sample (hold (x)) shows the previous value of x at clock clk2. Right. clk2 at the bottom, x 
and y in the middle, where y=noClock(x) shows the current value of x at clock clk2. 
We could instead define clk2 as an independent base clock, i.e., with no synchronization with clkl: 
Clock clk2 = Clock(0.2); 

In this case it is not guaranteed whether y=noClock(x) will hold the "current" value of x or the 
"previous" value since no synchrony is guaranteed. The value depends on which of the partitions is 
executed first, Section 13.6.10 below: "Different base-clock partitions can be associated to separate tasks 
for asynchronous execution". 

13.6.10 Base-Clock and Subclock Partitions 

The following concepts are used: 

• A base-clock partition identifies a set of equations and a set of variables which must be solved 
together in one task. Different base-clock partitions can be associated to separate tasks for 
asynchronous execution. 

• A subclock partition identifies a subset of equations and a subset of variables of a base-clock 
partition which are partially synchronized with other sub-clock partitions of the same base-clock 
partition, that is, synchronized when the ticks of the respective clocks are simultaneous. 

13.6.11 Instance Expression and Operator Argument Restrictions 

The built-in clock-related operators with function syntax defined in the following sections have some 
restrictions on their input arguments that are not present for standard Modelica functions. To define these 
restrictions the notion of instance expression is introduced, also known under the name component 
expression in (Model ica Association 2012): 

• An instance expression is an expression with some restrictions, i.e., it does not refer to instances of 
models with equations. 
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An instance expression is an instance of one of the following: 

• A base type 
• A derived type 
• A record type 
• An array of such an instance, i.e., of a base type, derived type, or record type 
• One or more elements, for example, indexed elements or slices, of such an array indexed by index 

expressions which are parameter expressions (see below) 
• An element of a record 

The essential features are that one or more values are associated with the instance, that start values can be 
defined on these values, and that no equations are associated with the instance. An instance expression can 
be constant or can vary with time. 

The notions of instance expression, parameter expression, and ordinary expression is used to describe 
argument restrictions in the definition of the clock-based operators: 

• The input argument is an instance expression 
The meaning is that the input argument when calling the operator must be an instance 

expression. The reason for this restriction is that the start value of the input argument is returned 
before the first tick of the clock of the input argument and this is not possible for a general 
expression. For example: 

Real ul; 
Real u2 [4] ; 
Complex c; 
Resistor R; 

yl = previous(ul); // fine 
y2 = previous(u2); // fine 
y3 = previous(u2[2]); // fine 
y4 = previous(c.im); // fine 
y5 = previous(2*u);// Error, general expression, no instance expression 
y6 = previous(R); // Error, instance, no instance expression 

• The input argument is a parameter expression 
The meaning is that the input argument when calling the operator must have parameter 

variability, i.e., the argument must depend directly or indirectly only on parameters, constants or 
literals, see Section 6.8.1.3, page 278. 

The reason for this restriction is that the value of the input argument needs to be evaluated 
during translation in order that clock analysis can be performed during translation. 
Examples: 

Real u; 
parameter Real p=3; 

yl = subSample(u, factor=3); // fine (literal) 
y2 = subSample(u, factor=2*p - 3); // fine (parameter expression) 

y3 = subSample(u, factor=3*u); // error (general expression) 

• The input argument is an ordinary expression 
There is no restriction on the input argument when calling the operator. This notation is used to 

emphasize the case when a standard function call can be used ("is an expression"), instead of 
restricting the input ("is an instance expression"). 
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13.6.12 Initialization of Clocked Partitions 

The standard scheme for initialization of Modelica models does not apply for clocked discrete-time 
partitions. Instead, initialization is performed in the following way: 

• Clocked discrete-time variables cannot be used in initial equation or initial algorithm sections. 
• The attribute "fixed" cannot be applied to clocked discrete-time variables. The attribute fixed is 

true for variables to which the previous operator is applied, otherwise false. 

13.6.13 Clock Inference, Clocked Partitions, and Evaluation Order 

This section briefly describes how clocked partitions and clocks associated with equations are inferred in a 
clock inference process. Typically clock partitioning is performed by the Modelica tool before sorting the 
equations in data dependency order. Sorting by hand is described in Section 2.20.1, page 64, and the 
sorting algorithm in Section 17.1.7, page 989. The benefit is that clocking and symbolic transformation 
errors are separated. The following holds: 

• Every clocked variable is uniquely associated with exactly one clock. 
• After model flattening, every equation in an equation section, every expression, and every 

algorithm section is either unclocked containing continuous-time and/or unclocked discrete-time 
parts or is clocked with unique association to exactly one clock. 

In the latter case it is called a clocked equation, a clocked expression, or clocked algorithm section 
respectively. The associated clock is either explicitly defined by a clocked when-equation (Section 13.6.6, 
page 700) or is implicitly defined. 

• The implicitly derived clock is defined by the requirement that a clocked equation, a clocked 
expression and a clocked algorithm section must have the same clock as the variables used in them 
with exception of the expressions used as first arguments in the conversion operators of Section 
13.6.8, page 705 and Section 13.6.9, page 707. 

• Clock inference means to infer the clock of a variable, an equation, an expression, or an algorithm 
section if the clock is not explicitly defined and is deduced from the required properties in the 
previous two paragraphs. 

• All variables in an expression without clock conversion operators must have the same clock to 
infer the clocks for each variable and expression. 

The clock inference works both forward and backwards regarding the data flow and is also being able 
to handle algebraic loops. The clock inference method uses the set of variable incidences of the equations, 
that is, which variables that appear in each equation. 

Note that incidences of the first argument of clock conversion operators of Section 13.6.8, page 705 
and Section 13.6.9, page 707, are handled specially. 

13.6.13.1 Evaluation Order, Event Handling, and Possible Sorting of Clocked Partitions 

As recently mentioned in Section 13.6.8, page 705, sample acts as an input boundary and hold as an 
output boundary from a clocked partition versus the continuous-time partition. Since sample (u) returns 
the left limit of u, and the left limit of u is a known value, all inputs to a clocked base-clock partition are 
treated as known during equation sorting (Section 17.1.6, page 984) performed by a Modelica tool. 
Similarly, the first argument to a Clock constructor is treated as known for a clock with integer quotient 
(Section 13.6.7.3, page 703) or with real value interval (Section 13.6.7.4, page 703). 

Since a periodic and/or interval clock can tick at most once at each time instant, and since the left limit 
of a variable does not change during event iteration, base-clock partitions (Section 13.6.14.2, page 719) 
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need not to be sorted with respect to each other by the Modelica tool. However, the equations within each 
base-clock partition still need to be sorted. 

The reason for this is that the sample (u) inputs do not change and therefore need not be re-evaluated, 
i.e., re-evaluating a base-clock partition associated with a condition clock always gives the same result. 

Thus, at an event instant, equations and algorithm sections in active base-clock partitions can be solved 
first, just once, in any order. 

Afterwards the continuous-time partition is evaluated. Event iteration takes place only over the 
continuous-time partition. In such a scenario, accessing the left limit of u in sample (u) just means to pick 
the latest available value of u when the partition is entered, storing it in a local variable of the partition and 
only using this local copy during evaluation of the equations in this partition. 

As an illustration, the two base-clock partitions in the model BaseClockPartitionEx can be 
evaluated independently in any order. 

model BaseClockPartitionEx 
Real x(start=0.1, fixed=true); 
Real xdl(start=-0.1); 
Real xdl_hold; 
Real xd2; 
Real xd3; 

equation 
der(x) = 1; 
when Clock(0.1) then 

xdl = sample(x); 
end when; 
xdl_hold = hold(xdl) 
when Clock(0.2) then 

xd2 = sample(xdl_hold); 
end when; 
xd3 = subSample(xdl,1); 

end BaseClockPartitionEx; 

// Continuous partition 
// Base-clock partition 1 

// Base-clock partition 2 

We simulate for 0.8 seconds and plot. 

simulate(BaseClockPartitionEx, stopTime=0.8); 
plot({xdl, xd2}) 

xd2 

xdl 

Figure 13-118. Simulation of the BaseClockPartitionEx model with plots of variables xdl and xd2. 
The two base-clock partitions can be evaluated in any order at a clock tick event. The variable xd2 
(uppermost curve) shows the previous value of xdl, initially -0.1, increased by 1.0 . 
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13.6.13.2 Partitioning Example—ControlledMass 

Below we give an example model, ControlledMass, which illustrates the clock inference (Section 
13.6.13, page 715) and clock partitioning (Section 13.6.14, page 719). The model inherits the 
MassWithSpringDamper model which was described in Section 13.6.1, page 694. 

model ControlledMass 
extends MassWithSpringDamper(k=100); 
parameter Real KOuter = 10 "Gain of position PI controller"; 
parameter Real KInner = 20 "Gain of speed P controller"; 
parameter Real Ti = 10 "Integral time for pos. PI controller"; 
parameter Real xref = 10 "Position reference"; 
discrete Real xd; 
discrete Real eOuter; 
discrete Real intE(start=0); 
discrete Real uOuter(start=0); 
discrete Real xdFast; 
discrete Real vd; 
discrete Real vref; 
discrete Real ulnner(start=0); 
Clock cControl = Clock(0.01); // 100Hz, delay 0 
Clock cOuter= subSample(shiftSample(cControl,2,3),5); // 20Hz, delay 2/300 
Clock cFast = superSample(cControl, 2); // 200 Hz 

equation 
// position sensor 
xd = sample(x, cOuter); // Clock 20 Hz, delay 2/300 = 4/600 

// outer PI controller for position 
eOuter = xref-xd; // Clock 20 Hz, delay 4/600 
intE = previous(intE) + eOuter; // Inferred clock of xref, eOuter, 
uOuter = KOuter*(eOuter + intE/Ti); // intE, and uOuter 
// speed estimation 
xdFast = sample(x, cFast); // 200 Hz 
vd = subSample((xdFast-previous(xdFast))/interval(), 2); // 100 Hz 

// Inferred intervalo 
// inner P controller for speed 
vref = backSample(superSample(uOuter,5), 2, 3); // 100 Hz, delay 0 
ulnner = KInner*(vref-vd); // Inferred ulnner, KInner // 100 Hz, delay 0 
// force actuator 
f = hold(ulnner); 

end ControlledMass; 
We simulate for 0.26 seconds and plot, first the clocks in Figure 13-119 and then a few variables in 

Figure 13-120. 

simulate(ControlledMass, stopTime=0.26); 
plot({eControl, cOuter, cFast}) 
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Figure 13-119. Simulation of the ControlledMass model model only showing its declared clocks. The 
clock cControl is 100 Hz, delay 0, cFast 200 Hz, delay 0, and cOuter 20 Hz, delay 4/600. 

plot({xd, xdFast}) 
plot({uOuter, vref}) 

Figure 13-120. Simulation of the model ControlledMass. Left. plot of xd (20Hz, delay 4/600) and 
xdFast (200Hz, delay 0). Right, plot of uOuter (20Hz, delay 4/600) and vref (100Hz, delay 0). 

The Modelica tool performs automatic clock inference (Section 13.6.13, page 715) and clock 
partitioning (Section 13.6.13, page 715) of the ControlledMass model. The result is as follows. 

A discrete-time base-clock partion is identified with a periodic base-clock BaseClock l, frequency 
600 Hz, interval = 1/6 * 0.01 sec. The reason it is 600 Hz is that all other clocks in this partition need to 
divide this base clock by an integer factor.. 

Several subclock partitions are found within this base-clock partition, all with integer subsampling 
factors with respect to the base clock. This means that all subclocks are synchronized with the base clock, 
which is a requirement to be in the same base-clock partition. The following partitions are found: 

• Continuous-time partition: 

der(x) = v; 
m*der(v) = f -

// First two equations inhertied from MassWithSpringDamper 
*x - d*v; 

f = hold(uInner) ; 
Subclock partition with BaseClock l. SubClock l, 100 Hz, subsampling factor 6, start delay 0 

vd = subSample(vd_templ, 2); 
vref = backSample(supersample(uOuter,5), 
ulnner = KInner*(vref-vd); 

// 100 Hz, delay 0 
2, 3); // 100 Hz, delay 0 

// 100 Hz, delay 0 
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• Subclock partition with BaseClock l. SubClock_2, 200 Hz, subsampling factor 3, delay 0 sec. 
A temporary variable vd_templ clocked at 200Hz has been introduced. 

xdFast = sample(x, cFast); // 200 Hz, delay 0 
vd_templ = (xdFast-previous(xdFast))/interval(); // 200 Hz, delay 0 
• Subclock partition with BaseClock l. SubClock_3, 20Hz, subsampling factor 30, delay 4/600 

xd = sample(x, cOuter); // Clock 20 Hz, delay 4/600 
eOuter = xref-xd; 
intE = previous(intE) + eOuter; 
uOuter = KOuter*(eOuter + intE/Ti); 

13.6.14 Clock Partitioning in Detail 

The clock partitioning is conceptually performed by the Modelica tool after model flattening, that is, 
redeclarations have been elaborated, arrays of model instances expanded into scalar model instances, and 
overloading resolved. Furthermore, function calls to inline functions have been inlined. 

This is called "conceptually," because a Modelica compiler might do this more efficiently in a different 
way provided the result is the same as if everything is flattened. For example, array and matrix equations 
and records do not need to be expanded if they have the same clock. 

Furthermore, each nontrivial expression expr, (nonliteral, nonconstant, nonparameter, nonvariable), 
appearing as first argument of any clock conversion operator is recursively replaced by a unique variable, 
V/, and the equation v, = expn is added to the equation set. 

13.6.14.1 Connected Components of the Equations and Variables Graph 

Consider the set E of equations and the set V of unknown variables (not constants and parameters) in a 
flattened model, that is, M = <E, V>. The partitioning is described in terms of an undirected graph <N, F> 
with the nodes N being the set of equations and variables, N = E + V. 

The set incidence (e) for an equation e in E is a subset of V, in general it consists of the unknowns 
which lexically appear in e. There is an edge in F of the graph between an equation, e, and a variable, v, if 
v = incidence(e): 

F = {(e, v) : e G E , v e incidence(e)} (13-17) 

A set of clock partitions is the "connected components" of this graph with appropriate definition of the 
incidence operator below (Section 13.6.14.2, page 719). 

13.6.14.2 Base-clock Partitioning 

The goal is for the Modelica tool to identify all clocked equations and variables that should be solved 
together in the same task, as well as to identify the unclocked continuous-time partition. 

The base-clock partitioning is performed with base-clock inference, which uses the following incidence 
(occurrence) definition (see also a different incidence matrix in Section 17.1.7, page 989): 

incidence(e) = the set of unknown variables, as well as all variables x in der(x), pre(x), and 
previous(x), which lexically appear in equation e except as first argument of 

the base-clock conversion operators sample() and hold(). 
The resulting set of connected elements (equations, variables) defines the initial partitioning of the 
equations and variables, Bi = <Ei, Vi>, according to having a base-clock or being in a continuous-time 
partition. 

The base clock partitions are identified as clocked partitions or as unclocked continuous-time partitions 
according to the following properties: 
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• A variable u in sample (u) and a variable y in y=hold (ud) is in a continuous-time partition. 
• Correspondingly, variables u and y in y = sample (uc), y = subSample (u), y = 

superSample(u), y = shiftSample(u), y = backSample(u), y = previous(u), are in a 
clocked partition. Equations in a clocked when-equalion are also in a clocked partition. 

• Other partitions where none of the variables in the partition are associated with any of the operators 
above have an unspecified partition kind and are considered continuous-time partitions. 

• Finally, for the resulting final partitioning all continuous-time partitions are collected together and 
form "the" single continuous-time partition. 

For example, perform base-clock partitioning of the following small model: 

// Controller 1 
udl = sample(y,cl); 

0 = fl(ydl, udl, previous(ydl)); 

// Controller 2 
ud2 = superSample(ydl,2); 

0 = f2(yd2, ud2); 

// Continuous-time system of equations 
u = hold(yd2); 
0 = f3 (der (xl) , xl, u) ; 
0 = f4 (der (x2) , x2, xl) ; 
0 = f5(der(x3), x3); 
0 = f6(y, xl, u); 

After base clock partitioning, the following partitions are identified: 

// Base partition 1 // clocked partition 
udl = sample(y,cl); // incidence(e) 
0 = fl(ydl, udl, previous(udl)); // incidence(e) 
ud2 = superSample(ydl,2); // incidence(e) 
0 = f2(yd2, ud2); // incidence(e) 

// Base partition 2 // continuous-time partition 
u = hold(yd2); // incidence(e) = {u} 
0 = f3(der(xl), xl, u); // incidence(e) = {xl, 
0 = f4(der(x2), x2, xl); // incidence(e) = {x2,xl} 
0 = f6(y, xl, u); // incidence(e) = {y,xl,u} 

// Identified as separate partition, but belonging to partition 2 
0 = f5(der(x3), x3); // incidence(e) = {x3> 

13.6.14.3 Subclock Partitioning 

For each clocked partition B j , identified in Section 1 3 . 6 . 1 4 . 2 , page 7 1 9 , the subclock partitioning is 
performed with sub-clock inference which uses the following incidence definition: 

incidence(e) = the unknown variables, as well as variables x in der(x), pre(x), and previous(x), 
which lexically appear in e except as first argument of sub-clock conversion operators: 
subSample, superSample, shiftSample, backSample, and noClock. 

The resulting set of connected components, is the partitioning of the equations and variables, Sy = <Ey, 
V i j > , according to subclocks. 

It can be noted that: 

{udl} 
{ydl,udl} 
{ud2, ydl} 
{yd2, ud2} 

u} 

E y n E k i = 0 V i*k,j*l (13-18) 
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Vij fl Vki = 0 V i*k,j*l (13.19) 

V = U V i j (13-20) 

E = U Eij (13-21) 

For example, after subclock partitioning of the above example from Section 13.6.14.2, page 719, the 
following partitions are identified: 

// Base partition 1 (clocked partition) 

// Sub-clock partition 1.1 
udl = sample(y,cl); // incidence(e) = {udl} 
0 = f1(ydl,udl,previous(ydl)); // incidence(e) = {ydl,udl} 

// Sub-Clock partition 1.2 
ud2 = superSample(ydl,2); // incidence(e) = {ud2} 
0 = f2(yd2,ud2); // incidence(e) = {yd2,ud2} 

// Base partition 2, no sub-clock partitioning, since continuous-time 
u = hold(yd2); 
0 = f3 (der (xl) , xl, u) ; 
0 = f4(der(x2), x2, xl) ; 
0 = f 5 (der (x3) , x3) ; 
0 = f6 (y, xl, u) ; 

13.6.14.4 Subclock Inferencing 

For each base-clock partition, the base clock interval needs to be determined and for each subclock 
partition, the subsampling factors and shift need to be determined. 

For each subclock partition, the interval might be rational or Real type and known or parametric or 
being unspecified. 

The subclock partition intervals are constrained by subSample and superSample sampling factors 
which might be known, be parameters, or unspecified and by shift Sample, shiftCounter, and 
resolution or backSample, backCounter, and resolution. This constraint set is used to solve for 
all intervals and subsampling factors and shift of the subclock partitions. The model is erroneous if no 
solution exists. 

Note that it must be possible to determine that the constraint set is valid at compile time. However, in 
certain cases, it could be possible to defer providing actual numbers until run time. 

It is required that accumulated sub- and super-sampling factors in the range of 1 to 263 can be handled. 
A 64 bit internal representation of numerator and denominator with sign can be used and gives a 

minimum resolution 1.08E-19 seconds and maximum range 9.22E+18 seconds = 2.92E+11 years. 

13.6.15 Continuous-Time Equations in Clocked Partitions 

The goal of allowing continuous-time equations in clocked partitions is that continuous-time Modelica 
models can be utilized in a clocked sampled data control system applications. This can be achieved by 
solving the continuous-time equations with a defined integration method between clock ticks. With this 
feature, it is for example possible to invert the nonlinear dynamic model of a plant (see reference in 
Section 13.9, page 742) and use it in a feed forward path of an advanced control system that is associated 
with a clock. 
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The feature of continuous-time equations in clocked partitions also allows definition of multirate 
clocked systems. This means that different parts of a continuous-time model are associated to different 
clocks and are solved with different integration methods between clock ticks. For example, a very fast 
subsystem could be solved with an implicit solver with a small step size and a slow subsystem with an 
explicit solver with a large step size. 

With the language elements defined in this section, continuous-time equations can also be used within 
clocked partitions. Thereby the continuous-time equations are solved with the defined integration method 
between clock ticks. 

From the point of view of the continuous-time partition, the clock ticks are not interpreted as events, 
but as step sizes of the integrator that the integrator must exactly hit. This is the same assumption as for 
manually discretized controllers, such as the z-transform. Thus, no event handling is triggered at clock 
ticks (provided an explicit event is not triggered from the model at this time instant). 

It is not defined how events are handled that appear when solving the continuous-time partition. For 
example, a tool could handle events exactly in the same way as for a usual simulation. Alternatively, 
relations might be interpreted literally, so that events are no longer triggered in order that the time for an 
integration step is always the same, as needed for hard real-time requirements. 

From the point of view of the clocked partition, the continuous-time partition is discretized and the 
discretized continuous-time variables only have values at clock ticks. Therefore, such a partition is handled 
in the same way as any other clocked partition. Especially, operators such as sample, hold, subSample 
must be used to communicate signals of the discretized continuous-time partition with other partitions. 
Thereby a discretized continuous-time partition is seen as a clocked partition. 

13.6.15.1 Clocked Discrete-Time and Clocked Discretized Continuous-Time Partition 

The concept of variability of expressions in general is defined in Section 6.8.1.3, page 278. Here the 
concept of clocked discrete-time expressions is defined more precisely, closely related to clocked discrete-
time variables defined in Section 13.6.3, page 697. 

• If not explicitly stated otherwise, an expression with a variability such as continuous-time or 
unclocked discrete-time means that the expression is inside a partition that is not associated to a 
clock. 

• If an expression is present in a partition that is not a continuous-time partition, it is a clocked 
expression and has clocked discrete-time variability. 

After subclock inferencing (Section 13.6.14.4, page 721) every partition that is associated to a clock 
has to be categorized as clocked discrete-time or clocked discretized continuous-time partition according to 
the following rules: 

• Clocked discrete-time partition. If a clocked partition does not contain the operators der, delay, 
spatialDistribution, no event-related operators (initial, terminal, pre, edge, change, 
noEvent, sample, smooth, reinit, see Section 0, page 293) with the exception of 
noEvent (...), and no when-clause with a Boolean condition, it is a clocked discrete-time partition, 
i.e., it is a standard sampled data system that is described by difference equations. 

• Clocked discretized continuous-time partition. If a clocked partition is not a clocked discrete-time 
partition and it contains neither the operator previous (...) (Section 13.6.4, page 699) nor the 
operator interval(...) (Section 13.6.5, page 699), it is a clocked discretized continuous-time 
partition. Such a partition has to be solved with a "solver method" of section 13.6.15.2, page 723. 

It is an error if none of the two properties hold, e.g., if the operators previous (...) and der (...) are both 
used in the same partition. 

In a clocked discrete-time partition none of the event generating mechanisms apply. For example, 
neither relations nor any of the event triggering mathematical functions (Section 6.13.1, page 289) will 
trigger an event. 
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13.6.15.2 Solver Methods 

The integration method associated with a clocked discretized continuous-time partition is defined by 
specifying a string which is the name of the chosen integration method. A predefined type 
ModelicaServices . Types. SolverMethod defines the methods supported by the respective tool by 
using the choices annotation. 

The ModelicaServices package contains tool specific definitions. Each solver method is denoted by 
a string. The following names of solver methods are standardized: 

type SolverMethod = String annotation(choices( 
choice="External" "Solver specified externally", 
choice="ExplicitEuler" "Explicit Euler method (order 1)", 
choice="ExplicitMidPoint2" "Explicit midpoint rule (order 2)", 
choice="ExplicitRungeKutta4" "Explicit Runge-Kutta method (order 4)", 
choice="ImplicitEuler" "Implicit Euler method (order 1)", 
choice="ImplicitTrapezoid" "Implicit trapezoid rule (order 2)" 

) ) 
"Type of integration method to solve differential equations in a clocked"+ 
"discretized continuous-time partition." 

If a tool supports one of the numeric solvers of SolverMethod it must use one of the above solver 
method names. A Modelica tool may also support other integrators. Typically, a tool supports at least the 
methods "External" and "ExplicitEuler". If a tool does not support the integration method defined in 
a model, typically a warning message is printed and the method is changed to "External". 

If the solver method is "External", then the equations in the partition associated with this method are 
numerically solved during an interval of length of interval () using a numeric solution method selected 
and provided by the simulation tool. 

For example, one possibility is to have a table of the clocks that are associated with discretized 
continuous-time partitions and a method selection per clock. In such a case, the solution method might be a 
variable step solver with step-size control that numerically solves equations between two clock ticks. 

The simulation tool might also combine all partitions associated with method "External", as well as 
all continuous-time partitions, and solve the equations from all these partitions together using the solver 
selected by the simulation tool. 

If the solver method is not "External", then the equations in the partition are numerically solved 
using the given method with the numeric step size being interval () . For a periodic clock, the numeric 
solution is thus performed with fixed step size. 

The solvers are defined with respect to the underlying ordinary differential equation in state space form 
to which the continuous-time partition can be transformed, at least conceptually (t is time, u(i) is the real 
vector of input variables, x(t) is the real vector of states, and y( t ) is the real vector of algebraic and/or 
output variables). See Section 17.1, page 979 for a more detailed description of the underlying ODE or 
DAE system of equations. 

i = f ( X ' U ' ° (13-22) 
y = g(x, u , 0 

The solver methods below (with exception of "External") performs numerical solution of the equations 
from clock tick fa to clock tick t{ and computing the desired variables at with h = t\ - fa = 
interval (u) and x, = x(/,). See Section 18.2.1, page 998, for more details regarding solver methods. 
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SolverMethod Solution method 
(for all methods: y, = g(x,., u, , /,) ) 

ExplicitEuler x, := x M + h • x M 

i , := f f i^u, , / , . ) 
ExplicitMidPoint2 * * * . . . u, , + u , . 

x, := x M + h• f (x M + \-h-xM, M + 

x( :=f(x., u,, /.) 

ExplicitRungeKutta4 kj := h - x M 

k2 ^ h . i ^ + Ì K ^ p L j ^ + l h ) 

k4 :=A-f(xM+k3 ,u / . , / , . ) 
: = x/-i + i • (k, + 2 • k2 + 2 • k3 + k4 ) 

x,. ^f ix , . ,^ , / , . ) 
ImplicitEuler x, = x,_j +h-\i II equation system with unknowns: x ;,x. 

xf. =f(x,., U,.,/,.) 
ImplicitTrapezoid xy = x._] +±h-(xj + x._j) // equation system with unknowns: x.,x. 

x,. =f(x,., u,, tt) 

For the implicit integration methods the efficiency can be enhanced by utilizing the solver 
discretization formula to expand the equations to the discretized forms such as the above during the 
symbolic transformation of the equations. This method is also known as inline integration. For example, 
linear differential equations are then mapped to linear and not non-linear algebraic equation systems, and 
also the structure of the equations can be utilized. 

It might be necessary to associate additional data for an implicit integration method, for example, the 
relative tolerance to solve the non-linear algebraic equation systems, or the maximum number of iterations 
in case of hard real-time requirements. This data is tool specific and is typically either defined with a 
vendor annotation or is given in the simulation environment. 

13.6.15.3 Associating a Solver to a Partition 

A solverMethod can be associated to a clock with the overloaded Clock constructor Clock (c, 
solverMethod), see also Section 13.6.7.6, page 705. If a clock is associated with a clocked partition and 
a solverMethod is associated with this clock, then the continuous-time equations in that clocked partition 
are numerically solved using that solver. 

We show the model SolverMethodClockedPl which uses the numeric solver "ImplicitEuler" 
for solving its continuous-time equations because they refer to the variable e which is clocked according to 
clock c with associated solverMethod = "ImplicitEuler". 

model SolverMethodClockedPl 
parameter Real k=l; 
parameter Real T=l; 

// input Real y_ref; // reference value 
// input Real y_mes; // measured value 
Real y_ref = 3; // dummy reference value 
Real y_mes = 3+sign(sin(time)); // dummy measured value 
Real e; 
Real x(start=0,fixed=true); 
Real ud; 
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output Real u(start=0.0); 
Clock c = Clock(Clock(0.4) , solverMethod="ImplicitEuler"); 

equation 
// Sampling the inputs 
e = sample(y_ref,c) - sample(y_mes); 
// Continuous-time PI controller in a clocked partition 
der(x) = e/T; 
ud = k* (x + e) ; 
// Holding the output 
u = hold(ud); 

end SolverMethodClockedPI; 
The variable x, which first appears to be continuous-time because der ( ) is applied to it, is 

automatically discretized according to the solver method difference equations with a numeric step-size 
being the clock interval of the clocked partition. Thus x has become a discrete clocked variable. 

We simulate and plot. Note that x is now a clocked discrete-time variable. 

simulate(SolverMethodEx, stopTime=10.0); 
plot({y_ref,y_mes, u}) 
plot({e, x}) 

n 
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Figure 13-121. Simulation of the model SolverMethodClockedPI. Note that x in the right diagram has 
become a clocked discrete-time variable due to discretization according to the chosen solverMethod. 

13.6.15.4 Automatic Choice of solverMethod 

If a solverMethod is not explicitly associated with a partition, the choice of solver is inferred with a 
similar mechanism as for sub-clock inferencing (Section 13.6.14.4, page 721). The inferencing mechanism 
is defined using the operator solverExplicitlyDef ined (c) which returns true if a solverMethod 
is explicitly associated with the clock c and returns false otherwise. 

For every partitioning operator of Section 13.6.8, page 705 and Section 13.6.9, page 707, two clocks c l 
and c2 are defined for the input arguments and the output results of the operator, respectively. Furthermore, 
for every equation or assignment statement of clocks, e.g., cl=c2 or cl : = c2, two clocks are defined as 
well. In all these cases, the following if-then-else equation (or statement) is implicitly introduced: 

if solverExplicitlyDefined(cl) and solverExplicitlyDefined(c2) then 
// o.k. (no action) 

elseif not solverExplicitlyDefined(cl) and not solverExplicitlyDefined(c2) 
then 

assert(cl.solverMethod == c2.solverMethod); 

elseif solverExplicitlyDefined(cl) <> solverExplicitlyDefined(c2) then 
cl.solverMethod = c2.solverMethod 

end if; 
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This introduced set of potentially underdetermined or overdetermined constraints has to be solved. If 
no solution exists or if a solution is contradictory on some clocks that are associated with clocked 
discrete-time partitions, then this is ignored, since no solverMethod is needed for such partitions. For 
example: 

model InferenoeTest "Specific clocks set on all partitions. 
Decouple constraint" 

equation 
// Physical model 
der(xl) = -100*xl + hold(z2); 

// Controller submodels 
der(zl) = -100*zl + sample(x2, 
Clock(Clock(1,100), solverMethod="ImplicitEuler") ); 

w = 0.9*previous(w) + superSample(z1, 3); 
when Clock(Clock(1,20), solverMethod="ExplicitEuler") then 

ww = superSample(w); 
end when 
der ( z2 ) = -z2 + ww; 

end InferenceTest; 

13.6.16 Semantics of Subpartition Clock Synchronization 

The execution of subpartitions requires exact time management for proper synchronization. The 
implication is that testing a Real valued time variable to determine sampling instants is not possible. One 
possible method is to use counters to handle sub-sampling scheduling. 

Clock_i_j_ticks = if pre(Clock_i_j_ticks) < subSamplingFactor_i_j then 1+pre 
(Clock_i_j_ticks) else 1; 

and to test the counter to determine when the sub-clock is ticking: 

Clock_i_j_activated = BaseClock_i_activated and Clock_i_j_ticks >= subSampl 
ingFactor_i_j; 

The Clock i j activated flag is used as the guard for the sub-partition equations. 
Consider the following example: 

model ClockTicks 
Integer second = sampled, Clock(l)); 
Integer seconds(start=-l) = mod(previous(seconds) + second, 60); 
Integer milliseconds(start=-l)= 

mod(previous(milliseconds) + superSample(second, 1000), 1000); 
Integer minutes(start=-l)= 

mod(previous(minutes) + subSample(second, 60), 60); 
end ClockTicks; 
A possible implementation model is shown below using the Modelica 3.2 language. The base-clock is 

determined to 0.001 seconds and the subsampling factors to 1000 and 60000. 

model ClockTicksWithModelica32 
Integer second; 
Integer seconds(start = -1); 
Integer milliseconds(start = -1); 
Integer minutes(start = -1); 

Boolean BaseClock_l_activated; 
Integer Clock_l_l_ticks(start=59999); 
Integer Clock_l_2_ticks(start=0); 
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Integer Clock_l_3_ticks(start=999); 
Boolean Clock_l_l_activated; 
Boolean Clock_l_2_activated; 
Boolean Clock_l_3_activated; 

equation 
// Prepare clock tick 
BaseClock_l_activated = sample(0, 0.001); 
when BaseClock_l_activated then 

Clock_l_l_ticks = if pre(Clock_l_l_ticks) < 60000 then 1+pre(Clock_l_l_t 
icks) else 1; 

Clock_l_2_ticks = if pre (Clock_l_2_ticks) < 1 then 1+pre(Clock_l_2_ticks 
) else 1; 

Clock_l_3_ticks = if pre (Clock_l_3_ticks) < 1000 then 1+pre (Clock_l_3_ti 
cks) else 1; 
end when; 
Clock_l_l_activated = BaseClock_l_activated and Clock_l_l_ticks >= 60000; 
Clock_l_2_activated = BaseClock_l_activated and Clock_l_2_ticks >= 1; 
Clock_l_3_activated = BaseClock_l_activated and Clock_l_3_ticks >= 1000; 

// 

// Sub partition execution 
when {Clock_l_3_activated} then 

second = 1; 
end when; 
when {Clock_l_l_activated} then 
minutes = mod(pre(minutes)+second, 60); 

end when; 
when {Clock_l_2_activated} then 
milliseconds = mod(pre(milliseconds)+second, 1000); 

end when; 
when {Clock_l_3_activated} then 

seconds = mod(pre(seconds)+second, 60); 
end when; 

end ClockTicksWithModelica32; 

13.6.17 Clocked versus Unclocked Modeling 

The clocked language constructs are especially motivated by their applications in periodically sampled 
control systems. However, such control systems can also be modeled with standard unclocked when-
equations (Section 8.3.5, page 357), and the unclocked sample operator (Section 13.2.5.4, page 602). For 
example: 

when sample(0,3) then 
xd = A*pre(xd) + B*y; 
u = C*pre(xd) + D*y; 

end when; 
Examples of both unclocked and clocked sampled system models are given in Section 13.3.1, page 

625. Remember that equations inside an unclocked when-clause with a Boolean condition have the 
following properties: 

• Variables on the left hand side of the equal sign in equations or : = in assignments are assigned a 
value when the when-condition becomes true and otherwise hold their value. 

• Variables not assigned in the when-clause are directly accessed, i.e., automatic sample semantics. 
• Variables assigned to or solved for in the when-clause can be directly accessed outside of the 

when-clause, automatic hold semantics. 



728 Principles of Object-Oriented Modeling and Simulation with Modelica 3 .3 

Modeling with unclocked discrete-time constructs like unclocked when-clauses has some advantages: 

• There are few unclocked discrete-time language constructs to leam and understand, whereas there 
are many constructs needed for clocked modeling. 

• The sampling condition has to be propagated explicitly which might be tedious and some models 
clumsy but on the other hand makes the dependencies within the model more explicit and thus 
probably easier to follow and understand. 

• There is no clock inference that can depend on low-level information distributed over different 
parts of the model. Depending on the tool, the clock inference can give cryptic and hard-to-
understand error messages when it fails because of some problem in the model. 

• The constraint that all equations need to be grouped into partitions with the same clock, where 
only equations with the same clock can be solved together, imposes some constraints in 
modeling. 

On the other hand, modeling with clocked language constructs have a number of clear advantages for 
modeling periodically sampled data systems, especially when digital clocks are present. The use of 
unclocked when-clauses to model such sampled systems has the following drawbacks that are not present 
using clocks and clocked equations: 

• It is not possible for the Modelica tool to automatically detect sampling errors in unclocked 
models due to the automatic sample and hold semantics of unclocked when-clauses. Examples: 

(a) If when-clauses in different blocks should belong to the same controller part, but by accident 
different when-conditions are given, then this is accepted by the Modelica tool, that is, no 
error is detected. 

(b) If a sampled data library such as the Modelica_LinearSystems2 .Controller library 
is used, at every block the sampling of the block has to be defined as an integer multiple of 
a base sampling rate. If several blocks should belong to the same controller part, and 
different integer multiples are given, then the translator has to accept this, that is, no error 
is detected. 

• Due to the automatic sample and hold semantics, all unclocked discrete-time variables solved for 
or assigned in an unclocked when-clause must have an initial value because they might be used 
before they are assigned a value the first time. As a result, all these variables are "discrete-time 
states" although in reality only a small subset of them need an initial value. 

• Only a restricted form of equations can be used in an unclocked when-clause since the left hand 
side has to be a variable in order to identify the variables that are assigned in the unclocked when-
clause. This restriction is not present for clocked equations. 

• All equations belonging to an unclocked discrete controller must be within a single unclocked 
when-clause. If the controller is built-up of several building blocks then the clock condition (the 
sampling) must be explicitly propagated to all blocks. This is sometimes tedious and somewhat 
error prone. With clocked equations, the clock condition needs to be defined only at one place and 
is automatically propagated to other places by clock inference. 

• It is not possible to use a continuous-time model in unclocked when-clauses. For example, this 
would be desirable in applications where some advanced controllers use an inverse model of a 
plant in the feedforward path of the controller, see Section 13.9, page 742. When using the 
unclocked part of Modelica, a nonlinear plant model in a controller would require to export the 
continuous-time model with an embedded integration method and then import it in an environment 
where the rest of the controller is defined. With clocked equations, clocked controllers with 
continuous-time models can be directly defined in Modelica. 

• At a sample event instant an event iteration occurs as for any other event. A clocked partition, as 
well as a clocked when-clause with a sample(...) call is evaluated exactly once at such an event 
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instant. However, the continuous-time model to which the sampled data controller is connected 
will be evaluated several times when the overall system is simulated. 

When using unclocked when-clauses the continuous-time part is typically evaluated three times 
at each sample instant. Once, when the sample instant is reached, once to evaluate the continuous 
equations at the sample instant, and once when an event iteration occurs since a discrete variable v 
is changed and pre(v) appears in the equations. 

With clocked equations no event iteration is triggered if a clocked variable v is changed and 
previous(v) appears in the equations because the event iteration cannot change the value of v. As 
a result, typically the simulation model is evaluated twice at each sample instant and therefore the 
simulation is more efficient with clocked equations. 

13.7 Clocked State Machines in Detail 

This section gives a more detailed description of clocked state machines including all the current Modelica 
language elements that can be used to define clocked state machines. 

Such state machines have the important feature that at each clock tick there is only a single assignment 
to every variable. For example, it is an error if state machines are executed in parallel and assign to the 
same variable at the same clock tick. Such errors are detected and prevented by the compiler during 
translation. 

Furthermore, it is possible to activate and deactivate clocked equations and models at a clock tick. An 
efficient implementation will only evaluate the equations and models that are active at the current clock 
tick, which is not available with unclocked Modelica language elements. 

Parallel state machines can be explicitly synchronized using the activeState function (Section 
13.7.2, page 729). The detailed semantics of the state machine constructs is defined in Section 13.7.4, page 
732. 

Since these state machines are based on clocked synchronous language constructs, an appropriate 
application is modeling safety critical control software, for example, for aircraft applications, since the 
models can be statically checked. 

13.7.1 State Machine States 

Any Modelica block instance without continuous-time equations or algorithms can potentially be a state of 
a state machine. All equations in such a state have to be clocked, where a continuous-time clock is not 
allowed. A state might contain clocked or clocked discretized continuous-time equations. In the latter case 
the equations are numerically solved between the previous and the next clock tick if the corresponding 
state is active. 

13.7.2 Transitions and State Operators 

A cluster of instances which are coupled by transition equations makes a state machine. All parts of a 
state machine must have the same clock. All transitions leaving one state must have different priorities. 
One and only one instance in each state machine must be marked as initial by appearing in an 
initialState equation. The following special kinds of connect-equations are used to define transitions 
between states and to define the initial state: 
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Equation Operators to define a state machine 

transition^rom, to, 
condition, immediate, reset, 
synchronize, priority) 

The arguments from and to are block instances and condi tion is a Boolean 
argument. The optional arguments immediate, reset, and synchronize 
are of type Boolean, have parameter variability and default values true, 
true, false respectively. The optional argument priori ty is of type 
Integer, has parameter variability, and a default value 1. 

The transition(...) operator defines a transition from instance from to 
instance to. The from and to instances become states of a state machine. The 
transition fires when condition = true if immediate = true (this is called 
an "immediate transition", graphically shown with a mark close to the arrow) 
or previous(condition) when immediate^false (this is called a 
"delayed transition", graphically shown with a mark at the beginning of the 
arrow). The argument priority defines the priority of firing when several 
transitions could fire, priori ty= 1 is the highest priority. If reset=true, 
graphically shown as a filled transition arrow, the states of the target state are 
reinitialized, i.e., state machines are restarted in initial state and local state 
variables are reset to their start values. If synchronizer true, any transition 
is disabled until all state machines of the from-state have reached final states, 
i.e., states without outgoing transitions. For the precise details about firing a 
transition, see Section 13.7.4, page 732. 

initials tat e(state) 
The argument state is the block instance that is defined to be the initial state 
of a state machine. At the first clock tick of the state machine, this state 
becomes active. 

The transition and initialState equation operators may not be used inside if-equations with 
non-parametric conditions or in when-equations. 

It is possible to query the status of the state machine by using the following operators: 

activeState(s/ate) 
The argument state is a block instance. The operator returns true if this instance is a 
state of a state machine and this state is active at the actual clock tick. If it is not active, 
the operator returns false. It is an error if the instance is not a state of a state machine. 

ticks InS tat e() 
The operator returns the number of clock ticks since a transition was made to the 
currently active state. This function can only be used in transition conditions of state 
machines not present in states of higher level state machines. 

timelnStateQ 
The operator returns the time duration as Real in [s] since a transition was made to the 
currently active state. This function can only be used in transition conditions of state 
machines not present within states of higher level state machines. 

13.7.3 State Machine Graphic Representation 

The recommended layout of state machines is shown below for a simple state machine with five 
transitions. 
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Figure 13-122. A simple state machine with five transitions. 

For the five transitions in Figure 13-122 above, the settings are as follows, from left to right: 

immediate = true, false, true, false, true; 
reset = true, true, false, false, true; 
synchronize = false,false,false,false, true; 
priority =1,2,3,4,5. 
The recommended color is {95, 95, 95} for states and for transition text and {175,175,175} for 

transition lines. 
The annotation for the graphic representation of transition () has the following structure: 

annotation (Line (...), Text (...)) ; and for initialState ( ) : annotation (Line (...)) ; with 
Line and Text annotations defined in Section 11.4.5, page 532. For example: 

transition(state2, statel, x < 10, immediate=true, reset=true, 
synchronize=false, priority=l) 

annotation( 
Line ( 
points={{-40,-16},{-36,-4},{-32,8},{-40,26},{-40,32},{-4 6,50}}, 
color={175,175,175}, 
thickness=0.25, 
smooth=Smooth.Bezier), 

Text ( 
string="%condition", 
extent={{4,-4},{4,-10}}, 
fontSize=10, 
textStyle={TextStyle.Bold}, 
textColor={95, 95, 95}, 
horizontalAlignment=TextAlignment.Left), 

) ; 

The Text annotation representing the transition condition can use the notation %condition to refer to 
the condition expression. 

The extent of the Text is interpreted relative to either the first point of the Line, in the case of 
immediate=false, or the last point (immediate=true). 

In addition to the line defined by the points of the Line annotation, a perpendicular line is used to 
represent the transition. This line is closer to the first point if immediate=false otherwise closer to the 
last point. 

If the condition text is somewhat distant from the perpendicular line, a dimmed straight line joins the 
transition text and the perpendicular line. For example, see the rightmost transition above. 
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If reset=true, a filled arrow head is used otherwise an open arrow head. For synchronize=true, 
an inverse "fork" symbol is used in the beginning of the arrow. See the rightmost transition in Figure 
13-122 above. 

The value of the priority attribute is prefixing the condition text followed by a colon if 
priority>l. 

The initiaistate line has a filled arrow head and a bullet at the opposite end of the initial state as 
shown above. 

13.7.4 Precise State Machine Semantics 

For the purpose of defining the semantics of state machines precisely, assume that the data of all 
transitions are stored in an array of records: 

record Transition 
Integer from; 
Integer to; 
Boolean immediate = true; 
Boolean reset = true; 
Boolean synchronize = false; 
Integer priority = 1; 

end Transition; 
The transitions have been sorted with lowest priority number last in the array. The states are 

enumerated from 1 and up. The transition conditions are stored in a separate array c [ : ] since they are 
time varying. 

The semantics model is a discrete-time system with inputs {c [: ], active, reset} with t being an 
array corresponding to the inputs to the transition operator, outputs {activeState, activeReset, 
activeResetStates [ : ]} and states {nextState, nextReset, nextResetStates [ : ]}. State 
machines can be nested in a hierarchy, and can contain state machines called substate machines. 

For a top-level state machine, active is always true. For substate machines, active is true only when 
the parent state is active. For a top level state machine, reset is true at the first activation only. For a 
substate machine, reset is propagated down from the state machines higher up in the hierarchy. 

13.7.4.1 State Activation 

The state update starts from nextState, i.e., what has been determined to be the next state at the 
previous time. The variable selectedState takes into account if a reset of the state machine is to be 
done. 

output Integer selectedState = if reset then 1 else previous(nextState); 
The integer fired is calculated as the index of the transition to be fired by checking that selectedState 

is the from-state and the condition is true for an immediate transition or previous(condition) is true for a 
delayed transition. The max function returns the index of the transition with highest priority or 0. 

Integer fired = max(if (if t[i].from == selectedState then (if t[i].immediat 
e then c[i] else previous(c[i])) else false) then i else 0 

for i in 1:size (t,1)); 
The start value of c is false. This definition would require that the previous value is recorded for all 

transition conditions. Below is described an equivalent semantics which just require to record the value of 
one integer variable delayed. 

The integer immediate is calculated as the index of the immediate transition to potentially be fired by 
checking that selectedState is the from-state and the condition is true. The max function returns the 
index of the transition with true condition and highest priority or 0. 
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Integer immediate = max(if (if t[i].immediate and t[i].from == selectedStat 
e then c[i] else false) then i else 0 for i in 1:size (t,1)); 
In a similar way, the integer delayed is calculated as the index for a potentially delayed transition, 

i.e., a transition taking place at the next clock tick. In this case the from-state needs to be equal to 
nextState: 

Integer delayed = max(if (if not t[i].immediate and t[i].from == nextState 
then c[i] else false) then i else 0 for i in 1:size(t,1)); 

The transition to be fired is determined as follows, taking into account that a delayed transition might 
have higher priority than an immediate transition: 

Integer fired = max(previous(delayed), immediate); 
The variable nextState is set to the found transitions to-state: 
Integer nextState = if active then (if fired > 0 then t[fired].to else selec 
tedState) else previous(nextState); 
In order to define synchronized transitions, each state machine must determine which are the final states, 

that is, states without from-transitions and to determine if the state machine currently is in a final state: 

Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0 for 
j in lisize(t,l)) == 0 for i in 1 instates}; 

Boolean stateMachinelnFinalState = finalStates[activeState]; 
To enable a synchronize transition, all the stateMachinelnFinalState conditions of all state 

machines within the meta state must be true. An example is given below (Section 13.7.4.4, page 734) in 
the semantic example model. 

13.7.4.2 Reset Handling 

A state can be reset for two reasons: 

• The whole state machine has been reset from its context. In this case, all states must be reset, and 
the initial state becomes active. 

• A reset transition has been fired. Then, its target state is reset, but not other states. 

The first reset mechanism is handled by the activeResetStates and nextResetStates vectors. 
The state machine reset flag is propagated and maintained to each state individually: 

output Boolean activeResetStates[nStates]= {if reset then true else previous 
(nextResetStates[i]) for i in 1 instates}; 

until a state is eventually executed, then its corresponding reset condition is set to false: 

Boolean nextResetStates[nStates] = if active then {if activeState == i then 
false else activeResetStates[i] for i in 1 instates} 
The second reset mechanism is implemented with the selectedReset and nextReset variables. If 

no reset transition is fired, the nextReset is set to false for the next cycle. 

13.7.4.3 Activation handling 

The execution of a substate machine has to be suspended when its enclosing state is not active. This 
activation flag is given as a Boolean input active. When this flag is true, the substate machine 
maintains its previous state by guarding the equations of the state variables nextState, nextReset and 
nextResetStates. 
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13.7.4.4 State Machines Semantics Summary 

The entire semantics of the state machines constructs is given by the model below: 

model StateMachineSemantics "Semantics of state machines" 
parameter Integer nStates; 
parameter Transition t[:] "Array of transition data sorted in priority"; 
input Boolean c[size(t,l)] "Transition conditions sorted in priority"; 
Boolean active "true if the state machine is active"; 
Boolean reset "true when the state machine should be reset"; 

Integer selectedState = if reset then 1 else previous(nextState) ; 
Boolean selectedReset = if reset then true else previous(nextReset) ; 

// For strong (immediate) and weak (delayed) transitions 
Integer immediate = max(if (if t[i].immediate and t[i].from == 
selectedState then c[i] else false) then i else 0 for i in 1:size(t,1)); 

Integer delayed = max(if (if not t[i].immediate and t[i].from — nextState 
then c[i] else false) then i else 0 for i in 1:size(t,1)); 

Integer fired = max(previous(delayed), immediate); 
output Integer activeState = if reset then 1 elseif fired > 0 then 
t[fired].to else selectedState; 

output Boolean activeReset = if reset then true elseif fired > 0 then 
t[fired].reset else selectedReset; 

// Update states 
Integer nextState = if active then activeState else previous(nextState); 
Boolean nextReset = if active then false else previous(nextReset); 

// Delayed resetting of individual states 
output Boolean activeResetStates[nStates] = {if reset then true else 
previous(nextResetStates[i]) for i in 1:nStates}; 

Boolean nextResetStates[nStates] = if active then {if selectedState == i 
then false else activeResetStates[i] for i in 1:nStates} 
else previous(nextResetStates); 

Boolean finalStates[nStates] = {max(if t[j].from == i then 1 else 0 
for j in 1:size(t,1)) == 0 for i in 1:nStates}; 

Boolean stateMachinelnFinalState = finalStates[activeState]; 
end StateMachineSemantics; 

13.7.4.5 Merging Variable Definitions 

When a state class uses an outer output declaration, the equations have access to the corresponding 
variable declared inner. Special rules are then needed to maintain the single assignment rule since 
multiple definition of such outer variables in different mutually exclusive states needs to be merged. 

In each state, the outer output variables are solved for, and for each such variable a single definition is 
formed: 

v := if activeState (stated then exprei 
elseif activeState(state2) then expre2 (13-23) 
elseif ... 
else last(v) 

The operator last () is special internal semantic operator which just returns its input. It is used to 
mark for the sorting (Section 17.1.7, page 989) that the incidence/occurrence of its argument should be 
ignored. A start value must be given to the variable if not assigned in the initial state. 

A new assignment equation is formed which might be merged on higher levels in nested state 
machines. 
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13.7.4.6 Merging Connections from Multiple Outputs to an Input 

Since instances of blocks can be used as states of a state machine it is natural to extend the connection 
semantics of Modelica to allow several outputs to be connected to one input. 

It is possible to connect several outputs to an input if all the outputs comes from states of the same state 
machine. In such cases, we get the following constraint equations: 

ui = U2= ... = y i - y i ~ ... (13-24) 

with ui inputs and y* outputs. The semantics is defined as follows. Introduce a variable v representing the 
signal flow and rewrite the equation above as a set of equations for ui and a set of assignment equations for 

v := if activeState(stated then yx else last(v); 
v := if activeState(state2) then y2 else last(v); 

ux = v 
u2 = v 

(13-25) 

The merge of the variable definitions of v is then made according to Section 13.7.4.5, page 734. The result 
is as follows after simplification: 

v := if activeState(stated then yi elseif activeState(state2) 
then y2 elseif ... else last (v) 
U l - v (13-26) 
u2 = V 

13.7.5 Example of an Hierarchical State Machine 

Consider the hierarchical state machine model in Figure 13-123. The hierarchical state machine model 
demonstrates the following properties: 

• The state state 1 is a meta state with two parallel state machines inside it. 
• The state stateA declares v as an outer output variable. The state statel is at an intermediate 

level and declares v as inner outer output, that is, matches the lower level outer v by being 
inner and also matches the higher level inner v by being outer. The top level declares v as 
inner and gives the start value. 

• The variable count is defined with a start value in statel. It is reset when a reset transition 
(v>=20) is made to statel. 

• The state statex declares the local variable w to be equal to v declared as inner input. 
• The state stateY declares a local counter j. It is reset at start and as a consequence of the reset 

transition (v>=2 0) to statel as follows: When the reset transition (v>=20) fires, then the 
variables of the active states are reset immediately, i.e., count from statel, and i from stateX. 
The variables of other states are only reset at the time instants when the states become active. Thus 
j in StateY is reset to 0, when the transition statex.i>20 fires (after statel became active 
again, that is, after the reset transition v>=20). 

• Synchronizing the exit from the two parallel state machines of statel is done by checking that 
stateD and stateY are active using the activeState function (Section 13.7.2, page 729). 
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Figure 13-123. An hierarchical state machine model. 

The Modelica code (without annotations) is. 

block HierarchicalAndParallelStateMachinel 

inner Integer v(start=0); 

Statel statel; 
State2 state2; 

equation 
initialState(statel); 
transition(statel,state2,activeState(statel.stateD) and 
activeState(statel.stateY), immediate=false); 

transition(state2,statel,v >= 20, immediate=false); 

public 
block Statel 

inner Integer count(start=0); 
inner outer output Integer v; 

block StateA-
outer output Integer v; 
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equation 
v = previous(v) + 2; 

end StateA; 
StateA stateA; 

block StateB 
outer output Integer v; 

equation 
v = previous(v) - 1; 

end StateB; 
StateB stateB; 

block StateC 
outer output Integer count; 

equation 
count = previous(count) + 1; 

end StateC; 
StateC stateC; 

block StateD 
end StateD; 
StateD stateD; 

equation 
initialState(stateA) ; 
transition(stateA, stateB, v >= 6, immediate=false); 
transition(stateB, stateC, v == 0, immediate=false); 
transition(stateC, stateA, true, immediate=false, priority=2); 
transition(stateC, stateD, count >= 2, immediate=false); 

public 
block StateX 

outer input Integer v; 
Integer i(start=0); 
Integer w; // = v; 

equation 
i = previous(i) + 1; 
w = v; 

end StateX; 
StateX stateX; 

block StateY 
Integer j(start=0); 

equation 
j = previous(j) + 1; 

end StateY; 
StateY stateY; 

equation 
initialState(stateX); 
transition(stateX, stateY, stateX.i > 20, immediate=false, reset=false); 

end Statel; 

block State2 
outer output Integer v; 

equation 
v = previous(v) + 5; 

end State2; 
end HierarchicalAndParallelStateMachinel; 
The behavior of the hierarchical state machine can be seen in the plots of v in Figure 13-124. 
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Figure 13-124. Plot of hierarchical state machine behavior. 

The transition from statel to state2 could have been done with a synchronize transition with 
condition=true instead. The semantically equivalent model is shown below: 

block HierarchicalAndParallelStateMachine2 
extends StateMachineSemantics( 

nStates=2, 
t={Transition(from=l, to=2, immediate=false, synchronize=true), 

Transition(from=2, to=l, immediate=false)}, 
c={true, v >= 20}); 

Boolean init(start=true) = sample(false); 

block Statel 
Boolean active; 
Boolean reset; 

outer input Integer v_previous; 
inner output Integer v; 

inner Integer count(start=0); 
inner Integer count_previous = if reset then 0 else previous(count); 

block StateMachineOf_stateA 
extends StateMachineSemantics( 

nStates=4, 
t={Transition(from=l, to=2, immediate=false), 

Transition(from=2, to=3, immediate=false), 
Transition(from=3, to=l, immediate=false), 
Transition(from=3, to=4, immediate=false)}, 

c={v >= 6, v==0, true, count >= 2}); 

outer input Integer v_previous; 
outer output Integer v; 

outer input Integer count_previous; 
outer output Integer count; 

equation 
inFinalState = true; // no macro states 
if activeState == 1 then 

// equations for stateA 
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v = v_previous + 2; 
count = count_previous; 

elseif activeState == 2 then 
// equations for stateB 
v = v_prev.ious - 1; 
count = count_previous; 

elseif activeState == 3 then 
// equations for stateC 
v = v_previous; 
count = count_previous + 1; 

else // if activeState == 4 then 
// equations for stateD 
v = v_previous; 
count = count_previous; 

end if; 
end StateMachineOf_stateA; 

StateMachineOf_stateA stateMachineOf_stateA(active=active, reset=reset); 

block StateMachineOf_stateX 
extends StateMachineSemantics( 

nStates=2, 
t={Transition(from=l/ to-2, immediate=false, reset=false)}, 
c={i>25}); 

outer input Integer v; 
Integer i(start=0); 
Integer i_previous; 
Integer j(start=0); 
Integer j_previous; 
Integer w; 

equation 
inFinalState = true; // no macro states 
if activeState == 1 then 

// equations for stateX 
i_previous = if activeReset or activeResetStates[1] then 0 

else previous(i); 
j_previous = previous(j); 
i = i_previous + 1; 
w = v; 
j = j_previous; 

else // if activeState == 2 then 
// equations for stateY 
i_previous = previous(i); 
j_previous = if activeReset or activeResetStates[2] then 0 

else previous(j); 
i = i_previous; 
w = previous(w); 
j = j_previous + 1; 

end if; 
end StateMachineOf_stateX; 

StateMachineOf_stateX stateMachineOf_stateX(active=active/ reset=reset); 

Boolean inFinalState = stateMachineOf_stateA.stateMachinelnFinalState 
and stateMachineOf_stateX.stateMachinelnFinalState; 

end Statel; 

Statel statel; 
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Integer v(start=0); 
inner Integer v_previous = if reset then 0 else previous(v); 

equation 
active = true; 
reset = previous(init); 

if activeState == 1 then 
// equations for statel 
inFinalState = statel.inFinalState; 
statel.active = true; 
statel.reset = activeReset or activeResetStates[1]; 
v = statel.v; 

else // if activeState == 2 then 
// equations for state2 
inFinalState = true; // not macro state 
statel.active = false; 
statel.reset = false; 
v = previous(v) + 5; 

end if; 

end HierarchicalAndParallelStateMachine2; 

13.7.6 Comparison to other State Machine Approaches 

The Modelica state machine constructs have a similar modeling power as Statecharts (Harel 1987). The 
design is inspired by mode automata and is basically the one from Lucid Synchrone 3.0 (Pouzet 2006), 
(Pouzet 2013). The following properties are different compared to Lucid Synchrone 3.0: 

• Lucid Synchrone has two kinds of transitions: "strong" and "weak" transitions. Strong transitions 
are executed before the actions of a state are evaluated and weak transitions are executed after the 
actions of a state are evaluated. This can lead to surprising behavior, because the actions of a state 
are skipped if it is activated by a weak transition and exited by a true strong transition. 

For this reason the Modelica state machines use immediate (the same as "strong") and 
delayed transitions. Delayed transitions are immediate transitions where the condition is 
automatically delayed with an implicit previous(...). 

• Parallel state machines can be explicitly synchronized using the activeState function (Section 
13.7.2, page 729), similarly to parallel branches in Sequential Function Charts. This often 
occurring operation can also be defined in Statecharts or in Lucid Synchrone state machines but 
only indirectly with appropriate conditions on transitions. 

In comparison to Statecharts, the Modelica state machines have the following similarities and 
differences: 

For interlevel transitions, there will still be an issue: entry/exit actions for states at different hierarchies 
has to be executed in a specific order. This will need algorithmic code in contrast to equations. 

• Hierarchical decomposition of states, i.e., state machines within states, is present in both. 
• State entry/exit actions are present in Statecharts but not yet in Modelica state machines. They may 

be introduced in a future version. However, for inter-level transitions there will be a need for 
entry/exit actions for states at different hierarchies to be executed in a specific order, to be 
specified by algorithmic code or some other mechanism. 

• Decision/Junction/Fork/Join/History pseudo states in Statecharts are partly supported. In Modelica 
state machines history is kept as long as the reset operation is not used. There is a Join 
functionality called synchronize with two parallel state machines joining before leaving a 
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substate. They both have to go to a final state before leaving, see the example in Section 13.7.5, 
page 735. Fork can be done if you encapsulate two initial states in a substate. Regarding 
Decision/Junction, these might be added in a future version after more analysis of consequences, 
e.g., in relation to compound transitions. 

• Compound transitions, that is, groups of simple transitions that involve decision or junction pseudo 
states, and so on. This might be added a future version after more analysis. For example, what 
happens when continuous states are introduced? If there is an event iteration, is it possible that the 
state machine switches to a substate within the same clock cycle? All issues with extension to 
continuous-time equations are not yet analyzed. 

• Inter-level transitions, that is, transitions that cross states hierarchy borders. This is not present in 
Modelica state machines since it would make the semantics more complex and hard to check. It is 
not present in Lucid Synchrone either. This is a powerful feature that is useful for certain kinds of 
modeling, but prevents compositionality of state machine models, that is, composing state 
machines, and so on. Thus, a trade-off between expressiveness and compositionality. 

Regarding Statecharts, a list of general issues and challenges as well as a summary of the then existing 
Statechart variants is presented in (Beeck 1994). In (Crane and Dingel 2005), it is pointed out that different 
UML Statechart variants are usually not compatible even though their graphical syntax is the same, and 
that execution semantics of the different variants strongly depends on implementation decisions. 

Several issues with UML State Machines semantics are discussed and resolved in (Schamai, Pohlmann, 
Fritzson, Paredis, Helle, Strobel 2010; Schamai, Fritzson, Paredis 2013; Schamai 2013), which also 
contains a rather complete translation of UML State Machines to algorithmic Modelica. This is 
implemented in the ModelicaML (Section 18.3.3, page 1022) extension to Modelica, allowing unified 
UML-Modelica modeling. 

An important objective with the current design of Modelica clocked state machines is to provide 
standardized syntax and semantics to support model portability. 

13.8 Summary 

This chapter presented the important concepts of discrete events, hybrid continuous-discrete modeling, and 
modeling of concurrent systems. We started by discussing real-time systems and defining the notion of 
event based on conditional equation semantics as well as clock ticks. Then we again described the 
difference between discrete-time and continuous-time variables, and made an in-depth presentation of the 
synchronous data flow principle for Modelica. 

We showed how events are created internally or externally to Modelica followed by presentations of a 
number of event-related built-in functions and operators. The notion of discrete-time was presented, both 
unclocked and clocked discrete-time. We explained how to handle events, for example, using if-equations 
or when-equations, and described when to use event priority, event synchronization and propagation, and 
how to handle multiple events at the same point in time. 

A number of formalisms and model examples for discrete systems were presented, together with their 
Modelica representations. These included sampled systems—both periodic and aperiodic, finite state 
automata, cellular automata modeling the game of life, models for stochastic processes applied to a server 
with a queue, the discrete event systems specification formalism (DEVS) expressed in Modelica and 
applied to a job shop model, as well as Petri nets expressed in Modelica and modeling a job shop system. 
Many of the models were shown in both unclocked and clocked versions. 

We described hybrid system modeling and simulation together with two examples: a hybrid tank model 
with a discrete controller and a mode switching model comprising a DC motor transmission with elastic 
backlash. Concurrent access to shared resources was exemplified by the dining philosophers problem. 
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Finally we made a detailed presentation of the clocked synchronous language features, followed by a 
presentation of clocked synchronous Modelica state machines. 

13.9 Literature 

Synchronous data flow languages and the corresponding synchronous data flow principle are described in 
(Halbwachs 1993). A short overview of a number of discrete and hybrid formalisms and their relation to 
the object-oriented modeling language Omola can be found in (Andersson 1994). 

Petri nets are described in (Peterson 1981), the first Modelica library representing Petri Nets is 
presentented in (Mosterman, Otter, and Elmqvist 1998). The currently most comprehensive and general 
Modelica Petri Net library, called PNLib, is described in (ProB and Bachmann 2012). 

The first DEVS representation in Modelica is presented briefly in (Bunus and Fritzson 2000), 
traditional DEVS in (Zeigler 1984; Zeigler 1990), whereas hybrid Modeling in Modelica based on the 
synchronous data flow principle is described in (Otter, Elmqvist, and Mattsson, 1999). 

Stephen Wolfram presents cellular automata and their use as a general representation (Wolfram 2002). 
The method of inline integration, that is, inline expansion of numeric solver difference equations, is 

described in (Elmqvist, Otter, and Cellier, 1995). A later usage of inline integration is for improved 
parallel multi-core numeric solution of equations (Lundvall, Stav&ker, Fritzson, and Kessler 2008). 

Synchronous state charts can be translated to equation-based Modelica (Ferreira and de Oliveira 1999), 
and asynchronous state charts to algorithmic Modelica (Pereira-Remelhe 2002), (Schamai, Pohlmann, 
Fritzson, Paredis, Helle, Strobel 2010), (Schamai, Fritzson, and Paredis 2013), and (Schamai 2013). 

Section 13.7.6, page 740, gives a comparison including literature references between the Modelica 3.3 
state machines and other state machine approaches. 

As mentioned in Section 13.6.15, page 721, a continuous-time Modelica model can be utilized in a 
sampled data control system by solving the continuous-time equations with a defined integration method 
between clock ticks, e.g., to be used for inverting the nonlinear dynamic model of a plant (Looye, 
Thummel, Kurze, Otter, and Bals, 2005). 

The clocked synchronous Modelica approach described in Section 13.6 is based on the clock calculus 
and inference system proposed by (Colaco and Pouzet 2003) and implemented in Lucid Synchrone version 
2 and 3 (Pouzet 2006). However, the Modelica approach also uses multirate periodic clocks based on 
rational arithmetic introduced by (Forget, Boniol, Lesens, and Pagetti 2008), as an extension of the Lucid 
Synchrone semantics. These approaches belong to the class of synchronous languages (Benveniste, Caspi, 
Edwards, Halbwachs, Guemic, and Simone 2003). 

Almost all the text in Section 13.6 about clocked synchronous modeling is from Chapter 16 in 
MLS2013—the Modelica Language Specification 2013 (Modelica Association 2013), and almost all text 
in Section 13.7 is from Chapter 17 in MLS2013. The version in this book has been slightly rearranged and 
improved for readability, including adding more examples. 

The Modelica language elements for describing clocked synchronous behavior, described in Chapter 16 
of MLS2013, was mainly developed by Hilding Elmqvist, Martin Otter, and Sven Erik Mattsson. Hilding 
Elmqvist wrote a detailed tutorial abouit this design. Sven Erik Mattsson developed a test implementation 
of the language elements and the needed new algorithms. Based on the prototype, tests and feedback have 
mainly been provided by Martin Otter and Bernhard Thiele. Additional feedback on the clocked 
synchronous language design was given by Albert Beneviste and Marc Pouzet. 

The language elements to define clocked synchronous state machines, described in Chapter 17 of 
MLS2013, were mainly developed by Hilding Elmqvist with contributions from Francois Dupont, Sven 
Erik Mattsson and Fabien Gaucher. Hilding Elmqvist wrote a tutorial on the design. Sven Erik Mattsson 
and Carl-Fredrik Abelson developed a test implementation. Based on the prototype, tests and feedback 
have mainly been provided by Alain Thura, Emmanuel Ledinot, Claire Campan, and Martin 
Malmheden. 
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13.10 Exercises 

Exercise 13-1: 

a) What is the single assignment principle in Modelica? 
b) What are over-constrained and nondeterministic systems? 

Exercise 13-2: 

Write a model that emits a signal that increases by 2 every 3 ticks using the unclocked sample function. 
Rewrite this model using clock-based constructs. 

Exercise 13-3: 

Explain the functionality of pre () and previous ( ) , including their similarities and differences. 

Exercise 13-4: 

We want to design a model which during the first 20 seconds emits a signal, stops for 20 seconds, and then 
continues to emit the signal. 

• Is the model below correct? 
• If not, what should be changed? 

model MultipleEvents 
discrete Integer x(start=l); 
Boolean signal(start=false); 

equation 
when time =<2 0 then 

signal = true; 
end when; 
when time > 20 then 

signal = false ; 
end when; 
when time > 40 then 

signal = truer-
end when; 

end MultipleEvents; 

Exercise 13-5: 

Write a model that emits a signal s with Boolean value true from time t= 20 to t = 80 but only if the 
value of y is above a certain level, otherwise it emits s=false. 

Exercise 13-6: 

• What are hybrid systems? 
• Give an example of such a system. 
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Chapter 14 

Basic Laws of Nature 

When modeling a system, it is essential to use the appropriate laws of nature that govern the behavior of 
the different parts of the system. These laws are often expressed as equations that can be stated in 
Modelica classes. However, even if application models usually are built by combining model components 
from libraries of predefined classes and functions, it can be useful to expose the basic equations of each 
application domain to gain an increased understanding of the basic mechanisms behind the behavior. This 
is the purpose of this chapter. 

14.1 Energy Conservation 

The principle of conservation of energy is one of the most fundamental laws of nature. It can be 
formulated as follows: 

• The amount of energy in a closed system can neither be created nor destroyed. 

Here we talk about energy in the general sense, since matter is equivalent to energy according to Einstein's 
famous law: 

E = mc2 (14-D 

where E is the energy, m is the mass, and c is the speed of light. A consequence of the principle of 
conservation of energy (or similarly for charge, mass, etc.) for a closed system is the following: 

• When energy (or charge, mass, etc.) flows together at a certain point, without storage at that point, 
the sum of all flows into that point is zero. 

This is the background for the Modelica sum-to-zero rule for flow variables at connection points. In the 
electrical domain this corresponds to Kirchhoff s current law, and in the mechanical domain Newton's 
second law that the sum of all forces acting at a specific point is zero if there is no acceleration. 

Energy is always transported using some carrier, which in the case of electrical current is charged 
particles, and in the case of translational or rotational mechanical systems is linear or angular momentum 
respectively. Different domains will usually have different flow quantities, since they normally use 
different carriers. 

The concept of potential is a measure of the level of energy. The choice of a potential quantity for a 
particular domain must always be such that at connection points all potential variables of connected 
components are equal. This is essential for the equality rule regarding potential variables in Modelica, that 
the variable values are equal at a connection. 

745 
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Table 14-1 summarizes possible choices of energy carrier together with associated potential and flow 
quantities for a few common physical domains, as well as a selection of corresponding Modelica libraries. 

Table 14-1. Energy carriers with associated potential and flow quantities for a set of common physical 
domains. 

Domain Type Potential Flow Carrier Modelica Library 
Electrical Voltage Electric current Charge Electrical 
Translational ID Position Force Linear Mechanical.Translational 

momentum 
Rotational ID Angle Torque Angular Mechanical .Rotational 

momentum 
Mechanical 3D Position (3D) Force (3D) and Linear and Mechanical .MultiBody 

and Rotation Torque (3D) angular 
angle (3D) momentum 

Magnetic Magnetic Magnetic flux Magnetic flux -

potential rate 
Flow, Hydraulic Pressure Volume flow rate Volume OpenHydraulics, etc. 
Heat Temperature Heat flow rate Heat Thermal, etc. 
Chemical Chemical Particle flow rate Particles Fluid 

potential 

In the rest of this chapter, we will present a selection of the basic laws of nature for the above-
mentioned physical domains as well as for some additional domains. 

14.2 Analog Electrical Circuits 

Analog electrical circuits consist of passive components such as resistors, capacitors, inductors, 
transformers, and so on, as well as active components such as transistors and amplifiers. Here we give the 
basic equations governing some of the simpler components in electrical circuits. Several of these 
components were introduced already in Section 2.11, page 44. The corresponding Modelica library, called 
Modelica. Electrical .Analog, is presented in Section 16.6.1, page 929. 

The basic analog electrical quantities are the voltage quantity v(t) (V—volt) for potential and the flow 
rate quantity current i(t) (A—ampere). These are used in the basic equations of analog electrical systems 
as well as in interfaces in the form of connector classes. 

An ideal linear resistor is described by Ohm's law, where the constant R is the resistance (ohm) of the 
component: 

v(t) = Ri(t) (14-2) 

An ideal capacitor is defined by the equation below, where the voltage change is proportional to the 
current through the capacitor, and the constant C (F—farad) is its capacitance: 

m = C~v(t) (14-3) 
at 

or using the shorter notation v(t) for time derivative: 

i(i) = C v ( 0 (14-4) 

The voltage over an ideal inductor is proportional to the change in current i(t), with the constant L (henry): 

v(t) = L~i(t) (14-5) 
at 
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A nonlinear resistor can be described as follows: 

v(t) = hl(i(0) (14-6) 

i(t) = h2(v(t)) (14-7) 

The power dissipation (in some cases also including conversion to electromagnetic field energy) of an 
electrical component is defined by the product of the voltage drop over the component and the current 
through the component: 

P(t) = v(t)'i(0 (14-g) 

Kirchhoff s laws describe connected components in electrical circuits. The sum of the voltages (both 
positive and negative) around a loop is zero: 

X v t ( i , = 0 
k 

Kirchhoff s current law states that the sum of all currents (with sign) into a node is zero: 

2 > « = o 
k 

Both relationships are illustrated in Figure 14-1. 

(14-9) 

(14-10) 

Figure 14-1. Illustration of Kirchhoff s laws. The sum of the voltages (with sign) around a loop is zero, e.g. 
as for vu v2, v2, v4 in the circuit to the left. The sum of the currents (with sign) into a node in a circuit is zero, 
as illustrated by the currents i'i, i2, h, U, is in the circuit to the right. 

An ideal transformer is a component that transforms voltage and current in such a way that their 
product is constant, disregarding the fact that the products have opposite signs because we have defined 
the current always to be into the positive pin of each side, for the usual reasons of connectivity and 
consistency. If we instead would define the direction of the current *2 to be out of the transformer, both 
products would have the same sign. 

V, 'h =v,-I, (14-11) 
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Figure 14-2. An ideal transformer. 

The transformer is ideal since we assume that properties such as resistance, stray inductance, and so on 
are negligible, which is often the case for many practical purposes. The relationships between the voltages 
and the currents are given by the two equations below. The voltage v2 is decreased by a factor n, whereas 
the current ¿2 is increased a factor of n compared to vi and i\ respectively. The factor n is a real number 
(really a rational number) called the turns ratio, being the relation between the number of turns in the two 
coils of the transformer. 

_ 1 
v2"-'vi (14-12) 

The current directions shown in Figure 14-2 make a positive current if cause a positive current h, 
which is common in most textbook presentations of transformers. However, the corresponding Modelica 
library component idealTransformer shown in Section 16.6.1.4, page 933, has the opposite direction of 
the current ii since we have defined the current to be always into the positive pin of each side, for the usual 
reasons of connectivity and consistency. This causes a minus sign to appear in the equations involving ii 
in the Modelica class. 

A transformer with finite inductance is a more realistic model since the coils in a transformer typically 
behave as inductors: 

T d . . . d . 
dt dt (14.13) 

w d r d . 
V>=M-Jth+L>'7th 

Here L\, L2, and Mare the primary, secondary, and coupling inductances respectively. The corresponding 
Modelica model appears below: 

model Transformer "Transformer with inductance" 
extends Modelica.Electrical.Analog.Interfaces.TwoPort; 
parameter Slunits.Inductance Ll=l "Primary inductance"; 
parameter Slunits.Inductance L2=l "Secondary inductance"; 
parameter Slunits.Inductance M=1 "Coupling inductance"; 

equation 
vl = Ll*der(il) + M*der(i2); 
v2 = M*der(il) + L2*der(i2); 

end Transformer; // from Modelica.Electrical.Analog.Basic.Transformer 

The EMF {Electro Motoric Force) converter is one of the more interesting components in the electrical 
library since it is a transducer that converts electrical energy to mechanical rotational energy (Figure 14-3). 
This class is an idealized model of the most important properties of a voltage-to-rotation converter 
excluding resistance, inductance, and inertia. It is both electrical and mechanical, but is placed in the 
Electrical .Analog. Basic library. 
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Figure 14-3. EMF—Electro Motoric Force converter. 

The three most important equations of the EMF class are given below. The rotational speed o(t) is of 
course equal to the derivative of the rotation angle (pb(i). The voltage v(t) is proportional to the rotational 
speed co(t). The torque rb(t) is proportional to the current i(t) through the coil. The EMF class has two PIN 
type connectors that transmit voltage v(0 and current i(t), and a rotFlange b connector that transmits 
absolute angle (pb(t) and torque rb(t). 

The Modelica EMF class from the Electrical .Analog. Basic library is shown below. It is used, for 
example, in the DC motor application described in Section 15.1, page 794. 

model EMF "Electromotoric force (electric/mechanic transformer)" 
inport Modelica. Electrical .Analog. Interfaces; 
import Modelica.Mechanics.Rotational.Interfaces.Flange_b; 
parameter Real k(final unit="N.m/A")=1 "Transformation coefficient"; 
Slunits.Voltage v "Voltage drop between the two pins"; 
Slunits.Current i "Current flowing from positive to negative pin"; 
Slunits.AngularVelocity w "Angular velocity of flange_b"; 
Interfaces.PositivePin p; 
Interfaces.NegativePin n; 
Flange_b flange_b; 

equation 
v = p.v-n.v; 
0 = p.i+n.i; 
1 = p.i; 
w = der(flange_b.phi); 
k*w = v; 
flange_b.tau = -k*i; 

end EMF; // from Modelica.Electrical.Analog.Basic.EMF 

14.3 Mechanical Translational I D 

The dynamics of mechanical translational systems in one dimension are described by the equations 
covering this application domain. These equations are Newton's laws together with a few additional laws 
for specific translational components like springs, dampers, etc. The corresponding library is 
Modelica.Mechanical .Translational, described in Section 16.11.3, page 951. The basic concepts 
for this library together with a few important classes are presented in detail in Chapter 5, page 196. Note 
that the generalization to three dimensions, that is, the dynamics of mechanical systems consisting of 
multiple bodies moving in three dimensions, is discussed in Section 14.8, page 770. 

co(t) = <pb(t) 

v(t) = k-co(t) 

Tb(t) = -k-i(t) 

(14-14) 
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This domain uses the following basic quantities: force fit) (N—newton) as the flow rate quantity and 
position s{t) (m—meter) as the potential quantity. These two quantities are used both in a number of 
equations, as well as in interfaces defined by connector classes. 

The common quantities velocity v(t) (m/s—meter/second) and acceleration a(t) (m2/s—meter2/ 
second,) are defined as follows: 

v(t)=m 

*(0 = v(0 (14"15) 

Newton's second law applies— the sum of all forces on a rigid body is equal to the constant mass of 
the body multiplied with its acceleration: 

m a ( 0 = £ / / ( 0 (14-16) 
/ 

This law is used, for example, by the SlidingMass class in the Mechanics.Translational 
library, and can be reformulated as follows: 

^ ( m - v ( i ) ) = £ / , « ) (14-17) 

The term m • v(/) is often called the momentum or impulse of the rigid body. 
In an equilibrium situation when the body is at rest there is no acceleration, making it possible to 

simplify Newton's second law so that the sum of the forces is zero: 

£ / / ( 0 = 0 (14-18) 
/ 

The force fit) exerted by an ideal elastic spring is defined by the following equation: 

fQ) = c - m - s 0 ) <14-19> 

where c is the spring constant, s(t) is the spring length, usually expressed as the position of one of the 
spring flanges, and so is the length of the spring at rest when it exerts no force. This equation occurs in the 
Spring class described in Chapter 5, page 197, and belongs to the Mechanics .Translational library 
presented in Section 16.11.3, page 951. 

The friction force between a body and a surface on which the body is sliding in the general case can be 
expressed as a function h of the velocity: 

At) = W ) > f y (14"20> 
where v(/) is the relative velocity between the surfaces sliding against each other, and fN is the normal 
force to these surfaces. In machines the normal force is often constant and therefore known, for example, 
due to pre-tension of bearings or because the normal force fN is the controlled pressure force of a clutch 
or brake. The simple case of dry friction force between a body and a surface is described by the following 
version of the function h: 

i + M M ) </v(0 > o 
h(y(.t))= / o ( 0 */v(0 = 0 (14-21) 

1-/1(1 v I) //v(0<0 

Here the force fo(t) is the frictional force at rest, usually the negative of the sum of the other forces applied 
to the body given by Newton's second law, force equilibrium for a body which is not accelerating 
(v(/) = 0 ) . If v ( 0 * 0 , then h is computed as a function of v, and is often a constant. 
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Viscous friction occurs, for example, in dampers. See for example the model presented in 15.10.9.2, 
page 898, using SpringDamper. Viscous friction is described by the function h below, where the force is 
proportional to the speed of the body through the viscous medium: 

h(v(t)) = kv(t) (14-22) 

Power lost as heat through friction is expressed by the equation defining the power P(t): 

n 0 = / ( 0 v ( 0 (14-23) 

The power transmitted to/from a moving body is 

P(t) = f ( t ) • v ( 0 = m v(t) > v ( 0 (14-24) 

By integrating this expression we obtain the kinetic energy of a moving body: 

E(t) = ^mv(t)2 (14-25) 

14.4 Mechanical Rotational ID 

The mechanical rotational domain defines the dynamic rotational behavior of mechanical components that 
rotate along one axis of rotation. Examples are rotating shafts and wheels, torsion springs, gears, and so on. 
Such components occur in drive trains that are used to transport rotational energy from motors to loads, for 
example, in cars. The corresponding Modelica library is,Modelica .Mechanics .Rotational, described in 
Section 16.11.2, page 948, and certain key concepts and classes are explained in Chapter 5, page 196. 

This domain uses the following interface quantities: torque, r(t) (Nm—newtonmeter), as the flow 
quantity, and angular postion,<p(t) (radians), as the potential quantity. The quantity angular velocity, 
o)(t) (1/s—radians/second), is defined by the following equation: 

a)(t) = (p(t) (14-26) 

The rotational version of Newton's second law states that the sum of all torques exerted on a (rotating) 
rigid body equals the moment of inertia (J ) multiplied by the angular acceleration (b{t): 

J -d ) ( t ) = Y d T i ( t ) (14-27) 
i 

This law is used, for example, in the inertia class in the Rotational library and is depicted in Figure 
14-4. It can be reformulated as follows, where the term J o ( t ) is often called the angular momentum of 
the body: 

^ ( . / • " ( O ) = ] • > , « (14-28) 
dt 

In an equilibrium situation when the rotational mechanical system is at rest, that is, nonrotating, the 
sum of the torques is zero: 

2>'M = (14-29) 
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Figure 14-4. A rotating mechanical body with inertia. 

The equation for an elastic torsion spring is the rotational counterpart of the previously presented 
nclatmnol crM-inrr-translational spring 

r(t) = c-(<p(t)-<p0) (14-30) 

where c is the torsion spring constant. The applied torque r{t) is proportional to the difference between the 
current angle (p{t) and the equilibrium angle (pQ when no torque is applied. 

Figure 14-5 A mechanical gear, with gear ratio = r2lrx. 

An ideal mechanical gear transforms torque and rotational movement. The approximation that the gear 
is ideal means that the wheels have no inertia and that no elasticity, friction, damping, or backlash has 
been taken into account. See the idealGear class in the Mechanics .Rotational library, in which the 
direction of the torque flow quantity 12 is opposite to what is shown in Figure 14-4 due to flow direction 
into the flange. The following equations apply: 

(px - ratio • <p2 

1 (14-31) 

ratio 

Here the gear ratio = r2/r\ according to Figure 14-5 is the same as the relation between the circumferences 
of the gear wheels. By differentiating the first equation and multiplying with the second equation, we 
obtain: 

CO* = ratio • co? 
7", • CO, = T-y • CDj 

(14-32) 

14.5 Flow Systems and Hydraulics 

Flow systems consist of components containing a flowing substance such as fluid or gas, with typical 
applications in hydraulics and process industry. In this section we are treating only incompressible fluids 
for which the volume is not affected by the pressure. Gases are excluded since they are compressible, as 
well as compressible fluids which are more complicated to model mathematically. In the following we will 
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discuss volume flows. For incompressible fluids, mass flows can be obtained from volume flows by 
multiplying with the density p. 

The basic quantities are the pressure p{t) (N/m2) potential quantity and the volume flow rate quantity 
q(t) (m3/s). These are used in flow equations as well as in interfaces in the form of connector classes. 
Usually, the pressure difference between ports of a component is used rather than the absolute pressure. 
The pressure difference p(t): 

p(t) = M0-p2(.t) (1«3) 

between the two ports of a flow component such as a flow resistance, where p\ and pi are the input and 
output pressures, respectively. 

A flow resistance component with laminar (not turbulent) fluid flow of incompressible fluid through a 
thin tube with friction against the walls is depicted in Figure 14-6. 

q q 

Pi P =PrP2 Pi 

Figure 14-6. Linear flow resistance component with laminar flow. The flow rate is denoted by q, the 
pressure difference by p, the input and output pressures by px and p2 respectively. 

The relation between pressure and flow rate for a flow resistance with laminar flow is approximately 
given by d'Arcy's law: 

p(t) = Rrq(t) (14-34) 

Here Rf (s.Pa/m3—second'pascal/meter3) is called the flow resistance. In case of steady laminar flow, 
Hagen-Poiseuille's relation is valid for cylindrical pipes, for which i?/can be obtained as follows: 

R f = 1-^- ( 1 « 5 ) 
f t£> 

Here D is the diameter, L is the length of the pipe, whereas rj is the dynamic viscosity of the fluid. The 
laminar flow resistor equation is often formulated using flow conductance <2/=l//?/(m3/(s Pa) as in the 
class LamResNoStates: 

q(t) = Q r p ( t ) (14-36) 

For a tube that contains a sudden change in area, for example, an orifice as in Figure 14-7, the flow 
becomes turbulent, which happens when Reynolds number Re is greater than Recrit ~ 2300. For turbulent 
flow, the pressure difference is approximated by: 

p(t) = H-q(t)2^(q(t)) (14-37) 

where H is a constant. 

Pi — P i 

Figure 14-7. Nonlinear flow resistance from turbulent flow caused by a sudden change of the area of the 
tube, e.g. an orifice, a bend, or a valve. 

Consider flow through a tube of length / with a rather wide cross-section area A, as depicted in Figure 
14-8. In this case we make the approximation of no flow resistance against the walls of the tube. The 
pressure difference p(t) between the ends of the tube will create a force pit)-A that accelerates the liquid, 
which has a mass p I A, where p is the density. Newton's second law gives: 
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p(t)'A = p.l-A~v(t) (14-38) 

where v(t) is the velocity of the liquid, which corresponds to a fluid flow rate q(t) = v(t) •A (m /s). Thus we 
obtain: 

p(t) = Lf~tq(t) (14-39) 

where Lf = p-l/A. This relation is the flow counterpart of the electrical inductor equation. The constant Lf 
is called the inertance of the tube, with units (kg/m4). 

length I 
q 
P\ 

area A 

P - P\'P2 P2 

Figure 14-8. Frictionless flow rate q{t) through a tube of length / and cross-section area A, with pressure 
difference p(t). 

A tank is a component that stores fluid, being the flow domain counterpart of an electrical capacitor 
that is a storage place for charge. The volume of the liquid in the tank depicted in Figure 14-9 is h-A, with 
a gravity force ph-Ag acting on the mass of the fluid, giving a pressure p{t)= p h g at the bottom of the 
tank. Differentiating this equation, and using q(t) = h{t) -A, we obtain: 

(14-40) q(t) = Cf—p(t) 

where C/= A/pg (m4s2/kg) is the fluid capacitance of the tube. 
area/4 > 

level h 

Figure 14-9. A tank works as a fluid store, here with capacity h-A, analogous to an electrical capacitor 
which behaves as a charge store. 

There are laws analogous to Kirchhoff s laws in the electrical domain that describe the connection of flow 
components. The sum of the pressure changes (positive and negative) around a flow system loop is zero: 

! > * « = o (14-41) 

This is illustrated by the flow system example shown in Figure 14-10. 
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Figure 14-10. Pressure changes p\ to p-j over a series of connected flow subsystems. The sum of all pressure 
changes (with sign) around a complete loop is zero. 

Likewise, the sum of all flows (with signs) into a node is zero since matter is neither created nor destroyed: 

= 0 (14-42) 

Figure 14-11 shows five flows into the same junction. 

Figure 14-11. Fluid flows qx to q5 at the junction of several pipes. The sum of all flows (with sign) into one 
junction is zero. 

Analogous to the well-known electrical transformer, there are flow transformers that can transform a 
pair of pressure and flow rate quantities into another pair of pressure and flow rate quantities. An ideal 
flow transformer, e.g. as depicted in Figure 14-12 makes this transformation without loss of energy. 

P\ 
<7i -

area A j 

T" 
1 IN 

<72- • Pi 

area A2 

Figure 14-12. A flow transformer. 

An ideal flow transformer preserves the product of pressure and flow rate, and is described by the 
following equations: 

P\{t)ql{t) = p1{t)q2{t) 
P\(t)=a >P2{t) (14-43) 

where the quotient a defined below determines the relation between the pressures and flows before and 
after the transformer. 
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a = 4 l (14-44) 
A 

Transducers translate between pairs of quantities from different domains. A flow transducer such as a 
hydraulic pump depicted in Figure 14-13 translates between the mechanical quantities force and velocity 
to pressure and flow quantities, or vice versa: 

Mt) = A-Pl{t) (1445) 

vl(t) = A-q2(t) 

where A is the area of the piston. 

Figure 14-13. A hydraulic pump, a transducer between mechanical quantities and flow quantities. 

14.6 Thermal Systems 

Thermal systems involve the storage and transport of thermal energy, which is internal kinetic energy in 
the form of microscopic movements and oscillations of particles such as atoms and molecules in a 
material. For example, the heating or cooling of a house involves transport of thermal energy and are 
influenced by the conduction of heat through the walls, radiation from the radiators, and convection of air 
in the rooms of the house. The laws describing these phenomena usually involve the temperature quantity 
T{t) (K—kelvin) and the heat flow rate quantity q(t) (W—watt, or J/s—joule/second). Modelica libraries 
for thermal system components are mentioned in Chapter 16, page 909. 

The temperature T(t) of an object influences the amount of thermal energy Ej{t) stored in the object. 
The following equation describes the heat flow rate into or out of an object: 

q(t) = C —T(t) (14-46) 
dt 

where C = m c is the heat capacity of the object, c is the specific heat capacity of the material, and m is the 
mass of the object. Normally c is temperature dependent, but can be regarded as constant over limited 
temperature ranges for most materials. 

Equation (14-47) describes a heat capacitance and is the thermal counterpart of the equation that 
describes electric charge flow rate (current) into an electric capacitor. 

By integrating this equation we obtain an equation for the thermal energy Ej(t) in the object 

£>(>) = f (C—T(t))dt (14-47) 
J dt 

For the cases where C is approximately constant we obtain: 

ET{t)-C'T{t) (14-48) 
There are basically three ways of transporting thermal energy or heat: conduction, convection, and 

radiation. The mechanism behind heat conduction is diffusion, that is, heat transfer that is caused by the 
microscopic motion of individual particles such as molecules or atoms. Heat conduction does not imply 
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macroscopic motion of the particles themselves—rather the propagation of local motion (vibration) 
between microscopic particles which on the average (in solids) remain at the same place. 

Heat transfer can also take place on a macroscopic scale, by moving heated matter. This process is 
called convection. The third way of transporting heat is through thermal radiation, i.e., the emission and 
absorption of light. 

14.6.1 Conduction 

Within solid matter heat is transported by conduction, which is based on the microscopic process of 
diffusion. In the case of one-dimensional heat flow this process is described by the heat equation, which is 
a well-known partial differential equation giving the temperature T(x,t): 

a r ( 1 4 4 9 ) 

dt p c dx2 

where A is the heat conductivity of the material, c is the specific heat capacity, and p is the density. 
For a homogeneous block of solid material such as a rod, depicted in Figure 14-14, the solution to this 

equation can be used to obtain the stationary heat flow rate through the object, given a temperature 
difference T caused by the temperatures T\ and Ti at each end of the object: 

q { t ) = k A i m - T 2 ( t ) ) -W-T(t) (14-50) 
a 

where W = X A/d is the heat transfer coefficient (J/(K s)), A is the cross-section area, and d the distance 
between the ends of the rod. 

q -mm mmm q 

T = Tr T2 

Figure 14-14. Component with heat resistance/conduction, with temperature difference Tand heat flow rate 
q-
Analogous to KirchhofFs voltage law for electrical systems, the sum of all temperature differences 

(both positive and negative) around a complete path within a system is zero: 

= 0 (14-51) 

Since energy cannot be destroyed, the sum of all heat flows (with sign) into a node without energy 
storage is zero: 

£<7*(0 = 0 (14-52) 
k 

Both relationships are illustrated in Figure 14-15. 
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source 
temp. 

(b) 

Figure 14-15. The sum of the temperature differences (with sign) along a path around a system is zero, e.g. 
as for TuT2,T2, and T4 on the left. The sum of the heat flows (with sign) into the same node is zero, as 
illustrated by qu q2, q?,, q*, qs on the right. 

14.6.2 Convection 

Thermal convection is heat flow on the macroscopic scale based on the fact that heat stored in any moving 
piece of matter moves together with that object. This process describes transfer of heat as a result of 
macroscopic movements rather than microscopic movements, which was the case for thermal conduction. 

For example, consider a room in a house. If we heat the floor of the room, the air close to the floor will 
be heated up through conduction. Its density will be reduced because it is warmer; therefore it will rise to 
the ceiling and transfer part of its heat to the ceiling. Colder air will move down to the floor to replace the 
air that moved up. This is a typical convection phenomenon. For buildings in general, convection takes 
place between the air and the walls, floors and ceilings inside buildings as well as outside. Convection is 
described by the following equation: 

where T{t) = T\{t)-T2(t\ that is, the temperature difference between the two objects or surfaces, a is the 
convective heat transfer coefficient, and A is the area perpendicular to the heat flow where the heat flow 
takes place. 

14.6.3 Radiation 

The third way of transporting thermal energy is through radiation. The atoms and molecules of a material 
in solid, fluid, or gas form continuously emit and absorb radiation. For example, the walls of a house 
absorb some solar radiation, become heated up, and emit radiation. There is emission from radiators and 
continuous heat exchange between walls. The Stephan-Boltzmann Law governs the radiation, that is, 
energy flow, emitted from a surface with the temperature T(t): 

where a is the Stephan-Boltzmann constant, e is the emission coefficient of the surface, and A is the 
surface area. A dark surface has higher emission coefficient than a white one. The radiation exchange 
between a surface (1) of area ,4 and a fictitious ideal black body (2) with the same surface becomes: 

q(t) = a- A-T(t) (14-53) 

Qrad ( 0 — CT' €' A'T' 
A (14-54) 

Qrad (t) = cr£le2A-(Tl
A-T2) 

(14-55) 

For an ideal black body the emission coefficient e2 = 1. A fictitious black body is useful, for example, 
when modeling a room using the so-called two-star approximation: instead of explicitly modeling all 
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combinations of radiation interactions between a number of objects, e.g. all walls and other objects in a 
room, all radiating surfaces are connected to and interact with a fictitious massless black body. 

14.7 Thermodynamics 

Thermodynamics is a part of natural science in which the storage of energy, the transformation of energy 
between different forms, and the transfer of energy (and mass) between subsystems is studied. One of the 
primary energy forms dealt with in thermodynamics is thermal energy, also mentioned in the preceeding 
Section 14.6, page 756, about thermal systems. Mass flows are often part of thermodynamic models, 
involving model components such as those described in Section 14.5, page 752, regarding flow systems. 
The transformation and transfer of the following four main forms of energy is typically studied in 
thermodynamics: 

• Internal thermal energy, associated with temperature and due to microscopic random motion of 
constituent particles such as atoms and molecules. 

• Macroscopic kinetic energy, due to macroscopic motion of chunks of material. 
• Potential energy, for example, due to the position of a subsystem in a gravitational or 

electromagnetic field, or due to internal pressure in a subsystem, and so on. 
• Chemical energy, due to internal molecular and atomic bonds in the material. 

In thermodynamics we formulate equations that relate transformations and transfers of energy to 
certain material properties. These properties include temperature, pressure, or enthalpy which is a property 
specifying a combination of thermal energy and pressure-related potential energy of the material. The 
engineer's goal when studying thermodynamics is usually to design some large-scale system, anything 
from a refrigerator to a power plant. The materials in such large systems can be regarded as continuums 
where the individual motion of molecules and atoms is averaged into quantities such as temperature, 
pressure, etc. The continuum approximation used here is made in macroscopic thermodynamics, in 
contrast to statistical thermodynamics where the individual motion of molecules is important. 

14.7.1 Thermodynamic Systems and Control Volumes 

In thermodynamics we speak about thermodynamic systems, their surroundings, and control volumes 
embedded in systems, as depicted in an abstract way in Figure 5-52 below. 

Figure 14-16. A control volume allows transfer of energy and mass across its boundaries, whereas a closed 
system contains a definite quantity of matter and only allows energy transfer to and from its surroundings. 

We have the following definitions: 

Surroundings 

energy 
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• A thermodynamic system is a definite quantity of matter, usually contained within some closed 
boundary. An example is a cylinder containing a gas or fluid. A system can usually exchange 
energy and matter with its surroundings, and can be either open or closed. 

• An open system can exchange both energy and matter with its surroundings. 
• A closed system can only exchange energy with its surroundings. 
• An isolated system does not exchange energy or matter with its surroundings. 
• A system may contain subsystems. 

• The surroundings of a system is all matter (and radiation) external to the system. 

A control volume is a simple open system defined as follows: 
• A control volume is a volume in space consisting of a single phase or pseudo-phase (see below). 

The boundary can be physical or imaginary. 
• A control surface is the boundary surface that completely surrounds the control volume. 

Note that a system can contain several control volumes. When modeling a particular problem we must 
decide whether a control volume or an open/closed system is appropriate. If there is a mass flow across the 
boundary of a region consisting of a single phase, a control volume should be used, otherwise a system. 

14.7.1.1 Continuum Postulate and System Properties 

As mentioned briefly above, in engineering thermodynamics, also called macroscopic thermodynamics, 
we use the continuum postulate that the material is continuously distributed throughout the region, and as a 
consequence has uniform properties in this region. This allows us to characterize the material in a system 
or control volume by only a few measurable quantities such as temperature, pressure, volume, average 
position, velocity, and so on. 

The matter in a system or control volume can exist in several phases: solid, liquid, or gas. 

• A phase is a quantity of matter that has the same homogenous chemical composition throughout 
the region in question, that is, with spatially uniform intensive properties (see below). 

Sometimes we generalize phase to pseudo phase where properties are not completely uniform but are 
represented by averaged intensive properties for the purpose of simplified modeling. Regarding the 
properties of the matter, in thermodynamics we have two general classes of thermodynamic properties: 
intensive and extensive, as well as specific properties: 

• An intensive property does not depend on the mass of the system. Temperature, pressure, density, 
and velocity are examples of such quantities. Intensive properties cannot be summed when 
subsystems are brought together into single system. 

• An extensive property depends on the mass of the system. Volume, kinetic energy, and momentum 
are examples. Extensive properties are summed when several subsystems are brought together to a 
single system. 

• A specific property is obtained by dividing an extensive property by the mass, thus becoming 
independent of the mass of the system. 

For example, the specific volume v is obtained by dividing the volume Fby the mass: 

v = — (14-56) 
m 

Extensive properties (apart from the mass m) are usually denoted by uppercase letters, whereas 
lowercase letters are used for the corresponding specific properties. 
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14.7.2 Thermodynamic Equilibrium and Thermodynamic Processes 

The continuum postulate mentioned in the previous section allows us to characterize a system by a few 
property values. This assumption is dependent on thermodynamic equilibrium of a system: 

• Thermodynamic equilibrium of a system means that its thermodynamic properties such as 
temperature, pressure, etc. are uniform throughout the system. The properties may change with 
time as long as this uniformity or homogeneity is preserved. 

• A system being in nonequilibrium means that the system has a spatial nonuniformity of some of its 
properties, which also may change with time. For example, if the temperature is suddenly 
increased at the corner of a region, spontaneous redistribution is assumed to occur until all parts of 
the region are at the same temperature, which means that the system has returned to an equilibrium 
state. 

The system undergoes a thermodynamic process when it changes from one equilibrium state to another 
through a series of successive states: 

• A quasiequilibrium process occurs when the system is passing from state to state at most has 
infinitesimal deviations from equilibrium, that is, each successive state can be regarded as being in 
equilibrium. For example, expansion and compression of gases in an internal combustion engine 
can be approximated well by quasiequilibrium processes. 

• A nonequilibrium process occurs when the system goes from one equilibrium state to another 
through a series of nonequilibrium states. A typical example is combustion for which very fast 
changes occur nonuniformly at a reaction surface that propagates throughout the region. The 
uniformity assumption cannot be maintained at all times. 

The basic assumption behind a quasiequilibrium process is that the spontaneous redistribution of quantities 
such as temperature and pressure after a small change is much faster than the changes of quantity values 
caused by the process itself, which means that the uniformity approximation is still reasonably valid. 

The surroundings play no part in the notion of equilibrium. However, it is possible that the 
surroundings do work on the system, for example, via friction. Also in that case, to be a quasiequilibrium 
process it is only required that the properties of the system be uniform at any instant. A system that 
undergoes a quasiequilibrium process that returns to the same state is called a cycle: 

• A thermodynamic cycle is a process consisting of series of quasiequilibrium processes for which 
the system from an initial state after going through the cycle will return to the same state. 

A typical cycle is depicted in Figure 14-17. 

Figure 14-17. A thermodynamic cycle. 

It is common that a process cycle has a subprocess in which one of the thermodynamic quantities 
remains unchanged. Such a subprocess is labeled by the prefix iso: 

P 

3 

V 
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• An isothermal process is one in which the temperature is held constant. 
• In an isobaric process the pressure is held constant. 
• An isometric process is a constant-volume process. 

We will now take a look at the properties of so-called pure substances, that is, with homogenous 
composition. 

14.7.3 Compressible Pure Substances 

A pure substance is homogeneous, that is, has the same chemical composition throughout a region. It may 
exist in more than one phase: solid, liquid or gas, but all phases must have the same chemical composition. 
For example, water is a pure substance, that is, it has only one kind of molecule, but air is nonpure— a 
mixture of different kinds of gas molecules. Air is homogeneous in its gas phase but not necessarily in its 
liquid and solid phases. 

14.7.3.1 Ideal and Nonideal Gases 
When the vapor of a substance has relatively low density the interaction between the molecules is low 
enough to fulfill the conditions of an ideal gas, meaning that the well-known ideal gas law holds: 

P V - n-R T O4-57) 

where P is the pressure, V is the volume, n is the number of moles18 of the substance, T is the temperature 
and R is the universal gas constant, which has the same value 8.314 [kJ/(kmol.K)] for all gases. The ideal 
gas law can also be expressed as follows: 

P V = m • R T (14-58) 

where m is the mass of the system, and R is the gas constant for the particular gas: 

R = ] L (14-59) 
M 

Here Mis the molar mass, that is, the mass of a mole of the substance: 

M = — (14-60) 
n 

For example, for standard air the value of Mis 28.97 (kg/kmol), and R is 287 (J/kg). 
When the pressure is high enough, the assumptions behind the ideal gas law are not fulfilled since other 

kinds of interactions between the gas molecules come into play. For example, the van der Waals equation 
of state is intended to account for the volume occupied by the gas molecules and for the attractive forces 
between the molecules. This law is an example of a nonideal gas law. 

p =
 R ' T - J L (14-61) 

v-b v2 

where P is the pressure, R is the gas constant, v is the specific volume as defined by equation 
(14-56), and a and b are constants which are related to properties of the particular gas. There are other 
forms of gas laws that are more accurate, for example, for higher pressure. 

18 A mole of a substance is 6.0225 1023 entities, typically molecules, that make up the substance. 
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14.7.4 Work and Heat 

Work and heat are two forms of energy that can flow across a system boundary. A common and simple 
definition of work W, with energy units (Nm—newtonmeter) or (J—joule), is the following: 

W = F -l (14-62) 

where W is the work done by moving an object a distance / against a force F. In thermodynamics we use 
the convention that work done by a system on its surroundings is positive19, that is, energy is flowing from 
the system into the surroundings. For example, a system consisting of a cylinder containing a gag 
expanding against a piston is doing positive work, whereas negative work is the case if the piston is 
compressing the gas. 

14.7.4.1 Quasiequilibrium Work 
There are many kinds of work that can occur in different systems for different engineering situations. One 
example is the work done to move a boundary against a pressure force, e.g. as depicted in Figure 14-18 
below. We have quasiequilibrium work if the movement is slow enough compared to molecular 
movements so that the system is approximately at equilibrium at all times. 

Figure 14-18. A system consisting of a gas filled cylinder doing work on the surroundings by pushing up a 
piston. 

The infinitesimal work dW done by the system when the gas expands is the force P • A multiplied by 
the distance dl. 

dW = P - A-dl (14-63) 

where P is the pressure, A is the piston area, and dl is the distance moved by the piston. Since the 
infinitesimal change in volume is dV = A -dl, we get the total work by integrating P dV : 

=t P'dV ( I 4 - 6 4 ) 

Thus the work exerted by the system when expanding from volume V\ to volume V2 is the integral of 
the pressure as a function of volume. 

14.7.4.2 Nonequilibrium Work 
It must be emphasized that only the work done by a quasiequilibrium process can be computed by the 
integral in equation (14-64). In the nonequilibrium case the work must be obtained using other 
relations, e.g. conservation of energy, to be discussed in the next section. 

19 Note that this is opposite to the definition of positive flow for Modelica connector quantities of a component, where 
positive value of a connector flow variable is into the component. However, the internal quantities of a system component 
are usually defined independent of the connectors. 
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Figure 14-19. A thermodynamic example system with a control volume and a rotating shaft with an attached 
paddle wheel that performs nonequilibrium work on the system when the weight attached by the wire around 
the wheel causes the shaft to rotate. 

An example of a system with nonequilibrium work is a paddle wheel rotating in a control volume filled 
with a gas or fluid, as depicted in Figure 14-19. The homogeneity assumption is not fulfilled around the 
rotating paddle wheel, where there is turbulence and local variations in pressure and velocity of the 
substance. For the system depicted in Figure 14-19 the work done by the paddle wheel can be found from 
the distance the weight is lowered multiplied by the gravity force together with the principle of 
conservation of energy, where we neglect the rotational energy of the rotating shaft and paddle. 

14.7.5 First Law of Thermodynamics—Conservation of Energy 

One of the fundamental laws of nature is the law of conservation of energy. In the context of 
thermodynamics, when the effects of heat transfer and internal energy changes are included, this is called 
the first law of thermodynamics. This means that in a cycle the heat energy transfer AQ is equal to the 
work A W done for the system, that is, no change in total energy: 

] T A * F - ] r A 0 = O (14-65) 

In our example with the falling weight in Figure 14-19, a direct consequence of the first law is that the heat 
transfer to the gas or fluid in the control volume is exactly equal to the work done by the falling weight. 

14.7.5.1 Main Energy Forms 
In the beginning of Section 14.7.1 we briefly mentioned the most important forms of energy dealt with in 
thermodynamic system models. Of those, thermal energy and chemical energy are two forms of internal 
energy. We summarize the three main energy forms: 

• Internal energy, denoted U or specific internal energy u = U / m for a system with mass m (we 
include possible nonnegligible radiation in the notion of mass). 

• Kinetic energy, e.g. m • v / 2 for a substance of mass m moving with macroscopic speed v. 
• Potential energy, e.g. m g z due to the elevation z of a substance with mass m in the gravitational 

field. 

14.7.5.2 Enthalpy 
Enthalpy, denoted H, is an energy term that is a combination of internal energy U and work done by an 
expanding volume of a substance in a constant pressure situation. The enthalpy of a substance has physical 
relevance since it occurs in models of many engineering situations. The specific enthalpy h=H/m is 
actually a property that has been measured and tabulated for many common substances. The enthalpy H of 
a system, typically being a substance in fluid or gas form, is defined as follows: 



Chapter 14 Basic Laws of Nature 765 

H =U + P-V (14-66) 

where U is the internal energy of the substance in the system, P is the pressure, and V is the volume. The 
specific enthalpy h is obtained by dividing by the mass m of the system: 

h = u + Pv (14-67) 

where u is the specific internal energy, and v = V !m is the specific volume of the substance. 
Consider a system for which the kinetic energy changes and potential energy changes are neglected and 

all other kinds of work are absent. An example of such a system is the cylinder containing a gas depicted 
in Figure 14-20 to which heat is slowly added under constant pressure, that is, a quasiequilibrium process. 
Then the first law of thermodynamics, i.e., conservation of energy, gives: 

AQ-AW = U2-Ul (14-68) 

where AQ is the added heat, AW is the work done on the piston by the volume expanding against 
constant pressure, U\ is the internal energy before the process of adding heat and the volume expansion, 
and Ui is the internal energy after the process has finished. 

AW 

weightj 

Gas: 

AQ 

Figure 14-20. A system where heat is added under constant pressure. The increase in enthalpy equals the 
added heat energy for the system. 

The cylinder system with expanding volume performs work in raising the piston a distance z against the 
force, given by PA, created by the constant pressure P acting on the piston surface area A: 

A W = P-A-z (14-69) 

By observing that the change in volume (V2-Vl)= A-z, where Vi is the volume after the expansion 
and V\ is the volume before the expansion, and substituting into the previous equation, we obtain the 
following expression for the work A W : 

A W = P-(V2-Vl) (14-70) 

By slightly rewriting the first law of thermodynamics from (14-68) we obtain: 

AQ = AW+U2-Ul (14-71) 

which reformulated using (14-70) becomes: 

A Q = (U+PV)2-(U+PV)l (14-72) 

We note that the energy expressions on the right hand side before and after the expansion are identical 
to the definition of enthalpy according to (14-66). Thus we obtain the equation for conservation of 
energy stated for a system going through a constant-pressure equilibrium process: 

AQ -H2-Hl (14-73) 
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where /\0 is the heat energy added to the system. For a variable-pressure process, the difference in 
enthalpy loses its physical significance. However, enthalpy as an energy term is still useful in engineering 
applications and remains a property as defined by equations (14-66) and (14-67). In a 
nonequilibrium constant-pressure process H2 -Hl would not equal the heat transfer. 

14.7.5.3 Latent Heat and Steam Tables 
The amount of heat energy that must be added to a substance at constant pressure in order that a phase 
change should occur is called the latent heat. For an equilibrium process, according to equation 
(14-73), it is equal to the change in enthalpy of the substance before and after the phase change. The 
substance must be in saturated conditions in the two phases. The specific latent heat is a material property 
that has been measured and tabulated for many common substances. For example, the specific melting heat 
is the heat necessary to melt a unit mass of the substance: 

A Q s l = m - ( h , - h s ) 04-74) 

where hx is the enthalpy of the saturated liquid and hs is the enthalpy of the saturated solid. Likewise, the 
heat of a vaporization is the heat required to completely vaporize a unit mass of saturated liquid: 

A Q,g=m-(hg-h,) (14-75) 

where hg is the enthalpy of the saturated gas and h{ is the enthalpy of the saturated liquid. When a solid 
changes phase directed to a gas, sublimation occurs. The melting heat and the heat of sublimation are 
rather insensitive to temperature or pressure changes. However, the heat of vaporization and related 
properties is strongly pressure dependent, and has been measured and tabulated into so-called steam tables 
for water and many other common substances. 

14.7.5.4 Mass and Energy Conservation in Control Volumes 
Recall our previous definitions of thermodynamic systems and control volumes respectively, in Section 
14.7.1 on page 759. Only energy is allowed to cross the boundaries of a closed system, whereas both mass 
and energy can cross the boundaries of a control volume. The restriction that only energy crosses the 
boundaries of a closed system is acceptable for many practical problems of interest, including a simplified 
analysis of the power plant system schematically depicted in Figure 14-21 below. 

Figure 14-21. A schematic picture (not a connection diagram) of a power plant system consisting of four 
control volumes: pump, boiler, turbine, and condenser. Some arrows denote flow of matter, others flow of 
energy. 

However, for a more complete analysis we need to study the components of the power plant. These are 
control volumes and not closed systems in the thermodynamic sense* since mass flows into and out of these 
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components, and they can be described by a single phase (i.e., one set of intensive thermodynamic 
properties). 

™out 

outlet , "m 

rotating shaft 

paddle wheel 

Q we 

Figure 14-22. A generic control volume with mass flows and energy flows. 

A rather generic control volume that represents the properties of many specific control volumes is 
depicted in Figure 5-52. We will develop relations involving mass flow rate and the common 
thermodynamic quantities for this control volume based on conservation of mass and conservation of 
energy. More details regarding this control volume are available in Section 15.2.4 on page 804. 

Conservation of mass means that the change of mass Am in the control volume must equal the 
difference between the mass Amin entering the system and the mass tmo u t leaving the system since no mass 
can disappear: 

Am = Amm-Am0Ul (14-76) 

By observing the mass change during a finite time increment At we obtain the average mass flow rate 
Am /At. If we let the time increment become infinitely short, At -> dt, we obtain the relation for the mass 
flows of the control volume: 

Thus, the terms for energy changes AEin and &Eou( during a certain time increment At are composed of 
terms for kinetic energy mv2 /2, potential energy mgz, and internal energy tnu: 

A 

AEn, 

AmivyiK + Am/Wgz>w+Aw7>? um 

Amn,ltv„ 
(14-80) 

- + Amoutgz out + Amot 

— = m -m (14-77) ^ rnm rnout 

The principle of conservation of energy for the control volume, abbreviated c.v., can be stated as follows: 

Change of Energy Energy Net energy 
energy in c.v. = entering c.v. - leaving c.v. + transferred to c.v. (14-78) 

AEcm AEin AE0Ut AQ-AW 

where A Q is the heat energy transferred to the control volume and A W is the net work done by the control 
volume on the surroundings. Remember that the total energy E of a system is composed of kinetic energy 
Ekin, potential energy Epot, and internal energy U: 

E = E b „ + E p o l + U (14-79) 
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where Amin is the inflowing mass—fluid or gas—during the time increment At, vjn is the velocity of the 
inflowing mass, g is the gravitational constant, ztn is the vertical position of the inflowing mass, and uin is 
the specific internal energy for the inflowing substance. Analogous definitions apply to the quantities for 
the outflowing mass used in the second equation of (14-80). 

The work A W that the control volume performs on its surroundings during the time increment At is 
composed of two parts: the work due to the pressure needed to move the fluid or gas into and out of the 
control volume, sometimes called flow work, AWfloyv, and other forms of external work, AWe, done by 
the expanding control volume to move the piston as well as work done by the rotating shaft, sometimes 
denoted shaft work, AWs, included in AWe. This can be expressed as: 

AW = AWJIow+AWe (14-81) 

or in the following form where the expression for the flow work is stated explicitly: 

= PM Aou, vM At-PtnAin v,„ At + AWe (14-82) 

where Pout J^t is the pressure force caused by the pressure Pout against which the outflowing fluid or gas is 
moving through the output pipe with cross-section area Aout and the term vout • At is the distance the fluid or 
gas is moving with velocity vout during the time increment At. 

The following equation relates fluid or gas flow velocity to mass flow rate: 

A dx dV dm/dt m A-v = — = = — (14-83) 
dt dt dm/dV p 

where A is the cross-section area of the pipe, v is the fluid or gas velocity, dx is the distance increment 
covered during the time increment dt, the volume increment dV corresponds to the distance increment, dm 
is the mass within the volume increment transported during the time increment dt, p is the density, and m is 
the mass flow rate. 

By substituting the above expression into (14-82) we obtain the desired form of the equation for 
the work A W : 

AW = ^-mout At-^-min At + AWe (14-84) 
Pout Pin 

Recall the energy conservation equation (14-78) for a control volume: 

AEcv=AEin-AEoul+AQ-AW (14-85) 

By substituting the derived expressions for energy and work we obtain the complete energy conservation 
equation relating the energy change AEcy for a control volume during a time increment At to inflows and 
outflows of mass and energy: 

A^c.v. = A w , „ + gzin + uin ] - A m^ + gzout + uot 
] 1 7 (14-86) 

- m o u t At + At + AQ-AWe 
Pout Pin 

14.7.5.5 Energy Flow, Internal Energy, and Enthalpy 
The previously derived energy conservation equation (14-86) is easily converted into the energy 
equation for control volumes that relates energy and mass flows, by dividing both sides by At and letting 
the time increment become infinitesimally small, that is, At dt: 
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dEcv (vfn Pin 
~ j r = mJ-f + gzin +uin +-22-

dt I 2 pin 

Using our previous definition 

v2 P 
~ *out ^ uout ^ 
2 Pout 

+ Q-We (14-87) 

. H U + P-V P P h = — = = u + = u + — 
m m m/V p 

(14-66) for the enthalpy H we obtain the specific enthalpy h: 

(14-88) 

Substituting the specific enthalpy into (14-87), we obtain the enthalpy form of the energy equation: 

dEr 

dt 
— + sz- +h 2 © in in ~f + ZZout+K + Q - K (14-89) 

For many control volumes, such as the one depicted in Figure 14-22, there are negligible changes of 
kinetic and potential energy since the fluid or gas does not move or change level very much within the 
control volume. Thus the energy equation can be simplified by eliminating the terms for changes in kinetic 
and potential energy: 

dEr 

dt 
= minhm-mouthout+Q-We (14-90) 

The total energy in the control volume is the sum of the kinetic energy E^, the potential energy Epo(, 
and the internal energy U: 

Ec.v. =Ekin+Epot+U (14-91) 

If we assume that the changes in kinetic energy and potential energy are zero and use the above 
equations (14-90) and (14-91), we obtain an equation for the internal energy of the control 
volume assuming negligible changes of kinetic and potential energy: 

dU 
dt 

= hm min-houtmout+Q-We 
(14-92) 

The specific internal energy can be expressed as follows assuming the specific heat capacity of the 
substance is constant within a temperature range close to some constant temperature T0: 

U 
u- — 

m (14-93) 

u = u0+cv(T-T0) 

where t/0is the specific internal energy at some constant temperature T0 and cv is the specific heat capacity 
of the substance at that temperature. 

For steady flow, which is a very common situation when a gas or a vapor is flowing, we have no 
change of energy and no storage of mass inside the control volume: 

dEr 

dt 
- = 0 

m = mw = mou[ 

simplifying (14-89) into the energy equation for steady state flow. 

We-Q = m K-Kut+g<<Zm-Zout) + 
(v2 - v 2 ) \vm out) 

(14-94) 

(14-95) 
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where we have not assumed negligible potential and kinetic energy changes. 
Regarding a control volume through which liquid flows it is better to use the previously developed 

form (14-87) of the energy equation. For steady state liquid flow with pout - pin = p, neglecting the 
heat flow rate (Q = 0) and internal energy changes (U - 0), we obtain: 

W=m 
P - P 

+ g(Zin-Zout) + 
(v2 -v2 ) \vm out J (14-96) 

which is the form of the energy equation commonly used for a pump or a hydroturbine. If the heat flow 
rate Q or the internal energy changes U are not negligible, just include them in the above equation. 

14.8 Multibody Systems 

What is a multibody system? It can be defined as a system consisting of a number of interacting bodies or 
substructures (Figure 14-23 and Figure 14-24). A multibody system can be almost anything from an atom 
containing a nucleus and electrons, to star systems with gravitational interaction between bodies, as well as 
man-made three-dimensional mechanical systems such as vehicles, airplanes, and industry robots. In the 
following, we restrict ourselves to multibody systems subject to Newtonian physics, that is, excluding 
microscopic quantum mechanical systems such as atoms. We also restrict ourselves to rigid bodies and 
thereby exclude deformable bodies that may change shape and size. Our goal in this section is to explain 
the basic concepts and derive the most important equations for multibody systems in the form they appear 
in the Modelica MBS library. 

Figure 14-23. A vehicle such as a bus is a multibody system with a number of moving and fixed parts. 

The basic quantities associated with the bodies in the multibody system are the following three-vector 
valued quantities (shown in bold font): potential quantities position s, velocity v, and acceleration a, 
angular position or degree of rotation 6, angular velocity to, and angular acceleration 0), also denoted a or 
z, as well as the flow quantities force f and torque T. These quantities are defined precisely and explained 
in the following sections. 
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Force element 
(spring) 

Force element 
(damper) 

Figure 14-24. Example of a multibody system with force elements and joints constraining movements and 
transmitting forces between the bodies. 

The motion of the bodies (or subsystems) is fundamental to the understanding of a multibody system. 
The field of mechanical multibody systems can be divided into three areas: rigid-body mechanics being 
briefly presented here, structural mechanics, and continuum mechanics. The term rigid-body implies that 
the distance between any two particles of the body remains constant at all times. The motion of a rigid 
body moving freely in space can be completely described by six generalized coordinates, three positions 
and three rotations, whereas for a deformable body a large number of coordinates (large dimensionality) is 
needed. Structural mechanics might be seen as a subtopic of continuum mechanics primarily dealing with 
deformation, whereas continuum mechanics in general deals with general body motion, often resulting in 
mathematical models with problems such as nonlinearity and large dimensionality. 

or using the more compact curly braces vector notation: 

14.8.1 Reference Frames and Coordinate Systems 

The configurations of the bodies in the multibody system are characterized by values of measurable 
quantities such as positions, velocities, and accelerations. These values must be related to some coordinate 
system or frame of reference, for example, as described by classes such as Frame, Frame s and Frame_b 
in the interfaces sublibrary of the Modelica MBS library. Figure 14-25 shows two coordinate systems. 
The reference frame X1X2X3 to the lower left consists of the orthogonal axes Xi, X2, and X3 based in the 
origin point O of the system. The orientation of the axes is defined by the unit vectors ii, i2, and i3 pointing 
along the respective axes. An arbitrary vector, e.g. rp' depicted in Figure 14-25, can be expressed in this 
coordinate system using its three components r(p, r2'p, r3'p along the respective axes: 

r ' P = r ; p - i l + r i p - i 2 + r ' p - i } (14-97) 

In a cartesian coordinate system this can be stated using mathematical vector notation: 
/ / \ 
K 

r'p = r2'p (14-98) 

UP J 
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Note, however, that even though equations (14-97) and (14-98) appear equivalent, there is a subtle 
difference. Equation (14-97) is always true as stated, whereas (14-98) is relative to a particular 
cartesian coordinate system and might look different if another coordinate system is chosen. 

Figure 14-25. Reference frame XiX2X3, also called the inertial coordinate system, and the body coordinate 
system XiX2X3 for body i, conceptually consisting of arbitrary point-like particles . 

In general, two types of coordinate systems are needed in multibody systems: 

• A global or inertial frame of reference, also called the inertial coordinate system or inertial frame. 
The inertial frame can be represented by an instance of the class Inertial System in the 
Modelica MBS library. The unit vectors ii, i2, and i3 of the inertial frame depicted in Figure 14-25 
are fixed in time, that is, they have constant magnitude and direction, and the origin O of the 
system does not move. 

• A body coordinate system, or body frame of reference, attached to each body in the system, that 
translates and rotates with the body. Such frames can be represented by instances of the classes 
Frame_a and Frame b in the Modelica MBS library. The unit vectors i/, \i, and i3* of the body 
coordinate system of body i have changeable orientations, and the origin of is subject to 
translational movement. 

The reason to have a body coordinate system attached to each body is that many local relationships and 
formulas related to the body become much simpler when expressed in the body coordinate system. The 
vectors expressed in the body frame can always be transformed into the global inertial coordinate system 
through translational and rotational coordinate transformations, which is needed when quantities from 
different bodies are related to each other. 

14.8.2 Particle Mechanics with Kinematics and Kinetics 

The subject of dynamics involves the study of the motion of particles and bodies, and can be divided into 
two subareas: 

• Kinematics studies motion without regard to the forces that cause it, that is, with focus on 
geometric aspects. Kinematic quantities are translational and angular position, velocity, and 
acceleration, which become "potential" variables in Modelica models. 

• Kinetics deals with motion including the forces that produce it. Force-related kinetic or dynamic 
quantities are force and torque, which are represented by flow variables in Modelica models. 

In order to understand the kinematics and dynamics of bodies in a multibody system, it is important to 
understand the motion of the particles that comprise the body. Therefore we start with a short discussion of 
the kinematic and dynamic properties of particles. 
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14.8.2.1 Particle Kinematics 
A particle has no dimensions and therefore can be represented by a point in three-dimensional space. 
Therefore, the motion of a particle can be treated as translational motion of a point relative to a frame of 
reference. The position vector r of a point p in a coordinate system as depicted in Figure 5-40 can be 
expressed as follows: 

r = rl i !+ r 2 • i 2 + r 3 i3 (14-100) 

which in a cartesian coordinate system can be stated using vector notation: 

r = { W j } (14-101) 
x2 

X3 , 

Figure 14-26. Position of a particle P with respect to a coordinate system. 

The velocity v of a particle represented as a point is the time derivative of the position vector of that 
point. This can be expressed as follows in an inertial coordinate system where the unit vectors ii, and 13 
have constant magnitude and direction: 

v = r = — r - r , 1, +r0 
dt 1 1 2 

(14-102) 

The acceleration of the particle becomes: 
. d 

a = v = r 1 . i 1 + r 2 . i 2 + r 3 . i 3 

14.8.2.2 Particle Dynamics 

The motion of a particle is determined by Newton's second law: 

f = p = T ( w v ) 
at 

(14-103) 

where f is the applied force and p is the momentum. For nonrelativistic cases where the mass m is 
constant, this can be expressed as an equation relating the force vector f to the acceleration vector a: 

f = m a (14-104) 

This corresponds to the following three scalar component equations: 

fx =m-al, f2 =m-a2, f3 =m-a3 
(14-105) 
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14.8.3 Rigid-Body Mechanics 

Rigid bodies have masses that are distributed in space, that is, not just point masses. A rigid body can be 
thought of as consisting of a very large number of particles, all related by fixed relative translations and 
rotations. Therefore a rigid body as a whole can be characterized by three translational and three rotational 
coordinates, six in total. Figure 14-25 depicts a rigid body i in three-dimensional space, together with the 
global inertial coordinate system X j X ^ and a body local coordinate system XjX^X, whose origin 0 is 
rigidly attached to some point in the body, and which translates and rotates with the body. The position of 
an arbitrary point Pp of the body can be defined by the vector rp = {rip\ rip, r^} in the global coordinate 
system as depicted in Figure 14-25, and defined as the sum of two vectors: 

r ; = o ' + u ; ' (14-106) 

where o' = {oj', o{, 03'} is the position of the origin 0 of the body i system, and the relative position vector 
V = {«ip, «2p, «3P'}> both expressed in the global coordinate system. However, the relative position is 
more conveniently obtained as the fixed vector fl' ={ii\, u{, u3'} in the local body coordinate system since 
it denotes a fixed rigid vector relative to the origin 0. If the local system unit vectors ii', \{, and are 
expressed in the global coordinate system, we obtain up as follows: 

The rotational transformation from the local coordinate system to the global inertial coordinate system 
can be represented by a rotation matrix S1, as further discussed in Section 14.8.4. Since up' is relative to the 
origin 0 and we keep the same scale, only the rotational transformation remains and we obtain: 

u ; = s ' - u ; (14-108) 

Putting everything together, with the translation taken care of by the vector o': 

(14-109) 

14.8.4 Rotation Matrix 

The rotation matrix S' is used to perform rotational transformations of vectors expressed in the local 
body i coordinate system to the global inertial system. There are several different ways of deriving this 
rotation matrix, including Euler angles or Euler parameters. Such methods have computational and 
modeling advantages but will not be described here since they are more complicated than the simple 
method of direction cosines which is used by the Modelica MBS library and presented in the next 
section. 

14.8.4.1 Direction Cosines 
Consider the local body i coordinate system or frame and the global inertial frame. The origins of both 
frames have been placed at the same point to eliminate translation as depicted in Figure 14-27. We want to 
derive the coordinate transformation of a point u' = {u\, u{, U31} expressed in the global frame of reference 
to the same point u' = {ii\, u{, w3'} expressed in the local frame, and vice versa. 

Let i/, 12', and i3* be the orthogonal unit vectors of the local body i frame XJX2X3, and ii, i2, and i3 the 
orthogonal unit vectors of the inertial frame X,X 2X 3 . 
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Figure 14-27. Angles for direction cosines between the X/ axis and the three inertial system axes. 

Let p\, 02, and /?3 be the angles between the X/ axis and the three inertial frame axes Xi, X2, and X3 
respectively, as depicted in Figure 14-27. The direction cosines en, en, and C13 of the X/ axis with respect 
to the three inertial frame axes Xi, X2, and X3 can be obtained as follows by taking the cosines of the 
angles or the scalar product between the unit vectors: 

cu = cos(A ) = i ,i-i1 

c12 =cos(/?2) = ij i2 

c13 = cos(/?3) = i j - i 3 

(14-110) 

In a similar way, the direction cosines C21, C22, and C23 of the X2* axis and C31, C32, and C33 of the X3' axis 
with respect to the inertial frame axes Xi, X2, and X3 can be computed. Using these relations one can 
define the unit vectors ii', and 13 in terms of the unit vectors ii, i2, and i3: 

: ^11*1 + C\2l2 + Cl3l3 
~ + Cjjlj + Cj-71- (14-111) 

I + C-i7\y + C-5-51-5 

We now consider the three-dimensional vector u1 with components u\, u2, 113 in the inertial frame and 
fii', u2, U3 in the local frame: 

I + U-ylj + Z/-5I-3 

= u[\\ + u2 i2 + w3i3 

(14-112) 

Using the fact that the product between orthogonal unit vectors is 0 if they are different and 1 if they 
are identical, we obtain: 

M, = u -1, = CuU, + Ci7U7 +Cnu* 

which in matrix notation appears as: 
( i \ "1 / 

Cll 
u- = C 2 1 C22 

C23 
C32 C33 J 

that is: 

u 

(14-113) 

(14-114) 

(14-115) 

U ) 
u2 

t U3 V / 
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Since for orthogonal matrices such as C, the inverse of a matrix C 1 = C T , is equal to the transpose of 
the matrix, we obtain: 

u ' = C T u ' C 4 " 1 1 6 ) 

Thus, our desired rotational transformation matrix S, also denoted R _ 1 , for transformations from the 
local body i frame to the global inertial frame is: 

S CT (14-117) 

The opposite transformation, the rotation matrix R for transformations of vectors from the global 
inertial frame.to the local body i frame, used in the new Modelica multi-body library (see Section 15.10, 
page 877), then becomes: 

R = C = S ' ( 1 4 " 1 1 8 ) 

The function v2=MultiBody. Frames. resolve2(R, vl) for transforming a vector vl from frame 1 to 
frame 2 is intended for vector transformations in this direction, for example, from the inertial frame to the 
local body frame. 

14.8.4.2 Euler and Cardan Angles 
In the previous section we formulated a rotation matrix based on direction cosines of the angles pi, Pi,, and 
p3 between the local body frame axes and the three inertial frame axes. 

However, from a physical modeling and application point of view it is usually more natural to express 
the rotational transformation as a series of successive rotations around the local body coordinate axes. This 
approach to constructing the rotation matrix is called Euler or Cardan angles, depending on the order these 
rotations are applied. These angles are different from the angles used in the direction cosine formulation 
described in the previous section since the a rotation around one local coordinate axis causes the direction 
of the other two local coordinate axes to change. 

Assume that the axes of the local body frame are initially aligned with the global inertial frame, and 
that the body is then rotated, described by a vector {(p\,(pi,(p-i} for the three successive rotation angles. 

To rotate the local body frame coordinate system from its initial configuration aligned with the inertial 
frame to some arbitrary desired orientation using the Cardan angle approach—rotation sequence {1,2,3}, 
we first rotate around the x axis (the first axis) by an angle <p\, then around the resulting y axis (the second 
axis) by an angle <p2, and finally around the resulting z axis (the third axis) by an angle ^3. The third step is 
shown in Figure 14-28 assuming the first two rotations are zero. The Euler angle rotation sequence is 
{3,1,3}. 

^ • X x 
Inertial frame 

X3 

Figure 14-28. Rotating the x / and x2' axes in the local coordinate frame by an angle <p3 around the x3' axis 
as a step in the Cardan/Euler angle rotation sequences. 
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The respective rotation matrices denoted Ri, R2, and R3, are defined as follows using Cardan angles: 

R i : 

n 0 

0 COS^J 

0 - s i n ^ 

0 

s i n ^ 

cos^, 
r 2 

cos <p2 

0 

sin 

- s i n ̂ >2 

0 

cos <p2 

R3 

cos <p3 

- s i n 403 

0 

sin <p3 

COS ̂ >3 

0 

(14-119) 

Each of these three rotation matrices can be obtained by applying the MBS library function 
MultiBody. Frames .axisRotation (i,angle) to the arguments (1, q\), (2, <p2), or (3, <p3) 
respectively. 

The total rotational transformation matrix R R3 R 2 R j (which is defined in the MBS class 
MultiBody. Parts. Body) for rotating the local body frame to its desired orientation then becomes: 

cos (p2 cos <p3 cos <px sin <p3+ sin <px sin (p2 cos <p3 sin <px sin (p3 - cos tpx sin (p2 cos (p3 

- cos <p2 sin <p3 cos q>x cos q>3 - sin (px sin q>2 sin (p3 sin <px cos (p3 + cos (px sin (p2 sin (p3 

sin q>2 - sin <px cos <p2 cos (px cos q>2 

(14-120) 

This rotation matrix R is based on Cardan angles, that is, the rotation sequence {1,2, 3}. 
An absolute vector u l expressed in the inertial frame can be transformed into the relative vector u ' 

expressed in the local body frame using the rotation matrix R: 

= R u' = R 3 R 2 R ! (14-121) 

This rotation is used, for example, in the Modelica MBS library, in class MultiBody. Parts. Body. 
The rotation matrix in the other direction, rotating the local body frame back to the orientation of the 

inertial frame, is obtained as usual by taking the inverse (i.e., the transpose) of the orthogonal matrix R : 

S = R ' 1 = R t (14-122) 

The inverse transformation applied to a local body vector, i.e., of the vector u'expressed in the local 
body frame into its representation u ' in the inertial frame, is obtained by applying R "1 or by successively 
applying the 3 inverse rotations, starting with R31. 

u ' = R ^ u ' = R ^ R ^ R j V <1 4-1 2 3> 

14.8.4.3 Euler Parameters and Quaternions 
The singularities that occur when computing derivatives of rotations for certain Euler angles can be 
avoided if a 4-vector representation q = { q l , q2, q3, q4 } of four interdependent variables is introduced 
instead of our previous 3-vector Euler angle representation. These 4 variables are dependent on each other 
since a rotation matrix represents 3 degrees of freedom. This representation is known under two names: 
Euler parameters or Quaternions—note that the Euler angles presented in the previous section is a 
different representation. The rotation matrix R can be computed as follows in terms of these four 
parameters: 

R = 

2(q2
x+ql)-\ 

2 ~<M4) 

2 ( ^ 3 + ^ 4 ) 

2{q2
2+ql)-\ 

2 ( ^ 3 - ^ 4 ) 

2 ( ^ 3 + ^ 4 ) 
2(q]+ql)-\ 

or expressed using matrix and vector operations: 

R = ( 2 ^ - l ) I + 2q1_3q] ,_3-^Qr_3 

(14-124) 

(14-125) 
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where l is the 3x3 identity matrix, q,_3 is a column vector of elements 1-3 of the q vector, and Q]L3 is the 
skew matrix (see (14-138), page 780) formed from the vector q,_3. These definitions are available in 
the function MultiBody. Frames. fromQ in the Modelica MBS library, see Section 15.10, page 877. 

We will not further discuss this representation, and refer the reader to appropriate literature. The 
Modelica MBS library has an option to use quaternions, see the note in Section 15.10.11, page 902. 

14.8.5 The 4 x 4 Transformation Matrix 

Previously we showed (14-109) that the position r' of an arbitrary point P on the rigid body could be 
expressed in the global inertial frame as: 

r ' = o ' + S ' . u ' (14-126) 

where o' is the position for the origin of the local body i coordinate system or frame, S' is the matrix for 
rotational transformations from the local frame to the global frame, and fl' is the position of the point P 
expressed in the local body i frame relative to the origin <9\ This transformation can be expressed 
compactly using a 4 x 4 transformation matrix S4 that takes care of both rotation and translation, where we 
introduce the 4-vectors r4 and u 4 : 

rj Si ui ( 1 4 - 1 2 7 ) 

This equation is shown in component form below where the matrix S4 is constructed from S' and o': 

(14-128) 

( i > rl (S' 9 ' (ui 
^ 2 2 ^ 2 3 » 2 

H •$32 < 4 " 3 

l o 0 0 U u 

The inverse equation is: 

i i i=(S' 4 ) - 1 V 4 
(14-129) 

The inverse matrix (S4) 1 is not equal to the transpose (S4)T since it is not orthogonal, but can be 
constructed as follows: 

(Si)"1 = (14-130) - ( S f o ' l 
Uo.0,0} 1 J 

where the inverse rotation matrix (s') 1 = (s' f since it is orthogonal. The 4 x 4 transformation matrix 
formulation is common in virtual reality software packages and in certain multibody system packages, but 
currently not used by the Modelica MBS library. 

14.8.5.1 Coordinate System Kinematics 
In this section we develop the equations for frame or coordinate system kinematics. These equations relate 
the kinematic quantities position r, velocity v= r , and acceleration a= r between an arbitrary local frame 
and the inertial frame of reference. The developed equations are used in a slightly different form to relate 
quantities between two local frames, which, for example, is common for mechanical elements such as 
joints that consist of two parts. Two frames are related by a translation vector, for example, o in Figure 
14-29, and a rotation about some axis that can be expressed in the inertial frame. 
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inertial 
frame 0 

X3, 

Figure 14-29. A local frame related to the inertial frame by a translation vector o' and a rotation matrix S\ 
with the relative position vector rrei of the point P expressed in the inertial frame. 

Since the expressions for position, velocity, and acceleration of an arbitrary point P can be easily 
obtained just by adding the corresponding relative and frame quantities expressed in the inertial frame 
according to the equations below, we will for a while ignore the vector o and focus on the relative vector 
I'rel-

(14-131) 

The rotational transformation matrix S transforms the relative vector Yrel expressed in the local frame i 
to the global inertial frame: 

(14-132) Trel ~ S' * !%>/ 

By taking the time derivative we obtain the relative velocity vector \ref. 

yrel ~ *rel ~ ' Vrel + ' I 
(14-133) 

The rotation matrix S' describes the change in orientation, that is, relative angles, of the local frame 
compared to the inertial frame. The derivative S' describes the angular change in orientation per unit time, 
that is, rotational movement. Rotation is always around some axis. The direction of that axis is defined by 
introducing the angular velocity vector c®', which can change orientation over time (Figure 14-30). 

Figure 14-30. Rotational part of the movement of point P expressed as cross product « ' x rrel between the 
angular velocity vector and the relative position vector. 

One can show that the part S' • rrel of the velocity vector \ r e l caused by rotation of the frame around an 
axis through the origin O' can be expressed as the cross product between an angular velocity vector co' 
expressed in the inertial frame (c5zin the local frame) and the relative vector vrel (or f r d expressed in the 
local frame): 

S ' . r r W = o > ' x r r e / = S ' . ( t 5 ' x r r e ; ) (14-134) 
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Thus, the total relative velocity vector of the point P expressed in the inertial frame becomes: 

v^/=r r e /=co / xr r e / +S , -? r e / (14-135) 

The velocity vector expressed using vectors in the local body frame after some rearrangement: 

v r e ; = r r e / = S ' . ( t , + « ' x r r e ; ) 04-136) 

Here rrel denotes change of the vector f r e l not related to rotation around the origin since that rotation is 
already expressed by the rotation of the local frame itself. It is rather, e.g. change of length. Now we want 
to derive the expression for the acceleration, and for this purpose will need to transform the cross products 
in terms of matrix multiplications by skew symmetric matrices. 

A general mathematical result is that any cross product, for example, coxr, can be expressed as a 
matrix multiplication by a so-called skew symmetric matrix W: 

© x r = W • r (14-137) 

where 

W = cy, 0 -cy, (14-138) 
0 -co3 cd2 

cy3 0 -cyj 

-co2 0 

Applying this result to the cross product with the rotation vector co': 

a,' xr r e l = W' -rrel = W' -S' • vrel (14"139> 

Substituting into the equation for the velocity vector: 

v „ , = r „ , = « ' xrre, +S' - f r e l = W (S' -rre;) + Sf •?„, ( 1 4 ' 1 4 ° ) 

Differentiating the above equation: 

»Kl =iVw = W' -(S' •?„,) +W' (S' -rrd) + W' -(S' .?„,) + S' •?„, + S' •?„, (14-141) 

Analogous to the previous (14-134) result S' -rrel = (a1 x rrel we obtain S' -rrel =w / xrrel, which 
can be expressed as: 

S' • %el = «>' X frel = W ' • T K , = W' • Vre/ (14-142) 

After substitution into the previous acceleration equation, using rrel = S* • r r e l , \ r e l - S' - \ r e l , 
S' -vrel = W' • \ r e l , and S ; -vrel - W7 • rrel and rearranging terms we obtain: 

*rei = = s ' -Fre, +2W' • vre, + W' -rrel +W' -W' (14-143) 

We obtain the desired form of the equation for the relative acceleration vector by converting back from 
matrix multiplication by W' to cross product by co': 

> « / = * « / = S' '%ei +2o)' xvre / +d)' xrrel +co' x (« ' xrrel) (14"144) 

To summarize, the vector equations for the absolute position r, velocity v, and acceleration a for an 
arbitrary point P appears as follows expressed in the inertial frame related to the relative vectors in the 
local frame when the translational part has been added and the relative vectors together with the rotation 
vector are expressed in the local body i frame: 
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v = o' + S' • (rrel + co' x vrel) (14-145) 

a = o' + S' • (vrel + 2 to' x \rel + cb' x rrel + co' x (to' x xrd)) 

We should mention that the special notation a is often used in the literature for the angular 
acceleration vector cb , but z is employed in the Modelica MBS library: 

a = z = cb (14-146) 

14.8.5.2 Equations Relating Two Local Frames 
Why would you need to relate quantities in two different local frames? A common case is that a body in a 
multibody system itself consists of several bodies that can move in relation to each other, each with its 
own frame of reference. Another case is the existence of two or more frames on the same rigid body. In 
both cases we need to relate quantities such as positions, velocities, and accelerations of one frame to the 
corresponding quantities in another frame. There is also a need to transform dynamic quantities such as 
forces and torques when applied to one part of a body to the equivalent forces and torques if applied to 
another part. The goal of this section is to develop the general form of the equations relating two local 
frames as they appear e.g. in several Modelica MBS library classes such as Interact, Interact2, and 
TreeJoint in the sublibrary Interfaces, and in the class FreeMotion in the Joint sublibrary. These 
relations are relevant for all Joint classes, since those classes describe objects containing two coupled 
parts, each with its own frame of reference (Figure 14-31). 

Figure 14-31. A body consisting of two movable parts, each with its own frame of reference. 

The equations relating two local frames are obtained in a very straightforward way, e.g. just by 
changing subscripts and superscripts, from the equations developed in the previous section. 

Inertial 
frame O 

Frame a Frame b 

Figure 14-32. Two frames related by the relative position vector r°el and the relative rotation matrix Sre/. 

r = o' + S' -r re l 

\ x>fl \ 5 

/ ^ — Frame b 

Inertial 0 

frame • xl 
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The relative rotation matrix S^/ transforms a vector expressed in frame a to frame b\ 

sre, = ( s V - s ° <14-147) 
This is easy to see since an arbitrary vector ua in frame a is transformed into the inertial frame by 

S a u a , and is transformed back from the inertial into frame b by the inverse of Sb. The kinematic 
relationships relating the origins of the two frames [from (14-109)] to the inertial frame are: 

r0
4=r0"+S°-r4 ( 0 4 "' 4 *) 

where is the vector for the absolute position of the origin of frame b expressed in the inertial frame, i*q 
is the absolute position of the origin of frame a, and ft is the relative vector from frame a to frame b 
expressed in frame a, as depicted in Figure 14-32. The relative translational motions between the origins of 
two frames are: 

va = Ta 

yrel 'rel (14-149) 

*rel ~ Trel 

where ft, is the relative vector from the origin of frame a to the origin of frame b expressed in frame a, 
and \a

rel together with I f t are the corresponding velocity and acceleration vectors. 
The equations relating the absolute velocities v and the rotational velocities co of the two frames are: 

mb=S „,.(«"+«£,) 

where \ b is the velocity of the origin of frame b expressed in frame b, v a i s the velocity of frame a 
expressed in frame a, \a

rel is the relative velocity vector from the origin of frame a to frame b expressed in 
frame a, cofl is the rotational velocity vector of frame a expressed in frame a, J5b is the rotation velocity 
vector of frame b expressed in frame b, coJJ,, is the relative angular velocity (rotation) vector between 
frame b and frame a corresponding to the rotation matrix S re / and expressed in frame a. 

Next we state the equations relating the absolute acceleration a and the angular acceleration cb (denoted 
by z in the Modelica MBS library) of the two frames, expressed in frame b on the left-hand side and in 
frame a on the right-hand side: 

a* = Sre/ -(a" + +2cT x v«7 + x ^ + to* x(co* x f t ) ) ^ ^ 

derived from (14-145) and (14-150) using \a
rel = ft and I f t = r?el. The following two equations relate 

the vectors representing the dynamic quantities force and torque applied at the origins of frame a and 
frame b respectively: 

fb Jar 
~ Kl _ (14-152) 

f 4 = S r W - ( r - r ° ; x f » ) 

where f a and Ta are the force and torque applied at the origin of frame a expressed in frame a and fb and 
Th are the same force and torque transformed to be applied at the origin of frame b expressed in frame b. 
The same equations apply for transforming forces and torques in the opposite direction, from frame b to 
frame a. 

14.8.5.3 3D Rigid-body Kinematics 
Here we develop the kinematic equations needed to state the dynamic equations of rigid bodies in the next 
section. It was previously shown [equations (14-145)] that the global position vector r and the 
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corresponding velocity v and acceleration a of an arbitrary point P of a body a (previously denoted body i) 
with a reference frame a, e.g. as in Figure 14-33, are given by: 

r = o ° + S a - f t , 

v = 6° + S a • (va
rel + <oa x ft) 

a = o° + S ° • (a£, + 2 I a x \ a
r e l + t>a x ft + x (©fl xft)) 

(14-153) 

where ft/ is the relative vector from the origin Cf to point P, oa is the position of the origin Cf in the 
inertial frame, S° is the rotational transformation matrix from frame a to the inertial frame, and <da is the 
rotation vector of frame a expressed in frame a. 

Figure 14-33. Rigid body with a point P relative to a coordinate frame a with origin Cf fixed in body a. 

However, for all points P in a rigid body the relative vector ft expressed in frame a is fixed since the 
essential property of a rigid body is that it does not change shape, i.e., \a

rel = ft = 0 and aa
rel = ft = 0 , 

giving the following simplified equations: 

r = o " + S ° - f t 

v = 6 f l + S f l - ( w f l x r ^ ) 

a = o a + S a xrr
a
el x(Joa xrr

a
el)) 

(14-154) 

where r, v, and a are the absolute position, velocity, and acceleration vectors of point P in the inertial 
system. This also can be expressed as: 

r = + ft 

\ = o a + c o ° x f t (14-155) 

a = '6a +<ha xft +©fl x(coa xft) 

with all quantities defined in the inertial system. 

14.8.5.4 3D Rigid-body Dynamics 
Now we want to express Newton's equations governing the dynamics of a rigid body, which, for example, 
are stated in the old Modelica MBS library class BodyBase in the sublibrary interfaces, inherited, for 
example, by the classes Body and Body2 in the sublibrary Parts, or in the new MBS library stated 
directly in the class MultiBody.Parts.Body. First recall (14-154) for the acceleration a of an 
arbitrary point P in a rigid body. We express this equation in the local frame a, using a = S° -a°and 
6° = S° • a j . After eliminating Sa we obtain: 

a l = ao* + (5° xft, + co" x(co" xft,) (14-156) 

x X3« ; — 

o j ^ — - • x , 

x 3 ^ 
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where a a is the acceleration of the point P, which in the following is chosen to be the center of mass of the 
body, denoted cm, and a j is the (translational) acceleration vector of the origin of frame a, both expressed 
in frame a. , f a 

x3 > 

Figure 14-34 Body with mass m, coordinate frame a as well as external force f a and torque Ta being 
applied at the origin point of frame a, and a relative vector rc" 
mass of the body. 

from the origin of frame a to the center of 

According to Newton's second law of motion applied to rigid bodies, a force (conceptually) applied at 
the center of mass of a rigid body equals its mass multiplied by the acceleration of the center of mass: 

f l = m - a " (14-157) 

The force vector (but not the torque) is the same translated to be applied at the origin of frame a on the 
rigid body, that is, f"m = fa, as depicted in Figure 14-34. Using equation (14-156) for the acceleration 

f 8 = m • (a a + eo° x ft + (oa 
a) (14-158) 

where fa is the force vector applied at frame a, a a is the acceleration of frame a, <oa is the rotation vector 
of frame a, and ft is the vector from the origin of frame a to the center of mass, where all these quantities 
are expressed in frame a. 

The next issue is to derive the rotational part of the equation of motion for a rigid body, also called the 
Euler equation, that is, the relation between the torque TA around a point Cf, the angular acceleration 
vectored, the rotation vector <Qa, the moment of intertia matrix I, etc., all expressed in the local body 
frame a: 

- l t a + v a x I . ^ + r l x f (14-159) 

Let us for a while return to the basic definitions. Since a rigid body can be viewed as consisting of 
many particles we will recall certain relations valid for particles. The torque T around a point O created by 
a force f applied to a particle at a distance r is defined as: 

t = r x f (14-160) 

where T, f, and r as usual are vector quantities. Next we introduce the notion of the angular momentum 
vector L with respect to a point O for a particle of mass m moving with velocity v as depicted in Figure 
14-35, and therefore having momentum p = m • v . The angular momentum is defined by a vector cross 
product: 

L = r x p = w r x v (14-161) 

where r is the position vector of the particle relative to the point O. 

j I 

x2 x3
a — 

a V / X2° 

r / x i s ' C c e n t e r o f | 

• x, 
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Figure 14-35. Vector relation between angular velocity to and angular momentum L for a particle. A rigid 
body can be viewed as consisting of many such particles. 

The following relation holds between the torque and the angular momentum: 

t = L (14-!62) 

This relation is just a consequence of Newton's second law of motion f = p , as shown below: 

L = — L = — ( r x p ) = r x p + r x p = v x ( m - v ) + r x f = r x f = T 
dt dt 

(14-163) 

Here we have used the fact that the cross product of a vector to itself is zero, v x v = 0, the above 
definition of torque T = r x F, and Newton's second law of motion f = p. Next we generalize from a 
particle to a rigid body based on its definition as a system of particles with fixed relative positions. The 
total angular momentum vector L of a rigid body: 

L = Z L < = Z r < x P ' = r < x v ' (14-164) 

where L, is the angular momentum of one of its particles. Using (14-155) and noting that only the 
rotational part cox I* of v/ which is perpendicular to I*, contributes to the cross product, we obtain: 

L = -r, x(coxr,) = ]T/w,. r, x(-r, xco) = ]Tm; R, • ( -R, W) = I (14-165) 

where W and R; are skew matrices corresponding to the vectors co and r,. Here we have used standard 
mathematical identities for vectors and skew matrices: 

co x r, = -r, x co 
r,xco = R, W 

- R = R t 

(14-166) 

The matrix I, called the moment of inertia matrix or mass matrix of the body, is defined as: 

I = .R* -R, (14-167) 
i 

or as an integral by taking the limit of many small particles, and substituting mi = p • dV. The integral 
form of the moment of inertia matrix becomes: 

(14-168) 

The matrix I is constant for a rigid body, depending only on its shape and mass density. The following 
relation holds also for a rigid body defined as a system of particles: 

T = L O 4 - 1 6 9 ) 
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where T = TI + t2 + T3 +... is the total external torque relative to the same point exerted by the external 
forces acting on the particles of the body. The reason is that the internal forces between any pair of 
particles have the same (or opposite) direction as the relative position vector between the particles, which 
means that their cross product is zero. Since I is constant, we obtain: 

T = L = — ( I a > ) = Ir i> (14-170) 
dt 

This equation can be expressed in quantities of Ta and If in the local body frame a: 

Sa • Ta = — ( S ° • L°) = S ° - i a + S a >Tf = Sa l t a +Sa -If = S a I t a + S a x h a ) (14-171) 
dr 

where we have used_the relations T = S a • Ta and L = S a - L a , and have applied (14-1_34) to the 
vector If giving Sa If = S ° -(<ofl x l f ) . By removing the rotation matrix S a and using If = I ( D a 

we obtain: 

Ta =\ Toa +»fl x(I-ma) (14-172) 

Finally, we add the term ft x f since the force?" is applied at a position ft relative to the center-of-
mass 

t ° = \ W a + i f l x ( I . ^ ) + rc°ra x f (14-173) 

To summarize, the Newton-Euler equations of motion for a rigid body as expressed in a local frame a 
attached to a rigid body of mass m are as follows: 

f " = m - ( V + x f t + c T x(co« x ? i ) ( 1 4 _ 1 ? 4 ) 

r a = l - t a + x ( I - n a ) + r?m x f 

where ia is the force vector applied at the origin of frame a, a a is the acceleration of frame a, (Da is the 
rotation vector of frame a, <oa is the angular acceleration vector (also denoted z) of frame a, and ft is the 
vector from the origin of frame a to the center of mass. These quantities are all expressed in frame a. The 
matrix I is the moment of inertia of the body with respect to its center of mass. 

These equations appear in the same form in the old ModelicaAdditions.MultiBody library class 
BodyBase in the interfaces sublibrary. That class is the base class for rigid bodies and is inherited by 
the class Body in the old Parts sublibrary: 

fa = m*(aa + cross(za, rCM) + cross(wa, cross(wa, rCM))); 
ta = I*za + cross(wa, I*wa) + cross(rCM, fa); 

where fa, aa, za, rCM, wa, ta, I correspond to f ° , a a , ( D a , f t , 0 ) a , T a , I respectively. In the current 
Modelica.Mechanics.MultiBody library briefly described in Section 15.10, page 877, the 
corresponding equations appear at the end of the Modelica.Mechanics.MultiBody.Parts.Body 
class in the following form: 

frame_a.f = m*(Frames.resolve2(frame_a.R, a_0 - g_0) + 
cross(z_a, r_CM) + cross(w_a, cross(w_a, r_CM))); 

frame_a.t = I*z_a + cross(w_a, I*w_a) + cross(r_CM, frame_a.f); 

The call Frames. resolve2 (f rame a. R, a_0 - g_0) is just an application of the rotation matrix 
R, expanding to frame a.R* (a_0-g_0), which transforms the acceleration vector a_0-g_0 from the 
inertial frame to the local frame. 
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14.8.6 Constrained Motion 

In general, each body in a multibody system has six coordinates or degrees of freedom, three translational 
and three rotational. Thus, a multibody system consisting of n bodies will have 6n degrees of freedom. 
However, the motion of bodies in a multibody system is often constrained by couplings such as 
mechanical joints between bodies. In theory such constraints can be expressed as algebraic equations 
relating state variables from both bodies connected by the joint in addition to the usual set of equations of 
motion. 

However, because of these constraints our "standard" state variables are no longer independent. For 
reasons of computational effectiveness and numerical stability as well as mathematical conciseness, it is in 
practice usually a good strategy to express the variables as functions of a number of "generalized 
coordinates" or variables, where the number corresponds to the actual number of degrees of freedom for a 
multibody system. 

For example, consider a small multibody subsystem consisting of two bodies. This system has 6 • 2 = 12 
degrees of freedom when each part can move independently. However, consider a system of two bodies 
connected via a revolute joint as depicted in Figure 14-36. Part 2 can move only according to one 
rotational degree of freedom relative to part 1, which gives a total of 7 degrees of freedom for this minimal 
multibody system. 

Figure 14-36. A multibody subsystem consisting of two movable parts connected via a revolute joint that 
just adds 1 degree of freedom, giving this subsystem a total of 7 degrees of freedom. The origins of frame a 
and frame b coincide. 

In the multibody system with two bodies connected by a revolute joint there is only one "generalized 
coordinate" or variable relating part 2 to part 1, namely the angle (p. All the rest is fixed. We place the 
origins of frame a and frame b at the same point, giving: 

(14-175) 

where we use the notation from Section 14.8.5.2, page 781. The placement of the origins at the same point 
considerably simplifies equations (14-150), (14-151), and (14-152), which appear as below in 
simplified form: 

° a \ / °b 

X2 Frame b 

Inertial 
frame o\ ^ Xj 

rS=r0° 

Ki =o 
v i = 0 
Ki = o 
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®» = s„ , . ( I ' + s ; , ) 

ft = S_„7 ' ft 

. . . . (14-176) 
tt* =Sr W • (»" +<5°, + <T x « ° ; ) 

f 4 = S , e ; - f 

T 4 = S „ , . f * 

The above equations appear in the Modelica class Revolute that belongs to the Joint sublibrary of 
the old ModelicaAdditions MBS library: 

r_rela = zeros(3); 
v_rela = zeros(3); 
a_rela = zeros(3); 
rOb = rOa; 
vb = S_rel*va; 
wb = S_rel*(wa + w_rela); 
ab = S_rel*aa; 
zb = S_rel*(za + z_rela + cross(wa, w_rela)); 
fa = transpose(S_rel)*fb; 
ta = transpose(S_rel)*tb; 

wherez = co and (Sre l)~ l = (SrW)T. Corresponding, but slightly different equations appear in the current 
MBS library in Modelica .Mechanics .MultiBody. Joints. Internal. Revolute. The relative 
rotation vector (0a

rel is determined by the relative angle (p between the two frames and a unit vector n a that 
defines the axis of rotation: 

< i = < P ' * a
 ( 1 4 _ 1 7 7 ) 

As previously, the relative rotation matrix Srei transforms a vector expressed in frame a to frame b: 

s r e , = ( s V - s " 0 4 - 1 7 8 ) 

If the angle <p=0 the frames will coincide completely and Sre/ becomes the identity matrix. The relative 
rotation matrix can be expressed in terms of the angle (p and the normal vector for the rotation axis: 

s r e / = r . ( r ) T + ( E - r . ( r ) T ) . c o s ( ^ - ^ 0 ) - N f l . s i n ( ^ - ^ 0 ) (14-179) 

where E is the identity matrix, q>o is a rotation angle offset (usually selected to be zero), and N a is the 
skew matrix of n a . In the class ModelicaAdditions .MultiBody .Revolute of the old MBS library 
this appears approximately as: 

qq = q - q0*PI/180; 
S_rel = [nn]^transpose([nn]) + (identity(3)-[nn]^transpose([nn]))*cos(qq) -

skew(nn)*sin(qq); 
where the angles q and qq are in radians and the parameter offset angle qO_is measured in degrees. The column 
matrix [nn] derived from the vector nn represents n° . The skew matrix N a is represented by skew (nn). 

Let us derive the above equation (14-179) for the relative rotation matrix defined by a given normal 
vector n a and a relative angle <p , where we temporarily ignore <p0. By the definition of relative rotation 
the position r ^ of point b is obtained by rotating point a: 

rb = Srel -f" (14-180) 
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The vectors rh and ra are depicted in Figure 14-37: 

Figure 14-37. Vectors and angles related to a revolute joint. 

We can also express r b by adding the relative vector Ar : 

r4 = Ar + r " (14"181> 

The A r vector can always be represented as a sum of two orthogonal vectors h2 and ht: 

Ar = h2 + h| 04-182) 

The radius of rotation h can be calculated as follows: 

h = |r a | • sin(a) = |n131 • \ra | • sin ( a ) = |na x r ° | (14-183) 

By construction (cross product) ht is orthogonal to both na and its direction is given by the unit vector 
n° x ra /|na x r a | . The length jhjj can be found from the right-angled triangle BCH as h• sin(^). By 
combining the relations for the direction and length we obtain: 

h i = " | • h • sin{(p) = (n* x r° )• sin(^>) 
na xr a ' 

(14-184) 

_ Similarly, vector h2is orthogonal to both n° and h,, which are orthogonal to each other. The length 
|h2| is given by: 

|h21 = h - h • cos (q>) = h • (l - cos(p)) (14-185) 

Therefore h2is given by: 

h2 = g ' x ^ ' x f ' ) - * - ( l - c o g ( y ) ) = r x ( r x r ° ) ( l - cos (^ ) ) (14-186) 

At this point, we need to recall the relations for a skew matrix N° , for any vector a": 

na x a = N° a 
,\T N ° = - ( N " ) T 

Let us now summarize the relations derived so far: 

rb = r ° + A r = r a + h 1 + h 2 

h, =(n° x r a ) sin(^) = N° -ra sin(^) 

h2 = n° x(na x r f l ) - ( l - cos (p ) ) = N a • N° • r° • ( l -cos (^) ) 

(14-187) 

(14-188) 
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By combining the three equations above we obtain: 

r* = N a - r sin(^) + N" -N a ( l -cos(?>))+F ( 1 4 1 g 9 ) 

= (n" -sin(^) + N° -N a - ( l - cos (^ ) )+E) r f l 

The term in front of ra is the relative rotation matrix Srel. To derive the relation (14-179) used in 
the MBS library we just need to utilize the fact that for a unit vector r = l t h e relation below can be 
verified: 

N* -N* = (n°y - E (14-19°) 

We substitute (14-190) into (14-189) and obtain the desired relation (14-179) apart from the 
positive sign on sin(^?) caused by the opposite angle direction of <p in this derivation: 

Sre/ = N* • sin(<p) + (n° • (na)T - E) • (l - cos(p))+ E 

= N a -sm(<p) + na • (na)T - E - n a ( r )T .cos(p) + E-cos(p) + E (14-191) 

= n a ' ( r )T + (E - n0 • (n" ) T ) • cos(^) + Nfl • sin(^) 

The correct formula is as follows, after substitution <p—><p—(p0 (the last term should be negative): 

Srel = na .(n*)T + ( E - n * . ( n f l ) T ) - c o s ( ^ - p 0 ) - N * - s i n ^ - ^ ) (14-192) 

14.9 Summary 

This chapter presents an overview of a selection of well-known laws of nature, starting with energy 
conservation, in order to provide an easily accessible physics background to the equations found in many 
Modelica examples in this book and in a number of Modelica libraries. 

We started by describing the law of conservation of energy (or of charge, mass, etc.), followed by a 
table of energy carriers and quantities for a selection of common application domains. After this 
introduction we presented sets of basic equations relating to the following domains: analog electrical 
circuits; one-dimensional mechanical systems—both translational and rotational; flow systems including 
some hydraulics; simple thermal systems with phenomena such as conduction, convection, and radiation; 
basic thermodynamics with the notions of systems and control volumes, equilibrium, work, heat, 
conservation of energy, but excluding entropy and the second law of thermodynamics due to limited space 
in this book; and finally multibody systems, that is, three-dimensional mechanical systems consisting of 
rigid bodies, reference frames and coordinate systems, coordinate transformations, and equations for 
constrained motion e.g. in mechanical joints. 

14.9.1 Literature 

This chapter presents some of the basic laws of nature described as equations. A very comprehensive 
overview of equations and mathematical models of diverse areas of physics and engineering is given in 
(Thomas 1999), whereas a short overview of common relations is presented in (Ljung and Glad 1994). The 
book (Shabana 1998) gives a comprehensive presentation of most aspects of multi-body systems, 
regarding both rigid and flexible bodies. Further reading is also available in (Pfeiffer and Glocker 1996). 
Some multi-body system relations, especially relevant for the Modelica multibody system library to be 
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presented in Chapter 15, are briefly presented in (Otter 1995; Otter, Elmqvist, and Cellier 1996). Further 
reading on rotational mechanics, especially rotor dynamics, is available in (Olsson and Wettergren 2000). 
The basic relations in thermodynamics, with many engineering examples, are given in (Potter and 
Somerton 1993), whereas further reading on thermodynamics, heat, and flow, is available in (Fuchs 1996; 
Holman 1997). Basic relations in biochemistry are described in (Voit 2000). Biological pathways in 
biochemistry are discussed in (Michael 1999; SBML 2003). 
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Chapter 15 

Application Examples 

This chapter contains a number of examples of Modelica models from a wide range of application areas. 
The idea is to illustrate the modeling power of Modelica, as well as helping the reader to get started in his 
or her special area of interest. The following applications or areas are covered: 

• Mechatronic systems—illustrated by a DC-motor model. 
• Thermodynamic systems—an air-filled generic control volume representing a gas turbine or pump. 
• Chemical reactions—a simple hydrogen-iodine reaction. 
• Biological and ecological systems—population dynamics and energy forest models. 
• Economic systems—Keynesian national economy. 
• Internet communication—TCP packet communication protocols. 
• Design optimization—improving the response of a linear actuator. 
• Fourier analysis of simulation data—vibrations in a rotating weak axis. 
• Solving wave equations by discretized PDEs—pressure dynamics in ID ducts. 
• Mechanical multibody systems—overview and 3D pendulum examples. 
• Employing CAD systems for designing mechanical Modelica models. 

Three of these sections are a bit special since they convey more than just an application example from a 
particular area: 

• The mechatronic DC-motor example is one of the simplest cases of multidomain systems—in this 
case combining electrical and mechanical parts. 

• The thermodynamic example illustrates bottom-up development of a model which eventually 
becomes a small library, starting from a very simple model and gradually adding more details. 

• The multibody section gives a general introduction to the Modelica multibody system (MBS) 
library, apart from showing a number of examples. 

In addition to the above, some application examples are presented in other chapters of this book. For 
example, several examples related to discrete-event, hybrid, or real-time application models are shown in 
Chapter 13. The following is a partial list of examples in other chapters: 

• Moon lander—Section 3.4, page 82, and Section 4.1.9, page 143. 
• Compliant ID translational coupling—Section 5.4.2, page 196. 
• Oscillating mass connected to a spring—Section 5.4.4, page 199. 
• Partial DC motor for hierarchical embedding—Section 5.7.1, page 208. 
• Circuit board with environment heat interaction—Section 5.8.2, page 226. 
• Gravitational force fields with implicit interaction—Section 5.8.3, page 228. 
• Tank system—Section 12.2, page 570. 

793 
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• Modeling a DC motor servo from predefined components—Section 12.3, page 578. 
• Clocked and unclocked synchronized counters—Section 13.2.6.6, page 618. 
• Clocked and unclocked sampled systems—Section 13.3.1, page 625. 
• Clocked and unclocked discrete state space sampled systems—Section 13.3.1.5, page 632. 
• Clocked and unclocked two-rate sampled systems—Section 13.3.1.7, page 634. 
• Clocked, unclocked, and state machine versions of watchdog system—Section 13.3.2.4, page 644. 
• Clocked and unclocked finite state automata and state machine examples—Section 13.3.2, page 

635. 
• The game of 1 ife—Section 13.3.3.1, page 652. 
• Clocked and unclocked server with queue—Section 13.3.4.2, page 655. 
• Clocked and unclocked DEVS job shop model—Section 13.3.5.1, page 660. 
• A three-server pipeline—Section 13.3.5.2, page 664. 
• Petri-net-style job shop model—Section 13.3.6.6, page 672. 
• Hybrid tank model with clocked and unclocked discrete controller—Section 13.4.1, page 676. 
• DC motor transmission with elastic backlash—Section 13.4.2, page 682. 
• Dining philosophers—Section 13.5.1, page 688. 
• Clocked controller and plant—controlled mass model—Section 13.6.1, page 694. 
• Clocked PI controller—Section 13.6.5, page 699. 
• State event or interrupt driven clocked model—Section 13.6.7.5, page 704. 
• Subsampling, supersampling, shiftsampling, backsampling models—Section 13.6.9, page 707. 
• ControlledMass clock partitioning example model—Section 13.6.13.2, page 717. 
• Clocked PI controller with own choice of solver method—Section 13.6.15.3, page 724. 

We start the application examples in this chapter with a simple mechatronic multidomain system, since 
combining parts from different application domains is one of the strong points of Modelica that we would 
like to illustrate. 

15.1 Mechatronic Systems—A DC Motor 

The term mechatronic is commonly used for systems consisting of both mechanical and electrical parts, 
i.e., a special kind of multidomain system. An electric motor is a common example of such a system, and a 
DC motor (DC = direct current) is the simplest kind of electrical motor. Before continuing, we would like 
to point out that some of the components and connector interfaces used in the DC motor model are 
discussed in some detail in Chapter 5, Section 5.6, page 207. 

Modeling a DC motor illustrates the ease of constructing multidomain models in Modelica simply by 
connecting components from different domains. This particular model contains components from three 
domains: mechanical components such as inertial, the electrical components resistorl, 
inductorl, signalVoltagel, and groundl, as well as pure signal components such as stepl (see 
16.6.1.6, page 934). 
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Figure 15-1. A multidomain DCMotorCircuit model with mechanical, electrical, and signal block 
components. 

The DCMotorCircuit class is declared below. As usual, each component in the model is declared as a 
variable, and connections are represented by connect statements. What is different from previous examples is 
that certain connections couple components from different domains, for example, the signal block stepl is 
connected to the electrical component signaivoltagel and the electrical component emf 1 is connected to 
the mechanical component inertial. The model parameters are defined in the subsystems and given 
default unity values, including the moment of intertia J in Intertia, the coefficient k in EMF, the resistance 
R in Resistor, the inductance L in Inductor, and the step input signal parameters in Step. 

model DCMotorCircuit 
Inertia inertial; 
Inductor inductor1; 
Resistor resistorl; 
Ground groundl; 
EMF emf1; 
Step stepl(startTime=l.0); 
SignalVoltage signaivoltagel; 

equation 
connect(stepl.y, signaivoltagel.voltage); 
connect(signaivoltagel.n, 
connect(resistorl.n, 
connect(signaivoltagel.p, 
connect(groundl.p, 
connect(inductor1.n, 
connect(emf1.rotFlange_b, 

end DCMotorCircuit; 

resistorl.p); 
inductorl.p); 
groundl.p); 
emf1.n); 
emfl.p); 
inertial.rotFlange_a); 

To avoid confusion with the translational Flange a connector class, we have renamed the rotational 
flange connector class to be called RotFlange_a in this example, even though it is called Flange a in 
the Mechanics.Rotational,interfaces library. Connectors have the same names as their classes 
apart from the first letter being lowercase, and a number being appended at the end. 

In the following we present the DCMotorCircuit model including its parts and used classes in 
roughly a top-down manner, with the most interesting parts first. This gives the best overview and is also 
fine from a Modelica language point of view since classes can be used before they are defined. 

15.1.1 Physics of the DCMotorCircuit 

The combination of the stepl and signaivoltagel components is a voltage generator that feeds a step 
voltage into the rest of the circuit. The components resistorl and inductorl represent the resistance 
and inductance respectively in the DC motor coil. 

[] res i s tor l inductorl 

* I — 1 ? e m f l _ Q " - J /" A _L PWWi J. 
J — I s i g n a l V o l t a g e l k z ^ ^ ^ t i 

s t e P 1 " | inertial 

^ g r o u n d l 
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The instance emf 1 of class EMF (electromotive force) is probably the most interesting component in the 
circuit since it converts electrical energy to mechanical rotational energy. This class is an idealized model 
of the most important properties of a voltage-to-rotation converter excluding resistance, inductance, and 
inertia. 

The three most important equations of the EMF class are given below, first in mathematical syntax and 
then in Modelica syntax. 

The rotational speed w is proportional to the voltage v according to the equation k*w=v. The torque 
tau is proportional to the current i through the coil according to the equation rotFlange_b.tau=-k*i, 
where k is the transformation coeficient. The rotational speed w is of course equal to the derivative of the 
rotation angle phi. The emf 1 component has Pin-type connectors that transmit voltage v and current i, 
and a rot Flange b connector that transmits absolute angle phi and torque tau. 

k*w = v; // Equations from class EMF 
rotFlange_b.tau = -k*i; // Electrical: voltage v, current i 
w = dor(rotFlange_b.phi); // Mechanical: angle phi, rotational speed w 
The component inertial represents the total inertia of the rotating coil and shaft of the motor 

together with the connected rotating load. The angular acceleration a is of course equal to the derivative 
of the angular velocity w, and the sum of the torques through the flanges is equal to J*a, where J is 
the moment of inertia of the total rotating mass. Two equations inherited from the class 
MechanicsRotational. Interfaces. PartialRigid (shown in Section 15.1.2 below) simply sets the 
rotation angle phi equal to the rotation angles of the flanges. 

The equations in mathematical syntax, with connectors rotFlange a and rotFlange b indicated by 
suffixes a and b: 

kco = v 

Tb = ~ k i 

co = <pb 

(15-1) 

co=(p 

a-oo 

J-a=Ta+% (15-2) 

<Pa=<P 

®=<P 

The equations in Modelica syntax are: 

w = der(phi); , 
a = der (w) ; 

// Equations from class Inertia 

J*a = rotFlange_a.tau + rotFlange_b.tau; 
rotFlange_a.phi = phi; // Equations inherited from class PartialRigid 
rotFlange_b.phi = phi; 

15.1.2 DCMotorCircuit Component Classes 

The DCMotorCircuit model contains instances of mechanical, electrical, and signal classes, which are 
declared below. 
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15.1.2.1 Mechanical Component Classes: Inertia, PartialRigid 
The inertia class models the behavior of rotating masses. It inherits some properties from the base class 
PartialRigid, first mentioned in Section 5.4.4, page 199. 

model Inertia "ID-rotational component with inertia" 
extends PartialRigid; 
parameter MomentOfInertia J=1 "Moment of inertia"; 
AngularVelocity w "Absolute angular velocity of component"; 
AngularAcceleration a "Absolute angular acceleration of component"; 

equation 
w = der(phi); 
a = der (w) ; 
J*a = rotFlange_a.tau + rotFlange_b.tau; 

end Inertia; // From Mechanics.Rotational 
partial model PartialRigid // Rotational class PartialRigid 

"Base class for the rigid connection of two rotational ID flanges" 
Angle phi "Absolute rotation angle of component"; 
RotFlange_a rotFlange_a"(left) driving flange (axis directed into plane)"; 
RotFlange_b rotFlange_b "(right) driven flange (axis directed out 

of plane)"; 
equation 
rotFlange_a.phi = phi; 
rotFlange_b.phi = phi; 

end Rigid; // Adapted From Mechanics.Rotational.Interfaces 

15.1.2.2 Electrical Component Classes: EMF, TwoPin, Resistor, Inductor, Ground 
The EMF class below converts electrical energy to rotational mechanical energy. The physics of this class 
was briefly presented above in the section on the physics of the DCMotorCircuit. The rest of the 
declared classes are the usual simple electrical components, which are presented once more for 
completeness. 

model EMF "Electromotoric force (electric/mechanic transformer)" 
parameter Real k(unit="N.m/A") = 1 "Transformation coefficient"; 
Voltage v "Voltage drop between the two pins"; 
Current i "Current flowing from positive to negative pin"; 
AngularVelocity w "Angular velocity of rotFlange_b"; 
PositivePin p; 
NegativePin n; 
RotFlange_b rotFlange_b; // rotational Flange_b 

equation 
v = p. v - n.v; 
0 = p.i + n.i; 
1 = p.i; 
w = der(rotFlange_b.phi); 
k*w = v; 
rotFlange_b.tau = -k*i; 

end EMF; // From Modelica.Electrical.Analog.Basic 
partial model TwoPin // Same as OnePort in Electrical.Analog.Interfaces 

"Component with two electrical pins p and n and current i from p to n" 
Voltage v "Voltage drop between the two pins (= p.v - n.v)"; 
Current i "Current flowing from pin p to pin n"; 
PositivePin p; 
NegativePin n; 

equation 
v = p.v - n.v; 
0 = p . i + n . i ; 
1 = p.i; 
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end TwoPin; // From Modelica.Electrical.Analog.Interfaces 
model Resistor "Ideal linear electrical resistor" 

extends TwoPin; // Same as OnePort 
parameter Resistance R=1 "Resistance"; 

equation 
R*i = v; 

end Resistor; // From Modelica.Electrical.Analog.Basic 
model Inductor "Ideal linear electrical inductor" 

extends TwoPin; // Same as OnePort 
parameter Inductance L=1 "Inductance"; 

equation 
L*der(i) = v; 

end Inductor; // From Modelica.Electrical.Analog.Basic 
model Ground "Ground node" 

Pin p; 
equation 
p.v = 0; 

end Ground; // From Modelica.Electrical.Analog.Basic 

15.1.2.3 Signal and Signal Voltage Classes: SignalVoltage, SO, Step 
The SignalVoltage class converts an input signal to a voltage. This is used in the DCMotorCircuit to 
convert a step signal generated by the stepl instance of the simplified Step class below to a step voltage. 
The partial class SO is simply a base class inherited by Step. 

model SignalVoltage 
"Generic voltage source using the input signal as source voltage" 
extends TwoPin; // Same as OnePort 
RealInput u; 

equation 
u = v; 

end SignalVoltage; // From Modelica.Electrical.Analog.Sources 

partial block SO "Single Output, continuous control block" 
extends Blocklcon; 
output RealOutput y; 

end SO; //from Modelica.Blocks.Interfaces 
block Step "Generate step signals of type Real" 

extends SO; 
parameter Real height=l "Height of steps"; 
parameter Real offset=0 "Offset of output signals"; 
parameter Time startTime =0 "Output = offset for time < startTime"; 

equation 
y = offset + (if time < startTime then 0 else height); 

end Step; 

15.1.3 DCMotorCircuit Connector Classes 

The connector classes used by the DCMotorCircuit are declared below, in the order mechanical, 
electrical, and signal (causal) connector classes. All except the mechanical ones have already been 
described in detail. The mechanical connector classes RotFlange a and RotFlange b are used for 
rotational mechanical couplings, e.g. between shafts in drive trains. As mentioned above, they have been 
renamed compared to their original names Flange a and Flange b in the ID rotational Modelica 
standard library called Modelica.Mechanical .Rotational. Interfaces in order to prevent 
confusion when compared to the translational flange classes with the same names used previously in this 
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chapter. The rotational flanges contain the potential variable phi for the absolute rotation angle of the 
flange, and the flow variable tau for the torque transmitted by the flange. 

15.1.3.1 Mechanical Connector Classes: RotFlange_a, RotFlange_b 
connector RotFlange_a "ID rotational flange (filled square)" 
Angle phi "Absolute rotation angle of flange"; 
flow Torque tau "Torque in the flange"; 

end RotFlange_a; // from Modelica.Mechanical.Rotational.Interfaces 
connector RotFlange_b "ID rotational flange (non-filled square)" 
Angle phi "Absolute rotation angle of flange"; 
flow Torque tau "Torque in the flange"; 

end RotFlange_b; // from Modelica.Mechanical.Rotational.Interfaces 

15.1.3.2 Electrical Connector Classes: PositivePin, NegativePin, Pin 
connector PositivePin "Positive pin of an electric component" 
Voltage v "Potential at the pin"; 
flow Current i "Current flowing into the pin"; 

end PositivePin; // From Modelica.Electrical.Analog.Interfaces 
connector NegativePin "Negative pin of an electric component" 
Voltage v "Potential at the pin"; 
flow Current i "Current flowing into the pin"; 

end NegativePin; // From Modelica.Electrical.Analog.Interfaces 
connector Pin "Pin of an electrical component" 
Voltage v "Potential at the pin"; 
flow Current i "Current flowing into the pin"; 

end Pin; // From Modelica.Electrical.Analog.Interfaces 

15.1.3.3 Block/Signal Connector Classes: Reallnput, RealOutput 
These are almost identical (slightly simplified) versions of the connector classes from the library 
Modelica.Blocks.Interfaces: 

connector Reallnput = input Real "Connector with input signals of type Real" 
// from Modelica.Blocks.Interfaces 
connector RealOutput = output Real "Connector with output signals of Real" 
// from Modelica.Blocks.Interfaces 

15.1.4 Types from Modelica.Slunits 

The following are the different types from the library Modelica. Slunits used by the DCMotorCircuit 
model. All 450 SI units are available in Modelica. Slunits. 

// Electrical units 
type ElectricPotential = Real; 
type ElectricCurrent = Real (quantity="Electric'Current", unit="A"); 
type Resistance = Real(quantity="Resistance", unit="Ohm", min=0); 
type Inductance = Real(quantity="Inductance", unit="H", min=0); 
type Voltage = ElectricPotential ; 
type Current = ElectricCurrent ; 
// Mechanical units 
type Force = Real(quantity="Force", unit="N"); 
type Angle = Real(quantity="Angle"/ unit="rad", displayUnit="deg"); 
type Torque = Real quantity="Torque", unit= "N.m"); 
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type AngularVelocity = Real(quantity="AngularVelocity", unit="rad/s", 
displayUnit="rev/min"); 

type AngularAcceleration = Real(quantity="AngularAcceleration", 
unit="rad/s2"); 

type MomentOfInertia = Real(quantity="MomentOfInertia", unit="kg.m2"); 

// Other units 
type Length = Real(quantity="Length", unit="m" ); 
type Time = Real(quantity="Time", unit="s" ); 
type Distance = Length(min=0); 
type Position = Length; 

15.1.5 DCMotorCircuit Simulation 

Finally we simulate the DCMotorCircuit model and plot a few of its variables (Figure 15-2). 

simulate(DCMotorCircuit,stopTime=25); plot({stepl.y,inertial.flange_a.tau}) 

15.2 Thermodynamics—An Air-filled Control Volume Interacting with 
Subsystems 

In this section, we develop a model of a macroscopic thermodynamic system in a bottom-up way, starting 
from the basic notions and equations as defined in Section 14.7, page 759, gradually adding additional 
equations to the example system model. In this way the model becomes increasingly realistic in the 
physical sense. The model also becomes more well-structured, since the first versions of the model are 
without explicit interfaces in the form of connectors which are added after a few design iterations. When 
connectors have been added it is possible to define the system model by connecting model instances of its 
constituent parts. 

The example model illustrates many aspects of the dynamics of thermodynamic systems with relation 
to conservation of energy and mass, modeling control volumes, decomposition into subsystems, and 
interaction between subsystems. However, readers without a strong background in thermodynamics are 
advised to study Section 14.7 before continuing. Even for readers well acquainted with thermodynamics it 
can be useful to take a quick look at that section since many of the equations used in this example are 
developed into the mathematical form they appear in the examples. 

The bottom-up design approach used to develop this example is also a good example on how to 
approach modeling in an application area without a finished model library, notwithstanding the fact that 
there already exist Modelica libraries in this area. In the last example (Section 15.2.6, page 825) we 
actually use a few components from the Modelica.Thermal library, and in the example of Section 
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Figure 15-2. DCMotorCircuit simulation with plot of input signal voltage step and the flange angle. 
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15.2.5.7, page 822, a model from Modelica.Mechanics .Translational. We basically use the 
following strategy: 

1. Study the system to identify components and physical relationships. 
2. Model and simulate each kind of component using the simplest relationships. 
3. Put the components together into a complete system. 
4. Add additional relationships to make the models more realistic. Simulate the models to gain 

experience. 
5. When you have got a basic understanding of the application area including standard components 

and interactions between those components, try to identify standard interfaces and define connector 
classes for those interfaces. 

6. Restructure your model using connectors and connections between the components. 
7. Evaluate the result. Are the interfaces general enough but still simple to use? Do they capture the 

needed interaction between the components? If there are problems, go back to step 5 for a redesign, 
followed by step 6 and 7. It can be tricky to get the connector and subsystem design right the first 
time. 

We will now take a quick look at the example system. 

15.2.1 An Example System 

Our thermodynamic example system with its components is schematically depicted in Figure 15-3. 

Figure 15-3. A thermodynamic example system with the following subsystems: control volume, reservoirs, 
and valves. The basic control volume model is extended and used in two different applications: the first 
variant develops the model into a pneumatic cylinder with a piston, the second reuses the model in a room 
with a fan to demonstrate heat transfer and dissipation. 

The central part of the system is a control volume. Substance in the form of liquid or gas—in our case 
air—can flow from a reservoir via an inlet pipe with a valve into the control volume. There is also an 
outlet pipe attached to another valve and reservoir. These flows are useful for modeling mass flows into 
and out of a control volume. The basic version of the control volume is kept flexible to use it in two 
different models later on: 

1. A model of a pneumatic cylinder with a variable size control volume. 
2. A model of a room in a building with a fan. 
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In both cases we assume that the air in the control volume follows the equation of state for an ideal gas. 
We start by presenting the simplest possible model of a control volume and gradually add additional 
equations as well as other details. 

where P is the pressure, F is the volume of the control volume, m is the mass, R is the gas constant for the 
particular gas—not the universal gas constant, and T is the temperature. 

In Modelica syntax the ideal gas law appears as follows, to be inserted into the BasicVolume 
Modelica model: 

P*V=m*R*T 
Our simplified control volume is schematically depicted in Figure 15-4. 

Figure 15-4. A simplified control volume containing air modeled as an ideal gas with the quantities pressure 
P, volume V, temperature T, and mass m. 

The Modelica code for our first simple version of the control volume is given in the BasicVolume 
model below. The complete equation of state for an ideal gas appears in this model. However, the 
"boundary conditions" are very simplistic and restrictive, restricting all variables except the pressure P to 
constant values. Our control volume contains 1 liter of air with a mass of 0.00119 kg at the constant 
temperature of 20 degrees Celsius, i.e., 293 degrees Kelvin. 

It is possible to make the model somewhat more readable and descriptive by using some of the 
common "physical types" defined in the Modelica standard library Slunits as subtypes of Real. 

package Slunits 
type Mass = Real(final quantity="Mass", final unit="kg", min=0); 
type Pressure = Real(final quantity="Pressure", 

final unit="Pa", displayUnit="bar"); 
type Volume = Real(final quantity="Volume", final unit="m3"); 

Using such type definitions gives the following advantages: 

• More understandable code. 
• Constraint values are defined for attributes such as min, max and quantity, which can be used for 

additional consistency checking. 
• Unit attributes specific to the physical type are defined 

This is a simple BasicVolume model using physical types to declare its variables: 

model BasicVolume "First version with physical types" 
parameter Real R = 287; 
Modelica.Slunits.Pressure P; 
Modelica.Slunits.Volume V; 

15.2.2 Control Volume Model 

Recall the equation of state for an ideal gas, previously presented as equation (14-58) on page 762: 

(15-3) P V -m-R-T 
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Modelica.Slunits.Mass m; 
Modelica.Slunits.Temperature T; 

equation // "Boundary" conditions 
V=le-3; // volume is 1 liter 
T=293; // 20 deg Celsius 
m=0.00119; // mass of 1 liter air at K=293 
// Equation of state (ideal gas) 
P*V=m*R*T; 

end BasicVolume; 

15.2.3 Conservation of Mass in Control Volume 

The next step is to make the boundary conditions somewhat more flexible and realistic by allowing 
varying inflow and outflow of gas. The principle of conservation of mass, previously stated as (14-77) 
on page 767, gives a mass balance equation: 

dm 
~dt~ 

(15-4) 

where dm!dt is the net change rate of mass in the control volume, min is the inflow rate of mass, and 
mmt is the outflow of mass from the control volume. These variables appear as der (m), m_f low in, and 
m_f low out in the Modelica syntax version of the mass balance equation: 

der(m)=m_flow_in-m_flow_out; 
The control volume with varying mass flows is depicted in Figure 15-5 below: 

/ 

Figure 15-5. The simplistic control volume with varying mass flows added. 

In this version of the BasicVolume model we specify a start attribute for the mass m instead of an 
equation. This allows the mass to vary during the simulation. We have also added the mass flow variables 
m_f low in and m flow out as well as three new equations - the inflow of mass, the outflow of mass, 
and the mass balance equation (15-4). 

In the following, all changed lines or parts of lines in the model classes compared to the previous 
versions (as well as Modelica keywords as usual) are marked with bold-face and the comment / /Added. 

model BasicVolume "Conservation of Mass" 
import Modelica.Slunits.*; 
parameter SpecificHeatCapacity R = 287; 
Pressure 
Volume 
Mass 
Temperature 
Mas sFlowRate 
MassFlowRate 

equation 
// Boundary conditions 
V=le-3; 

P; 
V; 
m(start=0.00119); 
T; 
m_flow_in; 
m flow out; 

// Added: start value 

/ / 
/ / 

Added: mass inflow 
Added: mass outflow 
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T=2 93; 
m_flow_in=0.le-3 ; 
m_flow_out=0.01e-3; 
// Conservation of mass 
der(m) = m_f low_in - m_f 1 ow_out ; 
// Equation of state (ideal gas) 
P*V = m*R*T; 

end BasicVolume; 

// Added! 
// Added! 

// Added! 

We simulate and plot: 

simulate(BasicVolume, stopTime=l); 
plot(m); plot(P); 

Figure 15-6. Plots of mass m and pressure P for the simplistic control volume with constant inflow, constant 
outflow, and a mass balance equation added. 

Since there is a constant inflow of mass that is greater than the outflow according to the equations in 
the model (Figure 15-6), the amount of gas in the control volume as well as the pressure steadily increases. 

15.2.4 Conservation of Energy in Control Volume 

We recall the principle of conservation of energy for a control volume, abbreviated c.v., previously stated 
as equation (14-78) on page 767: 

Change of Energy Energy Net energy 

energy in c.v. = entering c.v. - leaving c.v. + transferred to c.v. (15-5) 

A £ , v . AEin AEmt AQ-AW 

where AQ is the heat energy transferred to the control volume and AW is the net total work done by the 
control volume on its surroundings. The mass flows and energy flows are schematically depicted in Figure 
15-7. 
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O W Figure 15-7. A contr<^volume with inflow ** of thermal energy and outflow e of external work and of 
external flow work 
time increment t . 

by the flowing fluid or gas into the inlet and out of the outlet, performed during a 

Also consider the fact that the total work AWT that the control volume performs on its surroundings 
during a time increment At is composed of two parts: the work due to the pressure needed to move the 
fluid or gas into and out of the control volume through the inlet and outlet pipes, sometimes called flow 
work, AWflow, and other forms of external work, A We. This can be expressed as: 

AW - AWflow+AWe (15-6) 

To simplify our presentation in the next section we will temporarily assume that both AQ and AH7 are zero. 
This approximation will shortly be removed in Section 15.2.4.2, page 807, where the corresponding terms 
are put back into the energy equation. 

15.2.4.1 Energy Flow, Internal Energy, and Enthalpy for Control Volume 
In Section 14.7.5.2, page 764, we defined an energy term called enthalpy, H\ 

H = U + P V (15-7) 

where U is the internal energy of the substance in the control volume, P is the pressure, and V is the volume. 
The change of enthalpy for a system has the physical significance in being equal to the heat added to a 
system going through a constant-pressure equilibrium process, see once more Section 14.7.5.2. The specific 
enthalpy h is a useful property of fluids and gases. Specific enthalpy is a measure for how much work can be 
extracted from the fluid, for example, in a turbine, and is obtained by dividing H by the mass m: 

H_ 
m 

(15-8) 

By using the principle of energy conservation for a control volume, and assuming that the kinetic and 
potential energy changes are negligible, we can derive (see (14-92), page 769) an equation for the 
rate of change of the internal energy of the control volume: 

^ = K < ~Kut Wout+Q-we 
(15-9) 

We will temporarily assume that there is no inflow of heat, Q- 0, and no external work, We = 0, giving: 

dU . 
— = K ™m 

Assuming that the specific heat capacity of the substance is constant within a temperature range close 
to some constant temperature T0, the specific internal energy can be expressed as follows: 
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= U_ 
U m (15-11) 

u = u0+cv(T-T0) 

where u0 is the specific internal energy at the temperature T0 and cv is the specific heat capacity of the 
substance at that temperature. 

Figure 15-8. Control volume with energy represented as internal energy U, specific internal energy u, 
enthalpy H, specific enthalpy h, as well as inflow of heat energy Q and outflow of external work We, where 
Q and We are temporarily assumed to be zero. 

We refine our previous BasicVolume model class by adding the equations (14-66), (15-8), 
(15-10), and (15-11), resulting in the new version of BasicVolume presented below. We also fix (for 
testing purposes, to be changed in a later version of the model) the specific enthalpy for the inflowing gas 
to a constant value by using the measured value hin = 300190 [J/kg] for air at T = 300 [K] - not exactly at T 
= 293 [K] but almost - and give values for the following parameters: specific internal energy uq = 209058 
[J/kg], specific heat capacity cv = 717 [J/(kg K)], and mass mo for 1 liter of air, where all three parameters 
are valid for air at the temperature T0 = 293 [K]. 

In the model below, dU !dtappears as der (U), hinas h in, min as m fiow in, houtas h out, mout 

as m flow out, etc. 

model BasicVolume 
import Modelica.Slunits.J 
parameter SpecificInternalEnergy u_0 = 209058; / / Added! 
parameter SpecificHeatCapacity c_v = 717; / / Added! 
parameter Temperature T_0 = 293; / / Added! 
parameter Mass m 0 = 0.00119; / / Added! 
parameter SpecificHeatCapacity R = 2 87; 
Pressure P; 
Volume V; 
Mass m (start=m_ .0) ; / / Added ; 
Temperature T; 
MassFlowRate m flow in, m flow out; 
Specif icEnthalpy h_in, h__out; / / Added! 
Specif icEnthalpy h; / / Added! 
Enthalpy H; / / Added! 
Specif icInternalEnergy u; / / Added! 
InternalEnergy U(start=u_ _0*m_ _0) ; / / Added! 

Air at T=293K 

equation 
// Boundary conditions 
V = le-3; 
m_flow_in = 0.1e-3; 
m flow out = 0.01e-3; 
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hJLn = 300190; 
h_out = h ; 
// Conservation of mass 
der(m) = m_flow_in-m_flow_out; 
// Conservation of energy 
der(U) = h_in*m_f1ow_in - h_out*m_flow_out; 
// Specific internal energy (ideal gas) 
u = U/m; 
u = u_0+c_v* (T-T_0) ; 
// Specific enthalpy 
H = U+P*V; 
h = H/m; 
// Equation of state (ideal gas) 
P*V = m*R*T; 

end BasicVolume; 
A simulation of the control volume model is performed below. The simulated temperature of the air as 

a function of time is depicted in Figure 15-9: 

simulate(BasicVolume, stopTime=10); 
plot(T); 

15.2.4.2 Heat Transfer and Work in Control Volume 
In this section we further refine the control volume model by taking into account heat transfer into the 
volume and work done on the surroundings by the control volume, for example, through the movement of 
the piston at the top, as shown in Figure 15-10. 

// Added: Air at T = 300K 
// Added! 

// Added! 

// Added! 
// Added! 

// Added! 
// Added! 

T 

3 4 0 -
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3 1 0 • / 
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Figure 15-9. The temperature in a control volume increases with fixed inflow of constant enthalpy air. 
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Figure 15-10. A control volume with inflow rate Q of thermal energy and external work done on the 
surroundings at the rate We consisting of f low work done by the flowing fluid or gas, and piston work done 
by the piston, as well as work done by the rotating shaft to be introduced later. 

We now return to equation (14-82) for the total work consisting of flow work, A W ^ , as well as 
other forms of external work, AWe, done during a time increment At. By dividing both sides by At and 
letting the time increment become infinitesimally small, that is, At dt, we obtain the equation for the 
corresponding power quantities, that is, work per time unit: 

W=Wflow+We (15-12) 

where Wflow is flow work per time unit done by the flowing fluid or gas, and We is work per time unit 
done by the expanding control volume to move the piston as well as work done by for example a rotating 
shaft with a fan rotor, often denoted shaft work, Ws, giving: 

W0 : W • +W ,f piston ^ " s (15-13) 

Regarding the shaft work per time unit, Ws, there are two common applications: 

• Turbines, for which Ws > 0 , that is, the flowing gas or fluid transfers energy out of the control 
volume into an external system via the shaft. 

• Compressors, including our fan rotor example, for which Ws < 0, that is, the shaft transfers energy 
into the control volume via the rotor blades. 

The shaft work is introduced here but temporarily set to zero. It will be used and redefined later when a 
shaft that can be connected to a fan rotor is added to our example control volume model; see Section 
15.2.6, page 825. 

The other part of the external work includes work done by the piston when expanding the volume of air 
an increment dV against a pressure P during a time dt, which is P dV , giving: 

W, piston 

W= 0 

PV 
(15-14) 

By some formula manipulations, previously shown in Section 14.7.5.4, page 766, we obtain the 
following form of equation [approximately (14-84), page 768, but divided by At -» 0] for the total 
power W exerted by the control volume, i.e., the work per time unit: 

W-- A 
Pin 

(15-15) 

w > 

. 1 / 1 t f 
J • 7 7 I mout 

h™ I U P I hout 

P»9p* . ^ T Pout, Pout 

r * * 

e 
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where Pin, pm and Pout, pout are the pressures and densities of the fluid or gas at the inlet pipe and outlet 
pipe of the control volume, respectively. 

That form is used in the previous (Section 15.2.4.1, page 805) derivation of the energy equation 
(15-9) for conservation of energy, where we now have put back the terms for heat f l owg , and external 
work, We: 

— = h m -h m +0-W (15-16) ,, nin min nout mout ^ n e at 

The control volume model is further refined by inserting the equations (15-14) and (15-16) 
describing work and energy balance. Furthermore, an equation for the heat flow rate Q - 0 is inserted, as 
well as an equation creating a change of the volume Fa t time t - 0.5 to illustrate the work done on the 
piston when the volume changes: 

F J 1 0 " 3 (15-17) 
[10~3(1 + / - 0 . 5 ) J > 0.5 

In the refined model below, Q is represented by Q flow, Weby W flow e, and Wsby W flow s: 
model BasicVolume 

import Modelica.Slunits.*; 
parameter SpecificInternalEnergy u_0 = 209058; // Air at T=2 93K 
parameter SpecificHeatCapacity c_v = 717; 
parameter Temperature T_0 = 2 93; 
parameter Mass m_0 = 0.00119; 
parameter SpecificHeatCapacity R = 287; 
Pressure P; 
Volume V; 
Mass m(start=m_0); 
Temperature T; 
MassFlowRate m_flow_in, m_flow_out; 
SpecificEnthalpy h_in, h_out; 
SpecificEnthalpy h; 
Enthalpy H; 
SpecificInternalEnergy u; 
InternalEnergy U(start = u_0*m_0); 
HeatFlowRate Q_flow=0; // Added! 
Power W_flow_e, W_flow_s=0; // Added! 

equation 
// Boundary conditions 
V = le-3 + 0.le-3*(if time>0.5 then time else 0); // Added part 
m_flow_in = 0.1e-3; 
m_flow_out = 0.01e-3; 
h_in = 300190; // Air at T=300K 
h_out = h; 
// Conservation of mass 
der(m)=m_flow_in - m_flow_out; 
// Conservation of energy 
der(U)=h_in*m_flow_in-h_out*m_flow_out+Q_flow-W_flow_e; // Added part 
W_flow_e - W flow s = P*der(V); // Added 
// Specific internal energy u (ideal gas) 
u=U/m; 
u=u_0 + c_v*(T-T_0); 
// Specific enthalpy h 
H=U+P*V; 
h=H/m; 
// Equation of state (ideal gas) 
P*V=m*R*T; 

end BasicVolume; 
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We simulate the model and plot the mass m and pressure P as functions of time: 

simulate(BasicVolume, stopTime=l); 
plot(m); plot(P); 
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Figure 15-11. The mass steadily increases due to a constant inflow that is greater than the constant outflow, 
whereas there is a discontinuous drop in pressure at t=0.5 due to the instantaneous change in volume at that 
time. 

We also plot the temperature T as a function of time: 

plot(m); 

15.2.5 Connector Interfaces to the Control Volume 

So far we have been increasing the realism of our control volume model by gradually adding additional equations. 
However, the model is not a system in the sense that the total amount of mass in the system is conserved. 

We need to add some external components that should interact with the control volume, that is, build a 
system model that includes the control volume model. However, a well structured system model should 
have explicit interfaces between the components of the system. The interfaces of the control volume 
should reflect interaction with the surroundings, typically involving the following quantities: 

• Mass/energy flow 
• Mechanical work 
• Heat 

Note that some variables are internal to a component, e.g. P, V, U, u, T, H, h, m, and so on, while other 
variables such asP i n , m i n , h j n , and so on, are used to exchange information at interfaces by interacting 
with the surroundings including other connected components. 

Take a look at our control volume model once more, as depicted in Figure 15-13. 
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Figure 15-12. Temperature T for the control volume. 
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Figure 15-13. The control volume model with explicit mass flow connectors added at the inlet and the 

A slight change has been made compared to the previous figures: two small squares representing mass 
flow connectors have been added at the inlet and the outlet. In this way the interfaces for mass flow 
between the control volume and the surroundings have been made explicit, thus allowing better structuring 
of systems containing the control volume. 

15.2.5.1 Mass Flow Connector Class 
In order to introduce mass flow connectors we need a connector class containing the variables that 
describe interaction at the mass flow inlets and outlets of the control volume. 

Not only mass is flowing, the flowing substance also has some energy content represented by its 
enthalpy. Moreover, the pressure influences the interactions of the flowing substance at the inlets and 
outlets. Therefore the following variables need to be included in the interface: 

• Mass flow rate m , represented by the Modelica variable m_f low. 
• Specific enthalpy h, a measure of the energy content per mass unit in the substance, represented by 

the Modelica variable h. 
• Pressure P, represented by the Modelica variable P. 

Our first attempt at a corresponding connector class for mass flow, called FlowConnector, appears as 
follows: 

connector FlowConnector "Illegal unbalanced connector, no stream connector" 
import Modelica.Slunits.*; 
Pressure P; 
flow MassFlowRate m_flow; 
SpecificEnthalpy h_outflow; 

end FlowConnector; 
However, this is an unbalanced connector class which is not allowed in Modelica 3.0 or later versions. 

For systems which never change flow direction we can split into two balanced connectors, one for inflow 
and one for outflow: 

connector FlowConnectorIn "Old connector style, incoming flow, no stream" 
Pressure P; 
flow MassFlowRate m_flow(min = 0); 
input SpecificEnthalpy h_inflow; 

end FlowConnector; 

connector FlowConnectorOut "Old connector style, outgoing flow, no stream" 
Pressure P; 
flow MassFlowRate m_flow(max = 0); 
output SpecificEnthalpy h_outflow; 

outlet. 
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end FlowConnector; 
Such classical connectors only work for models of simple systems, which do not allow arbitrary 

connections, sometimes avoid mass flows as in the above Heat Port, and do not involve reverting flows 
(i.e., changing flow direction, m_f low crossing zero). If at all used, such connectors should be used only at 
the first modeling attempt. 

When arbitrary connections might be needed, there is a risk of reverting flows, or a general and 
numerically robust model is desired, a stream connector version of the FlowConnector should be used as 
defined below. 

See Section 5.10.3, page 247, for a comparison of stream connectors to classical connectors and why 
stream connectors are needed for general and reliable flow modeling in thermo-fluid applications. 

In stream connector classes additional variables with the prefix stream are introduced (Section 5.10.2, 
page 247), so-called stream variables. These variables are used for additional properties of the flowing 
mass, which are carried with the flow, e.g., enthalpy/energy and chemical composition. 

In fact, specific enthalpy is neither a potential nor a flow variable. It expresses the heat content of the 
fluid. The heat is transferred by convection as fluid flows through the connector. Stream variables for such 
properties that are transported with flows. 

In thermo-fluid applications the flow variable usually specifies a mass flow. The potential variable is 
usually the pressure. At connection points, the flowing mass from several connected elements is mixed 
(Figure 5-51, page 247). 

The stream variable h outflow (specific enthalpy flow) is a stream property inside the component 
close to the component boundary at the connection point, assuming that matter flows out of the component 
into the connection point/volume. In other words, it is the value the carried quantity/property would have if 
the fluid was flowing out of the connector, irrespective of the actual flow direction. 

Two built-in operators are available that can be applied to stream variables: 
• A built-in operator inStr earn (c.v), which when applied to a stream variable c.v in a stream 

connector c, returns its value close to the connection point for c provided that the associated mass 
flow is positive in the direction into the component. 

• A built-in operator actualStream (c.v), which when applied to a stream variable c. v returns its 
value close to the connection point for c regardless of the direction of the associated mass flow 
c .m_f low. 

The operator actualStream (c.v) = if c.m_flow > 0 then inStream(c.v) else c.v, where 
c.v belongs to the same connector c as the mass flow variable c.m flow. That operator is quite 
convenient since it works irrespective of the flow direction. 

An improved version of the flow connector defined as a stream connector (Section 5.10, page 245) 
appears as follows. This is the recommended connector style. 

connector FlowConnector "Stream connector style" 
import Modelica.Slunits.*; 
Pressure P; 
flow MassFlowRate m_flow; 
stream SpecificEnthalpy h_outflow; 

end FlowConnector; 
To allow consistent signs at connections we also need the sign convention for flow variables in 

connector class instances that belong to a model component: 

• Sign convention: positive flow is into a component. 

It should be pointed out that this definition of a connector only allows one-directional flows, that is, the 
flow at such an interface may not change its direction during simulation. 
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15.2.5.2 Basic Control Volume with Mass Flow Connectors and Separate Ideal Gas Model 
In order to create a control volume model with mass flow connectors, the new connectors inlet and 
outlet have been added to the control volume model below together with equations relating the internal 
variables in the control volume to the interface variables in the new connectors. Note that the sign 
convention for flow variables in connectors is apparent in the following equation: 

m_flow_out = -outlet,m_flow; 
The reason for the minus sign is that the flow direction for variables in a connector, for example, outlet, 
is always into the component to which it is attached, whereas positive values of the variable m_f low out 
means flow out o/ the control volume. 

In order to improve the modularity and reusability of the model we are also going to separate the 
equations which are specific to the assumption of ideal gas from the other thermodynamic equations. Easy 
replacement of the physical property model requires more elaborate schemes, but this separation gives an 
idea what kind of decisions help in making a model more reusable. This form of the ideal gas model is 
slightly modified compared to the equations before, because we want to make the model independent from 
the mass and volume of the control volume. We introduce the specific volume, v : 

V 
v = — (15-18) 

m 

which is used in the ideal gas law in the model below: 

partial model IdealGas "Property model for a simple ideal gas" 
import Modelica.Slunits.*; 
parameter SpecificInternalEnergy u_0=209058; // Air at T=293K 
parameter SpecificHeatCapacity c_v = 717; 
parameter SpecificHeatCapacity R = 287; 
parameter Temperature T_0 = 2 93; 
Pressure P; 
SpecificVolume v; 
Temperature T; 
SpecificInternalEnergy u; 

equation 
u=u_0+c_v*(T-T_0); // Linear model for inner energy 
P*v=R*T; // Equation of state: ideal gas 

end IdealGas; 
Below is a first preliminary version of BasicVolume using classical flow connectors. 

partial model BasicVolumeFirst "Control Volume with Mass Flow Interfaces 
old version without stream connectors" 

import Modelica.Slunits.*; 
extends IdealGas; // Added! 
FlowConnectorln inlet; // Added! 
FlowConnectorOut outlet; // Added! 
parameter Mass m_0 = 0.00119; 
Mass m(start=m_0); 
Volume V; 
MassFlowRate m_flow_in, m_flow_out; 
SpecificEnthalpy h_in, h_out; 
SpecificEnthalpy h; 
Enthalpy H; 
InternalEnergy U(start=u_0*m_0); 
HeatFlowRate Q_flow; 
Power W_flow_e, W_flow_s; 

equation 
// Interface relations 
m_flow_in = inlet.m_flow; // Added! 
inlet.h_inflow = h_in; // Added! Classical approach 
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Note the sign convention! 
Classical approach 

inlet.P = P; // Added! 
m_flow_out = -outlet.m_flow; // Added! 
outlet.h__outflow = h_out; // Added! 
outlet.P = P; // Added! 
h_out = h; // Added! 
// Conservation of mass 
der(m) = m_flow_in-m_flow_out; 
// Conservation of energy 
der(U )= h_in*m_flow_in-h_out*m_flow_out+Q_flow-W_flow_e; 
W_flow_e = P*der(V)+W_flow_s; 
H = u+P*V; 
u = U/m; // Specific internal energy (ideal gas) 
v = V/m; // Specific Volume 
h = H/m; // Specific enthalpy 

end BasicVolumeFirst; 
Below is an improved version of BasicVolume using stream connectors, where we use 

actualStream to obtain the property houtf low of the stream connectors inlet and outlet. 

partial model BasicVolume "Control Volume with Mass Flow Interfaces, 
improved version using stream connectors" 

import Modelica.Slunits.*; 
extends IdealGas; // Added! 

inlet, outlet; // Added! 
m_0 = 0.00119; 
m(start=m_0); 
V; 
m_flow_in, m_flow_out; 
h_in, h_out; 
h ; 
H; 
U(start=u_0*m_0); 
Q_flow; 
W_flow_e, W_flow_s; 

FlowConnector 
parameter Mass 
Mass 
Volume 
MassFlowRate 
SpecificEnthalpy 
SpecificEnthalpy 
Enthalpy 
InternalEnergy 
HeatFlowRate 
Power 

equation 
// Interface relations 
m_f low_in = inlet .mjf low; 
h__in = actualStreaun (inlet. h_outf low) ; 
inlet.h_outflow = h; 
inlet.P = P; 
m flow out = -outlet.m flow; // Added! 

// Added! 
// Added! Stream approach 
// Added! Stream approach 
// Added! 
Note the sign convention! 

h out = actualStream(outlet.h__outflow) ; // Added! Stream approach 
// Added! Stream approach 
// Added! 

outlet.h_outflow = h 
outlet.P = P; 
// Conservation of mass 
der(m)=m_flow_in - m_flow_out; 
// Conservation of energy 
der(U)=h_in*m_flow_in - h_out*m_flow_out + Q_flow-W_flow_e; 
W_flow_e=P*der(V)+W_flow_s; 
H = u+P*V; 
u = U/m; // Specific internal energy (ideal gas) 
v = V/m; // Specific Volume 
h = H/m; // Specific enthalpy 

end BasicVolume; 
Note that BasicVolume with stream connectors has eight interface equations and is completely 

symmetric whereas the previous BasicVolumeFirst with seven equations is unsymmetric and assigns 
the specific enthalpy from within the component to the output outlet. h_outf low. 
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The stream variable of each port appears twice in the symmetric stream connector version of 
BasicVolume: as h outflow for flow leaving the component and as inStream (h_outflow) for flow 
entering the component through the respective port. 

The difference between seven and eight equations is no problem for checking equation counts in 
balanced models (Section 8.9, page 387), since stream variables work almost like output variables. That is 
why they are not counted in the balancing counts. "A model using a stream connector must expose the 
outflow value, which is known from internal storage or from inflow values of other connectors, 
independently of the flow direction. The inflow value can be obtained by a model on demand by using the 
operator inStream (h_outflow). 

Now we have constructed a bare-bones control volume that contains all the physics which is needed in 
a simple control volume model, but in doing so we have a model that can not be simulated as it stands, the 
model is underspecified. This is typical for object-oriented modeling: in order to improve the reusability of 
a model, some details have to be left open. For testing the above control volume model, we have to specify 
the volume v, the heat transfer from/to the environment Q flow and the work W flow s. If a model is 
underspecified and three equations are missing, it is common to say that the model has three degrees of 
freedom. Three additional equations are needed to make the equation system solvable so that the model 
can be simulated. 

Unspecified variables in the connectors are treated differently depending on their prefix. Unconnected 
flow variables are automatically set to zero (Section 5.7.8.5, page 222). This is useful for testing complex 
flow sheets, because it makes it possible to simulate flow sheets as they are developed when a some 
connections are still missing. Our test model for the basic control volume model now becomes: 

model BasicVolumeTest "testing our general volume" 
extends Ba s i cVo1ume; 

equation 
// Specifying the remaining 3 degrees of freedom 
V = le-3 + 0.le-3*(if time >0.5 then time - 0.5 else 0); 
Q_flow = 0.0; 
W_flow_s = 0.0; 

end BasicVolumeTest; 
We plot the temperature T and the pressure p as functions of time: 

simulate(BasicVolumeTest, stopTime=10) 
plot({T, U}, xrange={0,2}) 

Figure 15-14. Plot of the temperature and internal energy variables of the control volume component of the 
system. 

Now we have a reusable, tested, basic control volume. The next step is to create models for the 
boundary conditions, we call them sources and sinks, or just boundary objects, and to create models that 
determine the mass flow between different control volumes, for example a valve or orifice. 
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15.2.5.3 Pressure Source and Pressure Sink or Pressure Boundary 
In this section, we introduce pressure source and pressure sink classes or, alternatively, a general 
PressureBoundary class (see further below), which act as either source or sink depending on the flow 
direction. The PressureEnthalpySource class has constant output pressure and constant specific 
enthalpy for the flowing substance, and the PressureSink class specifies constant input pressure. 

Both of these two kinds of sources and sinks use the FlowConnector class (Section 15.2.5.1, page 
811) to specify their interfaces, containing pressure P and specific enthalpy /*, and mass flow rate m as a 
flow variable. 

h=h0 

P=Po m P=P0 
m m —. 

PressureEnthalpy Source Pressure S ink 

Figure 15-15. The PressureEnthalpySource class specifies sources that produce mass flow at constant 
pressure and specific enthalpy, whereas PressureSink specifies flow sinks at constant pressure. 

The Modelica code for the PressureEnthalpySource and PressureSink classes is as follows: 

model PressureEnthalpySource "Constant pressure and enthalpy source" 
import Modelica.Slunits.*; 
FlowConnector outlet; 
parameter Pressure P_0 =1.0e5; 
parameter SpecificEnthalpy h_0 =300190; 

equation 
outlet.P = P_0; 
outlet.h_outflow = h _0; 

end PressureEnthalpySource; 
model PressureSink "Pressure sink, constant pressure" 

FlowConnector inlet; 
parameter Modelica.Slunits.Pressure P_0=1.0e5; 

equation 
inlet.P=P_0 

end PressureSink; 
A more general approach which is more robust against situations with back flow uses a single boundary 

model PressureEnthalpy Boundary for sources/sinks. This is the model that will be used in the 
following. 

h=h0 

P=Po 

PressureEnthalpyBoundary 

Figure 15-16. The PressureEnthalpyBoundary class specifies sources or sinks that produce/receive 
mass flow at constant pressure and specific enthalpy. The flow direction determines whether it is a source or 
a sink. 

The Modelica code for the PressureEnthalpyBoundary class is as follows: 

model PressureEnthalpyBoundary "Constant pressure and enthalpy: source/sink" 
import Modelica.Slunits.*; 
FlowConnector port; 
parameter Pressure P_0 =1.0e5; 
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parameter SpecificEnthalpy h_0 =300190; 
equation 
port.P = P_0; 
port.h_outflow = h_0; 

end PressureEnthalpyBoundary; 

15.2.5.4 Simple Valve Flow Model 
This first version of the valve model, depicted in Figure 15-17, has just three variables: the input pressure 
Pin, the output pressure P^, and the mass flow rate m . 

Pin Pout 

SimpleValveFlow 

Figure 15-17. Very simple valve flow model. 

The model in its current form is unusable as a model building block since both the input and the output 
pressure are fixed to constant values in the model. Also, the model does not yet have any connector 
interfaces. The following constitutive equation relates the pressure difference over the valve to the mass 
flow, only valid when Pin > Pout: 

where /? is a constant, A is the cross section area of the inlet and outlet, Pin is the pressure on the inlet 
side, Pout is the outlet pressure, and m is the mass flow rate. The Modelica code for the model appears as 
follows: 

model SimpleValveFlow 
import Modelica.Slunits; 
parameter Slunits.Area A = le-4; 
parameter Real beta = 5.0e-5; 
Slunits.Pressure P_in, P_out; 
Slunits.MassFlowRate m_flow; 

equation // Boundary conditions 
P_in = 1.2e5; 
P out = 1.0e5; 
// Constitutive relation 
beta*AA2*(P_in - P_out) = m_flowA2; 
annotation(experiment(stopTime=l)); 

end SimpleValveFlow; 
We simulate the model and plot the mass flow w, which is not very exciting since the constant 

pressure difference gives rise to a constant mass flow. 

simulate(SimpleValveFlow, stopTime=l); 
plot(m_flow); 

m 

P-A2-(Pin-Pou) = m-,2 (15-19) 
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Figure 15-18. Simulation of the very simple valve flow model. 

15.2.5.5 Basic Valve Flow Model with Connector Interfaces and Conservation of Mass and 
Energy 

The second version of the valve model extends the simple model with explicit connector interfaces and 
adds equations for conservation of mass and energy, which represent the fact that there is no mass and 
energy storage within the valve. This basic valve flow model, depicted in Figure 15-19, is more realistic 
than the previous version and good enough to be used for simple flow system modeling applications. 

Figure 15-19. Complete valve flow model with conservation of mass and energy. In this case, there is no 
storage of mass and energy within the valve. 

The equation for conservation of mass with no mass storage within the valve component: 

0 = < + m o u , (15-20) 

or expressed in Modelica syntax: 

0 = inlet.m_flow + outlet.m_flow; 
where min represented as inlet .m_f low is the flow into the inlet (positive sign) and mout represented as 
outlet .m_f low is the flow out of the outlet (negative sign), that is, it would be positive sign for flow in 
the opposite direction into the outlet connector. 

Analogously, the equation for conservation of energy (15-10) combined with the fact that there is no 
storage of internal energy U within the valve, (dU I dt - 0) , can thus be simplified to the following form: 

0 — m .h .h (15-21) \j rnin nin t rnmt nmt v / 

or in Modelica syntax: 

0 = inlet.m_flow*inlet.h_outflow + outlet.m_flow*outlet.h_outflow; 
where we have the same mass flow quantities as in the mass balance equation (15-20), /^represented 
as inlet. houtf low is the specific enthalpy of the substance flowing into the inlet, and h ^ represented 
as outlet. houtf low is the specific enthalpy of the substance flowing out of the outlet. 

By taking the square root on both sides of the constitutive relation from SimpleValveFlow we obtain: 

A*sqrt(beta*(P_in - P_out)) = m_flow; // Constitutive relation 
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By including flow connectors together with equations (15-20) and (15-21) we obtain a more 
realistic and configurable valve flow model with connector interfaces and conservation of mass and 
energy. First a preliminary version not using stream connectors: 

model ValveFlowFirst // Preliminary version without stream connectors 
import Modelica.Slunits; 
FlowConnectorln inlet; // Added! 
FlowConnectorOut outlet; // Added! 
parameter Slunits.Area A = le-4; 
parameter Real beta = 5.0e-5; 
Slunits.Pressure P_in, P_out; 
Slunits.MassFlowRate m_flow; 

equation // Interface relations 
P_in = inlet.P; // Added! 
P_out = outlet.P; // Added! 
m_flow = inlet.m_flow; // Added! 
0 = inlet.m_flow + outlet.m_flow; //Added:Conservation of mass, no storage 
// Conservation of energy (no storage) 
0 = inlet. m__f low* inlet. h_inf low + outlet .m_flow*outlet. h_outf low; //Added! 
A*sqrt(beta*(P_in - P_out)) = m_flow; // Constitutive relation 
assert (P__in - P__out>0, "Error: model not valid for backflow") ; // Added! 

end ValveFlowFirst; 
We have also added an a s s e r t at the end of the model. This construct is syntactically an equation 

since it is allowed in an equation section, but does not add any equation to the system of equations to be 
solved. It is just used to assert certain conditions that must hold for the valid region of operation of the 
model, that is, expressing the fact that the model is only valid if P_in-P_out>0 which means that the 
flow direction must be into the inlet and out of the outlet, not in the opposite direction. 

Alternatively, to make the model robust against back flow, we can replace sqrt with the regRoot 
function, which approximates sqrt (abs (x) ) *sgn(x) such that the derivative is finite and smooth at 
x=0. This would replace the following constitutive relation and the assert: 

A*sqrt(beta*(P_in - P_out)) = m_flow; // Constitutive relation 
assert(P_in - P_out>0,"Error: model not valid for backflow"); 

by a constitutive relation that is valid for flow in both directions: 

A*Modelica.Fluid.Utilities.regRoot(beta*(P_in - P_out)) = m_flow; 
Unfortunately, the combined energy balance equation becomes singular when m_f low = 0: 

0 = inlet.m_flow*inlet.h_outflow + outlet.m_flow*outlet.h_outflow; 
The stream connector concept replaces this with separate energy balances for positive and negative 

flow as explained in the following derivation. We first express the same combined energy balance using 
the actualStream operator: 

0 = inlet.m_flow*actualStream(inlet.h_outflow) + 
outlet.m_f1ow*actualstream(outlet.h_outflow); 

This expands to: 

0 = inlet.m_flow*(if inlet.m_flow > 0 then inStream(inlet,h_outflow) else 
inlet.h_outflow) + outlet.m_flow * (if outlet.m_flow > 0 then 
inStream(outlet.h_outflow) else outlet.h_outflow) 

Considering the mass balance, outlet .m_flow = -inlet .m_flow, then outlet .m_flow can be 
eliminated in the energy balance: 

0 = inlet.m_flow*(if inlet.m_flow > 0 then inStream(inlet.h_outflow) else 
inlet.h_outflow) - inlet,m_flow*(if inlet.m_flow > 0 then outlet.h_outflow 
else inStream(outlet.h outflow)) 
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which simplifies to: 

0 = inlet.m_flow*(if inlet.m_flow > 0 then inStream(inlet.h_outflow) -
outlet.h_outflow else inlet.h_outflow - inStream(outlet.h_outflow)) 
Division by inlet .m_f low != 0 gives: 

0 = if inlet.m_flow > 0 then inStream(inlet.h_outflow) - outlet.h_outflow 
else inlet.h_outflow - inStream(outlet.h_outflow) 
This equation can be split into two independent equations (not correct Modelica syntax) for forward 

and reverse flow: 

0 = inStream(inlet.h_outflow) - outlet.h_outflow if inlet.m_flow > 0; 
0 = inlet.h_outflow - inStream(outlet.h_outflow) if inlet.m_flow < 0; 

It is expressed in the Valve Flow model with the following two equations: 
outlet.h_outflow = inStream(inlet.h_outflow); // if inlet.m_flow > 0; 
inlet.h_outflow = inStream(outlet.h_outflow); // if inlet.m_flow < 0; 
The Modelica connection semantics with the inStream operator for connected volume models with 

storage determine which equation takes effect in the simulation at a given point in time, depending on the 
flow direction. 

Alternatively, we could still keep the use of actualStream since actualStream (c.v) = if 
c.m_flow > 0 then inStream(c.v) else c.v. 

The following version of the Valve Flow model uses stream connectors and has a constitutive relation 
that is valid for flow in both directions, which makes it robust against back flow: 

model ValveFlow // Version with stream connectors, robust against back flow 
import Modelica.Slunits; 
FlowConnector inlet, outlet; // Added! 
parameter Slunits.Area A = le-4; 
parameter Real beta = 5.0e-5; 
Slunits.Pressure P_in, P_out; 
Slunits.MassFlowRate m_flow; 

equation // Interface relations 
P_in = inlet.P; // Added! 
P_out = outlet.P; // Added! 
m_flow = inlet.m_flow; // Added! 
0 = inlet.m_flow + outlet.mjflow; // Added: Conserv. of mass (no storage) 
// Conservation of energy (no storage) 
outlet.h_outflow = inStream(inlet.h_outflow); // Added! 
inlet. h_outflow = inStream(outlet.h_outflow); // Added! 
A*Modelica.Fluid.Utilities.regRoot(beta*(P_in - P_out)) = m_flow; 

end ValveFlow; 

15.2.5.6 System and Valve Model with Interfaces and Externally Controlled Flow 
There is still something missing in our previous valve model from Section 15.2.5.5 above: the ability to 
control the valve. Without the ability to control the opening in the valve, thus controlling the flow through 
the valve, it is not very useful. Even the simplest water tap can control its flow. Therefore, we introduce an 
input port u on the valve for a control signal as depicted in Figure 15-20. 
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u 

ControlledValveFlow 

Figure 15-20. Valve with controlled flow via an external input signal u influencing the cross-section area of 
the opening. 

The Modelica code for the ControlledValveFlow model appears below, where we have introduced 
the u connector for a controi signal that influences the cross-section area of the opening in the valve and 
thereby the flow through the valve. First we show a preliminary version without stream connectors: 

model ControlledValveFlowFirst "Prel version without stream connectors" 
import Modelica.Slunits; 
import Modelica.Blocks.Interfaces; 
FlowConnectorln inlet; 
FlowConnectorOut outlet; 
Interfaces.Reallnput u; // Added! 
parameter Modelica.Slunits.Area A = le-4; 
parameter Real beta = 5.0e-5; 
Slunits.Pressure P_in, P_out; 
Slunits.MassFlowRate m_flow; 

equation 
// Interface relations 
P_in = inlet.P; 
P_out = outlet.P; 
m_flow = inlet.m_flow; 
// Conservation of mass (no storage) 
0 = inlet.m_flow + outlet.m_flow; 
// Conservation of energy (no storage) 
0 = inlet.m_flow*inlet.h_outflow + outlet.m_flow*outlet.h_outflow; 
// Constitutive relation 
(A*u)*sqrt(beta*(P_in - P_out)) = m_flow; // Added part! 
assert(P_in - P_out>0, "Error: model not valid for backflow"); 

end ControlledValveFlowFirst; 
The following version of the ControlledValveFlow model uses stream connectors and has a 

constitutive relation that is valid for flow in both directions which makes it robust against back flow: 

model ControlledValveFlow // Version with stream connectors and back flow 
import Modelica.Slunits; 
import Modelica.Blocks.Interfaces; 
FlowConnector inlet, outlet; 
Interfaces.Reallnput u; // Added! 
parameter Modelica.Slunits.Area A = le-4; 
parameter Real beta = 5.0e-5; 
Slunits.Pressure P_in, P_out; 
Slunits.MassFlowRate m_flow; 

equation 
// Interface relations 
P_in = inlet.P; 
P_out = outlet.P; 
m_flow = inlet.m_flow; 
// Conservation of mass (no storage) 
0 = inlet.m flow + outlet.m flow; 
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// Conservation of energy (no storage) 
outlet.h_outflow = inStream(inlet.h__outflow); // Added! 
inlet.h_outflow = inStream (outlet. h_outflow); // Added! 
// Constitutive relation 
A*u*Modelica.Fluid.Utilities.regRoot(beta*(P_in-P_out))=m_flow;//Added 

end ControlledValveFlow; 
Now we want to make a small test of our recently developed models of pressure source, sink, and 

controlled valve components. We put together a test system model called ctrlFlowSystem, consisting of 
a ctrlFlowModel with an attached pressure source, a pressure sink, and a step signal component 
producing the control signal. 

model CtrlFlowSystem 
import Modelica.Blocks.Sources; 
PressureEnthalpyBoundary pressureEnthalpySource(P_0=1.2e5); 
Sources.Step step(offset=l,startTime=0.5,height=-0.5) ; 
ControlledValveFlow ctrlFlowModel; // Negative step signal 
PressureEnthalpyBoundary pressureSink; 

equation 
connect(pressureEnthalpySource.port, ctrlFlowModel.inlet); 
connect(ctrlFlowModel.outlet, pressureSink.port); 
connect(step.y, ctrlFlowModel.u); 
annotation(experiment(stopTime=l)); 

end CtrlFlowSystem; 
We simulate the test system and plot the flow through the valve: 

simulate(CtrlFlowSystem, stopTime=l); 
plot(ctrlFlowModel.m_flow) 

— ctrlFlowModel.m_flow 
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Figure 15-21. Simulation of a controlled flow valve attached to a step control signal. 

The simulated and plotted result flow depicted in Figure 15-21 is correct but not very interesting since the 
flow through the valve is directly proportional to the input step signal. 

This version of the valve flow model with external control is used in the pneumatic cylinder system 
with external valve control described in the next section. 

15.2.5.7 Reusing the Control Volume Model in a Pneumatic Cylinder 
In the previous section, we added external interfaces for mass flow interaction between the control volume 
and the surroundings. However, there are other possible interactions between the control volume and 
external components: 
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• The piston at the top of the control volume can move up or down, i.e., use a translational 
connector. 

• A rotating shaft with an attached rotor can rotate, i.e., use a rotational connector. 

Since both the translational and rotational movements usually are performed against some force or 
torque, work is done and energy is transferred into or out of the control volume. In this example, we only 
look at translational movement. 

mass flow connectors 
tranS'at*°na^ connector 

WM-:^:-, — 

I V 

Figure 15-22. The control volume with three external interfaces: two mass flow connectors and one 
mechanical translational connector to the piston. 

Regarding the translational movement of the piston as a consequence of changing volume, we add an 
equation for the volume in the control volume model and add an equation for the translation force 
transmitted to the piston: 

(15-22) 
ftrans ~ ~ ) * ̂  

where V is the volume of the control volume, V0 is the initial volume, A is the area of the piston, P is the 
pressure inside the cylinder, P0 is the pressure in the environment, is the vertical translational 
movement and is the force on the piston. The corresponding equations in Modelica syntax appear as 
follows: 

V = V_0 + A*flange_trans.s; 
(P - P_0)*A = flange_trans.f; 

where - V ^ i s represented by flange trans. s, which is the position variable in the flange trans 
connector of type Translational. Interfaces. Flange_a from the Modelica .Mechanics library, 
and ftrans ̂  represented by the force flange trans. f in the same connector. The cylinder volume 
model that inherits from the previously developed BasicVolume model with these additions included 
appears as follows: 

model PneumaticCylinderVolume "a simple model of a pneumatic cylinder" 
import Modelica.Slunits.*; 
import Modelica.Mechanics.Translational; 
// Modified states P and T 
extends BasicVolume(P(stateSelect=StateSelect.prefer, start=P_0), 

T(stateSelect=StateSelect.prefer, start=T_0)); 
Translational.Interfaces.Flange_a flange_trans; 
parameter Area A =le-2 "cylinder cross section area"; 
parameter Volume V_0=le-3 "cylinder volume in home position"; 
parameter Pressure P_0=1.0e5 "environment pressure"; 

equation 
V = V_0 + A*flange_trans.s; 
(P - P_0)*A = -flange_trans.f; 
W_flow_s =0.0; //No dissipative work here 
Q_flow =0.0; //No heat flow 

end PneumaticCylinderVolume; 



824 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

Most of the additions to the model are straightforward: the volume is now variable and depends on the 
piston position, the force in the piston rod is related to the pressure difference inside and outside the 
cylinder (we use absolute pressures inside the volume), and we neglect dissipative work and heat loss. 

Note the modification to the basic control volume: for the pneumatic cylinder it is more natural to have 
the pressure and temperature as initial conditions and dynamic states. This is achieved via the modification 
P(stateSelect=StateSelect.prefer, start=P_0)— see Section 18.2.6, page 1016, concerning 
stateselect, and the equivalent modification for T. 

15.2.5.8 System with a Pneumatic Cylinder—Combined Thermodynamic and Mechanical 
System, Extracting Mechanical Work from the Control Volume 

The cylinder volume model with three connector interfaces—one mechanical and two mass flow 
connectors—that was defined in the previous section can now be connected to external components to 
create a pneumatic cylinder system, as depicted in Figure 15-23. 

Figure 15-23. A pneumatic cylinder system consisting of a gas filled cylinder doing work on the 
spring/damper by pushing against a piston. The air comes from a high-pressure reservoir and is released to 
lower pressure through the controlled valve. 

The corresponding Modelica code for the pneumatic cylinder system appears as follows: 

model PneumaticCylinderSystem "System to test the pneumatic cylinder model" 
import Modelica.Slunits.*; 
import Modelica.Mechanics.Translational.Components; 
import Modelica.Blocks.Sources; 
PneumaticCylinderVolume cylinder(V_0=le-2,P_0=2.0e5, T_0=340.0); 
PressureEnthalpyBoundary outSink(P_0=1.0e5); 
ValveFlow outValve(A=le-2); 
PressureEnthalpyBoundary inSource(P_0=3.0e5); 
Components.Fixed 
Components.Mass 

Components.SpringDamper 
ControlledValveFlow 
Sources.Step 

equation 
connect(outValve.outlet, 
connect(cylinder.outlet, 
connect(cylinder.flange_trans, 
connect(pistonMass.flange_a, 

fixed(s0=1.0); 
pistonMass(L=0.1, 

s(stateSelect=StateSelect.always, start=l.55) 
springDamper(d=500, s_rel0=0.5, c=5000.0); 
controlValve (A=le-2) ; 
step(offset=l, startTime=5,height=-0.99) ; 

outSink.port); 
outValve.inlet); 
pistonMass.flange_b); 
springDamper.flange_b); 

step 

— a 
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\ springDamper ^ 
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connect(springDamper.flange_a, fixed.flange) ; 
connect(inSource.port, controlValve.inlet); 
connect(controlValve.outlet, cylinder.inlet); 
connect(step.y, controlValve.u); 
annotation(experiment(stopTime=15)); 

end PneumaticCylinderSystem; 
The composition of a translational mechanical model, the piston, that by itself requires two states to 

model its dynamic behavior, position and velocity, and a variable-volume control volume that requires 
three states, in this example pressure, temperature and volume, poses numerical problems unless index 
reduction is performed on the model and the right states are chosen for the numerical integration, see 
Section 18.2.3, page 1005, concerning the notion of index and index reduction. The volume of the control 
volume depends on the piston position (pistonMass. s) and therefore one of the two states (volume and 
position) depends on the other one. This is the reason for the s (stateSelect 
StateSelect .always, start=1.55) modification of the piston mass. All other modifications in the 
model are to set the parameters and start values to reasonable values for a pneumatic cylinder. 

simulate(PneumaticCylinderSystem, stopTime=15); 
plot(pistonMass.s); plot(cylinder.W_flow_e); plot(cylinder.P); 

Figure 15-24. Simulation of a pneumatic cylinder system with a controlled flow valve attached to a step-
control signal. 

15.2.6 System with Dissipation and Heat Sources—A Room with Heat- and 
Mass Transfer to the Environment 

Now we are ready for the second extension to our basic control volume—transforming it into a room with 
convective heat transfer to the environment. We are also going to look at the effect of dissipative shaft 
work, including mechanical work done by a rotating shaft, that is, shaft work Ws. In our case the work is 
dissipated and ultimately transformed into heat. When the work is not dissipated, the shaft work represents 
a "turbine" system for the case when the control volume fluid or gas causes the shaft to turn and perform 
work, that is, Ws > 0 , or might be a "compressor" when the rotating shaft causes the rotor wheel to turn 
and move the gas, that is, Ws < 0. 

n ^ U j j n 

Figure 15-25. A rotor wheel attached to a rotating shaft In our room example, the work of the fan 
accelerates the air, but the air dissipates the kinetic energy via turbulence to heat. The model is simplified 
and directly transforms the electric input power to the fan into heat. The cooling effect of the fan comes not 
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from the temperature, which is actually increased slightly by the fan, but through increased evaporative 
cooling due to higher air speed. 

The energy transfer aspect of the fan out of or into the control volume through the shaft work done by 
the rotating fan wheel has already been taken into account in the control volume model previously 
described in Section 15.2.5.2, page 813 with the shaft work variable W_flow_s. The complete system of 
the room including the fan is depicted in Figure 15-26 below: 

PressureEnthalpyBoundary, sink, downwindSide 

Figure 15-26. House with fan, air flow input through window, and air outflow through door. The room air is 
also in thermal contact with the wall, which in turn is in contact with the environment. The pressure at the 
window and the door can be different depending on the wind direction. 

The Modelica code for the modified control volume, the RoomWithFan model, appears below. New 
parameters are introduced to compute the room volume and switch on and off the heating loads, e.g. a 
computer, and the fan. The model is also prepared for thermal interaction with its environment using a 
connector from the Modelica.Thermal library. This connector is for purely thermal interaction between 
components without a convective mass flow and is defined as: 

connector HeatPort "Thermal port for 1-dim. heat transfer" 
import Modelica.Slunits; 
Slunits.Temperature T "Port temperature"; 
flow Slunits.HeatFlowRate Q_flow "Heat flow rate (positive if flowing"+ 

"from outside into the component)"; 
end HeatPort; 
Using this connector, we can model interaction between the room air, the room wall, and the 

environment. Because the time constants of temperature changes in buildings are very slow, we introduce 
a new time variable to observe time in hours. With this model we could investigate how many hours it 
takes to cool down the room to almost environment temperature. We also introduce variables for the time 
when we switch on heat loads or the fan. The connectors in the original model are now reused for the air 
leakage through the window and the door. 

model RoomWithFan "Simple room model, built on top of BasicVolume" 
import SI=Modelica.Slunits; 
extends BasicVolume(P(stateSelect=StateSelect.prefer, start=l.0e5), 

T(stateSelect=StateSelect.prefer, start=T_0)); 
HeatPort heatPort "heat interaction with environment"; 
parameter SI.Power maxHeatLoad = 400.0 "max power value of heat sources"; 
parameter SI.Power fanPower = 200 "power of fan in Watts"; 

. . . l / 
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parameter Real etaFan = 0.75 "fan efficiency"; 
parameter SI.Length length = 5.0 "room length"; 
parameter SI.Length width = 4.0 "room width"; 
parameter SI.Length height = 2.5 "room height"; 
parameter SI.Time fanOn = 3600.0 "time when fan is switched on"; 
parameter SI.Time heatOn = 7200.0 "time heat source is turned on"; 
Boolean heatPowerOn "on/off flag for heat load"; 
Boolean fanPowerOn "on/off flag for fan"; 
SI.Conversions.NonSIunits.Time_hour time_hour "time measured in hours"; 

equation 
heatPort.T = T; 
time_hour = SI.Conversions.to_hour(time) ; 
V = length*width*height; 
heatPowerOn = if time > heatOn then true else false; 
fanPowerOn = if time > fanOn then true else false; 
Q_flow = (if heatPowerOn then maxHeatLoad else 0.0) + 

(if fanPowerOn then (1-etaFan)*fanPower else 0.0) + heatPort.Q_flow; 
W_flow_s = if fanPowerOn then -etaFan*fanPower else 0.0; 

end RoomWithFan; 
Now we have a modified control volume, but we are lacking models for the heat capacity of the wall, 

and the convective heat transfer from the room air to the wall and from the wall to the environment. All the 
models we need in this case are already available in the Modelica. Thermal library. It is always useful to 
have an idea about the magnitudes of the model parameters that determine the dynamic model behavior. In 
the case of our room model for example, it is helpful to know where most of the heat is stored. An 
approximate computation reveals the heat capacity for the air in the room is: 

C = Vpcv « 50 x 1.2 x 717 = 43020^- (15-23) 
K 

Assuming that the room wall consists of brick stone and the floor is concrete, both with heat capacities 
of c » 2000, and we estimate the total weight of the brick wall and floor that are thermally connected to 
the room at approx. 1000 kg, we realize the heat capacity of the air is only around 2% of the total heat 
capacity. This clearly indicates that we can not hope to capture the thermal behavior of the room without 
adding a simple model of the wall heat capacity. The model in the the Modelica. Thermal library is a 
simple, lumped model of a heat capacity: 

c f = B > (15-24) 

where the summation of the heat flows is accomplished automatically via the flow semantics, see equation 
(14-52), page 757, and the sum-to-zero flow summation rule for flows described in Section 5.3.1, page 
190. In this case the heat capacity C is a property of a solid body and computed as: 

C = m-c (15-25) 

with the mass m and the specific heat capacity c. Another simple thermal model that we need is for the 
convective heat transfer. It establishes a linear relation between the temperature gradient between a solid 
body and a fluid, and the heat flow Qdot: 

Qdot ~ Gc • Tsobd - Tfluid (15_26) 

The thermal conductance Gc is determined via an external signal and can be set to a constant or 
derived form a detailed heat transfer model. 

The main remaining task is to compose the system model from our new room model and to determine 
the coefficients in the components correctly. This is not an easy task for real buildings, because it is often 
difficult to get reliable values for the mass and specific heat capacity of the materials in the wall. Heat 
transfer coefficients are also difficult to determine. The external heat transfer coefficient vary substantially 
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depending on the wind conditions. We are going to use estimates which are roughly at the right order of 
magnitude—values also vary a great deal in reality. 

model RoomlnEnvironment "Room in environment, pressure-driven air flows" 
import Modelica.Thermal.HeatTransfer; 
RoomWithFan room(P(start-1.022e5)); 
ValveFlow window(A=le-3, beta=0.5); 
ValveFlow door(A=le-3, beta=0.5); 
PressureEnthalpyBoundary downwindSide(P_0=0.995e5); 
PressureEnthalpyBoundary windwardSide(P_0=1.05e5, h_0=3.102e5); 
HeatTransfer.Components.Convection room_wall; 
HeatTransfer.Components.HeatCapacitor wall(T(start=290.0), C=2.5e3*800.0); 
HeatTransfer.Components.Convection wall_env; 
HeatTransfer.Sources.FixedTemperature T_env(T=310); 
Modelica.Blocks.Sources.Constant 
Modelica.Blocks.Sources.Constant 

equation 
downwindSide.port) ; 
room.outlet); 
room.inlet); 
door.inlet); 
room.heatPort); 
wall.port); 
wall.port); 
wall_env.Gc); 
room_wall.Gc); 
T_env.port); 

k_inner(k=30); 
k outer(k=300); 

connect(window.outlet, 
connect(window.inlet, 
connect(door.outlet, 
connect(windwardSide.port, 
connect(room_wall.solid, 
connect(room_wall.fluid, 
connect(wall_env.solid, 
connect(k_outer.y, 
connect(k_inner.y, 
connect(wall_env.fluid, 
annotation(experiment(stopTime=14)) 

end RoomlnEnvironment; 

We can now perform a number of simulation experiments with this model and look at the system 
variables. In order to get a realistic feeling for the speed of the processes, we chose hours as the units of 
time for plotting. With the given initial conditions, we can first expect the room temperature to approach 
the environment temperature of 310 K. Even after five hours, the equilibrium temperature is not yet 
reached. We can also see that the fan with 200 W of power causes about half of the temperature rise in the 
room as the heating load of 400 W. The dissipated mechanical power and the direct addition of heat have 
the same result on the system temperature. 

simulate(RoomlnEnvironment,stopTime=14); 
plot(room.T, xrange={0,14}); 
plot(room.P, xrange={9,12}); 

Figure 15-27. Simulation of a room in a house with fan, air flow input through window, air outflow through 
door, and convection through wall. Plot of temperature (left) and pressure (right) 

Another observation from the pressure plot is that the pressure disturbances are very small. The 
temperature gradients cause the pressure to rise for a short time, but then the pressure flows of to the 
environment and the pressure always returns to the equilibrium pressure of » 1.02208 bar. 
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To get more of a feeling for this system, the reader is encouraged to plot additional variables and 
experiment a bit with the model. 

15.3 Chemical Reactions 

We have previously presented simple thermodynamic systems (Section 14.7 and Section 15.2), governed 
by mass balance and energy balance equations. In such systems the amount of matter in each species is 
preserved even though phase transitions may occur. 

However, when dealing with chemical reactions, molecules of one species of matter may react with the 
molecules of a second species, thus forming a third species, that is, a different substance. This has a 
number of implications for the behavior of systems including chemical reactions. 

Traditionally, the literature of chemical reaction dynamics has been divided into two main areas (not 
mentioning the large number of different application areas in chemistry): 

• Chemical reaction kinetics 
• Chemical thermodynamics 

Chemical reaction kinetics traditionally deals with substance concentrations and their time derivatives. 
It typically ignores energy conservation, even though internal microscopic energy, that is, chemical 
potential usually has a large influence on the probability of a reaction to occur. 

On the other hand, the literature on chemical thermodynamics concentrates on the energy balance in 
chemical reactions, but usually covers only equilibrium thermodynamics and ignores dynamic behavior. 

In this short example of modeling chemical reactions using Modelica, we will focus on the chemical 
reaction kinetics and ignore energy conservation. However, in large realistic models, especially when 
chemical reactions interact with other modeled phenomena, it is usually necessary to include energyrelated 
terms. 

15.3.1 Chemical Reaction Kinetics of Hydrogen Iodine 

The dynamics of a chemical reaction are a roughly governed by three factors: 

• Mass balance 
• Reactant concentration 
• Energy conservation 

As stated in the previous section, in the following we will just deal with chemical reaction kinetics and 
ignore energy conservation. First we will focus on conservation of mass, and later on the effects of 
concentrations. 

A chemical reaction represented by a reaction formula transforms the chemical species on the left-hand 
side of the arrow, called reactants, to the species on the right-hand side of the arrow, called products: 

reactants -> products (15-27) 

Consider a chemical reaction between hydrogen gas and iodine gas to form hydrogen iodine: 

H2 + I 2 <->2HI (15-28) 

The double-sided arrow indicates the presence of reactions in both directions, which can be written as two 
separate reaction formulas: 

(15-29) H 2 + I 2 ->2HI 
2HI -> H2 + I2 
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The first reaction states that one molecule of hydrogen together with one molecule of iodine can react. 
In this reaction the atoms may regroup to form two molecules of hydrogen iodine. The second reaction is 
the reverse: two molecules of hydrogen iodine are transformed to one molecule of hydrogen and one 
molecule of iodine. 

In both reactions the mass balance is preserved. The number of atoms of each type on both sides of the 
arrow is the same. An integer number of molecules is involved in the reaction since no fractional 
molecules exist. 

The second issue concerns how frequently a reaction occurs on the microscopic level. In order for a 
reaction to take place, all involved molecules must be at the same place at the same time. The probability 
of a molecule of a certain species being in a small volume of space is proportional to the concentration of 
the species. Thus, assuming statistical independence, the probability of all involved molecules being in the 
same small volume at the same time is proportional to the product of their concentrations. 

Thus, for the reaction between hydrogen gas and iodine gas, the reaction rate is as follows: 

V [ H 2 ] [ I 2 ] (15-30) 

where the notation [H 2 ] and [ l2] denotes the respective concentrations of hydrogen and iodine molecules, 
and kx is the reaction rate proportionality constant. Analogously, the reaction rate for the reverse reaction 
of two molecules of HI is given by (15-31) below: 

* 2 [ m ] 2 (15-3D 

The reaction rate proportionality constant is often written above the arrow of the reaction it represents, 
as in (15-32) and (15-33): 

H 2 + I 2 ^ 2 H I ( 1 5 ' 3 2 ) 

2 h A H 2 + I 2
 ( l 5 " 3 3 ) 

Putting the reaction rate expressions in (15-30) and (15-31) together, we can formulate the 
differential equations for the whole reaction system: 

| [ H 2 ] = * 2 [ H I ] 2 - V [ H 2 ] [ I 2 ] 

! [ I 2 ] = U H I ] 2 - V [ H 2 H I 2 ] (15-34) 

^ [ H l ] = 2 ^ [ H 2 ] [ l 2 ] - 2 f c 2 [ H l F 

Note that the reaction rates are influenced only by the concentrations of reactants in each reaction, not 
by the products. 

Concerning the first equation, the production rate of H2 from HI is given by k2 \ Hi]2 according to 
(15-31), whereas the consumption rate of H2 to HI in the reverse reaction is kx • [H2 -[ l2] according to 
(15-30). The second equation is almost identical, based on the same reasoning. 

The third equation gives the rate of forming HI from H2 and I2. The term 2kx ' [H 2 ] ' [ I 2 ] includes a 
factor of two since a pair of molecules H2 and I2 gives rise to two molecules of HI. Analogous reasoning 
applies to the second term. 

We finally put the three reaction rate equations from (15-34) into a Modelica class to prepare for 
simulation (Figure 15-28). 

type Concentration = Real(final quantity = "Concentration", 
final unit = "mol/m3"); 

class Hydrogenlodide 
parameter Real kl = 0.73; 
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parameter Real k2 = 0.04; 
Concentration H2(start=5) 
Concentration I2(start=8) 
Concentration HI(start=0); 

equation 
der(H2) = k2*HIA2 - kl*H2*I2; 
der(12) = k2*HIA2 - kl*H2*I2; 
der(HI) = 2*kl*H2*I2 - 2*k2*HIA2; 

end Hydrogenlodide; 
We simulate for 100 seconds and plot the results. 

simulate(Hydrogenlodide, stopTime=100) 
plot({H2, 12, HI}, xrange={0,5}) 

Figure 15-28. Concentrations of hydrogen, iodine, and hydrogen iodine based on the chemical reaction 
between the involved reactants. 

It is easy to observe that after an initial transition phase, a steady-state condition is reached when the 
concentrations are constant. In steady-state all derivatives are zero. We substitute zero for the derivative in 
the first equation of (15-34), obtaining: 

0 = *2-[HIp-*,[H2Ml2] <15-35) 
After a slight rearrangement: 

. M y = constant (15-36) 
[ H J [1,1 *2 

Thus, the relation between the concentrations in steady state is constant, irrespective of the initial 
concentrations. 

15.4 Biological and Ecological Systems 

In this section we will present a few examples of models of biological and ecological systems. As we 
previously stated in the section on deductive versus inductive modeling (Section 12.1.1, page 568), 
biological systems are usually quite complex. Normally little exact knowledge is available about such 
systems, which would be needed for detailed physical modeling. This forces researchers to use inductive 
models based on experimental observations rather than physical intuition of system dynamics, which has 
the disadvantage that the models are difficult to validate for predictions outside the observed range. 

A combined approach is possible, where some approximate physical knowledge is combined with 
adapting model coefficients based on experimental observations. Such an approach will be explored in the 
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subsequent models where we will investigate a continuous-time model for population dynamics and a 
discrete-time cyclic growth model for the energy forest. 

15.4.1 Population Dynamics 

In this example we will study the dynamics of populations of animals in an idealized ecological system. 
We assume that a population contains P individuals. In general, the change rate of the number of animals 
in a population is the difference between the population growth rate or birth rate and its death rate: 

P = growthrate - deathrate (15-37) 

where P is the rate of change of the number of individuals in the population. It is natural to assume that the 
growth rate and the death rate are proportional to the size of the current population: 

growthrate= g • P (15-38) 

deathrate= d • P 

where g is the growth factor and d the death factor for the population. These factors can be assumed to be 
constant if the same amount of food per individual is available independent of the size of the population, 
and no sudden lethal illnesses affect the population. These assumptions are of course valid only for a 
reasonable size of the population, since the food supply is never infinite in a closed system and illnesses 
sometimes occur. Putting (15-37) and (15-38) together gives: 

P = ( g - d ) P (15-39) 

Solutions to this equation give an exponentially increasing population if (g - d) > 0 or exponentially 
decreasing if (g-d) < 0. We represent this equation in the model class PopulationGrowth below: 

class PopulationGrowth 
parameter Real g = 0.04 "Growth factor of population"; 
parameter Real d = 0.0005 "Death factor of population"; 
Real P(start=10) "Population size, initially 10"; 

equation 
der(P) = (g-d)*P; 

end PopulationGrowth; 
The model is simulated and the population size P plotted: 

simulate(PopulationGrowth, stopTime=100) 
plot(P) 

Figure 15-29. Exponential growth of a population with unlimited food supply. 

As expected, Figure 15-29 shows an exponentially increasing population. We should, however, remember 
that exponential growth can never persist indefinitely in a closed system with a limited food supply. 
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15.4.1.1 A Predator-Prey Model with Foxes and Rabbits 
Now we would like to study a more interesting system consisting of two interacting populations of 
predators and prey animals. The simplest model of this kind is the so-called Lotka-Volterra model. In this 
case, the predators are foxes and the prey animals are rabbits. The rabbit population of size R is assumed to 
have an unlimited food supply. Therefore equation (15-39) applies regarding the birth-related growth 
rate of the rabbit population, giving a positive growth term gr • R, where gr is the growth factor for 
rabbits. 

On the other hand, the fox population of size F feeds on the rabbits. The rate of rabbit deaths can be 
assumed to be proportional to the number of foxes due to increased hunting pressure, and to the number of 
rabbits due to the higher probability of success in hunting, giving a rabbit death rate due to foxes of 
drf-F-R, where drf is the death factor of rabbits due to foxes. Putting the growth and death rates 
together gives the total rabbit population change rate R as defined by equation (15-40) below: 

The growth of the fox population of size F is proportional to the rate of rabbits consumed, that is, those 
that die because they were hunted by foxes—which is the death rate term d^ F R mentioned in the 
previous equation. The efficiency of growing foxes from rabbits is determined by the growth factor g ^ , 
giving a fox population growth rate term g ^ - d ^ - R - F . The fox population also has an intrinsic death 
rate dj- • F proportional to the size of the fox population by the fox death factor d f . By combining these 
two terms we obtain equation (15-41): 

We have made a Modelica class below called LotkaVolterra, which includes both equations 
(15-40) and (15-41), together with all variables and constant proportionality factors. The two state 
variables R and F for the sizes of the rabbit and fox populations respectively are represented by the 
Modelica variables rabbits and foxes: 

class LotkaVolterra 
parameter Real g_r =0.04 "Natural growth rate for rabbits"; 
parameter Real d_rf=0.0005 "Death rate of rabbits due to foxes"; 
parameter Real d_f =0.09 "Natural deathrate for foxes"; 
parameter Real g_fr=0.1 "Efficency in growing foxes from rabbits"; 
Real rabbits(start=700) "Rabbits,(R) with start population 700"; 
Real foxes(start=10) "Foxes,(F) with start population 10"; 

equation 
der(rabbits) = g_r*rabbits - d_rf*rabbits*foxes; 
der(foxes) = g_fr*d_rf*rabbits*foxes - d_f*foxes; 

end LotkaVolterra; 
The model is simulated and the sizes of the rabbit and fox populations as a function of time are plotted 

in Figure 15-30: 

simulate(LotkaVolterra, stopTime=3000); 
plot({rabbits, foxes}, xrange={0,1000}); 

R - Sr' drf F • R (15-40) 

(15-41) F = gfr<drf.R.F-drF 

where F is the total change rate of the fox population. 
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Figure 15-30. Number rabbits—prey animals, and foxes—predators, as a function of time simulated from 
the PredatorPrey model. 

The Lotka-Volterra model has a rather special property: the solution variables, that is, the rabbit and 
fox population sizes, do not approach steady-state values as time goes by. Instead, they approach periodic 
steady-state values—the solution oscillates. The shape of the oscillation is very characteristic for Lotka-
Volterra models and corresponds rather well to several experimental population studies of predators and 
prey animals. However, this does not prove our partly inductive model equations to be correct, only that 
they seem to have certain approximate physical significance. 

15.4.2 Population Dynamics in World Models with Human-Nature 
Interaction 

Population dynamics modeling can also be applied to the human race living on and interacting with the 
earth, our world. Such models are often called world models. 

Perhaps the most influential modern studies indicating that human population could reach limits are 
those presented by Richard Malthus in 1798 with his famous work, An Essay on the Principle of 
Population. A catastrophe in the form of population collapse was considered as a feasible consequence of 
uncontrolled growth, which would hit the limits of food production causing massive famine. 

A series of simulation models were developed mainly during the 1970's, with some later updates, 
aiming at understanding the complexity of the interactions between global societies with their physical 
environment, searching for the conditions that would lend to a collapse and the possible measures to avoid 
it. They formed a category of so-called world models (Section 15.4.2.7, page 846). One characteristic was 
their generality and complexity, spanning several subsystems (demographic, energy, economy, industry, 
agriculture, minerals, etc.) with varied levels of detail. 

15.4.2.1 A Simplified Human-Nature Dynamics Model with Rich and Poor 
Simplified approaches to World models can describe an interesting set of behaviors while keeping model 
complexity at a minimum. One such very simplified model is the Handy model, an acronym for Human 
And Nature Dynamical model. 

This model has many similarities to the above LotkaVolterra model (Section 15.4.1.1, page 833), 
but has four differential equations with four state variables: poor population (commoners), rich population 
(elite), the earth ecological resource (nature), and accumulated wealth (wealth), instead of just two 
(foxes and rabbits) as in the LotkaVolterra model. Human beings play the role of the predators (the 
foxes) and nature is the preyed resource. An interesting feature of this model is that it introduces the 
accumulation of economic wealth and divides the human population into rich and poor. Inequality between 
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rich and poor is not only explicitly considered but also plays a key role in the sustainability analyses of this 
model. Such capability is seldom found in most well-known world models. 

However, note that this model is a very strong simplification of the human-nature system, which gives 
many limitations. Thus the Handy model is useful only as a general framework that allows carrying out 
thought experiments for the phenomenon of collapse and to test changes that would avoid it. Despite its 
limitations such a simplified model is quite useful since it is easy to understand and gives a more intuitive 
grasp of the issues and phenomena involved. 

A much more advanced and realistic world model called World3 is briefly introduced in Section 
15.4.2.7, page 846. This model (the compiled version) has 41 state variables and 245 algebraic variables, 
and captures many aspects of humanity and ecology in our world. It has been calibrated against measured 
data. 

15.4.2.2 Handy Model Equations, Description, and Modeled Societies 
In the Handy model, the total population is divided between two groups: conditioners and elite, of 
population sizes commoners and elite respectively. The population grows through birth rates 
birthRComm and birthRElite, which are constants. The population shrinks through death rates 
deathRComm and deathRElite which are in turn defined as functions of wealth. 

The main state variables of the model are described in Table 15-1, additional variables in The 
parameters of the model are described in Table 15-3. 

Table 15-2, and the parameters of the model in Table 15-3. 
Natural renewable and nonrenewable resources are aggregated into a single type of stock represented 

by the variable nature. 
The main dynamics part of the model is defined by the following four differential equations: 

commoners'- birthRComm - commoners - deathRComm • commoners 

elite = birthRElite • elite - deathRElite • elite 

nature = natureRegen • nature • (natureCap - nature) - depletFactor • nature 

wealth = depletFactor • commoners • nature - consRComm - consRElite 

which in Modelica are expressed as: 

der(commoners) = birthRComm*commoners - deathRComm*commoners; 
der(elite) = birthRElite*elite - deathRElite*elite; 
der(nature) = natureRegen*nature*(natureCap-nature) - depletFactor*nature; 
der(wealth) = depletFactor*commoners*nature - consRComm - consRElite; 
The equation for nature includes a regeneration term natureRegen*nature* (natureCap-nature) 

and a depletion term depletFactor*commoners*nature for its reduction caused by pollution. 
The regeneration term is synthetic (i.e., not directly physical) with an s-shaped form, and designed to 

give a physically realistic result. It has a regeneration factor natureRegen, exponential regrowth for low 
values of nature, because then (natureCap-nature) is almost constant and saturation when nature 
approaches natureCap (maximum size of nature in absence of depletion, i.e., pollution), since then 
(natureCap-nature) goes towards zero. Due to the synthetic form the maximum rate of regeneration 

takes place when nature=natureCap/2. The depletion of nature is considered to include the reduction 
of nature due to pollution. 

The depletion term includes a rate of depletion (pollution) per worker depletFactor making it 
proportional to both nature and the number of commoners represented by the variable commoners. The 
economic activity of elite is modeled to represent supervisory functions with no direct influence on the 
extraction of resources or the production of wealth. The underlying concept is that "only commoners 
produce". The model is assumed to be insensitive to technological change, considering that technology 
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through history has proven to produce both increments and decrements in resource use efficiency. Thus a 
simplification can consider that these effects cancel each other out. 

Accumulated wealth (wealth) increases with production (depletFactor*commoners*nature) and 
decreases according the consumption rates of the elite and the commoners, consRComm and consRElite 
respectively. 

Table 15-1. Main state variables of the Handy model. 

Name Description Unit Typical start value(s) 
commoners Commoner population size Number of people 100 

elite Elite population size Number of people 0 ,1 ,25 

nature Nature's stock, renewable and non-
renewable 

EcoDollars natureCap =100 

wealth Accumulated wealth EcoDollars 0 

The additional variables of the model are described in The parameters of the model are described in 
Table 15-3. 

Table 15-2. Two of these variables describe consumption. The consumption of the commoners, 
consRComm, is the result of a subsistence salary per capita subsSal times the working population. An 
elite person gets a salary ineqFactor times larger than a commoners, which serves the purpose of 
measuring the inequality among classes, and is considered to be constant throughout time for any given 
scenario. This is reflected in the following equations: 

consRComm = min(l, wealth / wealthMin) • subsSal • commoners (15 43) 

consRElite = min(l, wealth / wealthMin) • subsSal • elite • ineqFactor 

which in Modelica are expressed as 

consRComm = min(l, wealth/wealthMin) * subsSal*commoners; 
consRElite = min(l, wealth/wealthMin) * subsSal*elite*ineqFactor; 
Both consumption rates consRComm and consRElite are subject to a minimum threshold for 

"accumulated wealth before famine", wealthMin. The consumption rates are linearly reduced down to 
zero by the min () terms in the above equations, when wealth falls below wealthMin. 

The death rates of the commoners and the elite are defined by the following equations: 

deathRComm - deathRnormal + max(0,1 - consRComm / {subsSal • commoners)) • 

(deathRfamine - deathRnormal) (15 44) 
deathRElite = deathRnormal + max(0,1 - consRElite / (subsSal • elite)) • 

(ideathRfamine - deathRnormal) 

The carrying capacity (carryingCap) of nature and its corresponding maximum carrying capacity 
(carryingCapMax) attainable under certain conditions, are defined by these equations: 

carryingCap = natureRegen / depleteFactor • (natureCap - subsSal • eta / depletFactor) 

carryingCapMax = natureRegen / (eta • subsSal) • (natureCap / 2) 

The minimum wealth (wealthMin), the total population, and a dimensionless quotient eta used above 
are defined as follows: 

wealthMin = consWorkerMin • commoners+ineqFactor • consWorkerMin • elite 

eta = (deathRfamine - birthRComm) / (deathRfamine - deathRnormal) (15-46) 

totalPopulation = elite + commoners 
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The parameters of the model are described in Table 15-3. 

Table 15-2. Additional variables of the Handy model for human and nature dynamics. 

Name Description Unit 
deathRComm Commoners death rate Number of people/year 

deathRElite Death rate for elite Number of people/year 

consRComm Consumption rate of a commoner EcoDollars/year 

consRElite Consumption rate of an elite person EcoDollars/year 

eta Dimensionless derived quotient 
carryingCap Carrying capacity of the world Number of people 

carryingCapMax Maximum carrying capacity Number of people 
totalPopulation The total population Number of people 

Table 15-3. Parameters of the Handy model for human and nature dynamics. 

Name Description Typical value(s) 
deathRnormal Healthy normal (minimum) death rate 0.01 
deathRfamine Famine (maximum) death rate 0.07 
birthRComm Commoner birth rate 0.03, or 0.065 
birthRElite Elite birth rate 0.03, or 0.02 
subsSal Subsistence salary per person 0.0005 
consWorkerMin Minimum required consumption per worker 0.005 
natureRegen Nature's regeneration rate 0.01 
natureCap Nature's carrying capacity 100 
ineqFactor Inequality factor between elite and commoners 1, 10, or 100 

depletFactor Depletion (production) factor 
0.00000667, or 
0.00000635, or 
0.000013 

There are three dimensions for quantities in the model: Population (either commoner or elite), in 
units of people, Nature/Wealth, in units of EcoDollars, and Time, in units of years. All other 
parameters and functions in the model carry units that are compatible with these dimensions. 

All of the above definitions appear in the HandyBase Modelica model below which is a partial model 
that is inherited by the following actual simulated models. 

partial model HandyBase "Equations, variables, and parameters for Handy" 
// All parameters, default values for egalitarian society 
parameter Real birthRComm = 0.03 "Birth Rate of Commoners No people/year"; 
parameter Real birthRElite = 0.03 "Birth Rate of Elite. No of people/yr"; 
parameter Real natureRegen = 0.01 "Nature's regeneration factor. Unit 

l/ecoDollars*year"; ( 
parameter Real natureCap = 100.0 "Nature's capacity. ecoDollars"; 
parameter Real subsSal=0.0005 "Subsistence Salary/Worker. Dollars/worker"; 
parameter Real consWorkerMin = 0.005 "Minimum required Consumption per 

Worker. Dollars/worker"; 
parameter Real depletFactorEq = 0.00000667 
"Rate of depletion (pollution) per worker at Equilibrium. l/Worker*year"; 

parameter Real deathRnormal = 0.01 "Healthy Death Rate, people/year"; 
parameter Real deathRfamine = 0.07 "Famine Death Rate, people/year"; 
parameter Real ineqFactor = 0 "Inequality in consumption level for Workers 
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and Non-Workers. Does not play a role when elite=0 (as in all Egal 
scenarios). Dimensionless"; 

Real depletFactor "Rate of depletion per worker. l/Worker*year"; 
Real commoners "Population of Commoners. Number of people"; 
Real elite "Population size of Elite. Number of people"; 
Real nature "Natural stock (renewable and nonrenewable). ecoDollars"; 
Real wealth "Accumulated wealth. EcoDollars"; 
Real wealthMin "Minimum threshold accum wealth before famine. EcoDollars"; 
Real deathRComm "Death Rate for Commmoners. Number of people/year"; 
Real deathRElite "Death Rate for Elite. Number of people/year"; 
Real consRComm "Consumption Rate of Commoners. Dollars/year"; 
Real consRElite "Consumption Rate of Elite. Dollars/year"; 
Real eta "Derived quotient expression. Dimensionless"; 
Real carryingCap "Carrying Capacity. Number of people"; 
Real carryingCapMax "Maximum Carrying Capacity. Number of people"; 
Real totalPopulation "Total population: elite and commoners. No people"; 

// Scaled helper variables for graph drawing purposes 
Real nature_, wealth_, carryingCap_, carryingCapMax_,commoners_/ 

elite_,totalPopulation_; 
equation 

der(commoners) = birthRComm*commoners - deathRComm*commoners; 
der(elite) = birthRElite*elite - deathRElite*elite; 
der(nature) = natureRegen*nature * (natureCap-nature) -

depletFactor*commoners*nature; 
der(wealth) = depletFactor*commoners*nature - consRComm - consRElite; 

deathRComm = deathRnormal + max(0, 1-consRComm / (subsSal*commoners)) * 
(deathRfamine-deathRnormal); 

deathRElite = deathRnormal + max(0, 1-consRElite / (subsSal*elite)) * 
(deathRfamine-deathRnormal); 

consRComm = min(l, wealth/wealthMin) * subsSal*commoners; 
consRElite = mind, wealth/wealthMin) *ineqFactor*subsSal*elite; 
wealthMin = consWorkerMin*commoners + ineqFactor*consWorkerMin*elite; 
eta = (deathRfamine - birthRComm) / (deathRfamine-deathRnormal); 
carryingCap = natureRegen / depletFactor * (natureCap - subsSal* eta / 
depletFactor); 

carryingCapMax = natureRegen / (eta*subsSal) * (natureCap/2)A2; 
totalPopulation = elite + commoners; 

initial equation 
nature = natureCap; 
wealth = 0; 

end HandyBase; 

15.4.2.3 Types of Societies, Simulation Methodology, and Scenarios 
The Handy model can be used to define three types of societies: 

• Egalitarian society—no elite, that is, the elite population elite = 0. Scenario models 
HandyEgall toModelEgal4. 

• Equitable society—commoners and elite, both groups earn the same per person, that is, 
ineqFactor=l. Scenario models HandyEquitl to HandyEquit5. 

• Unequal society—commoners and elite, an elite person earns more than a commoner; 
ineqFactor>=l. Scenario models HandyUnEql to HandyUnEq4. 
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Several scenarios will be studied for each kind of society. The default initial values for parameters and 
initial start values for state variables used in these scenarios are those presented in Table 15-1 and Table 
15-3. 

The thought experiments are performed as simulations and presented in Section 15.4.2.4, Section and 
Section 15.4.2.6. Within each type of society, different scenarios are studied by varying the rate of 
depletion per worker called depletFactor (short for depletion factor), caused by pollution. 

For each type of society simulations should be done until equilibrium is reached, whenever 
equilibrium can be reached. This means a system state in which all derivatives reach zero value and 
consequently all the system's variables settle into a stable steady state. 

Under that condition, the carrying capacity can be maximized if nature's regeneration rate is maximal. 
According to the equation for nature, the latter is satisfied when nature=carryingCap/2. 

This requires the depletion factor depletFactor to be at the equilibrium (or optimum) value 
depletFactorEq. Under such a situation a steady state with a maximum sustainable population should 
be achieved. 

The scenarios below explore the consequences of different types of societies as they behave optimally 
or suboptimally, which is measured in terms of the natural depletion factors. 

15.4.2.4 Simulation Scenarios of an Egalitarian Society 
For this type of society, the optimal value for the depletion factor that maximizes the carrying capacity 
(carryingCap) is depletFactorEq=6.67E-6, which has been derived analytically (Motesharrei, Rivas, 
and Kalnay 2013). Below is the HandyEgalitarianBase model which is inherited by all Egal models. 

partial model HandyEgalitarianBase 
"Egal - Scenarios with Egalitarian Society (No-Elite)" 
extends HandyBase; 

initial equation 
elite = 0; // For All "Egal" scenarios: elite=0 
commoners = 100.0; 

equation // Graph scaling 
carryingCapMax_ = carryingCapMax; 
carryingCap_ = carryingCap; 
commoners_ = commoners; 
elite_ = elite; 
totalPopulation_ = totalPopulation; 

end HandyEgalitarianBase; 

Scenario Model Handy Egal 1: "Soft landing to Equilibrium " 

model HandyEgall "Scenario Egall: Soft Landing to Equilibrium" 
extends HandyEgalitarianBase; 

equation 
depletFactor = depletFactorEq * 0.8; 
// Graph scaling 
nature_ = nature * 80000 / 100; 
wealth_ = wealth * 80000 / 400; 

end HandyEgall; 
By making depletFactor=depletFactorEq the results in Figure 15-31 below are obtained: 

simulate(HandyEgall, stopTime=1000) 
plot({commoners_, elites_, nature_, wealth_, carryingCap_, carryingCapMax_}) 
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Figure 15-31. Population, nature and wealth. Soft landing to equilibrium, with optimal nature depletion 
factor (variables rescaled for better visualization). Simulation of HandyEgall. 
In this example, the maximum nature regeneration can support a maximum sustainable depletion 

(pollution) rate and a maximum population number (commoners) equal to the carrying capacity 
(carryingCap). 

Scenario Model HandyEgal3: "Cycles of Prosperity and Collapse " 

In this scenario we increase the depletion intensity by selecting depletFactor = 4 * depletFactorEq. 
model HandyEgal3 "Scenario Egal3: Cycles of Prosperity and Collapse" 

extends HandyEgalitarianBase; 
equation 

depletFactor = 4 * depletFactorEq; 
// Graph scaling 
nature_ = nature * 100000 / 100; 
wealth_ = wealth * 100000 / 2000; 

end HandyEgal3; 
The results obtained are shown in Figure 15-32 below: 

simulate(HandyEgal3, stopTime=450) 
plot({commoners_, elites_, nature_, wealth_, carryingCap_, carryingCapMax_}) 
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Figure 15-32. Cycles of Prosperity and Collapse. Simulation of HandyEgal3. 
The oscillatory mode is can be named as one of "reversible collapses." This scenario can be seen as 

belonging to a "limit boundary" for the values of the depletion factor. Should depletFactor be increased 
even further, the system changes into a different mode, one of "irreversible collapse," with only one 
overshoot-and-collapse cycle. This is obtained in the scenario HandyEgal4. 

Additional Scenarios in the Egalitarian Type of Society 

There are also scenarios models HandyEgal2 "Oscillatory Approach to Equilibrium" and HandyEgal4 
"Full Collapse", which correspond to setting depletFactor = 2.5*depletFactorEq and 
depletFactor = 5. 5*depletFactorEq, respectively. The reader is encouraged to test these models. 

15.4.2.5 Simulation Scenarios of an Equitable Society—Elite and Commoners with equal 
Wealth 

In addition to the class of workers called commoners, we now add a new class of population, an elite. The 
elite has an equitable access to the produced wealth, that is, ineqFactor = 1. Their privilege is that they 
get access to wealth without being engaged in the production process, that is, without doing work. The 
initial population for the elite (the group of non-workers) iselite = 25. 

As before we look for an equilibrium situation where the depletion factor is set to its optimal value 
which for this society is depletFactor = depletFactorEq = 8.33E-6. This produces the first scenario 
HandyEquitl model shown further below, an adaptation of the HandyEquitableBase model which is 
inherited by all Equit scenario models. 

partial model HandyEquitableBase 
"Equit Scenarios: Equitable society (with Workers and Non-Workers)" 
extends HandyBase(ineqFactor = 1, depletFactorEq = 0.00000833); 

initial equation 
commoners = 100.0; 

equation // Graph scaling 
// Graph scaling 
carryingCap_ = carryingCap; 
carryingCapMax_ = carryingCapMax; 
commoners_ = commoners; 
elites_ = elites; 
totalPopulation_ = totalPopulation; 
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end HandyEquitableBase; 

Scenario Handy Equit 1: "Soft Landing to Optimal Equilibrium " 

model HandyEquitl 
"Equitable society Scenario Equitl: Soft Landing to Optimal Equilibrium" 
extends HandyEquitableBase; 

initial equation 
elite - 25; 

equation 
depletFactor = depletFactorEq; 
// Graph scaling 
nature_ = nature * 80000 / 100; 
wealth_ = wealth * 80000 / 400; 

end HandyEquitl; 
We simulate and plot: 

simulate(HandyEquitl, stopTime=1000) 
plot({commoners_, elites_, nature_, wealth_, carryingCap_, carryingCapMax_}) 

Figure 15-33. Equilibrium in the presence of workers (commoners) and non-workers (an elite) with equal 
income per person. Simulation of HandyEquitl. 
In Figure 15-33 it can be seen that the elite and the commoners coexist. Their sum reaches the carrying 

capacity. The optimal depletion factor in this society is bigger than that of an egalitarian society analyzed 
in the previous section. This is due to an increased amount of production required from the commoners to 
sustain the nonworking elite. 

Scenario HandyEquit2: "Oscillatory Approach to Equilibrium " 

If the depletion factor is further incremented by making depletFactor = 2.64 * depletFactorEq we 
obtain an oscillatory behavior. The results are shown in Figure 15-34. 

model HandyEquit2 
"Equitable society Scenario Equit2: Oscillatory Approach to Equilibrium" 
extends HandyEquitableBase; 

initial equation 
elite = 25; 

equation 
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depletFactor = 2.64 * depletFactorEq; 
// Graph scaling 
nature_ = nature * 80000 / 100; 
wealth_ = wealth * 80000 / 2000; 

end HandyEquit2; 
We simulate and plot: 

simulate(HandyEquit2, stopTime=1000) 
plot({commoners_, elites_, nature_, wealth_, carryingCap_, carryingCapMax_}) 

Figure 15-34. Oscillatory convergence to equilibrium with tolerable overshoot. Simulation of 
HandyEquit2. 
Now the actual carrying capacity (carryingCap) is lower than the maximum carrying capacity, but 

the total population approaches its value after an oscillatory phase. 

Additional Scenarios in an Equitable Type of Society 

There are also scenarios HandyEquit3 "Cycles of Prosperity, Overshoot and Collapse," HandyEquit4 
"Full Collapse," and HandyEquitS "Preventing a Full Collapse by Decreasing Average Depletion per 
Capita." 

The reader is encouraged to also try these models, which include experimenting with different values of 
the depletion factor and for the case of HandyEquitS also increasing the ratio of non-workers (elite) to 
workers (commoners). 

15.4.2.6 Simulation Scenarios of an Unequal Society—Elite and Commoners with Different 
Income 

The unequal society appears to be closer to the status of our current world. The inequality factor 
ineqFactor is made to range from 10 to 100 in the unequal scenarios. 

We will reproduce a pair of experiments intended to show the effect of birth control as a means for 
moving from an unsustainable into a sustainable mode of behavior. 

partial model HandyUnEquitableBase 
"Uneq Scenarios: Unequal Society (with Elite and Commoners)" 

extends HandyBase(ineqFactor = 100, depletFactorEq = 0.00000667, 
birthRComm = 0.03, birthRElite = 0.03); 
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equation 
// Graph scaling 
carryingCap_ = carryingCap; 
carryingCapMax_ = carryingCapMax; 
commoners_ = commoners; 
totalPopulation_ = totalPopulation; 

end HandyUnEquitableBase; 

Scenario HandyUneq2: "Full Collapse " 

In this scenario the inequality factor is set very high: ineqFactor = 100. Also an initial seed for the 
population of the elite is set to elite = 0.2 and a large depletion factor (including pollution effects) 
depletFactor = 1E-4 are selected. The result is a full collapse with no recovery, as shown in Figure 
15-35 below. 

model HandyUnEq2 
"UnEquitable society Scenario UnEq2: Type-II Collapse (Full Collapse)" 
extends HandyUnEquitableBase(ineqFactor = 100, 

depletFactorEq = 0.00000667, birthRComm = 0.03, birthRElite = 0.03); 
initial equation 

elite = 0.2; 
commoners = 100.0; 

equation 
depletFactor = 15 * depletFactorEq; 
// Graph scaling 
nature_ = nature * 80000 / 100; 
wealth_ = wealth * 80000 / 4000; 
elites_ = elites * 100; 

end HandyUnEq2; 

simulate(HandyUnEq2, stopTime=500) 
plot({commoners_, elites_, nature_, wealth_, carryingCap_, carryingCapMax_}) 

Figure 15-35. Full collapse due to over-depletion and high levels of inequality (ineqFactor=100). 
Simulation of HandyUnEq2. 

As soon as the commoner's population surpasses the carrying capacity, wealth starts to decline and never 
again recovers. Before disappearing, the elite remains insensitive to the wealth fast decrease during a long 
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period after the commoner's population start their massive die-off. This is possible due to the unequal 
access to wealth, which is a hundred times larger than that of the commoners. 

Scenario HandyUneqS: "Soft Landing to Optimal Equilibrium " 

In this scenario several parameters and initial values are changed with respect to the previous case. 

• Inequality is reduced a factor ten, yielding ineqFactor = 10. 
• The depletion factor is set to its equilibrium value, derived analytically: depletFactor = 

depletFactorEq = 6.35E-6, much lower than the previous scenario. 
• The initial values for the population are set as commoners=10 000 and elite=3000. 
• The birth rates are assumed to be controllable and selected as birthRComm=0.065 and 

birthRElite=0.02. 
The results are shown below: 

model HandyUnEq3 
"UnEquitable society UnEquit3: Soft Landing to Optimal Equilibrium" 

extends HandyUnEquitableBase(ineqFactor = 10, depletFactorEq = 0.00000635, 
birthRComm = 0.065, birthRElite = 0.02); 

initial equation 
elite = 3000.0; 
commoners = 10000.0; 

equation 
depletFactor = depletFactorEq; 
// Graph scaling 
nature_ = nature * 600000 / 100; 
wealth_ = wealth * 600000 / 400; 
elites_ = elites * 10; 
commoners_ = commoners; 

end HandyUnEq3; 
simulate(HandyUnEq3, stopTime=500) 
plot({commoners_, elites_, nature_, wealth_, carryingCap_, carryingCapMax_}) 
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Figure 15-36. Sustainable society reaching equilibrium with moderate inequality (ineqFactor=10) and 
birth rate control. Simulation of HandyUnEq3. 
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The new set of parameters produced a sustainable equilibrium in an unequal society. It represents an 
example of implementation of policies that simultaneously limit inequality and in parallel enforce birth 
rates to remain below critical levels. In this model inequality and birth rate are separate but simultaneous 
measures. In fact, in the real world high birth rates in poor societies are often a consequence of inequality. 

Additional Scenarios for an Unequal Type of Society 

There are also scenarios HandyEquitl "Collapse with Recovery of Nature" and HandyEquit4 
"Oscillatory Approach to Equilibrium," which perform experiments with different values of the depletion 
factor, birth rates, and values of initial populations. 

15.4.2.7 A Short Look at the Worid3 Model 
The World3 model is a much more complex and realistic world model than the very simple Handy model 
presented in the previous sections. The compiled version contains 41 state variables and 245 algebraic 
variables, with the same number of equations, representing many facets of human life and world ecological 
factors. 

The model is available as part of the SystemDynamics.WorldDynamics library (Section 16.21.1, 
page 972) or standalone, developed in Modelica by Franc is Cellier and his students. They made a 
documented Modelica version of the World3 model by translating the original model from the version in 
Stella. 

The SystemDynamics.WorldDynamics.World3 model is represented as a Modelica package that 
implements Meadows et al. World3 model as described in their 1972 book Limits to Growth: A Report for 
the Club of Rome's Project on the Predicament of Mankind. The book has seen two later editions, one 
published in 1992 (20-year edition), and the most recent one published in 2004 (30-year edition). Each of 
these new editions was accompanied by an updated model. The model in this Modelica World3 version is 
the newest model discussed in the 2004 edition Limits to Growth: The 30-Year Update. 

Whereas Jay Forrester listed his entire mathematical model in his book World Dynamics, Meadows et 
al. in Limits to Growth only discussed about the results obtained using their model. The mathematical 
model itself was not listed. The main reason was to make the book more accessible to a wider public. 
Another reason is that the World3 model is considerably more complex than the World2 model, and 
consequently, a thorough discussion of all aspects of the model would have taken much more space in the 
book. Instead he published a separate book in 1974: Dynamics of Growth in a Finite World of 637 pages 
that describes all facets of the model. 

Since the World3 model is fairly complex it was subdivided into 13 different sectors (i.e., submodels) 
describing aspects of the following: 

1. arable land dynamics, 
2. food production, 
3. Mathis Wackernagel's human ecological footprint, 
4. human fertility, 
5. human welfare index, 
6. industrial investment, 
7. labor utilization, 
8. land fertility, 
9. life expectancy, 
10. non-recoverable resource utilization, 
11. pollution dynamics, 
12. population dynamics, and 
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13. service-sector investment. 

For example, one of the submodels, the World3.Arable_Land_Dynamics model, is depicted in Figure 
16-41. In the main model one submodel of each type is put onto the screen and connected appropriately. 

Figure 15-37. The SystemDynamics.World3.Arable_Land_Dynamics submodel. 

Whereas the World2 model lumped the entire population into a single state variable, the World3 
model offers a demographic population dynamics model that distinguishes between children and 
adolescents, young adults of child-bearing age, older adults who are still integrated into the work force, 
and the retired population. 

The capital investment is subdivided into investments in the military/industrial complex, in the service 
sector, and in agriculture. 

Both the natural resources and pollution models have been upgraded by including changes in 
technology as factors influencing the depletion of resources and the release of pollutants. This is 
meaningful as improved technology may enable us to use the available resources more efficiently, and 
may also make it possible to produce goods in a cleaner fashion. 

Scenarios with WorldS 

The book Limits to Growth: The 30-Year Update, describes eleven scenarios based of different sets of 
assumptions. These scenarios are also part of the Modelica Wor ld3 model. We will briefly discuss three of 
these scenarios: 

• Scenariol is the so-called "Standard Run." This is the original world3 model with basic 
assumptions and without any adjustments. 

• Scenario2 is the same as Scenariol, but with twice as much non-recoverable resources 
available, for example, more oil, coal, metal, etc. 

• Scenario9 is based on Scenario2 but applies a number of measures to avoid collapse and to try 
to transform the human society into a sustainable one. 
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The three scenarios are simulated between year 1900 and 2200. 
Unfortunately both Scenariol and Scenario2 rather quickly lead to population collapse, as depicted 

in Figure 15-38. Doubling the nonrenewable resources in Scenario2 does not help very much. The 
population increases a little bit more, but the collapse is even quicker, primarily due to increased levels of 
pollution. The current developments in our world unfortunately seem to be rather close to Scenario2. 

Population 
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Figure 15-38. The world population according to Scenarios 1,2, and 3 in the World3 model. 

If a collapse will occur, will it be as quick as depicted in Figure 15-38? That may not be the case. The 
World3 model assumptions may not be completely valid during such a stressful transition period. Political 
decisions, rationing policies, etc., may lead to decreasing resource consumption and create a slower more 
controlled contraction to a sustainable level of consumption. 

How can a collapse be avoided? Scenario9 applies the following aggressive technology development 
plan to avoid collapse: 

• Increased industrial resource efficiency, that is, less uses of non-renewable material and energy, 
4% resource decrease per year. 

• Arable land protection, for example, to decrease and prevent land erosion, and to preserve existing land. 
• Agricultural yield enhancement, 4% per year. 
• Pollution reduction, 4% per year. 

Additionally, it is assumed that a program for birth control with an average number of two children per 
family, that there is a certain capital cost to implement these technologies and that 20 years are required for 
their full implementation. 

The Scenario9 simulation to year 2200 shows a sustainable society. However, if the simulation is 
extended to year 2500 it is hard to keep sustainability with the large human population combined with high 
standards of living. If the size of the population is gradually decreased to the level that was present only 
about a hundred years ago, the chances are much better. 

Another issue is model validity. A number of assumptions behind the World3 model may not be valid 
that far into the future. However, one fact is absolutely certain: the human race must in the long run live 
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sustainably on the earth because of limitations in resources, energy, and space. Consumption overshoots 
like the current one can only be temporary. 

15.4.2.8 Discussion of Human-Nature Models and their Capabilities 
The Handy model, in its first version, has the remarkable feature of presenting a structure simple enough 
for intuitive understanding while rich enough for producing a variety of modes with non-trivial behavior. 
This combination is seldom found in most well-known earth system (or global, or world) models, where 
usually the quest for including more details comes at the price of lack of intuitiveness. 

Handy is very useful as a "conceptual" model that can trigger varied interpretations and discussions 
comparing qualitatively different scenarios. Also, as mentioned before, the explicit stratification of social 
classes guides the interpretations to an essential playground needed to discuss the fate of human 
population. Nevertheless, its manifest simplicity prevents assigning to results any quantitative soundness. 

Also worth mentioning is the fact that human societies developed a degree of cultural and technological 
complexity that prevents treating it as simply another species. It has been recognized by several senior 
modelers that it is not reasonable to expect that any model can predict what the trends would be in a 
situation when collapses start to develop, as unpredictable social disruption and/or restructure are 
expectable that would invalidate most of the model's parameters and even structures that might have 
described pre-collapse phases in a credible way. For sure, such social reshaping will have its dynamics 
determined by interactions between different social classes, and in that regard, again, the Handy approach 
of disaggregating them in at least two strata is a valuable step. 

Moreover, we want to draw the reader's attention to the aggregation made in Handy of natural 
renewable and non-renewable resources, into a single variable. It paves the way for attaining scenarios that 
look sustainable in the very long run (i.e., "to infinity"). 

Based on the principles of thermodynamics it is easy to show that in the long run the maximum 
carrying capacity of supporting humans on earth will be determined only by the remaining renewable 
resources, once we have depleted all the nonrenewable ones for good. 

If renewable and nonrenewable resources were modeled independently (along with the commoners, 
the elite and their inequality factor) the elements would be given to investigate scenarios that tried to 
answer an utterly important question: How should we use best the non-renewable resources to reach a 
society with minimum inequalities, for when the time invariably comes that humanity must rely on 
renewable resources exclusively? To investigate such a goal, the inequality factor should be shifted from a 
constant parameter into a variable, or even to a state variable. 

Regarding our quick comparison with the World3 model which is more complex and much more 
realistic than the Handy model, the conclusions are similar. In the long run, not so far into the future, 
humanity must change to living sustainably on the earth. This change can either be a planned gradual 
change that preserves a well-functioning society, or a more catastrophic unplanned transition resulting in a 
less pleasant society and a reduced and less supportive natural ecological system. 

15.4.3 An Energy Forest Annual Growth Model for Willow Trees 

An energy forest is another example of an ecological system for which it is interesting to study growth and 
mortality. In particular, in the case of energy forest models we would like to simulate and predict the 
biomass output of the system depending on solar radiation and other growth factors. In the example to be 
described shortly we will study a small willow (Salix spp.) forest. Research on such forests as a renewable 
energy source has been conducted in Sweden since the 1970s. 

Traditionally, purely inductive statistically based models have been used to make predictions of forest 
productivity. Such models are problematic since they are site and condition specific, and usually cannot be 
used at new sites or under new conditions. 
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The modeling style used for this example is partly an inductive modeling approach based on 
experimental observations of factors for growth, mortality, radiation absorption, and so on, and partly 
deductive physical modeling based on approximate physical relations for transformation of energy from 
solar radiation to stored chemical energy in terms of biomass in the willow forest. This requires fewer and 
more easily assembled input data than in the statistical approach, but still represents the interaction 
between environmental factors and forest growth in a realistic way. The simple basis for the willow forest 
growth model to be described shortly is an assumed linear relationship between the solar radiation 
absorbed by the forest and the produced biomass: 

w = eaR (15-47) 

where w is the biomass produced by the willow forest, e is the efficiency with which the forest uses the 
absorbed radiation to grow wood, a is the fraction of the solar radiation absorbed by the forest, and R is the 
incoming solar radiation. 

15.4.3.1 Model Description 
The productivity of a forest of willow can be fairly well described by a discrete-time model in Modelica, 
with a time resolution of one year. This is a more realistic model than would be a continuous-time one 
since growth primarily occurs periodically during the summer season of the year, and not continuously all 
the time. The model includes the following aspects: 

• Annual growth proportional to the incoming solar radiation. 
• Constant annual mortality fraction as well as additional mortality caused by fungi certain year(s). 
• Radiation use efficiency and absorption factors depending on the willow shoot age. 
• Periodic harvesting. 

First we formulate the difference equations that are the basis for the model, and later the Modelica 
model including these equations. 

The annual increment in stem biomass for a willow forest equals the difference between the growth and 
the removal of biomass: 

W t-W t_ l = wG™th_wMort_wHan,est (15-48) 

where wt is the standing living stem biomass at the end of the year, t denotes the current year, and t-1 the 
previous year. The increase in biomass is the annual stem growth (wfrowth) and the removal of biomass is 
the annual stem mortality ( w ^ o r t ) combined with the stem biomass removed by harvest (w"arvest). 

We also need to consider the time (in years) from when the willow shoots appear until they are 
harvested. The cyclic shoot age (c) in years is the age of the shoots that appeared at the plantation or after 
the most recent harvest: 

c = 1,2, 1,2,3,4, 1,2,3,4,... (15-49) 

Harvest occurs at the end of a growth cycle, that is, two years after plantation or after each four-year 
growth period starting at the most recent harvest. The shoot age is increasing until harvest, after which new 
shoots appear. In our model the time condition for harvest is expressed as follows: 

c — \ and t >\ (15-50) 

which, strictly speaking, indicates the immediate beginning of the next growth cycle except the first. 
However, the time difference between the end of the previous cycle and the immediate beginning of the 
next cycle is essentially zero, which makes it possible to use this condition formulation as the time 
condition for harvest. 

As mentioned previously, the annual stem growth (wfrowth) of the willow forest is proportional to the 
fraction of global radiation (R*bsorb ) absorbed by the leaves during a growth season and the efficiency by 
which this energy is used: 
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growth = S c .RAbsorb (15-51) 

where sc, which is dependent on the cyclic shoot age c, is the efficiency with which the willow forest 
utilizes the absorbed radiation in production of new wood. The efficiency decreases somewhat as the 
shoots grow older. 

The fraction ( a c ) of the solar radiation absorbed by the leaves is also dependent on the shoot age c. As 
the shoots grow older they are able to absorb a slightly larger fraction of the incoming radiation. 

Rfsorb = ac.Rt (15-52) 

Every year a mortality fraction ( m t ) of the forest dies ( w ^ o r t ) due to a certain level of shoot mortality. 
The shoots that die make the willow forest less dense. 

wM>rt= k • ( ! - « . , c = landt> 1 (15 53) 

\mt • ( + ™?r°Wth) , otherwise 

Remember that the cyclic shoot age c is defined in relation to the most recent harvest, except before the 
first harvest when the shoot age is defined in relation to the plantation year. The harvest usually takes place 
every fourth year. A fraction (h) of the standing stem biomass w M at the end of the previous year, along 
with the dead biomass (w^° r t A c c) accumulated since last harvest, is then removed from the system: 

^Harvest = f* ' + W^"** , C = 1 and t > 1 (15_54) 

[0 , otherwise 

where dead wood has been accumulating until it is harvested: 

iort , c = l and t>\ (15-55) tortAcc + ^Mon ? otherWise 

The WillowForest Modelica model embodying all these equations appears below: 

class WillowForest 
parameter Real h = 0.95 "Harvest fraction"; 
parameter Real[4] e = {.73,.80,.66,.55} "Radiation efficiency fraction"; 
parameter Real[4] a = {. 59, .73, .76, .74} "Intercepted radiation fraction"; 
parameter Integer[10] growthCycles = {1,2,1,2,3,4,1,2,3,4}; 
parameter Integer[10] r = {2097, 2328, 1942, 2359, 2493, 

2290, 2008, 2356, 2323, 2540} "Solar radiation(MJ/m2) 1985-1994"; 
parameter Real[10] m = {.1, .1, .5, .1, .1, 

.1, .1, .1, .1, .1} "Mortality fraction 1985-1994"; 
parameter Integer[10] mbiomasses = {786, 1091, 539, 980, 1139, 

589, 723, 1457, 1004, 845} "Measured biomass 1985-1994"; 
Integer t (start = 0) "Years since the forest was planted"; 
Integer c "Year in growth cycle"; 
Real w(start = 60) "Total standing biomass in forest (g/m2) "; 
Real wGrowth, wMort, wHarvest "Biomass for growth, mortality and harvest"; 
Real wMortAcc (start = 0) "Accumulated dead biomass by mortality"; 
Real wBiomass "Biomass produced during a year"; 
Integer mbiomass "Measured biomass for current year"; 

equation 
when sample (0, 1) then 

t = pre(t)+1; 
mbiomass = mbiomasses[t]; 
// Harvest first time after two years, then every fourth year 
c = growthCycles[t]; 
w = pre(w)+(wGrowth - wMort - wHarvest); 
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wBiomass = wGrowth - wMort; 
wGrowth = e[c] * a[c] * r[t]; 
//A fraction m of the forest dies every year 
wMort = if (c == 1 and t > 1) then (1-h) * m[t] * (pre(w) + wGrowth) 

else m[t] * (pre(w) + wGrowth); 
// A fraction of the forest is removed at harvest 

wHarvest = if (c == 1 and t > 1) then h*pre(w) + pre(wMortAcc) 
else 0; 

// Dead biomass accumulates by mortality 
wMortAcc = if(c == 1 and t > 1) then wMort 

else pre(wMortAcc) + wMort; 
end when; 

end WillowForest; 

15.4.3.2 Model Application and Simulation 
The model was calibrated against measured annual data on living stem biomass of Modellskogen, located 
in Uppsala, Sweden. The data used in the simulation cover the period 1985—1994 (plantation year 1984) 
and include three harvests (Table 15-4a). Since the forest was not cut back during the plantation year the 
biomass value given for 1985 also includes the biomass produced during 1984. Biomass at plantation was 
60 g/m2. 

The measured fraction of global radiation absorbed by the forest (a), the radiation use efficiency (e) and 
the different mortality and harvest factors used in the simulation are shown in Table 15-4b. The mortality 
fraction (m) is in a normal year 0.10, but in 1987 the forest was infected by fungus and there was a 
calibrated extra mortality fraction of 0.40. Beginning at the end of 1986, a fraction h (90%) of the forest 
was harvested every fourth year. 

Table 15-4. (a) Annual values for shoot age, incoming solar radiation, and stem biomass for Modellskogen 
forest, (b) Model inputs for the simulation of Modellskogen forest productivity. 

Year Shoot 
Age 

Solar Radiation 
(MJ/m2) 

Stem Biomass 
(g m-2) 

1985 j l . 2097 846" 
1986 i i1 2328 1091 
1987 i2 1942 539 
1988 i i2 2359 980 
1989 ni2 2493 1139 
1990 i v 2 2290 589 
1991 f 2008 723 
1992 i i3 2356 1457 
1993 hi3 2323 1004 
1994 i v 3 2540 845 

Radiation use efficiency 
e; tA» s 1 0.73 Gd. w. MJ"1 

e; t ^ = 2 0.80 Gd. w. MJ"1 

e; tAge = 3 0.66 Gd. w. MJ"1 

e; tAg. - 4 0.55 Gd. w. MJ"1 

Intercepted radiation 
a; t^e = 1 0.59 -
a; tAge = 2 0.73 -
a; tAg. = 3 0.76 -
a; tAge = 4 0.74 

' The year after plantation. 1 , 2 , 1 First, second and third cutting cycle. 

The WillowForest model was simulated and certain results were plotted as depicted in Figure 15-39: 

simulate(WillowForest,stopTime=9.99}) 
plot({w,wGrowth}) 
plot({w,wHarvest,wMortAcc}) 
Plot({wBiomass,mbiomass}, xrange={0,10), yrange={0,1400)) 
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Figure 15-39. (a) The total biomass and the annual increase in biomass plotted against time, (b) The total 
biomass, harvested biomass, and the annual accumulation of dead biomass plotted against time, (c) The 
annual net production of biomass and annual measured biomass plotted against time. 

Figure 15-39c shows a fairly good correspondence between the biomass production computed by the 
simulation and actual measured values. In Figure 15-39a can we observe the effects of accumulation of 
biomass due to growth, effects of harvesting, as well as the fact that biomass growth seems to be highest 
the year directly after a harvest event. 

15.5 Economic Systems 

Economic systems are abstractions of physical systems with human beings where only so-called economic 
aspects are studied, for example, money flow, monetary value, production, consumption, etc. Complete economic 
systems are intrinsically quite complex, especially since they to a large extent depend on human behavior. 

On the other hand, since exact knowledge about the mechanisms in such systems is hard to obtain, 
many simplifying assumptions are usually made, resulting in very simple models. Such models can never 
be more than approximately valid and therefore have limited prediction power. However, it is not 
uncommon that simple economic models are used for predictions outside their area of validity. 

The subject area denoted national economy deals with the economic behavior of nations. Models of 
national economies often include variables such as GNP (Gross National Product), the total consumption 
of a nation, the total investments, and the government expenses of the nation. 

In particular, according to the simple Keynesian multiplier-accelerator model, the following 
approximate relation holds: 

GNPt consumption investmentst expensest (15-56) 

where t denotes the current year. We also assume that the consumption for the current year (t) is 
proportional to the GNP for the previous year (M): 

consumption a GNPt , (15-57) 

Moreover, the investments of the current year are assumed to be proportional to the increase in 
consumption compared to the previous year: 

investmentst b (consumption consumption j) (15-58) 

As we remarked previously, one can discuss the validity of these rather simple assumptions. However, 
there are also certain arguments in favor of these assumptions. We refer the reader to national economic 
literature for more detailed study. 

It is easy to make a simple Modelica model based on equations (15-56) to (15-58): 

class KeynesianModel 
parameter Real a = 0.5 "Consumption fraction"; 
parameter Real b = 0.5 "Investment fraction of consumption increase"; 
Real GNP(start=0) "Gross National Product"; 



854 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

Real consumption(start=0) "Consumption"; 
Real investments(start=0) "Investments"; 
Real expenses(start=0) "Government expenses"; 

equation 
when sample(0, 1) then 

GNP = consumption + investments + expenses; 
consumption = a * pre(GNP); 
investments = b * (consumption - pre(consumption)); 

end when; 
when time >= 1.0 then // Increase expenses by 1 at year 1 

expenses = pre(expenses)+1; 
end when; 

end KeynesianModel; 
Here we have made the rather unrealistic assumption that GNP, consumption, investments, and 

government expenses are all zero at the beginning of the first year. However, this can be easily changed 
and does not matter for the result when studying annual changes instead of absolute values. After one year 
we suddenly increase government expenses by 1. The proportionality factors for the consumption and 
investments are assumed to be 0.5, that is, at a level of half of the GNP. 

We simulate the model and observe the effects on the other economic variables: 

simulate(KeynesianModel, stopTime=ll) 
plot({GNP,consumption}, xrange={0,10}) 
A plot of the simulated GNP and the consumption is depicted in Figure 15-40. 

Figure 15-40. The GNP and the consumption after an increase of government expenses by 1 after 1 year. 

It is interesting to observe the effects on the GNP and the consumption after the increase in state 
expenditures. After a few years the GNP has increased to a factor of 2 of the increase of government 
expenses, which is the so-called multiplier effect exhibited by this model. 

The immediate effect of the expense increase is that the GNP increases by the same amount. As a 
consequence, investments increase the year later. This causes a further increase in GNP and consumption. 
Eventually we arrive at a steady-state GNP level of 2 and a consumption level of 1. 

15.6 Packet-Switched Communication Networks 

Packet-switched communication networks play a very important role in modern society since they provide 
the basis for transport of data in widely used networks such as the Internet, local area networks, and a 
number of special-purpose networks. 

A packet-switched network can be described by a directed graph. The nodes in this graph represent 
routers, which are computers that forward information packets on their way from senders to receivers. The 
edges between the nodes in the network are either wired or wireless communication links. A sender is a 
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computer that sends information packets into the network with a destination of some receiver computer 
node. 

Figure 15-41 schematically depicts a simple network that provides a connection between a sender and a 
receiver via a number of routers and communication links. 

Figure 15-41. Schematic packet-switched communication network, with router nodes connected by 
communication links, together with a sender and a receiver. 

The links between the nodes in the network have limited bandwidth, which can lead to traffic 
congestion. To handle minor traffic congestion the routers in the network have buffer storage capacity in 
order to store packets in case more packets are entering than leaving a router. However, if too many 
packets are entering a router during a short period of time, the buffer capacity may not be enough, which 
will lead to packets being dropped. 

Dropping packets is inefficient since information has to be resent. The congestion problem might be an 
indication that the sender is transmitting information at a higher rate than what the communication network 
can handle. The problem is solved if the sender adapts its rate of sending information through some control 
mechanism. On the Internet a control mechanism denoted the Transmission Control Protocol (TCP) is 
used by the sender to regulate the send rate. 

15.6.1 End-to-End Communication Protocols 

There exist several variants of the TCP protocol with different properties concerning congestion handling, 
transmission efficiency, etc. 

All TCP protocol versions are end-to-end communication protocols, meaning that the network is 
regarded as a black box from the sender's point of view. Each package is sent all the way to a receiver 
node, which returns a small acknowledgment package for each received package. If a package is dropped 
due to congestion or some other reason, this will be eventually detected by the sender due to a missing 
acknowledgment package. 

In order to use the network resources more efficiently and thereby allow higher transmission rates, the 
TCP sender transmits w number of packages before waiting for acknowledgments for these packages. 
Therefore w corresponds to the number of unacknowledged packets the sender may have in the network. 
The w variable is called the TCP window size and controls the sending rate—a large value of the window 
size w means a higher sending rate. When the sender has received acknowledgments for all w packages, w 
is increased by 1. 

If a packet is dropped, meaning that no acknowledgment for that packet has been received by the 
sender, the TCP protocol assumes that some congestion has occurred, that is, the currently estimated 
bandwidth and window size values are too high. The algorithm tries to eliminate the congestion by 
reducing the sending rate. The reduction depends on which variant of the TCP protocol is used. In the 
following we will focus on two variants: 
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• TCP SACK—Selective ACKnowledgment—a common protocol variant for wired links, where the 
receiver of data informs the sender about all packets that have arrived successfully. 

• TCP Westwood—a more recent protocol variant very similar to TCP SACK introduced to better 
handle communication over lossy wireless links where random or sporadic losses are fairly 
common. This protocol uses bandwidth estimation for quick recovery after sporadic losses. 

The TCP SACK protocol provides congestion avoidance, that is, recovery after congestion, by 
decreasing the window size w by a factor of 2 each time a packet drop occurs, as depicted in the simple 
transition diagram of Figure 15-42, where we use the notation w^to indicate that there might be several 
packet flows between a sender and a receiver, here denoted by the subscript/ 

Figure 15-42. Simplified transition diagram of congestion avoidance used in TCP SACK for which the 
window size nyis reduced by a factor of 2 when there is a packet drop. 

The TCP Westwood protocol has another way of updating the window size w f after congestion or 
transmission loss. Instead of dividing the window size by a factor of 2, it is set to a new value based on the 
bandwidth estimate (BWE) for the link. This provides quicker recovery and better use of the available 
bandwidth after a packet drop. 

Both TCP protocols have congestion-control algorithms that use packet loss to detect congestion. 
Moreover, during a startup phase the TCP senders investigate the network capacity by gradually increasing 
the size of the window of packets that are outstanding in the network until the network becomes congested 
and drops packets. A TCP sender initially quickly grabs available bandwidth by exponentially increasing 
the window size. When the window size reaches a certain value called the slow start threshold, s s t h , the 
increase becomes linear, which gives a gentler probing of the network bandwidth capacity. It is desirable 
to keep this threshold at a value that approximates the connection's "fair share" of the total bandwidth. 

15.6.2 Types of Communication Network Models 

There are basically three classes of mathematical models used for simulating traffic flow based on TCP 
protocols on the Internet: 

• Discrete models, which directly implement the Internet protocols and simulate individual packets. 
Such models give accurate simulation results but rather slow simulation speed, and are therefore 
limited to smaller networks. 

• Continuous-flow models, which approximate the packet transmission with a continuous flow and 
basically eliminate the network protocols. Such models describe average transmission rates at 
steady state well but ignore events such as packet drops, and are thus less suitable for studying 
transient phenomena. 

• Hybrid models, which use continuous-flow modeling for average rates but also take transient 
events such as packet drops into account. 

Hybrid models can capture the network behavior on time scales between discrete models and 
continuous flow models. They can be efficiently simulated for large networks and high traffic loads, but 
can still represent transient phenomena such as traffic congestion and packet drops. In the following we 
will give a short overview of a hybrid Modelica model of a simple packet-switched network in which two 
different TCP send protocols are compared. 
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15.6.3 A Hybrid Network Model Comparing Two TCP Send Protocols 

Our simple packet-switched network example is specified in Modelica using the hybrid modeling approach 
mentioned in the previous section. We would like to simulate the model to compare the congestion 
behavior of such a network using two different TCP protocol variants: TCP SACK and TCP Westwood. 
The simple network, depicted in Figure 15-43, contains the following components: 

• Two packet senders, using the TCP SACK and the TCP Westwood protocol variants, respectively. 
• One router connecting both senders to a wireless lossy communication link. 
• Another router connecting the wireless link to two receivers. 
• Two receiver components. 

The communication ports used for connecting the model components are defined in the next section. 

Figure 15-43. Simple network with two senders (TCP Westwood, TCP SACK), two receivers, a wireless 
link, and two routers. 

The Modelica code of the simple TCP communication network model appears below. It is modeled 
using Modelica version 2.1, which does not require balanced models (Section 5.7.7, page 217) that was 
introduced in Modelica 3.0. We have configured the system with a packet length L=500, a maximum total 
bandwidth B tot of 500*1250*2, i.e., max 1250 packets for each of the two flows, and a maximum 
buffer capacity q max of 50 packets. 

model TCPSACKvsTCPWestwood "TCP SACK versus TCP Westwood" 
Router21 router21; 
Routerl2 router12; 
Lossy_link_queue lossy_link_queue(B_tot=500*1250*2, q_max=50*500, L=500); 
TCP_Westwood aTCPWestwood(L=500, send_f_to=l); // sender 1 
TCP_SACK aTCPSACK(L=500, send_f_from=2, send_f_to=2); // sender 2 
Receiver receiverl; 
Receiver receiver2; 

equation 
connect(aTCPSACK.o, router21.i2); 
connect(aTCPWestwood.o, router21.il); 
connect(router21.o, lossy_link_queue.i); 
connect(router12.i, lossy_link_queue.o); 
connect(router12.ol, receiverl.i); 
connect(router12.o2, receiver2.i); 

end TCPSACKvsTCPWestwood; 
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A simulation of this model is available in Section 15.6.9, page 868. 

15.6.4 Communication Port Classes 

The inport and Outport classes shown below define the interfaces used for connections between 
instances of the components in the TCP network model. All components need at least one inport or one 
Outport connector instance. Some components have several ports, e.g. the routers and the queue, whereas 
the senders and the receivers have only one Port each. 

The following variables declared in the Port class are propagated throughout the network model: 

• The number of packet flows, n, in the network. 
• The packet round-trip times, RTT, from the sender to the receiver and back for each flow. 
• The drop-event indicator, d, for each flow. 
• The flow rates, r [bytes/s], sending or incoming rates, for each flow. 
• The bandwidth estimates, BWE, for each flow. 

The Modelica code for the inport and Outport classes appear below. 

connector Inport "Input Port for connector instances in the network" 
parameter Integer n=2 "Number of flows"; 
input Real r[n] "r[f] - flow rate bytes/sec for flow f in connector"; 
input Boolean d[n] "d[f] - true when drop occurred in flow f"; 
input Real RTT[n] "RTT[f] - Round Trip Time for flow f"; 
input Real BWE[n] "BWE[f] - Bandwidth Estimation for sender, flow f"; 

end Inport; 

connector Outport "Output Port for connector instances in the network " 
parameter Integer n=2 "Number of flows"; 
output Real r[n] "r[fj - flow rate bytes/sec for flow f in connector"; 
output Boolean' d[n] "d[f] - true when drop occurred in flow f"; 
output Real RTT[n] "RTT[f] - Round Trip Time for flow f"; 
output Real BWE[n] "BWE[f] - Bandwidth Estimation for sender, flow f"; 

end Outport; 
We will now turn to the network sender components, each having one Outport instance. 

15.6.5 Senders 

The two hybrid TCP sender models, TCP SACK and TCP Westwood, have four different discrete states, 
as depicted in Figure 15-44. 

The states for each flow are the following: 

J^ timeOut )*—-

( slowStart Y Hf congestAvoid J 

7 fastRecovery j 

Figure 15-44. State transition diagram for the TCP SACK and TCP Westwood protocol variants. 
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• Slow start—the sender is initially in this state, in which the window size quickly increases 
exponentially up to the slow-start window threshold level, ssth, after which a state transition to 
the congestion-avoidance state occurs. 

• Congestion avoidance—in this state the window size increases at the slower additive rate specified 
by equation (15-60), and the system is prepared to handle congestion if it occurs. 

• Fast recovery—when entering this state we try to recover quickly from a congestion event, by 
dividing the window size in half according to TCP SACK, or compute it from a bandwidth 
estimate according to TCP Westwood. 

• Time out—this state is entered when a timeout occurs in the congestion-avoidance or slow-startup 
states. The window size is reduced to the very low value of 1 and a transition to the slow-start state 
is performed. 

In all states except the timeout state, the transmission rate fy for f low/ i s given by the following equation: 

w f >L = — (15-59) rf = 
f RTTf 

where Wj- is the window size in packets, L is the packet length in bytes, and RTTf is the round-trip time 
for flow f . The formula just states that the transmission rate is the number of currently pending transmitted 
bytes divided by the round-trip time. 

The round-trip time is the time between sending a packet and receiving the corresponding 
acknowledgment. It is the sum of the physical propagation time and the queuing times, and is defined in 
the lossy link model described in Section 15.6.7, page 863. 

We will not discuss all the details of this model, but rather focus more on the important congestion-
avoidance state, which specifies additive increase of the window size ^ a c c o r d i n g to equation (15-60) 
for probing the available bandwidth: 

1 (15-60) 
RTTf 

where Wj- is the additive window size increase rate. A simplified state diagram for congestion avoidance 
was previously shown in Figure 15-42, whereas the more realistic version of the state diagram is depicted 
in Figure 15-45. 

BWE f-RTTr 
or w / = max( J— J-—,2) 

SACK Westwood 

Figure 15-45. State transitions in the congestion-avoidance state after a packet drop for the TCP SACK and 
TCP Westwood protocol variants. 

When a packet drop is detected, the state is changed from congestion avoidance to fast recovery. When 
entering the fast recovery state in the TCP SACK variant, the instantaneous equation (15-61) is 
activated that reduces the window size by a factor of 2 compared to the previous value: 

s>Pre 

w f = 

wf (15-61) 
2 
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As mentioned previously, the TCP Westwood model is the TCP sender variant designed for lossy 
wireless links. This variant of the TCP protocol is quite similar to TCP SACK, except that the window size 
is not halved when packet drops occur. 

Instead the window size is set to a more realistic value using a bandwidth estimate, B W E j , for f l o w / 
specified by the instantaneous equation (15-62). This enables fast recovery after a drop since a correct 
setting of the window size is obtained very quickly. The instantaneous equation is activated only at the 
transition to the fast recovery state, and appears as follows: 

BWE r RTT?™ 
w f = max( f — 2) <1 5"6 2) 

where RTTJun is the minimum round-trip time computed so far for flow / RTTJ^ is a measure of the 
fastest possible round-trip with minimum delays from queuing in intermediate routers and other 
disturbances. The slow-start threshold ssth is also updated when entering the fast recovery state. 

The Modelica code for both the hybrid TCP SACK and the hybrid TCP Westwood model variants 
appears merged as a single TCPSender class below; there are very small differences between the two 
variants. When the Boolean variable tcpSACK is true, that variant is enabled; otherwise the TCP 
Westwood variant is active. 

model TCPSender "Hybrid Transmission Control Protocol, two variants: 
TCP_Westwood or TCP_SACK Selective ACKnowledgement" 

Outport o; 
constant Integer slowStart=l; 
constant Integer fastRecov=2; 
constant Integer congestAvoid=3; 
constant Integer timeOut=4; 
parameter Boolean tcpSACK = true "false means TCP_Westwood"; 
parameter Integer n=o.n "Number of flows"; 
parameter Integer a=l "Additive increase"; 
parameter Real L=1 "Packet size in bytes"; 
parameter Integer send_f_from=l "This sender's first flow"; 
parameter Integer send_f_to=n "This sender's last flow "; 
parameter Real timeout_th=4.0 "Window threshhold for entering timeout"; 
parameter Real m[n]={2,2} "log m in Slow-start"; 
// {1.5, 1.7, 2, 2.5, 2.7} "log m in Slow-start"; 
parameter Real RTO[n]=fill(0.200,n) "Retransmission TimeOut 200 ms"; 
discrete Integer state[n] (start=fill(slowStart, n)) ; 
Real ssth[n](start=fill(65535.0/L, n)) "Slow start thresholds"; 
Real w[n](start=ones(n)) "Communication window sizes, no of packets"; 
Real d_tim[n](start=zeros(n)) "Drop timer"; 
Real t_tim[n](start=zeros(n)) "Retransmission timer"; 
Boolean DelayD[n](start=fill(false,n))" Delay induced Drop detected"; 
//TCP Westwood variables 
Real RTT_min[n](start=fill(1.0, n)) "Minimum Round-Trip Time"; 
Real BWE[n] "Bandwidth Estimation for each flow"; 

equation 
for f in 1:n loop 

if (f >= send_f_from and f <= send_f_to) then 
// Instantaneous equations immediately after state transitions 

when ((pre(state[f]) == slowStart or pre(state[f]) ==congestAvoid) and 
state[f] == fastRecov) then 

reinit(t_t im[f], o.RTT[f ] ) ; 
if tcpSACK then 

reinit(ssth[f], w[f]/2); 
reinit(w[f], w[f]/2); 

else // TCP Westwood 
reinit(ssth[f], BWE[f]*RTT_min[f]/L) ; 
reinit(w[f], max(BWE[f]*RTT_min[f}/L, 2));//window size using BWE 
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end if; 
end when; 
when ((pre(state[f]) == slowStart or pre(state[f]) ==congestAvoid) and 

state[f] == timeOut) then 
reinit(t_tim[f], RTO[fj); 
if tcpSACK then 

reinit(ssth[f], w[f]/2); 
else // TCP Westwood 

reinit(ssth[f], max(BWE[f]*RTT_min[f]/L, 2) ) ; 
end if; 
reinit(w[f], 1); 

end when; 

// Equations for the 4 different states 
if state[f] == congestAvoid then 
der(w[f]) = a/o.RTT[f]; // additive increase 
o.r[f] = w[f]*L/o.RTT[f] ; 
der(t_tim[f]) = 0; 

elseif state[f] == fastRecov then 
der(w[f]) = 0; 
o.r[f] = w[f]*L/(o.RTT[f] ) ; 
der(t_tim[f]) = -1; 

elseif state[f] == timeOut then 
der(w[f]) = 0; 
o . r [ f ] = 0 . 0 0 1 ; 
der(t_tim[f]) = -1; 
// otherwise RTT will be 0 in queue 

else // state[f] == slowStart 
der(w[f]) = Modelica.Math.log(m[f])*w[f]/o.RTT[f]; //exponential inc 
o.r[f] = w[f]*L/o.RTT[f]; 
der(t_tim[f]) = 0; 

end if; 

der(d_tim[f]) = if d_tim[f] > 0 then -1.0 else 0.0; 
DelayD[f] = if d_tim[f] < 0 then true else false; 

when (o.d[f] and d_tim[f] <= 0) then 
reinit(d_tim[f], o.RTT[f]); 

end when; 
der (ssth [f] ) = 0; 

// 3 eqs used only by TCP_Westwood: 
BWE[f] = delay(o.BWE[f], o.RTT[f]); 
der(RTT_min[f]) = 0; 
when (RTT_min[f] > o.RTT[f]) then 

reinit(RTT_min[f], o.RTT[f]); 
end when; 

else // Unused flows 
when initial() then 

reinit(w[f], 0); 
end when; 
o . r [ f ] - 0; 
der(w[f]) = 0; 
der(ssth[f]) = 0; 
der(d_tim[f]) = 0; 
der(t_tim[f]) = 0; 
DelayD[f] = false; 
// 2 eqs used only by TCP_Westwood: 
BWE[f] = 0; 
der(RTT_min[f]) = 0; 
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end if; 
end for; 

algorithm // State transitions 
for f in 1:n loop 

if (f >= send_f_from and f <= send_f_to) then 
when (edge(DelayD[f]) and w[f] >= timeout_th and 

(state[fj == slowStart or state[f] == congestAvoid)) then 
state[f] := fastRecov; 

elsewhen (w[f] >= ssth[f] and state[f] == slowStart) then 
state[f] := congestAvoid; 

elsewhen (w[f] < timeout_th and edge(DelayD[f]) and 
(stateff] == slowStart or stateff] == congestAvoid)) then 

state[f] : = timeOut; 
elsewhen (t_tim[fj < 0 and state[f] == fastRecov) then 

state[f] := congestAvoid; 
elsewhen (t_tim[f] < 0 and state[f] == timeOut) then 

stateff] := slowStart; 
end when; 

else 
state[f] := 0; 

end if; 
end for; 

end TCPSender; 
Having presented the sender models, we will now turn to the quite simple receiver model. 

15.6.6 Receivers 

A receiver, for example, as depicted in Figure 15-46, has the sole function of receiving a stream of packets 
and returning acknowledgments. It has a single input port. 

Figure 15-46. Receiver with one inport. 
The Modelica code for the Receiver model appears below: 

model Receiver "Receiver" 
Inport i; 
parameter Integer n=i.n; 
parameter Boolean d[n]=fill(false,n) "Drop d[f] true/false for flow f"; 
parameter Real RTT[n]=zeros(n) "Round Trip Times"; 
Real received[n](start=zeros(n)) "receivedff] bytes for flow f"; 
Real received_tot "Rotal received bytes, all input flows"; 
Real r_tot_in "Total reception rate bytes/s, all input flows"; 

equation 
der(received) = i.r; 
r_tot_in = sum(i.r); 
received_tot = sum(received); 
i.d = d; 
i.RTT = RTT; 
i.BWE = i.r; 

Receiver _ 

i.q full..." / \ ; 

£f \ 
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end Receiver; 
The receiver is a very simple model class, which is not quite true for the communication link model to 

be described in the next section. 

15.6.7 Lossy Wireless Communication Link Model 

We now arrive at one of the most important components of our network model, namely the intermediate 
lossy wireless communication link that represents both the physical links and the intermediate routers with 
queues for temporary packet storage, for example, as schematically depicted in Figure 15-41, page 855. 
Several communication flows can be accommodated within the same physical network. 

Thus, our lossy link model needs to represent packet transmission and transmission delays over 
physical links and queuing of packets in intermediate routers, as well as stochastic sporadic transmission 
losses and bandwidth disturbances. 

In the following treatment of a mathematical model for the communication link we will make the 
simplification of a single router queue per flow instead of multiple queues, with no great loss of precision. 

We will treat the queue sizes, packet flow transmission rates, as well as a number of other quantities as 
continuous-time real-valued variables in our hybrid network communication model. However, even though 
the queues are stored in the routers of real physical systems, in the TCPSACKvsTCPWestwood model we 
have put the queuing mechanism in the communication link model for practical reasons. 

The variable q^ is the number of bytes in flow / stored in the router queue for that flow, sf is the 
input send rate (bytes/s) of bytes sent into the queue of flow f , and /y is the output receive rate (bytes/s) 
of bytes received from f l o w / o f the communication link by some external node(s). 

We can express these quantities summed over all flows as follows: 

<lm = Y f l f 
f 

stot=YuSf (15-63) 

where qtot is the total number of bytes summed over all flows for packets queued in the network, stot is the 
input total send rate over all flows sending bytes into the network, and rtot is the output total receive rate 
over all flows receiving bytes from the network. 

The behavior of the communication link is dependent on whether the queue is full, qtot = # m a x , or is 
not full, 0 < qtot < q ^ , which is reflected in the state transition diagram depicted in Figure 15-47. 

0<qtot<qm 

Figure 15-47. Two-state transition diagram of lossy communication link, where the not-full state contains 
three substates and the full state two substates. 

The total bandwidth of the outgoing link is equal to the constant Btot. If the total send rate into the input 
link stot>BtoJ, then a fraction of the packets must be temporarily stored in the queue of the 

( Queue-not-full ) 

/* \ytot fmax 

( Queue-full J^TToX , 
V 6 o y 2 ^ U J dropf 

z — L^ 
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communication link at the rate q f , which is nonzero when the output rate is defined by the second or third 
equation that defines /y in (15-64). 

The variable z is the number of input bytes of the currently received packet that have been dropped. 
When the queue is not full, no bytes need to be dropped since they can be stored in the queue. However, 
when the queue is full, the drop rate is the amount that the total input rate exceeds the output transmission 
rate, as defined by the first equation of (15-65). A packet drop is generated when the variable z has 
accumulated a byte flow amount equal to the packet length L. 

The following equations represent the relations between the main quantities of the model for the two 
main states: 

• The queue not full state, 0 < qtot < q^: 

£ = 0 

i f = s f ~ r f 

r - q f R r f ~ btot 
Qtot 

The following Modelica class Lossy link queue represents the previous relations and includes the 
following aspects of the lossy link: 

• Packet flows, including reception of packages sent into the link and transmission of packages to be 
received by a node at the output. 

• Queue handling, including queue storage rates, transmission rates, and the different states when the 
queue is full or not full. 

• Drop regeneration, when the queue is full and input rates exceed the maximum transmission rates. 
• Random generation of good state and bad state transmission quality intervals. In the bad state the 

probability for packet drops is fairly high. 
• Computation of the round-trip timing RTTf and bandwidth estimate BWE^ for each flow. 

These properties are in most cases modeled by separate groups of equations in the class. However, the 
modeling of the two main states with their substates and conditional equations is somewhat more implicit. 
The Modelica code for the class Lossy_link_queue follows below: 

model Lossy_link_queue 
Inport i 

"Wireless transmission link queue" 
"Port for flows from router into queue"; 

Sf , qtot = o and stot < Btot (15_64) 

sf 
r = l-±-Btot , qtot = 0 and stot > B(ot 

Stot 

—l—Btot , otherwise 
4 tot 

where the condition qtot - 0 is represented as (q tot <= eps) for a small constant eps in the Modelica 
model. In the queue full state the output rate jy is the fraction q^ / qtot of the total output bandwidth: 

• The queue full state, qtot = q^: 

Z = Stot ~Btot 

S f ~ r f > hot ^ Btoi 

i'=L-^stot>stot>Btot 05-65) 
Qtot 
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Outport o; "Port for flows from queue into router" 
parameter Integer n=max(size(i.r))"Number of flows"; 
parameter Real B_tot=10A7/8000 "Default Total Bandwidth"; 
parameter Real q_max=57 "Max total queue size"; 
parameter Integer L=500 "Packet size"; 
parameter Real T=0.02 "Physical propagation delay for trip"; 
parameter Real eps=0.01 "Threshold to avoid division by zero"; 
parameter Real loss_factor_good=0.00001 "Absolute loss level"; 
parameter Real loss_factor_bad=0.10 "If bad, fraction lost"; 
parameter Real lg=8; 
parameter Real lb=4; 

Real q_tot(start=0) "Total number of bytes in queue"; 
Real s_tot "Sent from router to link - incoming total byte flow rate"; 
Real r_tot "Received from link to ext router - noloss total byte rate" 
Real s_tot_acc(start=0) "Total no of sent incoming bytes accumulated"; 
Boolean q_full(start=false) // true if queue full 

Integer u_flow(start=l) "1 if underflow - integer used as fake boolean"; 
Integer o_flow(start=0) "1 if input overflow - int used as fake boolean"; 
Real q[n](start=zeros(n)) "Number of elements from flow f in queue"; 
Real rand "Random variable for drop decision"; 
Real z(start=0) "Drop detection, dropped bytes"; 
Real RTT_initial "Initial RTT to prevent singularity at init time"; 

// To get a lower sending rate than the bandwidth 
Real s[n] "s[f] send rate from router into link, flow f"; 
Real r[n] "r[f] no loss receive rate into router from link, flow f"; 
Real r_acc[n](start=zeros(n)) "Received bytes from link accumulated"; 
Boolean loss[n] "loss[f] true if loss in flow f"; 
Real rand_loss[n] (start=fill(0.5, n)) ; 

Boolean GOOD_STATE "Good commlink state with low loss factor"; 
Boolean BAD_STATE "Bad commlink state with high loss factor"; 
Real g_tim(start=l) "Timer for good state duration"; 
Real b_tim(start=-l) "Timer for bad state duration"; 
Real loss_factor(start=0.001) ; 

equation 
s = i.r; // Send rate from router at input 
o.r = (1 - loss_factor)*r; // Lossy receive rate to router at output 
s_tot = sum(s); 
r_tot = sum(r); 
q_tot = sum(q); 
der(s_tot_acc) = s_tot; 
o_flow = if s_tot > B_tot then 1 else 0; // 1 if incoming traffic rate>max 
u flow = 1 - o_flow; // 1 if s_tot <= B_tot 
q_full = (q_tot > q_max); 

// Note: Two main states in figure contains substates 
// States dependent on: q_full/not full o_flow/u_flow, q_notempty/empty 
for f in 1:n loop 

r[f] = if (q_tot > eps) then B_tot*q[f]/q_tot // Queue not empty 
else o_flow*B_tot*s[f]/s_tot + u_flow*s[f]; // q empty 

der(q[f]) = if q__tot < q__max then s[f] - r[f] // Queue not full 
else o flow*(s[f]—q[f]/q tot*s tot) + u_flow*(s[f]-r[f]); //full 

end for; 

// Losses independent of queue size 
// Timers for when good state and bad state start and stops 
when edge(GOOD_STATE) then 

reinit(g_tim, -lg*log(randomUniform(time)));//Modelica.Math, Appendix F 
end when; 
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when e dg e(BAD_S TATE) then 
reinit(b_tim, -lb*log(randomUniform(time))); //lb=4 

end when; 
GOOD_STATE = (b_tim < 0); // Initially true when b_tim= -1 
BAD_STATE = (g_tim < 0); // Initially false when g_tim =1 
der(g_tim) = if g_tim > 0 then -1.0 else 0.0; // If positive, decrease 
der(b_tim) = if b__tim > 0 then -1.0 else 0.0; // If positive, decrease 

loss_factor = if GOOD_STATE then loss_factor_good else loss_factor_bad; 
for f in l:n loop 
der(r_acc[f]) = r[f]; 
der(rand_loss[f]) = 0; 
loss[f] = (r_acc[f] > rand_loss[f]*2*L/loss_factor); 
when r_acc[f] > rand__loss[f]*2*L/loss_factor then 

reinit(r_acc[f], 0); 
end when; 
when pre(loss[f]) then 

reinit(rand_loss[f], rand); 
end when; 

end for; 

// Compute packet drops uniformly distributed among flows 
// Drop rate der(z) is send rate above total bandwidth when q_full 
der(z) = if q_full then s_tot - B_tot else 0.0; 
rand = randomUniform(time); 
// If q_full becomes true or z>L the generate drop in a flow and set z=0 
if ((z > L and q_tot > eps) or edge(q_full)) then 

i.d[1] = if (0 <= rand and rand < q[l]/q_tot) then true else o.d[l]; 
for f in 1:n - 1 loop 

i.d[f + 1] = if (sum(q[1:f])/q_tot <= rand and 
rand < sum(q[1:f+1])/q_tot) then true 

else o.d[f + 1]; 
end for; 
reinit(z, 0.0); 

else 
i.d = o.d or loss; 

end if; 

// Calculating Round Trip Times and available Bandwidth Estimates 
RTT_initial = if initial() then T else 0; 
for f in 1:n loop 

i.RTT[f] = if s[f] <> 0 then T + q_tot/B_tot + o.RTT[f] //<>0 compare 
else RTT_initial; 

i.BWE[f] = r[f]*B_tot/(r_tot + 0.01); 
end for; 

end lossy_link_queue; 
Next we will present rather simple router models, since the queuing has already been taken care of. 

15.6.8 Routers 

In physical communication networks routers are computers that forward information packets on their way 
from senders to receivers. Routers usually have a limited queuing and storage capacity, which is used 
when the rate of packets sent to the router exceeds the maximum transmission rate from the router. In 
general, a router may have several alternative links to choose from when forwarding packets to their 
destination. Such choices are usually done dynamically at run time. 
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However, the packet flows in the special case of our simplified hybrid network model are fixed. This 
means that there are no dynamic routing decisions made in the routers, which just direct the flows to 
predetermined target nodes. Internally the routers have equations connecting the incoming packet flows to 
the correct outgoing link(s). 

15.6.8.1 Router21 with One Outgoing and Two Incoming Links 
The Router 21 router model, depicted in Figure 15-48, performs static routing of two packet flows on two 
incoming links to one outgoing link, essentially merging the flows. 

Figure 15-48. Router21 merging two input links to one output link. 

The Modelica code for the model class appears below. The equations sum the input packet rates to give 
the output packet rate o.r. However, other variables such as round-trip time RTT, drop indication d, and 
bandwidth estimation BWE are just set equal to the output o for both inputs il and i2. 

model Router21 "Two incoming links and one outgoing link" 
parameter Integer n=o.n "number of flows"; 
Inport il ; 
Inport i2 ; 
Outport o ; 

equation 
// RTT and drops must be propagated 
o.r = il.r + i2.r; 
11.RTT = o.RTT; // RTT Round Trip Times 
12.RTT = o.RTT; 
11.d = o.d; // true if dropped packet 
12.d = o.d; 
11.BWE = o.BWE; // BandWidths 
12.BWE = o.BWE; 

end Router21; 

15.6.8.2 Routerl2 with One Incoming and Two Outgoing Links 
The following router model, depicted in Figure 15-49, performs static routing of two packet flows on one 
incoming link to two outgoing links, where the packets in flow 1 are directed to output port ol, and the 
packets in flow 2 are directed to output port o2. 

In our simple network model an instance of this router is used to connect the lossy communication link 
to two receiver nodes. 

Figure 15-49. Routerl2 with one incoming and two outgoing links. 
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The Modelica code for the Router 12 class follows below. Round-trip-time estimates are combined. A 
packet-drop indication is propagated between one of the outputs and the input. The input bandwidth 
estimate i. BWE is the sum of the bandwidths for the outgoing links. 

model Routerl2 "One incoming link and two outgoing links, for 2 flows" 
parameter Integer n=i.n "number of flows"; 
Inport i; 
Outport ol ; 
Outport o2 ; 

equation 
// You must know which flow(s) that should go on which link 
// Implementing that flow 1 should be sent to ol and flow 2 to o2 
// This router is ok only for 2 flows 
ol.r[1] = i.r[1]; // Rates r of flows 
0 1 . r [ 2 ] = 0; 
0 2 . r [ 1 ] = 0; 
o2.r[2] = i.r[2] ; 
i.RTT = ol.RTT + o2.RTT; // RTT Round Trip Times 
i.d = ol.d or o2.d; // true if dropped packet 
i.BWE - ol.BWE + o2.BWE; // BandWidths 

end Router12; 

15.6.9 Simulation 

Below we simulate the TCPSACKvsTCPWestwood network model for 25 seconds, with a maximum queue 
size of q_max=50, as specified in the model. 

simulate(TCPSACKvsTCPWestwood, stopTime=25); 
plot({aTCPWestwood.w[l],aTCPSACK.w[2]} ) 

— aTCPWestwood.w[1] 
— aTCPSACK.w[2] 

Figure 15-50. TCP SACK versus TCP Westwood communication packet window sizes w, related to packet 
throughput. 

Figure 15-50 shows a plot of the simulated packet window size w for our small network model, 
containing a TCP Westwood sender on flow channel 1, and a TCP SACK sender on flow 2. 

Both protocol variants show the typical TCP sawtooth shape where the window size is gradually 
increased until the bandwidth limit is hit and congestion occurs, after which the window size is reduced in 
half and again increased approximately linearly. 

However, during the lossy disturbance phase between time=5 and time=14, as well as between time=17 
and time=22, the TCP Westwood protocol grabs the available bandwidth quickly due to its fairly accurate 
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estimate of the available bandwidth. During this phase the TCP SACK protocol performs poorly since it 
reduces its window estimate too quickly to a very low window size value w - \ . After this reduction the 
window size grows linearly, which during the lossy phase is too slow to get a reasonable increase since 
there soon will be another disturbance causing the window size to again be reduced. 

15.7 Design Optimization 

An important use for modeling and simulation is to improve a system design, usually before it is 
physically realized and manufactured. In this process it is customary to perform a number of simulations 
for different values of the design parameters, until a design has been obtained that best fulfills a given set 
of design criteria. To automate this process it is very useful if the simulation environment has 
programmable scripting facilities that provide the glue between optimization algorithms, executing 
simulations, and various computational functions. The process of design optimization usually consists of 
the following steps: 

1. Define a parameterized model of the system to be optimized. 
2. Define an optimization criterion, usually expressed as a goal function that is minimized. 
3. Give values to the design parameters. 
4. Perform a simulation of the system for the given set of design parameters. 
5. Compute the goal function value based on the results from the simulation. 
6. Call the optimization function, which will determine if the minimum value of the goal function has 

been found. Otherwise the function will compute the next set of design parameter values for 
getting closer to the optimal set of values, and continue with step 4. Alternatively, first compute the 
goal function for a number of design parameter values, and call the optimization function to 
directly find the minimum. 

The following example demonstrates the solution of a small but nontrivial design optimization problem 
containing dynamic system simulations. First we define a Modelica model of a linear actuator with a 
spring-damped stopping, as well as a first-order system that will be used to generate a kind of "reference" 
response. The goal is to find a damping for the translational spring-damper that minimizes the deviation 
between the step response of the linear actuator system and the step response from our "reference" first-
order system. 

In this example, we use the Wolfram SystemModeler environment with Mathematica as the scripting 
language providing the built-in optimization function FindMinimum. 

idealGearR2T1 slidingMassI springDamperl fixed 1 

U | ] inertial 

^ f ] springDamper2 

| j ] inertia2 

1 — F m 
tau ... I— 

torquel stepl 
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Figure 15-51. A LinearActuator model containing a spring-damped connection to an anchoring point. 

Consider the following model of a linear actuator, depicted in Figure 15-51, with a spring-damped 
connection to an anchoring point: 

model LinearActuator 
import Modelica.Mechanics.Translational; 
import Modelica.Mechanics.Rotational; 
import Modelica.Blocks.Sources; 
Translational.Components.Mass 
Translational.Components.SpringDamper 
Translational.Components.Fixed 
Rotational.Components.IdealGearR2T 
Rotational.Components.Inertia 
Rotational.Components.SpringDamper 
Rotational.Components.Inertia 
Rotational.Sources.Torque 
Sources.Step stepl; 

equation 
connect(stepl.y, 
connect(idealGearR2Tl.flangeT, 
connect(springDamper2.flange_b, 
connect(torquel.flange, 
connect(siidingMassl.flange_b, 
connect(springDamper1.flange_b, 
connect(inertial.flange_b, 
connect(inertia2.flange_b, 

end LinearActuator; 

slidingMassl(m=0 
springDamperl (d: 
fixedl; 
idealGearR2Tl; 
inertial(J=0.1); 
springDamper2(c=15, d=2 
inertia2(J=0.1); 
torquel; 

torquel.tau); 
slidingMassl.flange_a) 
inertia2.flange_a); 
inertial.flange_a); 
springDamperl.flange_a 
fixedl.flange); 
springDamper2.flange_a 
idealGearR2Tl.flangeR) 

) ; 

We first make a simulation of the step response (Figure 15-52) for the above linear actuator with 
damping d=2, and store the result in the scripting language variable called resLinActFirst, using the 
Mathematica command interface to Wolfram SystemModeler, with results as interpolation functions 
(Section 19.4.5.1, page 1054). Then the simulated position of the sliding mass is plotted as a function of 
time to have a closer look at the response. However, before running these commands you need to load the 
model into Wolfram SystemModeler. 

Needs["WSMLinkx" ] ; (* 
WSMModelCenter["optionalmodelname"] 

Note: first load the model into WSM 
Can be done in GUI or using this 

resLinActFirst = WSMSimulate["LinearActuator", {0,5}] 
WSMPlot[resLinActFirst, {"slidingMassl.s"}, PlotRange -> All] 

slidingMassl.s 

0 . 0 6 

0 . 0 5 

0 . 0 4 

0 . 0 3 

0 . 0 2 

0 . 0 1 

Figure 15-52. Plot of step response from the linear actuator. 

Assume that we have some freedom in choosing the damping in the translational spring-damper. A 
number of simulation runs show what kind of behavior we have for different values of the damping 
parameter d. Using the Mathematica command interface to Wolfram SystemModeler (Section E.3, page 
1143), the Mathematica Table [ ] function is used to collect the results from calls to Simulate [ ] into an 



Chapter 15 Application Examples 871 

array res. This array then contains the results from simulations of LinearActuator with a damping of 2 
to 14 in increments of 2; i.e., seven simulations are performed (Figure 15-53). 

res = Table[WSMSimulate["LinearActuator", {0,4}, 
WSMParameterValues ->{"springDamperl.d" -> s}], {s,2,14,2}] 

WSMPlot[res, "slidingMassl.s", {0, 4}, PlotRange -> All, Legend -> False] 

Figure 15-53. Plots of step responses from seven simulations of the linear actuator with different damping 
coefficients. 

Now assume that we would like to choose the damping parameter d so that the resulting linear actuator 
system behaves as closely as possible to the following "reference" first-order system response, obtained by 
solving a first-order ODE using the Mathematica differential equation solver NDSolve: 

resReference = NDSolve[{0.2*y•[t]+y[t] == 0.05, y[0] == 0}, {y}, {t,0,4}] 
We make a plot to compare the step response we simulated first for a damping value d=2 and the 

response from the "reference" first-order system (Figure 15-54). 

Show[Plot[y[t] /. resReference, {t, 0, 4}, PlotRange -> All, 
PlotStyle -> {Red, Dashed, Thick}], 
WSMPlot[resLinActFirst, {"slidingMassl.s"}, PlotRange -> All]] 

slidingMassl.s 

1 2 3 4 

Figure 15-54. Comparison plot between the step response of the linear actuator and the "reference" first-
order system. 

Now, let us make things a little more automatic. Simulate and compute the integral of the square 
deviation from t=0 to t=4. This integral is a measure of the deviation from the "reference" response, and 
is thus suitable as a goal function to be minimized. The expression (y [t ] /. resReference) retrieves 
the interpolating function representing the variable y [t], i.e., the reference response. 

resLinAct2nd = WSMSimulate["LinearActuator", {0,4}, 
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WSMParameterValues -> {"springDamperl.d" -> 3}]; 
{slidingMassls} = resLinAct2nd[{"slidingMassl.s"}]; 

NIntegrate[(First[(y[t] /. resReference)] - slidingMassls[t])A2, {t, 0, 4}] 

0.000162505 
We define a Mathematica function, f [ a], doing the same thing as above, but for different values of the 

spring-damper design parameter d. The function contains three local variables res, t, and 
localSlidingMassls. 

f[a_] := Module[{res, t, localSlidingMassls}, 
res = WSMSimulate["LinearActuator", {0, 4}, 

WSMParameterValues -> {"springDamperl.d" -> a}]; 
{localSlidingMassls} = res[{"slidingMassl.s"}]; 
NIntegrate[(First[(y[t] /. resReference)] - localSlidingMassls[t])A2, 

{t, 0, 4}] 
] 

We tabulate some results for 2 < d < 10 into an array res Deviations: 
resDeviations = Table[{d, f[d]}, {d, 2, 10, 0.5}] 
{{2,0.000317667}, 
{2.5, 0.0002214 84 }, {3., 0. 000162505},{3.5, 0.000125513}, {4 ., 0 . 000102749}, 
{4.5,0.0000898832}, {5.,0.000084067}, {5.5,0.0000836711}, {60.0000874586}, 
{6.5,0.0000945743}, {7.,0.000104399}, {7.5,0.000116464}, {8.,0.000130394}, 
{8.5, 0.000145922}, {9., 0.000162819}, {9.5, 0.000180894}, {10 ., 0.000200008}} 
The tabulated values are interpolated into a Mathematica interpolating function (Figure 15-55). The 

default interpolation order is 3. 

fpre = Interpolation [resDeviations] ; 
Plot [ fpre [d] , {d, 2, 10}] 

Figure 15-55. Plot of the deviation function for finding the value of the damping parameter that gives a 
minimum deviation from the reference response. 

The minimizing value of d can be computed using FindMinimum: 
FindMinimum [ fpre [d] , {d, 4}] 
{0.00008325641806896195, {s -> 5.286423245854051}} 
A simulation with the optimal parameter value: 

resLinActOpt = WSMSimulate["LinearActuator", {0, 4}, 
WSMParameterValues -> {"springDamperl.d" -> 5.28642}]; 

{slidingMassls} = resLinActOpt[{"slidingMassl.s"}] 
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A plot comparing the "reference" first-order system and linear actuator system responses together with 
a plot of the squared deviation amplified by a factor 100 is given in Figure 15-56. 

Plot[{ slidingMassls[t], 
y[t] /. resReference, 
100*(slidingMassls[t] - (y[t] /. resReference))A2 

} / 
{t, 0, 4}, PlotRange->All, Legend->False] 

Figure 15-56. Comparison plot of the first- and second-order system step responses together with the 
squared error. 

15.8 Fourier Analysis of Simulation Data 

A simulation of a system may indicate the presence of periodic phenomena such as vibrations. Fourier 
analysis on the simulation results transforms the data from the time domain into the frequency domain, 
which makes frequency-dependent characteristics very explicit. For example, the main modes of 
oscillation become visible as peaks in a plot, for example, as in Figure 15-58 below. 

For example, consider a weak axis (a nonrigid flexible axis containing springs) excited by a torque 
pulse train. The axis is modeled by three segments joined by two torsion springs, depicted in Figure 15-57. 

5 1 
pulsel torquel inertial springl inertia2 spring2 inertia3 

Figure 15-57. A WeakAxis model excited by a torque pulse train. 

The corresponding Modelica code: 

model WeakAxis 
import Modelica.Mechanics.Rotational.Components; 
import Modelica.Blocks.Sources; 
Components.Inertia inertial; 
Components.Spring springl(c=0.7); 
Components.Inertia inertia2; 
Components.Spring spring2(c=l); 
Components.Inertia inertia3; 
Modelica.Mechanics.Rotational.Sources.Torque torquel; 
Sources.Pulse pulsel(width=l, period=200); 

equation 
connect(pulsel.y, torquel.tau); 

Optimized 2nd order system 
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connect(torquel.flange, inertial.flange_a); 
connect(inertial.flange_b, springl.flange_a); 
connect(springl.flange_b, inertia2.flange_a); 
connect(inertia2.flange_b, spring2.flange_a); 
connect(spring2.flange_b, inertia3.flange_a); 

end WeakAxis; 
We simulate the model during 200 seconds: 

Needs["WSMLinkv"]; (* Note: first load the model into WSM *) 
resWeakAxis = WSMSimulate["WeakAxis", {0,200}]; 
{inertia3w} = resWeakAxis[{"inertia3.w"}] ; 
The plot of the angular velocity of the rightmost axis segment appears as in Figure 15-58, indicating the 

presence of oscillation frequencies in the result. 

WSMPlot[resWeakAxis, "inertia3.w", {0, 200}] 
WSMPlot[resWeakAxis, "torquel.tau", {0, 200}] 

inertia3.w torque 1. tau 

Figure 15-58. Plot of the angular velocity of the rightmost axis segment of the WeakAxis model. 

Now, let us sample the interpolated function (Section 19.4.5.1, page 1054) Inertia3w using a sample 
frequency of 4Hz, and put the result into an array using the Mathematica Table array constructor: 

datal = Table[inertia3w[t], {t, 0, 200, 0.25}] 
Compute the absolute values of the discrete Fourier transform of datal with the mean removed: 

fdatal = Abs[Fourier[datal - MeanValue[datal]]] 
Plot the first 80 points of the data (Figure 15-59). 

ListPlot[fdatal[[Range[80]]], PlotStyle -> {Red, PointSize[0.015]}]; 
10 

20 40 60 80 

Figure 15-59. Plot of the data points of the Fourier-transformed angular velocity. 

A simple Mathematica function FourierPlot can be written that repeats the above operations. 
FourierPlot also scales the axes such that amplitude of trigonometric components are plotted against 
frequency (Hz) (Figure 15-60). 
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FourierPlot[inertia3w[t], {t, 0, 200}, 0.5, 
PlotJoined -> True, PlotStyle -> Red] 
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Figure 15-60. Plot of the data points of the Fourier-transformed angular velocity. 

15.9 Pressure Dynamics in ID Ducts—Solving Wave Equations by 
Discretized PDEs 

Currently, Modelica cannot handle partial differential equations (however, language extensions are on the 
way—see Section 8.10, page 400) directly since there is only the notion of differentiation with respect to 
time built into the language. However, in many cases derivatives with respect to other variables (such as, 
for example, spatial dimensions) can be handled by simple discretization schemes represented using the 
array capabilities in Modelica. Here we will give an example of how the one-dimensional wave equation 
can be represented in Modelica and how Mathematica and Wolfram SystemModeler can be used for 
simulation and display of the results, as well as representing the result as a 2D interpolating function. 

The one-dimensional wave equation is given by a partial differential equation of the following form: 

d2p _ 2 d2p 
dt2 dx2 

(15-66) 

where p = p(x,t) is a function of both space and time. As a physical example let us consider a duct of 
length 10 where we let - 5 < x < 5 describe its spatial dimension. Since Modelica can handle time only as 
the independent variable, we need to discretize the problem in the spatial dimension and approximate the 
spatial derivatives using difference approximations using the approximation: 

d2P ^ Pi-i+Pi+i~2Pi 
dt2 ~ Ax2 

(15-67) 

where p, = p(xl + ( / - l ) x A x ) on an equidistant grid. Utilizing this approach a Modelica model of a duct 
whose pressure dynamics is given by the wave equation can be written as follows, where the pressure 
function p to be computed is represented as a one-dimensional array p of size n, where the array index is 
the discretized space coordinate along the x-coordinate, and the time dependence is implicit as usual for a 
continuous-time Modelica variable: 

model WaveEquationSample 
import Modelica.Slunits; 
parameter Slunits.Length 
parameter Integer 
parameter Slunits.Length 
parameter Slunits.Velocity c=l; 
Slunits.Pressure[n] p(start=initialPressure(n) 

L=10 "Length of duct"; 
n=30 "Number of sections" 
dL=L/n "Section length"; 



Real[n] dp(start-fill(0,n)); 
equation 
p[1]=exp(-(-L/2)A2); 
p[n]=exp(-(L/2)A2); 
dp=der(p) ; 
for i in 2:n-l loop 
der(dp[i]) = cA2*(p[i+1]-2*p[i]+p[i-1])/dLA2; 

end for; 
end WaveEquationSample; 
Here we are using a Modelica function initialPressure (defined further below) to specify the 

initial value of the pressure along the duct. Assume that we would like an initial pressure profile in the 
duct of the form e~x

 t depicted in Figure 15-61 by the following plot command: 

Plot [ e-*2 , {x, -5, 5}]; 

Figure 15-61. The initial pressure profile of the duct. 

The function initialPressure returns the initial pressure profile function in discretized form as an 
array. 

function initialPressure 
input Integer n; 
output Real p[n]; 

protected 
parameter Modelica.Slunits.Length L=10; 

algorithm 
for i in 1:n loop 
p[i]:=exp(-(-L/2+(i-1)/(n-1)*L)A2); 

end for; 
end initialPressure; 
We simulate the WaveEquationSample model: 

resWave = WSMSimulate["WaveEquationSample", {0, 10}] 
The simulation result, i.e., the array p, shows how the pressure evolves at equidistant positions in the 

duct as functions of time. This is represented by the array p of ID interpolation functions of time, which 
has to be retrieved by specifying each array element since Wolfram SystemModeler currently does not 
support direct retrieval of arrays. The array p elements are packed into a Mathematica 2D interpolation 
function (Section 19.4.5.1, page 1054) and plotted using the following two commands (Figure 15-62): 

p = resWave [ { "p [ 1 ] ", "p [ 2 ] ", "p [ 3 ] ", "p [ 4 ] ", "p [ 5 ] ", "p [ 6 ] ", "p [ 7 ] ", "p [ 8 ] ", "p [ 9 ] ", 
"p [ 10 ] ", "p [ 11 ] ", "p [ 12 ] ", "p [ 13 ] ", "p [ 14 ] ", "p [15] ", "p [ 16] ", "p [ 17 ] ", "p [ 18 ] ", 
"p[19]","p[20]","p[21]","p[22]","p[23]","p[24]","p[25]","p[26]"p[27]", 
"p [ 2 8 ] ", "p [ 2 9 ] ", "p [ 3 0 ] " } ] ] ; 
intp = Interpolation[Flatten[Tablet{-5. + ((k - 1)/29)*10, t, p[[k]][t]}, 

{k, 1, 30}, {t, 0, 10, 0.2}], 1]]; 

- 4 - 2 2 4 
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Plot3D[intp[x,t],{x,-5,5},{t,0,10}, PlotPoints->30, PlotRange->{-l,1}, 
AxesLabel->{"x","t","p(x,t)"}] 

Figure 15-62. A 3D plot of the pressure distribution in the duct. 

Let us also plot the wave as a function of position x for a fixed point in time (t=1.2) to observe the 
pressure distribution in more detail (Figure 15-63): 

Plot[intp[x,1.2], {x, -5, 5}]; 

15.10 Mechanical Multibody Systems and the MBS Library 

A mechanical multibody system can be defined as a system consisting of a number of interacting 
mechanical bodies or substructures. Previously (Section 14.8, page 770) we gave an introduction to the 
topic of multibody systems for rigid (nonflexible) bodies, explained the basic concepts, and presented the 
basic equations including Newton's laws in a form that is used by the Modelica multibody system (MBS) 
library. 

The goal of this section is to give a short introduction on how to use the Modelica MBS library to 
model 3D mechanical applications, as well as presenting a short overview of the library itself. 

The main goal of the Modelica MBS library is to simplify modeling and dynamic analysis of 
mechanical systems including mechanical subsystems that are part of larger multidomain systems. Given 
an idealized model of a mechanical multibody system and external forces influencing this system, a 
Modelica simulation can compute the position and orientation of each body as a function of time. The 
most typical use of such a model is to analyze the movements of bodies resulting from the application of 
certain forces and torques, as well as influences from other changes in the environment. The forces and 
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Figure 15-63. The wave as a function of position at t ime= l . 2. 
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torques can have different origins: these can be produced by drive trains, electrical motors, controlling 
devices, and so on, or from a combination of such elements. 

Newton's laws are expressed in the MBS library class MultiBody .Parts. Body, which also is used in 
other models. Equations of motion and coordinate transformations are formulated in the library, both for 
free bodies and for connected bodies related by some constraints. Each body has one or more local 
coordinate systems, also denoted frames of reference, or just frames. Coordinate transformations are used 
to relate quantities expressed in these frames. The library works with rigid bodies that have some 
geometric extent, that is, have not been simplified to point masses. The rotation of bodies relative to the 
inertial coordinate system is taken into account, being represented by quantities such as angular velocity 
and angular acceleration vectors. 

The MBS library described here is the most comprehensive Modelica multibody system library for 
three-dimensional mechanical rigid bodies. It has a unique technical feature compared to other MBS 
libraries in its very efficient treatment of joint locking and unlocking. This allows, for example, easy and 
efficient modeling of friction elements or brakes in joints. Another rather unique feature is to allow 
connection of all kinds of object in physically meaningful ways, including designs consisting only of force 
elements such as springs. The major area that the MBS library currently does not handle is multibody 
systems consisting of general flexible bodies, that is, bodies that may undergo deformations. However, 
extensions in this direction are available in the FlexibleBodies library. 

15.10.1 New and Old Version of the MBS Library 

A current version of the Modelica MBS library (Modelica.Mechanics .Multibody) was initially 
released Nov 2003 when it was added to MSL, and has since then been maintained and extended. This 
library has a number of advantages compared to the old version (before 2003) of the MBS library 
ModelicaAdditions .Multibody. However, the old version of the library is still used by some 
applications and mentioned in a number of published papers—therefore we will also briefly describe some 
properties of the old library in this overview, even though we primarily present the current library. The 
current library has the following advantages compared to the old one: 

• The current library is much easier to use—all physically meaningful connections between library 
components are supported, even including direct connections between pure force elements. The old 
library has several restrictions on how to connect different kinds of objects, which makes it harder 
to use. 

• The current library has automatic removal of superfluous equations resulting from so-called 
kinematic loop connection structures (except for planar kinematic loops, see Section 15.10.8, page 
894)—in the old library kinematic loops have to be broken manually by inserting so-called 
cutjoints, which can be tricky. 

• Built-in animation properties are available for all components, such as joints, forces, bodies, 
sensors. Animation can easily be turned on or off. The old library has less convenient and less 
comprehensive support for animation. 

• A number of other improvements are available in the current library such as better documentation, 
structuring, and understandability including a set of vector and matrix expression functions (in 
MultiBody. Frames) that are inlined in equations, definitions of inverse models, initialization via 
menus, better help messages, automatic selection of states from both joints and bodies, analytic 
solution of many kinematic loops, force components may be connected directly together, and so on. 

If not explicitly stated otherwise, the following description applies to current MBS library, even though a 
number of general properties also hold for the old MBS library. 
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15.10.2 Connecting Force Elements—a Triple Springs Model 

This example demonstrates that three-dimensional line force elements (e.g., MultiBody.Forces.Spring 
instances) can be connected together in series and in parallel without having a body with mass at the 
connection point, which would be required by the old MBS library and by most multi-body simulation 
programs. Besides the modeling inconvenience, a small mass between the springs would have the 
disadvantage of causing the resulting equation system to become stiff (see Section 18.2.1.5, page 1001). The 
connection structure and 3D view of the model are shown in Figure 15-64. 

world 

h w V ^ 
spring2 bodyl 

barl springl 

Figure 15-64. Connection diagram (left) and 3D animation view (right) of the TripleSprings model with 
three springs directly connected in series and in parallel. 

The TripleSprings model, (essentially MultiBody.Examples.Elementary.ThreeSprings) 
appears below with an animation parameter. If the animation attributes are not specified, bodies and bars 
are animated by default, but not springs. If animation=false for the model, there will be no animation 
at all. 

encapsulated model TripleSprings "3-dim. springs in series and parallel" 
inport Modelica.Mechanics.MultiBody.Parts; 
inport Modelica.Mechanics.MultiBody.Forces; 
parameter Boolean animation=true "= true, if animation shall be enabled"; 
inner Modelica.Mechanics.MultiBody.World world(animateWorld=animation) ; 
Parts.Body 

Parts.FixedTranslation 
Parts.FixedTranslation 
Forces.Spring 

Forces.Spring 

Forces.Spring 

bodyl(animation=animation, 
r_CM={0,-0.2,0}, r_0_start={0.5,-0.3,0}, 
m=0.8, I_ll=0.1, I_22=0.1, I_33=0.1, 
startValuesFixed=true, useQuaternions=false, 
sphereDiameter=0.2); 

barl(animation=animation, r={0.3, 0, 0}); 
bar2(animation=animation, r={0,0,0.3}); 
springl(s_unstretched=0.1, width=0.1, 

coilWidth=0.005, numberOfWindings=5, 
c=20, animation=animation); 

spring2(s_unstretched=0.1, width=0.1, 
coilWidth=0.005, numberOfWindings=5, 
c=40, animation=animation); 

spring3(s_unstretched=0.1, width=0.1, 
coilWidth=0.005, numberOfWindings=5, 
c=20, animation=animation); 

equation 
connect(world.frame_b, 
connect(world.frame_b, 
connect(barl.frame_b, 
connect(bar2.frame_b, 
connect(spring2.frame_b, bodyl.frame_a); 
connect(spring3.frame_b, springl.frame_b 
connect(spring2.frame_a, springl.frame_b 

end TripleSprings; 

barl.frame_a); 
bar2.frame_a); 
springl.frame_a); 
spring3.frame_a); 



880 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

15.10.3 Main MBS Object Classes 

The main parts of a multibody system model expressed using the MBS library are primarily constructed 
from the following three kinds of objects: 

• Frames—frames of reference, that is, coordinate systems. One or more frames are attached to 
specific points at each body, depending on its geometry. The inertial system or world object, an 
instance of the MultiBody .World model, is a special global frame of reference which always has 
to be present in a model. All other frames must be able to relate to this frame through a sequence of 
coordinate transformations. Frames are described in more detail in Section 14.8.1, page 771, and in 
Section 15.10.5.1, page 884. 

• Bodies—rigid bodies with mass and inertia. Each body has one or more frames attached at certain 
points. 

• Joints—mechanical connections between pairs of bodies including constraints for the relative 
movements of the two bodies connected via a joint. 

All objects in the current MBS library have geometry and color attributes needed for visualization and 
animation. 

Certain types of bodies may have more than one frame attachment point where additional elements can 
be connected. Such rigid bodies need to be constructed by rigidly connecting a basic body to additional 
frames via instances of fixed-frame coordinate transformation classes such as FrameTranslation, 
FrameRotation, and so on. 

The local frames of a body must be related to the world object (inertial coordinate system) through the 
Modelica implicit force-field inner/outer connection mechanism (in the old library through explicit 
connections via joints). In this way, coordinate system transformations between the current frame and the 
inertial system are automatically obtained, and the gravity acceleration defined in the inertial system is 
automatically propagated to the body. The basic state variables (sometimes called generalized coordinates) 
are defined in either bodies or joints. 

Additionally, there are two kinds of objects of somewhat less importance that can be attached to a 
multibody system model: 

• Forces—these classes are modeling 3-D vector versions of external force objects such as springs, 
torsion springs, dampers, etc., that can be connected to bodies and joints. 

• Sensors—these classes are sometimes useful to compute and observe certain variables that may not 
be directly available in the model classes. 

The different kinds of model classes are packaged into the sublibraries to be presented in the next 
section. Before going into more detail about the structure of the MBS library it can be instructive to take a 
look at a very simple example: the Free Fly ingBody model. 

15.10.4 A Simple Free-Flying Body Model 

A free-flying body model is one of the simplest models possible to construct using the MBS library. It is 
useful to construct this kind of simple model in the MBS library for reasons of comparison with the simple 
point mass model we described in Section 5.8.3, page 228. Still, this is substantially more complicated 
than Newton's equations for a point mass in a gravity field, since the rotation of the body need to be taken 
into account. The connection structure of the model is depicted in Figure 15-65. 
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Figure 15-65. Connection diagram for the free-flying body model using the MBS library. 

The model, expressed using the current MBS library, needs only two objects: the free-flying body 
itself, and the world object or inertial system that must be present in all models. The Modelica inner/outer 
implicit connection mechanism for force fields relates the body with its coordinates to the world 
coordinate system, which also enables the gravity force to act on the body. The gravity force is obtained by 
multiplying the body mass with the gravity acceleration defined in the world instance. 

model FreeFlyingBody 
import Modelica.Mechanics.MultiBody.Parts; 
inner Modelica.Mechanics.MultiBody.World world; 
Parts.Body body(v_0_start={0,5,0}); 

end FreeFlyingBody; 
We also show the same model in the old version of the MBS libraiy for comparison (Figure 15-66). 

inertialSystem freeMotion body 

Figure 15-66. Connection diagram for the free-flying body model using the old Modelica 2.2 
Modelica.Additions MBS library. 

That model needs three objects: the free-flying body itself, the inertial system, and a 
MultiBody. Joints .FreeMotion "joint" that relates the body coordinates to the inertial system, and 
enables the gravity force defined in the inertial system instance to act on the body. This joint in the old 
library is quite strange since it does not impose any movement constraints on the body. However, it is still 
needed for the above-mentioned reason. 

model FreeFlyingBody "Version using the old MBS library" 
import ModelicaAdditions.MultiBody.Parts.*; 
import ModelicaAdditions.MultiBody.Joints.*; 
InertialSystem inertialSystem; 
FreeMotion freeMotion(v_rela(start®{0, 5,0})); 
Body body(m=l); 

equation 
connect(inertialSystem.frame_b, freeMotion.frame_a); 
connect(freeMotion.frame_b, body.frame_a); 

end FreeFlyingBody; 
A simulation of the FreeFlyingBody model computes the altitude above ground as a function of 

time, as shown in Figure 15-67. 

simulate(FreeFlyingBody, stopTime=l); 
plot(body.r_0[2]); 
1.2 N . 
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Figure 15-67. Altitude above ground for a free-flying body modeled and simulated using the MBS library. 
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15.10.4.1 Free-flying Body in Point Gravity 
It is easy to construct a model of one or more non-interacting free-flying bodies in a point gravity field, by 
setting gravityType=GravityTypes.PointGravity for the world object. The connection structure 
of such a model with two bodies is depicted in Figure 15-68. 

bodyl 

worlcf* ® B B 
body2 

Figure 15-68. Connection diagram for two free-flying bodies in the PointGravity model. 

The model needs only three objects: the two free-flying bodies and the world object (the global inertial 
system). 

model PointGravity 
import Modelica.Mechanics.MultiBody.Parts; 
inner Modelica.Mechanics.MultiBody.World world(gravityType=2,mue=l, 

gravitySphereDiameter=0.1); 
Parts.Body bodyl(m-1,r_0_start={0,0.6,0}, 
v_0_start={1,0,0},sphereDiameter=0.1,1_11=0.1,I_22=0.1,1_33=0.1) ; 

Parts.Body body2(m=l,r_0_start={0.6,0.6,0}, 
v_0_start={0.6,0,0},sphereDiameter=0.1,I_11=0.1,I_22=0.1,I_33=0.1); 

end PointGravity; 
A simulation of the PointGravity model with default animation enabled for the two bodies is shown 

in Figure 15-69. 

simulate(PointGravity, stopTime=4); animate(PointGravity); 

Figure 15-69. Animation of the PointGravity model with two bodies in a point gravity field using the 
MBS library. 

15.10.5 Structure of the MBS Library 

The classes in the MBS library are grouped into several sublibraries or packages, from which components 
can be picked when designing an MBS application model, as depicted in Figure 15-70. 
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Figure 15-70. Picking objects from the MBS sublibraries for use in an application model. 

The MBS library is structured into the following sublibraries: 

• MultiBody.World—this is a single class, not a package, defining the global inertial system 
model. Exactly one instance of World is necessary in each MBS application model to be 
simulated. 

• MultiBody. Examples—a set of examples on how to use the MBS library. 
• MultiBody. Forces—these are classes modeling 3D force elements such as springs and dampers. 
• MultiBody.Frames—contains type definitions (e.g., orientation object types) and functions 

(inlined) to transform rotational frame quantities. 
• MultiBody.Interfaces—this subpackage contains classes (Frame, Frame_a, Frame_b) for 

coordinate system frames, as well as partial base classes used by the other MBS sublibraries. 
• MultiBody. Joints—classes describing joints connecting two mechanical parts. Different kinds 

of joints have different constraints on the relative movements of the two connected parts. Also 
includes the subpackage MultiBody. Joints .Assemblies, which contains aggregated joint 
components for analytic solution of kinematic loops, and MultiBody. Joints. Internal, which 
has components used internally for analytic solution of kinematic loops, and which should not be 
directly referred to by the user. 

• MultiBody.Parts—this subpackage primarily contains classes for defining rigid bodies which 
have mass and inertia. The package also contains massless fixed-frame transformation classes. 

• MultiBody.Sensors—this subpackage contains classes for computing relative kinematic 
quantities between pairs of frames on bodies or joints. 

• MultiBody .Types—definitions of types and constants that are used in the MultiBody library. 
The types have additional annotation choices definitions that define the menus to be built up in the 
graphical user interface when the type is used as parameter in a declaration. 

• MultiBody .Visualizers—the classes in this subpackage support animation of shape objects 
that can be connected to frame connectors. 

• MultiBody. Icons—icons for the MultiBody package. 

Moreover, classes from the following Modelica packages are often used together with the MBS library 
when modeling MBS applications: 

• Modelica.Mechanical.Rotational.Interfaces 
• Modelica.Mechanical.Translational.Interfaces 
• Modelica.Blocks.Interfaces 
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The subsequent sections contain a more detailed overview that covers the most important classes of the 
MBS library. Most mechanical system models can be constructed from these. Several other classes are 
variations and optimized combinations of the basic classes. At this stage, the reader who is more interested 
in application examples may skip to Section 15.10.7, page 891, and if needed go back to this section later. 

15.10.5.1 MultiBody.lnterfaces 
This sublibrary contains connector classes and base classes of the MBS library. Most of the base classes 
are superclasses of models defined in the other sublibraries, and are therefore not used directly by the 
modeler. In the old MBS library some of the base classes contain basic formulations of Newton's laws, 
previously described in Section 14.8.5.4, page 783. In the current MBS library these laws are instead stated 
in MultiBody. Parts .Body. The most important connector classes in MultiBody.lnterfaces are 
Framea and Frameb, which describe coordinate systems, i.e., frames of reference. 

• Frame connector classes: Frame, Frame_a, Frame_b, and Frame_resolve 
Each instance of Frame (or Frame a or Frame b, which are identical to Frame) describes a local 

coordinate system object. Instances of Frame a are in the following often called frame a, and in Modelica 
code denoted by frame a. Instances of Frame b are denoted frame b. The cut-force f (connector force 
applied at the connector) and cut-torque t (connector torque) vectors are resolved relative to the local 
coordinate system instance, for example, frame a, whereas r_0 is resolved relative to the global inertial 
system (the world frame). The Modelica code of the Frame class appears as follows: 

connector Frame "Frame of a mechanical system" 
import SI = Modelica.Slunits; 
SI.Position r_0[3] "Position vector from world frame to the connector 

frame origin, resolved in world frame"; 
Frames.Orientation R "Orientation object to rotate the world frame 

into the connector frame"; 
flow SI.Force f[3] "Cut-force resolved in connector frame"; 
flow SI.Torque t[3] "Cut-torque resolved in connector frame"; 

end Frame; 
The cut-force (connector force) and cut-torque (connector torque) are applied at the connector position. 

As apparent from the above definition, Frame contains the following potential variables: 

• The vector r_0 [ 3 ] from the inertial frame to the origin of the local connector frame. 
• The orientation object R (a rotation matrix R [ 3, 3 ] computed from Euler/Cardan angles, see 

Section 14.8.4.2, page 776, or from quaternions, see Section 14.8.4.3, page 111) for rotating the 
inertial frame to the same orientation as the local connector frame. All orientation objects are 
instances of MultiBody. Frames .Orientation, see Section 15.10.5.2 below. 

The rotation matrix can be used for transformation of vectors between frames: 

• To map a vector v expressed in the local connector frame to the global inertial frame, we need to 
apply the inverse R _ 1 = R T , i.e., R T v expressed in the global inertial frame. This is the same as 
calling resolvel (R, v), transforming from frame 2 (the local frame) to frame 1 (the global 
inertial frame). R is often available in the local frame (frame_a. R). See also Section 15.10.5.2. 

• To map a vector x from the inertial frame to the local frame, apply R, i.e. Rx . This is the same as 
calling resoive2 (R,w), transforming from frame 1 (the global inertial frame) to frame 2 (the 
local frame). R is often available in the local frame (frame a. R). See also Section 15.10.5.2. 

According to Modelica semantics, if connectors from several objects are connected, the potential 
variables with the same name become constrained to have identical values through equality equations. This 
corresponds to a common local coordinate system used by all model components connected at the same 
frame instance. The Frame a connector class also contains two flow variables: 
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• The resultant force vector f [ 3 ] acting at the origin of frame a. 
• The resultant torque vector t [ 3 ] acting at the origin of frame a. 

According to the Modelica semantics, if n connectors from several objects are connected together, the 
sum of all flow variables is equal to zero, i.e., the sum of the resultant forces connected at a specific point 
is zero: fi+f2+...+fn=0. 

For comparison we also show the Frame_a definition from the old MBS library: 

connector Frame_a "Frame a of a mechanical element, from old MBS library" 
input Slunits.Position rO[3] "Position vector from inertial system to 

frame origin, resolved in inertial system"; 
Real S[3,3] "Transformation matrix from frame_a to 

inertial system"; 
Slunits.Velocity v[3] "Absolute velocity of frame origin, 

resolved in frame_a"; 
Slunits.AngularVelocity w[3] "Absolute angular velocity of frame_a, 

resolved in frame_a"; 
Slunits.Acceleration a[3] "Absolute acceleration of frame origin, 

resolved in frame_a"; 
Slunits.AngularAcceleration z[3] "Absolute angular acceleration of 

frame_a, resolved in frame_a"; 
flow Slunits.Force f[3]; 
flow Slunits.Torque t[3]; 

end Frame_a; 
The definition of Frame a from the old library also contains translational and angular velocities and 

accelerations, which in the current MBS library are defined in the Body class. The rotation matrix R of the 
current library is the inverse (i.e., transpose for an orthogonal matrix) of the rotation matrix S from old 
library, that is, R = S _ 1 = S T (see also Section 14.8.4.1, page 774). 

Apart from the frame classes just presented, there are also partial superclasses of joints, force elements, 
sensors, and visualizers. 

To summarize, the following classes are available in the MultiBody. Interfaces sublibrary: 

• Frame, Frame_a, Frame_b, Frame_resolve, FlangeWithBearing, 
FlangeWithBearingAdaptor,PartialElementaryJoint,PartialForce, PartialLine-
Force, PartialAbsoluteSensor, PartialRelativeSensor, PartialVisualizer, 
PartialTwoFrames, PartialTwoFramesDoubleSize,PartialOneFrame_a, 
PartialOneFrame b, ZeroPosition 

15.10.5.2 MultiBody.Frames 
The subpackage MultiBody.Frames contains type definitions and functions to transform rotational 
frame quantities. The basic idea is to hide the actual definition of an orientation in this package by 
providing the type Orientation together with functions operating on instances of this type. These 
functions typically are inlined by most Modelica environments, and therefore give no call overhead. See 
The MultiBody library documentation in the Modelica Standard Library for a complete list with examples 
of all transformation functions. 

15.10.5.3 MultiBody.Parts 
This package mainly contains classes for defining rigid bodies which have mass and inertia. It is often 
quite convenient to use the BodyBox or BodyCylinder model classes, since their geometries are rather 
simple and the inertia matrix is automatically computed from the size parameters of the box or cylinder. 
Additionally, the geometry and color properties of the box or cylinder can be used to automatically obtain 
3D graphic animations of simulated multibody systems. 

The package also contains massless frame transformation elements. The following classes are 
available: 
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• Body—a rigid body with one frame a connector, as well as mass, inertia tensor, and relative 
center-of-mass properties, and default geometry with a cylinder and a sphere at the center of mass, 
see Figure 15-71 for different shapes. This class is the basic body class, containing Newton's 
equations of motion expressed in the body local coordinate system, as well as appropriate 
coordinate transformations. See Section 14.8.5.4, page 783, for a derivation of some of the 
formulations of Newton's equations used in this class. 

• Body Shape—same as Body, but also containing both framea and frameb connectors, and a 
fixed distance vector r between those frames. This body can have a more general shape, e.g. user-
defined as a DXF20-file or selected from a set of predefined shapes according to the setting of the 
parameter shapeType: "box", "sphere", "cylinder", "cone", "pipe", "beam", 
"gearwheel", or "spring", see Figure 15-71. 

• BodyBox—similar to BodyShape, but has a box-shaped geometry and color properties. The inertia 
matrix, sometimes called the inertia tensor, is automatically defined from the density and the shape 
of the box, which also may be hollow—see Figure 15-71. 

• BodyCylinder—similar to BodyBox, but with cylindrical geometry. The cylinder may also have 
a hole, i.e., a pipe—see Figure 15-71 and Figure 15-72. 

• Fixed—frame fixed in the world frame at a given position. Default geometry is a cylinder if 
shapeType="cylinder". 

• FixedTranslation—fixed relative translation denoted by the parameter vector r[3] from 
f ramea to frameb, resolved in framea. An object of this class can be viewed as a massless 
bar between these two points. Default geometry is a cylinder. 

• FixedRotation—fixed translation and fixed rotation of frame b with respect to frame a. 
Default geometry is shapeType="cylinder". 

• PointMass—rigid body where body rotation and inertia tensor is neglected (6 potential states). 
• Mounting ID—Propagate 1-dimensional support torque to 3-dimensional system, provided 

world.driveTrain Mechanics3D=true. 
• Rotor ID—ID inertia attachable on 3-dimensional bodies. 3D dynamic effects are taken into 

account ifworld.driveTrainMechanics3D=true. 
• BevelGearlD—ID gearbox with arbitrary shaft directions and 3-dim. bearing frame. 3D dynamic 

effects are taken into account provided world.driveTrainMechanics3D=true. 
• RollingWheel—ideal rolling wheel on flat surface z=0, 5 positional, 3 velocity degrees of 

freedom. 
• Rolli ngwhee l Set—ideal rolling wheel set consisting of two ideal rolling wheels connected 

together by an axis. 

The default shapes for Body, BodyShape, BodyBox, and BodyCylinder are shown in Figure 15-71. 

Figure 15-71. Default visualization shapes for Body, BodyShape, BodyBox, and BodyCylinder 
respectively. 

Different shapes depending on the value of the parameter shapeType are depicted in Figure 15-72. 

20 AutoCad geometry file format. 
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Figure 15-72. Visualization body shapes for BodyShape depending on the value of shapeType. 

15.10.5.4 MultiBody.J oints 
The MultiBody. Joints package contains model classes describing joints connecting two mechanical 
bodies with various constraints on the relative movements of the connected bodies. 

Prismatic ActuatedPrismatic Revolute ActuatedRevolutel Cylindrical Universal 

- | h Hg- ..Ci. c~> tf* 
Planar Spherical FreeMotion SphericalSpherical UniversalSpherical 

Figure 15-73. Schematic pictures of the 11 different kinds of joints available in the MBS library. 

The following is a complete list of the joint classes provided by the MultiBody. Joints sublibrary, 
starting from those with one degree of freedom up to the FreeMotion joint with six degrees of freedom 
and no motion constraints at all. 

• Prismatic—a joint for sliding translational motion in one direction, giving one translational 
degree of freedom and two potential state variables. This class has connectors f rame a and 
frame b, as well as a Real parameter vector n [3] (fixed in frame a) that defines the direction 
of translation when frame b moves relative to frame a. The variable s contains the relative distance 
between frame b and frame a. 

• Revolute—a joint that allows rotation relative to one axis (see Figure 14-36, page 787, and 
Figure 14-30, page 779). The basic state variable is the rotation angle ph i , which gives one 
rotational degree of freedom and two potential states, i.e., potential state variables without the flow 
prefix. This class has the connectors frame a and frame b, as well as a Real parameter vector 
n [ 3 ]. This unit vector defines the direction of the axis of rotation when frame b rotates around 
frame a. 

• Re volute PI anarLoopConstraint—Revolute joint that is described by two positional 
constraints for usage in a planar loop. The ambiguous cut-force perpendicular to the loop and the 
ambiguous cut-torques are set arbitrarily to zero. 

• Cylindrical—a joint for independent rotation and sliding motions, with two degrees of freedom 
and four potential states (that is, potential state variables). The frame b rotates around and 
translates along axis n which is fixed in f rame a. 

• Universal—a joint that allows rotation relative to two rotation axes giving two degrees of 
freedom, and four potential states. 

• Planar—a joint for arbitrary translational and rotational motion on a plane, with three degrees of 
freedom and six potential states. 

• spherical—a joint for arbitrary rotational motion around a fixed point. This joint has three 
degrees of freedom, three constraints, and no potential states. 

B f l gig 
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• FreeMotion—a joint that allows relative motion with no constraints, as if there were no joint at 
all, giving six degrees of freedom and twelve potential states from the attached two frames. 

• FreeMotionScalarinit—free motion joint with scalar initialization and state selection (6 
degrees of freedom, 12 potential states). 

• Sphe r i cal Sphe r i ca 1—a spherical aggregated joint consisting of two spherical joints connected 
by a rod with an optional point mass in the middle. 

• UniversalSpherical—a spherical aggregated joint with a universal joint at frame a and a 
spherical joint at f rame b which are connected together with a rigid rod. 

• GearConstraint—ideal three-dimensional gearbox with arbitrary shaft directions. 
• RollingWheel—joint with no mass and no inertia that describes an ideal rolling wheel rolling on 

the plane z=0. 
• RollingWheel Set—joint with no mass and no inertia that describes an ideal rolling wheel set, 

that is, two ideal rolling wheels connected together by an axis. 

The one-degree-of-freedom joints, that is, Revolute, Prismatic, and so on, can be dynamically 
locked and unlocked during the movement of the bodies in a multibody system. This facility can be used to 
model brakes, clutches, stops, or sticking friction. Locking is modeled using classes such as Clutch or 
Friction of the Modelica .Mechanics. Rotational library. Instances of these classes can be attached 
to joints at the axis connector of type Flangea. 

15.10.5.5 MultiBody.J oints.Assemblies, Constraints, Internal 
The Assemblies subpackage of MultiBody. Joints contains aggregations of joints for analytic loop 
handling. These joints are primarily designed to be used in kinematic loop structures. Every component 
consists of three elementary joints. These joints are combined such that the kinematics of the three joints 
between frame a and frame b are computed from the movements of frame_a and frame_b, i.e., there 
are no constraints between framea and frameb. This requires solving a nonlinear system of equations, 
which here is performed analytically, that is, when an analytic solution exists, it is computed efficiently 
and reliably. 

The assembly joints in this package are named JointXYZ, where XYZ are the first letters of the 
elementary joints used in the component, in particular: p—prismatic joint, R—revolute joint, S—spherical 
joint, and u—universal joint. The currently available joints are: JointUPS, JointUSR, JointuSP, 
JointSSR, JointSSP, JointRRR, and JointRRP. 

There is also a Constraints subpackage with components such as Prismatic, Revolute, 
Spherical, and Universal, that define joints by constraints. 

The internal subpackage contains components used for analytic solution of kinematic loops. Use 
them only if you know what you are doing. 

15.10.5.6 MultiBody.Forces 
Force elements, such as springs and dampers, can be attached between two frame connectors of arbitrary 
MBS objects such as bodies, joints, or other elements. The following 3D force elements are available in 
the Multibody. Forces sublibrary: 

• WorldForce, WorldTorque, WorldForceAndTorque, Force, Torque, ForceAndTorque, 
LineForceWithMass, LineForceWithTwoMasses, Spring, Damper, 
SpringDamperParallel, SpringDamperSeries. 

Gravitational forces for all bodies are taken into account by having the gravitational acceleration of the 
world object (the inertial system), i.e., an instance of MultiBody .World, as a nonzero value. The default 
is the gravitational acceleration at the surface of the earth. The propagation to all objects with mass is via 
implicit connections via the Modelica inner/outer mechanism (see Section 5.8, page 224). 



Chapter 15 Application Examples 889 

It is easy for a user to introduce new force elements as subclasses, e.g. from the model class 
MultiBody. Interfaces. PartialLineForce. Moreover, one-dimensional force elements from other 
(non-MBS) libraries such as the Modelica .Mechanics. Translational can also be used. 

15.10.5.7 MultiBody.Sensors 
This subpackage contains measurement components to determine absolute and relative kinematic 
quantities, as well as cut-forces, cut-torques and power. All measured quantities can be provided in every 
desired coordinate system. The following classes are available: 

• AbsoluteSensor, RelativeSensor, AbsolutePosition, AbsoluteVelocity, 
AbsoluteAngles, AbsoluteAngularVelocity, RelativePosition, RelativeVelocity, 
RelativeAngles, RelativeAngularVelocity, Distance, CutForce, CutTorque, 
CutForceAndTorque, TransformAbsoluteVector,TransformRelativeVector, Power 

For example, the RelativeSensor class can compute any relative kinematic quantity (position, velocity, 
acceleration, angular velocity, angular acceleration) between two frames, whereas the Power class 
measures power flowing from frame a to frame b. 

15.10.5.8 MultiBody.Types 
This subpackage defines types and constants that are used in the MultiBody library. The types have 
additional annotation choices definitions that define the menus to be built up in the graphical user interface 
when the type is used as a parameter in a declaration. 

15.10.5.9 MultiBody.Visualizers 
The subpackage visualizers contains definitions needed for visualizing three-dimensional shapes. 
These definitions are the basis for the animation features of the MultiBody library, and include the shape 
types depicted in Figure 15-72. 

15.10.6 Using the MBS Library 

There are several approaches to the construction of an MBS model of a multibody system using a 
collection of Modelica classes. The following are three common approaches: 

• Automatic translation from a CAD model to Modelica code. 
• Traditional manual stepwise refinement, starting from a kinematic outline, and gradually 

developing a complete MBS model. 
• A physical component top-down design approach starting with the main system structure including 

bodies and joints picked from the MBS library, and gradually introducing additional details, 
visualization aspects, and sensor elements. 

If a CAD-to-Modelica translator is used (Section 15.11, page 903), there is no need for manual 
construction of the MBS model. In general, the construction process depends on the context, in particular 
what type of analysis should be applied to the model, and whether simulation efficiency should be allowed 
to influence the model structure. Here we advocate the top-down physical component approach, previously 
described in Section 15.10.6.2, page 890. 

15.10.6.1 Kinematic Outline Approach 
Most traditional textbooks in multibody system design suggest a process of stepwise refinement of an 
MBS model, first using a so-called kinematic outline (kinematic skeleton), and later introducing details of 
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model dynamics and visualization based on this outline. This approach is also possible using the Modelica 
MBS library, but is harder to use than the approach described in the next section. 

The kinematic outline is a graph consisting of nodes, with one or more connectors belonging to each 
node, and edges drawn between the connectors. 

The nodes of a kinematic outline of a multibody system consist of the inertial world frame, massless 
elements (remember that we have not yet added dynamic properties such as mass and inertia), coordinate 
frame transformations, and joints that define the kinematic features of the system. The edges of the outline 
are connections between those nodes attached at coordinate frame connectors. Given the angles of rotation 
for revolute joints and the length of translation for prismatic joints, or a combination of those in other 
joints, the Modelica MBS library classes can compute the position of any frame connector using the 
coordinate transformations between adjacent frame connectors. 

15.10.6.2 Top-down Physical Component Approach 
The top-down physical component approach is similar to the kinematic outline approach, with the 
difference that here we can use real body models with mass and inertia, including dynamic aspects such as 
forces and their influence. This approach is the most straightforward since there already exist several easy-
to-use body classes in the Modelica MBS library. 

15.10.6.3 Multibody System Graph 
The multibody system graph is a graph consisting of nodes with connection points (e.g., frame connectors) 
and edges drawn between the connectors. The nodes of the graph correspond to the global reference frame, 
the bodies of the system, and the elements defining coordinate frame transformations. The edges of the 
graph represent interactions between the bodies, in particular joints. In many cases these graphs are 
acyclic, and represent a tree structure. However, there are models that give rise to graphs with loops, so-
called kinematic loops. These are in most cases handled automatically, but sometimes may require special 
treatment, for example, see Section 15.10.8, page 894. 

15.10.6.4 Connection Rules for the Old MBS Library 
The elements of the old multibody library cannot be connected together in an arbitrary way. The reason is 
to allow the Modelica translator to generate very efficient simulation code by forming a tree-structured 
connection graph implying an well-defined efficient computation order for equation solution. This is not 
needed in current MBS library. 

The following connection rules apply to the old Modelica 2.2 Modelica.Additions MBS library, which 
makes that library much harder to use than the current library where these restrictions have been removed: 

• Ordinary joint objects (also called tree joints, not cutjoints), body objects, and the inertial system 
object have to be connected together so that the frame a of an object (filled with blue color) is 
always connected to a f rame b of another object (unfilled color). The connection structure has to 
form a tree with the inertial system as root, for example, as depicted in Figure 15-74. 

• CutJoint (special joints to break kinematic loops when using the old MBS library), force, and sensor 
objects always have to be connected between two frames of a tree joint, a body, or an inertial system 
object. For example, in the old MBS library it is not allowed to connect two force objects together. 
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Figure 15-74. Joints in a tree-shaped connection structure implied by the connection rules of the old MBS 
library. 

Fortunately, we need not consider these complicated rules when using the current MBS library. The 
reason is that the current library uses the Modelica equation operators for overconstrained connection-
based equation systems as described in Section 8.5, page 374. 

15.10.7 Developing an Example Model—a 3D Double Pendulum 

In this section, an idealized model of a double pendulum is developed. This pendulum consists of two arms 
linked by a hinge. The upper box is linked by a hinge to a nonmovable platform, that is, an inertial system. 
Both arms can move in the x-y plane. The corresponding kinematic outline consists of two revolute joints, 
one frame translation and one inertial system, as depicted in Figure 15-75. 

i •• " • ' a 

Figure 15-75. Mechanical structure of the double pendulum, where body2 is an instance of Body and 
bodyl is an instance of a body class with two connectors (BodyShape, BodyBox, or BodyCylinder). 
The motion of a dynamic system cannot be defined just by its kinematic outline, since an outline does 

not contain objects with mass. Fortunately, the body classes in the MBS library have been designed to 
represent mechanical objects with mass. The Body class (instance body2 in Figure 15-75) has the single 
connector frame_a, whereas the classes BodyShape, BodyBox, and BodyCylinder have two 
connectors: frame a and frame_b, which is apparent for the instance bodyl in Figure 15-75. The 
following parameters also need to be supplied by the modeler: 

• The mass m of the body. 
• The vector r_CM [ 3 ] denoting the position of the center of mass with respect to f ramea. 
• Elements I _ l l , 1 22, 1 33, 1 21, 1 31, 1 32 of the inertia matrix with respect to the center of 

mass, with default values 0 if not specified, except for the diagonal elements 1 11, 1 2 2 , 1 3 3 
which have default values 1. e -3. 

• The parameter vector r [ 3 ] from the origin of f rame a to f rame b with respect to f rame a, for 
instances of the body classes with two frame connectors. 

revolutel 

revolute2 

body2 

I Inertial I 

UointJ 

I Body2 I I BcxJ/2 I 
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The inertia matrix I [ 3 , 3 ] is declared as a variable in all body classes, and defined from the above 
inertia matrix elements through a matrix equation. This 3x3 matrix containing nine elements is defined by 
the previously mentioned six inertia matrix numbers since it is symmetric: 

(In '21 /311 
hx In 132 

u. hi I*) 

In the double pendulum example, two bodies can be added to the kinematic outline. 
Since the description of class Body contains the distance between its frame a and its center of mass, 

such objects can be directly connected to the connector frame bof revolute joints revolutel and 
revolute2, as depicted in Figure 15-75. 

Modelica class instances, such as bodyl, body2, revolutel, and so on, have attributes that can be 
modified. For instance, Body has attributes that define mass, inertia tensor, and the location of its center of 
mass relative to the local coordinate system (r_CM). Instances of Revolute (revolute joint rotating around 
an axis) have an attribute n that defines the direction of axis of rotation. Instances of Prismatic 
(prismatic joint for sliding motion) have an attribute that specifies the direction of the allowed translation. 
For a FrameTranslation instance, the relative position vector from frame a to frame b is specified 
by the vector r. 

Several important parameters need to be defined for a double pendulum: LI and L2 are the lengths of 
the arms. Their masses are M. The center of mass of the first arm is located at the distance Ll/2 from the 
first rotation point. The rotation axes of the revolute joints are directed along the z-axis defined by the 
direction unit vector { 0 , 0 , 1 } . 

15.10.7.1 Adding Geometricai Shapes: Cylindrical Bodies 
To produce visualizations including 3-D animations we need geometry and color attributes to the bodies 
in a multibody system model in addition to those necessary for simulation. The MBS library contains 
the classes BodyBox, BodyShape, and BodyCylinder with associated geometry and color 
information. 

In the following examples we will use the class BodyCylinder which describes a body with 
cylindrical shape. It has a connector frame_a which indirectly is attached (via implicit connections, see 
Section 5.8, page 224) to an instance of World, and a frame_b connector which does not always need to 
be attached. The class also introduces the following parameters that specify the geometry and color of the 
cylinder needed for visualization. As usual all position parameters are relative to the local frame a 
coordinate system, except r_0 which is expressed in the inertial (world) coordinate system. The 
following is a subset of the available parameters for BodyCylinder: 

• The parameter vector r [3] from the origin of frame a to frame b expressed in frame a. By 
default the cylinder has two circular surfaces with centers in frame a and frame b, placed 
perpendicular to the line between f rame a and f rame b. 

• The parameter vector r shape [3] from the origin of f rame a to the origin of the cylinder, i.e. 
the center of the left circular surface of the cylinder. 

• The parameter diameter specifies the radius of the cylinder (0.1 [m] by default). There is also an 
innerDiameter parameter (usually 0), for cylinders with holes, i.e., pipes. 

• The parameter density specifies the density of the cylinder (7.7 [g/cm3] by default—a common 
value for steel). 

• The parameter m specifies the mass of the cylinder, automatically computed from the density and 
volume given by the length and diameters )of the cylinder. 
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• The parameter array color[3] (of type MultiBody. Types. Color=Integer [ 3]) specifies the 
color of the shape, using values for red, green, blue components (RGB). All coefficients are 
between 0 and 255. Different shapes have different default colors. 

• The parameter length, which is the length of the cylinder, and length direction , which is a 
vector (r - r shape) in the direction of the cylinder axis. Both of these are defined from the 
above parameters by equations. 

15.10.7.2 A Double Pendulum Consisting of Two Cylinders 
A double pendulum in which the two arms have cylindrical shape is depicted in Figure 15-76 below. 

Figure 15-76. A 3D visualization from a 3D animation of the double pendulum with cylindrical geometries 
of the bodies. The inertial system frame (world object) is shown at the top. 

The corresponding Modelica model DoublePendulumCylinders for the double pendulum with 
cylindrical bodies uses an instance of BodyCylinder instead of Body for the second pendulum arm. This 
is apparent in the connection diagram of the model shown in Figure 15-77. 

i [ • • ^ W 
world revolutel bodyl revolute2 body2 

Figure 15-77. The Modelica diagram for the double pendulum consisting of two cylinders. 

The DoublePendulumCylinders class follows below, including the declaration of the pendulum 
arms as instances of BodyCylinder: 

model DoublePendulumCylinders 
inport Modelica.Mechanics.MultiBody.Parts; 
import Modelica.Mechanics.MultiBody.Joints; 
import Modelica.Mechanics.MultiBody.Types; 
parameter Real Ll=0.3 "length of 1st arm"; 
parameter Real L2=0.4 "length of 2nd arm"; 
parameter Real D=0.1 "diameter"; 
inner Modelica.Mechanics.MultiBody.World world; 
Joints.Revolute revolutel; 
Joints.Revolute revolute2; 
Parts.BodyCylinder bodyl(r={LI,0,0},diameter=D); 
Parts.BodyCylinder body2(r={L2,0,0},diameter=D,color={255,255, 0}) ; 

equation 
connect(world.frame_b, revolutel.frame_a); 
connect(revolutel.frame_b, bodyl.frame_a); 
connect(revolute2.frame_b, body2.frame_a); 
connect(bodyl.frame_b, revolute2.frame_a); 

end DoublePendulumCylinders; 
We simulate and plot the example: 
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simulate(DoublePendulumCylinders, stopTime=l) 
plot({body2.body.frame_a.r_0[2], body2.frameTranslation.frame_b.r_0[2]}) 

— body2.body.frame_a.r_0[2] 
— body2.frameTranslation.frame_b.r_0[2] 

Figure 15-78. Vertical positions of two parts of the double pendulum connected by a joint (variable 
body2. f rame a. r_0 [ 2 ]) and the tip of the second body (variable body2. f rame_b. r_0 [ 2 ]). 

15.10.8 Kinematic Loops 

A connection chain consisting of joints, bodies, and coordinate transformations may form a circular 
dependency loop, also called closed kinematic loop. 

The PendulumLoop2D example in Figure 15-79 below, with connection diagram in Figure 15-81, 
shows a system with a single closed kinematic loop. The upper rod (a cylinder with small radius) is fixed, 
whereas the three other rods are connected by revolute joints. The whole system behaves like a kind of 
pendulum. 

x 

Figure 15-79. 3D visualization and animation of the PendulumLoop2D example. 

The Modelica MBS library uses equation operators for overconstrained connection-based equation 
systems (see Section 8.5, page 374) to allow Modelica environments to automatically determine where to 
"break" the kinematic loop, that is, to remove superfluous equations for cases when there otherwise would 
be more equations than variables. This is illustrated for the four-bar mechanism depicted in Figure 15-80, 
which is a kinematic loop consisting of 6 revolute joints, 1 prismatic joint, and 4 bars, that is often used as 
basic construction unit. The example demonstrates that usually no special knowledge of the user is needed 
to handle kinematic loops. Just connect the joints and bodies together corresponding to the real physical 
system. 
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Figure 15-80. Connection diagram and 3D animation visualization of the four-bar kinematic loop example 
from MultiBody. Examples . Loops . Fourbarl. 
However, at the current state of the art this analysis cannot be made automatically for two-dimensional 

(planar) kinematic loops (such as the PendulumLoop2D example). Planar loops have the difficulty that by 
infinitesimal changes of parameters such as the axis of rotation of a revolute joint in the loop, the loop has 
fewer degrees of freedom and is usually locked. The symbolic algorithms currently used to transform the 
equations are based on structural information and do usually not utilize numerical values. Therefore, these 
algorithms cannot distinguish the "planar" loop case from the "three-dimensional locked" loop case. 

In order to model such loops correctly, the user needs to supply a hint by setting the attribute 
planarCut Joint to true through a modification for one revolute joint that is used to break the circular 
dependency (also available in the Advanced menu of the revolute joint). The revolute4 instance is an 
example of such a joint, visible in the connection diagram of PendulumLoop2D depicted in Figure 15-81 
below. This option sets the connector-force in the direction of the axis of rotation, as well as setting the 
connector-torques perpendicular to the axis of rotation at this joint to zero and thereby makes the problem 
mathematically well-formed. 

Figure 15-81. Connection diagram for the PendulumLoop2D model. 

Specifying the initial state can also be tricky for a mechanical system with circular dependencies. In 
order to specify a valid initial state for a mechanical system that is a planar kinematic loop, a hint needs to 
be given to the Modelica simulator by selecting a joint with a state variable that has an independent start 
value. The parameter startValueFixed is set to true to mark this joint (revolutel), for which an 
appropriate start value also should be supplied. 

The Modelica code of the PendulumLoop2D model with these attributes specified follows below. 
model PendulumLoop2D 

import Modelica.Mechanics.MultiBody.Parts; 
import Modelica.Mechanics.MultiBody.Joints; 
import Modelica.Mechanics.MultiBody.Types; 
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inner Modelica.Mechanics.MultiBody.World world; 
Parts.BodyCylinder bodyl(r={1,0,0},diameter=0.1,color={125,125,125}) 

body2(r={0.5,0,0},diameter=0.1); 
body 3(r={-0.9,0,0},diameter=0.1,color={0,255,0}); 
body4(r={0.5,0,0},diameter=0.1); 
revolutel(startValuesFixed=true,phi_start=-60); 
revolute2; 
revolute3; 
revolute4(planarCutJoint=true); 

Parts.BodyCylinder 
Parts.BodyCylinder 
Parts.BodyCylinder 
Joints.Revolute 
Joints.Revolute 
Joints.Revolute 
Joints.Revolute 

equation 
connect(world.frame_b, bodyl.frame_a); 
connect(bodyl.frame_b, revolutel.frame_a) 
connect(revolutel.frame_b, body2.frame_a) 
connect(world.frame_b, revolute3.frame_a) 
connect(revolute3.frame_b, body4.frame_a) 
connect(body2.frame_b, revolute2.frame_a) 
connect(body3.frame_a, revolute2.frame_b) 
connect(revolute4.frame_b, body3.frame_b) 
connect(body4.frame_b, revolute4.frame_a) 

end PendulumLoop2D; 
We simulate and plot the example: 

simulate(PendulumLoop2D, 
plot(revolutel.angle) 

stopTime=l) 

Figure 15-82. The relative angle (in radians) of the joint revolutel stored in variable revolutel. q. 

15.10.9 Interfacing to Non-MBS Models and External Force Elements 

When constructing a model of a multidomain system that includes a mechanical multibody subsystem as 
well as parts from other application domains, all these parts need to be connected through appropriate 
interfaces. The MBS library provides three main kinds of connector classes: 

• Connector classes Multibody. Interfaces. Frame_a and Frame_b, for connecting external 
forces described by 3D force elements from Multibody. Forces. 

• Connector classes Rotational. Interfaces . Flange a and Flange_b, for connecting ID 
rotational elements from the Modelica. Rotational library. 

• Connector classes Translational. Interfaces. Flange_a and Flange_b, for connecting ID 
translational elements from the Modelica. Translational library. 

In the following sections, we give examples of interfacing a multibody model to external force 
elements and model elements using these three kinds of connector classes. 

15.10.9.1 Pendulum with Applied External Forces 
Any MBS object with coordinate system connectors of types Multibody. Interfaces. Frame a or 
Frame_b, can be connected to an instance of an external force or torque element from the set of model 
classes in Multibody. Forces. Such an external force or torque element is applied to a corresponding 
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point on the relevant body. The Ext Force Pendulum example model depicted in Figure 15-83 below 
includes a force acting at the end of the pendulum in the direction of the local y-axis, that is, 
perpendicular to the pendulum rod. When a force is applied to the pendulum it does not oscillate; it 
rotates instead. 

constantl 

Figure 15-83. Connection diagram for the ExtForcePendulum example model of an external force acting 
on a pendulum. 

The Modelica class ExtForcePendulum includes an external force element instance worldForcel 
acting on the pendulum. The size and direction of the external force is determined by the constant vector 
constantl here given in the body local coordinate system of the frame b connector. This constant 
vector must be transformed into the inertial world coordinate system before setting equal to 
worldForcel. inPort and thus determining the external force vector. This is done by applying the 
inverse R"1 of the rotational transformation matrix worldForcel.frame_b.R to the vector 
constantl. y via the call to the function Frames . resolve 1. 

model ExtForcePendulum 
import Modelica.Mechanics.MultiBody.Parts; 
import Modelica.Mechanics.MultiBody.Joints; 
import Modelica.Mechanics.MultiBody.Forces; 
import Modelica.Mechanics.MultiBody.Frames; 
import Modelica.Blocks.Sources; 
inner MultiBody.World world; 
Joints.Revolute revolutel; 
Parts.BodyCylinder bodyl(r={1,0,0},diameter=0.2) ; 
Forces.WorldForce worldForcel; 
Sources.Constant constantl(k={0,1190,0}); 

equation 
connect(world.frame_b, revolutel.frame_a); 
connect(revolutel.frame_b, bodyl.frame_a); 
connect(bodyl.frame_b, worldForcel.frame_b); 
worldForcel.force = Frames.resolvel(worldForcel.frame_b.R,constantl.y) ; 

end ExtForcePendulum; 
We simulate and plot the example: 

simulate(ExtForcePendulum, 
plot(revolutel.w); 

stopTime=7); 

Figure 15-84. The angular velocity of the pendulum caused by the sudden application of a constant force. 
The force vector is attached to the pendulum tip. 
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15.10.9.2 Pendulum with Damped Torsion Spring Connected via ID Rotational Flanges 
The Modelica.Rotational library describes a number of modeling elements for one-dimensional 
rotational motion. These elements can be attached to the Revolute joint from the MultiBody library. A 
torque, a torsion spring, a torsion damper, or any other rotational component can be attached to one of the 
connectors of type Rotational. Flangea or Flangeb of the revolute joint. 

The example in Figure 15-85 illustrates a one-dimensional damped torsion spring (springDamperl) 

Figure 15-85. Connection Diagram for a pendulum with a non-MBS external force element 
springDamperl. 
The flange b connector of the springDamperl damped torsion spring is attached to the axis 

connector of the revolutel joint of the PendulumWithDampedSpring model. The parameter 
springDamperl .phi relO describes the unstretched spring angle. In this model the pendulum performs 
oscillations with gradually decreasing amplitude and converges to the position corresponding to the angle 
1 [Rad], which is the default value of phirelO. 

model PendulumWithDampedSpring 
import Modelica.Mechanics.MultiBody.Parts; 
import Modelica.Mechanics.MultiBody.Joints; 
import Modelica.Mechanics.MultiBody.Forces; 
import Modelica.Blocks.Sources; 
import Modelica.Mechanics.Rotational; 
inner Modelica.Mechanics.MultiBody.World world; 
Parts.BodyCylinder bodyl(r={1,0,0},diameter=0.2); 
Joints.ActuatedRevolute revolutel; 
Rotational.SpringDamper springDamperl(c=500,phi_rel0=l,d=17 0) ; 

revolutel.frame_a); 
revolutel.bearing); 
revolutel.axis); 
bodyl.frame_a); 

stopTime=3); 

connect(world.frame_b, 
connect(springDamperl.flange_a, 
connect(springDamperl.flange_b, 
connect(revolutel.frame_b, 

end PendulumWithDampedSpring; 
We simulate and plot the example: 

simulate(PendulumWithDampedSpring, 
plot(bodyl.f rame_b.r_0[2]); 

Figure 15-86. The oscillation of the vertical position (bodyl. f rameb. r_0 [ 2 ]) of the pendulum tip is 
gradually reduced due to the effect of the springdamper. 
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15.10.9.3 Pendulum with Rotation Angle Steering 
Sometimes there is a need to rotate the body connected to the joint to a certain desired angular position. 
This can be done by the use of an instance of the class Rotational. Position. In the example pendulum 
with rotation angle steering depicted in Figure 15-87, the specified value of the angle is given by the 
stepl instance of the Step signal source from the Modelica. Block. Sources sublibrary. This value is 
converted to an angular position by the positionl component. 

Figure 15-87. Connection Diagram for the PendulumRotationalSteering example. 

The Position class from the Modelica.Rotational library filters the input reference angle signal 
to become smooth. This is needed since the second derivative of the filtered curve is used to compute the 
reference acceleration of the flange. The angular position of the joint is (partly) computed from this 
acceleration. For filtering, the Position class uses a second order Bessel filter. The critical frequency 
(also called cut-off frequency, in [Hz]) of the filter is defined via the parameter fcrit. This value should 
be selected to be higher than the essential low frequencies of the signal to preserve its main characteristics 
while eliminating irrelevant higher frequency noise. 

model PendulumRotationalSteering 
inport Modelica.Mechanics.MultiBody.Parts; 
import Modelica.Mechanics.MultiBody.Joints; 
import Modelica.Modelica.Blocks.Sources; 
inport Modelica.Mechanics.Rotational; 
inner Modelica.Mechanics.MultiBody.World world; 
Parts.BodyCylinder bodyl(r={1,0,0}); 
Joints.ActuatedRevolute revolutel; 
Sources.Step 
Rotational.Position 

equation 
connect(revolutel.frame_b, 
connect(world.frame_b, 
connect(stepl.y, 
connect(positionl.flange_b, 

stepl(startTime={0.5}; 
positionl(f_crit=5); // Filter cut-off f crit 

bodyl.frame_a); 
revolutel.frame_a); 
positionl.u); 
revolutel.axis); // Connect positionl to axis 

end PendulumRotationalSteering; 
We simulate and plot the example: 

simulate(PendulumRotationalSteering, stopTime=l); 
plot(bodyl.frame_b.r_0[2]); 
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Figure 15-88 The vertical position (bodyl. f rame__b. r_0 [ 2 ]) of the pendulum tip. At time=0.5 the 
desired angular position of the revolute joint becomes 1.0 radian. 

15.10.9.4 Computational Steering of a Pendulum through a PD controller 
Another way to steer the rotational behavior of a joint is to set up a Proportional Derivative (PD) 
controller. Instead of computing a specified angular position as in the pendulum rotational steering class of 
the previous section, the rotational PD controller creates a torque, which acts on the joint. It actually 
behaves like a motor-driven actuator. The parameters k and d of the PD controller can be tuned in order to 
adjust the reaction speed and power. 

[Oh 
Ctrl 

Figure 15-89. The PendulumWithPDController connection diagram, including a proportional derivative 
(PD) controller denoted ctrl. 
The PendulumWithPDController class together with the RotationalPDController class used 

for controlling rotational movement: 

model PendulumWithPDController 
import Modelica.Mechanics.MultiBody.Parts; 
import Modelica.Mechanics.MultiBody.Joints; 
inport Modelica.Blocks.Sources; 
inner Modelica.Mechanics.MultiBody.World world; 
Parts.BodyCylinder bodyl(r={1,0,0},diameter=0.2); 
Joints.ActuatedRevolute revolutel; 
Sources.Step stepl(startTime={0.5}); 
RotationalPDController Ctrl(k=5000,d=500); 

equation 
connect(revolutel.frame_b, bodyl.frame_a); 
connect(stepl.y, ctrl.u); 
connect(ctrl.flange_b, revolutel.axis); 
connect(world.frame_b, revolutel.frame_a); 

end PendulumWithPDController 
model RotationalPDController "Input signal acting as reference value for 

angle, gives external torque on a flange" 
inport Modelica.Blocks; 
inport Modelica.Mechanics.Rotational; 
parameter Real k=l; 
parameter Real d=l; 
Blocks.Interfaces.Reallnput u; 
Rotational.Interfaces.Flange_b flange_b; 

equation 
flange_b.tau = k*(flange_b.phi-u)+d*der(flange_b.phi); 

end RotationalPDController; 
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Figure 15-90. The vertical position (bodyl. f rameb. r_0 [ 2 ]) of the pendulum tip of the controlled 
pendulum. At time=0.5 the desired angular position of the revolute joint becomes 1.0 radian and the 
pendulum smoothly rotates to this position. 

15.10.10 V6 Engine 

We show a simple model of a V6 engine with six cylinders, MultiBody. Examples. Loops. EngineV6, 
to give an example of a slightly more complex application model using the MBS library than the previous 
examples. A simple model of the combustion process is used, given by an empirical formula. 

The model, MultiBody. Examples .Loops .EngineV6, is from the MultiBody. Examples 
sublibrary, and uses the Cylinder model (not shown here) from the Modelica .Mechanics. 
MultiBody.Examples. Loops.Utilities sublibrary. 

Each cylinder in the engine is modeled solely by revolute and prismatic joints, forming a planar 
kinematic loop. As was described in Section 15.10.8, page 894, we have to break a planar loop by setting 
the attribute planarCut Joint to true for one of the revolute joints in the loop. This is done in the 
Cylinder model, not in the EngineV6 model. The connection structure and 3D view of the model are 
shown in Figure 15-91. 

' a 

Figure 15-91. Connection diagram (left) and 3D animation view (right) of the V6 engine model, from 
MultiBody.Examples.Loops.EngineV6. 
The Modelica code of the EngineV6 model with one degree-of-freedom and six cylinders, each 

containing a planar loop, and animation turned on: 

model EngineV6 
"V6 engine with 6 cylinders, 6 planar loops and 1 degree-of-freedom" 
import Cv = Modelica.Slunits.Conversions; 
inport Modelica.Mechanics.MultiBody.Examples.Loops.Utilities; 
inport Modelica.Mechanics.MultiBody.Joints; 
extends Modelica.Icons.Example; 
parameter Boolean animation=true "= true, if animation shall be enabled"; 
inner Modelica.Mechanics.MultiBody.World world(animateWorld=false, 

animateGravity=false); 
Joints.ActuatedRevolute bearing(n={1,0,0}, cylinderLength=0.02, 

cylinderDiameter=0.06, animation=animation); 
Modelica.Mechanics.Rotational.Inertia inertia ( 

, , / —___ t 
. 2 0 . 4 Of. 6 0 . 8 1 
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phi(stateSelect=StateSelect.always, fixed=true, start=0), 
w(stateSelect=StateSelect.always, fixed=true, start=10)); 

Utilities.Cylinder cylinderl(crankAngleOffset=Cv.from_deg(-30), 
cylinderInclination=Cv.from_deg(-30), animation=animation); 

Utilities.Cylinder cylinder2(crankAngleOffset=Cv.from_deg(90), 
cylinderInclination=Cv.from_deg(30), animation=animation); 

Utilities.Cylinder cylinder3(crankAngleOffset=Cv.from_deg(-150), 
cylinderInclination=Cv.from_deg(-30), animation=animation); 

Utilities.Cylinder cylinder4(crankAngleOffset=Cv.from_deg(-90), 
cylinderInclination=Cv.from_deg(30), animation=animation); 

Utilities.Cylinder cylinder5(crankAngleOffset=Cv.from_deg(300), 
cylinderInclination=Cv.from_deg(-30), animation=animation); 

Utilities.Cylinder cylinder6(crankAngleOffset=Cv.from_deg(150), 
cylinderInclination=Cv.from_deg(30), animation=animation); 

equation 
connect(bearing.frame_b, 
connect(cylinderl.crank_b, 
connect(cylinder2.crank_b, 
connect (cy Under 3. crank_b, 
connect(cylinder4.crank_b, 
connect(cylinder5.crank_b, 
connect(cylinder5.cylinder_b, 
connect(cylinder4.cylinder_b, 
connect(cylinder4.cylinder_a, 
connect(cylinder3.cylinder_a, 
connect(cylinder2.cylinder_a, 
connect(inertia.flange_b, 
connect(world.frame_b, 
connect(world.frame_b, 

end EngineV6; 

cylinderl.crank_a); 
cylinder2.crank_a); 
cylinder3.crank_a); 
cylinder4.crank_a); 
cylinder5.crank_a); 
cylinder6.crank_a); 
cylinder6.cylinder_a); 
cylinder5.cylinder_a); 
cylinder3.cylinder_b); 
cylinder2.cylinder_b); 
cylinderl.cylinder_b); 
bearing.axis); 
cylinderl.cylinder_a); 
bearing.frame_a); 

15.10.11 Cardan/Euler Angles or Quaternions/Euler Parameters 

This rather advanced topic concerns two alternatives for construction of the rotation matrix R. The first 
approach is to use three independent variables—including the Euler and Cardan angle approaches, whereas 
the second is based on four variables dependent on each other—the Quaternion/Euler parameter approach. 
This is discussed in more detail in Sections 14.8.4.2, page 776 and 14.8.4.3, page 777. 

Since the rotation matrix represents three degrees of freedom, in principle three independent variables 
(i.e., states) would suffice. However, if these variables are chosen to be successive rotations around body 
local coordinate axes—the Euler and Cardan angle approaches—a division by zero may occur in one of 
the differential equations if the second angle (p2 becomes ± n / 2 , since there is a division by cos(^>2) in 
the right hand side of that equation. 

In the MBS library this is prevented by instead transforming relative to an intermediate frame T_fix, 
which is a coordinate system available in each body (class MultiBody. Parts.Body), and is fixed 
relatively to the world frame. Whenever the Cardan angles (the phi vector) come close to their singular 
configuration (a condition when phi [2 ] passes the value phi2_critical, generating a state event), the 
frame T fix is changed such that the new Cardan angles are far away from their singularity, i.e., a 
singular configuration will never occur. The initial values of the Cardan angle states are automatically 
computed from the initial values given via the sequence start and angles start values. Since the 
Cardan angles are defined relative to a frame T_f ix that is changing during simulation, these variables are 
not very descriptive. It is better to use the rotation matrix frame_a.R to get information about the body 
orientation. 

The rotation matrix for transforming a vector from the inertial frame to the local frame_a (i.e., R) is 
constructed from the 3 Cardan angles in three steps: first rotate around the x axis of frame T_f ix with an 
angle phi [ l ], then around the y axis with an angle phi [ 2 ], and finally around the z axis with an angle 
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phi [3], arriving at frame a. The Euler angle approach applies these rotations in a different order. See 
Section 14.8.4.2, page 776. 

As an alternative, 4 dependent variables can be used as rotational body states. These are called 
quaternions or Euler parameters (see Section 14.8.4.3, page 777). They can be used instead of the 3 
Cardan/Euler angles, by setting the parameter useQuaternions (also available in the Advanced menu of 
the MBS library) to true. Quaternions do not have a singular configuration and therefore no state events 
will occur during simulation, which it is necessary when the Cardan angles need to change their base 
frame T_fix. 

The disadvantage of quaternions is that there is a non-linear constraint equation between the 4 
quaternions. Therefore, at least one nonlinear equation has to be solved per body during simulation. In 
most cases, the Cardan angle choice will be more efficient than the quaternion choice, but there may be 
cases where quaternions are better suited, e.g. when generation of state-events should be avoided to get 
continuous derivatives. 

15.11 Mechanical CAD Model Simulation and Visualization 

The two-dimensional graphic modeling paradigm provided by the connection editors available in most 
Modelica environments, for example, see Chapter 5, page 187 and Chapter 19 page 1031, provides graphic 
user interfaces for combining reusable model components. However, for certain applications such as the 
design of 3D mechanical parts and assemblies of such parts, the two-dimensional connection graph is not 
very intuitive and sometimes is hard to understand. It would be more natural to use a 3D graphic 
representation for the design of mechanical application systems consisting of three-dimensional 
mechanical components. Fortunately, such 3D graphic representations and geometry modeling tools 
already exist. These are available in CAD systems for design of mechanical applications. 

Figure 15-92. Functional structure of the information flow between the Modelica simulation environment, 
the 3D visualizer, and the CAD environment. 

Therefore, it is natural to employ a mechanical CAD system as the interactive user interface to design 
the geometry, constraints, and connection structure of a mechanical application (Figure 15-92). However, 
consider the case that we want to simulate the dynamics of a mechanical application, and to do this using 
Modelica since we are interested in multidomain simulation with the possibility of simulating systems 
containing both mechanical and nonmechanical parts, for example, attaching control, electric, or hydraulic 
components. 

To perform such a simulation we need a Modelica model that defines the dynamics of the mechanical 
application designed in the CAD systems. Component classes from the Modelica mechanical multibody 
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system (MBS) library can be used to model the dynamics of a mechanical system consisting of 
interconnected mechanical parts, provided that the interacting parts are rigid (nonflexible) bodies. 

Fortunately, the information needed for simulating a multibody system of interacting mechanical bodies is 
already available in the CAD design. This includes the geometry, mass, inertia matrix, interconnections, 
movement constraints, and so on, of the bodies. We just need to translate this information into a Modelica 
model consisting of appropriately selected instances of certain MBS library classes, connected according the 
constraints and geometry of the CAD design and design rules of the MBS library. 

The translation from CAD design information to a Modelica model for dynamic system simulation can 
be automated, provided that the CAD design is complete enough. To date, at least two automatic 
translators exist; for the SolidWorks and the AutoDesk Mechanical Desktop CAD systems, but more will 
probably follow. Both translators have been designed as CAD system plug-ins that extract geometry, mass, 
inertia, and constraint information using the CAD system programmable API, and translate this 
information into Modelica model code. This code can be subsequently combined with other models, for 
example, control system models, and simulated. 

One advantage of the CAD-based model design approach, apart from its ease of use, is that information 
needed for 3D visualization and animation of the simulated multibody system can be obtained from the 
same CAD design. The geometry is already available in the 3D design, and if appropriate surface colors 
and patterns are specified, 3D visualizations of the bodies can be created automatically. Combined with a 
simulation of the model that computes the coordinates of all the moving bodies as functions of time, 3D 
animations can be produced automatically based on the CAD model. 

Figure 15-93 shows the process of designing a mechanical model using a CAD tool, serving as the 
starting point for the specification of a virtual prototype with dynamic properties. In the AutoCAD 
Mechanical Desktop-based translator, the model is first represented in the DWG format, which contains all 
the information, including connections and mates constraints, related to the geometrical properties of the 
parts and the whole mechanical assembly. 

The geometry of each part is exported in an appropriate geometry format. At the same time, the mass 
and inertia of the parts are extracted together with mates information from the mechanical assembly. The 
translator uses this information to generate a corresponding set of Modelica class instances coupled by 
connections, which contain a set of dynamic equations of motion. This automatically generated Modelica 
code is processed by the Modelica simulation environment. The simulation code can be enhanced by 
adding components from other Modelica libraries or by adding externally defined program code, for 
example, in the C programming language. In this phase, electrical, control, or hydraulics components can 
be added to the generated mechanical model, thus providing multidomain simulation. The solution of the 
model equations during simulation computes the dynamic response to a given set of initial conditions 
including force and/or torque loads, which might even be functions of time. 



Chapter 15 Application Examples 905 

Figure 15-93. The process from a static CAD model to a dynamic system simulation and visualization. 

15.12 Summary 

Aiming to show different modeling styles and know-how for various domains, we presented application 
examples from the following areas: mechatronic systems, thermodynamic systems, chemical reactions, 
biological and ecological systems, economic systems, internet communication, design optimization, 
Fourier analysis, pressure dynamics with discretized PDEs, mechanical multibody systems, and 
mechanical CAD systems. 

However, important additional goals of this chapter were to illustrate multidomain modeling as in the 
DC-motor example, bottom-up design of a library as in the thermodynamic example, and to give an 
introduction to using the Modelica multibody library for 3D mechanical rigid bodies. 

15.13 Literature 

The literature references for this chapter are grouped according topic, as follows: 

• The simple multi-domain DC motor model is discussed in detail in (Andersson 1994). Advanced 
multidomain systems are discussed in (Clauss and Beater 2002). Hybrid electric vehicles is another 
example of multi-domain system, described in (Hellgren 2002). Electrical brushless motors is yet 
another example, presented in (Ferretti, Magnani, Rocco, Bonometti, and Maraglino 2002). 

• Thermodynamic theory and systems for engineering applications is presented in (Potter and 
Somerton 1993). Further reading on changing flow directions in thermodynamic flow systems: 
(Elmqvist, Otter, Mattsson, and Olsson 2002). Advanced thermodynamics, thermo-hydraulics and 
chemical reaction modeling is discussed in (Tummescheit 2002; Tummescheit, Eborn 2002). 
Thermodynamics with models of moving boundaries for dynamic simulation of two-phase flows is 
described in (Jensen and Tummescheit 2002). Modeling thermodynamic applications in Modelica 
using stream connectors is described in (Franke, Casella, Otter, Sielemann, Elmqvist, Mattson, and 
Olsson 2009) from where the quote on equation counting with stream connectors has been fetched. 
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The Fluid library for such applications is presented in (Franke, Casella, Sielemann, Proelss, Otter, 
and Wetter 2009). 

• Chemical processes with the simple hydrogen-iodine reaction can be found in most chemistry 
textbooks, but also in (Cellier 1991). Further reading on object oriented modeling of chemical 
processes can be found in (Nilsson 1993). 
Biological and ecological systems—population dynamics for animals, and for humans with World 
models that include human-nature interaction. The predator-prey population dynamics is from 
(Lotka 1956; Volterra 1928). Rodrigo Castro wrote most of the text in Section 15.4.2 on 
population dynamics with the Handy model, and also developed, mostly based on the paper on 
Handy 1.0 mentioned below, the first Modelica model version of Handy which then was slightly 
adapted by this author. (Malthus 1798) wrote the first essay on the limits of human population. The 
1.0 version of the Handy (Human and Nature Dynamical) model is described in (Motesharrei, 
Rivas, and Kalnay 2013). An article referring to Handy appeared in Guardian March 26, 2014 
(Ahmed 2014). The first version, Handy 1.0, is based on a predator-prey Lotka-Volterra type of 
model, and was introduced as an extension of the Brander-Taylor (BT) model (Brander and Taylor, 
1998). Inequality between Elite and Commoners is perhaps the most unique feature of Handy 1.0. It 
is not only explicitly considered but also plays a key role in the sustainability analyses of Handy; 
this capability is seldom found in the most well known World Models, with few exceptions as, e.g., 
in (Linnemann, De Hoogh, Keyzer, and van Heemst 1979). 

More than half of the text in Section 15.4.2.7 on the World3 model is cited from the 
SystemDynamics library documentation (Section 16.21.1, page 972) written by Francois Cellier, 
and shortened and adapted for presentation in this book. The World3 system dynamics model in 
Modelica available in the SystemDynamics library is also described in (Cellier 2008). It is a 
Modelica translation made by Cellier from the original model in STELLA by Meadows et al 
described in detail in (Meadows, Behrens II, Meadows, Naill, Randers 1974). The limits of growth 
and interpretations of simulations of the World3 model are presented in (Meadows, Meadows, 
Randers, Behrens III 1972; Meadows, Randers, and Meadows 2004). 

• Biological and ecological systems—energy forest models such as willow growth: (Larsdotter-
Nilsson and Fritzson 2003; Sannervik, Eckersten, Verwijst, and Nordh 2002),. A related 
application in nitrogen processes in treatment wetlands is described in (Edelfeldt and Fritzson 
2008). Basic relations in biochemistry are described in (Voit 2000). Biological pathways in 
biochemistry are discussed in (Michael 1999; SBML 2003). 

• Economic systems—Keynesian national economy is presented in detail by (Lipsey 1997). 
• Internet communication—TCP packet communication protocols (Farnqvist, Strandemar, 

Johansson, Hespanha 2002; Mascolo, Casetti, Gerla, Lee, and Sanadidi 2001; Jacobsson and 
Braden 1988). 

• Design optimization—improving the response of a linear actuator. Further reading on design 
optimization using Modelica can be found in (Franke 2002; Elmqvist, Otter, Mattsson, and Olsson 
2002). 

• Fourier analysis of simulation data—vibrations in a rotating weak axis. No reference. 
• Solving wave equations by discretized PDEs—pressure dynamics in ID ducts. No reference. 
• Mechanical multi-body systems in general are described in (Shabana, 1998), whereas (Otter 1995; 

Otter, Elmqvist, and Cellier 1996) describes the theory behind the first version of the Modelica 
multibody library. 

• Employing CAD systems for designing mechanical Modelica models as well as generating 
visualizations based on OpenGL is described in (Engelson 2000), CAD Mechanical translation, 
Visualization: (Bunus, Engelson, and Fritzson 2000; Engelson, Larsson, and Fritzson 1999; 
Engelson 2000). 
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There are many more application areas in which Modelica is being employed. The following are 
references to some additional applications: 

• Car applications, for example, automatic gear boxes: (Otter, Schlegel, and Elmqvist 1997; Pelchen, 
Schweiger, and Otter 2002). Driveline vibrations in cars is presented in (Tiller, Tobler, and Kuang 
2002). Tyre modeling for cars is described in (Andreasson and Jarlmark 2002). Spark-ignited 
combustion engine simulation is presented in (Newman, Batteh, and Tiller 2002). 

• Further reading on parameter estimation/identification using Modelica can be found in (Sjoberg, 
Fyhr, and GrOnstedt 2002). 

• Thermal building behavior modeling and simulation is presented in (Sahlin 1996; Feigner, 
Agustina, Cladera Bohigas, Merz, and Litz 2002). 

• An example of the integration of genetic algorithms using a Simulink interface to Modelica is 
given in (Hongesombut, Mitani, and Tsuji 2002). 
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Chapter 16 

Modelica Library Overview 

As we have emphasized earlier in this book, much of the power of modeling with Modelica comes from 
the ease of reusing model classes. Related classes in particular areas are grouped into packages, also called 
libraries, which make them easier to find. This chapter gives a quick overview of some common Modelica 
packages. Definitions of a selection of these packages, including source code, are available in the 
appendices of this book. Explanations on how to use classes from certain commonly used packages are 
given in Chapter 15, page 793, whereas Chapter 5, page 187, covers the issues of connecting instances of 
models from different application areas. 

A special package, called Modelica, is a standardized predefined package that, together with the 
Modelica Language, is developed and maintained by the Modelica Association. This package is also 
known as the Modelica Standard Library. It provides constants, types, connector classes, partial models, 
and model classes of components from various application areas, which are grouped into subpackages of 
the Modelica package. 

The Modelica Standard Library can be used freely for both noncommercial and commercial purposes 
under the conditions of The Modelica License, as stated in the front pages of this book. The full 
documentation as well as the source code of these libraries appear at the Modelica web site: 
https://www.modelica.org/libraries/. These libraries are often included in Modelica tool 
distributions. 

Version 3.2.1 of the Modelica Standard Library from August 2013 contains about 1340 models and 
blocks, and 1000 functions in the sublibraries listed in Table 16-1. 

Table 16-1. Main sublibraries of the Modelica Standard Library version 3.2.1, August 2013. 

- i c j e - 1 0 "i 
oriae | — • j 

r 3 
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r-00001 

Modelica. Electrical.Analog 
Analog electrical and electronic components such as 
resistor, capacitor, transformers, diodes, transistors, 
transmission lines, switches, sources, sensors 

af*a H 
H f U 

Modelica.ElectricaLDigital 
Digital electrical components based on VHDL with nine 
valued logic. Contains delays, gates, sources, and 
converters between 2-, 3-, 4-, and 9-valued logic. 

909 
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aiau Modelica.Electrical.Machines 
Uncontrolled, electrical machines, such as asynchronous, 
synchronous and direct current motors and generators. 

transformerR transformerL Modelica.Electrical.MultiPhase 
Electrical multiphase componennts to ease the modeling 
of multiphase circuits. This package has basically the 
same components as Modelica.Electrical.Analog, but with 
multiphase connectors. 

resistor capacitor 

01/(2*... 

Modelica.Electrical.QuasiStationary 
Very efficient components for electrical circuits with 
purely sinusoidal voltages and currents. Transients are 
neglected. The internal description is with Complex 
numbers 

]mp1 ]mp2 

Modelica.Electrical.Spice3 
Detailed semiconductor models, such as MOS, BJT, 
transformed from Spice3 level 1 and level 2 to Modelica. 

Modelica.Magnetic.FluxTubes 
Modeling of lumped magnetic networks with the fluxtubes 
concept, especially to model translatory electromagnetic 
and electrodynamic actuators 

G=m*NA2*Gc/2 
l l _ ET 

Modelica.Magnetic.FundainentalWave 
Modeling of electromagnetic fundamental wave models 
for the application in multi phase electric machines. 

Modelica.Mechanics.Rotational 
1-dim. rotational mechanical systems, such as drive trains, 
planetary gear. Contains inertia, spring, gear box, bearing 
friction, clutch, brake, backlash, torque, etc. 

OuterContactA 
Modelica.Mechanics.Translational 
1-dim. translational mechanical systems, such as mass, 
stop, spring, backlash, force 

Modelica.Mechanics.MultiBody 
3-dim. mechanical systems consisting of joints, bodies, 
force and sensor elements. Joints can be driven by 
elements of the Rotational library. Every element has a 
default animation. 

See Section 15.10, page 877, for an overview 
description of this library including some hints and 
examples how to use it. 
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Modelica. Fluid 
Components for 1-dimensional thermo-fluid flow in 
networks of vessels, pipes, fluid machines, valves and 
fittings. All components are implemented such that they 
can be used for media from the Modelica.Media library. 

Mollier Diagram, 1.013 bar Modelica.Media 
Large media library for single and multiple substance 
fluids with one and multiple phases: 

• High precision gas models based on the NASA 
Glenn coefficients + mixtures between these gas 
models 

• Simple and high precision water models 
(IAPWS/IF97) 

• Dry and moist air models 
• Table based incompressible media. 
• Simple liquid models with linear compressibility 

^ ambient 
pipe 

-+=m\ 

Modelica.Thermal 

Simple thermo-fluid pipe flow, especially for machine 
cooling systems with water or air fluid. Contains pipes, 
pumps, valves, sensors, sources etc. 
Furthermore, lumped heat transfer components are 
present, such as heat capacitor, thermal conductor, 
convection, body radiation, etc. 

table 
feedback 

PI 

^ PI 
t=OT 

Modelica. Blocks 

Continuous and discrete input/output blocks. Contains 
transfer functions, linear state space systems, non-linear, 
mathematical, logical, table, source blocks. 

polarToComptex complexToReal 
re ten 

phi 

Modelica.ComplexBlocks 
Continuous input/output blocks with Complex signals 
Contains algebraic blocks and sources for Complex 
signals. 

mitialStep transitiorrf step transition 

_adve_ 

Modelica.StateGraph 

Hierarchical state diagrams with similar modeling power 
as Statecharts. Modelica is used as synchronous "action1 

language. Deterministic behavior is guaranteed. 

import Modelica.Math.Matrices; 
A = [1,2,3; 

3,4,5; 
2,1,4]; 

b = {10,22,12}; 
x = Matrices, sol ve(A,b); 

Matrices. eigen Val ues( A); 

Modelica.Math / Modelica.Utilities 

Functions operating on scalars, vectors and matrices, e.g. 
to solve linear systems and compute eigen and singular 
values, or solve Riccati equations. Functions to operate on 
nonlinear equations to solve algebraic loops and for 
adaptive quadrature computation. Also functions are 
provided to operate on strings, streams and files 

import Modelica.ComplexMath; Modelica.ComplexMath 
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Complex j = ComplexMath.j; 
Complex a = 2 + 3*j; 
Complex b = 4 - 5*j; 
Complex c = 2*a + b; 

Functions operating on complex numbers, such as sin, cos, 
conjugate, as well as vectors of complex numbers. 

type Angle = Real ( 
final quantity = "Angle", 

final unit = "rad", 
displayUnit = "deg"); 

Modelica.Constants, Modelica.Icons, Modelica.Slunits 

Utility libraries to provide 
• often used constants such as e, 7t, R 
• a library of icons that can be used in models 
• about 450 predefined types, such as Mass, Angle, 

Time, based on the international standard on units 

table PI 

- > - 0 

T=0.1 

Modelica. Blocks 

Continuous and discrete input/output blocks. Contains 
transfer functions, linear state space systems, non-linear, 
mathematical, logical, table, source blocks. 

intialStep transition sitionl step 

H O 
Modelica.StateGraph 

Hierarchical state diagrams with similar modeling power 
as Statecharts. Modelica is used as synchronous "action" 
language. Deterministic behavior is guaranteed. 

import Modelica.Math.Matrices; 
A = [1,2,3; 

3 , 4 , 5 ; 
2 , 1 , 4 ] ; 

b = {10,22,12}; 
x = Matrices.solve(A, b); 
Matrices.eigenvalues(A); 

Modelica.Math.Matrices / Modelica.Utilities 

Functions operating on matrices, e.g. to solve linear 
systems and compute eigen and singular values. 
Moreover, functions are provided to operate on strings, 
streams and files. 

A subpackage named interfaces occurs as part of several packages. It contains interface definitions 
in terms of connector classes for the application area covered by the package in question, as well as 
commonly used partial classes to be reused by the other subpackages within that package. 

Also, a subpackage Examples contains example models on how to use the classes of the package in 
question occurs in many libraries. 

Some MSL libraries with sublibraries are shown in Table 16-2. 

Table 16-2. Selected MSL libraries with examples of sublibraries interfaces and Examples. 

Complex Complex number record definition, distributed as 
part of MSL but defined at the top-level outside 
of MSL. Referred to as Complex or .Complex. 
Preloaded by most tools. 

Modelica Standard library from the Modelica Association 
including the following sublibraries: 

Blocks Input/output blocks for use in block diagrams. 
Interfaces Interfaces sublibrary to Blocks. 
Continuous Continuous control blocks with internal states 
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Electrical Common electrical component models 

Analog 
Interfaces,Basic,Ideal, 
Sensors, Sources, 
Examples, 
Lines,Semiconductors 

Analog electrical component models 
Analog electrical sublibraries. 
Analog electrical sublibraries. 
Analog electrical sublibraries. 
Analog electrical sublibraries. 

Digital Digital electrical components. 

Mechanics 

Rotational 
Interfaces,Sensors, 
Examples, ... 

General mechanical library. 
ID rotational mechanical component models. 

Rotational sublibraries. 
ID translational mechanical components. 

Translational sublibraries. 

Translational 
Interfaces,Sensors, 
Examples 

3D mechanical systems - MultiBody library. 
MultiBody sublibraries. 
MultiBody sublibraries. 
MultiBody sublibraries. 

There are more libraries than MSL developed by Modelica Association. Table 16-3 presents the 
Modelica Language standard conforming libraries from Modelica Association including MSL, as of 
August 2013. Conforming means that they conform to the Modelica Language standard without 
dependence on vendor-specific language extensions. 

Table 16-3. Standard conforming libraries developed by Modelica Association. 

Name Description Last Release 2013 

ModelicaStandardLi 
brary (MSL) 

Free (standard conforming) library from the 
Modelica Association to model mechanical (1D/3D), 
electrical (analog, digital, machines), thermal, fluid, 
control systems and hierarchical state machines. 
Also numerical functions and functions for strings, 
files and streams are included. 

v3.2.1 
(Aug 2013) 

Modelica DeviceDri 
vers 

Free (standard conforming) library for interfacing 
hardware drivers to Modelica models. There is 
support for joysticks, keyboards, UDP, shared 
memory, AD/DA converters and other devices. 

vl.lbuild2 
(May 2013) 

Modelica_Synchrono 
us 

Free (standard conforming) library to precisely 
define and synchronize clocked sampled data 
systems with different sampling rates. It provides 
convenient to use blocks to utilize the clocked 
synchronous language elements introduced in 
Modelica 3.3. This library is planned to eventually 

v0.91 

(July 2012) 
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become part of MSL. 

Table 16-4 lists some other libraries developed by Modelica Association, which are not yet part of 
MSL or never will be. 

Table 16-4. Other libraries developed by Modelica Association. 

Name Description Last Release 2013 

ExternalMedia 

The ExternalMedia library provides a 
framework for interfacing external codes 
computing fluid properties to 
Mode 1 i ca. Medi a-compatible component 
models. 

N/A 

Modelica_EnergyStorages 

Free library that contains models with different 
complexity for simulating of electric energy 
storages like batteries (single cells as well as 
stacks) interacting with loads, battery 
management systems, loads and charging 
devices. 

N/A 

Modelica LinearSystems2 
Free library providing different representations 
of linear, time invariant differential and 
difference equation systems, as well as typical 
operations on these system descriptions. 

v2.3 
(August 2012) 

Modelica_StateGraph2 

Free library providing components to model 
discrete event, reactive and hybrid systems in a 
convenient way with deterministic hierarchical 
state diagrams. Modelica_StateGraph2 is not 
fully Modelica compliant and will never be, 
since a better solution with clocked Modelica 
State Charts is now available with Modelica 
3.3 

v2.0.1 
(August 2010) 

PowerSystems 
The library is intended to model electrical 
power systems at different levels of detail both 
in transient and steady-state mode. This library 
might eventually become part of MSL. 

v0.2 
(April 2013) 

Table 16-5 lists some old libraries earlier developed by Modelica Assocation. The libraries are in most 
cases replaced by more recent libraries. 

Table 16-5. Old deprecated libraries developed earlier by Modelica Association. 

Name Description Last Release 2013 

ModelicaAdditions 
with sublibraries: 

Blocks 
Discrete 
Logical 
Multiplexer 

All components of this library have been 
incorporated in an improved form into the 
Modelica Standard Library in version 2.1 and 
later. 

vl .5 
(2002) 
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PetriNets 
Tables 
HeatFlowl 
MultiBody 

Modelica Fluid 

Free library from the Modelica Association 
providing components to model 1-
dimensional thermo-fluid flow in networks of 
vessels, pipes, fluid machines, valves and 
fittings. This library is included in the 
Modelica Standard Library since version 3.1. 

vl.O 
(2008) 

Modelica_FundamentalWave 

Free library for the modeling of spatial 
fundamental wave effects of electro magnetic 
quantities in electric machines. (Still using 
Modelica Standard Library 2.2.2!) This 
library is included in the Modelica Standard 
Library since version 3.1. 

v0.6 
(2009) 

Modelica_Magnetic 
Free library for modelling of electromagnetic 
devices with lumped magnetic networks. This 
library is included in the Modelica Standard 
Library since version 3.1. 

vl.O 
(2007) 

Modelica_Quasistationary 

Free library for the analysis of electrical 
circuits with purely sinusoidal voltages and 
currents. With this library single and multi 
phase circuits can be modelled. (Still uses 
Modelica Standard Library 2.2.2!) This 
library is included in the MSL starting from 
version 3.2. 

v0.9.3 
(2009) 

There are also many free Modelica libraries devoped and contributed by users. These libraries are not 
(yet) part of the Modelica Standard Library, and have not yet been "certified" by the Modelica 
Association. The quality of these libraries is varying. Some are well documented and tested, whereas this 
is not the case for certain other libraries. The number libraries available at the Modelica Association web 
site is growing rapidly. Table 16-6 is a snapshot of the status in August 2013. 

Table 16-6. Free libraries developed and provided by users. 

Name Description Last Release 2013 

ADGenKinetics 

Modeling biochemical reaction networks with 
generalized kinetic formats with capabilities for 
computing parameter sensitivities using 
algorithmic differentiation techniques. 

vl.0+r23 
(March 2013) 

ATplus 
Free library for Building Simulation and 
Building Control, fuzzy control library included, 
(unlicensed) 

v2.1 
(2005) 

BioChem 
Free library for biochemical modeling and 
simulation, including graphical support for 
pathway modeling. 

vl.0.1 
(April 2013) 

BondGraph 
Free library for graphical Bond Graph modelling 
that contains common standard linear elements, vl.O 
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sensors, and specific non-linear elements, 
especially for hydraulic networks. 

(February 2013) 

BondLib 
Free library to model physical systems with bond 
graphs. 

v2.3 
(2007) 

Buildings Modelica Buildings library vl .4 build 1 
(Mav 2013) 

ComplexLib 
Free library for steady-state analysis of AC 
circuits within phasor domain. 

vl.O 
(2008) 

DESLib 
Free library for Parallel DEVS and Process-
Oriented Modeling in Modelica 

vl.6.1 
(Februarv 2013) 

ExtendedPetriNets 
Free library to model Petri nets and state 
transition diagrams (extended version). 
Superseeded by PNLib. 

vl.O 
(2002) 

FCSys Modelica library of fuel cell models N/A 

FuelCellLib Free library to model fuel cells (unlicensed) vl.O 
(2004) 

FuzzyControl Free library for fuzzy control (unlicensed) vl.O 
(2002) 

HelmholtzMedia 
Fluid properties for Modelica, for pure fluids that 
can be described by a Helmholtz energy equation 
of state 

v0.9.3 
(August 2013) 

IndustrialControlSys 
terns 

Modelica Industrial Control Systems Library by 
Politecnico di Milano 

vl.O 
(August 2012) 

LinearMPC 
Library for model-based predictive controllers 
with linear process models. 

vl.O 
(Anril 2013) 

Modelica3D 
Library for 3D visualization of objects, primarily 
together with the MultiBody library. 

vO.l 
(March 2013) 

ModelicaDEVS 
A free library for discrete-event modeling using 
the DEVS formalism, (unlicensed) 

vl.O 
(2007) 

MotorcycleDynamics 
Free library for the dynamic simulation of a 
motorcycle, and tailored to test and validation of 
active control systems for motorcycle dynamics. 

vQ.7.0 
(2011) 

MotorcycleLib 

Free Modelica library for the purpose of 
simulation, analysis and control of bicycles and 
motorcycles (single-track vehicles, uses 
BondLib) 

vl.O 
(2009) 

MultiBondLib 
Free library to model physical systems with 
multi-bond graphs. 

vl .3 
(2007) 

NCLib 
Free library for combined simulation of networks 
and controllers in the domain of automation 
systems. 

v0.82 
(2009) 

NeuralNetwork 
Free library that provides a neural network 
mathematical model, (unlicensed) 

vl.O 
(2006) 
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OpenHydraulics 
A free Modelica package providing components 
describing 1-dimensional fluid flow in hydraulic 
circuits. 

vl.0.1 
(March 2013) 

PDELib 
A free library for modeling systems described by 
ID partial differential equations, (unlicensed) 

vl.O 
(2007) 

PlanarMechanics A free library for 2D mechanics. (2013) 

PNlib 

Free library for Modeling Petri Nets including 
extensions (xHPN) such as stochastic Petri Nets, 
state charts, etc. This library won first prize in 
the Modelica Library award 2012. See also 
Section 16.18, page 965. 

vl.O 
(2012) 

QSSFluidFlow Free library for quasi steady-state fluid pipe flow. vl.O 
(201 n 

RealTimeCoordination 
Library 

Enables modeling asynchronous and 
synchronous communication and rich real-time 
constraints for complex coordination protocols. 

vl.O.2 
(March 2013) 

SPICELib 
Free library with some of the modeling and 
analysis capabilities of the electric circuit 
simulator PSPICE. 

v l . l 
(2003) 

SPOT 

Free library providing components to model 
power systems both in transient and steady-state 
mode. This library will be superseded by the new 
PowerSy stems library. There is also a 
commercial version developed from SPOT. 

v0.706 
(2007) 

SystemDynamics 
Free library (also part of Bondlib) for modeling 
according to the principles of system dynamics 
of J. Forrester. 

v2.0 
(2007) 

TechThermo 
Free library for technical 
thermodynamics.(unlicensed) 

vl.O 
(2006) 

ThermoBondLib 
Free library library that is designed as a graphical 
library for modeling convective flows using the 
thermo-bond graph metaphor (uses BondLib) 

v2.1 
(2007) 

ThermoPower 
Free library to model thermal power plants 
(based on Modelica.Media) 

v2.1+msl.2.2.2 
(2009) 
v3.0+msl3.2.1 
(late fall 2013) 

Verif 
A free library for verifying the ModelicaSpice 
library (part of BondLib). 

v2.2 
(2007) 

wastewater 
Free library for modelling and simulation of 
waste water treatment plants. 

v2.0.1 
(2003) 

WheelsAndTires 
Free Modelica package providing the easily 
modifiable tire models, (uses BondLib and 
MultiBondLib) 

vl.O 
(2009) 

Several commercial libraries, usually not free of charge, are also available. 
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When developing an application or a library in some application area, it is wise to use the standardized 
quantity types available in Modelica. s i units and the standard connectors available in the 
corresponding Interfaces subpackage e.g. Modelica. Blocks. Interfaces of the Modelica Standard 
Library, in order that model components based on the same physical abstraction have compatible 
interfaces and can be connected together. 

The elementary connector classes in Table 16-7 are defined where potential variables are connector 
variables without the flow prefix and flow variables have the flow prefix. 

Table 16-7. Basic connector classes for commonly used Modelica libraries. 

Domain Potential 
variables 

Flow 
Variables 

Connector Definition Icons 

electrical 
analog 

electrical 
potential 

electrical 
current 

Modelica.Electrical. Analog.Interfaces 
.Pin, .PositivePin, NegativePin 

electrical 
multi-phase 

vector of electrical pins Model ica. Electrical .MultiPhase. Interfaces 
.Plug, .PositivePlug, .NegativePlug • 0 

electrical 
sphace 
phasor 

2 electrical 
potentials 

2 electrical 
currents 

Modelica.Electrical.Machines.Interfaces 
SpacePhasor • 

quasi stat. 
single-phase 

complex 
electrical 
potential 

complex 
electrical 
current 

Modelica.Electrical.QuasiStationary. 
SinglePhase.Interfaces.Pin, .PositivePin 

quasi stat. 
multi-phase 

vector of quasi stationary 
single phase pins 

Modelica.Electrical.QuasiStationary. 
MultiPhase.Interfaces.Pin,.PositivePin • 0 

electrical 
digital 

Integer (1..9) — Modelica.Electrical.Digital.Interfaces 
.DigitalSignal, .Digitallnput, .DigitalOutput • > 

magnetic 
flux tubes 

magnetic 
potential 

magnetic flux Model ica. Magnetic. F1 uxTubes. Interfaces 
.MagneticPort, .PositiveMagneticPort 

magnetic 
fundamental 
wave 

complex 
magnetic 
potential 

complex 
magnetic flux 

Model ica. Magnetic. F undamental Wave. 
Interfaces.MagneticPort, 
. PositiveMagneticPort 

• 0 
translational distance cut-force Model ica. M echanics. Transl ational. Interfaces 

.Flange_a, .Flange_b • • 
rotational angle cut-torque Modelica.Mechanics.Rotational.Interfaces 

.Flange_a, .Flange_b • o 
3-dim. 
mechanics 

position vector 
orientation 
object 

cut-force 
vector 
cut-torque 
vector 

Model ica. Mechanics. MultiBody .Interfaces 
.Frame, .Frame_a, .Frame_b, 

.Frame_resolve 
10 

simple 
fluid flow 

pressure 
specific 
enthalpy 

mass flow 
rate 
enthalpy flow 
rate 

Modelica.Thermal.FluidHeatFlow.Interfaces 
.FlowPort, FlowPort_a, .FlowPort b • n 

thermo fluid 
flow 

pressure mass flow 
rate 

Modelica.Fluid.Interfaces 
.FluidPort, .FluidPort_a, .FluidPort_b • o 

stream variables (if mflow < 0): 
spec, enthalpy, 
mass fractions (mj/m) 
extra property fractions (Cj/m) 
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heat 
transfer 

temperature heat flow rate Modelica.Thermal.HeatTransfer.Interfaces 
.HeatPort, HeatPort_a, .HeatPort_b 

block 
diagram 

Real, Integer, Boolean Modelica.Blocks.Interfaces 
.RealSignal, .Reallnput, .RealOutput 
.Integersignal, .Integerlnput, .IntegerOutput 
.BooleanSignal, .Booleanlnput, 

.BooleanOutput 

• > • > • > 
state 
machine 

Boolean variables 
(occupied, set, available, reset) 

Modelica. StateGraph.Interfaces 
.Stepjn, .Step_out, 
.Transition_in, .Transition_out 

In all domains two equivalent connectors are usually defined, .e.g. Digital input— 
Digital Output, HeatPort_a—HeatPort_b, and so on. The variable declarations of these connectors 
are identical, only the icons are different in order that it is easy to distinguish two connectors of the same 
domain that are attached at the same component model. 

In the following a few selected libraries will be described in some more detail. 

16.1 Modelica.Constants Library 

The Modelica.Constants package provides often needed constants from mathematics, machine 
dependent constants, and constants from nature. 

package Constants 
"Library of mathematical constants and constants of nature (e.g., pi, eps, R, sigma)" 
import SI = Modelica.Slunits; 
import NonSI = Modelica.Slunits.Conversions.NonSIunits; 
extends Modelica.Icons.Package; 

// Mathematical constants 
final constant Real e=Modelica.Math.exp(1.0); 
final constant Real pi=2*Modelica.Math.asin(1.0); // 3.14159265358979; 
final constant Real D2R=pi/180 "Degree to Radian"; 
final constant Real R2D=180/pi "Radian to Degree"; 
final constant Real gamma=0.57721566490153286060 

"see http://en.wikipedia.org/wiki/Euler_constant"; 

// Machine dependent constants 
final constant Real eps=ModelicaServices.Machine.eps 

"Biggest number such that 1.0 + eps = 1.0"; 
final constant Real small=ModelicaServices.Machine.small 

"Smallest number such that small and -small are representable on the machine"; 
final constant Real inf=ModelicaServices.Machine.inf 

"Biggest Real number such that inf and -inf are representable on the machine"; 
final constant Integer Integer_inf=ModelicaServices.Machine.Integer_inf 

"Biggest Integer number such that Integer_inf and -Integer_inf are representable 
on the machine"; 

// Constants of nature 
// (name, value, description from http://physics.nist.gov/cuu/Constants/) 
final constant SI.Velocity c=299792458 "Speed of light in vacuum"; 
final constant SI.Acceleration g_n=9.80665 

"Standard acceleration of gravity on earth"; 
final constant Real G(final unit="m3/(kg.s2)") = 6.6742e-ll 

"Newtonian constant of gravitation"; 
final constant SI.FaradayConstant F = 9.64853399e4 "Faraday constant, C/mol"; 
final constant Real h(final unit="J.s") = 6.6260693e-34 "Planck constant"; 
final constant Real k(final unit="J/K") = 1.3806505e-23 "Boltzmann constant"; 
final constant Real R(final unit="J/(mol.K)") = 8.314472 "Molar gas constant"; 
final constant Real sigma(final unit="W/(m2.K4)") = 5.670400e-8 

"Stefan-Boltzmann constant"; 
final constant Real N_A(final unit="l/mol") = 6.0221415e23 "Avogadro constant"; 
final constant Real mue_0(final unit="N/A2") = 4*pi*l.e-7 "Magnetic constant"; 
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final constant Real epsilon_0(final unit="F/m") = 1/(mue_0*c*c) "Electric constant"; 
final constant NonSI.Temperature_degC T_zero=-273.15 "Absolute zero temperature"; 

end Constants; 

16.2 Modelica.Math Library 

This package (Table 16-8) contains basic mathematical functions [such as sin(..)], as well as functions 
operating on vectors, matrices, nonlinear functions, and Boolean vectors. 

Table 16-8. Sublibraries and mathematical functions in Modelica .Math. 

Name Description 

Icons Icons for Math 

Vectors Library of functions operating on vectors 

Matrices Library of functions operating on matrices 

Nonlinear Library of functions operating on nonlinear equations 

BooleanVectors Library of functions operating on Boolean vectors 

isEqual Determine if two Real scalars are numerically identical 

isPowerOf2 Determine if the integer input is a power of 2 

sin Sine 

cos Cosine 

tan Tangent (u shall not be -pi/2, pi/2, 3*pi/2,...) 

asin Inverse sine (-1 <= u <= 1) 

acos Inverse cosine (-1 <= u <= 1) 

atan Inverse tangent 

atan2 Four quadrant inverse tangent 

atan3 Four quadrant inverse tangent (select solution that is closest to given angle yO) 

sinh Hyperbolic sine 

cosh Hyperbolic cosine 

tanh Hyperbolic tangent 

asinh Inverse of sinh (area hyperbolic sine) 

acosh Inverse of cosh (area hyperbolic cosine) 

exp Exponential, base e 

log Natural (base e) logarithm (u shall be > 0) 

loglO Base 10 logarithm (u shall be > 0) 

16.2.1 Modelica.Math.Vectors Library 

This library provides functions operating on vectors: 

• toString (v) —returns the string representation of vector v. 
• i sEqual (vl, v2) —returns true if vectors vl and v2 have the same size and the same elements. 
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• norm (v, p) —returns the p-norm of vector v. 
• length (v)—returns the length of vector v (= norm(v,2), but inlined and therefore usable in 

symbolic manipulations) 
• normalize (v)—returns vector in direction of v with lenght = 1 and prevents zero-division for 

zero vector. 
• reverse (v) —reverses the vector elements of v. 
• s o r t (v) —sorts the elements of vector v in ascending or descending order. 
• f i nd (e, v) — returns the index of the first occurrence of scalar e in vector v. 
• interpolate (x, y, xi) — returns the interpolated value in (x,y) that corresponds to xi. 
• relNodePositions (nNodes) — returns a vector of relative node positions (0..1). 

16.2.2 Modelica.Math.Matrices Library 

This library provides functions operating on matrices. Below, the functions are ordered according to 
categories and a typical call of the respective function is shown. Most functions are solely an interface to 
the external LAPACK library. Note: A* is a short hand notation of transpose(A): 

Basic Information 
• toString (A) - returns the string representation of matrix A. 
• isEqual (Ml, M2) - returns true if matrices Ml and M2 have the same size and the same elements. 

Linear Equations 
• solve (A, b)—returns solution x of the linear equation A*x=b (where b is a vector, and A is a 

square matrix that must be regular). 
• solve2 (A, B) —returns solution X of the linear equation A*X=B (where B is a matrix, and A is a 

square matrix that must be regular) 
• least Squares (A, b)—returns solution x of the linear equation A*x=b in a least squares sense 

(where b is a vector and A may be non-square and may be rank deficient) 
• leastSquares2 (A, B) —returns solution X of the linear equation A*X=B in a least squares sense 

(where B is a matrix and A may be non-square and may be rank deficient) 
• equalityLeastSquares (A, a, B, b)—returns solution x of a linear equality constrained least 

squares problem: min|A*x-a|A2 subject to B*x=b 
• (LU,p, info) =LU (A)—returns the LU decomposition with row pivoting of a rectangular matrix 

A. 
• LU_solve (LU,p,b)—returns solution x of the linear equation L*U*x[p]=b with a b vector and 

an LU decomposition from "LU(..)'\ 
• LU_solve2 (LU, p, B)—returns solution X of the linear equation L*U*X[p,:]=B with a B matrix 

and an LU decomposition from "LU(..)". 
Matrix Factorizations 

• (eval, evec) =eigenValues (A)—returns eigen values "eval" and eigen vectors "evec" for a 
real, nonsymmetric matrix A in a Real representation. 

• eigenValueMat rix (eval) —returns real valued block diagonal matrix of the eigenvalues "eval" 
of matrix A. 

• (sigma,u,VT) =singularValues (A)—returns singular values "sigma" and left and right 
singular vectors U and VT of a rectangular matrix A. 

• (q, r , p) = q r (a) —returns the QR decomposition with column pivoting of a rectangular matrix A 
such that Q*R = A[:,p], 

• (H,U) =hessenberg (A)—returns the upper Hessenberg form H and the orthogonal 
transformation matrix U of a square matrix A such that H = U'*A*U. 

• realSchur (A) - returns the real Schur form of a square matrix A. 



922 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

• cholesky (A)—returns the cholesky factor H of a real symmetric positive definite matrix A so 
that A = H'*H. 

• (D,Aimproved) =balance (A)—returns an improved form Aimproved of a square matrix A that 
has a smaller condition as A, with Aimproved = inv(diagonal(D))*A*diagonal(D). 

Matrix Properties 
• trace (A) —returns the trace of square matrix A, i.e., the sum of the diagonal elements. 
• de t (A) —returns the determinant of square matrix A (using LU decomposition; try to avoid det(..)) 
• inv(A)—returns the inverse of square matrix A (try to avoid, use instead "solve2(..) with 

B=identity(..)) 
• rank (A) —returns the rank of square matrix A (computed with singular value decomposition) 
• conditionNumber (A) —returns the condition number norm(A)*norm(inv(A)) of a square matrix 

A in the range I..00. 
• rcond (A)—returns the reciprocal condition number l/conditionNumber(A) of a square matrix A 

in the range 0.. 1. 
• norm (A) —returns the 1 -, 2-, or infinity-norm of matrix A. 
• f robeniusNorm (A) — returns the Frobenius norm of matrix A. 
• nul 1 Space (A) —returns the null space of matrix A. 

Matrix Exponentials 
• exp (A)—returns the exponential eAA of a matrix A by adaptive Taylor series expansion with 

scaling and balancing 
• (phi, gamma) =integralExp (A, B)—returns the exponential phi=eAA and the integral 

gamma=integral(exp(A*t)*dt)*B as needed for a discretized system with zero order hold. 
• (phi, gamma, gammal) =integralExpT (A, B)—returns the exponential phi=eAA, the integral 

gamma=integral(exp(A*t)*dt)*B, and the time-weighted integral gammal = integral((T-
t)*exp(A*t)*dt)*B as needed for a discretized system with first order hold. 

Matrix Equations 
• continuousLyapunov(A,C)—returns solution X of the continuous-time Lyapunov equation 

X*A + A'*X = C 
• continuous Sylvester (A, B, C) —returns solution X of the continuous-time Sylvester equation 

A*X + X*B = C 
• continuousRiccati (A, B,R,Q)—returns solution X of the continuous-time algebraic Riccati 

equation A**X + X*A - X*B*inv(R)*B'*X + Q = 0 
• discreteLyapunov (A, C)—returns solution X of the discrete-time Lyapunov equation A'*X*A 

+ sgn*X = C 
• discreteSylvester (A, B, C)—returns solution X of the discrete-time Sylvester equation 

A*X*B + sgn*X = C 
• discreteRiccati (A, B,R,Q)—returns solution X of the discrete-time algebraic Riccati 

equation A'*X*A - X - A'*X*B*inv(R + B'*X*B)*B'*X*A + Q = 0 

Matrix Manipulation 
• sort (M) —returns the sorted rows or columns of matrix M in ascending or descending order. 
• flipLe ft Right (M)—returns matrix M so that the columns of M are flipped in left/right 

direction. 
• f 1 ipUpDown (M) —returns matrix M so that the rows of M are flipped in up/down direction. 
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16.2.3 Modelica.Math.Nonlinear Library 

This package (Table 16-9) contains functions to perform tasks such as numerically integrating a function, 
or solving a nonlinear algebraic equation system. The common feature of the functions in this package is 
that the nonlinear characteristics are passed as user definable functions. 

Table 16-9. Sublibraries and mathematical functions in Modelica. Math. Nonlinear. 

Name Description 

Examples Examples demonstrating the usage of the functions in package 
Nonlinear 

Interfaces Interfaces for functions 

quadratureLobatto Return the integral of an integrand function using an adaptive 
Lobatto rule 

solveOneNonlinearEquation Solve f(u) = 0 in a very reliable and efficient way (f(u_min) and 
f(u_max) must have different signs) 

16.2.4 Modelica.Math.BooleanVectors Library 

This library (Table 16-10) provides functions operating on vectors that have a Boolean vector as input 
argument. 

Table 16-10. Boolean vector functions in Modelica .MathBooleanVectors. 

Name Description 

allTrue Returns true, if all elements of the Boolean input vector are true ('and') 

anyTrue Returns true, if at least on element of the Boolean input vector is true ('or') 

countTrue Returns the number of true entries in a Boolean vector 

enumerate Enumerates the true entries in a Boolean vector (0 for false entries) 

firstTruelndex Returns the index of the first true element of a Boolean vector 

index Returns the indices of the true entries of a Boolean vector 

16.3 Modelica.ComplexMath Library 

The functions operating on Complex numbers are listed in Table 16-11. 

Table 16-11. Mathematical functions in Modelica. ComplexMath. 

Name Description 

j=Complex(0, 1) Imaginary unit 

Vectors Library of functions operating on complex vectors, see below 

sin Sine of complex number 

cos Cosine of complex number 
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tan Tangent of complex number 

asin Arc-sine of complex number 

acos Arc-cosine of complex number 

atan Arc-tangent of complex number 

sinh Hyperbolic-sine of complex number 

cosh Hyperbolic-cosine of complex number 

tanh Hyperbolic-tangent of complex number 

asinh Area-hyperbolic-sine of complex number 

acosh Area-hyperbolic-cosine of complex number 

atanh Area-hyperbolic-tangent of complex number 

exp Exponential of complex number 

log Logarithm of complex number 

'abs' Absolute value of complex number 

arg Phase angle of complex number 

conj Conjugate of complex number 

real Real part of complex number 

imag Imaginary part of complex number 

fromPolar Complex from polar representation 

'sqrt' Square root of complex number 

'max' Return maximum element of complex vector 
fmin 1 Return minimum element of complex vector 

' sum * Return sum of complex vector 

'product' Return product of complex vector 

16.3.1 Modelica.ComplexMath.Vectors library 

The functions on Complex vectors available in the ComplexMath .Vectors sublibrary are listed in Table 
16-12. 

Table 16-12. Mathematical functions on complex vectors in Modelica. ComplexMath. Vectors. 

Name Description 

norm Returns the p-norm of a complex vector 

length Return length of a complex vector 

normalize Return normalized complex vector such that length = 1 and prevent zero-division 
for zero vector 

reverse Reverse vector elements (e.g., v[l] becomes last element) 

sort Sort elements of complex vector 
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16.4 Modelica.Utilities Library 

This package (Table 16-13) contains Modelica functions that are especially suited for scripting. The 
functions might be used to work with strings, read data from file, write data to file or copy, move and 
remove files. It contains the following sublibraries: 

Table 16-13. Sublibraries in Modelica. Utilities. 

Name Description 

Examples Examples to demonstrate the usage of package Modelica. Utilities 

Files Functions to work with files and directories 

Streams Read from files and write to files 

Strings Operations on strings 

System Interaction with environment 

Types Type definitions used in package Model ica. Utilities 

16.4.1 Modelica.Utilities.Examples 

This package contains examples that demonstrate how to use the functions of package Modelica.Utilities. 
In particular, the following examples are present: 

• The function calculator is an interpreter to evaluate expressions consisting of +,-,*,/,()>sin(), 
cos(), tan(), sqrt(), pi. For example: calculator("1.5*sin(pi/6)"); 

• The function expression is the basic function used in "calculator" to evaluate an expression. It is 
useful if the expression interpreter is used in a larger scan operation (such as readRealParameter 
below). 

• The function readRealParameter reads the value of a parameter from file, given the file and the 
parameter name. The value on file is interpreted with the Examples.expression function and can 
therefore be an expression. 

• The model readRealParameterModel is a test model to demonstrate the usage of 
"readRealParameter". The model contains 3 parameters which are read from file 
"Modelica. Utilities/data/Examples_readRealParameters.txt". 

16.4.2 Modelica.Utilities.Files 

This package (Table 16-14) contains functions to work with files and directories. As a general convention of 
this package, 7 is used as directory separator both for input and output arguments of all functions. For example: 

exist("Modelica/Mechanics/Rotational.mo"); 
The functions provide the mapping to the directory separator of the underlying operating system. Note, 
that on Windows system the usage of 'V as directory separator would be inconvenient, because this 
character is also the escape character in Modelica and C Strings. 

Table 16-14. File and directory functions in Modelica. Utilities. Files. 

Function/type Description 

list(name) List content of file or of directory. 
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copy(oldName, newName) 
copy(oldName, newName, replace=false) 

Generate a copy of a file or of a directory. 

move(oldName, newName) 
move(oldName, newName, replace=false) 

Move a file or a directory to another place. 

remove(name) Remove file or directory (ignore call, if it does 
not exist). 

removeFile(name) Remove file (ignore call, if it does not exist) 

createDirectory(name) Create directory (if directory already exists, 
ignore call). 

result = exist(name) Inquire whether file or directory exists. 

assertNew(name,message) Trigger an assert, if a file or directory exists. 

fullName = fullPathName(name) Get full path name of file or directory name. 

(directory, name, extension) = 
splitPathName(name) 

Split path name in directory, file name kernel, file 
name extension. 

fileName = temporaryFileName() Return arbitrary name of a file that does not exist 
and is in a directory where access rights allow to 
write to this file (useful for temporary output of 
files). 

fileReference = 
FileSystem.loadResource(uri); 

Return the absolute path name of a URI or local 
file name 

16.4.3 Modelica.Utilities.Streams 

The package Streams (Table 16-15) contains functions to input and output strings to a message window 
or on files. Note that a string is interpreted and displayed as html text (e.g., with print(..) or error(..)) if 
it is enclosed with the Modelica html quotation, e.g., 

string = "<html> first line <br> second line </html>". 
It is a quality of implementation, whether (a) all tags of html are supported or only a subset, (b) how html 
tags are interpreted if the output device does not allow to display formatted text. 

Table 16-15. Functions for input/output and file operations in Modelica. Utilities. Streams. 

Function/type Description 

print(string) 
print(string,fileName) 

Print string "string" or vector of strings to message 
window or on file "fileName". 

stringVector = readFile(fileName) Read complete text file and return it as a vector of 
strings. 

(string, endOfFile) = 
readLine(fileName, lineNumber) 

Returns from the file the content of line lineNumber. 

lines = countLines(fileName) Returns the number of lines in a file. 

error(string) Print error message "string" to message window and 
cancel all actions 

close(fileName) Close file if it is still open. Ignore call if file is already 
closed or does not exist. 
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16.4.4 Modelica.Utilities.Strings 

The subpackage Modelica.Utilities.Strings (Table 16-16) contains functions to manipulate 
strings. 

The functions compare, isEqual, count, find, findLast, replace, sort have the optional input 
argument caseSensitive with default true. If false, the operation is carried out without taking into 
account whether a character is upper or lower case. 

Table 16-16. String manipulation functions in Modelica. Utilities. Strings. 

Function Description 

len = length(string) Returns length of string 

string2 = 
substring(stringl,startIndex,endlndex) 

Returns a substring defined by start and end 
index 

result = repeat(n) 
result = repeat(n,string) 

Repeat a blank or a string n times. 

result = compare(stringl, string2) Compares two substrings with regards to 
alphabetical order 

identical = isEqual(stringl,string2) Determine whether two strings are identical 

result = count(string,searchString) Count the number of occurrences of a string 

index = find(string,searchString) Find first occurrence of a string in another string 

index = findLast(string,searchString) Find last occurrence of a string in another string 

string2 = replace(string, 
searchString,replaceString) 

Replace one or all occurrences of a string 

stringVector2 = sort(stringVectorl) Sort vector of strings in alphabetic order 

(token, index) = 
scanToken(string,startlndex) 

Scan for a token (Real/ Integer/ Boolean/ 
String/Identifier/Delimiter/NoToken) 

(number, index) = 
scanReal(string,startlndex) 

Scan for a Real constant 

(number, index) = 
scanInteger(string,startlndex) 

Scan for an Integer constant 

(boolean, index) = 
scanBoolean(string,startlndex) 

Scan for a Boolean constant 

(string2, index) = 
scanString(string,startlndex) 

Scan for a String constant 

(identifier, index) = 
scanldentifier(string,startlndex) 

Scan for an identifier 

(delimiter, index) = 
scanDelimiter(string,startlndex) 

Scan for delimiters 

scanNoToken(string,startlndex) Check that remaining part of string consists 
solely of white space or line comments ("// 
...\n"). 

syntaxError(string,index,message) Print a "syntax error message" as well as a string 
and the index at which scanning detected an 
error 
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The sublibrary Strings .Advanced also contain these fundamental scanning functions: 

(nextlndex, realNumber) 
(nextlndex, integerNumber) 
unsigned=false); 

(nextlndex, string2) 
(nextlndex, identifier) 
nextlndex 
nextlndex 

= scanReal(string, startlndex, unsigned=false); 
= scanlnteger(string, startlndex, 

= scanString(string, startlndex); 
= scanldentifier(string, startlndex); 
= skipWhiteSpace(string, startlndex); 
= skipLineComments(string, startlndex); 

16.4.5 Modelica.Utilities.System Library 

This package (Table 16-17) contains functions to interact with the environment. 

Table 16-17. Environment and directory functions in Modelica. Utilities. System. 

Name Description 

getWorkDirectory Get full path name of work directory 

setWorkDirectory Set work directory 

getEnvironmentVariable Get content of environment variable 

setEnvironmentVariable Set content of local environment variable 

command Execute command in default shell 

exit Terminate execution of Modelica environment 

16.4.6 Modelica.Utilities.Types Library 

This package (Table 16-18) contains type definitions used in Modelica.Utilities. 

Table 16-18. Type definitions used in Modelica.Utilities. 

Name Description 

Compare Enumeration defining comparison of two 
strings 

FileType Enumeration defining the type of a file 

TokenType Enumeration defining the token type 

TokenValue Value of token 

16.5 Modelica.SIUnits Library 

This package provides predefined types, such as Mass, Length, Time, based on the international standard 
on units: 

• ISO 31-1992 "General principles concerning quantities, units and symbols" 
• ISO 1000-1992 "SI units and recommendations for the use of their multiples and of certain other 

units". 
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The following conventions are used in this package: 

• Modelica quantity names are defined according to the recommendations of ISO 31. Some of these 
names are rather long, such as ThermodynamicTemperature. Shorter alias names are defined, 
e.g. type Temp_K = ThermodynamicTemperature. 

• Modelica units are defined according to the SI base units without multiples (only exception "kg"). 
• For some quantities, more convenient units for an engineer are defined as displayUnit, i.e. the 

default unit for display purposes (e.g., displayUnit="deg" for quant ity= "Angle"). 
• The type name is identical to the quantity name, following the convention of type names. 
• All quantity and unit attributes are defined as final in order that they cannot be redefined to 

another value. 
• Synonyms for identical quantities, for example, Length, Breadth, Height, Thickness, Radius 

are defined as the same quantity (here: Length). 
• The ordering of the type declarations in this package follows ISO 31, that is, 1) Space and Time, 2) 

Periodic and Related Phenomena, 3) Mechanics, 4) Heat, 5) Electricity and Magnetism, 6) Light 
and Related Electro-Magnetic Radiations, 7) Acoustics, 8) Physical Chemistry, 9) Atomic and 
Nuclear Physics, 10) Nuclear Reactions and Ionizing Radiations, 11) (not defined in ISO 31-1992), 
12) Characteristic Numbers, 13) Solid State Physics. 

Type definitions in the package Modelica .SlUnits have the following appearance: 

type Angle = Real(final quantity="Angle", final unit="rad", 
displayUnit="deg"); 

type SolidAngle = Real(final quantity="SolidAngle", final unit= "sr"); 
type Length = Real(final quantity="Length", final unit="m" ); 
type PathLength = Length; 
etc... 

The full set of type definitions of Modelica .SlUnits can be found in Appendix D. 

16.6 Modelica.Electrical Library 

This library contains electrical components to build up analog and digital circuits. The library is currently 
structured in the following sublibraries: 

• Analog 
• Digital 
• Machines 
• MultiPhase 
• QuasiStationary 
• Spice3 
Explanations on how to use several basic electrical components such as resistors, capacitors, and so on, 

and how to combine them with mechanical components, can be found in Chapter 2, page 19, Chapter 5, 
page 187, and Chapter 15, page 793. Source code for a selection of classes in the Modelica. Electrical 
library is available in Appendix D. 

16.6.1 Modelica.Electrical.Analog Library 

This is a library of analog electrical models, containing subpackages for different kinds of analog electrical 
components: 
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• Examples: examples that demonstrate the usage of the Analog electrical components. 
• interfaces: connectors and partial models for Analog electrical components. 
• Basic: basic components, for example, resistor, capacitor, conductor, inductor, transformer, gyrator. 
• Semiconductors: semiconductor devices, for example, diode, bipolar and MOS transistors. 
• Lines: lossy and lossless segmented transmission lines, and LC distributed line models. 
• ideal: ideal elements, including switches, diode, transformer, idle, short, and so on. 
• Sources: time-dependent and controlled voltage and current sources. 
• Sensors: sensors to measure potential, voltage, current, and power. 

16.6.1.1 Modelica.Electrical.Analog. Examples 
This package contains examples that demonstrate the usage of the components of the Electrical.Analog 
library. The examples are simple to understand (see Figure 16-1 and Table 16-19). They will show a 
typical behavior of the components, and they will give hints to users. 

Figure 16-1. An Analog Difference-Amplifier example model. 

Table 16-19. Example models in Modelica.Electrical .Analog. Examples. 

Name Description 

CauerLowPassAnalog Cauer low pass filter with analog components 

CauerLowPassOPV Cauer low pass filter with operational amplifiers 

CauerLowPassSC Cauer low-pass filter with operational amplifiers and switched 
capacitors 

CharacteristicIdealDiodes Characteristic of ideal diodes 

CharacteristicThyristors Characteristic of ideal thyristors 

ChuaCircuit Chua's circuit, ns, V, A 

DifferenceAmplifier Simple NPN transistor amplifier circuit 

HeatingMOSInverter Heating MOS Inverter 

HeatingNPN_OrGate Heating NPN Or Gate 

HeatingResistor Heating resistor 

HeatingRectifier Heating rectifier 
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NandGate CMOS NAND Gate (see Tietze/Schenk, page 157) 

OvervoltageProtection Example for Zener diodes 

Rectifier B6 diode bridge 

ShowSaturatingInductor Simple demo to show behaviour of Saturatinglnductor 
component 

ShowVariableResistor Simple demo of a VariableResistor model 

SwitchWithArc Comparison of switch models both with and without arc 

ThyristorBehaviourTest Thyristor demonstration example 

Ampli fierWithOpAmpDetailed Simple Amplifier circuit which uses OpAmpDetailed 

CompareTransformers Transformer circuit to show the magnetization facilities 

ControlledSwitchWithArc Comparison of controlled switch models both with and without 
arc 

SimpleTriacCircuit Simple triac test circuit 

IdealTriacCircuit Ideal triac test circuit 

AD_DA_conversion Conversion circuit 

Utilities Utility components used by package Examples 

16.6.1.2 Modelica.Electrical.Analog.lnterfaces 
This subpackage contains the interface definitions in terms of connector classes, as well as partial models 
for analog electrical components. The names and icons of the classes appear in Figure 16-1. 

OnePort| Q 

Pin PositivePin NegativePin TwoPin OnePort TwoPort Conditional* eat... 

KD-
AbsoluteSensor RelativeSensor VbftageSource CurrentSource 

Figure 16-2. Connector and partial model icons in the electrical analog interfaces sublibrary. 

Detailed explanations of some classes such as Pin, PositivePin, etc. is presented in Chapter 5, page 
188. Source code for these classes is available in Appendix D. 

16.6.1.3 Modelica.Electrical.Analog.Basic 
This package (Table 16-20) contains very basic analog electrical components such as resistor, conductor, 
condensator, inductor, and the ground which is needed in each electrical circuit description. Furthermore, 
controlled sources, coupling components, and some improved, but nevertheless basic models, are in this 
package. 

Table 16-20. Basic electrical component models in Modelica.Electrical .Analog. Basic. 

Name Description 

Ground Ground node 

Resistor Ideal linear electrical resistor 
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HeatingResistor Temperature dependent electrical resistor 

Conductor Ideal linear electrical conductor 

Capacitor Ideal linear electrical capacitor 

Inductor Ideal linear electrical inductor 

SaturatingInductor Simple model of an inductor with saturation 

Transformer Transformer with two ports 

M Transformer Generic transformer with free number of inductors 

Gyrator Gyrator 

EMF Electromotoric force (electric/mechanic transformer) 

TranslationalEMF Electromotoric force (electric/mechanic transformer) 

VCV Linear voltage-controlled voltage source 

VCC Linear voltage-controlled current source 

CCV Linear current-controlled voltage source 

CCC Linear current-controlled current source 

OpAmp Simple nonideal model of an OpAmp with limitation 

OpAmpDetailed Detailed model of an operational amplifier 

VariableResistor Ideal linear electrical resistor with variable resistance 

VariableConductor Ideal linear electrical conductor with variable 
conductance 

VariableCapacitor Ideal linear electrical capacitor with variable capacitance 

VariableInductor Ideal linear electrical inductor with variable inductance 

The basic natural laws used in these models are briefly described in Section 14.2, page 746. An 
application example in terms of a DCMotor model using many of these components, including an EMF 
(Electro Motoric Force) converter, is presented in Section 15.1, page 794. 
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VanableResistor VariableConductor Variable Capacitor Vkriablelnductor 

Figure 16-3. Icons for basic electrical analog components. 

Source code for these classes is available in Appendix D. 
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16.6.1.4 Modelica.Electrical.Analog.ldeal 
This package (Table 16-21) contains electrical components with idealized behaviour. To enable more 
realistic applications than it is possible with pure realistic behavior some components have been improved 
with additional features. For example, the switches have resistances for the open or close case which can 
be parametrized. 

Table 16-21. Ideal component models in Modelica. Electrical. Analog. Ideal. 

Name Description 

IdealThyristor Ideal thyristor 

IdealGTOThyristor Ideal GTO thyristor 

IdealCommutingSwitch Ideal commuting switch 

IdealIntermediateswitch Ideal intermediate switch 

ControlledldealCommutingSwitch Controlled ideal commuting switch 

ControlledldealIntermediateSwitch Controlled ideal intermediate switch 

IdealOpAmp Ideal operational amplifier (norator-nullator pair) 

IdealOpAmp3Pin Ideal operational amplifier (norator-nullator pair), but 3 
pins 

IdealOpAmpLimited Ideal operational amplifier with limitation 

IdealDiode Ideal diode 

IdealTransformer Ideal transformer core with or without magnetization ' 

IdealGyrator Ideal gyrator 

Idle Idle branch 

Short Short cut branch 

IdealOpeningswitch Ideal electrical opener 

IdealClosingSwitch Ideal electrical closer 

ControlledldealOpeningSwitch Controlled ideal electrical opener 

ControlledldealClosingSwitch Controlled ideal electrical closer 

OpenerWithArc Ideal opening switch with simple arc model 

CloserWithArc Ideal closing switch with simple arc model 

ControlledOpenerWithArc Controlled ideal electrical opener with simple arc 
model 

ControlledCloserWithArc Controlled ideal electrical closer with simple arc model 

IdealTriac Ideal triac, based on ideal thyristors 

AD_Converter Simple n-bit analog to digital converter 

DA_Converter Simple digital to analog converter 

The ideal diode model mentioned in the list is discussed in Section 2.15, page 55. 
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Figure 16-4. Icons for ideal electrical analog components. 

Source code for some of these classes is available in Appendix D. 

16.6.1.5 Modelica.Electrical.Analog.Sensors 
This package contains potential, voltage, and current sensors. 

<p° 
PotentlaBensor VoltageSensor CurrentSensor PowerSensof 

Figure 16-5. Icons for electrical analog sensors, for sensing voltages and currents. 

Source code for these classes is available in Appendix D. 

16.6.1.6 Modelica.Electrical.Analog.Sources 
This package contains time-dependent and controlled voltage and current sources, as depicted in Figure 
16-6. Step signals are used in a number of models, e.g. the DCMotor model described in Section 15.1, 
page 794. 

"̂©̂  •O0 "̂©̂  
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SawTooth Voltage TrapezotdVoltage Table Voltage StgnalCurrent ConstantCurrent StepCurrent RampCurrent SreCurrent CoaneCiirrent 
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ExpSmeCurrent ExponentafeCur... PubeCurrent SawToothCurrent TrapezoidCurrent Table Current 

Figure 16-6. Icons for electrical analog voltage and current sources, with generated signals of various 
forms. 

Source code for these classes is available in Appendix D. 
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16.6.1.7 Modelica.Electrical.Analog.Lines 
This package contains models for lossy and lossless analog transmission lines. 

^ i ^ H H H 
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Figure 16-7. Icons for lossy and lossless electrical analog transmission lines. 

Source code for these classes is available in Appendix D. 

16.6.1.8 Modelica.Electrical.Analog.Semiconductors 
This package contains a few common analog semiconductor devices: 

• diodes 
• MOS transistors 
• bipolar transistors 
• thyristor and simpletriac 

• a M m J K a - c a 
- C a i 

Diode ZDiode PMOS NMOS NPN PNP HeatngOode 

J& 
a 

JEi • H C • - c a • # 
HeathflNMOS HeatrKjPMOS Heatr>gNPN HeaOngPNP Thyristor SrripfeTrac 

Figure 16-8. Icons for common electrical analog semiconductors such as diodes and transistors. 

The diode model is explained in Section 2.15, page 55. Source code for these classes is available in 
Appendix D. 

16.7 Modelica.Electrical.Digital Library 

This is a library for digital electrical components based on the VHDL standard with 9-valued logic and 
conversion to 2-,3-,4-valued logic. It consists of the following parts: 

• interfaces: Definition of signals and interfaces 
• Tables: All truth tables needed 
• Delay: Transport and inertial delay 
• Basic: Basic logic without delay 
• Gates: Basic gates composed by basic components and inertial delay 
• Tristate: (not yet avail able) 
• FlipFlops: D-Flip-Flops 
• Latches: D-Latches 
• Transfer Gates: (not yet available) 
• Multiplexers (not yet available) 
• Memory: Ram, Rom, (not yet available) 
• Sources: Time-dependent signal sources 
• Converters 
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• Examples 
An example model Adder4 in the Digital. Examples sublibrary is shown below: 

Figure 16-9. The Adder4 model from Electrical. Digital. Examples. 

16.8 Modelica.Blocks Library 

The Blocks library (Table 16-22) contains input/output blocks to build up block diagrams. See Section 
12.5, page 582, for description of the notion of block diagrams. The library is structured into the following 
sublibraries: 

Table 16-22. Sublibraries with input/output blocks in Modelica. Blocks. 

Name Description 

Examples Library of examples to demonstrate the usage of package Blocks 

Continuous Library of continuous control blocks with internal states 

Discrete Library of discrete input/output blocks with fixed sample period 

Interaction Library of user interaction blocks to input and to show variables in a diagram 
animation 

Interfaces Library of connectors and partial models for input/output blocks 

Logical Library of components with Boolean input and output signals 

Math Library of Real mathematical functions as input/output blocks 

Mathlnteger Library of Integer mathematical functions as input/output blocks 

MathBoolean Library of Boolean mathematical functions as input/output blocks 

Nonlinear Library of discontinuous or non-differentiable algebraic control blocks 

Routing Library of blocks to combine and extract signals 

Sources Library of signal source blocks generating Real and Boolean signals 

Tables Library of blocks to interpolate in one and two-dimensional tables 

Types Library of constants and types with choices, especially to build menus 

Icons Icons for Blocks 

Source code for part of the Modelica.Blocks library is available in Appendix D. 
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16.8.1 Modelica.Blocks.Examples 

This subpackage contains example models to demonstrate the usage of package blocks. An example model 
RealNetWorkl is shown in Figure 16-10. 
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Figure 16-10. The RealNetworkl model from Electrical. Blocks. Examples. 
An example model LogicalNetworkl in the Examples sublibrary is shown in Figure 16-11. 

M*2 Not! 

j H j *• not j> • and j 

• 
Figure 16-11. The LogicalNetworkl model from Electrical. Blocks. Examples. 

16.8.2 Modelica.Blocks.lnterfaces 

This package (Table 16-23) contains interface definitions for continuous input/output blocks. In particular 
it contains the following connector classes: 

Table 16-23. Connector classes in Modelica. Blocks. interfaces. 

Name Description 

Reallnput 'input Real' as connector 

RealOutput 'output Real' as connector 
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Booleanlnput 'input Boolean' as connector 

BooleanOutput "output Boolean' as connector 

Integerlnput 'input Integer1 as connector 

IntegerOutput 'output Integer1 as connector 

RealVectorlnput Real input connector used for vector of connectors 

IntegerVectorInput Integer input connector used for vector of connectors 

BooleanVectorInput Boolean input connector used for vector of connectors 

The icons corresponding to these classes are depicted in Figure 16-12. 

Reallnput RealOutput Booleanlnput BooleanOutput Integerlnput 

ntegerOutput RealVectorlnput IntegerVectorl... BooleanVectorl... 

Figure 16-12. Icons for some connector classes used by the Modelica Blocks library. 

Of the above, the use of Reallnput and RealOutput is explained in some detail in Section 5.2, page 
188. The following partial block classes are provided to model continuous control blocks (Table 16-24). 

Table 16-24. Partial continuous control block classes in Modelica. Blocks. Interfaces. 

Name Description 

so Single Output continuous control block 

MO Multiple Output continuous control block 

SISO Single Input Single Output continuous control block 

SI2SO 2 Single Input / 1 Single Output continuous control block 

SIMO Single Input Multiple Output continuous control block 

MISO Multiple Input Single Output continuous control block 

PartialRealMISO Partial block with a RealVectorlnput and a RealOutput signal 

MIMO Multiple Input Multiple Output continuous control block 

MIMOs Multiple Input Multiple Output continuous control block with same number of 
inputs and outputs 

MI2M0 2 Multiple Input / Multiple Output continuous control block 

SignalSource Base class for continuous signal source 

SVcontrol Single-Variable continuous controller 

MVcontrol Multi-Variable continuous controller 

The partial block classes in Table 16-25 are provided to model discrete and Boolean control blocks: 

Table 16-25. Partial discrete and Boolean control block classes in Modelica. Blocks. Interfaces. 

Name Description 

DiscreteBlock Base class of discrete control blocks 
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DiscreteSISO Single Input Single Output discrete control block 

DiscreteMIMO Multiple Input Multiple Output discrete control block 

DiscreteMIMOs Multiple Input Multiple Output discrete control block 

SVdiscrete Discrete Single-Variable controller 

MVdiscrete Discrete Multi-Variable controller 

BooleanSISO Single Input Single Output control block with signals 
of type Boolean 

BooleanMIMOs 
Multiple Input Multiple Output continuous control 
block with same number of inputs and outputs of 
Boolean type 

MI2BooleanMOs 2 Multiple Input / Boolean Multiple Output block with 
same signal lengths 

SI2BooleanSO 2 Single Input / Boolean Single Output block 

BooleanSignalSource Base class for Boolean signal sources 

IntegerSO Single Integer Output continuous control block 

IntegerMO Multiple Integer Output continuous control block 

IntegersignalSource Base class for continuous Integer signal source 

IntegersIBooleanSO Integer Input Boolean Output continuous control block 

IntegerMIBooleanMOs 
Multiple Integer Input Multiple Boolean Output 
continuous control block with same number of inputs 
and outputs 

PartialIntegersISO Partial block with a Integerlnput and an IntegerOutput 
signal 

PartialIntegerMISO Partial block with an IntegerVectorlnput and an 
IntegerOutput signal 

partialBooleanSISO Partial block with 1 input and 1 output Boolean signal 

partialBooleanSI2SO Partial block with 2 input and 1 output Boolean signal 

partialBooleanSI3SO Partial block with 3 input and 1 output Boolean signal 

partialBooleanSI Partial block with 1 input Boolean signal 

partialBooleanSO Partial block with 1 output Boolean signal 

partialBooleanSource Partial source block (has 1 output Boolean signal and 
an appropriate default icon) 

partialBooleanThresholdComparison 
Partial block to compare the Real input u with a 
threshold and provide the result as 1 Boolean output 
signal 

partialBooleanComparison 
Partial block with 2 Real input and 1 Boolean output 
signal (the result of a comparison of the two Real 
inputs) 

PartialBooleanSISO_small Partial block with a Booleanlnput and a BooleanOutput 
signal and a small block icon 

PartialBooleanMISO Partial block with a BooleanVectorlnput and a 
BooleanOutput signal 

Adaptors Obsolete package with components to send signals to a 



940 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

bus or receive signals from a bus (only for backward 
compatibility) 

PartialConversionBlock Partial block defining the interface for conversion blocks 

Source code for a selection of these classes is available in Appendix D. 

16.8.3 Modelica.Blocks.Continuous 

This package contains the basic continuous input/output blocks shown in Figure 16-13. 

Integrator Urn Integrator Derivative FrstOrder SecondOrder PJ PlD LrrPlD 

S i f i f i f l f i l 
Transferfunction StateSpace Der LowpassButter... CribcaDampIng Filter Internal 

Figure 16-13. Icons for basic continuous input/output blocks in Modelica. Blocks. Continuous. 
Source code for a selection of these classes is available in Appendix D. 

16.8.4 Modelica.Blocks.Nonlinear 

This package contains the discontinuous and nondifferentiable, algebraic input/output blocks shown in 
Figure 16-14. 

Lmiter VarobleUrrater SlewRateUmter DeadZone FecedDelay PadeDeby VanabteDeby 

Figure 16-14. Icons for discontinuous and nondifferentiable input/output blocks. 

Source code for these classes is available in Appendix D. 

16.8.5 Modelica.Blocks.Math 

This package contains basic mathematical operations, such as summation and multiplication, and basic 
mathematical functions, such as sqrt and sin, as input/output blocks. All blocks of this library can be 
either connected with continuous blocks or with sampled-data blocks. In particular, the operations and 
functions shown in Table 16-26 are provided. 

Table 16-26. Mathematical operations and functions as blocks in Modelica. Blocks .Math. 

Name Description 

UnitConversions Conversion blocks to convert between SI and 
non-SI unit signals 

InverseBlockConstraints Construct inverse model by requiring that two 
inputs and two outputs are identical (replaces the 

3 B Q B ' S S i 
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previously, unbalanced, Twolnputs and 
TwoOutputs blocks) 

Gain Output the product of a gain value with the input 
signal 

MatrixGain Output the product of a gain matrix with the input 
signal vector 

MultiSum Sum of Reals: y = k[l]*u[l] + k[2]*u[2] + ... + 
k[n]*u[n] 

MultiProduct Product of Reals: y = u[l]*u[2]* ... *u[n] 

MultiSwitch Set Real expression that is associated with the 
first active input signal 

Sum Output the sum of the elements of the input vector 

Feedback Output difference between commanded and 
feedback input 

Add Output the sum of the two inputs 

Add3 Output the sum of the three inputs 

Product Output product of the two inputs 

Division Output first input divided by second input 

Abs Output the absolute value of the input 

Sign Output the sign of the input 

Sqrt Output the square root of the input (input >= 0 
required) 

Sin Output the sine of the input 

Cos Output the cosine of the input 

Tan Output the tangent of the input 

Asin Output the arc sine of the input 

Acos Output the arc cosine of the input 

Atan Output the arc tangent of the input 

Atan2 Output atan(ul/u2) of the inputs ul and u2 

Sinh Output the hyperbolic sine of the input 

Cosh Output the hyperbolic cosine of the input 

Tanh Output the hyperbolic tangent of the input 

Exp Output the exponential (base e) of the input 

Log Output the natural (base e) logarithm of the input 
(input > 0 required) 

LoglO Output the base 10 logarithm of the input (input > 
0 required) 

RealToInteger Convert Real to Integer signal 

IntegerToReal Convert Integer to Real signals 

BooleanToReal Convert Boolean to Real signal 

BooleanToInteger Convert Boolean to Integer signal 

RealToBoolean Convert Real to Boolean signal 
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IntegerToBoolean Convert Integer to Boolean signal 

RectangularToPolar Convert rectangular coordinates to polar 
coordinates 

PolarToRectangular Convert polar coordinates to rectangular 
coordinates 

Mean Calculate mean over period 1/f 

RectifiedMean Calculate rectified mean over period 1/f 

RootMeanSquare Calculate root mean square over period 1/f 

Harmonic Calculate harmonic over period 1/f 

Max Pass through the largest signal 

Min Pass through the smallest signal 

MinMax Output the minimum and the maximum element 
of the input vector 

LinearDependency Output a linear combination of the two inputs 

Edge Indicates rising edge of Boolean signal 

BooleanChange Indicates Boolean signal changing 

IntegerChange Indicates integer signal changing 

The icons for these input/output blocks of basic mathematical functions are depicted in Figure 16-15. 

UnfcConversons InverseStockCo... Gan MatnxGar MulttSum MuWProduct MuftiSwrtch Sum Feedback Add 

Add3 Product Dwson Abs Sign Sqrt Sr Cos Tin A»i 

B B 
A cos A tan A tan 2 Sinh Co«h Tinh Exp Log LofllO RealToInteger 

& m m m m o G e o 
IntegerToReal BooleanToReal Boolean Tolnteger ReaJTo8oolean Integer Toflootean RectangubrToP... PoiarToftectang... Mean RectifiedMean 

RootMeanSquare Harmonic Max Mr MnMax UnearOepende... Edge Boolean Change IntegerChange 

Figure 16-15. Icons for blocks corresponding to basic mathematical operations and functions. 

Source code for some of these classes is available in Appendix D. 

16.8.6 Modelica.Blocks.Mathlnteger 

This package contains basic mathematical operations on Integer signals (Table 16-27 and Figure 16-16). 

Table 16-27. Basic mathematical operations on Integer signals in Modelica. Blocks. Mathlnteger. 

• 

Q a a s Q S f i f l f l 
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Name Description 

MultiSwitch Set Integer expression that is associated with the first active input signal 

Sum Sum of Integers: y = k[l]*u[l] + k[2]*u[2] + ... + k[n]*u[n] 

Product Product of Integer: y = u[l]*u[2]* ... *u[n] 

TriggeredAdd Add input to previous value of output, if rising edge of trigger port 

MuteSwKch Sum Product TriQgeredAdd 

Figure 16-16. Icons for blocks corresponding to basic mathematical operations and functions. 

Source code for some of these classes is available in Appendix D. 

16.8.7 Modelica.Blocks.MathBoolean 

This package (Table 16-28 and Figure 16-17) contains basic mathematical operations on Boolean signals. 
The package MathBoolean is a new design that shall replace in the future the Logical package. The new 
features are: 

• If useful, blocks may have an arbitrary number of inputs (e.g., And block with 2,3,4,... Boolean 
inputs). This is based on the connectorSizing annotation which allows a tool to conveniently 
handle vectors of connectors. 

• The blocks are smaller in size, so that the diagram area is better utilized for trivial blocks such as 
And or Or. 

Table 16-28. Basic mathematical operations on Boolean signals in Modelica. Blocks. MathBoolean. 

Name Description 

MultiSwitch Set Boolean expression that is associated with the first active input signal 

And Logical 'and': y = u[l] and u[2] and ... and u[nu] 

Or Logical 'or': y = u[l] or u[2] or... or u[nu] 

Xor Logical 'xor1: y = oneTrue(u) (y is true, if exactly one element of u is true, 
otherwise it is false) 

Nand Logical 'nand': y = not ( u [ l ] and u[2] and ... and u[nu]) 

Nor Logical 'nor': y = not ( u[l] or u[2] or ... or u[nu]) 

Not Logical 'not': y = not u 

RisingEdge Output y is true, if the input u has a rising edge, otherwise it is false (y = edge(u)) 

FallingEdge Output y is true, if the input u has a falling edge, otherwise it is false (y = edge(not 
u)) 

ChangingEdge Output y is true, if the input u has either a rising or a falling edge and otherwise it is 
false (y=change(u)) 

OnDelay Delay a rising edge of the input, but do not delay a falling edge. 
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Table 16-29. Signal source component models in Modelica. Blocks. Sources. 

Name Description 

RealExpression Set output signal to a time varying Real expression 

IntegerExpression Set output signal to a time varying Integer expression 

BooleanExpression Set output signal to a time varying Boolean expression 

Clock Generate actual time signal 

Constant Generate constant signal of type Real 

Step Generate step signal of type Real 

Ramp Generate ramp signal 

Sine Generate sine signal 

Cosine Generate cosine signal 

ExpSine Generate exponentially damped sine signal 

Exponentials Generate a rising and falling exponential signal 

Pulse Generate pulse signal of type Real 

SawTooth Generate saw tooth signal 

Trapezoid Generate trapezoidal signal of type Real 

KinematicPTP Move as fast as possible along a distance within given kinematic constraints 

KinematicPTP2 Move as fast as possible from start to end position within given kinematic 
constraints with output signals q, qd=der(q), qdd=der(qd) 

TimeTable Generate a (possibly discontinuous) signal by linear interpolation in a table 

CombiTimeTable Table look-up with respect to time and linear/periodic extrapolation methods 
(data from matrix/file) 

BooleanConstant Generate constant signal of type Boolean 

BooleanStep Generate step signal of type Boolean 

BooleanPulse Generate pulse signal of type Boolean 

SampleTrigger Generate sample trigger signal 

Figure 16-17. Icons for blocks corresponding to basic Boolean operations and functions. 

Source code for some of these classes is available in Appendix D. 

16.8.8 Modelica.Blocks.Sources 

This package (Table 16-29) contains signal source components, that is, blocks which only have output 
signals. These blocks are used as signal generators. For example, a step signal generator is used in the 
examples in Section Chapter 5, page 187 and Section 15.1, page 794. 



Chapter 16 Modelica Library Overview 945 

BooleanTable Generate a Boolean output signal based on a vector of time instants 

RadioButtonSource Boolean signal source that mimics a radio button 

IntegerConstant Generate constant signal of type Integer 

IntegerStep Generate step signal of type Integer 

IntegerTable Generate an Integer output signal based on a table matrix with [time, yi] 
values 

All sources are automatically vectorized when needed, and works either for connecting scalars or 
vectors of signals. 

All Real source signals (with the exception of the Constant source) have at least the following two 
parameters: 

offset 
startTime Value which is added to all signal values. 

Start time of signal. For time < startTime, the output is set to offset. 

The offset parameter is especially useful in order to shift the corresponding source such that at initial 
time the system is stationary. To determine the corresponding value of offset usually requires a 
trimming calculation. 

ReaExpresston IntegerExpresson BooleanExpressi... Clock Constant Step R 

g s i H i B H 

V V 
Sine Cosine 

ExpSre Exponentiate Pulse SawTooth Trapezoid KrematicPTP KinematicPTP2 TimeTSble CombiTmelibte 

L_ 
BooleanConstant BooleanStep BooleanPulse SampleTngger Booleanlible RadioButtonSo... IntegerConstant IntegerStep IntegerTSble 

Figure 16-18. Icons for signal sources of various forms. 

Source code for some of these classes is available in Appendix D. 

16.9 Modelica_StateGraph2 Library 

The library Modelica_StateGraph2 is a free Modelica package providing components to model discrete 
event, reactive and hybrid systems in a convenient way with deterministic hierarchical state diagrams. An 
example model constructed with this library is shown in Figure 16-19. 
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Figure 16-19. An example Modelica_StateGraph2 model. 

This library is inspired by Grafcet/Sequential Function Charts (SFC), Statecharts, Safe State Machines 
(SSM) and Mode Automata, and utilizes Modelica as action language. It has a similar modeling power as 
these formalisms, e.g. synchronization of parallel executing branches as in SFC (not easy in Statecharts), 
or suspending a hierarchical subgraph with one transition and resuming at the same states afterwards when 
entering it again, as in Statechart (not possible in SFC). A StateGraph2 model is always deterministic 
due to Modelicas "single assignment rule." Via special blocks in subpackage Blocks, actions can be 
defined in a graphical way depending on the active step. 

This library is implemented with Modelica 3.1 and utilizes non-standard extensions to Modelica 3.1. 
Eventually at some point in the future the stateGraph2 library will be effectively replaced by a 

library based on the Modelica clocked state machines that were introduced in Modelica 3.3, probably a 
future version of the Modelica Synchronous library (Section 16.10, page 947). 

The stateGraph2 library contains the sublibraries listed in Table 16-30. 

Table 16-30. Sublibraries in Modelica_StateGraph2. 

Name Description 

UsersGuide User's Guide 

Examples Examples to demonstrate the usage of the Modelica_StateGraph2 library 

Step Step (optionally with initial step and/or activePort) 

Transition Transition between steps (optionally with delayed transition and/or 
condition input port) 

LoopBreakingTransition Transition to break loops by introducing an artificial time delay 
(immediately fire and then wait) 

Parallel Composite or parallel step 

PartialParallel Partial compont to construct a parallel submodel via inheritance 

Blocks Input/output blocks that are designed for StateGraph2 but shall be 
included in the Modelica Standard Library 

Internal Internal utility models (should usually not be used by user) 
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16.10 Modelica_Synchronous Library 

The Modelica Synchronous library contains basic clocked synchronous input/output control blocks. 
See Chapter 13 for a detailed presentation regarding these concepts, especially Section 13.6, page 694, 
regarding the clocked features used in this library. The version of the library described here is 
preliminary—it is not yet part of the Modelica Standard Library, but is expected to be in the near future. 

This library allows precise definition and synchronization of sampled data systems with different 
sampling rates. The library has elements to define periodic clocks and event clocks that trigger elements to 
sample, sub-sample, super-sample, or shift-sample partitions synchronously. 

Optionally, quantization effects, computational delay or noise can be simulated. Continuous-time 
equations can be automatically discretized and utilized in a sampled data system. The sample rate of a 
partition need to be defined only at one location. All Modelica libraries designed so far for sampled 
systems, such as Modelica.Blocks.Discrete or Modelica_LinearSystems2 .Controller are 
gradually becoming obsolete. Instead Modelica_Synchronous should be utilized in the future. 

The library contains the sublibraries listed in Table 16-31. 

Table 16-31. Sublibraries in Modelica_Synchronous. 

Name Description 
UsersGuide User's Guide 
Examples Library of examples to demonstrate the usage of package Modelica_Synchronous 
ClockSignals Library of blocks for clocked signals 
RealSignals Library of clocked blocks for Real signals 
IntegerSignals Library of clocked blocks for Integer signals 
BooleanSignals Library of clocked blocks for Boolean signals 
Types Library of types with choices, especially to build menus 

The Examples. SimpleControlledDrive model in Figure 16-20 shows a simple sampled data 
system in which the borders of the discrete-time partition are marked by the sample and hold operators, a 
clocked PI controller is used in the partition and the sample rate is defined at one location with a clock. 

Figure 16-20. The Examples. SimpleControlledDrive model from the Modelica_Synchronous 
library. 
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16.11 Modelica.Mechanics Library 

This package contains components to model mechanical systems. Currently the following subpackages are 
available: 

• MultiBody 3-dimensional mechanical components 
• Rotational 1-dimensional rotational mechanical components. 
• Translational 1-dimensional translational mechanical components. 

Source code for some models in these sublibraries is available in Appendix D. 

16.11.1 Modelica.Mechanics.MultiBody Library 

The Mechanics.MultiBody library contains model components for (rigid bodies) three-dimensional 
mechanical systems consisting of joints, bodies, force and sensor elements. Joints can be driven by 
elements of the Rotational library. Every element has a default animation. 

See Section 15.10, page 877, for an overview description of this library including some hints and 
examples how to use it. Figure 16-21 below shows some examples of models built using the MultiBody library. 

Figure 16-21. Examples of three-dimensional visualizations of models using the MultiBody library. 

16.11.2 Modelica.Mechanics.Rotational Library 

This package contains components to model one-dimensional rotational mechanical systems, including 
different types of gearboxes, shafts with inertia, external torques, spring/damper elements, frictional 
elements, backlash, elements to measure angle, angular velocity, angular acceleration and the torque 
transmitted at a flange. A simple example with explanation of using a few rotational elements from this 
library is presented in Section 15.1, page 794. A discussion of the hybrid mode switching 
ElastoBacklash model is given in Section 13.4.2, page 682. A selection of the basic equations used in 
this library is described in Section 14.4, page 751. 

In the Examples sublibrary several examples are present to demonstrate the usage of the elements. Just 
open the corresponding example model and simulate the model according to the provided description. 

A unique feature of this library is the component-oriented modeling of Coulomb friction elements, such as 
friction in bearings, clutches, brakes, and gear efficiency. Even (dynamically) coupled friction elements, for 
example, as in automatic gearboxes, can be handled without introducing stiffness, leading to fast simulations. 

The underlying theory is rather new and is based on the solution of mixed continuous/discrete systems 
of equations, that is, equations where the unknowns are of type Real, Integer, or Boolean. Provided 
appropriate numeric algorithms for the solution of such types of systems are available in the simulation 
tool, the simulation of (dynamically) coupled friction elements of this library is efficient and reliable. 

In version 3.0 of the Modelica Standard Library, the basic design of the library has changed: 
Previously, bearing connectors could or could not be connected. In 3.0, the bearing connector is renamed 
to "support" and this connector is enabled via parameter "useSupport". If the support connector is 
enabled, it must be connected, and if it is not enabled, it must not be connected. 



Chapter 16 Modelica Library Overview 949 

In version 3.2 of the Modelica Standard Library, all dissipative components of the Rotational library 
got an optional heatPort connector to which the dissipated energy is transported in form of heat. This 
connector is enabled via parameter "useHeatPort". If the heatPort connector is enabled, it must be 
connected, and if it is not enabled, it must not be connected. Independently, whether the heatPort is 
enabled or not, the dissipated power is available from the new variable "lossPower" (which is positive if 
heat is flowing out of the heatPort). For an example, see Examples. HeatLosses. 

The library is structured into several sublibraries, shown in Table 16-32. 

Table 16-32. Sublibraries in Modelica.Mechanics.Rotational. 

Name Description 

UsersGuide User's Guide of Rotational Library 

Examples Demonstration examples of the components of this package 

Components Components for ID rotational mechanical drive trains 

Sensors Sensors to measure variables in ID rotational mechanical components 

Sources Sources to drive ID rotational mechanical components 

Interfaces Connectors and partial models for ID rotational mechanical components 

Icons Icons for Rotational package 

16.11.2.1 Modelica.Mechanics.Rotational.Components 
The Mechanics. Rotational. Components sublibrary contains the component models listed in Table 16-33. 

Table 16-33. Component models in Modelica. Mechanics .Rotational. Components. 

Name Description 

Fixed Flange fixed in housing at a given angle 

Inertia ID-rotational component with inertia 

Disc 1-dim. rotational rigid component without inertia, where right flange is 
rotated by a fixed angle with respect to left flange 

Spring Linear ID rotational spring 

Damper Linear ID rotational damper 

SpringDamper Linear ID rotational spring and damper in parallel 

ElastoBacklash Backlash connected in series to linear spring and damper (backlash is 
modeled with elasticity) 

BearingFriction Coulomb friction in bearings 

Brake Brake based on Coulomb friction 

Clutch Clutch based on Coulomb friction 

OneWayClutch Series connection of freewheel and clutch 

IdealGear Ideal gear without inertia 

LossyGear Gear with mesh efficiency and bearing friction (stuck/rolling possible) 

IdealPlanetary Ideal planetary gear box 

Gearbox Realistic model of a gearbox (based on LossyGear) 

IdealGearR2T Gearbox transforming rotational into translational motion 

IdealRollingWheel Simple 1-dim. model of an ideal rolling wheel without inertia 
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InitializeFlange Initializes a flange with pre-defined angle, speed and angular 
acceleration (usually, this is reference data from a control bus) 

RelativeStates Definition of relative state variables 

TorqueToAngleAdaptor Signal adaptor for a Rotational flange with angle, speed, and acceleration 
as outputs and torque as input (especially useful for FMUs) 

AngleToTorqueAdaptor Signal adaptor for a Rotational flange with torque as output and angle, 
speed, and optionally acceleration as inputs (especially useful for FMUs) 

The icons corresponding to the rotational model components are depicted in Figure 16-22 below. 
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Figure 16-22. Icons for components in the Mechanical. Rotational. Components sublibrary. 

Source code for some of these classes is available in Appendix D. 

16.11.2.2 Modelica.Mechanics.Rotational.Interfaces 
This Rotational. interfaces package contains connector classes and partial models (i.e., base classes) 
for ID rotational mechanical components. The use of the connector classes Flange a and Flange b for 
rotational connections is mentioned in Section 15.1, page 794. The icons corresponding to models in the 
interfaces subpackage are depicted in Figure 16-23. 
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Figure 16-23. Icons for connector classes and partial classes in the mechanical rotational sublibrary. 

Source code for these classes is available in Appendix D. 

16.11.2.3 Modelica.Mechanics.Rotational.Sensors 
The Sensors sublibrary for sensors of mechanical rotational quantities such as angle, angular speed, 
angular acceleration, torque, and so on, can be used to measure certain variables in ID rotational 
mechanical components. 
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Figure 16-24. Icons for sensor components in the mechanical rotational sensor sublibrary. 

Source code for these classes is available in Appendix D. 

16.11.2.4 Modelica.Mechanics. Rotational. Examples 
This package contains example models to demonstrate the usage of the one-dimensional mechanical 
rotational library. The example models present are shown in Table 16-34. 

Table 16-34. Rotational example models in Modelica. Mechanics. Rotational. Examples. 

Name Description 

First First example: simple drive train 

FirstGrounded First example: simple drive train with grounded elements 

Friction Drive train with clutch and brake 

CoupledClutches Drive train with 3 dynamically coupled clutches 

LossyGearDemol Example to show that gear efficiency may lead to stuck motion 

LossyGearDemo2 Example to show combination of LossyGear and BearingFriction 

LossyGearDemo3 Example that failed in the previous version of the LossyGear version 

ElasticBearing Example to show possible usage of support flange 

Backlash Example to demonstrate backlash 

RollingWheel Demonstrate coupling Rotational - Translational 

HeatLosses Demonstrate the modeling of heat losses 

SimpleGearShift Simple Gearshift 

GenerationOfFMUs Example to demonstrate variants to generate FMUs (Functional Mockup 
Units) 

Utilities Utility components used by the example models 

Source code for some these classes is available in Appendix D. 

16.11.3 Modelica.Mechanics.Translational Library 

This package contains components to model 1-dimensional translational mechanical systems. In Section 
14.3, page 749, we describe the basic equations governing such translational motion. A more detailed 
presentation concerning many issues of one-dimensional translational mechanical models was earlier given 
in Sections 5.3 and 5.4 , pages 190 and 194. 

The filled and nonfilled green squares at the left and right side of a component represent translational 
mechanical flanges. Drawing a line between such squares means that the corresponding flanges are 
rigidly attached to each other. The components of this library can usually be connected together in an 
arbitrary way. For example, it is possible to directly connect two springs or two sliding masses with 
inertia. 
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The only connection restriction is that the Coulomb friction elements (e.g., 
MassWithStopAndFriction) should be only connected together provided a compliant element, such as 
a spring, is in between. The reason is that otherwise the frictional force is not uniquely defined if the 
elements are stuck at the same time instant (i.e., there does not exist a unique solution) and some 
simulation systems may not be able to handle this situation, since this leads to a singularity during 
simulation. It can only be resolved in a "clean way" by combining the two connected friction elements into 
one component and resolving the ambiguity of the frictional force in the stuck mode. 

Another restriction arises if the hard stops in model MassWithStopAndFriction are used, that is, the 
movement of the mass is limited by a stop at smax or smin. This requires the states Stop. s and Stop. v. 
If these states are eliminated during the index reduction stage (Section 18.2.4, page 1009) of the total 
equation system solution process the model will not work. To avoid this any inertias should be connected 
via springs to the Stop element—other sliding masses, dampers or hydraulic chambers must be avoided. 

In the icon of every component an arrow is displayed in grey color. This arrow characterizes the 
coordinate system in which the vectors of the component are resolved. It is directed into the positive 
translational direction (in the mathematical sense). In the flanges of a component, a coordinate system is 
rigidly attached to the flange. It is called flange frame and is directed in parallel to the component 
coordinate system. As a result, e.g., the positive flange-force of a "left" flange (f lange a) is directed into 
the flange, whereas the positive flange-force of a "right" flange (f lange_b) is directed out of the flange. 

See Section 5.4, page 194, for further discussion of coordinate systems and flanges of one-dimensional 
translational model components. 

As already stated in Section 5.2, page 188, a one-dimensional mechanical translational flange is 
described by a Modelica connector containing the following variables: 

Modelica.Slunits.Position s "absolute position of flange"; 
flow Modelica.Slunits.Force f "flange-force at the flange"; 

This library is designed in a general way in order that components can be connected together in every 
meaningful combination, for example, including direct connections of two springs or two shafts with inertia. 

As a consequence, most models lead to a system of differential-algebraic equations (DAEs) of index 3 
(i.e., constraint equations have to be differentiated twice in order to arrive at a state space representation, 
see also Section 18.2.3, page 1005) and the Modelica translator or the simulator has to cope with this 
system representation. 

According to our present knowledge, this requires that the Modelica translator is able to symbolically 
differentiate equations—otherwise it is, for example, not possible to provide consistent initial conditions. 
However, even if consistent initial conditions are present most numerical DAE integrators can handle at 
most index 2 DAEs. 

In version 3.2 of the Modelica Standard Library, all dissipative components of the Translational 
library got an optional heatPort connector to which the dissipated energy is transported in form of heat. 
This connector is enabled via parameter useHeatPort. If the heatPort connector is enabled, it must be 
connected, and if it is not enabled, it must not be connected. Independently, whether the heatPort is 
enabled or not, the dissipated power is available from the new variable loss Power, which is positive if 
heat is flowing out of the heatPort. For an example, see Examples . HeatLosses. 

The Mechanics. Translational library is structured into the sublibraries listed in Table 16-35. 

Table 16-35. Sublibraries in Modelica. Mechanics. Translational. 

Name Description 

Examples Demonstration examples of the components of this package 

Components Components for ID translational mechanical drive trains 

Sensors Sensors for 1-dim. translational mechanical quantities 

Sources Sources to drive ID translational mechanical components 



Chapter 16 Modelica Library Overview 953 

Interfaces Interfaces for 1-dim. translational mechanical components 

16.11.3.1 Modelica.Mechanics.Translational.Components 
The Translational .Components sublibrary (Table 16-36 and Figure 16-25) contains basic 
components for one-dimensional mechanical translational drive trains. 

Table 16-36. Basic ID translational models in Modelica .Mechanics. Translational. Components. 

Name Description 

Fixed Fixed flange 

Mass Sliding mass with inertia 

Rod Rod without inertia 

Spring Linear ID translational spring 

Damper Linear ID translational damper 

SpringDamper Linear ID translational spring and damper in parallel 

ElastoGap ID translational spring damper combination with gap 

SupportFriction Coulomb friction in support 

Brake Brake based on Coulomb friction 

IdealGearR2T Gearbox transforming rotational into translational motion 

IdealRollingWheel Simple 1-dim. model of an ideal rolling wheel without inertia 

InitializeFlange Initializes a flange with pre-defined position, speed and acceleration 
(usually, this is reference data from a control bus) 

MassWithStopAndFriction Sliding mass with hard stop and Stribeck friction 

RelativeStates Definition of relative state variables 

^ h o - * — - o • w ^ ^ j j y o 

Fixed Mass Rod Spring Damper SprngDamper EbstoGap Supportfriction 

rfb m r i s 
> s_start 

v_start 
> a_start 

Brake IdealGearR2T IdealRoKngWheel InitafoeFlange MassWfthStopA... RetatweStates 

Figure 16-25. Icons for components in the mechanical translational sublibrary. 

Some source code for Mechanics .Translational classes is available in Appendix D. 

16.11.3.2 Modelica.Mechanics.Translational.Sources 
Sources for one-dimensional translational mechanical quantities such as position, speed, acceleration, etc., 
belong to this sublibrary, for which the icons are depicted in Figure 16-26 below. 
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Figure 16-26. Icons for source models in the mechanical translational sources sublibrary. 16.11.3.3 Modelica.Mechanics.Translational.lnterfaces 
Interfaces for one-dimensional translational mechanical components, that is, the connector classes 
Flange_a and Flange_b, as well as base classes such as PartialRigid and PartialCompliant 
belong to this library (Table 16-37). The icons are depicted in Figure 16-27 below. The class 
PartialCompliant is presented in some detail in Section 5.4.2, page 196, whereas PartialRigid is 
used in the hanging mass oscillator model in Section 5.4.4, page 199. 

Table 16-37. Connector and base classes in Modelica. Mechanics. Translational. Interfaces. 

Name Description 

Flange_a (left) ID translational flange (flange axis directed 
INTO cut plane, e. g. from left to right) 

Flange_b (right) ID translational flange (flange axis directed 
OUT OF cut plane) 

Support Support/housing ID translational flange 

InternalSupport Adapter model to utilize conditional support 
connector 

PartialTwoFlanges Component with two translational ID flanges 

PartialOneFlangeAndSupport 
Partial model for a component with one translational 
1-dim. shaft flange and a support used for graphical 
modeling, i.e., the model is build up by drag-and-
drop from elementary components 

PartialTwoFlangesAndSupport 
Partial model for a component with two translational 
1-dim. shaft flanges and a support used for graphical 
modeling, i.e., the model is build up by drag-and-
drop from elementary components 

PartialRigid Rigid connection of two translational ID flanges 

PartialCompliant Compliant connection of two translational ID 
flanges 

PartialCompliantWithRelativeStates 
Base model for the compliant connection of two 
translational 1-dim. shaft flanges where the relative 
position and relative velocities are used as states 

PartialElementaryOneFlangeAndSuppor 
t 

Obsolete partial model. Use 
PartialElementaryOneFlangeAndSupport2. 

PartialElementaryOneFlangeAndSuppor 
t2 

Partial model for a component with one translational 
1-dim. shaft flange and a support used for textual 
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modeling, i.e., for elementary models 

PartialElementaryTwoFlangesAndSuppo 
rt 

Obsolete partial model. Use 
PartialElementaryTwoFlangesAndSupport2. 

PartialElementaryTwoFlangesAndSuppo 
rt.2 

Partial model for a component with one translational 
1-dim. shaft flange and a support used for textual 
modeling, i.e., for elementary models 

PartialElementaryRotationalToTransl 
ational 

Partial model to transform rotational into 
translational motion 

PartialForce Partial model of a force acting at the flange 
(accelerates the flange) 

PartialAbsoluteSensor Device to measure a single absolute flange variable 

PartialRelativeSensor Device to measure a single relative variable between 
two flanges 

PartialFriction Base model of Coulomb friction elements 

Fbnge_a Range_b Support InternalSupport PartiaHwoFlanges PartialOneFbng... PartialTwoFtang... 

Partial. | i Partial...| i Partial | 

PartiaRigid PartialCompSant PartialComptent... PartaElementar... PartaElementar... PartaElementar... PartiaElementat.. 

Partial 

PartaElementar... PartaEorce PartalAbsoluteS... PartalRebtweS... PartaEnctJon 

Figure 16-27. Icons for connector classes and partial classes for the mechanical translational sublibrary. 

16.11.3.4 Modelica.Mechanics.Translational.Sensors 
Sensors for one-dimensional translational mechanical quantities such as force, position, speed, and 
acceleration belong to this sublibrary, for which the icons are depicted in Figure 16-28 below. 

" U . t T " i 11 11 l\T "InftnliT 

PositionSensor SpeedSensor AccSensor RePosibonSensor RelSpeedSensor RelAccSensor 

f i»ower P 

ForceSensor PowerSensor MultiSensor 

Figure 16-28. Icons for sensor components in the mechanical translational sensor sublibraiy. 
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16.11.3.5 Modelica.Mechanics.Translational.Examples 
This package contains example models to demonstrate the usage of the Mechanics.Translational 
package, including instructions on how to simulate them. A variant of the oscillator example is explained 
in detail in Section 5.4.4, page 199. The example models present in this sublibrary are listed in Table 16-
38. 

Table 16-38. Translational example models in Modelica .Mechanics. Translational. Examples. 

Name Description 

SignConvention Examples for the used sign conventions. 

InitialConditions Setting of initial conditions 

WhyArrows Use of arrows in Mechanics.Translational 

Accelerate Use of model accelerate. 

Damper Use of damper models. 

Oscillator Oscillator demonstrates the use of initial conditions. 

Sensors Sensors for translational systems. 

Friction Use of model Stop 

PreLoad Preload of a spool using ElastoGap models. 

ElastoGap Demonstrate usage of ElastoGap 

Brake Demonstrate braking of a translational moving mass 

HeatLosses Demonstrate the modeling of heat losses 

Utilities Utility classes used by the Example models 

The example model in Figure 16-29 below demonstrates how to model the dissipated power of a 
Translational model by enabling the heatPort of all components and connecting these heatPorts via 
a convection element to the environment. The total heat flow generated by the elements and transported to 
the environment is present in variable convection, fluid. 

slne2 

Figure 16-29. The connection diagram of the Translational. Examples. HeatLosses model. 
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16.12 Modelica.FLuid Library 

The library Modelica. Fluid provides components for one-dimensional thermo-fluid flow in networks of 
vessels, pipes, fluid machines, valves and fittings. 

A unique feature is that the component equations and the media models as well as pressure loss and 
heat transfer correlations are decoupled from each other. 

All components are implemented such that they can be used for media from the Modelica.Media 
library. This means especially that an incompressible or compressible medium, a single or a multiple 
substance medium with one or more phases might be used. 

The Fluid library contains the sublibraries listed in Table 16-39. 

Table 16-39. Sublibraries in Modelica. Fluid. 

Name Description 

UsersGuide User's Guide 

Examples Demonstration of the usage of the library 

System System properties and default values (ambient, flow direction, initialization) 

Vessels Devices for storing fluid 

Pipes Devices for conveying fluid 

Machines Devices for converting between energy held in a fluid and mechanical energy 

Valves Components for the regulation and control of fluid flow 

Fittings Adaptors for connections of fluid components and the regulation of fluid flow 

Sources Define fixed or prescribed boundary conditions 

Sensors Ideal sensor components to extract signals from a fluid connector 

Interfaces Interfaces for steady state and unsteady, mixed-phase, multi-substance, 
incompressible and compressible flow 

Types Common types for fluid models 

Dissipation Functions for convective heat transfer and pressure loss characteristics 

Utilities Utility models to construct fluid components (should not be used directly) 

Icons 

In Figure 16-30 below, several features of the Fluid library are demonstrated with a simple heating 
system example with a closed flow cycle. By just changing one configuration parameter in the system 
object the equations can be changed between steady-state and dynamic simulation with fixed or steady-
state initial conditions. 
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Figure 16-30. The connection diagram of the Modelica. Fluid. Examples. HeatingSystem model. 

16.13 Modelica.Media Library 

The Modelica.Media library contains interface definitions for media and the following property models 
for single and multiple substance fluids with one and multiple phases: 

• Ideal gases. 1241 high precision gas models based on the NASA Glenn coefficients, plus ideal gas 
mixture models based on the same data. 

• Water models: ConstantPropertyLiquidWater, WaterIF97—high precision water model according 
to the IAPWS/IF97 standard. 

• Air models. SimpleAir, DryAirNasa, ReferenceAir, MoistAir, ReferenceMoistAir. 
• Incompressible media. TableBased incompressible fluid models where properties are defined by 

tables rho(T), HeatCapacity cp(T), etc. 
• Compressible liquids: Simple liquid models with linear compressibility, 

Refrigerant Tetrafluoroethane (R134a). 

The following parts are useful to study when starting to use this library: 

• Modelica.Media.UsersGuide. 
• Modelica.Media.UsersGuide.MediumUsage describes how to use a medium model in a 

component model. 
• Modelica.Media.UsersGuide.MediumDefinition describes how a new fluid medium model 

has to be implemented. 
• Modelica .Media .UsersGuide. ReleaseNotes summarizes the changes of the library releases. 
• Model ica. Media. Examples contains examples that demonstrate the usage of this library. 

The Media library contains the sublibraries listed in Talbe 16-40. 

Table 16-40. Sublibraries in Modelica .Media. 

Name Description 

UsersGuide User's Guide of Media Library 



Chapter 16 Modelica Library Overview 959 

Examples Demonstrate usage of property models (currently: simple tests) 

Interfaces Interfaces for media models 

Common Data structures and fundamental functions for fluid properties 

Air Medium models for air 

CompressibleLiquids Compressible liquid models 

IdealGases Data and models of ideal gases (single, fixed and dynamic mixtures) from 
NASA source 

Incompressible Medium model for T-dependent properties, defined by tables or 
polynomials 

R134a R134a: Medium model for R134a 

Water Medium models for water 

16.14 Modelica.Thermal Library 

The Modelica.Thermal library contains thermal system components to model heat transfer and simple 
thermo-fluid pipe flow. It contains two sublibraries: FluidHeatFlow and HeatTransfer. This library is 
not as general and comprehensive as the Modelica.Fluid and Modelica.Media libraries and was 
developed almost ten years before those libraries. 

16.14.1 Modelica.Thermal.FluidHeatFlow 

This package contains very simple-to-use components to model coolant flows as needed to simulate 
cooling, for example, of electric machines. It is structured into the following sublibraries: 

• Components: components like different types of pipe models 
• Examples: some test examples 
• interfaces: definition of connectors and partial models (containing the core thermodynamic 

equations) 
• Media: definition of media properties 
• Sensors: various sensors for pressure, temperature, volume and enthalpy flow 
• Sources: various flow sources 

Variables used in connectors. 

• Pressure p 
• flow MassFlowRate m_flow 
• SpecificEnthalpy h 

• flow EnthalpyFlowRate H_flow 

EnthalpyFlowRate means the Enthalpy = cpconstant * m * T that is carried by the medium's flow. 

Limitations and assumptions: 

• Splitting and mixing of coolant flows (media with the same cp) is possible. 
• Reversing the direction of flow is possible. 
• The medium is considered to be incompressible. 
• No mixtures of media is taken into consideration. 
• The medium may not change its phase. 
• Medium properties are kept constant. 
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• Pressure changes are only due to pressure drop and geodetic height difference rho*g*h (if h > 0). 
• A user-defined part (0.. 1) of the friction losses (V_flow*dp) are fed to the medium. 

Note: Connected flowPorts have the same temperature (mixing temperature)! Since mixing may occur, 
the outlet temperature may be different from the connector's temperature. Outlet temperature is defined by 
variable T of the corresponding component. 

Figure 16-31. The Modelica. Thermal. FLuidHeatFlow. Examples. SimpleCooling example model. 

16.14.2 Modelica.Thermal.HeatTransfer 

The Thermal.HeatTransfer library (Table 16-41) contains components for one-dimensional heat 
transfer with lumped elements. This especially supports modeling of heat transfer in machines provided 
the parameters of the lumped elements, such as the heat capacity of a part, can be determined by 
measurements—due to the complex geometries and many materials used in machines, calculating the 
lumped element parameters from some basic analytic formulas is usually not possible. 

Table 16-41. Sublibraries in Modelica. Thermal. HeatTransfer. 

Name Description 

Examples Example models to demonstrate the usage of package Modelica.Thermal.HeatTransfer 

Components Lumped thermal components 

Sensors Thermal sensors 

Sources Thermal sources 

Celsius Components with Celsius input and/or output 

Fahrenheit Components with Fahrenheit input and/or output 

Rankine Components with Rankine input and/or output 

Interfaces Connectors and partial models 

A rather realistic example is provided in Examples .Motor where the heating of an electrical motor is 
modelled, see Figure 16-32 below. 
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Figure 16-32. The Model ica. Thermal. HeatTransfer. Examples. Motor example model. 

16.15 ThermoSysPro Library 

ThermoSysPro is a library for the modeling and simulation of power plants and energy systems. It 
provides components in various disciplines related to the modeling of power plants and energy systems. 
The library contains the sublibraries listed in Table 16-42. 

Table 16-42. Sublibraries in ThermoSysPro library. 

Name Description 
UsersGuide ThermoSysPro Licence and Users Guide 
Combustion Combustion library 
Correlations Fluid correlation library 
ElectroMechanics Electro-mechanics components library 
FlueGases Flue gases components library 
Functions General purpose functions 
HeatNetworksCooling Heat network cooling library 
InstrumentationAndControl Instrumentation and control library 
MultiFluids Multi-fluids components library 
Properties Fluids properties library 
Solar Solar components library 
Thermal Thermal components library 
Units Additional SI and non-SI units 
WaterSolution Water solution components library 
WaterSteam Water/steam components library 
Examples 
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16.15.1 ThermoSysPro.Examples 

The main ThermoSysPro example model is the combined cycle power plant depicted in Figure 16-33. 

16.16 ThermoPower Library 

The ThermoPower library is an open-source Modelica library for the dynamic modeling of thermal power 
plants and energy conversion systems. It provides basic components for system-level modeling, in 
particular for the study of control systems in traditional and innovative power plants and energy 
conversion systems. 

It has been applied to the dynamic modelling of steam generators, combined-cycle power plants, third-
and fourth-generation nuclear power plants, direct-steam generation solar plants, organic Rankine cycle 
plants, and cryogenic circuits for nuclear fusion applications. 

The ThermoPower library uses the medium models provided by the Modelica.Media library (Section 
16.13, page 958). The library contains the sublibraries listed in Table 16-43. 

Table 16-43. Sublibraries in ThermoPower library. 

Name Description 
System System wide properties 
Icons Icons for ThermoPower library 
Functions Miscellaneous functions 
Electrical Simplified models of electric power components 
Choices Choice enumerations for ThermoPower models 
Examples Application examples 
Gas Models of components with ideal gases as working fluid 
GasExtra 
Media Medium models for the ThermoPower library 

Figure 16-33. ThermoSysPro example model CombinedCyclePowerPlant. CombinedCycle_TripTAC 
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Old Old models 
PowerPlants Models of thermoelectrical power plants components 
Test Test cases for the ThermoPower models 
Thermal Thermal models of heat transfer 
Water Models of components with water/steam as working fluid 
HydraulicConductance 
HydraulicResistance 
PerUnit 
Density generic start value 
LiquidDensity start value for liquids 
GasDensity start value for gases/vapours 
AbsoluteTemperature generic temperature 
AbsolutePressure generic pressure 

16.16.1 ThermoPower Example Models 

The library contains the example models listed in Table 16-44. 

Table 16-44. Example models in the ThermoPower library. 

Name Description 
CISE CISE plant models 
HRB Heat recovery boiler models 
RankineCycle Steam power plant 
BraytonCycle Gas power plant 

The gas power plant example model is depicted in Figure 16-34 below. 

Figure 16-34. Gas turbine with generator and network, the example model 
ThermoPower.Examples.BraytonCycle.Plant. 
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16.17 PowerSystems Library 

The PowerSystems library is intended to model electrical power systems at different levels of detail both 
in transient and steady-state mode. The version 0.2 described here is an early version. This library might 
eventually become part of MSL. It contains the sublibraries listed in Table 16-45. 

Table 16-45. Sublibraries in the PowerSystems library. 

Name Description 

AClph_DC AC 1-phase and DC components from Spot AClph_DC 

AC3ph AC three phase components from Spot ACdqo 

Basic Basic utility classes 

Blocks Blocks 

Common Common components 

Control Control blocks 

Examples 
Generic Simple components for basic investigations 

Interfaces 
Mechanics Mechanical components 

PhaseSystems Phase systems used in power connectors 

Semiconductors Semiconductors 

System System reference 

Test 

16.17.1 PowerSystems.Examples.PowerWorld 

This PowerWorld example model models a control area for power distribution in island mode, that is, 
without connection to a larger net. It contains the following consumers and producers: 

• A city with a load of about 1000 MW, that is, 1 million inhabitants. 
• A thermal power plant with 800 MW nominal power, 60 MW for secondary frequency control and 

40 MW for primary frequency control. 
• A wind park with a max power of 300 MW. 
• A hydro plant providing: 50 MW base load using a river turbine, ±25 MW pumping power to 

support the day/night load cycle, up to 200 MW peak power on demand. 

The model is depicted in Figure 16-35 below. 
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dispatcher 

Figure 16-35. The PowerSystems. PowerWorld model of electrical power in an island with a city, a 
thermal power plant, a wind park and a hydro plant. 

16.18 PNLib—Extended Hybrid Petri Net (xHPN) Library 

PNLib is a Petri Net library that offers powerful modeling with a significantly extended Petri Net 
formalism called Extended Hybrid Petri Net (xHPN) compared to the normal Petri Nets, for which a basic 
introduction is given in Section 13.3.6, page 666. 

The extensions include for example the combination of three different kinds of transitions—discrete, 
stochastic, and continuous transitions, and both discrete and continuous places. This library won the first 
prize in 2012 Modelica Library contest and effectively replaces previous Modelica Petri Net libraries. 

The library is very powerful, universal, and generic, which makes it suitable for modeling and simulation 
of nearly all kinds of processes, such as business processes, production processes, logistic processes, work 
flows, traffic flows, data flows, multi-processor systems, communication protocols, and so on. 

The Extended Hybrid Petri Net (xHPN) formalism consists of: 

• three different kinds of processes, called transitions, discrete, stochastic, and continuous transition, 
• two different states, called places: discrete and continuous places, and 
• four different arcs: normal, inhibition, test, and read arc. 

The formalism is supported in the PNLib library by models for places, transitions, and arcs: 

• a discrete (PD) and a continuous place (PC), 
• a discrete (TD), a stochastic (TS), and a continuous transitions (TC), and 
• a test (TA), an inhibitor (IA), and a read arc (RA); the normal arc is represented by standard 

Modelica connections. 

The main package PNlib is divided into the following subpackages: 

• Interfaces: contains the connectors of the Petri net component models. 
• Blocks: contains blocks with specific procedures that are used in the Petri net component models. 
• Functions: contains functions with specific algorithmic procedures which are used in the Petri 

net component models. 
• Constants: contains constants which are used in the Petri net component models. 
• Models: contains several examples and offers the possibility to structure further Petri net models. 
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Places, transitions, and arcs in the library are represented by the icons depicted in Figure 16-36. The 
discrete place is represented by a circle and the continuous place by a double circle. The transitions are 
boxes which are black for discrete transitions, black with a white triangle for stochastic transitions, and 
white for continuous transitions. The test arc is represented by a dashed arc, the inhibitor arc by an arc with 
a white circle at its end, and the read arc by an arc with a black square at its end. 
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Figure 16-36. Places, transitions and arcs with corresponding icons in the PNLib library. 

Discrete places contain an integer quantity, called tokens or marks while continuous places contain a 
non-negative real quantity. These marks initiate transitions to fire according to specific conditions. These 
firings lead to changes of the marks in the connected places. 

Discrete transitions are provided with delays and firing conditions and fire first when the associated 
delay is passed and the conditions are fulfilled. These fixed delays can be replaced by exponentially 
distributed random values, then, the corresponding transition is called stochastic transition. Thereby, the 
characteristic parameter X of the exponential distribution can depend functionally on the markings of 
several places and is recalculated at each point in time when the respective transition becomes active or 
when one or more markings of involved places change. Based on the characteristic parameter, the next 
putative firing time x=time+Exp(k) of the transition can be evaluated and it fires when this point in time is 
reached. 

Both discrete and stochastic transitions fire by removing the arc weight from all input places and 
adding the arc weight to all output places. On the contrary, the firing of continuous transitions takes places 
as a continuous flow determined by the firing speed which can depend functionally on markings and/or 

Places and transitions are connected by normal arcs which are weighted by integer and non-negative 
real numbers, respectively. However, also functions can be written at the arcs depending on the current 
markings of the places and/or time. Places can also be connected to transitions by test, inhibition, and read 
arcs. Then their markings do not change during the firing process. In the case of test and inhibitor arcs, the 
markings are only read to influence the time of firing while read arcs only indicate the usage of the 
marking in the transition, e.g. for firing conditions or speed functions. 

If a place is connected to a transition by a test arc, the marking of the place must be greater than the arc 
weight to enable firing. If a place is connected to a transition by an inhibitor arc, the marking of the place 
must be less than the arc weight to enable firing. In both cases the markings of the places are not changed 
by fining. To summarize, an Extended Hybrid Petri Net (xHPN) has the following properties: 

• It has discrete and continuous places. 
• It has discrete, stochastic, and continuous transitions. 
• Places can be connected to transitions by normal, test, inhibitor, and read arcs while transitions can 

only be connected to places by normal arcs. 
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• Arc weights can be functions depending on markings and/or time. 
• Discrete place must be input as well as output of continuous transitions with arcs of same weights, 
• Places can be provided with minimum and maximum capacities. 
• Discrete transitions can be provided with delays. 
• Stochastic transitions can be provided with hazard functions depending on markings. 
• Continuous transitions can be provided with maximum speed function depending on markings 

and/or time. 
• All transitions can be provided with additional firing conditions depending on all possible model 

variables. 

16.18.1.1 Connectors 
The PNlib contains four different kinds of connectors: PlaceOut, Placeln, TransitionOut, and 
Transitionln. The connectors PlaceOut and Placeln are part of place models and connect them to 
output and input transitions, respectively. Similarly, TransitionOut and Transitionln are connectors 
of the transition model and connect them to output and input places, respectively, Figure 16-37 shows 
which connector belongs to which Petri net component model. 

Figure 16-37. Connectors of the PNLib library. 

The connectors of the Petri net component models are vectors to enable the connection to an arbitrary 
number of input and output components. Therefore, the dimension parameters nin and nOut are declared 
in the place and transition models with the connectorSizing annotation. 

16.18.1.2 Example of Business Process with Requests and Orders 
The PNLib library is very suitable for describing business processes that involve a sequence of activities or 
tasks which have to be carried out in order to achieve a particular business goal, for example, a service or 
product for a particular customer. One example is the model PNLib.Models.PNproBP which is partly 
depicted in Figure 16-38. A related example of a very simple queuing job shop system using simple 
normal Petri Nets is described in Section 13.3.6.6, page 672. 



968 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

s 

16.19 BioChem—Biochemical Pathway Library 

The design idea behind the BioChem library is to create a general purpose Modelica library for modeling, 
simulation and visualization of biological and biochemical systems. The classes implemented in the 
BioChem library describe substances and reactions that can take place in-between these substances in a 
diverse number of biochemical pathways. 

Since the design objective for BioChem was to provide properties and attributes that are common in 
biological and biochemical systems the library contains several packages holding classes and partial 
models. The classes can be used as they are in sublibraries to BioChem, while the partial models must be 
further extended to fully functional models. 

The library contains the sublibraries listed in Table 16-46. 

Table 16-46. Sublibraries in the BioChem library. 

Name Description 

Math 
Icons Icons 

Compartments Different types of compartments used in the package 

Constants Mathematical constants and constants of nature 

Examples Some examples of BioChem models 

Interfaces Connection points and icons used in the BioChem package 

Reactions Reaction edges 

Substances Reaction nodes 

Units Units used in BioChem 

Figure 16-38. Part of a PNLib business process example model PNLib. Models. PNproBP. 



Chapter 16 Modelica Library Overview 969 

16.19.1 Biochem.lnterfaces 

This subpackage contains partial models that can be used as building blocks for components such as 
different types of substances, compartments, and reactions. The models are designed to make it easy to 
create new customized components as well as to make these components possible to translate to and from 
SBML. The package contains the following subpackages: 

• Compartments - Properties used when creating different compartments. 
• Nodes - Connection points used as interfaces between different components. 
• Reactions - Building blocks for reactions. 
• Substances - Basic substance types. 

16.19.2 Biochem.Examples 

This sublibrary contains several examples, including the model depicted in Figure 16-39, which is a model 
of the first steps of a metabolic insulin signaling pathway. 

Figure 16-39. The Biochem. Examples. InsulinSignaling_Sedaghat metabolic signaling pathway 
model. 

16.20 OpenHydraulics Library 

The library OpenHydraulics is a free Modelica package providing components describing one-dimensional 
fluid flow in hydraulic circuits. The library is under development. The version available in October 2013 has 
very simple oil models and need to be expanded to reflect properties of commonly uses oils. 

The library contains the sublibraries listed in Table 16-47. 

Table 16-47. Sublibraries in the OpenHydraulics library. 

Name Description 
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UsersGuide User's Guide 
Examples Comprehensive examples of how the Hydraulics library can be used 
Basic Models of basic physical phenomena relevant to the hydraulics domain 
Components Models for typical hydraulic components 
Circuits A collection of simple and complex hydraulic circuits 
Fluids Models of hydraulic fluids 
DevelopmentTests Models used for unit testing during development 
Interfaces Interface definitions for the Hydraulics library 

Types Type definitions that are not part of Slunits 
Utilities Utility models to construct fluid components (should not be used directly) 

16.20.1 OpenHydraulics.Basic 

The OpenHydraulics/Basic package (Table 16-48) includes models of basic physical phenomena relevant 
to the hydraulics domain. These basic models are used in the components package to model actual 
hydraulic components. 

Table 16-48. Basic hydraulic model elements in the OpenHydraulics library. 

Name Description 
GenericPressureLoss 
LaminarRestriction 
SharpEdgedOrifice Sudden expansion in flow diameter from port_a to port_b 
SuddenExpansion Sudden expansion in flow diameter from port_a to port_b 
VariableFlow Controllable flow (independent of pressure) 
VariableLaminarRestriction 
VariableRestriction Flow loss due to controllable restriction 

VariableRestrictionSeriesValve Flow loss due to controllable restriction with series check 
valves 

WallFriction 
FluidPower2MechTrans 

FluidPower2MechRotConst Ideal constant displacement pump with mechanical 
connector for the shaft 

FluidPower2MechRotVar Ideal variable displacement pump with mechanical 
connector for the shaft 

AirChamber 
ConstPressureSource Boundary pressure and temperature source 
ConstVolumeSource Boundary pressure source 
VarPressureSource Boundary pressure and temperature source 
VarVolumeSource Boundary volume flow and temperature source 
OpenTank Boundary pressure, temperature and mass fraction source 
VolumeClosed A constant compressible volume 
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VolumeOpen An open constant-pressure volume 
BaseClasses Base classes for flow models 

16.20.2 OpenHydraulics.Components 

The OpenHydraulics.Components subpackage includes models for typical hydraulic components in 
the following subpackages: 

• Cylinders - Properties used when creating different compartments. 
• Lines - Connection points used as interfaces between different components. 
• Motor Pumps - Building blocks for reactions. 
• Sensors - Basic substance types. 
• Valves - Basic substance types. 
• Volumes - Basic substance types. 

16.20.3 OpenHydraulics.Examples 

The main example is currently a digging cycle simulation model as depicted in Figure 16-40, page 971. 

Figure 16-40. The OpenHydraulics. Examples. DigCycleSimulation digging cycle simulation 
model. 

16.21 BondLib and the SystemDynamics Library World3 Model 

The BondLib library is designed as a graphical equation-based library for modeling physical systems using 
the bond graph metaphor, but still using Modelica. The library contains the sublibraries listed in Table 16-49. 

Table 16-49. Sublibraries in the BondLib library. 

Name Description 
Introduction An introduction to bond graph modeling 

Connectors Bond graph connectors 

Bonds Causal and a-causal bonds 
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Basic Basic bond graph elements 

Advanced Advanced bond graph elements 

Wrapping Wrapping bond graphs 

Electrical The electrical library 

Hydraulic The hydraulic library 

Mechanical The mechanical libraries 

Thermal The thermal library 

Encapsulating Encapsulating bond graphs 

SystemDynamics The System Dynamics library 

Examples Examples 

Literature Literature 

16.21.1 SystemDynamics Library 

The SystemDynamics library has been designed as a graphical equation-based library for modeling mass 
and information flows in a continuous-time system using Prof. Jay Forrester's System Dynamics metaphor. 
The library occurs both as an independent library and as a sub-library of Bondlib. Two separate and 
independent versions of this library had originally been created by Dr. Stefan Fabricius and by Prof. 
F ranc i s Cellier and his students. These have been merged into a single version that has furthermore been 
enhanced as well. 

System Dynamics offers a fairly low-level graphical interface, not much different from a block 
diagram. The fact that continuous systems contain differential equations is hidden from the user by talking 
about levels, that is, quantities that can accumulate (state variables), and rates, that is, quantities that 
influence the accumulation and/or depletion of levels (state derivatives). 

The System Dynamics modeling metaphor is widely used especially by researchers in the life sciences 
and social sciences. The library contains the sublibraries listed in Table 16-50. 

Table 16-50. Sublibraries in the SystemDynamics library. 

Name Description 
UsersGuide User's Guide 

Interfaces Connectors and partial models of the System Dynamics methodology 

Auxiliary Auxiliary elements of the System Dynamics methodology 

Functions Functions of the System Dynamics methodology 

Groupers Groupers of the System Dynamics methodology 

Levels Levels of the System Dynamics methodology 

Rates Rates of the System Dynamics methodology 

Sensors System Dynamics sensors 

Sources Sources and sinks of the System Dynamics methodology 

IndustrialDynamics Factory models 

PopulationDynamics Ecological models 

WorldDynamics World models 

IntroductoryExamples Introductory example codes of the System Dynamics methodology 
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16.21.1.1 SystemDynamics.WorldDynamics.World3 
This model is represented as a Modelica package that implements Dennis (and Dana) Meadows' 
WORLD3 model as described in their 1972 book Limits to Growth: A Report for the Club of Rome's 
Project on the Predicament of Mankind. The book has seen two later editions, one published in 1992 (20-
year edition), and the most recent one published in 2004 (30-year edition). Each of these new editions was 
accompanied by an updated model. The model contained in this Modelica World3 version is the newest 
model discussed in the 2004 edition Limits to Growth: The 30-Year Update. 

A short description and discussion of the Modelica World3 model is in Section 15.4.2.7, page 846. 
Figure 16-41 below shows the kind of block diagrams that are constructed using the SystemDynamics 
library, here the arable land submodel in World3. 

D#s_Food_Ra»o_OFR Yleld_Tech_LY7D 

Figure 16-41. The SystemDynamics .World3 . Arable_Land_Dynamics submodel. 

16.22 Summary 

This chapter has described the Modelica library structure, the version available at the Modelica 
Association web page at the time of this writing, including the Modelica standard library (MSL) version 
3.2.1. The set of available libraries is growing quickly. However, the existing Modelica standard 
sublibraries are rather well-tested and have so far mostly gone through small evolutionary enhancements. 
For this reason the presentation of the now existing Modelica standard libraries will valid to a large extent, 
even some time into the future. 
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16.23 Literature 

Essentially all text in this chapter has been reproduced with minor adaptations from the documentation of 
the corresponding free Modelica libraries. These libraries, including both documentation and source code, 
can be found on the Modelica web site, www.modelica.org. Documentation for several commercial 
libraries is also available on the Modelica web site. The respective (main) authors of the libraries described 
in this chapter are mentioned in the rest of this section. 

Table 16-1 and Table 16-7 were created by Martin Otter and have been reused from (Modelica 
Association 2013). The material in Table 16-2, Table 16-3, Table 16-4, Table 16-5, Table 16-6 is primarily 
from the Modelica.org web page. 

The constant definitions, with name, value, and description, in the Modelica. Constants package are 
from the following source: (Mohr and Taylor 2000). For more information on units and unit conversion, 
see (Cardarelli 1997). 

The Modelica.Blocks library has been written by Martin Otter and the Modelica.Math library by Martin 
Otter and Marcus Baur. 

The Modelica electrical analog library and its usage is described in (Clauss, Schneider, Leitner, and 
Schwarz 2000). The Modelica electrical digital library was authored by Christoph Claufi, Andr6 Schneider, 
and Ulrich Donath. 

The Modelica_StateGraph2 library is described in detail in (Otter, Malmheden, Elmqvist, Mattsson, 
Johnsson 2009). 

Basic equations and methods behind the MultiBody library can be found in (Otter 1995; Otter, 
Elmqvist, and Cellier 1996), and multi-body systems theory in general in (Shabana, 1998). The current 
Modelica.Mechanics.MultiBody library is also described in (Otter, Elmqvist, and Mattsson 2003). 

The Media and Fluid libraries and their background are described in (Casella, Otter, Proelss, Richter 
and Tummescheit 2006; Elmqvist, Tummescheit, Otter 2003; Franke, Casella, Sielemann, Proelss, Otter, 
Wetter 2009; Franke, Casella, Otter, Sielemann, Elmqvist, Mattsson, and Olsson 2009). These libraries 
are partly based on experience from the earlier ThermoFluid library (Tummescheit, Eborn, and Wagner 
2000; Tummescheit 2002; Tummescheit, and Eborn 2002). 

The ThermoSysPro library with its combined cycle power plant application is described in (El Hefni, 
Bouskela, and Lebreton 2011; El Hefni, Bouskela, and Gentilini 2012). 

The ThermoPower library on power plant simulation is described in (Casella and Leva 2003; Casella 
and Leva 2006). 

The OpenHydraulics library has been developed by Chris Paredis and his students Jonathan Jobe, 
Thomas Johnson, Ben Lee. 

There is not as yet a complete Modelica library available for electric power systems, but there is one 
preliminary version of a library called PowerSystems under development by Rudiger Franke. This is based 
on, generalizes, and replaces the SPOT library (Wiesmann 2003). Modeling of electromagnetic transients 
in power systems is described in (Bachmann and Wiesmann 2000). 

The advanced Petri Net library PNLib is described in (ProB 2013) and (ProB and Bachmann 2012). 
The BioChem library was initially created by Emma Larsdotter Nilsson at LinkOping University 2003-

2005 (Larsdotter-Nilsson and Fritzson 2003). The current version of the library was further developed 
2006 by Erik Ulfhielm at LinkGping University and by MathCore Engineering AB during 2007-2009. The 
model using BioChem depicted in Figure 16-39 is a model of the first steps of a metabolic insulin 
signaling pathway based on the model by (Sedaghat et al. 2002). 

A Modelica flight dynamics library is presented in (Moormann and Looye 2002). 
Bondlib is described in (Cellier and Nebot 2005). The SystemDynamics library is based on theory from 

(Fisher 2007) and (Forrester 1971). 
The World3 system dynamics model in Modelica available in the SystemDynamics library is briefly 

described in (Cellier 2008). It is a Modelica translation made by Cellier from the original model in 
STELLA by Meadows et al described in detail in (Meadows, Behrens II, Meadows, Naill, Randers 1974). 
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The limits of growth and interpretations of simulations of the World3 model are presented in (Meadows, 
Meadows, Randers, Behrens III 1972; Meadows, Randers, and Meadows 2004). 
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The limits of growth and interpretations of simulations of the World3 model are presented in (Meadows, 
Meadows, Randers, Behrens III 1972; Meadows, Randers, and Meadows 2004). 
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Chapter 17 

A Mathematical Representation for Modelica 
Models 

At the beginning of this book, in Section 2.20 on page 63, we briefly explained how a Modelica model is 
translated into a basic mathematical representation in terms of a flat system of differential and algebraic 
equations (DAEs) before being able to simulate the model. This translation process elaborates on the 
internal model representation by performing analysis and type checking, inheritance and expansion of base 
classes, modifications and redeclarations, conversion of connect-equations to basic equations, and so on. 
The result of this analysis and translation process is a flat set of equations, including conditional equations, 
as well as constants, variables, and function definitions. The term flat means that the object-oriented 
structure has been broken down to a flat representation where no trace of the object hierarchy remains 
apart from dot notation within names. 

However, since discrete and hybrid modeling constructs are an important part of Modelica, a 
continuous DAE representation is not enough, since discrete variables and discrete state transitions now 
belong to the basic mathematical state space model for Modelica. This model formalism is called hybrid 
DAEs, that is, hybrid differential and algebraic equations. This is analogous to similar definitions for other 
modeling formalisms, for example, the finite state automata and DEVS formalisms described in Sections 
13.3.5 and 658, respectively, of Chapter 13. 

17.1 Defining Hybrid DAEs—a Hybrid Mathematical Representation 

To make the hybrid DAE representation easier to understand, first recall the basic ODE state space explicit 
form of the equations for continuous systems, previously presented in Section 2.20.1 on page 64 in 
Chapter 2, and in Section 12.8.1 on page 588 in Chapter 12. In the special case of an equation system on 
explicit state space form a DAE system reduces to an ODE system. 

Here x(t) is the set of state variables, that is, for an ODE the variables for which time derivatives occur 
in the model, u(t) represents the input variables, and y(t) represents the output variables and/or algebraic 
variables. The time dependency of these variables is made explicit by showing these variables as functions 
of time. The ODE explicit state space form is as follows: 

i ( 0 = / ( * (0 ,« (0 ) ( 1 7 . 1 } 

y(t) = g(x«),u(t)) 

Here f ( t ) and g(t) are vector-valued functions, and x(t),y(t), u(t) are vectors: 

979 
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* (0 = . y( 0 = , u(t) = 

M'b 

(17-2) 

By rearranging the terms we obtain the more general DAE implicit form, where f i t ) = f(x(t),u(t)) - x(t) 
, and g(t) = g(x(t), u(t)) - y(t). Also, for a DAE, y(t) also includes algebraic variables as well as output 
variables, which means that we need to add a possible dependency on y(t) in f ( t ) . 

f(x(t\x{t\u(t\yit)) = Q 

g(x(t)Mt\yit)) = o 

There is also a rather common semiexplicit form of DAE: 

x(t) = mt\yit)Mt)) 

yiO = g(x(t\u(t)) 

(17-3) 

(17-4) 

Note that for a DAE it is usually not true that the state variables are those for which time derivatives 
occur, since the DAE contains algebraic constraints which reduce the degrees of freedom of the model, the 
number of state variables is often fewer than the number of variables that appear differentiated. Moreover, 
some state variables may be purely algebraic variables, possibly including discrete-time variables. 

17.1.1 Continuous-Time Behavior 

Now we want to formulate the continuous part of the hybrid DAE system of equations including discrete 
variables. This is done by adding a vector q(te) of discrete-time variables and the corresponding 
predecessor variable vector qpre(te) denoted by pre(q) in Modelica. For discrete variables we use te 

instead of t to indicate that such variables may only change value at event time points denoted te, that is, 
the variables q(te) and qpre(te) behave as constants between events. 

We also make the constant vector p of parameters and constants explicit in the equations, and make the 
time t explicit. The vector c(te) of condition expressions, for example, from the conditions of if constructs 
and when constructs, evaluated atthe most recent event at time te is also included since such conditions are 
referenced in conditional equations. We obtain the following continuous DAE system of equations that 
describe the system behavior between events: 

f{x{t), x(t), u(t), y{t ),t, q(te), q pre (te), c(te)) = 0 ( a ) ( 

g(mAt)MtUq(te)><lpreite)>PAte)) = 0 (b) 

17.1.2 Discrete-Time Behavior 

Discrete time behavior is closely related to the notion of an event. Events can occur asynchronously, and 
affect the system one at time, causing a sequence of state transitions. An event occurs when any of 
conditions c(te) (defined below) of conditional equations changes value from false to true. We say that 
an event becomes enabled at the time te, if and only if, for any sufficiently small value of e, c(te-s) is 
false and c (te+s) is true. An enabled event is fired, that is, some behavior associated with the event is 
executed, often causing a discontinuous state transition. Firing of an event may cause other conditions to 
switch from false to true. In fact, events are fired until a stable situation is reached when all the 
condition expressions are false. 
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Discontinuous changes of continuous dynamic variables x(t) can be caused by so-called reinit 
equations in Modelica, which for the sake of simplicity are excluded from the equation representations 
discussed in this chapter. 

However, there are also state changes caused by equations defining the values of the discrete variables 
q(te), which may change value only at events, with event times denoted te. Such discrete variables obtain 
their value at events, for example, by solving equations in when-equations or evaluating assignments in 
when-statements. The instantaneous equations defining discrete variables in when-equations are restricted 
to particularly simple syntactic forms (Section 8.3.5, page 357), for example, var = expr;. These 
restrictions are imposed by the Modelica language in order to easily determine which discrete variables are 
defined by solving the equations in a when-equation. 

Such equations can be directly converted to equations in assignment form, that is, assignment 
statements, with fixed causality from the right-hand side to the left-hand side. Regarding algorithmic 
when-statements, for example, Section 9.2.10, page 433, that define discrete variables, such definitions are 
always done through assignments. Therefore we can in both cases express the equations defining discrete 
variables as assignments in the vector equation (17-5a), where the vector-valued function fq specifies the 
right-hand side expressions of those assignments to discrete variables. 

The last argument c(te) is made explicit for convenience. It is strictly speaking not necessary since the 
expressions in c(te) could have been incorporated directly into fq. The vector c(te) contains all Boolean 
condition expressions evaluated at the most recent event at time te. It is defined by the following vector 
assignment equation with the right-hand side given by the vector-valued function fe. This function has as 
arguments the subset of the discrete variables having Boolean type, that is, qB(te)and qB

pre(te), the 
subset of Boolean parameters or constants,/?5, and a vector rel(v(t)) evaluated at time te, containing the 
elementary relational expressions from the model. The vector of condition expressions c(te) is defined by 
the following equation in assignment form: 

c(te) := fe (qB (te \qB
re(te ),pB,rel(v(te))) (17-7) 

Here rel(v(t)) = rel(cat(\,x(t),x(t),u(t)9y(t),t,q(te),qpre(te),p)), a Boolean-typed vector-valued 
function containing the relevant elementary relational expressions from the model, excluding relations 
enclosed by noEvent(). The argument v(t) = {vi,v2,...} is a vector containing all scalar elements of the 
argument vectors. This can be expressed using the Modelica concatenation function cat applied to the 
vectors, for example, v(t) = cat{\,x,x,u,y,{t},q(te),qpre(te),p). For example, if rel(v(t)) = {vi > v2, v3 

>= 0, v4<5, v 6 < = v 7 , v i 2 = 1 3 3 } where v(t) = {vl5 v2, v3, v4, v6, v7> v i 2 } , then it might be the case that c(t) = 
{vi > v2 and V3 >= 0, Vio, not vn, v4<5 or V6<=V7, v i 2 = 1 3 3 } , where Vio, vn are Boolean variables and Vi, 
v2, v3, v4, v6, v7 might be Real variables, whereas vi2 might be an Integer variable. 

17.1.3 The Complete Hybrid DAE 

The total equation system consisting of the combination of (17-5), (17-6), and (17-7) is the desired hybrid 
DAE equation representation for Modelica models, consisting of differential, algebraic, and discrete 
equations. 

This framework describes a system where the state evolves in two ways: continuously in time by 
changing the values of x{t), and by instantaneous changes in the total state represented by the variables 
x(t), y{t), and q{t). Instantaneous state changes occur at events triggered when some of the conditions c(te) 
change value from false to true. The set of state varibles from which other variables are computed is 
selected from the set of dynamic variables x(t), algebraic varibles y{t), and discrete-time variables q(t). 

Below we summarize the notation used in the above equations, with time dependencies stated explicitly 
for all time-dependent variables by the arguments t or te (also compare Section 12.6.1, page 584): 
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• P = {P\*Pi>•••}, a vector containing the Modelica variables declared as parameter or constant 
i.e., variables without any time dependency. 

• t, the Modelica variable time, the independent variable of type Real implicitly occurring in all 
Modelica models. 

• x(t), the vector of dynamic variables of the model, i.e., variables of type Real that also appear 
differentiated, meaning that der () is applied to them somewhere in the model. 

• x{t), the differentiated vector of dynamic variables of the model. 
• u(t), a vector of input variables, that is, not dependent on other variables, of type Real. These also 

belong to the set of algebraic variables since they do not appear differentiated. 
• y(t), a vector of Modelica variables of type Real which do not fall into any other category. 

Output variables are included among these, which together with u(t) are algebraic variables since 
they do not appear differentiated. 

• q( t e ) > a v e c t o r of discrete-time Modelica variables of type discrete Real, Boolean, Integer 
or string. These variables change their value only at event instants, that is, at points te in time. 

• Qpre ) » the values of q immediately before the current event occurred, that is, at time te. 
• c(te), a vector containing all Boolean condition expressions evaluated at the most recent event at 

time te. This includes conditions from all if-equations/statements and if-expressions from the 
original model as well as those generated during the conversion of when-equations and when-
statements (see Section 8.3.5, page 357, and Section 9.2.10). 

• rel(v(t)) = rel(cat(\,x,x,u,y,{t},q(te),qpre(te\p)), a Boolean vector valued function 
containing the relevant elementary relational expressions from the model, excluding relations 
enclosed by noEvent()- The argument v(t) = {vi,v2,...} is a vector containing all elements in the 
vectors x,x,u,y,{t},q(te\qpre(te),p. This can be expressed using the Modelica concatenation 
function cat applied to these vectors; rel(v{t)) = {vi > v2, v3 >= 0, v4<5, v6<=v7? V i 2 = 1 3 3 } is one 
possible example. 

• / ( . . . ) , the function that defines the differential equat ions/ ( . . . )= 0 in (17-5a) of the system of 
equations. 

• g(...), the function that defines the algebraic equationsg(...) = 0in (17-5b) of the system of 
equations. 

• fq (•••) j the function that defines the difference equations for the discrete variables q := fq(...) , 
i.e., (17-6) in the system of equations. 

• /*(•••) > the function that defines the event conditions c := fe(..) , that is, (17-7) in the system of 
equations. 

For simplicity, the special cases involving the noEvent () operator and the reinit () operator are not 
contained in the above equations and are not discussed below. 

17.1.4 Hybrid DAEs Expressed in Modelica 

To understand how hybrid DAEs are expressed in Modelica it is useful to recall once more the process of 
translating a Modelica model to a flat hybrid DAE. Three of the most important tasks in this translation 
process are the following: 

• Expansion and elaboration of inherited base classes. 
• Parameterization of base classes, local classes, and variable declarations. 
• Generation of equations from connect statements. 

The result is a "flat Modelica source code" variant of a flat hybrid DAE, in which long variable names 
with dot notation are allowed. This dot notation is derived from the flattened hierarchical structure (see the 
simple circuit example in Section 2.20 on page 63 in Chapter 2). However, this representation also 
contains declarations of variables, constants, and parameters in addition to the equations themselves. 
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Moreover, the term "equation" is interpreted in a rather general sense since sets of assignment statements can 
be viewed as subsystems of equations. This is possible since executing a set of assignments is equivalent to 
solving a corresponding subsystem of equations provided that there are no side effects, which is the case in 
Modelica. Function definitions in elaborated form, that is, with possible inheritance and modification 
operations, etc. expanded and elaborated, are kept as whole declarations without being broken down into 
pieces. Thus, the Modelica flat hybrid DAE form consists of the following kinds of items: 

• Declarations of variables, parameters, and constants with the appropriate basic types, prefixes, and 
attributes (such as for "parameter Integer k"). 

• Declaration equations, for example, "y=8.5" from declarations such as "parameter Real 
y=8 .5". 

• Equations from equation sections, including both normal equations and conditional equations 
involving if-expressions or if-equations/statements. 

• Function calls where each call is treated as a set of equations involving all the input and all the 
result variables of the function call. For such a call the number of equations is equal to the number 
of basic result variables of the called function. 

• Algorithm sections, where each section is treated as a set of equations. The number of conceptual 
equations corresponding to an algorithm section equals the number of different variables assigned 
in the algorithm section. 

• When-equations or when-statements, where each of these is treated as a set of conditional 
equations. The number of equations in such a set equals the number of variables assigned in the 
corresponding when-statement, or the number variables solved for in the when-equation. 

The flat hybrid DAE representation is a system of equations where some equations are conditionally 
active, that is, are included in the equation solution process only if certain conditions are true. For 
example, instantaneous equations within a when-equation are included only when the corresponding when-
condition becomes true. Thus, the total system of equations may include discontinuities and may have a 
varying set of active equations, being controlled by a discrete-event-handling system. 

The equation system might include multiple events, corresponding to groups of conditional equations, 
that may become active at the same time instant. This topic was previously discussed in Section 13.2.6.7. 
In this case the events must be fired in some sequence, which means that the equation solver must choose 
the order in which these groups of equations should be activated during the solution process. In many 
cases, the order in which simultaneously enabled events are fired is not significant because different events 
may affect different parts of the model without any direct interaction. However, it is easy to find models 
where the order is significant. 

Modelica prescribes a deterministic ordering of simultaneous events in order to have the property that 
different simulations of the same model will give the same result. Another possibility would be to have a 
nondeterministic ordering, i.e., the order is picked at random, with the sometimes-problematic property 
that different simulations may give different results. However, despite the deterministic ordering it is still 
possible to obtain random orderings by explicit modeling using probability distribution functions as in the 
queuing examples presented earlier in Section 13.3.4.2. 

17.1.5 Structural Time Invariance of Modelica Hybrid DAEs 

The Modelica hybrid DAE representation we have just presented is structurally time invariant, which 
means that the set of variables and the set of equations are fixed over time. It is not possible to add new 
equations at run time during simulation. One example is that the number of equations generated by a for-
loop equation (see Section 8.3.2, page 352), must be known at compile time, requiring the loop bounds to 
be of at most parameter variability. 

Parameters that may influence the structure of the equation system before simulation starts are sometimes 
called structural parameters (see also Section 3.11.2). The reason is that they may influence the structure of 
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the equation system, for example, in terms of the number of equations in the model. An example is a for-
equation (Section 8.3.2, page 352) which expands into a number of simple equations, where the number is 
determined by a parameter expression. However, despite the fixed total set of equations, the set of active 
equations can vary at run time since conditional equations can be turned on and off. 

Structural time invariance is an advantage in the sense that the whole model can be analyzed and 
compiled before being executed. This enables the localization of errors in the model before starting 
execution, as well as generating efficient code from the model utilizing the fact that all variables and 
equations are known to the Modelica compiler. This property is well in line with our declarative object-
oriented mathematical modeling approach where objects are explicitly declared and can be analyzed and 
reasoned about. 

On the other hand, structural time invariance is a disadvantage in the sense that objects cannot be 
created at run-time after the start of simulation. This is in contrast to many other object-oriented languages 
where dynamic object creation is standard procedure. 

The modeling style with dynamic object creation is common in applications such as queuing systems 
and job shop systems, where objects arrive, are processed, and leave the system. Fortunately, structural 
time invariance does not prevent modeling those kinds of applications in Modelica. The maximum number 
of objects that can be simultaneously active in a modeled system, sometimes known as the buffer capacity 
of the system, can be declared beforehand. These objects in the buffer are initially not active. The arrival 
of an object is represented as an activation of one of the predeclared objects, whereas an object leaving the 
system is represented as a deactivation of an existing object. In this sense the structural time invariance of 
Modelica hybrid DAEs is not a serious disadvantage. 

It might be possible to define a more flexible variant of Modelica hybrid DAEs that keeps all the 
advantages of the current representation in terms of being declarative, possible to analyze, and possible to 
transform and compile to highly performing code, while supporting a somewhat more flexible modeling 
style, for example, regarding "dynamic" creation and construction of objects. Such an enhancement might 
not even require any changes in the basic hybrid DAE representation, but rather extensions in the Modelica 
language definition. 

In this section we provide a small example with both differential, algebraic, hybrid, and nonlinear 
equations, in order to illustrate the different forms of equations. 

An inertial mass is rotated by influencing its angular acceleration. The electromecanical EMF 
component transforms the rotational mechanical energy into electrical energy that is absorbed by a simple 
electrical circuit consisting of an inductor ind and two resistors, Rl and R2, connected in series. As output 
of the model we are interested in measuring the voltage between node (1) and node (2) of the electrical 
circuit with the help of a voltage sensor component vsens (see Figure 17-1). 

17.1.6 A DAE Example Subjected to BLT Partitioning 

'2 

rJ=r G 

Figure 17-1. Small DAE example model called Generator. 

The corresponding Modelica code is: 

model Generator 
import Modelica.Mechanics.Rotational; 
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import Modelica.Electrical.Analog; 
import Modelica.Blocks. 
Rotational.Accelerate 
Rotational.Inertia 
Analog.Basic.EMF 
Analog.Basic.Inductor 
Analog.Basic.Resistor 
Analog.Basic.Resistor 
Analog.Basic.Ground 

acc; 
inertia; 
EMF(k=-l); 
ind(L=0.1); 
Rl; 
R2; 
G; 

Analog.Sensors.VoltageSensor vsens; 
Blocks.Sources.Exponentials ex(riseTime=2,riseTimeConst=l); 

equation 
connect(acc.flange_b, inertia.flange_a); 
connect(inertia.flange_b, EMF.flange_b); 
connect(EMF.p, ind.p); 
connect(ind.n, Rl.p); 
connect(EMF.n, G.p); 
connect(EMF.n 
connect(Rl.n, 
connect(R2.p, 
connect(R2.n, 
connect(ex.y, 

end Generator; 

R2.n); 
R2.p); 
vsens.n); 
vsens.p); 
acc.acceleration); 

We simulate the model as usual and show plots of a few variables in Figure 17-2. 

simulate(Generator, stopTime=10); 
plot({ex.y,vsens.v,inertia.w}, xrange={0,7}) ; 

/ 

Figure 17-2. Plots of the variables ex.y, vsens.v, and inertia.w of the DAE example model. 

17.1.6.1 Kinds of Variables 
The different kinds of variables according to the previously defined notation can be extracted from the 
flattened model: 

• p - {acc.phi_start, acc.w_start, inertia.J, EMF.k, ind.L, 
Rl.R, R2.R, ex.outMax, ex.riseTime, 
ex.riseTimeConst ,ex.fallTimeConst, ex.offset, ex.startTime} 

• *(0 ={acc.phi, acc.w, inertia.phi, inertia.w, EMF.flange_b.phi} 
• x(t) ={acc.phi, acc.w, inertia.phi, inertia.w, EMF.flange_b.phi} 
• u(t) — {G.p.v, vsens.p.i, vsens.n.i, ex.y_riseTime} 
• = {acc.phi, acc.w, acc.a, acc.flange_b.phi, acc.flange_b.tau, 

acc.acceleration, inertia.phi, inertia.flange_a.phi, 
inertia.flange_a.tau, inertia.flange_b.phi, inertia.flange_b.tau, 
inertia.w, inertia.a, 
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EMF.v ,EMF.i, EMF.w, EMF.p.v, EMF.p.i, EMF.n.v ,EMF.n.i, 
EMF.flange_b.phi, EMF.flange_b.tau, ind.v, ind.i, ind.p.v, ind.p.i, 
ind.n.v, ind.n.i ,Rl.v, Rl.i, Rl.p.v, Rl.p.i, Rl.n.v, Rl.n.i, R2.v, 
R2.i, R2.p.v, R2.p.i, R2.n.v, R2.n.i, G.p.v, G.p.i, vsens.p.v, 
vsens.p.i, vsens.n.v, vsens.n.i, 
vsens.y, vsens.v, ex.y, ex.y, ex.y_riseTime} 

• c(te)— {time < ex. startTime, time < ex. startTime+ex. riseTime } 

17.1.6.2 Flattened Form 
We extract the equations of the model, flatten the structure, and substitute named constants and parameters 
for their values, obtaining the following total system of equations: 

eq 0 ex.fallTimeConst-ex.riseTimeConst = 0 
eq 1 ex.y-acc.acceleration = 0 
eq 2 acc.flange_b.tau+inertia.flange_ a, .tau = 0 
eq 3 inertia.flange_a.phi-acc.flange_ _b. .phi = 0 
eq 4 ind.n.v-Rl.p.v = 0 
eq 5 R1.p.i+ind.n.i = 0 
eq 6 vsens.n.v-Rl.n.v = 0 
eq 7 R2.p.v-Rl.n.v = 0 
eq 8 R1.n.i+R2.p.i+vsens.n.i = 0 
eq 9 ind.p.v-EMF.p.v = 0 
eq 10 EMF.p.i+ind.p.i = 0 
eq 11 vsens.p.v-EMF.n.v = 0 
eq 12 R2.n.v-EMF.n.v = 0 
eq 13 G.p.v-EMF.n.v = 0 
eq 14 EMF.n.i+G.p.i+R2.n.i+vsens.p.i = = 0 
eq 15 EMF.flange_b.tau+inertia.flange_ b, .tau = 0 
eq 16 inertia.flange b.phi-EMF.flange ~b, .phi = 0 
eq 17 ex.y = ex.p offset+( 

if time < ex.startTime then 0 
else if time < ex.startTime + ex.riseTime then 

ex.outMax*(1-exp(-(time-ex.startTime)/ex.riseTimeConst)) 
else ex.y_riseTime*exp(-(time-ex.p_startTime-

ex.riseTime)/ex.fallTimeConst) 
) ; 

eq 18: ex.y_riseTime-ex.outMax+ex.outMax*exp( 
ex.riseTime/ex.riseTimeConst) = 0 

eq 19: ex.y-ex.y = 0 
eq 20: vsens.v-vsens.y = 0 
eq 21: vsens.v-vsens.p.v+vsens.n.v = 0 
eq 22: vsens.n.i = 0 
eq 23: vsens.p.i = 0 
eq 24: G.p.v = 0 
eq 25: R2.R*R2.i-R2.v = 0 
eq 26: R2.i-R2.p.i = 0 
eq 27: -R2.p.i-R2.n.i - 0 
eq 28: R2.v-R2.p.v+R2.n.v = 0 
eq 29: R1.R*R1.i-Rl.v = 0 
eq 30: Rl.i-Rl.p.i = 0 
eq 31: -R1.p.i-Rl.n.i = 0 
eq 32: R1.v-Rl.p.v+Rl.n.v = 0 
eq 33: ind.L*der(ind.i)-ind.v = 0 
eq 34: ind.i-ind.p.i = 0 
eq 35: -ind.p.i-ind.n.i = 0 
eq 36: ind.v-ind.p.v+ind.n.v = 0 
eq 37: EMF.flange_b.tau+EMF.k*EMF.i - 0 
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eq 38: EMF.k*EMF.w-EMF.v = 0 
eq 39: EMF.w-der(EMF.flange_b.phi) = 0 
eq 40: EMF.i-EMF.p.i = 0 
eq 41: -EMF.p.i-EMF.n.i = 0 
eq 42: EMF.v-EMF.p.v+EMF.n.v = 0 
eq 43: inertia.J*inertia.a-inertia.flange_a.tau-inertia.flange_b.tau = 0 
eq 44: inertia.a-der(inertia.w) = 0 
eq 45: inertia.w-der(inertia.phi) = 0 
eq 46: inertia.flange_b.phi-inertia.phi = 0 
eq 47: inertia.flange_a.phi-inertia.phi = 0 
eq 48: acc.a-acc.acceleration = 0 
eq 49: acc.a-der(acc.w) = 0 
eq 50: acc.w-der(acc.phi) = 0 
eq 51: acc.phi-acc.flange_b.phi = 0 

The trivial zero identities below are excluded in the following: 

Vsens.n.i = 0 
Vsens.p.i = 0 
G.p.v = 0 
-EMF.n.v = 0 
vsens.p.v = 0 
R2 . n. v = 0 

17.1.6.3 BLT Partitioned Form 
According to the procedure for simulating Modelica models (Section 18.1, page 993), the remaining 
equations are transformed into Block Lower Triangular (BLT) form by symbolically sorting the equations 
using Tarjans algorithm (see Section 17.1.7, page 989). This enables efficient solution of sparse equation 
systems by reducing the number of variables that need to be handled by the numerical solver. The total 
system of equations can then be solved by solving each block sequentially. The BLT decomposition leads 
to 30 blocks for this model: 

• 6 DAE blocks, including ODEs and pure algebraic equations. 
• 22 linear equation blocks, one equation per block. 
• 1 nonlinear equation block with one equation. 
• 1 hybrid block. 

The system is partitioned as follows: 

block 1 Nonlinear equation: ex.y.riseTime-ex.outMax+ex.outMax*exp(-
ex.riseTime/ex.riseTimeConst) = 0 

block 2 Hybrid equation: ex.y = ex.offset+( 
0 = if time < ex.startTime then 0 

else if time < ex.startTime + ex.riseTime then 
ex.outMax*(1-exp(-(time-
ex .startTime)/ex.riseTimeConst)) 

else ex.y_riseTime*exp(-(time-ex.startTime-
ex.riseTime)/ex.fallTimeConst) 

) ; 

block 3 Linear equation: 
block 4 Linear equation: 
block 5 Linear equation: 
block 6 Linear equation: 
block 7 DAE: 

ex.y-ex.y = 0 
ex.y-acc.acceleration = 0 
acc.a-acc.acceleration = 0 
acc.a-der(acc.w) = 0 
acc.w-der(acc.phi) = 0 
acc.phi-acc.flange_b.phi = 0 
inertia.flange_a.phi-acc.flange_b.phi = 0 
inertia.flange_a.phi-inertia.phi = 0 

block 8 Linear equation: 
block 9 Linear equation: 
block 10 Linear equation: 
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block 
block 
block 
block 
block 
block 
block 

Linear equation: 
Linear equation 
DAE: 
Linear equation 
Linear equation 
Linear equation 
DAE: 

inertia.flange_b.phi-inertia.phi = 0 
: inertia.flange_b.phi-EMF.flange_b.phi = 0 
EMF.w-der(EMF.flange_b.phi) = 0 
: EMF.k*EMF.w-EMF.v = 0 
: EMF.v-EMF.p.v = 0 
: ind.p.v-EMF.p.v = 0 

Rl.i-Rl.p.i = 0 
Rl.R*Rl.i-Rl.v = 0 
Rl.v-Rl.p.v+Rl.n.v = 0 
ind.n.v-Rl.p.v = 0 
ind.v-ind.p.v+ind.n.v = 0 
ind.L*der(ind.i)-ind.v = 0 
ind.i-ind.p.i = 0 
-ind.p.i-ind.n.i = 0 
Rl.p.i+ind.n.i = 0 
-Rl.p.i-Rl.n.i = 0 
Rl.n.i+R2.p.i = 0 
R2.i-R2.p.i = 0 
R2.R*R2.i-R2.v = 0 
R2.v-R2.p.v = 0 
R2.p.v-Rl.n.v = 0 

vsens.n.v-Rl.n.v = 0 
vsens.v+vsens.n.v = 0 
vsens.v-vsens.y = 0 
EMF.p.i+ind.p.i = 0 
-EMF.p.i-EMF.n.i = 0 
-R2.p.i-R2.n.i = 0 
EMF.n.i+G.p.i+R2.n.i = 0 
MF.i-EMF.p.i = 0 
EMF.flange_b.tau+EMF.k*EMF.i = 0 
inertia.w-der(inertia.phi) = 0 
inertia.a-der(inertia.w) = 0 
EMF.flange_b.tau+inertia.flange_b.tau 
inertia.J*inertia.a-inertia.flange_a.tau-

inertia.flange_b.tau = 0 
acc.flange_b.tau+inertia.flange_a.tau = 0 
ex.fallTimeConst-ex.riseTimeConst = 0 

The block lower triangular form is clearly visible in the right matrix of Figure 17-1. For this model 
there is only one nontrivial strongly connected component (block 17) containing 15 equations. 

T ^ ' . : . -I • ' — I 
5 . . . . . ' ' \ 

1 5 , ; ' ' 15 X . 
20- " . f - 2C- . \ 

" „ 25 X 
. . V . . . • 30- I X 

35 35 • A , 
40- V . ' j - 4C- . " 4 , . . * .:h | 4 . . . * Tf 

0 10 20 30 40 0 10 20 30 40 

Adjacency matrix Adjacency matrix in BLT form 

Fionrp 17-1 Fnuatinn adiacencv matrix before and after RT.T fRInck f fiwer Triflnffnlart nartitionine. 

block 18: Linear equation: 
block 1 9 : Linear equation: 
block 20: Linear equation: 
block 21: Linear equation: 
block 22: Linear equation: 
block 2 3 : Linear equation: 
block 24 : Linear equation: 
block 2 5 : Linear equation: 
block 26: Linear equation: 
block 27 : Linear equation: 
block 28: Linear equation: 
block 2 9 : Linear equation: 
block 3 0 : Linear equation: 

block 3 1 : Linear equation: 
block 3 2 : Linear equation: 

Figure 17-3. Equation adjacency matrix, before, and after BLT (Block Lower Triangular) partitioning. 
Equations are on the vertical axis, whereas variables are on the horizontal axis. 
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17.1.7 Tarjan's Algorithm to Generate the BLT Form 

We briefly present Taijan's graph theoretic algorithm to perform topological sorting of an equation system 
into the block lower triangular (BLT) form, using the small DAE example system presented in Figure 
17-4a, with its associated adjacency the matrix with equations on the vertical axis and variables on the 
horizontal axis. Figure 17-4c shows a bipartite graph representation (see Section 18.2.4.2, page 1007) of 
the same equation system. 

The final BLT form of the equation system, which is the desired result of the BLT transformation, is 
presented in Figure 17-4b including a small strongly connected component—a block consisting of 
equations 3 and 4, which is a simultaneous system of equations—also called an algebraic loop. 

Also note that clocked partitions need not be sorted with respect to each other (Section 13.6.13.1, page 
715). 

fl(Z3,Z4) 
f 2 ( z 2 ) 

f3(z2,z3,z5) 
Ufa&l) 
f 5 ( Z i , Z 3 , Z 5 ) 

Z l Z2 Z 3 Z4 Z5 

0 0 1 1 0 
0 1 0 0 0 

Si= 0 1 1 0 1 
1 1 0 0 0 
10 10 1 

(a) 

Figure 17-4. (a) Equation system with associated adjacency matrix, (b) Goal equation system in BLT form 
after topological sorting using Tarjan's algorithm, (c) Bipartite graph representation of the initial form of the 
equation system (a) with equations on the left nodes and the variables on the right nodes, to be subject to 
topological sorting. 

Certain prerequisites have to be handled before running Tarjan's algorithm. The situation is actually the 
following: 

1. First we need to compute a matching of which variable is used in solving which equation (see 
Section 18.2.4.3, page 1008). 

2. A transformation called index reduction (also Section 18.2.4.3) may need to symbolically 
differentiate certain equations. 

3. Finally, Tarjan's algorithm is used to sort the equation system and find the strongly connected 
components (also called algebraic loops). 

The process of running a matching algorithm is depicted in Figure 17-5. 

f 2 ( Z 2 ) 

f4(Zi,Z2) 
f3(Z2,Z3,Z5) 
f 5 ( Z i , Z 3 , Z 5 ) 

f l ( Z 3 , Z 4 ) 

= 0 
= 0 
= 0 
= 0 
= 0 

S2 = 

7-2 Z] Z3 Z5 Z4 
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1 on 
0 1 
0 0 1 0 1 

( b ) (c) 
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Figure 17-5. Running a matching algorithm on the test problem. 

We apply Tarjan's algorithm on the test problem, shown in Figure 17-6. 

Figure 17-6. The 6 steps needed by Taijan's algorithm on finding the strongly connected components 
starting from a bipartite graph (1) for this example. The final form is shown in (6) with one strongly 
connected component consisting of two nodes. 

Tarjan's algorithm for topological sorting starting from the graph with the matching produced in Figure 
17-5 is presented below in pseudocode. 

Algorithm 17-1: Tarjan's algorithm for finding strongly connected components in a graph 

number 
lowlink 

= zeros(n,1); 
= zeros(n,1); 

<empty stack> 
for w in l:n 

if number(w) == 0 
strongConnect(w); 

end if 
end for 
procedure strongConnect(v) 
i := i+1; 
number(v) 
lowlink(v) 
<put v on stack> 

/ / global variable 
/ / global variable 
/ / root of strong component 
/ / stack is global 

/ / Main program for visiting each not yet 
/ / visited node through the recursive procedure 
// strongConnect() 
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for <all w directly reachable from v> 
if number (w) ==0 / / (v,w) is a tree arc 

strongConnect(w); 
lowlink(v) := min(lowlink(v),lowlink(w)) 

else if number(w) < number(v) // (v,w) is a frond or cross link 
if <w is on stack> 

lowlink(v) := min(lowlink(v), number(w)); 
end if 

end if 
end for 
if 1 owl i n k (v) == numbe r (v) / / v is the root of a strong component 
while <w on top of stack satisfies number(w) >= number(v)> 

<delete w from stack and put w in current component> 
end while 

end if 

17.2 Summary 

In previous chapters, (Chapter 2 and Chapter 12), we mentioned equation representations such as ODEs 
and DAEs which are only valid for continuous-time models. 

Here we defined the full Hybrid DAE equation representation which is the mathematical basis for 
equation systems resulting from arbitrary Modelica models, being able to handle both continuous-time, 
discrete-time, and hybrid models. The Hybrid DAE representation was illustrated by a model example 
resulting in both continuous-time and discrete-time variables, differential equations, algebraic equations, 
hybrid equations, as well as both linear and nonlinear subsystems of equations. The example is 
transformed into a flat Hybrid DAE equation system form, then subject to BLT-partitioning using Taijan's 
algorithm, which is briefly described at the end of the chapter. 

17.3 Literature 

The section on mathematical properties of hybrid DAEs in (Modelica Association 2003) gives a short 
definition of Modelica hybrid DAEs that is the basis for the definitions in this chapter. Analogous 
definitions for the Omola language are presented in (Andersson 1994). Tarjans algorithm for finding 
strongly connected components in graphs is described in (Tarjan 1972). A description of BLT partitioning 
and equation assignment is also available in part 4 of (Otter 1999b). A general and very comprehensive 
overview of methods for simulation is available in (Cellier and Kofman 2006). 
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Chapter 18 

Techniques and Research 

This chapter gives short overviews of three topics: 

• Numeric and symbolic techniques for simulating Modelica models 
• Some current work on Modelica language extensions 
• A selection of ongoing Modelica-related research 

The numeric and symbolic techniques build on the general hybrid DAE equation representation and block 
lower triangular form (BLT) decomposition described in Chapter 17, page 979. 

The described preliminary designs for some Modelica language extensions include specification of 
model configurations or variants. 

The research presented includes methods to find and correct errors and inconsistencies in models, 
thereby enhancing ease-of-use, performance enhancements of Modelica simulations by the use of parallel 
computers for example, via the GRID, gray-box model identification, model verification, and model 
diagnosis. 

18.1 Overview of the Process of Simulating Modelica Models 

As briefly described in Section 2.20, page 63, and depicted in Figure 18-1, the simulation of a Modelica 
model uses a combination of symbolic and numeric techniques. 

A Modelica compiler typically first transforms a Modelica simulation model into a so-called "flat" 
model consisting of the equations and algorithm sections as well as variable declarations and functions of 
all used model components of the simulation model. This is done by the following steps: 

993 



994 Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

Modelica 
>ource Code 

^ J t ^ Modelica model 

Translator 

Flat model 

Analyzer 

^ J ^ ^ - - " - Sorted equations 

Optimizer 

I I ^ Optimized sorted 
\ 7 equations 
Code 

Generator 
-- C Code 

C Compiler 

^ j ^ J Z - Executable 

Simulation 

Figure 18-1. The stages of translating and executing a Modelica model. Also in Figure 2-29. 

• Expanding all class definitions including expanding inheritance and modifications. This includes 
adding the equations and assignment statements of the expanded classes for every instance of the 
model. 

• Replacing all connect-equations by the corresponding expanded equations of the connection set 
(Section 5.7.8, page 219). 

• Mapping all algorithm sections to equation sets. For example, an algorithm section can conceptually 
be viewed as a function call of an implicitly defined function containing the algorithm section 
(Section 2.14.6, page 54). 

• Mapping all when-clauses to equation sets, for example, when x>2 then vl=exprl; ... can 
conceptually be expanded to equations in non-standard Modelica: b=x>2; v=if edge (b) then 
exprl else pre(vl);... 

The resulting hybrid DAE equation representation for Modelica models (Section 17.1.4, page 982) 
consists of the combination of three kinds of equations: ordinary differential equations (17-5), algebraic 
equaitons (17-6), and discrete equations (17-7), see Section 17.1.3, page 981. 

This hybrid DAE is transformed and symbolically optimized to enable more efficient and numerically 
stable simulation, as described briefly below (Section 18.1.1, page 994). 

Finally, the symbolically optimized hybrid DAE is solved (Section 18.2.5, page 1010) using numerical 
methods and handling events. 

18.1.1 Symbolic Simplification of Modelica Models for Efficient Solution 

As mentioned in Chapter 17, in the general case a Modelica model results in a hybrid DAE equation 
system (Section 17.1, page 979). Simulating a Modelica model in general requires solving such a system. 
This is nontrivial for several reasons: 
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• The equations contain not only Real but also Boolean, Integer and enumeration unknowns. 
• The object-oriented nature of Modelica models, typically consisting of many connected 

components, causes the flattened hybrid DAE equation system to be quite sparse. Many equations 
include just a few variables out of the thousands of variables in typical models. 

• Many Modelica models, especially those that model mechanical or mechatronic systems, have a 
high value (e.g., 2 or 3) of the so-called DAE index (see Section 18.2.3, page 1003), which causes 
numerical difficulties for DAE solvers that cannot be fixed even by using short step sizes. 

• The object-oriented and component-based properties of Modelica make it fairly easy for the user to 
construct quite large models, even up to several hundred thousand equations and variables. Such 
large models pose special demands on the solution techniques. 

Many of these difficulties can be resolved by symbolically transforming the system of equations before 
using a numerical solver. In Section 2.20.2, page 66, and in Section 17.1.6, page 984, we briefly describe 
the method of symbolically performing BLT -partitioning, or topological sorting, of the equation system 
using Tarjan's algorithm. This algorithm finds the strongly connected components containing 
interdependent equations, that is, subsystems of simultaneous equations. 

The partitioning of the equation system enables efficient solution of sparse equation systems by 
reducing the number of variables that need to be handled by the numerical solver in each subsystem of 
equations. 

The BLT partitioning also simplifies the solution of equations with mixed Real, Integer, Boolean, 
and enumeration unknowns, since in many cases the Boolean, Integer, and enumeration 
unknowns can be computed by just a forward evaluation sequence. In other cases (e.g., for ideal diodes, 
Coulomb friction elements) special heuristic algorithms need to be used. 

Certain subsystems of simultaneous equations found by the BLT algorithm are linear and can be solved 
by a standard linear equation solver. Other subsystems are nonlinear systems of equations. 

Note that clocked base-partitions need not be sorted with respect to each other (Section 13.6.13.1, page 
715) since their inputs are known when handling a clock tick event and do not change during solution of 
clocked equations. However, the equations within a base-clock partition still need to be sorted. 

A technique called tearing can in many cases further reduce the size and improve performance when 
solving such a nonlinear subsystem of equations. The tearing technique enables the equations 
corresponding to a subsystem to be solved sequentially but iteratively by finding a tearing variable and 
starting from an initial guess for the value of this variable. The process is in general not guaranteed to 
converge, but usually does. 

The need for numeric differentiation by numeric DAE solvers can be reduced or eliminated by 
employing Pantelides algorithm for index reduction (see Section 18.2.4, page 1007) by symbolically 
transforming the equation system into a form that has lower index. Such a transformed equation system 
with at most index 1 can be handled by standard numerical DAE solvers such as DASSL (see Section 
18.2.2.2), and in some cases even by fairly simple ODE solution methods. 

18.2 Simulation Techniques—Solving Equation Systems 

As stated previously, there are three different kinds of equation systems resulting from the translation of a 
Modelica model to a flat set of equations, from the simplest to the most complicated and powerful: 

• ODEs—Ordinary differential equations for continuous-time problems 
• DAEs—Differential algebraic equations for continuous-time problems 
• Hybrid DAEs—Hybrid differential algebraic equations for mixed continuous-discrete problems 

In the following, we present a short overview of methods to solve these kinds of equation systems. 
However, remember that these representations are strongly interrelated: an ODE is a special case of DAE 
without algebraic equations, whereas a DAE is a special case of hybrid DAEs without discrete or 
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conditional equations. We should also point out that in certain cases a Modelica model results in one of the 
following two forms of purely algebraic equation systems, which can be viewed as DAEs without a 
differential equation part: 

• Linear algebraic equation systems 
• Nonlinear algebraic equation systems 

However, rather than representing a whole Modelica model, such algebraic equation systems are 
usually subsystems of equations resulting from the previously mentioned BLT-partitioning of the total 
equation system. 

We start our solution method overview with a presentation of some well-known methods for solving 
ODEs. 

18.2.1 Numerical Solution of Ordinary Differential Equations 

As stated earlier (e.g., equation (17-1), Section 17.1, page 979), an ordinary differential equation system 
on explicit form can be expressed as follows: 

*(0 = / (* ( / ) ,« (0 ) ( 1 8 1 ) 

y(t) = g(x(t)MO) 

Since in this representation the output y(t) is not needed to compute the state vector x{t) we can 
ignore the second equation when solving for x(t). The input vector u(t) is independent of x(t). Its 
effect can be directly incorporated into / , thereby providing a slightly different function/in the following 
simplified equation, together with an initial condition at t=0: 

x(t) = f(t,x(t)) 
x(0) = x0 

(18-2) 

Numerical solution methods to solve ODEs like (18-2) are often called integration methods 
since (18-2) can be solved directly by integration: 

jt(/) = J o / ( s , *(*))<& (18-3) 

18.2.1.1 The Explicit and Implicit Euler Methods 
Consider once more the ordinary differential equation (18-2) on explicit form. Starting at 
x(0) = x0, we would like to numerically compute an approximation to x(t) as a series of values 
x(tQ),..x(tn),and so on. The simplest numerical approximation of the derivative x(t) is the 
following, called the Euler approximation: 

h = t„+l-,„ (18-4) 
h 

Using the fact that Mtn) =f(tn9xn), obtained from (18-2), we derive the explicit Euler ODE 
solution method by substituting into (18-4): 

x(tn+l)*x(tn)+h-f(tn,xn) (18-5) 

It is called explicit since the value is explicitly computed from the values at the previous time step. 
This formula can also be derived as an integration formula by approximating the function / by the fixed 
value f(tn,Xn) in the interval (tnJn+\). 
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x(tn+1) = x(tn) + j^f(t,x(t))dt « x(tn) + h-f(tn,xn) (18-6) 

Another possibility is to use a variant of (18-4) to approximate the derivative at the upper end of 
the step: 

Performing a similar substitution as for (18-5) gives the implicit Euler ODE solution method. 

x d ^ x i O + h - X t ^ , ) (18-8) 

In this case a small equation system has to be solved at each step. 

18.2.1.2 Multistep Methods 
The Euler method given in (18-5) and (18-6) is an example of a one-step method, since the 
next value depends on one previous value. In general, a numerical method for solving differential 
equations can be denoted a k-step method if it depends on k (previous) values: 

xm\ = H(t,Xn_k+l,Xn_k+2,...JCn,Xn+l) 08-9) 

The method is called explicit if the next value Xn+l only depends on previous values. It is an implicit 
method if the function H on the right-hand side also includes Xn+l. In that case a small equation system 
has to be solved at each step. Euler's method is an explicit one-step method. 

18.2.1.3 Local Error 
The global error is the deviation x(tn)—xn between the exact and approximate value for x(t). This 
absolute difference is hard to compute; therefore the one-step or local error en is often used instead: 

= Xn+\ ~Xn = • H & X ^ X ^ , X n ) 08-10) 

This is the error from one step, assuming that all information from previous steps is exact. 

18.2.1.4 Stability 
Keeping the error within bounds is not the only criterion for a numerical method. Each numerical method 
for solving differential equations has a region of stability. If the step size h is small enough to be within the 
region of stability, the method is stable; otherwise the computation becomes unstable and strange 
oscillations appear. Explicit methods have smaller regions of stability than implicit methods. 

It is instructive to take a look at the solution of a small test problem: 

model ErrStab 
Real z(start=l); 

equation 
der(z) = -5*(time+1)*zA(2)+5/(time+1)-1/(time+1)A(2); 

end ErrStab; 
We simulate the problem twice, using Euler's method with two different step sizes, h=0.2\ and h=Q.19, 

respectively, employing the Mathematica command interface to Wolfram SystemModeler: 

simEulerl= Simulate[ErrStab,{t,0,24},Method->Euler, IntervalLength->0.21]; 
simEuler2= Simulate[ErrStab,{t,0,24},Method->Euler, IntervalLength->0.19] ; 
We compare the results in a plot depicted in Figure 18-2. 

PlotSimulation[z[t],{t,0,24}, SimulationResult->{simEulerl,simEuler2}]; 
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Figure 18-2. Solving the same problem using the Euler method with different step sizes k=0.19 (stable), and 
/f=0.20 (oscillations). 

The result is rather dramatic. Even though the difference in step size is quite small the behavior differs 
substantially. The reason is that the step size is outside the region of absolute stability for the solver. It is 
important to understand that the absolute stability restriction is indeed a stability, not an accuracy, 
requirement. 

For the smaller step size, h==0.19, the solution is stable, but the question is how accurate is it. Therefore, 
let us compare the solution for this simulation with the exact answer. The equation 
identical to the differential equation in the ErrStab model apart from a time offset of 1: 

z = -5tz + 
5 1 

z(l) = l 

(18-11) is 

(18-11) 

This is one of the rare cases for which an exact analytical solution is available: 

< 0 - 1 (18-12) 

Before comparing the results in a plot, we perform a simulation with a much smaller step size and 
hopefully a smaller error: 

simEuler3 = Simulate[ErrStab,{t,0,24},Method->Euler,IntervalLength->10A-4]; 
We compare both solutions, simEuler2 with h=0.19 and simEuler3 with h = \ a 4 , to the exact 

solution (see Figure 18-2): 

PlotSimulation[1/t - z[t-l], {t, 1, 25}, SimulationResult->{simEuler2}]; 
PlotSimulation[1/t - z[t-l], {t, 1, 25}, SimulationResult->{simEuler3}]; 
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(a) Step size /i=0.19 
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Figure 18-3. Comparing the exact solution to numerical solutions with step sizes (a) h=0.19 and (b) 
/i=0.0001. 
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As expected, decreasing the step size to hr=\0'A gives a much smaller error on the order of 1CT6, whereas 
the previous step length h=0.19 gives an error on the order of 0.01. However, decreasing the step size 
increases the computational work. Also, decreasing the step size too much is not always feasible when 
using DAE solvers, as we shall see further on. 

18.2.1.5 Stiff Differential Equations 
Stiff differential equations have solutions with greatly varying time scales. For example, if we model the 
bouncing ball problem previously presented in Section 2.15, page 55, as a pure continuous-time problem 
instead of a hybrid continuous-discrete problem, we may have something close to a stiff model. 

The reason is the following: while the ball is moving in space it is described by a rather slowly varying 
function. However, when it touches the ground it bounces and changes speed and direction very suddenly. 
Large forces cause high accelerations and sudden changes. This effect is described by quickly varying 
functions for the position, speed, and acceleration of the ball. The solver must take very small steps to 
accurately compute this part of the behavior. On the other hand, rather long steps were satisfactory while 
the ball was moving freely in space. Thus, solvers for stiff problems are often adaptive, that is, the step 
size can be varied during solution. 

However, there is one more requirement for a stiff model: a slowly varying dynamic component in the 
solution should be present at the same time as the quickly varying component, for example, for the ball 
when it bounces. One example is a bearing ball, which rotates (relatively slowly) around the bearing axis 
along with the bearing, and at the same time bounces against the cage walls of the bearing. 

18.2.1.6 The Runge-Kutta Methods 
The simplest Runge-Kutta ODE integration method can be derived by combining numerical integration 
with the Euler approximation. If we integrate equation (18-2) over the interval (/«>^,+i)we obtain: 

= x(tn)+^+if(t,x(t))dt (18-13) 

Approximating the integral by the value o f / at the midpoint of the integration interval, f ( t = tn +-|), 
multiplied by the length h of the interval gives: 

*„•!=*. +*•/(', +$.*&+$)) (18"14> 
The value x(tn + - | ) is unknown, but can be computed using the Euler approximation: 

x(t„+t)*tn+\-f(.t„,x„) (18-15) 

We substitute (18-15) into (18-14): 

K=f(t„,x„) (18-16) 

If we make a series expansion we can show that the local error x(tn+l)—Xn+] is 0(h3), that is, a factor 
of h smaller than the error using Euler's method. In general, a Runge-Kutta method is described by the 
following equations: 
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xn+x=xn+h-(bxkx+... + bsks) 

=f(t*>Xn) 
k 2 = f ( t » h,xn + h - a 2 l ' k l ) ( 1 8 1 7 ) 

=/(>„ ^ + M«31 +*32 ' k2 )) 

k s = f ( t n +cs h,xn + h • (asX kx + ... + ass_x-ks_x)) 

The number 5 and the different coefficients are chosen depending on the desired order of accuracy p 
and/or computational efficiency. A common choice of coefficients is the following: the number of 
coefficients s=4, the order p=4, and all coefficients except the following equal to zero: C2 = 1/2, 
c3 =1/2, c4 =1, ^2! =1/2, a32 = l/2, a43 = 1, ^ =1/6, b2 =2/6, =2/6, =1/6. The 
coefficients are chosen to give the method the desired accuracy level, i.e.: 

x(tn+x)-xn+x=0(h^) (18-18) 

18.2.1.7 The Adams Methods 
The Adams methods are multistep methods—compute the next step based on a number of previous steps. 
The coefficients bt are chosen to give the maximum accuracy for the given number of terms. The explicit 

variant of the method, often called Adams-Bashforth, is specified by (18-19): 

* „ = * „ - . + i > / . w f j = f 0 j > * j ) ( i 8 -» 9 > 
;=1 

The explicit methods combine the values f„ from the preceding k steps. The formulas for the simplest 
explicit cases follow below: 

k = 1: xn=xn_x+fn_xh 

k - 2 : x n - xn_x + (3 fn_x - fn_2 ) y 
(18-20) 

k = 3 : = ^ + (23 fn_x - 1 6 / „ _ 2 + 5/m_3 ) £ 

k = 4 : x„= x„_x + (55/n_x - 59 fn_2 + 37/„_3 - 9 / „ _ 4 ) £ 

The implicit variant, called Adams-Moulton, is specified as follows: 

+!>/„_, f j = f f t j , x j ) 08-21) 
/=0 

The implicit method uses values Xnmdfn from the k most recent steps, including the current step 
since fn— f(tn,Xn). The simplest implicit formulas are given below: 

k = 1: xn =xn_x + f n h 

k - 2: x„ = x„ , + ( / „ + / „ , )4 
" «-i \J„ Jn-U2 (18-22) 

k = 3: x„=x„_x+(5f„+8fn_x-f„_2)£ 

k = 4: x„= x„_x + (9fn +19fn_x - 5 f n _ 2 + /„_3 ) £ 

18.2.1.8 LS0DE1, LSODE2, and LSODAR ODE Solvers 
LSODE1 is a multistep method that uses Adams-Bashforth-Moulton (ABM) formulas. The method varies 
the step size and the order of the methods to efficiently meet the error tolerance. The method is similar to 
DEABM (see below) but generally uses a lower order and smaller step size to integrate the system. 
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DEABM is often more efficient if high accuracy is needed. This method is suitable for non-stiff problems. 
A related method called LSODE2 should be used instead if the problem is stiff. 

LSODE2 is a multistep BDF method (Backward Difference Formulas). The BDF methods have wide 
stability regions and are therefore good choices for stiff problems. LSODE2 also uses a Nordseick 
representation of the fixed step size BDF formula. 

LSODAR is a combination of LSODE1 and 2 together with a root solver to handle discrete events. The 
method starts with LSODE1 and then switches to the stiff solver if any stiffness is detected. For non-stiff 
problems the solution is very similar to using LSODE1. 

18.2.1.9 DEABM ODE Solver 
DEABM is another multistep method that uses Adams-Bashforth-Moulton (ABM) formulas. The method 
varies the step size and the order of the methods to efficiently meet the error tolerance. It uses divided 
differences to represent the ABM formulas and is considered more stable than the LSODE implementation 
of ABM formulas. This is a good choice when high accuracy is needed. The method uses higher orders of 
the ABM formulas and longer step sizes than LSODE 1. 

18.2.2 Solution of Differential Algebraic Equations (DAEs) 

As we have seen in the previous sections, when solving an ordinary differential equation (ODE) the 
problem is to compute, that is, to integrate, the continuous-time state variables from their derivatives. In 
the case of ODEs on explicit state space form such as equations (18-1) and (18-2) this is 
fairly straightforward since the expressions for the derivatives to be integrated are defined by the ODE 
right-hand side expressions. 

However, as we have stated previously, a general DAE system on implicit form such as (18-23) 
below typically also includes algebraic equations (18-23b) that express algebraic constraints 
between nondifferentiated variables: 

g{x(t\x(t\y(t\u(t)) = 0 (a) 

h(x«),u(t%y(t)) = 0 (b) 

Here x(t) is the set of unknown differentiated state variables, u(t) are the inputs, and y(t) the algebraic 
variables that do not appear differentiated. Both parts of (18-23) can be combined into a more 
compact DAE form with a single vector-valued function F: 

F(x(t),x(t),y(t),u(t)) = 0 (18-24) 

The main difference compared to solving an ODE is that solving a DAE may also include differentiation, 
that is, calculating the derivatives of certain variables. The reason differentiation may be necessary is that 
the algebraic equations in many cases express constraints between certain state variables in the vector x(t), 
but not necessarily directly between their derivatives. 

However, even though the derivatives are not present in the algebraic constraints, they might be 
implicitly constrained. For example, Xx =X2 implies Xx =X2. Therefore certain constraint equations have 
to be differentiated to make the constraints explicit in order to directly influence the numerical solver. 

The differential index of a general DAE system is the minimum number of times that certain equations 
in the system need to be differentiated to reduce the system to a set of ODEs, which can then be solved by 
the usual ODE solvers. Even if the system has a higher index it can sometimes be solved directly by 
numerical methods. We will discuss this topic in more detail in Section 18.2.3. 
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18.2.2.1 Numerical DAE Solvers May Fail 
For DAE systems with index greater than 1, numerical methods may converge poorly, may converge to the 
wrong solutions, or may not converge at all. As we have seen, higher index DAE systems may have hidden 
algebraic constraints between the dependent variables and/or derivatives. Hidden algebraic constraints 
complicate the problem of providing proper initial conditions for the system and also present difficulties 
for numerical integration methods. 

The main cause of these problems is that the differentiation needed by DAE solvers is a numerically 
sensitive operation in contrast to integration, which is usually stable. Numerical instabilities and loss of 
precision can easily occur. It does not help to increase precision by decreasing step sizes as we do for 
ODEs. The reason is that the error in differentiation will increase with decreasing step sizes due to 
roundoff errors and inaccurate solutions of algebraic equations in previous steps. Such problems might 
introduce large artificial variations in the solution, for example, if some part of the system model caused a 
drastic reduction in step size. 

For these reasons there exists no general-purpose numerical DAE solver for DAEs with index higher 
than 1, even though there are certain numerical DAE solvers for index 2 DAEs with special structure. 

This might be a serious situation since many natural models result in DAEs of index 2 or index 3. 
Fortunately, mixed symbolic-numerical techniques can help, as will be described further on. The DAE 
system can be symbolically transformed into an equivalent low index DAE through so-called index 
reduction before the numerical solution process is started. 

18.2.2.2 The DASSL DAE Solver 
When the simulation problem is a DAE the method of choice is DASSL (Differential Algebraic System 
Solver) by Petzold 1982, and continuously improved. This is the default solver used by several Modelica 
environments. It uses a BDF (Backward Difference Formulas) scheme to solve the DAE, and has been 
proved very stable and reliable for most DAE problems. A special version of DASSL, DASSLRT with a 
root solver, can be called when events occur in the simulated model; see also Section 18.2.5.5 on crossing 
functions. Newer versions of DASSLRT exist, e.g. the root-finding DAE solver called DASKR included in 
the latest version of DASPK3.0. Since DASSL uses a BDF formula it can also be used for certain stiff (see 
Section 18.2.1.5) ODE problems. However, the error formulas in the method are adapted for DAE 
problems. Therefore it might be better, for example, to use a solver such as LSODE2 for stiff ODE 
problems if problems arise when using DASSL. 

18.2.2.3 Mixed Symbolic and Numerical Solution of DAEs 
A mixed symbolic and numerical approach to solution of DAEs avoids the problems of numerical 
differentiation. The DAE is transformed to a lower index problem by using index reduction. The standard 
mixed symbolic and numerical approach contains the following steps: 

1. Use Pantelides algorithm (see Section 18.2.4.3) to determine how many times each equation has to 
be differentiated to reduce the index to one or zero. 

2. Perform index reduction of the DAE by analytical symbolic differentiation of certain equations and 
by applying the method of dummy derivatives (see Section 18.2.4.1). 

3. Select the state variables to be used for solving the reduced problem. These can be either selected 
statically during compilation, or in some cases selected dynamically during simulation. 

4. Use a numerical ODE or DAE solver to solve the reduced problem. 

In the following we will discuss the notions of index and index reduction in some more detail. 
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18.2.3 The Notion of DAE Index 

From the preceding discussion we can draw the conclusion that index is an important property of DAE 
systems. Consider once more a DAE system on the general form: 

F(x(t)9x(t\y(t)M*)) = 0 (18-25) 

We assume that this system is solvable with a continuous solution, given an appropriate initial solution. 
There are several definitions of DAE index in the literature, of which the following, also called differential 
index, is informally defined as follows: 

• The index of a DAE system (18-25) is the minimum number of times certain equations in 
the DAE must be differentiated in order to solve x(t) as a function of x{t), y{t), and u{t), i.e., to 
transform the problem into ODE explicit state space form. 

The index gives a classification of DAEs with respect to their numerical properties and can be seen as a 
measure of the distance between the DAE and the corresponding ODE. 

An ODE system on explicit state space form is of index 0 since it is already in the desired form: 

i ( 0 = / (* ,*( / ) ) (18-26) 

The following semiexplicit form of DAE system is of index 1 under certain conditions: 

x(t) = f(tMt),y(t)) (a) 

0 = g(t,x(t),y(t)) (b) 
(18-27) 

The condition is that the Jacobian of g with respect to y, (dg /dy) —usually a matrix—see (18-29), 
is nonsingular and therefore has a well-defined inverse. This means that in principle y{t) can be solved as a 
function of x{t) and substituted into (18-27a) to get state-space form. The solution procedure 
involves differentiating (18-27b) to get (18-28a), solving for y , (18-28b), and finally 
integrating y to obtain the y to be substituted. 

y = -

JC + -2-
dx J dt (a) 

(b) 

(18-28) 

Kdy J \dx ) ^ dy) dt 

The Jacobian of g with respect to y is defined as follows: 

dyj 

dyl dy2 dyr 

dg2_ 
dyx dy2 dyr 

dy, 
dgj, 
dy2 tyr 

where y = 
M 

/ \ 
g\ 

y 2 
, g = 

gl 

\&S / 

(18-29) 

A DAE system in the general form (18-25) may have higher index than 1. Mechanical models 
often lead to index 3 DAE systems as exemplified in Section 18.2.3.3. We conclude: 

• There is no need for symbolic differentiation of equations in a DAE system if it is possible to 
determine the highest-order derivatives as continuous functions of time and lower derivatives 
using stable numerical methods. In this case the index is at most 1. 
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• The index is zero for such a DAE system if there are no algebraic variables. 

A perhaps even simpler way of stating the high index property of a DAE system, allowing for the case 
when certain variables have a derivative of order higher than 1: 

• A DAE system has high index if it is necessary to differentiate certain equations when solving for 
the highest-order derivatives of the variables. 

18.2.3.1 Higher Index Problems Are Natural in Component-Based Models 
The index of a DAE system is not a property of the modeled system but the property of a particular model 
representation, and therefore a function of the modeling methodology. A natural object-oriented 
component-based methodology with reuse and connections between physical objects leads to high index in 
the general case21. The reason is the constraint equations resulting from setting variables equal across 
connections between separate objects. 

Since the index is not a property of the modeled system it is possible to reduce the index by symbolic 
manipulations. High index indicates that the model has algebraic relations between differentiated state 
variables implied by algebraic relations between those state variables. By using knowledge about the 
particular modeling domain it is often possible to manually eliminate a number of differentiated variables, 
and thus reduce the index. However, this violates the object-oriented component-based modeling 
methodology for physical modeling that we want to support. 

We conclude that high index models are natural, and that automatic index reduction is necessary to 
support a general object-oriented component-based modeling methodology with a high degree of reuse. 

18.2.3.2 Example of High-Index Electrical Model 
As an example of high index that is caused by connection of model components, consider the electrical 
circuit in Figure 2-2 la, which consists of two connected identical subcircuits each containing one resistor 
and one capacitor. We will show that this system leads to a DAE with index 2. Interestingly enough, 
Figure 2-2lb shows an equivalent transformed circuit with an index 1 DAE where we have used the usual 
rules for connecting resistors and capacitors in parallel, illustrating the fact that a problem can be 
transformed from index 2 to index 1. 

h ii 

R=0.5 C=2 " 

(a) Circuit model with an index 2 D A E system (b) Equivalent circuit model with an index 1 D A E system 

Figure 18-4. A circuit model (a) resulting in an index 2 DAE, vs. an equivalent circuit (b) giving rise to an 
index 1 DAE. Both circuits are driven by a current i, which is a known function of time. 

To begin the analysis of the circuit depicted in Figure 18-4a, we first recall the constitutive equations 
relating voltage and current for resistors and capacitors: 

v = R-i (18-30) 
v = C • / 

21 However, it is possible to avoid high index in certain application domains by careful manual control of model formulation 
and by avoiding certain connections. However, this limits reuse of component models. 
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By using these equations to compute the currents through the resistor and the capacitor in the left part of 
the circuit, we obtain the following equation since the sum of the two currents is equal to : 

v , + v , - / , = ( ) < 1 8 - 3 1 ) 

Analogously, the circuit in the right part of Figure 18-4a is described by essentially the same equation: 

V 2 + V 2 - / 2 = 0 (18-32) 

The connections between the left and right parts of the circuit are reflected in the following constraint 
equations: 

v i ~ v2 = 0 ( a ) ( 1 8 _ 3 3 ) 

h+'2=i ( b ) 

The complete DAE system then becomes: 

V] + v, - = 0 

(18-34) v2 + v2 - i2 = 0 

Vj - v2 = 0 

h+h = ' 

We differentiate the constraint equation (18-33a) between the state variables, Vx —V2 = 0 , to 
make this constraint explicit also for the differentiated state variables, and replace the original constraint 
by the differentiated one. The resulting DAE system (18-35) is of index 1 since it has the form 
(18-27) and is theoretically possible to solve for vi and v2. Thus the original system (18-34) is of 
index 2. 

(18-35) 

+ v i ~ h = 0 

v2 + v2 - i2 = 0 

Vj - v2 = 0 

h+i2=i 

This model results in the following sets of variables, including two state variables: 

* ( 0 = {vi,v2}, y(t)={iuh}, u(t)={i} 

The new index 1 DAE system (18-35), with consistent the initial values, is mathematically 
equivalent to the original problem (18-34). Unfortunately, due to numerical imprecision in the 
solver there is no guarantee that a numerical solution to (18-35) will fulfill the original constraint 
Vl —V2 = 0 in (18-34). Thus we need improved methods for reducing the index of a DAE system, 
to which we will return in Section 18.2.4. 

For comparison, we also derive the equations for the RC circuit in Figure 18-4b, using the usual rules 
for connecting resistors and capacitors in parallel: 

r - Rl 'R2 nc 
"parallel ^ + ^ ^ (18-36) 

C parallel ~ Q + Q = 2 

Here only one state variable is needed. The system is of index 1 since it has the form (18-27): 
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2v + 0 . 5 v - z = 0 

i 1 + i 2 - * = 0 08-37) 

v = 0.5/j 

This model results in the following sets of variables, including one state variable: 

*( ' )={vi}, yit)={h,i2}, u(t)={i} 

18.2.3.3 Examples of High-Index Mechanical Models 
As an example from the mechanical application domain, consider a classical planar pendulum depicted and 
described in Section 12.7.3-12.7.4, page 586. 

Using Newton's second law to describe the dynamics of the pendulum results in a nonlinear second-
order differential equation system: 

mx = -j-F; my = -j-F-mg (18-38) 

where F is the force in the rod, g is the gravitational acceleration, and x,y are the coordinates of the mass 
m. In order to fully specify the physical system the following geometrical constraint needs to be added: 

x2+y2=L2 08-39) 

Combining the differential equations from (18-38) and (18-39) we obtain the DAE system of 
(18-40) below. The geometric constraint does not contain the higher-order derivatives x,y and F. The 
length constraint equation needs to be differentiated, which yields the system of equations presented in 
(18-41). 

The equation system obtained still does not contain the highest derivates and therefore needs to be 
differentiated once more, resulting in (18-42). In conclusion, the equation system (18-40) has been 
differentiated twice in order to get the DAE system down to index 1. Therefore the differential index of the 
system is equal to 3. 

mx = -—F mx = -—F mx = -—F 
L L L 
v (18-40) .. v ^ (18-41) v (18-42) 

my = -—F-mg my = --F-mg = 
L L L 

+ y2 = L2 2xx + 2yy = 0 2xx + 2yy + 2xx + 2yy = 0 

As mentioned regarding the electrical example in the previous section, a transformed index 1 DAE system 
such as (18-42) is not quite suitable for numerical solvers since the solution tends to drift away from 
the original constraint (18-39). Fortunately, the method of dummy derivatives described in the next 
section can help. 

In general, mechanical models often lead to index 3 problems when some kind constraint is involved. 
Consider a mass, m, at a position x, subject to a force F. Its motion is described by Newton's second law: 

m-x = F (18-43) 

In robotics and many other mechanical problems the position is constrained to be on a certain trajectory 
XR(t): 

X = XR(t) (18-44) 

To calculate the force F, the equation X = x R ( f ) needs to be differentiated twice, that is, a high-index 
problem. 
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18.2.4 Index Reduction 

We have informally shown some examples of reducing the index of a DAE system. However, we need 
general algorithms to be able to handle DAEs resulting from object-oriented models in general. The 
following two algorithms in combination compute the index and transform DAE systems to low-index 
system by index reduction. 

• Pantelides' algorithm can be used to compute the index and to determine which constraint 
equations should be differentiated, and how many times each equation has to be differentiated in 
order to reduce the index to one or zero. 

• The method of dummy derivatives for index reduction augments the DAE system with 
differentiated versions of equations, and replaces some of the differentiated variables with new 
algebraic variables called dummy derivatives. 

Before going into detail about Pantelides' algorithm, which is based on graph-theoretical methods, we 
briefly present an example of using the method of dummy derivatives for index reduction. 

18.2.4.1 The Method of Dummy Derivatives for index Reduction 
In two of the previous examples of DAE systems, Sections 18.2.3.2 and 18.2.3.3, we reduce the DAE 
index by replacing certain constraint equations by their differentiated counterparts. Such transformed DAE 
systems are mathematically equivalent to the original versions but have numerical difficulties since the 
numerical solution tends to drift and thereby not fulfill the original constraint equations. 

Such problems are largely avoided by the method of dummy derivatives mentioned above, which 
augments the DAE system with differentiated versions of constraint equations, that is, keeps the original 
constraint equations, and also replaces some differentiated variables with new algebraic variables. In the 
example DAE system (18-34) we first augment the system with a differentiated version of the third 
equation instead of replacing it, producing the following overdetermined system: 

V i + V i - l ! = 0 

+ v 2 ~ h = ° 

V l - V 2 = 0 (18-45) 

v , - v 2 = 0 

'i +i2=i 

The system is overdetermined since we have 5 equations and 4 variables. To add one additional 
variable we select one of the derivatives of the differentiated constraint equation to be replaced in all 
equations by a new variable called Vd2, known as a dummy derivative—hence the name of the method. 

0 

0 

0 (18-46) 

0 
1 

This new equation system is well determined with 5 equations and 5 variables, and has index 1. 

18.2.4.2 Bipartite Graphs 
Pantelides' algorithm and the dummy derivatives index reduction method use a so-called bipartite graph 
representation of equation systems. A bipartite graph representation has the following characteristics: 

• A set of nodes representing equations. 

Vj + V j - i , = 

v « / 2 + v 2 - » 2 = 
Vl~V2 = 

V\~Vd2 = 

h + h = 
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• A set of nodes representing variables. 
• A set of edges between equation nodes and variable nodes, where there is an edge between an 

equation node and a variable node if the variable or its derivative is present in the equation. 

The bipartite graph representation of the pendulum example is depicted in Figure 18-5. Since Modelica 
only supports syntax for the first-order derivatives we have rewritten equations (18-40) by introducing V̂  
and vy for the velocity components. 

x ^ eql< 
mvY = F 

L eq2< 

mvy=-^F-mg 
eq3 ( 

x2 + y2 = L2 
eq4 ( 

x=vx 

v = v eq5< y 

Figure 18-5. Pendulum model equations and the corresponding bipartite graph. 

Now we will use this bipartite graph representation when computing the DAE index. 

18.2.4.3 Structural DAE Index and Pantelides' Algorithm 
The structural index is a computationally efficient alternative to the previously presented differential index 
definition of DAE index. Computing the structural index is reduced to the problem of finding maximum 
weighted matchings of different cardinalities in the bipartite graphs that represent the DAE systems. This 
method is used by Pantelides' algorithm. The following definition of the structural index is closely related 
to Pantelides' algorithm: 

• The structural index istrof a DAE is the minimum number of times that any subset of equations in 
the DAE is differentiated using Pantelides' algorithm. 

Now, a method that computes or approximates the index based only on structural information needs to be 
provided. The algorithm for computing the structural index starts by constructing the bipartite graph 
representation of the DAE system. When considering the bipartite graph representation of the DAE system 
the numerical values of the coefficients are ignored (e.g., in an expression k*vx, the coefficient k is 
ignored when constructing the graph). We have the following definitions: 

• A matching Mn
G of size n associated to the bipartite graph G is a set of n edges in the graph G 

where no two edges have a common end node. 
• A perfect matching Mq covers all nodes in G, that is, all nodes are connected by exactly one edge. 
• A weight Wy is assigned to each edge (vl9Uj) in the graph G, where the weight is the order of the 

highest derivative of the variable Uj present in the equation V,. 
• The weight w(M) of a bipartite matching M i s defined as the sum of the weights wtJ of all edges 

included in the matching. 

An algorithm for computing the structural index and performing index reduction is presented below. 

Algorithm 18-1: Computing the Structural Index of a DAE and performing index reduction. 

Input Data: DAE system of differential algebraic equations 
Result: The numerical value of the structural index istr(G) 

begin: 
- Create a bipartite graph representation G of the DAE system. 
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-Assign a weight to each edge (v5,W^)in the graph G, where the weight is the order of the highest 
derivative of the variable ut present in the equation vs. 

- Find all perfect matchings M k of size n in the bipartite graph G . 

- maxMg = m a x ( w ( M k ) ) , where w(Mk ) = for all edges (ij) in Mk 

(i,j)eMk 

- Find all matchings Mk of size n-1 in the bipartite graph G . 

- maxMG~l = m a x ( w ( M k )) , where w(Mk ) = ^ wfJ for all edges (ij) in Mk 
(i,i)eMk 

- Compute the structural index as istr (G) = maxM?;1 - maxMn
G +1 

- while( im (G) > 1) do 
- Differentiate the equation corresponding to the equation node that is not covered by the maximum 

weighted matching Mk of size n-1. 
- Increase the weights of all adjacent edges of the differentiated equation node with 1. 
- Recompute the maximum weighted matching Mk of size n-1. 
- Decrement the structural index istr (G) = istr (G) -1 
end while 

end. 

Let us now consider the bipartite graph shown in Figure 18-6a associated to the DAE from (18-40) and 
below: 

Jf r mx = —F 
L 
y tt my = -j-F-mg 

x2 + y2 = L2 

Since the highest derivatives x,y, of second order, are present in the first and the second equation we 
assign a weight of 2 to the edges (eql, x) and (eq2, y). One perfect matching containing the edges is 
depicted with thick lines in Figure 18-6b, the other in Figure 18-6c. Edges with weights of 2 because of 
x,y have weight labels; all other weights are zero. Both perfect matchings have the same total weight = 
0+2+0 =2, i.e., the maximum total weight maxM3

G = 2. 

e q l © 2 O x 

eq2© 2 - q y 

(d) 

Figure 18-6. (a) Bipartite graph for the DAE system (18-40). (b) Perfect matching of size 3 of the bipartite 
graph, (c) The other perfect matching of size 3 of the bipartite graph, (d) Matching of size 2 where equation 
eq3 and variable F have been eliminated from the bipartite graph. 

The maximum weighted matching of cardinality equal to 2 is shown in Figure 18-6c and has a total 
weight equal to 4. The structural index is computed as part of the results from Algorithm 18-1: 

istr (G) = max(w(M£ - 1)) - max(w(M n
G ) ) + 1 = 4 - 2 + 1 = 3 

The value corresponds to the previous value for the differential index. 
If we differentiate equation (eq3) in (18-47), create a bipartite graph, and recompute the 

structural index we obtain the value 2 as it should be since the index has been reduced by one. 

(eql) 

(cq2) 

(eq3) 

(18-47) 
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18.2.5 Simulation of Hybrid Models Based on Solving Hybrid DAEs 

A Modelica simulation problem in the general case is a Modelica model that can be reduced to a hybrid 
DAE as described in 17.1, page 979, in the form of equations (17-5), (17-6), and (17-7), together with 
additional constraints on variables and their derivatives called initial conditions. This is a generalization 
compared to a simple simulation problem such as the simple circuit problem shown in Section 2.20.1, page 
64, that can be expressed as ODEs. If Modelica in the future is extended with partial differential equations 
(PDEs), the set of additional constraints will also include boundary conditions. 

The initial conditions prescribe initial start values of variables and/or their derivatives at simulation 
time=0 (e.g., expressed by the Modelica start attribute value of variables, with the attribute fixed = 
true), or default estimates of start values (the start attribute value with fixed = false). 

The simulation problem is well defined provided that the following conditions hold: 

• The total model system of equations is consistent and neither underdetermined nor overdetermined. 
• The initial conditions are consistent and determine initial values for all variables. 
• The model is specific enough to define a unique solution from the start simulation time to to some 

end simulation time t\. 

The initial conditions of the simulation problem are often specified interactively by the user in the 
simulation tool, for example, through menus and forms, or alternatively as default start attribute values 
in the simulation code. More complex initial conditions can be specified through initial equation 
sections in Modelica. 

18.2.5.1 Hybrid DAE Solution Algorithm—Event Iteration 
The general structure of the hybrid DAE solution algorithm is presented in Figure 18-7, emphasizing the 
main structure rather than details. 

First, a consistent set of initial values needs to be found based on the given constraints, which often 
requires the solution of an equation system consisting of the initial constraints. 

However, note that equations in clocked partitions need not be sorted with respect to each other 
(Section 13.6.13.1, page 715) since their inputs are known when handling a clock tick event and do not 
change during solution of clocked equations. Instead the clocked partitions can be solved independently 
with respect to each other and before event-handling and solution of the unclocked equations. 

Then the hybrid DAE solver checks whether any event conditions [c(te\ Section 17.1.2, page 980] in 
when-equations, when-statements, if-expressions, etc. have become true and therefore should trigger 
events. If there is no event, the continuous DAE solver is used to numerically solve the DAE until an event 
occurs or we have reached the end of the prescribed simulation time. 

If the conditions for an event are fulfilled, the event is fired, that is, the conditional equations associated 
with the event are activated and solved together with all other active equations. This means that the 
variables affected by the event are determined, and new values are computed for these variables. Then a 
new initial value problem has to be solved to find a consistent set of initial values for restarting the 
continuous DAE solver, since there might have been discontinuous changes to both discrete-time and 
continuous-time variables at the event. This is called the restart problem. Of course, firing an event and 
solving the restart problem may change the values of variables, which in turn causes other event conditions 
to become true and fire the associated events. 

This iterative process of firing events and solving restart problems is called event iteration, which must 
terminate before restarting the continuous DAE solver. See also short notes on event iteration in Section 
6.14.2.1, page 296, Section 13.2.6.7, page 623, and Section 18.2.5.3, page 1012. Event iteration is an 
example of a so-called fixed-point iteration procedure, that is, a procedure assumed to converge to a fixed 
point. 
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Figure 18-7. General structure of hybrid DAE solution algorithm. 

The overall structure of the hybrid DAE solution algorithm is displayed in Figure 18-7 and summarized 
below: 

1. Solve an initialization value problem of finding a consistent set of initial values before starting 
solution of the continuous part, equation (17-5) on page 980, of the hybrid DAE. 

2. If there are equations in clocked partitions these partitions are solved independently with respect to 
each other and before event-handling and solution of the unclocked continuous-time and discrete-
time equations. 

3. Solve the continuous DAE pari (17-5) of the hybrid DAE using a numerical DAE solver. During 
this phase the values of the discrete variables q as well as the values of the conditions c from the 
when-equations, -statements, if-expressions, and so on, of the model are kept constant. Therefore 
the funct ions/ . . . ) and g(...) in (17-5) are continuous functions of continuous variables, which 
fulfills the basic requirements of continuous DAE solvers. 

4. During solution of the continuous DAE, all relations rel(...) occurring in the conditions c are 
constantly monitored. If one of the relations changes value causing a condition to change value 
from false to true, the exact time instant of the change is determined, the continuous DAE 
solution process is halted, and an event is triggered. 

5. At an event instant, when an event has been fired, the total system of active equations (17-5), 
(17-6), and (17-7) (Section 17.1.3, page 981) is a mixed set of algebraic equations, which is solved 
for unknowns of type Real, Boolean, and Integer. 

6. After the processing of an event, the algorithm continues with step (1) of solving the restart 
problem of finding a consistent set of initial values. After this step solving the continuous part of 
the hybrid DAE is restarted if the check in (4) does not indicate new events to be processed in (5). 

Note that if a discrete-time variable v, which only changes at events, and its predecessor value pre (v) 
are only used in when-equations or when-statements, the Modelica compiler might mask event iteration for 
the variable v since v cannot change during event iteration. It is a "quality of implementation" of a 
Modelica tool to find the minimal loops for event iteration, i.e., not all parts of the model need to be 
reevaluated 

( ^ S t a r t ^ ) 

Find consistent 
initial v a l u e s ^ T 1 

Check 
Event Condi t ions 

\ E v e n t s ? / 

S o l v e cont inuous D A E Fire event and 
and advance t ime until s o l v e for cons i s tent 

event or e n d t ime initial/restart v a l u e s 

\ T i m e ? 
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18.2.5.2 Varying Structure of the Active Part of the Hybrid DAE 
Even though the total hybrid DAE system of equations is structurally time invariant, that is, the set of 
variables and the set of equations is fixed over time, it is the case that conditional equations in hybrid 
DAEs can be activated and deactivated. This means that some variables in the state vectors x and q as well 
as certain equations can be disabled or deactivated at run-time during simulation, as well as enabled or 
activated. Such activation or deactivation is caused by events. A disabled variable is kept constant whereas 
a disabled equation is removed from the total system of active equations that is currently solved. Thus the 
active part of the hybrid DAE can be structurally dynamic, i.e., at run-time change the number of active 
variables and equations in the DAE. 

18.2.5.3 Finding Consistent Initial Values at Start or Restart 
As we have stated briefly above, at the start of the simulation, or at restart after handling an event, it is 
required to find a consistent set of initial values or restart values of the variables of the hybrid DAE 
equation system before starting continuous DAE solution process. 

At the start of the simulation these conditions are given by the initial conditions of the problems 
(including start attribute equations, equations in initial equation sections, and so on; see Section 
8.4, page 363) together with the system of equations defined by (17-5), (17-6), and (17-7) (see page 981). 
The user specifies the initial time of the simulation, to, and initial values or guesses of initial values of 
some of the continuous variables, derivatives, and discrete-time variables so that the algebraic part of the 
equation system can be solved at the initial time t=to for all the remaining unknown initial values. 

At restart after an event, the conditions are given by the new values of variables that have changed at 
the event, together with the current values of the remaining variables, and the system of equations (17-5), 
(17-6), and (17-7). The goal is the same as in the initial case, to solve for the new values of the remaining 
variables. 

In both of the above cases, that is, at events, including the initial event representing the start of 
simulation, the process of finding a consistent set of initial values at start or restart is performed by the 
following iterative procedure, called event iteration. 

Known variables: x, u, t, p 

Unknown variables: i , y, q, qpre, c 

loop 
Solve the equation system (1) for the unknowns, with qpre fixed; 
if q = qpre then exit loop; 
Qpre g ; 

end loop 
In the above pseudocode we use the notation qpre corresponding to pre(g) in Modelica. 

18.2.5.4 Detecting Events During Continuous-time Simulation 
Event conditions c are Boolean expressions (condition expressions c(te), Section 17.1.2, page 980, or Real 
elementary relations, Section 6.11.1, page 287) depending on discrete-time or continuous-time model 
variables. As soon as an event condition changes from false to true, the event occurs. It is useful to 
divide the set of event conditions into two groups: conditions which depend only on discrete-time variables 
and therefore may change only when an event is fired, and conditions which also depend on continuous-
time variables and may change at any time during the solution of the continuous part of the DAE. We call 
the first group discrete-time conditions, and the second group continuous-time conditions. 

The first group causes no particular problems. The discrete-time conditions are checked after each 
event when the discrete-time variables might have changed. If some of the conditions change from false 
to true, the corresponding events are simply fired. 
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The continuous-time conditions, however, are more complicated to handle. Each Boolean event 
condition needs to be converted into a continuous function that can be evaluated and monitored along with 
the continuous-time DAE solution process. Most numerical software, including DAE solution algorithms, 
is designed to efficiently detect when the values of specified expressions cross zero. 

18.2.5.5 Crossing Functions 
To be able to detect when Boolean conditions become true, we convert each continuous-time Boolean 
event condition into a so-called crossing function. Such a function of time crosses zero when the Boolean 
condition changes from false to true. For example, the simple condition expression y>53 changes from 
false to true when y-53 crosses zero from being less than zero to being greater than zero, as depicted 
in Figure 18-8. The body of the corresponding crossing function is simply y-53. 

Figure 18-8. A boolean condition expression y>53, with its corresponding crossing function y-53 that 
crosses zero at the event, thereby determining the time of the event. 

The decision to react on changes of event conditions in Modelica from false to true rather than from 
true to false is arbitrary; it could also have been the other way around. 

18.2.5.6 Shattering—The Zeno Effect 
An interesting phenomenon called shattering, or the Zeno effect, occurs for certain models (e.g., our well-
known bouncing ball example, Section 2.15, page 55) where events caused by continuous-time conditions 
becoming true may occur arbitrarily close to each other. In the bouncing ball example the bouncing events 
occur closer and closer in time—which eventually causes problems for the Modelica crossing function 
event detection mechanism since some small "epsilon" step size is needed (floating point precision is 
always limited) to detect when the crossing function switches from being negative to positive. 

In our Modelica bouncing ball example, after some time (depending on the simulator), the ball falls 
through the ground. The reason for this behavior of the simulator is that the crossing function mechanism 
needs to determine the time instant when the height becomes negative. However, in order to detect this 
zero crossing the crossing function need to be computed also for a height of the ball that is actually not 
zero but a small negative number, say -l.e-10. After restart, the ball velocity of the ball may be so small 
that it never reaches the height=0 boundary and therefore no new event is generated. As a result, the ball 
flies a little bit higher, say up to -0.5e-10 and then falls down through the ground. 

18.2.5.7 Solution of Mixed Systems of Algebraic Equations 
The Modelica language allows mixed algebraic systems of equations where the unknown variables are of 
type Real, Integer, Boolean, or an enumeration. These systems of equations can be solved by a global 
fixed-point iteration scheme, similarly to event iteration, by fixing the Boolean, Integer, and/or 
enumeration unknowns during one iteration. It is a quality of implementation of a Modelica environment 

true 
y > 5 3 

y - 53 (a crossing function) 
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to solve these systems more efficiently, for example, by applying the fixed-point iteration scheme to a 
subset of the model equations. (?? give a reference to the solution scheme) 

18.2.6 State Variable Selection for Efficient Simulation 

In Section 18.2.2 we stated that the continuous-time part of a Modelica model can be represented as a 
differential algebraic equation system (DAE), (18-23), also shown here for convenience: 

g(x(t),m,y(t)Mt)) = o 
hl(x(t),u(t),y(t)) = o 

where x(t) is the set of dynamic variables, u(t) represents the input variables, and y(t) represents the output 
variables and/or algebraic variables. 

At least conceptually this DAE is transformed into ODE explicit state space form, e.g. (2-4) in Chapter 
2 and (18-49) below, to simplify solution: 

x(t) = f(x(t)Mt)) (lg_49) 

y(t) = h2(x(t),u(t)) 

However, for a DAE not all dynamic variables are needed in the iterative numerical solution of the 
equation system. There is a vector of state variables Xs(t), which is a subset of the vector x(t), possibly 
extended by some algebraic variables from y(t). The state variables are independent of each other, whereas 
the remaining dependent dynamic variables Xd(t) and remaning dependent algebraic variabales 
can be computed from the state variables. 

In Chapter 2 we illustrated this transformation for the simple circuit model (see Section 2.20.1, page 
64). We summarize our definition of state variables: 

• The set of state variables, Xs(t), is a subset of dynamic and algebraic variables that are 
"independent" of each other. The remaining dependent variables should be directly computable 
from the state variables. 

There are two important reasons for partitioning the equation system based on state variables: 

• Increased performance, since iterative numerical solution involving a small set of state variables is 
usually much faster than for a large number of variables. 

• Increased numerical stability with the right choice of state variables. 

Modelica environments usually have support for automatic selection of state variables. The selection is 
static if it does not change during simulation. Certain environments also have dynamic automatic selection, 
that is, the set of variables in Xs(t) can vary dynamically over time. Automatic selection of state variables 
is usually both efficient and reliable. Users should not in general need to bother about state variable 
selection. 

However, there are certain situations where it is valuable to be able to manually influence the state 
variable selection, as will be discussed in the next section. 

18.2.6.1 Manual State Selection Using the stateSelect Attribute 
As we remarked previously, both the efficiency and the numerical stability of a simulation is influenced by 
the selected set of state variables. 

The user has the possibility to manually influence the choice of state variables via the stateSelect 
attribute available for all variables of Real type. This attribute has a default value 
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StateSelect .default. it is an instance of the predefined stateselect enumeration type with five 
different enumeration values, which is defined as follows including informative comment strings: 

type StateSelect = enumeration( 
neve r "Do not use as state at all.", 
avoid "Use as state, if it cannot be avoided (but only if variable appears differentiated and no other 

potential state with attribute de fault, prefer, or always can be selected)." , 
de fault "Use as state if appropriate, but only if variable appears differentiated.", 
p r e f e r "Prefer it as state over those having the default value 

(also variables can be selected, which do not appear differentiated).", 
always "Do use it as a state." 

) ; 

For example, a variable x which we would like to influence regarding selection as a state variable can 
be declared with a modification of the stateSelect attribute. The choice StateSelect .prefer will 
increase its chances to be selected: 

Real x(stateSelect = StateSelect.prefer); 
The different alternatives in the StateSelect enumeration type have the following meaning: 

• never—a variable with this stateSelect value will never be selected as a state variable. 
• avoid—the variable should be avoided as a state variable, i.e., it is selected as a state variable only 

if it appears differentiated and there is no configuration of state variables without it with default, 
prefer, or always attribute values. 

• default—this is the default for all Real variables, and means that a variable might be a state 
variable if its derivative appears in the model. However, the variable does not necessarily become a 
state variable—this depends on the automatic state selection by the Modelica tool. 

• prefer—the variable is preferably selected as a state variable over those that have the attribute 
value default, avoid, or never. Note that the variable does not need to appear differentiated in 
the model in order to be used as a state variable. 

• always—the variable will always be selected as a state variable. 

There are several situations where manual state selection might be appropriate to avoid certain 
problems or to improve performance. Here we mention a few such cases: 

• Numerical cancellation—if there are both variables with relative quantities and variables with 
large absolute values, for example, absolute angle and relative angle, it is best to choose the 
variables with relative quantities as state variables by using StateSelect .prefer. The absolute 
variables can be computed from the relative ones, whereas the other way around can lead to 
numerical cancellation from differences between almost equal large numbers. 

• Function inversion—by using StateSelect.prefer for variables that usually occur as inputs to 
certain functions, for example, thermodynamic property functions, we can avoid numerical 
function inversion and thereby increase performance. 

• Expensive dynamic state selection—for example, in 3D mechanical systems with kinematic loops a 
static selection of state variables is not possible and dynamic state selection is often necessary to 
avoid singularities. However, for many common systems there is a known set of state variables that 
gives efficient computation and avoid singularities. For example, regarding mechanical joints the 
relative position and velocity variables of the driving mechanism is such a stable selection that can 
be chosen by using StateSelect. always. 

• Secondary sensor variables—adding secondary sensor variables just for measurement, for example 
to compute the velocity which is the derivative of the position, should not influence the selection of 
the set of state variables. Therefore sensor variables might be marked by the attribute value 
StateSelect.avoid. 
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However, in general the best advice is to let state selection be done automatically. Only if there are 
good reasons in special situations, should we use manual state selection. It is recommended not to use the 
state selection attribute values StateSelect. never and StateSelect .always in Modelica library 
classes, since it is hard to predict in what context a library class will be used. 

18.3 Selected Modelica-Related Research and Language Design 

The following is a short overview of a selection of Modelica-related research activities and current work 
on certain language extensions. The overview is by no means complete, and is by necessity and laziness 
biased toward activities in which the author of this book is involved. 

18.3.1 Debugging Equation-Based Models 

The development of today's complex products requires integrated environments and equation-based 
object-oriented declarative languages such as Modelica for modeling and simulation. The increased ease of 
use, the high level of abstraction, and the expressivity of such languages are very attractive properties. 
However, these attractive properties come with the drawback that programming and modeling errors are 
often hard to find. 

To address these issues we develop tools for static (compile-time) and dynamic (run-time) debugging 
methods for Modelica models including a debugger prototype that addresses several of those problems. 
The goal is an integrated debugging framework that combines classical debugging techniques with special 
techniques for equation-based languages partly based on graph visualization and interaction. An earlier 
static debugger addressed the problem of detecting the origin of over-constrained or under-constrained 
systems of equations. 

The static transformational debugging functionality addresses the problem that model compilers are 
optimized so heavily that it is hard to tell the origin of an equation during runtime. This work implements a 
method that is efficient with less than one percent overhead, yet manages to keep track of all the 
transformations/operations that the compiler performs on the model. 

Modelica models often contain functions and algorithm sections with algorithmic code. The fraction of 
algorithmic code is increasing since Modelica, in addition to equation-based modeling, is also used for 
embedded system control code as well as symbolic model transformations in applications using the 
MetaModelica language extension. 

The new OpenModelica dynamic algorithmic code debugger (Figure 19-5, page 1039) is the first 
Modelica debugger which can operate without high-level code instrumentation. Instead, it communicates 
with a low-level C-language symbolic debugger to directly extract information from a running executable, 
set and remove breakpoints, etc. This is made possible by the new bootstrapped OpenModelica compiler 
which keeps track of a detailed mapping from the high level Modelica code down to the generated C code 
compiled to machine code. 

The dynamic algorithmic code debugger is operational, supports both standard Modelica data structures 
and tree/list data structures, and operates efficiently on large applications such as the OpenModelica 
compiler with more than 100 000 lines of code. 

The attractive properties of high-level, object-oriented, equation-based languages come with the 
drawback that programming and modeling errors are often hard to find. For example, in order to simulate 
models efficiently, Modelica simulation tools perform a a large number of symbolic manipulation in order 
to reduce the complexity of models and prepare them for efficient simulation. By removing redundancy, 
the generation of simulation code and the simulation itself can be sped up significantly. The cost of this 
performance gain is error-messages that are not very user-friendly due to symbolic manipulation, renaming 
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and reordering of variables and equations. For example, the following error message says nothing about 
the variables involved or its origin: 

Error solving nonlinear system 2 
time = 0.002 
residual[0] = 0.288956, x[0] = 1.105149 
residual[1] = 17.000400, x[l] = 1.248448 
It is usually hard for a typical user of the Modelica tool to determine which symbolic manipulations 

have been performed and why. If the tool only emits a binary executable this is almost impossible. Even if 
the tool emits source code in some programming language (typically C), it is still quite hard to know what 
kind of equation system you have ended up with. This makes it difficult to understand where the model 
can be changed in order to improve the speed or stability of the simulation. Some tools allow the user to 
export the description of the translated system of equations, but this is not enough. After symbolic 
manipulation, the resulting equations no longer need to contain the same variables or structure as the 
original equations. 

This work develops a combination of static and dynamic debugging techniques to address these 
problems. The dynamic (run-time) debugging allows interactive inspection of large executable models, 
stepping through algorithmic parts of the models, setting breakpoints, inspecting and modifying data 
structures and the execution stack. 

The static (compile-time) transformational debugging efficiently traces the symbolic transformations 
throughout the model compilation process and provides explanations regarding to origin of problematic 
code. A typical Modelica compiler frontend transforms the source model to flat equations involving a new 
symbolic manipulations such as simplifications and constant expression evaluation. The compiler backend 
may perform equation system optimization that changes structure, replace variables, symbolically 
differentiates equations, and so on. The debugger uses this to trace a run-time error position to the source 
code (Figure 18-9). 
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Figure 18-9. The OpenModelica equation model debugger viewed from OMEdit. 
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We show a small example of how the debugger can trace symbolic operations, based on the following 
two equations in the original model: 

0 = y + der(x * time * z); 
z = 1.0; 

The final transformed equation result that is used for the actual executing simulation appears as 
follows: 

der(x) = ((-y) - x) / time 

Even for this small example it is difficult to understand the relation from this equation to the original 
source equations. Fortunately, the debugger explains the chain of transformations: 

(1) substitution: 

y + der(x * (time * z)) 

y + der(x * (time * 1.0)) 

(2) simplify: 

y + der(x * (time * 1.0)) 

y + der(x * time) 

(3) expand derivative (symbolic diff): 

y + der(x * time) 

y + (x + der(x) * time) 

(4) solve: 

0.0 = y + (x + der(x) * time) 

der(x) = ((-y) - x) / time 

An integrated debugger approach (Figure 18-10) is currently being developed where the origin mapping 
provided by the static transformational debugging is used by the dynamic debugger to relate run-time 
errors to the original model sources. During the simulation phase, the user discovers an error in the 
plotted results, or an irrecoverable error is triggered by the run-time simulation code. In the former case, 
the user marks either the entire plot of the variable that presents the error or parts of it and starts the 
debugging framework. The debugger presents an interactive dependency graph with respect to the 
variable with the wrong value or the expression where the fault occurred. The dependency edges in 
interactive dependency graph are computed using the transformation tracing previously mentioned. The 
nodes in the graph consist of all the equations, functions, parameter value definitions, and inputs that 
were used to calculate the wrong variable value, starting from the known values of states, parameters 
and time. 

In the future, declarative debugging methods that semi-automatically locate bugs may also be included 
into this debugger. 
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Figure 18-10. Overview of the integrated debugging approach. 

18.3.2 Functional Safety 

Functional safety is a key concern in almost all industrial sectors, including vehicles, medical equipment, 
and power plants. The functional correctness of a component is the guarantee that the component behaves 
the way it should and fulfills all the functional requirements of the system. In order to ensure the functional 
correctness of a component it is currently necessary to perform a series of rigorous tests on the target 
device in the appropriate environment context. Skipping this manual phase and allowing for a component 
to be tested in an early phase, based on a model of its design specification without an actual hardware 
implementation, would make a significant contribution to reducing the labor, time, and money required to 
develop the component. 

In our approach to Functional Safety verification such aspects are integrated into a model-based 
development framework (Figure 18-11 left) developed in OpenModelica (Section 19.3.1, page 1035). 

Both model components and requirements are modeled by model classes in an integrated model. 
Requirements are simply a special kind of model that formalize what is required from one component by 
another in order to perform the task correctly. These components are interconnected through their 
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interfaces. Based on such an integrated model, a dependency graph is generated by analyzing the relations 
of the functionality provided to the different components of the model according to the specifications by 
the requirement model components. 

Probabilities are then introduced at the leaf nodes. An inference is performed over the Bayesian 
Network which supports analysis how the whole system is affected by a failure. The acronyms AVA, 
UNA and NF in the tree nodes represent Available, Unavailable and No Fault respectively. In the scenario 
in (Figure 18-11 right), the probability of a component's success and failure is analyzed based on fault 
injection in leaf nodes. Thus in (Figure 18-11 right) a fault has been injected into the Magnetic Valve node 
which lies at the bottom right of the figure. After inference it is possible to see that the fault is propagated 
to all the nodes that are dependent on the Magnetic Valve node. 

Based on the inference from the Bayesian Network the FMEA table can be generated with the 
following information: Failed Component, Failure Mode, Potential Effect of Failure and Severity of the 
Failure. Such a table helps the designers or engineers to adapt their design in order to prevent the 
possibility of the failure mode. 

System Model in 
Modelica 

Bayesian Network 

System Model in 
Modelica enriched 
with requirements 

Figure 18-11. Left: Integrated model-based development architecture including functional safety analysis. 
Right. Bayesian network generated from an integrated model with both behavior and requirements. A fault 
was inserted in the rightmost node, 2nd lower row, which is propagated upwards with certain probabilities. 

Several improvements can be made to the current approach. For example, in the current 
implementation only the basic information is output that is needed to generate a useful FMEA. Additional 
possibilities are to add more specific fields like Severity Rating, Occurrence Rating and Detection Rating 
and eventually these three parameters will lead to computing the Risk Priority Number (RPN). Another 
extension would be the ability to express fault probabilities directly in the Modelica model. 

18.3.3 Cyber-Physical Hardware-Software Modeling with ModelicaML 

One of the most important current paradigm shifts occurring in the design of products may well be the 
adoption of common system models, as a foundation for product/system design. This allows for a much 
more effective product development process since a system can be tested in all stages of design. Thus, an 
integrated holistic environment approach of model-driven development (Figure 18-12) generalizes model-
driven approaches to include most aspects of product development. The key concepts are: 



C hapter 18 Techniques and Research 1021 

• A holistic whole-product cyber-physical model-driven rapid development and design environment for 
both software and hardware, also including support for product business processes. 

• Standardized model representation of products primarily based on open standards such as Modelica and 
UML. 

Figure 18-12. Vision of unified modeling framework for cyber-physical model-driven product development 
from platform independent models (PIM) to platform specific models (PSM). 

The OPENPROD project, running 2009-2012, realized a large-scale prototype of such an integrated 
model-based framework, of which ModelicaML (Section 18.3.3.1, page 1021) and OpenModelica (Section 
19.3, page 1033) were important components. 

18.3.3.1 Integrated UML-Modelica for Cyber-Physical Whole-Product Modeling 
Complex products are increasingly made of both software and hardware components which are closely 
interacting. Thus, modeling tools and processes need to support co-design of software and hardware in an 
integrated way. Currently, UML is the dominant graphical modeling notation for software, whereas 
Modelica is the major object-oriented mathematical modeling language for component-oriented modeling 
of complex physical systems, e.g., systems containing mechanical, electrical, electronic, hydraulic, 
thermal, control, electric power or process-oriented subcomponents. 

For these reasons we developed the first generation prototype UML-Modelica-SysML integrated 
modeling environment as a ModelicaML profile integrated in Eclipse as a plug-in. The first generation 
profile reuses some artifacts from the System Modeling Language (SysML) profile, and combines the 
major UML diagrams with Modelica graphic connection diagrams. Requirement, equation, and simulation 
diagrams are also supported in an integrated way. 

The second generation ModelicaML profile prototype (Figure 19-7, page 1040) is more comprehensive 
and more precisely defined. It is based directly on UML and Modelica, implemented using the Papyrus 
UML tool, generates executable Modelica code, and also supports activity diagrams, state machines, and 
requirements diagrams. It is possible to model integrated cyber-physical software/hardware models, 
specify requirements, generate executable Modelica code, and simulate the model while verifying (Section 
18.3.4, page 1021) if the requirements are fulfilled or violated. 

A related effort called SysML-for-Modelica performed by the OMG SysML-Modelica task force is to 
define an executable SysML subset with precise semantics by mapping it to Modelica. A version of this 
mapping has been defined and accepted by OMG as a new standard. 

18.3.4 Requirement Verification 

What kind of artifacts is required for design verification? The main purpose of design verification is to 
collect evidence that a given design will satisfy the requirements imposed. Naturally, there will be system 
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designs to be modeled. Furthermore, to determine whether a given system design violates an individual 
requirement, natural-language requirements will need to be formalized in order to be processable by 
computers and usable for simulations. 

It is crucial to separate the experimental description from the system model. To analyze designs under 
different conditions, deterministic scenarios will need to be modeled. This is the minimum set of modeling 
artifacts that is required for design verification. Let us list these modeling artifacts and briefly define their 
purpose: 

• Requirement Model. Each requirement is represented by a model that indicates requirement 
violation at any simulated time instant. 

• System Design Model. A particular design alternative or version is represented by a model to be 
used for verification against requirements. 

• Scenario Model: Scenario defines the course of actions to be simulated. It emulates the user or 
external events that will be experienced by the system. 

• Verification Model. Requirements, design alternatives, and scenarios can be combined in different 
ways. Such combinations are called verification models. They are used to perform design 
verification and to report on requirement violations. 

Figure 18-13 shows the basic steps of the vVDR method, the roles involved, and the artifacts created. 
The nature of this approach is iterative. 

Role 
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System 
Designer 
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System 
Designer 
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Create Verification 
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& I Analyze Results 
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SM IjJ Scenario Models 
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Figure 18-13. Overview of the vVDR method for virtual Verification of Designs against Requirements. 

The sequential presentation from Figure 18-13 should merely indicate that typically first the system 
development process requirements are elicited, then designs are produced, and finally tests are defined. 
However, in a concurrent engineering environment these activities may overlap and be rerun iteratively. 

Figure 18-14 shows the flow of information in the vVDR method for virtual Verification of Designs 
against Requirements. Requirement models are the output of the formalize requirements activity and are 
the input to the formalize designs activity. Design and requirement models are the input to the formalize 
scenarios activity that outputs scenario models. All models are the input to the create verification models 
activity, which outputs verification models to be used for analysis in the execute and create report step. 
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Finally the report generated together with all the generated models become, the input into the analyze 
results activity, not shown in Figure 18-14. 

mmi 
l l j P ' 

Execute and 
Create Report 

Figure 18-14. Information flow in the vVDR method . 

Based on this and related work there is ongoing work, at the time of this writing in the MODRIO 
project, on integrating such requirement specifications into the Modelica language standard. 

18.3.5 Automatic Generation of Parallel Code from Modelica 

Using parallel computers is one way of speeding up simulations. However, to actually achieve speed-up 
the code must be parallelized—divided into tasks which can run mostly in parallel. 

Figure 18-15. (a) Task graph with communication cost on the edges, node number in the upper half of a 
circular node and node, computation cost in the lower half, (b) Clustered task graph where the tasks have 
been clustered into two groups with zero internal communication cost and two remaining communication 
edges between the clusters. 

Another important condition for speed-up is that costly communication between the tasks is minimized. 
The ratio of work to communication must be sufficiently high. If the amount of work in certain tasks is too 
small they need to be clustered into bigger tasks, provided that the communication to other tasks is not 
increased. An example of a task graph together with a clustered version of the same task graph is depicted 
in Figure 18-15. 

Which parts of the simulation code contain code that can be parallelized? There are essentially three 
kinds of functional parallelism in an ODE/DAE equation-based simulation: 
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• Parallelism over the numerical method. A small amount of parallelism can be extracted from 
certain numerical solvers, e.g. Runge-Kutta solvers. 

• Parallelism over time. This is mostly applicable to discrete simulations and to a much lesser extent 
to continuous simulations which develop sequentially over time. 

• Parallelism over the system of equations, which is the approach taken in Figure 18-15. This means 
parallelizing the right-hand sides, that is, the code in the function / in an ODE system and the 
function g in a DAE system (for example, see equation (17-5)). 

In Figure 18-15, the automatic parallelizer builds a detailed task graph of all arithmetic operations and 
function calls in the right-hand sides. The edges represent data-flow dependences. The most difficult 
problem in this automatic parallelization effort is to find good algorithms for task clustering combined 
with good task scheduling. Task duplication can also be used to avoid some communication. 

Two other approaches to parallelism in Modelica are: 

• Coarse-grained parallelism, by manually partitioning a model into parts connected by weak 
coupling, e.g., through TLM connections or similar mechanisms. This allows the computations in 
the model parts to be de-coupled to some extent, and also run different solvers at different rates. 
For example, each model partition can be allocated to a processor and run in parallel for some time 
before needing to synchronize with the rest of the model. 

• Data parallelism, which concerns performing the same operations on many data elements, which 
typically occur in large arrays. A Modelica language extension called ParModelica for data-parallel 
algorithmic programming with Modelica has been designed and implemented in OpenModelica, 
compiling to multi-core GPUs or CPUs. 

For example, data parallelism can be exploited using ParModelica with parallel loops, parallel functions, 
and allocation of variables at the best place in the memory hierarchy. Two small examples of ParModelica 
programs are shown below. The first is a parallel matrix multiplication using a parallel par for loop : 

parfor i in l:m loop 
for j in l:pm loop 
ptemp := 0; 
for h in l:pm loop 

ptemp := multiply(pA[i,h], pB[h,j])+ptemp; // multiply may be parallel 
end for; 
pC[i,j] : = ptemp; 

end for; 
end parfor; 
This example shows the ability to declare variables at different places of the OpenCL memory 

hierarchy: in the host memory, in the global memory, or in the local memory. 

function parvar 
protected 

Integer m = looo; // Host Scalar 
Integer A[m,m]; // Host Matrix 
Integer B[m,m]; // Host Matrix 
II global and local device memories 
parglobal Integer pm; // Global Scalar 
parglobal Integer pA[m,m];// Global Matrix 
parglobal Integer pB[m,m];// Global Matrix 
parlocal Integer pn; // Local Scalar 
parlocal Integer pS[m]; // Local Array 

end parvar; 
The left-hand side of Figure 18-16 shows an NVIDIA GPU architecture suitable for data-parallel 

programming. The right part of the same figure shows the speedup of matrix multiplication programmed in 
ParModelica and executed on both a multi-core CPU and a GPU for different problem sizes. 



C hapter 18 Techniques and Research 1025 

Streaming 
Multiprocessor 

Instruction Unit 

Data cache 

SP SP 

SP SP 

SP SP 

SP SP 

SFU SFU 

Shared memory 

Graphics Processing Unit 

SM J SM | SM SM | 

' SM | SM | SM SM | 

SM | SM | SM SM | 

1 I 1 I 
Off-chip DRAM 

S p e e d u p 

L14.67 
• CPU E5520 • GPU M2050 

35.95 
24.76 26.34 

m4 61 11 
64 128 256 512 

Parameter M (Matrix sizes M x M ) 

Figure 18-16. Left. Simplified schematic of NVIDIA GPU architecture, consisting of a set of Streaming 
Multiprocessors (SM), each containing a number of Scalar Processors (SP) with fast private memory and on-
ship local shared memory. The GPU also has off-chip DRAM. Right. Speedup for matrix multiplication 
written in ParModelica, Intel 16-core CPU and Nvidia 448 core GPU. 

18.3.6 Meta-Modeling and Meta-Programming 

Meta-programming is programming for the sake of constructing and modifying programs. Meta-modeling 
is to use a modeling language to model another language, for example, its semantics (Section 19.3.5, page 
1045). Several research activities and results related to this topic are part of the MetaModelica language 
design, implementation, and use (Section 6.15, page 296). A closely related effort in the same area is the 
MKL language (Modeling Kernel Language). The idea is to define a small kernel language and be able to 
express most other modeling language constructs in a library using kernel language primitives. 

18.3.7 Summary 

As indicated in the introduction, this chapter covers three topics: numeric and symbolic techniques for 
simulation, i.e. solution of equation systems, for example, resulting from Modelica models, some Modelica 
language extension design activities, and a selection of ongoing Modelica-related research. 

We started the presentation by an introductory discussion of numeric and symbolic solution techniques. 
Then followed an overview of basic numeric ODE solution techniques, followed by DAE solution 
techniques building on the ODE techniques. We discussed the index of DAE systems, where high index 
can lead numerical problems. Symbolic techniques for index computation and index reduction were also 
presented based on bipartite graph representations of equation systems. Then we presented an algorithm 
skeleton for solving hybrid DAE systems including automatic detection and handling of events together 
with solution of the continuous part of the DAE system between events. We also discussed automatic and 
manual selection of state variables when solving DAEs. 

Finally, research activities were presented in debugging, functional safety, cyber-physical hardware-
software modeling, requirement verification, automatic generation of parallel code, meta-modeling and 
meta-programming. 

18.4 Literature 

Here we have grouped the literature references for this chapter according to topic. First we present the 
references for numerical methods, graphic algorithms, and symbolic manipulation and analysis of equation 
systems: 
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• Numerical methods and solution methods—a short introduction to the solution of ODEs is given in 
(Ljung and Glad 1994), whereas a more in depth presentation is given in (Brenan, Campbell, and 
Petzold 1989; Hairer, Norsett, and Wanner 1991). Stiff solvers and models are covered in (Aiken 
1985), and methods for stiff and DAE problems in (Hairer and Wanner 1991). Using explicit and 
implicit Euler methods for Modelica, as well as the mixed mode integration technique, are 
discussed in (Schiela and Olsson 2000). Sparse Matrix methods are covered by (Duff, Erisman, 
and Reid 1986). A set of common ODE solvers—ODEPACK—is presented in (Hindmarsh 1983). 
The DAE solver DASSL is described in (Petzold 1982). The DSBLOCK format for interfacing to 
several solvers is first presented in (Otter 1992). A very comprehensive overview of numeric and 
symbolic methods for simulation is available in (Cellier and Kofman 2006). 

• Graph algorithms and theory is presented in (Dolan and Aldous 1993; Gibbons 1985; Gilli and 
Garbely 1996; Murota, 1987; Murota, 2000; Nuutila and Soisalon-Soininen 1993). Tarjans 
algorithm for finding strongly connected components in graphs is described in (Tarjan 1972). 
Bipartite graph coverings and matchings are described in (Dulmage and Mendelsohn 1963; 
Hopcroft and Karp 1973; Uno 1997; Uno 2001). 

• Symbolic manipulation, analysis of equations, and symbolic/numeric solution methods is presented 
in (Leitold and Katalin 2001; Maffezzoni, Girelli, Lluka 1996; Mah 1990; Ramirez 1998; Ramos, 
Angel, and Ignasi 1998; Unger, Kroner, and Marquardt 1995). The notion of DAE index is 
presented in (Gunter and Feldmann 1995; Reissig, Martinson, and Barton 2000). Work on index 
for partial differential equations has recently appeared (Martinson and Barton 2000), (Elmqvist 
2003b). Tearing is discussed in (Mah 1990; Elmqvist and Otter 1994). Dynamic state selection is 
described in (Mattsson, Olsson, and Elmqvist 2000). A very comprehensive overview of numeric 
and symbolic methods for simulation is available in (Cellier and Kofman 2006). 

Some of the ongoing work on extending the Modelica language and related technology is presented in 
the following articles: 

• Meta-programming, i.e., programming for the sake of constructing and modifying programs, is a 
common use of Lisp systems (Sandewall 1978; Steele 1990), and Mathematica (Wolfram 1997). 
Meta programming in general is discussed in (Sheard 2001). Ongoing work regarding meta 
programming of Modelica models is described in (Aronsson, Fritzson, Saldamli, Bunus, and 
Nystrom 2003). The MetaModelica language extension is presented in more detail in (Fritzson, 
Pop, and Aronsson 2005; Pop and Fritzson 2006; Fritzson and Pop 2011; Fritzson, Pop, and 
SjGlund 2011). The compilation of the whole OpenModelica compiler using itself (i.e., 
bootstrapping) is described in (Sjolund, Fritzson, and Pop 2011; SjGlund, Fritzson, and Pop 2014). 

Literature references and further reading on the research topics mentioned in this chapter are listed below: 
• Declarative debugging for Modelica is first described in (Bunus and Fritzson 2003b) whereas such 

debugging for other languages is presented in (Shapiro 1982; Fritzson 1993) (Fritzson, Shahmehri, 
Kamkar, and Gyimothy 1992; Kamkar 1993; Nilsson and Fritzson 1994; Shahmehri, Kamkar and 
Fritzson 1995; Nilsson 1998). Static debugging of over-constrained and under-constrained 
equation systems in Modelica: (Bunus and Fritzson 2002a; Bunus and Fritzson 2002b; Bunus 
2002; Bunus and Fritzson 2002c; Bunus and Fritzson 2003a; Bunus 2004). 

• Integrated debugging, algorithmic Modelica debugging, and transformational debugging are 
described in ( ). 

• Hardware-Software cyber-physical modeling, for example, with ModelicaML— There are two 
generations of the ModelicaML UML-Modelica profile and Eclipse plug-in. The first generation 
which partially integrates SysML and Modelica is described in (Pop, Akhvlediani, and Fritzson 
2007a; Pop, Akhvlediani, and Fritzson 2007b; Pop, Baiu#, and Fritzson 2007; Pop 2008; Suss, 
Fritzson, and Pop 2008). The second generation includes integrated UML-Modelica software-
hardware modeling, simulation, requirement modeling and verification (Schamai 2009; Schamai, 
Fritzson, Paredis, and Pop 2009; Schamai, Helle, Fritzson, and Paredis 2010; Myers, Schamai, 
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and Fritzson 2011; Schamai, Fritzson, Paredis, and Helle 2012; Liang, Schamai, Rogovchenko, 
Sadeghi, Nyberg, Fritzson 2012; Tundis, Rogovchenko-Buffoni, Fritzson, and Garro 2013; 
Tundis, Rogovchenko-Buffoni, Fritzson, Garro, and Nyberg 2013; Schamai 2013). Compiling 
UML State machines to Modelica: (Schamai, Pohlmann, Fritzson, Paredis, Helle, Strobel 2010; 
Schamai, Fritzson, and Paredis 2013; Schamai 2013). Information about Papyrus is found at 
(Eclipse-Papyrus 2013). Hardware-software co-modeling with Modelica and Behavior trees: 
(Myers, Fritzson, and Dromey 2008; Myers, Fritzson, and Dromey 2011; Myers, Schamai, and 
Fritzson 2011), and the Behavior tree approach in (Dromey 2003). The OMG SysML-for-
Modelica is described in (Paredis, Bernard, Burkhart, de Koning, Friedenthal, Fritzson, Rouquette, 
and Schamai 2010; OMG SyM 2012). Model-based product development and the OPENPROD 
project (Fritzson 2010; ITEA2-OPENPROD 2012; ITEA2-OPENPROD 2013; ITEA2-MODRIO 
2013). 

• Semantics specification and generation of compilers for modeling languages and Modelica—See 
(Kahn 1987; Pettersson 1999; Fritzson 1998; K&gedal and Fritzson 1998; Fritzson, Pop, and 
Aronsson 2005; Pop and Fritzson 2006; Pop and Fritzson 2007; Broman and Fritzson 2007; 
Fritzson, Pop, Broman, and Aronsson 2009; Broman and Fritzson 2008; Broman and Fritzson 
2009; Broman 2010; Fritzson and Pop 2011; Fritzson, Pop, and SjGlund 2011; Broman, Fritzson, 
Hedin, Akesson 2012; Fritzson and Pop 2014). 

• Parallel simulation—Automatic parallelization of systems of equations and expression trees in 
equation-based Modelica models is described in (Aronsson and Fritzson 2002; Aronsson 2002; 
Aronsson and Fritzson 2003; Aronsson and Fritzson 2004; Aronsson and Fritzson 2005; Aronsson 
2006; Lundvall and Fritzson 2007a; Lundvall and Fritzson 2007b; Lundvall and Fritzson 2007c; 
Lundvall, Stavaker, Fritzson, and Kessler 2008a; Lundvall, Stavaker, Fritzson, and Kessler 2008b; 
Lundvall and Fritzson 2009; Maggio, Stav&ker, Donida, Casella, Fritzson 2009; Casella 2013). 

• Parallel simulation—data-parallel methods (Stavaker, Rolls, Guo, Fritzson, and Scholz 2010; 
Ostlund, Stavaker, and Fritzson 2010; Stav&ker and Fritzson 2010; Moghadam, Gebremedhin, 
Stav&ker, and Fritzson 2011; Gebremedhin, Moghadam, Fritzson, and Stav&ker 2012). 

• Parallel simulation—manual parallelization, for example, the ParModelica language extension 
(Gebremedhin, Moghadam, Fritzson, Stavaker 2012), and the NestStepModelica language 
extension (Kessler and Fritzson 2006). The BEAST simulator is described in (Fritzson, Fritzson, 
Nordling, and Persson 1997; Nordling 1996; Nordling 2003). Explicit coarse-grained 
parallelization of partitioned Modelica models, for example, using TLM connectors, is described in 
(Nystrom and Fritzson 2006; Sjolund, Braun, Fritzson, and Krus 2010; Kessler, Schamai, Fritzson 
2010; Sjolund, Gebremedhin, and Fritzson 2013). 

• Functional safety; uncertainty in models - Functional safety and FMEA computations from 
models: (Hossain, Nyberg, Rogovchenko and Fritzson 2012; Hossain, Rogovchenko, Nyberg, and 
Fritzson 2012; Rogovchenko-Buffoni, Tundis, Hossain, Nyberg, and Fritzson 2013; Tundis, 
Rogovchenko-Buffoni, Garro, Nyberg, and Fritzson 2013). Uncertainties in Modelica models: 
(Bouskela, Jardin, Benjelloun-Touimi, Aronsson, and Fritzson 2011) 

• Verification—model checking, that is, static compile-time model verification: (Clarke, Grumberg, 
and Peled 2000), and verification in hardware design (Kern and Greenstreet 1999). For dynamic 
verification against scenarios, see ModelicaML. 

• System identification in general including grey box identification—(Ljung 1999), and 
identification for linear DAEs (Gerdin, Glad, Ljung 2003). 

• Diagnosis—a Modelica-like language extended with uncertainty interval computations is described 
in (Lunde 2000). Some approaches to model-based diagnosis in automotive applications are given 
in (Nyberg and Nielsen 1997; Frisk and Nyberg 2001; Nyberg 2002). 
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Chapter 19 

Environments 

Several programming environments are currently available for the design and simulation of Modelica 
models. Certain environments also have facilities for post-processing results of simulations, 3D 
visualization of mechanical systems simulation, CAD integration, special support for real-time and 
hardware-in-the-loop simulation, and support for integrated modeling, simulation, post processing, and 
documentation. The first full Modelica environment to appear was Dymola, soon followed by 
MathModelica, renamed in 2012 to Wolfram SystemModeler. 

The OpenModelica environment was the first open source Modelica environment. Its development 
started in 1997 resulting in the release of a flattening front end for a core subset of Modelica 1.0 in 1998. 
After a pause of four years, the open source development resumed in 2002. The Open Source Modelica 
Consortium, which supports the long-term development of OpenModelica, was created in 2007, initially 
with seven founding organizations. The scope and intensity of the open source development has gradually 
increased. A the time of this writing, the consortium has forty-five supporting organizational members. 

19.1 General Background 

Traditionally, simulation and accompanying activities have been expressed using heterogeneous media and 
tools, with a mixture of manual and computer-supported activities: 

• A simulation model is traditionally designed on paper using traditional mathematical notation. 
• Simulation programs are written in a low-level programming language and stored on text files. 
• Input and output data, if stored at all, are saved in proprietary formats needed for particular 

applications and numerical libraries. 
• Documentation is written on paper or in separate files that are not integrated with the program files. 
• The graphical results are printed on paper or saved using proprietary formats. 

When the result of the research and experiments, such as a scientific paper or engineering design 
report, is written, the user normally gathers together input data, algorithms, output data and its 
visualizations as well as notes and descriptions. One of the major problems in simulation development 
environments is that gathering and maintaining correct versions of all these components from various files 
and formats is difficult and error-prone. 

A general vision of a solution to this set of problems is to provide an integrated computer-supported 
modeling and simulation environment that enables the user to work effectively and flexibly with 
simulations. Users will then be able to prepare and run simulations as well as investigate simulation 
results. Several auxiliary activities accompany simulation experiments: requirements are specified, models 
are designed, documentation is associated with appropriate places in the models, input and output data as 
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well as possible constraints on such data are documented and stored together with the simulation model. 
The user should be able to reproduce experimental results. Therefore, input data and parts of output data as 
well as the experimenter's notes should be stored for future analysis. 

19.1.1 Integrated Interactive Programming Environments 

An integrated interactive modeling and simulation environment is a special case of programming 
environments with applications in modeling and simulation. Thus, it should fulfill the requirements both 
from general integrated interactive environments and from the application area of modeling and simulation 
mentioned in the previous section. 

The main idea of an integrated programming environment in general is that a number of programming 
support functions should be available within the same tool in a well-integrated way. This means that the 
functions should operate on the same data and program representations, exchange information when 
necessary, resulting in an environment that is both powerful and easy to use. An environment is interactive 
and incremental if it gives quick feedback, for example, without recomputing everything from scratch, and 
maintains a dialogue with the user, including preserving the state of previous interactions with the user. 
Interactive environments are typically both more productive and more fun to use than non-interactive ones. 

There are many things that one wants a programming environment to do for the programmer or 
modeler, particularly if it is interactive. What functionality should be included? Comprehensive software 
development environments are expected to provide support for the major development phases, such as: 

• Requirements analysis 
• Design 
• Implementation 
• Maintenance 

A pure programming environment can be somewhat more restrictive and need not necessarily support 
early phases such as requirements analysis, but it is an advantage if such facilities are also included. The 
main point is to provide as much computer support as possible for different aspects of systems 
development, to free the developer from mundane tasks so that more time and effort can be spent on the 
essential issues. The following is a partial list of integrated programming environment facilities, some of 
which are already mentioned in (Sandewall 1978), that should be provided for the programmer or modeler: 

• Administration and configuration management of program modules and classes, and different 
versions of these. 

• Administration and maintenance of test examples and their correct results. 
• Administration and maintenance of formal or informal documentation of program parts, and 

automatic generation of documentation from programs. 
• Support for a given programming methodology, for example, top-down or bottom-up. For 

example, if a top-down approach should be encouraged, it is natural for the interactive 
environment to maintain successive composition steps and mutual references between those. 

• Support for the interactive session. For example, previous interactions should be saved in an 
appropriate way so that the user can refer to previous commands or results, go back and edit those, 
and possibly re-execute. 

• Enhanced editing support, performed by an editor that knows about the syntactic structure of the 
language. It is an advantage if the system allows editing of the program in different views. For 
example, editing of the overall system structure can be done in the graphical view, whereas editing 
of detailed properties can be done in the textual view. 

• Cross-referencing and query facilities, to help the user understand interdependences between parts 
of large systems. 
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• Flexibility and extensibility, for example, mechanisms to extend the syntax and semantics of the 
programming language representation and the functionality built into the environment. 

• Accessible internal representation of programs. This is often a prerequisite to the extensibility 
requirement. An accessible internal representation means that there is a well-defined representation 
of programs that are represented in data structures of the programming language itself, so that user-
written programs may inspect the structure and generate new programs. This property is also 
known as the principle of program-data equivalence. 

19.1.2 Integrated Computational Documents 

There is currently a strong trend in integrating documents and computation. This is most visible in web 
technology where computational facilities are increasingly being embedded within web pages. However, 
facilities for user programming and mathematical modeling are still largely absent in web pages. 

19.1.2.1 Interactive Notebooks with Literate Programming 
Mathematica pioneered the idea and implementation of active interactive electronic notebooks. The 
Mathematica notebook facility is an interactive WYSIWYG (What-You-See-Is-What-You-Get) realization 
of Literate Programming, a form of programming where programs are integrated with documentation in 
the same document. The original implementation of Literate Programming was a noninteractive system 
integrated with the document processing system LaTex. 

Mathematica has one of few interactive WYSIWYG systems so far realized for Literate Programming, 
which also might be called Literate Modeling. Such documents that may contain technical computations 
and text, as well as graphics. Hence, these documents are suitable to be used for simulation scripting, 
model documentation and storage, model analysis and control system design, etc. 

Later, several other computer algebra software product makers have included variants of electronic 
notebooks in their products. More recently an open source simple notebook facility for literate Modelica 
modeling called OMNotebook has been developed for the OpenModelica environment. This includes the 
DrModelica notebook document within which most Modelica examples in this book can be run 
interactively. 

19.1.2.2 Tree Structured Hierarchical Document Representation 
Traditional documents, for example, books and reports, essentially always have a hierarchical structure. 
They are divided into sections, subsections, paragraphs, and so on. Both the document itself and its 
sections usually have headings as labels for easier navigation. This kind of structure is also reflected in 
electronic notebooks. Every notebook corresponds to one document (one file) and contains a tree structure 
of cells. A cell can have different kinds of contents, and can even contain other cells. The notebook 
hierarchy of cells thus reflects the hierarchy of sections and subsections in a traditional document. 

One idea is to store Modelica packages including documentation and test cases as notebooks, for 
example, as in Figure 19-1. This is useful primarily as interactive teaching material, which was pioneered 
by Mathematica notebooks in teaching mathematics but also for subjects like physics. The possibility of 
embedding cells with Modelica models in notebooks was part of the earlier MathModelica environment, 
and is still supported by the OpenModelica notebook facility. The current Wolfram SystemModeler tool 
supports cells with Mathematica programs, model analysis and simulation commands, but not Modelica 
models which instead are kept in separate files. 
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Figure 19-1. The package MyPackage in a Mathematica notebook (a) and as Modelica text (b). 

19.1.2.3 Program Cells, Documentation Cells, and Graphic Cells 
A Mathematica notebook cell can include other cells and/or arbitrary text or graphics. In particular a cell 
can include a code fragment or a graph with computational results.The contents of cells can for example 
include one of the following forms, a subset of what is actually provided: 

• Executable Mathematica programs and fragments which can be used for analysis, compilation and 
execution of simulation models. 

• Mathematical formulas in the traditional mathematical twodimensional syntax. 
• Text/documentation, for example, used as comments to executable formal model specifications. 
• Dialogue forms for specification and modification of input data. 
• Result tables. The results can be automatically represented in (live) tables, which can even be 

automatically updated after recomputation. 
• Graphical result representation, for example, with 2D vector and raster graphics as well as 3D 

vector and surface graphics. 
• 2D structure graphs, that for example are used for various model structure visualizations such as 

connection diagrams and data structure diagrams. 

The less powerful OMNotebook notebook facility in OpenModelica supports a few of these 
representations, for example, cells with executable Modelica model classes, commands, documentation, 
pictures, and 2D graphs. 

19.1.3 Vision of Integrated Interactive Environment for Modeling and 
Simulation 

Our vision for an integrated interactive modeling and simulation environment is to fulfill essentially all the 
requirements for general integrated interactive environments combined with the specific needs for 
modeling and simulation environments, for example: 

• Specification of requirements, expressed as documentation and/or mathematics 
• Design of the mathematical model 
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• Symbolic transformations of the mathematical model 
• A uniform general language for model design, mathematics, and transformations 
• Automatic generation of efficient simulation code 
• Execution of simulations 
• Evaluation and documentation of numerical experiments 
• Graphical presentation 

Our vision for, and design of, the earlier MathModelica environment and later the OpenModelica 
environment was to a large extent inspired by earlier experience in research and development of integrated 
incremental programming environments, for example, the DICE system and the ObjectMath environment, 
together with many years of intensive use of advanced integrated interactive environments such as the 
InterLisp system and Mathematica. The InterLisp system was actually one of the first really powerful 
integrated environments, and still beats many current programming environments in terms of powerful 
facilities available to the programmer. It was also the first environment that used graphical window systems 
in an effective way, even before the Smalltalk environment and the Macintosh window system appeared. 

Mathematica is a more recently developed integrated interactive programming environment with many 
similarities to InterLisp, containing comprehensive programming and documentation facilities, accessible 
intermediate representation with program-data equivalence, graphics, and support for mathematics and 
computer algebra. Mathematica is more developed than InterLisp in several areas, for example, syntax, 
documentation, and pattern-matching, but at the time of this writing was slightly less developed than 
several Eclipse-based environments in programming support facilities such as object oriented 
programming and modeling. The advanced facilities provided by Mathematica was the reason to make it 
an important part of the MathModelica environment. More recently the MathModelica environment was 
further developed into the current Wolfram SystemModeler. 

19.2 Common Characteristics 

Most Modelica environments have a number of common characteristics. Models need to be entered and 
edited, translated to a form that can be executed/simulated, and equation systems to be solved. Therefore, 
essentially all Modelica environments contain variants of the following modules: 

• A Modelica compiler or interpreter, translating Modelica to some interpreted form such as byte 
code or abstract syntax trees, or to a compiled language such as C, C++, etc., which is further 
translated into executable machine code by standard compilers. 

• An execution and run-time module. This module executes executable code from translated 
Modelica expressions, functions, and equations. The module include numerical solvers for solution 
of the resulting equation system as well as event handling facilities for the discrete and hybrid parts 
of the Modelica language. 

• An editor for textual model editing. This can be any standard text editor, or a special-purpose built-
in text editor. 

• A graphical model editor. This is a graphical connection editor for component based model design 
by connecting instances of Modelica classes. 

19.3 OpenModelica 

The computational and simulation goals of the OpenModelica tool development include, but are not 
limited to, the following: 
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• Providing a complete open source Modelica-based industrial-strength implementation of the 
Modelica language, including modeling and simulation of equation-based models, system 
optimization, and additional facilities in the programming/modeling environment. 

• Providing an interactive computational environment for the Modelica language. It turns out that 
with support of appropriate tools and libraries, Modelica is very well suited as a computational 
language for development and execution of both low level and high level numerical algorithms, 
e.g. for control system design and for solving nonlinear equation systems. 

The research related goals and issues of the OpenModelica open source implementation of a Modelica 
environment include, but are not limited to, the following: 

• Development of a complete formal specification and reference implementation of Modelica, 
including both static and dynamic semantics. Such a specification can be used to assist current and 
future Modelica implementers by providing a semantic reference, as a kind of reference 
implementation. 

• Language design, for example, to further extend the scope of the language, e.g. for use in 
diagnosis, structural analysis, system identification, integrated product development with 
requirement verification, etc., as well as modeling problems that require partial differential 
equations. 

• Language design to improve abstract properties such as expressiveness, orthogonality, 
declarativity, reuse, configurability, architectural properties, and so on. 

• Improved implementation techniques, for example, to enhance the performance of compiled 
Modelica code by generating code for parallel hardware. 

• Improved debugging support for equation based languages such as Modelica, to make them even 
easier to use. 

• Improved optimization support, with integrated optimization and modeling/simulation. Two 
kinds: parameter-sweep optimization based on multiple simulations; direct dynamic optimization 
of a goal function without lots of simulations, for example, using collocation or multiple 
shooting. 

• Easy-to-use specialized high-level (graphical) user intetfaces for certain application domains. 
• Visualization and animation techniques for interpretation and presentation of results. 
• Integrated requirement modeling and verification support. This includes the ability to enter 

requirements formalized in a kind of Modelica style, and to verify that the requirements are 
fulfilled for selected models under certain usage scenarios. 

The OpenModelica effort started by developing an rather complete formal specification of the 
Modelica language. This specification was developed in Operational Semantics, which still is the most 
popular and widely used semantics specification formalism in the programming language community. It 
was initially used as input for automatic generation of the Modelica translator implementations which are 
part of the OpenModelica environment. The RML compiler generation tool (our implementation of 
Operational Semantics) was used for this task. 

However, inspired by our vision of integrated interactive environments (Section 19.1.1, page 1030) 
with self-specification of programs and data, and integrated modeling and simulation environments 
(Section 19.1.3, page 1032), in 2005 we designed and implemented an extension to Modelica called 
MetaModelica (Section 6.15, page 296 and Section 19.3.4, page 1044) in order to support language 
modeling and specification (including modeling itself) in addition to the usual physical systems modeling 
applications of Modelica. 

This language extension has a Modelica-style syntax but was initially implemented on top of the RML 
compiler kernel. The declarative specification language primitives in RML with single-assignment pattern 
equations, possibly recursive case records (in MetaModelica called uniontypes) and match expressions, fit 
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well into Modelica since it is a declarative equation-based language. In 2006 our whole formal 
specification of Modelica static and translational semantics, at that time about 50,000 lines, was 
automatically translated into MetaModelica. After that, all further development of the symbolic processing 
parts of the OpenModelica compiler (the run-time parts were mainly written in C), was done in 
MetaModelica. 

At the same time we embarked on an effort to completely integrate the MetaModelica language 
extension into the Modelica language and the OpenModelica compiler. This would enable us to support 
both Modelica and MetaModelica by the same compiler, to allow modeling the Modelica tool and the 
OpenModelica compiler using its own language, to get rid of the limitations of the RML compiler kernel 
and the need to support two compilers, and to base additional tools such as our Modelica debugger on a 
single compiler. 

Such an ability of a compiler to compile itself is called compiler bootstrapping. This development 
turned out to be more difficult and time-consuming than initially expected; moreover, developers were not 
available for a few years due resource limitations and other priorities. Finally, bootstrapping of the whole 
OpenModelica compiler was achieved in 2011. Two years later, in 2013, all our OpenModelica compiler 
development was shifted to the new bootstrapped compiler, after automatic memory reclamation (garbage 
collection), separate compilation, and a new efficient debugger had been achieved for our new compiler 
platform. 

19.3.1 The OpenModelica Environment 

At the time of this writing, the interactive OpenModelica environment consists of the following 
components: 

• A graphical and textual model editor, OMEdit. This is a graphical connection editor for component 
based model design by connecting instances of Modelica classes. The editor also provides text 
editing. Moreover, the OMEdit GUI provides a graphical user interface to simulation and plotting 
(OMPlot). 

• An interactive session handler, OMShell, that parses and interprets commands (Section E.l , page 
1119) and Modelica expressions for evaluation. The session handler also contains simple history 
facilities, and completion of file names and certain identifiers in commands. There is also a Python 
variant of the interactive session handler that supports the same commands in Python (Section E.2, 
page 1133). 

• A Modelica compiler, OMC, translating Modelica to lower level code such as C code, with a symbol 
table containing definitions of models, functions, and variables. Such definitions can be 
predefined, user-defined, or obtained from libraries. 

• An execution and run-time module. This module currently executes compiled binary code from 
translated models and functions. It includes numerical solvers as well as event handling facilities 
for the discrete and hybrid parts of the Modelica language. 

• Textual model editors. Any text editor can be used. Among the OpenModelica tools, text editing of 
models is supported by OMEdit, by the OpenModelica MDT Eclipse plug-in, and by the 
interactive electronic book OMNotebook. 

• An interactive electronic book, OMNotebook. This tool provides an active electronic book facility 
supporting chapters, sections, execution of simulation models, plotting, etc. One book, 
DrModelica, for teaching Modelica to the beginner, is automatically opened by default. The user 
can define his/her own books. This tool is useful for developing interactive course material. 

• An optimization module using parameter sweeps, called OMOptim. This tool performs 
optimizations by running several simulations for different parameter settings while searching for 
the optimum value of a user-specified goal function. 
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• A dynamic optimization module. Direct optimization (without running lots of simulations) of a 
whole solution trajectory using collocation or multiple shooting. A goal function can be formulated 
to be optimized under the constraints of a selected model. 

• ModelicaML Eclipse plug-in. This plug-in contains a Modelica-UML profile that allows 
integrated requirement verification and cyber-physical hardware-software modeling by 
combining hardware modeling in Modelica with software modeling using UML The tool 
contains a UML to Modelica translator that makes it possible to simulate combined UML-
Modelica models. Moreover, automatic (dynamic) verification of formalized requirements 
against selected scenarios is supported. See also Section 19.3.1.5, page 1039, and Section 18.3.3, 
page 1020. 

• MDT Eclipse plug-in. The MDT (Modelica Development Tooling) Eclipse plug-in for Modelica 
library and model compiler textual development, project support, cross referencing, building 
executables, debugging, etc. 

• 3D animation visualization. This is provided by a library, Modelica3D, which is distributed 
together with OpenModelica. 

• FMI Import and Export. A model (including models from other tools, even non-Modelica ones) 
can be imported or exported according to the FMI (Functional Mockup Interface) standard. 

• MetaModelica language extension. This is used for modeling/specification of languages (including 
the Modelica language) and for Modelica programming of model transformations. Related to this, 
there are ongoing discussions in the Modelica Design group about possible extensions to the 
Modelica language which would enable definition some language constructs in a Modelica core 
library instead of being hardcoded in the compiler. 

• ParModelica language extension. This is used for explicit algorithmic parallel Modelica 
programming with compilation to both multi-core CPU platforms and GPGPU platforms 
(including NVIDIA). 

An interactive session with examples of using OpenModelica can be found in Section E.l .3, page 1129. 

Figure 19-2. The architecture of the OpenModelica environment. Arrows denote data and control flow. 
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19.3.1.1 OMC - the OpenModelica Model Compiler 
OMC is the OpenModelica compiler that translates Modelica models into C code (or Java or C# code 
using experimental code generators), which is compiled and executed to perform simulations. See 
Sections 19.3.2, 19.3.3, 19.3.4, and 19.3.5 for various aspects regarding the compilation process and 
generating the OpenModelica compiler from formal specifications in RML (earlier) or MetaModelica 
(currently). See also Section 6.15296, page 296, for an overview of the MetaModelica language. At the 
time of this writing, the OpenModelica compiler (OMC) is generated from a specification of about 
twohundred thousand lines of MetaModelica. Moreover, OMC is able to compile itself, that is, it is 
bootstrapped. 

19.3.1.2 OMEdit - the OpenModelica Graphical Model Editor and Simulator 
OMedit is the OpenModelica graphic model editor (Figure 19-3). In addition to graphic model editing and 
browsing, it also provides model text editing, simulation, and plotting capabilities. 

It is possible to re-run a simulation without re-compilation, e.g., after changing parameter settings 
for non-structural parameters (Section 17.1.5, page 983). This can be done by popping up a re-
simulation menu by right-clicking on the simulation result in the plot variable browser as shown in 
(Figure 19-3). 

A OMftW • OpmMmMk* Connection Editor i. • i •«ui ^ ' ^ P I B W W W I ^ ^ W P P ^ ^ ^ ^ j j f c j B l 
F* U l A n Smutolwo FMI XML Tocfc H*tp 

" f f H H f ^ h 0 • q i V A CB' ;«o"» IB-

Figure 19-3. OMEdit on the Modelica. Thermal. FluidHeat Flow. Examples. ParallelPumpDropOut 
model. Center: Model connection diagram. Upper right: information window. Lower right, plot variable 
browser will a small popup re-simulate menu on top. 
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Using OMEdit to perform simulations and plot simulation results is depicted in Figure 19-4 below. 

1 m — — — m a w 

Figure 19-4. Plotting simulation results using OMEdit. Upper right, information window. Lower right: plot 
variable browser. Bottom, message browser window. 

19.3.1.3 The OpenModelica Debugger 
The OpenModelica debugger (Figure 19-5, Figure 18-9) is available for use either from OMEdit or from 
the MDT Eclipse plug-in. The debugger provides traditional debugging of the algorithmic part of 
Modelica, such as setting breakpoints, starting and stopping execution, single-stepping, inspecting and 
changing variables, inspecting all kinds of standard Modelica data structures as well as MetaModelica data 
structures such as trees and lists. It also provides additional capabilities for debugging equation-based 
models, such as showing and explaining the symbolic transformations performed on selected equations on 
the way to executable simulation code (Section 18.3.1, page 1016). Moreover, a performance analyzer tool 
is also included in OpenModelica and integrated with the debugger. 
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Figure 19-5. The OpenModelica algorithmic code debugger viewed from the MDT Eclipse plug-in. A 
breakpoint has been set in the function which is called from the small model called SimulationModel. 

19.3.1.4 OMNotebook and DrModelica 
OMNotebook (Figure 19-6) is book-like interactive user interface to OpenModelica primarily intended for 
teaching and course material. It supports sections and subsections to any level, hiding and showing 
sections and cells, interactive evaluation and simulation of Modelica models and plotting results. 
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Figure 19-6. The OMNotebook electronic notebook showing part of the DrModelica document (course-
material) for learning Modelica. Left: The DrModelica document start page. Right: The vanDerPol sub-
document showing a cell with a Modelica model, simulation commands, and plot results. 

19.3.1.5 ModelicaML Modelica-UML Profile and Requirement Verification 
ModelicaML (Figure 19-7) is an Eclipse plug-in and Modelica-UML profile for the description of system 
architecture and system dynamic behavior. It is based on an extended subset of the OMG Unified 
Modeling Language (UML) as well as Modelica, and is designed for Modelica code generation from 
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graphical models such as state machines and activity diagrams, supporting hardware/software co-modeling 
and system requirement verification against selected scenarios. 

Figure 19-7. The ModelicaML Eclipse plug-in and UML-Modelica profile for integrated software-hardware 
modeling and requirements verification. 

19.3.1.6 MDT (Modelica Development Tooling) Eclipse Plug-in 
The MDT (Modelica Development Tooling) Eclipse plug-in is an Eclipse-based textual development 
environment for Modelica and MetaModelica. It provides the usual facilities for software development 
such as browsing, building, cross referencing, syntax checking, and showing useful information such as 
types, function signatures, etc. 

Figure 19-8. The OpenModelica MDT (Modelica Development Tooling) Eclipse plug-in. 

MDT is primarily used for development of medium to large scale Modelica projects, such as Modelica 
libraries written in standard Modelica and the OpenModelica compiler (currently containing more than 200 
packages) written in MetaModelica. 

Hovering 
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19.3.1.7 PySimulator for Post-processing and Analysis 
PySimulator is a post-processing and analysis package in Python, for browsing, plotting, analysis, 
scripting, etc. It uses the OpenModelica OMPython subsystem to communicate with the OpenModelica 
compiler for simulation and access to model information. 
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Figure 19-9. The PySimulator analysis and post-processing package, developed by DLR and distributed 
together with OpenModelica. 

19.3.1.8 Design Optimization 
Two forms of design optimization tool support are available with OpenModelica: a) the traditional 
parameter sweep static design optimization using many simulation runs, or b) direct dynamic optimization 
of a full trajectory. The first method is supported by the OMOptim tool (Figure 19-10). 

The second approach, dynamic optimization, formulates an optimization problem directly on a whole 
trajectory which is divided into trajectory segments (Figure 19-11, left) whose shapes are determined by 
coefficients which are initially not determined. 

Figure 19-10. The OpenModelica OMOptim tool for parameter sweep optimization. Left: selecting 
variables, objectives, parameters. Right. A result plot with a Pareto optimization of two goal functions. 
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During the optimization process these coefficients are gradually assigned values which make the 
trajectory segments adjust shape and join into a single trajectory with a shape that optimizes the goal 
function under the constraints of fulfilling the model equations. Figure 19-11 (right) shows the relative 
speedup of performing dynamic optimization of a goal function for a small BatchReactor model using 
parallel versions of the dynamic optimization methods multiple shooting and multiple collocation running 
on a multi-core computer. The Ipopt software is used for part of the optimization mechanism. 

ipopt [batchReactor] 

I multiple shooting • multiple collocation 

Figure 19-11. Left: Dynamic optimization formulates the whole trajectory in terms of trajectory segments 
whose shapes are adjusted during optimization. Right. Relative speedups and computation times of the 
complete dynamic optimization process for the BatchReactor example model using parallel multiple 
shooting or multiple collocation in OpenModelica on 1,2,4, and 8 cores. 

19.3.1.9 3D Visualization 
Three dimensional visualization and animation can be performed in conjunction with simulation by using 
the Modelica3D library. Objects are assigned 3D shapes. Their position and orientation can change over 
time as a result of the simulation. 
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Figure 19-12. Examples of using the Modelica3D library with OpenModelica. Left. A 2D and 3D plot of a 
simple pipe network. Right: A 3D image of a bouncing ball. 

19.3.2 The Modelica Model Translation Process 

The Modelica model translation process by the OpenModelica compiler is schematically depicted in 
Figure 19-13 below. See also Section 2.20, page 63. The Modelica source code is first translated to a so-
called flat model. This phase includes type checking, performing all object-oriented operations such as 
inheritance, modifications etc., and fixing package inclusion and lookup as well as import statements. The 
flat model includes a set of equations declarations and functions, with all object-oriented structure 
removed apart from dot notation within names. This process is a partial symbolic instantiation of the 
model (code instantiation), called elaboration in subsequent sections. 
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The next two phases, the equation analyzer and equation optimizer, are necessary for compiling models 
containing equations. Finally, C code is generated which is fed through a C compiler (or alternatively Java 
or C# code and corresponding compilers in experimental versions of the code generator) to produce 
executable code. 

Figure 19-13. Translation stages from Modelica code to executing simulation. The optimizer stage is 
improving the code but not really optimizing it in the mathematical sense. 

19.3.3 Modelica Static and Dynamic Semantics 

The complete semantics, that is, meaning, of the constructs in any programming language, also including 
the Modelica language, is usually divided into two major parts: 

• Static semantics 
• Dynamic semantics 

The static semantics specifies compile time issues. These include static type checking, equivalence 
between different representations of the program and the expansion/flattening of the model into a form 
with inheritance and modifications expanded, elaboration of the object-oriented model representation, 
conversion between different levels of the intermediate form, and so on. Such a static semantics is 
currently given by our formal specification of Modelica. 

It should be noted that the semantics specification for an equation based language such as Modelica 
differs from semantics specifications of ordinary programming languages, since Modelica equation based 
models are not programs in the usual sense. Instead Modelica is primarily a modeling language 
(specification language) used to specify relations between different objects in the modeled system. 

The dynamic semantics specifies the run-time behavior including the equation solving process during 
the simulation, execution of algorithmic code, and additional run-time aspects of the execution process. 
We do not currently have a formal specification of the Modelica dynamic semantics, but intend to develop 
such a specification in the future. The current dynamic run-time behavior is based on hand implementation 
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in the C programming language (or in C# and Java) of the primitives referred to by the Modelica low level 
DAE equation form intermediate representation. 

19.3.3.1 An Example Translation of Models into Equations. 
As an example, the Modelica model B below is translated into equations, where model B refers to model A: 

model A 
Real x,y; 

equation 
x = 2 * y; 

end A; 

model B 
A a; 
Real x[ 10 In-

equation 
x[5] = a.y; 

end B ; 
The resulting equations appear as follows: 

B.a.x = 2 * B.a.y 
B.x[5] = B.a.y 
The object-oriented structure is mostly lost which is why we talk about a flat set of equations, but the 

variable names in the equations still give a hint about their origin. 
What the translator actually does is translating from the Modelica source code to an internal 

representation of the resulting set of equations. This internal representation is then further translated, for 
example, to C code. For functions, declarations, and interactively entered expressions, the C code can be 
generated fairly directly, whereas for equations several symbolic optimization stages must be applied 
before generating the C code. See also examples in Section 2.20, page 63 and Section 17.1.6, page 984: 

19.3.4 Automatic Generation and Formal Specification of Translators 

The implementation of compilers and interpreters for nontrivial languages is a complex and error prone 
process, if done by hand. Therefore, formalisms and generator tools have been developed that allow 
automatic generation of compilers and interpreters from formal specifications. This offers two major 
advantages: 

• High level descriptions of language properties, rather than detailed programming of the translation. 
• High degree of correctness of generated implementations. The high level specifications are more 

concise and easier to read than a detailed implementation in some programming language 

The syntax of a programming language is conveniently described by a grammar in a common format, 
such as BNF, and the structure of the lexical entities, usually called tokens, are easily described by regular 
expressions. However, when it comes to the semantics of a programming or modeling language, things are 
not so straightforward. 

The semantics of the language describes the "meaning" of any particular program written in the 
language, that is, what should happen when the program is executed, or evaluated in some form. 

Many programming language semantic definitions are given by a standard text written in English 
which tries to give a complete and unambiguous specification of the language. Unfortunately, this is often 
not enough. Natural language is inherently not very exact, and it is hard to make sure that all special cases 
are covered. One of the most important requirements of a language specification is that two different 
language implementers should be able to read the specification and make implementations that interpret 
the specification in the same way. This implies that the specification must be exact and unambiguous. 
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For this reason, formalisms for writing formal specifications of languages have been invented. These 
formalisms allow for a mathematical semantic description, which as a consequence is exact, unambiguous 
and easier to verify. One of the most widely used formalisms for specifying semantics is called 
Operational Semantics. A computer processable Operational Semantics specification language called 
RML for Relational Meta Language, with a compiler generation tool, was previously been developed by 
Peter Fritzson's group at Linktiping university. It was initially used for the formal specification of 
Modelica in the OpenModelica project. 

19.3.4.1 Compiler Generation 
Writing a good compiler is not easy. This makes automatic compiler generation from language 
specifications very interesting. If a language specification is written in a formal manner, all the information 
needed to build the compiler is already available in a machine-understandable form. Writing the formal 
semantics for a language can even be regarded as the high-level programming of a compiler. 

The different phases of the compilation process are shown in Figure 19-14. More specifically, it shows 
the translation process of a Modelica translator, which compiles, or rather translates, the Modelica source 
file. All the parts of the compiler can be specified in a formal manner, using different formalisms such as 
regular expressions, BNF grammars, and Operational Semantics specifications expressed in 
MetaModelica. At all stages, there is a tool to convert the formalism into an executable compiler module. 
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Figure 19-14. Phases in generating the OpenModelica compiler modules from different kinds of 
specifications. The semantics module performs elaboration of the models including type checking and 
expansion of class structures, resulting in a set of equations, algorithms and functions. 

19.3.5 The Formal Specification of Modelica in MetaModelica 

We have previously mentioned that a compiler generation system and language called RML was initially 
used to produce the OpenModelica compiler from an Operational Semantics language specification. This 
specification was later automatically translated from RML to MetaModelica syntax. Since fall 2006 the 
Modelica language specification has been developed in MetaModelica. See Section 6.15296, page 296, for 
an overview of the MetaModelica language 

The generated compiler is produced in ANSI C with a translation speed and quality comparable to 
hand-written translators. 

The specification (i.e., the source code of the compiler written in MetaModelica) is separated into a 
number of modules, to separate different stages of the translation, and to make it more manageable. This 
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section will very briefly cover some of the most important parts of the specification. In all, the 
specification currently (2013) contains more than one hundred fifty thousand lines of code. 

19.3.5.1 Parsing and Abstract Syntax 
The parser is generated from a grammar by a parser generator tool. This parser builds an abstract syntax 
tree (AST) from the source file, using the AST data types in a MetaModelica module called Absyn. The 
parsing stage is not really part of the semantic description, but is of course necessary to build a real 
translator. 

19.3.5.2 Rewriting the AST 
The abstract syntax tree (AST) closely corresponds to the parse tree and keeps the structure of the source 
file. This has several disadvantages when it comes to translating the program, and especially if the 
translation rules should be easy to read for a human. For this reason a preparatory translation pass is 
introduced which translates the AST into an intermediate form, called SCode, also a tree structrue. Besides 
some minor simplifications the SCode structure differs from the AST in a number of respects, including 
the following: 

• All variables are described separately. In the source and in the AST several variables in a class 
definition can be declared at once, as in Real x, y [ 17 ] ; . In the SCode this is represented as two 
unrelated declarations, as if it had been written Real x; Real y [ 17 ];. 

• Class declaration sections. In a Modelica class declaration the public, protected, equation and 
algorithm sections may be included in any number and in any order, with an implicit public section 
first. In the SCode these sections are collected so that all public and protected sections are 
combined into one section, while keeping the order of the elements. The information about which 
elements were in a protected section is stored with the element itself. 

One might have thought that more work could be done at this stage, like analyzing expression types 
and resolving names. But due to the nature of the Modelica language, the only way to know anything 
about how the names will be resolved during elaboration is to do a more or less full elaboration. It is 
possible to analyze a class declaration and find out what the parts of the declaration would mean if the 
class was to be elaborated as-is, but since it is possible to modify much of the class while elaborating it 
that analysis would not be of much use. 

19.3.5.3 Elaboration and Instantiation 
To be executed, classes in a model need to be instantiated, that is, (code) and data objects are created 
according to the class declaration. There are two phases of instantiation: 

• The symbolic, or compile time, phase of instantiation (code instantiation) is usually called 
elaboration or flattening. No data objects are created during this phase. Instead the symbolic 
internal representation of the model to be executed/simulated is transformed, by performing 
inheritance operations, modification operations, aggregation operations, and so on. 

• The creation of the data object, usually called instantiation (data instantiation) in ordinary object-
oriented terminology. This can be done either at compile time or at run-time depending on the 
circumstances and choice of implementation. 

The central part of the translation is the code symbolic instantiation or elaboration of the model. The 
convention is that the topmost model in model instance hiearchy implicitly given in the source file is 
elaborated, which means that the equations in that model declaration, and all its subcomponents, are 
computed and collected. 

The elaboration of a class is done by looking at the class definition, elaborating all subcomponents and 
collecting all equations, functions, and algorithms. To accomplish this, the translator needs to keep track of 
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the class context. The context includes the lexical scope of the class definition. This constitutes the 
environment which includes the variables and classes declared previously in the same scope as the current 
class, and its parent scope, and all enclosing scopes. The other part of the context is the current set of 
modifiers which modify things like parameter values or redeclare subcomponents. 

model M 
constant Real c = 5; 
model Foo 
parameter Real p = 3; 

Real x; 
equation 

x = p * sin(time) + c; 
end Foo; 

Foo f(p = 17) ; 
end M; 
In the example above, elaborating the model M means elaborating its subcomponent f, which is of type 

Foo. While elaborating f the current environment is the parent environment, which includes the constant 
c. The current set of modifications is (p = 17), which means that the parameter p in the instance f will be 
17 rather than 3. 

19.3.6 Summary of OpenModelica 

The first version of the OpenModelica environment was to a large extent based on a Modelica compiler 
automatically generated from a formal Operational Semantics specification of Modelica. This formal 
specification was later converted into a specification in the MetaModelica language with a Modelica-style 
syntax. However, the tool still supports optionally writing operational semantics in its traditional rule-
based syntax, which is internally converted to the MetaModelica representation. 

The current implementation of MetaModelica is integrated with Modelica in the OpenModelica 
compiler which is bootstrapped, that is, it can model itself and compile itself. Later extensions to the 
OpenModelica tool environment are: a graphical connection editor and text editor (OMedit), a Modelica 
debugger, an Eclipse plugin (MDT), a free electronic notebook (OMNotebook), an UML-Modelica profile 
and Eclipse plugin (ModelicaML) for hardware-software integrated modeling and requirements 
verification, and a subsystem for model-based optimization (OMOptim). 

19.4 Wolfram SystemModeler 

Wolfram SystemModeler, previously called MathModelica, together with Mathematica is an integrated 
interactive development environment for advanced system modeling and simulation. The environment 
integrates Modelica-based modeling and simulation with graphic design, advanced scripting facilities, 
integration of program code, test cases, graphics, and documentation. Mathematical type setting and 
symbolic formula manipulation are provided via the integration with Mathematica. The user interface 
consists of a graphical model editor and electronic Mathematica notebooks. 

The model editor is a graphical user interface in which models can be assembled using model 
components from a number of Modelica libraries. Mathematica notebooks are interactive documents that 
combine simulation and technical computations with text, graphics, tables, code, and other elements, i.e., 
so called literate programming. The accessible Mathematica internal form allows the user to extend the 
system with new functionality, as well as performing queries on the model representation and write scripts 
for automatic model generation. Furthermore, extensibility of syntax and semantics provides additional 
flexibility in adapting to unforeseen user needs. 
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19.4.1 Mathematica and Modelica 

It turns out that Mathematica is an integrated programming environment that fulfils many of our 
requirements of an integrated interactive modeling and simulation environment. However, by itself, 
Mathematica previously lacked object-oriented modeling and structuring facilities of models as well as 
generation of efficient simulation code needed for effective modeling and simulation of large systems. 

These modeling and simulation facilities are now integrated with Mathematica by the Wolfram 
SystemModeler, which provides access to the Modelica language and the Modelica Standard Library. 
Mathematica provides a structured representation of mathematics and facilities for programming symbolic 
transformations, whereas the Modelica provides language elements and structuring facilities for object-
oriented component based modeling. 

The current Wolfram SystemModeler system builds on experience from the design of its immediate 
predecessor the MathModelica environment, the earlier ObjectMath modeling language and environment 
integrated with Mathematica, as well as results from object-oriented modeling languages and systems such 
as Dymola and Omola, which together with ObjectMath and a few other object-oriented modeling 
languages have provided the basis for the design of Modelica. 

The ObjectMath environment was originally designed as an object-oriented extension of Mathematica 
augmented with efficient code generation and a graphic class browser. The Wolfram SystemModeler 
product is a successor of the MathModelica product which in many ways can be seen as a logical 
successor to the ObjectMath research prototype. 

19.4.2 The Wolfram SystemModeler Integrated Interactive Environment 

The Wolfram SystemModeler system consists of three major subsystems that are used during different 
phases of the modeling and simulation processj as depicted in Figure 19-15 below. 

Wolfram SystemModeler 
Modeling and Simulation 

Environment 

Model Simulation Notebooks 
Editor Center 

Figure 19-15. The Wolfram System Modeler (WSM) system architecture. 

These subsystems are the following: 

• The WSM graphic Model Editor used for design of models from library components. 
• The interactive Mathematica Notebook facility, for literate programming, documentation, running 

simulations, scripting, graphics, and symbolic mathematics with Mathematica coupling. 
• The WSM Simulation Center, for specifying parameters, running simulations, and plotting curves 

and 3D graphics. 

A key aspect of Wolfram SystemModeler is that the modeling and simulation is done integrated with 
the Mathematica environment. This does not only give access to the Notebook user interface but also to 
thousands of available functions and many application packages, as well as the ability of communicating 
with other programs and import and export of different data formats. 

These capabilities make Wolfram SystemModeler more of a complete workbench for the researcher 
and innovative engineer than just a modeling and simulation tool. Once a model has been developed there 
is often a need for further analysis such as linearization, sensitivity analysis, transfer function 
computations, control system design, parametric studies, Monte Carlo simulations, and so on. 
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19.4.3 Graphic Model Editor 

The Wolfram SystemModeler (WSM) Model Editor is a graphical user interface for model diagram 
construction by "drag-and-drop" of model classes from the Modelica Standard Library or from user 
defined component libraries, visually represented as graphic icons in the editor. A screen shot of the Model 
Editor is shown in Figure 19-16. At the left the model library and class browser window is visible from 
which the user can drag models and drop them on the drawing area in the middle of the tool. 

Figure 19-16. The WSM Graphic Model Editor with the class browser to the left, the graphic editing area in 
the middle and the instance component browser to the right. Courtesy Wolfram MathCore AB. 

The Model Editor depicted in Figure 19-16 is implemented based on the Qt graphical library, which 
means that it is portable to the Linux, Unix, and MacinTosh platforms. 

The Model Editor can be viewed as a user interface for graphical programming in Modelica. Its basic 
functionality consists of selection of components from libraries, connection of components in model 
diagrams, and entering parameter values for different components. 

For large and complex models, it is important to be able to intuitively navigate quickly through 
component hierarchies. The Model Editor supports such navigation in several ways. A model diagram can 
be browsed and zoomed. 

19.4.3.1 Simulation Center 
The WSM Simulation Center is a subsystem for running simulations, setting initial values and model 
parameters, plotting results, and so on. These facilities are accessible via a graphic user interface 
accessible through the Simulation Center window (Figure 19-17). However, remember that it is also 
possible to run simulations from the textual user interface available in the Mathematica notebooks (Section 
E.3, page 1137), and below (Section 19.4.5.1, page 1052). 
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Figure 19-17. The WSM Simulation Center window with a diagram windown containing plots of the signals 
inertial. flange_a. tau and inertial .w selected in the subwindow menus. 

If a model parameter or initial value has been changed, it is possible to rerun the simulation without 
rebuilding the executable code if the changed parameter does not influence the equation structure, that is, 
the parameter is not a structural parameter (Section 17.1.5, page 983). 

Figure 19-18. Examples of Mathematica notebooks including some Modelica simulations. 

19.4.4 Mathematics with 2D-syntaxf Greek letters, and Equations 

The syntactic facilities of Mathematica allows writing formulas in the standard mathematical notation, for 
example, well-known from textbooks in mathematics and physics. Certain parts of the Mathematica 
language syntax are however a bit unusual compared to many common programming languages. The 
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reason for this design choice is to make it possible to use implied multiplication in purely textual 
Mathematica syntax. The following three syntactic features are unusual: 

• Implied multiplication is allowed, that is, a space between two expressions, for example, x and 
f (x), means multiplication just as in mathematics. A multiplication operator * can be used if 
desired, but is optional. 

• Square brackets are used around the arguments at function calls. Round parentheses are only used 
for grouping of expressions. The exception is Traditional Form, see below. 

• Support for two-dimensional mathematical syntactic notation such as integrals, division bars, 
square roots, matrices, etc. 

The reason for the unusual choice of square brackets around function arguments is that the implied 
multiplication makes the interpretation of round parenthesis ambiguous. For example, f (x+1) can be 
interpreted either as a function call to f with the argument x+l, or f multiplied by (x+1). The integral in 
the cell below contains examples of both implied multiplication and two-dimensional integral syntax. The 
cell style is called standardForm in Mathematica and is used for mathematics in Mathematica syntax: 

There is also a purely textual input form using a linear sequence of characters. All mathematics can 
also be represented in this syntax. The above example in this textual format appears as follows: 

Integrate[ (x*f [x] ) / (1 + xA2 + xA3), x] 
Finally, there is also a cell format called Traditional Form which is very close to traditional 

mathematical syntax, avoiding the square brackets. The above-mentioned syntactic ambiguities can usually 
be avoided if the formula is first entered using one of the above input forms, and then converted to 
TraditionalForm: 

J jc3 + x2 +1 

MathModelica, the predecessor of the Wolfram SystemModeler environment, also supported 
Mathematica-style syntax of Modelica models. Figure 19-19 shows a small example of a Modelica model 
class SimpleDAE represented in the Mathematica style syntax of Modelica that allows greek characters 
and two-dimensional syntax. The apostrophe (') is used for the derivatives just as in traditional 
mathematics, corresponding to the Modelica der () operator. 

Model[simpleDAE 

Figure 19-19. The SimpleDAE Modelica model in Mathematica style syntax using the earlier 
MathModelica environment. 

Even though Wolfram SystemModeler does not support Mathematica-style representation of full 
Modelica models, the equations from a Modelica model can be imported into a Mathematica 
representation using the wsMModelData command (Section E.3, page 1137), and further processed using 
the symbolic capabilities of Mathematica. 

Real px\ 
Real x2; 
Equation[ 

s intA •]-1 2 - 2A*2 + fix == 0; 1 + (P\) 
i i 

tquatiorii 
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19.4.5 Advanced Plotting and Interpolating Functions 

This section illustrates the flexible usage of simulation results represented as Mathematica interpolating 
functions, both for further computations that may include simulation results in expressions, and for simple 
and advanced plotting in ID, 2D and 3D. The simple bouncing ball model, Section 2.15, page 55, also 
shown below, is used in some of the following simulation and plotting examples. 

model BouncingBall "Simple model of a bouncing ball" 
constant Real g = 9.81 "Gravity constant"; 
parameter Real c = 0.9 "Coefficient of restitution"; 
parameter Real radius=0.1 "Radius of the ball"; 
Real height(start = 1) "Height of the ball center"; 
Real velocity(start = 0) "Velocity of the ball"; 

equation 
der(height) = velocity; 
der(velocity) = -g; 
when height <= radius then 

reinit(velocity,-c*pre(velocity)); 
end when; 

end BouncingBall; 

19.4.5.1 Interpolating Function Representation of Simulation Results 
The following simulation of the above BouncingBall model (after loading it into WSM) is done for a 
short time period using very few (11) points: 

resl = WSMSimulate["BouncingBall",{0,0.5}, NumberOfIntervals->10] 
The results returned by WSMSimulate are represented by an access descriptor or handle, here resl. 

Relevant variables can be extracted from this handle, for example, height, radius, and so on, in the 
following way: 

{h,radius} = resl[{"height","radius"}] 
Each result variable from the simulation is a function of time, represented as an interpolating function, 
here assigned to the Mathematica variables h and radius. 

Working with simulation result datasets in Mathematica is made in a very convenient way using the 
Mathematica interpolatingFunction mechanism that encapsulates the data into a function object and 
provides interpolation so that the data acts as a regular function. 

The interpolation function can now be used in any computation in Mathematica. First we just access its 
value at time 0.2: 

h [ 0 . 2 ] 
We can also evaluate the derivative of the function h at the time 0.2, getting the result -1.962: 
h'[0.2] 
-1.962 

In this case, Mathematica made the differentiation of the InterpolatingFunction object h using the 
derivative operator Normally the derivatives of the simulation variables are also available in the 
simulation data. To make the naming more consistent with the current Modelica model, we assign the 
variable height: 

height = h 
Then we can write the following and get the same result: 

height'[0.2] 
-1.962 
Now we perform a new simulation with a different parameter setting, with the result denoted by res2: 
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res2 = WSMSimulate["BouncingBall",{0,0.5}, NumberOfIntervals->10/ 
ParameterValues-> {c->0.95}]; 

{height2,radius2} = res2[{"height","radius"}] 
Having the previous height curve represented as the function object height we can easily compute the 

difference of the curves between the simulations, for example, using a plot expression height 2 [ t ] -height [ t ]. 

19.4.5.2 Plotting Interpolating Function Expressions 
First we simulate the bouncing ball for eight seconds and store the results in the variable resl for 
subsequent use in the plotting examples. 

resl = WSMSimulate["BouncingBall", {0, 8} ] ; 
{height,radius} = resl[{"height", "radius"}] 
Since Mathematica represents simulation results as interpolating functions, these functions can be 

embedded in expressions such as height [t] + V3 and Abs [velocity [t] ] in Mathematica syntax. 
Plotting several arbitrary functions can be done using a list { . . . } of function expressions instead of a 
single expression: 

Plot [ {height [t] + V3 ,Abs [velocity [t] ] } {t, 0, 8} ] 

height[t]+V3 

Figure 19-20. Plotting arbitrary functions in the same diagram. 

Parametric plots can be done using ParametricPlot: 
ParametricPlot[height[t],velocity[t], {t,0,8}] 

Figure 19-21. A parametric plot. 

In the following 3D plot example, we use the Rossler attractor to show the ParametricPlot3D 
command. The Rossler attractor is named after Otto Rossler from his work in chemical kinetics. The 
system is described by three coupled nonlinear differential equations, where a, b, and c are constants. The 
attractor never forms limit circles nor does it ever reach a steady state. The equations in standard 
mathematical syntax appear as follows: 
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dz ~ 
— = /3 + (x-y)z 
at 

The corresponding Modelica model using a, b, c instead of greek letters is: 

model Rossler 
Real x(start=l); 
Real y(start=3); 
Real z (start=0); 
parameter Real a(start=0.2); 
parameter Real b(start=0.2); 
parameter Real c(start=8); 

equation 
der(x)= -y - z; 
der(y)= x + a*y; 
der(z)= b + x*z - c*z; 

end Rossler; 
The model is simulated using different initial values. Changing these can considerably influence the 

appearance of the attractor. We simulate and specify the computation of 1000 data points (default is 500): 

res = WSMSimulate["Rossler", {0,40}, InitialValues -> {x-> 2, y -> 2.5, 
z -> 0}, NumberOfIntervals->1000] ; 

{x,y,z} = res[{"x","y", "z"} ] 
The Rossler attractor is easy to plot using ParametricPlot3D: 
ParametricPlot3D[{x[t], y[t], z[t]},{t,0,40}, AxesLabel->{X,Y,Z}]; 

Figure 19-22.3-D parametric plot of curve with many data points from the Rossler attractor simulation. 

19.4.6 Summary of Wolfram SystemModeler 

This overview has presented a number of important issues concerning integrated interactive programming 
environments, especially with respect to the Mathematica and Wolfram SystemModeler environment for 
object-oriented modeling and simulation. 

One of the current strong trends in software systems is the ongoing unification of documents and 
software. Everything will eventually be integrated into a uniform, to some extent XML-based, 

1 0 - 1 0 X 

3C 

Z 2i 

dx --V-X 
dt y 

dy 
dt y 

dz ~ — = /3 + ( * - / ) * 
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representation. The integration of documents, model code, graphics, and so on, in the Mathematica and 
Wolfram SystemModeler environment is one example of this trend. 

19.5 The Dymola Environment 

Dymola—Dynamic Modeling Laboratory—is a comprehensive, industrial-strength modeling and 
simulation environment for Modelica, with special emphasis on efficient real-time simulation. One of the 
main application areas is simulation in the automotive industry, for example, hardware-in-the-loop 
simulation of automatic gearboxes and other vehicle subsystems. 

The history of Dymola goes back to 1978 when Hilding Elmqvist presented his Ph.D. thesis on 
methods for component-based modeling and simulation with acausal equations and automatic symbolic 
manipulation of equation systems into a state space form suitable for numerical solvers. His thesis also 
described a small modeling language called Dymola, meaning Dynamic Modeling Language. However, at 
that time the computational power and memory capacity of computers was too limited to use these 
methods on most realistic industrial problems. 

Eventually the capacity of computers increased enough to resume the development of Dymola. In 1992 
Hilding Elmqvist founded the Dynasim company. A new and extended version of the Dymola language 
and tool soon appeared, including full object orientation together with support for discrete event and 
hybrid simulation. 

When the design of the Modelica language had matured enough the Dymola tool was enhanced with 
support for the Modelica modeling language, which eventually replaced the Dymola language as the 
standard modeling language of the tool. A new interpretation of Dymola was coined—Dynamic Modeling 
Laboratory. 

The structure of the Dymola tool is similar to the previously presented OpenModelica and Wolfram 
SystemModeler environments. It contains the following main parts: 

• A Modelica compiler including a symbolic optimizer to reduce the size of equation systems. 
• A simulation run-time system including a numeric solver for hybrid DAE equation systems. 
• A graphic user Interface including a connection editor. 
• A text editor for editing Modelica models. 

Here we will just take a brief look at some aspects of the Dymola environment regarding the most 
recent version, Dymola 2014. The description is not complete and is shorter than for the previous two 
environments—not because there is less material to present—but primarily because this author has not 
been involved in the development of Dymola, in contrast to the case for OpenModelica and Wolfram 
SystemModeler (earlier called MathModelica). Additional information regarding Dymola is available in 
the Dymola user's manual and in a number of papers mentioned in the Dymola references section at the 
end of this chapter. 

19.5.1 Graphical and Textual User Interface 

The Dymola environment includes both a graphical connection editor and a text editor, depicted in Figure 
19-23, as well as tree browsers for the package/class hierarchy and the instance (component) hierarchy. 

The following are a few characteristics of the user interface: 

• Both tree browsers (for the package hierarchy and the instance and extends hierarchy) can display 
small icons at the left of corresponding names of classes and components. A class icon can be 
dragged from the package hierarchy browser into the graphical connection editor where it will 
appear as an icon representing an instance, or into the text editor window where it will appear as 
text. 
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The icon representation can be created with the built-in graphical editor which allows insertion of 
graphical elements such as lines, rectangles, ellipses, polygons, and text strings. Import of scalable 
bitmaps created by other tools is also possible. 
The hierarchical structure of a model is shown in the component hierarchy browser. 
A built-in text editor for editing models is available. This editor offers syntax highlighting, for 
example, to show different colors for keywords, type names, and variable names in declarations. 
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Figure 19-23. The Dymola 2014 graphical user interface. Courtesy Dassault Systemes. 

19.5.2 Real-Time Hardware-in-the-loop Simulation 

One of the most powerful features of Dymola is real-time simulation. This is commonly used for 
hardware-in-the-loop simulation, that is, when a hardware component is replaced by a component with 
similar properties, but simulated in software using a computer. 

However, multi-domain hierarchical modeling often leads to stiff equation systems, for which the 
solutions contain both slowly varying and fast varying parts. The usual use of the explicit Euler method 
(Section 18.2.1.1) when real-time constraints are imposed does not work well since it requires a too small 
step size causing a too large computational effort. Unfortunately, the explicit Euler method becomes 
unstable if the step size is increased too much. The solution is to use the implicit Euler method instead, 
which however requires the solution of a small nonlinear equation system at each step, which usually is 
too computationally intensive. 

Fortunately the method of in-line integration can help in these cases. Instead of calling a separate solver 
to perform the integration, the discretization formulas of the integration method are expanded in-line 
together with the model equations. The whole equation system is symbolically reduced to a more efficient 
form, which in many cases dramatically increases the efficiency of solving the nonlinear system at each 
integration step. 
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19.5.3 Clocked Synchronous Modeling and Simulation 

Dymola was the first Modelica tool to support clocked synchronous modeling and simulation (Section 
13.6, page 694), and at the time of this writing still is the only Modelica tool to support that. 

The clocked constructs are particularly useful when modeling clocked digital control systems. All 
simulations of models with clocked language constructs in this book have been done using Dymola. 

19.5.4 Other Facilities 

Dymola also contain a number of additional facilities not described here, including a 3D graphic animation 
option, integration with CVS to support version handling, and so on. 

19.6 Summary 

We started this chapter with a generic description of the structure and parts of typical Modelica modeling 
and simulation environments. The first environment to be presented was the OpenModelica environment, 
an open-source effort partly based on generation of its model compiler from a formal specification, first in 
operational semantics, later in MetaModelica—see a separate summary in Section 19.3.6, page 1047. The 
second environment to be described was Wolfram SystemModeler—an environment emphasizing 
integration, interactivity, and extensibility with unification between documentation and code and 
accessible internal representation—see as separate summary in Section 19.4.6, page 1054. The third and 
final environment to be briefly described was Dymola, emphasizing high performance real-time 
simulation. 

19.7 Literature 

This section provides literature references related to three Modelica environments for modeling and 
simulation: OpenModelica, Wolfram SystemModeler (before 2012 called MathModelica), and Dymola. 
During recent years additional Modelica modeling and simulation tools have been developed, which are 
not described here. See the Modelica Association web page www.modelica.org for up-to-date references to 
those environments. 

Common Background 
The integrated programming environment aspects of our design of the MathModelica environment (from 
2012 developed into the Wolfram SystemModeler) and the OpenModelica environment have their roots and 
inspiration from interactive programming environments for languages such as Lisp with the InterLisp 
system: (Teitelman 1969; Teitelman 1974; Teitelman 1977), common principles and experience of early 
interactive Lisp environments as described in (Sandewall 1978), interactive and incremental Pascal with 
the DICE system: (Fritzson 1983; Fritzson 1984), Smalltalk-80: (Goldberg and Robson 1989), 
Mathematica: (Wolfram 1988; Wolfram 1997), interactive environment generation and Simula: (Hedin 
and Magnusson 1988; Lindskov, Knudsen, Lehrmann-Madsen, and Magnusson 1993). 

OpenModelica 
The literature references for OpenModelica have been organized according to topic and/or subsystem. 

OpenModelica Environment as a whole—This is described in several overview papers, including: 
(Fritzson, Aronsson, Lundvall, NystrOm, Pop, Saldamli, Broman 2005; Aronsson, Lundvall, NystrOm, 
Pop, Saldamli, and Broman 2006; Fritzson 2010; Fritzson 2011) 
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OpenModelica Compiler (OMC)— The overall architecture is described in the OpenModelica system 
documentation (OSMC 2013). A few separate aspects are covered, e.g., event handling (Lundvall, and 
Fritzson 2005), bootstrapping of the compiler (Sjolund, Fritzson, and Pop 2011; Sjolund, Fritzson, and Pop 
2014), compiler backend modularity (Frenkel, Kunze, Fritzson, Sjolund, Pop, and Braun 2011), 
benchmark suite (Frenkel, Schubert, Kunze, Fritzson, Sjolund, and Pop 2011), matching algorithms 
(Frenkel, Kunze, and Fritzson 2011), Jacobian computation for fast simulation (Braun, Ochel, and 
Bachmann 2011; Braun,Yances, Link, and Bachmann 2012), and initialization of hybrid models (Ochel 
and Bachmann 2013). Some related compiler functionality , comment and indentation preserving unparsing 
(Fritzson, Pop, Norling, and Blom 2008), the OpenModelica text template language Susan (Fritzson, 
Privitzer, Sjolund, and Pop 2009), the OpenModelica Java external function interface (Sjolund and 
Fritzson 2009). 

Generating the OpenModelica Compiler from specifications—The OpenModelica model compiler for 
the Modelica language is automatically generated from a formal specification of Modelica. Initially this 
specification was developed in the big-step Operational Semantics formalism, also called Natural 
Semantics. Tool support was 1997- 2005 provided by the RML compiler, but during 2006-2013 by a 
separate MetaModelica compiler which reuses the RML backend but has a different frontend. From late 
fall 2013 the bootstrapped OpenModelica compiler (OMC) has replaced the old MetaModelica compiler 
for generating the compiler implementation since it includes efficient support for MetaModelica (Fritzson, 
Pop, and Aronsson 2005; Pop and Fritzson 2006; Fritzson and Pop 2011; Fritzson, Pop, and Sjolund 
2011). Operational Semantics/Natural semantics, the RML tool and language and some use for Modelica 
compiler generation are described in (Kahn 1987; Pettersson 1999; Fritzson 1998; Kagedal and Fritzson 
1998; Pop and Fritzson 2006; Pop and Fritzson 2007; Fritzson, Pop, Broman, and Aronsson 2009; 
Broman, Fritzson, Hedin, Akesson 2012; Fritzson and Pop 2014). The earlier generation of the 
OpenModelica translator from Operational Semantics/Natural Semantics in the RML form as well as other 
aspects of the environment are briefly described in (Kagedal and Fritzson 1998; Fritzson, Aronsson, 
Bunus, Engelson, Johansson, KarstrOm, Saldamli 2002; Aronsson, Fritzson, Saldamli, and Bunus 2002 ). 
A related approach in the sense of using a formal specification language, but using a partial specification 
of VHDL-AMS in denotational semantics instead of natural semantics is described in (Breuer, Madrid, 
Bowen, France, Petrie, and Kloos 1999). The ANTLR parser generator currently used for the 
OpenModelica compiler frontend is described in (Schaps 1999), whereas the OMCCp parser generator 
with better error handling which might be used in the future for OMC is described in (Palanisamy, Pop, 
Sjolund, and Fritzson 2014). 

OMEdit— The graphic connection editor and its integration with electronic notebooks is described in 
(Asghar, Tariq, Torabzadeh-Tari, Fritzson, Pop, Sjolund, Vasaiely, and Schamai 2011). 

Debugger—Three main versions of the OpenModelica debugger have been developed for both 
Modelica and MetaModelica, with successively increasing performance and scope: (Pop and Fritzson 
2005; Pop, Akhvlediani, and Fritzson 2007; Asghar, Pop, Sjolund, and Fritzson 2012; Pop, Sjolund, 
Asghar, Fritzson, Casella 2012). Some parts of the RML (operational semantics) debugger (Pop and 
Fritzson 2005) were adapted and reused for the first OpenModelica debugger. 

Performance Analyzer—The OpenModelica performance analyzer, which can be used for both real-
time and non-real-time simulations, is described in Section 4.3 of (Huhn, Sjolund, Chen, Schulze, and 
Fritzson 2011) and in Chapter 9 of the OpenModelica 1.9.0 User's Guide (OSMC 2013). 

MDT (Modelica Development Tooling) Eclipse plug-in—This tool is described in (Pop, Fritzson, 
Remar, Jagudin, and Akhvlediani 2006; Jagudin, Remar, Pop, and Fritzson 2006; Pop 2008). 

ModelicaML—There are two generations of the ModelicaML UML-Modelica profile and Eclipse plug-
in. The first generation which partially integrates SysML and Modelica is described in (Pop, Akhvlediani, 
and Fritzson 2007a; Pop, Akhvlediani, and Fritzson 2007b; Pop, Baiu#, and Fritzson 2007; Pop 2008). 
The second ModelicaML is much further developed and provides integrated UML-Modelica software-
hardware modeling, simulation, requirement modeling and verification (Schamai 2009; Schamai, Fritzson, 
Paredis, and Pop 2009; Paredis, Bernard, Burkhart, de Koning, Friedenthal, Fritzson, Rouquette, and 
Schamai 2010; Schamai, Helle, Fritzson, and Paredis 2010; Myers, Schamai, and Fritzson 2011; 
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Schamai, Fritzson, Paredis, and Helle 2012; Liang, Schamai, Rogovchenko, Sadeghi, Nyberg, Fritzson 
2012; Schamai 2013). Information about Papyrus is found at (Eclipse-Papyrus 2013). 

Optimization Tools—The OMOptim subsystem for parameter sweep optimization is described in 
(Thieriot, Nemer, Torabzadeh-Tari, Fritzson, Singh, and Kocherry 2011). A parallel version of the built-in 
OpenModelica dynamic optimizer with collocation and multiple shooting is presented in (Bachmann, 
Ochel, Ruge, Gebremedhin, Fritzson, Nezhadali, Eriksson, Sivertsson 2012). Dynamic optimization is also 
available in OpenModelica via XML export to CaSADi (Shitahun, Ruge, Gebremedhin, Bachmann, 
Eriksson, Andersson, Diehl, Fritzson 2013). The first dynamic optimizer using collocation together with 
Modelica models is described in (Akesson 2007). On-line dynamic optimization using Modelica models is 
described in (Franke 2002; Franke, Rode, and Kriiger 2003). 

ParModelica Language Extension—See (Gebremedhin, Moghadam, Fritzson, Stavaker 2012). 
MetaModelica Language Extension—This is presented in (Fritzson, Pop, and Aronsson 2005; Pop and 

Fritzson 2006; Fritzson and Pop 2011; Fritzson, Pop, and Sjolund 2011). 
OMPython and PySimulator—OMPython provides Python scripting of all OpenModelica API 

commands (Section E.2, page 1133). Note that the use of Modelica as a scripting language is already 
supported by OMC. The design, usage, and initial implementation of OMPython is described in (Ganeson, 
Fritzson, Rogovchenko, Asghar, Sjolund, and Pfeiffer 2012). The PySimulator subsystem is presented in 
(Pfeiffer, Hellerer, Hartweg, Otter, and Reiner 2012). An old example without OMPython usage for Monte 
Carlo simulation is described in (Torabzadeh-Tari, Fritzson, Sjolund, Pop 2009). 

3D Visualization—An early version of 3D visualization and animation with OpenModelica is described 
in (Eriksson, Magnusson, Fritzson, and Pop 2008). The current 3D visualization and animation mechanism 
uses the Modelica3D library (HOger, Mehlhase, Nytsch-Geusen, Isakovic, and Kubiak 2012). 

OMNotebook—The OpenModelica version of electronic notebook called OMNotebook is described in 
(FernstrOm, Axelsson, Fritzson, Sandholm, and Pop 2006; Asghar, Tariq, Torabzadeh-Tari, Fritzson, Pop, 
Sjolund, Vasaiely, and Schamai 2011). Applications and extensions of this notebook tool are presented in 
(Sandholm, Fritzson, Arora, Delp, Petersson, and Rose 2007; Torabzadeh-Tari, Fritzson, Pop, and Sjolund 
2010; Torabzadeh-Tari, Sjolund, Pop, and Fritzson 2011; Torabzadeh-Tari, Remala, Sjolund, Pop, and 
Fritzson 2011; Torabzadeh-Tari, Hossain, Fritzson, and Richter 2011). 

Wolfram SystemModeler and MathModelica 
Documentation for the Wolfram SystemModeler environment is available in (Wolfram Research 2013). 
Before 2012, the previous version of this environment was called MathModelica which is described in 
detail in (Fritzson 2006). Older versions are presented in (Fritzson, Engelson, and Gunnarsson 1998; 
Fritzson, Gunnarsson, and Jirstrand 2002). 

The immediate predecessor of the MathModelica environment is the ObjectMath language and 
environment, described in (Fritzson, Viklund, Herber, Fritzson 1992; Fritzson, Viklund, Fritzson, and 
Herber 1995; Viklund and Fritzson 1995), based on an analysis of the needs for high-level computational 
modeling and simulation tools in (Fritzson, Fritzson 1992). MathCode - a productized code generator from 
the ObjectMath environment is described in (Fritzson 1998; Fritzson, Engelson, and Sheshadri 2008). 

The early ObjectMath prototype also lead to the development of BEAST (Bearing Simulation Tool), an 
object-oriented simulation tool capable of execution on parallel processors described in (Fritzson, Nordling 
1995; Fritzson, Fritzson, Nordling, and Persson 1997; Nordling 2003). Successive versions of the 
MathModelica environment are described in (Fritzson, Engelson, and Gunnarsson 1998; Jirstrand, 
Gunnarsson, and Fritzson 1999; Jirstrand 2000; Fritzson, Jirstrand, and Gunnarsson 2002). Some versions 
of MathModelica use Visio, (Visio 2001), for implementing the graphical user interface (GUI), other 
versions base the GUI on the QT (Dalheimer 2002) library. The used parser generator PCCTS is described 
in (Parr 1997). 

The interactive integrated capabilities of MathModelica (from 2012 developed into Wolfram 
SystemModeler) of combining programs, documentation, and graphics in a live document are partly 
related to early work on (noninteractive) literate programming in the LaTeX document processing system, 
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(Knuth 1984; Knuth 1994), but mostly to the interactive Mathematica environment with its notebooks, also 
used for teaching mathematics (Davis, Porta, and Uhl 1994). 

The DrModelica electronic notebook document was first made using Mathematica notebooks in 
MathModelica, later using the OpenModelica tool OMNotebook, with the examples and exercises of this 
book. It was also been inspired by DrScheme (Felleisen, Findler, Flatt, and Krishnamurthi 1998) and 
DrJava (Allen, Cartwright, and Stoler 2002), and is somewhat related to the idea of elucidative 
programming (Normark 2000). The first version of DrModelica is described in (Lengquist-Sandelin and 
Monemar 2003; Lengquist-Sandelin, Monemar, Fritzson, and Bunus 2003). 

Dymola 
The current Dymola environment, interpreted as the Dynamic Modeling Laboratory, with Modelica as its 
modeling language, is for example described in (Dassault Systemes 2013; Briick, Elmqvist, Mattsson, and 
Olsson 2002), and in a book draft (Elmqvist, Otter, Mattsson, and Olsson 2002). Dynamic selection of 
states in Dymola is presented in (Mattsson, Olsson, and Elmqvist 2000). The techniques for fast real-time 
and hardware-in-the-loop simulation supported by Dymola are discussed in (Elmqvist, Mattsson, and 
Olsson 2002), partly based on earlier work on inline integration (Elmqvist, Cellier, and Otter 1995). 
Mixed-mode integration is described in (Shiela and Olsson 2000). Initialization of DAEs in Modelica, 
implemented in Dymola, is presented in (Mattsson, Elmqvist, Otter, and Olsson 2002). The old Dymola, 
meaning the Dynamic Modeling language, one of the most important predecessors of the Modelica 
language, is briefly described in Appendix F. 1.1, page 1149, and in more detail in (Elmqvist 1978; Cellier 
1991; Elmqvist, Briick, and Otter 1996). Hybrid capabilities were introduced in 1993 as described in 
(Elmqvist, Cellier, and Otter 1993). Some of the ideas for information zooming and graphic capabilities in 
Dymola were already prototyped in the Lies system (Elmqvist and Mattsson 1982). 



Appendix A 

Glossary 

algorithm section: Part of a class definition consisting of the keyword algorithm followed by a 
sequence of statements. Like an equation, an algorithm section relates variables, that is, constrains the 
values that these variables can take simultaneously. In contrast to an equation section, an algorithm 
section distinguishes inputs from outputs: An algorithm section specifies how to compute output 
variables as a function of given input variables. (See Section 2.14.1, page 49 or Section 9.2.1, page 
423.) 

array or array variable: A variable that contains array elements. For an array, the ordering of its elements 
matters: The kth element in the sequence of elements of an array x is the array element with index k, 
denoted x [k]. All elements of an array have the same type. An array element may again be an array, 
i.e. arrays can be nested. An array element is hence referenced using n indices in general, where n is the 
number of dimensions of the array. Special cases are matrix (n=2) and vector (n=l). Array integer 
indices start with 1, not zero, that is, the lower bound is 1. (See Section 2.13, page 47 or Chapter 7, 
page 311.) 

array constructor: An array can be built using the array-function—with the shorthand curly braces {a, b, 
...}, and can also include an iterator to build an array of expressions. (See Section 2.13, page 47 or 
Section 7.2, page 315.) 

array element: An element contained in an array. An array element has no identifier. Instead array 
elements are referenced by array access expressions called indices that use enumeration values or 
positive integer index values. (See Section 2.13, page 47 or Section 7.4, page 321.) 

assignment: A statement of the form x : = expr. The expression expr must not have higher variability 
than x. (See Section 2.14.1, page 49 or Section 9.2.3, page 425.) 

attribute: A property (or kind of record field) contained in a scalar variable, such as min, max, and unit. 
All attributes are predefined and attribute values can only be defined using a modification, such as in 
Real x (unit="kg"). Attributes cannot be accessed using dot notation, and are not constrained by 
equations and algorithm sections. For example, in Real x (unit="kg") = y; only the values of x 
and y are declared to be equal, but not their unit attributes, nor any other attribute of x and y. (See 
Section 2.3.5, page 30 or Section 3.9, page 93.) 

base class: Class A is called a base class of B if class B extends class A. This relation is specified by an 
extends clause in B or in one of B's base classes. A class inherits all elements from its base classes, and 
may modify all non-final elements inherited from base classes. (See Section 4.1, page 136.) 

binding equation. Either a declaration equation or an element modification for the value of the variable. A 
variable with a binding equation has its value bound to some expression. (See Section 2.6, page 33 or 
Section 8.2, page 349.) 

class: A description that generates an object called instance. The description consists of a class definition, 
a modification environment that modifies the class definition, an optional list of dimension expressions 
if the class is an array class, and a lexically enclosing class for all classes. (See Section 2.3, page 26 or 
Chapter 3, page 79.) 
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class type or inheritance interface: Property of a class, consisting of a number of attributes and a set of 
public or protected elements consisting of element name, element type, and element attributes. (See 
Section 3.18.2, page 117.) 

connector: An instance of a connector class. A connector acts like an interface or port to an 
object/instance, to which other connectors can be connected. (See Section 5.2, page 188.) 

connection: A coupling between two connectors. (See Section 5.3, page 190.) 

constant: A constant is a variable declared with the prefix constant. Such a variable does not change 
value. There is also another but similar kind of constant called parameter. Constants and parameters are 
very similar, but also have the following differences: a named constant with prefix constant, but not 
with prefix parameter, can be defined in a package, can be imported from a package (Section 10.2.1, 
page 497), and can be accessed by nested lookup (Section 3.16.1, page 109) from inside a subclass to 
the class where the constant is defined. (See Section 2.1.3, page 24.) 

component: Used in the Modelica Language Specification with the same meaning as instance or variable. 
Since component with that meaning is non-standard terminology not used outside the Modelica 
community, instance is used instead in this book. 

component expression: Used in the Modelica Language Specification with the same meaning as instance 
expression in this book. Since component with that meaning is non-standard terminology not used 
outside the Modelica community, instance expression is used in this book. 

declaration assignment: Assignment of the form x : = expression defined by a variable declaration in a 
function. This is similar to a declaration equation, but different since an assigned variable usually can 
be assigned multiple times. (See Section 2.14.3, page 51 or Section 9.3.1, page 438.) 

declaration equation: Equation of the form x = expression defined by a component declaration. The 
expression must not have higher variability than the declared component x. Unlike other equations, a 
declaration equation can be overridden (replaced or removed) by an element modification. (See Section 
2.6, page 33 or Section 8.2, page 349.) 

derived class or subclass: Class B is called derived from A, if B extends A. (See Section 2.4, page 30 or 
Section 4.1, page 136.) 

element: Part of a class definition, one of: class definition, instance declaration, or extends clause. Instance 
declarations and class definitions are called named elements. An element is either inherited from a base 
class or local. (See Chapter 3, page 79.) 

element modification: Part of a modification, overrides the declaration equation in the class used by the 
instance generated by the modified element. Example: vcc (unit="V") =1000. (See Section 2.6, page 
33 or Section 4.2, page 148.) 

element redeclaration . Part of a modification, replaces one of the named elements possibly used to build 
the instance generated by the element that contains the redeclaration. Example: redeclare type 
Voltage = Real (unit="V") replaces type Voltage. (See Section 2.5, page 31 or Section 4.3, 
page 156.) 

encapsulated: A class prefix that makes the class not depend on where it is placed in the package-
hierarchy, since its lookup is stopped at the class boundary. (See Section 2.16, page 58, Section 3.11.8, 
page 104 or Section 10.3.2.1, page 502 and Section 10.4.4, page 510.) 

equation: An equality relation that is part of a class definition. A scalar equation relates scalar variables, 
that is, constrains the values that these variables can take simultaneously. When n-1 variables of an 
equation containing n variables are known, the value of the nth variable can be inferred (solved for). In 
contrast to a statement in an algorithm section, an equation does not define for which of its variable it 
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is to be solved. Special cases are: initial equations, instantaneous equations, declaration equations. (See 
Section 2.6, page 33 or Chapter 8, page 347.) 

event: Something that occurs instantaneously at a specific time or when a specific condition occurs. 
Events are for example defined by the condition occurring in a when clause, if clause, or if expression. 
(See Section 2.15, page 55 or Section 13.2, page 593.) 

expandable connector: A connector that automatically expands to include all fields of connected 
connectors. Flexible construction of information buses is the key idea behind the expandable 
connector construct. An expandable connector acts like an information bus since it is intended for 
connection to many kinds of components. To make this possible, it automatically expands the 
expandable connector type to accommodate all the components connected to it with their different 
interfaces. If an element with a certain name and type is not present, it is added. All variables/fields in 
an expandable connector are seen as connector instances even if they are not declared as such, i.e., it is 
possible to connect to for example, a Real variable. The syntax of an expandable connector class 
declaration is simple, just put the expandable keyword in front of the connector keyword. (See 
Section 5.9, page 238.) 

expression: A term built from operators, function references, variables / named constants, or variable 
references (referring to variables) and literals. Each expression has a type and a variability. (See 
Section 2.1.1, page 22, Section 2.1.3, page 24 or Chapter 6, page 267.) 

extends clause: An unnamed element of a class definition that uses a name and an optional modification to 
specify inheritance of a base class of the class defined using the class definition. (See Section 2.4, page 
30 or Section 4.1, page 136.) 

flattening: The computation that creates a flattened class of a given class, where all inheritance, 
modification, etc. has been performed and all names resolved, consisting of a flat set of equations, 
algorithm sections, component declarations, and functions. (See Section 2.20.1, page 64 or Section 
3.16.2, page 109.) 

function: A class of the specialized class function. (See Section 2.14.3, page 51 or Section 9.3, page 438.) 

function subtype: Asub is a function subtype of A iff Asub is a subtype of A and the additional formal 
parameters of function Asub that are not in function A are defined in such a way (e.g., additional 
formal parameters need to have default values), that Asub can be called at places where A is called. 
(See Section 3.19.6, page 130.) 

identifier: An atomic (not composed) name. Example: Resistor (See Section 2.1.1, page 22 for names 
of variables or Section 6.3.1, page 268.) 

index or subscript: An expression, typically of Integer type or the colon symbol (:), used to reference an 
element (or a range of elements) of an array. (See Section 2.13, page 47 or Section 7.4, page 321) 

inheritance interface or class type: Property of a class, consisting of a number of attributes and a set of 
public or protected elements consisting of element name, element type, and element attributes. (See 
Section 2.4, page 30 or Section 3.18.2, page 117.) 

instance: The object generated by a class. The same as component in the Modelica Language 
Specification (MLS). Here instance is used since the use of the word component in MLS is nonstandard 
terminology and is also sometimes confusing since models in libraries are often referred to as 
component models or just components. An instance contains zero or more variables or instances (i.e., 
components), equations, algorithms, and local classes. An instance has a type. Basically, two instances 
have same type, if their important attributes are the same and their public components and classes have 
pair wise equal identifiers and types. More specific type equivalence definitions are given, for example, 
for functions. (See Section 2.13, page 47 or Section 3.2, page 80.) 
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instance expression: An instance expression (currently called component expression in the Modelica 
Language Specification) is an expression with some restrictions, that is, it does not refer to instances of 
models with equations, only models without equations. (See Section 13.6.11, page 713.) 

instantaneous: An equation or statement is instantaneous if it holds only at events, that is, at single points 
in time. The equations and statements of a when-clause are instantaneous. (See Section 2.15, page 55, 
Section 8.3.5, page 357, or Section 13.2.6, page 613.) 

left limit: For an unclocked discrete-time variable y at an event, the left limit of the value of y at the event 
is the value of y immediately preceding the event, that is, taking the limit value of y while letting time t 
approach time teVent from the left. Between events the left limit of v is the same value as v. The left limit 
of v is the same as pre (y), see Figure 13-16, page 609, and Figure 13-17, page 609. 

literal: A real, integer, Boolean, enumeration, or string constant value, that is, a literal. Used to build 
expressions. (See Section 2.1.3, page 24.) 

matrix: An array where the number of dimensions is 2. (See Section 2.13, page 47 or Section 7.1, page 
311.) 

modification or modifier: Part of an element. Modifies the instance generated by that element. A 
modification or modifier contains element modifications and element redeclarations. (Section 2.3.4, 
page 29 or Section 4.2, page 148.) 

name: Sequence of one or more identifiers separated by dots. Used to reference a class or an instance. A 
class name is resolved in the scope of a class, which defines a set of visible classes. Example name: 
Ele.Resistor. (See Section 2.16, page 58 or Section 3.2, page 80.) 

operator record: A record with user-defined operations; defining, for example, multiplication and 
addition. (See Section 2.14.4, page 52 or Section 9.5.2, page 483.) 

parameter: A parameter is a variable declared with the prefix parameter. Such a variable does not 
change value during simulation, but can be assigned a value immediately before simulation 
(interactively or by a computation, for example, by calling a function). There is also another but similar 
kind of variable called constant. Constants and parameters are very similar, but also have the following 
differences: a named constant with prefix constant, but not with prefix parameter, can be defined 
in a package, can be imported from a package (Section 10.2.1, page 497), and can be accessed by 
nested lookup (Section 3.16.1, page 109) from inside a subclass to the class where the constant is 
defined. (See Section 2.1.3, page 24.) 

parameter—structural parameter: Some parameter "constants" may be structural parameters, that is, 
parameters whose values influence the structure of the model, that is, the set of active equations. (See 
Section 17.1.5, page 983.) 

partial: A class that is incomplete and cannot be instantiated in a simulation model; useful, for example, as 
a base-class. (See Section 2.9, page 43 or Section 3.11.7, page 104.) 

plug-compatible subtype: A type A is a plug-compatible subtype of type B iff A is a subtype of B, and all 
public components present in A but not in B must be default-connectable. This is used to avoid 
introducing, via a redeclaration, an unconnected connector in the object/class of type A at a level where 
a connection is not possible. (See Section 3.19.5, page 127) 

predefined type: One of the built-in types Real, Boolean, Integer, string and types defined as 
enumeration types. The attribute declarations of the predefined types define attributes such as min, 
max, and unit. (See Section 2.1.1, page 22 or Section 3.9, page 93.) 

prefix: Property of an element of a class definition which can be present or not be present, for example, 
final, public, flow. (See Section 3.11, page 98.) 
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real elementary relation: The numerical solution process is halted and an event occurs whenever a Real 
elementary relation, e.g., x > 2, changes its value. The value of such a relation can only be changed at 
event instants. During the numerical solution process a Real elementary relation has the constant value 
of the relation from the most recent event instant. (See Section 6.11.1, page 287.) 

redeclaration: A modifier with the keyword redeclare that changes a replaceable element. (See Section 
2.5, page 31 or Section 4.3, page 156.) 

replaceable: An element that can be replaced by a different element having a compatible type. (See 
Section 2.5, page 31 or Section 4.4, page 168.) 

scalar or scalar variable: A variable that is not an array. (See Section 2.1.1, page 22 and Section 2.13, 
page 47 or Section 3.10, page 97.) 

simple type: Real, Boolean, integer, string and enumeration types. (See Section 2.1.1, page 22, Section or 
Section 3.9, page 93.) 

simulation model: A model which is intended for simulation and fulfills certain conditions which are 
necessary but not sufficient for simulation (See Section 8.9.2.2, page 390 or Section 3.11.3, page 101). 
See also the notion of structurally non-singular, which is a necessary condition for simulation. 

specialized class: One of model, connector, package, record, operator record, block, function, operator 
function, or type. The class specialization represents assertions regarding the content of the class and 
restrict its use in other classes, as well as providing enhancements compared to the basic class concept. 
For example, a class having the package class specialization must only contain classes and constants. 
(See Section 2.3.3, page 29 or Section 3.8, page 87.) 

stream connector: A connector concept for fluid systems. For some fluid applications involving bi-
directional flows of matter with associated properties the standard connector approach gives rise to 
problematic nonlinear systems of equations with Boolean unknowns for the flow directions and 
singularities around zero flow. To solve the abovementioned problems, the concept of stream connector 
has been introduced in Modelica. It introduces a third kind of variable in connectors, so-called stream 
variables, in addition to flow and potential variables. The stream connector concept includes a prefix 
keyword stream, only used in front of stream variables in stream connector definitions, a built-in 
operator inStream(c.v), and a built-in operator actualStream(c.v). See Section 5.10, page 245. 

structurally non-singular: A system of equations is considered structurally non-singular if it has the same 
number of equations as variables, and if there exists a perfect matching of the corresponding bipartite 
graph (Section 17.1.7, page 989) of the equation system or alternatively a BLT-transformation of the 
corresponding adjacency matrix (Section 17.1.7, page 989) of the equation system. An equation system 
that is structurally non-singular may still be numerically singular and thus impossible to solve/simulate. 

subtype: Relation between types. A is a subtype of B iff a number of properties of A and B are the same and all 
important elements of B have corresponding elements in A with the same names and their types being 
subtypes of corresponding element types in B. (See Section 3.18, page 115, and Section 3.19.3, page 125.) 

supertype: Relation between types. The inverse of subtype. A is a subtype of B means that B is a 
supertype or base type of A. (See Section 2.4, page 30 or Section 3.18, page 115, and Section 3.19.3, 
page 125.) 

type: Property of an instance, expression, consisting of a number of attributes and a set of public elements 
consisting of element name, element type, and element attributes. Note: The concept of class type is a 
property of a class definition and also includes protected elements. Class type is used in certain subtype 
relationships, e.g., regarding inheritance. (See Section 3.18, page 115.) 

variability: Property of an expression, which can have one of the following four values: 
• continuous, an expression that may change its value at any point in time. 
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• discrete, may change its value only at events during simulation. Can be clocked or unclocked. 
• unclocked discrete: may change its value only at unclocked events during simulation. 
• clocked discrete, may change its value only at clock tick events during simulation. 
•parameter, constant during the entire simulation, but can be changed before each simulation and 
appears in tool menus. The default parameter values of models are often non-physical and are 
recommended to be changed before simulation. 
• constant: constant during the entire simulation; can be used and defined in a package. 
Assignments x := expr and binding equations x = expr must satisfy a variability constraint: The 
expression must not have a higher variability than variable x. (See Section 2.1.4, page 25 or Section 
6.8.1.3, page 278.) 

variable: An instance (object) generated by a variable or constant declaration. Special kinds of variables 
are scalars, arrays, and attributes. (See Section 2.1.1, page 22, Section 2.3.1, page 27 or Section 3.3, 
page 80.) 

variable declaration: An element of a class definition that generates a variable, parameter, or constant. A 
variable declaration specifies (1) a variable name, that is, an identifier, (2) the class to be flattened in 
order to generate the variable, and (3) an optional Boolean parameter expression. Generation of the 
variable is suppressed if this parameter expression evaluates to false. A variable declaration may be 
overridden by an element redeclaration. (See Section 2.1.1, page 22, Section 2.3.1, page 27, Section 
2.1.3, page 24 or Section 3.10, page 97.) 

variable reference: An expression containing a sequence of identifiers and indices. A variable reference is 
equivalent to the referenced object. A variable reference is resolved (evaluated) in the scope of a class 
(or expression for the case of a local iterator variable). A scope defines a set of visible variables and 
classes. Example reference: Ele.Resistor .u [21] .r (See Section 2.1.1, page 22, and Section 2.13, 
page 47 or Section 6.3, page 268.) 

vector: An array where the number of dimensions is 1. (See Section 2.13, page 47 or Section 7.1, page 
311.) 

Literature 
This glossary has been slightly adapted from the Modelica language specification 3.2 (Modelica 
Association 2010). The first version of the glossary was developed by Jakob Mauss. The current version 
contains contributions from many Modelica Association members. 
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Modelica Formal Syntax 

B.l Lexical Conventions 
The following syntactic meta symbols are used (extended BNF—Backus Naur Form): 

[ ] optional 
{ } repeat zero or more times 
I or 
The following lexical units are defined. The ones in boldface are the ones used in the grammar, the rest 

are just internal to the definition of other lexical units. 
IDENT = NONDIGIT { DIGIT | NONDIGIT } | Q-IDENT 
Q-IDENT = " ( Q-CHAR | S-ESCAPE ) { Q-CHAR | S-ESCAPE } 
NONDIGIT = | letters "a" to "z" | letters "A" to "Z" 
STRING = """ { S-CHAR | S-ESCAPE } """ 
S-CHAR = any member of the Unicode character set except double-quote " " ", and backslash " \ ". 
Unicode is defined at http://www.unicode.org; see also briefly Section 6.1, page 267, regarding the character 
set and Section 10.3.3, page 503, for storing as UTF-8 on files in the file system. 
Q-CHAR = NONDIGIT | DIGIT | "!" | "#" I "$" | "%" I "&" I "(" I ")" I "*" I 
" + " I I 

I I "/" I ":" I I "<" I ">" I "=" I "?" I I "[" I 
"]" I ,,A" I 

"{" I "}" I "I" I I " " 
S-ESCAPE = | " V " | "\?" | " W " | 

"\a" | "\b" I "\f" I "\n" | "\r" | "\t" | "\v" 
DIGIT = "0" | "1" | "2" | "3" | "4" | "5" | "6" I "7" | "8" | "9" 
UNSIGNED_INTEGER = DIGIT { DIGIT } 
UNSIGfNED_NUMBER = UNSIGNED_INTEGER [ [ UNSIGNED__INTEGER ] ] 

[ ( "e" | "E" ) [ "+" | ] UNSIGNED_INTEGER ] 
Notes: The single quotes are part of a quoted identifier. E.g. 'x' and x are different lexical iDENTs. 

String constant concatenation "a" "b" becoming "ab" (as in C) is replaced by the "+" operator in 
Modelica. 

Modelica uses the same comment syntax as C++ and Java (i.e., / / signals the start of a line comment 
and / * . . . . * / is a multi-line comment). Comments may contain any Unicode character. Modelica also 
has structured comments in the form of annotations and string comments. 

Description strings (= production "string comment" in the grammar) and strings in annotations (= 
STRING with production annotation in the grammar) may contain any member of the Unicode character 
set. All other strings have to contain only the subset of Unicode characters identical with the 7-bit US-
ASCII character set. As a consequence, operators like ">" or "<", and external functions only operate on 
ASCII strings and not on Unicode strings. Within a description string the tags <HTML> and </HTML> or 
<html> and </html> optionally define begin and end of content that is HTML encoded. 

In the Grammar below, boldface words denote keywords of the Modelica language. Keywords are 
reserved words and may not be used as identifiers, with the exception of initial which is a keyword in 
section headings, but it is also possible to call the function initial(), and end which is used to denote 
the upper dimension size bound in array slices in addition to being used as a keyword in end while, end 
if, and end for. 
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B.2 Modelica Grammar 

B.2.1 Stored Definition - Within 
stored_definition: 

[ within [ name ] ";" ] 
{ [ final ] class_definition ";" } 

B.2.2 Class Definition 

class_definition : 
[ encapsulated ] class_prefixes 
class_specifier 

class_prefixes : 
[ partial ] 
( class I model | [ operator ] record | block | 

[ expandable ] connector | type | 
package | [ ( pure | impure ) ] [ operator ] function | operator ) 

class_specifier : 
long_class_specifier | short_class_specifier | der_class_specifier 

long_class_specifier : 
IDENT string_comment composition end IDENT 

I extends IDENT [ class_modification ] string_comment composition 
end IDENT 

short_class_specifier : 
IDENT "=" base_prefix name [ array_subscripts ] 

[ class_modification ] comment 
I IDENT "=" enumeration "(" ( [enum_list] | ":" ) ")" comment 

der_class_specifier: 
IDENT "=" der "(" name IDENT { IDENT } ")" comment 

base_prefix : 

type_prefix 

enum_list : enumeration_literal { enumeration_literal} 

enumeration_literal : IDENT comment 
composition : 

element_list 
{ public element_list I 
protected element_list | 
equation_section | 
algorithm_section 

} 
[ external [ language_specification ] 

[ external_function_call ] [ annotation ] ";" ] 
[ annotation ";" ] 

language_specification : 
STRING 
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external_function_call : 
[ component_reference "=" ] 
IDENT "(" [ expression_list ] ")" 

element_list : 
{ element ";" } 

element : 
import_clause I 
extends_clause | 
[ redeclare ] 
[ final ] 
[ inner ] [ outer ] 
( ( class_definition | component_clause) | 
replaceable ( class_definition | component_clause) 

[constraining_clause comment]) 

import_clause : 
import ( IDENT name | name ["." ( "*" | "{" import_list "}" ) ] ) 

comment 

import_list : 
IDENT [ import_list ] 

B.2.3 Extends 
extends_clause : 

extends name [ class_modification ] [annotation] 

constraining_clause : 
constrainedby name [ class_modification ] 

B.2.4 Component Clause 

component_clause: 
type_prefix type_specifier [ array_subscripts ] component_list 

type_prefix : 
[ flow | stream ] 
[ discrete | parameter | constant ] [ input | output ] 

type_specifier : 
name 

component_list : 
component_declaration { component_declaration } 

component_declaration : 
declaration [ condition_attribute ] comment 

condition_attribute: 
if expression 

declaration : 
IDENT [ array_subscripts ] [ modification ] 
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B.2.5 Modification 

modification : 
class_modification [ "=" expression ] 

| "=" expression 
I ":=" expression 

class_modification : 
"(" [ argument_list ] ")" 

argument_list : 
argument { " a r g u m e n t } 

argument : 
element__modif ication_or_replaceable 

| element_redeclaration 

element_modification_or_replaceable: 
[ each ] [ final ] ( element_modification | element_replaceable) 

element_modification : 
name [ modification ] string_comment 

element_redeclaration : 
redeclare [ each ] [ final ] 

( ( short_class_definition | component_clausel) | element_replaceable ) 

element_replaceable: 
replaceable ( short_class_definition | component_clausel) 

[constraining_clause] 

component_clausel : 
type_prefix type_specifier component_declarationl 

component_declarationl : 
declaration comment 

short_class_definition : 
class_prefixes short_class_specifier 

B.2.6 Equations 

equation_section : 
[ initial ] equation { equation } 

algorithm_section : 
[ initial ] algorithm { statement } 

equation : 
( simple_expression "=" expression 
I if equation 
I for equation 
I connect clause 
I when equation 
I name function_call_args ) 

comment 

statement : 
( component_reference ( ":=" expression | function_call_args ) 
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I "(" output_expression_list ")" ":=" component_reference 
function_call_args 

I break 
I return 
| if_statement 
| for_statement 
I while_statement 
| when_statement ) 

comment 

if equation : 
if expression then 

{ equation } 
{ elseif expression then 

{ equation } 
} 
[ else 
{ equation ";" } 

] 
end if 

if_statement : 
if expression then 

{ statement ";" } 
{ elseif expression then 

{ statement ";" } 
} 
[ else 
{ statement ";" } 

] 
end if 

for equation : 
for for_indices loop 

{ equation } 
end for 

for_statement : 
for for_indices loop 

{ statement ";" } 
end for 

for_indices : 
for_index {"," for_index} 

for_index: 
IDENT [ in expression ] 

while_statement : 
while expression loop 

{ statement ";" } 
end while 

when equation : 
when expression then 

{ equation } 
{ elsewhen expression then 

{ equation } } 
end when 
when expression then 
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when_statement : 
{ statement } 

{ elsewhen expression then 
{ statement ";" } } 

end when 

connect clause : 
connect "(" component_reference component__reference ")" 

B.2.7 Expressions 

expression : 
simple_expression 

I if expression then expression { elseif expression then expression } 
else expression 

simple_expression : 
logical_expression [ ":" logical_expression [ ":11 logical_expression ] ] 

logical_expression : 
logical_term { or logical_term } 

logical_term : 
logical_factor { and logical_factor } 

logical_factor : 
[ not ] relation 

relation : 
arithmetic_expression [ rel_op arithmetic_expression ] 

rel_op : 
" < » | " < = • • | " > " | " > = " | » = = " | " < > » 

arithmetic_expression : 
[ add_op ] term { add_op term } 

add_op : 
"+" I I "•+" I 

term : 
factor { mul_op factor } 

mul_op : „*,. | „/« | H *„ | n J n 

factor : 
primary [ ("A" | " .A") primary ] 

primary : 
UNSIGNED_NUMBER 

| STRING 
I false 
I true 
I ( name | der | initial ) function_call_args 
| component_reference 
I "(" output_expression_list ")" 
I "[" expression_list { ";" expression_list } "]" 
I "{" function_arguments "}" 
I end 
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name : 
[ " ] IDENT { IDENT } 

component_reference : 
[ " ] IDENT [ array_subscripts ] { "." IDENT [ array_subscripts ] } 

function_call_args : 
"(" [ function_arguments ] ")" 

function_arguments : 
function_argument [ function_arguments | for for_indices ] 

I named_arguments 

named_arguments: named_argument [ named_arguments ] 

named_argument: IDENT "=" function_argument 

function_argument : 
function name "(" [ named_arguments ] ")" | expression 

output_expression_list: 
[ expression ] { [ expression ] } 

expression_list : 
expression { expression } 

array_subscripts : 
"[" subscript { subscript } "]" 

subscript : 
| expression 

comment : 
string_comment [ annotation ] 

string_comment : 
[ STRING { "+" STRING } ] 

annotation : 
annotation class modification 
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B.3 MetaModelica 2.0 Grammar Extensions 

B.3.1 ClassDefinition 
class definition : 

[encapsulated][package][IDENT]restriction class_specifier 
I restriction class_specifier 

restriction : 
[partial] | uniontype I [pure I impure] function | 
type | record 

class_specifier : 
long_class_specifier | short_class_specifier 

long_class_specifier : 
IDENT [string_comment] composition end IDENT 

short_class_specifier : 
Same as in standard Modelica, see Section B.2.2 Class Definition. 

string_comment : 
Same as in standard Modelica, see Section B.2.7 Expressions. 

composition : 
Same as in standard Modelica, see Section B.2.2 Class Definition. 

B.3.2 Component Clause 

component_clause : 
type_prefix type_specifier [array_subscripts]component_list 

type_prefix : 
[input | output]| [parameter | discrete | constant] 

type_specifier : 
Same as in standard Modelica, see Section B.2.4 Component Clause. 

component_list : 
Same as in standard Modelica, see Section B.2.4 Component Clause. 

B.3.3 Modification 
modification : 

Same as in standard Modelica, see Section B.2.5 Modification. 

B.3.4 Algorithm 
algorithm_section : 

algorithm { algorithm_statements } 

algorithm_statements : 
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Same as in standard Modelica, see Section B.2.6 Equations. 

B.3.5 Equation 
equationsection : 

equation { equation_statements } 

equation_statements : 
Same as in standard Modelica, see Section B.2.6 Equations. 

B.3.6 Expressions 
expression : 

simple_expression 
I matchstatements 

simple_expression : 
same as in Standard Modelica, see Section B.2.7 Expressions. 

matchstatements : 
match expression [matchlocal] cases end match 

I matchcontinue expression [matchlocal] cases end matchcontinue 

matchlocal : 
[local element_list] 

cases : 
case casearg [equationsection] then expression ";" 

I else [equationsection] then expression 

casearg : 
expression 

element_list : 
Same as in standard Modelica, see Section B.2.2 Class Definition. 

B.4 Optimization Grammar Extensions 

B.4.1 ClassDefinition 
class_definition : 

restriction class_attribute class_specifier 

restriction : 
optimization 

class_attribute : 
IDENT { "<" named_arguments ")" } end IDENT 

class_specifier : 
[string_comment] classparts 
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classparts : 
element_list { 

public element_item 
I protected element_item 
I equation equation_section } 

element_list : 
Same as in standard Modelica, see Section B.2.2 Class Definition. 

string_comment : 
Same as in standard Modelica, see Section B.2.7 Expressions. 

named_arguments : 
Same as in standard Modelica, see Section B.2.7 Expressions. 

B.4.2 Component Clause 

component_clause : 
type_prefix type_specifier [array_subscripts] component_list 

type_prefix : 
[input | output]| [parameter | discrete I constant] 

type_specifier : 
Same as in standard Modelica, see Section B.2.4 Component Clause. 

component_list : 
Same as in standard Modelica, see Section B.2.4 Component Clause. 

B.4.3 Modification 

modification : 
Same as in standard Modelica, see Section B.2.4 B.2.4 Component Clause. 

B.4.4 Equation 

equationsection : 
equation { equation_statements ";" } 

equation_statements : 
Same as in standard Modelica, see Section B.2.6 Equations. 

B.4.5 Expression 

expression : 
Same as standard Modelica, see Section B.2.7 Expressions. 
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B.5 ParModelica Grammar Extensions 

B.5.1 Class Definition 
class_definition : 

[encapsulated][package][IDENT]restriction class_specifier 
I restriction class_specifier 

restriction : 
model | block | [parallel I parkernel] function 

class_specifier : 
long_class_specifier 

long_class_specifier : 
IDENT [string_comment] classparts end IDENT 

classparts : 
element_list { 

public element_item 
I protected element_item 
I algorithm algorithm_section 
I equation equation_section } 

element_list : 
Same as in standard Modelica, see Section B.2.2 Class Definition. 

string_comment : 
Same as in standard Modelica, see Section B.2.7 Expressions. 

B.5.2 Component clause 

component_clause : 
type_prefix type_specifier [array_subscripts] component_list 

type_prefix : 
[parlocal I parglobal]|[input I output] 
I[parameter I discrete | constant] 

type_specifier : 
Same as in standard Modelica, see Section B.2.4 Component Clause. 

component_list : 
Same as in standard Modelica, see Section B.2.4 Component Clause. 

B.5.3 Modification 
modification : 

Same as in standard Modelica,refer section A.6.5 "Modification" 
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B.5.4 Algorithm 

algorithm_section : 
algorithm { algorithm_statements } 

algorithm_statements : 
parfor_algorithm 

I modelica_algorithm_constructs 

modelica_algorithm_constructs : 
Same as in standard Modelica, see Section B.2.6 Equations. 

parfor_algorithm : 
parfor for_indices loop 
{ algorithm_section } 
end parfor 

for_indices : 
for_indices {"," for_index} 

for_index : 
IDENT [ in expression ] 

B.5.5 Equation 

equationsection : 
equation { equation_statements } 

equation_statements : 
parfor_equation 

I modelica_equation_constructs 

modelica_equation_constructs : 
Same as in standard Modelica, see Section B.2.6 Equations. 

parfor_equation : 
parfor for_indices loop 
{ equationsection} 

end parfor 

for_indices : 
for_indices {"," for_index} 

for_index : 
IDENT [ in expression ] 

B.5.6 Expressions 

expression : 
Same as in standard Modelica, see Section B.2.7 Expressions. 
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Solutions to Exercises 

Chapter 2 

Exercise 2-1: 
A class is a fundamental unit of modeling in Modelica, 
providing the structure for an object. Classes can contain 
equations, where the computations are performed. 
Since x + y = sum is an equation and not an assignment, 
the equation can also be written as sum = x + y without 
changing the meaning of the expression. 
class Add 
parameter Integer x = 1; 
parameter Integer y = 2; 
Real sum; 

aquation 
sum = x + y; 

end Add; 
Exercise 2-2: 
Instances are notions of classes and objects. 
class Doglnst 
Dog d; 

•nd Doglnst; 

class DogTim 
Dog t(name="Tim"); 

end DogTim; 
Exercise 2-3: 
function Average 
input Real a; 
input Real b; 
output Real result; 

algorithm 
result := (a + b) / 2; 

end Average; 

class AverageTest 
Real res; 

equation 
res = Average(4, 6); 

end AverageTest; 

Exercise 2-4: 
partial class introduces a datatype. A partial class is incomplete, 
so you cannot create an instance of it. 

class introduces a variant. 

extends connects a variant to a datatype. 

Exercise 2-5: 
record Bicycle 

Boolean has_wheels = true; 
Integer nrOfWheels = 2; 

end Bicycle; 

class ChildrensBike 
extends Bicycle; 
Boolean forKids = true; 

end ChildrensBike; 
Exercise 2-6: 
class Birthyear 
parameter Integer thisYear = 2002; 
// Declaration equation 
parameter Integer age; 

protected 
Integer birthYear; 

equation 
birthYear = thisYear - age; 
// Normal equation 

end Birthyear; 

class MartinsBirthyear 
Birthyear martinsBirthyear(age = 30); 

// Modification equation 
end MartinsBirthyear; 
Exercise 2-7: 
There are more variables than equations, which is typical for 
partial classes; the keyword partial is therefore missing. 
Exercise 2-8: 
record Test 

Boolean[2] truthvalues = {false, true); 
Integer[5] ints = (13, 2, 5, 4, 87); 
String[3, 4] strings = {{"blue", "Martin", 

"yellow", "cake"), 
{"Anna", "sun", "star", "heaven"), 
{"candy", "Sofia", "sweet", 

"Balthasar"}); 
Real[1, 5] reals = {{4.3, 7.132, 6.5, 4.0, 2.1)); 
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1080 Peter Fritzson Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

Exercise 2-9: 
Yes. (You didn't think so, did you?) 

Exercise 2-10: 
class Average 
parameter Real a; 
parameter Real b; 
Real result; 

algorithm 
result := (a + b) / 2; 

end Average; 

class Averagelnst 
Average aver(a = 15, b = 23); 

end Averagelnst; 
Exercise 2-11: 
Note that the sum is calculated in an equation section to show 
that it is possible to mix algorithm and equation sections in a 
class. 
class AverageExtended 
parameter Real a; 
parameter Real b; 
parameter Real c; 
parameter Real d; 
Real sum; 
Real aver; 
Real nrOfVariables = 1; 

equation 
sum = a + b + c + d; 

algorithm 
aver :•* sum / nrOfVariables; 

end AverageExtended; 

class AverageExtlnst 
AverageExtended aver(a = 15, b = 23); 

end AverageExtlnst; 
Exercise 2-12: 
class Lights 

Integer switch; 
Boolean off = true; 

equation 
if off then 

switch = 0; 
else 

switch = 1; 
end if; 

end Lights; 

class LightSwitch 
Boolean on; 

equation 
when sample(5, 5) then 

if rem(time, 5) == 0 then 
on = true; 

else 
on = false; 

end if; 
end when; 

end LightSwitch; 

Exercise 2-13: 
A package is a restricted and enhanced class that is primarily 
used to manage name spaces and organize Modelica code. A 
package has the restrictions of only containing declarations of 
classes, including all kinds of restricted classes, and constants. 
Variable declarations are not allowed. 
package MyPackage 

function division 
input Real a; 
input Real b; 
output Real result; 

algorithm 
result :•= a / b; 

end division; 
constant Integer k = 5; 

end MyPackage; 
class MyPacklnst 

Real x = MyPackage.division(10, 5); 
end MyPacklnst; 

Chapter 3 

Exercise 3-1: 
class Multiply 
parameter Real x = 2; 
parameter Real y = 3; 
Real product; 

equation 
product = x*y; 

end Multiply; 

model Multiply 
parameter Real x = 2; 
parameter Real y = 3; 
Real product; 

equation 
product = x*y; 

end Multiply; 
Exercise 3-2: 
function AddTen 
input Real x; 
output Real result; 

algorithm 
result := x + 10; 

end AddTen; 

class AddTenCall 
Real res; 

equation 
res = AddTen(3.5); 

end AddTenCall; 
Exercise 3-3: 
olass Addition 
class Add 

Real x » 1; 
Real y = 2; 
Real z; 

equation 

end Add-
end Addition; 
Exercise 3-4: 
class Studentlnst 

Student s; 
end Studentlnst; 

class StudentAlice 
Student stud(name » "Alice", nrOfBooks • 65); 

end StudentAlice; 

class StudentBurt 
Student stud(name » "Burt", nrOfBooks * 32); 

end StudentBurt; 
Exercise 5-5: 
A variable is a place to store a piece of information. Just as you 
might store a friend's phone number in your own memory, you 
can store this information in a computer's memory. Variables are 
your way of accessing your computer's memory. 
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There are two different kinds of variables, discrete-time and 
continuous-time variables. Discrete-time variables change value 
only at event instants, whereas continuous-time variables may 
change value both between and at events. 
A parameter is a special kind of constant, which is implemented 
as a static variable that is initialized once and never changes its 
value during a specific execution. 
Exercise 3-6: 
class Matrices 
parameter Real ml[2, 3]; 
//A matrix with two rows and three columns 
parameter Real m2[5]; 
// An array with 5 elements 
Real m3[1, 6]; 
// A matrix with one row and six columns constant 
Real[2, 1] m4 = {{4}, {7}}; 
//Matrix with two rows and one column 

end Matrices; 
Exercise 3-7: 
I f nothing is specified, the default start value of all numerical 
variables is zero, apart from function results and local variables 
where it is unspecified. Other start values can be specified by 
setting the start attribute of instance variables. You can also set 
the initial value like this: 
when (initial ()) 
x_dot - -5; 

end when; 

olass Variables 
Real lengthl(start =3.5); // Initial value 3.5 
Real length2(start = 2.0); // Initial value 2 
Real length3; // Initial value 0 or (start = 0) 

end Variables; 
Exercise 3-8: 
record Dog 
Integer nrOfLegs = 4; 
String name = "dog"; 

end Dog; 
Exercise 3-9: 
A type can conceptually be viewed as a set of values. I f x has 
the type Real, this means that x belongs to the set of values 
represented by the type Real. 

The subtype relation between types is analogous to the subset 
relation between sets. I f a type A l is a subtype of A, the set of 
values corresponding to type A l is a subset of the set of values 
corresponding to type A. 

The supertype relation is the inverse of the subtype relation. 
class Room 
Real length = 5; 
Real width = 4.3; 
Real height = 2.1; 

end Room; 
Exercise 3-10: 
class Access 
parameter Real a; 
Real b; 
Real c; 

proteoted 
Integer d, e; 

equation 
b - 2.0; 
c = 1.3; 
d = 5; 
e = 7; 

end Access; 

class Accesslnst 
Access acc(a = 7.4); 

end Accesslnst; 

Chapter 4 

Exercise 4-1: 
class Bird 
extends Animal; 

Integer wings = 2; 
Integer legs = 2; 
Boolean CanFly = true; 

end Bird; 
talks still have the value false. 

Exercise 4-2: 
partial class Vehicle 

Real speed; 
end Vehicle; 

class Car 
extends Vehicle; 
Real motorEffect; 

class Boat 
extends Vehicle; 
Real boatWeight; 

end Boat; 

class Train 
extends Vehicle; 
Real nrOfCarriages; 

end Train; 
class Bicycle 
extends Vehicle; 
Real NrOfGears; 

end Bicycle; 

class Trainlnst 
Train superTrain(nrOfCarriages = 55); 

end Trainlnst; 
Exercise 4-3: 
class Person 

String name; 
Real weight; 

protected 
Integer ID; 

end Person; 

class Employed 
extends Person; 

protected 
Real salary; 

end Employed; 

class Programmer 
extends Employed; 
String favProgLang; 
Boolean drinksJoltCola; 

end Programmer; 

• salary and ID are protected variables in 
Employed. 

• I n the class Employed2 name, weight, s a l a r y 

and ID are protected variables. 

Exercise 4-4: 
A modifier modifies one or more declaration(s) from an 
inherited class by changing some aspect(s) of the inherited 
declarations. 
class Test 
parameter Integer test(start • 3, min « -22, 

fixed • true); 
end Test; 
Exercise 4-5: 
class ModArray 

Integer Al[5](fixed = true); 
// Modifies the fixed value for the whole array 
Boolean truthvalues[2](start » (false, false)); 
// Modifies the start value for the whole array 
Real A2 [2,2] (unit[1,2] - "kV"); 
/* Modifies the start value for a certain place in the 
matrix */ 
Integer A3 [2,3] (start • ({1, 0, 5), {)}); 
/* Modifies the start value for the first row in the 
matrix */ 
String A4[2,2](start = {{"Pippi", "Pippi"), 

{"Pippi", "Pippi"))); 
end ModArray; 
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Exercise 4-7: 
class Temperature 
parameter Real temp(unit = "degC"); 

end Temperature; 

class Temp20 = Temperature(temp = 20); 

modal Temp20b 
extends Temperature(temp = 20); 

end Temp2 0b; 
Exercise 4-8: 
class Today 
Date date(dayName(nameOfDay = "Wednesday"), date = 2, 
month = "October", year = 2002); 
LunchAppointment lunchApp(lunchTime = 12, 
lunchDate = "Frederick"); 

end Today; 

class Tomorrow 
Date date(dayName.nameOfDay = "Thursday", date = 3, 
month = "October", year = 2 002); 
LunchAppointment lunchApp(lunchTime = 12, lunchDate = 
"Steven"); 

end Tomorrow; 
Exercise 4-9: 
class Point 
parameter Real x; 
paramster Real y; 
parameter Real z; 

end Point; 

class Redeclaration 
replaceable Point P(x =1, y = 2, z = 3); 

end Redeclaration; 

clua MyPoint 
extends Point(z = 4); 

end MyPoint; 

class PointRed 
Redeclaration myPoint(redeclare MyPoint P) ; 

end PointRed; 
No, because then MyPoint would not be a subclass of Point. 

Exercise 4-10: 
class A 
parameter Real salt; 

end A; 

class Asub // Asub is a subtype of A 
extends A(salt = 20); 
parameter Real pepper; 
parameter Real basil; 

end Asub; 

class AInst 
replaceable A a(salt = 100); 

end AInst; 

The result after redeclaration is: Asub a (salt = l, pepper 
= 2) 
class Aired 
extends AInst(redeclare Asub a(pepper = 200)); 

end Aired; 

class AIred2 
AInst t(redeclare Asub a(pepper = 200)); 

end AIred2 
Exercise 4-11: 
class MoreRed 
parameter Real vl[3]; 
parameter Real v2[:]; 
Integer x = 2; 

end MoreRed; 

Notice that you don't need the keyword replaceable for v l and 
v2. 
class MoreRed2 = MoreRed(redeclare parameter Integer x, 

redeclare parameter Real vl[5], 
redeclare parameter Real v2[12]); 

Exercise 4-12: 
class Bananas 
Banana lightBanana(unit = "g"); // Correct 
Banana swedishBanana(fixed = true); 

// Error, since fixed is declared final 
end Bananas; 
Exercise 4-13: 

• It is a way of expressing classes or programs as 
generic patterns. 

• Because instead of writing many similar pieces of 
code with essentially the same structure, you can 
directly express the general structure and provide the 
specific information as parameters. 

Chapter 5 

Exercise 5-2: 
Inside connectors are ci. y, C2. u, C3. u. Outside connectors 
are CI. u, C2 . y, C3. y. 

The following connection equations are generated: 

C l . y = C 2 . y = C3.u 

Exercise 5-3: 
The models including instances m5 and m6 with resistors in 
parallel: 

model Resistor 
outer Pin ntop, pbot; 

end Resistor; 

model NResistors 
inner Pin ntop, pbot; 
Pin n, p; 
parameter Integer n=0; 
Resistor rs[n]; 

equation 
connect(n, ntop); 
connect(p, pbot); 

end NResistors; 

model Env 
NResistors m5(n=5), m6(n=6); 

end Env; 

Exercise 5-4: 
An expandable connector is a connector that expands to 
accommodate all the variables within the connectors connected 
to it. 
When two or more expandable connectors are connected, each is 
augmented with the variables that are only declared in the other 
connector(s). This is very useful for modeling information 
buses. 

An expandable connector cannot directly contain flow variables, 
however it can contain connectors with flow variables 

Chapter 6 

Exercise 6-1: 
o A keyword is a reserved word. 

o Because they are reserved for constructing elements in the 
Modelica language, they cannot be used as identifiers. 

o For example: end, class, and, connect, else and 
parameter. But there are over 40 of them, so you can 
find many more. 

o Real, Integer, Boolean and String. 

o An unnamed constant that has different form depending on 
their type. 

o true, one of the two boolean literal values. 
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o The freedom of the expression to change value during 
simulation. 

o The degrees of variability are constant, parameter, 
unclocked discrete-time, clocked discrete-time, and 
continuous-time variability. 

o Constant expressions have constant variability, 
i.e., never change value. In constant 
expressions the time derivative is equal to zero, 

o Parameter expressions have parameter 
variability, remain constant during time-
dependent simulation, and have time derivative 
equal to zero, 

o Discrete-time expressions: 
• They have discrete-time variability 

meaning that they are piecewise 
constant and change their values 
only at event instants during 
simulation. 

• Time derivative is equal to zero. 
• These expressions may include 

constant or parameter expressions or 
discrete-time variables, as well as 
applications of operators and 
functions with discrete-time 
arguments. 

• Unclocked discrete-time - values 
are defined at any time. Clocked 
discrete-time values are defined and 
change only at clock tick events. 

o Continuous-time expressions: 
• They have continuous-time 

variability and may change their 
values at any time during 
simulation. 

• They may include constant, 
parameter, and discrete-time 
expressions as well as continuous-
time Real variables, as well as 
applications of operators and 
functions. 

Exercise 6-2: 
The constant m cannot be set to a nonconstant value, in this case 
h + 28. 
class Happy 
Boolean right(fixed = true); 
parameter Integer h = 15; 
constant Integer m = h + 28; 
parameter Real k = 32; 

end Happy; 

Exercise 6-3: 
The first one is allowed because an integer can be converted to a 
real implicitly. 
However the conversion from Real to integer needs to be 
explicit, hence the second statement is incorrect. It can be 
changed to Integer il= integer(r)+5; 

Exercise 6-4: 
A conditional expression in Modelica returns one of several 
values depending on one or more condition(s). 
der(x) = 

if (a > 0) then x elseif (a == 0) then 0 else -x; 
The two forms (statement, expression) are equivalent. 

Chapter 7 

Exercise 7-1: 
record Matrix 
Real ml[7] = (17.1, 62.7, 7.5, 37.0, 25, 4.121, 
12.333336}; 
Integer m2[4, 2] = {(44, 5}, {2, 800), {7, 23), 
(2032, 77}}; 
String[l, 5] m3 = {{"Magnus", "circle", "boy", 
"Marina", "Miranda"}}; 
String m4[:]; 
Boolean m5[:, 2]; 
Boolean m6[0]; 

end Matrix; 
Exercise 7-2: 

The expanded type is Student [42, 35], 
Exercise 7-3: 

• A range vector is a vector containing a range of 
numeric values increasing or decreasing by a fixed 
increment or decrement value for each additional 
element. 

• {5,10,15,20,25} 
Exercise 7-4: 

• vl has the value {3,4, 5, 6, 7, 8} 
• v2 has the value {-20, -19, -18, -17, -16, -15, -14, -

13,-12,-11} 

• v3 has the value {11.3,12.3, 13.3,14.3,15.3} 
• v4 is an empty vector 
• v5 has the value {1.1,2.1,3.1} 

These vectors are just examples of how the vectors can be 
constructed. There is more than one solution to every vector. 
class RangeVectors2 
Real vl[5] = 15.0 : 3 : 27.0; 
Real v2[3] = -6.5 : -2 : -10.5; 
Integer v3[0]; 

end RangeVectors2; 
Exercise 7-5: 

• The arrays that are concatenated must have the same 
number of dimensions. 

• The concatenation dimension k, that is used, must 
exist. 

• Arrays must have identical dimension sizes with the 
exception of the size of dimension k 

• Argument arrays must have equivalent maximally 
expanded element types, where the element type of 
the result array is the element type of the maximally 
expanded type of the arguments. 

• array 1 has the result {{22, 34,15}, {66, 78, 52}} 
• array2 has the result {{22, 34, 15}, {66, 78, 52}} 
• array3 has the result {{11, 12}, {13, 14}} 
• array4 has the result {{7, 2}, {5,42}, {24, 74}} 
• array5 has the result {{7, 2}, {5,42}, {24, 74}} 

• array6 has the result {{1, 2}, {11, 12}, {13, 14}, {3, 
4}} 

• array7 has the result {{1, 2, 35, 73}, {72, 51, 12, 
23}} 
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These are examples of how you could concatenate the arrays in 
the exercise. 
alass MyArrayConcat 
Real [2, 2] myArrayl = cat(l, {{1, 2}}, {{11, 12}}); 
Real [1, 4] myArray2 = cat(2, {{1, 2)}, {{11, 12}}); 
Real [2, 4] myArray3 = cat (2, [21, 32, 43; 66, 77, 55], 
[12; 24]); 
Real [4, 2] myArray4 = cat(l, [10, 40; 55, 78], 
[20, 50; 31, 22]); 

and MyArrayConcat; 
• myArrayl has the result {{1, 2}, {11, 12}} 
• my Array 2 has the result {{1,2,11,12}} 
• myArray3 has the result {{21, 32, 43, 12}, {66, 77, 

55, 24}} 
• my Array 4 has the result {{10, 40}, {55, 78}, {20, 

50}, {31,22}} 
Exercise 7-6: 
This is an example of how you could concatenate the arrays in 
the exercise. 
class MoreConcat 
Real [1, 2, 1] al = {{{1}, {2}}}; 
Real [1, 2, 2] a2 = {{{3, 4}, {5, 6}}}; 
Real[1, 2, 3] a3 = {{{7, 8, 9}, {10, 11, 12}}}; 
Real [ 1, 2, 6] aReady; 

aReady = cat(3, al, a2, a3); 
and MoreConcat; 

• aReady has the result {{1, 3, 4, 7, 8, 9}, {2, 5, 6, 10, 
1 1 , 1 2 } } 

Exercise 7-7: 
olass Arraylndexing 
Real arrayl[2, 3]; 
Real array2[2, 3]; 

algorithm 
arrayl := fill(l, 2, 3); 
array2 := fill(l, 2, 3); 
arrayl[1,1] := 10; 
arrayl[2,1] 23; 
array2[2,1] := 100; 
array2[2,2] 100; 
array2[2,3] := 100; 

and Arraylndexing; 
• The result of array2 {{10, 1,1}, {23,1,1}} 

• The result of array2 {{1,1,1}, {100,100, 100}} 
class Arraylndexing2 
Real arrayl[2, 2] = fill(9, 2, 2); 
Real array2[2, 4] = fill (7, 2, 4); 
Real vl[2] = {2, 20} ; 
Real v2 [4] = {6, 7, 8, 9} ; 
Real arrayl[2] = vl; 

and Arraylndexing2; 
• The result of arrayl is {{9, 9}, {2, 20}} 
• The result of array2 {{7, 7, 7, 7}, {6, 7, 8, 9}} 

class Slice 
Real[3, 3] V = {{22, 14, 71}, {33, 41, 17), 

{44, 11, 77}}; 
Real[3, 2] W = {{12, 13}, {23, 88}, {99, 43}}; 
Real[5] Y = {23, 24, 25, 26, 27}; 
Real vl[3] = V[:, 1]; 
Real v2[3] = V[3, :]; 
Real v3[1] = V[3, {2}]; 
Real v4 [3] « W[:, 2] ; 
Real v5[2] - Y[{1, 2}]; 
Real v6[2] = W[3, {1, 2}]; 
Real v7[2] = V[3, 1:2] ; 
Real v8[2] = Y[3:4]; 
Real v9[3] = Y[l:2:5]; 

and Slice; 
• vl gets the value {22, 33, 44}. 

• v2 gets the third row of V, i.e., the vector {44, 11, 
77}. 

• v3 gets the second element (in brackets) in the third 
row in V, i.e., {11}. 

• v4 gets the second row of W, i.e., {13, 88, 43} 
• v5 gets the first and second elements of Y, i.e., {23, 

24} 

• v6 gets the first and second elements on the third row 
of W, i.e., {99, 43} 

• v7 gets the first and second elements of the third row 
of V, i.e., {44, 11,77} 

• v8 gets the 3:rd through 4:th elements of Y as {25, 
26} 

• v9 gets the l:st to 5:th elements step 2 elements as 
{23, 25, 27} 

Exercise 7-8: 
class Concatenate 
Real [ 1, 2] A = [50, 32] ; 
Real [2, 1] B = [3; 7]; 
Real[5] a = {4, 9, 7, 5, 2} ; 
Real [1, 3] VI = [A, 60] ; 
Real[1, 4] V2 = [VI, 50]; 
Real[1, 3] V3 = cat(2, A, {{20}}); 
Real[3, 1] V4 = [B; 60]; 
Real[3, 1] V5 = cat(l, B, {{20}}); 
Real[6] v = cat(1, a, {18}); 

end Concatenate; 

0 The result is {50, 32, 60} 

») The result is {50, 32, 60, 50} 
iii) The result is {50, 32, 20} 
iv) The result is {{3}, {7}, {60}} 

v) The result is {{3}, {7}, {20}} 
vi) The result is {4, 9, 7, 5, 2,18} 
Exercise 7-9: 

• No; elementwise operations for the combination of 
an array and a scalar operand are not defined for 
addition. 

• No; elementwise operations for the combination of 
an array and a scalar operand are not defined for 
subtraction. 

• Oh, yes! The result is {22, 28, 24}. 
Exercise 7-10: 
class MatrixMultiplication 
Real Ml [2, 3] = [2, 3, 4; 5, 6, 7] ; 
Real M2[3, 2] = [5, 6; 3, 2; 1, 7]; 
Real prod[2, 2]; 

equation 
prod - M1*M2; 

end MatrixMultiplication; 
Exercise 7-11: 

• The result of multl is 4. 
• The result of multl is {8, 8}. 
• The result of multl is {{4, 4}, {4, 4}}. 
• The result of multl is {84}. 
• Oh, yes! The result is {4, 3.5, 2.5, 4.25, 3}. 
• No; Elementwise operations for dividing a scalar 

operand with an array are not defined for division. 
class Exponent 
Real m[2, 2]; 

equation 
m = {{1, 3}, {4, 5}} - 2; 

end Exponent; 
The result is {{13, 18}, {24, 37}}. 

Chapter 8 

Exercise 8-1: 
• Equations are more powerful than assignments, since 

one equation can express several different 
assignments. 

• A declaration equation is the equation used when 
declaring a variable, usually constants or parameters. 
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Such equations are actually required for constants, 
but are optional for parameters. It is also possible to 
specify a declaration equation for a normal state 
variable, but this will make the variable behave as a 
kind of constant. 

• Modifier equations occur, for example, in a variable 
declaration when there is a need to modify the 
default value of an attribute of the variable. A 
modifier equation replaces the declaration equation, 
if present, for an attribute of the specific type. 

Exercise 8-2: 
class Repetitive 

Integer rep [7]; 
aquation 

for i in 1:7 loop 
rep[i] = 15; 

•nd for; 
•nd Repetitive; 

class RepetitiveWithoutFor 
Integer : rep[7] 

equation 
rep[1] = 15; 
rep[2] = 15; 
rep[3] = 15; 
rep[4] = 15; 
rep[5] = 15; 
rep[6] = 15; 
rep[7] = 15; 

•nd RepetitiveWithoutFor; 
Exercise 8-3: 
class Repeat 

Integer repeater[4]; 
equation 

for i in 1:4 loop 
repeater[i] = i + 3; 

end for; 
end Repeat; 

function Rapper 
input Integer rap[:]; 
output Integer sum = 0; 

algorithm 
for i in 1:size (rap,1) loop 

sum := sum + rap[i]; 
end for; 

end Rapper; 

class Rapperlnst 

equation 
x = Rapper({1, 2, 3, 4}); 

•nd Rapperlnst; 
Exercise 8-4: 
It is not good from the programmer's point of view. The 
variable inside the for-clause is hidden, which is all right, but 
they are by the programmer easily mixed together. 
Exercise 8-5: 

• A hybrid model is a model with mixed continuous 
and discrete parts. 

• Well, the thing is that one can use both constructs for 
hybrid models. The if-equations may contain 
continuous-time expressions and when-equations 
may contain only discrete-time expressions. 

Exercise 8-6: 
function MatrixAddition 
input Integer matrixl[:, :]; 
input Integer matrix2[:, :]; 
output Integer matrixSum[2, 2]; 

algorithm 
for i in 1:size(matrixl, 1) loop 

for j in 1:size(matrix2, 2) loop 
matrixSum[i, j] := matrixl[i, j] + matrix2[i, j]; 

•nd for; 
end for; 

•nd MatrixAddition; 

class MatrixAdditionCall 
Real[2, 2] MA = MatrixAddition([1, 2; 3, 4], 

[1, 2; 3, 4]); 
•nd MatrixAdditionCall; 

Chapter 9 

Exercise 9-1: 
function Sum 

input Real[:] x; 
output Real sum; 

algorithm 
for i in l:size(x,l) loop 

sum :» sum + x[i] ; 
end for; 

and Sum; 

function Average 
input Real[:] x; 
output Real average; 

protected 
Real sum; 

algorithm 
average := Sum(x) / size(x,l); 

and Average; 

class LargestAverage 
parameter Integer[:] Al = {1, 2, 3, 4, 5); 
parameter Integer[:] A2 = {7, 8, 9}; 
Real averageAl, averageA2; 
Boolean AlLargest(start = false); 

algorithm 
averageAl := Average(Al); 
averageA2 := Average(A2); 
if averageAl > averageA2 then 
AlLargest := true; 

else 
AlLargest := false; 

end if; 
end LargestAverage; 
Exercise 9-2: 
Loop through all elements in the array except the first. The 
smallest value is initially the first value in the array. 
class FindSmallest 

Real A [: ] ; 
Real smallest; 
Integer place; 

algorithm 
smallest := A[l]; 

for i in 2:size(A, 1) loop 
if A[i] < smallest than 

smallest := A[i]; 
place := i; 

end if; 
end for; 

end FindSmallest; 

class FindSmallestElement 
FindSmallest findsmallest(A={9, 5, 8, 7, 2, 4)); 

end FindSmallestElement; 
Exercise 9-3: 
If the operator abs is used outside a when clause, state events are 
triggered. If this is not desired, the noEvent function can be 
applied to it. 
class SumCalculation 

constant Real e = 0.000001; 
Real sum(start = 0); 
Real next(start = 1.0); 
Integer k(start = 1); 
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0.9; // Elasticity constant of balls 
// Position of ball 1 
// Position of ball 2 
// Velocity of ball 1 
// Velocity of ball 2 

Integer posneg(start = 1); // if the sign is + or -
algorithm 
while noEvent(abs(next)) >= e loop 

sum := sum + next; // Add the sum to the next term 
k := k + 1; // calculate a new next 
posneg := - posneg; 
next := posneg/(k*k); 

end while; 
end SumCalculation; 
Exercise 9-4: 
class LightSwitch 

Boolean on; 
algorithm 

when sample(5, 5) then 
if rem(time, 5) == 0 then 

else 
on := false; 

end if; 
end when; 

end LightSwitch; 

class LightSwitchExtended 
Boolean on; 

algorithm 
when time < 5 or time >= 25 then 

on := false; 
elsewhen sample(5, 1) then 

if rem(time, 5) == 0 then 
on := true; 

else 
on := false; 

end if; 
end when; 

end LightSwitchExtended; 
Exercise 9-5: 
model BilliardBalls 

parameter Real < 
Real positionl (start = D.-
Real position2(start = 10); 
Real velocityl(start = 10); 
Real velocity2(start = -15) 

equation 
der (positionl) = velocityl; 
der (position2) = velocity2; 
der(velocityl) = 0; 
der(velocity2) - 0; 

algorithm 
when positionl >= position2 then 

reinit(velocityl, -c*velocityl); 
reinit(velocity2, -c*velocity2); 

end when; 
end BilliardBalls; 
Exercise 9-6: 
function NFaculty 

input Integer n; 
algorithm 

for i in 2:n loop 
fak := i*fak; 

end for; 
end NFaculty; 

class NFacultyCall 
Real n = NFaculty(4); 

end NFacultyCall; 
Exercise 9-7: 
function FindName 

input String nameArray[:]; 
output Integer fak = 1; 
input String name; 
output Integer index; 

protected 
Integer i, length = size(nameArray, 1); 

algorithm 

i := 1; 
while index == -1 and iclength loop 

if nameArray[i] == name then 

end if; 
i := i + 1; 

end while; 
assert(index<>-l, "FindName: Failed"); 

end FindName; 

class TestFindName 
Integer findLisp; 
String nameArray[:] = ("C++", "Lisp", "Java", 
"Modelica"); 
String lisp = "Lisp"; 

equation 

findLisp = FindName(nameArray, lisp); 
end TestFindName; 

class TestFindName2 
Integer findPascal; 
String nameArray[:] = {"C++", "Lisp", "Java", "Ada", 
"Modelica"}; 
String pascal = "Pascal"; 

equation 
findPascal = FindName (nameArray, pascal); 

end TestFindName2; 
Exercise 9-8: 
function ScalarProduct 

input Integer VI[:]; 
input Integer V2[size(VI,1)]; 
output Integer scalarProduct; 

algorithm 
scalarProduct V1*V2; 

end ScalarProduct; 

class Orthogonal 
Integer VI[:] = {1, 2, 3}; 
Integer V2[:] - {-3, 0, 1); 
Integer scalarProduct; 
Boolean orthogonal; 

eU.gorithm 
scalarProduct := ScalarProduct(VI, 
if scalarProduct == 0 then 

orthogonal true; 
end if; 

end Orthogonal; 

Chapter 10 

Exercise 10-1: 
• A package is simply a container or name space for 

names of classes, functions, constants, and other 
allowed definitions. A package is also one of the 
restricted classes. 

• Adding the word encapsulated to the package keeps 
the package well structured as well as being easier to 
understand and maintain. 

Exercise 10-2: 
package Geometry 

constant Real PI = 3.1415926536; 
type Distance = Real(unit = "m"); 

function RectangleArea 
input Distance B; 
input Distance H; 
output Distance area; 

algorithm 
area B*H; 

end RectangleArea; 

function TriangleArea 
input Distance B; 
input Distance H; 
output Distance area; 

algorithm 
area := RectangleArea(B, H)/2; 

end TriangleArea; 

function CirclePerimeter 
input Distance radius; 
output Distance perimeter; 

algorithm 
perimeter := 2*PI*radius; 

end CirclePerimeter; 

function CircleArea 
input Distance radius; 
output Distance area; 

algorithm 
area := PI*radiusA2; 

end CircleArea; 

ind Geometry; 
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class GeometryUser 
Geometry.Distance rectangleArea = 
Geometry.RectangleArea(4, 5); 
Geometry.Distance triangleArea 
Geometry.TriangleArea(4, 5); 
Geometry.Distance circlePerimeter = 
Geometry.CirclePerimeter(3.5); 
Geometry.Distance circleArea = 
Geometry.CircleArea(3.5); 

•nd GeometryUser; 
Exercise 10-3: 
There are many factors to consider when designing a package, 
for example, the name of the package or the structuring of the 
package into subpackages. Other factors that are important to 
consider are reusability and encapsulation of the package as well 
as considering dependencies on other packages. 
Exercise 10-4: 

• A generic package is a package with some kind of 
formal parameter, e.g. a replaceable type. 

• A local package is simply a package that is declared 
directly inside a class that is not a package. 

• Yes, there actually is. A nonencapsulated package is 
a package declared without the prefix encapsulated. 
Also large encapsulated packages, containing 
protected declarations, can be internally structured 
into nonencapsulated packages. 

• That is because used declarations may not be 
available in the new location for that certain 
subclass. When copying or moving an encapsulated 
package or class, at most the import statements 
inside this package or class, including subpackages 
and local classes, need to be updated. 

Exercise 10-5: 
Yes, as a matter of fact it is possible to inherit packages. 
class GeometryUser 
•xtands Geometry; 
Distance rectangleArea = RectangleArea (4, 5); 
Distance rectangleArea = TriangleArea(4, 5); 
Distance circlePerimeter = CirclePerimeter (3.5); 
Distance circleArea = CircleArea(3.5); 

end GeometryUser; 

Chapter 11 

Exercise 11-1: 
type Acceleration = Real(final unit="m/s2"); 

Exercise 11-2: 
Annotations can be placed at the end of class definitions, and at 
the end of variable declarations, import clauses, equations, and 
statements. 

Chapter 12 

Exercise 12-1: 
Top-down modeling starts by defining the overall system 
structure, perhaps with few details, and progressively expanding 
the design by adding models and more details for the sub-
systems, until a complete model is achieved. 
Bottom up modeling starts by designing the low-level 
component models. These are are used as building blocks for 
more complex models which might be sub-systems of the final 
application. Eventually this process leads to the modeling of the 
whole system. 

Exercise 12-2: 
It should be easy and natural to connect components. 
Component interfaces should be designed to facilitate reuse of 
existing model components in class libraries. These rules sound 
simple, however they require a lot of careful design in practice. 

Exercise 12-3: 
It is much easier to compose a component-baed model with 
other models, and to reuse and extend a component-based 
model. 

Chapter 13 

Exercise 13-1: 
A system with more equations than unknowns is over-
constrained and a system with more unknowns than equations is 
under-constrained. 

Exercise 13-2: 
class ex2 "unclocked version" 
Real x (start=l); 
Boolean elk; 

equation 
elk = sample(0,3); 
when elk then 
x = pre(x)+2; 

end when; 
•nd ex2; 

class ex2 "clocked version" 
discrete Real xclocked(start=l); 

Boolean elk; 
equation 

elk = Clock(3); 
when elk then 
xclocked = previous(xclocked)+2; 

•nd when; 
x = hold (xclocked); 

and ex2; 

Exercise 13-3: 
For an unclocked discrete-time variable y at an event, pre (y) is 
the value of y immediately preceding the event. Between events 
pre (y) is the same as y. 

The function call previous (y) gives the predecessor value of a 
clocked discrete-time variable y, i.e., its value at the previous 
clock tick event. 
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Exercise 13-4: 
The model is incorrect because two equations with conflicting 
values can be valid at the same time. Instead elsewhen should 
be used to define a priority between the events. 

Exercise 13-6: 
Hybrid systems are systems that contain both continuous-time 
and discrete-time parts. 
A bouncing ball is an example of a hybrid system. 

Exercise 13-5: 
class exercise5 
parameter Integer level; 
Boolean elk; 
Boolean signal; 
Integer y; 

equation 
elk = sample(0,2); 
if(time >=20 and time <= 80 and (y >= level)) then 

else9 
signal = false; 

end if; 
end exercise5; 



Appendix D 

Modelica Standard Library Samples 

This appendix shows samples of source code from 
a few of the mostly used sub-libraries in the 
Modelica Standard Library. 

The package Modelica is a standardized and pre-defined 
package that is developed together with the Modelica language 
from the Modelica Association, see http://www.Modelica.org. It 
is also called the Modelica Standard Library. It provides 
constants, types, connectors, partial models and model 
components in various disciplines. 

The Modelica package is free software and can be 
redistributed and/or modified under the terms of the Modelica 
License displayed at the front pages of this book. 

The version reproduced in this appendix contains sample 
pieces of the Modelica standard library in the form it was 
available in September 2013, M S L 3.2.1. 

The Modelica package consists of a number of subpackages, 
which are presented in Chapter 16, page 909. 

The Modelica package contains documentation and a users 
guide.The Examples packages in the various libraries, 
demonstrate how to use the components of the corresponding 
sublibrary. 

In the Modelica package the following conventions are used: 
• Class and instance names are usually written in upper and 
lower case letters, e.g., ElectricCurrent. An underscore may 
be used in names. However, it has to be taken into account that 
the last underscore in a name might indicate that the following 
characters are rendered as a subscript. Example: pin_a may be 
rendered as pina. 

• Class names start always with an upper case letter, with the 
exception of functions, which start with a lower case letter. 
• Instance names, i.e., names of component instances and of 
variables (with the exception of constants), start usually with a 
lower case letter with only a few exceptions if this is common 
sense (such as T for a temperature variable). 

• Constant names, i.e., names of variables declared with the 
"constant" prefix, follow the usual naming conventions (= upper 
and lower case letters) and start usually with an upper case 
letter, e.g., UniformGravity, SteadyState. 

• The two connectors of a domain that have identical 
declarations and different icons are usually distinguished by _a, 
_b or _p, _n, e.g., Flange_a, Flange_b, HeatPort_a, HeatPort_b. 

• A connector class has the instance name definition in the 
diagram layer and not in the icon layer 

• A package X X X has its interface definitions in subpackage 
XXX.Interfaces, e.g., Electrical.Interfaces. 

• Preferred instance names for connectors: 
p,n: positive and negative side of a partial model. 
a,b: side "a" and side "b" of a partial model 
(i.e., connectors are completely equivalent). 

1089 
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Modelica.Constants 
Mathematical constants and constants of nature 
This package provides often needed constants from 
mathematics, machine dependent constants and constants from 
nature. The latter constants (name, value, description) are from 
the following source: 
Peter J. Mohr and Barry N. Taylor (1999): 
C O D A T A Recommended Values of the Fundamental Physical 
Constants: 1998. Journal of Physical and Chemical Reference 
Data, Vol. 28, No. 6, 1999 and Reviews of Modern Physics, 
Vol. 72, No. 2, 2000. See also 
http://physics.nist.gov/cuu/Constants/ 
Copyright © 1999-2013, Modelica Association and DLR. 

Main Author: Martin Otter. 

Types and constants 

package Constants 

"Library of mathematical constants and constants of 
nature (e.g., pi, eps, R, sigma)" 

import SI = Modelica.Slunits; 
import NonSI = Modelica.Slunits.Conversions.NonSIunits; 

extends Modelica.Icons.Package; 

// Mathematical constants 
final constant Real e=Modelica.Math.exp(1.0); 
final constant Real pi=2*Modelica.Math.asin(1.0); 

// 3.14159265358979; 
final constant Real D2R=pi/180 "Degree to Radian"; 
final constant Real R2D=18 0/pi "Radian to Degree"; 
final constant Real gamma=0.57721566490153286060 

"see http://en.wikipedia.org/wiki/Euler_constant"; 
// Machine dependent constants 
final constant Real eps=ModelicaServices.Machine.eps 

"Biggest number such that 1.0 + eps = 1.0"; 
final constant Real small=ModelicaServices.Machine.small 

"Smallest number such that small and -small are 
representable on the machine"; 

final constant Real inf=ModelicaServices.Machine.inf 
"Biggest Real number such that inf and -inf are 
representable on the machine"; 

final constant Integer Integer_inf= 
ModelicaServices.Machine.Integer_inf 
"Biggest Integer number such that Integer_inf and -
Integer_inf are representable on the machine"; 

// Constants of nature 
// (name, value, description from 
http://physics.nist.gov/cuu/Constants/) 

final constant SI.Velocity c=299792458 
"Speed of light in vacuum"; 

final constant SI.Acceleration g_n=9.80665 
"Standard acceleration of gravity on earth"; 

final constant Real G(final unit="m3/(kg.s2)")=6.6742e-ll 
"Newtonian constant of gravitation"; 

final constant SI.FaradayConstant F = 9.64853399e4 
"Faraday constant, C/mol"; 

final constant Real h(final unit="J.s") = 6.6260693e-34 
"Planck constant"; 

final constant Real k(final unit="J/K") = 1.3806505e-23 
"Boltzmann constant"; 

final constant Real R(final unit="J/(mol.K)") = 8.314472 
"Molar gas constant"; 

final constant Real sigma(final unit="W/(m2 .K4)") = 
5.670400e-8 "Stefan-Boltzmann constant"; 

final constant Real N_A(final unit="l/mol")= 6.0221415e23 
"Avogadro constant"; 

final constant Real mue_0(final unit="N/A2") = 4*pi*l.e-7 
"Magnetic constant"; 

final constant Real epsilon_0(final unit="F/m") = 
1/(mue_0*c*c) "Electric constant"; 

final constant NonSI.Temperature_degC T_zero=-273.15 
"Absolute zero temperature"; 

end Constants; 

Modelica.Slunits 
Type definitions based on SI units according to ISO 31-1992 
This package provides predefined types, such as Mass, Length, 
Time, based on the international standard on units: 

ISO 31-1992 "General principles concerning quantities, units 
and symbols" 

ISO 1000-1992 "SI units and recommendations for the use of 
their multiples and of certain other units". 

For more information on units, see also the book of Francois 
Cardarelli "Scientific Unit Conversion - A Practical Guide to 
Metrication" (Springer 1997). 
The following conventions are used in this package: 

Modelica quantity names are defined according to the 
recommendations of ISO 31. Some of these name are rather 
long, such as "ThermodynamicTemperature". Shorter alias 
names are defined, e.g., "type Temp K = 
ThermodynamicTemperature;". 

Modelica units are defined according to the SI base units 
without multiples (only exception "kg"). 

For some quantities, more convenient units for an engineer 
are defined as "displayUnit", i.e., the default unit for display 
purposes (e.g., displayUnit-'deg" for quantity-'Angle"). 

The type name is identical to the quantity name, following the 
convention of type names. 

All quantity and unit attributes are defined as final in order 
that they cannot be redefined to another value. 

Similiar quantities, such as "Length, Breadth, Height, 
Thickness, Radius" are defined as the same quantity (here: 
"Length"). 

The ordering of the type declarations in this package follows 
ISO 31: 

Chapter 1: Space and Time 
Chapter 2: Periodic and Related Phenomena 
Chapter 3: Mechanics 
Chapter 4: Heat 
Chapter 5: Electricity and Magnetism 
Chapter 6: Light and Related Electro-Magnetic Radiations 
Chapter 7: Acoustics 
Chapter 8: Physical Chemistry 
Chapter 9: Atomic and Nuclear Physics 
Chapter 10: Nuclear Reactions and Ionizing Radiations 
Chapter 11: (not defined in ISO 31-1992) 
Chapter 12: Characteristic Numbers 
Chapter 13: Solid State Physics 

Conversion functions between S I and non-SI units are available 
in subpackage Conversions. 
Main Author: Martin Otter 

Copyright © 1999-2013, Modelica Association and D L R 
Types and constants 

type Angle = Real ( 
final quantity="Angle", 
final unit="rad", 
displayUnit="deg"); 

type SolidAngle = Real ( 
final quantity="SolidAngle", final unit="sr"); 

type Length = Real (final quantity="Length", 
final unit="m"); 

type PathLength = Length; 
type Position = Length; 
type Distance = Length (min=0); 
type Breadth - Length(min^O); 
type Height Length (min®0) ; 
type Thickness = Length(min=0); 
type Radius =» Length (min»0) ; 
type Diameter = Length(min=0); 
type Area = Real (final quantity="Area", 

final unit="m2"); 
type Volume « Real (final quantity="Volume", 

final unit="m3"); 
type Time = Real (final quantity="Time", 

final unit="s"); 
type Duration = Time; 
type AngularVelocity = Real ( 

final quantity="AngularVelocity", 
final unit="rad/s"); 
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type AngularAcceleration = Real ( 
final quantity="AngularAcceleration", 
final unit="rad/s2"); 

type Velocity = Real (final quantity="Velocity", 
final unit="m/s"); 

type Acceleration = Real (final quantity="Acceleration", 
final unit="m/s2"); 

// Periodic and related phenomens (chapter 2 of ISO 31-
1992) 
type Period = Real (final quantity="Time", 

type Frequency = Real (final quantity="Frequency", 
final unit*"Hz"); 
type AngularFrequency » Real ( 

final quantity="AngularFrequency", 
final unit="rad/s"); 

type Wavelength = Real (final quantity="Wavelength", 
final unit="m"); 
type Wavelenght = Wavelength; 
// For compatibility reasons only 
type WaveNumber = Real (final quantity="WaveNumber", 
final unit="m-l"); 
type CircularWaveNumber = Real (final 
quantity="CircularWaveNumber", final unit= 

"rad/m"); 
type AmplitudeLevelDifference = Real (final quantity= 

"AmplitudeLevelDifference", final unit="dB"); 
type PowerLevelDifference = Real (final 
quantity="PowerLevelDifference", 

final unit="dB"); 
type DampingCoefficient = Real (final 
quantity="DampingCoefficient", final unit= "s-1"); 
type LogarithmicDecrement » Real (final 
quantity="LogarithmicDecrement", 

final unit="l/S"); 
type AttenuationCoefficient = Real (final 
quantity="AttenuationCoefficient", 

final unit="m-l"); 
type PhaseCoefficient = Real (final 
quantity="PhaseCoefficient", final unit= 

V I " ) ; 
type PropagationCoefficient = Real (final 
quantity="PropagationCoefficient", 

final unit="m-l"); 
// added to ISO-chapter 
type Damping = DampingCoefficient; 

// Mechanics (chapter 3 of ISO 31-1992) 
type Mass = Real ( 

quantity="Mass", 
final unit="kg", 
min=0); 

type Density = Real ( 
final quantity="Density", 
final unit="kg/m3", 
displayUnit="g/cm3", 
min-0.0); 

type RelativeDensity = Real ( 
final quantity="RelativeDensity", 
final unit="l", 
min=0.0) ; 

type SpecificVolume = Real ( 
final quantity="SpecificVolume", 
final unit="m3/kg", 
min=0. 0) ; 

type LinearDensity = Real ( 
final quantity="LinearDensity", 
final unit="kg/m", 
min=0); 

type SurfaceDensity = Real ( 
final quantity="SurfaceDensity", 
final unit="kg/m2", 
min=0); 

type Momentum = Real (final quantity»"Momentum", final 
unit="kg.m/s"); 
type Impulse = Real (final quantity="Impulse", final 
unit="N.s"); 
type AngularMomentum = Real (final 
quantity="AngularMomentum", final unit® "kg.m2/s"); 
type Angularlmpulse = Real (final 
quantity="AngularImpulse", final unit= 

"N.m.s"); 
type MomentOfInertia = Real (final 
quantity="MomentOfInertia", final unit= 

"kg.m2"); 
type Inertia = MomentOfInertia; 
type Force = Real (final quantity="Force", 

final unit="N"); 
type TranslationalSpringConstant=Real( 

final quantity="TranslationalSpringConstant", 
final unit="N/m"); 

type TranslationalDampingConstant=Real( 
final quantity="TranslationalDampingConstant", 
final \anit="N.s/m") ; 

type Weight = Force; 
type Torque = Real (final quantity="Torque", 

final unit="N.m"); 
type ElectricalTorqueConstant = Real( 

final quantity="ElectricalTorqueConstant", 
final unit= "N.m/A"); 

type MomentOfForce = Torque; 
type In^ulseFlowRate = Real ( 

final quantity="ImpulseFlowRate", final unit="N"); 
type AngularlmpulseFlowRate = Real (final quantity = 

"Angularln^julseFlowRate", final unit= "N.m"); 
type RotationalSpringConstant=Real(final quantity= 

"RotationalSpringConstant", final unit="N.m/rad"); 
type RotationalDampingConstant=Real(final quantity= 

"RotationalDampingConstant", final unit="N.m.s/rad"); 
type Pressure = Real ( 

final quantity="Pressure", 
final unit="Pa", 
displayUnit="bar"); 

type AbsolutePressure = Pressure (min=0.0, nominal= le5); 
type PressureDifference = Pressure; 
type BulkModulus = AbsolutePressure; 
type Stress = Real (final unit="Pa"); 
type NormalStress = Stress; 
type ShearStress = Stress; 
type Strain = Real (final quantity="Strain", 

final unit="l"); 
type LinearStrain = Strain; 
type ShearStrain = Strain; 
type VoliimeStrain = Real (final quantity="VolumeStrain", 

final unit="l"); 
type PoissonNumber = Real (final 
quantity="PoissonNumber", final unit="l"); 
type ModulusOfElasticity = Stress; 
type ShearModulus = Stress; 
type SecondMomentOfArea = Real (final quantity^ 

"SecondMomentOfArea", final unit="m4"); 
type SecondPolarMomentOfArea = SecondMomentOfArea; 
type SectionModulus « Real (final 

quantity="SectionModulus", final unit="m3"); 
type CoefficientOfFriction = Real (final quantity= 

"CoefficientOfFriction",final unit="l"); 
type DynamicViscosity = Real ( 

final quantity="DynamicViscosity", 
final unit="Pa.s", 
min=0); 

type KinematicViscosity = Real ( 
final quantity="KinematicViscosity", 
final unit="m2/s", 
min=0); 

type SurfaceTension « Real (final 
quantity="SurfaceTension", final unit="N/m"); 
type Work = Real (final quantity="Work", final unit="J"); 
type Energy •= Real (final quantity="Energy", 

final unit=»"J"); 
type EnergyDensity * Real ( 

final quantity*"EnergyDensity", final unit="J/m3"); 
type PotentialEnergy • Energy; 
type KineticEnergy - Energy; 
type Power = Real (final quantity="Power", 

final unit="W"); 
type EnergyFlowRate ® Power; 
type EnthalpyFlowRate - Real (final quantity= 

"EnthalpyFlowRate", final unit="W"); 
type Efficiency = Real ( 

final quantity="Efficiency", 
final unit="l", 
min»0); 

type MassFlowRate = Real (quantity="MassFlowRate", 
final unit="kg/s"); 

type VolumeFlowRate = Real (final quantity^ 
"VoliomeFlowRate", final unit= "m3/s"); 

// added to ISO-chapter 3 
type MomentumFlux = Real (final quantity="MomentumFlux", 

final unit="N"); 
type AngularMomentumFlux = Real (final 

quantity="AngularMomentumFlux", final unit="N.m"); 

// Heat (chapter 4 of ISO 31-1992) 
type ThermodynamicTemperature = Real ( 

final quantity="ThermodynamicTemperature", 
final unit="K", 
min = 0.0, 
start = 288.15, 
nominal = 300, 
displayUnit="degC") 

"Absolute temperature (use type TemperatureDifference 
for relative temperatures)" 

annotation(absoluteValue=true); 
type Temp_K = ThermodynamicTemperature; 
type Temperature = ThermodynamicTemperature; 
type TemperatureDifference = Real ( 

final quantity="ThermodynamicTemperature", 
final unit="K") annotation(absoluteValue=false); 

type Temp_C = 
Slunits.Conversions.NonSIunits.Ten^>erature_degC; 
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type TemperatureSlope = Real (final quantity= 
"Temperatureslope", final unit="K/s"); 

type LinearTemperatureCoefficient = Real(final quantity = 
"LinearTemperatureCoefficient", final unit="l/K"); 

type QuadraticTemperatureCoefficient = Real(final 
quantity = "QuadraticTemperatureCoefficient", 
final unit="l/K2"); 

type LinearExpansionCoefficient = Real (final quantity= 
"LinearExpansionCoefficient", final unit="l/K"); 

type CubicExpansionCoefficient = Real (final quantity® 
"CubicExpansionCoefficient", final unit="l/K"); 

type RelativePressureCoefficient ® Real (final quantity® 
"RelativePressureCoefficient", final unit="l/K"); 

type PressureCoefficient = Real (final quantity® 
"PressureCoefficient", final unit® "Pa/K"); 
type Compressibility = Real (final quantity® 

"Compressibility", final unit® "1/Pa"); 
type IsothermalCompressibility = Compressibility; 
type IsentropicCompressibility = Compressibility; 
type Heat = Real (final quantity="Energy", 

final unit="J"); 
type HeatFlowRate = Real (final quantity®"Power", 

final unit="W"); 
type HeatFlux ® Real (final quantity="HeatFlux", 

final unit="W/m2"); 
type DensityOfHeatFlowRate = Real (final quantity® 

"DensityOfHeatFlowRate",final unit="W/m2"); 
type ThermalConductivity = Real (final quantity® 

"ThermalConductivity", final unit="W/(m.K)"); 
type CoefficientOfHeatTransfer = Real (final quantity® 

"CoefficientOfHeatTransfer", final unit="W/(m2.K)"); 
type SurfaceCoefficientOfHeatTransfer ® 

CoefficientOfHeatTransfer; 
type ThermalInsulance = Real (final quantity® 

"Thermallnsulance", final unit="m2.K/W"); 
type ThermalResistance = Real (final quantity® 

"ThermalResistance", final unit="K/W"); 
type ThermalConductance = Real (final quantity® 

"ThermalConductance", final unit="W/K"); 
type ThermalDiffusivity = Real (final quantity® 

"ThermalDiffusivity", final unit="m2/s"); 
type HeatCapacity = Real (final quantity="HeatCapacity", 

final unit="J/K"); 
type SpecificHeatCapacity = Real (final quantity® 

"SpecificHeatCapacity",final unit="J/(kg.K)"); 
type SpecificHeatCapacityAtConstantPressure = 

SpecificHeatCapacity; 
type SpecificHeatCapacityAtConstantVolume = 

SpecificHeatCapacity; 
type SpecificHeatCapacityAtSaturation = 

SpecificHeatCapacity; 
type RatioOfSpecificHeatCapacities = Real (final 

quantity="RatioOfSpecificHeatCapacities", 
final unit="l"); 

type IsentropicExponent = Real (final quantity® 
"IsentropicExponent", final unit="l"); 

type Entropy = Real (final quantity="Entropy", 
final unit="J/K"); 

type EntropyFlowRate = Real (final quantity® 
"EntropyFlowRate", final unit®"J/(K.s)"); 

type SpecificEntropy = Real (final quantity® 
"SpecificEntropy",final unit»"J/(kg.K)"); 

type InternalEnergy = Heat; 
type Enthalpy = Heat; 
type HelmholtzFreeEnergy ® Heat; 
type GibbsFreeEnergy = Heat; 
type SpecificEnergy = Real (final quantity® 

"SpecificEnergy", final unit®"J/kg"); 
type SpecificInternalEnergy = SpecificEnergy; 
type SpecificEnthalpy = SpecificEnergy; 
type SpecificHelmholtzFreeEnergy = SpecificEnergy; 
type SpecificGibbsFreeEnergy = SpecificEnergy; 
type MassieuFunction = Real (final quantity® 

"MassieuFunction", final unit®"J/K"); 
type PlanckFunction = Real (final quantity® 

"PlanckFunction", final unit«"J/K"); 
// added to ISO-chapter 4 
type DerDensityByEnthalpy ® Real (final unit="kg.s2/m5"); 
type DerDensityByPressure = Real (final unit="s2/m2"); 
type DerDensityByTemperature ® Real (final unit® 

"kg/(m3 .K)"); 
type DerEnthalpyByPressure ® Real (final unit® 

"J.m.s2/kg2") ; 
type DerEnergyByDensity = Real (final unit="J.m3/kg"); 
type DerEnergyByPressure ® Real (final unit="J.m.s2/kg"); 
type DerPressureByDensity = Real (final unit="Pa.m3/kg"); 
type DerPressureByTemperature = Real (final unit="Pa/K"); 

// Electricity and Magnetism (chapter 5 of ISO 31-1992) 
type ElectricCurrent = Real (final quantity® 

"ElectricCurrent", final unit="A"); 
type Current = ElectricCurrent; 
type CurrentSlope ® Real(final quantity="CurrentSlope", 

final unit="A/s"); 
type ElectricCharge = Real (final quantity® 

"ElectricCharge", final unit="C"); 
type Charge ® ElectricCharge; 

type VolumeDensityOfCharge = Real ( 
final quantity="VolumeDensityOfCharge", 
final unit="C/m3", 
min=0); 

type SurfaceDensityOfCharge ® Real ( 
final quantity="SurfaceDensityOfCharge", 
final unit="C/m2", 
min=0); 

type ElectricFieldStrength = Real (final quantity® 
"ElectricFieldStrength",final unit="V/m"); 

type ElectricPotential = Real (final 
quantity="ElectricPotential", final unit="V"); 
type Voltage = ElectricPotential; 
type PotentialDifference = ElectricPotential; 
type ElectromotiveForce = ElectricPotential; 
type VoltageSecond = Real (final quantity® 

"VoltageSecond", final unit="V.s") "Voltage second"; 
type VoltageSlope = Real(final quantity="VoltageSlope", 

final unit="V/s"); 
type ElectricFluxDensity = Real (final quantity® 

"ElectricFluxDensity", final unit="C/m2"); 
type ElectricFlux = Real (final quantity="ElectricFlux", 

final unit="C"); 
type Capacitance = Real ( 

final quantity="Capacitance", 
final unit="F", 
min=0); 

type CapacitancePerArea = Real ( 
final quantity® "CapacitancePerArea", 
final unit="F/m2") "Capacitance per area"; 

type Permittivity = Real ( 
final quantity="Permittivity", 
final unit="F/m", 
min-0); 

type PermittivityOfVacuum ® Permittivity; 
type RelativePermittivity = Real (final quantity® 

"RelativePermittivity",final unit="l"); 
type ElectricSusceptibility = Real (final quantity® 

"ElectricSusceptibility", final unit="l"); 
type ElectricPolarization = Real (final quantity® 

"ElectricPolarization",final unit="C/m2"); 
type Electrization = Real (final quantity= 

"Electrization", final unit="V/m"); 
type ElectricDipoleMoment = Real (final quantity® 

"ElectricDipoleMoment", final unit="C.m"); 
type CurrentDensity = Real (final quantity® 

"CurrentDensity", final unit="A/m2"); 
type LinearCurrentDensity = Real (final quantity® 

"LinearCurrentDensity",final unit="A/m"); 
type MagneticFieldStrength = Real (final quantity® 

"MagneticFieldStrength",final unit="A/m"); 
type MagneticPotential = Real (final quantity® 

"MagneticPotential", final unit="A"); 
type MagneticPotentialDifference = Real (final quantity® 

"MagneticPotential", final unit="A"); 
type MagnetomotiveForce = Real (final quantity® 

"MagnetomotiveForce", final unit="A"); 
type CurrentLinkage = Real (final quantity® 

"CurrentLinkage", final unit="A"); 
type MagneticFluxDensity = Real (final quantity® 

"MagneticFluxDensity", final unit="T"); 
type MagneticFlux = Real (final quantity="MagneticFlux", 

final unit="Wb"); 
type MagneticVectorPotential = Real (final quantity® 

"MagneticVectorPotential",final unit="Wb/m"); 
type Inductance = Real ( 

final quantity="Inductance", 
final unit="H"); 

type SelfInductance = Inductance(min=0); 
type Mutuallnductance = Inductance; 
type CouplingCoefficient = Real (final quantity® 

"CouplingCoefficient", final unit="l"); 
type LeakageCoefficient ® Real (final quantity® 

"LeakageCoefficient", final unit="l"); 
type Permeability = Real (final quantity="Permeability", 

final unit="H/m"); 
type PermeabilityOfVacuum = Permeability; 
type RelativePermeability ® Real (final quantity® 

"RelativePermeability",final unit="l"); 
type MagneticSusceptibility = Real (final quantity® 

"Magnetic Susceptibility",final unit="l"); 
type ElectromagneticMoment = Real (final quantity® 

"ElectromagneticMoment", final unit="A.m2"); 
type MagneticDipoleMoment = Real (final 
quantity="MagneticDipoleMoment", 

final unit="Wb.m"); 
type Magnetization = Real (final quantity® 

"Magnetization", final unit="A/m"); 
type MagneticPolarization = Real (final quantity® 

"MagneticPolarization",final unit="T"); 
type ElectromagneticEnergyDensity = Real (final quantity® 

"EnergyDensity",final unit="J/m3"); 
type PoyntingVector = Real (final quantity® 

"PoyntingVector", final unit® "W/m2"); 
type Resistance = Real ( 

final quantity®"Resistance", 
final unit="Ohm"); 
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type Resistivity = Real (final quantity-"Resistivity", 
final unit="Ohm.m"); 

type Conductivity = Real (final quantity="Conductivity", 
final unit="S/m"); 

type Reluctance = Real (final quantity="Reluctance", 
final unit="H-l"); 

type Permeance = Real (final quantity="Permeance", 
final unit="H"); 

type PhaseDifference - Real ( 
final quantity="Angle", 
final unit="rad", 
displayUnit="deg") ; 

type Impedance = Resistance; 
type ModulusOfImpedance = Resistance; 
type Reactance - Resistance; 
type QualityFactor = Real (final quantity-

"QualityFactor", final unit»"l"); 
type LossAngle - Real ( 

final quantity="Angle", 
final unit="rad", 
displayUnit-"deg"); 

type Conductance = Real ( 
final quantity="Conductance", 
final unit-"S"); 

type Admittance = Conductance; 
type ModulusOfAdmittance - Conductance; 
type Susceptance - Conductance; 
type InstantaneousPower = Real (final quantity="Power", 

final unit-"W"); 
type ActivePower - Real (final quantity-"Power", 

final unit="W"); 
type ApparentPower •» Real (final quantity="Power", 

final unit="VA"); 
type ReactivePower - Real (final quantity»"Power", 

final unit-"var") ; 
type PowerFactor - Real (final quantity-"PowerFactor", 

final unit-"l"); 

// added to ISO-chapter 5 
type Transconductance - Real (final quantity® 

"Transconductance", final unit="A/V2"); 
type InversePotential - Real (final quantity-

"InversePotential", final unit="l/V"); 
type ElectricalForceConstant = Real ( 

final quantity-"ElectricalForceConstant", 
final unit = "N/A") ; 

// Light and Related Electromagnetic Radiations (chapter 
6 of ISO 31-1992)" 
type RadiantEnergy - Real (final quantity="Energy", 
final unit="J"); 

type RadiantEnergyDensity = Real (final quantity= 
"EnergyDensity", final unit="J/m3"); 

type SpectralRadiantEnergyDensity = Real (final quantity= 
"SpectralRadiantEnergyDensity", final unit-"J/m4"); 

type RadiantPower = Real (final quantity-"Power", 
final unit="W"); 

type RadiantEnergyFluenceRate = Real (final quantity-
"RadiantEnergyFluenceRate", final unit-"W/m2"); 

type Radiantlntensity = Real (final quantity= 
"Radiantlntensity", final unit- "W/sr"); 

type Radiance = Real (final quantity-"Radiance", 
final unit="W/(sr.m2)"); 

type RadiantExtiance = Real (final quantity* 
"RadiantExtiance", final unit="W/m2"); 

type Irradiance = Real (final quantity-"Irradiance", 
final unit="W/m2"); 

type Emissivity = Real (final quantity="Emissivity", 
final unit="l"); 

type SpectralEmissivity = Real (final quantity= 
"SpectralEmissivity", final unit- "1"); 

type DirectionalSpectralEmissivity - Real (final 
quantity="DirectionalSpectralEmissivity", 
final unit="l"); 

type Luminous Intensity = Real (final quantity" 
"LuminousIntensity", final unit»"cd"); 

type LuminousFlux Real (final quantity="LuminousFlux", 
final unit»"lm"); 

type QuantityOfLight » Real (final quantity-
"QuantityOfLight", final unit»"lm.s"); 

type Luminance •= Real (final quantity«"Luminance", 
final unit-"cd/m2"); 

type LuminousExitance = Real (final quantity* 
"LuminousExitance", final unit»"lm/m2"); 

type Illuminance = Real (final quantity"Illuminance", 
final unit="lx"); 

type LightExposure = Real (final quantity^ 
"LightExposure", final unit="lx.s"); 

type LuminousEfficacy = Real (final quantity* 
"HaminousEfficacy", final unit="lm/W"); 

type SpectralLuminousEfficacy = Real (final quantity-
"SpectralLuminousEfficacy", final unit«"lm/W" ); 

type LuminousEfficiency = Real (final quantity-
"LuminousEfficiency", final unit- "1"); 

type SpectralLuminousEfficiency = Real (final quantity-
"SpectralLuminousEfficiency", final unit»"l"); 

type CIESpectralTristimulusValues = Real (final quantity-

"CIESpectralTristimulusValues", final unit="l"); 
type ChromaticityCoordinates = Real (final quantity-

"CromaticityCoordinates", final unit="l"); 
type SpectralAbsorptionFactor - Real (final quantity= 

"SpectralAbsorptionFactor", final unit="l"); 
type SpectralReflectionFactor = Real (final quantity-

"SpectralReflectionFactor", final unit="l"); 
type SpectralTransmissionFactor = Real (final quantity= 

"SpectralTransmissionFactor", final unit="l"); 
type SpectralRadianceFactor = Real (final quantity-

"SpectralRadianceFactor", final unit="l"); 
type LinearAttenuationCoefficient - Real (final quantity-

"AttenuationCoefficient", final unit="m-l"); 
type LinearAbsorptionCoefficient - Real (final quantity-

"LinearAbsorptionCoefficient", final unit="m-l"); 
type MolarAbsorptionCoefficient - Real (final quantity-

"MolarAbsorptionCoefficient", final unit-"m2/mol"); 
type Refractivelndex - Real (final quantity-

"Refractivelndex", final unit="l"); 

// Acoustics (chapter 7 of ISO 31-1992) 
type StaticPressure = AbsolutePressure; 
type SoundPressure = StaticPressure; 
type SoundParticleDisplacement = Real (final quantity-

"Length", final unit="m"); 
type SoundParticleVelocity - Real (final quantity-

"Velocity", final unit="m/s"); 
type SoundParticleAcceleration = Real (final quantity-

"Acceleration", final unit- "m/s2") ; 
type VelocityOfSound = Real (final quantity="Velocity", 

final unit="m/s"); 
type SoundEnergyDensity = Real (final quantity-

"EnergyDensity", final unit="J/m3"); 
type SoundPower - Real (final quantity="Power", 

final unit="W"); 
type Soundlntensity = Real (final quantity-

"Soundlntensity", final unit-"W/m2"); 
type Acousticlmpedance = Real (final quantity-

"Acousticlmpedance", final unit="Pa.s/m3"); 
type SpecificAcousticImpedance - Real (final quantity-

"SpecificAcousticImpedance", final unit="Pa.s/m"); 
type MechanicalImpedance = Real (final quantity-

"Mechanicallmpedance", final unit="N.s/m"); 
type SoundPressureLevel = Real (final quantity-

"SoundPressureLevel", final unit-"dB"); 
type SoundPowerLevel = Real (final quantity-
"SoundPowerLevel", final unit="dB"); 

type DissipationCoefficient = Real (final quantity-
"DissipationCoefficient",final unit="l"); 

type ReflectionCoefficient - Real (final quantity-
"ReflectionCoefficient",final unit="l"); 

type TransmissionCoefficient - Real (final quantity-
"TransmissionCoefficient", final unit="l"); 

type AcousticAbsorptionCoefficient - Real ( 
final quantity-"AcousticAbsorptionCoefficient", 
final unit="l"); 

type SoundReductionlndex - Real (final quantity-
"SoundReductionlndex", final unit="dB"); 

type EquivalentAbsorptionArea - Real (final quantity-
"Area", final unit="m2"); 

type ReverberationTime = Real (final quantity="Time", 

type LoudnessLevel = Real (final quantity-
"LoudnessLevel", final unit="phon"); 

type Loudness = Real (final quantity="Loudness", 
final unit-"sone"); 

type LoundnessLevel = Real (final 
quantity="LoundnessLevel", final unit-

"phon") "Obsolete type, use LoudnessLevel instead!"; 
type Loundness = Real (final quantity="Loundness", final 
unit="sone") "Obsolete type, use Loudness instead!"; 

// Physical chemistry and molecular physics (chapter 8 of 
ISO 31-1992) 
type RelativeAtomicMass - Real (final quantity-

"RelativeAtomicMass", final unit="l"); 
type RelativeMolecularMass - Real (final quantity-

"RelativeMolecularMass",final unit="l"); 
type NumberOfMolecules = Real (final quantity-

"NumberOfMolecules", final unit-"l"); 
type AmountOfSubstance - Real ( 

final quantity="AmountOfSubstance", 
final unit="mol", 
min-0); 

type MolarMass - Real (final quantity="MolarMass", 
final unit-"kg/mol",min=0); 

type MolarVolume = Real (final quantity="MolarVolume", 
final unit-"m3/mol", min=0); 

type MolarDensity = Real (final quantity="MolarDensity", 
unit="mol/m3"); 

type MolarEnergy = Real (final quantity="MolarEnergy", 
final unit-"J/mol", nominal=2e4) ; 

type MolarlnternalEnergy - MolarEnergy; 
type MolarHeatCapacity - Real (final quantity-

"MolarHeatCapacity", final unit-"J/(mol.K)"); 
type MolarEntropy - Real (final quantity-"MolarEntropy", 

final unit-"J/(mol.K)"); 
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type MolarEnthalpy = MolarEnergy; 
type MolarFlowRate = Real ( 

final quantity="MolarFlowRate", final unit= "mol/s"); 
type NumberDensityOfMolecules = Real (final quantity® 

"NumberDensityOfMolecules", final unit="ra-3"); 
type MolecularConcentration = Real (final quantity® 

"MolecularConcentration",final unit="m-3"); 
type MassConcentration = Real (final quantity® 

"MassConcentration", final unit="kg/m3"); 
type MassFraction = Real (final quantity="Ma3sFraction", 

final unit="l", min=0, max=l); 
type Concentration = Real (final quantity® 

"Concentration", final unit="mol/m3") ; 
type VolumeFraction = Real (final quantity® 

"VolumeFraction", final unit="l"); 
type MoleFraction = Real (final quantity="MoleFraction", 

final unit="l", min = 0, max = 1); 
type ChemicalPotential = Real (final quantity® 

"ChemicalPotential", final unit® "J/mol"); 
type AbsoluteActivity = Real (final quantity® 

"AbsoluteActivity", final unit® "1"); 
type PartialPressure = AbsolutePressure; 
type Fugacity = Real (final quantity="Fugacity", 

final unit="Pa"); 
type StandardAbsoluteActivity = Real (final quantity® 

"StandardAbsoluteActivity", final unit="l"); 
type ActivityCoefficient = Real (final quantity® 

"ActivityCoefficient", final unit="l"); 
type ActivityOfSolute = Real (final quantity® 

"ActivityOfSolute", final unit="l"); 
type ActivityCoefficientOfSolute = Real (final quantity® 

"ActivityCoefficientOfSolute", final unit="l"); 
type StandardAbsoluteActivityOfSolute = Real ( 

final quantity® "StandardAbsoluteActivityOfSolute", 
final unit="l"); 

type ActivityOfSolvent = Real (final quantity® 
"ActivityOfSolvent", final unit="l"); 

type OsmoticCoefficientOfSolvent = Real (final quantity® 
"OsmoticCoefficientOfSolvent", final unit="l"); 

type StandardAbsoluteActivityOfSolvent = Real ( 
final quantity® "StandardAbsoluteActivityOfSolvent", 
final unit="l"); 

type OsmoticPressure = Real ( 
final quantity="Pressure", 
final unit="Pa", 
displayUnit="bar", 
min=0); 

type StoichioraetricNumber = Real (final quantity® 
"StoichiometricNumber",final unit="l"); 

type Affinity » Real (final quantity="Affinity", 
final unit®"J/mol"); 

type MassOfMolecule = Real (final quantity®"Mass", 
final unit®"kg"); 

type ElectricDipoleMomentOfMolecule = Real ( 
final quantity® "ElectricDipoleMomentOfMolecule", 
final unit="C.m"); 

type ElectricPolarizabilityOfAMolecule = Real ( 
final quantity® "ElectricPolarizabilityOfAMolecule", 
final unit="C.m2/V"); 

type MicrocanonicalPartitionFunction = Real ( 
final quantity® "MicrocanonicalPartitionFunction", 
final unit="l"); 

type CanonicalPartitionFunction = Real (final quantity® 
"CanonicalPartitionFunction", final unit="l"); 

type GrandCanonicalPartitionFunction = Real ( 
final quantity® "GrandCanonicalPartitionFunction", 
final unit="l"); 

type MolecularPartitionFunction = Real (final quantity® 
"MolecularPartitionFunction", final unit="l"); 

type StatisticalWeight = Real (final quantity® 
"StatisticalWeight", final unit="l"); 

type MeanFreePath = Length; 
type DiffusionCoefficient = Real (final quantity® 

"DiffusionCoefficient",final unit="m2/s"); 
type ThermalDiffusionRatio = Real (final quantity® 

"ThermalDiffusionRatio",final unit="l"); 
type ThermalDiffusionFactor = Real (final quantity® 

"ThermalDiffusionFactor",final unit="l"); 
type ThermalDiffusionCoefficient = Real (final quantity® 

"ThermalDiffusionCoefficient", final unit="m2/s"); 
type ElementaryCharge = Real (final quantity® 

"ElementaryCharge", final unit® "C"); 
type ChargeNumberOfIon = Real (final quantity= 

"ChargeNumberOflon", final unit="l"); 
type FaradayConstant = Real (final quantity® 

"FaradayConstant", final unit="C/mol"); 
type IonicStrength = Real (final quantity® 

"IonicStrength", final unit="mol/kg"); 
type DegreeOfDissociation = Real (final quantity® 

"DegreeOfDissociation",final unit="l"); 
type ElectrolyticConductivity = Real (final quantity® 

"ElectrolyticConductivity", final unit="S/m"); 
type MolarConductivity = Real (final quantity^ 

"MolarConductivity", final unit="S.m2/mol"); 
type TransportNumberOfIonic = Real (final quantity® 

"TransportNumberOfIonic", final unit="l"); 

// Atomic and Nuclear Physics (chapter 9 of ISO 31-1992) 
type ProtonNumber = Real (final quantity="ProtonNumber", 

final unit="l"); 
type NeutronNumber = Real (final quantity® 

"NeutronNumber", final unit="l"); 
type NucleonNumber = Real (final quantity® 

"NucleonNumber", final unit="l"); 
type AtomicMassConstant = Real (final quantity="Mass", 
final unit®"kg"); 

type MassOfElectron = Real (final quantity»"Mass", 
final unit®"kg"); 

type MassOfProton « Real (final quantity="Mass", 
final unit®"kg"); 

type MassOfNeutron ® Real (final quantity®"Mass", 
final unit»"kg"); 

type HartreeEnergy « Real (final quantity="Energy", 
final unit®"J"); 

type MagneticMomentOfParticle = Real (final quantity® 
"MagneticMomentOfParticle", final unit«"A.m2"); 

type BohrMagneton = MagneticMomentOfParticle; 
type NuclearMagneton = MagneticMomentOfParticle; 
type GyromagneticCoefficient ® Real (final quantity® 

"GyromagneticCoefficient", final unit«"A.m2/(J.s)"); 
type GFactorOfAtom = Real (final quantity® 

"GFactorOfAtom", final unit="l"); 
type GFactorOfNucleus = Real (final quantity® 

"GFactorOfNucleus", final unit="l"); 
type LarmorAngularFrequency ® Real (final quantity® 

"AngularFrequency", final unit="s-l"); 
type NuclearPrecessionAngularFrequency = Real (final 

quantity="AngularFrequency", final unit="s-l"); 
type CyclotronAngularFrequency = Real (final quantity" 

"AngularFrequency", final unit="s-l"); 
type NuclearQuadrupoleMoment = Real (final quantity® 

"NuclearQuadrupoleMoment",final unit="m2"); 
type NuclearRadius = Real (final quantity®"Length", 

final unit="m"); 
type ElectronRadius = Real (final quantity="Length", 

final unit="m"); 
type ComptonWavelength = Real (final quantity®"Length", 

final unit="m"); 
type MassExcess = Real (final quantity="Mass", 

final unit="kg"); 
type MassDefect = Real (final quantity="Mass", 

final unit="kg"); 
type RelativeMassExcess = Real (final quantity® 

"RelativeMassExcess", final unit="l"); 
type RelativeMassDefect = Real (final quantity® 

"RelativeMassDefect", final unit="l"); 
type PackingFraction = Real (final quantity® 

"PackingFraction", final unit="l"); 
type BindingFraction = Real (final quantity® 

"BindingFraction", final unit="l"); 
type MeanLife = Real (final quantity="Time", 

final unit="s"); 
type LevelWidth = Real (final quantity="LevelWidth", 

final unit="J"); 
type Activity = Real (final quantity="Activity", 

final unit="Bq"); 
type SpecificActivity = Real (final quantity® 

"SpecificActivity", final unit="Bq/kg"); 
type DecayConstant = Real (final quantity® 

"DecayConstant", final unit="s-l"); 
type HalfLife = Real (final quantity="Time", 

final unit="s"); 
type AlphaDisintegrationEnergy = Real (final quantity® 

"Energy", final unit® "J"); 
type MaximumBetaParticleEnergy = Real (final quantity® 

"Energy", final unit="J"); 
type BetaDisintegrationEnergy = Real (final quantity® 

"Energy", final unit="J"); 

// Nuclear Reactions and Ionizing Radiations (chapter 10 
of ISO 31-1992) 
type ReactionEnergy = Real (final quantity®"Energy", 

final unit®"J"); 
type ResonanceEnergy = Real (final quantity="Energy", 

final unit="J"); 
type CrossSection = Real (final quantity="Area", 

final unit="m2"); 
type TotalCrossSection = Real (final quantity®"Area", 

final unit®"m2"); 
type AngularCrossSection = Real (final quantity® 

"AngularCrossSection", final unit® "m2/sr"); 
type SpectralCrossSection = Real (final quantity® 

"SpectralCroasSection", final unit®"m2/J"); 
type SpectralAngularCrossSection = Real (final quantity® 

"SpectralAngularCrossSection", final unit="m2/(sr.J)"); 
type MacroscopicCrossSection = Real (final quantity® 

"MacroscopicCrossSection", final unit="m-l"); 
type TotalMacroscopicCrossSection = Real (final quantity® 

"TotalMacroscopicCrossSection", final unit»"m-l"); 
type ParticleFluence * Real (final quantity" 

"ParticleFluence", final unit® "m-2"); 
type ParticleFluenceRate * Real (final quantity® 

"ParticleFluenceRate", final unit="s-l.m2"); 
type EnergyFluence » Real (final quantity-
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"EnergyFluence", final unit-"J/m2"); 
type EnergyFluenceRate = Real (final quantity-

"EnergyFluenceRate", final unit="W/m2"); 
type CurrentDensityOfParticles = Real ( 
final quantity- "CurrentDensityOfParticles", 
final unit="m-2.s-1") ; 

type MassAttenuationCoefficient = Real ( 
final quantity- "MassAttenuationCoefficient", 
final unit="m2/kg"); 

type MolarAttenuationCoefficient = Real (final quantity-
"MolarAttenuationCoefficient" , final unit="m2/mol") ; 

type AtomicAttenuationCoefficient = Real (final quantity-
"AtomicAttenuationCoefficient", final unit="m2"); 

type HalfThickness = Real (final quantity="Length", 
final unit="m"); 

type TotalLinearStoppingPower = Real (final quantity-. 
"TotalLinearStoppingPower", final unit="J/m"); 

type TotalAtomicStoppingPower - Real (final quantity-
"TotalAtomicStoppingPower", final unit-"J.m2"); 

type TotalMassStoppingPower - Real (final quantity-
"TotalMassStoppingPower", final unit-"J.m2/kg"); 

type MeanLinearRange = Real (final quantity="Length", 
final unit="m"); 

type MeanMassRange - Real ( 
final quantity-"MeanMassRange", final unit="kg/m2"); 

type Linearlonization - Real ( 
final quantity="LinearIonization", final unit- "m-1"); 

type Totallonization = Real (final quantity-
"Totallonization", final unit="l"); 

type Mobility = Real ( final quantity-
"Mobility", final unit="m2/(V.s)"); 

type IonNumberDensity - Real (final quantity-
"IonNumberDensity", final unit="m-3"); 

type RecombinationCoefficient - Real (final quantity-
"RecombinationCoefficient", final unit-"m3/s"); 

type NeutronNumberDensity - Real (final quantity-
"NeutronNumberDensity", final unit="m-3"); 

type NeutronSpeed - Real (final quantity-
"Velocity", final unit="m/s"); 

type NeutronFluenceRate - Real (final quantity-
"NeutronFluenceRate", final unit="s-l.m-2"); 

type TotalNeutronSourceDensity = Real (final quantity-
"TotalNeutronSourceDesity", final unit="s-1.m-3"); 

type SlowingDownDensity - Real (final quantity-
"SlowingDownDensity", final unit="s-l.m-3"); 

type ResonanceEscapeProbability = Real (final quantity-
"ResonanceEscapeProbability", final unit="l"); 

type Lethargy - Real (final quantity="Lethargy", 
final unit="l"); 

type SlowingDownArea « Real (final quantity-"Area", 
final unit="m2"); 

type DiffusionArea = Real (final quantity="Area", 
final unit-"m2"); 

type MigrationArea - Real (final quantity="Area", 
final unit-"m2"); 

type SlowingDovmLength = Real (final quantity-"SLength", 
final unit="m"); 

type DiffusionLength = Length; 
type MigrationLength - Length; 
type NeutronYieldPerFission = Real (final quantity-

"NeutronYieldPerFission", final unit-"l"); 
type NeutronYieldPerAbsorption - Real (final quantity-

"NeutronYieldPerAbsorption", final unit="l"); 
type FastFissionFactor = Real (final quantity-

"FastFissionFactor", final unit="l"); 
type ThermalUtilizationFactor = Real (final quantity-

"ThermalUtilizationFactor", final unit="l"); 
type NonLeakageProbability = Real (final quantity-

"NonLeakageProbability", final unit="l"); 
type Reactivity - Real (final quantity="Reactivity", 

final unit-"l"); 
type ReactorTimeConstant = Real (final quantity="Time", 

final unit-"s"); 
type Energylmparted = Real (final quantity-"Energy", 

final unit-"J"); 
type MeanEnergylmparted - Real (final quantity="Energy", 

final unit="J"); 
type SpecificEnergylmparted - Real (final quantity-

"SpecificEnergy", final unit-"Gy"); 
type AbsorbedDose - Real (final quantity="AbsorbedDose", 

final unit="Gy"); 
type DoseEquivalent - Real (final quantity-

"DoseEquivalent", final unit="Sv"); 
type AbsorbedDoseRate = Real (final quantity-

"AbsorbedDoseRate", final unit="Gy/s"); 
type LinearEnergyTransfer = Real (final quantity-

"LinearEnergyTransfer", final unit="J/m"); 
type Kerma = Real (final quantity="Kerma", 

final unit="Gy"); 
type KermaRate - Real (final quantity="KermaRate", 

final unit="Gy/s"); 
type MassEnergyTransferCoefficient = Real ( 

final quantity="MassEnergyTransferCoefficient", 
final unit-"m2/kg"); 

type Exposure - Real (final quantity-"Exposure", 
final unit="C/kg"); 

type ExposureRate = Real (final quantity-"ExposureRate", 

final unit="C/(kg.s)"); 

// chapter 11 is not defined in ISO 31-1992 

// Characteristic Numbers (chapter 12 of ISO 31-1992) 
type ReynoldsNumber - Real (final quantity-

"ReynoldsNumber", final unit="l"); 
type EulerNumber = Real (final quantity-

"EulerNtimber", final unit="l"); 
type FroudeNumber - Real (final quantity-"FroudeNumber", 

final unit="l"); 
type GrashofNumber = Real (final quantity-

"GrashofNumber", final unit="l"); 
type WeberNumber - Real (final quantity-"WeberNumber", 

final unit="l"); 
type MachNumber = Real (final quantity="MachNumber", 

final unit="l"); 
type KnudsenNumber = Real (final quantity-

"KnudsenNumber", final unit-"l"); 
type StrouhalNumber = Real (final quantity-

"StrouhalNumber", final unit="l"); 
type FourierNumber - Real (final quantity-

"FourierNumber", final unit="l"); 
type PecletNumber - Real (final quantity-"PecletNumber", 

final unit="l"); 
type RayleighNumber = Real (final quantity-

"RayleighNumber", final unit="l"); 
type NusseltNumber = Real (final quantity-

"NusseltNumber", final unit="l"); 
type BiotNumber - NusseltNumber; 
// The Biot number (Bi) is used when 
// the Nusselt number is reserved 
II for convective transport of heat, 
type StantonNumber - Real (final quantity-

"StantonNumber", final unit="l"); 
type FourierNumberOfMassTransfer = Real (final quantity-

"FourierNumberOfMassTransfer" , final unit="l"); 
type PecletNumberOfMassTransfer - Real (final quantity-

"PecletNumberOfMassTransfer", final unit="l"); 
type GrashofNumberOfMassTransfer - Real (final quantity-

"GrashofNumberOfMassTransfer", final unit-"l"); 
type NusseltNumberOfMassTransfer - Real (final quantity-

"NusseltNumberOfMassTransfer", final unit="l"); 
type StantonNumberOfMassTransfer = Real (final quantity-

"StantonNumberOfMassTransfer", final unit="l"); 
type PrandtlNumber = Real (final quantity-

"PrandtlNumber", final unit="l"); 
type SchmidtNumber = Real (final quantity-

"SchmidtNiamber", final unit-"l"); 
type LewisNumber = Real (final quantity="LewisNumber", 

final unit="l"); 
type MagneticReynoldsNumber = Real (final quantity-

"MagneticReynoldsNumber", final unit="l"); 
type AlfvenNumber » Real (final quantity="AlfvenNumber", 

final unit="l"); 
type HartmannNumber - Real (final quantity-

"HartmannNumber", final unit="l"); 
type CowlingNumber - Real (final quantity-

"CowlingNiomber", final unit="l"); 

// Solid State Physics (chapter 13 of ISO 31-1992) 
type BraggAngle - Angle; 
type OrderOfReflexion - Real (final quantity-

"OrderOfReflexion", final unit-
"1") ; 

type ShortRangeOrderParameter - Real (final quantity-
"RangeOrderParameter", final unit="l"); 

type LongRangeOrderParameter = Real (final quantity-
"RangeOrderParameter", final urlit="l"); 

type DebyeWallerFactor - Real (final quantity-
"DebyeWallerFactor", final unit="l"); 

type CircularWavenumber - Real (final quantity-
"CircularWavenxamber", final unit="m-l") ; 

type FermiCircularWavenumber - Real (final quantity-
"FermiCircularWavenumber", final unit-"m-l"); 

type DebyeCircularWavenumber = Real (final quantity-
"DebyeCircularWavenumber", final unit»"m-l"); 

type DebyeCircularFrequency - Real (final quantity-
"AngularFrequency", final unit="s-l"); 

type DebyeTemperature - ThermodynamicTemperature; 
type SpectralConcentration = Real (final quantity-

"SpectralConcentration", final unit-"s/m3"); 
type GrueneisenParameter - Real (final quantity-

"GrueneisenParameter", final unit="l"); 
type MadelungConstant = Real (final quantity-

"MadelungConstant", final unit="l"); 
type DensityOfStates = Real (final quantity-

"DensityOfStates", final unit-"J-l/m-3"); 
type ResidualResistivity = Real (final quantity-

"ResidualResistivity", final unit="Ohm.m"); 
type LorenzCoefficient = Real (final quantity-

"LorenzCoefficient", final unit="V2/K2"); 
type HallCoefficient - Real (final quantity-

"HallCoefficient", final unit="m3/C"); 
type ThermoelectromotiveForce - Real (final quantity-

"ThermoelectromotiveForce", final unit="V"); 
type SeebeckCoefficient - Real (final quantity-
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"SeebeckCoefficient", final unit="V/K"); 
type PeltierCoefficient = Real (final quantity® 

"PeltierCoefficient", final unit="V"); 

type ThomsonCoefficient = Real (final quantity® 
"ThomsonCoefficient", final unit="V/K"); 

type RichardsonConstant = Real (final quantity® 
"RichardsonConstant", final unit="A/(m2.K2)"); 

type FermiEnergy = Real (final quantity="Energy", 
final unit-"eV"); 

type GapEnergy ® Real (final quantity="Energy", 
final unit«"eV"); 

type DonorlonizationEnergy = Real (final quantity® 
"Energy", final unit="eV"); 

type AcceptorlonizationEnergy ® Real (final quantity® 
"Energy", final unit="eV"); 

type ActivationEnergy = Real (final quantity="Energy", 
final unit®"eV"); 

type FermiTemperature = ThermodynamicTemperature; 
type ElectronNumberDensity = Real (final quantity® 

"ElectronNumberDensity", final unit="m-3"); 
type HoleNumberDensity = Real (final quantity® 

"HoleNumberDensity", final unit="m-3") ; 
type IntrinsicNumberDensity = Real (final quantity® 

"IntrinsicNumberDensity",final unit®"m-3"); 
type DonorNumberDensity = Real (final quantity® 

"DonorNumberDensity", final unit="m-3"); 
type AcceptorNumberDensity = Real (final quantity® 

"AcceptorNumberDensity", final unit®"m-3"); 
type EffectiveMass = Mass; 
type MobilityRatio = Real (final quantity® 

"MobilityRatio", final unit»"l"); 
type RelaxationTime » Time; 
type CarrierLifeTime « Time; 
type Exchangelntegral = Real (final quantity="Energy", 

final unit-"eV"); 
type CurieTen5>erature = ThermodynamicTemperature; 
type NeelTemperature = ThermodynamicTemperature; 
type LondonPenetrationDepth = Length; 
type CoherenceLength = Length; 
type LandauGinzburgParameter ® Real (final quantity® 

"LandauGinzburgParameter", final unit="l"); 
type FluxiodQuantum ® Real (final quantity® 

"FluxiodQuantum", final unit="Wb"); 
type TimeAging ® Real (final quantity® 

"1/Modelica.Slunits.Time",final unit="l/s"); 
type ChargeAging = Real ( 

final quantity®"1/Modelica.Slunits.ElectricCharge", 
final unit="l/(A.s)"); 

// Other types not defined in ISO 31-1992 
type PerUnit = Real(unit = "1") ; 

// Complex types for electrical systems (not defined in 
ISO 31-1992) 
operator record ComplexCurrent = 
Complex(redeclare Modelica.Slunits.Current re, 

redeclare Modelica.Slunits.Current im) 
"Complex electrical current"; 

operator record ComplexCurrentSlope = 
Complex(redeclare Modelica.Slunits.CurrentSlope re, 

redeclare Modelica.Slunits.CurrentSlope im) 
"Complex current slope"; 

operator record ComplexCurrentDensity = 
Complex(redeclare Modelica.Slunits.CurrentDensity re, 

redeclare Modelica.Slunits.CurrentDensity im) 
"Complex electrical current density"; 

operator record ComplexElectricPotential = 
Complex( ' 

redeclare Modelica.Slunits.ElectricPotential re, 
redeclare Modelica.Slunits.ElectricPotential im) 

"Complex electric potential"; 
operator record ComplexPotentialDifference = 
Complex( 

redeclare Modelica.Slunits.PotentialDifference re, 
redeclare Modelica.Slunits.PotentialDifference im) 

"Complex electric potential difference"; 
operator record ComplexVoltage = 

Complex(redeclare Modelica.Slunits.Voltage re, 
redeclare Modelica.Slunits.Voltage im) 

"Complex electrical voltage"; 
operator record ComplexVoltageSlope = 
Complex(redeclare Modelica.Slunits.VoltageSlope re, 

redeclare Modelica.Slunits.VoltageSlope im) 
"Complex voltage slope"; 

operator record ComplexElectricFieldStrength = 
Complex( 

redeclare Modelica.Slunits.ElectricFieldStrength re, 
redeclare Modelica.Slunits.ElectricFieldStrength im) 

"Complex electric field strength"; 
operator record ComplexElectricFluxDensity = 
Complex( 

redeclare Modelica.Slunits.ElectricFluxDensity re, 
redeclare Modelica.Slunits.ElectricFluxDensity im) 

"Complex electric flux density"; 
operator record ComplexElectricFlux = 
Complex(redeclare Modelica.Slunits.ElectricFlux re, 

redeclare Modelica.Slunits.ElectricFlux im) 
"Complex electric flux"; 

operator record ComplexMagneticFieldStrength = 
Complex( 

redeclare Modelica.Slunits.MagneticFieldStrength re, 
redeclare Modelica.Slunits.MagneticFieldStrength im) 

"Complex magnetic field strength"; 
operator record ComplexMagneticPotential = 
Complex( 

redeclare Modelica.Slunits.MagneticPotential re, 
redeclare Modelica.Slunits.MagneticPotential im) 

"Complex magnetic potential"; 
operator record ComplexMagneticPotentialDifference = 
Complex( 

redeclareModelica.Slunits.MagneticPotentialDifference 

redeclare Modelica.Slunits.MagneticPotentialDifference 

"Complex magnetic potential difference"; 
operator record ComplexMagnetomotiveForce ® 
Complex( 

redeclare Modelica.Slunits.MagnetomotiveForce re, 
redeclare Modelica.Slunits.MagnetomotiveForce im) 

"Complex magneto motive force"; 
operator record ComplexMagneticFluxDensity = 
Complex( 

redeclare Modelica.Slunits.MagneticFluxDensity re, 
redeclare Modelica.Slunits.MagneticFluxDensity im) 

"Complex magnetic flux density"; 
operator record ComplexMagneticFlux = 
Complex(redeclare Modelica.Slunits.MagneticFlux re, 

redeclare Modelica.Slunits.MagneticFlux im) 
"Complex magnetic flux"; 

operator record ComplexReluctance « 
Complex(redeclare Modelica.Slunits.Reluctance re, 

redeclare Modelica.Slunits.Reluctance im) 
"Complex reluctance" 

end Slunits; 

Modelica.Slunits.Conversions 
Conversion functions to/from non SI units and type definitions 
of non SI units 
This subpackage provides conversion functions from the non SI 
Units defined in package Modelica.Slunits.Conversions. 
NonSIunits to the corresponding SI Units defined in package 
Modelica. Slunits and vice versa. It is recommended to use these 
functions in the following way: 

import SI = Modelica.Slunits; 
import Modelica.Slunits.Conversions.*; 

// convert 25 degree Celsius to Kelvin 
parameter SI.Temperature T * from_degC(25); 
// convert 180 degree to radian 
parameter SI.Angle phi = from_deg(180); 

// convert 3600 revolutions per minutes 
// to radian per seconds 
parameter SI.AngularVelocity w = from_rpm(3600); 

Below two functions are shown as examples. The subpackage 
contains about 36 conversion functions. 

Modelica.Slunits.Conversions.to_degC 

Convert from Kelvin to °Celsius 
function to_degC "Convert from Kelvin to degCelsius" 
extends Modelica.Slunits.Icons.Conversion; 
input Temperature Kelvin "Kelvin value"; 
output NonSIunits.Temperature_degC Celsius 

"Celsius value"; 
algorithm 
Celsius := Kelvin + Modelica.Constants.T_zero; 
annotation (Inline=true); 

end to_degC; 

Modelica.Slunits.Converslons.from_degC 

Convert from °Celsius to Kelvin 
function from_degC "Convert from "Celsius to Kelvin" 
extends Modelica.Slunits.Icons.Conversion; 
input NonSIunits.Temperature_degC Celsius 

"Celsius value"; 
output Temperature Kelvin "Kelvin value"; 

algorithm 
Kelvin := Celsius - Modelica.Constants.T_zero; 
annotation (Inline=true); 

end from_degC; 
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Modelica.Math 
Main Author: Martin Otter. 
Author of the random subpackage: Hubertus Tummescheit. 
Copyright (C) 1999—2013, Modelica Association and DLR. 
This package contains the basic mathematical functions which 
are used by calling them directly with a full name (e.g. y = 
Modelica.Math.asin(0.5), or by short name y=asin(0.5)). An 
overview of the contents of this package including its 
subpackages is available in Section 16.2, page 920. Below the 
source code of selected Modelica .Math functions are shown 

Modelica.Math.sln 

Sine 

function sin "Sine" 
extends Modelica.Math.Icons.AxisLeft; 
input Modelica.Slunits.Angle u; 
output Real y; 

external "builtin" y = sin(u); 
end sin; 

Modelica.Math.cos 

Cosine 

function cos "cosine" 
extends Modelica.Math.Icons.AxisLeft; 
input SI.Angle u; 
output Real y; 

external "builtin" y = cos(u) ; 
end cos; 

Modelica.Math.tan 

Tangent (u shall not be -pi/2, pi/2, 3*pi/2,...) 

function tan "Tangent (u shall not be -pi/2, pi/2, 
3*pi/2, ...)" 
extends Modelica.Math.Icons.AxisCenter; 
input SI.Angle u; 
output Real y; 
external "builtin" y = tan(u) ; 

end tan; 

Modelica.Math.asin 

Inverse sine (-1 <= u <= 1) 

function asi 
extends Modelica.Math.Icons.AxisCente: 
input Real u; 
output SI.Angle y; 

external "builtin" y • asin(u) ; 
end as in; 

Modelica.Math.acos 

Inverse cosine (-1 <= u <= 1) 

function acos "inverse cosine (-1 <= u <= 1)" 
extends Modelica.Math.Icons.AxisCenter; 
input Real u; 
output SI.Angle y; 

external "builtin" y = acos(u) ; 
end acos; 

Modelica.Math.atan 

Inverse tangent 

function atan "inverse tangent" 
extends Modelica.Math.Icons.AxisCenter; 
input Real u; 
output SI.Angle y; 
external "builtin" y • atan(u) ; 

end atan; 

Modellca.Math.atan2 

Four-quadrant inverse tangent 
y = atan2(ul,u2) computes y such that tan (y) = 
ui/u2 and y is in the range -pi < y < pi. u2 may 
be zero, provided ul is not zero. 

function atan2 "four quadrant inverse tangent" 
extends Modelica.Math.Icons.AxisCenter; 
input Real ul; 
input Real u2; 
output SI.Angle y; 

external "builtin" y = atan2(ul,u2) ; 
end atan2; 

Modelica.Math.sinh 

Hyperbolic sine 

function sinh "hyperbolic sine" 
extends Modelica.Math.Icons.AxisCenter; 
input Real u; 
output Real y; 
external "builtin" y = sinh(u) ; 

end sinh; 

Modelica. Math.cosh 

Hyperbolic cosine 

function cosh "hyperbolic cosine" 
extends Modelica.Math.Icons.AxisCenter 
input Real u; 
output Real y; 

external "builtin" y = cosh(u) ; 
end cosh; 

Modelica.Math.tanh 

Hyperbolic tangent 

function tanh "hyperbolic tangent" 
extends Modelica.Math.Icons.AxisCenter; 
input Real u; 
output Real y; 

external "builtin" y = tanh(u) ; 
end tanh; 
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Modelica.Math.exp 

Exponential, base e 

function exp "exponential, base e" 
extends Modelica.Math.Icons.AxisCenter; 
input Real u; 
output Real y; 
external "builtin" y = exp(u) ; 

end exp; 

Modelica.Math.log 

Natural (base e) logarithm (u shall be > 0) 

function log "natural (base e) logarithm (u shall be : 0)" 
extends Modelica.Math.Icons.AxisLeft; 
input Real u; 
output Real y; 

external "builtin" y = log(u) ; 
end log; 

Modelica.Math.loglO 

Base 10 logarithm (u shall be > 0) 

Modelica.Math.Random.normalvariate 

Normal distribution random function 

function normalvariate "normally distributed random 
variable" 
input Real mu "mean value"; 
input Real sigma "standard deviation"; 
input Seed si "input random seed"; 
output Real x "gaussian random variate"; 
output Seed so "output random seed"; 

protected 
Seed si, 32; 
Real z, zz, ul, u2; 
Boolean break="f alse; 

algorithm 

u2 := 1; 
while not break loop 

(ul,s2) := random(si); 
(u2,sl) := random(s2); 
z := NV_MAGICCONST*(ul-0.5)/u2; 
zz z*z/4.0 ; 
break := zz (- Math.log(u2)); 

end while; 
x mu + z*sigma; 
so := si; 

end normalvariate; 

function loglO "base 10 logarithm (u shall be > 0)" 
extends Modelica.Math.Icons.AxisLeft; 
input Real u; 
output Real y; 
external "builtin" y = loglO(u) ; 

end loglO; 

Modelica.Math.Random 
This Random package is not yet part of the Modelica standard 
library but in this book placed as a preliminary subpackage of 
Math containing the following two random distribution 
functions random() for uniform distributions and 
normalvariate() for Normal distribution. 
Package header: 
package Random 

import Modelica.Math; // import might not be needed 
constant Real NV_MAGICCONST=4*exp(-0.S)/sqrt(2.0); 
type Seed = Real[3]; 

Modelica.Math.Random.random 

Uniform distribution random function 
Distribution uniform between 0 and 1. 

function random "input random number generator with 
external storage of the seed" 
input Seed si "input random seed"; 
output Real x "uniform random variate between 0 and 1"; 
output Seed so "output random seed"; 

algorithm 
so[1] := abs(rem((171 * si[1]),30269)); 
so[2] := abs(rem((172 * si[2]),30307)); 
so[3] abs(rem((170 * si[3]),30323)); 
// zero is a poor Seed, therfore substitute 1; 
if sofl] == 0 then 
so[l] := 1; 

end if; 
if so[2] == 0 then 
so[2] := 1; 

end if; 
if so[3] == 0 then 

x := rem((so[l]/30269.0 +so[2]/30307.0 + 
so [3]/30323.0),1.0); 

end random; 
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Modelica.Blocks 
Main Author: Martin Otter. 
Copyright (C) 1999-2013, Modelica Association and DLR. 
This library contains input/output blocks to build block 
diagrams. 
See Section 16.8, page 936, for an overview of this library. 

Modelica.Blocks.lnterfaces 
This package contains interface definitions for continuous 
input/output blocks. In particular it includes the following 
connector classes: 
Reallnput Connector with one input signal of type Real. 
RealOutput Connector with one output signal of type Real. 
Booleanlnput Connector with one input signal of type 

Boolean. 
BooleanOutput Connector with one output signal of type 

Boolean. 
Integerlnput Connector with one input signal of type Integer. 
IntegerOutput Connector with one output signal of type 

Integer. 
See Section 16.8.2, page 937, for an overview of this library. 
A few models from the library are shown below. 

Modelica.Blocks.lnterfaces.Reallnput 

^ ^ ^ Connector with one input signal of type Real 

connector Reallnput = input Real 
"Connector with one input signal of type Real"; 

Modelica.Blocks.lnterfaces.RealOutput 

Connector with one output signal of type Real 

connector RealOutput = output Real 
"Connector with one output signal of type Real"; 

Modelica.Blocks.lnterfaces.Booleanlnput 

^ ^ ^ ^ Connector with one input signal of type Boolean 

connector Booleanlnput = input Boolean 
"Connector with one input signal of type Boolean"; 

Modelica.Blocks.lnterfaces.BooleanOutput 

Connector with one output signal of type Boolean 

connector BooleanOutput = output Boolean 
"Connector with one output signal of type Boolean"; 

Modelica.Blocks.lnterfaces.SO 

Single Output continuous control block 

partial block SO "Single Output continuous control block" 
extends Modelica.Blocks.Icons.Block; 
RealOutput y "Connector of Real output signal"; 

Modelica.Blocks.lnterfaces.MO 

Multiple Output continuous control block 

partial block MO "Multiple Output continuous control 
block" 

extends Modelica.Blocks.Icons.Block; 
parameter Integer nout(min = 1) = 1 "Number of 

outputs"; 
RealOutput ytnout] "Connector of Real output signals" 

end MO; 
Modelica.Blocks.lnterfaces.SISO 

Q Single Input Single Output continuous control block 

partial block SISO 
"Single Input Single Output continuous control block" 
extends Modelica.Blocks.Icons.Block; 
Reallnput u "Connector of Real input signal"; 
RealOutput y "Connector of Real output signal"; 

end SISO; 

Modelica.Blocks.lnterfaces.SI2SO 

2 Single Input/1 Single Output continuous control block 

O Block has two input vectors ul and u2 and one output 
vector y. All signals are scalar. 

partial block SI2SO 
"2 Single Input / 1 Single Output continuous control 

block" 
extends Modelica.Blocks.Icons.Block; 
Reallnput ul "Connector of Real input signal 1"; 
Reallnput u2 "Connector of Real input signal 2"; 
RealOutput y "Connector of Real output signal"; 

end SI2SO; 

Modelica.Blocks.Interfaces.MISO 

Multiple Input Single Output continuous control block 
Block has a vector of continuous input signals and one 
continuous output signal. 

partial block MISO 
"Multiple Input Single Output continuous control block" 
extends Modelica.Blocks.Icons.Block; 
parameter Integer nin = 1 "Number of inputs"; 
Reallnput u[nin] "Connector of Real input signals"; 
RealOutput y "Connector of Real output signal"; 

end MISO; 

Modelica.Blocks.lnterfaces.MIMO 

Multiple Input Multiple Output continuous control block 

Q Block has a continuous input and a continuous output 
signal vector. The signal sizes of the input and output 
vector may be different. 

partial block MIMO 
"Multiple Input Multiple Output continuous control 

block" 
extends Modelica.Blocks.Icons.Block; 
parameter Integer nin=l "Number of inputs"; 
parameter Integer nout=l "Number of outputs"; 
Reallnput u[nin] "Connector of Real input signals"; 
RealOutput y[nout] 

"Connector of Real output signals"; 
end MIMO; 

Modelica.Biocks.lnterfaces.MIMOs 

Multiple Input Multiple Output continuous control block with 
same number of inputs and outputs 

Q Block has a continuous input and a continuous output 
signal vector where the signal sizes of the input and 
output vector are identical. 

partial block MIMOs 
"Multiple Input Multiple Output continuous control 

block with same number of inputs and outputs" 
extends Modelica.Blocks.Icons.Block; 
parameter Integer n=l "Number of inputs (= number of 

outputs)"; 
Reallnput u[n] "Connector of Real input signals"; 
RealOutput y[n] "Connector of Real output signals"; 

end MIMOs; 
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Modelica.Blocks.lnterfaces.MI2MO 

2 Multiple Input/Multiple Output continuous control block 

•
Block has two Input vectors ul and u2 and one output 
vector y. All vectors have the same number of elements. 

partial block MI2MO "2 Multiple Input / Multiple Output 
continuous control block" 

extends Modelica.Blocks.Icons.Block; 
parameter Integer n««l 

"Dimension of input and output vectors."; 
Reallnput ul[n] "Connector 1 of Real input signals"; 
Reallnput u2[n] "Connector 2 of Real input signals"; 
RealOutput y[n] "Connector of Real output signals"; . 

end MI2MO; 

Modelica.Blocks.Interfaces.SignalSource 

Base class for continuous signal source 

partial block SignalSource 
"Base class for continuous signal i 
extends SO; 
parameter Real offset=0 "offset of output signal"; 
parameter Slunits.Time startTime=0 

"output = offset for time < startTime"; 
end SignalSource; 

Modelica. Blocks.lnterfaces.SVcontrol 

Q 
Single-variable continuous controller 

partial block SVcontrol 
"Single-Variable continuous controller" 
extends Modelica.Blocks.Icons.Block;; 
input Reallnput u_s "Connector of setpoint input 

signal"; 
Reallnput u_m 

"Connector of measurement input signal"; 
RealOutput y "Connector of actuator output signal", 

end SVcontrol; 

Modelica.Blocks.lnterfaces.MVcontrol 

Q 
Multivariable continuous controller 

partial block MVcontrol 
"Multi-Variable continuous controller" 
extends Modelica.Blocks.Icons.Block; 
parameter Integer nu_s=l "Number of setpoint inputs" 
parameter Integer nu_m»l 

"Number of measurement inputs"; 
parameter Integer ny=l "Number of actuator outputs"; 
Reallnput u_s[nu_s] 

"Connector of setpoint input signals"; 
Reallnput u_m[nu_m] 

"Connector of measurement input signals"; 
RealOutput ytny] 

"Connector of actuator output signals"; 
end MVcontrol; 

Modelica. Blocks. Interfaces.BooleanBlocklcon 

! Basic graphical layout of Boolean block 

partial block BooleanBlocklcon "This icon will be removed 
in future Modelica versions, use 
Modelica.Blocks.Icons.BooleanBlock instead." 
end BooleanBlocklcon; 

Modellca.Blocks.lnterfaces.BooleanSISO 

Single Input Single Output control block with signals of 
type Boolean 

partial block BooleanSISO "Single Input Single Output 
control block with signals of type Boolean" 

extends Modelica.Blocks.Icons.BooleanBlock; 
public 

Booleanlnput u "Connector of Boolean input signal"; 
BooleanOutput y "Connector of Boolean output signal"; 

end BooleanSISO; 

Modelica.Blocks.lnterfaces.BooleanSignalSource 

Base class for Boolean signal sources 

partial block BooleanSignalSource 
"Base class for Boolean signal sources" 
extends Modelica.Blocks.Icons.BooleanBlock; 
BooleanOutput y "Connector of Boolean output signal"; 

end BooleanSignalSource; 

Modelica. Blocks.lnterfaces.MI2BooleanMOs 

2 Multiple Input/Boolean Multiple Output block with same 
signal lengths • Block has two Boolean input vectors ul and u2 and one 

Boolean output vector y. All vector? have the same 
number of elements. 

partial block MI2BooleanMOs "2 Multiple Input / Boolean 
Multiple Output block with same signal lengths" 

extends BooleanBlocklcon; 
parameter Integer n=l 

"Dimension of input and output vectors."; 
Reallnput ul[n] 

"Connector 1 of Boolean input signals"; 
Reallnput u2[n] 

"Connector 2 of Boolean input signals"; 
BooleanOutput y[n] 

"Connector of Boolean output signals"; 
end MI2BooleanMOs; 

Modelica.Blocks.Interfaces.Integerlnput 

Connector with one input signal of type Integer 
connector Integerlnput = input Integer 
"Connector with input signals of type Integer"; 

Modelica.Blocks.lnterfaces.lntegerOutput 

Connector with one output signal of type Integer 
connector IntegerOutput = output Integer 
"Connector with output signals of type Integer"; 

Modelica.Blocks.Continuous 
This subpackage contains basic continuous input/output blocks. 
See Section 16.8.3, page 940, for an overview of this sublibrary. 
Source code for selected models is included below. 

Modelica.Blocks.Continuous.lntegrator 

Output the integral of the input signals 
This blocks computes output y (element-wise) as 

> integral of the input u multiplied with the gain k: 
y=(k/s)*u 

block Integrator "Output the integral of the input 

import Modelica.Blocks.Types.Init; 
parameter Real k(unit • "1") • 1 "Integrator gain"; 
/* InitialState is the default, because it was the 

default in Modelica 2.2 and therefore this setting 
is backward compatible 

*/ 
parameter Modelica.Blocks.Types.Init initType = 
Modelica.Blocks.Types.Init.InitialState 

"Type of initialization (1: no init, 2: steady state, 
3,4: initial output)"; 

parameter Real y_start = 0 
"Initial or guess value of output (=> state)"; 

extends Interfaces.SISO(y(start = y_start)); 
initial equation 

if initType == Init.SteadyState then 
der(y) = 0; 

elseif initType == Init.InitialState or initType == 
Init.InitialOutput then 

y = y_start; 
else 
end if; 

equation 
der(y) = k * u; 

end Integrator; 
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Modelica. Blocks.Continuous.Limlntegrator 

Integrator with limited values of the outputs 
This blocks computes y (element-wise) as integral of 

> the input u multiplied with the gain k. If the integral 
reaches a given upper or lower limit and the input will 

drive the integral outside of this bound, the integration is halted 
and only restarted if the input drives the integral away from the 
bounds. 
block Limlntegrator "Integrator with limited values of 
the outputs" 

import Modelica.Blocks.Types.Init; 
parameter Real k(unit = "1") = 1 "Integrator gain"; 
parameter Real outMax(start = 1) 

"Upper limit of output"; 
parameter Real outMin = -outMax 

"Lower limit of output"; 
parameter Modelica.Blocks.Types.Init initType = 
Modelica.Blocks.Types.Init.InitialState 
"Type of initialization (1: no init, 2: steady state, 
3/4: initial output)" ; 

parameter Boolean limitsAtlnit = true 
"= false, if limits are ignored during initialization 
(i.e., der(y)=k*u)"; 

parameter Real y_start = 0 "Initial or guess value of 
output (must be in the limits outMin .. outMax)"; 

parameter Boolean strict = false 
"» true, if strict limits with noEvent{..)"; 

extends Interfaces.SISO(y(start = y_start)); 
initial equation 
if initType »= Init.SteadyState then 
der(y) - 0; 

elseif initType == Init.InitialState or initType == 
Init.InitialOutput then 

y - y_start; 
else 
end if; 

equation 
if initial)) and not limitsAtlnit then 
der(y) = k * u; 
assert(y >= outMin - 0.001 * abs(outMax - outMin) and 
y <= outMax + 0.001 * abs(outMax - outMin), 
"Limlntegrator: During initialization the limits 
have been ignored.\n" + "However, the result is 
that the output y is not within the required 
limits:\n" + " y = " + String(y) + ", outMin = " + 
String(outMin) + ", outMax * " + String(outMax)); 

elseif strict then 
der(y) = noEvent(if y < outMin and k * u < 0 o r y > 

outMax and k * u > 0 then 0 else k * u) ; 
else 
der(y) « if y < outMin and k * u < 0 o r y > outMax 

and k * u > 0 then 0 else k * u; 
end if; 

end Limlntegrator; 

Modelica.Blocks.Continuous.Derlvative 

Approximated derivative block 
This block defines the transfer function between the 

... input u and the output y element-wise as approximated 
derivative, y = ((k * s) / (T * s + 1)) * u 

If you would like to be able to change easily between different 
transfer functions (FirstOrder, SecondOrder,.. . ) by changing 
parameters, use the general block TransferFunction instead and 
model a derivative block with parameters b = {k,0}, a = {T, 1}. 
block Derivative "Approximated derivative block" 

import Modelica.Blocks.Types.Init; 
parameter Real k(unit = "1") = 1 "Gains"; 
parameter Slunits.Time T(min = 
Modelica.Constants.small) - 0.01 "Time constants (T>0 
required; T=0 is ideal derivative block)"; 

parameter Modelica.Blocks.Types.Init initType « 
Modelica.Blocks.Types.Init.Nolnit "Type of 
initialization (1: no init, 2: steady state, 3: 
initial state, 4: initial output)" ; 

parameter Real x_start - 0 
"Initial or guess value of state" ; 

parameter Real y_start » 0 
"Initial value of output (= state)" ; 

extends Interfaces.SISO; 
output Real x(start = x_start) "State of block"; 

protected 
parameter Boolean zeroGain = abs(k) < 
Modelica.Constants.eps ; 

initial equation 
if initType == Init.SteadyState then 
der(x) = 0; 

elseif initType == Init.InitialState then 
x = x_start; 

elseif initType == Init.InitialOutput then 
if zeroGain then 

else 
y = y_start; 

end if; 
else 
end if; 

equation 
der(x) = if zeroGain then 0 else (u - x) / T; 
y = if zeroGain then 0 else k / T * (u - x); 

end Derivative; 

Modelica. Blocks.Continuous.FirstOrder 

First-order transfer function block (= 1 pole) 
This blocks defines the transfer function between the 

> input u and the output y (element-wise) as first order 
system: y = ( k / ( T * s + 1))* u 

If you would like to be able to change easily between different 
transfer functions (FirstOrder, SecondOrder,...) by changing 
parameters, use the general block TransferFunction instead and 
model a first order SISO system with parameters b = {k}, a = 
{T. 1}. 
block FirstOrder 
"First order transfer function block (= 1 pole)" 
import Modelica.Blocks.Types.Init; 
parameter Real k(unit = "1") * 1 "Gain"; 
parameter Slunits.Time T(start * 1) "Time Constant"; 
parameter Modelica.Blocks.Types.Init initType = 
Modelica.Blocks.Types.Init.Nolnit "Type of 
initialization (1: no init, 2: steady state, 3/4: 
initial output)"; 

parameter Real y_start = 0 "Initial or guess value of 
output (= 3tate)"; 

extends Interfaces.SISO(y(start = y_start)); 
initial equation 

if initType == Init.SteadyState then 
der(y) = 0; 

elseif initType »« Init.InitialState or initType == 
Init.InitialOutput then 
y = y_start; 

else 

equation 
der(y) = (k * u - y) / T; 

end FirstOrder; 

Modelica.Biocks.Continuous.SecondOrder 

Second-order transfer function block (= 2 poles) 
This blocks defines the transfer function between the 
input u and the output y (element-wise) as second order 
system: y = (k / ((s / w )A2 + 2*D*( s / w) + 1)) * u 

If you would like to be able to change easily between different 
transfer functions (FirstOrder, SecondOrder,.. .) by changing 
parameters, use the general model class TransferFunction 
instead and model a second order SISO system with parameters 
b = {k}, a = {l/wA2, 2*D/w, 1}. 
block SecondOrder 
"Second order transfer function block (= 2 poles)" 
import Modelica.Blocks.Types.Init; 
parameter Real k(unit = "1") » 1 "Gain"; 
parameter Real w(start = 1) "Angular frequency"; 
parameter Real D(start = 1) "Damping"; 
parameter Modelica.Blocks.Types.Init initType = 
Modelica.Blocks.Types.Init.Nolnit "Type of 
initialization (1: no init, 2: steady state, 3/4: 
initial output)" ; 

parameter Real ystart = 0 "Initial or guess value of 
output (= state)"; 

parameter Real yd_start = 0 "Initial or guess value of 
derivative of output (« state)"; 

extends Interfaces.SISO(y(start = y_start)); 
output Real yd(start = yd_start) "Derivative of y"; 

initial equation 
if initType == Init.SteadyState then 
der(y) = 0; 
der(yd) = 0; 

elseif initType == Init.InitialState or initType == 
Init.InitialOutput then 

y = y_start; 
yd = yd_start; 

else 
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end if; 
equation 
der (y) = yd; 
der (yd) = w * (w * (k * u - y) - 2 * D * yd) ; 

end SecondOrder; 

Modelica.Blocks.Continuous.PI 

Proportional-Integral controller 
This blocks defines the transfer function between the 
input u and the output y (element-wise) as PI system: 

y = k * (1 + (1 /T*s))* u 
= k * ((T*s + 1) / (T*s)) * u 

If you would like to be able to change easily between different 
transfer functions (FirstOrder, SecondOrder,... ) by changing 
parameters, use the general model class TransferFunction 
instead and model a PI SISO system with parameters b = (k*T, 
k } , a = { T , 0}. 
block PI "Proportional-Integral controller" 

import Modelica.Blocks.Types.Init; 
parameter Real k(unit = "1") = 1 "Gain"; 
parameter Slunits.Time T(start = 1, min = 
Modelica.Constants.small) "Time Constant (T>0 
required)"; 

parameter Modelica.Blocks.Types.Init initType = 
Modelica.Blocks.Types.Init.Nolnit "Type of 
initialization (1: no init, 2: steady state, 3: 
initial state, 4: initial output)"; 

parameter Real x_start = 0 
"Initial or guess value of state" ; 

parameter Real y_start = 0 "Initial value of output"; 
extends Interfaces.SISO; 
output Real x (start = x_start) "State of block"; 

initial equation 
if initType == Init.SteadyState then 
der(x) = 0; 

elseif initType == Init.InitialState then 
x = x_start; 

elseif initType «= Init.InitialOutput then 
y = y_start; 

else 
end if; 

equation 

Modelica.Blocks.Continuous.PID 

PID controller in additive description form 
This is the text-book version of a PID-controller. For a 
more practically useful PID-controller, use block 
LimPID. 

block PID 
"PID-controller in additive description form" 
import Modelica.Blocks.Types.InitPID; 
import Modelica.Blocks.Types.Init; 
extends Interfaces.SISO; 
parameter Real k(unit = "1") = 1 "Gain"; 
parameter Slunits.Time Ti(min = 
Modelica.Constants.small, start = 0.5) "Time Constant 
of Integrator"; 

parameter Slunits.Time Td(min = 0, start = 0.1) 
"Time Constant of Derivative block"; 

parameter Real Nd(min = Modelica.Constants.small) = 10 
"The higher Nd, the more ideal the derivative block"; 

parameter Modelica.Blocks.Types.InitPID initType = 
Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegratorS 

tate"Type of initialization (1: no init, 2: steady 
state,3: initial state, 4: initial output)"; 

parameter Real xi_start = 0 "Initial or guess value 
value for integrator output (= integrator state)"; 

parameter Real xd_start = 0 "Initial or guess value for 
state of derivative block"; 

parameter Real y_start = 0 "Initial value of output"; 
constant SI.Time unitTime = 1; 
Blocks.Math.Gain P(k = 1) 

"Proportional part of PID controller"; 
Blocks.Continuous.Integrator I(k = unitTime / Ti, 
y_start = xi_start, initType = if initType == 
InitPID.SteadyState then Init.SteadyState else if 
initType == InitPID.InitialState or initType == 
InitPID.DoNotUse_InitialIntegratorState then 
Init.InitialState else Init.Nolnit) "Integral part of 
PID controller"; 

Blocks.Continuous.Derivative D(k = Td / unitTime, T = 

max([Td / Nd,100 * Modelica.Constants.eps]), x_start 
= xd_start, initType = if initType ==* 
InitPID.SteadyState or initType == 
InitPID.InitialOutput then Init.SteadyState else if 
initType == InitPID.InitialState then 
Init.InitialState else Init.Nolnit) "Derivative part 
of PID controller"; 

Blocks.Math.Gain Gain(k = k) "Gain of PID controller"; 
Blocks.Math.Add3 Add ; 

initial equation 
if initType == InitPID.InitialOutput then 

equation 
connect(u,P.u); 
connect(u,I.u); 
connect(u,D.u); 
connect(P.y,Add.ul); 
connect(I.y,Add.u2); 
connect(D.y,Add.u3); 
connect(Add.y,Gain.u); 
connect(Gain.y,y); 

end PID; 

Modelica.Blocks.Continuous.LimPID 

PID controller with limited output, anti-windup compensation 
and setpoint weighting 

This is a PID controller incorporating several practical 
> aspects. It is designed according to Chapter 3 of the 

book by K. Astroem and T. Haegglund: PID 
Controllers: Theory, Design, and Tuning, 2nd edition, 
1995. 

Besides the additive proportional, integral, and derivative part 
of this controller, the following practical aspects are included: 
• The output of this controller is limited. If the controller is 

in its limits, antiwindup compensation is activated to drive 
the integrator state to zero. 

• The high-frequency gain of the derivative part is limited to 
avoid excessive amplification of measurement noise. 

• Setpoint weighting is present, which allows weighting the 
setpoint in the proportional and the derivative part 
independently from the measurement. The controller will 
respond to load disturbances and measurement noise 
independently of this setting (parameters wp, wd). 
However, setpoint changes will depend on this setting. For 
example, it is useful to set the setpoint weight wd for the 
derivative part to zero, if steps may occur in the setpoint 
signal. 

block LimPID "PID controller with limited output, anti-
windup compensation and setpoint weighting" 

import Modelica.Blocks.Types.InitPID; 
import Modelica.Blocks.Types.Init; 
import Modelica.Blocks.Types.SimpleController; 
extends Interfaces.SVcontrol; 
output Real controlError •« u_s - u_m 

"Control error (set point - measurement)"; 
parameter .Modelica.Blocks.Types.SimpleController 

controllerType -
Modelica.Blocks.Types.SimpleControiler.PID 
"Type of controller"; 

parameter Real k(min » 0, unit » "1") » 1 
"Gain of controller"; 

parameter Slunits.Time Ti(min • 
Modelica.Constants.small) » 0.5 "Time constant of 
Integrator block"; 

parameter Slunits.Time Td(min = 0) - 0.1 
"Time constant of Derivative block"; 

parameter Real yMax(start = 1) "Upper limit of output"; 
parameter Real yMin = -yMax "Lower limit of output"; 
parameter Real wp (min *= 0) * 1 

"Set-point weight for Proportional block (0..1)"; 
parameter Real wd(min = 0) » 0 "Set-point weight for 

Derivative block (0..1)"; 
parameter Real Ni(min = 100 * Modelica.Constants.eps) = 

0.9 "Ni*Ti is time constant of anti-windup 
compensation"; 

parameter Real Nd(min = 100 * Modelica.Constants.eps)= 
10 "The higher Nd, the more ideal the derivative 
block"; 

parameter .Modelica.Blocks.Types.InitPID initType •= 
.Modelica.Blocks.Types.InitPID.DoNotUse_InitialIntegrator 
State "Type of initialization (1: no init, 2: steady 
state, 3: initial state, 4: initial output)"; 
parameter Real xi_start = 0 "Initial or guess value for 

integrator output (= integrator state)"; 
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parameter Real xd_start = 0 "Initial or guess value for 
state of derivative block"; 

parameter Real y_start = 0 "Initial value of output"; 
constant SI.Time unitTime = 1 ; 
Blocks.Math.Add addP(kl = wp, k2 = -1); 
Blocks.Math.Add addD(kl = wd, k2 = -1) ; 
Blocks.Math.Gain P(k = 1) ; 
Blocks.Continuous.Integrator I(k = unitTime / Ti, 

y_start = xi_start, initType = if initType == 
InitPID.SteadyState then Init.SteadyState else if 
initType == InitPID.InitialState or initType == 
InitPID.DoNotUse_InitialIntegratorState then 
Init.InitialState else Init.Nolnit) if with_I; 

Blocks.Continuous.Derivative D(k = Td / unitTime, T = 
max([Td / Nd,0.00000000000001]), x_start = xd_start, 
initType « if initType == InitPID.SteadyState or 
initType »» InitPID.InitialOutput then 
Init.SteadyState else if initType == 
InitPID.InitialState then Init.InitialState else 
Init.Nolnit); 

Blocks.Math.Gain gainPID(k = k); 
Blocks.Math.Add3 addPID ; 
Blocks.Math.Add3 addl(k2 = -1) ; 
Blocks.Math.Add addSat(kl = +1, k2 = -1) ; 
Blocks.Math.Gain gainTrack(k = 1 / (k * Ni)) ; 
Blocks.Nonlinear.Limiter limiter(uMax = yMax, uMin = 

yMin, strict = strict, limitsAtlnit = limitsAtlnit); 
protected 
parameter Boolean with_I = controllerType == 

SimpleController.PI or controllerType == 
SimpleController.PID; 

parameter Boolean with_D = controllerType == 
SimpleController.PD or controllerType == 
SimpleController.PID; 

public 
Sources.Constant Dzero(k = 0); 
Sources.Constant Izero(k = 0) ; 

initial equation 
if initType == InitPID.InitialOutput then 
gainPID.y = y_start; 

end if; 
equation 
assert(yMax >= yMin, "LimPID: Limits must be 

consistent. However, yMax (=" + String(yMax) + ") < 
yMin (=" + String(yMin) + ")"); 

if initType == InitPID.InitialOutput and (y_start < 
yMin or y_start > yMax) then 
Modelica.Utilities.Streams.error("LimPID: Start value 
y_start (=" + String(y_start) + ") is outside of the 
limits of yMin (=" + String(yMin) + ") and yMax (=" + 
String(yMax) + ")"); 

end if; 
assert(limitsAtlnit or not limitsAtlnit and y >= yMin 

and y <=» yMax, "LimPID: During initialization the 
limits have been switched off.Nn" + "After 
initialization, the output y (=" + String(y) + ") is 
outside of the limits of yMin (=" + String(yMin) + ") 
and yMax (=" + String(yMax) + ")"); 

s,addP.ul); 
_s,addD.ul); 

t(u_s,addl.ul); 
connect(addP.y,P.u); 
connect(addD.y,D.u); 
connect(addl.y,I.u); 

t(P.y,addPID.ul; 
t(D.y,addPID.u2); 
t(I.y,addPID.u3); 

connect(addPID.y,gainPID.u); 
connect(gainPID.y,addsat.u2); 
connect(gainPID.y,limiter.u); 
connect(limiter.y,addSat.ul) ; 
connect(limiter.y, y) ; 
connect(addSat.y,gainTrack.u); 
connect(gainTrack.y, addl.u3) ; 
connect(u_m,addP.u2) ; 
connect(u_m,addD.u2); 
connect(u_m,addl.u2); 
connect(Dzero.y,addPID.u2); 
connect(Izero.y,addPID.u3); 

end LimPID; 

Modelica. Blocks.Continuous.TransferFunction 

Linear transfer function 
This block defines the transfer function between the 

> input u and the output y as (nb = dimension of b, na = 
dimension of a): 

b(s) 
a(s) 

b[l]*sA[nb-l] + b[2]*sA[nb-2] + .. 
y(s) = 

b[nb] 

a[l]*sA[na-l] + a[2]*sA[na-2] + ... + a[na] 
*u(s) 

State variables x are defined according to controller canonical 
form. Initial values of the states can be set as start values of x. 
block TransferFunction "Linear transfer function" 

import Modelica.Blocks.Types.Init; 
extends Interfaces.SISO; 
parameter Real b[:] = {1} "Numerator coefficients of 

transfer function (e.g., 2*s+3 is specified as 
{2,3})"; 

parameter Real a[:] = {1} "Denominator coefficients of 
transfer function (e.g., 5*s+6 is specified as 
{5,6})"; 

parameter Modelica.Blocks.Types.Init initType = 
•Modelica.Blocks.Types.Init.Nolnit "Type of 
initialization (1: no init, 2: steady state, 3: 
initial state, 4: initial output)"; 

parameter Real x_start[size(a, 1) - 1] = zeros(nx) 
"Initial or guess values of states"; 

parameter Real y_start = 0 "Initial value of output 
(derivatives of y are zero upto nx-l-th derivative)"; 

output Real x [size (a, 1) - 1] (start = x_start) "State 
of transfer function from controller canonical form"; 

protected 
parameter Integer na = size(a, 1) 

"Size of Denominator of transfer function."; 
parameter Integer nb = size(b, 1) 

"Size of Numerator of transfer function."; 
parameter Integer nx = size (a, 1) - 1; 
parameter Real bb[:] = vector([zeros(max(0, na - nb), 1) ; b]) ; 
parameter Real d = bb[l] / a[l]; 
parameter Real a_end = if a[end] > 100 * 
Modelica.Constants.eps * sqrt(a * a) then a[end] else 
1.0; 

Real x_scaled[size(x, 1)] "Scaled vector x"; 
initial equation 

if initType == Init.SteadyState then 
der(x_scaled) = zeros(nx); 

elseif initType « Init.InitialState then 
x_scaled = x_start * a_end; 

elseif initType == Init.InitialOutput then 
y = y_start; 
der(x_scaled[2:nx]) = zeros(nx - 1); 

else 

equation 
assert (size (b, 1) <= size(a, 1), "Transfer function is 

not proper"); 
if nx == 0 then 
y = d * u; 

else 
der(x_scaled[l]) = (-a[2:na] * x_scaled + a_end * u) 

/ a[l]; 
der(x_scaled[2:nx]) = x_scaled[1:nx - 1]; 
y = (bb[2:na] - d * a[2:na]) * x_scaled / a_end + d * 

x = x_scaled / a_end; 

end TransferFunction; 

Modelica. Blocks.Continuous.StateSpace 

Linear state space system 
The State Space block defines the relation between the 

11 input u and the output y in state space form: 
der(x) = A * x + B * u , y = C * x + D * u 

The input is a vector of length nu, the output is a vector of 
length ny, and nx is the number of states. Accordingly, 

A has the dimension: A(nx,nx), 
B has the dimension: B(nx,nu), 
C has the dimension: C(ny,nx), 
D has the dimension: D(ny,nu) 

block StateSpace "Linear state space system" 
import Modelica.Blocks.Types.Init; 
parameter Real A[:,size(A, 1)] = [1,0;0,1] "Matrix A 

of state space model (e.g., A=[l, 0; 0, 1])"; 
parameter Real B[size(A, 1),:] = [1;1] 

"Matrix B of state space model (e.g., B=[l; 1])"; 
parameter Real C[:,size(A, 1)] = [1,1] 

"Matrix C of state space model (e.g., C«=[l, 1])"; 
parameter Real D[size(C, l),size(B, 2)] = zeros(size(C, 

1), size(B, 2)) "Matrix D of state space model"; 
parameter Modelica.Blocks.Types.Init initType = 

Modelica.Blocks.Types.Init.Nolnit "Type of initialization 
(1: no init, 2: steady state, 3: initial state, 4: 
initial output)"; 
parameter Real x_start[nx] = zeros(nx) 

"Initial or guess values of states"; 
parameter Real y_start[ny] = zeros(ny) 

"Initial values of outputs (remaining states are in 
steady state if possible)"; 
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extends Interfaces.MIMO(final nin = size (B, 2), 
final nout = size(C, 1)); 

output Real x[size(A, 1)] (start = x_start) 
"State vector"; 

protected 
parameter Integer nx • size(A, 1) "number of states"; 
parameter Integer ny = size(C, 1) "number of outputs"; 

initial equation 
if initType == Init.SteadyState then 
der(x) = zeros(nx); 

elseif initType == Init.InitialState then 
x = x_start; 

elseif initType == Init.InitialOutput then 
x = Modelica.Math.Matrices.equalityLeastSquares(A, -B 
* u, C, y_start - D * u); 

else 

equation 
der (x) = A * x + B * u; 
y = C * x + D * u ; 

end StateSpace; 

Modelica.Blocks.Nonlinear 
This subpackage contains discontinuous and nondifferentiable 
algebraic input/output blocks. See Section 16.8.4, page 940, for 
an overview of this package. Two models from the sublibrary 
are shown below: 

Modelica.Blocks.Nonlinear.Llmiter 

Limit the range of a signal 
The Limiter block passes its input signal as output 
signal as long as the input is within the specified upper 
and lower limits. If this is not the case, the 
corresponding limits are passed as output. 

block Limiter "Limit the range of a signal" 
parameter Real uMax(start = 1) 

"Upper limits of input signals"; 
parameter Real uMin = -uMax 

"Lower limits of input signals"; 
parameter Boolean strict = false 

"= true, if strict limits with noEvent(..)"; 
parameter Boolean limitsAtlnit = true 
"= false, if limits are ignored during initialization 
(i.e., y=u)"; 

extends Interfaces.SISO; 
equation 
assert(uMax >= uMin, "Limiter: Limits must be 
consistent. However, uMax («•" + String (uMax) + ") < 
uMin («" + String(uMin) + ")"); 

if initial() and not limitsAtlnit then 
y = u; 
assert(u >= uMin - 0.01 * abs(uMin) and u <= uMax + 
0.01 * abs(uMax), "Limiter: During initialization 
the limits have been ignored.\n" + "However, the 
result is that the input u is not within the 
required limits:\n" + " u = " + String(u) + ", 
uMin « " + String(uMin) + ", uMax = "String(uMax)); 

elseif strict then 
y = smooth (0, noEvent(if u > uMax then uMax else if u 
< uMin then uMin else u)); 

else 
y = smooth(0, if u > uMax then uMax else if u < uMin 

then uMin else u); 
end if; 

end Limiter; 

Modelica. Blocks.Nonllnear.DeadZone 

Provide a region of zero output 
The DeadZone block defines a region of zero output. If 
the input is within uMin ... uMax, the output is zero. 
Outside of this zone, the output is a linear function of 
the input with a slope of 1. 

block DeadZone "Provide a region of zero output" 
parameter Real uMax(start = 1) "Upper limits of dead 

zones"; 
parameter Real uMin = -uMax 

"Lower limits of dead zones"; 
parameter Boolean deadZoneAtlnit • true 

"= false, if dead zorte is ignored during 
initialization (i.e., y=u)"; 

extends Interfaces.SISO; 
equation 
assert(uMax >= uMin, "DeadZone: Limits must be 
consistent. However, uMax (=" + String(uMax) + ") < 
uMin (=" + String(uMin) + ")"); 

if initial() and not deadZoneAtlnit then 

y = u; 
else 
y = smooth(0, if u > uMax then u - uMax else if u < 
uMin then u - uMin else 0); 

end if; 
end DeadZone; 

Modelica.Blocks.Math 
This subpackage contains basic mathematical operations, such 
as summation and multiplication, and basic mathematical 
junctions, such as sqrt and sin, as input/output blocks. See 
Section 16.8.5, page 940, for an overview of this package. 

Modelica.Blocks.Sources 
This subpackage contains source components, i.e., blocks which 
have only output signals. These blocks are used as signal 
generators. See Section 16.8.8, page 944, for an overview of this 
package. A selection of component models is shown below. 

Modelica. Blocks.Sources.Clock 

Generate actual time signals 

block Clock "Generate actual time signals" 
parameter Modelica.Slunits.Time offset = 0 

"Offset of output signal"; 
parameter Modelica.Slunits.Time startTime = 0 

"Output = offset for time < startTime"; 
extends Interfaces.SO; 

equation 
y = offset + (if time < startTime then 0 else 1 
startTime); 

end Clock; 

Modelica.Blocks.Sources.Step 

Generate step signals of type Real 

block Step "Generate step signals of type Real" 
parameter Real height = 1 "Height of step"; 
extends Interfaces.SignalSource; 

equation 
y = offset + (if time < startTime then 0 else height); 

end Step; 

Modelica.Blocks.Sources.Ramp 

Generate ramp signals 

block Ramp "Generate ramp signals" 
parameter Real height=l "Heights of ramps"; 
parameter Modelica.Slunits.Time duration(min = 0.0, 

start = 2) "Duration of ramp (= 0.0 gives a Step)"; 
parameter Real offset=0 "Offsets of output signals"; 
parameter Slunits.Time startTime=0 

"Output = offset for time < startTime"; 
extends Interfaces.SO; 

equation 
y = offset + (if time < startTime then 0 
else if time < (startTime + duration) 
then (time - startTime)*height/duration else height); 

end Ramp; 
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Modelica.Blocks.Sources.Sine 

Generate sine signals 

Modellca.Blocks.Sources.Pulse 

Generate pulse signals of type Real 

block Sine "Generate sine signals" 
parameter Real amplitude «= 1 "Amplitude of sine wave"; 
parameter Slunits.Frequency freqHz(start = 1) 

"Frequency of sine wave"; 
parameter Slunits.Angle phase = 0 "Phase of sine wave"; 
parameter Real offset = 0 "Offset of output signal"; 
parameter Slunits.Time startTime = 0 "Output = offset 

for time < startTime"; 
extends Interfaces.SO; 

protected 
constant Real pi = Modelica.Constants.pi; 

equation 
y = offset + (if time < startTime then 0 else amplitude 

* Modelica.Math.sin(2 * pi * freqHz * (time -
startTime) + phase)); 

end Sine; 

Modellca.Blocks.Sources.ExpSine 

Generate exponentially damped sine signals 

block ExpSine "Generate exponentially damped sine 

parameter Real amplitude = 1 "Amplitude of sine wave"; 
parameter Slunits.Frequency freqHz(start = 2) 

"Frequency of sine wave"; 
parameter Slunits.Angle phase = 0 "Phase of sine wave"; 
parameter Slunits.Damping damping(start = 1) 

"Damping coefficient of sine wave"; 
parameter Real offset = 0 "Offset of output signal"; 
parameter Slunits.Time startTime = 0 

"Output = offset for time < startTime"; 
extends Interfaces.SO; 

protected 
constant Real pi = Modelica.Constants.pi; 

equation 
y = offset + (if time < startTime then 0 else amplitude 

* Modelica.Math.exp(-(time - startTime) * damping) * 
Modelica.Math.sin(2 * pi * freqHz * (time -

startTime) + phase)); 
end ExpSine; 

Modelica.Blocks.Sources.Exponentials 

Generate a rising and falling exponential signal 

model Exponentials 
"Generate a rising and falling exponential signal" 
parameter Real outMax = 1 

"Height of output for infinite riseTime"; 
parameter Slunits.Time riseTime(min = 0, start = 0.5) 

"Rise time"; 
parameter Slunits.Time riseTimeConst(min = 
Modelica.Constants.small) = 0.1 "Rise time constant; 
rising is defined as outMax*(1-exp(-
riseTime/riseTimeConst))"; 

parameter Slunits.Time fallTimeConst(min = 
Modelica.Constants.small) = riseTimeConst 

"Fall time constant"; 
parameter Real offset = 0 "Offset of output signal"; 
parameter Slunits.Time startTime = 0 

"Output = offset for time < startTime"; 
extends Interfaces.SO; 

protected 
Real y_riseTime; 

equation 
y_riseTime = outMax * (1 - Modelica.Math.exp(-riseTime 

/ riseTimeConst)); 
y = offset + (if time < startTime then 0 else if time < 

startTime + riseTime then outMax * (1 -
Modelica.Math.exp(-(time - startTime) / 
riseTimeConst) ) else y_riseTime * 
Modelica.Math.exp(-(time - startTime - riseTime) / 
fallTimeConst) ) ; 

end Exponentials; 

block Pulse "Generate pulse signals of type Real" 
parameter Real amplitude = 1 "Amplitude of pulse"; 
parameter Real width(final min = 
Modelica.Constants.small, final max = 100) = 50 
"Width of pulse in % of period"; 

parameter Modelica.Slunits.Time period(final min = 
Modelica.Constants.small, start = 1) 
"Time for one period"; 

parameter Integer nperiod = -1 "Number of periods (< 0 
means infinite number of periods)"; 

parameter Real offset = 0 "Offset of output signals"; 
parameter Modelica.Slunits.Time startTime = 0 

"Output = offset for time < startTime"; 
extends Modelica.Blocks.Interfaces.SO; 

protected 
Modelica.Slunits.Time T_width = period * width / 100; 
Modelica.Slunits.Time T_start "Start time of current 

period"; 
Integer count "Period count"; 

initial algorithm 
count:=integer((time - startTime) / period); 
T_start:=startTime + count * period; 

equation 
when integer((time - startTime) / period) > pre(count) 
then 
count = pre(count) + 1; 
T_start = time; 

end when; 
y = offset + (if time < startTime or nperiod == 0 or 
nperiod > 0 and count >= nperiod then 0 else if time 
< T_start + T_width then amplitude else 0); 

end Pulse; 

Modelica.Blocks.Sources.SawTooth 

Generate saw tooth signals 

block SawTooth "Generate saw tooth signals" 
parameter Real amplitude = 1 "Amplitude of saw tooth"; 
parameter Slunits.Time period(final min = 
Modelica.Constants.small, start = 1) 
"Time for one period"; 

parameter Integer nperiod = -1 "Number of periods (< 0 
means infinite number of periods)"; 

parameter Real offset = 0 "Offset of output signals"; 
parameter Slunits.Time startTime = 0 

"Output = offset for time < startTime"; 
extends Interfaces.SO; 

protected 
Slunits.Time T_start(final start = startTime) "Start 

time of current period"; 
Integer count "Period count"; 

initial algorithm 
count:"integer((time - startTime) / period); 
T_start:"StartTime + count * period; 

equation 
when integer((time - startTime) / period) > pre(count) 
then 

count = pre (count) + 1; 
T_start = time; 

end when; 
y = offset + (if time < startTime or nperiod == 0 or 
nperiod > 0 and count >= nperiod then 0 else 

amplitude * (time - T_start) / period); 
end SawTooth; 

Modelica.Blocks.Sources.Trapezoid 

Generate trapezoidal signals of type Real 

parameter Real amplitude = 1 "Amplitude of trapezoid"; 
parameter Slunits.Time rising(final min = 0) = 0 

"Rising duration of trapezoid"; 
parameter Slunits.Time width(final min = 0) = 0.5 

"Width duration of trapezoid"; 
parameter Slunits.Time falling(final min = 0) = 0 
"Falling duration of trapezoid"; 

parameter Slunits.Time period(final min = 
Modelica.Constants.small, start " 1) 
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"Time for one period"; 
parameter Integer nperiod = -1 "Number of periods (< 0 
means infinite number of periods)"; 

parameter Real offset = 0 "Offset of output signal"; 
parameter Slunits.Time startTime = 0 

"Output = offset for time < startTime"; 
extends Interfaces.SO; 

protected 
parameter Slunits.Time T_rising = rising 

"End time of rising phase within one period"; 
parameter Slunits.Time T_width = T_rising + width 

"End time of width phase within one period"; 
parameter Slunits.Time T_falling = T_width + falling 

"End time of falling phase within one period"; 
Slunits.Time T_start "Start time of current period"; 
Integer count "Period count"; 

initial algorithm 
count:"integer((time - startTime) / period); 
T_start:-startTime + count * period; 

equation 
when integer((time - startTime) / period) > pre(count) 
then 
count = pre(count) + 1; 
T_start = time; 

end when; 
y = offset + (if time < startTime or nperiod == 0 or 
nperiod > 0 and count >= nperiod then 0 else if time 
< T_start + T_rising then amplitude * (time -
T_start) / rising else if time < T_start + T_width 
then amplitude else if time < T_start + T_falling 
then amplitude * (T_start + T_falling - time) / 
falling else 0); 

end Trapezoid; 

Modelica.Blocks.Sources.BooleanConstant 

Generate constant signals of type Boolean 

block BooleanConstant 
"Generate constant signals of type Boolean" 
parameter Boolean k=true "Constant output values" 
extends Interfaces.partialBooleanSource; 

equation 
y = k; 

end BooleanConstant; 

Modellca.Blocks.Sources.BooleanStep 

Generate step signals of type Boolean 

block BooleanStep "Generate step signals of type Boolean" 
parameter Modelica.SIunit3.Time startTime = 0 

"Time instant of step start"; 
parameter Boolean startValue = false 

"Output before startTime"; 
extends Interfaces.partialBooleanSource; 

equation 
y = if time >= startTime then not startValue else 

startValue; 
end BooleanStep; 

Modelica.Blocks.Sources.BooleanPulse 

UK 
Generate pulse signals of type Boolean 

block BooleanPulse "Generate pulse signals of type 
Boolean" 
parameter Real width(final min = 

Modelica.Constants.small, final max = 100) = 50 "Width of 
pulse in % of period"; 
parameter Modelica.Slunits.Time period(final min = 

Modelica.Constants.small, start = 1) "Time for one 
period"; 
parameter Modelica.Slunits.Time startTime = 0 "Time 

instant of first pulse"; 
extends 

Modelica.Blocks.Interfaces.partialBooleanSource; 
protected 
parameter Modelica.Slunits.Time Twidth = period * width 

/ 100 "width of one pulse" annotation(HideResult = true); 
discrete Modelica.Slunits.Time pulsStart "Start time of 

pulse" annotation(HideResult = true); 
initial equation 
pulsStart = startTime; 

when sample(startTime, period) then 

pulsStart «= time; 
end when; 

y = time >= pulsStart and time < pulsStart + Twidth; 
end BooleanPulse; 

Modelica.Electrical 
Modelica.ElectricalMain Authors: Christoph Claufi and Andr£ 
Schneider. 

Copyright (C) 1998—19§2, Modelica Association and 
Fraunhofer-Gesellschaft. 
This library contains electrical components to build up analog 
and digital circuits. 
See Section 16.6, page 929, for an overview of this library. 
Source code for selected models is included below. 

Modelica.Electrical.Analog 
This subpackage contains packages for analog electrical 
components: See Section 16.6.1, page 929, for an overview of 
this library. Source code for selected models is included below. 

Modelica.Electrical.Analog.lnterfaces 
This subpackage contains connectors and interfaces (partial 
models) for analog electrical components. See Section 0, page 
930, for an overview of this sublibrary. Source code for selected 
models is included below. 

Modelica.Electrical.Analog.lnterfaces.Pin 

Pin of an electrical component 

: Pin "Pin of an electrical component" 
Modelica.Slunits.Voltage v "Potential at the pin" a; 
flow Modelica.Slunits.Current i 

"Current flowing into the pin"; 
end Pin; 

Modelica. Electrical.Analog.lnterfaces.PositivePin 

Positive pin of an electric component 

•
Connectors PositivePin and NegativePin are nearly 
identical. The only difference is that the icons are 

different in order to more easily identify the pins of a 
component. Usually, connector PositivePin is used for the 
positive and connector NegativePin for the negative pin of an 
electrical component. 
connector PositivePin "Positive pin of an electric 
component" 
Modelica.Slunits.Voltage v "Potential at the pin" a; 
flow Modelica.Slunits.Current i 

"Current flowing into the pin"; 
end PositivePin; 

Modelica.Electrical.Analog.lnterfaces.NegatlvePin 

Negative pin of an electric component 
Connectors PositivePin and NegativePin are nearly 
identical. The only difference is that the icons are 

different in order to more easily identify the pins of a 
component. Usually, connector PositivePin is used for the 
positive and connector NegativePin for the negative pin of an 
electrical component. 
connector NegativePin "Negative pin of an electric 
component" 
Modelica.Slunits.Voltage v "Potential at the pin" a; 
flow Modelica.Slunits.Current i 

"Current flowing into the pin"; 
end NegativePin; 

• 
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Modelfca.Electrfcal.Analog.lnterfaces.TwoPIn 

• Component with one electrical port 

U 

partial model TwoPin "Component with two electrical pins" 
SI.Voltage v 

"Voltage drop between the two pins (= p.v - n.v)"; 
PositivePin p "Positive pin Positive pin (potential p.v 

> n.v for positive voltage drop v)"; 
NegativePin n "Negative pin"; 

equation 
v = p.v - n.v; 

end TwoPin; 

Modelica. Electrical.Analog.lnterfaces.OnePort 

Component with two electrical pins p and n and current i from 
p to n 

| \ Superclass of elements which have two electrical pins: 
the positive pin connector p, and the negative pin 

connector n. It is assumed that the current flowing into pin p is 
identical to the current flowing out of pin n. This current is 
provided explicitly as current i. 
partial model OnePort 
"Component with two electrical pins p and n and current i 

SI.Voltage v 
"Voltage drop between the two pins (= p.v - n.v)"; 

SI.Current i "Current flowing from pin p to pin n"; 
PositivePin p "Positive pin Positive pin (potential p.v 

> n.v for positive voltage drop v)"; 
NegativePin n "Negative pin"; 

equation 
0 = p.i + n.i; 
1 = p.i; 

end OnePort; 

Modelica. Electrical.Analog.lnterfaces.TwoPort 

• Component with two electrical ports, including current 

partial model TwoPort 
"Component with two electrical ports, including current" 
SI.Voltage vl "Voltage drop over the left port"; 
SI.Voltage v2 "Voltage drop over the right port"; 
SI.Current il "Current flowing from pos. to neg. pin of 
the left port"; 

SI.Current i2 "Current flowing from pos. to neg. pin of 
the right port"; 

PositivePin pi "Positive pin of the left port 
(potential pl.v > nl.v for positive voltage drop vl)"; 

NegativePin nl "Negative pin of the left port"; 
PositivePin p2 "Positive pin of the right port 
(potential p2.v > n2.v for positive voltage drop v2)"; 

NegativePin n2 "Negative pin of the right port"; 
equation 
vl = pl.v - nl.v; 
v2 = p2.v - n2.v; 
0 = pl.i + nl.i; 
0 = p2.i + n2.i; 
il = pl.i; 
i2 = p2.i; 

end TwoPort; 

Modelica. Electrical.Analog.lnterfaces.AbsoluteSensor 

/CljjX Base class to measure the absolute value of a pin 
•"T" p * variable 

partial model AbsoluteSensor 
"Base class to measure the absolute value of a pin 

extends Modelica.Icons.RotationalSensor; 
Interfaces.PositivePin p "Pin to be measured"; 
Modelica.Blocks.Interfaces.RealOutput y "Measured 

quantity as Real output signal"; 
end AbsoluteSensor; 

Modelica. Electrical.Analog.lnterfaces.RelatlveSensor 

Base class to measure a relative variable between two 

partial model RelativeSensor 

"Base class to measure a relative variable between two pins" 
extends Modelica.Icons.RotationalSensor; 
Interfaces.PositivePin p "Positive pin"; 
Interfaces.NegativePin n "Negative pin"; 
Modelica.Blocks.Interfaces.RealOutput y "Measured 
quantity as Real output signal"; 

end RelativeSensor; 

Modelica. Electrical.Analog.lnterfaces.VoltageSource 

u g Interface for voltage sources 

partial model VoltageSource "Interface for voltage 

extends OnePort; 
parameter SI.Voltage offset=0 "Voltage offset"; 
parameter SI.Time startTime=0 "Time offset"; 
replaceable Modelica.Blocks.Interfaces.SignalSource 

signalSource(final offset=offset, 
final startTime=startTime) ; 

equation 
v = signalSource. y; 

end VoltageSource; 

Modellca.Electrical.Analog.lnterfaces.CurrentSource 

< l > 
Interface for current sources 

partial model CurrentSource "Interface for current 

extends OnePort; 
parameter SI.Current offset=0 "Current offset"; 
parameter SI.Time startTime=0 "Time offset"; 
replaceable Modelica.Blocks.Interfaces.SignalSource 

signalSource(final offset=offset, 
final startTime=startTime); 

equation 
i = signalSource.y; 

end CurrentSource; 

Modelica.Electrical.Analog.Basic 
This subpackage contains basic analog electrical components. 
See Section 16.6.1.3, page 931, for an overview of this 
sublibrary. Source code for selected models is included below. 

Modelica.Electrical.Analog.Basic.Ground 

Ground node 
T Ground of an electrical circuit. The potential at the ground 
~ node is zero. Every electrical circuit has to contain at least 

one ground object. 
model Ground "Ground node" 

Interfaces.Pin p; 
equation 

p.v = 0; 
end Ground; 

Modelica.Electrical.Analog.Basic.Resistor 

Ideal linear electrical resistor 
•~1 t-o The linear resistor connects the branch voltage v with 

the branch current i by i*R = v. 
The Resistance R is allowed to be positive, zero, or negative. 
model Resistor "Ideal linear electrical resistor" 

parameter Modelica.Slunits.Resistance R(start = 1) 
"Resistance at temperature T_ref"; 

parameter Modelica.Slunits.Temperature T_ref = 300.15 
"Reference temperature"; 

parameter Modelica.Slunits.LinearTemperatureCoefficient 
alpha = 0 "Temperature coefficient of resistance 
(R_actual = R*(1 + alpha*(T_heatPort - T_ref))"; 

extends Modelica.Electrical.Analog.Interfaces.OnePort; 
extends 

Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(T = T_ref); 
Modelica.Slunits.Resistance R_actual "Actual resistance 

= R*(l + alpha*(T_heatPort - T_ref))"; 
equation 

assert(1 + alpha * (T_heatPort - T_ref) >= 
Modelica.Constants.eps, "Temperature outside scope of 
model!"); 

R_actual = R * (1 + alpha * (T_heatPort - T_ref)); 
v = R_actual * i; 
LossPower = v * i; 

end Resistor; 
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Modellca.Electrical.Analog.Basic.Conductor 

Ideal linear electrical conductor 
H H3 The linear conductor connects the branch voltage v with 

the branch current I by i=v*G. The Conductance G 
is allowed to be positive, zero, or negative. 
model Conductor "Ideal linear electrical conductor" 
parameter Modelica.Slunits.Conductance G(start = 1) 

"Conductance at temperature T_ref"; 
parameter Modelica.Slunits.Temperature T_ref = 300.15 

"Reference temperature"; 
parameter Modelica.Slunits.LinearTemperatureCoefficient 
alpha = 0 "Temperature coefficient of conductance 
(G_actual = G_ref/(1 + alpha*(T_heatPort - T_ref))"; 

extends Modelica.Electrical.Analog.Interfaces.OnePort; 
extends 

Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(T = T_ref); 
Modelica.Slunits.Conductance G_actual "Actual 
conductance = G_ref/(1 + alpha*(T_heatPort - T_ref))"; 

equation 
assert(1 + alpha * (T_heatPort - T_ref) >= 
Modelica.Constants.eps, "Temperature outside scope of 
model!"); 

G_actual = G / (1 + alpha * (T_heatPort - T_ref)); 
i = G_actual * v; 
LossPower = v * i; 

end Conductor; 

Modelica.Electrical.Analog.Baslc.Capacitor 

Ideal linear electrical capacitor 
•—j |—o The linear capacitor connects the branch voltage v with 

the branch current i by i = c * dv/dt. 
The Capacitance c is allowed to be positive, zero, or negative. 
model Capacitor "Ideal linear electrical capacitor" 

extends Interfaces.OnePort(v(start = 0)); 
parameter SI.Capacitance C(start = 1) "Capacitance"; 

equation 
i = C*der(v); 

end Capacitor; 

Modelica.Electrical.Analog.Basic.lnductor 

Ideal linear electrical inductor 
The linear inductor connects the branch voltage v with 

the branch current i by v = L * di/dt. The Inductance L is 
allowed to be positive, zero, or negative. 
The left port current is zero. Any voltage gain can be 
chosen.model Inductor "Ideal linear electrical inductor" 
model Inductor "Ideal linear electrical inductor" 

extends Interfaces.OnePort(i(start = 0)); 
parameter SI.Inductance L(start = 1) "Inductance"; 

equation 
L*der(i) = v; 

end Inductor; 

Modelica.Electrical.Analog.Baslc.Transformer 

Transformer with two ports 
"L1 4 The transformer is a two port. The left port voltage vl , 
•—3 t—• left port current il, right port voltage v2, and right 

port current i2 are connected by the following relation: 

[M L2/ 

LI, L2, and M are the primary, secondary, and coupling 
inductances resp. 
model Transformer "Transformer with two ports" 

extends Interfaces.TwoPort(il(start =0), i2( 
start = 0)); 

parameter SI.Inductance LI(start = 1) 
"Primary inductance"; 

parameter SI.Inductance L2(start = 1) 
"Secondary inductance"; 

parameter SI.Inductance M(start = 1) 
"Coupling inductance"; 

equation 
vl = LI * der(il) + M * der(i2); 
/* Original equation: 

v2 = M*der(il) + L2*der(i2); 
If LI = L2 = M, then this model has one state less. 
However,it might be difficult for a tool to detect 

this. For this reason the model is defined with ; 
relative potential: 

vJlM Z J U ' J 

dv = (LI - M) * der (il) 
v2 = vl - dv; 

end Transformer; 

+ (M - L2) * der(i2); 

Modelica.Electrlcal.Analog.Baslc.Gyrator 

Gyrator 
A gyrator is a two-port element defined by the following 
equations: 
11 = G2 * v2 
12 = -G1 * v l 

where the constants Gl, G2 are called the gyration conductance. 
model Gyrator "Gyrator" 

extends Interfaces.TwoPort; 
parameter SI.Conductance Gl(start = 1) 

"Gyration conductance"; 
parameter SI.Conductance G2(start » 1) 

"Gyration conductance"; 
equation 

> G2*v2; 
i2 < -Gl*vl; 

end Gyrator; 

Modellca.Electrlcal.Analog.Baslc.EMF 

Electromotoric force (electric/mechanic transformer) 
EMF transforms electrical energy into rotational 
mechanical energy. It is used as basic building block of 
an electrical motor. The mechanical connector 
f lange_b can be connected to elements of the 

Modelica.Mechanics.Rotational l i b r a r y , 

f lange_b. tau is the cut-torque, f lange_b. phi is the angle at 
the rotational connection. 
model EMF 
"Electromotoric force (electric/mechanic transformer)" 
parameter Boolean useSupport = false "=• true, if 

support flange enabled, otherwise implicitly 
grounded"; 

parameter SI.ElectricalTorqueConstant k (start = 1) 
"Transformation coefficient"; 

SI.Voltage v "Voltage drop between the two pins"; 
SI.Current i "Current flowing from positive to negative 

SI.Angle phi "Angle of shaft flange with respect to 
support (= flange.phi - support.phi)"; 

SI.AngularVelocity w "Angular velocity of flange 
relative to support"; 

Interfaces.PositivePin p; 
Interfaces.NegativePin n; 
Modelica.Mechanics.Rotational.Interfaces.Flange_b 

Mechanics.Rotational.Interfaces.Support support if 
useSupport "Support/housing of emf shaft"; 

protected 
Mechanics.Rotational.Components.Fixed fixed if not 

useSupport; 
Mechanics.Rotational.Interfaces.InternalSupport 

internalSupport(tau = -flange.tau); 
equation 

0 = p.i + n.i; 
1 = p.i; 
phi = flange.phi - internalSupport.phi; 
w = der(phi); 
k * w - v; 
flange.tau = -k * i; 
connect(internalSupport.flange,support); 
connect(internalSupport.flange,fixed.flange); 

end EMF; 

Modelica.Electrical.Analog.ldeal 

This subpackage contains ideal electrical analog components. 
See Section 16.6.1.4, page 933, for an overview of this 
sublibrary. Source code for selected models is included below. 

Modelica.Electrical.Analog.ldeal.ldealThyristor 

Ideal thyristor 
The ideal thyristor model which is open(off), if the 
voltage drop is less than 0 or both the thyristor already 
open (off = true) and fire is false closed (not off), if both 



Appendix D—Modelica Standard Library Samples 1109 

the voltage drop is greater or equal 0 and either the 
thyristor was already closed (off=false) or fire is true. 

model IdealThyristor "Ideal thyristor" 
extends Modelica.Electrical.Analog.Interfaces.OnePort; 
parameter Modelica.Slunits.Resistance Ron(final 
min = 0) = 0.00001 "Closed thyristor resistance"; 

parameter Modelica.Slunits.Conductance Goff(final 
min • 0) «• 0.00001 "Opened thyristor conductance"; 

parameter Modelica.Slunits.Voltage Vknee(final 
min = 0, start = 0) "Forward threshold voltage"; 

extends 
Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(final T = 293.15); 
Boolean off (start = true) "Switching state"; 
Modelica.Blocks.Interfaces.Booleanlnput fire; 

protected 
Real a (final unit = "1") "Auxiliary variable: 

if on then current, if opened then voltage"; 
constant Modelica.Slunits.Voltage unitVoltage = 1; 
constant Modelica.Slunits.Current unitCurrent * 1; 

equation 
off = s < 0 or pre(off) and not fire; 
v = s * unitCurrent * (if off then 1 else Ron) + Vknee; 
i = s * unitVoltage * (if off then Goff else 1) + Goff 
* Vknee; 

LossPower = v * i; 
end IdealThyristor; 

Modelica.Electrical.Analog.ldeal.ldealGTOThyristor 

Ideal GTO thyristor 
The ideal GTO thyristor model which is open (off), if 
the voltage drop is less than 0 or fire is false closed (not 
off), if the voltage drop is greater or equal 0 and fire is 
true. 

model IdealGTOThyristor "Ideal GTO thyristor" 
extends Modelica.Electrical.Analog.Interfaces.OnePort; 
parameter Modelica.Slunits.Resistance Ron(final 
min = 0) = 0.00001 "Closed thyristor resistance"; 

parameter Modelica.Slunits.Conductance Goff(final 
min = 0) = 0.00001 "Opened thyristor conductance"; 

parameter Modelica.Slunits.Voltage Vknee(final 
min « 0, start = 0) "Forward threshold voltage"; 

extends 
Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(final T = 293.15); 
Boolean off(start = true) "Switching state"; 
Modelica.Blocks.Interfaces.Booleanlnput fire; 

protected 
Real s(final unit = "1") "Auxiliary variable: 
if on then current, if opened then voltage"; 

constant Modelica.Slunits.Voltage unitVoltage = 1; 
constant Modelica.Slunits.Current unitCurrent = 1; 

equation 
off * s < 0 or not fire; 
v <* a * unitCurrent * (if off then 1 else Ron) + Vknee; 
i = s * unitVoltage * (if off then Goff else 1) + Goff 
* Vknee; 

LossPower = v * i; 
end IdealGTOThyristor; 

Modelica.ElectricaLAnalog.ldeal.ldealCommutingSwitc 
h 

Ideal commuting switch 
J s The commuting switch has a positive pin p and two 

D negative pins nl and n2. The switching behaviour is 
controlled by the input signal control. If control is true, the pin p 
is connected with the negative pin n2. Otherwise, the pin p is 
connected to the negative pin nl. In order to prevent 
singularities during switching, the opened switch has a (very 
low) conductance Goff and the closed switch has a (very low) 
resistance Ron.The limiting case is also allowed, i.e., the 
resistance Ron of the closed switch could be exactly zero and 
the conductance Goff of the open switch could be also exactly 
zero. Note, there are circuits, where a description with zero Ron 
or zero Goff is not possible. Note, in case of useHeatPort=true 
the temperature dependence of the electrical behavior is not 
modelled. The parameters are not temperature dependent. 
model IdealCommutingSwitch "Ideal electrical switch" 
parameter SI.Resistance Ron(final min = 0) - 0.00001 

"Closed switch resistance"; 
parameter SI.Conductance Goff(final min = 0) = 0.00001 

"Opened switch conductance"; 

extends 
Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(final T = 293.15); 
Interfaces.PositivePin p; 
Interfaces.NegativePin n2; 
Interfaces.NegativePin nl; 
Modelica.Blocks.Interfaces.Booleanlnput control 

"true => p--n2 connected, false => p—nl connected"; 
protected 
Real sl(final unit = "1"); 
Real s2 (final unit = "1") "Auxiliary variables"; 
constant Modelica.Slunits.Voltage unitVoltage = 1 ; 
constant Modelica.Slunits.Current unitCurrent « 1 ; 

equation 
0 = p.i + n2.i + nl.i; 
p.v - nl.v » si * unitCurrent * (if control then 1 else 
Ron) ; 

nl.i = -si * unitVoltage * (if control then Goff else 1) ; 
p.v - n2.v = s2 * unitCurrent * (if control then Ron 

else 1); 
n2.i = -s2 * unitVoltage * (if control then 1 else 
Goff); 

LossPower = p.i * p.v + nl.i * nl.v + n2.i * n2.v; 
end IdealCommutingSwitch; 

Modelica.Electrical.Analog.ldeal.ControlledldealComm 
utingSwitch 

j - . 
The commuting switch has a positive pin p and two 
negative pins nl and n2.The switching behaviour is 
controlled by the control pin. 

If its voltage exceeds the value of the parameter level, the pin p 
is connected with the negative pin n2. Otherwise, the pin p is 
connected the negative pin nl. In order to prevent singularities 
during switching, the opened switch has a (very low) 
conductance Goff and the closed switch has a (very low) 
resistance Ron.The limiting case is also allowed, i.e., the 
resistance Ron of the closed switch could be exactly zero and 
the conductance Goff of the open switch could be also exactly 
zero. Note, there are circuits, where a description with zero Ron 
or zero Goff is not possible. Please note: In case of 
useHeatPort=true the temperature dependence of the electrical 
behavior is not modelled. The parameters are not temperature 
dependent. 
model ControlledldealCommutingSwitch 

parameter SI.Voltage level = 0.5 "Switch level"; 
parameter SI.Resistance Ron(final min = 0) = 0.00001 

"Closed switch resistance"; 
parameter SI.Conductance Goff(final min = 0) = 0.00001 

"Opened switch conductance"; 
extends 

Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(final T = 293.15); 
Interfaces.PositivePin p; 
Interfaces.NegativePin n2; 
Interfaces.NegativePin nl; 
Interfaces.Pin control "Control pin: if control.v > 
level p--n2 connected, otherwise p--nl connected"; 

protected 
Real si(final unit = "1"); 
Real s2(final unit = "1") "Auxiliary variables"; 
constant Modelica.Slunits.Voltage unitVoltage = 1; 
constant Modelica.Slunits.Current unitCurrent = 1; 

equation 
control.i = 0; 
0 = p.i + n2.i + nl.i; 
p.v - nl.v = si * unitCurrent * (if control.v > level 
then 1 else Ron); 

nl.i = -si * unitVoltage * (if control.v > level 
then Goff else 1); 

p.v - n2.v = s2 * unitCurrent * (if control.v > level 
then Ron else 1); 

n2.i = -s2 * unitVoltage * (if control.v > level then 1 
else Goff); 

LossPower = p.i * p.v + nl.i * nl.v + n2.i * n2.v; 
end ControlledldealCommutingSwitch; 

Modelica.Electrical.Analog.ldeal.ldealOpAmp 

Ideal opamp (norator-nullator pair) 
The ideal OpAmp is a two-port. The left port is fixed to 

1 v l = o and il=0 (nullator). At the right port both any 
voltage v2 and any current i2 are possible (norator). 

model IdealOpAmp "Ideal operational amplifier (norator-
nullator pair)" 

SI.Voltage vl "Voltage drop over the left port"; 
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H>H 

SI.Voltage v2 "Voltage drop over the right port"; 
SI.Current il "Current flowing from pos. to neg. pin 

of the left port"; 
SI.Current i2 "Current flowing from pos. to neg. pin 

of the right port"; 
Interfaces.PositivePin pi 

"Positive pin of the left port"; 
Interfaces.NegativePin nl 

"Negative pin of the left port"; 
Interfaces.PositivePin p2 

"Positive pin of the right port"; 
Interfaces.NegativePin n2 

"Negative pin of the right port"; 
equation 
vl = pl.v - nl.v; 
v2 = p2.v - n2.v; 
0 = pl.i + nl.i; 
0 = p2.i + n2.i; 
il = pl.i; 
i2 = p2.i; 

vl = 0; 
il = 0; 
i2 = p2.i; 
vl = 0; 
il = 0; 

end IdealOpAmp; 

Modelica.Electrical.Analog.Ideal.IdealDiode 

Ideal electrical diode 
Ideal electrical diode. This is an ideal switch which is 
open, when it is reversed biased (voltage drop < 0), and 

which is closed, when it is conducting (current > 0). In order to 
prevent singularities during switching, the opened diode has a 
high resistance and the closed diode has a low resistance. If the 
actual circuit has an appropriate structure, the limiting case is 
also allowed, i.e., the resistance of the closed diode could be 
exactly zero and the conductance of the open diode could be 
also exactly zero (i.e., the resistance is infinity). Note, there are 
circuits where a description with zero/infinity resistances is not 
possible. 
model IdealDiode "Ideal electrical diode" 

extends Modelica.Electrical.Analog.Interfaces.OnePort; 
parameter Modelica.SIunit3.Resistance Ron( 

final min = 0) = 0.00001 "Forward state-on 
differential resistance (closed diode resistance)"; 

parameter Modelica.Slunits.Conductance Goff( 
final min = 0) = 0.00001 "Backward state-off 
conductance (opened diode conductance)"; 

parameter Modelica.Slunits.Voltage Vknee(final 
min = 0, start = 0) "Forward threshold voltage"; 

Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 

Boolean off(start = true) "Switching state"; 
protected 

Real s(start = 0, final unit = "1") "Auxiliary variable 
for actual position on the ideal diode 
characteristic"; 
/* s = 0: knee point 

s < 0: below knee point, diode conducting 
s > 0: above knee point, diode locking */ 

constant Modelica.Slunits.Voltage unitVoltage = 1; 
constant Modelica.Slunits.Current unitCurrent = 1; 

equation 
off = s < 0; 
v = s * unitCurrent * (if off then 1 else Ron) + Vknee; 
i = s * unitVoltage * (if off then Goff else 1) + Goff 

* Vknee; 
LossPower = v * i; 

end IdealDiode; 

Modellca.Electrical.Analog.ldeal.ldealTransformer 

Ideal electrical transformer 
• ) ( • The ideal transformer is an ideal two-port resistive 

5 I circuit element which is characterized by the following 
two equations: 

v l = n * v2 
i2 = - n * i l 

where n is a real number called the turns ratio. 
model IdealTransformer "Ideal transformer core with or 
without magnetization" 

extends Modelica.Electrical.Analog.Interfaces.TwoPort; 
parameter Real n(start = 1) 

"Turns ratio primary:secondary voltage"; 
parameter Boolean considerMagnetization = false 

"Choice of considering magnetization"; 

parameter Modelica.Slunits.Inductance Lml (start = 1) 
"Magnetization inductance w.r.t. primary side"; 

protected 
Modelica.Slunits.Current iml "Magnetization current 

w.r.t. primary side"; 
Modelica.Slunits.MagneticFlux psiml "Magnetic flux 

w.r.t. primary side"; 
equation 

iml = il + i2 / n; 
if considerMagnetization then 
psiml = Lml * iml; 
vl = der(psiml); 

else 
psiml = 0; 
iml = 0; 

end if; 
vl = n * v2; 

end IdealTransformer; 

Modelica.Electrical.Analog.ldeal.ldealGyrator 

Ideal gyrator 
• A gyrator is an ideal two-port element defined by the 

[) v| following equations: 
1 1 = G * v2 
12 = -G * v l 

where the constant G is called the gyration conductance. 
model IdealGyrator "Ideal gyrator" 

extends Interfaces.TwoPort; 
parameter SI.Conductance G(start = 1) 

"Gyration conductance"; 
equation 

i2 • -G 1 
< v2; 

vl; 
end IdealGyrator; 

Modelica.Electrical.Analog.ldeal.ldle 

Idle branch 
The model Idle is a simple idle running branch 

model Idle "Idle branch" 
Interfaces.OnePort; 

equation 
i = 0; 

end Idle; 

Modelica.Electrical.Analog.ldeal.Short 

Short cut branch 
The model Short is a simple short cut branch 

•a 
model Short "Short cut branch" 

Interfaces.OnePort ; 
equation 

Modelica.Electrical.Analog.Sensors 
This subpackage contains potential, voltage, and current sensors. 
See Section 16.6.1.5, page 934, for an overview of this 
sublibrary. Source code for selected models is included below. 

Modelica.Electrical.Analog.Sensors.PotentlalSensor 

Sensor to measure the potential 

model PotentialSensor "Sensor to measure the potential" 
extends Modelica.Icons.RotationalSensor,• 
Interfaces.PositivePin p "pin to be measured"; 
Modelica.Blocks.Interfaces.RealOutput phi(unit = "V") 

"Absolute voltage potential as output signal"; 
equation 
p.i = 0; 

end PotentialSensor; 
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Modelica. Elect rical.Analog.Sensors.VoltageSensor 

Sensor to measure the voltage between two pins 

model VoltageSensor "Sensor to measure the voltage 
between two pins" 

extends Modelica.Icons.RotationalSensor; 
Interfaces.PositivePin p "positive pin"; 
Interfaces.NegativePin n "negative pin"; 
Modelica.Blocks.Interfaces.RealOutput v(unit = "V") 

"Voltage between pin p and n (= p.v - n.v) as output 
signal"; 

equation 
p.i = 0; 
n.i = 0; 
v = p.v - n.v; 

end VoltageSensor; 

Modelica. Electrical.Analog.Sensors.CurrentSensor 

Sensor to measure the current in a branch 

model CurrentSensor "Sensor to measure the current in 
a branch" 
extends Modelica.Icons.RotationalSensor; 
Interfaces.PositivePin p "positive pin"; 
Interfaces.NegativePin n "negative pin"; 
Modelica.Blocks.Interfaces.RealOutput i(unit = "A") 

"Current in the branch from p to n as output signal"; 
equation 
p.v = n.v; 
p.i = i; 

end CurrentSensor; 

Modelica.Electrical.Analog.Sources 
This subpackage contains time-dependent and controlled voltage 
and current sources. See Section 16.6.1.6, page 934, for an 
overview of this sublibrary. Source code for selected models is 
included below. 

Modelica.Electrical.Analog.Sources.SignalVoltage 

Generic voltage source using the input signal as source 
-a voltage 

model SignalVoltage 
"Generic voltage source using the input signal as 
source voltage" 
Interfaces.PositivePin p; 

Interfaces.NegativePin n; 
Modelica.Blocks.Interfaces.Reallnput v(unit = "V") 

"Voltage between pin p and n (= p.v - n.v) as input 
signal"; 

SI.Current i "Current flowing from pin p to pin n"; 
equation 

0 = p.i + n.i; 
1 = p.i; 

end SignalVoltage; 

Modelica.Electrical.Analog.Sources.ConstantVoltage 

|l Source for constant voltage 

model ConstantVoltage "Source for constant voltage" 
parameter SI.Voltage V(start = 1) 

"Value of constant voltage"; 
extends Interfaces.OnePort; 

equation 
v = V; 

end ConstantVoltage; 

Modelica.Electrical.Analog.Sources.StepVoltage 

Step voltage source 

model StepVoltage "Step voltage source" 
parameter SI.Voltage V(start = 1) "Height of step"; 
extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.Step signalSource(height = 
V) ) ; 

end StepVoltage; 

Modelica.Electrical.Analog.Sources.RampVoltage 

•e 

Ramp voltage source -a 
model RampVoltage "Ramp voltage source" 

parameter SI. Voltage V(start = 1) "Height of ramp" ; 
parameter SI.Time duration(min = 
Modelica.Constants.small, start = 2) 
"Duration of ramp"; 

extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.Ramp signalSource(final 
height = V, final duration = duration)); 

end RampVoltage; 

Modelica. Electrical.Analog.Sources.SineVoltage 

0 

Sine voltage source 

model SineVoltage "Sine voltage ; 
parameter SI.Voltage V(start = 1) 

"Amplitude of sine wave"; 
parameter SI.Angle phase = 0 "Phase of sine wave"; 
parameter SI.Frequency freqHz(start = 1) 

"Frequency of sine wave"; 
extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.Sine signalSource(amplitude = 
V, freqHz = freqHz, phase = phase)); 

end SineVoltage; 

Modelica.Electrical.Analog.Sources.ExpSlneVoltage 
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% Exponentially damped sine voltage source 

model ExpSineVoltage "Exponentially damped sine voltage 

parameter SI.Voltage V(start = 1) 
Amplitude of sine wave"; 

parameter SI.Frequency freqHz(start = 2) 
"Frequency of sine wave"; 

parameter SI.Angle phase = 0 "Phase of sine wave"; 
parameter SI.Damping damping(start = 1) 

"Damping coefficient of sine wave"; 
extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.ExpSine 
SignalSource(amplitude = V, freqHz = freqHz, phase = 
phase, damping = damping)); 

end ExpSineVoltage; 

Modelica.Electrical.Analog.Sources.ExponentlalsVolta 
ge 

Rising and falling exponential voltage source 

model ExponentialsVoltage 
"Rising and falling exponential voltage source" 
parameter Real vMax(start = 1) 

"Upper bound for rising edge"; 
parameter SI.Time riseTime(min = 0, start = 0.5) 

"Rise time"; 
parameter SI.Time riseTimeConst(min = 
Modelica.Constants.small, start = 0.1) "Rise ti 

parameter SI.Time fallTimeConst(min = 
Modelica.Constants.small, start = riseTimeConst) 
"Fall time constant"; 

extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.Exponentials 
SignalSource(outMax = vMax, riseTime = riseTime, 
riseTimeConst = riseTimeConst, fallTimeConst = 
fallTimeConst)); 

end ExponentialsVoltage; 

Modelica. Electrical.Analog.Sources.PulseVoltage 

Pulse voltage source 

model PulseVoltage "Pulse voltage source" 
parameter SI.Voltage V(start = 1) "Amplitude of pulse"; 
parameter Real width(final min = 
Modelica.Constants.small, final max = 100, start = 
50) "Width of pulse in % of period"; 

parameter SI.Time period(final min = 
Modelica.Constants.small, 3tart = 1) "Time for one 

extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.Pulse SignalSource(amplitude 
= V, width = width, period = period)); 

end PulseVoltage; 

Modelica.Electrical.Analog.Sources.SawToothVoltage 

Sawtooth voltage source 

model SawToothVoltage "Saw tooth voltage : 
parameter SI.Voltage V(start = 1) 

"Amplitude of saw tooth"; 
parameter SI.Time period (start = 1) 

"Time for one period"; 
extends Interfaces.VoltageSource(redeclare 
Modelica.Blocks.Sources.SawTooth 
SignalSource(amplitude = V, period * period)); 

end SawToothVoltage; 

Modelica.Electrical.Analog.Sources.TableVoltage 

Voltage source by linear interpolation in a table 
This block generates a voltage source by linear 

m •a interpolation in a table. The time points and voltage 
values are stored in a matrix table[ij], 

where the first column table[:,l] contains the time points and the 
second column contains the voltage to be interpolated. The table 
interpolation has the following properties: 

• The time points need to be monotonically increasing. 
Discontinuities are allowed, by providing the same 
time point twice in the table. 

• Values outside of the table range, are computed by 
extrapolation through the last or first two points of 
the table. 

• If the table has only one row, no interpolation is 
performed and the voltage value is just returned 
independently of the actual time instant, i.e., this is a 
constant voltage source. 

• Via parameters startTime and offset the curve 
defined by the table can be shifted both in time and 
in the voltage. 

• The table is implemented in a numerically sound way 
by generating time events at interval boundaries, in 
order to not integrate over a discontinuous or 
nondifferentiable points. 

Example: 
table = [0 0 

1 0 
1 1 
2 4 
3 9 
4 16] 

If, e.g., time = l . 0, the voltage v = 0.0 (before event), 1.0 
(after event) 

e.g., time = 1. 5, the voltage v = 2.5, 

e.g., time = 2.0, the voltage v = 4.0, 

e.g., time = 5.0, the voltage v = 23.0 (i.e., extrapolation). 
model TableVoltage 

"Voltage source by linear interpolation in a table" 
parameter Real table[:,:] = [0,0;1,1;2,4] "Table matrix 
(time = first column, voltage = second column)"; 

extends Interfaces.VoltageSource(redeclare Modelica.Blocks.Sources.TimeTable SignalSource(table = table)); end TableVoltage; 
Modelica.Electrical.Analog.Sources.SignalCurrent 

- 6 -
Generic current source using the input signal as source 
current 

model SignalCurrent "Generic current source using the 
input signal as source current" 
Interfaces.PositivePin p; 
Interfaces.NegativePin n; 
SI.Voltage v "Voltage drop between the two pins 

(= p.v - n.v)"; 
Modelica.Blocks.Interfaces.Reallnput i(unit = "A") 
"Current flowing from pin p to pin n as input signal"; 

equation 
v = p.v - n.v; 
0 = p.i + n.i; 
1 = p.i; 

end SignalCurrent; 

Modelica.Electrical.Analog.Sources.ConstantCurrent 

Source for constant current 

model ConstantCurrent "Source for constant current" 
parameter SI.Current I (start = 1) 

"Value of constant current"; 
extends Interfaces.OnePort; 

î = I;" 
end ConstantCurrent; 
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Modelica.Electrical.Analog.Sources.StepCurrent 

Step current source 

model StepCurrent "Step < 
parameter SI.Current I(start = 1) "Height of step"; 
extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.Step signalSource(height = 
I)) ; 

end StepCurrent; 

Modelica.Electrical.Analog.Sources.RampCurrent 

Pulse current source 

•0° 
Ramp current source 

model RampCurrent "Ramp current source" 
parameter SI.Current I (start = 1) "Height of ramp", 
parameter SI.Time duration(min « 
Modelica.Constants.small, start = 2) 
"Duration of ramp"; 

extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.Ramp signalSource(final 
height «= I, final duration = duration)); 

end RampCurrent; 

Modelica.Electrical.Analog.Sources.SineCurrent 

Sine current source 

model SineCurrent "Sine < 
parameter SI.Current I(start = 1) 

"Amplitude of sine wave"; 
parameter SI.Angle phase = 0 "Phase of sine wave"; 
parameter SI.Frequency freqHz(start = 1) 

"Frequency of sine wave"; 
extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.Sine signalSource(amplitude = 
I, freqHz = freqHz, phase = phase)); 

end SineCurrent; 

Modellca.Electrical.Analog.Sources.ExpSineCurrent 

Exponentially damped sine current source 

model ExpSineCurrent 
"Exponentially damped si 
parameter Real I (start = 1) "Amplitude of sine wave"; 
parameter SI.Frequency freqHz(start - 2) 

"Frequency of sine wave"; 
parameter SI.Angle phase = 0 "Phase of sine wave"; 
parameter SI.Damping damping(start = 1) 

"Damping coefficient of sine wave"; 
extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.ExpSine 
signalSource(amplitude » I, freqHz « freqHz, phase = 
phase, damping » damping)); 

end ExpSineCurrent; 

Modelica.Electrical.Analog.Sources.ExponentialsCurr 
ent 

Rising and falling exponential current source 

-Tvir" 
model ExponentialsCurrent 
"Rising and falling exponential current source" 
parameter Real iMax(start • 1) 

"Upper bound for rising edge"; 
parameter SI.Time riseTime(min - 0, start « 0.5) 

"Rise time"; 
parameter SI.Time riseTimeConst(min = 
Modelica.Constants.small, start =0.1) 
"Rise time constant"; 

parameter SI.Time fallTimeConst(min = 
Modelica.Constants.small, start « riseTimeConst) 
"Fall time constant"; 

extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.Exponentials 
signalSource(outMax = iMax, riseTime = riseTime, 
riseTimeConst • riseTimeConst, fallTimeConst = 
fallTimeConst) ) ; 

end ExponentialsCurrent; 

model PulseCurrent "Pulse current source" 
parameter SI.Current I(start = 1) "Amplitude of pulse"; 
parameter Real width(final min = 
Modelica.Constants.small, final max = 100, start = 
50) "Width of pulse in % of period"; 

parameter SI.Time period(final min = 
Modelica.Constants.small, start = 1) 
"Time for one period"; 

extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.Pulse signalSource(amplitude 
= I, width = width, period » period)); 

end PulseCurrent; 

Modellca.Electrical.Analog.Sources.SawToothCurrent 

Sawtooth current source 

model SawToothCurrent "Saw tooth current i 
parameter SI.Current I(start = 1) 

"Amplitude of saw tooth"; 
parameter SI.Time period(start » 1) 

"Time for one period"; 
extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.SawTooth 
signalSource(amplitude = I, period = period)); 

end SawToothCurrent; 

Modelica.Electrical.Analog.Sources.TableCurrent 

Current source by linear interpolation in a table 
This block generates a current source by linear 

i interpolation in a table. The time points and current 
values are stored in a matrix tablefij\, 

where the first column table[:,l ] contains the time points and the 
second column contains the current to be interpolated. The table 
interpolation has the following properties: 

• The time points need to be monotonically increasing. 
Discontinuities are allowed, by providing the same 
time point twice in the table. 

• Values outside of the table range are computed by 
extrapolation through the last or first two points of 
the table. 

• If the table has only one row, no interpolation is 
performed and the current value is just returned 
independently of the actual time instant, i.e., this is a 
constant current source. 

• Via parameters startTime and offset the curve 
defined by the table can be shifted both in time and 
in the current. 

• The table is implemented in a numerically sound way 
by generating time events at interval boundaries, in 
order to not integrate over a discontinuous or 
nondifferentiable points. 

model TableCurrent 
"Current source by linear interpolation in a table" 
parameter Real table [:,:] - [0,0;1,1;2,4] 

"Table matrix (time = first column, current = second 
column)"; 

extends Interfaces.CurrentSource(redeclare 
Modelica.Blocks.Sources.TimeTable signalSource(table 
- table)); 

end TableCurrent; 

Modelica.Electrical.Analog.Sources.PulseCurrent 
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Modelica.Electrical.Analog.Lines 
This subpackage contains lossy and lossless transmission lines. 
See Section 16.6.1.7, page 935, for an overview of this 
sublibrary. Source code for selected models is included below. 

Modelica.Electrical.Analog.Lines.Oline 

Lossy transmission line 
Lossy transmission line. The lossy transmission line 
OLine consists of segments of lumped resistances and 
inductances in series and conductances and capacitances 

that are connected with the reference pin p3. The precision of 
the model depends on the number N of lumped segments. 
model OLine "Lossy Transmission Line" 

//extends Interfaces.ThreePol; 
Modelica.Electrical.Analog.Interfaces.Pin pi; 
Modelica.Electrical.Analog.Interfaces.Pin p2; 
Modelica.Electrical.Analog.Interfaces.Pin p3; 
Modelica.Slunits.Voltage vl3; 
Modelica.Slunits.Voltage v23; 
Modelica.Slunits.Current il; 
Modelica.Slunits.Current i2; 
parameter Real r(final min = Modelica.Constants.small, 

unit = "Ohm/m", start = 1) "Resistance per meter"; 
parameter Real 1(final min = Modelica.Constants.small, 
unit = "H/m", start = 1) "Inductance per meter"; 

parameter Real g(final min = Modelica.Constants-small, 
unit = "S/m", start = 1) "Conductance per meter"; 

parameter Real c(final min = Modelica.Constants.small, 
unit = "F/m", start = 1) "Capacitance per meter"; 

parameter Modelica.Slunits.Length length(final min = 
Modelica.Constants.small, start = 1) "Length of line"; 
parameter Integer N (final min = 1, start = 1) "Number 

of lumped segments"; 
parameter Modelica.SIunit3.LinearTemperatureCoefficient 

alpha_R = 0 "Temperature coefficient of resistance 
(R_actual = R*(l + alpha*(T_heatPort - T_ref))"; 

parameter Modelica.Slunits.LinearTemperatureCoefficient 
alpha_G = 0 "Temperature coefficient of conductance 
(G_actual = G_ref/(1 + alpha*(T_heatPort - T_ref))"; 

parameter Boolean useHeatPort = false "=true, if 
HeatPort is enabled"; 

parameter Modelica.Slunits.Temperature T = 293.15 
"Fixed device temperature if useHeatPort = false"; 

parameter Modelica.Slunits.Temperature T_ref = 300.15; 
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a 

heatPort if useHeatPort; 
protected 
Modelica.Electrical.Analog.Basic.Resistor R[N + 1](R = 

fill(r * length / (N + 1), N + 1), T_ref -
fill(T_ref, N + 1), alpha = fill(alphaR, N + 1), 
useHeatPort = fill(useHeatPort, N + 1), T = fill(T, N 
+ 1>); 

Modelica.Electrical.Analog.Basic.Inductor L[N + 1](L = 
fill(1 * length / (N + 1), N + 1)) ; 

Modelica.Electrical.Analog.Basic.Capacitor C[N](C » 
fill(c * length / N, N)); 

Modelica.Electrical.Analog.Basic.Conductor G[N](G = 
fill(g * length / N, N), T_ref = fill(T_ref, N), 
alpha = fill(alpha_G, N) , useHeatPort = 
fill(useHeatPort, N), T = fill(T, N)); 

equation 
vl3 = pl.v - p3.v; 
v23 = p2.v - p3.v; 
il = pl.i; 
i2 = p2.i; 
connect(pi, R[l].p); 
for i in 1:N loop 
connect(R[i].n, L[i].p); 
connect(L[i].n, C[i].p); 
connect(L[i].n, G[i].p); 
connect(C[i].n, p3); 
connect(G[i].n, p3) ; 
connect(L[i].n, R[i + l).p); 
end for; 
connect(R[N + 1].n, L[N + l].p); 
connect(L[N + 1].n, p2); 
if useHeatPort then 
for i in 1:N + 1 loop 
connect(heatPort,R[i].heatPort); 

end for; 
for i in 1:N loop 

connect(heatPort,G[i].heatPort); 

end if; 
end OLine; 

Modellca.Electrlcal.Analog.Lines.ULine 

Lossy RC line 
i—i The lossy RC line ULine consists of segments of 

lumped series resistances and capacitances that are 
^ connected with the reference pin p3. The precision of 

the model depends on the number N of lumped segments. 
model ULine "Lossy RC Line" 

//extends Interfaces.ThreePol; 
Modelica.Electrical.Analog.Interfaces.Pin pi; 
Modelica.Electrical.Analog.Interfaces.Pin p2; 
Modelica.Electrical.Analog.Interfaces.Pin p3; 
Modelica.Slunits.Voltage vl3; 
Modelica.Slunits.Voltage v23; 
Modelica.Slunits.Current il; 
Modelica.Slunits.Current i2; 
parameter Real r(final min = Modelica.Constants.small, 

unit = "Ohm/m", start = 1) "Resistance per meter"; 
parameter Real c(final min = Modelica.Constants.small, 

unit = "F/m", start = 1) "Capacitance per meter"; 
parameter Modelica.Slunits.Length length(final min = 
Modelica.Constants.small, start = 1) "Length of line"; 
parameter Integer N(final min = 1, start = 1) 

"Number of lumped segments"; 
parameter Modelica.Slunits.LinearTemperatureCoefficient 

alpha = 0 "Temperature coefficient of resistance 
(R_actual = R*(l + alpha*(T_heatPort - T_ref))"; 

parameter Boolean useHeatPort = false 
"=true, if HeatPort is enabled"; 

parameter Modelica.Slunits.Temperature T = 293.15 
"Fixed device temperature if useHeatPort = false"; 

parameter Modelica.Slunits.Temperature T_ref = 300.15; 
Modelica.Thermal.HeatTransfer.Interfaces.HeatPort_a 

heatPort if useHeatPort; 
protected 
Modelica.Electrical.Analog.Basic.Resistor R[N + 1](R * 

fill(r * length / (N + 1), N + 1), T_ref = 
fill(T_ref, N + 1), alpha = fill(alpha, N + 1), 
useHeatPort = fill(useHeatPort, N + 1), T = fill(T, N 
+ Dr-

Modelica. Electrical. Analog. Basic. Capacitor C [N] (C = 
fill(c * length / N, N)); 

equation 
vl3 = pl.v - p3.v; 
v2 3 = p2.v - p3.v; 
il = pl.i; 
i2 = p2.i; 
connect(pi,R[l].p); 
for i in 1:N loop 

connect(R[i].n,R[i + 1].p); 

for i in IsN loop 
connect(R[i].n,C[i].p); 

end for; 
for i in 1:N loop 
connect(C[i].n,p3); 

end for; 
connect(R[N + l].n,p2); 
if useHeatPort then 

for i in 1:N + 1 loop 
connect(heatPort,R[i].heatPort); 

end for; 
end if; 

end ULine; 

Modelica.Electrical.Analog.-
Semiconductors 
This subpackage contains semiconductor devices. See Section 
16.6.1.8, page 935, for an overview of this sublibrary. Source 
code for selected models is included below. 

Modelica.Electrical.Analog.Semiconductors.Diode 

Simple diode 
a p Ĵ • The simple diode is a one port. It consists of the diode 

^ itself and a parallel ohmic resistance R. The diode 

formula is: i = ids ( e v/vt -1). If the exponent v/vt reaches the 
limit maxex, the diode characteristic is linearly continued to 
avoid overflow. 
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model Diode "Simple diode" 
extends Modelica.Electrical.Analog.Interfaces.OnePort; 
parameter Slunits.Current Ids = 0.000001 

"Saturation current"; 
parameter Slunits.Voltage Vt = 0.04 

"Voltage equivalent of temperature (kT/qn)"; 
parameter Real Maxexp(final 
min = Modelica.Constants.small) = 15 
"Max. exponent for linear continuation"; 

parameter Slunits.Resistance R = 100000000.0 
"Parallel ohmic resistance"; 

extends 
Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(T = 293.15); 
equation 
i = smooth(1, if v / Vt > Maxexp then 

Ids *(exp(Maxexp) * (1 + v / Vt - Maxexp) - 1) + v / R 
else Ids * (exp(v / Vt) - 1) + v / R); 

LossPower = v * i; 
end Diode; 

Modelica. Electrical.Analog.Semiconductors.PMOS 

Simple MOS transistor 

J|—• The PMOS model is a simple model of a p-channel 

metal-oxide semiconductor FET. It differs slightly from 
' " the device used in the SPICE simulator. For more 

details please care for H. Spiro. The model does not consider 
capacitances. A small fixed drain-source resistance is included 
(to avoid numerical difficulties). 
model PMOS "Simple MOS Transistor" 

Interfaces.Pin D "Drain"; 
Interfaces.Pin G "Gate"; 
Interfaces.Pin S "Source"; 
Interfaces.Pin B "Bulk"; 
parameter Slunits.Length W = 0.00002 "Width"; 
parameter Slunits.Length L = 0.000006 "Length"; 
parameter Slunits.Transconductance Beta = 0.0000105 

"Transconductance parameter"; 
parameter Slunits.Voltage Vt = -1.0 

"Zero bias threshold voltage"; 
parameter Real K2 = 0.41 "Bulk threshold parameter"; 
parameter Real K5 = 0.839 

"Reduction of pinch-off region"; 
parameter SIunits.Length dW = -0.0000025 

"Narrowing of channel"; 
parameter Slunits.Length dL = -0.0000021 

"Shortening of channel"; 
parameter Slunits.Resistance RDS = 10000000.0 

"Drain-Source-Resistance"; 
extends 

Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(T = 293.15); 
protected 

Real v; 
Real uds; 
Real ubs; 
Real ugst; 
Real ud; 
Real us; 
Real id; 
Real gds; 

equation 
assert(L + dL > 0, "PMOS: Effective length must be 
positive"); 

assert(W + dW > 0, "PMOS: Effective width must be 
positive"); 

gds = if RDS < le-20 and RDS > (-le-20) then le+20 
else 1 / RDS; 

v = Beta * (W + dW) / (L + dL) ; 
ud = smooth(0, if D.v > S.v then S.v else D.v); 
us = smooth(0, if D.v > S.v then D.v else S.v); 
ubs = smooth(0, if B.v < us then 0 else B.v - us); 
ugst = (G.v - us - Vt + K2 * ubs) * K5; 
id = smooth(0, if ugst >= 0 then uds * gds else 

if ugst < uds then -v * uds * (ugst - uds / 2) + uds 
' gds else -v * ugst * ugst / 2 + uds * gds); G.i ;

 0; 
D.i = smooth(0, if D.v > S.v then -id else id); 
S.i = smooth(0, if D.v > S.v then id else -id); 

LossPower = 
end PMOS; 

Modelica.Electrical.Analog.Semiconductors.NMOS 
Simple MOS transistor 

J|—• The NMos model is a simple model of an n-channel 

metal-oxide semiconductor FET. It differs slightly from 
' " the device used in the SPICE simulator. For more 

details please care for H. Spiro. The model does not consider 
capacitances. A small fixed drain-source resistance is included 
(to avoid numerical difficulties). 
model NMOS "Simple MOS Transistor" 

Interfaces.Pin D "Drain"; 
Interfaces.Pin G "Gate"; 
Interfaces.Pin S "Source"; 
Interfaces.Pin B "Bulk"; 
parameter Slunits.Length W = 0.00002 "Width"; 
parameter Slunits.Length L = 0.000006 "Length"; 
parameter Slunits.Transconductance Beta = 0.000041 

"Transconductance parameter"; 
parameter Slunits.Voltage Vt = 0.8 

"Zero bias threshold voltage"; 
parameter Real K2 = 1.144 "Bulk threshold parameter"; 
parameter Real K5 = 0.7311 

"Reduction of pinch-off region"; 
parameter Slunits.Length dW = -0.0000025 

"narrowing of channel"; 
parameter Slunits.Length dL = -0.0000015 

"shortening of channel"; 
parameter Slunits.Resistance RDS = 10000000.0 

"Drain-Source-Resistance"; 
Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(T = 293.15); 
protected 

Real v; 
Real uds; 
Real ubs; 
Real ugst; 
Real ud; 
Real us; 
Real id; 
Real gds; 

equation 
assert(L + dL > 0, "NMOS: Effective length must be 
positive"); 

assert(W + dW > 0, "NMOS: Effective width must be 
positive"); 

gds = if RDS < le-20 and RDS > (-le-20) then le+20 
else 1 / RDS; 

v = Beta * (W + dW) / (L + dL); 
ud = smooth(0, if D.v < S.v then S.v else D.v); 
us = if D.v < S.v then D.v else S.v; 
ubs = smooth(0, if B.v > us then 0 else B.v - us); 
ugst = (G.v - us - Vt + K2 * ubs) * K5; 
id = smooth(0, if ugst <= 0 then uds * gds 

else if ugst > uds then v * uds * (ugst - uds / 2) + 
uds * gds else v * ugst * ugst / 2 + uds * gds); 

G.i = 0; 
D.i = smooth(0, if D.v 
S.i = smooth(0, if D.v 
B.i - 0; 
LossPower = D.i * (D.v - S.v); 

end NMOS; 

Modelica.Electrlcal.Analog.Semiconductors.NPN 

Simple BJT according to Ebers-Moll 
|/ • This model is a simple model of a bipolar npn junction 

" transistor according to Ebers-Moll. 
model NPN "Simple BJT according to Ebers-Moll" 

parameter Real Bf=50 "Forward beta"; 
parameter Real Br»0.1 "Reverse beta"; 
parameter Slunits.Current Is = 0.0000000000000001 

"Transport saturation current"; 
parameter Slunits.InversePotential Vak = 0.02 

"Early voltage (inverse), 1/Volt"; 
parameter Slunits.Time Tauf = 0.00000000012 

"Ideal forward transit time"; 
parameter Slunits.Time Taur = 0.000000005 

"Ideal reverse transit time"; 
parameter Slunits.Capacitance Ccs = 0.000000000001 

"Collector-substrate(ground) cap."; 
parameter Slunits.Capacitance Cje = 0.0000000000004 

"Base-emitter zero bias depletion cap."; 
parameter Slunits.Capacitance Cjc = 0.0000000000005 

"Base-coll, zero bias depletion cap."; 
parameter Slunits.Voltage Phie = 0.8 

"Base-emitter diffusion voltage"; 
parameter Real Me « 0.4 

"Base-emitter gradation exponent"; 
parameter Slunits.Voltage Phic = 0.8 

< S.v then -id else id); 
< S.v then id else -id); 
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"Base-collector diffusion voltage"; 
parameter Real Mc = 0.333 

"Base-collector gradation exponent"; 
parameter Slunits.Conductance Gbc = 0.000000000000001 

"Base-collector conductance"; 
parameter Slunits.Conductance Gbe = 0.000000000000001 

"Base-emitter conductance"; 
parameter Slunits.Voltage Vt = 0.02585 

"Voltage equivalent of temperature"; 
parameter Real EMin = -100 "if x < EMin, the exp(x) 

function is linearized"; 
parameter Real EMax = 40 "if x > EMax, the exp(x) 

function is linearized"; 
parameter Modelica.Slunits.Voltage IC = 0 

"Initial Value"; 
parameter Boolean UIC = false; 
extends 

Modelica.Electrical.Analog.Interfaces.ConditionalHeatPort 
(T = 293.15); 
protected 

Real vbc; 
Real vbe; 
Real qbk; 
Real ibc; 
Real ibe; 
Real cbc; 
Real cbe; 
Real ExMin; 
Real ExMax; 
Real Capcje; 
Real Capcjc; 
function pow "Just a helper function for xAy" 
extends Modelica.Icons.Function; 
input Real x; 
input Real y; 
output Real z; 

algorithm 
z:=x * y; 

end pow; 
public 

Modelica.Electrical.Analog.Interfaces.Pin C 
"Collector"; 

Modelica.Electrical.Analog.Interfaces.Pin B "Base"; 
Modelica.Electrical.Analog.Interfaces.Pin E "Emitter"; 

initial equation 
if UIC then 
C.v = IC; 

end if; 
equation 
ExMin « exp(EMin); 
ExMax = exp(EMax); 
vbc = B.v - C.v; 
vbe >= B.v - E.v; 
qbk = 1 - vbc * Vak; 
ibc » smooth(1, if vbc / Vt < EMin then 
Is * (ExMin * (vbc / Vt - EMin + 1) - 1) + vbc * Gbc 
else if vbc / Vt > EMax then 
Is * (ExMax * (vbc / Vt - EMax + 1) - 1) + vbc * Gbc 
else Is * (exp(vbc / Vt) - 1) + vbc * Gbc); 

ibe = smooth(1, if vbe / Vt < EMin then 
Is * (ExMin * (vbe / Vt - EMin + 1) - 1) + vbe * Gbe 
else if vbe / Vt > EMax then 
Is * (ExMax * (vbe / Vt - EMax + 1) - 1) + vbe * Gbe 
else Is * (exp(vbe / Vt) - 1) + vbe * Gbe); 

Capcjc = smooth(1, if vbc / Phic > 0 then 
Cjc * (1 + Mc * vbc / Phic) else Cjc * pow(l - vbc / 
Phic, -Mc)); 

Capcje = smooth(1, if vbe / Phie > 0 then 
Cje * (1 + Me * vbe / Phie) else Cje * pow(l - vbe / 
Phie, -Me)); 

cbc = smooth(1, if vbc / Vt < EMin then 
Taur * Is / Vt * ExMin * (vbc / Vt - EMin + 1) + 
Capcjc else if vbc / Vt > EMax then 
Taur * Is / Vt * ExMax * (vbc / Vt - EMax + 1) + 
Capcjc else Taur * Is / Vt * exp(vbc / Vt) + Capcjc); 

cbe » smooth(1, if vbe / Vt < EMin then Tauf * Is / Vt 
* ExMin * (vbe / Vt - EMin + 1) + Capcje 
else if vbe / Vt > EMax then Tauf * Is / Vt * ExMax * 
(vbe / Vt - EMax + 1) + Capcje else Tauf * Is / Vt * 
exp(vbe / Vt) + Capcje); 

C.i = (ibe - ibc) * qbk - ibc /Br - cbc * der(vbc) + 
Ccs * der(C.v); 

B.i = ibe / Bf + ibc / Br + cbc * der(vbc) + cbe * 
der(vbe); 

E.i = -B.i - C.i + Ccs * der(C.v); 
LossPower = (C.v - E.v) * (ibe - ibc) * qbk + vbc * ibc 

/ Br + vbe * ibe / Bf; 
end NPN; 

Modelica.Electrical.Analog.Examples 
This package contains examples for the analog electrical 
packages. See Section 16.6.1.1, page 930, for an overview of 
this library. Source code for selected models is included below. 

Modelica.Electrlcal.Analog.Examples.ChuaCircuit 

Chua's circuit, ns, V, A 
Chua's circuit is the simplest nonlinear circuit which 
shows chaotic behavior. The circuit consists of linear 
basic elements (capacitors, resistor, conductor, 

inductor), and one nonlinear element, which is called Chua's 
diode. The chaotic behavior is simulated. The simulation end 
time should be set to 5e4. To get the chaotic behavior please 
plot ci. v. Choose C2. v as the independent variable. 
encapsulated model ChuaCircuit "Chua's circuit, ns, V, A" 
import Modelica.Electrical.Analog.Basic; 
import Modelica.Electrical.Analog.Examples.Utilities; 
import Modleica.Icons; 
extends Icons.Example; 

Basic.Inductor L(L » 18, i(start = 0, fixed = true)); 
Basic.Resistor Ro(R » 0.0125); 
Basic.Conductor G(G = 0.565); 
Basic.Capacitor CI(C = 10, v(start = 4, 

fixed = true)); 
Basic.Capacitor C2(C • 100, v(start • 0, 

fixed - true)); 
Utilities.NonlinearResistor Nr(Ga(min « -1) 
= -0.757576, Gb (min >» -1) - -0.409091, Ve = 1) ; 

Basic.Ground Gnd ; 
v (start=4)); 
Modelica.Electrical.Analog.Basic.Capacitor C2(C=100); 

Modelica.Electrical.Analog.Examples.Utilities. 
NonlinearResistor Nr( 
Ga(min=-l) = -0.757576, 
Gb(min=-l) = -0.409091, 
Ve=l); 
Modelica.Electrical.Analog.Basic.Ground Gnd; 

equation 
connect(L.p, G.p); 
connect(G.n, Nr.p); 
connect(Nr.n, Gnd.p); 
connect(CI.p, G.n); 
connect(L.n, Ro.p); 
connect(G.p, C2.p); 
connect(CI.n, Gnd.p); 
connect(C2.n, Gnd.p); 
connect(Ro.n, Gnd.p); 

end ChuaCircuit; 
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Modellca.Electrical.Analog.Examples.DlfferenceAmplif 
Ier 

Bit is a simple NPN transistor amplifier circuit. The 
voltage difference between Rl. p and R3. n is amplified. 
The output signal is the voltage between R2. n and 

R4. n. In this example the voltage at v i is amplified because 
R3. n is grounded. The simulation end time should be set to le-
8. Please plot the input voltage v i . v, and the output voltages 
R2. n. v, and R4.n. v. 
encapsulated model DifferenceAmplifier "Simple NPN 
transistor amplifier circuit" 
import Modelica.Electrical.Analog.Basic; 
import Modelica.Electrical.Analog.Sources; 
import Modelica.Electrical.Analog.Examples-Utilities; 
import Modelica.Icons; 
extends Icons.Example; 
Sources.ExpSineVoltage VI(V = 0.2, 
freqHz = 200000000.0, damping = 10000000.0); 

Sources.RampVoltage V2(V = 15, duration = 0.000000001); 
Sources.RampCurrent 11(1 = 0.16, 
duration = 0.000000001; 

Basic.Resistor Rl(R = 0.0001); 
Basic.Resistor R2(R = 100); 
Basic.Resistor R3(R = 0.0001); 
Basic.Resistor R4(R = 100); 
Basic.Capacitor CI(C = 0.0000000001, v(start = 0, 
fixed = true)); 

0000000001, v(start = 0, 

• 0.0000000001, v(start - 0, 

= 0.0000000001, v(start = 0, 

= 0.0000000001, v(start = 0, 

Basic.Capacitor C4(C 
fixed » true)); 

Basic.Capacitor C5(C 
fixed » true)); 

Basic.Capacitor C2(C 
fixed - true)); 

Basic.Capacitor C3(C 
fixed => true) ) ; 

Basic.Ground Gndl; 
Basic.Ground GndS; 
Basic.Ground Gnd3; 
Basic.Ground Gnd2; 
Basic.Ground Gnd6; 
Basic.Ground Gnd7; 
Basic.Ground Gnd8; 
Basic.Ground Gnd5; 
Basic.Ground Gnd4 ; 
Utilities.Transistor Transistorl(ct(v(start = 0, 

fixed - true))); 
Utilities.Transistor Transistor2(ct(v(start = 0, 

fixed - true))); 
equation 

connect(Vl.n,Gndl.p); 
connect(Cl.n,Gnd2.p); 
connect(I1.n,Gnd7.p); 
connect(C5.n,Gnd8.p); 
connect(C3.n,Gnd5.p); 
connect(R3.n,Gnd4.p); 
connect(C2.n,Gnd3.p); 
connect(C4.p,Gnd6.p); 
connect(Il.p,C5.p); 
connect(Rl.p,vi.p); 

connect(R2.p,V2.p); 
connect(R4.p,V2.p); 
connect(V2.n,Gnd9.p); 
connect (R'l.n, Transistorl .b) ; 
connect(Transistorl.b,CI.p); 
connect(Transistorl.c,C2.p); 
connect(R2.n,Transistorl.c); 
connect(Transistorl.e,II.p); 
connect(Transistor2.b,R3.p); 
connect(Transistor2.b,C3.p); 
connect(C4.n,Transistor2.c); 
connect(R4.n,Transistor2.c); 
connect(C5.p,Transistor2.e); 

Modelica. Electrical.Analog.Examples.NandGate 

CMOS NAND Gate (see Tietze/Schenk, page 157) 
The nand gate is a basic CMOS building block. It 
consists of four CMOS transistors. The output voltage 
Nand. y. v is low if and only if the two input voltages at 

Nand. xl. v and Nand. x2. v are both high. In this way the nand 
functionality is realized. The simulation end time should be set 
to 1 e-7. Please plot the input voltages Nand. x l . v, d 
Nand. x2. v, and the output voltage Nand. y. v. 
model NandGate 
"CMOS NAND Gate (see Tietze/Schenk, page 157)" 
import Modelica.Electrical.Analog.Basic; 
import Modelica.Electrical.Analog.Sources; 
import Modelica.Electrical.Analog.Examples.Utilities; 
import Modelica.Icons; 
extends Icons.Example; 
Sources.TrapezoidVoltage VIN1(V = 3.5, 
startTime = 0.00000002, rising = 0.000000001, 
width = 0.000000019, falling - 0.000000001, period = 
0.00000004, nperiod » -1); 

Sources.TrapezoidVoltage VIN2(V - 3.5, 
startTime = 0.00000001, rising = 0.000000001, 
width = 0.000000019, falling « 0.000000001, 
period = 0.00000004, nperiod = -1); 

Sources.RampVoltage VDD(V 5, duration = 0.000000001); 
Basic.Ground Gndl; 
Basic.Ground Gnd4; 
Basic.Ground Gnd5; 
Utilities.Nand Nand(C4(v(start = 0, fixed = true)), 
C7(v (start - 0, fixed = true))) ; 

equation 
connect(VDD.n,Gndl.p); 
connect(VIN1.n,Gnd4.p); 
connect(VIN2.n,Gnd5.p); 
connect(Nand.Vdd,VDD.p); 
connect(VINl.p,Nand.xl); 
connect(VIN2.p,Nand.x2); 

end NandGate; 
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Modellca.Electrical.Analog.Examples.DlfferenceAmplif 
Ier 

Bit is a simple NPN transistor amplifier circuit. The 
voltage difference between Rl. p and R3. n is amplified. 
The output signal is the voltage between R2. n and 

R4. n. In this example the voltage at v i is amplified because 
R3. n is grounded. The simulation end time should be set to le-
8. Please plot the input voltage v i . v, and the output voltages 
R2. n. v, and R4.n. v. 
encapsulated model DifferenceAmplifier "Simple NPN 
transistor amplifier circuit" 
import Modelica.Electrical.Analog.Basic; 
import Modelica.Electrical.Analog.Sources; 
import Modelica.Electrical.Analog.Examples-Utilities; 
import Modelica.Icons; 
extends Icons.Example; 
Sources.ExpSineVoltage VI(V = 0.2, 
freqHz = 200000000.0, damping = 10000000.0); 

Sources.RampVoltage V2(V = 15, duration = 0.000000001); 
Sources.RampCurrent 11(1 = 0.16, 
duration = 0.000000001; 

Basic.Resistor Rl(R = 0.0001); 
Basic.Resistor R2(R = 100); 
Basic.Resistor R3(R = 0.0001); 
Basic.Resistor R4(R = 100); 
Basic.Capacitor CI(C = 0.0000000001, v(start = 0, 
fixed = true)); 

0000000001, v(start = 0, 

• 0.0000000001, v(start - 0, 

= 0.0000000001, v(start = 0, 

= 0.0000000001, v(start = 0, 

Basic.Capacitor C4(C 
fixed » true)); 

Basic.Capacitor C5(C 
fixed » true)); 

Basic.Capacitor C2(C 
fixed - true)); 

Basic.Capacitor C3(C 
fixed => true) ) ; 

Basic.Ground Gndl; 
Basic.Ground GndS; 
Basic.Ground Gnd3; 
Basic.Ground Gnd2; 
Basic.Ground Gnd6; 
Basic.Ground Gnd7; 
Basic.Ground Gnd8; 
Basic.Ground Gnd5; 
Basic.Ground Gnd4 ; 
Utilities.Transistor Transistorl(ct(v(start = 0, 

fixed - true))); 
Utilities.Transistor Transistor2(ct(v(start = 0, 

fixed - true))); 
equation 

connect(Vl.n,Gndl.p); 
connect(Cl.n,Gnd2.p); 
connect(I1.n,Gnd7.p); 
connect(C5.n,Gnd8.p); 
connect(C3.n,Gnd5.p); 
connect(R3.n,Gnd4.p); 
connect(C2.n,Gnd3.p); 
connect(C4.p,Gnd6.p); 
connect(Il.p,C5.p); 
connect(Rl.p,vi.p); 

connect(R2.p,V2.p); 
connect(R4.p,V2.p); 
connect(V2.n,Gnd9.p); 
connect (R'l.n, Transistorl .b) ; 
connect(Transistorl.b,CI.p); 
connect(Transistorl.c,C2.p); 
connect(R2.n,Transistorl.c); 
connect(Transistorl.e,II.p); 
connect(Transistor2.b,R3.p); 
connect(Transistor2.b,C3.p); 
connect(C4.n,Transistor2.c); 
connect(R4.n,Transistor2.c); 
connect(C5.p,Transistor2.e); 

Modelica. Electrical.Analog.Examples.NandGate 

CMOS NAND Gate (see Tietze/Schenk, page 157) 
The nand gate is a basic CMOS building block. It 
consists of four CMOS transistors. The output voltage 
Nand. y. v is low if and only if the two input voltages at 

Nand. xl. v and Nand. x2. v are both high. In this way the nand 
functionality is realized. The simulation end time should be set 
to 1 e-7. Please plot the input voltages Nand. x l . v, d 
Nand. x2. v, and the output voltage Nand. y. v. 
model NandGate 
"CMOS NAND Gate (see Tietze/Schenk, page 157)" 
import Modelica.Electrical.Analog.Basic; 
import Modelica.Electrical.Analog.Sources; 
import Modelica.Electrical.Analog.Examples.Utilities; 
import Modelica.Icons; 
extends Icons.Example; 
Sources.TrapezoidVoltage VIN1(V = 3.5, 
startTime = 0.00000002, rising = 0.000000001, 
width = 0.000000019, falling - 0.000000001, period = 
0.00000004, nperiod » -1); 

Sources.TrapezoidVoltage VIN2(V - 3.5, 
startTime = 0.00000001, rising = 0.000000001, 
width = 0.000000019, falling « 0.000000001, 
period = 0.00000004, nperiod = -1); 

Sources.RampVoltage VDD(V 5, duration = 0.000000001); 
Basic.Ground Gndl; 
Basic.Ground Gnd4; 
Basic.Ground Gnd5; 
Utilities.Nand Nand(C4(v(start = 0, fixed = true)), 
C7(v (start - 0, fixed = true))) ; 

equation 
connect(VDD.n,Gndl.p); 
connect(VIN1.n,Gnd4.p); 
connect(VIN2.n,Gnd5.p); 
connect(Nand.Vdd,VDD.p); 
connect(VINl.p,Nand.xl); 
connect(VIN2.p,Nand.x2); 

end NandGate; 
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Modelica and Python Scripting 

The following are short summaries of scripting commands for three different Modelica environments: 

• OpenModelica 
• Wolfram SystemModeler 
• Dymola 

These commands are useful for loading and saving classes, reading and storing data, plotting of results, 
and various other tasks. 

The arguments passed to a scripting function should follow syntactic and typing rules for Modelica and 
for the scripting function in question. In the following tables, we briefly indicate the types or character of 
the formal parameters to the functions by the following notation: 

• String typed argument, e.g. "hello", "myfile.mo". 
• TypeName - class, package or function name, for example, MyClass, Modelica .Math. 
• VariableName - variable name, for example, vl, v2, varsl [2 ] . x, and so on. 
• Integer or Real typed argument, for example, 35, 3.14, xintvariable. 
• options - optional parameters with named formal parameter passing. 

E. l OpenModelica Modelica Scripting Commands 
The following are brief descriptions of the scripting commands available in the OpenModelica 
environment. 

E.l.l OpenModelica Basic Commands 

This is a selection of the most common commands related to simulation and plotting: 

checkModel(className) Checks a model and returns number of variables and equations. 
Inputs. TypeName className; Outputs: String res; 

clear() Clears everything in OpenModelica compiler and interpreter 
workspace: symboltable and variables. Outputs. Boolean res; 

getMessagesString() Returns the current error message. Outputs, string 
messagesString; 

help() Display the OpenModelica help text. 
Outputs: String helpText; 

importFMU(fileName, workDir) Imports a Functional Mockup Unit. Inputs: string 
filename; String workdir "./" "The output directory for 
imported FMU files. <default> will put the files to current 
working directory."; Outputs. Boolean res; 

instantiataModel(className) Flatten model, resulting in a . mo f file of flattened Modelica. 
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Inputs: TypeName className; Outputs. String res; 
list(className) Print class definition. Inputs: TypeName className; 

Outputs: String classDef; 
listVariables() Print user defined variables. Outputs: VariableName res; 
loadFile(f i1eName) Load models from file. 

Inputs: String fileName; Outputs: Boolean res; 
loadModel(className) Load the file corresponding to the class, using the Modelica class 

name to file name mapping to locate the file. 
Inputs: TypeName className; Outputs: Boolean res; 

plot(variable, options) Plot variable, which is a single variable name. 
Inputs: Variabl eName variable; String title; 
Boolean legend; Boolean gridLines; 
Real xrange[2] i.e. {xmin,xmax}; 
Real yrange[2] i.e. {ymin,ymax}; 
Outputs: Boolean res; 

plot(variables, options) Plot variables, which is a vector of variable names. 
Inputs: Variabl eName variables; String title; 
Boolean legend; Boolean gridLines; 
Real xrange[2] i.e. {xmin,xmax}; 
Real yrange[2] i.e. {ymin,ymax}; 
Outputs: Boolean res; 

plotParametrie(variablesl, 
variables2, options) 

Plot each pair of corresponding variables from the vectors of 
variables variable si, variables2 as a parametric plot. 
Inputs: VariableName variablesl [: ] ; VariableName 
variables2[size(variablesl,1)]; String title; 
Boolean legend; Boolean gridLines; Real 
range [2, 2]; Outputs: Boolean res; 

readFile(fileName) The contents of the given file are returned. Note that if the 
function fails, the error message is returned as a string instead of 
multiple outputs or similar. 
Inputs: String fileName; Outputs: String content; 

save(className) Save class definition. 
Inputs: TypeName className Outputs: Boolean res; 

saveAll(fileName) Save the entire loaded AST (Abstract Syntax Tree internal 
representation of all loaded models) as text to a file. 
Inputs: String fileName; Outputs: Boolean res; 

saveModel(f i1eName, 
className) 

Save class definition in a file. Inputs: String fileName; 
TypeName className Outputs: Boolean res; 

saveTotalModel(fileName, 
className) 

Save total class definition into file of a class. Inputs: string 
fileName; TypeName className Outputs: Boolean res; 

setDebugFlags(debugFlags) Inputs: String debugFlags; Outputs: Boolean res; 
setlnitXmlStartValue(fileNam 
e, variableName, startValue, 
outputFile) 

Sets the parameter start value in the model_init. xml file. No 
need to recompile the model. Inputs: String fileName; 
String VariableName; String startValue; String 
outputFile; Outputs: Boolean success; 

simulate(className, options) Simulate model, optionally setting simulation values. 
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Inputs. TypeName className; Real startTime; 
Real stopTime; Integer numberOfIntervals; 
Real outputlnterval; String method; 
Real tolerance; Real fixedStepSize; 
Outputs: SimulationResult simRes; 

typeOf(variableName) Inputs. VariableName variableName; Outputs. String 
res; 

val(var, timepoint) Returns the value of the variable at a certain time point. 
Inputs1. VariableName var; Real timepoint; Outputs'. 
Real valAtTime; 

E.l.l OpenModelica System Commands 

This is a selection of common OpenModelica commands related to the operating system: 

cd(dir) Change directory. Inputs: String dir; 
Outputs: Boolean res; 

deleteFile(fileName) Deletes a file with the given name. Inputs: String fileName; 
Outputs: Boolean res; 

dirName (path) Returns the directory name of a file path. Inputs: String 
path; Outputs: String dirName; 

runScript(fileName) Executes the script file given as argument. 
Inputs: String fileName; Outputs: Boolean res; 

setLanguageStandacd( 
inversion) 

Sets the Modelica Language Standard. Inputs: string 
inversion; Outputs: Boolean res; 

setModelicaPath ( 
modelicaPath) 

Sets the modelica path. See loadModel () for a description of 
what the MODELICAPATH is used for. 
Inputs: String modelicaPath; Outputs: Boolean res; 

system(fileName) Execute system command. Inputs: String fileName; Outputs: 
Integer res; 

writeFile(fileName, data, 
optional) 

Write the data to file. Returns true on success. 

Inputs: String fileName; String data; Boolean 
append; Outputs: Boolean res; 

E.1.2 All OpenModelica API Calls 

All OpenModelica API commands shown in alphabetic order: 

appendEnvironxnentVar (var, 
value) 

Appends a variable to the environment variables list. Inputs: 
String var; String value; Outputs: String res; 

baseName(path) Returns the base name (file part) of a file path. 
Inputs: String path; Outputs: String basename; 

cd(dir) Change directory. Inputs: String dir ; 
Outputs: Boolean res; 

checkAllModelsRecursive( Checks all models recursively and returns number of variables and 



1122 Peter Fritzson Principles of Object-Oriented Modeling and Simulation with Modelica 3.3 

className, protected) equations. Inputs. TypeName className; 
Boolean protected Outputs: String res; 

checkModel(c1assName) Checks a model and returns number of variables and equations. 
Inputs: TypeName className; Outputs: String res; 

checkSettings() Display some diagnostics. Outputs: CheckSettingsResult 
res; 

clear() Clears everything: symboltable and variables. 
Outputs: Boolean res; 

clearMessages() Clears the error buffer. Outputs: Boolean res ; 
clearVariables() Clear all user defined variables. Outputs: Boolean res; 
codeToString(className) Converts to a string after encoding. Inputs: $Code className ; 

Outputs: String res; 
compareSimulationResults( 
fileName, refFileName, 
logFileName, refTol, 
absTol,vars) 

Compares simulation results. Inputs: String fileName; 
String refFileName; String logFileName; Real 
refTol; Real absTol; String [: ] vars; Outputs: 
String res; 

deleteFile(f i1eName) Deletes a file with the given name. Inputs: String f i 1 eName ; 
Outputs: Boolean res; 

dirName(path) Returns the directory name of a file path. Inputs: String 
path; Outputs. String dirName; 

dumpXMLDAE(className) Outputs the DAE system corresponding to a specific model. 
Inputs: TypeName className; Outputs: String res; 

echo(setEcho) echo (false) disables Interactive output, echo(true) enables it again. 
Inputs'. Boolean setEcho; Outputs: Boolean newEcho; 

generateCode(cla s sName) Generate C-code and compiled into a dll. Inputs: TypeName 
className; Outputs: Boolean res; 

generateHeader(fileName) Generates a C header file containing the external C interface of the 
MetaModelica uniontypes in the loaded files. This C interface is 
called by the parser to build nodes for the abstract syntax tree. 
Inputs'. String fileName; Outputs: Boolean res; 

getAlgorithmCount(className) Counts the number of Algorithm sections in a class. Inputs: 
TypeName className; Outputs: Integer count; 

getAlgorithmltemsCount( 
className) 

Counts the number of Algorithm items in a class. Inputs: 
TypeName className; Outputs: Integer count; 

getAnnotationCount( 
className) 

Counts the number of Annotation sections in a class. Inputs: 
TypeName className; Outputs: Integer count; 

getAnnotationVersion() Returns the current annotation version. Outputs: String 
annotationVersion; 

getAstAsCorbaString( 
fileName) 

Print the whole AST on the CORBA format for records. Inputs: 
String fileName; Outputs: String res; 

getClas sComment(cla s sName) Returns the class comment. Inputs-. TypeName className; 
Outputs: String comment; 

getClassNames(fileName) Returns the list of class names defined in the class. Inputs: 
String fileName; Outputs: TypeName classNames; 

getClassRestriction(classNam Returns the type of class. Inputs: TypeName className; 
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e) Outputs. String restriction; 
getClassInformation(classNam 
e) 

Returns the list containing the information of the class. Inputs: 
TypeName className; Outputs. String information; 

getClassesInModelicaPath() Outputs. String classesInModelicaPath; 
getCompileCommand () Outputs. String compileCommand; 
getlconAnnotation(className) Returns the icon representation of the class. Inputs. TypeName 

className; Outputs: String out; 
getDiagramAnnotation(classNa 
me) 

Returns the diagram representation of the class. Inputs: TypeName 
className; Outputs. String out; 

getParameterNaxne (className) Returns the list of parameters present in the class. Inputs: 
TypeName className; Outputs. String out; 

getParameterValue(className, 
parameter) 

Returns the parameter value. Inputs. TypeName className ; 
String parameter; Outputs: String value; 

getComponentModifierNames(cl 
assName) 

Returns the list of component modifiers present in the class. 
Inputs: TypeName className; Outputs. String out; 

getComponentModifierValue(cl 
assName, modifier) 

Returns the component modifier value. Inputs. TypeName 
className; String modifier; Outputs'. String value; 

getExtendsModifierNames(clas 
sName) 

Returns the list of extends modifiers present in the class. Inputs. 
TypeName className; Outputs'. String out; 

getExtendsModif ierValue(clas 
sName, modifier) 

Returns the extends modifier value. Inputs. TypeName 
className; String modifier; Outputs. String value; 

getDocuznentationAnnotation 
(className) 

Returns the documentation annotation defined in the class. 
Inputs: TypeName className; Outputs'. String out [2] 
"{info,revision}"; 

getEnvironmentVar(var) Returns the value of the environment variable. Inputs: String 
var; Outputs'. String value; 

getEquationCount(className) Counts the number of Equation sections in a class. Inputs: 
TypeName className; Outputs'. Integer count; 

getEquationltemsCount( 
className) 

Counts the number of Equation items in a class. Inputs: 
TypeName className; Outputs: Integer count; 

getErrorString() Returns the current error message. Outputs, string 
errorString; 

getlmportCount (className) Counts the number of Import sections in a class. Inputs: 
TypeName className; Outputs'. Integer count; 

getlnitialAlgorithmCount( 
className) 

Counts the number of Initial Algorithm sections in a class. 
Inputs: TypeName className; Outputs. Integer count; 

getlnitialAlgorithmltemsCoun 
t(className) 

Counts the number of Initial Algorithm items in a class. Inputs: 
TypeName className; Outputs. Integer count; 

getlnitialEquationCount( 
className) 

Counts the number of Initial Equation sections in a class. Inputs: 
TypeName className; Outputs'. Integer count; 

getlnitialEquationltemsCount 
(className) 

Counts the number of Initial Equation items in a class. Inputs: 
TypeName className; Outputs. Integer count; 

getlnstallationDirectoryPath 
0 

Returns OPENMODELICAHOME if it is set; on some platforms the 
default path is returned if it is not set. Outputs, string 
installationDirectoryPath; 
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getLanguageStandard() Returns the current Modelica Language Standard in use. Outputs. 
String outVersion; 

getMessagesString() Returns the current error message. Outputs. String 
messagesString; 

getMessagesStringlnternal() Returns Error: message, TRANSLATION, Error, code. Outputs: 
ErrorMessage[:] messagesString; 

getModelicaPath() Get the Modelica Library Path. Outputs: string 
modelicaPath; 

getNoSimplify() Returns true if noSimplify flag is set. Outputs: Boolean res; 
getNthAlgorithm(className, 
index) 

Returns the Nth Algorithm section. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthAlgorithmltem ( 
className, index) 

Returns the Nth Algorithm Item. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthAnnotationString 
(className, index) 

Returns the Nth Annotation section as string. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthEquation(className, 
index) 

Returns the Nth Equation section. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthEquationltem( 
className) 

Returns the Nth Equation Item. Inputs: TypeName className; 
Integer index; Outputs: String res; 

getNthlmport(className, 
index) 

Returns the Nth Import as string. Inputs: TypeName 
className; Integer index; Outputs: String out[3] 
"{\"Path\",\"ld\",\"Kind\"}"; 

getNthlnitialAlgorithm( 
className, index) 

Returns the Nth Initial Algorithm section. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthlnitialAlgorithmltexn ( 
className, index) 

Returns the Nth Initial Algorithm Item. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthlnitialEquation( 
className, index) 

Returns the Nth Initial Equation section. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getNthlnitialEquationltem( 
className, index) 

Returns the Nth Initial Equation Item. Inputs: TypeName 
className; Integer index; Outputs: String res; 

getOrderConnections() Returns true if orderConnections flag is set. 
Outputs: Boolean isOrderConnections; 

getPackages(className) Returns the list of packages defined in the class. Inputs: 
TypeName className =$Code(AllLoadedClasses) ; 
Outputs: TypeName cl as sName s [: ]; 

getPlotSilent() Returns true if plotSilent flag is set. 
Outputs: Boolean isPlotSilent; 

getSettings() Returns the settings. Outputs: String settings; 
getShowAnnotations() Outputs: Boolean show; 
getSourceFile(className) Returns the filename of the class. Inputs: TypeName 

className; Outputs: String filename; 
getTempDirectoryPath() Returns the current user temporary directory location. 

Outputs: String tempDirectoryPath; 
getVectorizationLimit() Outputs: Integer vectorizationLimit; 
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getVersion(c1) Returns the version of the Modelica compiler. Inputs: TypeName 
cl = $Code (OpenModelica) ; Outputs: String version; 

help() Display the OpenModelica help text. 
Outputs: String helpText; 

iconv(string, from, to) Converts one multibyte characters from one character set to 
another. Inputs: String string; String from; String 
to; Outputs: String res; 

importFMU(fileName, workDir) Imports the Functional Mockup Unit. Inputs: String 
filename; String workdir " . / " "The output directory for 
imported FMU files. <default> will put the files to current 
working directory."; Outputs: Boolean res; 

instantiatoModel(className) Instantiate model, resulting in a .mof file of flattened Modelica. 
Inputs: TypeName className; Outputs: String res; 

isModel(className) Returns true if the given class has restriction model. 
Inputs: TypeName className; Outputs: Boolean res; 

isPackage(className) Returns true if the given class is a package. 
Inputs: TypeName className; Outputs: Boolean res; 

isPartial(className) Returns true if the given class is partial. 
Inputs: TypeName className; Outputs: Boolean res; 

list(className) Print class definition. Inputs: TypeName className; 
Outputs: String classDef; 

listVariables() Print user defined variables. Outputs: VariableName res; 
loadFile(fileName) Load models from file. 

Inputs: String fileName; Outputs: Boolean res; 
loadFilelnteractive( 
fileName) 

Outputs the class names in the parsed file (top level only). Used by 
OpenModelica MDT. Inputs: String fileName; Outputs: 
TypeName names[:]; 

loadFilelnteractiveQualified 
(fileName) 

Output all the class names in the parsed file fully qualified. Inputs: 
String fileName; Outputs: TypeName names [: ] ; 

loadModel(className) Load the file corresponding to the class, using the Modelica class 
name to file name mapping to locate the file. 
Inputs: TypeName className; Outputs: Boolean res; 

loadString(data) Parses the data and merges the resulting AST with the loaded 
AST. Inputs: String data; Outputs: TypeName names [: ] ; 

parseFile(filename) Parses the file and returns a list of the classes found in the file. 
Inputs: String filename; Outputs: TypeName names [: ] ; 

parsestring(data) Parses the string data and returns the list of classes found in 
data. Inputs: String data; Outputs: TypeName names [: ] ; 

plot(variable, options) Plots variable, which is a single variable name. 
Inputs: VariableName variable; String title; 
Boolean legend; Boolean gridLines; 
Real xrange[2] i.e. {xmin,xmax}; 
Real yrange[2] i.e. {ymin,ymax}; 
Outputs: Boolean res; 

plot(variables, options) Plots variables, which is a vector of variable names. 
Inputs: VariableName variables; String title; 
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Boolean legend; Boolean gridLines; 
Real xrange [ 2 ] i.e., {xmin,xmax}; 
Real yrange [2] i.e., {ymin,ymax}; 
Outputs: Boolean res; 

plotAll(options) Plot all variables; It does not accept any variable names as input. 
Inputs'. String title; Boolean legend; Boolean 
gridLines; Real xrange[2] i.e., {xmin,xmax}; 
Real yrange [2] i.e., {ymin,ymax}; 
Outputs. Boolean res; 

plotParametrie(variablesl, 
variables2, options) 

Plot each pair of corresponding variables from the vectors of 
variables variablesl, variables2 as a parametric plot. 
Inputs'. VariableName variablesl [: ] ; VariableName 
variables2[size(variablesl,1)]; String title; 
Boolean legend; Boolean gridLines; Real 
range [2,2]; Outputs. Boolean res; 

readFile(fileName) The contents of the given file are returned. Note that if the 
function fails, the error message is returned as a string instead of 
multiple outputs or similar. 
Inputs. String fileName; Outputs'. String content; 

readFileNoNumeric(fileName) Returns the contents of the file, with anything resembling a (real) 
number stripped out, and at the end adding: Inputs'. String 
fileName; Outputs. String content; 

readFilePostprocessLineDirec 
tive(fileName) 

Searches lines for the #modelicaLine directive. Inputs'. String 
fileName; Outputs: String res; 

readFileShowLineNuxnbers ( 
fileName) 

Prefixes each line in the file with <n>: where n is the line number. 
Note: Scales 0(nA2) 
Inputs'. String fileName; Outputs'. String res; 

readSimulationResult( 
fileName, variables, size) 

Reads the simulation result for a list of variables and returns a 
matrix of values (each column as a vector or values for a variable.) 
Size of result is also given as input. Inputs'. String fileName; 
VariableName variables[:]; Integer size; 
Outputs. Real res [size (variables, 1) , size) ] ; 

reacLSimulationResultSize ( 
fileName) 

The number of intervals that are present in the output file. Inputs. 
String fileName; Outputs. Integer size; 

readSimulationResultVars( 
fileName) 

Returns the variables in the simulation file; you can use val () 
and plot () commands using these names. Inputs: string 
fileName; Outputs. String [: ] vars; 

regex(string, re, options) Sets the error buffer and returns -1 if the regular expression does 
not compile. Inputs: String string; String re; Integer 
maxMatches; Boolean extended; Boolean 
caselnsensitive; Outputs: Integer numMatches; 
String matchedSubstrings[maxMatches]; 

regexBool(string, re, 
options) 

Returns true if the string matches the regular expression. 
Inputs'. String string; String re; Boolean extended; 
Boolean caselnsensitive; Outputs: Boolean matches; 

regularFileExists(fileName) Returns the content of the given files. Note that if the function 
fails, the error message is returned as a string instead of multiple 
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outputs or similar. 
Inputs. String fileName; Outputs. Boolean res; 

reopenstandardStream ( 
stream, fileName) 

Executes the script file given as argument. 
Inputs. String fileName; StandardStream _stream; 
Outputs. Boolean res; 

runScript(f i1eName) Executes the script file given as argument. 
Inputs'. String fileName; Outputs'. Boolean res; 

save(className) Save class definition. 
Inputs. TypeName className Outputs. Boolean res; 

saveAll(fileName) Save the entire loaded AST to file. 
Inputs. String fileName; Outputs. Boolean res; 

saveModel(fileName, 
className) 

Save class definition in a file. Inputs'. String fileName; 
TypeName className Outputs. Boolean res; 

saveTotalModel(fileName, 
className) 

Save total class definition into file of a class. Inputs: String 
fileName; TypeName className Outputs: Boolean res; 

saveTotalSCode(fileName, 
className) 

Inputs. String fileName; TypeName className Outputs. 
Boolean res; 

setAnnotationVersion( 
annotationVersion) 

Sets the annotation version. Inputs: string 
annotationVersion; Outputs: Boolean res; 

setCXXCompiler(compiler) Inputs: String compiler; Outputs: Boolean res; 
setClassCoxnment (className, 
fileName) 

Sets the class comment. Inputs: String fileName; TypeName 
className Outputs: Boolean res; 

saveTotalModel(fileName, 
className) 

Save total class definition into file of a class. Inputs: string 
fileName; TypeName className Outputs: Boolean res; 

setCompileCommand ( 
compileCommand) 

Sets the default Compilation command. Inputs: string 
compileCommand; Outputs: Boolean res; 

setCompiler(compiler) Sets the default C Compiler. Inputs: String compiler; 
Outputs: Boolean res; 

setConpilerFlags( 
compilerFlags) 

Sets the compiler flags that are used while compiling the 
simulation executable. Inputs: String compilerFlags; 
Outputs: Boolean res; 

setCompilerPath ( 
compilerPath) 

Sets the default compiler location. Inputs: String 
compilerPath; Outputs: Boolean res; 

setComponentModifierValue(cl 
assName, modifier, value) 

Sets the component modifier value. Inputs: TypeName 
className; String modifier; String value; Outputs: 
Boolean result; 

setDebugFlags(debugFlags) Sets the debug flags. For details run "omc +help=debug" on the 
command line interface. Inputs: String debugFlags; Outputs: 
Boolean res; 

setEnvironmentVar(va r, 
value) 

Sets an environment variable. Inputs: String var; String 
value; Outputs: Boolean res; 

setExtendsModifierValue(clas 
sName, modifier, value) 

Sets the extends modifier value. Inputs: TypeName className ; 
String modifier; String value; Outputs: Boolean 
result; 

setlndexReductionMethod( 
method) 

Sets the index reduction method e.g 
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setlndexReductionMethod ("dynamicStateSelection"). 
Inputs: String method; Outputs: Boolean res; 

setlnitXmlStartValue(fileNam 
e, variableName, startValue, 
outputFile) 

Sets the parameter start value in the model_init. xml file. No 
need to recompile the model. Inputs. String fileName; 
String variableName; String startValue; String 
outputFile; Outputs: Boolean success; 

setlnstallationDirectoryPath 
(debugFlags) 

Sets the OPENMODELICAHOME environment variable. 
Inputs'. String installationDirectoryPath; Outputs. ' 
Boolean res; 

setLanguageStandard( 
inversion) 

Sets the Modelica Language Standard. Inputs. String 
inversion; Outputs'. Boolean res; 

setLinker(linker) Sets the linker. 
Inputs. String linker; Outputs'. Boolean res; 

setLinkerFlags(linkerFlag) Sets the linker flag. 
Inputs: String linkerFlag; Outputs: Boolean res; 

setModelicaPath( 
modelicaPath) 

Sets the modelica path. See loadModelQ for a description of what 
the MODELICAPATH is used for. 
Inputs: String modelicaPath; Outputs: Boolean res; 

setNoSimplify(noSimplify) Sets the noSimplify flag. 
Inputs: Boolean noSimplify; Outputs: Boolean res; 

setOrderConnections( 
debugFlags) 

Sets orderering for connect equation. If set, the compiler will order 
connect equations alphabetically. 
Inputs: Boolean orderConnections; Outputs: Boolean 
res; 

setParameterValue(className, 
parameter, value) 

Sets the parameter value in the class, i.e., updates the parameter 
definition equation. Inputs: TypeName className; String 
parameter; String value; Outputs: Boolean result; 

setPlotSilent(silent) Sets the plotsilent flag. If the flag is true show the OMPlot 
window and pass the arguments to it. If the flag is false don't show 
OMPlot and just output the list of arguments. The false case is 
used in OMNotebook where the plot window is not shown; instead 
the arguments are read and an embedded plot window is created. 
Inputs: Boolean silent; Outputs: Boolean res; 

setPostOptModules(modules) Sets the post optimization modules to use in the compiler back 
end. Use the command "omc +help=optmodules" for more 
information. Example: setPostOptModules ("latelnline", 
"inlineArrayEqn", "removeSimpleEquations") Inputs: 
String modulel, module2, Outputs: Boolean res; 

setPreOptModules(module) Sets the pre optimization modules to use in the back end. Use the 
command line command "omc +help=optmodules" for more 
information. Inputs: String module; Outputs: Boolean res; 

setShowAnnotations() Show annotations in the flattened code. Inputs: Boolean show; 
Outputs: Boolean res; 

setSourceFile(className, 
fileName) 

Sets the output file name for the specified class. Inputs: TypeName 
className; String fileName; Outputs: Boolean res; 

setTempDirectoryPath(tempDir 
ectoryPath) 

Sets the current user's temporary directory path. This is not the 
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same as the current user's working directory which is set by the 
cd() command. Inputs. String tempDirectoryPath; 
Outputs. Boolean res; 

setVectorizationLimit( 
vectorizationLimit) 

Sets scalarization limit. Arrays of size above this limit will not be 
scalarized, i.e., expanded to a set of scalar elements. 
Inputs'. Integer scalarizationLimit; Outputs. Boolean 
res; 

simulate(className, options) Simulate model, optionally setting simulation values. 
Inputs'. TypeName className; Real startTime; 
Real stopTime; Integer numberOfIntervals; 
Real outputInterval; String method; 
Real tolerance; Real fixedStepSize; 
Outputs: SimulationResult simRes; 

stringReplace(str, source, 
target) 

Relace source with target within str producing res. 
Inputs: String str; String source; String target; 
Outputs: String res; 

strtok() Splits the strings at the places given by the token, for example: 
strtok("abcbdef","b") => {"a","c","def"} 
Inputs: String string; String token; Outputs: 
String[:] strings; 

system(fileName) Execute system command. Inputs: String f i 1 eName; Outputs: 
Integer res; 

typeNameString (cl) Converts the qualified class name to string. Inputs: TypeName 
cl; Outputs: String out; 

typeNameStrings (cl) Converts the qualified class name to strings. Inputs: TypeName 
cl; Outputs: String out [: ] ; 

typeOf(variableName) Inputs: VariableName variableName; Outputs: String 
res; 

uriToFilename(uri) Handles modelica:// and file:// URI's. The result is an absolute 
path on the local system. The result depends on the current 
MODELICAPATH. Returns the empty string on failure. 
Inputs: String uri; Outputs: String fileName; 

val(var, time) Returns the value of the variable at a certain time point. 
Inputs: VariableName var; Real time; Outputs: Real 
valAtTime; 

writeFile(fileName, data, 
optional) 

Write the data to file. Returns true on success. 
Inputs: String fileName; String data; Boolean 
append; Outputs: Boolean res; 

E.1.3 Examples 

The following is an interactive session with the OpenModelica environment including some of the 
abovementioned commands and examples. First we start the system, and use the command line interface 
from OMShell, OMNotebook, or command window of some of the other tools. The system responds with 
a header line: 

OpenModelica 1.9.0 
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We type in a very small model: 

» model test "Testing OpenModelica Scripts" Real x, y; equation x = 5.0; y 
= 6.0; end test; 

{test} 
We give the command to flatten a model: 

>> instantiateModel(test) 
"class test 

Real x; 
Real y; 

equation 
x = 5.0; 
y = 6.0; 

end test; 

A range expression is typed in: 

» a:=1:10 
{1,2,3,4,5,6,7,8,9,10} 

It is multiplied by 2: 

» a*2 
{2,4,6,8,10,12,14,16,18,20} 

The variables are cleared: 
» clearVariables() 

true 
We print the loaded class test from its internal representation: 

» list(test) 
"class test \"Testing OpenModelica ScriptsX" 

Real x; 
Real y; 

equation 
x = 5.0; 
y = 6.0; 

end test; 

We get the name and other properties of a class: 

» getClassNames() 
{test} 

» getClassComment(test) 
"Testing OpenModelica Scripts" 

» isPartial(test) 
false 

» isPackage(test) 
false 

» isModel(test) 
true 

» checkModel(test) 
"Check of test completed successfully. 
Class test has 2 equation(s) and 2 variable(s). 
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2 of these are trivial equation (s). 

» clear() 
true 

» getClassNames() {} 

The common combination of a simulation followed by getting a value and doing a plot: 

>> simulate(test, stopTime=3.0); 
» val(x , 2.0) 

5.0 
» plot(y) 

Plot by OpenModelica 

» plotAll() 
Plot by OpenModelica 

VanDerPol Model and Parametric Plot 

» loadFile("C:/OpenModelical.9.O/share/doc/omc/testmodels/VanDerPol.mo") 
true 

» instantiateModel(VanDerPol) 
"class VanDerPol V'Van der Pol oscillator modelV 
Real x(start = 1.0); 
Real y(start = 1.0) ; 
parameter Real lambda = 0.3; 

equation 
der(x) = y; 
der(y) = lambda * (1.0 - x A 2.0) * y - x; 

end VanDerPol; 

>> simulate(VanDerPol); 
>> plotParametric(x,y) 
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Interactive Function Calls, Reading, and Writing 

We enter an assignment of a vector expression, created by the range construction expression 1:12, to be 
stored in the variable x. The type and the value of the expression is returned. 

» x := 1:12 
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} 

The function bubble sort is called to sort this vector in descending order. The sorted result is returned 
together with its type. Note that the result vector is of type Real [: ], instantiated as Real [ 12 ], since this 
is the declared type of the function result. The input integer vector was automatically converted to a 
Real vector according to the Modelica type coercion rules. 

» bubblesort(x) 
{12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} 

Now we want to try another small application, a simplex algorithm for optimization. First read in a 
small matrix containing coefficients that define a simplex problem to be solved: 

>> a := read("simplex_in.txt") 
r-1, r 0, i 0, 0, - 0, r 0, , 0}, 

-1, 1, o, 1, 0, 0, o, 0, 5}, 
1, 4, o, 0, 1, 0, o, 0, 45}, 
2, 1, o, 0, o, 1, o, o, 27}, 
3,--4, o, o, o, o, 1, o, 24}, 
0, 4}} 

Then call the simplex algorithm implemented as the Modelica function simplexl. This function 
returns four results, which are represented as a tuple of four return values: 

>> simplexl(a) 
Tuple: 4 
Real[8]: {9, 9, 4, 5, 0, 0, 33, 0} 
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Real: 22 
Integer: 9 
Integer: 3 

It is possible to compute an expression, for example, 12 : -1:1, and store the result in a file using the 
write command: 

» write(12:-1:1,"test.dat") 
We can read back the stored result from the file into a variable y: 
>> y := read("test.dat") 

Integer[12]: {12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1} 
It is also possible to give operating system commands via the system utility function. A command is 

provided as a string argument. The example below shows system applied to the Linux command cat, 
which here outputs the contents of the file bubblesort .mo to the output stream. 

» system("cat bubblesort.mo") 
function bubblesort 

input Real[:] x; 
output Real[size(x,1)] y; 

protected 
Real t; 

algorithm 
y := x; 
for i in l:size(x,l) loop 
for j in l:size(x,l) loop 

if y[i] > y[j] then 
t := y[i]; 

y[i] := y[j1; 
y[j] t; 

end if; 
end for; 

end for; 
end bubblesort; 
Another built-in command is cd, the change current directory command. The resulting current 

directory is returned as a string. 
» cd("..") 

"/home/petfr/modelica" 

E.2 OpenModelica Python Scripting Commands 
The OpenModelica Python API Interface—OMPython, attempts to mimic the Modelica scripting 
commands available in the OpenModelica environment, see the table in Section E. 1 for available Python 
scripting commands. 

The third party library of OMPython can be created by changing directory to the following: 

OpenModelicalnsta1lationDirectory/share/omc/scripts/Pythonlnterface/ 
and running the command: 

python setup.py install 
This will install the OMPython library into the user's Python's third party libraries directory. Now 
OMPython can be imported and used within Python. 

To test the command outputs, simply import the OMPython library from Python and execute the run () 
method of OMPython. The module allows you to interactively send commands to the OMC server and 
display their output. 
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For example: 
C:\>python 

» > import OMPython 
> » OMPython. run () 
» loadModel(Modelica) 

true 

E.2.1 Examples 

The following session in OpenModelica illustrates the use of a few of the above-mentioned functions. 
» 
loadFile("C:/OpenModelical.9.O/share/doc/omc/testmodels/BouncingBall.mo") 

true 
>> list(BouncingBall) 

"model BouncingBall 
parameter Real e = 0.7 V'coefficient of restitution\"; 
parameter Real g = 9.81 V'gravity acceleration\"; 
Real h(start = 1) V'height of ball\"; 
Real v V'velocity of ball\"; 
Boolean flying (start = true) V'true, if ball is flyingV; 
Boolean impact; 
Real v_new; 
Integer foo; 

equation 
impact = h <= 0.0; 
foo = if impact then 1 else 2; 
der(v) = if flying then -g else 0; 
der(h) = v; 
when {h <= 0.0 and v <= 0.0,impact} then 

v_new = if edge(impact) then -e * pre(v) else 0; 
flying = v_new > 0; 
reinit(v, v_new); 

end when; 
end BouncingBall; 

>> getClassNames() 
{'SETl': {'Setl': ['BouncingBall1, 'ModelicaServices', 'Complex', 
'Modelica']}} 

>> isPartial(BouncingBall) 
False 

>> isPackage(BouncingBall) 
False 

» isModel(BouncingBall) 
True 

>> checkModel(BouncingBall) 
"Check of BouncingBall completed successfully. 
Class BouncingBall has 6 equation(s) and 6 variable(s). 
1 of these are trivial equation(s). 

>> getClassRestriction(BouncingBall) 
"model" 

>> getClassInformation(BouncingBall) 
'SETl': {'Values': 
[ ' "model", "", "C:\W\OpenModelical.9. 0\\\\share\\\\doc\\\\omc 
WWtestmodelsWWBouncingBall .mo" ' ] }, ' SET2 ' : {'Setl': [False, False, 

False], 
'Set2' : ['"writable"', 1, 1, 23, 17]}, 'SET3': {'Setl': [False, False, 

False], 



Appendix E—Modelica and Python Scripting 1135 

' Set2': ['"writable"', 1, 1, 23, 17]}} 
>> existClass(BouncingBall) 
True 
» getComponents(BouncingBall) 
{1SET1': {}, 'SET2': {'Set4': ['Real', 'v', '"velocity of ball"', 
'"public"', 
'false', 'false', 'false', 'false', '"unspecified"', '"none"', 
'"unspecified"'], 'Set5': ['Boolean', 'flying', '"true', 'if ball is 

flying"', 
'"public"', 'false','false', 'false', 'false', "'unspecified'", '"none"', 
'"unspecified"'], 'Set 6':['Boolean', 'impact', '""', "'public'", 'false', 
'false', 'false', 'false', '"unspecified"', '"none'", '"unspecified"'], 
' Set7': 
['Real', 'v_new', """, '"public"', 'false', 'false', 'false', 'false', 
"'unspecified'", "'none'", '"unspecified"'], 'Setl': ['Real', 

'e','"coefficient 
of restitution'", '"public"', 'false', 'false', 'false', 'false', 
"'parameter'", "'none'", "'unspecified'"], ' Set2 ' : [ ' Real', 'g', '"gravit 
acceleration'", '"public"', 'false', 'false', 'false', ' 

false', "'parameter'", '"none"', '"unspecified"'], 'Set3': ['Real', *h' 
"'height of ball'", '"public"', 'false', 'false', 'false', 'false', 

'"unspecified'", '"none"', '"unspecified"'], 'Set8': ['Integer', 'foo', 

'"public"', 'false','false', 'false', 'false', '"unspecified"', "'none"' 
"'unspecified'"]}, 'SET3':{}} 

>> getConnectionCount(BouncingBall) 
0 

>> getNthConnection(BouncingBall) 
1 

» getlnheritanceCount(BouncingBall) 
0 

» getComponentModifierValue(BouncingBall,e) 
7.5 
» getClassAttributes(BouncingBall) 
{'SET1': {'Elements': {'reel': {'Properties': 
{'Results': {'comment': '""', 
'restriction': 'MODEL', 'startLine': 1, 'partial': False, 'name': 
'"BouncingBall"','encapsulated': False, 'startColumn': 1, 'readonly': 
"'writable'", 'endColumn': 17, 'file' 
'"C:WOpenModelical.9.0\\share\\doc\\omc\\testmodels\\BouncingBall .m 

o"', 'endLine': 23, 'final': False}}}}}} 
>> simulate(BouncingBall, stopTime=3.0) 

record SimulationResult 
resultFile = 

"C:/Users/alash325/AppData/Local/Temp/OpenModelica/BouncingBall_res.mat", 
simulationOptions = "startTime = 0.0, stopTime = 3.0, 
numberOfIntervals = 500, tolerance = 0.000001, method = 'dassl', 
fileNamePrefix = 'BouncingBall', options = '', 
outputFormat = 'mat', variableFilter = '.*', 
measureTime = false, cflags = '', simflags = ''", messages = "", 

timeFrontend = 0.022458798284363236, 
timeBackend = 0.01647555356928777, 
timeSimCode = 0.005109221712579149, 
timeTemplates = 0.017912705486144133, 
timeCompile = 1.7019944515670637, 
timeSimulation = 0.21892626420791483, 
timeTotal = 1.9834023618418568 
end SimulationResult; 

» plotAll() 
true 
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Instead of just giving a simulate and plot command, we perform a runScript command on a 
. mos (Modelica script) file sim_BouncingBall.mos that contains these commands: 

loadFile("C:/OpenModelical.9.O/share/doc/omc/testmodels/BouncingBall.mo") 
simulate(BouncingBall, stopTime=3. 0) ; 
plot({h,flying}); 

The runScript command is: 
>> runScript("sim_BouncingBall.mos") 

"true 
record SimulationResult 
resultFile = 
"C:/Users/alash325/AppData/Local/Temp/OpenModelica/BouncingBall_res.mat", 
simulationOptions = "startTime = 0.0, stopTime = 3.0, numberOfIntervals = 
500, tolerance = 0.000001, method = 'classl*, fileNamePrefix = 
'BouncingBall', options = '', outputFormat = 'mat', variableFilter = '.*', 
measureTime = false, cflags = '', simflags = ''", 

messages = "", 
timeFrontend = 0.022458798284363236, 
timeBackend = 0.01647555356928777, 
timeSimCode = 0.00510922171257914 9, 
timeTemplates = 0.0179127054 86144133, 
timeCompile = 1.7019944515670637, 
timeSimulation = 0.21892626420791483, 
timeTotal = 1.9834023618418568 

end SimulationResult; 
true 
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» clear() 
true 

» getClassNames() {} 

E.3 Wolfram SystemModeler Scripting Commands 
The following table contains the Mathematica-style Wolfram SystemModeler scripting commands 
expressed in Mathematica syntax, see also the web page: http://reference.wolfram.com/system-
modeler/WSMLink/guide/WSMLink.html. In addition to these, almost a thousand Mathematica 
commands are available. 

Needs["WSMLinkN"]; Load the Wolfram SystemModeler Link. This is necessary in 
order to execute any of the following commands. 

WSMModelCenter["optmodelname Open the SystemModeler Model Center with or without loading a 
specific model. The argument "optmodelname" is optional. 
Loading a model is necessary before doing simulation or plotting. 
Loading can be done through the SystemModeler GUI or via this 
command. Example: WSMModelCenter ["Introductory 
Examples.ComponentBased.BlockCircuit"] 

WSMSimulationCenter["optmode 
lname"] 

Open the SystemModeler Simulation Center with or without 
performing a simulation experiment on a specific model. The 
argument "optmodelname" is optional. Example: 
WSMSimulationCenter["IntroductoryExamples.Compon 
entBased.BlockCircuit"] 

WSMSimulate["mode1name", 
{"timel","time2"}, options] 

Simulate a model "modelname" over the intervals from 
"timel" to "time2" and return a WSMSimulationData 
object. The following optional arguments can be given: 
WSMInitialValues, WSMInputFunctions, Method, 
InterpolationOrder, WSMParameterValues 

WSMInitialValues->{vl -> Sets initial values "vi" to "ai" in the simulation. It is an option 
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al,...} for WSMSimulateSensitivity and WSMSimulate that 
specifies initial values for variables. 

WSMInitialValues->{vl -> 
{al, a2...},...} 

Runs simulations in parallel, with "vi" taking initial values 
"aj". It is an option for WSMSimulateSensitivity and 
WSMSimulate that specifies initial values for variables. 

WSMPar ame terValue s - > {p 1 - > 
cl,...} 

Sets parameters "pi" to "ci" in the simulation. It is an option 
for WSMSimulateSensitivity and WSMSimulate that 
specifies values for parameters. 

WSMParameterValues->{pi -> 
{cl,c2,...},...} 

Runs simulations in parallel, with "pi" taking values "cj ". It is 
an option for WSMSimulateSensitivity and WSMSimulate 
that specifies values for parameters. 

WSMInputFunctions->{"var1"-> 
funl,...} 

It is an option for WSMSimulateSensitivity and 
WSMSimulate and that specifies values for input variables. 
It uses f uni [ t ] as the input value for vari at time t. 

WSMPlot[sd, {"vl", "v2",...} ] Generates a plot of the variables "vi" from the 
WSMSimulationData object sd over the simulation interval. 

WSMPlot[sd, {"vl", "v2",...}, 
{timel,time2}] 

Plot variables over the interval from timel to time2. 

WSMPlot [ {sdl,sd2,...}, 
{"vl","v2 ",...}] 

Plot variables from several simulation objects sdl, sd2,... 

WSMSimulateSensitivity[ 
"modelname", {timel, time2}, 
{a,b,...}, options] 

Simulates a model and produces its sensitivities to parameters a, 
b... during the time interval from timel to time2. The following 
optional arguments can be given: WSMinitialValues, 
,WSMInputFunctions, WSMParameterValues, 
InterpolationOrder. 

WSMFindEquilibrium [ 
"modelname", option] 

Searches for an equilibrium to the model "modelname". The 
following optional argument can be given: 
ModelicaConversion. 

WSMFindEquilibrium [ 
"modelname", {{{xl, xlO}, 
...}, {{ul, ulO}, ...},{{yl, 
ylO}, ...}}, option] 

Searches for an equilibrium, starting from the point xi = xiO, 
ui = uiO, yi = yiO. The following optional argument can be 
given: ModelicaConversion. 

WSMFindEquilibrium [ 
"modelname", {xl == vl,...}, ...] 

Searches for an equilibrium, with variable xi, constrained to have 
the value vi etc. 

WSMLinearize["modelname", 
option] 

Gives a linearized state-space to the model "modelname" at 
equilibrium and returns a StateSpaceModel object. The 
following optional argument can be given: Method. 

WSMLinearize["modelname", 
{{{xl, xlO}, ...}, {{ul, ulO }, 
...}}, option] 

Linearizes at state values {xlO, ...} and input values {ulO, ...}. 
The following optional argument can be given: Method. 

WSMModelData["modelname"] Gives a formatted summary for the model "modelname". 
WSMModelData["mode1name", 
"properties"] 

Shows a list of possible properties for the model "modelname". 

WSMModelData["modelname", 
"property", options] 

Shows a specified "property" for the model "modelname". 
The following optional arguments can be given: Method, and 
ModelicaConversion. 

WSMSetValues["modelname", 
{pi -> cl,...}] 

Sets pi to ci in the modelica model "modelname". 
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WSMSetValues["modelname", Sets the initial values for pi to ci in the modelica model {pi -> cl,...}, "model name". "InitialValues"] 
The following table contains the list of all the kernel commands that can be used in the Kernel 

Command view of the WSM Model Center. 

cd() Returns the current directory. 
cd(dir) Changes directory to the directory given as a string. Inputs. 

String dir; Outputs. Boolean res; 
checkModel(classname) Validates the given class and returns a string with the result. 

Inputs'. TypeName className; Outputs. String res; 
clear() Clears all class definitions currently loaded. 
clearVariables() Clears all variables defined in the kernel command session. 
getVersion() Returns the version number of the SystemModeler kernel. 
instantiateModel( 
classname) 

Performs code instantiation of a class and returns a string 
containing the flat class definition. Inputs: TypeName 
className; Outputs: String res; 

list() Returns a string containing all loaded class definitions. 
list(classname) Returns a string containing the class definition of the named 

class. Inputs: TypeName className; Outputs: String 
classDef; 

listVariables () Returns a vector of the names of the variables currently 
defined in the kernel session. 

loadModel(classname) Loads the class with the given name from the SystemModeler 
library path. Use with care as this function does not update the 
internal structure of Model Center. Loading a class that is 
already loaded may lead to critical errors. 
Inputs: TypeName className; Outputs: String classDef; 

loadFile(filename) Loads the Modelica file with the name given as a string. Use 
with care as this function does not update the internal structure 
of Model Center. Loading a class that is already loaded may 
lead to critical errors. 
Inputs: String fileName; Outputs: Boolean res; 

readFile(f i1e name) Loads the file given as a string and returns a string containing 
the file content. Use with care as this function does not up 
date the internal structure of Model Center. Loading a class 
that is already loaded may lead to critical errors. 
Inputs: String fileName; Outputs: String content; 

timing(expr) Evaluates the specified expression and returns the elapsed time 
in seconds. 

saveTotalModel(filename, 
classname) 

Saves a total class definition of the named class to the file 
given as a string. The file will contain all class definitions used 
by the named class, making it a self-contained file. 
Inputs: String fileName; TypeName className Outputs: 
Boolean res; 

typeOf(var) Returns the type of a kernel session variable as a string. Inputs: 
VariableName variableName; Outputs: String res; 
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E.3.1 Examples 

Below follows a few examples of using the scripting commands in Wolfram SystemModeler. The most 
common case is a WSMSimulate followed by a WSMPlot. 

Mathematica must be running. In a notebook within the Mathematica environment you first start with a 
Needs WSMLink command to activate the link to Wolfram SystemModelier: 

Needs["WSMLink""]; 

Then you do a simulation, for example the HelloWorld example from the introductoryExamples: 

Ml = WSMSimulate["IntroductoryExamples.HelloWorld", {0, 10}]; 

followed by a plot: 

WSMPlot[Ml, {"x"}] 

Show a summary of a model: 

WSMModelData["IntroductoryExamples.HelloWorld"] 

IntroductoryExamples.HelloWortd 

Property Length 

System Equations 1 
InitialEquations 0 
StateVariables 1 
Algebraic Variables 0 
InputVariables 0 
OutputVariables 0 
ParameterValues 0 

Show a list of possible properties: 

0.4 \ 

o .i • 

2 4 6 8 10 * 
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WSMModelData["IntroductoryExamples.HelloWorld", "Properties"] 

{Algebra icVar iable3 , D e s c r i p t i o n , FromMDdelicaRule3, Groupedln i t ia l v a l u e s , 
I n i t i a l E q u a t i o n s , I n i t i a l V a l u e s , InputVar iab les , Mcdel icaText , 
OutputVariables , ParameterNames, ParanteterValue3, S t a t e V a r i a b l e s , 
Summary, Summary!able, SystemEquations, Sy3temVariable3, ToHodelicaRules} 

Use ModelicaConversion to see shorter names: 

WSMModelData["IntroductoryExamples.HelloWorld", "SystemEquations", 
ModelicaConversion -> "Short"] 

{3iir[t] = -s[i][t]) 

Get the rules for converting variables and parameters to and from Modelica form: 

WSMModelData["IntroductoryExamples.HelloWorld", "ToModelicaRules"] 

{x x} 

WSMModelData["IntroductoryExamples.HelloWorld", "FromModelicaRules"] 

{x x} 

Linearize a DC motor model around an equilibrium: 

WSMLinearize["MathematicaExamples.Modeling.invertedPendulum.Components. 
DCMotor"] 

V 
indue tor. a. - 1 3 . 0. - 1 . 6 1. 
inertia.phi 0. 0. 1. 0. 
inexfe&a.. w 1 . 6 0. 0. 0. 

H 0. 0. 1. 0. 

Find an equilibrium for MixingTank model, starting the search at initial values: 

mmodel = "MathematicaExamples.Modeling.WaterTanks.MixingTank"; 
WSMFindEquilibrium[mmodel] 

{{{H, 0 .746374} f (Tu, 38 .0007} , {Tx, 3 8 . 0 0 0 7 } } , 
{ { u l , 5 . 21303} , {u2, 3 . 0 8 0 7 } } , { { y l , 3 . 73187} , {y2, 3 . 8 0 0 0 7 } } } 

A more advanced example is from the design optimization (Section 15.7, page 869) with a loop of 
simulations, and the Game of Life model and simulation (Section 13.3.3.1, page 652). 

Moreover, the whole Mathematica language is available for advanced scripting. 

E.4 Dymola Scripting Commands 
These are the Modelica scripting commands available in the Dymola environment: 
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animationColor(options) Set animation colors. Inputs. Real background [ 3 ]; Real 
selected[3]; Real grid[3]; Real 
selectedbackground[3] ; Outputs: Boolean ok; 

animationFollow(options) Set what animation view should follow. Inputs: Booleanm 
followFirst; Boolean followX; Boolean followY; 
Boolean followZ; Boolean followRotation; Outputs: 
Boolean ok; 

animationFrames(options) Set animation frame properties. Inputs: Integer history; 
Integer interval; Integer delays; 
Outputs: Boolean ok; 

animationGrid(grid_square, 
grid_size) 

Set grid size in animation window. Inputs: Real grid_square; 
Real grid_size; Outputs: Boolean ok; 

animationLightning() Check animation lighting. Outputs: Boolean ok; 
animationOnline (options) Set realtime animation properties. Inputs: Boolean 

onlineAnimation; Boolean realtime; Real 
scaleFactor; Real loadlnterval; 
Outputs: Boolean ok; 

animationPerspective( 
perspective) 

Set animation perspective properties. Inputs: Real 
perspective [7] ; Outputs: Boolean ok; 

animationPosition(position) Set position of animation. Inputs: Real position [ 4 ]; 
Integer id; Outputs: Boolean ok; 

animationRedraw() Redraw animation window. Outputs: Boolean ok; 
animationRemove(id) Remove animation window. Inputs: Integer id; Outputs: 

Boolean ok; 
animationSelected(options) Select animation object. Inputs: Boolean name; Boolean 

highlight; Boolean follow; Boolean tracer-
Integer selected; String selectedName; Outputs: 
Boolean ok; 

animationSetup() Generate script with current setup of animation window. 
Outputs: Boolean ok; 

animationSpeed(speed) Set animation speed. Inputs: Real speed; Outputs: 
Boolean ok; 

animationSubdivisions( 
subdivisions) 

Set animation subdivision properties. Inputs: Integer 
subdivision [12]; Outputs: Boolean ok; 

animationTime(timePosition) Set animation time. Inputs: Re a 1 t ime Position; Outputs: 
Boolean ok; 

animationTransparency() Animation transparency. Outputs: Boolean ok; 
animationTrace() Animation trace. Outputs: Boolean ok; 
animationVectorScaling( 
options) 

Set animation scaling properties. Inputs: Real force; Real 
torque; Real velocity; Real acceleration; Real 
angularvelocity; Real angualracceleration; 
Outputs: Boolean ok; 

animationView(vi ew) Set animation view. Inputs: Real view [ 4,4 ]; Outputs: 
Boolean ok; 

anixnationViewing (options) Set properties of animation. Inputs: Boolean cylinder; 
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Boolean fillmode; Boolean unitcube; Boolean 
xygrid; Boolean xzgrid; Boolean yzgrid; Boolean 
perspective; Boolean antialias; Outputs: Boolean 
ok; 

cd(dir) Change directory. Inputs: String dir; Outputs: Boolean 
result; 

checkModel(problem) Instantiate model, optimize equations and report errors. 
Inputs: String problem; Outputs: Boolean result; 

classDirectory() Directory containing the class definition, or directory where 
additional files associated with the class should be stored. 
Outputs: String dir; 

clear() Clears everything, i.e. abstract syntax tree representation of code 
together with possible user defined variables. 
Outputs: Boolean _result; 

clearlog() Clear the log. Outputs: Boolean result; 
closeModel() Close a model. Outputs: Boolean result-
Compile() Compile default model. Outputs: Boolean result; 
Continue() Continue the default model. Outputs: Boolean result; 
createPlot() Creates plot window. 
DefaultModelicaVersion( 
version, forceUpgrade) 

Default Modelica version. Inputs: String version; Boolean 
forceUpgrade; 

document(function) Write calling syntax for named function. Inputs: string 
_function; Outputs: Boolean _result; 

eraseClasses(classNames_) Remove classes from symbol table. 
Inputs: String classNames_[: ] ; 
Outputs: Boolean result; 

Execute(file) Execute file/command. Inputs: String file; Outputs: 
Boolean ok; 

existTrajectoryNames( 
fileName, names) 

Return if names exist in trajectory file. . Inputs: String 
fileName; String names [:] ; Outputs: String _ 
exists[size(names, 1)]; 

exit() Exit Dymola. 
exitDelayed() Exit Dymola after 5 seconds delay. 
experiment(options) Set default simulation values, e.g. start time, stop time, tolerance, 

etc. Inputs: Real StartTime; Real StopTime; Integer 
NumberOfIntervals; Real OutputInterval; String 
Algorithm; Real Tolerance; Real FixedStepSize; 
Outputs: Boolean result; 

exportHTMLDirectory(name, 
directory , options) 

Export HTML documentation. The library names given in 
'listOfLibraries' will be substituted with the corresponding 
documentation directories in 'listOfLibraryDirectories'. 
Inputs: String name; String directory; String 
String listOfLibraries[:]; String 
listOfLibraryDirectories [: ] ; Outputs: Boolean ok; 

eacportlcon (image File, 
options) 

Export icon layer to file. Inputs: String imageFile; Real 
width; Real height; Outputs: Boolean ok; 
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exportDiagraxn(resultFi1e, 
option) 

Export diagram to file. Inputs: String resultFile; Real 
width; Real height; Outputs: Boolean ok; 

exportlnitial(dsName, 
scriptName, options) 

Export initial values to a script file. 
Inputs: String dsName; String scriptName; Boolean 
exportAHVariables; Outputs: Boolean ok; 

exportlnitialDsin Generate a copy of internal dsin.txt. Inputs: string 
scriptName; Outputs: Boolean ok; 

ExportPlotAsImage(f i1eName, 
options) 

Export plot as image in PNG format. Inputs: String 
fileName; Integer id; Boolean includelnLog; 
Outputs: Boolean ok; 

help() List help commands. 
importFMU(fileName, 
options) Imports an FMU. Inputs: String fileName; Boolean 

includeAHVariables; Boolean integrate; Boolean 
promptReplacement; String packageName; Outputs: 
Boolean result; 

inportlnitial(dsName) Import initial values as script file. 
Inputs: String dsName; Outputs: Boolean ok; 

importlnitialResult( 
dsResName) 

Import start values from ds file. Inputs: String dsResName; 
Real at Time; Outputs: Boolean ok; 

instantiateModel(problem) Instantiate model, results in mof file. 
Inputs: String problem; Outputs: Boolean result; 

interpolateTrajectory( 
fileName, signals, times) 

Read simulation result from file and interpolate values given as a 
vector of name on time instants given as a vector and return a 
matrix of interpolated values (one vector for each interpolated 
variable). Inputs: String fileName; String signals [: ] ; 
Real times [:] ; Outputs: Real values [size (signals, 
1), size(times, 1)]; 

linearize() Linearize default model. Outputs: Boolean result; 
linearizeModel(problem, 
options) 

Translate, simulate and linearize model. Inputs: String 
problem; Real startTime; Real stopTime; Integer 
numberOfIntervals; Real outputInterval; String 
method ; Real tolerance; Real fixedstepsize; 
String resultFile; Outputs: Boolean result; 

list() Print user defined variables. Outputs: Boolean result; 
listfunctions() List builtin functions on screen. Outputs: Boolean result ; 
loadAnimation(fi1eName, 
options) Load animation .Inputs: String fileName; Integer id; 

Boolean together; 
messageBox(message, timeOut, 
position) 

Show message box. Inputs: String message; Real 
timeOut; Real position[2]; Outputs: Boolean ok; 

messageDialog(message, 
timeOut, position) 

Wait for user input. Inputs: String message; Real 
timeOut; Real position[2]; Outputs: Boolean ok; 

openModel(path) Load models from file path. 
Inputs: String path; Outputs: Boolean result; 

openModelFile(model,path) Load the file that contains the class. Inputs: String model ; 
String path; Outputs: Boolean result; 
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plot(_x) Plot one or more variables as functions of time. 
Inputs. String _x [: ] ; Outputs: Boolean result; 

plotArray(x,y) Plot the given values as an x-y plot. 
Inputs: Real x[:]; Real y [ size (x, 1) ] ; Integer 
style; String label; Outputs: Boolean result; 

plotArrays(x,y, options) Plot the given values as an x-y plot. 
Inputs: Real x[:]; Real y[size(x, 1), :]; Integer 
style[:]; String legend[:]; Outputs: Boolean 
result; 

plotParametricCurve(x,y,s, 
options) 

Plot parametric curve. Inputs: Real x [: ] ; Real y[size(x, 
1)]; Real [size(x, 1)]; String legend[:]; 
Outputs: Boolean result; 

plotParametricCurves(x, y,s, 
options) 

Plot parametric curves. Inputs: Real x[:, size(s, 1) ] ; 
Real y[size(x, 1), size(s, 1)]; Real s[:]; 
String legend[:]; 

plotSetup() Generate script with current setup of all plot windows. Outputs: 
Boolean ok; 

plotSetFilesToKeep() Plot set files to keep. Outputs: Boolean result; 
plotSignalOperator( 
variablePath, signalOperator 
startTime, stopTime, 
options) 

Plot signal operator in the active diagram of a plot window. 
Inputs: String variablePath; Enumeration 
signalOperator; Real startTime; Real stopTime; 
Real period; Integer id; Outputs: Boolean result; 

plotSignalOperatorHarmonic( 
variablePath, signalOperator 
startTime, stopTime, period, 
intervalLength, window, 
harmonicNo, options) 

Plot signal operator in the active diagram of a plot window. 
Inputs: String variablePath; Enumeration 
signalOperator; Real startTime; Real stopTime; 
Real period; Real intervalLength; Integer id; 
Outputs: Boolean result; 

plotText(extent,textString, 
options) 

Plot text in the active diagram. Inputs: Real extent [ 2, 2 ] ; 
String textString; Real fontSize; String 
fontName; String textstyle; Outputs: Boolean 
result; 

plotWindowSetup(window) Generate script with current setup of plot window. Inputs: 
Integer _window; Outputs: Boolean ok; 

printPlot(_x) Plot and print given variables. Inputs: String _x[:]; Outputs: 
Boolean result; 

printPlotArray(x, y, style, 
label) 

Plot and print given data. Inputs: Real x [: ] ; Real 
y[size(x,1)]; Integer style; String label; 
Outputs: Boolean result; 

printPlotArrays(x, y, style, 
lagened) 

Plot and print given data. Inputs: Real x [: ] ; Real 
y[size(x, 1), :]; Integer style[:]; String 
lagend[:]; 

ReadAnimationSocket() Read animation socket. Outputs: Boolean ok; 
readCSVHeadersInternal(fileN 
ame) 

Gives headings for csv-files. Inputs: String fileName; 
Outputs: String headers [: ] ; 

readMATmatrices(fileName) Gives a table of the matrices found in a mat-file. Inputs: string 
fileName; Outputs: String matrices[:, 2]; 
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readMatrix(f i1eName, 
modelName,rows,columns) 

Read a matrix from a file. Inputs: String fileName; 
String modelName; Integer rows; Integer columns; 
Outputs: Real matrix[rows, columns]; 

readMatrixSize(fileName, 
matrixName) 

Read the matrix dimension from a file given a matrix name. 
Inputs: String fileName; String matrixName; 
Outputs: Integer size [2] ; 

readstringMatrix 
xeadTrajectory(fileName, 
signals, size) 

Reads the simulation result for a list of variables and returns a 
matrix of values (each column as a vector or values for a 
variable.) Size of result is also given as input. Inputs: String 
fileName; String signals[:] Integer rows; 
Outputs: Real values [size (signals, 1) , rows] ; 

readTra j ectoryNames 
readTrajectorySize(fileName) Read the size of the trajectory vector from a file. 

Inputs: String fileName; Outputs: Integer rows; 
removeMe s s ageBox () Remove message box. Outputs: Boolean ok; 
removePlots() Removes all plot windows. Outputs: Boolean ok; 
removeResults() Removes all results from plot windows. Outputs: Boolean ok; 
RestoreWindow(id, mode, 
settings) 

Restore window setup. Inputs: Integer id; Ineteger 
mode; String settings; 

RunAnimation(immediate, 
loadFile, 
ensureAnimationWindow) 

Run animation. Inputs: Boolean immediate; String 
loadFile; Boolean ensureAnimationWindow; Outputs: 
Boolean ok; 

RunScript(_script) or 
@ filename 

Executes the script file given as argument. 
Inputs: String script; Outputs: Boolean _result; 

saveEncryptedModel(name, 
path) 

Save an encrypted Model ica-file. Inputs: String name; 
String path; Outputs: Boolean _result; 

savelog(logfile) Save the log to a file. Inputs: String log file; 
Outputs: Boolean _result; 

saveModel(name, path) Save a Model ica-file. Inputs: String name; String path; 
Outputs: Boolean _result; 

saveSettings(fileName, 
options) 

Stores current settings on a file. Inputs: string fil eName ; 
Boolean storePlot; Boolean stroeAnimation; 
Boolean storeSettings; Boolean storeVariables; 
Boolean storelnitial; Boolean storeAHVariables; 
Outputs: Boolean ok; 

saveTotalModel(fileName, 
modelName) 

Save total class definition in file. Inputs: String fileName ; 
String modelName; Outputs: Boolean result; 

SetVariable(name, va1) Set variable in model. Inputs: String name; Real val; 
Outputs: Boolean ok; 

SetDymolaCompiler(compiIer, 
options) 

Switch to modeling mode. . Inputs: String compiler; 
String settings[:]; 

ShowComponent(path, 
components) 

Show component. Inputs: String path; String 
components [: ] ; Outputs: Boolean ok; 

showMes sageWindow(show) Show/hide log. Inputs: Boolean show; Outputs: Boolean 



Appendix E—Modelica and Python Scripting 1147 

ok; 
simulate() Simulate the default model. Outputs. Boolean result; 
SimulateExtendedModel( 
problem, options) 

Simulate a Modelica model. Inputs: string problem; Real 
startTime; Real stopTime; Integer 
numberOfIntervals; Real outputInterval; String 
method; Real tolerance; Real fixedstepsize; 
String resultFile; Boolean result; String 
initialNames[:]; Real 
initialValues[size(initialNames,1)]; String 
final Names [: ] ; Outputs: Real 
finalValules[size(finalNames,1)]; 

simulatdModel(problem, 
options) 

Simulate a model. Inputs: String problem; 
Real startTime; Real stopTime; 
Integer numberOfIntervals; Real outputInterval; 
String method; Real tolerance; 
Real fixedstepsize; Outputs: Boolean result; 

s imulateMultiExtendedModel 
(problem, options) 

SimulateMultiExtended a Modelica model. String problem; 
Real startTime; Real stopTime; Integer 
numberOfIntervals; Real outputlnterval; String 
method; Real tolerance; Real fixedstepsize; 
String initialNames[:] ; Real initialValues[:, 
size(initialNames, 1)]; String finalNames[:]; 
Outputs: Boolean result; Real 
finalValues[size(initialValues, 1), 
size(finalNames, 1)]; 

stopSimulation() Stop simulation or script execution. 
switchLayer(layer) Switch layer. Inputs: Integer layer; Boolean show; 

Outputs: Boolean ok; 
switchToModelingMode () Switch to modeling mode. Outputs: Boolean ok; 
switchToSimulationMode() Switch to simulation mode. Outputs: Boolean ok; 
translateModel(problem) Instantiate model, optimize equations and generate code. 

Inputs: String problem; Outputs: Boolean result; 
variables() List variables on screen. Outputs: Boolean result; 
vizualize3dModel(problem) Display a 3D visualization of the latest simulation. 

Inputs: String problem; Outputs: Boolean result; 
writeCSVFilelnternal( 
fileName, data, options) 

Writes a csv file. Inputs: String fileName; String 
headers[:]; Real data[:, size(headers, 1)]; 
String separator; Outputs: Boolean ok; 

writeMatrix(f i1eName, 
matrixName, matrix) 

Write matrix to file given a matrix name and a matrix. 
Inputs: String fileName; String matrixName; Real 
matrix [:, : ] ; Outputs: Boolean status; 

writeTrajectory(fileName, 
signals, values) 

Writes a trajectory file. Inputs: String fileName; String 
signals!:]; String values[:, size(signals, 1)]; 
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E.4.1 Example 

Below follows an example of a Dymola script file for the CoupledClutches example in the standard 
Modelica library. 

// Script generated: 10/11/13 14:00:45 
translateModel("Modelica.Mechanics.Rotational.Examples.CoupledClutches") 
experiment(StopTime=l.2) 
simulate 
plot ( { " J1. w", " J2 . w", " J3. w","J4.w"}) ; 



Appendix F 

Related Equation-Based, Object-Oriented Modeling 
Languages 

In this appendix we give an overview of the languages that have been used as starting point for the 
Modelica design, that is, Modelica builds upon the experience gained with these languages. Some 
additional equation-based modeling languages are also briefly presented. 

Since the definition of CSSL in 1967, most modeling languages have essentially been block oriented 
with inputs and outputs. The mathematical models are defined as assignment-like equations for auxiliary 
variables and derivatives. Physical equations thus need to be transformed to a form suitable for 
calculations. The only aid in transforming the equations to an algorithm for calculating derivatives is 
automatic sorting of the equations. 

On the contrary, the object oriented modeling languages that constitute the background for 
development of Modelica all have general equations, that is, expression = expression, as the basic element. 
Hierarchical decomposition and reuse are typically supported by some kind of model class. Several 
languages have provisions to describe physical connection mechanisms, that is, to associate a set of 
variables with some kind of port. Such ports can be used at higher hierarchical levels when connecting 
submodels without having to deal with individual variables. 

F. l Language Developments Behind Modelica 
The designers of the following object-oriented modeling languages have actively participated creating the 
Modelica language in part based on experience from these languages. 

F.l.l Dymola Language 

Dymola (here meaning Dynamic Modeling Language), introduced in 1978, is based on equations for 
noncausal modeling, model types for reuse and submodel invocation for hierarchical modeling, and is one 
of the most important predecessors of Modelica. The Dymola translator utilizes graph theoretical methods 
for causality assignment, for sorting, (i.e., BLT-partitioning), and for finding minimal systems of 
simultaneous equations. 

Computer algebra is used for solving for the unknowns and to make simplifications of the equations. 
Constructs for hybrid modeling, including instantaneous equations, were introduced in 1993. Crossing 
functions for efficient handling of state events are automatically generated. A graphical editor is used to 
build icons and to make model compositions. Major application areas include multi-body systems, drive-
trains, power electronics, thermal systems. 

F.1.2 NMF—Neutral Model Format 

The Neutral Model Format (NMF) is a language in the Dymola and Omola tradition and was first proposed 
as a standard to the building and energy systems simulation community in 1989. The language is formally 
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controlled by a committee within ASHRAE (American Society of Heating, Refrigerating and Air-
Conditioning Engineers). 

Several independently developed NMF tools and model libraries exist, and valuable lessons on 
language standardization and development of reusable model libraries have been learned. Salient features 
of NMF are: (1) good support for model documentation, (2) dynamical vector and parameter dimensions (a 
model can, e.g., calculate required spatial resolution for PDE), (3) full support for calls to foreign models 
(e.g. legacy or binary Fortran or C models) including foreign model event signals. Inheritance was not 
present in the original language proposal but was added 1995 to the language specification. 

Simulation models can be translated automatically from NMF into the local representation of a 
particular simulation environment. Several simulation environments have been built around the language. 
One of these is the IDA Simulation Environment IDA SE, which includes a graphical modeler, an NMF 
translator, and a solver. In order to illustrate the language a model of a thermal conductance from 1996 is 
presented below: 

CONTINUOUS_MODEL tq_conductance 
ABSTRACT "Linear thermal conductance" 
EQUATIONS /* heat balance */ 

0 = - Q + a_u * (T1 - T2) ; 
LINKS 

/* type name variables 
TQ terminal_l Tl, POS_IN Q; 

TQ terminal_2 T2, POS_OUT Q; 
VARIABLES 
/* type name role description 

Temp Tl IN "1st temp" 
Temp T2 IN "2nd temp" 
HeatFlux Q OUT "flow from 1 to 2" 

PARAMETERS 
/* type name role description 

Area a S_P "cross section area" 
HeatCondA u S_P "heat transfer coeff" 
HeatCond a_u C_P "a * u" 

PARAMETER_PROCESSING 
a_u := a * u; 
END MODEL 

F.1.3 ObjectMath 

ObjectMath (Object-Oriented Mathematical Modeling Language) is a high-level programming 
environment and modeling language designed as an extension to Mathematica. its first version appeared in 
1991. The language integrates object-oriented constructs such as classes, and single and multiple 
inheritance with computer algebra features from Mathematica. 

Both equations and assignment statements are included, as well as functions, control structures, and 
symbolic operations from standard Mathematica. Other features are parameterized classes, named 
equations that can be specialized at inheritance, hierarchical composition, and dynamic array dimension 
sizes for multi-dimensional arrays. The environment provides a class browser for the combined inheritance 
and composition graph and supports generation of efficient code in C++ or Fortran90, as well as an 
experimental version for generating parallel code. 

The user can influence the symbolic transformation of equations or expressions by manually specifying 
symbolic transformation rules, which also gives an opportunity to control the quality of generated code. 
The main application area so far has been in mechanical systems modeling and analysis. 



Appendix F—Related Equation-Based, Obj ect-Oriented Modeling Languages 1151 

F.1.4 Omola 

Omola, introduced in 1989, is an object-oriented and equation based modeling language. Models can be 
decomposed hierarchically with well-defined interfaces that describe interaction. All model components 
are represented as classes. Inheritance and specialization support easy modification. Omola supports 
behavioral descriptions in terms of differential-algebraic equations (DAE), ordinary differential equations 
(ODE) and difference equations. The primitives for describing discrete events allow implementation of 
high level descriptions as Petri nets and Grafcet. An interactive environment called OmSim supports 
modeling and simulation: graphical model editor, consistency analysis, symbolic analysis and 
manipulation to simplify the problem before numerical simulation, ODE and DAE solvers and interactive 
plotting. Applications of Omola and OmSim include chemical process systems, power generations and 
power networks. 

F.1.5 SIDOPS+ 

SIDOPS+, introduced in 1997, supports nonlinear multidimensional bond-graph and block-diagram 
models, which can contain continuous-time parts and discrete-time parts. 

The language has facilities for automated modeling support like polymorphic modeling (separation of 
the interface and the internal description), multiple representations (component graphs, physical concepts 
like bond graphs or ideal physical models and (acausal) equations or assignment statements), and support 
for reusability (e.g., documentation fields and physical types). Currently, SIDOPS+ is mainly used in the 
field of mechatronics and (neural) control. It is the model description language of the package 20-SIM 
SIDOPS+ is the third generation of SIDOPS which started as a model description language for single-
dimensional bond-graph and block-diagram models. 

F.1.6 Smile 

Smile, introduced in 1995, is an object-oriented, equation-based modeling and simulation environment. 
The object-oriented and imperative features of Smile's model description language are very similar to 
Objective-C. Equations may either be specified symbolically or as procedures; external modules can be 
integrated. Smile also has a dedicated experiment description language. The system consists of translators 
for the above-mentioned languages, a simulation engine offering several numeric solvers, and components 
for interactive experimenting, visualization, and optimization. Smile's main application domain 
traditionally has been the simulation of solar energy equipment and power plants, but thanks to its object-
oriented modeling features it is applicable to other classes of complex systems as well. 

F.1.7 U.L.M.—ALLAN 

The goal of ALLAN, introduced in 1996, is to free engineers from computer science and numerical 
aspects, and to work towards capitalization and reuse of models. This means noncausal and hierarchical 
modeling. A graphical representation of the model is associated to the textual representation and can be 
enhanced by a graphical editor. 

A graphical interface is used for hierarchical model assembly. The discrete actions at the interrupts in 
continuous behavior are managed by events. Automatons (synchronous or asynchronous) are available on 
events. FORTRAN or C code can be incorporated in the models. Two translators toward the NEPTUNIX 
and ADASSL (modified DASSLRT) solvers are available. Main application domains are energy systems, 
car electrical circuits, geology and naval design. 
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The language U.L.M. was designed in 1993 with the same features as the ALLAN language in a 
somewhat different implementation. It is a model-exchange language linked to ALLAN. All aspects of 
modeling are covered by the textual language. There is an emphasis on the separation of the model 
structure and the model numerical data for reuse purposes. It also has an interesting feature on model 
validation capitalization. 

F.2 Related Languages 
Here we describe some related equation-based modeling languages. Some of the early languages have 
influenced Modelica to some extent, other languages are later developments, or are independent parallel 
developments. 

F.2.1 ASCEND 

ASCEND (Advanced System for Computation in ENgineering Design) was developed at Carnegie Mellon 
University in Pennsylvania, USA to be a rapid model building environment for complex models 
comprising large sets of nonlinear algebraic equations (Piela 1989, Piela et al. 1991). The language is 
textual. It supports quantity equations, single inheritance and hierarchical decomposition, but it does not 
have well defined submodel interfaces. The application domain is chemical process modeling. Later 
versions support dynamic continuous time modeling. 

F.2.2 VHDL-AMS 

The VHDL-AMS language, introduced in 1999, is a hardware description language that has been 
developed to support the modeling of analog, digital, mixed-signal and mixed-technology systems. The 
language extends the IEEE standard digital design language VHDL (IEEE Std 1076.1-1999) to cover 
mixed analog and digital systems. It is a large and rich modeling language targeted mainly at the 
application domain of electronics hardware. 

Structuring is done by means of entities and architectures. An entity defines the external view of a 
component including its parameters (generics), its discrete signal interface and its continuous interface 
(ports). The architecture associated with an entity describes the implementation which may contain 
equations (DAEs). As in the case of other equation-based modeling languages the VHDL-AMS language 
does not specify techniques for the solution of the expressed DAEs, leaving the selection of a suitable 
numerical method to the simulation environment. 

A typical VHDL-AMS simulation framework consists of a compiler and a simulator. The compiler 
translates the VHDL-AMS source code into an intermediate representation structured as abstract syntax 
trees with annotated symbol tables and additional semantic information. Similar to other equation-based 
simulation environments, a hierarchical application model is flattened to a set of discrete and continuous 
equations. 

An analog kernel calculates the analog solutions of the equations at a specified time step by providing 
an interface to a numerical solver. In this way the original model description is compiled into intermediate 
object code, linked together with a simulation kernel, and directly executed. The same translation process 
is also used by the SEAMS VHDL-AMS based simulation framework that incorporates an analyzer, an 
analog and digital kernel, a code generator, and a compilation module. A design support environment 
called SIDES (Simulation-Interactive Design Environment System) is attached to SEAMS and includes a 
GUI viewer, editors, debugging and editing support, library access, and a file and data exchange database 
to enable all the necessary design environment-simulator interactions. 
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For reasoning and verification purposes, a denotational semantics of the language has been developed. 
The general behavior of VHDL-AMS programs is derived by translating the semantics into a prototype 
simulator implementation. In order to illustrate the syntax of the language, a simple linear resistor model is 
given below: 
use electrical_system.all 
entity resistor is 
generic(resistance: real); 
port(terminal nl, n2: electrical); 

end entity resistor; 

architecture signal_flow of resistor is 
quantity vr across ir through nl to n2; 

begin 
ir == vr / resistance; 

end architecture signal_flow. 

F.2.3 The x Language for Hybrid Systems Simulations 

The x language, introduced in 1999, has been designed with the aim of providing a general language for 
hybrid system simulations. A % program consists of processes, systems and function specifications, which 
are later instantiated by a top-level model. As is the case with most equation-based languages, the top 
model instance is executed by the simulation environment. A process in % may have a discrete-event part 
and/or a continuous-time part and a system may be composed from processes and system instantiations. 
The continuous-time behavior in % is expressed with the help of equation statements defined on the local 
variables of the processes. Model composition in % is achieved by the use of channels in the interface 
specifications of the sub-models. The channels have the same role as connectors in the Modelica language. 
A process example is given below: 

proc P = 
| [V,x: real] 0 

, Q: real 
,b: bool := true 

{ 
V' = 2 - Q 
,|Q| Q = sqrt(V) 
, [b -> x' = 1 - x] 
I not b -> |x| x ] 

} 
] I 

F.2.4 gPROMS 

gPROMS, introduced in 1992, is a general modeling language for combined lumped and distributed 
parameter processes described by mixed systems of integral, partial differential, and algebraic equations 
(IPDAEs). The language is a further development of the Speedup language. The gPROMS language has 
constructs for certain kinds of partial differential equations. The major application domain is chemical 
process modeling. The language does not contain constructs for component-based modeling with 
connectors, and does not support discrete-event modeling. 

The modeling language is integrated in a more general simulation system called gPROMS System, 
1993, designed to support both continuous and discrete simulation. 

The language distinguishes two modeling entities: MODELs (containing DAEs which describes the 
physical system behavior) and TASKs (containing events representing external actions and disturbances 

/ / eqO 
//eql 
/ / eq2 

= 2 //eq3 
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The language distinguishes two modeling entities: MODELs (containing DAEs which describes the 
physical system behavior) and TASKs (containing events representing external actions and disturbances 
imposed on the simulation model). Continuous models and tasks are combined into a single entity called 
process. 

Below we illustrate a lumped parameter model which is defined in gPROMS as follows: 
MODEL IsothemalFlash 

PARAMETER 
Nocomp AS INTEGER 

VARIABLE 
M, AS ARRAY (Nocomp) OF Holdup 
F, AS ARRAY (Nocomp) OF Flowrate 
V,L AS Flowrate 
x,y AS ARRAY (Nocomp) OF MoleFraction 
K AS ARRAY (Nocomp) OF Kvalue 

EQUATION 
#Component mass balance 
$ M = F - L * x - V * y ; 
#Phase equilibrium relationship 
FOR i:= 1 TO Nocomp DO 

K(i) * x(i) = y(i); 
END 
SIGMA (x) =SIGMA(y) =1; 

END #model IsothermalFlash 
In the above example it can be seen that a MODEL is composed of sections labeled VARIABLE and 

EQUATION. In the equation section algebraic, differential, and partial differential equations are allowed. 
The reusability of simulation models described with gPROMS is achieved by hierarchical submodel 
decomposition and by inheritance. 

F.2.5 Abacuss II 

Abacuss II (Advanced Batch and Continuous Unsteady State Simulator), introduced in 2002, provides a 
high-level declarative input language for describing process model simulation. It is an enhanced version of 
the gPROMS language described by Barton in 1992. The syntax of the Abacuss II language is in the 
tradition of Pascal and Modula-2. The integrated simulation environment built around the language uses 
DAEPACK (Differential-Algebraic Equation Package) to perform the required symbolic and numerical 
calculations. 

Abacuss II uses single inheritance, invoked by the keyword INHERITS and the identifier of the parent 
immediately followed by the identifier of the new model entity. This is illustrated by the following 
example: 

MODEL Father 
PARAMETER PI AS REAL DEFAULT 4 * ATAN (1.0) 

END 

MODEL Child INHERITS Father 
PARAMETER E AS REAL DEFAULT 2.718 

END 

The Child model will inherit all the parameters of the Parent model, and in this particular case Child 
will contain both PI and E as parameters. Multiple or selective inheritance are not allowed in the language. 

The interaction of models with the environment is realized through stream attributes that are subsets of 
the variables describing the time-dependent behavior of the system. Connecting two models in Abacuss is 
realized by setting up a relationship between stream attributes corresponding to each submodel providing a 
compressed way of specifying interaction equations among components. The connection relationships 
need to be declared in the EQUATION section of the model entity. Conditional equations are also allowed to 
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F.2.6 Cob 

Cob, introduced in 2002, is a programming language based on the concept of constrained objects for 
compositional and declarative modeling of engineering structures. The abstraction models are specified 
using a declarative object-oriented language. The associated environment includes a graphical editor for 
developing Cob class definitions, a domain-specific visual interface where already developed components 
can be combined and a translator, which takes the declarative specification and generates an equivalent 
CLP(R) (Constraint Logic Program in the Real domain) program. 

This translator represents the main difference compared to the other languages and environments in this 
overview. Instead of generating an imperative equivalent form of the original source code and linking it to 
numerical solvers, the Cob translator generates an equivalent declarative specification, which is sent to an 
underlying CLP(R) engine. In this way Cob extends the declarative properties of CLP by introducing 
object-orientation, conditional constraints and preferences and subsumes the paradigms of CLP and HCLP 
(hierarchical CLP). By introducing these additional capabilities the applicability of constraint-based 
languages can easily be extended to engineering applications where components are modeled much more 
naturally in terms of objects and inheritance hierarchies. 

The Cob language is rather expressive compared to the equivalent generated CLP form as seen in the 
following simple electrical circuit example from (Jayaraman and Tambay 2001). 

class component 
attributes Real V,I,R 
constraints V=I*R; 
constructors compnent(VI,II,Rl) 

V=V1. 1=11. R=R1. } 
} 
class parallel extends compnent 

attributes compnent [] PC 
constraints 
forall X in PC: X.V = V. 
sum Y in E : Y.1=1. 
sum Z in PC : (1/Z.R)=1/R. 
constructors parilel(B){ 

PC=B} 

Pcomponen< [VI, II, Rl ] , [V, I, R])l 
V=I * R, V=V1, 1 = 11, R=R1. 

pparallel ( [ B ] , [V, I , R , P C ] ) * P C = B , { pcomponent(_, [V, I, R] ) , f O r a 111 ( PC , X , V ) 
N1=I, suml(PC,Nl, Y,I), 
N2=l/R, sum2(PC,N2,Z,R). 

foralll([],X,V). 
forall 1 ([X| Tail] ,X,V) ) 

X V=V, X=[X_V,X_I,X_R], 
foralll(Tail,X,V). 
sum2 ( [] , 0, Z,R) . 
sum2 ( [Z | Tail] , (1/Z_R) +Sumrest, Z,R)-: 

sum2(Tail,Sumrest,Z,R), 
Z=[Z_V,Z I,Z_R]. 
suml ( [ ] , T3", Y, I) . 
sum2 ( [Y| Tail] , (Y_I) + Sumrest, Y, I)-: 

sum2(Tail,Sumrest,Y,I), 
Y=[Y V,Y_I,Y_H . 

The Cob language successfully extends several previous object-oriented constraint imperative 
languages with stratified preference logic programs that allows an efficient simulation of the constraint 
hierarchies. 

F.2.7 Object-Oriented Biomedical System Modeling (OOBSML) 

The OOBSML language, introduced in 1999, was developed at Uppsala University Hospital and is aimed 
at the development of a biomedical continuous system modeling language. It is fully object-oriented and 
supports model inheritance, encapsulation, and model component instantiation. The language resembles 
Omola very much. 

Besides DAEs, the language also includes formal expressions for documenting models and defining 
model quantity types and quantity units. It supports explicit definition of model input, output and state 
quantities, model components, and component connections. 

The OOBSML model compiler produces self-contained, independent, executable model components 
that can be instantiated and used within other OOBSML models and/or stored within model and model 
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Besides DAEs, the language also includes formal expressions for documenting models and defining 
model quantity types and quantity units. It supports explicit definition of model input, output and state 
quantities, model components, and component connections. 

The OOBSML model compiler produces self-contained, independent, executable model components 
that can be instantiated and used within other OOBSML models and/or stored within model and model 
component libraries. In this way, complex models can be structured as multilevel, multi-component model 
hierarchies. Technically, the model components produced by the OOBSML compiler are executable 
computer code objects based on distributed object and object request broker technology. The most basic 
concept of the OOBSML language is the model concept. A model encapsulates system knowledge and 
information related to the purpose of modeling such as: input and output quantities, state quantities, types 
and units, and model behavior represented by algebraic and differential equations. 

A simple example of a two compartment model used for medical simulation illustrates the language 
syntax: 

model TwoCompWithMetabolism: TwoComp has 
inputs 
meta: reaction_rate [mol/L/h] 

outputs 
Fmeta: substance_flow [mol/h] 

behaviour Dynamic is 
begin 

Np'=Fpo-Fop+Fpe-Fep+Fmeta 
Fmeta=Vmeta *Vp 

end Dynamic 
end TwoCompWithMetabolism 

F.2.8 Ptolemy II 

Ptolemy II is an open-source software framework supporting experimentation with actor-oriented design. 
Actors are software components that execute concurrently and communicate through messages sent via 
interconnected ports. A model is a hierarchical interconnection of actors. 

In Ptolemy II, the semantics of a model is not determined by the framework, but rather by a software 
component in the model called a director, which implements a model of computation. The Ptolemy Project 
has developed directors supporting process networks (PN), discrete-events (DE), dataflow (SDF), 
synchronous/reactive(SR), rendezvous-based models, 3-D visualization, and continuous-time models. 
Each level of the hierarchy in a model can have its own director, and distinct directors can be composed 
hierarchically. 

A major emphasis of the project has been on understanding the heterogeneous combinations of models 
of computation realized by these directors. Directors can be combined hierarchically with state machines 
to make modal models. A hierarchical combination of continuous-time models with state machines yields 
hybrid systems; a combination of synchronous/reactive with state machines yields StateCharts. 

Ptolemy II—Modelica integration has been done, both using FMI (Appendix G, page 1159), and a 
developed OpenModelica director for Ptolemy II. 

F.3 Literature 
In the introduction to this appendix, we mention the CSSL definition, described in (Augustin, Fineberg, 
Johnson, Linebarger, Sansom, and Strauss 1967). A number of object-oriented equation-based modeling 
languages, whose originators have participated in the design of the Modelica language, are presented in the 
following references: 
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• ObjectMath—(Fritzson, Viklund, Herber, Fritzson 1992; Fritzson, Fritzson, Viklund, Herber 1994; 
Fritzson, Viklund, and Fritzson 1995). 

• Omola—(Andersson 1989; Andersson 1992; Mattsson and Andersson 1992; Mattsson, Andersson, 
andAstrdm 1993; Andersson 1994). 

• Smile—(Kloas, Friesen, and Simons 1995; Ernst, Jahnichen, and Klose 1997). 
• SIDOPS+ — (Broenink 1997; Breunese and Broenink 1997). 
• ALLAN, U.L.M.—(Jeandel, Boudaud, Ravier, and Bushing 1996). 

The following are related equation-based modeling languages: 

• ASCEND—(Piela, Epperly, Westerberg, and Westerberg 1991). 
• VHDL-AMS—(Frey, Nellayappan, Shanmugasundaram, Mayiladuthurai, Chandrashekar, and 

Carter 1998; Christen and Bakalar 1999; IEEE Std 1076.1-1999; Schneider, Mades, Glesner, 
Windisch, and Ecker 2000). 

• Abacuss II—the language with applications is described in (Tolsma, Clabaugh, and Barton 2002; 
Tolsma, and Barton 2000). It is actually an enhanced version of gPROMS as described in (Barton 
1992). 

• gPROMS—(Barton 1992; Barton and Pantelides 1993; Barton and Pantelides 1994; Oh 1995; Oh 
and Pantelides 1996). 

• The X system—(Fabian 1999). 
• Cob—(Jayaraman and Tambay 2001; Jayaraman and Tambay 2002). 
• OOBSML—(Hakman and Groth 1999; Hakman 2000). 
• Ptolemy and Ptolemy II—(Lee 2001; Lee 2002; Eker, Janneck, Lee, Liu, Liu, Ludvig, Sachs, and 

Xiong 2003; Brooks and Lee 2010). Ptolemy II - OpenModelica integration is described in (Mana 
2013; Mizraei, Buffoni, and Fritzson 2013). Almost all text in Section F.2.8 has been cited from 
the Ptolemy II home page (Ptolemy II, 2013). 
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2013; Mizraei, Buffoni, and Fritzson 2013). Almost all text in Section F.2.8 has been cited from 
the Ptolemy II home page (Ptolemy II, 2013). 



Appendix G 

FMI—Functional Mockup Interface 

This appendix contains a short overview of the Functional Mockup Interface (FMI) standard, version 2.0 
RC1 based on the definition in (FMI 2013). FMI is a tool independent standard to support both model 
exchange and co-simulation of dynamic models using a combination of xml files and C code (either 
compiled in DLL/shared libraries or in source code). The first version, FMI 1.0, was published in 2010. 
The FMI development was initiated by Daimler AG with the goal to improve the exchange of simulation 
models between suppliers and OEMs. 

At the time of this writing, development of the standard continues through the participation of many 
companies and research institutes. FMI 1.0 is supported by a large number of tools and is used by 
automotive and nonautomotive organizations throughout Europe, Asia, and North America. 

On the Downloads page (https://www.fmi-standard.org/downloads), the FMI 2.0 specification, as well 
as supporting C-header and xml schema files, and an FMI compliance checker are provided. In addition, 
sample models (exported from different tools in FMI format) are provided to assist tool vendors to ensure 
compatibility with other tools, as well as a test suite to check whether connected FMUs are appropriately 
handled by a tool. 

G.I Summary 
This appendix gives a short overview description of the Functional Mock-up Interface (FMI), version 2.0, 
which supports the following: 

• exchange of dynamic models between tools 
• defining tool coupling for dynamic system simulation environments 

FMI for Model Exchange 

The intention of FMI for Model Exchange is that a modeling environment can generate C code of a 
dynamic system model that can be utilized by other modeling and simulation environments. Models are 
described by differential, algebraic and discrete equations with time-, state- and step-events. If the C code 
describes a continuous system, then this system is solved with the integrators of the environment where it 
is used. The models to be treated by this interface can be large for usage in offline or online simulation, or 
can be used in embedded control systems on micro-processors. 

FMI for Co-Simulation 

The intention of FMI for Co-Simulation is to provide an interface standard for coupling of simulation tools 
in a co-simulation environment. The data exchange between subsystems is restricted to discrete 
communication points. In the time between two communication points, the subsystems are solved 
independently from each other by their individual solver. Master algorithms control the data exchange 
between subsystems and the synchronization of all simulation solvers (slaves). Both, rather simple master 
algorithms, as well as more sophisticated ones are supported. Note, that the master algorithm itself is not 
part of the FMI standard. 

1159 
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FMI Common Concepts 

The two interface standards have many parts in common. In particular, it is possible to utilize several 
instances of a model and/or a co-simulation tool and to connect them together. The interfaces are 
independent of the target environment because no header files are used that depend on the target 
environment (with exception of the data types of the target platform). This allows generating one dynamic 
link library that can be utilized in any environment on the same platform. A model, a co-simulation slave 
or the coupling part of a tool, is distributed in one zip file called FMU (Functional Mock-up Unit) that 
contains several files: 

• An XML file contains the definition of all exposed variables in the FMU and other static 
information. It is then possible to run the FMU on a target system without this information, in other 
words with no unnecessary overhead. 

• All needed model equations or the access to co-simulation tools are provided with a small set of 
easy to use C functions. A new caching technique allows a more efficient evaluation of the model 
equations than in other approaches. These C functions can either be provided in source and/or 
binary form. Binary forms for different platforms can be included in the same FMU zip file. 

• The model equations or the co-simulation tool can be either provided directly in the FMU, or the 
FMU contains only a generic communication module that communicates with an external tool that 
evaluates or simulates the model. In the XML file information about the capabilities of the FMU 
are present, for example to characterize the ability of a co-simulation slave to support advanced 
master algorithms such as the usage of variable communication step sizes, higher order signal 
extrapolation, or others. 

• Further data can be included in the FMU zip file, especially a model icon (bitmap file), 
documentation files, maps and tables needed by the FMU, and/or all object libraries or dynamic 
link libraries that are utilized. 

A growing set of tools supports FMI. The actual list of tools is available at: https://www.fmi-standard.org 

About FMI 2.0 
This version 2.0 is a major enhancement compared to FMI 1.0, where the FMI 1.0 Model Exchange and 
Co-Simulation standards have been merged, and many improvements have been incorporated, often due to 
practical experience when using the FMI 1.0 standards. New features are usually optional (need neither be 
supported by the tool that exports an FMU, nor by the tool that imports an FMU). Details are provided in 
appendix A.3.1. The appendix of the FMI 1.0 specification has been mostly moved in an extended and 
improved form to a companion document "FunctionalMockupInterface-ImplementationHints.pdf' where 
practical information for the implementation of the FMI standard is provided. 

G.2 Overview 

G.2.1 FMI Interfaces and FMU Structure 

The FMI (Functional Mock-up Interface) defines an interface to be implemented by an executable called 
FMU (Functional Mock-up Unit). The FMI functions are used (called) by a simulation environment to 
create one or more instances of the FMU and to simulate them, typically together with other models. An 
FMU may either have its own solvers (FMI for Co-Simulation, Section G.4, page 1165) or require the 
simulation environment to perform numerical integration (FMI for Model Exchange, Section G.3, page 
1164). The goal of this interface is that the calling of an FMU in a simulation environment is reasonably 
simple. No provisions are provided in this document how to generate an FMU from a modeling 



Appendix G—FMI—Functional Mockup Interface 1161 

environment. Hints for implementation can be found in the companion document 
"FunctionalMockupInterface-ImplementationHints.pdf'. 

The FMI for Model Exchange interface defines an interface to the model of a dynamic system 
described by differential, algebraic and discrete-time equations and to provide an interface to evaluate 
these equations as needed in different simulation environments, as well as in embedded control systems, 
with explicit or implicit integrators and fixed or variable step size. The interface is designed to allow the 
description of large models. 

The FMI for Co-Simulation interface is designed both for the coupling of simulation tools (simulator 
coupling, tool coupling), and coupling with subsystem models, which have been exported by their 
simulators together with its solvers as runnable code. The goal is to compute the solution of time 
dependent coupled systems consisting of subsystems that are continuous in time (model components that 
are described by differential-algebraic equations) or time-discrete (model components that are described 
by difference equations, for example discrete controllers). In a block representation of the coupled system, 
the subsystems are represented by blocks with (internal) state variables x(t) that are connected to other 
subsystems (blocks) of the coupled problem by subsystem inputs u(t) and subsystem outputs y(t). 

In case of tool coupling, the modular structure of coupled problems is exploited in all stages of the 
simulation process beginning with the separate model setup and pre-processing for the individual 
subsystems in different simulation tools. During time integration, the simulation is again performed 
independently for all subsystems restricting the data exchange between subsystems to discrete 
communication points. Finally, also the visualization and post-processing of simulation data is done 
individually for each subsystem in its own native simulation tool. 

The two interfaces have large parts in common. In particular: 

• FMI Application Programming Interface (C) 

All needed equations or tool coupling computations are evaluated by calling standardized "C" 
functions. "C" is used, because it is the most portable programming language today and is the only 
programming language that can be utilized in all embedded control systems. 

• FMI Description Schema (XML) 

The schema defines the structure and content of an XML file generated by a modeling environment. 
This XML file contains the definition of all variables of the FMU in a standardized way. It is then possible 
to run the C code in an embedded system without the overhead of the variable definition (the alternative 
would be to store this information in the C code and access it via function calls, but this is neither practical 
for embedded systems nor for large models). 

Furthermore, the variable definition is a complex data structure and tools should be free how to 
represent this data structure in their programs. The selected approach allows a tool to store and access the 
variable definitions (without any memory or efficiency overhead of standardized access functions) in the 
programming language of the simulation environment, such as C++, C#, Java, or Python. 

Note, there are many free and commercial libraries in different programming languages to read XML 
files into an appropriate data structure, see for example http://en.wikipedia.Org/wiki/XML#Parsers, and 
especially the efficient open source parser SAX (http://sax.sourceforge.net/, http://en.wikipedia. 
org/wiki/Simple_API_for_XML). 

An FMU (in other words a model without integrators, a runnable model with integrators, or a tool 
coupling interface) is distributed in one zip file. The zip file contains: 

• The FMI Description File (in XML format). 
• The C sources of the FMU, including the needed run-time libraries used in the model, and/or 

binaries for one or several target machines, such as Windows dynamic link libraries (.dll) or Linux 
shared object libraries (.so). The latter solution is especially used if the FMU provider wants to 
hide the source code to secure the contained know-how or to allow a fully automatic import of the 
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FMU in another simulation environment. An FMU may contain physical parameters or geometrical 
dimensions, which should not be open. On the other hand, some functionality requires source code. 

• Additional FMU data (like tables, maps) in FMU specific file formats. 

A schematic view of an FMU is shown in the next figure: 

f0,p,inital values (a subset of v(/0)) 
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Enclosing Model } 
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t time 
p parameters of type Real, Integer, Boolean, String 
u inputs of type Real, Integer, Boolean, String 
v all exposed variables 
y outputs of type Real, Integer, Boolean, String 

FMU instance 
(model exchange or co-simulation) 

i 
1 

y 

Figure G-l: Data flow between the environment and an FMU. For details, see chapters 3 and 4. Blue 
arrows: Information provided by the FMU. Red arrows: Information provided to the FMU. 

Publications available for FMI are available from https://www.fmi-standard.org/literature, especially 
Blochwitz et.al. 2011 and 2012. 

G.2.2 FMI Properties and Guiding Ideas 

In this section properties are listed and some principles are defined that guided the low-level design of the 
FMI. This shall increase self-consistency of the interface functions. The listed issues are presented starting 
from high-level properties to low-level implementation issues: 
Expressivity. The FMI provides the necessary features that Modelica®, Simulink® and SIMPACK® models 
can be transformed to an FMU. 
Stability. FMI is expected to be supported by many simulation tools worldwide. Implementing such 
support is a major investment for tool vendors. Stability and backwards compatibility of the FMI has 
therefore high priority. To support this, the FMI defines "capability flags" that will be used by future 
versions of the FMI to extend and improve the FMI in a backwards compatible way, whenever feasible. 
Implementation-. FMUs can be written manually or can be generated automatically from a modeling 
environment. Existing manually coded models can be transformed manually to a model according to the 
FMI standard. 
Processor independence. It is possible to distribute an FMU without knowing the target processor. This 
allows to run an FMU on a PC, a Hardware-in-the-Loop simulation platform or as part of the controller 
software of an ECU, for example, as part of an AUTOS AR SWC. Keeping the FMU independent of the 
target processor increases the usability of the FMU and is even required by the AUTOS AR software 
component model. Implementation: using a textual FMU (distribute the C source of the FMU). 
Simulator independence. It is possible to compile, link and distribute an FMU without knowing the target 
simulator. Reason: The standard would be much less attractive otherwise, unnecessarily restricting the 
later use of an FMU at compile time and forcing users to maintain simulator specific variants of an FMU. 
Implementation: using a binary FMU. When generating a binary FMU, for example, a Windows dynamic 
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link library (.dll) or a Linux shared object library (.so), the target operating system and eventually the 
target processor must be known. However, no run-time libraries, source files or header files of the target 
simulator are needed to generate the binary FMU. As a result, the binary FMU can be executed by any 
simulator running on the target platform (provided the necessary licenses are available, if required from 
the model or from the used run-time libraries). 
Small run-time overhead. Communication between an FMU and a target simulator through the FMI does 
not introduce significant run time overhead. This is achieved by a new caching technique (to avoid 
computing the same variables several times) and by exchanging vectors instead of scalar quantities. 
Small footprint: A compiled FMU (the executable) is small. Reason: An FMU may run on an ECU 
(Electronic Control Unit, for example a microprocessor), and ECUs have strong memory limitations. This 
is achieved by storing signal attributes (names, units, etc.) and all other static information not needed for 
model evaluation in a separate text file (= Model Description File) that is not needed on the 
microprocessor where the executable might run. 
Hide data structure. The FMI for Model Exchange does not prescribe a data structure (a C struct) to 
represent a model. Reason: the FMI standard shall not unnecessarily restrict or prescribe a certain 
implementation of FMUs or simulators (whoever holds the model data), to ease implementation by 
different tool vendors. 
Support many and nested FMUs: A simulator may run many FMUs in a single simulation run and/or 
multiple instances of one FMU. The inputs and outputs of these FMUs can be connected with direct feed 
through. Moreover, an FMU may contain nested FMUs. 
Numerical Robustness. The FMI standard allows that problems which are numerically critical (for example 
time and state events, multiple sample rates, stiff problems) can be treated in a robust way. 
Hide cache: A typical FMU will cache computed results for later reuse. To simplify usage and to reduce 
error possibilities by a simulator, the caching mechanism is hidden from the usage of the FMU for the 
following reasons. First, the FMI should not force an FMU to implement a certain caching policy. Second, 
this helps to keep the FMI simple. Implementation: The FMI provides explicit methods (called by the 
FMU environment) for setting properties that invalidate cached data. An FMU that chooses to implement a 
cache may maintain a set of "dirty" flags, hidden from the simulator. A get method, for example, to a state, 
will then either trigger a computation, or return cached data, depending on the value of these flags. 
Support numerical solvers: A typical target simulator will use numerical solvers. These solvers require 
vectors for states, derivatives and zero-crossing functions. The FMU directly fills the values of such 
vectors provided by the solvers. Reason: minimize execution time. The exposure of these vectors conflicts 
somewhat with the 'hide data structure' requirement, but the efficiency gain justifies this. 
Explicit signature: The intended operations, argument types and return values are made explicit in the 
signature. For example an operator (such as "compute_derivatives") is not passed as an int argument but a 
special function is called for this. The "const" prefix is used for any pointer that should not be changed, 
including "const char*" instead of "char*". Reason: the correct use of the FMI can be checked at compile 
time and allows calling of the C code in a C++ environment (which is much stricter on "const" as C is). 
This will help to develop FMUs that use the FMI in the intended way. 

Few functions. The FMI consists of a few, "orthogonal" functions, avoiding redundant functions that could 
be defined in terms of others. Reason: This leads to a compact, easy to use, and hence attractive API with a 
compact documentation. 
Error handling: All FMI methods use a common set of methods to communicate errors. 
Allocator must free: All memory (and other resources) allocated by the FMU are freed (released) by the 
FMU. Likewise, resources allocated by the simulator are released by the simulator. Reason: this helps to 
prevent memory leaks and runtime errors due to incompatible runtime environments for different 
components. 
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Immutable strings. All strings passed as arguments or returned are read-only and must not be modified by 
the receiver. Reason: This eases the reuse of strings. 
Use C. The FMI is encoded using C, not C++. To avoid problems with compiler and linker dependent 
behavior, run FMU on embedded target. 

This version of the functional mockup interface does not have the following desirable properties. They 
might be added in a future version: 

• The FMI for Model Exchange is for ordinary differential equations in state space form (ODE). It is 
not for a general differential-algebraic equation system. However, algebraic equation systems 
inside the FMU are supported (for example the FMU can report to the environment to re-run the 
current step with a smaller step size since a solution could not be found for an algebraic equation 
system). 

• Special features as might be useful for multi-body system programs, like SIMPACK, are not 
included. 

• The interface is for simulation and for embedded systems. Properties that might be additionally 
needed for trajectory optimization, for example derivatives of the model with respect to parameters 
during continuous integration, are not included. 

• No explicit definition of the variable hierarchy in the XML file. 
• The number of states and number of event indicators are fixed for an FMU and cannot be changed. 

G.3 FMI for Model Exchange 
This section briefly describes the interface to access the equations of a dynamic system from a C program. 
A schematic view of a model in "FMI for Model Exchange" format is shown in Figure G-2. 
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Figure G-2: Data flow between the environment and an FMU for Model Exchange. Blue arrows: 
Information provided by the FMU. Red arrows: Information provided to the FMU. vgtart,u,y,w,xd are of type 
Real, Integer, Boolean, String; f,xc,z are of type Real. 

The goal of the Model Exchange interface is to numerically solve a system of differential, algebraic 
and discrete-time equations. In this version of the interface, ordinary differential equations in state space 
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form with events are handled (abbreviated as "hybrid ODE"). Algebraic equation systems might be 
contained inside the FMU. Also, the FMU might consist of discrete-time equations only, for example 
describing a sampled-data controller. 

G.4 FMI for Co-Simulation 
This chapter defines the Functional Mock-up Interface (FMI) for the coupling of two or more simulation 
models in a co-simulation environment (FMI for Co-Simulation). Co-simulation is a rather general 
approach to the simulation of coupled technical systems and coupled physical phenomena in engineering 
with focus on non-stationary (time-dependent) problems. 

FMI for Co-Simulation is designed both for coupling with subsystem models, which have been 
exported by their simulators together with its solvers as runnable code (Figure G-3), and for coupling of 
simulation tools (simulator coupling, tool coupling (Figure G-4 and Figure G-5). 

Figure G-3: Co-simulation with generated code on a single computer, 
(for simplicity shown for one slave only). 

Figure G-4 shows tool coupling on a single computer. 

Simulation tool 
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Model j Solver | 
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Figure G-4: Co-simulation with tool coupling on a single computer. 
(for simplicity shown for one slave only). 

In the tool-coupling case the FMU implementation wraps the FMI function calls, to API calls which are 
provided by the simulation tool (for example a COM or CORBA API). Additionally to the FMU the 
simulation tool is needed to run a co-simulation. 

In its most general form, a tool coupling based co-simulation is implemented on distributed hardware 
with subsystems being handled by different computers with maybe different OS (cluster computer, 
computer farm, computers at different locations). The data exchange and communication between the 
subsystems is typically done using one of the network communication technologies (for example MPI, 
TCP/IP). The definition of this communication layer is not part of the FMI standard. However distributed 
co-simulation scenarios can be implemented using FMI as shown in Figure G-5. 
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Figure G-5: Distributed co-simulation infrastructure (for simplicity shown for one slave only). 

The master has to implement the communication layer. Additional parameters for establishing the 
network communication (for example identification of the remote computer, port numbers, user account) 
are to be set via the GUI of the master. These data are not transferred via the FMI API. 

G.4.1 FMI Basic Mathematical Description 

Co-simulation exploits the modular structure of coupled problems in all stages of the simulation process 
beginning with the separate model setup and preprocessing for the individual subsystems in different 
simulation tools (which can be powerful simulators as well as simple C programs). 

During time integration, the simulation is again performed independently for all subsystems restricting 
the data exchange between subsystems to discrete communication points tCj. For simulator coupling, also 
the visualization and post-processing of simulation data is done individually for each subsystem in its own 
native simulation tool. In different contexts, the communication points tcis the communication steps Co-
simulation exploits the modular structure of coupled problems in all stages of the simulation process 
beginning with the separate model setup and preprocessing for the individual subsystems in different 
simulation tools (which can be powerful simulators as well as simple C programs). 

During time integration, the simulation is again performed independently for all subsystems restricting 
the data exchange between subsystems to discrete communication points tcFor simulator coupling, also 
the visualization and post-processing of simulation data is done individually for each subsystem in its own 
native simulation tool. In different contexts, the communication points tcu the communication steps tC\ —• 
tCj+i and the communication step sizes hcj := tcH-i - tc, are also known as sampling points (synchronization 
points), macro steps and sampling rates, respectively. The term "communication point" in FMI for Co-
Simulation refers to the communication between subsystems in a co-simulation environment and should 
not be mixed with the output points for saving simulation results to file. 

FMI for Co-Simulation provides an interface standard for the solution of time dependent coupled 
systems consisting of subsystems that are continuous in time (model components that are described by 
instationary differential equations) or time-discrete (model components that are described by difference 
equations like, for example discrete controllers). In a block representation of the coupled system, the 
subsystems are represented by blocks with (internal) state variables x(t) that are connected to other 
subsystems (blocks) of the coupled problem by subsystem inputs u(t) and subsystem outputs y(t). In this 
framework, the physical connections between subsystems are represented by mathematical coupling 
conditions between the inputs u(t) and the outputs y(t) of all subsystems, Kiibler and Schiehlen (2000). 
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Figure G-6: Data flow at communication points. 

For co-simulation, two basic groups of functions have to be realized: 

• functions for the data exchange between subsystems 
• functions for algorithmic issues to synchronize the simulation of all subsystems and to proceed in 

communication steps tct —> tcj+] from initial time tco •' = ts(art to end time tcN := tstop 

In FMI for Co-Simulation, both functions are implemented in one software component, the co-
simulation master. The data exchange between the subsystems (slaves) is handled via the master only. 
There is no direct communication between the slaves. The master functionality can be implemented by a 
special software tool (a separate simulation backplane) or by one of the involved simulation tools. In its 
most general form, the coupled system may be simulated in nested co-simulation environments and FMI 
for Co-Simulation applies to each level of the hierarchy. 

FMI for Co-Simulation defines interface routines for the communication between the master and all 
slaves (subsystems) in a co-simulation environment. The most common master algorithm stops at each 
communication point tCj the simulation (time integration) of all slaves, collects the outputs y(tCj) from all 
subsystems, evaluates the subsystem inputs u(tCj), distributes these subsystem inputs to the slaves and 
continues the (co-)simulation with the next communication step tc, —* tci+i = tc,+ he with fixed 
communication step size he. In each slave, an appropriate solver is used to integrate one of the subsystems 
for a given communication step tCj —• tci+i. The most simple co-simulation algorithms approximate the 
(unknown) subsystem inputs u(t), (t > te,) by frozen data u(tCi) for tct <t< tci+i. FMI for Co-Simulation 
supports this classical brute force approach as well as more sophisticated master algorithms. FMI for Co-
Simulation is designed to support a very general class of master algorithms but it does not define the 
master algorithm itself. 

The ability of slaves to support more sophisticated master algorithms is characterized by a set of 
capability flags inside the XML description of the slave. Typical examples are: 

• the ability to handle variable communication step sizes hcu 
• the ability to repeat a rejected communication step tCj —> tci+i with reduced communication step 

size, 
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• the ability to provide derivatives w.r.t. time of outputs to allow interpolation, 

• or the ability to provide Jacobians. 

FMI for Co-Simulation is restricted to slaves with the following properties: 

• All calculated values v(t) are time dependent functions within an a priori defined time interval tstart < t < tslop (provided stopTimeDefined = fmiTrue when calling 
fmiSetupExperiment). 

• All calculations (simulations) are carried out with increasing time in general. The current time t is 
running step by step from tstart to tstop . The algorithm of the slave may have the property to be 
able to repeat the simulation of parts of [tstart, tstop ] or the whole time interval [tstart, tstop ]. 

• The slave can be given a time value tci, tstart < tci < tstop. 
• The slave is able to interrupt the simulation when tcf is reached. 
• During the interrupted simulation the slave (and its individual solver) can receive values for inputs 

u{tci) and send values of outputs y(tci) . 
• Whenever the simulation in a slave is interrupted, a new time value tci+l, tct < tcj+l < tstop can be 

given to simulate the time subinterval tci <t< tcM 

• The subinterval length hci is the communication step size of the ith communication step, 
hei = tcj+l — tCj. In general, the communication step size can be positive, zero, but not negative. 

FMI for Co-Simulation allows a co-simulation flow which starts with instantiation and initialization 
(all slaves are prepared for computation, the communication links are established), followed by simulation 
(the slaves are forced to simulate a communication step), and finishes with shutdown. In detail the flow is 
defined in the state machine of the calling sequences from master to slave. 

The slave simulators are seen by the master simulator as purely sampled-data systems. Such a sampled-
data system can be 

• A "real" sampled-data system (so a sampled discrete controller; the inputs and outputs can be of 
type Real, Integer, Boolean, String, or enumeration. Variables of this type are defined with 
variability = "discrete"; the smallest sample period as accessible by the outside of the 
FMU is defined by attribute stepSize in element Default Experiment). 

• A hybrid ODE that is integrated between communication points (known as "sampled access to time 
continuous systems") where internal events may occur and be handled, but events are not visible 
from the outside of the FMU. It is assumed here that all inputs and all outputs of this hybrid ODE 
are Real signals (defined with variability = "continuous"), 

• A combination of the systems above. 

The communication between the master and a slave takes only place at a discrete set of time instants, 
called communication points. 

G.5 Literature 
The main reference to the Functional Mockup Interface 2.0 is (Modelica Association Project FMI 2013) 
from which all text and all figures in this appendix has been cited. However, note that the FMI 2.0 
definition document provides much more information than what has been presented here. 

Apart from the FMI 2.0 definition document, the following publications provide additional 
information: (Blochwitz, Otter, Akesson, Arnold, ClauB, Elmqvist, Friedrich, Junghanns, Mauss, 
Neumerkel, Olsson, and Viel 2012; Akesson, Braun, Lindholm, and Bachmann 2012; Benveniste, 



Appendix G—FMI—Functional Mockup Interface 1169 

Caillaud, and Pouzet 2010; Kubler and Schiehlen 2000; Lee and Zheng 2007; Pouzet 2006; ITEA2-
MODELISAR 2009). 

A related but different approach to numerically stable co-simulation using TLM-connectors is 
described in (Siemers, Fritzson, and Fritzson 2006). Secure co-simulation is described in (Norling, 
Broman, Fritzson, Siemers, and Fritzson 2007). A general FMU interface for Modelica is described in 
(Chen, Huhn, and Fritzson 2011). 
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Caillaud, and Pouzet 2010; Kubler and Schiehlen 2000; Lee and Zheng 2007; Pouzet 2006; ITEA2-
MODELISAR 2009). 

A related but different approach to numerically stable co-simulation using TLM-connectors is 
described in (Siemers, Fritzson, and Fritzson 2006). Secure co-simulation is described in (Norling, 
Broman, Fritzson, Siemers, and Fritzson 2007). A general FMU interface for Modelica is described in 
(Chen, Huhn, and Fritzson 2011). 
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encapsulated operator 484 algorithm 49, 54, 391,424 
of arrays 329 concept 421 
scalar operator 274,284 full description 421 

= initial algorithm 424 
equation equality 274 section 49 

0 viewed as function 465 
zero element constructor 488 algorithm section 423,1061 

ID domain execution of 424 
for PDEs 408 algorithm sections 981 

2D domain algorithmic constructs 49 
for PDEs 409 aliases 59 

32-bit integer 93 aliasing 
3D domains of external function parameters 474 

for PDEs 410 Allan-U.M.L 69 
3D visualization 1040 AllSizes enumeration 118 
64-bit floating point precision 93 altitude 83 
A thermodynamic system 15 Analog computing 72 
Abacuss II language 1156 analog simulators 71 
Abadi and Cardelli 118 analyzing models 
ABCDsystem model 342 model verification 10 
abs function 51,282,289,452,613 model-based diagnosis 10 
absolute Value annotation 537 sensitivity analysis 9 
abstract class 43 analyzing models 9 
abstract data types 495 and 274,287 
abstract syntax 63,1044 angle 205 
Absyn 1044 angular momentum 205 
acausal 36 animation 
acausal connection 193 in graphical annotations 534 
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motation 60 versionBuild 548 
absoluteValue 537 versionDate 548 
algorithm 524 annotation attribute 
Bitmap 534 connectorS izing 539 
Capacitor example 519 extent 527 
choice 542 grid 527 
choices 60,167, 542 initialScale 527 
class annotation 522 preserveAspectRatio 527 
color and appearance 528 annotation placement 522 
conversion 547 annotation() 
CoordinateSystem 527 Diagram example 519 
dateModified 548 Icon eample 519 
defaultComponentName 536 syntax 519 
defaultComponentPrefixes 536 annotations 519, 521 
defaultConnectionStructurally... 537 derivative 554 
Diagram 526 ANSI-C format strring 278 
Dialog 538 aperiodic sampler 630 
documentation 545 APeriodicSamplerClocked model 630 
Documentation example 519 APeriodicSamplerUnclocked model 630 
DocumentationClass 546 APeriodicSamplerUnclocked2 631 
elements simple 521 API 
Ellipse 533 all OpenModelica calls 1123 
equations 524 OpenModelica 1121 
experiment 543 Apollo 12 82 
Extent 526 application examples 793 
for Code Generation 544 application expertise 9 
for parameter evaluation 544 arithmetic operators 284 
function 556 array 322, 335, 339, 1061 
function annotations 554 addition and subtraction 329 
graphical 524 arithmetic operators 329 
graphical layers 525 assignment 327 
graphical attributes 526 assignment operator 327 
HideResult 544 built-in functions 335 
HTML documentation 545 comprehensions 316 
Icon 526 concatenation 48, 318, 319,339 
import 524 concatenation examples 320 
Include 479 conceptual array type 146 
IncludeDirectory 479 construction 315,318 
Inline 460 constructor functions 336 
InlineAfterlndexReduction 461 declarations 311 
interactive menus 541 dimension 335 
inverse 459 dimension index bounds 312 
Latelnline 460 dimensionality conversion 335 
Library 479 dimensions 97 
LibraiyDirectory 479 division 330 
Line 532 element-wise multiplication 332 
missinglnnerMessage 536 element-wise operators 329 
Point 526 empty 341 
Polygon 532 empty array literals 342 
preferredView 546 equality operator 327 
Rectangle annotation attribute 532 exponentiation 333 
redeclaration element 522 flexible size 445 
revisionld 548 function vectorization 444 
singlelnstance 543 index vectors 322 
smoothOrder 461 indexing 321 
standard names 521 indexing boolean values 322 
standard syntax 521 indexing by enumerations 327 
statement 524 indexing enumeration values 322 
syntax 521 introduction 47,311 
Text 533 iterators 316 
type checking 520 layout row or column 61 
unassignedMessage 537 lower index bound 312 
uses 547 Matlab compatibility 324 
variable 523 matrix vector algebra functions 338 
variable visibility 544 modification 150 
version handling 546, 547, 548, 549 modification flexible sizes 151 
version numbering 547 multiplication linear algebra 332 
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of connectors 214 atan2 function 291 
reduction functions 337 ATplus library 913 
reduction with iterators 337 attribute 80,1061 
resizing of 445 start 106 
set formers 316 attributes 
size flexible 313 assignments 34 
size function 335 displayUnit 94,559 
slice usage 324 fixed 94, 106, 149, 1008 
slices 322 max 30, 93, 94 
string concatenation 328 min 30, 93, 94 
type 119 nominal 94 
types 311,313 quantity 94, 558, 559 
upper index bounds 312 shared 41 
usage examples 325 start 20,28,34,81,94,269 
vectorization 339 stateSelect 95 

array constructor 1061 unit 94, 558, 559 
array element 1061 augmentation 
array functions augmentation set 240 

{} 336 connecting declared undeclared 242 
array() 336 automata 
cat for concatenation 339 assignment recognizer 642 
cross 339 cellular 651 
diagonal 336 finite state 635 
fill 336 finite state elasto backlash 683 
identity 336 finite state Petri nets 674 
linspace 336 finite-state vs Modelica state ma. .650 
matrix 335 game of life 652 
max 337 watchdog system 644 
min 337 backlash 682 
ndims 335 DCMotorCircuitBacklash model 684 
ones 336 ElastoBacklash model 685 
outerProduct 339 SimpleElastoBacklash 683 
product 337 backSampleO 710 
scalar 335 BackSampleExl model 710 
size 335 BackSampleEx2 model 711 
skew 339 Backus Naur Form 1069 
sum 337 Backward FillPattem 528 
symmetric 339 balancing 
transpose 339 balancing conditions 389 
vector 335 Capacitor example 395 
zeros 336 Circuit example 395 

ArrayConcatenation model 344 connection set 392 
ArrayConnects model 215 connector class restrictions 392 
arrayLayout annotation 61 Dynamic Volume example 398 
Arrow equalityConstraint 389 

Filled 529 FixedBoundary__pTX example 399 
Half 529 globally balanced 393 
None 529 local equation system size 390 
Open 529 local number of unknowns 389 

Arrow graphic style 529 locally balanced 393 
ASCEND language 1154 model examples 394 
ASCII 267, 1069 restrictions on connector classes 217 
asin function 291 SimpleAir medium example 397 
assert 361 unbalanced models 388 
assert statement 436 balancing equation systems 387 
AssertionLevel.error 436 base class 30, 136, 1061 
AssertionLevel.warning 437 base clock partitioning 719 
AssertTest2 model 362, 436 base function 446 
assignment 425,1061 base quantities 559 

functions multiple results 426 BaseClassExtendsConflict model 142 
of array 327 base-clock partition 713 

assignment conversion 276 base-clock partitioning 705 
assignment recognizer 642 BaseClockPartitionEx model 716 
AssignmentRecognizer model 642 BaseController model 574, 677 
associativity 273 BaseControllerClocked model 679 
AST 1044 BaseCorrelation model 388 
atan function 291 BaseProperties model 397 
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BaseSamplerClocked model 628 
BaseSamplerUnclocked model 628 
BasicClockedSynchronous 58 
BasicClockedSynchronous model 382 
BasicDEVSTwoPort model 660 
BasicVolume 

first model 813 
BasicVolume model 802, 803, 806 

stream connector version 813 
BasicVolumeFirst model 813 
Basic VolumeTest model 814 
Battery model 242 
behavior 82 

event related 613 
redefinition 174 

Bezier 
smooth curve pattern 528 

bi-directional flows 245 
bilinearSampling function 473 
BilinearSamplingTest class 473 
binary operators 

overloaded 486 
binding equation 349,1061 

balanced equation systems 391 
BioChem pathway library 913, 966 
biochemical application 15 
biological systems 831 
bipartite graph 1007 
Bitmap annotation attribute 534 
block 29,89,101 
block diagram 72, 582 

model of DC motor servo 583 
block diagrams 582, 584 
Block lower triangular 68 
block oriented modeling 36, 37, 567 
BLT partitioned example 985 
BLT partitioning 68 

example 982 
Taijan's algorithm 987 

BLT transformation 63 
blueprint model 43 
BNF 268, 1069 
board temperature 114 
BoardExample class 114 
bodies 879 
boiler 245 
BondGraph library 913 
BondLib library 914, 969 
Boolean 23,30,93,95,271,272,283 
BoolView model 656 
bootstrapping a compiler 1033 
BorderPattern 528 
bottom-up modeling 569 
BouncingBall model 57, 360, 1050 
BouncingBallError model 360 
boundary 

of PDE 404 
of spherical domain 411 

boundary conditions 
of PDE problems 403 

break 50 
break statement 430 
Broken model 388 
BrokenExpanded model 388 
bubblesort 1134 
Buildings library 914 
builtin 

external function language 467 
built-in 

array functions 335 
data types 23 
functions 48, 224, 276, 277, 289,452 
operators 267,291 
time variable 46, 269, 354 
types 30,93, 115,271 

built-in 
time variable 599 

built-in 
event-related functions 600 

built-in 
time variable 612 

built-in 
time variable 660 

bus 
information bus 41 

bus as expandable connector 238 
bus multibody system 771 
C 

external function language 467 
external functions 469 
language 470,472,473 

C compiler 
GNU 480 
Microsoft VisualStudio 480 

C functions 468, 472, 474 
Clanguage 

functions 473 
C# 1041 
C++ 1069 
CAD model 902 
capacitor 12, 36, 44, 45, 746 
Capacitor model 44 
CapacitorMicroCircuit model 163 
Car 39 
CarController 39 
Cardan angles 902 
cardinality 89,223, 292, 356,465 
CardinalityResistor model 224, 356 
carrier 205 
cat function 48, 339 
causal block-oriented 37 
causal connection 193 
causality 36, 38, 89, 187, 425, 582 

analysis 211 
fixed 29,979 
prefix 29 
prefixes 101,105,212 
semantics of 101 

ceil function 277,282,290,452,613 
CelestialBody class 80 
CelestialBody model 144 
cellular automata 651 
cellular phone 5 
change function 89, 295, 424, 465, 611 
character set 267 
charge 205 
Chassis 39 
chemical potential 205 
chemical reactions 828 
choices 

annotation 60 
Choices annotation 542 
choices menu 167 
CircuitBoard 227 



Index 1197 

CircuitBoard model 227 hold() operator 706 
CircuitBoardl class 114 inferred clock 702 
circular2Dfunc function 410 integer quotient interval 703 
class 19, 26, 80, 143,1061 introductory example 694 

abstract 43 noClock() operator 712 
base class restrictions 139 partition initialization 715 
class annotation 522 partitioning example 717 
comparison to function 464 periodic clock synchronization 702 
comparison to packages 507 rational number interval 703 
derived class 1062 real value interval 703 
extension design 173 sample() operator 705 
generic 168 shiftSampleO operator 709 
inheritance restrictions 139 solver clock 705 
local type 122 solver methods 723 
parameterized 168 state machine graphic repr 730 
partial 43 sub-clock conversion operators 707 
type parameter 171 sub-clock inferencing 721 

Class Definition grammar 1070 sub-clock partitioning 713, 720 
class extends 122,165, 166, 175 sub-partition synchronization 726 

example inherited library 176 subSample() operator 707 
general rules 177 superSampleQ operator 708 
redeclaration of 178 unclocked piecewise constant var 697 

class parameter 169 clocked partitions 715 
constraining type 170 associated solver 724 

class parameters base-clock partitioning 719 
instances 32 detailed description 719 
types 33 evaluation order 715 

class type 1062,1063 event handling 715 
class type repr 120 partitioning example 717 
classes 79 clocked state machine 

generic 31 activation handling 733 
specialized 29 detailed description 729 

clock different approaches 740 
synchronous 58 graphic representation 730 

clock inference 715 hierarchical state machine example735 
clock interval 699 merging connections 734 
Clock type 23, 30, 93 merging variable definitions 734 
Clock variables 698 precise semantics 732 
Clock() reset handling 733 

condition-based clock 704 state activation 732 
constructor 701 states 729 
function 603 clocked state variable 699 
inferred clock 702 Clocked variables 698 
integer quotient interval 703 clocked vs unclocked 615 
real value interval 703 comparison 727 
solver clock solverMethod 705 ClockedPIEx model 699 

clock, common 634 ClockedVarWhen model 617 
clocked discrete-time variability 281 ClockSynch model 702 
clocked instance expression 703 ClockTicks model 603, 726 
clocked modeling ClockTicksWithModelica32 model 726 

backSampleO operator 710 closed system 760 
base-clock partition 713 closeMyTable function 479 
base-clock partitioning 719 Club of Rome 845 
clock partitioning 715 Cob language 1157 
Clock variables 698 code generation 1041 
Clock() constructors 701 code generation annotations 544 
clocked state machines in detail 729 collectNegative function 446 
Clocked variables 698 color 
clocked vs unclocked 727 graphical annotations 528 
clocked when-equation 700 ColorData model 136 
clocks inexact real intervals 702 ColorData record 31 
condition-based clock 704 colored petri nets 675 
controller and plant 694 ColoredClass 33 
detailed presentation 694 ColoredPoint class 31 
discrete-time variables 697 ColoredPoint model 137 
discretized continuous-time 722 Colors enumeration type 427 
hierarchical state machine ex 735 columnMajor 61 
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array external function 475 
CombiningBuses model 240 
comment 267 
comment syntax 1069 
comments 24,545 
communication link model 862 
communication networks 854 
communication port 857 
communication protocols 

end-to-end 854 
CompareFuncType 447 
compiler 1034,1040 

automatic generation of 1042 
phases 1043 

compiling Modelica models 992 
Complex 23 
complex number 52 
Complex numbers 

complete example 489 
use cases 490 

Complex operator record 484 
Complex record 52,91 
ComplexLib library 914 
ComplexNumbers package 495 
ComplexUser class 496 
Complex Voltage record 91 
compliant 

PartialCompliant model 686 
component 194,1062 
Component Clause grammar 1071 
component expression 1X3,1062 
component framework 187 
component library 

design 44 
use 44 

Component model 227 
components 38, 187,188 

connected 38 
composite connection 193 
compressor 808,825 
concatFourVectors function 445 
concatThreeEqualSizeVectors 445 
concurrency 592 
concurrent access 688 

dining philosophers problem 688 
CondAssign model 432 
CondAssignFunc function 432 
condenser 245 
condition 

if-statement 431 
conditional assignments 432 
conditional equation 

if-equation 355 
of event 594 

conditional expression 55, 600, 607, 614 
in equation 56 
when-statement 433,434 

conditional instance 165 
connection 216 

conditional instance declaration 107 
conditional operator 288 
ConditionalResistorCircuit model 107 
ConditionalResistorCircuit2 model 165 
condition-based clock 704 
ConditionPort Petri net model 671 
conductance 827 
conduction 757 

conflict 
multiple-definition in when 435 

connect 40,65,191,208,220 
arrays of connectors 214 
overconstrained connections 379 
syntax 191 

connect equation 219 
in for-equations 355 
in ResistorCircuit 198 
in SimpleCircuit example 36 
main description 191,354 
restrictions 210 
shown as wires 65 

ConnectedParameter model 223 
connecting components 207 
connection 190, 191,1062 

acausal 193 
annotation 531 
array of connectors 214 
causal 193 
causal, single source 213 
composite 193 
conditional instance 216 
direction of 224 
electrical 192 
expandable connectors 239 
explicit 226 
graphs See 
implicit 40,224, 226, 230 
mechanical 192 
multiple 198 
overconstrained 263,374 
overconstrained equations 380 
overview 187 
restriction 211 
text and line 531 

connection constraint 
arrays 214 
constants 214 
subscripts 214 

connection diagram 188 
connection diagrams 38 
connection equation 219,254 

cardinality-dependent 223 
generation for constants 223 
generation for flow variables 222 
generation of 219 
generation with inner outer 233 
potential variables 222 

connection graphs 379 
connection mechanism 187 
connection semantics 208 
connection set 213,217,219,234,256 

inside, augmented flow vars 221 
connection sets 221,222 
connection structure 226 
connections 40 
connections, explicit 190 
connections, implicit 190 
Connections.branch() 379 
Connections.isRoot() 379 
Connections.potentialRoot() 379 
Connections.root() 379 
Connections.rooted() 379 
connector 29, 39, 88,188, 194,1062 

class 39 
composite 207 
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design guidelines 203 contract designer - user 79 
electrical 192 control systems 592, 667 
expandable 238 control volume 247, 759, 801 
flange 193 air filled 800 
Framea 883 basic model 802 
hierarchical 208 connector interfaces 810 
in graphical layer 530 energy as internal energy 806 
input 211 pneumatic cylinder 822 
inside 208 simple with varying mass flows 803 
local element 191 work and energy balance 808 
mechanical 192 controllable 5 
nested 191 ControlledMass model 717 
output 211 ControlledValveFlow model 821 
outside 208,212 ControlledValveFlowFirst model 820 
overview 187 controller 
signal-based 207 discrete 369 
stream 42 sampled and clocked 695 
syntax 210 controller and plant 

connector class 188 clocked modeling 694 
balancing restrictions 217 Controller model 28 
block/signal 799 convection 758 
composite 207 conversion 
design guidelines 203 annotation 547 
mechanical 799 array dimensionality 335 
physical 204 of type 276 
signal-based 207 coordinate direction 195 

connector matching 233 coordinate system 194 
connectorSizing attribute 539 mechanical translational 196 

rules 540 coordinate system kinematics 779 
ConnectUseEach model 216 coordinate systems 
conservation Icon and Diagram 527 

of energy 804 CORBA 37 
of mass 803 cos function 48,291 

conservation equations 568 cosh function 291 
conservation of energy 205, 764 counters 621 
constant 23, 25, 100, 167, 584,1062 counting equations 390 

declarations 34, 149 algorithm sections 391 
equations 223 CountingStateMachinel model 638 
literals 24 Cross FillPattern 528 
variability 99 cross function 339 
variability prefix 105 CrossDiag FillPattern 528 
variable 99 crossing functions 1011 
variables 66 CrossProduct model 216 

constant variability 280 CSSL 1151 
constants 24 CtrlFlowSystem model 821 
ConstantVoltageSource model current 205 

with homotopy 373 current law 747 
constitutive equations 43, 44, 45, 195 CustomerGeneration model 656 

definition 568 customizing library 
constrained motion 787 GUI annotations 536 
constrainedby 162, 170 cyber-physical 
constraining type 122, 162, 170 modeling 567, 1018 

array 164 whole-product 1019 
transitively non-replaceable 140 CylinderBus expandable connector 244 

constraints 363 d'Arcy'slaw 753 
constructor function 478 DAE 65,66 

overloaded definition 483 examples 586 
constructor functions 336 solution 999 
constructors DAE Example 

Clock() 701 BLT partitioning 982 
continuous flow model 856 DAE index 1001 
continuous PI controller 573 DAEexample model 22 
continuous PID controller 575 dangerous 5 
continuous-discrete unification 598 Dash LinePattern 528 
continuous-time 100 DashDot LinePattern 528 

clocked discretized cont-time 721 DashDotDot LinePattern 528 
continuous-time variables 595 DASSL DAE solver 1000 
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data fields 122 coordinate system 527 
data parallelism 1022 diagram layer 526 
data-flow principle 597 DiagramMap record 530 
dateModified annotation 548 Dialog annotation 538 
DC motor 794 Dialog annotation attributes 539 
DC motor servo 578 DialogDemo model 538 
DCMotorCircuit 796 diamond inheritance 137 

connector classes 798 difference equations 587 
simulation 800 differential algebraic equation 

DCMotorCircuit model 208, 795 complete system 979 
DCMotorCircuit physics 795 examples 586 
DCMotorCircuit2 model 210 general solution algorithm 1008 
DCMotorCircuitBacklash model 684 hybrid 978 
DCMotorKernel model 209 hybrid in Modelica 980 
DEABM 999 Pendulum example 22 
debugging 1014 solution 999 

algorithmic code debugger 1036 solution algorithm steps 1009 
integrated 1016 solution example 65 
of equation models 1015 solving HelloWorld example 20 
transformational 1015 solving hybrid DAEs 1008 

declaration sorting 63 
conditional 107 symbolic simplification 992 
definition by inner 113 differential equations 11 
of function 438 stiff 997 
order 143 DifferentialOperators package 407 
processing 143 DifferentialOperators 1D package 416 
reference by outer 113 differentiation See der 

declaration assignment 1062 DIGIT 268 
declaration equation 1062 digital circuits 635 

acyclic for parameters 350 dimension 558 
arrays 327 dimension checking 561 

declaration equations 348, 349, 981 dimension size 
declaration order 107 in a function 465 
declaration prefixes 98 dimensionality conversion 335 
declarations 79 dining philosophers problem 688 
declarative constructs 421 dining philosophers simulation 693 
declarative programming 26 DiningTable model 689 
deductive modeling 568 diode characteristic 56 
default parameter start-value 368 Diode model 56,614 
default value 25 direction 292 
defaultComponentName annotation 536 of a connection 224 
defaultComponentPrefixes annot... 536 directory hierarchy 
defaultConnectionStructurallylnco... 537 mapping of packages 504 
definition declaration 41, 113 discontinuous 55 
delay 89,292,465,612 discontinuous change 
DeQueueUser class 509 of variable 616 
der 12, 20, 89, 100, 291,424, 465 discrete 99,101,105,282,596 
derivative annotation 456, 554 variability prefix 105 
derivative operator 1049 discrete event 55 
derived class 30,1062 discrete event system specification 658 
design 1028 discrete model 856 
design model 1020 examples 624 
design optimization 868,1039 formalisms 624 
designing interfaces 581 discrete state space 625 
DESLib library 914 discrete time 
destructor function 478 clocked 100 
det function 920 discrete variables 275, 979 
determinism 592 DiscreteScalarStateSpace2Unclocked633 
deterministic 597 DiscreteScalarStateSpaceClocked 632 
deterministic model 11 DiscreteScalarStateSpaceUnclocked 632 
DEVS 658, 742 discrete-time 99 

job shop model 660 unclocked 100 
pipelined DEVS model 664 discrete-time variability 281 

diagnosis 10 discrete-time variables 595 
diagonal function 336 clocked modeling 697 
Diagram displayUnit 560 

annotation 526 displayUnit attribute 94, 559 
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dissipation and heat sources 825 each keyword 150 
disturbance inputs 5 ECircuit model 221 
disturbance signal 584 ecological systems 831 
div function 282, 290,452, 613 economic systems 852 
divergence operator 402 edge function 
division 284 definition 295 

of arrays 330 graphic explanation 611 
division by zero 285 not in functions 89,424,465 
document used to define when 434 

hierarchical 1029 effort variable 205 
Documentation annotation 545 egalitarian society 838 
DocumentationClass annotation 546 eigenValueMatrix function 919 
domain eigenvalues function 

electrical 746 Complex number use case 490 
geometrical for PDE 402 elaboration 1040,1044 
heat 746 ElastoBacklash model 685 
hydraulic 746 electrical circuits 746 
magnetic ID 746 electrical component 
of PDE 403 EMF 797 
physical 205 Ground 797 
rotational ID 746 Inductor 797 
translational ID 746 Resistor 797 

domain property TwoPin 797 
carrier 205 electrical connector classes 
flow quantity 205 NegativePin 799 
Modelica library 205 Pin 799 
potential 205 PositivePin 799 
type 205 ElectricalBus model 242 

domain type 205 Electro Motoric Force 749 
DomainCircular2D domain 409 electromagnetic field 113 
DomainCircular2DGrid record 410 element 1062 
DomainLinelD domain 408 element modification 1062 
DomainLinelDGrid model 409 element redeclaration 1062 
DomainRectangle2D record 407 element-wise 
Domains package 416 array arithmetic 329 
DomainSphere3DGrid record 411 array multiplication 332 
Dot LinePattern 528 general function calls 340 
double 93,271 string array concatenation 328 
double precision 271 element-wise operators 285 
DoubleEndedQueue package 509 Ellipse annotation attribute 533 
DoublePendulumCylinders model 892 else 50, 55, 274, 275, 288, 355, 356 
Double WhenConflict model 359 elseif 50,355,431 
DoubleWhenConflict2 model 435 elsewhen 357,359,433,436,618 
DoubleWhenSequential model 435 EMF model 748, 749, 797 
DriveLine model 128 empty array 341 
DriveLineBase model 128 empty array literals 342 
DriveLineBaseClutch model 129 encapsulated 
DrModelica 1037 advice for use 515 
DrModelica electronic document 20 class encapsulation 104 
dummy derivatives method 1005 comparison to Java 514 
duplicate names &1 ComplexNumbers example 495 
Dymola 20, 69, 1027, 1046 definition 1062 

Dynamic Modeling Laboratory 71 explicit dependencies 59 
Dynamic Modeling Language 1151 general definition 502 
Dynamic Modeling Language 71 prefix 105 
scripting commands 1143 encapsulated operator 484 

Dymola environment 1053 encapsulation 104,495 
Dymola language 1151 of packages 514 
dynamic model 11 enclosing scope 109 

continuous-time 12 end-to-end communication protocols 854 
discrete-time 12, 13 energy 247 

dynamic optimization 1039 enthalpy 768 
dynamic semantics 1041 flow 768 
DynamicSelect annotation 534 internal 768 
dynamic Viscosity function 179 energy balance 250 
Dynamic Volume model 399 splitting 260 
Dynasim 1053 energy carriers 746 
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energy conservation 745 timeInState() 384 
energy flow 204 transition() 383 
energy forest 849 uses 347 
Engine model 42, 241 equation section 423 
EngineBus expandable connector 244 equation sorting 
engineBus instance 244 of clocked partitions 715 
EngineBus model 41,240, 241 equation-based languages 1151 
EngineSystem4 model 244 equation-based object-oriented 
Engine V6 model 901 languages 1151 
enhancements equations 

function 90 algebraic 586 
enthalpy 764 differential 585, 587,980 

mixing unstable 249 synchronous clock-based 381 
enumeration 23, 30, 95, 117 Equations grammar 1072 
Enumeration 93 equilibrium 761 
environment 1027 equitable society 840 
Environment model 41,225 error 
environment temperature 226 local error 995 
environment variable access 225 reporting 475 
environmental temperature 113 ErrorColor model 137 
Environmentlnstances model 225 ErrorNestedWhen model 359 
Environments WithSubsystem model 229 escape codes 272 
EOO languages 1151 Euler 
equality explicit and implicit methods 994 

of arrays 327 Euler angles 902 
equality coupling 40, 190 euler integration method 68 
equality equations 351 EuroSim 70 
equality operators 286 evaluateLinear function 463 
equalityConstraint function 377, 378 evaluation 
EqualityEquations model 351 order of 274 
equation evaluation order 

activeState() 384 of clocked partitions 715 
algebraic 11 event 12,55,275,357,602,606,613 
annotation of 524 behavior 593,595,613 
assert 361 behavior conditional equations 594 
categories 347 built-in functions and operators 600 
clocked state machines 383 clock-based 600 
concept 1062 concept 593,1063 
conditional 101 condition 593 
connect 191 creation 599 
counting 390 definition 593 
declaration 34 detection during simulation 1010 
differential 11 DEVS 658 
differential-algebraic 64 edge 611 
equality equations 351 event iteration 296, 1008 
equation sign 71 eventiteration 623 
for-equation 352 events at same time 623 
hybrid PDAEs 401 external 599 
in declarations 349 handling clocked partitions 715 
in Modelica 33 handling of events 613 
initial 34 instantaneous equations 593 
initial equation example 653 internal 599 
initialState() 384 mathematical functions 613 
introduction 347 multiple events 623 
kinds of 11 ordering 593 
kinds of equations 351 Petri net models 666 
modification 34 point in time 593 
normal 34 prevention by noEvent() 606 
of arrays 327 prevention using smooth 608 
overconstrained operators 374, 379 previous() 610 
partial differential 11,400 priority 617 
properties 347 propagation 618 
referentially transparent 421 state event 600 
section 49 synchronization 618 
sorting 987 time event 599 
terminate 362 variables 593 
ticksInStateQ 384 when-statement 433 
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event handling 
data dependency order 623 
declaration order 623 

event-based stochastic processes 655 
EventGenerator model 645, 646, 650 
EventPortlnput model 645 
EventPortOutput model 645 
exact periodic clocks 

automatic synchronization 702 
examples 

DC motor 208 
electrical component library 44 
moon landing 84 
pendulum 3D double 890 
pendulum doulble cylinders 892 
pendulum ext force 896 
pendulum rotation angle steering 898 
pendulum with damped torsion... 897 
pendulum with PD controller 899 

execution 63 
execution and run-time module 1033 
exp function 291 
expandable connector 41, 238, 1063 

connecting inputs and non-inputs 240 
connecting simple variables 240 
connections 239 
nested buses 243 
no flow variables 241 
potentially present variables 242 

ExpandedColor model 13 6 
expensive 5 
expensive dynamic state selection 1013 
experiment 3, 5, 7 

dangerous 7 
description 7 
expensive 7 
numerical 7 
time scale 7 

experiment annotation 543 
explicit and implicit Euler methods 994 
explicit equation 67, 588 
explicit state space form 588 
ExplicitEuler solver method 723 
ExplicitMidPoint2 

solver method 723 
ExplicitRungeKutta4 solver method 723 
exponentiation 284 

of arrays 333 
expression 

parameter 281 
expression 

conditional 55 
constant 280 
overview 267 
type 276 
type checking 124 
type compatibility 124 
variability 279 

expression 
discrete-time 281 

expression 
continuous-time 283 

expression 1063 
Expressions grammar 1074 
expressivity of equations 348 
ExtendedPetriNets library 914 
extends 135, 137, 143, 145, 152, 153 

class extends 165,175 
in graphical layer 530 
of packages 509 

extends clause 1063 
Extends clause grammar 1071 
extension 174 

of class 173 
extensive property 760 
extent attribute 527 
external 466 

FORTRAN 77 54 
keyword 466 

external events 599, 659 
external force elements 896 
external function 

argument mapping 470 
argument passing 93 
array arguments 472 
array layout 475 
array result 472 
C functions 473 
call structure mapping 469 
columnMajor 475 
default mapping 467 
enumeration types 471 
external object 476 
interface 466 
introduction 53 
language 467 
large example 472 
not change inputs 473 
record result 472 
reporting errors 475 
result type mapping 470 
rowMajor 475 
string arguments 472 
utility functions 475 

external libraries 479 
external objects 476 
external resources 

HTML links 546 
External solver method 723 
external transition 659 
ExternalMedia library 912 
ExternalObject 

type 121 
type checking 125 

ExtForcePendulum model 896 
failure 

of numerical solution 1000 
false 23,280 
fastSample 634 
FEM 

Finite Elements solution 414 
field 80 

of PDE 403 
of PDE problems 403 

fieldname 118 
FieldCircular2DGrid model 410 
FieldDomainOperators 1D package 415 
FieldLine 1 DGrid record 409 
FieldRectangle2 D model 408 
Fields package 416 
FieldSphere3DGrid record 412 
fill function 48, 336 

empty array 342 
FilledShape 
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lineColor 529 summary Common Concepts ; 1162 
FilledShape style attributes 529 summary Co-Simulation 1161 
Fill Pattern 528 summary Model Exchange 1161 
fillString function 476 for 317 
FilterBlockl model 361 for loop equation 35 
FiltersInSeries model 30, 155 force 205 
final 103,105,120,160,161,560 force field 225, 230 
findElement function 430 for-equation 352, 353, 355 
findMatrixElement function 445 forest 849 
finite state automata 635 Fork 740 
finite-element method 404 ForkPhilosopherConnection model 690 
first principles 591 for-loop 50,427,429 
firstGeneration function 653 break 430 
FirstOrder package for PDEs 416 implicit iteration range 428 
FiveEquations model 352 iteration-variable 427 
FiveEquationsUnrolled model 352 nested 429 
fixed attribute 94, 106, 149, 363, 1008 range-expression 427 
Fixed model 201 with multiple iterators 429 
FixedBoundary_pTX model 400 formal parameter 
FixedTranslation model 377, 380 aliasing 474 
Flange model 189 formal parameters 31 
flat tank system 571 of function 439 
FlatDriveLine model 129 formal specification 
FlatTank model 571 of languages 1042 
flattened equation system 984 of Modelica in MetaModelica 1043 
flattening 63, 109,1063 format string 277,278 
FlatUseDriveLine model 129 Forrester 846 
flexible array sizes 445 Fortran 77 472 
floating point arithmetic 285 FORTRAN 77 54,470 
floating point number 271 external function language 467 
floor function 277,282,290,452,613 Forward FillPattern 528 
flow 39, 102, 105, 120, 167, 190, 205 FourEnums enumeration 429 

bi-directional 245 fourier analysis 873 
flow charts as Petri nets 674 foxes 832 
flow model 251 frame 879 
flow quantity 746 Frame model 218, 375,377 
flow resistance 753 Frame b model 218 
flow systems 752 Frame_illegal model 206 
flow variables 40, 190,206,222 Framelllegal model 218 
FlowConnector free-flying body 880, 881 

stream connector 812 FreeFlyingBody model 880 
unbalanced model 811 FrictionElement model 128 

FlowConnector unbalanced model 248 FrictionFunction function 167 
FlowConnectorln fromReal function 484 

input connector 811 FuelCellLib library 914 
FlowConnectorln model 248 fully qualified name 59,497 
FlowConnectorOut function 51,89,7063 

output connector 811 built-in 452 
FlowConnectorOut model 248 call 439, 981 
fluid connector call via dot notation 443 

classical 247 comparison to classes 464 
Fluid library complete rules arguments 441 

stream connector 251 concept 438 
fluid library requirements 249 constructor 478 
fluid system 245 creation of record constructors 454 

semiLinear 386 declaration 438 
FluidPort model 42, 246, 251, 398 derivative 455 
FluidPort Potential model 249 destructor 478 
FluidPortSignalA model 249 empty function calls 444 
FluidPort SignalB model 249 enhancements 464 
FluidSystem model 42,255 external 53,466 
FMI 69, 1161 external declaration 466 

basic mathematical description 1168 formal parameters 439 
for Co-Simulation 1167 full description 421 
for Model Exchange 1166 function arguments 446 
Interfaces and FMU Structure 1162 function partial application 448 
properties and guiding ideas 1164 implicitly causing events 613 
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inlining 460 
inverse 459, 1013 
mixed argument passing 440 
multiple results 426,441 
named arguments 286, 439 
nested functional arguments 450 
optional function results 442 
overloaded 481 
partial derivative 459 
positional arguments 439 
propagation functional arguments 450 
properties 464 
record constructors 452 
redeclaration subtyping 130 
referentially transparent 422 
reinit 57 
representing algorithm section 465 
restrictions 464 
results 25 
return 444 
scalar function on array 444 
short function definition 452 
single result 441 
subtype 130 
type 120 
vectorization 444 
ways of defining functions 451 

function subtype 1063 
Functional Mockup Interface 69, 1161 
functional safety 1017 
functions 

abs 51,282,289,452,613 
acos 291 
asin 291 
assert 361,436 
atan 291 
atan2 291 
backSample 606 
cat 339 
ceil 277,282,290,452,613 
change 89,295,424,465,611 
clocked sample 604 
cos 291 
cosh 291 
cross 339 
diagonal 336 
div 282,290,452,613 
edge 89,295,424,434,465,611 
exp 291 
fill 48,336 
floor 277,282,290,452,613 
hold 605 
identity 151,336 
initial89,294, 357, 361,424, 465, 601 
integer 277,291,452,613 
Integer 277 
interpolateMyTable 478 
interval 606 
linspace 336 
log 291,634,635 
log10 291 
max 48, 337, 338 
min 48, 337, 338 
mod 51,290,452,613 
ModelicaAllocateString 476 

WithErrorReturn 476 
ModelicaError 475 

ModelicaFormatError 475 
ModelicaFormatMessage 475 
ModelicaMessage 475 
ModelicaVFormatError 476 
ModelicaVFormatMessage 475 
ndims 315,319, 335 
noEvent 606 
ones 336 
outerProduct 339 
pre 296 
previous 610 
product 337, 338 
reinit 613 
rem 290,452,613 
sample 89, 294, 424,465 
sample unclocked 602 
scalar 335 
shifts ample 606 
sign 290,452,613 
sin 291 
sinh 291 
size 50, 335 
skew 339, 789 
smooth 294,424, 608 
sqrt 51,290,452 
String 277 
subSample 606 
sum 48, 337, 338 
superSample 606 
symmetric 339 
tan 291 
tanh 291 
terminal 89, 294, 357, 424,465, 601 
terminate 362,437,602 
transpose 48, 339 
vector 335 
zeros 48, 336 

FuzzyControl library 914 
gain44 instance 215 
game of life 652 
GameOfLife model 652 
gas turbine model 15 
GASP-IV 71 
gear 752 
GenCapacitorMicroCircuit model 163 
GeneralResistorCircuit model 170 
GeneralStack package 508 
GenerateJobEvents model 661 
Generator model 982 
generic classes 168 
generic packages 508 
GenericResistorCircuit model 109, 170 
GenericResistorCircuit2 model 171 
generics 31, 135 
GenMicroCircuit model 163 
getting started 19 
Gibbs function 459 
global name lookup 112 
gPROMS language 1155 
gradient operator 402 
grammar 1042 

of MetaModelica 1076 
of Modelica 1070 
of optimization extension 1077 

graph 
bipartite graph 1007 

graphical 
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model representation 524 heat transfer 807 
graphical annotations 524 HeatCircular2D model 410 
graphical editor HeatExchanger model 159 

in Dymola 1053 HeatLinelD model 409 
in OpenModelica 1035 HeatPort 227 
in OpenModelica 63,1033 HeatPort model 248, 826 

graphical elements HeatRectangle2D model 407 
definitions 532 HeatSphere3D model 411 

graphical layer HeatS tream model 172 
diagram 530 HeatTank model 172 
diagram in annotations 526 HeatTankExpanded model 172 
icon 530 HelloWorld model 20 
icon in annotations 525 HelmholtzMedia library 914 

graphical layers Hibliz system 72 
diagram 527 HideResult annotation 544 
icon 527 HideVariable2 model 428 

gravitation 230 hierarchical 208 
gravitational field 113 connections 208 
gravitational force 83 document 1029 
gravity 82, 83, 85 modification 155 

point gravity 881 hierarchical file system 
gravity Interface function 231 package mapping 503 
Gravitylnterface model 130 hierarchical libraries 501 
GreenClass 32 hierarchical state machine 735 
grid hierarchical subsystem 

ofPDE 404 inner outer 228 
grid attribute 527 Hierarchical AndParallel 
grid function 415 StateMachine model 384 

2D 418 StateMachinel model 736 
ground 46 StateMachine2 model 738 
Groundmodel 798 High Voltage model 152 
growth model 849 Hilding Elmqvist 1053 
grrammar history 69 

ofParModelica 1079 hold function 605 
guard 275 hold() 706 
guard expressions 275 HoldEx model 706 

continuous-time conditions 275 homotopy 
discrete-time conditions 275 for initialization 372 

GuardTest model 275 homotopy function 373 
Hagen-Poiseuille's relation 753 Horizontal FillPattern 528 
handling events 613 HorizontalLine model 138 
Handy model 834 HTML 60 

cycles of prosperity and collapse 840 HTML documentation 545 
egalitarian society 838 HTML links to external resources 546 
equitable society 840 human-nature interaction 834 
full collapse 843 Hybrid DAE 977 
main state variables 835 BLT partitioned example 985 
oscillatoiy convergence to equi 842 complete equation system 979 
soft landing 841 conditional equations 587 
unequal society 843 continuous-time 978 

HandyBase model 837 discrete-time 978 
HandyEgall model 839 flattened equation system 984 
HandyEgalitarianBase model 839 in Modelica 980 
HandyEquitl model 841 solution event iteration 1008 
HandyEquitableBase model 841 structural time invariance 981 
HandyUnEq2 model 843 varying structure 1010 
HandyUnEq3 model 844 hybrid model 856 
HandyUnEquitableBase model 843 hybrid modeling 55 
hardware interrupt hybrid system 676 

condition-based clock 704 hydraulics 752 
hardware/software 592 hydrogen iodine 829 
hardware-software modeling 1018 icon layer 525 
heat 205 IconMap record 530 
heat capacitance 756 ideal and nonideal gases 762 
heat diffusion 407 Ideal diode 56 

FEM solution 414 ideal transformer 748 
heat flow rate 205 IdealDiode model 
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with homotopy 373 inference of clock 715 
IdealGas model 813 InferenceTest model 726 
identical names 81 inferencing 
identifier 268, 1063 of sub-clocks 721 
identity function 151,336 inferred clock 702 
IEEE double precision 286 information bus 239 
if-equation 355, 356, 616 information hiding 495,511 

use for event behavior 614 inheritance 30,135,136 
if-expression 274, 288, 614 diamond 137 

in diode example 55 element same name 136 
if-statement 431 equation 137 

condition 431 modification 148 
conditional assignments 432 MoonLanding model 143 
in while loop 50 multiple 137 
not legal discrete-time assignm 433 not redefining elements 147 
used for when-statement 434 of packages 509 

IllegalDuplicate class 81 of partial functions 446 
IllegalTypeAs Variable 81 predefined types 147 
implementation 63, 1028 protected 145 
implementation phase 15 short class 146 
implicit connection 40, 224, 226, 230 subtyping 145 
ImplicitEuler solver method 723 inheritance interface 1062,1063 
ImplicitTrapezoid solver method 723 inheritance type 117 
import 59, 90, 110,497 inhibitor petri nets 675 

annotation 524 initalization 
Java import 513 of local variables 465 
multiple definition 499 initial algorithm 424 
non-encapsulated 512 initial equation 28,363, 365 
qualified 498 initial function89,294, 357, 361, 424, 465 
renaming 499 initial values 105 
single definition 498 initial() 366 
statements 497 initialization 28, 105, 363, 365, 366 
unqualified 499 examples 369 

impure local 424 
function 462 number of equations needed 368 
keyword 462 of clocked partitions 715 
prefix 463 of non-linear systems 372 

incidence definition parameter values 366 
in base clock partitioning 719 using homotopy 372 

incidenceQ initialization problem 1009 
definition in sub-clock partioning 720 initialPressure function 876 

Include annotation 479 initialScale attribute 527 
include directory 479 initialState 384 
include file 479 initialState() 730 
IncludeDirectory annotation 479 initialState() operator 637 
index 1063 initMyTable function 478 

high index electrical model 1002 inlet 355 
high index mechanical models 1004 Inline 
higher index problems 1002 function annotation 460 
of DAE system 1001 Inline annotation 91 
structural index 1006 InlineAfterlndexReduction 

index reduction 1004 function annotation 461 
Pantelides algorithm 1006 inlining 

indexing of functions 460 
enumeration 322 inner 40,104,105, 113, 125, 224, 233 
of arrays 321 inner outer 
scalar 322 in hierarchical subsystem 228 

indomain input 29,36, 50, 66, 89, 101, 105,211 
keyword for PDEs 402, 405 input editing 535 

inductive modeling 568 input signals 207 
inductor 45 input variable 584 
Inductor model 798 inputs 5 
InductorMicroCircuit model 163 inside connector 209,211 
IndustrialControlSystems library 914 inside or augmented flow variables 
industry robot 15 connection set 221 
Inertia model 797 instance 26, 27, 38, 79, 81, 83,1063 
InertialSystem model 377, 380 instance expression 713,1064 
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instance hierarchy inferred 353 
example 225 iteration variable 
lookup 225 scope 428 

instance hierarchy lookup 104,113 iteration-variable 427 
instance parameters 31 iterators 
instantaneous 1064 multiple 429 
instantiation 1040, 1044 IteratorType function 451 
inStreamO 245 Jacobian 1001 

basic equations 257 Java 1041, 1069 
definition of 257 comparison Modelica package 513 
inside outside connections 255 external function language 467 
properties 259 job shop model 660 

int93 job shop system 
IntDeQueue package 509 Petri net model 666 
Integer 23,30,93,95,271,272,283 job shop system simulation 672 
integer arithmetic 285 JobShopSystem 
integer division 285 Petri net model 673 
integer function 277,291,452, 613 Join 740 
Integer function 277 joinThreeVectors function 469 
Integrand function 448, 449 joints 879,886 
integrated interactive environment Joule 756 

for modeling and simulation 1030 Junction 740 
IntegrateParabolal model 448 Kelvin 756 
IntegrateParabola2 function 448 KeynesianModel model 853 
integration phase 15 keyword 80 
interaction array 534 algorithm 49,54,391,421,423,424 
interactive function calls 1134 annotation 60,519,521 
Interactive menus block 29,89,101 

annotation 541 break 430 
Interactive Notebooks 1029 class 26, 80, 143 
interactive programming environments 1028 connect 40,65,191,220 
interactive session handler 1033 connector 29, 39, 88 
interface constant 23, 25, 99, 100, 105,167 

design 581 discrete 99,101, 105, 282, 596 
extension of 171 each 150 

interior else 50, 55,274, 275, 355, 356 
ofPDE 404 elseif 50,355,431 
of spherical domain 411 elsewhen 357, 359, 433,436 

interior function 416 encapsulated 59, 104, 105, 495, 502 
internal events 599, 659 end 322,423 
internal representation 63 equation49, 191, 347, 351, 421, 423, 653 
internal states 5 expandable 239 
internal transition 659 extends 135, 137, 143, 145, 152, 153 
internal variable 584 external 53,466 
interpolate function 919 false 23 
interpolateMyTable function 478, 479 final 103, 105, 120, 160,161, 560 
interpolating functions flow 39, 102, 105, 120, 167, 190 

in Mathematica 1050 for 50,317,352,353,427,429 
interval function 606 function 51,89,438,439 
interval() operator 699 if 50, 55, 274, 355,431,614,616 
IntStackUser class 508 import 59,90,110,497,498 
inverse impure 462 

annotation 459 initial 423 
function 459 inner 104,105, 113, 125,224,233 

inversion input 29,36,50,89,101,105 
of functions 1013 model 22,26, 29, 87, 143 

Ipopt 1040 operator 92,483 
ISO C standard 285,286 operator function 92 
isobaric 762 operator record 91 
IsoenthalpicFlow model 253 outer 104,113,224,233 
isolated system 760 output 29,36,101,105 
isometric 762 package 29, 59, 90,169 
isothermal 762 parameter 20, 25, 99,105 
iterate function 451 partial 104, 105 
iteration range protected 27, 83, 98, 105, 154,423 

as enumeration 429 public 83,98,105,423 
implicit 428 pure 463 
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record 29, 88 Library annotation 479 
redeclare 103, 105, 156, 161 LibraryDirectory 479 
replaceable 103, 105, 156, 160 LibraryDirectory annotation 479 
return 444 limited updating 477 
stream 102,245, 270 Limits to Growth 845 
then 274 LimitValue function 572 
type 29, 88 Line annotation attribute 532 
when 357,433, 435,436,616 linelDfunc function 409 
while 429 linear models 588 
within 503 linear momentum 205 

keywords 270 Linear Actuator model 869 
KindOfController model 168 LinearMPC library 914 
KindOfController type 542 LinePattern 528 
kinematic loops 893 linspace function 336 
kinematic outline approach 889 linux32 479 
kinematics 773 linux64 479 
kinetic 805 LiquidFlow model 677 
kinetics 773 LiquidSource model 574 
KirchhofFs current law 192 literal 267 
KirchhofP s Current Law 190 literals 1064 
Kirchhoff s law 40 array 273 
KirchhofFs laws 747 Boolean 272 
laminar flow 753 constant 271 
languages enumeration 272 

Abacuss II 1156 Integer 272 
ACSL 71 Real 271 
Ada 31,59,168,519 record 273 
Allan 72 String 272 
ASCEND 72,1154 literate programming 1029 
C 20,26,311,554 Load model 234 
C++ 26,31, 168 LoadCircuit model 234 
Cob 1157 LoadCircuitlnnerOuter model 236 
CSSL 71 loadModel 1122 
Dymola 71, 1151 local class definitions 86 
Fortran 26,311 local classes 122 
gPROMS 72,1155 local error 995 
Haskell 31, 168 local packages 510 
Java 26, 59 local variables 81, 105,424,432 
Lisp 71 in a function 465 
NMF (Neutral Model Format)72, 1151 log function 291,634,635 
ObjectMath 72,1152 log 10 function 291 
Omola 71,1153 lookup 79 
OOBSML 1157 among import names 111 
Ptolemy II 1158 among unqualified imported 111 
related equation-based 1151 detailed procedure 110 
SIDOPS+ 72,1153 global name 112 
Simula 26 in enclosing class 111 
Simula 67 71 instance hierarchy 104 
Smalltalk 26 instance hierarchy 113 
Smile 72, 1153 instance hierarchy 225 
Standard ML 31, 168 introduction 108 
U.L.M. - Allan 1153 member function 112 
VHDL-AMS 1154 names in hierarchical packages 502 

large nested 109, 110 
in AllSizes 118 of qualified name 112 

Latelnline operators matching functions 486 
function annotation 460 overloaded operators 486 

laws of nature 745 preprocessing 109 
leastSquares function 54,919 simple names 111 
left limit 295,1064 via Modelica library path 507 
lexical conventions 1069 loop 50 
library for range vectors 316 

directory hierarchy 504 for-loop 427 
dynamically linked 480 nested 427 
hierarchical 501 while-loop 429 
shared 480 Lossyjinkqueue model 864 
structuring 500 LotkaVolterra model 833 
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lowercase letter 61 mediumn 
LowPassFilter model 30 in AllSizes 118 
LowPassFilterl model 152 member function call 112 
LowPassFilter20 model 152 memory allocation 475 
LowPassFilter20C model 152 mental model 6 
Low Voltage model 152 menu layout 538 
LSODAR 998 menus 60 
LSODE1 998 mesh 
LSODE2 998 ofPDE 404 
LU solve function 919 message passing 26 
Lucid Synchrone 740 MetaModelica 1032,1043 
lumped 10 grammar 1076 
lunar surface 85 method of lines 
magnetic flux 205 for solving PDEs 404 
magnetic flux rate 205 MicroCircuit model 163 
magnetic potential 205 MicroCircuit3 model 164 
maintenance 1028 MicroCircuit3expanded model 164 
MakeComplex function 496 min attribute 30,93, 94 
Markov processes 655 min function 48,337,338 
mass balance 250 MiniCircuit model 156 
mass flow MISO model 207 

connector class 811 missinglnnerMessage annotation 536 
Mass model 201 mixing enthalpy 249 
mass, oscillating 199 mod function 51,290, 452,613 
MassWithSpringDamper model 695 mode switching system 676 
matching 1007 model 6, 8, 19, 22, 26, 29, 80, 87,143 
matching algorithm 988 continuous flow 856 
Mathematica 72,1029, 1046 creating system model 567 

implied multiplication 1048 description 7 
interpolating functions 1050 deterministic 11 
mathematica formulas 1048 discrete 856 
square brackets 1048 dynamic 11 

Mathematica notebook 1030 graphical representation 524 
mathematical function 422 hybrid 856 
mathematical model 6,10 mathematical 6,10 
mathematical modeling 26 mental 6 
Mathematical Representation 977 network 855 
MathModelica 1027, 1045 physical 6 
Matlab 48,311,324 qualitative 13 
matrix 332 quantitative 13 
matrix 311,312,325,326 simplification 570 

{{ }} constructor 324 static 11 
composition 325 stochastic 11 
contractor 318 verbal 6 

matrix 1064 model editor See grap >hic editor 
matrix algebra 338 model extends 165, 175 
matrix constructor 318 model parameter 584 
matrix function 48, 86, 335 Modelica 69 
MatrixGain 215 Association vii, 501 
max attribute 30,93, 94 comparison Java package 513 
max function 48, 337, 338 compilation and translation 1040 
maximal firing petri nets 675 grammar 1070 
MBS library 877, 882 important features 19 

classes 879 Scripting 1121 
simple free-flying body 880 semantics 1041 
structure of 882 Standard Library59, 61, 204, 500, 504 
usage 889 Standard Library naming rules 61 

MDT Eclipse plug-in 1033,1038 standard library overview 907 
mechanical component Modelica compiler 1033 

inertia 797 Modelica libraiy path 506 
rigid 797 Modelica License 62 

mechanical multibody systems 877 Modelica Standard Library 61 
mechanical rotational ID 751 samples in appendix 1091 
mechanical translational 196 standard libraiy overview 907 
mechanical translational ID 749 Modelica.Blocks libraiy 910,934, 1101 
media application 179 Modelica. B lock s. C ontinuous 938 
Medium package 168,251 Modelica.Blocks.Examples 935 
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Modelica.Blocks. Interfaces 935 
Modelica.Blocks.Math 938 
Modelica.Blocks.Math library 1106 
Modelica.Blocks.MathBoolean 941 
Modelica.Blocks.Mathlnteger 940 
Modelica. Blocks.Nonlinear 938 
Modelica.Blocks.Sources 942 
Modelica.ComplexBlocks library 909 
Modelica.ComplexMath library 909, 921 
Modelica.ComplexMath. Vectors 922 
Modelica.Constants 910, 917, 1092 
Modelica.Electrical 927 
Modelica.Electrical library 1108 
Modelica. Electrical. 

Analog library 907 
Digital library 907 
Machines library 908 
MultiPhase library 908 
QuasiStationary library 908 
Spice3 library 908 

Modelica.Electrical.Analog 927 
Modelica.Electrical. Analog.Basic 1109 
Modelica.Electrical. Analog.Ideal 1110 
Modelica.Electrical.Digital 933 
Modelica.Fluid library 909 
Modelica. FLuid library 955 
Modelica.Icons library 910 
Modelica.Magnetic. 

FluxTubes library 908 
FundamentalWave library 908 

Modelica.Math library 909, 918, 1099 
Modelica.Math.Boolean Vectors 921 
Modelica.Math.Matrices libraiy910, 919 
Modelica.Math.Nonlinear library 921 
Modelica.Math.Random library 1100 
Modelica.Math.Vectors library 918 
Modelica.Mechanics 946 
Modelica.Mechanics. 

MultiBody library 908 
Rotational library 908 
Translational library 908 

Modelica.Mechanics.Rotational 946 
Modelica.Mechanics. Translational 949 
Modelica.Media library 909, 956 
Modelica. Slunits 

types 799 
Modelica.SIUnits 926 
Modelica.SIunits library 910, 1092 
Modelica.Slunits.Conversions 1098 
Modelica. StateGraph library 909, 910 
Modelica.Thermal library 909, 957 
Modelica.Utilities library 909,910,923 
Modelica. Utilities. Examples 923 
Modelica. Utilities. Files 923 
Modelica. Utilities.Streams 924 
Modelica. Utilities.Strings 925 
Modelica.Utilities.System library 926 
Modelica.Utilities.Types library 926 
ModelicaDeviceDrivers library 911 
Modelica EnergyStorages library 912 
Modelica_LinearSystems2 library 912 
Modelica_StateGraph2 library 912, 943 
Modelica Synchronous library 911, 945 
Modelica3D library 914,1040 
ModelicaAdditions library 912 
ModelicaAllocateString 

for external functions 472 

WithErrorReturn function 476 
ModelicaAllocateString function 476 
ModelicaDEVS library 914 
ModelicaError function 475 
ModelicaFormatError function 475 
ModelicaFormatMessage function 475 
ModelicaMessage function 475 
ModelicaML 1018,1037 
MODELICAPATH 502,506 
ModelicaServices package 723 
ModelicaVFormatError function 476 
ModelicaVFormatMessage function 475 
modeling 

top-down 569 
modeling 3,14 

acausal 19 
deductive or inductive 568 
multidomain 19 
object-oriented 569 
physical 6 

modeling 
bottom-up 569 

modeling 
object-oriented 572 

modeling 
clocked vs unclocked 615 

modeling environment 1027 
Mode-switching model 

DCMotor transmission 682 
modification 21, 29,34, 135, 148 
modification equations 348 
Modification grammar 1072 
modification prefix 103 
ModifiedFiltersInSeries model 30,155 
modifier 1064 

array flexible sizes 151 
discrete-time or continuous var 149 
equations 348 
hierarchical 155 
in array declarations 150,314 
in constant declarations 149 
in extends 152 
in nested extends 153 
in short class definitions 151 
in variable declarations 148 
iterative with each 150 
prefix final 161 
prefix redeclare 161 
prefix replaceable 160 
priority of 153 
protected 154 
single modification 155 

modifier equations 349, 350 
MoistAir package 179 
MoistAirBaseProperties model 180 
MoistAir dynamicViscosity func 180 
moon landing 84 
MoonLanding 143 
MoonLanding class 83 
MoonLanding model 144,362 
Motor model 454 
MotorcycleDynamics library 914 
MotorcycleLib library 914 
Motors package 453 
mouse input 534 
moving packages 512 
MSL 61 
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Multibody library NoClockEx model 712 
EngineV6 model 900 NoClockVsSampleHold model 712 
kinematic loops 893 node 40,169,198 

MultiBody library noDerivative annotation attribute 457 
CAD model 902 noEvent 276,282, 294,424, 606 
external force elements 896 nominal attribute 94 
interfacing non-MBS models 896 nondeclarative constructs 421 
rotation matrix 902 NONDIGIT 268 

multibody system graph 889 None FillPattern 528 
multibody systems 771 None LinePattern 528 

mechanical 877 normal equations 348 
MultiBody.Forces 888 normal petri nets 675 
MultiBody.Frames 885 normallyConstant 
MultiBody. Interfaces 883 annotation argument 462 
MultiBody.Joints 886 NormalPetriNet package 672 
MultiBody. Joints. Assemblies 887 not 274,287 
MultiBody.Parts 885 notebook 
MultiBody.Sensors 888 Mathematica 1048 
MultiBody.Types 888 notebooks 
MultiBody. Visualizers 888 interactive 1029 
MultiBondLib libraiy 914 Not Valid connector class 392 
multidomain modeling 19 nStream() 
multidomain models 207 special cases derivation 261 
multiple definition import 499 number of equations 
multiple inheritance 137 initialization 368 
MultipleEvents model 623, 743 numerical cancellation 1013 
multiplication 284 numerical solution 994 

of arrays 332 Adams methods 998 
Multiply Complex function 496 DASSL solver 1000 
multiply function 90 DEABM 999 
multistep methods 995 explicit and implicit Euler 994 
Mutex model 692 failure 1000 
mutex omdel 692 local error 995 
MutexPortln model 692 LSODE, LSODAR 998 
MutexPortOut model 690 mixed symbolic and numerical 1000 
mutual exclusion 692 multistep methods 995 
MyExpandableConnectorClass 239 Runge-Kutta methods 997 
MyPoints model 106 stablity 995 
mySinNoTime function 270 NVIDIA GPU 1022 
name 269,1064 object 81 
name lookup 108, 109, 502 object creation 86 
named argument 51, 286, 439 object type 117 
name-type pair 121 ObjectMath language 69,1046, 1152 
naming conventions 61 object-oriented 19 
NCLib library 914 Object-Oriented 26 
nder() object-oriented approach 572 

for PDEs 410 object-oriented modeling 569 
ndims function 315,319, 335 observable 5 
negation 287 ODE 65 
NegativePin model 799 ODE solution 994 
neighborhood 651 ODE solvers 998 
nested 109 OMC 1034 

for-loop 429 OMEdit 1035 
nested classes 86 OMNotebook 1030, 1037 
nested functional arguments 450 Omola 69, 1046 
nested lookup 110 Omola language 1153 
nested packages 510 OMOptim 1039 
nested subsystem OMPython 1039, 1135 

inner outer 228 oneArgBaseFunction function 446 
network model 855 OnePort model 43 
NeuralNetwork libraiy 914 ones function 336 
Newton 70 OnMouseDownEditlnteger record 535 
NewtonStep function 451 OnMouseDownSetBoolean record 535 
nextGeneration function 653 OnMouseMoveYSetReal record 535 
NMF 69 OnMouseUpSetBoolean record 535 
NMF language 1151 onnector 
noClock() 712 expandable 41 
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OOBSML language 1157 
opaque reference 

passing 477 
open source 1032 
open system 760 
OpenHydraulics library 915, 967 
OpenModelica 20,1027, 1031 

3D visualization 1040 
API 1121 
API call examples 1131 
architecture 1034 
basic commands 1121 
compiler 1040 
debugger 1036 
design optimization 1039 
dynamic optimization 1039 
environment overview 1033 
generation of compiler 1043 
graphical model editor OMEdit 1035 
MDT Eclipse plug-in 1038 
model compiler OMC 1034 
ModelicaML 1037 
Modelica-UML profile 1037 
OMNotebook and DrModelica 1037 
performance analyzer 1036 
PySimulator and OMPython 1039 
requirement verification 1037 
system commands 1123 
translation stages 1040 
whole API 1123 

OPENPROD project 1019 
operational semantics 72,1032,1043 
operator 92,267 

keyword 483 
overloaded 481 

operator function 91, 92, 485 
operator overloading 52 
operator record 91 
operator record 52 
operator record 

type 121 
operator record 

type checking 125 
operator record 

Complex operator record 484 
operator record 1064 
operators 

- operator 274, 284 
* operator 48, 51, 274, 284, 341 

285 
. operator 274, 289 
.- operator 274 
.•operator 274,285 
./ operator 285 
.A operator 285 
.+ operator 274, 285 
/operator 48,51,274,284 
: operator 274 
:= operator 274,341 
[ ] operator 274 
A operator 274, 284 
+ operator 48,51,274,284,287,341 
< = operator 274 
< operator 274, 286 
= equation equality 274, 286 
= named arg operator 274, 286 
= operator 341 

= operator 274, 286 
> operator 274, 286 
>= operator 274, 286 
actualStream 89 
and 274, 287 
arithmetic 284 
associativity 273 
delay 89, 292,465,612 
der 12, 20, 89, 100, 291, 424,465 
equality 286 
inStream 89 
logical 286 
miscellaneous 287 
noEvent 276, 282, 294, 424, 606 
not 274,287 
or 274, 287 
pre 89, 295, 424, 465,609 
precedence 273 
previous 610 
reinit 89, 295,465,613 
relational 286 
rem 282 
table of overloaded 482 

operators table 273 
operators: 286 
optimization 

of designs 868 
Optimization 1039 
Optimization grammar 1077 
or 274, 287 
order annotation attribute 456 
ordering 119 
ordinary differential equations585, 587, 994 
Orientation model 377 
oscillating mass 199 
Oscillator model 199 
OSMC 20 
outer 40, 104, 105, 113,224,233 
outerProduct function 339 
outflow 250 
outlet 355 
output 29,36, 105,211 
output consistency 424 
output variable 584 
outputs 5 
outside 

connector 211 
outside connector 209 

moved up 237 
switched to inside 237 

overconstrained 374,387 
connection loop 374 

overdetermined 
types and variables 378 

overflow 285 
overflow event 622 
overloaded 

binary operators 486 
constructor definition 483 
operator definition 483 
operator lookup 486 
operator properties 483 
operators and functions 481 
record constructors 488 
table of operators 482 
unary operators 487 
user-defined 481 
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package 29, 59, 90, 169, 495-516 PartialRigid model 201, 797 
abstract data type 495 particle dynamics 774 
access 497 particle flow rate 205 
comparison to classes 507 particle kinematics 773 
encapsulation 514 Particle model 231 
external resources 516 particles 205 
generic 508 ParticlesInPointGravity model 231 
hierarchical 501 ParticlesInUniformGravity model 232 
hierarchy in single file 506 ParticleSystem model 232 
inherited 509 partition 
local 510 base-clock and sub-clock 713 
mapping to file system 503 clocked discretized continuous-time722 
moving 512 initialization clocked 715 
naming 500 solver methods continuous-time 723 
non-encapsulated 510 sub-clock partitioning 720 
problems non-encapsulated 511 unclocked continuous-time 719 
structuring 500 partitioning 
subpackages 500 BLT 68 

package hierarchy partitioning example 717 
mapping to directories 504 Passive state model 640,649 

packages 58 path 
identification 514 MODELICAPATH 507 

packet-switched 854 Pathway modeling libraiy 966 
Pantelides algorithm 1005, 1006 PDE 
parabola function 448 ID domain 408 
parallel code 1021 ID domains spatialDistribution 412 
parallel function 1022 2D domain 409,414 
parallel loop 1022 2D FEM 414 
parallel state machine 736 2D grid function 418 
parallel state machines 740 3D domains 410 
parallelization 1021 boundary 404 
parameter 20, 25, 99, 105,1064 boundary conditions 403 

class type parameter 171 boundary of spherical domain 411 
generating connection equation 223 domain 402,403 
instance class parameter 169 DomainCircular2D domain 409 
of a class 169 field 403 
start-value default 368 full overview 400 
structural parameter 1064 grid 404 
variability prefix 105 grid function 415 

parameter evaluation annotation 544 heat diffusion 407 
parameter sweep 1039 in ID ducts 874 
parameter variability 281 independent space variables 402 
parameterized class 168 indomain operator 405 
parameters 31 interior 404,411 

structural 100 method of lines 404 
parametric curve 404 nderQ 410 
parametric surface parametric curve 404 

ofPDE 404 parametric surface 404 
parametricPlot 233 rectangular domain 407 
ParConstants model 284 shape functions 406 
parglobal keyword 1022 short note 587 
parlocal keyword 1022 spatial discretization 404 
ParModelica 1022 spatialDistribution 412 
ParModelica grammar 1079 PDELib libraiy 915 
parsed 63 Pder() 401 
parsing 1044 pendulum 4 
partial 43,104,105, 173, 174,1064 3D double 890 
partial class 43 damped torsion spring 897 
partial derivative double cylinders 892 

of function 459 external force 896 
partial differential equation rotation angle steering 898 

full overview 400 steering by PD controller 899 
in ID ducts 874 Pendulum model 21 
short note 587 PendulumlmplicitL model 367 
small example 11 PendulumLoop2D model 895 

PartialCompliant model 197, 686 PendulumRotationalSteering model 898 
PartialMedium model 179 PendulumWithDampedSpring 897 
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Pendulum WithPDController model 899 PolynomialEvaluator3 function 109 
performance analyzer 1036 Pop function 508 
periodic clocks population dynamics 831 

automatic synchronization 702 position 205 
periodic sampler 626 positional argument 51 
PeriodicSamplerClocked model 629 positional arguments 
PeriodicSamplerUnclocked model 629 of functions 439 
Person function 453 positiveMax() 
Person record 29, 119, 453 definition 258 
Petri net 742 PositivePin model 799 
Petri nets 666-76 potential 205,805 

different variants 675 potential quantity 746 
equation-based semantics 668 potential variable 190 
finite state automata 674 connection equations 222 
flow charts 674 potentially present variables 
mathematical definition 667 expandable connector 242 
parallelism and synchronization 668 power 205 

phase in thermodynamics 760 power plant system 245,766 
Philosopher model 690 PowerSystems library 912,962 
physical domain 205 PowerTrain 177 
physical model 6 pragma 519 
physical modeling 6, 36, 347 pre 89,295,424,465,609,610 
PI controller difference to previous 610 

continuous equations 677 pre versus previous 
discrete equations 678 in APeriodicSampler 631 

PI Controller pre() 
continuous 573 left limit 1064 

PIcontinuousController model 574 precedence 273 
PID controller predator-prey model 832 

continuous 575 predecessor value pre() 609 
PIDcontinuousController model 576 predefined type 1064 
PIDdiscreteControllerClocked 680 inheritance 147 
PIDdiscreteControllerUncl ocked 680 predefined types 93, 271 
PIdiscreteControllerClocked 679 predefined variable 
PIdiscreteControllerClockedV 1 678 time 269 
PIdiscreteControllerUnclocked 678 preferredView annotation 546 
piecewise constant 101 prefix 1064 
piecewise constant variables 697 prefixes 
Pin connector class 39 constant 99 
Pin model 799 discrete 99 
pipelined DEVS model 664 final 103 
Place Petri net model 671 flow 102 
Placement record 529 impure 463 
Places in Petri nets 667 in declarations 98 
planar pendulum 21, 586 inner 104,113 
PlanarMechanics library 915 input 101 
PlanetS imulation model 131 modification prefixes 103 
plot 20,1122 outer 113 
plotParametric 23, 1122 output 101 
plotting parameter 99 

with interpolating functions 1051 partial 104 
plug-compatible subtype 127,1064 pure 463 
pneumatic cylinder 822 redeclare 103 
PneumaticCylinderSystem replaceable 103 

model with pneumatic cylinder 824 stream 102, 245 
PneumaticCylinderVolume model 823 prefixes ordering 105 
PNlib library 915 preserveAspectRatio attribute 527 
PNLib Petri Net library 963 pressure 205, 753, 808 
Point model 137 sink 815 
pointGravity function 231 source 815 
PointGravity model 881 pressure dynamics in ID ducts 874 
PointMassGravity model 130 PressureEnthalpyBoundary model 816 
pointOnCircle model 442 PressureEnthalpySource model 815 
Polygon annotation attribute 532 PressureLoss model 
polynomial equation 35 with homoopy 373 
polynomialEvaluator function 51 ,439 PressureSink model 816 
PolynomialEvaluator model 354 previous 
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difference to pre 610 rank function 920 
previous value reactive system 592 

of clocked variable 699 ReadParameterData model 367 
previous() operator 610, 699 ReadSignal connector 573 
PreVsPrevious model 610 real 94 
primitive data types 23 Real 23,30,93,94,271,283 
primitives Visible attribute 531 real elementary relation 287,1065 
Principia 70 Reallnput 207 
print statements 437 Reallnput model 799 
priority RealOutput 207 

of event handling 617 RealOutput model 799 
priority petri nets 675 RealTimeCoordination Library 915 
ProcessControl model 369 realToString function 441 
ProcessControl2 model 370 receiveRealSignal function 463 
ProcessControl3 model 370 record 29, 88 
ProcessControl4 model 371 constructor functions 452 
Procrustes effect 8 constructors overloaded 488 
product deployment 15 record constructor 
product design 14 zero element 488 
product design-V 14 record field 80 
product function 337, 338 Record model 378 
programming environment 1027 record type representation 118 
propagation records 323 

of events 618 rect2Dfunc function 408 
proportional digital controller Rectangle model 138 

speed controller 695 Rectangle2 model 138 
protected 27, 83, 98, 105, 154 Rectangle3 model 138 

inheritance of 145 rectangular domain 
pseudopotential approximation 72 for PDEs 407 
Ptolemy II language 1158 recursive function 465 
PTPort Petri net model 670 redeclare 1065 
public 83, 98, 105 choices menu 167 
pump 245 class extends 165 
pure class parameter 169 

keyword 463 conditional instance 165 
prefix 463 element in a class 157 

Push function 508 element not replaceable 158 
Pygmalion effect 8 extending redefining behavior 174 
PySimulator 1039 main description 156 
Python 1121 modification prefix 105, 161 

scripting in OpenModelica 1135 modification prefixes 103 
Q-1DENT 268 preserving prefixes 158 
QSSFluidFlow library 915 preserving properties 158 
Qt GUI libraiy 59 redeclare class extends 178 
quadrature function 447 restrictions summaiy 166 
QuadratureSinel function 449 redefinition 174 
QuadratureSine2 function 449 reduction functions 337 
qualified name lookup 112 reduction with iterators 337 
qualitative model 10, 13 reference declaration 41,113 
quantitative model 13 referentially transparent 421 
quantity attribute 94, 558, 559 RefinedResistorCircuit model 171 
quantity checking 561 RefinedResistorCircuit2expanded 171 
Quaternions 902 regular expressions 1042 
queue reinit 89,295,359,465,613 

DoubleEndedQueue 509 reinit function 57 
job shop model 660 relation 
Petri net model 666 real elementary 287 
pipelined DEVS model 664 Relational Meta Language 1043 

queue-based server 655 relational operators 286 
quoted identifier 1069 reliability 592 
RlCircuit2Expanded model 165 rem function 290,452,613 
RICircuitFlat model 107 rem operator 282 
rabbits 832 RemoveBottom function 509 
radiation 758 renaming import 499 
range vector 316 repetitive connection structures 355 
range-expression 427 repetitive equation 352 

in for-loop 428 repetitive equation structures 35 



Index 1217 

replaceable 31, 103, 105, 156, 160,1065 base classes 628 
class parameter 169 discrete scalar state space 632 
constraining type 162 discrete vector state space 633 
transitively non-replaceable 122, 166 simple periodic 626 

replaceable redeclaration 164 two-rate 634 
requirement analysis 1028 SampleTime clocked model 604 
requirement model 1020 scalar 1065 
requirement verification 1019 vectorization scalar func 340 
Requirement verification 1037 scalar function 335 
requirements analysis 14 scalar functions 339 
reserved words 268 scalar index expressions 322 
resistor 44 scalar product 332 
Resistor model 116, 798 ScalarEquationType function 450 
ResistorCircuit 198 scaling and rotation 
ResistorCircuit connection set 220 objects in connection diagram 530 
ResistorCircuit model 198 scenario model 1020 
ResistorCircuitCond model 216 Schrodinger equation 72 
ResistorCondTest model 216 SCode 1044 
ResistorEquation class 175 scope 
return enclosing 109 

of function 444 introduction 108 
return-statement 431 iteration variable 428 
reusability 38, 188 scripting 
reuse 29,43,173,187 Dymola 1143 
reuse of variable declaration 173 Modelica and Python 1121 
reversing flow OpenModelica 1121 

semiLinear() 386 Wolfram SystemModeler 1139 
revisionld annotation 548 WSM 1139 
Reynolds number 753 SCS 70 
right function 415 second derivative 585 
rigid-body 774 secondary sensor variables 1013 
rigid-body mechanics 771 SecondOrder package for PDEs 416 
RML 72,1032,1043 Selector record 539 
Robert Recorde 70 semantics 
Robot model 454 dynamic 1041 
rocket 84 of Modelica 1041 
Rocket class 82 operational 1043 
Rocket model 144 specification 1043 
rocket motor 82 static 1041,1043 
room model semiLinear() 386 

heat- and mass transfer 825 sensitivity analysis 9 
RoomlnEnvironment model 827 Sensor model 241 
RoomWithFan model 826 server with queue 655 
Rossler attractor 1052 ServerWithQueue model 657 
Rossler model 1052 Service state model 640 
rotation matrix 902 set formers 316 
RotFlange_a 799 shape function 
RotFlangea model 206 circular2Dfunc 410 
RotFlangeb 799 for PDEs 406 
Router 12 867 sphere3Dfunc 411 
Router21 866 shared library 480 
routers 866 shared resource 
rowMajor 61 access 688 

array external function 475 dining philosophers problem 688 
runge-kutta methods 997 shared variable 225 
runScript 1123 shattering 57, 1011 
sample shifts ample() 709 

unclocked function 602 ShiftSampleEx model 709 
sample ShirtS izes 95, 322 

clocked function 604 short class definition 86, 146,151 
sample and hold elements 695 side effects 89,274,422 
sample function 89, 294,424,465 SIDOPS+ language 69, 1153 
sample() clocked 705 sign function 290,452,613 
sampled systems 625 signal 798 
SampleEx clocked model 706 signal voltage 798 
sampler SignalView model 662 

aperiodic 630 SignalVoltage 798 
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SignalVoltage model 798 
simple server 639 
simple type 1065 
SimpleAir model 397 
SimpleCircuit 36, 65 
SimpleCircuit class 47 
SimpleDEVSServer model 661 
SimpleElastoBacklash model 683 
SimplePeriodicSamplerClocked 627 
SimplePeriodicSamplerUnclocked 626 
SimpleServer model 640 
SimpleValveFlow model 817 
simplification of models 570 
simulate command 20,1122 
simulating Modelica models 992 
simulation 3, 7, 8, 14 

disturbances 8 
manipulation of model 8 
Procrustes effect 8 
Pygmalion 8 
second-order effects 8 

Simulation Center 1047 
simulation experiment 

annotations 543 
simulation languages 71 
simulation model 464,1065 
simulation time 1008 
simulator 

analog 71 
Simulink 72, 582, 589 
sin function 291 
SinConditionClock model 704 
Sine function 449 
sineEqualX function 450 
single assignment 348, 349 
single assignment principle 597, 598 
single definition import 498 
single source restriction 213 
single-assignment 

rule on when-equations 359 
singlelnstance annotation 543 
sinh function 291 
SinTest model 270 
Slunits 59 
size function 50, 335 
skew function 339, 789 
slowSample 634 
small 

in All sizes 118 
SmallPack package 90 
SmallSizes enumeration 118 
Smile 69 
Smile language 1153 
Smooth 

curve graphics 528 
smooth function 294,424, 608 
smoothOrder function annotation 461 
SO model 798 
software component model 37, 187 
software engineering 9 
solar-heated 4 
Solid FillPattern 528 
Solid LinePattern 528 
solution 

hybrid DAE event iteration 1008 
of DAEs 999 

solution method 67 

solution of mixed systems 1011 
solutions to exercises 1081 
solve function 919 
solver 20, 44, 63, 106 
solver clock 705 
solver method 

automatic choice 725 
ExplicitEuler 723 
External 723 

solver methods 
in clocked discretized continuous 723 

solverExplicitlyDefined 725 
solverMethod ImplicitEuler 724 
SoiverMethod type 723 
SolverMethodClockedPI model 724 
solveScalarEquation function 450 
solving equation systems 993 
sort function 919,920 
sort function with compareFunc 446 
sorting 68 

of clocked partitions 715 
of equations 985, 987 

spatial discretization 
for solving PDEs 404 

spatialDistribution block 413 
spatialDistribution operator 412 
special operators 424 
SpecialCorrelation model 388 
SpecialCorrelationExpanded model 388 
specialized classes 29, 87,1065 

block 89 
class 87 
connector 88 
function 89 
inheritance restrictions 139 
model 87 
operator 92 
operator function 91, 92 
operator record 91 
package 90 
record 88 

specific property 760 
SpecificEnthalpy function 459 
SpeedControlP_ 

MassWithSpringDamper model 695 
Speed-Up 71 
sphere3Dfiinc function 411 
SPICELib libraiy 915 
SPOT libraiy 915 
spring 752,878 
Spring ID model 198 
sqrt function 51,290,452 
SquareDance block 101 
Square Wave model 603 
SquareWaveClocked model 605, 700 
stablity of numerical solution 995 
stack 

GeneralStack package 508 
standard libraiy 61 
start attribute20, 28, 34, 94, 106, 269, 363 
start values 25 
state 651 
state event 600 

condition-based clock 704 
state machine 58 

clocked detailed description 729 
parallel 736 
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simple server 639 inside connector 254 
watchdog system graphical 648 inStream() 245 

state machines 635,637 mathematical derivation i 259 
state selection outside connector 254 

dynamic 1013 stream prefix 102 
manual 1012 stream variable 42,245 

state space usage 251 
discrete 625 stream property 246 
discrete scalar sampler 632 stream variable 245 
discrete vector sampler 633 String 23,30,93,95,271,272,283 

state space form 66, 568 overloaded constructor 488 
state variable overloaded data converter 488 

clocked previous 699 string concatenation 287, 328 
state variable selection String function 277 

for efficient simulation 1012 format string 278 
state variables 1012 strongly connected components 988 
Statecharts 740 structural index 1006 
StateMachineOfstateA model 738 structural mechanics 771 
StateMachineOfstateX model 739 structural parameter 100,1064 
StateMachineSemantics model 734 structural time invariance 981 
statement structurally non-singular 1065 

assert 436 structure of declarations 97 
assigment multiple results 426 structured connector type 
assignment 425 connection set 219 
break 430 subclass 30, 136,1062 
for-loop 427 sub-clock conversion operators 707 
full description 423 sub-clock inferencing 721 
if-statement 431 sub-clock partition 713 
introduction 50 sub-clock partitioning 720 
nested for-loop 429 subcomponent 9, 39 
print 437 subconnectors 530 
return 431,444 SubEnvironment model 229 
terminate 437, 602 submatrices 325 
when-statement 433 subpackage 
while 429 Java 513 

stateSelect 95 naming 500 
StateSelect subrange type 117 

always 1013 subSample() 707 
avoid 1013 SubSampleEx model 707 
default 1013 subscript 214,1063 
never 1013 subscript constraint 214 
prefer 1013 subsystem 229 

stateSelect attribute 1012 subsystem decomposition 578 
StateSelect enumeration 1013 subsystem verification 15 
statespace equations 588 subtraction 284 
static model 11 of arrays 329 
static semantics 1041 subtype 93,115,1065 
static type checking 1041 checking 126 
steam tables 766 function 90,130 
Step 798 inheritance 145 
Step model 798 plug-compatible 127 
stiff 570 restricted 127 
stiff differential equations 997 use of 123 
stiffness 946 uses 125 
stochastic model 11 variability 283 
stochastic Petri nets 675 subtype as subrange 117 
stochastic process subtype by interface 116 

event-based 655 subtyping 284 
stopTime 23 sum function 48, 337, 338 
stream sum of all flows 755 

keyword 270 sum of pressure changes 754 
stream connector 42, 245, 246, 1065 SumSeries model 430 

actualStream() 245 sum-to-zero coupling 40, 191 
BasicVolume example 813 Sum Vector model 431 
connection equation 254 SumZ model 427 
Fluid library 251 superclass 30, 136 
hierarchical inside outside 255 SuperEnumeration type 96 
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superSample() 708 
SuperSampleEx model 708 
supertype 116,1065 
Surfacelntegrand function 450 
sustainable society 847 
symbolic manipulation 275 
symbolic simplification 992 
symbolic solution 

mixed symbolic and numerical 1000 
symmetric function 339 
SynchCountersClocked model 620 
SynchCountersClockedShort model 621 
SynchCountersUnclocked model 619 
synchronization 

ofeveents 618 
sub-partition clocks 726 

synchronize clocks 634 
synchronous clock 58 
synchronous data-flow principle349, 597 
synchronous principle 597 
syntax 

unit expressions 561 
system commands 1123 
system design phase 15 
system dynamics 

World3 model 845 
system identification 9 
system initialization 

examples 369 
system model 9, 567 

examples 15 
SystemBuild 72 
SystemDynamics library 915, 970 
SystemModeler 1045 
systems 3 

artificial 4 
biological 831 
ecological 831 
economic 852 
mechatronic 794 
natural 4 

table 
closeMyTable 479 
initMy Table 478 
interpolateMyTable 478 

tan function 291 
tanh function 291 
tank 

levelSensor 622 
overflow event 622 

Tank model 573, 676 
Tank parameterized model 172 
tank system 570 

clocked and unclocked 676 
flat model 571 

TankHybridPIClocked model 680 
TankHybridPIDClocked model 681 
TankHybridPIDUnclocked model 681 
TankHybridPIUnclocked model 679 
TankPI model 573, 676 
TankPID model 575 
TanksConnectedPI model 577 
Taijan's algorithm 987 
task graph 1022 
TCP 854 
TCP protocols 856 

TCP receivers 861 
TCP routers 866 
TCP SACK 855, 856, 858, 859 
TCP senders 858 
TCP simulation 867 
TCP Westwood 855, 856, 858, 859 
TCP window size 855 
TCPSender model 859 
TechThermo library 915 
TempCapacitor class 114 
TempCapacitorMicroCircuit model 164 
TempDepResistorCircuitFlattened 110 
TempDepResistorCircuitlnherited 170 
temperature 205,245, 756 
temperature environment 226 
temperature profile 226 
TemperatureDependentResistorCircuit 170 
TemperatureDepResistorCirc 110 
TemperatureSensor model 253 
templates 31 
TempResistor class 114 
TempResistor model 116, 173 
TempResistor3 model 175 
terminal function 89, 294, 357, 465,601 
terminate 361,362,602 
terminate statement 437 
testDEVSServer model 661 
testPipeline model 665 
testServerl model 658 
Text annotation attribute 533 
TextAlignment graphic style 529 
TextStyle 

Bold 529 
Italic 529 
Underline 529 

TextStyle graphic style 529 
textual model editor 1033 
then 274,288 
thermal energy 756 
thermal systems 756 
ThermoBondLib libraiy 915 
thermodynamics 247, 759, 800 

basic example system 801 
ThermoPower library 915, 960 
ThermoSysPro library 959 
ThreeServerPipeline model 664 
thrust 83 
ticksInState() 384,730 
time 46,354,599,612,660 

predefined variable 269 
time constraints 592 
time events 599 
time petri nets 675 
time residual 659 
timed petri nets 675 
TimeEventTest model 269 
timelnStateO 384,730 
tokens 1042 
tokens in Petri nets 667 
tolerances 9,94 
top-down modeling 569 
top-down physical component appr 889 
topological sorting 63 
torque 205 
torsion spring 752 
TPPort Petri net model 671 
TraditionalForm 1049 
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TransferBlock model 162 
transformation matrix 778 
Transformation record 529 
transformational equation debugging 1014 
TransformationMatrix model 377 
transformations 63 
transformer 

ideal 748 
Transformer model 748 
transition 383, 637, 651 

compound 741 
delayed 740 
inter-level 741 

Transition Petri net model 671 
Transition record 732 
transition() 637, 729, 731 
Transitions in Petri nets 667 
transitively non-replaceable 122, 140, 166 

motivation 140 
translating Modelica models 992 
translation stages 64 
Transmission Control Protocol TCP 854 
transmission with slack 683 
transport model 251 
transpose function 48, 339 
Triangle model 27 
TripleSprings model 199, 879 
turbine 245, 808, 825 
turns ratio 748 
two tanks model 577 
TwoFlanges model 128 
TwoPin class 43 
TwoPin model 797 
TwoRateSamplerUnclocked model 634 
type 29, 88, 115,1065 

Abadi and Cardelli 118 
abstract data type 495 
array 119 
array constructor 124 
array short class 146 
array type checking 313 
assignment conversion 124 
attribute 121 
checking 126 
class repr 120 
compatibility 115 
compatibility of expressions 124 
concept 115 
concept summary 131 
constraining 122 
containing equalityConstraint 378 
detailed representation 121 
enumeration 117 
equivalence 123 
ExternalObject 121 
function 120 
inheritance type 117 
notion of 131 
object type 117 
operator record 121 
overdetermined 378 
parameter 31, 171 
prefixes 105 
record representation 118 
representation 118 
subrange 117 
substitutability 115 

subtype 
subtype and subset 
subtype by interface 
supertype 

type checking 
ExternalObject 
operator record 

type conversions 
explicit 
implicit 

types 

115 
116 
116 
116 
124 
125 
125 
276 
277 
276 

79,81 
Boolean 23, 30, 93, 95, 271,272, 283 
built-in 30,93, 115,271 
Clock 23, 30, 93 
Complex 23 
enumeration 23, 30, 95 
Enumeration 93 
from Modelica.Slunits 799 
Integer 23, 30, 93, 95, 271, 272, 283 
Real 23,30,93,94,271,283 
String 23, 30, 93, 95, 271,272,283 

type-specifier 97 

U.L.M. - Allan language 1153 
UML-Modelica 1019 
UML-Modelica profile 1037 
unary operators 287 

overloaded 487 
unassignedMessage annotation 537 
unbalanced models 388 
unclocked discrete-time variability 281 
unclocked vs clocked 615 
underconstrained 387 
underflow 285 
unequal society 843 
Unicode 93,267, 503, 1069 
unified modeling framework 1019 
uniformGravity function 231 
unit 

attribute 558,559 
displayUnit 560 
expression syntax 561 
of measurement 559 

unit attribute 94 
unit conversion 561 
units 10 
unqualified import 499 
uppercase letter 61 
use before declaration 107 
UseBeforeDecl class 108 
UseCorrelation model 388 
user interaction 

with GUI 534 
uses annotation 547 
UTC date 548 
UTF-8 267,503 

validation phase 15 
ValveFlow 

model with stream connectors 819 
ValveFlow model 818 
ValveFlo wFirst model 818 
van der Waals 762 
VanDerPol model 22 
variability 25, 99,1065 

clocked discrete-time 55 
clocked discrete-time expressions 722 
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constant 25,279 
continuous-time 25,279 
curve examples 100 
discrete-time 2 5, 5 5,279 
figure illustration 279 
of expression 279 
parameter 25,279 
unclocked discrete-time 55 

variability and subtying 283 
variable 80,81,584 

algebraic 585 
annotation 523 
clocked discrete-time 596 
continuous-time 595 
declaration 1066 
declaration structure 97 
default 81 
discontinuous change at event 616 
discrete-time 595 
independent space variables 402 
initialization 81, 105 
internal 584 
local 81 
reference 1066 
shared 225 
short definition 1066 
unclocked discrete-time 596 

variable graphics 
in graphical annotations 534 

variable specifier 97 
variable visibility annotation 544 
variables 22,150,314 
vaiying structure 1010 
vector 311,1066 
vector algebra 338 
vector function 335 
vectorization 

of function calls 339, 444 
vectors 120,316,325 
verbal model 6 
verification 10 
verification model 1020 
version handling annotations 547 
version numbering annotation 547 
versionBuild annotation 548 
versionDate annotation 548 
versions 

stored on file system 548 
Vertical FillPattern 528 
VerticalLine model 138 
VeiySimplePeriodicSamplerClocked627 
VeiySimplePeriodicSamplerUnclo 627 
VHDL-AMS language 1154 
View Boolean model 656 
virtual prototypes 6, 14 
virtual verification of designs 1020 
visualization 

3D 1040 
voltage 12, 34, 205 
voltage source 45 
volume 205 
volume flow rate 205 
volume model 251 
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WhenPriority model 359,436 
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examples 1142 
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