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Preface

Welcome to Learning OpenFOAM® the RAW edition. A RAW (Read As we Write)

book contains all the materiai written for the book so far, but available for you right

now, before it's finished. As the author writes more, you will be invited to download

the new material and continue reading} and learning, Chapters in a RAW book are
not “work in progress", they are drafts ready for you to read, use, and learn from.
They are not the finished article of course -— they are RAW!

Learning QPeHFOAMGE is a practical tutoriai that will show its readers how to

program CPD appiications using OpenFGAM® with the help of sample projects.
This book is for C++ deveiopers who want to develop CPD programs with the
heip of OpenFOAM® library. No knowledge of OpenFOAMKE or computational
fluid dynamics (CPD) is expected, although readers are expected to have some
experience in C++ programming.

What's in This RAW Book
in this RAW book, you will find these chapters:

Preface

The preface contains short description of the OpenFOAM® library/ application bundie
and what it is used for in general. It also inductee; a discussion of the advantages of
the code being open source versusa commerciai black box package.

Chapter 1: Computational Fluid Dynamics in QpenFOAM®

This chapter provides a general overview of the workflow involved with CFD

simulations using OpenFOAM®. A basic introduction of the Finite Volume Method

(FVM) supported within OpenFDAM® is provided with references pointing the

reader to further information sources on this topic, An overview of the tooikit

organization is presented as well as the interaction of the organizational elements
within the scope of a CFD simulation.
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Chapter 2: Geometry Definition, Meshing, and Conversion

This chapter covers domain decomposition and discretization. This includes defining
a geometry, mesh generation, and mesh conversion.

What's Still to Come?
We mentioned before that the book isn‘t finished, and here is what we currently plan
to include in the remainder of the book:

Chapter 3: QpenFOAM® Case Setup

This chapter describes the structure and the setup of a simulation case. This involves
setting the initial and boundary conditions, configuring the run control parameters
of a simulation, and numerical solver settings.

Chapter 4: Post-Processing, Visualization, and Bate

This chapter gives an overview of the utilities used for tire-processing and post-
processing calculation as well as instructions on how to visualize computed data of a
simulation.

Chapter 5: Design Dverview of the OpenFOAM® Library

This chapter provides a more detailed overview of the library than the one presented

in chapter 1. In this chapter the reader will learn how to browse the code and where

to find the building blocks of the library.

Chapter 6: Productive Frogramming with OpenFOAM®

This chapter describes how to program with OpenFOAM® in a productive
and sustainable way. This chapter will be important for readers interested
in programming with OpenFOAM® who may lack a software development
background. This chapter covers the development of selfmsustained libraries, a way
of using the git version control system, debugging and profiling, and so on.

Chapter 7: Turbulence Modeling

This chapter introduces turbulence modeling into a simulation case. This involves
setting up a turbulence model and its parameters.
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Chapter 8: Writing Pre— and Post— Processing Applications

This is the first chapter that involves programming from the reader’s side. Here
we show how to develop pre- and post-processing applications using both C++
applications as well as commonly used utilities available for this purpose.

Chapter 9: Solver customization

This chapter describes the background of the solver design in OpenFOAM®, and
shows how to extend an existing solver with new functionality.

Chapter 10: Boundary conditions

This chapter shows the numerical background and software design aspects of
boundary conditions in OpenFDAM® An implementation example of a custom
boundary condition is provided that uses the principles described in Chapter 6. As a
result, the reader will develop a library of boundary conditions which is dynamicaliy
linked to the ciient code (a solver application).

Chapter 11: Transport models

This chapter covers the numerical background, design and implementation of
transport models. As an example, an implementation of a temperature dependent
Viscosity model is provided.

Chapter 12: Function obiects

This chapter introduces the use of function objects within OpenFOAM® The
background of function objects in C++ is provided, as well as a list of references for
further study. The implementation of function objects in OpenFDAM® is described,

in addition to an instructional programming example.

Chapter 13: Dynamic Meshes

This chapter shows how to extend a solver with the functionality of the dynamic
mesh in DpenFOAM®. The available dynamic mesh engine in OpenFOAM® is
very powerful and enables the readers to build their own dynamic mesh objects by
agglomerating exiting ones.

Chapter 14: Outlook

This chapter gives an outlook of further advance-d usage. and programming topics
with OpenFOAMfiE.
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Preface

Conventions
In this beak, you will find a numbe: of styles of text that distinguish between
different kinds of informetieh. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: “It is assigned a jQuery object cuntaining
the resulte 0f the 5 ( ' .eticky' ,t query.”

A block of code will be set as follews:

StickyRotate.init = functian(} {

var stickies = $(".sticky“);

f/ If we don‘t have enough, stop immediately.

if (stickies.sizet} e: l i] $(“#node~§0rm').size() > O) {

return ;

}
When we wish to draw your attention to a particular part of a code bioek, the
relevant lines or items will be made bold:

StickyRotate.init function() {

var stickies = $(".Sticky“);

It

// If we don‘t have enough, stap immediately.

if (stickies.size(} <2 l g] $('#n0de—f0rm'},size() 3 0} {

return;

}
Any command-line input and output is written as follows:

# cp /usr/src/asterisk—addone/configefcdrmmysql.eonf.sample

/etC/aeterisk/cdrwmysql.eonf

New terms and impartant words are introduCEd in a betel—type font. Words that you
see On the screen, in menus or dieing boxes for example, appear in our text like this:
“Clicking the Next button moves you to the next screen".

it""ii
[ 3%“ \ Warnings or impertant notes appear in a box iike this. ]

Tips and tricks appear like this. ]
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What ls 3 RAW Book?
Buying a Packt RAW book allows you to access Packt books before they're published.

A RAW {Read As we Write) book is an eBook available for immediate download,
and containing all the material written for the book so far.

As the author writes more, you are invited to download the new material and
contirme reading, and learning. Chapters in a RAW book are not " work in progress”,
they are drafts ready for you to read, use, and learn from. They are not the finished
article of course « they are RAW! With a RAW book, you get immediate access, and
the opportunity to participate in the development of the book, making sure that your

voice is heard to get the kind of book that you want.

Is 3 RAW Book a Proper Book?
Yes, but it’s just not all there yeti RAW chapters will be released as soon as we are
happy for them to go into your book-«we want you to have material that you can
read and use straightaway. However, they will not have been through the full

editorial process yet. You are receiving RAW content, available as soon as it written.
lf you find errors or mistakes in the book, or you think there are things that could be
done better, you can contact us and we will make sure to get these things right before
the final ~version is published.

When Do Chapters Become Available?
As soon as a Chapter has been written and we are happy for it go into the RAW book,
the new chapter will be added into the RAW eBook in your account. You will be
notified that another chapter has become availabie and be invited to download it from

your account. eBooks are licensed to you only; however, you are entitled to download
them as often as you like and on as many different coiriputers as you wish.

How Do I Know When New Chapters Are

Released?
When new chapters are released alt RAW customers will be notified by email with
instructions on how to download their new egook. Packt will also update the book‘s
page on its website with a list of the available chapters.

Where Do I Get the Back From?
You download your RAW book much in the same way as any Packt eBook. In the
download area of your Packt account, you will have a link to download the RAW book.

[5]
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What Happens If I Have Problems with My

RAW Book?
You are a Packt customer and as such, will be able to contact our dedicated Customer

Service team. Thereere, if you experience any problems Opening or downloading
year RAW book, cantact servicetflpacktpub. com and they will reply to yet: quickly
and courteously as they would t0 any Packt customer.

Is There Source Code Available During the
RAW Phase?
Any Source code for the RAW book can be downleaded from the Suppert page of our
Website (http: / /www .Packtpub. com/support). Simply Select the boek from the liSt.

How Do I Post Feedback and Errata for a RAW

Title?
if you find mistakes in this beak, or things that you can think can be done better, let
115 know. Yea can contact us directly at rawt‘eedbacktépacktpub i cam to discuss any

cancems you may have with the bank.

Feedback from our readers is always welcome. Let {IS know what you think about

this book; what you liked or may have disliked. Reader feedback is impertent for
US t0 develop titles that yen really get the must eat of. To send us; general feedback,
simply drop an email to feedbacktfipacktpuh . com, making sure to mentian the beak
title in the subject ofyour meseage.
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Computational Fluid

Dynamics in OpenFOAM

" There cannot be a greater mismkc than that qflaaking sztpcrciliuusly upon

practical applicatimzs ofaciencc. The lng and $0141 Qfscicrzce is its practical

applicatlan.” “ «- Lord Kelvin

Before interfacing with the OpenFOAM library itself, we will look at a few aspects

of the implemented flavar of finite vaiqu CPDas well as discuss the typical

workflow of a CFD engineer. A cumpetent and capable OpenFOAM user Should

have a good handle On both the numerics of the flow saivers, and the nature at fluid

flow physics itself.

What is covered in this chapter:

* Characteristics of nanndimensional numbers

* Some important concerns when approaching a CFD pmblem

‘ The CFD workflaw

* A review of the finite valume method in OpenFOAMt’E

'- A summary of the contents 0f the OpenFOAMtE library itself



Cnmputatimmi Fluid Dynamics in UpthOAMtE)

Understanding The Flow Problem
The first step in any CPD analysis is to gain a fundamental understanding of the
flow under consideration. More specifically, we must consider the thermo-physicai
phenomenon at piay, what engineering assumptions we will be making, and how

they witl complicate or simplify our analysis Thermo-physicai as well as pragmatic

questions that might be posed before undertaking a CFD analysis pro§ect are

outlined below. This list is by no means exhaustive.

' General

0 What is the engineering or scientific data that we intend to take away
from this analysis?

To what degree of accuracy do we need Our results?

How will we confirm the validity of our results?

How much human engineering time is willing to be dedicated to the
preject‘?

I "literate-physics
{J

D

{3

D

D

is our flow laminar, turbulent, or transitional?

is our flow compressible or incompressible?

Does the flow involve multiple phases or fluid species?

Do heat transfer and temperature piay a role?

[)0 we know enough about the up/ downstream or far-field
conditions to accurately define boundary conditions?

I Geometry and mesh

Q Can we censtmct an accurate, discrete representation of the

gemnetries of interest?

Will the computational domain be deforming or moving during the
simulation?

' Computationai Resources

E?

Cl

0

How long are we willing to wait for an answer?

What kind at distributed computing resources are available?

VJill one simulation run suffice or is this a multi—run parametric

analysis?
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Chapter I

 

The answers to these questions will dictate, from top to bottom, the tools and

methods used to complete a proper CFD analysis of any flow problem. Skills in

using DpenFOAM® or any commercial fluid simulation package are rendered moot
without a proper understanding of fundamental flow physics, numerical methods,
and computer hard- and software. This interdisciplinary nature of CPD greatlyr
contributes to its complexity.

The typical method by which a flow is characterized is through the calculation

of relevant non-dimensional groups. These groups serve to quantify the relative

significance of participating physical phenomena as opposed to looking at them
in absolute terms. A few common dimensionless groups are the Reynolds, Weber,
Fronde, Capillary, or Ohnesorge numbers, the details and definitions of which can

be found in many fluid mechanics and heat transfer texts (see Incropera and DeWitt
{2001); Wilcox (20057)). An example for this nonxdimensionalization is the flow

around a 909 degree pipe bend. Regardless of the fluid being molasses or Nitrogen,
the flow will be identical as long as the Reynolds numbers are equal. Most fluids
based academic publications communicate results strictly in terms of dimensionless

groups to provide results independent of the experimental setup and scale.

While this type of fundamental fluid mechanics analysis is best left to the above
mentioned existing texts, its importance in CPU development is not to be discounted.

A CFD engineer must he able to determine which physical phenomenon in a flow
can be neglected, which need to be modeled, and, if so, to what degree of detail.

These decisions will more often then not be made with a careful examination of

dimensionless groups while drawing upon past experience and intuition.

Stages of a CFD Analysis
An analysis based on CFD methods can usually be divided into 5 major components.

Some of these steps must he performed multiple times in a loop in order to obtain

results of the desired high quality.

Problem Definition
Before sitting down in front of a computer, one must decide on the physics of the

problem that is the focus of the current work. You have to be aware of the flow
characteristics that you are planning to simulate and which flow features need to

be resolved accurately enough and which can be neglected without sacrificing too

much accuracy.
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Computational Fluid Dynamics in Openl‘C)AM®

Mathematical modelling
After having defined the problem properly, it has to be formulated mathematically,

with regards to the assumptions previously made. For example: a potential flow is
solely governed by Laplace‘s equation (see Ferziger and Peric (2062)). If more details
must be resolved, the mathematical modeling must get more elaborate. This usually
leads to more sophisticated mathematical models, such as Reynolds-Averaged
Navier—Stokes Equations {RANSE), that account for viscous effects, unsteadiness
and turbulence. The latter is treated in a time averaged manner. For more details on
particular mathematical fluid models, please confer fluids textbooks such as Ferziger
and Peric (2002); Kundu, Cohen, and Bowling (2011); Versteeg and Malalasekra
(1996). More information on turbulence modeling can be also obtained from Chapter
8. The mathematical model describes the details of the flow. This means that the
numerical simulation, which approximates the solution of the model, cannot produce
more information about the flow than described by the model itself.

 

After having decided on a mathematical model, you can choose your DpenFOAM®
solver accordingly. This text covers an overview of the structure, basic usage and
the introduction to programming with OpeaFOAMCE, so the reader is directed to
OpenFDAM® User Guide (2012) for additional information on various solvers.

Pro-processing and mesh generation
The fields used in the simulation need to be initially prescribed. These values set
prior to simulation start are typically referred to as initial conditions. if the field
values are spatially varying, different utilities may be used to compute and pre—set
the fields. There are utilities that are distributed along with Ope-oFQAM® (e. g. the
setFields utility)! as well as utilities which are a part of a supporting project (eg.
funkySetFields utility of the swak4foam project). The use of some of the available
pro-processing utilities is explained in Chapter 9.

d  More information on the swaktlFoam project can be found on

http2/ Iopenfoamwilci.net/indexphp/ Contrib/ swakleoam.

Except for a iew specific applications, it is generally impossible to solve the
governing equations of the mathematical model in an analytical manner. The flow
domain must hence be discretized. This spatial discretization consists of separating
the flow domain volume into a computational mesh consisting of volumes (cells) of
different shapes. Based on the decisions on the model, the mesh (or grid) must be
tailored for this particular purpose.
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Chapter 1

 

Usually, the mesh must be refined in areas of interest: e.5. where large. gradients of
flow variables (velocity, pressure, density, etc.) occur. Further on, the accuracy and

a proper choice of the mathematical model has to he kept in mind, as resolving flow
features in a spatial manner does not compensate for a model that does not account
for these features in the first place.

The mesh is one of the most likely components of the simulation work flow that need
to be changed if the numerical simulation fails to converge. Failing simulations very
frequently are caused by a mesh of insufficient quality.

OpenFOAMiE comes with two different mesh generators: blockMesh and
snappyl—lexMesh. The usage of both is covered in Clmpter 3. Additionally, pre-
processing covers various other tasks, such as decomposing the computational
domain if the simulations are run in parallel on multiple computers or CPU cores.

Solving
The solution step is commonly the most time consuming part of the entire CF13
analysis process, although no user interaction is required. Based on the choice of
model, an appropriate solver needs to be selected or created and subsequently

executed. The Chosen mathematical models are then computed according to user-
selected solution methods and residual error tolerances.

Post-processing
After the simulafion completes, the user often ends up with a large amount of data
that must be analyzed and discussed. The data must be visualized appropriateiy in
order to inspect the details of the flow. Data such as velocity fields, which is a three-
dimensional vector field, is impossible to visualize using simple two-dimensional
graphs. By using dedicated scientific Visualization tools such as Paraview, such data
can be discussed and interpreted fairlyr easily.

Paraview my be downloaded for free from wwwparsvieworg

 

Post-processing and the next step, discussion and verification, typically go had in
hand. More details on various post-processing tools and methods are provided in
Chapter 9.
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Cmnpnmtioml Fluid Dynamics in OpenFOAM®

Discussion and verification
This is the point where you will have to determine whether to trust your results or

not. The code solely does what the user instructs and cannot do any magic. Yon have
to keep in mind that if e mistake was made one of the previous steps, you will most
likely and hopefully discover it during discussion.

 

Though it is advisable to have some data to compare your results to, such as

experiments, this is not very likely to be the case in industrial applications. Therefore
you have. to build up a certain level of trust and confidence in the work you did to
obtain them. if you are not satisfied with the results, you must revisit the previous
steps until you are.

The Finite Volume Method in

OpenFOAM
This section provides a very brief overview of the Finite Volume Method (FVM)
in OpenFOAM® used for CPD. The reader is directed to Ferziger and Peric (2002);

lasak, lemcov, and Tukovi ‘ c (2007); Versteeg and Malalasekre (1996); Weller, Tabor,

H. lasak, and Furehy (1998} for further details regarding this topic, as it is beyond the

scope of this book to cover it with sufficient depth,

Steps of the unstructured FVM in OpenFOAM® correlate somewhat to the steps
of the CPD analysis described in Section 1.2. The physical properties that define
the fluid flow, such as pressure, velocity, or temperature are dependent variables
in a mathematical model: a formal mathematical description of the fluid flow. A

mathematical model that describes a fluid flow in three dimensions is defined as a

system of partial differential equations. Seemineg different physical processes are

sometimes described using the some mathematical description! Eng. the conduction

of heat as well as diffusion of sugar concentration in water are modeled as diffusive

processes. The scalar transport equation (see Ferziger and Peric 2602) holds the terms
often used in mathematical models, and is used exemplary to describe the FVM:

555; + v . (Us) + V‘ (Desi) =

Equation 1.1

With tp being the scalar property, U the velocity vector and D the diffusion
coefficient. The terms in Equation (1.1) from left to right are: temporal term,

convective term, diffusive term, and source term. Each term describes a physical
process that changes the property (p in a different way (cf. Ferziger end Peric 2902).
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Depending on the nature of the process, some of the terms may be neglected: e.g. for

the inviscid fluid flow we neglect the diffusive term {transport} of the momentum, so

this term is removed from the momentum equation. in addition, the coefficients that
appear in some of the terms may be constant values, or spatially and/ or temporally
varying fields themselves, depending on the physics of the flow. An example of such
a coefficient is a temperature dependent conductivity coefficient for conductive heat
transfer: — (k. T }, which makes k a spatially (and possibly temporally) varying
field that would depend on the system solution (the temperature field).

"the purpose of anyr numerical method is to obtain an approximation of a solution of

the mathematical model. A numerical approximation of the solution of a complex
physical process is necessary, since the exact solution can only be obtained for a few
very specific cases that often lack relevance in technical applications. An example for
this is a Couette flow model (a flow between two infinite plates where the top plate
translates with constant velocity), for which an analytical solution exists.

Usually, the solution of the mathematical model is obtained by solving a discrete
approximation of the governing system of equations. The approximation process
of a numerical method involves a substitution of the system of partial differential
equations (the mathematical model) with a corresponding system of algebraic
equations that can be solved. These algebraic equations are evaluated at discrete
points in space and not continuously, The generation of an algebraic system of
equations within the framework of the FVM is made up of two major steps: domain
discretization and equation discretization.

Domain discretization
As previously stated, the mathematical model uses continuous fields that

describe the flow field at any point in space. in order to solve the equations of the

mathematical model, this continuous space must be discretized into a finite number

of volumes (cells}. The finite volumes (cells) make up the finite volume mesh. The
transition from the continuous representation of the flow with continuous fields
filling the flow domain £2, to a discretized domain fill) is shown on Figure 2.1.
Continuous fields that are defined in each point of the space filled by the fluid on
Figure 2.1a are replaced by discrete fields which stored in the centres of the finite
volumes C, as shown on Figure lib. Each finite volume stores an averaged value of

the physical property (eg. temperature) in its cell centre C.
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Computational Fluid Dynamics in OpanOAM®

 

Taking all of the cell Centres together, the discrete field for the particular physical
property can be assembled (eg. discrete cell-centred temperature field).

 

Q “L;

‘1! l}

t» t»

                           

r = Plx» t} r ; 146$.)
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U a mu) U = U(G,t}

 

Figure 1.1: Continuous and discretized flow domain and corresponding flow fields. Left: Continuous. Right:

Discretieed.

There are different ways of discretizing the domain, which result in topologically
different finite volume meshes. Topologically different domain discretizations
determine how the components of the mesh (cells, faces, points) are connected with
each other. More information on mesh generation can be found in Chapter 3.

We distinguish between three major types of meshes: Structured, block-structured
and unstructured meshes. Please note that all three have different requirements for
domain discretization, equation discretization, and the way the source code must
be formulated. The mesh topology and related access optimizations of the mesh
may have a direct impact on the accuracy and efficiency of numerical operations
performed by the numerical library as well as how the algorithms are parsllelized,
which is the case in OpenFOAM®

Structured meshes support direct addressing of an arbitrary cell neighbour as
well as direct cell traversal: the cells are labeled with the indices increasing in the
directions of the coordinate axis (see Figure 1.2a). Unstructured meshes on the other
hand have no apparent direction (see Figure 1.3a) in the way the cells are addressed,
and their topology will be a result of a geometrical algorithm used to discretize the
computational domain, which is tin-ordered by nature.
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Figure 1.2: A structureci equilateral mesh

Structured mesh topelogy increases the absolute accuracy of the interpolations
involved in the FVM, but it makes the mesh less flexible when it is used for mesh

generation of geometrically complex domains. During the mesh generation precess,
the user usually desires to generate a dense mesh where large gradients occur
and not te waste cells in flow regions Where no such sharp gradients occur, while
generating the mesh in the shortest possibie time. This is impossible with structured
meshes, as local mesh refinements are virtually impossible to achieve, since the

refinement has to be propagated into the respective direction through the entire
mesh. An exampie schematic sketch for this is given in Figure 1.21:.

        

Figure 1.3: An unstructured 2D Catesian mesh.
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Figure 1.2a shows a two dimensional schematic of a structured equilateral mesh.
This kind of mesh is also called Cartesian since it is consisted of equilateral volumes
with volume centres distributed in the direction of the coordinate system axes.
Being able to move through the mesh by changing the indices i, j has one significant
advantage: the numerical method working with this kind of mesh may access any
neighbouring cell by simply incrementing or decrementing the indices i, j by an
integer value of 1. This comes in handy eg. when the. flux through the cell faces (pf is
interpolated from cell centres to the face centre: high-order interpolation stencils can
he used for this purpose, thus increasing the accuracy of the solution. A high-order
(large) interpolation stencil means that an increased number of cells, that must not
necessarily be face-neighbours of the current cell, are included in the interpolation.

There is one problem, however: What happens if we want to refine the mesh
locally in a region of extreme changesof the physical property, when the order of
interpolation still is not sufficient to capture the large jump of a physical property?
Such large jumps in the values of physical properties are present eg. in two—phase
flow simulations Where two immiscible fluids are simulated. An interface is formed
between two fluids that separates them, and the values of the physical properties

may vary by orders of magnitude, as can be seen from Figure 1.4. A good example
for such a flow regime is a water—air two—phase system with a ratio of densities being

approximately 1000 (see Ubbink 1997, Rusche 2002).

  

first er  
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Figure 1.4 Qualitative distribution of the density rho with respect to the height h over
a free surface. Left: Continuous space with sudden density jump. Right: Discretized
space with gradual yet steep jump in density.
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To resolve such steep gradients in the fields, local mesh refinement is often applied.

This refinement can either be done during pro-processing or applied adaptively
during runtime. As mentioned previously, refining a structured mesh cannot be
done locally: the topology of a structured mesh forces us to refine in the complete
direction, as shown on the Figure 1.211, where the refinement of a single celi in

two directions generates refinement throughout the mesh. Structured meshes
that conform to curved geometries are especially difficult to generate, since a
mathematical parametrization of curved domain boundaries (coordinatization) is

necessary in order to maintain structured mesh topology.

in order to increase the accuracy locally (meaning in a only a subsection of the
domain), block refinement may he done, which is a process of building a mesh
that consists of muttiple structured blocks. When such a block structured mesh is
assembled, the blocks will have different local mesh densities. The numerical method

must either be able to deal with non-conforming block patches (hanging nodes), or

the block refinement needs to he carefuin crafted, so that the points on adjoining
biocks of different densities match perfectly {patch—conforming block-meshes).
Budding tulock structured meshes is a complex problemeven for simple flow
domains, which makes block~structured meshes a: poor choice for many technical
applications involving complex geometries of the flow domain. Refining block-
structured meshes results in refinement regions spreading through the blocks, and
with standard solvers that rely on patch-conforming block-meshes, the refinement
complicates the mesh generation even more.

Dynamic adaptive local refinement of structured meshes is preformed by
introducing additional data structures that generate and store the information reiated
to the refinement process. An example of such method is an octree based refinement,

where an octree data structure is used to split the cells of the Structured Cartesian
mesh into octants. Information carried by the octree data structure is then used by
the numerical interpolation procedures (discrete differential operators) taking into
account the. topological changes resulting from local mesh refinement. The possibility
of dealing with more complex geometrical domains can then be added to an octree—
refined structured mesh by using an cell-cut approach, where the cells which hold
the curved domain boundary, are cut by a piecewise-linear approximation of the

boundary. Octree—hased adaptive mesh refinement may have an advantage in its
efficiency depending on the way the topoiogical operations are performed on the
underlying structured mesh. However, the logic of the octree based refinement
requires the initial domain to be boxushaped. More information about local adaptive
mesh refinement procedure can be found in the book Adaptive Mesh Refinement
Theory and Applications: Proceedings of the Chicago {Workshop on Adaptive Mesh

Refinement Methods, Sept. 3—5, 2003 (Lecture Notes in Computational Science and
Engineering) 2065.
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OpenFOAM® implements a F‘VM of second order of convergence with support for
arbitrary unstructured meshes. Arbitrary unstructured means that in addition to
the unstructured mesh topology, the mesh cells can assume an arbitrary shape. This
allows the user to discretize flow domains of very high geometrical compiexity. The
unstructured mesh allows for a very fast, sometimes automatic mesh generation
procedure, which is very important for industrial applications where the time
needed to obtain results is of great importance. Hence, unstructured meshes are
still a main choice of domain discretization for numerical simulations of industrial
interest where the flow domains are geometrically complex.

Figure 1.3a shows a two-dimensional schematic of a quadratic unstructured mesh.
Since the mesh addressing is not structured, the cells have been labeled solely for
the purpose of explaining the mesh topology. The urn-ordered cells complicate the
possibility to perform operations in a specific direction Without executing costly
additional searches and recreating the structure of the mesh locally with respect to
the given direction. Another advantage of the unstructured mesh is the ability for
a cell to be refined locally and directly, which is shown on the Figure 1.3b, which

results in a locally refined mesh of geometrically complex flow domains. The local
refinement is more efficient in terms of increase of the overall mesh density, since it
only increases the mesh density where it is required.

How then does the numerical method find its way arormd a cell in order to operate
on the values of neighboring cells when assembling the system of algebraic
equations, where neighboring vaiues must be accessed from each cell?

     

Figure 1.5 Example of a hexehedral cell. Red and green labels indicate point and face indices respectively. Pace

1 is omrnittecl for the sake of visibility.
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Element Addressing
The way mesh elements are addressed by the algorithms of the numerical method
is determined by the mesh topology. OpenFOAM® defines its topological mesh
strocture using: indirect addressing, msnenneighbour addressing and boundary
mesh addressing.

Indirect addressing
Indirect addressing defines both the cells and faces of the mesh as sets of indirected
indexes to mesh points. The face is defined as an ordered set of indices that map
to the list of mesh points. This means that a face is defined by the indices of its
points rather then by its points directly. A cell is built accordingly and consists of an
unordered set of indices that map to the list of mesh faces. Indirect addressing avoids
copying of mesh points whenever an instance of a face or cell is created. Otherwise
one would end up having multiple copies of the same points and faces in memory,
which would he a waste of computing capacity and would severely complicate
topological operations.

in order to clarify this we consider face 2 in Figure 1.5. it consists of points 0, 3, 6, and
11 and doesn’t know anything about the locations of these points as it just referred
to the points by their indices. The same goes for the hexahedrai cell that consists of
faces 1 to 6 and does not store any point related data directly. Each face of the cell
can be accessed using the index to the particular face stored in the cell, that relates to
the list of mesh faces.

Owner-neighbour addressing
Owner-neighhm addressing is an optimization which defines the way the indices in
the mesh faces are ordered, by setting the direction of the face area normal vector Sf
shown as an arrow on Figure 1.6. Two global lists are introduced into the mesh with
ownermeighhour addressing optimization: the facenowner and the face—neighbour
list. For each face of the mesh. there may be only two adjacent cells defined with one
cell being the face—owner cell (marked with P on Figure 1.6) and the other a face-
neighbour (marked with N on Figure 1.6). The. owner cell of a face will be the cell
with a lower index in the list of mesh cells. This information determines the ordering
of the face indices: the face area normal vector is directed always from the owner into
the neighbour cell. Switching the orientation of the face area normal is an efficiency

optimization which is done to reduce redundant computations in the equation
discretization step described in the following suhsection.

[19}
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Boundary addressmg
Boundary addressing is an optimization driven is}? face access efficiency and object
oriented design, that isolates the boundary faces and stores them at the end of the list
of mesh faces. This allows an efficient definition of the boundary conditions 33 slices
(patches) of the list of mesh faces, which, in turn, regultfi with separated operations

for the internal mesh faces and the boundary faces. The boundary mesh is defined
as a set of patches (sets of boundary faces), which can be interpreted as different
physical boundary conditions, or even proceesor boundaries in parallel eimulations.
Such a definition of the boundary mesh results enables the automatic parallelization
of all the top—level code in OpenFOAM® that relies on the face~based interpolation
practice. All the feces of the boundary meeh are directed outwards from the flow
domain which means that they have only a cell owner and no neighbour.

A schematic sketch of how cell-centred values of the unstructured mesh are
addressed by the face owneraneighbour addressing mechanism is shown in Figure
1.6. As the considered cell with the index 1 has three faces that are taken into account

in this example, it has 3 neighbouring cells. This cell has the lowest index (1) of all its
neighboure (2,3,4) and is thus listed in the face-owner list. Each of its neighbouring
cells need to know that the face to the cell with index it is still need, but not owned
by each particular cell. Therefore these cells are listed in the face-neighbour list. This
results in the face area normal vectors being oriented outward from the cell 1 to all of

its neighbours in this example.

    

Figure 16 Owner neighbour addressing for an example cell ('1).

[2‘3]
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Additional addressing, such as cell—cells and point—cells, is also stored in the

unstructured mesh in OpenFOAM® Both are used to provide easy access to all face-

adjacent cells of a target cell and the cells whose edges meet at the specified point,
respectively. The actual indexing of all the connectivity is a direct result of the mesh
generation algorithm.

‘t+r3t . if+a3kf u a
/ \7 I {Ural (11$ (if a: / / an dodt “we: obej-S,
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Equation 15

Equation discretization
Once the domain is discretized into finite volumes, approximations are applied
on the terms of the mathematical model which transfer the differential terms into
discrete differential operators. in contrast to the domain discretization, this is done

during runtime in each solver in OpenFQAM®. An exception are solvers that
employ dynamic meshes, which may perform the domain discretization repeatedly.
Setailed descriptions of the equation discretization in OpenFOAMlE are provided by
lasak (1996); Jureti ,c (2004); Rusche (2082); Ubbink (1997). Here we describe only

the discretization of a simple advection equation for a scalar property (p with the
velocity U without source terms:

w g m5E+V.(Ue)—D
Equation 1.2

Equation 1.311315 two terms: the temporal term and the advective term. Both terms

need to be discretized in order to obtain the algebraic equation, since the equation
cannot be solved in the existing form analytically. The numerical method must be
consistent (see Ferziger and Peric 2002): as the size of the cells we generated in the
domain discretization step is reduced, the discrete (algebraic); mathematical model
must approach the exact mathematical model. Or in other words, as described
by Ferziger and Peric (2002), refining the computational domain inimitely and

solving the discretized model on this spatial discretieation leads to the solution of
the mathematical model consisting of partial differential equations. To obtain the

discrete model, Equation 1.3 is integrated in time and space:

.raor . a V;
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Equation 1.3
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integration of the temporal term of Equation 2.3 can be approximated to:

Him ’ n .4 0
(9d) . e3 — m
l- (Ell? alt re- V.;?
at ‘r' At
Equation 1.4

 

where VP is the cell volume, n and 0 mark the time—step of new and the old the
simulation reepectively, and At denotes the time-step vaioe. The time-step is
introduced since time is to be discretized as well into a sequential finite intervals
{time-steps). The edvective term is discretized by integrating and applying the Gauss
divergence theorem:

Mere 3V marks the continuous boundary of a finite volume VP (a surface bounding
the volume VP} with the area differential do, f marks a face of a cell, and S marks the

outward-pointing face area normal vector. The face area normal vector is a vector

normal to the cell face with the magnitude of the face area. Face centered values must
be computed from adjoining cell centres in order to proceed with the computation of
the right hand Side of Equation 1.5. This is done using interpolation (we will explain
that at the end of this chapter) and the interpolated values are marked by the index
i, eg. (pf . When we consider two discrete algebraic terms, Equation 1.3 takes the
following discrete form:

(5n. _ g;

'f flit igngfS- ii.

Equation '1 .6

it is eaSy to see that in the limit where both At and VP tend to zero, the diecrete Equation

1.6 corresponds to the continuous mathematical model shown in Equation 1.3.

A5 you, might have observed, no indices marking the new (In) or the old (0) time
step are present in Equation 1.5. This is a reeult of neglecting variations of the face
interpolated vaiueo in time. erending on the choice of the new or the oid time-step
for the final term of Equation 1.5, the resulting algebraic equation will be solved
explicitly or implicitly. "l‘he differences are presented in the following:

Explicit temporal discretization
if we. evaluate the opatial terms in the old time-Step, the only value from the new

time-Step is the value stored in the centre of the volume for which the algebraic

equation is assembled:

in M + Z canoes = U
or f ‘ f f

Equation 1,7
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and in this case, we can simply put all the old values on the right hand side of

the equation and compute the new cell value (911 by explicitly evaluating the :r,h.s. of

the equation.

Implicit temporal discretization
in case we choose to evaluate the r.h.s. in the new time-step:

{:31},va at V , ,my».....34.... l 5; e vsAt 'j j 1f

Equation 1.8

the algebraic equation assembled for the cell in question will carry dependent
variables from the surrounding cells in the new time-step, which means that we
need to assemble such an equation for each cell of the mesh to constcuct the system
of algebraic equations and solve that system to get the entire cell«centred field in the.
new time—step. This kind of solution is called an implicit solution.

We can see that the shape of the equation will be determined by the following factors:

‘ the way cell centred values are interpolated to the faces (Llf and (pf) using
different interpolation methods,

' the geometrical shape of the cell (especially the number of cell faces) as well
as the number and geometry of adjacent cells, since the cell shapes determine
the position of the cell centre, and thus have an impact on interpolation,

' the size of the cell: the smaller the VP, the closer the algebraic equation will
be to the exact equation (numerical consistency), increasing the accuracy of
the solution,

0 what terms are present in the equation: we may add a diffusive term and/ or
a source term, whose discretization will change the values of the coefficients
in the final algebraic equation,

' the size of the time-step we use: the smaller time-step results in increased
time acmmcy for transient problems.

The owner-neighbour addressing is applied when the sum term of Equation 1.6 is
evaluated. Should this term be evaluated naively for each cell using the outward
directed normal S, the computation would be doubled for each cell face f once the

loop reaches the adiacent cell {see Jasak 1996). l-lowev'erI the owner-neighbour
addressing allows the FVM method in OpenFOAh/l to interpolate the face values
only once, and then simply apply the some contribution for both adjacent cells:
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owner Tlr’ighlmur

ZofoS m refilfo {9fo5}\

f f f

Equation 1.9

where the sum is split into the owner sum and the neighbour sum. All the numerical
calculations in Ope11§0AM® that involve face interpolation are based on looping
over mesh feces. Cell values are accessed using owner-neighbour addressing of the
cells, that has been described previously. This way the values (pf and Lit in Equation
1.9 are interpolated once to the face centres. Their contribution to the discretized
term of two adjacent cells is also computed only once in a loop that will add the some
contribution to the face—owner cell, and deduct it from the face-neighbour cell. This
way a significant amount of computational time is saved.

Face interpolation
We have mentioned before that the volumes store discrete field values in their
centers, and the discrete Equation 1.6 makes use of the face values as well when it
interpolates the face values. Evaluating face values is done by using interpolation
schemes, which are one of the main building blocks of the OpeniiOAM® library.
interpolation schemes use values stored in cell centres C to interpolate the values
in the face centres Cf . Using different interpolation schemes for the face centered
value, {pf will define the form of the discrete equation defined for each cell of the
mesh. There are various interpolation schemes available, however explaining all of

them is not within the scope of this book. To explain the basic working principle of
an interpolation scheme, we have chosen linear interpolation, which is also known as

the central differencing scheme (CD5):

er : fro}: mi» (1 m fiHMN:

Equation Lit)

where fit is the linear coefficient which is computed from the mesh geometry:

,3 write
new

quation 1.11

Equation 1.11 clearly shows what role does the mesh geometry play in the final
algebraic equation assembled for a finite volume: large differences in cell size may
lead to large errors in the face interpolation, that in turn reflect on the entire system
of algebraic equations. A rigorous and detailed derivation of the interpolation errors
of the arbitrary unstructured FVM is provided by Jureti c 2084.
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The positions of the points P , f and N will be determined with the shape of the
cells, and this plays a crucial role for the accuracy and stability of the numericai
method. Equation 1.10 introduces the neighbouring celi centre values into the
algebraic equation of a cell. To better illustrate how the algebraic equation for a cell
is assembled, consider the example of a QB finite volume with labeled surrounding
cells of the unstructured mesh shown on the Figure 1.6. For this volume, the. discrete
Equation 1.6 takes on the following form:

mfi+oo+aoea
Equation 1.12

in this example, dependent variables are: (91 , (p4: , and (93 for the cell 1 when an
implicit temporal discretization scheme is applied. The number of the dependent
variables in the aigebraic equation is determined by the cell shape, since it
determines the number of adjacent cells which take part in the assembly of the
discrete advective term.

Boundary conditions
There is one thing missing in this description of the FVM: if the adjacent cells
introduce dependent variables into the algebraic equation of a cell, what happens
when the cell is adjacent to the domain boundary? Such cell faces are highiighted
in red and labeled boundaryPield in Figure 1.8. In that case, the variable cannot be
made a dependent variable of the system, it needs to be prescribed. This is the reason
why we have to set boundary conditions for our simulations, which can be further
explained when observing the expanded discrete Equation 1.8.

 

  

 

3’
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Figure 1.8 Example of a simple 2D channel flow with the inlet on the right side and the outlet on t left hand
side. The other remaining two boundaries are assumed to he walls.
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While expanding the sum term, we will come across a cell face which is the

boundary face. if we mark this face with b, we will need to compute Something

like oh Ub Sb and add it to the rest of the sum. Since there is only one cell next to a
boundary face, this cell will always be the owner of the boundary face, and hence
the normal area vector of a boundary face will always be directed out of the flow
domain (out of the owner cell). The values of the physical properties {in this case,
the property (p and the veiocity U) will either be fixed (eg. fixed value boundary
condition) or they will be computed from the internal cell values (eg. zero gradient
boundary condition). For the fixed value boundary condition, the procedure is
simple: eg. we as a user prescribe the ob vaiue as well as the boundary velocity Ub.
The simpiest form of the bormdaryv condition that depends on the cell centre values

is the so-callecl Neumann, or "natural" boundary condition, which prescribes a zero
gradient of the property at the domain boundary:

0,

Equation 1.113

and this is the condition that is need to compute the value of the property at the

boundary face b, using the Taylor series approximation:

dip 2*: 9% + Velxblflfif m 9%?
Equation 1.14

Which means nothing more than that the boundary vaiue takes on the value from
the single owner cell. The boundary contribution to the algebraic equation for a zero-
gradient boundary condition on the boundary face. b Witt end up in the coefficient
next to the cell 1mlue in the new time-step: e1 in Equation 1.12.

There is a multitude of various boundary conditions implemented in OpenFOAM®z
all of them either preecribe the boundary value or boundary gradient in a way.
Regardless of how the perticular property gradient or value is obtained, applying

the boundaryr condition is basically either defining a value or a gradient on a certain
boundary face.

Solving the system of algebraic equations
Equation 1.6 presents an example of how the partial differential equation like the
Equation 1.3 can be converted using equation discretization and interpolation
schemes on top of the existing mesh (domain discretization) into an algebraic
equation. implicit temporal discretization will result in an equation being assembled
per each cell, that needs to be. solved for dependent variables stored in the the cell

and its surrounding cells.
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A system of algebraic equations generated this way will he very large: its size is

directly proportional to the number of cells. One look at the fullyr expanded algebraic
equation for our example cell 1 shows how the cell indexing resulting from the mesh
generation process determines the structure of the coefficient matrix of the aigebraic
system of equations. if we chose a different ordering of cells than the one shown in
Figure 13a, the coefficients and the dependent variables for the volume 1 wouid
have different indices.

in order to solve an algebraic system of equations, we need a quadratic matrix of

coefficients, and no rows or columns may be defined as linear combinations of each
other. This means that the true length of the fuliy expanded example Equation 1.12
will be equal to the number of mesh cells, which results with a large number of
equations for the entire mesh, that are assembled and solved in a matrix:

Eqnation 1.15

where A is the coefficient matrix, x represents unknowns of the system and c denotes
the source vector of the system.

Each row represents the connection of the particular cell to the other cells. As one cell
does not possess a lot of direct connections to the remaining cells, onlyr few columns
in that row do actually have a value. The remaining columns are filled with zeros.

Applied to our example, this means that the rest of Equation 1.12 is filled with zeros
for all the cells of the mesh that are not related to the example cell 1 by the face-based
connectivity that is implemented in OpenFClAM® This is why the final coefficient
matrix A assembled for an nnstrnctured mesh is a sparse matrix: a matrix filied
mostly with zeros.

Now that the system is assembled properly, it has to be solved as quickly as possible.

in principle we distinguish between direct and iterative methods.

Direct methods
A popular example for the direct methods is Gauss elimination which obtains
the solution of Equation 1.15 in a direct manner, by rearranging the matrix.
Unfortunater this number of those rearrangements is proportional to 3:13, with
n being the size of the matrix {see Ferziger and Peric 2082). This renders them
unfeasible for large matrices, which usually occur in today‘s applications. Especially
because the common matrix is sparse and after applying the upper triangulation
of the Gauss elimination, the matrix is not sparse anymore, which accounts for the

slowness of the method.
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Iterative methods
"these methods are essential for non-linear problems and opposed to the direct
methods, the accuracy is not as good. But this is ahsolnteiy fine as the accuracy of the
matrix solver most solely be higher than the one of the discretizations. The soiving
process is started at a guessed soiution and refined iteratively. Ferziger and Peric
(2002) formulate the system of equations for an iterative solving process like the
foliowing:

A _ X71. _ pn

Equation 1.16

The intermediate soiution xrr after n iterations does not suffice Equation 1.15 and
hence a residual pn has to be introduced. It is always the aim to drive the error
towards zero. Since iterative soivers don't solve the system of equations in a
absolutely accurate manner, the grade of accuracy must be defined somehow. This
is where the residual comes into play, defining the difference between the exact

solution and the current iteration.

Finding the most efficient iterative solver for the particular application is necessary

if one desires it fast convergence. OpenFOAM® provides a large number of solvers,

ranging from preconditioned comingate gradient (PCS) to more sophisticated ones,
such as generalized geometric-algebraic multiugrid (GAME). To describe each of
them in detail would be. beyond the scope of this book and the reader is referred to

Ferziger and Peric (2002); Seed {2003) for details on this topic.

Improvement of convergence
As real world applications tend to include. various physical phenomenons and
are usually of unsteady nature, achieving proper convergence can turn out to he
challenging. One common method to improve the convergence of the simulation is to
employ under-relaxation.

Under—relaxation means that the user can define a blending factor a; between the old
and the new soiution. An o = 1 means that no effectively under-«relaxation is applied
and the new solution is completeiy assembled by the result for this time-step. Setting
a = 0 practically disables the development of the soiotion, as it is entirely composed
by the previous solution, so choosing this value is of no merit. Values within the

interval (0, 1) define the blending between both solutions used to set the new

solution of the system.
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Overview of the organization of the
OpenFOAM® toolkit
The OpenFOAM® toolkit consists of many different libraries, stand—alone solvers,

and utility programs. in order to establish some orientation around this massive and

often intimidating code base, we'll start with simply having a look at the contents; of

the root O‘penFOAMCE directory.

Contents of the [OpenFOAM directory:
O /' applications

D Houses source code for solvers, utilities, and auxiliary testing

functions. Solver code is organized by function such as /
incompressible, / lagrangian, or /combustion. Utilities are organized
simiiarly into mesh, preprocessing! and post-processing categories

among others.

* / bin

0 Houses bash (not C++ binaries) scripts of with a broad array of
functions from checking the installation (foamlnstallation'l‘est) to
executing parallel run in debug (mpimnDebug) to generating an
empty source code template (foamNew) or case (foamNewCase).

- [doc

0 Contains the User's Guide, the Programmers Guide, and the

Doxygen generation files. These are all excellent resources for new
users or engineers trying their hand in code development.

' /etc

Contains many compiiation and runtime selectable configuration

controls for the library. Numerous installation settings are set in /
etc/ bashrc including which compiler to use, What MP1 library to

compile against, and where the installation will be placed (user local
or system Wide).
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O /platforms

0 Separates and stores compiied binaries based on precision, debug
flags, and processor architecture. Most installations will only have

one or two sub-foiolers here which will be named according to the

compilation type. For example, linux64Gchi’Opt can be interpreted

as follows:

linux = operating system type

64 = processor architecture

Gcc = compiler used (Gcc vs. lcc)

DP = float precision (double precision (DP) vs. single precision (513)).

Opt = Compiler optimization or debug flag. (Optimized (Opt) vs. Dehug
(Debug) vs. Profile (Prof))

/ etc

0 The bulk of the source code of the toolkit. Contains ail of the CFD

library sources including finite volume discretizaton, transport

models, and the most basic primitive structures such as scalars,

vectors, lists, etc... The main CPD solvers within the /applications/

folder use the contents of these libraries to function.

/ tutorials

0 [Dre-configured cases for the various available solvers. The tutorials
are useful for seeing how cases are set up for each solver. Some cases
illustrate more complex pro-processing operations such as multi-
region decomposition for solid-timid heat transfer or arbitrary-mesh-
iriterface (AMl) setup.

/ wmake

O The bash based script, wmake, is a utility which configures and
calls the C++ compiler. When compiling a solver or a library with
wmake, information from [Meke/ files and /Make/ options; is need to
include headers and link other supporting lihraries. A /Make/ folder
is required to use wmake, and thus to compile most OpeuFOAM®

code.

The OpenFQAM® library is described from a more in—depth software engineering
perspective in Clmpter 5. There we describe how object oriented C++ programming
is used to make OpenFOAM® such a flexible and powerful CF33 platform. in the
following chapter we will introduce mesh generation and conversion and some
associated utilities. Here we will start our first example project which we will
develop throughout the rest of the book.
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Summary
This chapter reviewed some important aspects of computationai fluid dynamics
which form an important foundation for both inexperienced CPD engineers and
new OpenFOAM® users. An important idea to take away is that CPD is immense-i}:
complicated and no software package can perform magic. The. accuracy of your
simulation wiil oniy be as good as your ability to make proper aseumptions and

design an inteliigent simulation. With that said, we will begin interacting with
OpenFDAMGZD in the next chapter as we. iearn to generate meshes and explore
different options when discretizing a flow domain.
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Geometry Definition, Meshing,
Conversion, and Utilities

“Th are is geometry in the humming Qf'the airings; there is: mutate in the Spacing

qfihe spheres. ” w- flailingoms

A geometry is essentially a three dimeneional repregentation of the flew region. If you

consider an aerodynamic sinmlation of the flow around a car, the interior ofthe car

is generally of no interest as it does net contribute to the overall flow in a significant

manner. Therefore, snlely the detaits on the outside of the car's body are relevant and

need to be reeelved sufficiently by Spatial diseretization. In this chapter we will outline

how to create a mesh from scratch, how to convert meshes from third party packages, and

illustrate various utilities for manipulating a mesh after creation.

What is covered in this chapter:

- Defining a geometry

- Meshing in blockl‘v‘lesh

v Generating meshes with snappyI-{exMesh

- Converting meshes from external formats

i Generating axisymmetric meshea.

0 Using mesh modifieatinn utilities.
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Geometry Definition
We distinguish between the actual mesh geometry and the geometry that comes out of

a Computer Aided Design (CAD} program. Though some words onthe general mesh

connectivity have been spent in the previous chapter, we wouid like to give an overview

how the actual mesh is stored in the fiie system. if you don't know ofwhat components an

OpenFOAM® case is composed of, please read Chapter 3 before proceeding.

 

As long as we are deaiing with static meshese the computational grid is always stored in

constant/poEyMesh. it lives in this directory because it is supposed to be constant? hence

the constant felder. From a programming point of View it is described as a polyMesh,

which is a general description of an OpenFOAMf’E mesh, with 315 it‘s features and
restrictions. The pitzBailg.r tutorial of the potentialFoam soiver serves as an example in

the following, which can he found by typing

?> tut

?> Cd basic/potentialFoam/pitzoai1y

The polyMesh directory must coetain the following fiies that must be filled with data

correctly, in order to provide a valid mesh (see Listing 1 below):

! points defines all points of the mesh in a vectorField, with their position in space
being specified in meters. These points are not the celi centres C? but the corners

of the celis. if you would like to translate the mesh by say i In into positive 3;

direction of the global coordinate system, you would solely have to move each

point accordingly. Teaching 312)! other structure in the poly/Mesh sub—directory for

this purpose is not required, but we come to that later in Section 2.4.

?> cat constant/poiymesh/points

25012 // Number of points

(
(~0.0206 0 “0.00053 // Point 0
(~0,01901716308 0 «0.00053 // Point 1

(“0.01749756573 0 ~0.0005)
(“0.01603868134 0 “0.0005)
(m0.03463808421 0 “0.0005)

3
Listing 2: Excerpt of the points file
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One can see from Listing 2 that it is a first M25012 points. This list may not

he ordered in any way, though it can be. in addition ali elements of the list are

unique, meaning that no point coordinates can occur multiple times. Accessing

those points is performed by definieg their position in the vectorField, starting

with index (it

faces composes the faces from the points by their position in the points

veetorFieid and stores them in a iist. This position in the vectorField is referred
to as it's label. Each face must consist. at least of three points and its size is
followed by a list ofpoiet labeis. On a face every point ie connect by a line

to its neighbours {OpenFOAM User Guide 2H} 3]. From the points that. define

the face, the surface area vector Sr is calculated and the direction is determined

by the right_hand-rule. The example shown in Listing 3 is taken from the

potentialFoam tutorial pitzflaily. It consists of491% faces of which enly a

subset is ehown.

?> cat constant/potyMesh/Faces

49180 // Number of faces

C
4(1 20 172 153} // Face 0 with it’s four point "tabeis

4C19 1.71 172 20)

4(2 21 173 154)

4(20 1?? 173 23.)

4(3 22‘ 174 155}

3
Listing 3: Excerpt of an example faces fiie

owner is a iist (labelList) with the same dimension as the list storing the faces. It

teiis the code that the first face {index 0) is owned by the cell with the label that

is stated in the owner list at index 0. For our exampie shown in Listing 4 this

defines faces 0 and I as beng owned by cell 0 and faces 2 and 3 owned by eeli I.

The ordering of this list is the result of the owner-neigllbour-addressing that was

presented in the previous chapter.

?> cat constant/poinesh/owner

49180
(

o
0
1
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1

2

Is.

3
Listing 4: Excerpt of an example owner file

I neighbour has to be regarded in conjunction with the owner list. It does not

define the owning cell of certain face, but it‘s neighbour. Again, the working

principle ofthe owner-eelghbour—addressing is explained in the previous chapter.

u boundary contains all the information on the boundaries {or patches) in shape

of a list with nested subdictionaries. An example for our unit cube is shown in

Listing 5, This information includes the patch name, type. number of faces and

the label of the first face of this patch. All faces that are boundary faces must he

covered by the boundary description.

From a user's perspective, the last two are not to be touched as this will most certainly

destroy the mesh. The first two however, may need to be altered, depending on your

workflow. Changing a patch name or type can be done easily in this file. rather than

running the respective mesh generator again, which is likely to be a time consuming task.

?> cat constant/polyMesh/boundary

fl // Number of patches

(I
XMEN // name of first patch

{
type patch; // Type of first patch

nFaces 2590; // Number of faces in patch

startFace 367500; // Start face label of patch

}

Listing 5: Excerpt of an example boundary file.

There are several patch types that can be assigned to a boundary. Some of them will be
used on a clay to day basis, whereas some others Won‘t. We have to distinguish between a

patch and the boundary conditions applied on the patches. A patch is an outer boundary

Ofthe computational domain and it is specified in the boundary file, hence being a
topological property. Each face on a boundary patch does not. have a neighbouring cell.

in contrast to the patch, boundary conditions are applied on the patches for each field,
respectively. if three fields need bounda‘w conditions, a boundary condition must be

applied on each patch for each field individually. The patch types are:
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a patch Most patches (boundaries) can be described by the type patch, as it is the

most generai description. Any boundary condition of Nenmann, Dirichlet or

their derivatives can be appiied to boundary patches of this type.

I» wall if a patch is defined as wall. it does not imply that there is no flow through

that patch. It solely enables the turbulence models to apply wail functions to that

patch (see Chapter 7). Preventing a flow through the patch of type wall must still

be done in the velocity boundary condition.

O symmetryPlane Setting the patch type to syinmetryPlane declares it to act as
a symmetry plane. No other boundary conditions can be applied to it but the

symmett‘yl’lane, which has to be done for ail fields.

0 empty In case of a two-dimensional simulation, this has to be applied to the

patches that are "in-plane". Simiiar to the symmetryPiane type. the boundary

conditions of those patches have to be set to empty as weil. No other boundary

conditions will for those patches. It is essential that all ceii edges between both

empty patches are parallel. Otherwise no two—dimensional simulation is possibie.

«- cyclic If a geometry consists of multiple components that are identieaiiy (eg. a

propeller biade or a turbine biade)... only one needs to be discretized and treated

as if it is located in between simiiar components. For a four bladed propel ier this

wouid mean that only one biade is meshed (90¢ mesh) and by assigning a cyclic

patch type to the patches with animals in tangential direction. they act as being

coupled physically.

' wedge Similar to a cyciic patch only specificain designed for cyclic patches

which form a 5 degree wedge

it does not matter how the above mentioned structure of the polyMesh is obtained. This

can either be done by importing a mesh from an alternative software, using the mesh

generators that come with OpeaFOAM‘t?) or even by hand.

CAD Geometry
importing a geometry that has been generated in an externai CAD software is a regular

task for any CPD engineer. in OpenFOAMEETI this is done using snappyflexMesh but the

usage of this mesh generator wili be explained tater on. The only important thing is that

only stereolithography (STL) files can be imported. This is a file format that can store the

surfaces of geometries in a triangulated manner. Both binary and ASCII encoded files are

possible. but for sake of simplicity we are using the ASCIl one.

{371
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Such an exampie for a surface with only one triangle is given in Listing 6. In this

example onlyr one soiid in defined, that is named CUBE. A STL file may contain multiple

solids that which are defined one after the other. Each of the triangles that compose the

surface has a normal vector and three points“

solid CUBE

Facet normal ~3.55322e~19 «0.950743 0.30998

outer ioop

vertex «0.439394 1.29391e~18 “0.0625

vertex ~0.442762 0.00226415 ~0.0555556

vertex ~0.442762 1.2969éew13 *0.0625

endloop

endfacet

endsolid CUBE

Listing 6: Example STL file. with only one triangle

No other formats can be imported directly, but need to be converted into STL. The

drawback of using ASCII STL files is that their fiie size tends to grow rapidly with

increasing resolution of the surface. Edges are not included expiicitiy because only

triangies are stored in the file. Therefore? extracting feature edges from an STL can he a

challenging task.

An advantage of using STL as a file format is that one obtains a triangulated surface

mesha which by definition always has planar surface components (triangies). This in turn

Simplifies the usage later on in the code (eg. snappyI-IexMesh).

Mesh generation
OpenFOAMtfifi comes with two mesh generators: blockMesh and snappyI-lexMesh.

Both wili be addressed briefly in this section and we try to explain how they work and

how we can use them for our purposes. The purpose of the mesh generators is to help you

to generate the polyMeah files described in the previous section without having to define

their} by hand. Both mesh generators read in a dictionary file and write the. final mesh to

constantipolyMesh.

This section is anhdivided into two major parts. At first we introduce blockMesh and

SnappyHexMesh the major OpenFOAM® mesh generators and explain their working

principles based on a minimal example.
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blockMesh
blockMesh is started by calling its executable named blockMele When calling the

executable blockMeslt the blockMeshDict is read in automatically from the constant]
polyMesh directory, where it must be present in. if it is not found there, bloekMesh will

complain and throw an error.

blockMesh generates block—structured hexahcdral meshes that are converted into the

arbitrary unstructured format of 01)anDAME} . if you recollect the limitations of the

mesh generation in an block-structured fashion, you can already guess that it is possible

to generate high-quality grids with blockMesh, even for fairly complex geometries.

But the effort that the user has to spend generating the blockMeshDict increases

tremendously for complex geometries. For the ordinaryr user the limitation in handling

the blockMeshDict is reached quite quickly. All of this makes blockMesh a great tool to

generate meshes that either consist of a fairly simple geometry, that can be decomposed

into blocks, or act as background meshes for snappyI-IcXMesh.

An example of a blockosh block is shown in Figure 2.}. Each block consists of

8 corners that are called vertices. The hexahedral block is built from these corners.

Edges, as indicated in Figure 2.1, connect the particular vertices with each other. Finally

the surface of the block is defined by patches, though those have only to be specified

explicitly for block boundaries that don't have a neighbouring block. Boundaries between

two blocks must not be listed in the patch definition. Their length and number of nodes on

the particular edges has to match. Boundary conditions for the actual simulation Will be

applied later on those patches.

Though it is possible to generate blocks with less than 8 vertices as well as non-matching

nodes on patches (see OpenFOAM User Guide (208)), this is not covered by this guide.

The edges of the block are straight lines by default, but can be replaced by different line

types, such as an are, a polyline ora spline. Choosing, for example, an arc does affect the

shape of the block edge, but the connection between the final mesh points on that edge

remain straight lines.

Coordinate Systems

The final mesh is constructed in the global (right—handed) coordinate system, which is

Cartesian and aligned with the major coordinate axis: x, y, and z. This leads to a problem

when we would like to position and align blocks arbitrarily in space, maybe even twist

them. To circumvent this issue. each block gets its own right—handed coordinate system,

which by definition does not require the three axis to be orthogonal. The three axis are

labeled at, , x2, x3 (see OpenFOAM User Guide (2013) and Figure 2.1}. Defining that local

coordinate system is done based on the notation shown in Figure 2.1: Vertex 0 defines

the origin, the vector between vertices 0 and i represents 3:], and x3 are composed of the

vectors between “vertices 0 and 2 and 0 and 4, respectively.
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Node Distribution

During the meshing process, each block gets subdivided into ceils. The ceiis are defined
by the nodes on the edges in each of the three coordinate axis of the block’s coordinate

system and foliow a relationship reading:

a Z n + I
{with males

it is up to the user to define in bloekMeshDict how many cells will appear on a certain

edge. The eeii distribution on an edge can be uniform or defined by two types of grading.

An expansion ratio describes the grading on an edge. which in turn is the size ratio of the

last to the first ceii on that particular edge. The grading definition on an edge is defined in

the QpenFOAM User Guide 2013 as:

d}.

I {is If 9f 2 I all nodes are spaced uniformly on that particular edge, no grading is

present. With an expansion ratio e}. > 1, the node spacing increases from start to end of

the edge. From the C++ sources of biockMesh it can be found that the expansion ratio
that is defined by the user is scaled by the following relation:

1

e: (*5 where n represents the number of nodes on that panicniar edge. By combining

the two equations, we can calculate the relative position of the i—th node on an edge.

i ~ 7”

' ’ "" Even though this might took too iaborions to perform for all of the blocks in

a blockMeshDict, this comes in handy when a smooth transition in the cell sizes between

two adjoining blocks is required. in other cases, simpie trial and error usuaiiy suffices.

A 93.7} M

 

Defining the dictionary for a minimal example

As a small example on how the biockMeshDict is set up, we are diseretiziag a cube of

l m3 in volume. The dictionary itself consists of one keyword and four sub-dictionaries.

The first keyword is convert’l‘aMeters which is usually 1. Ali point iocations are

multipiied by this factor, which comes in handy ifthe geometry is very iarge or very

smail. In any of those cases we wouid end up typing a lot of ieading or tailing zeros,

which is a tedious task. By setting convertToMeters accordingiy, we can save some
typing. The first. iine of the biockMeshDict should then look like this:

convertTometers 1;
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Secondly the vertices must be defined. Remember that the vertices in blockMesh are

different from the points of the created polyMesh, though their definition is fairly simiiar.
For our unit cube example the vertices may look somewhat like this:

vertices

C
C000)

(100}
(13.0)

(010)

(001)

(101)

(3.11)
(011)

3;

We can teli just from having a first glance at it., that the syntax is a list similar to the
points in polyMesh definition, This is clue to the round brackets that indicate a list in

OpenFOAM® ., whereas curly brackets would define a dictionary. The first four lines
define all four vertices in the z 2 0 plane and the following do the same for the z m 1

plane. Similar to the points in polyMesh, each element is accessed by its position in the

list and not by the coordinates. Note that each vertex must be unique and only occur once

in the list.

As a next step, the blocks must be defined. An example bloek definition for the unit cube

might loot-r like this:

blocks

(
box (0 1. 2 3 4 5 6 7) (1 1 1) simpleGrading (l 1 1);

)3

Again this is a list that contains blocks and not a dictionary, due to the round brackets.

The definition might took a little odd at first glance. but is actually quite straight forward.

The first word hex and the first set of mood brackets containing eight numbers tells

blockMesh to generate a hexahedron out of the vertices 0 to 7. These vertices are exactly

those specified in the vertiees section above and are accessed by their labels. Their order

is not arbitrary, but defined by the local block coordinate system as follows:

i. For the local 173 = 0 plane list all four “vertex labels starting at the origin and

moving according to the right-handed coordinate system.

2. Do the some for the local x3 = 0 plane
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it is possible to obtain a valid block definition by messing up the order of the vertex list

in the particular block definition, but the resulting block will eitherlook twisted or uses
incorrect global coordinate orientation. in any case, you will notice that as soon as you

run hlockMesh, checkMesh and analyze the mesh in a post-processor (cg. paraview).

The second set of round brackets tells blockMesh how many cells each direction of the

local coordinate system should get. In this case, we settled for a block that contains only

one cell. if we would decide to change that to the 2 cells in x}, 20 cells in It; and 1337

cells in .163 J the block definition would look like this:

hex (O l 2 3 4 5 6 7) (2 20 1337) simpleGrading (l 1 l);

The last remaining bit is the simpleGrading part in conjunction with the last set of

numbers in the round bracketa- This is the easiest way of defining a grading (or expansion

ratio} as described before. The keyword simpicGradlng defines the grading for all four

edges in each of the three local coordinate system‘s axis directions, to be identical. Hence
each of the three numbers stated in the brackets after simpleGrading defines; the grading

for four edges. Sometimes this is not versatile enough, though. And that is where the

cdgeGrading comes into gritty, which is essentially the same as simpleGrading, but you

can Specify the grading for each of the l?! edge on a hexahedron explicitly. Therefore the

last set of brackets would not hat 3 numbers, but 3 times 4. Hence each edge can be set

individually.

if we would save the blockMeshDict right now and execnte blockMesh afterwards. we

would obtain a valid mesh that looks similar to what we have Specified. But blockMesh

would warn us about not having defined any patches, that are put into the defaultFaces

patch by default. How can we define the patches as we wish? That is; done by defining

them inside the list called patches and for the example patch 0. this look like this:

patches

C
XMIN

{
typo patch;

Faces

{
(4 ? 3 0)

3;

J;
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This teiis biockMesh to generate a patch of type patch named XMIN, out of the face

that is constructed from the vertices 4, ,7, 3 and 0. How the vertices are ordered is not
arbitrary. They need to be specified in a clockwise orientation, looking from inside the

block. An image of the unit cube of our minimal examlryiea consisting of 1000 smail cubes
is shown in Figure 2.1L with highlighted XMIN, YMIN and ZMAX patches.

      

Illustration of a lflxlflxlfl cubic mesh generated with blockMesh.

As stated earlier, the edges of a block are lines by defauit and thus the list containing
the edge definitions is optional. Quite similar to the above defined blocks and patches,

connecting two vertices by eg. an are instead of the default iine would look like this:

edges

(
are 0 1 (0.5 “0.5 0)

);

Each item of the list containing the edge definitions starts with a keyword that indicates

the type of edge, followed by the labeis of the start and end vertex. In this example the
line is closed by the third point that is required to construct an are. For any other edge

shape (erg. polyLine or spiine), this point would be repiaced by a list of supporting points.
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An example how inserting the above listed code alters the shape of the unit cube shown

in its original shape in Figure 2.3 is presented in Figure 2.4.

     

Illustration of a blockMesh block with one edge as an arc.

Now execute blockMesh and make yourself comfortable with editing the
bloekMeshDict:

?> blockMesh

To proceed with the snappyI-IexMesh section, you should end up having a unit cube

consisting of 50 cells in each direction.

snappyHexMesh
Compared to blockMesh, snappyHexMesh does not require as much tedious work
(like adding and connecting biocks). With snappyHexMesh hexa—dominant meshes

can be generated easily, needing only two things: A hexahedral background mesh and
secondly one or multiple geometries as STL files. snappyHexMesh supports local mesh

refinements defined by various volumetric shapes (see Table 2.1), application ofboundary

layer cells (prisms and polyhedres) and paraiiei execution.

With snappyHexMesh being a complex program and requiring lots of parameters,
describing all them extensively is beyond the scope of this book. Piease read the

OpenFOAM User Guide (2013) in conjunction with this book. A run ofsnappyHexMesh

can be split into three major steps, that are executed successively. Each of these steps

can be disabled by setting the respective keywords to faise at the beginning of the

snappyflexMeshDict. These three steps can be summarized:
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I casteliatedMesh This is the first step and does essentially two main things.

Adding the geometry to the grid and removing all of the cells that are not inside
the flow domain. Secondly the existing cells are split according to the user

Specifications. The result is a mesh that still only eonsists of hexahedrons, that

more or less resembles the geometry. But the majority of mesh points that are

supposed to be placed on the geometry's surface are not. A screenshot of a later

example at this stage of the meshing process is shown in Figure 2.5.,

4- snap By performing the snapping step: the mesh points in the vicinity of the
surface are moved onto this surface. This can be seen in Figure 2.6. During

this process, the topology of those cells may get changed from hexahedrons to

polyhedrons. Some may get deieted or merged together.

- addLayers At iast additional cells are introduced on the geometry surface,

that are usually used to refine the near wall flow (see Figure 2.7). The already
existing cells are moved away from the geometry, in order to create space for the

additional cells. Those cells are most likely to be prisms.

All the above mentioned settings and many more are defined in system!

snappyHexMeshDict that contains all of the parameters required by snappyHexMesh.

A lot of helpful tutorials can he found in the OpenFOAM® tutorials directory under

meshing/snappyHexMesh. Compared to other OpenFOAM® dictionaries, the

SnappyHenMeshDict is very long and consists of many hierarchy levels, that are
represented by nested subdictionaries. One time step is written to the ease directory, for

each of the above mentioned steps (assuming you have a standard configuratiom though).

Each of the three steps will be addressed individually in the following.
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illustration of the stages of snappyHexMesh applied to a spherical surface: castellated mesh generation,
snap, and layer addition.

Cell levels

CeEl levels are used to describe the refinement status of a background mesh cell. When
snappyHexMesh is started, the background mesh is read and all coils are assigned cell
level 0 {bloc cells in Figure 25’). If a cell gets refined by one levei, each of the edges

gets sliced into haif, giving 8 instead of one cell. This way of refining is based on octrees
and thus only works for hexahedrons, which is why a hexahedral background mesh is

required by suappyHexMesh. With snappyHexMesh it is impossible to refine cells in
only one direction, as this cannot be covered by octrees~ Therefore they get refined — by

definition - in all three spatial directions uniformly.

Defining the geometry

Before we can start the meshing process, the geometry has to be defined in the geometry
subdictionary in the snappyHenMeshDict. Without. the need to define anything in the

snappyHeXMeshDict, the existing mesh in constantfpolyMesh is read anyway and

serves as background mesh. Usually for external flow simulations, one does not have

small geometrical features of the outer boundaries, that must get resolved, For such cases

the dimensions of the outer boundaries defined by the background mesh don‘t have to get

touched and should resemble the desired shape. For internal flow simulations on the other

hand, the outer shape of the background mesh is ofno interest, as it is defined by the

actual geometry.

As a minimal example, we reuse the unit cube example that we prepared in the previous

section and insert a sphere into it. The sphere is generated using a STL file, instead of

the shapes listed in Table 2, 1. Loading a STL geometry can be done in a straight forward

manner, by simply copying the geometry to canstant/triSurface of your case and adding

the following lines to the geometry subdictionary in your snappyHexMeshDict:
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Shape Name Parameters

Box searchahleBox Min, max

Cylinder searchabieCyiinder Poinfl, pointil, radius

Plane searehablePlano Pointi normal

Plate searchablePlate Origin, span

Sphere SearchabieSphere Centre, radius

Coliection searchableSarfaeeCollection geometries

 

Tobie 2‘1: List ofcell selection shapes.

Sphere.st1 // Name of the STL file

{
type tri SurfaceMesh; // Type that deals with STL import

name SPHERE; // Name access the geometry From now on

It

The lines above tell snappyHexMesh to read sphere.stl from constantltriSurfaee as

a triSurfaeeMesh and refer to the geometry contained in that STL as SPHERE; Other

geometry objects can be eonstrueteci without the need to open any CAD program, right

inside snappyHexMesh. A iist of these geometrical shapes is compiled in Table 2.1.

Any of the mentioned Shapes can he eomtt‘ucted in the geometry subdictionary, by Simpiy

appending to the existing subdictionary. As an exampie, we are adding a box to the

geometry subdictionary, which is coestmeted from a minimum and maximum point. This

makes it impossible to rotate the box straight away and it will aiways he aligned with the

coordinate axis.

SmailerBox

{
type searchableeox;

min {0.2 0.2 0.2);

max (0.8 0.8 6.8);

}
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Simiiar to the STL definition, the leading string of the snhdictionary that defines the

searchableBox is the name- that is used to access that geometry inter on. Sometimes it is

desirable to compose a geometry out of the shapes listed in Table 2.} , but treat it as one

Single geometry rather than multiple. This is where the searchableSurfaceCollection

comes into play. By using this on geometry components that already existt they can

be combined into one and even rotated, translated and sealed. in any case, combining

SPHERE and smellerBox into one and sealing the fancybox up bya factor of 2 would

look like this:

fancyfiox

{
type searchahleSurfaEeCollection;

mergeSuhRegtons true;

SPHEREZ

{
surface SPHERE

scale (1 l I);

}
smallerflon

{
surface smallerBox;

scale (2 2 2);

}
}

Setting up the castellatedMesh

After the geometries have been defined properly, snappyHexMesh needs to know what

to do with them. How often must surface faces and surface adjacent cells get refined,

where are volumetric refinements planned to he placed? Any of those refinements are

executed during the first step {castellatedMesm and must hence be defined in the

castellatedMesh subdictionary. We have to distinguish between refinements that are

defined by geometry surfaces and volumetric refinement. With a surface refinement only
the directly adjacent cells get refined to the defined surface- level. Applying such a surface

refinement to our SPHERE would lead to:

refinementSurfaces

{
SPHERE // Name of the surface

{
level (1 1); // Min and max refinement level

}
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This refines the surface of the SPHERE to level l. The two numbers between the

round brackets define a minimum and maximum level of refinement for this surface.

snappy’flexMesh cheeses between both depending en the surface curvature: Highiy

curved surface areas get refined higher than the lesser curved ones.

Refinements in snappyHexMesh are not limited to get defined by suifaces. Any

geometry defined in the geemetry subdictionary can serve as defining shape for a

volumetric refinement. These velumetric refinements are calied refinementRegiens and

get defined in a snhdietinnary with the same name, in the castellatedMesh controls.
Refining anything inside the smallerBox to level i can be done by adding the following

lines:

refinementRegions

{
smaliereox // Geometry name

{
mode inside; // inside, outside, distance

ieveis ({1815 1)); // distance and level

}

3-
Each refinementRe’gion must get a mode and a list oflevels. The mode can either

be inside. eutside or distance, which are fairly self-expianatory. Defining the list ef
refinement levels is a bit trickier, though: Each ievel must be defined in a. pair with a

distance, which is 1E1 5 in the example abnve. With increasing position in the iist, the

levels must decrease and the distances must increase.

Without specifying a point lneated inside the veiume of the final mesh, it is impessihie

fer snappyflexMesh to decide which part of the sphere the user wants to discretize. That

is why the locatinnInMesh keyword must be defined in the casteilatedMeshCentmls

suhdieticanzirya as well. This point must net be placed on a faee of the haekgronnd mesh.

For our unit cube example, this paint is defined as:

tocationInMesh (0.989999 0.989999 0.989999);

The next Step is to tweak the parameters ef the snap subdietienary in the

snappyHexMeshflict.

Setting up addLayers
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All settings for the addLayers step are defined in the addLayersControis subdictionary

of the snappyHexMeshDiet. Any surface can be used to extrude prism layers frem,

regardless of its type. Firstly we need to define hew many cell layers are K} be extruded,

by specifying, it in the iayers subdictionary.

layers

{
"SPHEREW.*" // Patch name with regular expressions

{
nSurfaceLayers 3; I/ Number of cell layers

}
}

Each patch name is foilowed by a subdictinnaty that contains the nSurfaceLayers

keywerd. This keyword defines the number 9f cell layers that get extruded and is thus

feiiewed by an integer. In the above example, we use regular expressions to match any

patch names that start with SPHERE . which hasically is truly the sphere itsetf. A crass-

section of the final mesh is shown in Figure 2.7.

Varieus parameters 0f snappyI-EexMesh, related to the iayer extmsiun, need to get

tweaked in order t0 obtain a mesh that suffices your requirements. A few of those are

explained briefly in the foilowing.

I relativeSizes can switch from absoiute tu relative dimensiening for the following

values. By defauit it is true.

' expansiunRatio defines the expansion faetar freer} une celt layer t0 the next one.

- finaiLayerThickness is the thickness ef the last cell aner (furthest away

from the wall), with respect to the next cell of the mesh Dr in absoiute meters,

depending On your eheice for the relativeSizes parameter.

a minThickness if a layer cannut be thicker than minThiekness, it is not extrmied.

in our minimal example. we used the fellowing settings:

relativesizes true;

expansionkatéo 1.0;

finaILayerThickness 0.5;

mtnThickness 0.25;

Finally we just need to execete snappyflexMesh in the ease to start the meshing
process, using snappyHexMesh. Each step generates a new time step directory, that

contain the mesh 0f the particular stage. Remember to delete these befere restarting

snappyHexMesh.
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Mesh conversion from other sources
While blockMesh and snappyHexMesh are powerful mesh generation tools, users

may often use third party meshing packages for defining and discretizing a more

complex flow domain.

 

Conversion from External Meshing Packages
Many more advanced external meshing utilities offer the user additionai levela of control

during mesh generation such as selectable element types. fitted boundary layer meshes,

and iength scale control to name a few. A3 of OpenFOAM® verfiion 2.1.1, there is

support for conversion from many popular meshing programs. in addition, some meshers

can export directly to a functionai OpenFOAMifil mesh format. Listed below is a. list of

the mesh formats supported for conversion in OpenFOAMGEJ 2.1.1:

t Ansys,

a CFX

I Finent

0 GMSH

I Netgen

o Plot3D

U Star—CD

II tetgen

1: RIVA

if your particular meshing software is not mentioned in the above fist, it is more than

liker that it is capable of exporting a mesh into a supported intermediate format.

The source code for alt of the above mentioned conversion utilities are founci here:

$FOAM_A?P/utiiitieslmesh/conversionf. Users also have the option of converting
foam meshes into Fluent or Star-Cl} mesh formats using the foamMeshToFluent

and foam’l‘eStarMesh utilities. This could be especially useful for exporting meshes
generated from the snappyl-Iexh’lesh utility mentioned previously.

The mesh conversion process is typically very straightforward with very little syntax

Changes between the different conversion utilities. For that reason. only one example wiil
be given using the fiuentMeshToFoam conversion utility. To begin the process, start

with a, new case director}r or copy a tutorial ease to the directory of your choice. Here we

will start with an existing mesh conversion tutorial for the icoFoam solver. Copy the case

to the directory of your choice, rename, and move into the directory.
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'?> cp ~ r SFOAMWToTORIALs/i ncomp ressi bl e/i comam/ei bow/ ./

?> mu 6‘: how meshCDnversionTest

?> Cd meshConversionTeSt

Now7 converting the mesh is as simple as running the conversion utility and passing the

mesh file as the argument. During conversion the utility will output patch names and
mesh statistics to the console. The pelyMesh fiies will be updated accordingly.

?> f'l uentMeshToFoam e1bow.msh

Note that when importing a mesh, the case will need to be updated to reflect the new

patch names in the initial and boundary condition files, For this tutorial the U and p fields
were pie-configured for this particular mesh. For an arbitrary mesh import, these files

(and any other flow variables) wiii require a manual update to match the patches list in J

constant/polyMeshihoundary.

Should you need to scale the mesh during the conversion processes, it is as simple as

adding the option and scaling factor to the command. in this case we're reducing the mesh

size by one order of magnitude.

?> fluentmesthFoaa -sca'|e 0.1 elbowmsh

When constructing a mesh in many third party meshing utilities, users can often assign

boundary condition types such as inlet, outlet, wail, etc...o patches. While the conversion

processes will attempt to match certain boundary condition formats to a corresponding

OpenFOAM® format, the user should not assume that the conversion correctly parsed
any flow information what so ever, whether it he an internal initial condition, or a

boundary condition.

Converting from 2D to Axisymmetric Meshes
We will show how to create an axisymmetrie mesh by starting with a simple example.

Here we wili convert ieoFoam's cavity tutorial case into a wedge. In OpenFOAM® an

axisymmetrie mesh has the following properties: The mesh is one cell thick (similar to

2’0 meshes) and is rotated about an sari-symmetry axis to form a 5 degree wedge shape.

The two angled faces of the wedge are considered two separate patches of type wedge.

Download makeAxialMesh here: http:ffopenfoamwiki.netfindex.

phpf-ContrimeakeAxialMesh
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Make a copy of the ease folder to a working directory ofyour choice, rename the

directory to avoid any future confusion, ed into it, and create the 213 base mesh.

?> cp er $F0AMWTUTORIAeS/utilities/tncompressible/icoFoam/cavity ./

?> mv cavity axiSymcavity

?> Cd axiSymcavity

?> blockMesh

Now we wiil run makeAxialMesh. We will be converting the movingWail patch into a

symmetry axis. in addition, the single fromAndBack patch will be split and act as the two

faces of the wedge (frootAndBack_neg frontAndBackjos). The flags entered into the
command line will reflect this.

'5’} makeAxi awash «axis m-ovi ngWa‘ll «wedge frontAndBack

The utility will create a new time file (./0.005fponMesh) to store the transformed mesh

which is written to the case directory. The ease directory shouid now contain the folder

shown below.

?> is

0 0.005 constant system

Update the main .leonstant/polyMesh mesh with the newly created polyMesh and

remove the JBBBS directory.

?> cp «r ./0.DBS/polymesh ./constant/

?> rm “r ./0.035/

At this point the mesh has been warped into a 5 degree wetige shape (as shown in Figure

2.8), however, the faces from the movingWall patch are stiil present. makeAxiaiMesh

transforms the point positions but does not alter the mesh connectivity. Because of this,

the symmetry patch faces are now of zero size and must he removed and converted

to edges. To do this we will use the collapseEdges tool. collapseEdges takes two

mandatory command line arguments: edge length, and merge angie, as shown here.

?> coilapseEdges <edge Tength {m]> <merge angle (degrees)>
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Illustration of a standard 21:) mesh before and after wecige transformation.

For many applications an edge length of le-S meters and merge angle of £79 degrees
will correctly identify and remove the recently collapsed faces. In some instances where

the mesh edge length scale is extremely small, a smaller edge length may be required to

avoid false positives and the inadvertent removal of valid edges. Run collapseEdges with
these execution parameters as shown. Update and clean the ease as before.

?> collapsefidges 1e—8 179

?> cp ~r ./0.005/po1ymesh ./constanr/

?> rm ~r ./0.005/

For some final housekeeping we will remove the new empty patches from the boundary
list. To do this, open the boundary list file contained in .lconstant/polyMeshlheundary

and delete the movingWall and frontAndBaek entries. Note that they are listed as

containing zero faces: nfaces 0;. Change the boundary list size to 3 to reflect these two-

deletions. The boundary file should now look like the example below.

3

C
fixedwalls

{
type wall ;

nFaces 60;

startFace 760;

}
frontAndBackprS

{
type wedge;

nFaces 400;

startFace 820:
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}
frontAndBackmneg

{
type wedge;

nFaces 400;

startFace 1220;

}
)

At this point we could split the fixedWalls patch into 3 separate patches using the

autel’atch utility. This wilt look at a contiguous patch and try to identify appropriate

places to split it hased on a given feature angle. in this case, we will inform the utility that

any patch edges that form an angle greater than 30 degrees can he fight for form a new

patch. This way we will have more freedom when assigning boundary conditions to this

came going fonvard.

?> autoPatch moverwrite 30

The patches wilt be renamed after the split. The -overwrite flag will write the split mesh

into the .(ennstant/pelyMesh directory instead of creating a separate polyMeeh under a

new time folder.

Mesh utilities in OpenFOAM
The utility applications (utilities) that deal with mesh operations can he found in the

directory $FOAM_APPfutilities/mash. The mesh utilities are grougied in the following

Categories: generation, manipulation, advanced and conversion. Generating the mesh and

converting it from different formats into the OpenFOAM® format has been described in

Section 2.2 and Section 2.3. in this section we will concentrate on manipulating the mesh

as well as advanced operations like mesh refinement.

To start, copy the damBreak tutorial to the working directory of your choice, generate

the mesh and initialize the (11 field.

?> cp Mr $F0AMWTUT0RIALS/mu1tiehase/interFoam/laminar/damereak .

?> Cd damereak

?> blockMesh

?> setFields
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At this point we have a mesh generated with the bioekMesh ntitities and the Oil field is

set using the setFields pie-processing utility. The setFields utility described together

with the ere—processing utilities are in Section. You can use the basic calculator utility

foamCale to compute and store the gradient of the 0ti field.

?> foamcalc magGrad alphal

This will store the cell-centred scalar field of the gradient magnitude in the initial time

directory {3 named magGmdalphai. To refine the mesh based (in the gradient magnitude

using the refineHeXMesh application we need to copy the configuration dictionary file

for this utility into the system directory of the damBreak caSe.

?> cp $F0AMWAPP/utilities/mesh/manipulatioa/

refineMesh/refineMeshDict system/

?> is system/

controinict Fvschemes refineMeshDict

decompeseParDi C1: FvSol uti on setFi eldsfl’i Ct

lfyou open the dictionary file system/refineMeshDict, you will notice a line which

Specifies a name of the set of cells celiSet aged for the mesh refinement:

// Cetls to refine; name of cell set

set CD;

This cellSet, when created. wilt be stored in the constant/polyMesh and the refineMesh

application wiii try to find it when executed in order to figure out which ceils are refined.

There are two utilities available for creating eellSets: topoSet and setSet. The topoSet is

a utility that requires a dictionary file to be configured, and is executed on the cernmand

line, resulting with the generated ceilSet stared in the constantipolyMesh directory. Te

Create our cell set with toanet, begin by copying an example dictionary into the system

finder

?>ep $F0AMWAPP/uti1itiesfmesh/maniputation/topoSet/topoSetDict

./system/

Now. replace the exampie actions subdictionary of tepoSetDict with the follewing:

actions

C

name :0;

type cetlSet;

action new;

source fieidToCeli;
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sourcelnfo

{
fieldName magGradalphal;

min 20;

max 100;

3;
Now we will set the celiSet and refine only those cells.

?>toposet

?>refineHexMesh :8

The mesh Should now had additional resolution in areas of the high alpha gradients.

Now we will do the same using the setSet utility. The setSet utility is; interactive. and the

user can huild and save multiple ceiiSets while working in the command line interface it

git-ovides. First, open the setSet interface, then enter the fieldToCeli eyntax as shown.

?>set5et

?>cell$et c0 new fieldTocell magGradalphal 20 100

You can now refine the mesh using refineHexMesh ct} as before.

transformPoints
in the OpenFOAM® mesh format. the only information pertaining to scale and location

of the mesh is in the point position vectors. All of the remaining stored mesh information

is pureiy connectivity baseri as discussed previously. With that said. the mesh size, scale,

and position can be altered by transforming the. point locations alone. To do this we will

use the transforml’oints mesh utility. Because this utility is relatively straight forward,

we will not walk though an example but execution syntax is still shown. The most often

used options when transforming a mesh are the ~r0tate, -translate, and —Scaie options.

The -seale option can scale the points in your mesh in any or all cardinal directions by

a specified scalar amount. —scnle '(1.0 1.0 1.0)' will Eeave your mesh unchanged, white

—seale '(2.0 2.!) 2.13)’ will double the Size ofyour mesh in all directions. Any non-ooform

Scaling will stretch or compress your mesh in your given direction(s).

The -transiate option will move your mesh by the given vector, effectively adding this

vector to every point position vector in the mesh.
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The —rotate option will, you guessed it, rotate your mesh. Define the rotation by inputting

two vectors. The mesh wiii undergo the rotation required to orient the first vector with

the second. When rotating a mesh. any initiai or boundary vector and tensor values can

be rotated as weli by adding the -mtateFieIds option during execution. Syntax for these

three point transformations are shown below.

?> transformpoints wscale “(x y 23*

?> transformpotnts ~transtate '(x y z)‘

?> transformpoints ~rotateFieids erotate ‘( {x0 y0 20) (x1 y1 213 )'

mirrorMesh
There is a simple way to mirror and join meshes. along a planar patch. For this example

we will be converting a 1/4 mesh into 3 full domain. First, copy the following solid

anaiysis case into the directory of your choice and rename it. We must also copy the

mirrorMeshDiet into the case system directory.

?> op ~r $FOAMWTUTORIALS/stressAnalysis/soiidflispiacementFoam/
piateHole

-/
?> mv piareHole mirrorMeshExampte

?> Cd mi rr‘or‘Mes‘hExample

?> cp ~r EFOAMWAPP/utitiries/mesh/maniputation/mirrorMesh/

mirrorMeshnict ./system

The next step is to simply define the plane we will be mirroring the mesh about. Define

the normal in mirrorMeshDiet as shown below and run mirrorMesh. Patches about

which the reflection is taking place are automatically removed.

pointAndNormalDict

{
basePoint (O O 0);
normalvector (0 m1 0);

}

?> mirrormesh

Define a new plane and mirror the mesh again.

pointAndNormalDict

{
basePotnt (0 0 Q};
normalvector (*1 0 03;
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}

27> mi rrormesh

We now have a full domain mesh instead of a symmetric fraction as shown in Figure.2.9.

     

Illustration of a 3’4 mesh and the resolting full scale mesh offer 2 reflections with mimeresh,

Summary

In this chapter we began interacting with the OpenFOAM® library at a logical first stage:
mesh generation. It should be obvious at this point that while there is no "fluid" aspects

of mesh generation, it can still be a very cumbersome and complicated process. It is
not uncommon to spend considerable time setting up a CFD simulation, only to have an
inadequate mesh result in immediate numerical instabilities. It is our hope that between
blockMesh, snappyHexMesh, mesh conversion options, and mesh manipulation

utilities, you the user can produce the discretizcd domain necessary for your CPU

applications. In the next chapter we will use our new mesh generation skiiis and proceed
to setup a full OpenFOAM® case and perform our first full CFD calculations.
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