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Preface

Welcome to Learning OpenFOAM® the RAW edition. A RAW (Read As we Write)
book contains all the material written for the book so far, but available for you right
now, before it's finished. As the author writes more, you will be invited to download
the new material and continue reading, and learning. Chapters in a RAW book are
not "work in progress", they are drafts ready for you to read, use, and learn from.
They are not the finished article of course — they are RAW!

Learning OpenFOAM® is a practical tutorial that will show its readers how to
program CFD applications using OpenFOAM® with the help of sample projects.
This book is for C++ developers who want to develop CFD programs with the
help of OpenFOAM® library. No knowledge of OpenFOAM® or computational
fluid dynamics (CFD) is expected, although readers are expected to have some
experience in C++ programming.

What's in This RAW Book

In this RAW book, you will find these chapters:

Preface

The preface contains short description of the OpenFOAM® library/application bundle
and what it is used for in general. It also includes a discussion of the advantages of
the code being open source versus a commercial black box package.

Chapter 1: Computational Fluid Dynamics in OpenFOAM®

This chapter provides a general overview of the workflow involved with CFD
simulations using OpenFOAM®. A basic introduction of the Finite Volume Method
(FVM) supported within OpenFOAM® is provided with references pointing the
reader to further information sources on this topic. An overview of the toolkit
organization is presented as well as the interaction of the organizational elements
within the scope of a CFD simulation.



Preface
Chapter 2: Geometry Definition, Meshing, and Conversion

This chapter covers domain decomposition and discretization. This includes defining
a geometry, mesh generation, and mesh conversion.

What's Still to Come?

We mentioned before that the book isn't finished, and here is what we currently plan
to include in the remainder of the book:

Chapter 3: OpenFOAM® Case Setup

This chapter describes the structure and the setup of a simulation case. This involves
setting the initial and boundary conditions, configuring the run control parameters
of a simulation, and numerical solver settings.

Chapter 4: Post-Processing, Visualization, and Data

This chapter gives an overview of the utilities used for pre-processing and post-
processing calculation as well as instructions on how to visualize computed data of a
simulation.

Chapter 5: Design Overview of the OpenFOAM® Library

This chapter provides a more detailed overview of the library than the one presented
in chapter 1. In this chapter the reader will learn how to browse the code and where
to find the building blocks of the library.

Chapter 6: Productive Programming with OpenFOAM®

This chapter describes how to program with OpenFOAM® in a productive

and sustainable way. This chapter will be important for readers interested

in programming with OpenFOAM® who may lack a software development
background. This chapter covers the development of self-sustained libraries, a way
of using the git version control system, debugging and profiling, and so on.

Chapter 7: Turbulence Modeling

This chapter introduces turbulence modeling into a simulation case. This involves
setting up a turbulence model and its parameters.

(2]



Preface
Chapter 8: Writing Pre- and Post- Processing Applications

This is the first chapter that involves programming from the reader's side. Here
we show how to develop pre- and post-processing applications using both C++
applications as well as commonly used utilities available for this purpose.

Chapter 9: Solver customization

This chapter describes the background of the solver design in OpenFOAM®, and
shows how to extend an existing solver with new functionality.

Chapter 10: Boundary conditions

This chapter shows the numerical background and software design aspects of
boundary conditions in OpenFOAM®. An implementation example of a custom
boundary condition is provided that uses the principles described in Chapter 6. Asa
result, the reader will develop a library of boundary conditions which is dynamically
linked to the client code (a solver application).

Chapter 11: Transport models

This chapter covers the numerical background, design and implementation of
transport models. As an example, an implementation of a temperature dependent
viscosity model is provided.

Chapter 12: Function objects

This chapter introduces the use of function objects within OpenFOAM®. The
background of function objects in C++ is provided, as well as a list of references for
further study. The implementation of function objects in OpenFOAM® is described,
in addition to an instructional programming example.

Chapter 13: Dynamic Meshes

This chapter shows how to extend a solver with the functionality of the dynamic
mesh in OpenFOAM®. The available dynamic mesh engine in OpenFOAM® is
very powerful and enables the readers to build their own dynamic mesh objects by
agglomerating exiting ones.

Chapter 14: Outlook

This chapter gives an outlook of further advanced usage and programming topics
with OpenFOAM®.

[31



Preface

Conventions

In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "It is assigned a jQuery object containing
the results of the $ (' .sticky') query."

A block of code will be set as follows:

StickyRotate.init = functiom(} {
var stickies = ${".sticky");

// If we don't have enough, stop immediately.
if (stickies.size(} <= 1 || $('#node-form').size(} > 0} {
return;
}
When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

StickyRotate.init = function{} {
var stickies = 3{%.sticky"};

// 1f we don't have enough, stop immediately.
if (stickies.size(} <= 1 || $('#node-form'}.size(} > G} {
return;

}

Any command-line input and output is written as follows:

# cp /fusr/src/asterisk-addons/configs/cdr_mysgl.conf.sample

/etc/asterisk/cdr _mysqgl.conf

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

el
‘%Fx;\ . Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

[4]



Preface

What Is a RAW Book?

Buying a Packt RAW book allows you to access Packt books before they're published.
A RAW (Read As we Write) book is an eBook available for immediate download,
and containing all the material written for the book so far.

As the author writes more, you are invited to download the new material and
continue reading, and learning. Chapters in a RAW book are not "work in progress",
they are drafts ready for you to read, use, and learn from. They are not the finished
article of course —they are RAW! With a RAW book, you get immediate access, and
the opportunity to participate in the development of the book, making sure that your
voice is heard to get the kind of book that you want.

Is a RAW Book a Proper Book?

Yes, but it's just not all there yet! RAW chapters will be released as soon as we are
happy for them to go into your book —we want you to have material that you can
read and use straightaway. However, they will not have been through the full
editorial process yet. You are receiving RAW content, available as soon as it written.
If you find errors or mistakes in the book, or you think there are things that could be
done better, you can contact us and we will make sure to get these things right before
the final version is published.

When Do Chapters Become Available?

As soon as a chapter has been written and we are happy for it go into the RAW book,
the new chapter will be added into the RAW eBook in your account. You will be
notified that another chapter has become available and be invited to download it from
your account. eBooks are licensed to you only; however, you are entitled to download
them as often as you like and on as many different computers as you wish.

How Do | Know When New Chapters Are
Released?

When new chapters are released all RAW customers will be notified by email with
instructions on how to download their new eBook. Packt will also update the book's
page on its website with a list of the available chapters.

Where Do | Get the Book From?

You download your RAW book much in the same way as any Packt eBook. In the
download area of your Packt account, you will have a link to download the RAW book.

[5]
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What Happens If | Have Problems with My
RAW Book?

You are a Packt customer and as such, will be able to contact our dedicated Customer
Service team. Therefore, if you experience any problems opening or downloading
your RAW book, contact serviceapacktpub. comand they will reply to you quickly
and courteously as they would to any Packt customer.

Is There Source Code Available During the
RAW Phase?

Any source code for the RAW book can be downloaded from the Support page of our
website (http: //www.packtpub. com/support). Simply select the book from the list.

How Do | Post Feedback and Errata for a RAW
Title?

If you find mistakes in this book, or things that you can think can be done better, let
us know. You can contact us directly at rawfeedbackepacktpub.com tfo discuss any
concerns you may have with the book.

Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for

us to develop titles that you really get the most out of. To send us general feedback,
simply drop an email to feedbackepacktpub. com, making sure to mention the book
title in the subject of your message.

(6]



Computational Fluid
Dynamics in OpenFOAM®

"There cannot be a greater mistake than that of looking superciliously upon
practical applications of science. The life and soul of science is its practical
application..." — Lord Kelvin

Before interfacing with the OpenFOAM library itself, we will look at a few aspects
of the implemented flavor of finite volume CFD as well as discuss the typical
workflow of a CFD engineer. A competent and capable OpenFOAM user should
have a good handle on both the numerics of the flow solvers, and the nature of fluid
flow physics itself.

What is covered in this chapter:

L]

Characteristics of non-dimensional numbers

Some important concerns when approaching a CFD problem
The CFD workflow

A review of the finite volume method in OpenFOAM®

A summary of the contents of the OpenFOAM® library itself



Computational Fluid Dynamics in OpenFOAM®

Understanding The Flow Problem

The first step in any CFD analysis is to gain a fundamental understanding of the
flow under consideration. More specifically, we must consider the thermo-physical
phenomenon at play, what engineering assumptions we will be making, and how
they will complicate or simplify our analysis. Thermo-physical as well as pragmatic
questions that might be posed before undertaking a CFD analysis project are
outlined below. This list is by no means exhaustive.

«  General

o

What is the engineering or scientific data that we intend to take away
from this analysis?

To what degree of accuracy do we need our results?
How will we confirm the validity of our results?

How much human engineering time is willing to be dedicated to the
project?

*  Thermo-physics

Is our flow laminar, turbulent, or transitional?

Is our flow compressible or incompressible?

Does the flow involve multiple phases or fluid species?
Do heat transfer and temperature play a role?

Do we know enough about the up/downstream or far-field
conditions to accurately define boundary conditions?

*  Geometry and mesh

=]

Can we construct an accurate, discrete representation of the
geometries of interest?

Will the computational domain be deforming or moving during the
simulation?

»  Computational Resources

o

(=]

[a]

How long are we willing to wait for an answer?
What kind of distributed computing resources are available?

Will one simulation run suffice or is this a multi-run parametric
analysis?

(8]



Chapter 1

The answers to these questions will dictate, from top to bottom, the tools and
methods used to complete a proper CFD analysis of any flow problem. Skills in
using OpenFOAM® or any commercial fluid simulation package are rendered moot
without a proper understanding of fundamental flow physics, numerical methods,
and computer hard- and software. This interdisciplinary nature of CFD greatly
contributes to its complexity.

The typical method by which a flow is characterized is through the calculation

of relevant non-dimensional groups. These groups serve to quantify the relative
significance of participating physical phenomena as opposed to looking at them

in absolute terms. A few common dimensionless groups are the Reynolds, Weber,
Froude, Capillary, or Ohnesorge numbers, the details and definitions of which can
be found in many fluid mechanics and heat transfer texts (see Incropera and DeWitt
(2001); Wilcox (2007)). An example for this non-dimensionalization is the flow
around a 90 degree pipe bend. Regardless of the fluid being molasses or Nitrogen,
the flow will be identical as long as the Reynolds numbers are equal. Most fluids
based academic publications communicate results strictly in terms of dimensionless
groups to provide results independent of the experimental setup and scale.

While this type of fundamental fluid mechanics analysis is best left to the above
mentioned existing texts, its importance in CFD development is not to be discounted.
A CFD engineer must be able to determine which physical phenomenon in a flow
can be neglected, which need to be modeled, and, if so, to what degree of detail.
These decisions will more often then not be made with a careful examination of
dimensionless groups while drawing upon past experience and intuition.

Stages of a CFD Analysis

An analysis based on CFD methods can usually be divided into 5 major components.
Some of these steps must be performed multiple times in a loop in order to obtain
results of the desired high quality.

Problem Definition

Before sitting down in front of a computer, one must decide on the physics of the
problem that is the focus of the current work. You have to be aware of the flow
characteristics that you are planning to simulate and which flow features need to
be resolved accurately enough and which can be neglected without sacrificing too
much accuracy.

[9]



Computational Fluid Dynamics in OpenFOAM®

Mathematical modelling

After having defined the problem properly, it has to be formulated mathematically,
with regards to the assumptions previously made. For example: a potential flow is
solely governed by Laplace's equation (see Ferziger and Peric (2002)). If more details
must be resolved, the mathematical modeling must get more elaborate. This usually
leads to more sophisticated mathematical models, such as Reynolds-Averaged
Navier-Stokes Equations (RANSE), that account for viscous effects, unsteadiness

and turbulence, The latter is treated in a time averaged manner. For more details on
particular mathematical fluid models, please confer fluids text books such as Ferziger
and Peric (2002); Kundu, Cohen, and Dowling (2011); Versteeg and Malalasekra
(1996). More information on turbulence modeling can be also obtained from Chapter
8. The mathematical model describes the details of the flow. This means that the
numerical simulation, which approximates the solution of the model, cannot produce
more information about the flow than described by the model itself.

After having decided on a mathematical model, you can choose your OpenFOAM®
solver accordingly. This text covers an overview of the structure, basic usage and
the introduction to programming with OpenFOAM®, so the reader is directed to
OpenFOAM® User Guide (2012) for additional information on various solvers.

Pre-processing and mesh generation

The fields used in the simulation need to be initially prescribed. These values set
prior to simulation start are typically referred to as initial conditions. If the field
values are spatially varying, different utilities may be used to compute and pre-set
the fields. There are utilities that are distributed along with OpenFOAM® (e.g. the
setFields utility), as well as utilities which are a part of a supporting project {e.g.
funkySetFields utility of the swakdfoam project). The use of some of the available
pre-processing utilities is explained in Chapter 9.

1 . . . .
¥ More information on the swak4Foam project can be found on

http:/ /openfoamwiki.net/index.php/Contrib/swak4Foam.

Except for a few specific applications, it is generally impossible to solve the
governing equations of the mathematical model in an analytical manner. The flow
domain must hence be discretized. This spatial discretization consists of separating
the flow domain volume into a computational mesh consisting of volumes (cells} of
different shapes. Based on the decisions on the model, the mesh (or grid) must be
tailored for this particular purpose.

[10]



Chapter 1

Usually, the mesh must be refined in areas of interest: e.g. where large gradients of
flow variables (velocity, pressure, density, etc.) occur. Further on, the accuracy and
a proper choice of the mathematical model has to be kept in mind, as resolving flow
features in a spatial manner does not compensate for a model that does not account
for these features in the first place.

The mesh is one of the most likely components of the simulation work flow that need
to be changed if the numerical simulation fails to converge. Failing simulations very
frequently are caused by a mesh of insufficient quality.

OpenFOAM® comes with two different mesh generators: blockMesh and
snappyHexMesh. The usage of both is covered in Chapter 3. Additionally, pre-
processing covers various other tasks, such as decomposing the computational
domain if the simulations are run in parallel on multiple computers or CPU cores.

Solving

The solution step is commonly the most time consuming part of the entire CFD
analysis process, although no user interaction is required. Based on the choice of
model, an appropriate solver needs to be selected or created and subsequently
executed. The chosen mathematical models are then computed according to user-
selected solution methods and residual error tolerances.

Post-processing

After the simulation completes, the user often ends up with a large amount of data
that must be analyzed and discussed. The data must be visualized appropriately in
order to inspect the details of the flow. Data such as velocity fields, which is a three-
dimensional vector field, is impossible to visualize using simple two-dimensional
graphs. By using dedicated scientific visualization tools such as Paraview, such data
can be discussed and interpreted fairly easily.

Paraview may be downloaded for free from www.paraview.org

Post-processing and the next step, discussion and verification, typically go had in
hand. More details on various post-processing tools and methods are provided in
Chapter 9.

[1]



Computational Fluid Dynamics in OpenFOAM®

Discussion and verification

This is the point where you will have to determine whether to trust your results or
not. The code solely does what the user instructs and cannot do any magic. You have
to keep in mind that if a mistake was made one of the previous steps, you will most
likely and hopefully discover it during discussion.

Though it is advisable to have some data to compare your results to, such as
experiments, this is not very likely to be the case in industrial applications. Therefore
you have to build up a certain level of trust and confidence in the work you did to
obtain them. If you are not satisfied with the results, you must revisit the previous
steps until you are.

The Finite Volume Method in
OpenFOAM®

This section provides a very brief overview of the Finite Volume Method (FVM)

in OpenFOAM® used for CFD. The reader is directed to Ferziger and Peric (2002);
Jasak, Jemcov, and Tukovi " ¢ (2007); Versteeg and Malalasekra (1996); Weller, Tabor,
H. Jasak, and Fureby (1998) for further details regarding this topic, as it is beyond the
scope of this book to cover it with sufficient depth.

Steps of the unstructured FVM in OpenFOAM® correlate somewhat to the steps

of the CFD analysis described in Section 1.2. The physical properties that define

the fluid flow, such as pressure, velocity, or temperature are dependent variables

in a mathematical model: a formal mathematical description of the fluid flow. A
mathematical model that describes a fluid flow in three dimensions is defined as a
system of partial differential equations. Seemingly different physical processes are
sometimes described using the same mathematical description, e.g. the conduction
of heat as well as diffusion of sugar concentration in water are modeled as diffusive
processes, The scalar transport equation (see Ferziger and Peric 2002) holds the terms
often used in mathematical models, and is used exemplary to describe the FVM:

) s .
5;)_{ +V . (Up) + V- (DVo) = S,.
Equation 1.1

With ¢ being the scalar property, U the velocity vector and D the diffusion
coefficient. The terms in Equation (1.1) from left to right are: temporal term,
convective term, diffusive term, and source term. Each term describes a physical
process that changes the property ¢ in a different way (cf. Ferziger and Peric 2002).

[12]



Chapter 1

Depending on the nature of the process, some of the terms may be neglected: e.g. for
the inviscid fluid flow we neglect the diffusive term (transport) of the momentum, so
this term is removed from the momentum equation. In addition, the coefficients that
appear in some of the terms may be constant values, or spatially and/or temporally
varying fields themselves, depending on the physics of the flow. An example of such
a coefficient is a temperature dependent conductivity coefficient for conductive heat
transfer:  -(k. T), which makes k a spatially (and possibly temporally) varying
field that would depend on the system solution (the temperature field).

The purpose of any numerical method is to obtain an approximation of a solution of
the mathematical model. A numerical approximation of the solution of a complex
physical process is necessary, since the exact solution can only be obtained for a few
very specific cases that often lack relevance in technical applications. An example for
this is a Couette flow model (a flow between two infinite plates where the top plate
translates with constant velocity), for which an analytical solution exists.

Usually, the solution of the mathematical model is obtained by solving a discrete
approximation of the governing system of equations. The approximation process

of a numerical method involves a substitution of the system of partial differential
equations (the mathematical model) with a corresponding system of algebraic
equations that can be solved. These algebraic equations are evaluated at discrete
points in space and not continuously. The generation of an algebraic system of
equations within the framework of the FVM is made up of two major steps: domain
discretization and equation discretization.

Domain discretization

As previously stated, the mathematical model uses continuous fields that

describe the flow field at any point in space. In order to solve the equations of the
mathematical model, this continuous space must be discretized into a finite number
of volumes (cells}. The finite volumes (cells) make up the finite volume mesh. The
transition from the continuous representation of the flow with continuous fields
filling the flow domain €, to a discretized domain QD is shown on Figure 2.1.
Continuous fields that are defined in each point of the space filled by the fluid on
Figure 2.1a are replaced by discrete fields which stored in the centres of the finite
volumes C, as shown on Figure 1.1b. Each finite volume stores an averaged value of
the physical property (e.g. temperature) in its cell centre C.

[13]



Computational Fluid Dynamics in OpenFOAM®

Taking all of the cell centres together, the discrete field for the particular physical
property can be assembled (e.g. discrete cell-centred temperature field).

1] Qp

Y u

\ - \ e

P = p(x,t} p=p(C,t)
o= p(xt) p=p(C.t)
U= U(x, ) U =U(C,t)

Figure 1,1: Continuous and discretized flow domain and corresponding flow fields. Left: Continuous. Right:
Discretized.

There are different ways of discretizing the domain, which result in topologically
different finite volume meshes. Topologically different domain discretizations
determine how the components of the mesh (cells, faces, points) are connected with
each other. More information on mesh generation can be found in Chapter 3.

We distinguish between three major types of meshes: structured, block-structured
and unstructured meshes. Please note that all three have different requirements for
domain discretization, equation discretization, and the way the source code must
be formulated. The mesh topeology and related access optimizations of the mesh
may have a direct impact on the accuracy and efficiency of numerical operations
performed by the numerical library as well as how the algorithms are parallelized,
which is the case in OpenFOAM®.

Structured meshes support direct addressing of an arbitrary cell neighbour as

well as direct cell traversal: the cells are labeled with the indices increasing in the
directions of the coordinate axis (see Figure 1.2a). Unstructured meshes on the other
hand have no apparent direction (see Figure 1.3a) in the way the cells are addressed,
and their topology will be a result of a geometrical algorithm used to discretize the
computational domain, which is un-ordered by nature.

[14]
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Figure 1.2; A structured equilateral mesh

Structured mesh topology increases the absolute accuracy of the interpolations
involved in the FVM, but it makes the mesh less flexible when it is used for mesh
generation of geometrically complex domains. During the mesh generation process,
the user usually desires to generate a dense mesh where large gradients occur

and not to waste cells in flow regions where no such sharp gradients occur, while
generating the mesh in the shortest possible time. This is impossible with structured
meshes, as local mesh refinements are virtually impossible to achieve, since the
refinement has to be propagated into the respective direction through the entire
mesh. An example schematic sketch for this is given in Figure 1.2b.

! |
5 8 9
J !
7 4 &
2 1 3

Figure 1.3: An unstructured 2D Catesian mesh.

[15]



Computational Fluid Dynamics in OpenFOAM®

Figure 1.2a shows a two dimensional schematic of a structured equilateral mesh.
This kind of mesh is also called Cartesian since it is consisted of equilateral volumes
with volume centres distributed in the direction of the coordinate system axes.
Being able to move through the mesh by changing the indices i, j has one significant
advantage: the numerical method working with this kind of mesh may access any
neighbouring cell by simply incrementing or decrementing the indices i, j by an
integer value of 1. This comes in handy e.g. when the flux through the cell faces ¢f is
interpolated from cell centres to the face centre: high-order interpolation stencils can
be used for this purpose, thus increasing the accuracy of the solution. A high-order
(large) interpolation stencil means that an increased number of cells, that must not
necessarily be face-neighbours of the current cell, are included in the interpolation.

There is one problem, however: What happens if we want to refine the mesh

locally in a region of extreme changes of the physical property, when the order of
interpolation still is not sufficient to capture the large jump of a physical property?
Such large jumps in the values of physical properties are present e.g. in two-phase
flow simulations where two immiscible fluids are simulated. An interface is formed
between two fluids that separates them, and the values of the physical properties
may vary by orders of magnitude, as can be seen from Figure 1.4. A good example
for such a flow regime is a water-air two-phase system with a ratio of densities being
approximately 1000 (see Ubbink 1997, Rusche 2002).

Air { Air

h=0 - A=10

Water Water

> 9 : = 0

1 1000 1 1000

Figure 1.4 Qualitative distribution of the density rho with respect to the height h over
a free surface. Left: Continuous space with sudden density jump. Right: Discretized
space with gradual yet steep jump in density.

[18]



Chapter 1

To resolve such steep gradients in the fields, local mesh refinement is often applied.
This refinement can either be done during pre-processing or applied adaptively
during runtime. As mentioned previously, refining a structured mesh cannot be
done locally: the topology of a structured mesh forces us to refine in the complete
direction, as shown on the Figure 1.2b, where the refinement of a single cell in

two directions generates refinement throughout the mesh. Structured meshes

that conform to curved geometries are especially difficult to generate, since a
mathematical parametrization of curved domain boundaries (coordinatization) is
necessary in order to maintain structured mesh topology.

In order to increase the accuracy locally (meaning in a only a subsection of the
domain), block refinement may be done, which is a process of building a mesh
that consists of multiple structured blocks. When such a block structured mesh is
assembled, the blocks will have different local mesh densities. The numerical method
must either be able to deal with non-conforming block patches (hanging nodes), or
the block refinement needs to be carefully crafted, so that the points on adjoining
blocks of different densities match perfectly (patch-conforming block-meshes).
Building block structured meshes is a complex problem even for simple flow
domains, which makes block-structured meshes a poor choice for many technical
applications involving complex geometries of the flow domain. Refining block-
structured meshes results in refinement regions spreading through the blocks, and
with standard solvers that rely on patch-conforming block-meshes, the refinement
complicates the mesh generation even more.

Dynamic adaptive local refinement of structured meshes is preformed by
introducing additional data structures that generate and store the information related
to the refinement process. An example of such method is an octree based refinement,
where an octree data structure is used to split the cells of the structured Cartesian
mesh into octants. Information carried by the octree data structure is then used by
the numerical interpolation procedures (discrete differential operators) taking into
account the topological changes resulting from local mesh refinement. The possibility
of dealing with more complex geometrical domains can then be added to an octree-
refined structured mesh by using an cell-cut approach, where the cells which hold
the curved domain boundary, are cut by a piecewise-linear approximation of the
boundary. Octree-based adaptive mesh refinement may have an advantage in its
efficiency depending on the way the topological operations are performed on the
underlying structured mesh. However, the logic of the octree based refinement
requires the initial domain to be box-shaped. More information about local adaptive
mesh refinement procedure can be found in the book Adaptive Mesh Refinement
Theory and Applications: Proceedings of the Chicago Workshop on Adaptive Mesh
Refinement Methods, Sept. 3-5, 2003 (Lecture Notes in Computational Science and
Engineering) 2005.
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OpenFOAM® implements a FVM of second order of convergence with support for
arbitrary unstructured meshes. Arbitrary unstructured means that in addition to
the unstructured mesh topology, the mesh cells can assume an arbitrary shape. This
allows the user to discretize flow domains of very high geometrical complexity. The
unstructured mesh allows for a very fast, sometimes automatic mesh generation
procedure, which is very important for industrial applications where the time
needed to obtain results is of great importance. Hence, unstructured meshes are
still a main choice of domain discretization for numerical simulations of industrial
interest where the flow domains are geometrically complex.

Figure 1.3a shows a two-dimensional schematic of a quadratic unstructured mesh.
Since the mesh addressing is not structured, the cells have been labeled solely for
the purpose of explaining the mesh topology. The un-ordered cells complicate the
possibility to perform operations in a specific direction without executing costly
additional searches and re-creating the structure of the mesh locally with respect to
the given direction. Another advantage of the unstructured mesh is the ability for
a cell to be refined locally and directly, which is shown on the Figure 1.3b, which
results in a locally refined mesh of geometrically complex flow domains. The local
refinement is more efficient in terms of increase of the overall mesh density, since it
only increases the mesh density where it is required.

How then does the numerical method find its way around a cell in order to operate
on the values of neighboring cells when assembling the system of algebraic
equations, where neighboring values must be accessed from each cell?

Figure 1.5 Example of a hexahedral cell. Red and green labels indicate point and face indices respectively. Face
1 is ommitted for the sake of visibility.
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Element Addressing

The way mesh elements are addressed by the algorithms of the numerical method
is determined by the mesh topology. OpenFOAM® defines its topological mesh
structure using;: indirect addressing, owner-neighbour addressing and boundary
mesh addressing.

Indirect addressing

Indirect addressing defines both the cells and faces of the mesh as sets of indirected
indexes to mesh points. The face is defined as an ordered set of indices that map

to the list of mesh points. This means that a face is defined by the indices of its

points rather then by its points directly. A cell is built accordingly and consists of an
unordered set of indices that map to the list of mesh faces. Indirect addressing avoids
copying of mesh points whenever an instance of a face or cell is created. Otherwise
one would end up having multiple copies of the same points and faces in memory,
which would be a waste of computing capacity and would severely complicate
topological operations.

In order to clarify this we consider face 2 in Figure 1.5. It consists of points 0, 3, 6, and
11 and doesn't know anything about the locations of these points as it just referred

to the points by their indices. The same goes for the hexahedral cell that consists of
faces 1 to 6 and does not store any point related data directly. Each face of the cell
can be accessed using the index to the particular face stored in the cell, that relates to
the list of mesh faces.

Owner-neighbour addressing

Owner-neighbor addressing is an optimization which defines the way the indices in
the mesh faces are ordered, by setting the direction of the face area normal vector Sf
shown as an arrow on Figure 1.6. Two global lists are introduced into the mesh with
owner-neighbour addressing optimization: the face-owner and the face-neighbour
list. For each face of the mesh, there may be only two adjacent cells defined with one
cell being the face-owner cell (marked with P on Figure 1.6) and the other a face-
neighbour (marked with N on Figure 1.6). The owner cell of a face will be the cell
with a lower index in the list of mesh cells. This information determines the ordering
of the face indices: the face area normal vector is directed always from the owner into
the neighbour cell. Switching the orientation of the face area normal is an efficiency
optimization which is done to reduce redundant computations in the equation
discretization step described in the following subsection.
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Boundary addressing

Boundary addressing is an optimization driven by face access efficiency and object
oriented design, that isolates the boundary faces and stores them at the end of the list
of mesh faces. This allows an efficient definition of the boundary conditions as slices
{patches) of the list of mesh faces, which, in turn, results with separated operations
for the internal mesh faces and the boundary faces. The boundary mesh is defined
as a set of patches (sets of boundary faces), which can be interpreted as different
physical boundary conditions, or even processor boundaries in parallel simulations.
Such a definition of the boundary mesh results enables the automatic parallelization
of all the top-level code in OpenFOAM® that relies on the face-based interpolation
practice. All the faces of the boundary mesh are directed outwards from the flow
domain which means that they have only a cell owner and no neighbour.

A schematic sketch of how cell-centred values of the unstructured mesh are
addressed by the face owner-neighbour addressing mechanism is shown in Figure
1.6. As the considered cell with the index 1 has three faces that are taken into account
in this example, it has 3 neighbouring cells. This cell has the lowest index (1) of all its
neighbours (2,3,4) and is thus listed in the face-owner list. Each of its neighbouring
cells need to know that the face to the cell with index 1 is still used, but not owned
by each particular cell. Therefore these cells are listed in the face-neighbour list. This
results in the face area normal vectors being oriented outward from the cell 1 to all of
its neighbours in this example.

i

{=
'

NP

¥

Figure 1.6 Owner neighbour addressing for an example cell (1).
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Additional addressing, such as cell-cells and point-cells, is also stored in the
unstructured mesh in OpenFOAM®. Both are used to provide easy access to all face-
adjacent cells of a target cell and the cells whose edges meet at the specified point,
respectively. The actual indexing of all the connectivity is a direct result of the mesh
generation algorithm.

AT 3 e i1 "
/ Vo (Ud)duedt = / / on do dt = }: orU[S,
St Vi Ji i 7

Equation 1.5

Equation discretization

Once the domain is discretized into finite volumes, approximations are applied

on the terms of the mathematical model which transfer the differential terms into
discrete differential operators. In contrast to the domain discretization, this is done
during runtime in each solver in OpenFOAM®. An exception are solvers that
employ dynamic meshes, which may perform the domain discretization repeatedly.
Detailed descriptions of the equation discretization in OpenFOAM® are provided by
Jasak (1996); Jureti _c (2004); Rusche (2002); Ubbink {1997). Here we describe only
the discretization of a simple advection equation for a scalar property ¢ with the
velocity U without source terms:

99

5;+V-(U¢):D

Equation 1.2

Equation 1.3 has two terms: the temporal term and the advective term. Both terms
need to be discretized in order to obtain the algebraic equation, since the equation
cannot be solved in the existing form analytically. The numerical method must be
consistent (see Ferziger and Peric 2002): as the size of the cells we generated in the
domain discretization step is reduced, the discrete {algebraic) mathematical model
must approach the exact mathematical model. Or in other words, as described

by Ferziger and Peric (2002), refining the computational domain infinitely and
solving the discretized model on this spatial discretization leads to the solution of
the mathematical model consisting of partial differential equations. To obtain the
discrete model, Equation 1.3 is integrated in time and space:

AL e D6 ,
/ (+r + V- (Ud))dadt = 0.
t J Ve ()f ‘

Equation13
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Integration of the temporal term of Equation 2.3 can be approximated to:

t+ At ' 3 ]
ey P — ¢

—drdt = Vp——F—-——,

/f /“ ot PTAT

Equation 1.4

where VP is the cell volume, n and o mark the time-step of new and the old the
simulation respectively, and At denotes the time-step value. The time-step is
introduced since time is to be discretized as well into a sequential finite intervals
(time-steps). The advective term is discretized by integrating and applying the Gauss
divergence theorem:

Where dV marks the continuous boundary of a finite volume VP (a surface bounding
the volume VP) with the area differential do, f marks a face of a cell, and S marks the
outward-pointing face area normal vector. The face area normal vector is a vector
normal to the cell face with the magnitude of the face area. Face centered values must
be computed from adjoining cell centres in order to proceed with the computation of
the right hand side of Equation 1.5. This is done using interpolation (we will explain
that at the end of this chapter) and the interpolated values are marked by the index

f, e.g. ¢f . When we consider two discrete algebraic terms, Equation 1.3 takes the
following discrete form:

(;:)n. _

F Al "?“gf.}?foS 0.

Equation 1.6

It is easy to see that in the limit where both At and VP tend to zero, the discrete Equation
1.6 corresponds to the continuous mathematical model shown in Equation 1.3.

As you might have observed, no indices marking the new (n) or the old (o} time
step are present in Equation 1.5. This is a result of neglecting variations of the face
interpolated values in time. Depending on the choice of the new or the old time-step
for the final term of Equation 1.5, the resulting algebraic equation will be solved
explicitly or implicitly. The differences are presented in the following;:

Explicit temporal discretization

If we evaluate the spatial terms in the old time-step, the only value from the new
time-step is the value stored in the centre of the volume for which the algebraic
equation is assembled:

(;)n — ‘_;i)o oro
Ve + ) 07UsS = 0.
At -

Equation 1.7
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and in this case, we can simply put all the old values on the right hand side (r.h.s.} of
the equation and compute the new cell value ¢n by explicitly evaluating the r.h.s. of
the equation.

Implicit temporal discretization

In case we choose to evaluate the r.h.s. in the new time-step:

L
Ve + > _¢7UIS =0
At el ’
¥
Equation 1.8

the algebraic equation assembled for the cell in question will carry dependent
variables from the surrounding cells in the new time-step, which means that we
need to assemble such an equation for each cell of the mesh to construct the system
of algebraic equations and solve that system to get the entire cell-centred field in the
new time-step. This kind of solution is called an implicit solution.

We can see that the shape of the equation will be determined by the following factors:

* the way cell centred values are interpolated to the faces (Uf and ¢f) using
different interpolation methods,

* the geometrical shape of the cell (especially the number of cell faces) as well
as the number and geometry of adjacent cells, since the cell shapes determine
the position of the cell centre, and thus have an impact on interpolation,

* the size of the cell: the smaller the VP, the closer the algebraic equation will
be to the exact equation (numerical consistency), increasing the accuracy of
the solution,

* what terms are present in the equation: we may add a diffusive term and/or
a source term, whose discretization will change the values of the coefficients
in the final algebraic equation,

* the size of the time-step we use: the smaller time-step results in increased
time accuracy for transient problems.

The owner-neighbour addressing is applied when the sum term of Equation 1.6 is
evaluated. Should this term be evaluated naively for each cell using the outward
directed normal S, the computation would be doubled for each cell face f once the
loop reaches the adjacent cell (see Jasak 1996). However, the owner-neighbour
addressing allows the FVM method in OpenFOAM to interpolate the face values
only once, and then simply apply the same contribution for both adjacent cells:
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OWTET neighbour
S orUs= Y orUsSi- Y o;UsSy.
f f f
Equationn 1.9

where the sum is split into the owner sum and the neighbour sum. All the numerical
calculations in OpenFOAM® that involve face interpolation are based on looping
over mesh faces. Cell values are accessed using owner-neighbour addressing of the
cells, that has been described previously. This way the values ¢f and Uf in Equation
1.9 are interpolated once to the face centres. Their contribution to the discretized
term of two adjacent cells is also computed only once in a loop that will add the same
contribution to the face-owner cell, and deduct it from the face-neighbour cell. This
way a significant amount of computational time is saved.

Face interpolation

We have mentioned before that the volumes store discrete field values in their
centers, and the discrete Equation 1.6 makes use of the face values as well when it
interpolates the face values. Evaluating face values is done by using interpolation
schemes, which are one of the main building blocks of the OpenFOAM® library.
Interpolation schemes use values stored in cell centres C to interpolate the values
in the face centres Cf . Using different interpolation schemes for the face centered
value, @f will define the form of the discrete equation defined for each cell of the
mesh. There are various interpolation schemes available, however explaining all of
them is not within the scope of this book. To explain the basic working principle of
an interpolation scheme, we have chosen linear interpolation, which is also known as
the central differencing scheme (CDS):

o = foop + (1~ fo)dn,
Equation 1.10

where fx is the linear coefficient which is computed from the mesh geometry:

_ N
PN
Equation 1.11
Equation 1.11 clearly shows what role does the mesh geometry play in the final
algebraic equation assembled for a finite volume: large differences in cell size may
lead to large errors in the face interpolation, that in turn reflect on the entire system

of algebraic equations. A rigorous and detailed derivation of the interpolation errors
of the arbitrary unstructured FVM is provided by Jureti ¢ 2004.
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The positions of the points PP, f and N will be determined with the shape of the

cells, and this plays a crucial role for the accuracy and stability of the numerical
method. Equation 1.10 introduces the neighbouring cell centre values into the
algebraic equation of a cell. To better illustrate how the algebraic equation for a cell
is assembled, consider the example of a 2D finite volume with labeled surrounding
cells of the unstructured mesh shown on the Figure 1.6. For this volume, the discrete
Equation 1.6 takes on the following form:

a16Y + asdy + azpy = 0.
Equation 1.12

In this example, dependent variables are: @1, @4, and ¢3 for the cell 1 when an
implicit temporal discretization scheme is applied. The number of the dependent
variables in the algebraic equation is determined by the cell shape, since it
determines the number of adjacent cells which take part in the assembly of the
discrete advective term.

Boundary conditions

There is one thing missing in this description of the FVM: if the adjacent cells
introduce dependent variables into the algebraic equation of a cell, what happens
when the cell is adjacent to the domain boundary? Such cell faces are highlighted

in red and labeled boundaryField in Figure 1.8. In that case, the variable cannot be
made a dependent variable of the system, it needs to be prescribed. This is the reason
why we have to set boundary conditions for our simulations, which can be further
explained when observing the expanded discrete Equation 1.8.

: internalField
Outlet 1 Inlet

boundaryField

&

Figure 1.8 Example of a simple 2D channel flow with the inlet on the right side and the outletont e left hand
side. The other remaining two boundaries are assumed to be walls.
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While expanding the sum term, we will come across a cell face which is the
boundary face. If we mark this face with b, we will need to compute something

like @b Ub Sb and add it to the rest of the sum. Since there is only one cell next to a
boundary face, this cell will always be the owner of the boundary face, and hence
the normal area vector of a boundary face will always be directed out of the flow
domain (out of the owner cell). The values of the physical properties (in this case,
the property ¢ and the velocity U) will either be fixed (e.g. fixed value boundary
condition) or they will be computed from the internal cell values (e.g. zero gradient
boundary condition). For the fixed value boundary condition, the procedure is
simple: e.g. we as a user prescribe the @b value as well as the boundary velocity Ub.
The simplest form of the boundary condition that depends on the cell centre values
is the so-called Neumann, or "natural" boundary condition, which prescribes a zero
gradient of the property at the domain boundary:

V@(Xg,:‘; =0,
Equation 1.13

and this is the condition that is used to compute the value of the property at the
boundary face b, using the Taylor series approximation:

dp = ¢p + Vo(xp)0x = ¢y,
Equation 1.14

whnich means nothing more than that the boundary value takes on the value from
the single owner cell. The boundary contribution to the algebraic equation for a zero-
gradient boundary condition on the boundary face b will end up in the coefficient
next to the cell value in the new time-step: al in Equation 1.12.

There is a multitude of various boundary conditions implemented in OpenFOAM®:
all of them either prescribe the boundary value or boundary gradient in a way.
Regardless of how the particular property gradient or value is obtained, applying
the boundary condition is basically either defining a value or a gradient on a certain
boundary face.

Solving the system of algebraic equations

Equation 1.6 presents an example of how the partial differential equation like the
Equation 1.3 can be converted using equation discretization and interpolation
schemes on top of the existing mesh (domain discretization) into an algebraic
equation. Implicit temporal discretization will result in an equation being assembled
per each cell, that needs to be solved for dependent variables stored in the the cell
and its surrounding cells.
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A system of algebraic equations generated this way will be very large: its size is
directly proportional to the number of cells. One look at the fully expanded algebraic
equation for our example cell 1 shows how the cell indexing resulting from the mesh
generation process determines the structure of the coefficient matrix of the algebraic
system of equations. If we chose a different ordering of cells than the one shown in
Figure 1.3a, the coefficients and the dependent variables for the volume 1 would
have different indices.

In order to solve an algebraic system of equations, we need a quadratic matrix of
coefficients, and no rows or columns may be defined as linear combinations of each
other. This means that the true length of the fully expanded example Equation 1.12
will be equal to the number of mesh cells, which results with a large number of
equations for the entire mesh, that are assembled and solved in a matrix:

Equation 1.15

where A is the coefficient matrix, x represents unknowns of the system and ¢ denotes
the source vector of the system.

Each row represents the connection of the particular cell to the other cells. As one cell
does not possess a lot of direct connections to the remaining cells, only few columns
in that row do actually have a value. The remaining columns are filled with zeros.
Applied to our example, this means that the rest of Equation 1.12 is filled with zeros
for all the cells of the mesh that are not related to the example cell 1 by the face-based
connectivity that is implemented in OpenFOAM®. This is why the final coefficient
matrix A assembled for an unstructured mesh is a sparse matrix: a matrix filled
mostly with zeros.

Now that the system is assembled properly, it has to be solved as quickly as possible.
In principle we distinguish between direct and iterative methods.

Direct methods

A popular example for the direct methods is Gauss elimination which obtains

the solution of Equation 1.15 in a direct manner, by rearranging the matrix.
Unfortunately this number of those rearrangements is proportional to n3, with

n being the size of the matrix (see Ferziger and Peric 2002). This renders them
unfeasible for large matrices, which usually occur in today's applications. Especially
because the common matrix is sparse and after applying the upper triangulation

of the Gauss elimination, the matrix is not sparse anymore, which accounts for the
slowness of the method.
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Iterative methods

These methods are essential for non-linear problems and opposed to the direct
methods, the accuracy is not as good. But this is absolutely fine as the accuracy of the
matrix solver must solely be higher than the one of the discretizations. The solving
process is started at a guessed solution and refined iteratively. Ferziger and Peric
(2002) formulate the system of equations for an iterative solving process like the
following;:

Ti

é . X” =c—p
Equation 1.16

The intermediate solution xn after n iterations does not suffice Equation 1.15 and
hence a residual pn has to be introduced. It is always the aim to drive the error
towards zero. Since iterative solvers don't solve the system of equations in a
absolutely accurate manner, the grade of accuracy must be defined somehow. This
is where the residual comes into play, defining the difference between the exact
solution and the current iteration.

Finding the most efficient iterative solver for the particular application is necessary
if one desires a fast convergence. OpenFOAM® provides a large number of solvers,
ranging from preconditioned conjugate gradient (PCG) to more sophisticated ones,
such as generalized geometric-algebraic multi-grid (GAMG]). To describe each of
them in detail would be beyond the scope of this book and the reader is referred to
Ferziger and Peric (2002); Saad {2003} for details on this topic.

Improvement of convergence

As real world applications tend to include various physical phenomenons and

are usually of unsteady nature, achieving proper convergence can turn out to be
challenging. One common method to improve the convergence of the simulation is to
employ under-relaxation.

Under-relaxation means that the user can define a blending factor a between the old
and the new solution. An a = 1 means that no effectively under-relaxation is applied
and the new solution is completely assembled by the result for this time-step. Setting
a = () practically disables the development of the solution, as it is entirely composed
by the previous solution, so choosing this value is of no merit. Values within the
interval (0, 1) define the blending between both solutions used to set the new
solution of the system.
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Overview of the organization of the
OpenFOAM® toolkit

The OpenFOAM® toolkit consists of many different libraries, stand-alone solvers,
and utility programs. In order to establish some orientation around this massive and
often intimidating code base, we'll start with simply having a look at the contents of
the root OpenFOAM® directory.

Contents of the /OpenFOAM directory:

L 4

/applications

o

/bin

s doc

Jetc

Houses source code for solvers, utilities, and auxiliary testing
functions. Solver code is organized by function such as /
incompressible, /lagrangian, or /combustion. Ultilities are organized
similarly into mesh, pre-processing, and post-processing categories
among others.

Houses bash (not C++ binaries) scripts of with a broad array of
functions from checking the installation (foamInstallationTest) to
executing a parallel run in debug (mpirunDebug) to generating an
empty source code template (foamNew) or case (foamNewCase).

Contains the User's Guide, the Programmer's Guide, and the
Doxygen generation files. These are all excellent resources for new
users or engineers trying their hand in code development.

Contains many compilation and runtime selectable configuration
controls for the library. Numerous installation settings are set in /
etc/bashrc including which compiler to use, what MPI library to
compile against, and where the installation will be placed {user local
or system wide).
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L)

/platforms

o

Separates and stores compiled binaries based on precision, debug
flags, and processor architecture. Most installations will only have
one or two sub-folders here which will be named according to the
compilation type. For example, linux64GeeDPOpt can be interpreted
as follows:

linux = operating system type

64 = processor architecture

Gece = compiler used (Gee vs. lec)

DP = float precision (double precision (DP) vs. single precision (SP)).

Opt = Compiler optimization or debug flag. (Optimized (Opt) vs. Debug
(Debug) vs. Profile (Prof))

/src

=]

The bulk of the source code of the toolkit. Contains all of the CFD
library sources including finite volume discretizaton, transport
models, and the most basic primitive structures such as scalars,
vectors, lists, etc... The main CFD solvers within the /applications/
folder use the contents of these libraries to function.

/tutorials

(=)

Pre-configured cases for the various available solvers. The tutorials
are useful for seeing how cases are set up for each solver. Some cases
illustrate more complex pre-processing operations such as multi-
region decomposition for solid-fluid heat transfer or arbitrary-mesh-
interface (AMI) setup.

/wmake

o

The bash based script, wmake, is a utility which configures and

calls the C++ compiler. When compiling a solver or a library with
wmake, information from /Make/files and /Make/options is used to
include headers and link other supporting libraries. A /Make/ folder
is required to use wmake, and thus to compile most OpenFOAM®
code.

The OpenFOAM® library is described from a more in-depth software engineering
perspective in Chapter 5. There we describe how object oriented C++ programming
is used to make OpenFOAM® such a flexible and powerful CFD platform. In the
following chapter we will introduce mesh generation and conversion and some
associated utilities. Here we will start our first example project which we will
develop throughout the rest of the book.
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Summary

This chapter reviewed some important aspects of computational fluid dynamics
which form an important foundation for both inexperienced CFD engineers and
new OpenFOAM® users. An important idea to take away is that CFD is immensely
complicated and no software package can perform magic. The accuracy of your
simulation will only be as good as your ability to make proper assumptions and
design an intelligent simulation. With that said, we will begin interacting with
OpenFOAM® in the next chapter as we learn to generate meshes and explore
different options when discretizing a flow domain.
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Geometry Definition, Meshing,
Conversion, and Ultilities

"There is geometry in the humming of the strings, there is music in the spacing
of the spheres.” — Pythagoras

A geometry is essentially a three dimensional representation of the flow region. If you
consider an aerodynamic simulation of the flow around a car, the interior of the car

is generally of no interest as it does not contribute to the overall flow in a significant
manner. Therefore, solely the details on the outside of the car's body are relevant and
need to be resolved sufficiently by spatial discretization. In this chapter we will outline
how to create a mesh from scratch, how to convert meshes from third party packages, and
illustrate various utilities for manipulating a mesh after creation.

What is covered in this chapter:

s Defining a geometry

s Meshing in blockMesh

* Generating meshes with snappyHexMesh
+ Converting meshes from external formats
+ (Generating axisymmetric meshes.

s Using mesh modification utilities.



Geomretry Definition, Meshing, Conversion, and Utilities

Geometry Definition

We distinguish between the actual mesh geometry and the geometry that comes out of

a Computer Aided Design (CAD) program. Though some words on the general mesh
connectivity have been spent in the previous chapter, we would like to give an overview
how the actual mesh is stored in the file system. If you don't know of what components an
OpenFOAM® case is composed of, please read Chapter 3 before proceeding.

As long as we are dealing with static meshes, the computational grid is always stored in
constant/polyMesh. It lives in this directory because it is supposed to be constant, hence
the constant folder. From a programming point of view it is described as a polyMesh,
which is a general description of an OpenFOAM® mesh, with all it's features and
restrictions. The pitzDaily tutorial of the potentialFoam solver serves as an example in
the following, which can be found by typing

?> tut
?> cd basic/potentialFoam/pitzDaily

The polyMesh directory must contain the following files that must be filled with data
correctly, in order to provide a valid mesh (see Listing 1 below):

» points defines all points of the mesh in a vectorField, with their position in space
being specified in meters. These points are not the cell centres C, but the corners
of the cells. If you would like to translate the mesh by say 1 m into positive x
direction of the global coordinate system, you would solely have to move each
point accordingly. Touching any other structure in the polyMesh sub-directory for
this purpose is not required, but we come to that later in Section 2.4.

?> cat constant/polyMesh/points
25012 // Number of points

(

(-0.0206 0 -0.0005) // Point O
(~0.01901716308 0 -0.0005) // Point 1
(-0.01749756573 0 -0.0005)
(~0.01603868134 0 -0.0005)
(-0.01463808421 ¢ -0.0005)

)
Listing 2: Excerpt of the points file

[34]



Chapter 2

One can see from Listing 2 that it is a list of 25012 points. This list may not
be ordered in any way, though it can be. In addition all elements of the list are
unique, meaning that no point coordinates can occur multiple times. Accessing
those points is performed by defining their position in the vectorField, starting
with index 0.

faces composes the faces from the points by their position in the points
vectorField and stores them in a list. This position in the vectorField is referred
to as it's label. Each face must consist at least of three points and its size is
followed by a list of point labels. On a face, every point is connect by a line

to its neighbours (OpenFOAM User Guide 2013). From the points that define
the face, the surface area vector S_is calculated and the direction is determined
by the right-hand-rule. The example shown in Listing 3 is taken from the
potentialFoam tutorial pitzDaily. It consists of 49180 faces of which only a
subset is shown.

?> cat constant/polyMesh/faces

49180 // Number of faces
(
4(1 20 172 153) // Face 0 with 1it's four point labels
4019 171 172 20)
4(2 21 173 154)
4020 172 173 21)
4(3 22 174 155

)

Listing 3: Excerpt of an example faces file

owner is a list (labelList) with the same dimension as the list storing the faces. It
tells the code that the first face (index 0) is owned by the cell with the label that
is stated in the owner list at index 0. For our example shown in Listing 4 this
defines faces () and / as being owned by cell 0 and faces 2 and 3 owned by cell /.
The ordering of this list is the result of the owner-neighbour-addressing that was
presented in the previous chapter.

?> cat constant/polyMesh/owner

49180
(
0
0
1
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1
2

)

Listing 4: Excerpt of an example owner file

» neighbour has to be regarded in conjunction with the owner list. It does not
define the owning cell of certain face, but it's neighbour. Again, the working
principle of the owner-neighbour-addressing is explained in the previous chapter.

s boundary contains all the information on the boundaries (or patches) in shape
of a list with nested subdictionaries. An example for our unit cube is shown in
Listing 5. This information includes the patch name, type, number of faces and
the label of the first face of this patch. All faces that are boundary faces must be
covered by the boundary description.

From a user's perspective, the last two are not to be touched as this will most certainly
destroy the mesh. The first two however, may need to be altered, depending on your
workflow. Changing a patch name or type can be done easily in this file, rather than
running the respective mesh generator again, which is likely to be a time consuming task.

?> cat constant/polyMesh/boundary
6 // Number of patches

(
XMIN // Name of first patch
{
type patch; // Type of first patch
nFaces 2500; // Number of faces in patch
startFace 367500; // start face label of patch
}

Listing 5: Excerpt of an example boundary file.

There are several patch types that can be assigned to a boundary. Some of them will be
used on a day to day basis, whereas some others won't. We have to distinguish between a
patch and the boundary conditions applied on the patches. A patch is an outer boundary
of the computational domain and it is specified in the boundary file, hence being a
topological property. Each face on a boundary patch does not have a neighbouring cell.
In contrast to the patch, boundary conditions are applied on the patches for each field,
respectively. If three fields need boundary conditions, a boundary condition must be
applied on each patch for each field individually. The patch types are:
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* patch Most patches (boundaries) can be described by the type patch, as it is the
most general description. Any boundary condition of Neumann, Dirichlet or
their derivatives can be applied to boundary patches of this type.

o wall If a patch is defined as wall, it does not imply that there is no flow through
that patch. It solely enables the turbulence models to apply wall functions to that
patch (see Chapter 7). Preventing a flow through the patch of type wall must still
be done in the velocity boundary condition.

s symmetryPlane Setting the patch type to symmetryPlane declares it to act as
a symmetry plane. No other boundary conditions can be applied to it but the
symmetryPlane, which has to be done for all fields.

e empty In case of a two-dimensional simulation, this has to be applied to the
patches that are "in-plane". Similar to the symmetryPlane type, the boundary
conditions of those patches have to be set to empty as well. No other boundary
conditions will for those patches. It is essential that all cell edges between both
empty patches are parallel. Otherwise no two-dimensional simulation is possible.

s cyclic If a geometry consists of multiple components that are identically (e.g. a
propeller blade or a turbine blade), only one needs to be discretized and treated
as if it is located in between similar components. For a four bladed propeller this
would mean that only one blade is meshed (90> mesh) and by assigning a cyclic
patch type to the patches with normals in tangential direction. they act as being
coupled physically.

» wedge Similar to a cyclic patch only specifically designed for cyclic patches
which form a 5 degree wedge

It does not matter how the above mentioned structure of the polyMesh is obtained. This
can either be done by importing a mesh from an alternative software, using the mesh
generators that come with OpenFOAM® or even by hand.

CAD Geometry

Importing a geometry that has been generated in an external CAD software is a regular
task for any CFD engineer. In OpenFOAM® this is done using snappyHexMesh but the
usage of this mesh generator will be explained later on. The only important thing is that
only stereolithography (STL) files can be imported. This is a file format that can store the
surfaces of geometries in a triangulated manner. Both binary and ASCII encoded files are
possible, but for sake of simplicity we are using the ASCII one.
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Such an example for a surface with only one triangle is given in Listing 6. In this
example only one solid is defined, that is named CUBE. A STL file may contain multiple
solids that which are defined one after the other. Each of the triangles that compose the
surface has a normal vector and three points.

solid CUBE
facet normal -8.55322e-19 -0.950743 0.30998
outer loop
vertex -0.439394 1.29391e-18 -0.0625
vertex -0.442762 0.00226415 -0.0555556
vertex -0.442762 1.296%4e-18 -0.0625
endloop
endfacet
endsolid CUBE

Listing 6: Example STL file, with only one triangle

No other formats can be imported directly, but need to be converted into STL. The
drawback of using ASCI STL files is that their file size tends to grow rapidly with
increasing resolution of the surface. Edges are not included explicitly because only
triangles are stored in the file. Therefore, extracting feature edges from an STL can be a
challenging task.

An advantage of using STL as a file format is that one obtains a triangulated surface
mesh, which by definition always has planar surface components (triangles). This in turn
simplifies the usage later on in the code (e.g. snappyHexMesh).

Mesh generation

OpenFOAM® comes with two mesh generators: blockMesh and snappyHexMesh.

Both will be addressed briefly in this section and we try to explain how they work and
how we can use them for our purposes. The purpose of the mesh generators is to help you
to generate the polyMesh files described in the previous section without having to define
them by hand. Both mesh generators read in a dictionary file and write the final mesh to
constant/polyMesh.

This section is subdivided into two major parts. At first we introduce blockMesh and
snappyHexMesh as the major OpenFOAM® mesh generators and explain their working
principles based on a minimal example.
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blockMesh

bleckMesh is started by calling its executable named blockMesh. When calling the
executable blockMesh the blockMeshDict is read in automatically from the constant/
polyMesh directory, where it must be present in. If it is not found there, blockMesh will
complain and throw an error.

blockMesh generates block-structured hexahedral meshes that are converted into the
arbitrary unstructured format of OpenFOAM® . If you recollect the limitations of the
mesh generation in an block-structured fashion, you can already guess that it is possible
to generate high-quality grids with blockMesh, even for fairly complex geometries.

But the effort that the user has to spend generating the blockMeshDict increases
tremendously for complex geometries. For the ordinary user the limitation in handling
the bloekMeshDict is reached quite quickly. All of this makes blockMesh a great tool to
generate meshes that either consist of a fairly simple geometry, that can be decomposed
into blocks, or act as background meshes for snappyHexMesh.

An example of a blockMesh block is shown in Figure 2.1. Each block consists of

8 corners that are called vertices. The hexahedral block is built from these corners.

Edges, as indicated in Figure 2.1, connect the particular vertices with each other. Finally
the surface of the block is defined by patches, though those have only to be specified
explicitly for block boundaries that don't have a neighbouring block. Boundaries between
two blecks must not be listed in the patch definition. Their length and number of nodes on
the particular edges has to match. Boundary conditions for the actual simulation will be
applied later on those patches.

Though it is possible to generate blocks with less than 8 vertices as well as non-matching
nodes on patches (see OpenFOAM User Guide (2013)), this is not covered by this guide.
The edges of the block are straight lines by default, but can be replaced by different line
types, such as an arc, a polyline or a spline. Choosing, for example, an arc does affect the
shape of the block edge, but the connection between the final mesh points on that edge
remain straight lines.

Coordinate Systems

The final mesh is constructed in the global (right-handed) coordinate system, which is
Cartesian and aligned with the major coordinate axis: x, y, and z. This leads to a problem
when we would like to position and align blocks arbitrarily in space, maybe even twist
them. To circumvent this issue, each block gets its own right-handed coordinate system,
which by definition does not require the three axis to be orthogonal. The three axis are
labeled x, , x,, x, (see OpenFOAM User Guide (2013) and Figure 2.1). Defining that local
coordinate system is done based on the notation shown in Figure 2.1: Vertex 0 defines
the origin, the vector between vertices 0 and / represents x,, x, and x, are composed of the
vectors between vertices () and 2 and 0 and 4, respectively.
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Node Distribution

During the meshing process, each block gets subdivided into cells. The cells are defined
by the nodes on the edges in each of the three coordinate axis of the block's coordinate
system and follow a relationship reading:

ﬁcf.“f,» " nedes

It is up to the user to define in blockMeshDict how many cells will appear on a certain
edge. The cell distribution on an edge can be uniform or defined by two types of grading.
An expansion ratio describes the grading on an edge, which in turn is the size ratio of the
last to the first cell on that particular edge. The grading definition on an edge is defined in
the OpenFOAM User Guide 2013 as:

o = a,
BN ¢ e_= I all nodes are spaced uniformly on that particular edge, no grading is
present. With an expansion ratio ¢, > /, the node spacing increases from start to end of
the edge. From the C++ sources of blockMesh it can be found that the expansion ratio
that is defined by the user is scaled by the following relation:

1
r = ¢, " where n represents the number of nodes on that particular edge. By combining
the two equations, we can calculate the relative position of the i-th node on an edge.
L
T+ Even though this might look too laborious to perform for all of the blocks in
a blockMeshDict, this comes in handy when a smooth transition in the cell sizes between
two adjoining blocks is required. In other cases, simple trial and error usually suffices.

Air it

Defining the dictionary for a minimal example

As a small example on how the blockMeshDict is set up, we are discretizing a cube of
I m? in volume. The dictionary itself consists of one keyword and four sub-dictionaries.
The first keyword is convertToMeters which is usually 1. All point locations are
multiplied by this factor, which comes in handy if the geometry is very large or very
small. In any of those cases we would end up typing a lot of leading or tailing zeros,
which is a tedious task. By setting convertToMeters accordingly, we can save some
typing. The first line of the blockMeshDict should then look like this:

convertToMeters 1;

[40]



Chapter 2

Secondly the vertices must be defined. Remember that the vertices in blockMesh are
different from the points of the created polyMesh, though their definition is fairly similar.
For our unit cube example the vertices may look somewhat like this:

vertices

(
(00 0)
(L0 0)
110
(10
(00 1)
(101
(L1
(011)

bH

We can tell just from having a first glance at it, that the syntax is a list similar to the
points in polyMesh definition. This is due to the round brackets that indicate a list in
OpenFOAM® | whereas curly brackets would define a dictionary. The first four lines
define all four vertices in the z = 0 plane and the following do the same for the z= 1
plane. Similar to the points in polyMesh, each element is accessed by its position in the
list and not by the coordinates. Note that each vertex must be unique and only occur once
in the list.

As a next step, the blocks must be defined. An example block definition for the unit cube
might look like this:

blocks

(

hex (01 234567) (111) simpleGrading (1 1 1);
)3

Again this is a list that contains blocks and not a dictionary, due to the round brackets.
The definition might look a little odd at first glance, but is actually quite straight forward.
The first word hex and the first set of round brackets containing eight numbers tells
bloeckMesh to generate a hexahedron out of the vertices ) to 7. These vertices are exactly
those specified in the vertices section above and are accessed by their labels. Their order
is not arbitrary, but defined by the local block coordinate system as follows:

1. For the local x, = 0 plane list all four vertex labels starting at the origin and
moving according to the right-handed coordinate system.

2. Do the same for the local x, = 0 plane
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It is possible to obtain a valid block definition by messing up the order of the vertex list
in the particular block definition, but the resulting block will either look twisted or uses
incorrect global coordinate orientation. In any case, you will notice that as soon as you
run blockMesh, checkMesh and analyze the mesh in a post-processor (e.g. paraview).

The second set of round brackets tells blockMesh how many cells each direction of the
local coordinate system should get. In this case, we settled for a block that contains only
one cell. If we would decide to change that to the 2 cells in x, 20 cells in x, and /337
cells in x, , the block definition would look like this:

hex (01234567 (220 1337) simpleGrading (1 1 1);

The last remaining bit is the simpleGrading part in conjunction with the last set of
numbers in the round brackets. This is the easiest way of defining a grading (or expansion
ratio) as described before. The keyword simpleGrading defines the grading for all four
edges in each of the three local coordinate system's axis directions, to be identical. Hence
each of the three numbers stated in the brackets after simpleGrading defines the grading
for four edges. Sometimes this is not versatile enough, though. And that is where the
edgeGrading comes into play, which is essentially the same as simpleGrading, but you
can specify the grading for each of the 12 edge on a hexahedron explicitly. Therefore the
last set of brackets would not list 3 numbers, but 3 times 4. Hence each edge can be set
individually.

If we would save the blockMeshDict right now and execute blockMesh afterwards, we
would obtain a valid mesh that looks similar to what we have specified. But blockMesh
would warn us about not having defined any patches, that are put into the defaultFaces
patch by default. How can we define the patches as we wish? That is done by defining
them inside the list called patches and for the example patch 0, this look like this:

patches
C
XMIN
{
type patch;
faces
(
4730
);

)3
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This tells blockMesh to generate a patch of type patch named XMIN, out of the face
that is constructed from the vertices 4, 7, 3 and 0. How the vertices are ordered is not
arbitrary. They need to be specified in a clockwise orientation, looking from inside the
block. An image of the unit cube of our minimal example, consisting of /000 small cubes
is shown in Figure 2.3, with highlighted XMIN, YMIN and ZMAX patches.

Hlustration of a 10x10x10 cubic mesh generated with blockMesh.

As stated earlier, the edges of a block are lines by default and thus the list containing
the edge definitions is optional. Quite similar to the above defined blocks and patches,
connecting two vertices by e.g. an arc instead of the default line would look like this:

edges

(

arc 0 1 (0.5 -0.5 0)
)s

Each item of the list containing the edge definitions starts with a keyword, that indicates
the type of edge, followed by the labels of the start and end vertex. In this example the
line is closed by the third point that is required to construct an arc. For any other edge
shape (e.g. polyLine or spline), this point would be replaced by a list of supporting points.
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An example how inserting the above listed code alters the shape of the unit cube shown
in its original shape in Figure 2.3 is presented in Figure 2.4.

Hlustration of a blockMesh block with one edge as an arc.

Now execute blockMesh and make yourself comfortable with editing the
blockMeshDiet:

7> blockmesh

To proceed with the snappyHexMesh section, you should end up having a unit cube
consisting of 50 cells in each direction.

snappyHexMesh

Compared to blockMesh, snappyHexMesh does not require as much tedious work

(like adding and connecting blocks). With snappyHexMesh hexa-dominant meshes

can be generated easily, needing only two things: A hexahedral background mesh and
secondly one or multiple geometries as STL files. snappyHexMesh supports local mesh
refinements defined by various volumetric shapes (see Table 2.1), application of boundary
layer cells (prisms and polyhedras) and parallel execution.

With snappyHexMesh being a complex program and requiring lots of parameters,
describing all them extensively is beyond the scope of this book. Please read the
OpenFOAM User Guide (2013) in conjunction with this book. A run of snappyHexMesh
can be split into three major steps, that are executed successively. Each of these steps

can be disabled by setting the respective keywords to false at the beginning of the
snappyHexMeshDict. These three steps can be summarized:
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» castellatedMesh This is the first step and does essentially two main things.
Adding the geometry to the grid and removing all of the cells that are not inside
the flow domain. Secondly the existing cells are split according to the user
specifications. The result is a mesh that still only consists of hexahedrons, that
more or less resembles the geometry. But the majority of mesh points that are
supposed to be placed on the geometry's surface are not. A screenshot of a later
example at this stage of the meshing process is shown in Figure 2.5.

» snap By performing the snapping step, the mesh points in the vicinity of the
surface are moved onto this surface. This can be seen in Figure 2.6. During
this process, the topology of those cells may get changed from hexahedrons to
polyhedrons. Some may get deleted or merged together.

s addLayers At last additional cells are introduced on the geometry surface,
that are usually used to refine the near wall flow (see Figure 2.7). The already
existing cells are moved away from the geometry, in order to create space for the
additional cells. Those cells are most likely to be prisms.

All the above mentioned settings and many more are defined in system/
snappyHexMeshDict that contains all of the parameters required by snappyHexMesh.
A lot of helpful tutorials can be found in the OpenFOAM® tutorials directory under
meshing/snappyHexMesh. Compared to other OpenFOAM® dictionaries, the
snappyHexMeshDict is very long and consists of many hierarchy levels, that are
represented by nested subdictionaries. One time step is written to the case directory, for
each of the above mentioned steps (assuming you have a standard configuration, though).
Each of the three steps will be addressed individually in the following.
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Hlustration of the three stages of snappyHexMesh applied to a spherical surface: castellated mesh generation,
snap, and layer addition.

Cell levels

Cell levels are used to describe the refinement status of a background mesh cell. When
snappyHexMesh is started, the background mesh is read and all cells are assigned cell
level O (blue cells in Figure 2.7). If a cell gets refined by one level, each of the edges
gets sliced into half, giving 8 instead of one cell. This way of refining is based on octrees
and thus only works for hexahedrons, which is why a hexahedral background mesh is
required by snappyHexMesh. With snappyHexMesh it is impossible to refine cells in
only one direction, as this cannot be covered by octrees. Therefore they get refined - by
definition - in all three spatial directions uniformly.

Defining the geometry

Before we can start the meshing process, the geometry has to be defined in the geometry
subdictionary in the snappyHexMeshDict. Without the need to define anything in the
snappyHexMeshDict, the existing mesh in constant/polyMesh is read anyway and
serves as background mesh. Usually for external flow simulations, one does not have
small geometrical features of the outer boundaries, that must get resolved. For such cases
the dimensions of the outer boundaries defined by the background mesh don't have to get
touched and should resemble the desired shape. For internal flow simulations on the other
hand, the outer shape of the background mesh is of no interest, as it is defined by the
actual geometry.

As a minimal example, we reuse the unit cube example that we prepared in the previous
section and insert a sphere into it. The sphere is generated using a STL file, instead of
the shapes listed in Table 2.1. Loading a STL geometry can be done in a straight forward
manner, by simply copying the geometry to constant/triSurface of your case and adding
the following lines to the geometry subdictionary in your snappyHexMeshDict:
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Shape Name Parameters

Box searchableBox Min, max

Cylinder searchableCylinder Pointl, point2, radius
Plane searchablePlane Point, normal

Plate searchablePlate Origin, span

Sphere searchableSphere Centre, radius
Collection searchableSurfaceCollection  geometries

Table 2.1: List of cell selection shapes.

sphere.stl // Name of the STL file

{
type trisurfaceMesh; // Type that deals with STL import

name SPHERE; // Name access the geometry from now on

}

The lines above tell snappyHexMesh to read sphere.stl from constant/triSurface as
a triSurfaceMesh and refer to the geometry contained in that STL as SPHERE; Other
geometry objects can be constructed without the need to open any CAD program, right
inside snappyHexMesh. A list of these geometrical shapes is compiled in Table 2.1.

Any of the mentioned shapes can be constructed in the geometry subdictionary, by simply
appending to the existing subdictionary. As an example, we are adding a box to the
geometry subdictionary, which is constructed from a minimum and maximum point. This
makes it impossible to rotate the box straight away and it will always be aligned with the
coordinate axis.

smallerBox

{
type searchableBox;
min (0.2 0.2 0.2);
max (0.8 0.8 0.8);

}
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Similar to the STL definition, the leading string of the subdictionary that defines the
searchableBox is the name that is used to access that geometry later on. Sometimes it is
desirable to compose a geometry out of the shapes listed in Table 2.1, but treat it as one
single geometry rather than multiple. This is where the searchableSurfaceCollection
comes into play. By using this on geometry components that already exist, they can

be combined into one and even rotated, translated and scaled. In any case, combining
SPHERE and smallerBox info one and scaling the fancybox up by a factor of 2 would
look like this:

fancyBox
{
type searchableSurfaceCollection;
mergeSubRegions true;
SPHEREZ2
{
surface SPHERE
scale (11 1)

}

smallerBox2

{
surface smallerBox;
scale (2 2 2);

}

}
Setting up the castellatedMesh

After the geometries have been defined properly, snappyHexMesh needs to know what
to do with them. How often must surface faces and surface adjacent cells get refined,
where are volumetric refinements planned to be placed? Any of those refinements are
executed during the first step (castellatedMesh) and must hence be defined in the
castellatedMesh subdictionary. We have to distinguish between refinements that are
defined by geometry surfaces and volumetric refinement. With a surface refinement, only
the directly adjacent cells get refined to the defined surface level. Applying such a surface
refinement to our SPHERE would lead to:

refinementsurfaces
{
SPHERE // Name of the surface
{
Tevel (1 1); // min and max refinement level
}
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This refines the surface of the SPHERE to level 1. The two numbers between the
round brackets define a minimum and maximum level of refinement for this surface.
snappyHexMesh chooses between both depending on the surface curvature: Highly
curved surface areas get refined higher than the lesser curved ones.

Refinements in snappyHexMesh are not limited to get defined by surfaces. Any
geometry defined in the geometry subdictionary can serve as defining shape for a
volumetric refinement. These volumetric refinements are called refinementRegions and
get defined in a subdictionary with the same name, in the castellatedMesh controls.
Refining anything inside the smallerBox to level 1 can be done by adding the following
lines:

refinementRegions
{
smallerBox // Geometry name
{
mode inside; // inside, outside, distance
Tevels ({115 1)); // distance and level
}

}
Each refinementRegion must get a mode and a list of levels. The mode can either
be inside, outside or distance, which are fairly self-explanatory. Defining the list of
refinement levels is a bit trickier, though: Each level must be defined in a pair with a
distance, which is 1E135 in the example above. With increasing position in the list, the
levels must decrease and the distances must increase.

Without specifying a point located inside the volume of the final mesh, it is impossible
for snappyHexMesh to decide which part of the sphere the user wants to discretize. That
is why the locationInMesh keyword must be defined in the castellatedMeshControls
subdictionary, as well. This point must not be placed on a face of the background mesh.
For our unit cube example, this point is defined as:

TocationInmesh (0.989999 0.989999 0.989999);
The next step is to tweak the parameters of the snap subdictionary in the
snappyHexMeshDict.

Setting up addLayers
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All settings for the addLayers step are defined in the addLayersControls subdictionary
of the snappyHexMeshDict. Any surface can be used to extrude prism layers from,
regardless of its type. Firstly we need to define how many cell layers are to be extruded,
by specifying it in the layers subdictionary.

Tlayers
{
"SPHERE__.*" // Patch name with regular expressions
{
nsurfaceLayers 3; // Number of cell layers
¥

}
Each patch name is followed by a subdictionary that contains the nSurfaceLayers
keyword. This keyword defines the number of cell layers that get extruded and is thus
followed by an integer. In the above example, we use regular expressions to match any
patch names that start with SPHERE , which basically is only the sphere itself. A cross-
section of the final mesh is shown in Figure 2.7.

Various parameters of snappyHexMesh, related to the layer extrusion, need to get
tweaked in order to obtain a mesh that suffices your requirements. A few of those are
explained briefly in the following.

s relativeSizes can switch from absolute to relative dimensioning for the following
values. By default it is true.
+ expansionRatio defines the expansion factor from one cell layer to the next one.

s finalLayerThickness is the thickness of the last cell layer (furthest away
from the wall), with respect to the next cell of the mesh or in absolute meters,
depending on your choice for the relativeSizes parameter.

+ minThickness if a layer cannot be thicker than minThickness, it is not extruded.

In our minimal example, we used the following settings:

relativeSizes true;
expansionRatio 1.0;
finalLayerThickness 0.5;

minThickness 0.25;

Finally we just need to execute snappyHexMesh in the case to start the meshing
process, using snappyHexMesh. Each step generates a new time step directory, that
contain the mesh of the particular stage. Remember to delete those before restarting
snappyHexMesh.
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Mesh conversion from other sources

While bleckMesh and snappyHexMesh are powerful mesh generation tools, users
may often use third party meshing packages for defining and discretizing a more
complex flow domain.

Conversion from External Meshing Packages

Many more advanced external meshing utilities offer the user additional levels of control
during mesh generation such as selectable element types. fitted boundary layer meshes,
and length scale control to name a few. As of OpenFOAM® version 2.1.1, there is
support for conversion from many popular meshing programs. In addition, some meshers
can export directly to a functional OpenFOAM® mesh format. Listed below is a list of
the mesh formats supported for conversion in OpenFOAM® 2.1.1:

s  Ansys

+ CFX

s  Fluent

» GMSH
s Netgen
s PlotiD
e Star-CD
* fetgen

s KIVA

If your particular meshing software is not mentioned in the above list, it is more than
likely that it is capable of exporting a mesh into a supported intermediate format.
The source code for all of the above mentioned conversion utilities are found here:
$FOAM_APP/utilities/mesh/conversion/. Users also have the option of converting
foam meshes into Fluent or Star-CD mesh formats using the foamMeshToFluent
and foamToStarMesh utilities. This could be especially useful for exporting meshes
generated from the snappyHexMesh utility mentioned previously.

The mesh conversion process is typically very straightforward with very little syntax
changes between the different conversion utilities. For that reason, only one example will
be given using the fluentMeshToFoam conversion utility. To begin the process, start
with a new case directory or copy a tutorial case to the directory of your choice. Here we
will start with an existing mesh conversion tutorial for the icoFoam solver. Copy the case
to the directory of your choice, rename, and move into the directory.
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?> ¢cp ~-r $FOAM_TUTORIALS/incompressible/icoFoam/elbow/ ./
7> mv elbow meshConversionTest
?> cd meshConversionTest

Now, converting the mesh is as simple as running the conversion utility and passing the
mesh file as the argument. During conversion the utility will output patch names and
mesh statistics to the console. The polyMesh files will be updated accordingly.

?> fluentMeshToFoam elbow.msh

Note that when importing a mesh, the case will need to be updated to reflect the new
patch names in the initial and boundary condition files. For this tutorial the U and p fields
were pre-configured for this particular mesh. For an arbitrary mesh import, these files
(and any other flow variables) will require a manual update to match the patches list in ./
constant/polyMesh/boundary.

Should you need to scale the mesh during the conversion processes, it is as simple as
adding the option and scaling factor to the command. In this case we're reducing the mesh
size by one order of magnitude.

?> fluentMeshToFoam -scale 0.1 elbow.msh

When constructing a mesh in many third party meshing utilities, users can often assign
boundary condition types such as inlet, outlet, wall, etc...o patches. While the conversion
processes will attempt to match certain boundary condition formats to a corresponding
OpenFOAM® format, the user should not assume that the conversion correctly parsed
any flow information what so ever, whether it be an internal initial condition, or a
boundary condition.

Converting from 2D to Axisymmetric Meshes

We will show how to create an axisymmetric mesh by starting with a simple example.

Here we will convert icoFoam's cavity tutorial case into a wedge. In OpenFOAM® an
axisymmetric mesh has the following properties: The mesh is one cell thick (similar to
2D meshes) and is rotated about an axi-symmetry axis to form a 5 degree wedge shape.
The two angled faces of the wedge are considered two separate patches of type wedge.

Download makeAxialMesh here: http://openfoamwiki.net/index.
php/Contrib_MakeAxialMesh
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Make a copy of the case folder to a working directory of your choice, rename the
directory to avoid any future confusion, cd into it, and create the 2D base mesh.

?>  ¢p -r $FOAM_TUTORIALS/utilities/incompressible/icoFoam/cavity ./
?> mv cavity axiSymCavity

7>  cd axisymCavity

7> blockmesh

Now we will run makeAxialMesh. We will be converting the movingWall patch into a
symmetry axis. In addition, the single frontAndBack patch will be split and act as the two
faces of the wedge (frontAndBack neg frontAndBack pos). The flags entered into the
command line will reflect this.

?> makeAxialMesh -axis movingwall -wedge frontAndBack

The utility will create a new time file (./0.005/polyMesh) to store the transformed mesh
which is written to the case directory. The case directory should now contain the folder
shown below.

?> s
0 0.005 constant system

Update the main ./constant/pelyMesh mesh with the newly created polyMesh and
remove the ./0.008 directory.

?> ¢p -r ./0.005/polyMesh ./constant/
?> rm -r ./0.005/

At this point the mesh has been warped into a 5 degree wedge shape (as shown in Figure
2.8), however, the faces from the movingWall patch are still present. makeAxialMesh
transforms the point positions but does not alter the mesh connectivity. Because of this,
the symmetry patch faces are now of zero size and must be removed and converted

to edges. To do this we will use the collapseEdges tool. collapseEdges takes two
mandatory command line arguments: edge length, and merge angle, as shown here.

?> collapseEdges <edge length [m]> <merge angle (degrees)s
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Hlustration of a standard 2D mesh before and after wedge transformation.

For many applications an edge length of 1e-8 meters and merge angle of 179 degrees
will correctly identify and remove the recently collapsed faces. In some instances where
the mesh edge length scale is extremely small, a smaller edge length may be required to
avoid false positives and the inadvertent removal of valid edges. Run collapseEdges with
these execution parameters as shown. Update and clean the case as before.

?> collapseEdges le-8 179
?> ¢p ~-r ./0.005/polyMesh ./constant/
?> rm ~-r ./0.005/

For some final housekeeping we will remove the now empty patches from the boundary
list. To do this, open the boundary list file contained in ./constant/pelyMesh/boundary
and delete the movingWall and frontAndBack entries. Note that they are listed as
containing zero faces: nfaces 0;. Change the boundary list size to 3 to reflect these two
deletions. The boundary file should now look like the example below.

3
¢
fixedwalls
{
type wall;
nFaces 60;
startFace 760;
}
frontandBack_pos
{
type wedge;
nFaces 400;
startFace 820;
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}

frontandBack_neg

{
type wedge;
nFaces 400;
startFace 1220;

}

)

At this point we could split the fixedWalls patch into 3 separate patches using the
autoPatch utility. This will look at a contiguous patch and try to identify appropriate
places to split it based on a given feature angle. In this case, we will inform the utility that
any patch edges that form an angle greater than 30 degrees can be split for form a new
patch. This way we will have more freedom when assigning boundary conditions to this
case going forward.

?> autoPatch -overwrite 30

The patches will be renamed after the split. The -overwrite flag will write the split mesh
into the ./constant/polyMesh directory instead of creating a separate polyMesh under a
new time folder.

Mesh utilities in OpenFOAM

The utility applications (utilities) that deal with mesh operations can be found in the
directory SFOAM_APP/utilities/mesh. The mesh utilities are grouped in the following
categories: generation, manipulation, advanced and conversion. Generating the mesh and
converting it from different formats into the OpenFOAM® format has been described in
Section 2.2 and Section 2.3. In this section we will concentrate on manipulating the mesh
as well as advanced operations like mesh refinement.

To start, copy the damBreak tutorial to the working directory of your choice, generate
the mesh and initialize the o field.

?>  cp -r $FOAM_TUTORIALS/multiphase/interFoam/laminar/damBreak .
7> «¢d damBreak

7> blockmesh

7> setFields
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At this point we have a mesh generated with the blockMesh utilities and the al field is
set using the setFields pre-processing utility. The setFields utility described together
with the pre-processing utilities are in Section. You can use the basic calculator utility
feamCalc to compute and store the gradient of the « field.

?> foamCalc magGrad alphal

This will store the cell-centred scalar field of the gradient magnitude in the initial time
directory 0 named magGradalphal. To refine the mesh based on the gradient magnitude
using the refineHexMesh application we need to copy the configuration dictionary file
for this utility into the system directory of the damBreak case.

?> cp $FOAM_APP/utilities/mesh/manipulation/
refineMesh/refineMeshDict system/

?> 1s system/
controlDict fvSchemes  refinemeshDict
decomposeParDict fvSolution setFieldsDict

If you open the dictionary file system/refineMeshDict, you will notice a line which
specifies a name of the set of cells cellSet used for the mesh refinement:

// cells to refine; name of cell set
set c0;

This cellSet, when created, will be stored in the constant/pelyMesh and the refineMesh
application will try to find it when executed in order to figure out which cells are refined.
There are two utilities available for creating cellSets: topoSet and setSet. The topoSet is
a utility that requires a dictionary file to be configured, and is executed on the command
line, resulting with the generated cellSet stored in the constant/polyMesh directory. To
create our cell set with topoSet, begin by copying an example dictionary into the system
folder.

?>cp $FOAM_APP/utilities/mesh/manipulation/topoSet/topoSetDict
./system/

Now, replace the example actions subdictionary of topoSetDict with the following:

actions

C

name c0;

type cellset;
action new;

source fieldTocCell;
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sourceInfo

{
fieldName magGradalphal;
min 20;
max 100;

)i

Now we will set the celiSet and refine only those cells.

?>toposSet

?>refineHexMesh c0
The mesh should now had additional resolution in areas of the high alpha gradients.
Now we will do the same using the setSet utility. The setSet utility is interactive, and the
user can build and save multiple cellSets while working in the command line interface it
provides. First, open the setSet interface, then enter the fieldToCell syntax as shown.

?-setsetr
?>cellset cO new fieldToCell magGradalphal 20 100

You can now refine the mesh using refineHexMesh c0 as before.

transformPoints

In the OpenFOAM® mesh format, the only information pertaining to scale and location
of the mesh is in the point position vectors. All of the remaining stored mesh information
is purely connectivity based as discussed previously. With that said, the mesh size, scale,
and position can be altered by transforming the point locations alone. To do this we will
use the transformPoints mesh utility. Because this utility is relatively straight forward,
we will not walk though an example but execution syntax is still shown. The most often
used options when transforming a mesh are the -rotate, -translate, and -scale options.

The -scale option can scale the points in your mesh in any or all cardinal directions by

a specified scalar amount, -seale '(1.0 1.0 1.0)" will leave your mesh unchanged, while
-scale '(2.0 2.0 2.0)' will double the size of your mesh in all directions. Any non-unform
scaling will stretch or compress your mesh in your given direction(s).

The -translate option will move your mesh by the given vector, effectively adding this
vector to every point position vector in the mesh.
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The -rotate option will, you guessed it, rotate your mesh. Define the rotation by inputting
two vectors. The mesh will undergo the rotation required to orient the first vector with
the second. When rotating a mesh, any initial or boundary vector and tensor values can
be rotated as well by adding the -rotateFields option during execution. Syntax for these
three point fransformations are shown below.

?> transformPoints -scale "(x y z)'
?> transformPoints -translate '(x y z)'
?> transformPoints -rotateFields -rotate '( (x0 y0 z0) (x1 yl1 z1) )'

mirrorMesh

There is a simple way to mirror and join meshes along a planar patch. For this example
we will be converting a 1/4 mesh into a full domain. First, copy the following solid
analysis case into the directory of your choice and rename it. We must also copy the
mirrorMeshDict into the case system directory.

?> cp -r $FOAM_TUTORIALS/stressAnalysis/solidDisplacementFoam/
plateHole

-/

?> mv plateHole mirrorMesheExampie

?> cd mirrorMeshExample

7> cp ~r $FOAM_APP/utilities/mesh/manipulation/mirrorMesh/
mirrorMeshDict ./system

The next step is to simply define the plane we will be mirroring the mesh about. Define
the normal in mirroerMeshDiet as shown below and run mirrerMesh. Patches about
which the reflection is taking place are automatically removed.

pointandNormalDict

{
baseroint (0 0 0);
normalvector 0 -1 0);

}

?> mirrorMesh

Define a new plane and mirror the mesh again.

pointAndNormalDict

{
basePoint (0 0 0);
normalvector (-1 0 0);
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¥

?> mirrormesh

We now have a full domain mesh instead of a symmetric fraction as shown in Figure.2.9.

THustration of a % mesh and the resulting full scale mesh after 2 reflections with mirrorMesh,

Summary

In this chapter we began interacting with the OpenFOAM® library at a logical first stage:
mesh generation. It should be obvious at this point that while there is no "fluid" aspects
of mesh generation, it can still be a very cumbersome and complicated process. It is

not uncommon to spend considerable time setting up a CFD simulation, only to have an
inadequate mesh result in immediate numerical instabilities. It is our hope that between
blockMesh, snappyHexMesh, mesh conversion options, and mesh manipulation
utilities, you the user can produce the discretized domain necessary for your CFD
applications. In the next chapter we will use our new mesh generation skills and proceed
to setup a full OpenFOAM® case and perform our first full CFD calculations.
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