
Fluid Mechanics and Its Applications

F. Moukalled
L. Mangani
M. Darwish

The Finite
Volume Method
in Computational
Fluid Dynamics
An Advanced Introduction with
OpenFOAM® and Matlab®

Fluid Mechanics and Its Applications

Volume 113

Series editor

André Thess, German Aerospace Center, Institute of Engineering

Thermodynamics, Stuttgart, Germany

Founding Editor

René Moreau, Ecole Nationale Supérieure d’Hydraulique de Grenoble,

Saint Martin d’Hères Cedex, France

Aims and Scope of the Series

The purpose of this series is to focus on subjects in which fluid mechanics plays a

fundamental role.

As well as the more traditional applications of aeronautics, hydraulics, heat and

mass transfer etc., books will be published dealing with topics which are currently

in a state of rapid development, such as turbulence, suspensions and multiphase

fluids, super and hypersonic flows and numerical modeling techniques.

It is a widely held view that it is the interdisciplinary subjects that will receive

intense scientific attention, bringing them to the forefront of technological

advancement. Fluids have the ability to transport matter and its properties as well

as to transmit force, therefore fluid mechanics is a subject that is particularly open to

cross fertilization with other sciences and disciplines of engineering. The subject of

fluid mechanics will be highly relevant in domains such as chemical, metallurgical,

biological and ecological engineering. This series is particularly open to such new

multidisciplinary domains.

The median level of presentation is the first year graduate student. Some texts are

monographs defining the current state of a field; others are accessible to final year

undergraduates; but essentially the emphasis is on readability and clarity.

More information about this series at http://www.springer.com/series/5980

F. Moukalled • L. Mangani
M. Darwish

The Finite Volume Method
in Computational Fluid
Dynamics

An Advanced Introduction
with OpenFOAM® and Matlab®

123

F. Moukalled
Department of Mechanical Engineering
American University of Beirut
Beirut
Lebanon

L. Mangani
Engineering and Architecture
Lucerne University of Applied Science
and Arts

Horw
Switzerland

M. Darwish
Department of Mechanical Engineering
American University of Beirut
Beirut
Lebanon

ISSN 0926-5112 ISSN 2215-0056 (electronic)
Fluid Mechanics and Its Applications
ISBN 978-3-319-16873-9 ISBN 978-3-319-16874-6 (eBook)
DOI 10.1007/978-3-319-16874-6

Library of Congress Control Number: 2015939213

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the

authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media

(www.springer.com)

Preface

The impetus to write this book came about from three sources:

The first source was the bi-yearly computational fluid dynamics (CFD) course,

which has been offered over the last 15 years at the American University of Beirut

(AUB) by both Drs. Darwish and Moukalled to senior and graduate mechanical

engineering students, a course that focuses on the finite volume method (FVM) and

CFD applications.

The second source grew over the years to become more significant as it was

noticed that graduates have started working on increasingly more focused areas and

topics in CFD while becoming less cognizant of the general algorithmic expertise

that earlier students developed. It became clear that there is a need not only to cover

the basis of the numerics at the core of CFD codes but also to discuss the imple-

mentation issues to ensure that all students receive a robust understanding of the

techniques they are working on.

Finally, the collaborative work in advanced numerics with Prof. Dr. Mangani

from HSLU, Lucerne, Switzerland, which started during the Ph.D. supervision of

M. Buchmyer (Ph.D.) from TUGraz, provided all the incentive to clarify and detail

much of the numerical basis of the algorithms used in OpenFOAM®.

To this end, it was decided that the book would combine a mix of numerical and

implementation details allowing the reader, if she/he desires, to fully understand

and implement a robust and versatile CFD code based on the FVM.

This ambitious task was possible only by selecting from the various numerical

methods in each of the topics covered in the book a handful set with which the

authors are intimately familiar. The result is a book that covers intimately all the

topics necessary for the development of a robust CFD code for the simulation of

fluid flow at all speeds within the framework of the collocated unstructured finite

volume method.

The book was also written with the classroom in mind as reflected by the use of

copious illustrations; the provision of many exercises covering numerics, pro-

gramming, and applications; the availability of an academic code (in MATLAB®)

that imbeds much of the numerics presented in the book; and finally the various

programs and routines in OpenFOAM®.

v

The hope is that as you read through this book, you will share with us the

excitement and intense interest that we have grown to have for this subject.

Beirut F. Moukalled

Horw L. Mangani

Beirut M. Darwish

January 2015

vi Preface

Acknowledgments

It took nearly two years to complete this book, but much of what went in it was

learned over a much longer period from interaction with numerous people in

conferences and academic visits, from answering pertinent questions in our CFD

courses and from our research work. However the enabler for all that is foremost the

patience and kindness of our families.

We also wish to acknowledge the support provided to us by our respective

institutions

American University of Beirut

Beirut, Lebanon

Lucerne University of Applied Science and Arts

vii

Contents

Part I Foundation

1 Introduction . 3

1.1 What Is Computational Fluid Dynamics (CFD) 3

1.2 What Is the Finite Volume Method 4

1.3 This Book . 5

1.3.1 Foundation . 5

1.3.2 Numerics . 6

1.3.3 Algorithms . 7

1.3.4 Applications . 8

1.4 Closure . 8

2 Review of Vector Calculus . 9

2.1 Introduction . 9

2.2 Vectors and Vector Operations . 10

2.2.1 The Dot Product of Two Vectors 11

2.2.2 Vector Magnitude . 11

2.2.3 The Unit Direction Vector 12

2.2.4 The Cross Product of Two Vectors 12

2.2.5 The Scalar Triple Product 14

2.2.6 Gradient of a Scalar and Directional

Derivatives . 15

2.2.7 Operations on the Nabla Operator 17

2.2.8 Additional Vector Operations 19

2.3 Matrices and Matrix Operations . 20

2.3.1 Square Matrices . 21

2.3.2 Using Matrices to Describe Systems

of Equations . 23

2.3.3 The Determinant of a Square Matrix 23

2.3.4 Eigenvectors and Eigenvalues 26

2.3.5 A Symmetric Positive-Definite Matrix 27

ix

2.3.6 Additional Matrix Operations 28

2.4 Tensors and Tensor Operations . 29

2.5 Fundamental Theorems of Vector Calculus. 32

2.5.1 Gradient Theorem for Line Integrals 32

2.5.2 Green’s Theorem. 33

2.5.3 Stokes’ Theorem . 34

2.5.4 Divergence Theorem . 35

2.5.5 Leibniz Integral Rule . 37

2.6 Closure . 38

2.7 Exercises . 39

References. 41

3 Mathematical Description of Physical Phenomena 43

3.1 Introduction . 43

3.2 Classification of Fluid Flows . 44

3.3 Eulerian and Lagrangian Description of Conservation

Laws . 45

3.3.1 Substantial Versus Local Derivative 46

3.3.2 Reynolds Transport Theorem 47

3.4 Conservation of Mass (Continuity Equation). 48

3.5 Conservation of Linear Momentum 50

3.5.1 Non-Conservative Form . 51

3.5.2 Conservative Form . 52

3.5.3 Surface Forces . 52

3.5.4 Body Forces . 54

3.5.5 Stress Tensor and the Momentum Equation

for Newtonian Fluids . 55

3.6 Conservation of Energy . 57

3.6.1 Conservation of Energy in Terms of Specific

Internal Energy . 60

3.6.2 Conservation of Energy in Terms of Specific

Enthalpy. 61

3.6.3 Conservation of Energy in Terms of Specific

Total Enthalpy . 61

3.6.4 Conservation of Energy in Terms

of Temperature . 62

3.7 General Conservation Equation . 65

3.8 Non-dimensionalization Procedure . 67

3.9 Dimensionless Numbers . 72

3.9.1 Reynolds Number . 72

3.9.2 Grashof Number . 73

3.9.3 Prandtl Number. 73

3.9.4 Péclet Number . 75

3.9.5 Schmidt Number . 75

x Contents

3.9.6 Nusselt Number . 77

3.9.7 Mach Number. 77

3.9.8 Eckert Number . 78

3.9.9 Froude Number . 79

3.9.10 Weber Number . 79

3.10 Closure . 80

3.11 Exercises . 80

References. 82

4 The Discretization Process. 85

4.1 The Discretization Process . 85

4.1.1 Step I: Geometric and Physical Modeling 87

4.1.2 Step II: Domain Discretization 88

4.1.3 Mesh Topology. 90

4.1.4 Step III: Equation Discretization 93

4.1.5 Step IV: Solution of the Discretized Equations 98

4.1.6 Other Types of Fields . 100

4.2 Closure . 101

5 The Finite Volume Method . 103

5.1 Introduction . 103

5.2 The Semi-Discretized Equation . 104

5.2.1 Flux Integration Over Element Faces 105

5.2.2 Source Term Volume Integration. 107

5.2.3 The Discrete Conservation Equation

for One Integration Point 108

5.2.4 Flux Linearization . 109

5.3 Boundary Conditions . 111

5.3.1 Value Specified (Dirichlet Boundary Condition) . . . 111

5.3.2 Flux Specified (Neumann Boundary Condition). . . . 112

5.4 Order of Accuracy. 113

5.4.1 Spatial Variation Approximation 113

5.4.2 Mean Value Approximation 114

5.5 Transient Semi-Discretized Equation 117

5.6 Properties of the Discretized Equations 118

5.6.1 Conservation. 118

5.6.2 Accuracy . 119

5.6.3 Convergence. 119

5.6.4 Consistency . 120

5.6.5 Stability . 120

5.6.6 Economy . 120

5.6.7 Transportiveness . 120

5.6.8 Boundedness of the Interpolation Profile 121

Contents xi

5.7 Variable Arrangement . 122

5.7.1 Vertex-Centered FVM . 123

5.7.2 Cell-Centered FVM . 124

5.8 Implicit Versus Explicit Numerical Methods 126

5.9 The Mesh Support. 127

5.10 Computational Pointers . 128

5.10.1 uFVM . 128

5.10.2 OpenFOAM® . 129

5.11 Closure . 133

5.12 Exercises . 133

References. 134

6 The Finite Volume Mesh . 137

6.1 Domain Discretization . 137

6.2 The Finite Volume Mesh . 138

6.2.1 Mesh Support for Gradient Computation 139

6.3 Structured Grids . 142

6.3.1 Topological Information . 142

6.3.2 Geometric Information . 144

6.3.3 Accessing the Element Field 145

6.4 Unstructured Grids . 146

6.4.1 Topological Information (Connectivities) 147

6.5 Geometric Quantities . 152

6.5.1 Element Types . 153

6.5.2 Computing Surface Area and Centroid

of Faces . 154

6.6 Computational Pointers . 162

6.6.1 uFVM . 162

6.6.2 OpenFOAM® . 164

6.7 Closure . 170

6.8 Exercises . 170

References. 170

7 The Finite Volume Mesh in OpenFOAM® and uFVM 173

7.1 uFVM . 173

7.1.1 An OpenFOAM® Test Case 173

7.1.2 The polyMesh Folder. 175

7.1.3 The uFVM Mesh. 178

7.1.4 uFVM Geometric Fields. 183

7.1.5 Working with the uFVM Mesh 187

7.1.6 Computing the Gauss Gradient 188

7.2 OpenFOAM® . 191

7.2.1 Fields and Memory . 197

7.2.2 InternalField Data . 199

xii Contents

7.2.3 BoundaryField Data . 200

7.2.4 lduAddressing . 200

7.2.5 Computing the Gradient . 202

7.3 Mesh Conversion Tools . 204

7.4 Closure . 205

7.5 Exercises . 205

References. 207

Part II Discretization

8 Spatial Discretization: The Diffusion Term. 211

8.1 Two-Dimensional Diffusion in a Rectangular Domain 211

8.2 Comments on the Discretized Equation 216

8.2.1 The Zero Sum Rule . 216

8.2.2 The Opposite Signs Rule 217

8.3 Boundary Conditions . 217

8.3.1 Dirichlet Boundary Condition 218

8.3.2 Von Neumann Boundary Condition 220

8.3.3 Mixed Boundary Condition 222

8.3.4 Symmetry Boundary Condition 223

8.4 The Interface Diffusivity . 224

8.5 Non-Cartesian Orthogonal Grids . 239

8.6 Non-orthogonal Unstructured Grid. 241

8.6.1 Non-orthogonality . 241

8.6.2 Minimum Correction Approach 242

8.6.3 Orthogonal Correction Approach 243

8.6.4 Over-Relaxed Approach . 243

8.6.5 Treatment of the Cross-Diffusion Term 244

8.6.6 Gradient Computation . 244

8.6.7 Algebraic Equation for Non-orthogonal Meshes . . . 245

8.6.8 Boundary Conditions for Non-orthogonal Grids. . . . 252

8.7 Skewness . 254

8.8 Anisotropic Diffusion . 255

8.9 Under-Relaxation of the Iterative Solution Process 256

8.10 Computational Pointers . 258

8.10.1 uFVM . 258

8.10.2 OpenFOAM® . 260

8.11 Closure . 265

8.12 Exercises . 265

References. 270

Contents xiii

9 Gradient Computation . 273

9.1 Computing Gradients in Cartesian Grids 273

9.2 Green-Gauss Gradient . 275

9.3 Least-Square Gradient . 285

9.4 Interpolating Gradients to Faces . 289

9.5 Computational Pointers . 290

9.5.1 uFVM . 290

9.5.2 OpenFOAM® . 295

9.6 Closure . 298

9.7 Exercises . 298

References. 302

10 Solving the System of Algebraic Equations. 303

10.1 Introduction . 303

10.2 Direct or Gauss Elimination Method 305

10.2.1 Gauss Elimination . 305

10.2.2 Forward Elimination . 306

10.2.3 Forward Elimination Algorithm. 307

10.2.4 Backward Substitution . 307

10.2.5 Back Substitution Algorithm 308

10.2.6 LU Decomposition . 308

10.2.7 The Decomposition Step 310

10.2.8 LU Decomposition Algorithm 311

10.2.9 The Substitution Step. 312

10.2.10 LU Decomposition and Gauss Elimination 312

10.2.11 LU Decomposition Algorithm by Gauss

Elimination. 313

10.2.12 Direct Methods for Banded Sparse Matrices 315

10.2.13 TriDiagonal Matrix Algorithm (TDMA) 316

10.2.14 PentaDiagonal Matrix Algorithm (PDMA) 317

10.3 Iterative Methods . 319

10.3.1 Jacobi Method . 323

10.3.2 Gauss-Seidel Method . 325

10.3.3 Preconditioning and Iterative Methods 327

10.3.4 Matrix Decomposition Techniques. 329

10.3.5 Incomplete LU (ILU) Decomposition 329

10.3.6 Incomplete LU Factorization

with no Fill-in ILU(0) . 330

10.3.7 ILU(0) Factorization Algorithm. 331

10.3.8 ILU Factorization Preconditioners 331

10.3.9 Algorithm for the Calculation of D�

in the DILU Method . 332

10.3.10 Forward and Backward Solution Algorithm

with the DILU Method . 333

xiv Contents

10.3.11 Gradient Methods for Solving Algebraic

Systems . 333

10.3.12 The Method of Steepest Descent 335

10.3.13 The Conjugate Gradient Method 337

10.3.14 The Bi-conjugate Gradient Method (BiCG)

and Preconditioned BICG. 340

10.4 The Multigrid Approach. 343

10.4.1 Element Agglomeration/Coarsening 345

10.4.2 The Restriction Step and Coarse Level

Coefficients . 346

10.4.3 The Prolongation Step and Fine Grid Level

Corrections . 349

10.4.4 Traversal Strategies and Algebraic Multigrid

Cycles . 349

10.5 Computational Pointers . 350

10.5.1 uFVM . 350

10.5.2 OpenFOAM
® . 351

10.6 Closure . 358

10.7 Exercises . 358

References. 362

11 Discretization of the Convection Term . 365

11.1 Introduction . 365

11.2 Steady One Dimensional Convection and Diffusion 366

11.2.1 Analytical Solution . 366

11.2.2 Numerical Solution . 368

11.2.3 A Preliminary Derivation: The Central

Difference (CD) Scheme 369

11.2.4 The Upwind Scheme . 375

11.2.5 The Downwind Scheme . 379

11.3 Truncation Error: Numerical Diffusion and Anti-Diffusion . . . 380

11.3.1 The Upwind Scheme . 381

11.3.2 The Downwind Scheme . 382

11.3.3 The Central Difference (CD) Scheme. 383

11.4 Numerical Stability . 385

11.5 Higher Order Upwind Schemes. 388

11.5.1 Second Order Upwind Scheme 389

11.5.2 The Interpolation Profile. 390

11.5.3 The Discretized Equation 390

11.5.4 Truncation Error . 391

11.5.5 Stability Analysis . 392

11.5.6 The QUICK Scheme . 392

11.5.7 The Interpolation Profile. 393

11.5.8 Truncation Error . 394

Contents xv

11.5.9 Stability Analysis . 394

11.5.10 The FROMM Scheme . 395

11.5.11 The Interpolation Profile. 395

11.5.12 The Discretized Equation 396

11.5.13 Truncation Error . 397

11.5.14 Stability Analysis . 397

11.5.15 Comparison of the Various Schemes 398

11.5.16 Functional Relationships for Uniform

and Non-uniform Grids . 399

11.6 Steady Two Dimensional Advection 400

11.6.1 Error Sources . 404

11.7 High Order Schemes on Unstructured Grids 406

11.7.1 Reformulating HO Schemes in Terms

of Gradients . 407

11.8 The Deferred Correction Approach 409

11.9 Computational Pointers . 411

11.9.1 uFVM . 411

11.9.2 OpenFOAM® . 413

11.10 Closure . 421

11.11 Exercises . 422

References. 426

12 High Resolution Schemes . 429

12.1 The Normalized Variable Formulation (NVF) 429

12.2 The Convection Boundedness Criterion (CBC) 436

12.3 High Resolution (HR) Schemes. 438

12.4 The TVD Framework . 443

12.5 The NVF-TVD Relation. 450

12.6 HR Schemes in Unstructured Grid Systems 456

12.7 Deferred Correction for HR Schemes. 456

12.7.1 The Difficulty with the Direct Use

of Nodal Values . 458

12.8 The DWF and NWF Methods. 459

12.8.1 The Downwind Weighing Factor

(DWF) Method . 460

12.8.2 The Normalized Weighing Factor

(NWF) Method . 463

12.9 Boundary Conditions . 467

12.9.1 Inlet Boundary Condition 468

12.9.2 Outlet Boundary Condition 470

12.9.3 Wall Boundary Condition. 471

12.9.4 Symmetry Boundary Condition 472

xvi Contents

12.10 Computational Pointers . 472

12.10.1 uFVM . 472

12.10.2 OpenFOAM® . 475

12.11 Closure . 483

12.12 Exercises . 483

References. 487

13 Temporal Discretization: The Transient Term 489

13.1 Introduction . 489

13.2 The Finite Difference Approach . 492

13.2.1 Forward Euler Scheme . 492

13.2.2 Stability of the Forward Euler Scheme 494

13.2.3 Backward Euler Scheme. 498

13.2.4 Crank-Nicolson Scheme . 500

13.2.5 Implementation Details. 502

13.2.6 Adams-Moulton Scheme 503

13.3 The Finite Volume Approach . 507

13.3.1 First Order Transient Schemes 508

13.3.2 First Order Implicit Euler Scheme 508

13.3.3 First Order Explicit Euler Scheme 510

13.3.4 Second Order Transient Euler Schemes 512

13.3.5 Crank-Nicholson (Central Difference Profile) 512

13.3.6 Second Order Upwind Euler (SOUE) Scheme 514

13.3.7 Initial Condition for the FV Approach 515

13.4 Non-Uniform Time Steps . 519

13.4.1 Non-Uniform Time Steps with the Finite

Difference Approach . 519

13.4.2 Adams-Moulton (or SOUE) Scheme 521

13.4.3 Non-Uniform Time Steps with the Finite

Volume Approach . 522

13.4.4 Crank-Nicolson Scheme . 523

13.4.5 Adams-Moulton (or SOUE) Scheme 524

13.5 Computational Pointers . 525

13.5.1 uFVM . 525

13.5.2 OpenFOAM® . 526

13.6 Closure . 529

13.7 Exercises . 529

References. 533

14 Discretization of the Source Term, Relaxation,

and Other Details . 535

14.1 Source Term Discretization. 535

14.2 Under-Relaxation of the Algebraic Equations 538

14.2.1 Under-Relaxation Methods 539

Contents xvii

14.2.2 Explicit Under-Relaxation. 540

14.2.3 Implicit Under-Relaxation Methods 540

14.3 Residual Form of the Equation . 544

14.3.1 Residual Form of Patankar’s Under-Relaxation 545

14.4 Residuals and Solution Convergence 546

14.4.1 Residuals . 546

14.4.2 Absolute Residual . 547

14.4.3 Maximum Residual . 547

14.4.4 Root-Mean Square Residual 547

14.4.5 Normalization of the Residual 548

14.5 Computational Pointers . 549

14.5.1 uFVM . 549

14.5.2 OpenFOAM® . 550

14.6 Closure . 555

14.7 Exercises . 555

References. 557

Part III Algorithms

15 Fluid Flow Computation: Incompressible Flows 561

15.1 The Main Difficulty. 561

15.2 A Preliminary Derivation . 563

15.2.1 Discretization of the Momentum Equation 564

15.2.2 Discretization of the Continuity Equation 565

15.2.3 The Checkerboard Problem. 565

15.2.4 The Staggered Grid . 567

15.2.5 The Pressure Correction Equation 569

15.2.6 The SIMPLE Algorithm on Staggered Grid 572

15.2.7 Pressure Correction Equation in Two

Dimensional Staggered Cartesian Grids 578

15.2.8 Pressure Correction Equation in Three

Dimensional Staggered Cartesian Grid 581

15.3 Disadvantages of the Staggered Grid 582

15.4 The Rhie-Chow Interpolation . 585

15.5 General Derivation . 588

15.5.1 The Discretized Momentum Equation 588

15.5.2 The Collocated Pressure Correction Equation 592

15.5.3 Calculation of the Df Term 596

15.5.4 The Collocated SIMPLE Algorithm 597

15.6 Boundary Conditions . 602

15.6.1 Boundary Conditions for the Momentum

Equation. 603

xviii Contents

15.6.2 Boundary Conditions for the Pressure

Correction Equation . 617

15.7 The SIMPLE Family of Algorithms. 621

15.7.1 The SIMPLEC Algorithm. 623

15.7.2 The PRIME Algorithm. 624

15.7.3 The PISO Algorithm . 625

15.8 Optimum Under-Relaxation Factor Values for v and p0 628

15.9 Treatment of Various Terms with the Rhie-Chow

Interpolation . 630

15.9.1 Treatment of the Under-Relaxation Term 630

15.9.2 Treatment of the Transient Term 631

15.9.3 Treatment of the Body Force Term 632

15.9.4 Combined Treatment of Under-Relaxation,

Transient, and Body Force Terms 636

15.10 Computational Pointers . 636

15.10.1 uFVM . 636

15.10.2 OpenFOAM® . 638

15.11 Closure . 649

15.12 Exercises . 649

References. 653

16 Fluid Flow Computation: Compressible Flows 655

16.1 Historical . 655

16.2 Introduction . 656

16.3 The Conservation Equations . 657

16.4 Discretization of the Momentum Equation 658

16.5 The Pressure Correction Equation . 659

16.6 Discretization of The Energy Equation. 663

16.6.1 Discretization of the Extra Terms 663

16.6.2 The Algebraic Form of the Energy Equation 665

16.7 The Compressible SIMPLE Algorithm 666

16.8 Boundary Conditions . 667

16.8.1 Inlet Boundary Conditions 669

16.8.2 Outlet Boundary Conditions 672

16.9 Computational Pointers . 673

16.9.1 uFVM . 673

16.9.2 OpenFOAM® . 674

16.10 Closure . 687

16.11 Exercises . 687

References. 689

Contents xix

Part IV Applications

17 Turbulence Modeling . 693

17.1 Turbulence Modeling. 693

17.2 Reynolds Averaging . 696

17.2.1 Time Averaging . 696

17.2.2 Spatial Averaging . 696

17.2.3 Ensemble Averaging . 697

17.2.4 Averaging Rules . 697

17.2.5 Incompressible RANS Equations 697

17.3 Boussinesq Hypothesis. 699

17.4 Turbulence Models . 700

17.5 Two-Equation Turbulence Models . 700

17.5.1 Standard k − ɛ Model . 700

17.5.2 The k − ω Model . 702

17.5.3 The Baseline (BSL) k − ω Model 704

17.5.4 The Shear Stress Transport (SST) k − ω Model . . . 705

17.6 Summary of Incompressible Turbulent Flow Equations 707

17.7 Discretization of the Turbulent Flow Equations 707

17.7.1 The Discretized Form of the k Equation 708

17.7.2 The Discretized Form of the ɛ Equation 708

17.7.3 The Discretized Form of the ω Equation 709

17.8 Boundary Conditions . 710

17.8.1 Modeling Flow Near the Wall. 710

17.8.2 Standard Wall Functions 711

17.8.3 Improved Wall Functions 716

17.8.4 Scalable Wall Functions . 718

17.8.5 Wall Boundary Conditions for Low

Reynolds Number Models 719

17.8.6 Automatic Near-Wall Treatment 720

17.8.7 Near-Wall Heat Transfer 721

17.8.8 Other Boundary Conditions 722

17.9 Calculating Normal Distance to the Wall 723

17.10 Computational Pointers . 725

17.10.1 The k − ɛ Model . 727

17.10.2 The SST k – ω Model . 734

17.10.3 simpleFoamTurbulent. 738

17.11 Closure . 740

17.12 Exercises . 740

References. 742

18 Boundary Conditions in OpenFOAM
® and uFVM 745

18.1 Boundary Conditions in OpenFOAM® 745

18.2 Boundary Condition Customization 747

xx Contents

18.3 Development of a New BC: No Slip Wall Condition 752

18.4 The No-Slip Boundary Condition in uFVM 756

18.5 Closure . 759

Reference . 759

19 An OpenFOAM® Turbulent Flow Application 761

19.1 Introduction . 761

19.2 The Ahmed Bluff Body . 761

19.3 Domain Discretization . 763

19.3.1 Initial and Boundary Conditions 768

19.3.2 Systems Files . 770

19.3.3 Running the Solver . 773

19.4 Conclusion . 776

References. 776

20 Closing Remarks . 777

Appendix: uFVM . 779

Contents xxi

About the Authors

Fadl Moukalled received his Ph.D. in Mechanical Engineering from Louisiana

State University in 1987. During that same year, he joined the Mechanical

Engineering Department at the American University of Beirut where currently he

serves as a professor. His research interests cover several aspects of the finite

volume method and its use in computational fluid dynamics. As a founding member

of the CFD Group at AUB, he worked on convection schemes, pressure-based

segregated algorithms for incompressible and compressible flows, adaptive grid

methods, multigrid methods, transient schemes for free surface flows, multiphase

flows, and fully coupled pressure-based solvers for incompressible, compressible,

and multiphase flows.

Luca Mangani received his Ph.D. form the University of Florence in 2006, where

he worked on the development of a state-of-the-art turbo machinery code in

OpenFOAM
® for heat transfer and combustion analysis. After three years of

postdoc work, he joined the Lucerne University of Applied Sciences and Arts as

senior research and chief engineer for CFD simulations. Since 2014, he is serving as

an associate professor at the Fluid Mechanics and Hydro-machines Department,

where he manages a variety of projects with industrial partners aimed at developing

advanced and novel CFD tools. His research interests include pressure- and density-

based solvers, segregated and fully coupled algorithms, fluid-structure interaction

(FSI), turbulence, and conjugate heat transfer modeling.

Marwan Darwish received his Ph.D. in Materials Processing from BRUNEL

University in 1991. He worked at the BICOM institute for one year as a postdoc

before joining the Mechanical Engineering Department at the American University

of Beirut in 1992, where he currently serves as a professor. His research interest

covers a range of topics including solidification, advanced numerics, free surface

flow, high-resolution schemes, multiphase flows, coupled algorithms, and algebraic

multigrid. He is a founding member of the CFD Group at AUB.

xxiii

Part I

Foundation

Chapter 1

Introduction

Abstract This chapter presents an overview of the book. It starts with a brief

description of Computational Fluid Dynamics (CFD) and its use as a core design

tool in a whole class of applications, and of the Finite Volume Method (FVM) and

its role in the advancement of CFD. The chapter ends with a discussion of the book

philosophy, structure, and content.

1.1 What Is Computational Fluid Dynamics (CFD)

“We are literally at a significant point in history. A third branch of the scientific

method, computer simulation, is emerging as a day-to-day tool. It is taking its place

next to experimental development and mathematical theory as a way to new dis-

coveries in science and engineering”. This was part of the speech of John

Rollwagen, chairman and CEO of Cray Research, to the opening session of

Supercomputing 89.

While it is common to refer to this or similar statements about the importance of

simulation tools and techniques to the advancement of science and technology in

general, it is now very clear that the use of simulation tools has become crucial to

the development of a wide range of everyday technologies. In fact, numerical

simulation tools nowadays play the role of technology enablers.

Computational Fluid Dynamics (CFD) is one such tool. Even though the impetus

to its development was initially provided by some sections within the aeronautics

and aerospace industry, it has grown to become an essential tool in a range of other

design intensive industries such as the automotive, power generation, chemical,

nuclear, and marine industries, to cite a few. Over the past decade newer industries

have joined the ranks of heavy CFD users: for example in the electronics industry

CFD is employed to optimize energy systems and heat transfer for the cooling of

electronic devices, in the biomedical industry CFD is now a core development and

validation tool for medical applications, and in the building industry CFD is used in

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_1

3

HVAC (heating, ventilating, and air conditioning), in fire simulation, and in air-

quality assessment.

This has happened in little over two decades since the statement of John

Rollwagen was made and over four decades since the development of the seminal

SIMPLE algorithm by the CFD group of Brian Spalding at Imperial College in the

early 70s.

Computational Fluid Dynamics is just one of the later Computer Aided

Engineering tools that has gone mainstream. It has joined a well-established set of

tools, such as the Finite Element Analysis (FEA) for Solid Mechanics and Vibration

that has been part of the engineering design cycle since the mid 80s. The reason for

this delay is the complexity of the equations that need to be solved. At their center is

the Navier-Stokes equation that amazingly enough models accurately a whole set of

flow phenomena from turbulent or laminar single phase incompressible flows, to

compressible all-speed flows, and all the way to multiphase flows.

Amongst the numerical methods used to implement CFD, the Finite Volume

Method has come to play a unique role.

1.2 What Is the Finite Volume Method

The Finite Volume Method (FVM) is a numerical technique that transforms the

partial differential equations representing conservation laws over differential vol-

umes into discrete algebraic equations over finite volumes (or elements or cells). In

a similar fashion to the finite difference or finite element method, the first step in the

solution process is the discretization of the geometric domain, which, in the FVM,

is discretized into non-overlapping elements or finite volumes. The partial differ-

ential equations are then discretized/transformed into algebraic equations by inte-

grating them over each discrete element. The system of algebraic equations is then

solved to compute the values of the dependent variable for each of the elements.

In the finite volume method, some of the terms in the conservation equation are

turned into face fluxes and evaluated at the finite volume faces. Because the flux

entering a given volume is identical to that leaving the adjacent volume, the FVM is

strictly conservative. This inherent conservation property of the FVM makes it the

preferred method in CFD. Another important attribute of the FVM is that it can be

formulated in the physical space on unstructured polygonal meshes. Finally in the

FVM it is quite easy to implement a variety of boundary conditions in a non-

invasive manner, since the unknown variables are evaluated at the centroids of the

volume elements, not at their boundary faces.

These characteristics have made the Finite Volume Method quite suitable for the

numerical simulation of a variety of applications involving fluid flow and heat and

mass transfer, and developments in the method have been closely entwined with

advances in CFD. From a limited potential at inception confined to solving simple

physics and geometry over structured grids, the FVM is now capable of dealing

with all kinds of complex physics and applications.

4 1 Introduction

1.3 This Book

This book is about the Finite Volume Method and Computational Fluid Dynamics.

It incorporates the basic know how of the method as acquired by the authors over

almost three decades of work in the area. The terminology was carefully chosen,

and vector notation was used whenever possible to ensure conciseness and con-

sistency across all topics covered. Derivations are presented in a step by step

fashion and illustrations are used extensively in the book to clarify concepts. In

addition, a number of solved examples and exercises are also provided. Each

chapter ends with a section denoted by “Computational Pointers” that provides

pertinent details on implementation issues for two codes. The first, denoted by

uFVM, is a Matlab®-based unstructured finite volume CFD educational code

developed by the authors; while the second is OpenFOAM®, an open source finite

volume code written in C++ capable of solving industrial type problems. Generally

the numerics in each chapter are first presented for a one dimensional grid and

progress towards two and three dimensional unstructured grids, to ease the intro-

duction of difficult techniques.

The material presented allows the book to be utilized in a variety of ways. It can

be used as a textbook for a senior undergraduate course covering the fundamentals

of the finite volume discretization. It can also be deployed as a textbook for a

graduate course on the application of the finite volume method and its use in

computational fluid dynamics. It is also a handy reference book for workers in

CFD, numerical heat transfer, and transport phenomena in general.

The content of the book falls into 20 chapters that may be grouped under the

following four categories: (i) Foundation (Chaps. 2 through 7), (ii) Numerics

(Chaps. 8 through 14), (iii) Algorithms (Chaps. 15 and 16), and (iv) Applications

(17 through 19). Chapter 20 presents some closing remarks.

The uFVM Matlab® computer program, the OpenFOAM® developed routines,

and the prepared lecture presentations can be downloaded from the book webpage

at the following URL: “https://feaweb.aub.edu.lb/research/cfd”

A summary of the material covered in the forthcoming chapters is presented

next.

1.3.1 Foundation

This part, covered in Chaps. 2 through 7, provides the necessary background for

introducing the FVM.

Chapter 2 presents a short introduction of the elements of linear algebra

including vectors, matrices, tensors, and their practices. This is in addition to an

examination of the fundamental theorems of vector calculus.

Chapter 3 overviews the conservation principles governing fluid flow and related

transport phenomena. It describes the derivations of the continuity, momentum, and

1.3 This Book 5

energy equations (collectively known as the Navier-Stokes equations). This is

followed by the development of a typical conservation equation for a general scalar,

vector, or tensor quantity. This equation forms the cornerstone for the developments

presented in the numerics section. The conservation equation is shown to be

composed of a transient, convection, diffusion, and source term. The discretization

of each of these terms is presented in a separate chapter.

Chapter 4 summarizes the various steps of the discretization process, which

include: (i) modeling the geometric domain and the physical phenomena, (ii) the

discretization of the modeled geometric domain into a grid system, (iii) the dis-

cretization of the partial differential equation into an equivalent system of algebraic

equations defined over each of the elements of the computational domain, and

(iv) the solution of the system of equations.

Chapter 5 transforms the partial differential equation into a set of semi-discret-

ized equations and presents a broad review of the numerical issues pertaining to the

finite volume method. This provides a solid foundation for the chapters that follow.

Chapter 6 is devoted to the finite volume mesh. It starts with mesh discretization

that replaces the geometric domain by a set of non overlapping elements. Then it

proceeds with the computation of geometric information relevant to the various

entities of the computational mesh in addition to the topological information that

describes the arrangement and inter-relations of these entities.

Chapter 7 outlines the design decisions that shape the implementation of the two

CFD codes, uFVM and OpenFOAM®. First the data structure and memory man-

agement schemes of the two codes are presented, then a sample test case is pre-

sented. Finally the format of the system of equations generated by each of the two

codes are detailed.

1.3.2 Numerics

The material relevant to this part is covered in Chaps. 8 through 14. Each chapter

specializes in the discretization of one of the terms in the general conservation

equation derived in Chap. 2, with the exception of Chap. 10, which deals with

linear solvers of algebraic systems of equations.

Chapter 8 describes the discretization of the diffusion term. The developments

start on a structured Cartesian mesh and progress to unstructured non-orthogonal

grid, while explaining the adopted treatment of the non-orthogonal cross-diffusion

term. The chapter continues with a discussion on the used interpolation profiles and

the rules that should be satisfied by the coefficients of the discretized system of

algebraic equations. It also details the implementation of boundary conditions in

addition to the under-relaxation procedure needed for highly non-linear problems.

Chapter 9 describes several techniques for evaluating gradients on a general

mesh topology following either the Green-Gauss or the least square approach. It

also presents methods to interpolate the gradient to element faces.

6 1 Introduction

Chapter 10 deals with solvers of systems of algebraic equations. Both direct and

iterative solvers are discussed with emphasis on iterative solvers because direct

solvers are rarely used in CFD applications. The direct methods presented include

the Gauss elimination and LU factorization. The concept of preconditioning is

presented and the performance and limitations of some iterative methods are

reviewed. This include the Jacobi, Gauss-Siedel, Incomplete LU factorization, and

the conjugate gradient methods. The chapter also introduces the algebraic multigrid

method, which is generally used in combination with iterative solvers to accelerate

their convergence.

Chapter 11 proceeds with the discretization of the convection term assuming a

known flow field. The shortcomings of using a symmetrical linear profile for the

discretization of the convection term are delineated and a remedy is suggested

through the use of an upwind profile. The high diffusion error associated with the

upwind scheme is pointed out and upwind-biased higher order schemes are

suggested.

Chapter 12 continues the developments of convection schemes and discusses

approaches by which the dispersion error (unboundedness of the interpolation

profile) affecting High Order (HO) schemes is resolved. This is achieved by

enforcing a Convection Boundedness Criterion (CBC) on the HO profiles resulting

in the group of High Resolution (HR) schemes. The Normalized Variable

Formulation (NVF) and the Total Variation Diminishing (TVD) frameworks for

constructing these HR schemes are presented. The commonality between the two

approaches is explained through the Normalized Variable Diagram (NVD) and

Sweby’s diagram used in the NVF and TVD formulation, respectively. Many

schemes are presented in the context of both formulations. Techniques for the

implementation of HR schemes in structured and unstructured grids are reported.

Chapter 13 focusses on the discretization of the unsteady term that arises in the

simulation of transient problems. Several transient schemes are developed follow-

ing two different approaches. In the first, a finite difference approximation (via

Taylor expansion) is used. In the second approach, the finite volume method is used

on a temporal element in a similar fashion to what was done to the convection term.

Chapter 14 is devoted to a number of “small” numerical details that may have

“big” effects on the convergence behavior. First the linearization of the source term

when it is solution dependent is discussed. Then explicit and implicit techniques for

under relaxing the algebraic equations are presented. The chapter ends with an

examination of convergence indicators.

1.3.3 Algorithms

The previous chapters solved the general conservation equation assuming a given

flow field. In general, the flow field is not known and has to be computed. This is

the subject of Chaps. 15 and 16.

1.3 This Book 7

Chapter 15 is concerned with the prediction of incompressible flows. The dif-

ficulties associated with resolving the strong coupling between pressure and

velocity, with the absence of an equation for pressure, are overcome by the

SIMPLE algorithm with the derivation of a pressure correction equation. The Rhie-

Chow interpolation is then introduced to allow realizing solutions to flow problems

on collocated grids. Finally the implementation of a number of frequently

encountered boundary conditions is detailed.

Chapter 16 extends the SIMPLE algorithm into compressible flows. The

dependence of density on pressure and temperature is accounted for in the pressure

correction equation through a density correction, giving rise to a convection-like

term that transforms the mathematical nature of the equation from elliptic (for

incompressible flows) to hyperbolic. Implementation details for a number of

boundary conditions are also provided.

1.3.4 Applications

This part describes the implementation and application of the numerical techniques

developed in the previous chapters.

Chapter 17 applies these numerical techniques to address some of the challenges

faced when solving turbulent flow problems. It introduces several two-equation

turbulence models and details the treatment of the near wall region.

Chapter 18 reviews the implementation of boundary conditions in OpenFOAM®

and provides the needed information for adding new boundary conditions in the

code. The no-slip wall boundary condition is described in some details.

Chapter 19 outlines the solution procedure of a reference test case in which

solvers and boundary conditions are applied to solve a turbulent incompressible

flow problem.

Finally, Chapter 20 presents some closing remarks.

1.4 Closure

The chapter discussed the growing role played by Computational Fluid Dynamics

(CFD) as a core design tool in a whole class of applications and provided a general

overview of the Finite Volume Method (FVM). It also clarified the purpose of the

book, its intended use, and a summary of its content. The next chapter will give a

brief review of the mathematical operations that will be used throughout the book.

8 1 Introduction

Chapter 2

Review of Vector Calculus

Abstract This chapter sets the ground for the derivation of the conservation

equations by providing a brief review of the continuum mechanics tools needed for

that purpose while establishing some of the mathematical notations and procedures

that will be used throughout the book. The review is by no mean comprehensive

and assumes a basic knowledge of the fundamentals of continuum mechanics.

A short introduction of the elements of linear algebra including vectors, matrices,

tensors, and their practices is given. The chapter ends with an examination of the

fundamental theorems of vector calculus, which constitute the elementary building

blocks needed for manipulating and solving these conservation equations either

analytically or numerically using computational fluid dynamics.

2.1 Introduction

The transfer phenomena of interest here can be mathematically represented by

equations involving physical variables that fall under three categories: scalars,

vectors, and tensors [1–3]. Throughout this book scalars are designated by lightface

italic, vectors by lower boldface Roman, and tensors by boldface Greek letters. In

addition, matrices are identified by upper boldface Roman letters.

A scalar represents a quantity that has magnitude such as volume V , pressure p,

temperature T , time t, mass m, and density q. A vector represents a quantity of a

given magnitude and direction such as velocity v, momentum L ¼ mv, and force F.

A matrix is a rectangular array of quantities ordered along rows and columns.

A tensor is a mathematical object analogous to but more general than a vector,

represented by an array of components, such as the shear stress tensor. Moreover,

the conservation equations are composed of terms that represent the product of two

or more variables. The multiplication involved may be of various types to be

detailed later and the variables could be a combination of the three types described

above. Whenever the multiplication results in a scalar, the product will be enclosed

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_2

9

by parentheses “(product)”, if it results in a vector it will be enclosed by square

brackets “[product]”, and if it results in a tensor it will be enclosed by curly brackets

“{product}”.

2.2 Vectors and Vector Operations

The most frequently used vector in fluid dynamics is the velocity vector that will be

designated by v. The components of the velocity vector in a three-dimensional

Cartesian coordinate system will be denoted by u; v; and w in the x; y; and z

direction, respectively (Fig. 2.1). In Cartesian coordinates, v is written as

v ¼ uiþ vjþ wk ð2:1Þ

where i; j; and k are unit vectors in the x; y; and z direction, respectively. A vector is

usually presented in a column format with its transpose, denoted with a superscript T,

in a row format as

v ¼
u

v

w

2

4

3

5 vT ¼ u v w½ � ð2:2Þ

The magnitude of a vector is given by

vk k ¼
ffi

u2 þ v2 þ w2
p

ð2:3Þ

The sum of two vectors v1 and v2 is the sum of their components, i.e.,

v1 ¼ u1iþ v1jþ w1k

v2 ¼ u2iþ v2jþ w2k

�

) v1 þ v2 ¼ u1 þ u2ð Þiþ v1 þ v2ð Þjþ w1 þ w2ð Þk ð2:4Þ

x

y

z

u

v

w

v

Fig. 2.1 The components of

a vector v in a

three-dimensional Cartesian

coordinate system

10 2 Review of Vector Calculus

or

v1 ¼
u1
v1
w1

2

4

3

5 v2 ¼
u2
v2
w2

2

4

3

5) v1 þ v2 ¼
u1 þ u2
v1 þ v2
w1 þ w2

2

4

3

5 ð2:5Þ

The multiplication of a vector v by a scalar s results in the vector sv such that

sv ¼ s uiþ vjþ wkð Þ

¼ suiþ svjþ swk ¼
su

sv

sw

2

6
4

3

7
5

ð2:6Þ

The product of two vectors is not as straightforward. When multiplying a vector v1 by

another vector v2 two types of multiplications arise [4–6]. The first is denoted by the

scalar or dot product, v1 � v2ð Þ, and the second by vector or cross product v1 � v2½ �.

2.2.1 The Dot Product of Two Vectors

By definition, the dot product of two vectors v1 and v2 is a scalar quantity given by

v1 � v2 ¼ v1k k v2k kcos v1; v2ð Þ ð2:7Þ

where cos v1; v2ð Þ denotes the cosine of the angle between v1 and v2. From the

definition of the vector dot product, it follows that

i � i ¼ j � j ¼ k � k ¼ 1

i � j ¼ i � k ¼ j � i ¼ j � k ¼ k � i ¼ k � j ¼ 0
ð2:8Þ

In terms of orthonormal Cartesian components, the dot product of the two vectors

v1 and v2 can be calculated as

v1 � v2 ¼ u1iþ v1jþ w1kð Þ � u2iþ v2jþ w2kð Þ
¼ u1u2 þ v1v2 þ w1w2

ð2:9Þ

2.2.2 Vector Magnitude

From Eq. (2.9) it follows that the magnitude of a vector v can be obtained as

vk k ¼
ffiffiffiffiffiffiffiffiffi
v � v

p
¼

ffi

u2 þ v2 þ w2
p

ð2:10Þ

2.2 Vectors and Vector Operations 11

2.2.3 The Unit Direction Vector

A unit vector ev in the direction of v can be derived from the definition of the dot

product as

v � v ¼ vk k vk k cos v; vð Þ
zfflfflfflfflffl}|fflfflfflfflffl{

¼1

¼ vk k2) v � v

kvk ¼ vk k

v � ev ¼ vk k evk k
|{z}

¼1

cos v; evð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

¼1

¼ vk k) v � ev ¼ vk k

9

>>>>=

>>>>;

) ev ¼
v

vk k ð2:11Þ

Therefore the component of a vector in the direction of another vector (i.e., mag-

nitude of the projected length) can be viewed as the dot product of the vector to be

projected with the unit direction of the other vector as shown in Fig. 2.2a, b.

2.2.4 The Cross Product of Two Vectors

Whereas the dot product of two vectors v1 and v2 is a scalar quantity, their cross or

vector product is a vector v3 normal to the plane formed by the vectors v1 and v2, of

magnitude calculated as

v3k k ¼ v1 � v2k k ¼ v1k k v2k k sin v1; v2ð Þj j; ð2:12Þ

and of direction given by the right hand rule. As shown in Fig. 2.3, the magnitude

of the cross product of two vectors represents the area of the parallelogram spanned

by the two vectors. Since, in addition, the resulting vector is normal to the plane

v
1

v
2

v1

v 2

v 2

= v1
cos ()

v
1

v
2

v 2
v 1

v 1
=

v 2
co

s (
)

(a) (b)

Fig. 2.2 a Projection of vector v1 onto the unit direction of vector v2; b Projection of vector v2
onto the unit direction of vector v1

12 2 Review of Vector Calculus

formed by the vectors, the cross product of two vectors represents their surface

vector.

It is then clear that the cross product of two collinear vectors is zero as they

define no area, and that the cross product of two orthogonal unit vectors is a unit

vector perpendicular to the two unit vectors. Adopting the right hand rule to define

the direction of the resulting vector, the following cross product operations hold:

i� i ¼ j� j ¼ k� k ¼ 0 i� j ¼ k ¼ �j� i

j� k ¼ i ¼ �k� j k� i ¼ j ¼ �i� k
ð2:13Þ

Using the above relations, the cross product of two vectors in terms of their

Cartesian components is given by

v1 � v2 ¼ u1iþ v1jþ w1kð Þ � u2iþ v2jþ w2kð Þ
¼ u1u2i� iþ u1v2i� jþ u1w2i� k

þ v1u2j� iþ v1v2j� jþ v1w2j� k

þ w1u2k� iþ w1v2k� jþ w1w2k� k

¼ u1u20þ u1v2kþ u1w2 �jð Þ
þ v1u2 �kð Þ þ v1v20þ v1w2i

þ w1u2jþ w1v2 �ið Þ þ w1w20

¼ v1w2 � v2w1ð Þi� u1w2 � u2w1ð Þjþ u1v2 � u2v1ð Þk ð2:14Þ

which can be written using determinant notation as

v1 � v2 ¼
i j k

u1 v1 w1

u2 v2 w2

�
�
�
�
�
�

�
�
�
�
�
�

¼
v1w2 � v2w1

u2w1 � u1w2

u1v2 � u2v1

2

4

3

5 ð2:15Þ

v
3

= v
1

v
2

v
1

v
2

area

v
3

= v
1

v
2

sin()

×

Fig. 2.3 The cross product of two vectors

2.2 Vectors and Vector Operations 13

Example 1

Compute the area of the triangle formed by points (Fig. 2.4):

P1 0; 0; 0ð Þ;P2 1; 0; 0ð Þ and P3 0:5; 1; 0ð Þ:

Solution

The surface defined by the triangle P1;P2;P3ð Þ can be computed using the

cross product of two sides as

S123 ¼ 0:5 P1P2
��!� P1P3

��!

P1P2
��! ¼ x2 � x1ð Þiþ y2 � y1ð Þjþ z2 � z1ð Þk ¼ i

P1P3
��! ¼ x3 � x1ð Þiþ y3 � y1ð Þjþ z3 � z1ð Þk ¼ 0:5iþ j

S123 ¼ 0:5i� 0:5iþ jð Þ ¼ 0:5k) S123k k ¼ 0:5

2.2.5 The Scalar Triple Product

In addition, combined products of three vectors v1, v2, and v3 may arise such as

v1 � v2 � v3½ �ð Þ, which can be calculated using the following determinant (to be

explained later):

v1 � v2 � v3½ �ð Þ ¼
u1 v1 w1

u2 v2 w2

u3 v3 w3

�
�
�
�
�
�

�
�
�
�
�
�

ð2:16Þ

As shown in Fig. 2.5, the absolute value of the scalar triple product represents

the volume of the parallelepiped formed by the vectors v1, v2, and v3.

S
123

P
1 P

2

P
3

Fig. 2.4 Example 1

v
1

v
2

v
3

volume

v
1

v
2

v
3

v
1

v
2()

Fig. 2.5 Geometric

representation of scalar triple

product

14 2 Review of Vector Calculus

Example 2

Compute the volume of the pyramid defined by the points:

P1 0; 0; 0ð Þ;P2 1; 0; 0ð Þ;P3 0:5; 1; 0ð Þ, and P4 0:5; 0:5; 1ð Þ
shown in Fig. 2.6.

Solution

The volume of the pyramid can be computed using

the scalar triple product as

V ¼ 0:25 P1P4
��! � P1P2

��!� P1P3
��!� �

¼ 0:25 0:5iþ 0:5jþ kð Þ � k
¼ 0:25

2.2.6 Gradient of a Scalar and Directional Derivatives

An important vector operator, which arises frequently in fluid dynamics, is the “del”

(or “nabla”) operator defined as

r ¼ @

@x
iþ @

@y
jþ @

@z
k ð2:17Þ

When the “del” operator is applied on a scalar variable s it results in the gradient of s

[7, 8] given by

rs ¼ @s

@x
iþ @s

@y
jþ @s

@z
k ð2:18Þ

Thus the gradient of a scalar field is a vector field indicating that the value of s

changes with position in both magnitude and direction.

The projection of rs in a certain direction of unit vector el is given by

ds

dl
¼ rs � el ¼ rsk k cos rs; elð Þ ð2:19Þ

and is called the directional derivative of s along the direction of the unit vector el,

as schematically depicted in Fig. 2.7. The maximum value of the directional

derivative is rsk k and is obtained when cos rs; elð Þ ¼ 1, that is in the direction of

rs. Therefore, it can be stated that the gradient of a scalar field s indicates the

direction and magnitude of the largest change in s at every point in space.

Moreover, rs is normal to the constant s surface that passes through that point.

P
1 P

2

P
3

P
4

C

Fig. 2.6 Example 2

2.2 Vectors and Vector Operations 15

Example 3

Let f x; y; zð Þ ¼ x2yþ y2zþ z2x

(a) find rf at point 3; 2; 0ð Þ.
(b) find the derivative at point 3; 2; 0ð Þ along the direction 1; 2; 2ð Þ:

Solution

(a)
@f

@x
¼ 2xyþ z2

@f

@y
¼ x2 þ 2yz

@f

@z
¼ y2 þ 2xz

rf ¼ 2xyþ z2
	

iþ x2 þ 2yz
	

jþ y2 þ 2xz
	

k

Thus

rf j 3;2;0ð Þ ¼ 12iþ 9jþ 4k

(b) The unit vector along direction 1; 2; 2ð Þ is

el ¼
1iþ 2jþ 2k
ffi

12 þ 22 þ 22
p ¼ 1iþ 2jþ 2k

3

directional

derivative

i
j

k

e
l

s = s x, y, z()

l
s

=
ds

dl
= s e

l

x y

z

C

Fig. 2.7 The rate of change of s x; y; zð Þ in the direction of vector el

16 2 Review of Vector Calculus

The derivative along the direction 1; 2; 2ð Þ is

df

dl

�
�
�
�
3;2;0ð Þ

¼ rf j 3;2;0ð Þ � el

¼ 12iþ 9jþ 4kð Þ � 1iþ 2jþ 2k

3

¼ 12þ 18þ 8ð Þ=3 ¼ 38=3

2.2.7 Operations on the Nabla Operator

The dot product of the del operator with a vector v of components u; v; and w in the

x; y; and z direction, respectively, results in the divergence of the vector [7, 8],

which is a scalar quantity written as

r � v ¼ @u

@x
þ @v

@y
þ @w

@z
ð2:20Þ

Physically the divergence of a vector field over a region is a measure of how much

the vector field points into or out of the region.

The divergence of the gradient of a scalar variable s is denoted by the Laplacian

of s and is a scalar given by

r � rsð Þ ¼ r2s ¼ @2s

@x2
þ @2s

@y2
þ @2s

@z2
ð2:21Þ

The Laplacian of a vector follows from the above definition of the Laplacian

operator and is a vector computed as

r2v ¼ r2u
	

iþ r2v
	

jþ r2w
	

k ð2:22Þ

Example 4

Find the divergence of v ¼ u; v; wð Þ ¼ 3x; 2xy; 4zð Þ

Solution

Then divergence of v is obtained as

r � v ¼ @u

@x
þ @v

@y
þ @w

@z

¼ 3þ 2xþ 4

¼ 7þ 2x

2.2 Vectors and Vector Operations 17

Another quantity of interest is the curl of a vector field [7, 8] formed between the

“del” operator and the vector v, resulting in the following vector:

r� v ¼ @

@x
iþ @

@y
jþ @

@z
k

� �

� uiþ vjþ wkð Þ

¼
i j k

@

@x

@

@y

@

@z
u v w

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

¼ @w

@y
� @v

@z

� �

iþ @u

@z
� @w

@x

� �

jþ @v

@x
� @u

@y

� �

k

ð2:23Þ

Examples of the divergence and curl of a vector field are schematically displayed

in Fig. 2.8. The radial vector field shown in Fig. 2.8a has only divergence with zero

curl. In fluid mechanics this vector field represents the velocity field of a sink/source

flow. On the other hand Fig. 2.8b depicts a rotational vector field which has only

curl with zero divergence (i.e., a divergence free vector field). Such a field corre-

sponds to the velocity field of a vortex flow.

The divergence of a vector v with its gradient also arises in the equations of

interest in this book and is computed as

v:rð Þv½ � ¼ uiþ vjþ wkð Þ � @

@x
iþ @

@y
jþ @

@z
k

� �

uiþ vjþ wkð Þ

¼ u
@

@x
þ v

@

@y
þ w

@

@z

� �

uiþ vjþ wkð Þ

¼ u
@u

@x
þ v

@u

@y
þ w

@u

@z

� �

iþ u
@v

@x
þ v

@v

@y
þ w

@v

@z

� �

jþ u
@w

@x
þ v

@w

@y
þ w

@w

@z

� �

k

ð2:24Þ

(a) (b)

Fig. 2.8 a A radial vector field, b a solenoidal vector field

18 2 Review of Vector Calculus

Example 5

Determine for the flow fields shown in Fig. 2.9a, b, c which is divergence free

(i.e., neither expanding nor compressing) and which is irrotational (i.e., does

not undergo a rotation)

2.2.8 Additional Vector Operations

If s is a scalar function, and v1; v2 and v3 are vector fields, then the following

relations, which are listed without proof, apply:

r � r � vð Þ ¼ 0 ð2:25Þ

r � rsð Þ ¼ 0 ð2:26Þ

r � svð Þ ¼ sr � vþ v � rs ð2:27Þ

r � svð Þ ¼ sr� vþrs� v ð2:28Þ

r v1 � v2ð Þ ¼ v1 � r� v2ð Þ þ v2 � r� v1ð Þ þ v1 � rð Þv2 þ v2 � rð Þv1 ð2:29Þ

r � v1 � v2ð Þ ¼ v2 � r � v1ð Þ � v1 � r � v2ð Þ ð2:30Þ

r � v1 � v2ð Þ ¼ v1 r � v2ð Þ � v2 r � v1ð Þ þ v2 � rð Þv1 � v1 � rð Þv2 ð2:31Þ

r � r� vð Þ ¼ r r � vð Þ � r2v ð2:32Þ

r � vð Þ � v ¼ v � rvð Þ � r v � vð Þ ð2:33Þ

(a) (b) (c)

Fig. 2.9 Example 5

a r � F ¼ 0 r� F ¼ 0iþ 0jþ 2k

b r � F ¼ 0 r� F ¼ 0iþ 0jþ 0k

c r � F ¼ 2þ 2 ¼ 4 r� F ¼ 0iþ 0jþ 0k

2.2 Vectors and Vector Operations 19

2.3 Matrices and Matrix Operations

A matrix A of order M � N is a rectangular array of quantities (numbers or

expressions) arranged in M rows and N columns [9–11]. An element of A located

on the ith row and jth column is denoted by aij. For example, element a32 of the

4� 3 matrix shown in Fig. 2.10 is 12.

Based on this definition it follows that a column vector v of dimensionality N is

a matrix of order N � 1 and a scalar s is a matrix of order 1� 1.

The transpose of a matrix A of order M � N is another matrix denoted by AT of

order N �M for which the rows of A are the columns of AT and the columns of A

are the rows of AT. Mathematically, this can be written as

A ¼ aij
 �

) AT ¼ aji
 �

ð2:34Þ

Two matrices of the same order are equal if their corresponding elements are

equal. Two matrices of the same order can be added or subtracted element by

element. For example, if A and B are given by

A ¼ 1 2 4

3 �1 7

� �

B ¼ �2 1 4

�3 1 6

� �

then Aþ B and A� B are found to be

Aþ B ¼ �1 3 8

0 0 13

� �

A� B ¼ 3 1 0

6 �2 1

� �

If a matrix is multiplied by a scalar s than all its elements are multiplied by s.

Mathematically this is written as

A ¼ aij
 �

) sA ¼ saij
 �

ð2:35Þ

To multiply two matrices A and B, the number of columns of A must be equal to

the number of rows of B. Therefore, if A is of size M � X for the product P ¼ AB

i j 1 2 3

1

2

3

4

1 2 4

5 4 7

0 12 2

3 6 3

=

a
11

a
12

a
13

a
21

a
22

a
23

a
31

a
32

a
33

a
41

a
42

a
43

= a
ij

Fig. 2.10 Example of a 4� 3 matrix

20 2 Review of Vector Calculus

to be possible, B must be of size X � N. The size of P will be M � N with its

element pij obtained as

pij ¼
XX

k¼1

aikbkj ð2:36Þ

If A is a 3� 2 matrix and B a 2� 4 matrix given by

A ¼
1 2

�1 3

2 �5

2

4

3

5 B ¼ 2 �1 0 4

�3 0 3 2

� �

then P ¼ AB will be a 3� 4 matrix computed as

P ¼
1 2

�1 3

2 �5

2

6
4

3

7
5

2 �1 0 4

�3 0 3 2

� �

¼
p11 p12 p13 p14

p21 p22 p23 p24

p31 p32 p33 p34

2

6
4

3

7
5

p11 ¼ 1 � 2þ 2 � �3ð Þ ¼ �4

p12 ¼ 1 � �1ð Þ þ 2 � 0 ¼ �1

p13 ¼ . . .

.

.

.

9

>>>>=

>>>>;

) P ¼
�3 �1 6 8

�11 1 9 2

19 �2 �15 �2

2

6
4

3

7
5

2.3.1 Square Matrices

If the number of columns N of matrix A is equal to its number of rows, then A is a

square matrix of order N. The elements aii of a square matrix A form its main

diagonal which stretches from top left to bottom right. The diagonal composed of

elements aij for which iþ j ¼ N þ 1 is called the cross diagonal and it extends from

the bottom left to top right.

Square matrices possess properties that are not applicable to other types of

matrices such as symmetry and antisymmetry. In addition, many operations such as

taking determinants and calculating eigenvalues are only defined for square matrices.

The result of multiplying a square matrix of order N by itself is a square matrix

of order N. Therefore a square matrix can be multiplied by itself as many times as

needed and the notation Ak designates A multiplied by itself k times, i.e.,

Ak ¼ A� A� A. . .� A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

k times

ð2:37Þ

2.3 Matrices and Matrix Operations 21

A square matrix A is symmetric if aij ¼ aji i.e.,A
T ¼ A

	

, and antisymmetric if

aij ¼ �aji. An example of a symmetric square matrix of order 3 is

5 3 �2

3 2 7

�2 7 �1

2

4

3

5

and of an antisymmetric square matrix of order 4 is

0 3 �2 4

�3 0 1 �3

2 �1 0 �2

�4 3 2 0

2

6
6
4

3

7
7
5

A diagonal square matrix D is one for which all elements off the main diagonal are

zero while elements on the main diagonal are arbitrary. An example of a square

diagonal matrix of order 3 is

5 0 0

0 0 0

0 0 �2

2

4

3

5

A diagonal matrix of order N for which all elements on the main diagonal are 1 (i.e.,

aii ¼ 1) is called an identity matrix of order N and is designated by I. An identity

matrix of order 4 is given by

I ¼
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2

6
6
4

3

7
7
5

The inverse of a square matrix A of order N is the square matrix A�1 of order N

satisfying

A�1A ¼ AA�1 ¼ I ð2:38Þ

An upper triangular matrix U is a square matrix in which all elements below the

main diagonal are zero. Mathematically this can be expressed as

U ¼ uij i � j

0 i [j

�

ð2:39Þ

22 2 Review of Vector Calculus

A lower triangular matrix L is a square matrix in which all elements above the

main diagonal are zero. Using mathematical notation, this is written as

L ¼ ‘ij i � j

0 i\ j

�

ð2:40Þ

Examples of upper and lower triangular square matrices of order 3 are

U ¼
1 2 6

0 4 5

0 0 �7

2

4

3

5 L ¼
3 0 0

�1 2 0

�9 �2 4

2

4

3

5

2.3.2 Using Matrices to Describe Systems of Equations

Matrices can be used to compactly describe systems of equations [12]. A system of

N equations in N unknowns can be written as

a11/1 þ a12/2 þ a13/3 þ . . .þ a1N/N ¼ b1
a21/1 þ a22/2 þ a23/3 þ . . .þ a2N/N ¼ b2
a31/1 þ a32/2 þ a33/3 þ . . .þ a3N/N ¼ b3

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.

aN1/1 þ aN2/2 þ aN3/3 þ . . .þ aNN/N ¼ bN

ð2:41Þ

In matrix notation, this system of equations is equivalent to

a11 a12 a13 � � � � � � a1N
a21 a22 a23 � � � � � � a2N
a31 a32 a33 � � � � � � a3N

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

aN1 aN2 aN3 � � � � � � aNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

/1

/2

/3

.

.

.

.

.

.

/N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

b1
b2
b3

.

.

.

.

.

.

bN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð2:42Þ

or in compact form as

A/ ¼ b ð2:43Þ

2.3.3 The Determinant of a Square Matrix

A determinant is a value associated with a square matrix A that can be computed

from the elements of the matrix through a mathematical procedure and is denoted by

det Að Þ or Aj j (which should not be confused with the absolute value notation) [13].

2.3 Matrices and Matrix Operations 23

The calculation of the determinant of a matrix of order 2 is straightforward and is

the product of the elements in the main diagonal minus the product of the elements

in the cross diagonal. If A is a square matrix of order 2 then,

A ¼ a11 a12
a21 a22

� �

) det Að Þ ¼ a11a22 � a21a12 ð2:44Þ

For higher order matrices the procedure is more involved and is based on the

notion of minors and cofactors.

A minor mið Þij for an element aij is the determinant that results when the ith row

and jth column are deleted. The cofactor coð Þij of an element aij is the value of the

minor multiplied by either a positive or a negative sign depending on whether

iþ jð Þ is even or odd, respectively. The mathematical relation between cofactors

and minors can be written as

coð Þij ¼ �1ð Þiþj
mið Þij ð2:45Þ

The determinant of a square matrix A of order N is computed by finding the

cofactors of one of its rows or its columns, multiplying each cofactor by the

corresponding element, and adding the results. Mathematically this is given by

det Að Þ ¼

PN

i¼1

aij coð Þij for any j

or

PN

j¼1

aij coð Þij for any i

8

>>>>><

>>>>>:

ð2:46Þ

It should be clarified that the calculation of the cofactors may require further

decomposition of the minor determinants. This decomposition may give rise to

further decompositions until a determinant with a size of 2 is reached. Moreover,

based on the above discussion it is easily demonstrated that the determinant of an

upper, a lower, or a diagonal matrix A of order N is the product of the elements

along its main diagonal, i.e., det Að Þ ¼
QN

i¼1

aii.

Example 6

Calculate the determinant of matrix A of order 4 given by

A ¼
1 0 1 0

1 2 0 5

2 3 �2 0

4 1 �5 3

2

6
6
4

3

7
7
5

24 2 Review of Vector Calculus

Solution

As mentioned above, the determinant can be calculated based on the cofactors

of any selected row or column. A smart choice would be a row or a column

with the largest number of zeros. Therefore computations will be reduced by

selecting either the first row or the last column. The determinant will be

calculated using both to further show that the end results will be the same.

The signs of cofactors are

þ � þ �
� þ � þ
þ � þ �
� þ � þ

2

6
6
4

3

7
7
5

The determinant using cofactors of row 1 is computed as

det Að Þ ¼ 1 � coð Þ11 þ 1 � coð Þ13 ¼
2 0 5

3 �2 0

1 �5 3

�
�
�
�
�
�

�
�
�
�
�
�

þ
1 2 5

2 3 0

4 1 3

�
�
�
�
�
�

�
�
�
�
�
�

The first new determinant is calculated using the cofactors of row 1 while the

second determinant is calculated using cofactors of column 3 as

det Að Þ ¼ 2
�2 0

�5 3

�
�
�
�

�
�
�
�
þ 5

3 �2

1 �5

�
�
�
�

�
�
�
�
þ 5

2 3

4 1

�
�
�
�

�
�
�
�
þ 3

1 2

2 3

�
�
�
�

�
�
�
�

¼ 2 �6� 0ð Þ þ 5 �15þ 2ð Þ þ 5 2� 12ð Þ þ 3 3� 4ð Þ
¼ �12� 65� 50� 3

det Að Þ ¼ �130

The determinant using cofactors of column 4 is calculated as

det Að Þ ¼ 5 � coð Þ24 þ 3 � coð Þ44 ¼ 5

1 0 1

2 3 �2

4 1 �5

�
�
�
�
�
�

�
�
�
�
�
�

þ 3

1 0 1

1 2 0

2 3 �2

�
�
�
�
�
�

�
�
�
�
�
�

The first and second new determinants are calculated using the cofactors of

row 1 as

det Að Þ ¼ 5
3 �2

1 �5

�
�
�
�

�
�
�
�þ 5

2 3

4 1

�
�
�
�

�
�
�
�þ 3

2 0

3 �2

�
�
�
�

�
�
�
�þ 3

1 2

2 3

�
�
�
�

�
�
�
�

¼ 5 �15þ 2ð Þ þ 5 2� 12ð Þ þ 3 �4� 0ð Þ þ 3 3� 4ð Þ
¼ �65� 50� 12� 3

det Að Þ ¼ �130

As expected, the same value is obtained.

2.3 Matrices and Matrix Operations 25

2.3.4 Eigenvectors and Eigenvalues

Consider a square matrix A and a vector v. The vector v is an eigenvector of A if

the product Av results in a vector that has the same direction as v [14–19].

Therefore an eigenvector of a matrix is a nonzero vector that does not rotate when is

applied to it. As shown in Fig. 2.11, the only effects may be to change its length

and/or reverse its direction. Thus, there exist a scalar k such that Av ¼ kv. The

value of k is an eigenvalue of A. It is clear that for any constant a the vector av is

also an eigenvector of A because A avð Þ ¼ aAv ¼ akv ¼ k avð Þ. Thus, a scaled

eigenvector is also an eigenvector.

If A is symmetric of order N, then it can be shown that A has a set of linearly

independent eigenvectors denoted v1; v2; v3; . . .; vN . As proved above this set is

not unique. However the corresponding set of their eigenvalues, denoted

k1; k2; k3; . . .; kN , which may or may not be equal to each other, is unique. The

eigenvalues of the identity matrix are all ones, and every nonzero vector is an

eigenvector of I.

In general the eigenvalues of a square matrix A of order N are obtained from

solving the following equation:

Av ¼ kv) Av ¼ kIv) A� kIð Þv ¼ 0 ð2:47Þ

Since, by definition, eigenvectors are nonzero, then

A� kI ¼ 0) det A� kIð Þ ¼ 0 ð2:48Þ

The expanded form of Eq. (2.48) is given by

det

a11 � k a12 a13 � � � � � � a1N
a21 a22 � k a23 � � � � � � a2N
a31 a32 a33 � k � � � � � � a3N

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

aN1 aN2 aN3 � � � � � � aNN � k

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼ 0 ð2:49Þ

Av Avv

Fig. 2.11 Effects of multiplying a matrix A by one of its Eigenvectors v

26 2 Review of Vector Calculus

As an example, the eigenvalues of the following square matrix of order 2 are

found as:

A ¼
3 1

8 1

� �

)
k� 3 1

8 k� 1

�
�
�
�

�
�
�
� ¼ 0) k� 3ð Þ k� 1ð Þ � 8 ¼ 0

) k2 � 4k� 5 ¼ 0) kþ 1ð Þ k� 5ð Þ ¼ 0) k1 ¼ �1 or k2 ¼ 5

2.3.5 A Symmetric Positive-Definite Matrix

A symmetric matrix A ¼ aij
 �

of order N is positive-definite if for all column

vectors p in RN the following inequality holds:

pTAp[0 ð2:50Þ

For example, if A is an order 3 symmetric matrix given by

A ¼
5 3 1

3 7 4

1 4 8

2

4

3

5

then Eq. (2.50) for any column vector p of order 3 gives

pTAp ¼ a b c½ �
5 3 1

3 7 4

1 4 8

2

6
4

3

7
5

a

b

c

2

6
4

3

7
5

¼ 3 aþ bð Þ2 þ aþ cð Þ2 þ 4 bþ cð Þ2 þ a2 þ 4b2 þ 3c2[0

which is positive-definite.

If A is a symmetric positive-definite matrix given by

A ¼

a11 a12 a13 � � � � � � a1N
a21 a22 a23 � � � � � � a2N
a31 a32 a33 � � � � � � a3N

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

.

.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.

aN1 aN2 aN3 � � � � � � aNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð2:51Þ

2.3 Matrices and Matrix Operations 27

then, among others, the following properties apply:

1. Any sub-matrix P of A of order M 1�M�Nð Þ of the form

P ¼

a11 a12 � � � a1M
a21 a22 � � � a2M

.

.

.
.
.

.
.
.

.
.
.

.

aM1 aM2 � � � aMM

2

6
6
6
4

3

7
7
7
5

ð2:52Þ

is also positive-definite.

2. The N eigenvalues of A, λ1, λ2, λ3,..., λN are positive.

3. If all the eigenvalues of a matrix A are positive, then A is positive-definite.

4. A has a unique decomposition of the form A ¼ LLT, where L is a lower

triangular matrix. This decomposition is known as the Cholesky decomposition.

2.3.6 Additional Matrix Operations

If s1 and s2 are scalar functions, I an identity matrix, and A; B, and C are matrices,

then the various matrix operations, addition, subtraction, scalar multiplication, and

matrix multiplication, have the following properties listed without proof:

Aþ Bþ Cð Þ ¼ Aþ Bð Þ þ C ð2:53Þ

Aþ B ¼ Bþ A ð2:54Þ

s1 Aþ Bð Þ ¼ s1Aþ s1B ð2:55Þ

s1 þ s2ð ÞA ¼ s1Aþ s2A ð2:56Þ

A BCð Þ ¼ ABð ÞC ð2:57Þ

AI ¼ IA ¼ A ð2:58Þ

A Bþ Cð Þ ¼ ABþ AC ð2:59Þ

Aþ Bð ÞC ¼ ACþ BC ð2:60Þ

Aþ Bð ÞT¼ AT þ BT ð2:61Þ

s1Að ÞT¼ s1A
T ð2:62Þ

ABð ÞT¼ BTAT ð2:63Þ

ABð Þ�1¼ B�1A�1 ð2:64Þ

28 2 Review of Vector Calculus

2.4 Tensors and Tensor Operations

Tensors can be thought of as extensions to the ideas already used when defining

quantities like scalars and vectors [2, 20, 21]. A scalar is a tensor of rank zero, and a

vector is a tensor of rank one. Tensors of higher rank (2, 3, etc.) can be developed

and their main use is to manipulate and transform sets of equations. Since within the

scope of this book only tensors of rank two are needed, they will be referred to

simply as tensors.

Similar to the flow velocity vector v, the deviatoric stress tensor s (Fig. 2.12) will

be referred to frequently in this book and is used here to illustrate tensor operations.

Let x; y; and z represent the directions in an orthonormal Cartesian coordinate

system, then the stress tensor s and its transpose designated with superscript T s
Tð Þ

are represented in terms of their components as

s ¼
sxx sxy sxz
syx syy syz
szx szy szz

2

4

3

5
s
T ¼

sxx syx szx
sxy syy szy
sxz syz szz

2

4

3

5 ð2:65Þ

Similar to writing a vector in terms of its components, defining the unit vectors i, j,

and k in the x; y; and z direction, respectively, the tensor s given by Eq. (2.65) can be
written in terms of its components as

s ¼ iisxx þ ijsxy þ iksxz þ jisyx þ jjsyy þ jksyz þ kiszx þ kjszy þ kkszz ð2:66Þ

Equation (2.66) allows defining a third type of vector product for multiplying

two vectors, known as the dyadic product, and resulting in a tensor with its com-

ponents formed by ordered pairs of the two vectors. In specific, the dyadic product

xx

yy

zz

xy

xz

yx

yz

zx

zy

Fig. 2.12 Schematic of a

stress tensor field

2.4 Tensors and Tensor Operations 29

of a vector v by itself, arising in the formulation of the momentum equation of fluid

flow, gives

vvf g ¼ uiþ vjþ wkð Þ uiþ vjþ wkð Þ
¼ iiuuþ ijuvþ ikuwþ
jivuþ jjvvþ jkvwþ
kiwuþ kjwvþ kkww

9

>>>=

>>>;

) vvf g ¼
uu uv uw

vu vv vw

wu wv ww

2

4

3

5 ð2:67Þ

The gradient of a vector v is a tensor given by

rvf g ¼ @

@x
iþ @

@y
jþ @

@z
k

� �

uiþ vjþ wkð Þ

¼ ii
@u

@x
þ ij

@v

@x
þ ik

@w

@x
þ

ji
@u

@y
þ jj

@v

@y
þ jk

@w

@y
þ

ki
@u

@z
þ kj

@v

@z
þ kk

@w

@z

9

>>>>>>>>>>>>=

>>>>>>>>>>>>;

) rvf g ¼

@u

@x

@v

@x

@w

@x
@u

@y

@v

@y

@w

@y

@u

@z

@v

@z

@w

@z

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð2:68Þ

The sum of two tensors r and s is a tensor R whose components are the sum of

the corresponding components of the two tensors, i.e.,

R ¼ rþ s ¼
rxx þ sxx rxy þ sxy rxz þ sxz
ryx þ syx ryy þ syy ryz þ syz
rzx þ szx rzy þ szy rzz þ szz

2

4

3

5 ð2:69Þ

Multiplying a tensor s by a scalar s results in a tensor whose components are

multiplied by that scalar, i.e.,

ssf g ¼
ssxx ssxy ssxz
ssyx ssyy ssyz
sszx sszy sszz

2

4

3

5 ð2:70Þ

The dot product of a tensor s by a vector v results in the following vector:

s � v½ � ¼ iisxx þ ijsxy þ iksxz þ jisyx þ
jjsyy þ jksyz þ kiszx þ kjszy þ kkszz

� �

� uiþ vjþ wkð Þ ð2:71Þ

30 2 Review of Vector Calculus

which upon expanding becomes

s � v½ � ¼ ii � isxxuþ ii � jsxxvþ ii � ksxxwþ ij � isxyuþ ij � jsxyv
þ ij � ksxywþ ik � isxzuþ ik � jsxzvþ ik � ksxzwþ ji � isyxu
þ ji � jsyxvþ ji � ksyxwþ jj � isyyuþ jj � jsyyvþ jj � ksyyw
þ jk � isyzuþ jk � jsyzvþ jk � ksyzwþ ki � iszxuþ ki � jszxv
þ ki � kszxwþ kj � iszyuþ kj � jszyvþ kj � kszywþ kk � iszzu
þ kk � jszzvþ kk � kszzw ð2:72Þ

Using Eq. (2.8), Eq. (2.72) reduces to

s � v½ � ¼ sxxuþ sxyvþ sxzw
	

iþ syxuþ syyvþ syzw
	

jþ szxuþ szyvþ szzw
	

k

ð2:73Þ

The above equation can be derived using matrix multiplication as

s � v½ � ¼
sxx sxy sxz
syx syy syz
szx szy szz

2

4

3

5

u

v

w

2

4

3

5 ¼
sxxuþ sxyvþ sxzw

syxuþ syyvþ syzw

szxuþ szyvþ szzw

2

4

3

5 ð2:74Þ

In a similar way the divergence of a tensor s is found to be a vector given by

r � s½ � ¼ @sxx
@x

þ @syx
@y

þ @szx
@z

� �

iþ @sxy
@x

þ @syy
@y

þ @szy
@z

� �

j

þ @sxz
@x

þ @syz
@y

þ @szz
@z

� �

k ð2:75Þ

The double dot product of two tensors s and rvf g is a scalar computed as

s : rvð Þ ¼
iisxx þ ijsxy þ iksxz þ
jisyx þ jjsyy þ jksyz þ
kiszx þ kjszy þ kkszz

0

@

1

A
:

ii
@u

@x
þ ij

@v

@x
þ ik

@w

@x
þ

ji
@u

@y
þ jj

@v

@y
þ jk

@w

@y
þ

ki
@u

@z
þ kj

@v

@z
þ kk

@w

@z

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ð2:76Þ

The final value is obtained by expanding the above product and performing the

double dot product on the various terms. For example,

ijsxy : ji
@u

@y
¼ i j : j
|{z}

¼1

isxy
@u

@y
¼ i � i
|{z}

¼1

sxy
@u

@y
¼ sxy

@u

@y
ð2:77Þ

2.4 Tensors and Tensor Operations 31

Performing the same steps on every term in the expanded product, the final form

of ðs : rvÞ is obtained as

s : rvð Þ ¼ sxx
@u

@x
þ sxy

@u

@y
þ sxz

@u

@z
þ syx

@v

@x

þ syy
@v

@y
þ syz

@v

@z
þ szx

@w

@x
þ szy

@w

@y
þ szz

@w

@z
ð2:78Þ

2.5 Fundamental Theorems of Vector Calculus

All mathematical formulations presented in this book will be performed using

vectors. Therefore a good knowledge of the fundamental theorems of vector cal-

culus is helpful. A brief review of some of these theorems is presented next.

2.5.1 Gradient Theorem for Line Integrals

The gradient theorem for line integrals relates a line integral to the values of a

function at its endpoints [22]. It states that if C is a smooth curve, as shown in

Fig. 2.13, described by the vector r tð Þ ¼ r x tð Þ; y tð Þ; z tð Þ½ � for a� t� b, and s is a

scalar function whose gradient, rs, is continuous on C, then

Z

C

rs � dr ¼ s r bð Þð Þ � s r að Þð Þ ð2:79Þ

where a and b are the endpoints of C. It follows that the value of the integral over a

closed contour is zero.

r(a)
r(b)

C

r(t)

y

x

zFig. 2.13 A schematic

depiction of a curve C of a

scalar function s showing its

end points and the position

vector r tð Þ

32 2 Review of Vector Calculus

2.5.2 Green’s Theorem

Green’s theorem expresses the contour integral of a simple closed curve C in terms

of the double integral of the two dimensional region R bounded by C [23–26].

Let C denotes the closed contour (Fig. 2.14) of a two dimensional region R. If

u x; yð Þ and v x; yð Þ are functions of continuous partial derivatives defined on R, then

I

C

udxþ vdyð Þ ¼
ZZ

R

@v

@x
� @u

@y

� �

dxdy ð2:80Þ

In Eq. (2.80) the contour integral along C is taken positive in the counter-

clockwise direction.

dr

dS

C

R

Fig. 2.14 Schematic of a region R and its closed contour C

Green’s theorem can be written in a more compact form using vectors. For that

purpose defining dr; v and the area vector dS as

dr ¼ dxiþ dyj v ¼ uiþ vj dS ¼ dxdyk ð2:81Þ

then the vector form of Green’s theorem is given by

I

C

v � dr ¼
ZZ

R

r� v½ � � dS ð2:82Þ

Green’s theorem is helpful for computing line integrals arising in two-dimen-

sional flows.

Example 7

Compute
H

C

2y3 dxþ 3xy2 dy where C is the CCW-oriented boundary of the

region R shown in Fig. 2.15.

The vector field in the above integral is u; vð Þ ¼ 2y3; 3xy2ð Þ. The line integral
can be computed directly. But, it is more easily computed using Green’s

theorem using a double integral. Applying Green’s theorem the integrand is

obtained as

2.5 Fundamental Theorems of Vector Calculus 33

@v

@x
� @u

@y
¼ 3y2 � 6y2 ¼ �3y2

Since the line integral is over a semi circle, the region R is mathematically

given by

� 1� x� 1

0� y�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

The value of the integral is obtained as

I

C

2y3 dxþ 3xy2 dy ¼
ZZ

D

@v

@x
� @u

@y

� �

dA ¼ �3

Z1

�1

Z
ffiffiffiffiffiffiffiffi
1�x2

p

0

y2 dydx

¼ �3

Z1

�1

y3

3

�
�
�
�

y¼
ffiffiffiffiffiffiffiffi
1�x2

p

y¼0

 !

dx ¼ �
Z1

�1

1� x2
	
3=2

dx

Let x ¼ cos h) dx ¼ � sin hdh

Thus

I

C

2y3 dxþ 3xy2 dy ¼ �
Zp

0

sin2 hdhþ
Zp

0

sin2 h cos2 hdh

¼ � h

2
� sin 2h

4

� �p

0

þ h

8
� sin 4h

32

� �p

0

¼ � 3p

8

2.5.3 Stokes’ Theorem

Stokes’ theorem is a higher dimensional version of Green’s theorem [27–29].

Whereas Green’s theorem relates a line integral to a double integral, Stokes theorem

relates a line integral to a surface integral. Let v be a vector field, S an oriented

surface, and C the boundary curve of S, oriented using the right-hand rule, as

depicted in Fig. 2.16. Stokes’ theorem states the following:

R C

Fig. 2.15 Example 7

34 2 Review of Vector Calculus

Z

S

r� v½ � � dS ¼
I

C

v � dr ð2:83Þ

where r is such that dr=ds is the unit tangent vector and s the arc length of C. The

curve of the line integral, C, must have positive orientation, meaning that dr points

counterclockwise when the surface normal, dS, points toward the viewer, following

the right-hand rule.

2.5.4 Divergence Theorem

Let V represents a volume in three-dimensional space (Fig. 2.17) of boundary S. Let

n be the outward pointing unit vector normal to S. If v is a vector field defined on V ,

then the divergence theorem [30, 31] (also known as Gauss’ theorem) states that

Z

V

r � vð ÞdV ¼
I

S

v � n dS ð2:84Þ

The divergence theorem implies that the net flux of a vector field through a

closed surface is equal to the total volume of all sources and sinks (i.e., the volume

integral of its divergence) over the region inside the surface. It is an important

theorem for fluid dynamics.

S

C

v

x

z

dS

Fig. 2.16 A surface S in a

three-dimensional space of

contour C

2.5 Fundamental Theorems of Vector Calculus 35

The divergence theorem can be used in different contexts to derive many other

useful identities (corollaries) [32]. In specific it can be applied to the product of a scalar

function, s, and a non-zero constant vector, to derive the following important relation:

Z

V

rs½ �dV ¼
I

S

sdS ð2:85Þ

The divergence theorem is equally applicable to tensors, in which case it is

written as

Z

V

r � s½ �dV ¼
I

S

s � n½ �dS ð2:86Þ

Example 8

Use the divergence theorem to evaluate

ZZ

	
@V

F � dS

where F ¼ 3xþ z5
	

iþ y2 � sin x2zð Þð Þjþ xzþ yex
5

� �

k

and V is a box defined by

0� x� 1 0� y� 3 0� z� 2

with an outward pointing surface

v
V

x

z

dS = ndS

dS

S

y

Fig. 2.17 A volume in

three-dimensional space with

a piecewise smooth

boundary S

36 2 Review of Vector Calculus

Solution

This is a difficult field to integrate however using the divergence theorem it

can be transformed to

ZZ

	
@V

F � dS ¼
ZZ

V

Z

r � Fð ÞdV

where the divergence of F is obtained as

r � F ¼ 3þ 2yþ x

integrating over the box, the integral is evaluated as

ZZ

	
@V

F � dS ¼
Z1

0

Z3

0

Z2

0

3þ 2yþ xð Þdzdydx ¼
Z1

0

Z3

0

6þ 4yþ 2xð Þdydx

¼
Z1

0

18þ 18þ 6xð Þdx ¼ 36þ 3 ¼ 39

2.5.5 Leibniz Integral Rule

The Leibniz integral rule gives a formula for differentiating a definite integral

whose limits are functions of the differential variable [33–36]. Let / x; tð Þ represents
a function that depends on a space variable x and time t. Then Leibniz integral rule

can be stated as follows

d

dt

Zb tð Þ

a tð Þ

/ x; tð Þdx ¼
Zb tð Þ

a tð Þ

@/

@t
dx

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Term I

þ / b tð Þ; tð Þ @b
@t

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Term II

�/ a tð Þ; tð Þ @a
@t

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Term III

ð2:87Þ

The meaning of the various terms in Eq. (2.87) can be inferred from Fig. 2.18.

The first term on the right side gives the change in the integral because / is

changing with time t, while the second and third terms accounts for the gain and

loss in area as the upper and lower bounds are moved, respectively.

2.5 Fundamental Theorems of Vector Calculus 37

The three-dimensional form of this formula applied to a volume V tð Þ enclosed by
a surface S tð Þ with its surface elements moving with a velocity vs can be written as

d

dt

Z

V tð Þ

/dV ¼
Z

V tð Þ

@/

@t
dV þ

Z

S tð Þ

/ vs � nð ÞdS ð2:88Þ

where / t; xð Þ is a scalar function of space and time. For a non-moving volume V ,

the equation reduces to

d

dt

Z

V

/dV ¼
Z

V

@/

@t
dV ð2:89Þ

The above equations are also applicable to vectors and tensors.

2.6 Closure

The chapter offered a brief review of vector and tensor operations. In addition the

fundamental theorems of vector calculus were presented. The next chapter will rely

on information presented in this chapter to derive the conservation equations

governing the transfer phenomena of interest in this book.

a t() a t + t() b t + t()b t()

Term I

Term II
Term III

x,t()

x,t + t()

t

Fig. 2.18 Curves showing the spatial distribution of a function at times t and t þ Dt

38 2 Review of Vector Calculus

2.7 Exercises

Exercise 1

Let v1; v2 and v3 be three vectors given by

v1 ¼
1

2

�5

2

4

3

5 v2 ¼
�1

�1

10

2

4

3

5 v3 ¼
8

�5

�2

2

4

3

5

Find:

a. v1 þ v2; v1 þ 2v2; 3v2 � 4v3
b. v1j j; v2j j; v3j j
c. v1 � v2; v3 � v2; v2 � v1 � v3ð Þ
d. A unit vector in the direction of v1 þ v2 þ v3ð Þ

Exercise 2

Let i; j and k be unit vectors in the x; y; and z direction, respectively, and let v be

any vector, which in a Cartesian coordinate system is given by

v ¼ uiþ vjþ wk

Prove that

v ¼ C i� v� ið Þ þ j� v� jð Þ þ k� v� kð Þ½ �

where C is a constant to be determined.

Exercise 3

Find rs if s is the scalar function given by

a. s ¼ y2e2x�3z

b. s ¼ Ln xþ y2 þ z3ð Þ
c. s ¼ tan�1 x

yz

� �

Exercise 4

If s is a scalar function and v is a vector function, prove the following identities:

a. r� rsð Þ ¼ 0

b. r � svð Þ ¼ sr � vþ v � rs

c. r� svð Þ ¼ sr� vþrs� v

d. r � v1 � v2ð Þ ¼ v2 � r � v1ð Þ � v1 � r � v2ð Þ

2.7 Exercises 39

Exercise 5

Use Green’s theorem to calculate the area enclosed by an ellipse of semi-major and

semi-minor axes a and b, respectively.

Exercise 6

Find the Laplacian of the scalar s r2sð Þ for the cases when s is given by:

a. s ¼ x3 þ z2e2y�3x

b. s ¼ zþ Ln xþ yð Þ
c. s ¼ sin�1 xþ yþ zð Þ

Exercise 7

Verify the divergence theorem for the parallelepiped with centre at the origin and

faces in the planes x ¼
2; y ¼
1; z ¼
4 and v given by

a. v ¼ 5iþ 7j� 3k

b. v ¼ i y� zð Þ þ j x� zð Þ þ k x� yð Þ
c. v ¼ iy2zþ jxz2 þ kx2y

Exercise 8

For a surface S representing the upper half of a cube centered at the origin, with one

of its vertices at 1; 1; 1ð Þ, and with edges parallel to the axes, verify Stokes’s

theorem for the case when the curve C is the intersection of S with the xy plane and

the vector v is given by

v ¼ i yþ zð Þ þ j xþ zð Þ þ k xþ yð Þ

Exercise 9

Find a function F for which the divergence is the given function K in the following

cases:

a. K x; y; zð Þ ¼ p.

b. K x; y; zð Þ ¼ z2x.

c. K x; y; zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ z2ð Þ
p

Exercise 10

Use the divergence theorem to evaluate the integral
RR

@F

6xiþ 4yjð Þ � dF where the

surface is a sphere defined as @F ! x2 þ y2 þ z2 ¼ 10.

40 2 Review of Vector Calculus

Exercise 11

Let F be a radial vector field defined as F ¼ xiþ yjþ zk and let C to be a solid

cylinder of radius r and height h with its axis coinciding with the x-axis and its

bottom and top faces located along the x ¼ 0 and x ¼ b plane, respectively. Verify

Gauss theorem in both flux and divergence forms.

Exercise 12

Given a square matrix A defined as

A ¼
a11 a12 � � �
a21

.
.

.
.
.

.

� � � � � � � � �

0

B
@

1

C
A

decompose it as

A ¼ 1

2
Aþ AT
	

þ 1

2
A� AT
	

and show that

a.
1

2
Aþ AT
	

is symmetric

b.
1

2
A� AT
	

is anti-symmetric

Exercise 13

Given two tensors A and B defined as

A ¼
a11 a12 � � �
a21

.
.

.
.
.

.

� � � � � � � � �

0

B
@

1

C
A B ¼

b11 b12 � � �
b21

.
.

.
.
.

.

� � � � � � � � �

0

B
@

1

C
A

a. Calculate the double inner product A : B.

b. Prove that Aþ Bð ÞT¼ AT þ BT and ABð ÞT¼ BTAT

c. Evaluate r � Aþr � B.

References

1. Arfken G (1985) Mathematical methods for physicists, 3rd edn. Academic Press, Orlando, FL

2. Aris R (1989) Vectors, tensors, and the basic equations of fluid mechanics. Dover, New York

3. Crowe MJ (1985) A history of vector analysis: the evolution of the idea of a vectorial system.

Dover, New York

2.7 Exercises 41

4. Marsden JE, Tromba AJ (1996) Vector calculus. WH Freeman, New York

5. Jeffreys H, Jeffreys BS (1988) methods of mathematical physics. Cambridge University Press,

Cambridge, England

6. Morse PM, Feshbach H (1953) Methods of theoretical physics, Part I. McGraw-Hill,

New York

7. Schey HM (1973) Div, grad, curl, and all that: an informal text on vector calculus. Norton,

New York

8. Schwartz M, Green S, Rutledge W (1960) A vector analysis with applications to geometry and

physics. Harper Brothers, New York

9. M1 Anton H (1987) Elementary linear algebra. Wiley, New York

10. Bretscher O (2005) Linear algebra with applications. Prentice Hall, New Jersey

11. Bronson R (1989), Schaum’s outline of theory and problems of matrix operations.

McGraw–Hill, New York

12. Arnold VI, Cooke R (1992) Ordinary differential equations. Springer-Verlag, Berlin, DE; New

York, NY

13. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

14. Brown WC (1991) Matrices and vector spaces. Marcel Dekker, New York

15. Golub GH, Van Loan CF (1996) Matrix Computations. Johns Hopkins, Baltimore

16. Greub WH (1975) Linear algebra, graduate texts in mathematics. Springer-Verlag, Berlin, DE;

New York, NY

17. Lang S (1987) Linear algebra. Springer-Verlag, Berlin, DE; New York, NY

18. Mirsky L (1990) An introduction to linear algebra. Courier Dover Publications, New York

19. Nering ED (1970) Linear algebra and matrix theory. Wiley, New York

20. Spiegel MR (1959) Schaum’s outline of theory and problems of vector analysis and an

introduction to tensor analysis. Schaum, New York

21. Heinbockel JH (2001) Introduction to tensor calculus and continuum mechanics. Trafford

Publishing, Victoria

22. Williamson R, Trotter H (2004) Multivariable mathematics. Pearson Education, Inc, New York

23. Cauchy A (1846) Sur les intégrales qui s’étendent à tous les points d’une courbe fermée.

Comptes rendus 23:251–255

24. Riley KF, Hobson MP, Bence SJ (2010) Mathematical methods for physics and engineering.

Cambridge University Press, Cambridge

25. Spiegel MR, Lipschutz S, Spellman D (2009) Vector analysis. Schaum’s Outlines, McGraw

Hill (USA)

26. Wrede R, Spiegel MR (2010) Advanced calculus. Schaum’s Outline Series

27. Katz VJ (1979) The history of stokes’s theorem. Math Mag (Math Assoc Am) 52:146–156

28. Morse PM, Feshbach H (1953) Methods of theoretical physics, Part I. McGraw-Hill, New York

29. Stewart J (2008) Vector calculus, Calculus: early transcendentals. Thomson Brooks/Cole,

Connecticut

30. Lerner RG, Trigg GL (1994) Encyclopaedia of physics. VHC

31. Byron F, Fuller R (1992) Mathematics of classical and quantum physics. Dover Publications,

New York

32. Spiegel MR, Lipschutz S, Spellman D (2009) Vector analysis. Schaum’s Outlines, McGraw

Hill

33. Flanders H (1973) Differentiation under the integral sign. Am Math Monthly 80(6):615–627

34. Boros G, Moll V (2004) Irresistible integrals: symbolics, analysis and experiments in the

evaluation of integrals. Cambridge University Press, Cambridge, England

35. Hijab O (1997) Introduction to calculus and classical analysis. Springer, New York

36. Kaplan W (1992) Advanced calculus. Addison-Wesley, Reading, MA

42 2 Review of Vector Calculus

Chapter 3

Mathematical Description of Physical

Phenomena

Abstract The chapter provides an overview of the conservation principles

governing fluid flow, heat and mass transfer, and other related transport phenomena

of interest in this book. The physical laws controlling the conservation principles

are translated into mathematical relations, written in the form of partial differential

equations, representing the needed vehicle for their simulations. First the continuity,

momentum, and energy equations (collectively known as the Navier-Stokes

equations) expressing the principles of conservation of mass, momentum, and total

energy, respectively, are derived. This is followed by the development of a typical

conservation equation for a general scalar, vector, or tensor quantity. The mathe-

matical properties of the various terms in these equations are also examined.

Moreover, the common practice of writing the conservation equations in a

non-dimensional form using dimensionless quantities is explained and some of the

dimensionless groups resulting from the application of this procedure, which are

very useful for performing parametric studies of engineering problems, are

discussed.

3.1 Introduction

Researchers and practitioners of computational fluid dynamics encounter and work

with the Navier-Stokes equations [1, 2] almost on daily basis. Many do not realize

that these equations are over one hundred seventy years old. Whereas the name

Navier-Stokes initially referred to the conservation equation of linear momentum, it

is used nowadays to denote collectively the conservation equations of mass,

momentum, and energy. These equations can be used to model a wide range of fluid

flow configurations, whether it is the flow in a hurricane or in a turbomachine,

around an airplane or a submarine, in arteries or in lungs, in pumps or in com-

pressors, the Navier-Stokes equations can describe all these phenomena.

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_3

43

3.2 Classification of Fluid Flows

Fluids, which denote liquids and gases are substances that do not permanently change

under a large stress (force per unit area). Whereas a solid resists an applied shear or

tangential stress by deforming, a fluid cannot and a shear stress applied to a fluid puts

it to motion. Moreover, unlike solids which have well-defined shapes, fluids do not

have a definite shape.While gases are fluids that completely fill their domains, liquids

are fluids that form a free surface in the presence of a gravitational field.

In analyzing fluid flow phenomena [3–6], attention is focused on what happens at

the macroscopic rather than the microscopic scale. It is also assumed that the fluid is a

continuum, so that its physical and flow properties are defined at every point in space.

Within this assumption, fluid flow behavior can be categorized as either Newtonian or

non-Newtonian. Newtonian fluids are characterized by a linear relationship between

the shear stress and the shear rate, with themolecular viscosityl, which is ameasure of

the ability of afluid subjected to a stress to resist deformation, representing the slope of

the linear function. On the other hand, for non-Newtonian fluids this relationship is

nonlinear. Similarly fluid flow can be classified into various classes, such as

one-dimensional or multi-dimensional, single phase or multi-phase, steady or

unsteady, real (viscous) or ideal (inviscid), compressible or incompressible, turbulent

or laminar, and rotational or irrotational, among others. The purpose of these classi-

fications is to simplify the process of analysis and modeling offluid flow phenomena.

Flows are also classified mathematically according to the partial differential

equations describing them. Second order partial differential equations in two

independent variables, for example, are categorized as hyperbolic, parabolic, or

elliptic. In these equations information travels along two characteristic lines, which

may be real and distinct, real and coincident, or complex depending on whether

they are of the hyperbolic, parabolic, or elliptic type, respectively. This variation in

the nature of the equations necessitates different solution methodologies that should

also be recognized by any numerical method used to solve them.

As will be shown in this chapter, fluid flows are governed by the Navier-Stokes

equations, which are highly nonlinear second order partial differential equations in

four independent variables since, in general, flows are unsteady and three dimen-

sional. Therefore, the above classification does not really apply to them.

Nevertheless, the same terminology is used in their categorization as they share

many of the properties characterizing second order equations in two independent

variables. Transient and supersonic flows are hyperbolic, boundary layer flows are

parabolic, and recirculating flows are elliptic. As flows may be subsonic in a certain

part of the domain and supersonic in other parts (e.g., flow in a

converging-diverging nozzle), or viscous dominated close to walls and essentially

inviscid in the core region, it is hard to describe a flow as falling under one of the

above three types and in general it is of the mixed type. This categorization is

numerically translated into the following: parabolic flows that are affected by

upstream locations only, elliptic flows by both upstream and downstream locations,

and hyperbolic flows supporting discontinuities in the solution, e.g., shock waves.

44 3 Mathematical Description of Physical Phenomena

3.3 Eulerian and Lagrangian Description of Conservation

Laws

The principle of conservation states that for an isolated system certain physical

measurable quantities are conserved over a local region. This conservation principle

or conservation law is an axiom that cannot be proven mathematically but can be

expressed by a mathematical relation. Laws of this type govern several physical

quantities such as mass, momentum, and energy (i.e., the Navier-Stokes equations).

The conservation laws involving fluid flow and related transfer phenomena can

be mathematically formulated following either a Lagrangian (material volume, MV)

or an Eulerian (control volume) approach [7]. In the Lagrangian specification of the

flow field (Fig. 3.1a), the fluid is subdivided into fluid parcels and every fluid parcel

is followed as it moves through space and time. These parcels are tagged using a

time-independent position vector field x0, usually selected to be the parcels’ centre

of mass at some initial time t0, and the flow is described by a function x t; x0ð Þ. The
path line described by a fluid parcel (Fig. 3.1a) is obtained as the collection of

positions occupied at different times.

On the other hand, the Eulerian approach (Fig. 3.1b) focuses on specific loca-

tions in the flow region as time passes. Thus the flow variables are functions of

position x and time t and the flow velocity is represented by v t; xð Þ. As the

derivative of the position of a fluid parcel x0 with respect to time represents its

velocity, the two specifications are related by

v t; x x0; tð Þð Þ ¼ @

@t
x t; x0ð Þ ð3:1Þ

Based on the above description, changes in the properties of a moving fluid can

be measured either on a fixed point in space while fluid particles are crossing it

(Eulerian), or by following a fluid parcel along its path (Lagrangian).

MV(t)

MV(t+ t)

x

y

z

MV(t)

MV(t+ t)

CV(t)

x

y

z(a) (b)

Fig. 3.1 a Lagrangian and b Eulerian specification of the flow field

3.3 Eulerian and Lagrangian Description of Conservation Laws 45

3.3.1 Substantial Versus Local Derivative

The derivative (rate of change) of a field variable / t; x tð Þð Þ, which may be a scalar

or a vector quantity representing density, velocity, temperature, etc., with respect to

a fixed position in space is called the Eulerian derivative @/=@tð Þ while the

derivative following a moving fluid parcel is called the Lagrangian, substantial, or

material derivative and is denoted by D/=Dtð Þ. The substantial derivative of var-

iable /, which can be derived through application of the chain rule to account for

changes induced by all independent variables along the path, is given by

D/

Dt
¼ @/

@t

dt

dt
þ @/

@x

dx

dt
|{z}

u

þ @/

@y

dy

dt
|{z}

v

þ @/

@z

dz

dt
|{z}

w

¼ @/

@t
þ u

@/

@x
þ v

@/

@y
þ w

@/

@z

¼ @/

@t
|{z}

local rate
of change

þ v � r/
|fflfflffl{zfflfflffl}

convective rate
of change

ð3:2Þ

where v is the velocity vector and r is the “del” or “gradient” operator defined

earlier [6–8].

Equation (3.2) shows that the total rate of change of the function / as a fluid

parcel moves through a flow field described by its Eulerian specification v from

position x at time t to position xþ vdt at time t þ dt (Fig. 3.2) is equal to the sum of

the local and convective rates of change of /.

t,x()

t + t,x + x()

v t

z

x

y

Fig. 3.2 Total rate of change

of the field variable ϕ between

time t and t + δt

46 3 Mathematical Description of Physical Phenomena

An important example of a material derivative is Dv=Dt, the rate of change of

velocity following the flow, which is the acceleration vector given by

Dv

Dt
¼ @v

@t
þ v � rð Þv ð3:3Þ

In this book, the conservation laws are described following an Eulerian formu-

lation where the focus is on the flow within a specified region in space, called control

volume. This choice is based on the fact that the Eulerian approach follows a field

(system) rather than a particle approach, it abandons the tedious and often unnec-

essary task of tracking individual particles, and focuses attention on what happens at

a fixed point (or volume) as different particles go by. Moreover, a critical short-

coming of the Lagrangian approach is its inability to control the domain of interest

since fluid parcels travel to where the flow takes them, which may not be the region

of interest. This limits the usefulness of the approach as in most fluid flow appli-

cations fluid properties in a fixed region are required, e.g., the shear stress on the

surface of a moving train, and not the properties of moving material volumes.

Nevertheless it should be mentioned that the Eulerian approach introduces into the

conservation equations the local effect of transport by the fluid flow through the

advective rate of change term, v � r/, which represents the product of an unknown

velocity field and the gradient of an unknown variable field. This nonlinearity leads

to the most interesting and most challenging phenomena of fluid flows.

3.3.2 Reynolds Transport Theorem

The conservation laws mentioned above apply to moving material volumes of fluids

(Fig. 3.1), and not to fixed points or control volumes. In order to express these laws

following an Eulerian approach, there is a need to know the Eulerian equivalent of

an integral taken over a moving material volume of fluid. This is provided through

the Reynolds transport theorem [9].

The conversion formula differs slightly according to whether the control volume

is fixed, moving, or deformable. To derive the formula, let B be any property of the

fluid (mass, momentum, energy, etc.) and let b ¼ dB=dm be the intensive value of

B (amount of B per unit mass) in any small element of the fluid.

For the arbitrary moving and deformable control volume shown in Fig. 3.1, the

instantaneous total change of B in the material volume (MV) is equal to the

instantaneous total change of B within the control volume (V) plus the net flow of

B into and out of the control volume through its control surface (S). Let q denotes

the density of the fluid, n the outward normal to the control volume surface, v t; xð Þ
the velocity of the fluid, vs t; xð Þ the velocity of the deforming control volume

surface, and vr t; xð Þ the relative velocity by which the fluid enters/leaves the control

volume [i.e., vr ¼ v t; xð Þ � vs t; xð Þ], then the Reynolds transport theorem gives

3.3 Eulerian and Lagrangian Description of Conservation Laws 47

dB

dt

� �

MV

¼ d

dt

Z

V tð Þ

bqdV

0

B
@

1

C
Aþ

Z

S tð Þ

bqvr � n dS ð3:4Þ

For a fixed control volume, vs ¼ 0 and the geometry is independent of time

implying that the time derivative term on the right hand side of Eq. (3.4) can be

written using Leibniz rule as

d

dt

Z

V

bq dV

0

@

1

A ¼
Z

V

@

@t
bqð ÞdV ð3:5Þ

Therefore Eq. (3.4) simplifies to

dB

dt

� �

MV

¼
Z

V

@

@t
bqð ÞdV þ

Z

S

bqv � n dS ð3:6Þ

Applying the divergence theorem to transform the surface integral into a volume

integral, Eq. (3.6) becomes

dB

dt

� �

MV

¼
Z

V

@

@t
qbð Þ þ r � qvbð Þ

� �

dV ð3:7Þ

An alternative form of Eq. (3.7) can be obtained by expanding the second term

in the square bracket and using the substantial derivative to get

dB

dt

� �

MV

¼
Z

V

D

Dt
qbð Þ þ qbr � v

� �

dV ð3:8Þ

Equation (3.7) or (3.8) can be used to derive the Eulerian form of the conser-

vation laws in fixed regions.

3.4 Conservation of Mass (Continuity Equation)

The principle of conservation of mass [6, 10] indicates that in the absence of mass

sources and sinks, a region will conserve its mass on a local level.

Considering the material volume of fluid shown in Fig. 3.3 of mass m, density q,

and velocity v, conservation of mass in material (Lagrangian) coordinate system

can be written as

48 3 Mathematical Description of Physical Phenomena

dm

dt

� �

MV

¼ 0 ð3:9Þ

For B ¼ m the corresponding intensive quantity is b ¼ 1, and based on Eq. (3.8)

the equivalent expression of mass conservation in an Eulerian coordinate system is

Z

V

Dq

Dt
þ qr � v

� �

dV ¼ 0 ð3:10Þ

For the integral given in Eq. (3.10) to be true for any control volume V, the

integrand should be equal to zero, giving the differential form of the mass con-

servation or continuity equation as

Dq

Dt
þ qr � v ¼ 0 ð3:11Þ

The flux form of the continuity equation can be derived using Eq. (3.7) and

leading to

Z

V

@q

@t
þr � qv½ �

� �

dV ¼ 0 ð3:12Þ

Again for the integral in Eq. (3.12) to be true for any control volume V, the

integrand should be equal to zero, giving the flux form of the mass conservation or

continuity equation as

@q

@t
þr � qv½ � ¼ 0 ð3:13Þ

In the absence of any significant absolute pressure or temperature changes, it is

acceptable to assume that the flow is incompressible; that is, the pressure changes

volume V with

enclosing surface V

outward directed

surface normal

dS

Fig. 3.3 Conservation of

mass for a material volume of

a fluid of mass m

3.4 Conservation of Mass (Continuity Equation) 49

do not have significant effects on density. This is almost invariably the case in

liquids, and is a good approximation in gases at speeds much less than that of

sound. (Note that sound waves are compressible phenomena.) The most important

consequence in fluid dynamics is that the mass conservation (continuity) equation

can no longer be used to compute the density.

The incompressibility condition indicates that q does not change with the flow,

which mathematically can be expressed as Dq=Dt ¼ 0. Using the mass conserva-

tion equation given by Eq. (3.11), this is equivalent to saying that the continuity

equation for incompressible flow is given by

r � v ¼ 0 ð3:14Þ

or in integral form as

Z

S

v � nð ÞdS ¼ 0 ð3:15Þ

Equation (3.15) states that for incompressible flows the net flow across any

control volume is zero, i.e., “flow out” = “flow in”.

Note also that Dq=Dt ¼ 0 does not imply that q is the same everywhere

(although this happens to be the case in many hydraulic applications), but that q

does not change along a streamline. To be more accurate, the incompressibility

approximation means that each fluid element keeps its original density as it moves.

In practice, density differences are commonly encountered in water due to variation

in salt concentration and in air due to temperature differences resulting in important

buoyancy forces.

3.5 Conservation of Linear Momentum

The principle of conservation of linear momentum [6, 10] indicates that in the

absence of any external force acting on a body, the body retains its total momen-

tum, i.e., the product of its mass and velocity vector. Since momentum is a vector

quantity, its components in any direction will also be conserved.

For the material volume of a substance, Newton’s Second Law of motion asserts

that the momentum of this specific volume can change only in the presence of a net

force acting on it, which could include both surface forces and body forces.

Therefore, by considering the material volume of fluid shown in Fig. 3.4 of mass m,

density q, and velocity v, Newton’s law in Lagrangian coordinates can be written as

d mvð Þ
dt

� �

MV

¼
Z

V

f dV

0

@

1

A

MV

ð3:16Þ

50 3 Mathematical Description of Physical Phenomena

where f is the external force per unit volume acting on the material volume. The term

on the right hand side of Eq. (3.16) is a volume integral over material coordinates

performed over the volume occupied instantaneously by the moving fluid, thus

Z

V

f dV

0

@

1

A

MV

¼
Z

V

f dV ð3:17Þ

The equivalent expression of Eq. (3.16) in Eulerian coordinates can be written in

two different ways known as the conservative and non-conservative forms.

3.5.1 Non-Conservative Form

Noticing that in this case b ¼ v, the non-conservative form is obtained by using

Eq. (3.8) in the derivation yielding

Z

V

D

Dt
qv½ � þ qvr � v½ � � f

� �

dV ¼ 0 ð3:18Þ

Again for the integral to be zero over any control volume, the integrand has to be

zero. Thus,

D

Dt
qv½ � þ qvr � v½ � ¼ f ð3:19Þ

Expanding the material derivative of the momentum term and regrouping, the

non-conservative form is obtained as

q
Dv

Dt
þ v

Dq

Dt
þ qr � v

� �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Continuity

¼ f ð3:20Þ

f

n

dS

Fig. 3.4 Conservation of

linear momentum for a

material volume of a fluid of

mass m

3.5 Conservation of Linear Momentum 51

Applying the continuity constraint and expanding the material derivative, the

non-conservative form of the momentum equation reduces to

q
@v

@t
þ v � rð Þv

� �

¼ f ð3:21Þ

3.5.2 Conservative Form

The conservative (or flux) version is obtained by applying the form of the Reynolds

transport theorem given by Eq. (3.7) and is written as

Z

V

@

@t
qv½ � þ r � qvvf g � f

� �

dV ¼ 0 ð3:22Þ

By setting the integrand to zero for the integral to be zero for any volume V, the

conservative form of the momentum equation is obtained as

@

@t
qv½ � þ r � qvvf g ¼ f ð3:23Þ

where qvv is the dyadic product, described in Chap. 2, which is a special case of

tensor product with its divergence being a vector.

Both forms will be used in this book for better describing the discretization

concepts and for showing actual implementation details. In the derivations to follow

the conservative form will be used. The non-conservative form can be easily

obtained from the conservative form at any step by invoking the continuity con-

straint as explained above.

The full form of the momentum equation is obtained once the external surface

and body forces acting on the control volume are specified. The force f is split into

two parts one denoted by fs representing the surface forces and the second by fb
representing the body forces such that

f ¼ fs þ fb ð3:24Þ

The details of these forces are given next.

3.5.3 Surface Forces

For the arbitrary macroscopic volume element depicted in Fig. 3.4, the forces acting

on its surface are due to pressure and viscous stresses which can be expressed in

52 3 Mathematical Description of Physical Phenomena

term of the total stress tensor Σ, as shown in Fig. 3.5. In general there are nine

components of stress at any given point; one normal component and two shear

components (parallel to the surface that receives the stress) in each coordinate

plane. Thus in Cartesian coordinates the stress tensor is given by

R ¼
Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

0

@

1

A ð3:25Þ

where terms of the form Rii represent normal stresses and Rij shear stresses.

A normal stress can be either a compression, if Rii � 0, or a tension, if Rii � 0. The

most important compressive normal stress is usually due to pressure rather than to

viscous effects. The component Rij represents the stress acting on face i in the

j direction with the direction of face i being positive if the outward normal to the

face is in the positive direction.

In practice the stress tensor is split into two terms such that

R ¼ �
p 0 0

0 p 0

0 0 p

0

@

1

Aþ
Rxxþp

zfflffl}|fflffl{
sxx

sxy sxz

syx Ryyþp

zfflffl}|fflffl{
syy

syz

szx szy Rzzþp

zffl}|ffl{
szz

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

¼ �pIþ s ð3:26Þ

where I is the identity tensor of size (3 × 3), p is the pressure, and s is the deviatoric

or viscous stress tensor. The pressure is the negative of the mean of the normal

stresses and is given by

p ¼ � 1

3
Rxx þ Ryy þ Rzz

� �
ð3:27Þ

n

dS

fs = dS = ndSFig. 3.5 The surface forces

acting on a differential surface

element expressed in terms of

the stress tensor

3.5 Conservation of Linear Momentum 53

The surface force acting on a differential surface element of area dS and ori-

entation n, as illustrated in Fig. 3.5, is R � nð ÞdS. Applying the divergence theorem,

the total surface force acting on the control volume is given by

Z

V

fs dV ¼
Z

S

R � n dS ¼
Z

V

r � R dV) fs ¼ r � R½ � ¼ �rpþ r � s½ � ð3:28Þ

3.5.4 Body Forces

Body forces, which are presented as forces per unit volume, may also arise due to a

variety of effects. There are plenty of examples, but the predominant ones are given

next.

3.5.4.1 Gravitational Forces

The force representing the weight of the material volume per unit volume in the

presence of a gravitational field is denoted by gravitational force (Fig. 3.6) and

given by

fb ¼ qg ð3:29Þ

where g is the gravitational acceleration vector.

x

y

z

f
b

= g

Fig. 3.6 Body forces acting

on a differential element

54 3 Mathematical Description of Physical Phenomena

3.5.4.2 System Rotation

When solving fluid flow problems in a rotating frame of reference, the forces arising

as a result of the rigid body rotation of the reference frame should be accounted for.

These can be viewed as body forces of the form

fb ¼ �2q -� v½ �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Coriolis forces

� q -� -� r½ �½ �
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Centrifugal forces

ð3:30Þ

where - is the angular velocity of the rotating reference frame and r is the position

vector (Fig. 3.7). Note that gravitational and centrifugal forces are dependent on

position but not on velocity. Thus they can be absorbed into a modified pressure

and hence effectively ignored as a separate entity unless they appear in boundary

conditions. Coriolis forces however have to be treated explicitly. Other forces, such

as magnetic and electric, may be added depending on the particular situation. Due

to the many possible types of body forces, no specific type will be adopted in the

equations to follow and the generic fb force is retained.

Substituting the external force f in Eq. (3.23) by its equivalent expression, the

general conservative form of the momentum equation is obtained as

@

@t
qv½ � þ r � qvvf g ¼ �rpþ r � s½ � þ fb ð3:31Þ

3.5.5 Stress Tensor and the Momentum Equation

for Newtonian Fluids

To proceed further with the momentum equation, the type of fluid should be known

in order to relate the stress tensor s to the flow variables. For a Newtonian fluid, the

stress tensor is a linear function of the strain rate [2] and is given by

x

r

O

Fig. 3.7 Body forces due to a rigid body rotation in a rotating frame of reference

3.5 Conservation of Linear Momentum 55

s ¼ l rvþ rvð ÞT
n o

þ k r � vð ÞI ð3:32Þ

where l is the molecular viscosity coefficient, k the bulk viscosity coefficient

usually set equal to � 2=3ð Þl k ¼ � 2=3ð Þlð Þ, the superscript T refers to the

transpose of rv, and I is the unit or identity tensor of size (3 × 3) defined as

I ¼
1 0 0

0 1 0

0 0 1

2

4

3

5 ð3:33Þ

The expanded form of the stress tensor in a three-dimensional Cartesian coor-

dinate system can be written as

s ¼

2l
@u

@x
þ kr � v l

@v

@x
þ @u

@y

� �

l
@u

@z
þ @w

@x

� �

l
@v

@x
þ @u

@y

� �

2l
@v

@y
þ kr � v l

@w

@y
þ @v

@z

� �

l
@u

@z
þ @w

@x

� �

l
@w

@y
þ @v

@z

� �

2l
@w

@z
þ kr � v

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð3:34Þ

The divergence of the stress tensor is a vector that can be expressed as

r � s½ � ¼ r � l rvþ rvð ÞT
	
h i

þr kr � vð Þ

¼

@

@x
2l

@u

@x
þ kr � v

� �

þ @

@y
l

@v

@x
þ @u

@y

� �� �

þ @

@z
l

@u

@z
þ @w

@x

� �� �

@

@x
l

@v

@x
þ @u

@y

� �� �

þ @

@y
2l

@v

@y
þ kr � v

� �

þ @

@z
l

@w

@y
þ @v

@z

� �� �

@

@x
l

@u

@z
þ @w

@x

� �� �

þ @

@y
l

@w

@y
þ @v

@z

� �� �

þ @

@z
2l

@w

@z
þ kr � v

� �

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð3:35Þ

Substituting into Eq. (3.31), the final conservative form of the momentum

equation for Newtonian fluids becomes

@

@t
qv½ � þ r � qvvf g ¼ �rpþr � l rvþ rvð ÞT

h in o

þr kr � vð Þ þ fb ð3:36Þ

For later reference the momentum equation is expanded into

@

@t
qv½ � þ r � qvvf g ¼ r � lrvf g � rpþr � l rvð ÞT

n o

þr kr � vð Þ þ fb
|ffl{zffl}

Qv

ð3:37Þ

56 3 Mathematical Description of Physical Phenomena

and rewritten as

@

@t
qv½ � þ r � qvvf g ¼ r � lrvf g � rpþQv ð3:38Þ

For incompressible flows, the divergence of the velocity vector is zero, i.e.,

r � v ¼ 0, and the momentum equation reduces to

@

@t
qv½ � þ r � qvvf g ¼ �rpþr � l rvþ rvð ÞT

h in o

þ fb ð3:39Þ

If the viscosity is constant, the momentum equation can be further simplified.

Taking just the first component of the vector equation [Eq. (3.35)], and assuming l

is constant, the following can be written:

l
@

@x
2
@u

@x

� �

þ l
@

@y

@v

@x
þ @u

@y

� �� �

þ l
@

@z

@u

@z
þ @w

@x

� �� �

¼ l
@2u

@x2
þ @2u

@x2
þ @2u

@y2
þ @2v

@yx
þ @2u

@z2
þ @2w

@zx

� �

¼ l
@2u

@x2
þ @2u

@y2
þ @2u

@z2

� �

þ @2u

@x2
þ @2v

@yx
þ @2w

@zx

� �

¼ l
@2u

@x2
þ @2u

@y2
þ @2u

@z2

� �

þ @

@x

@u

@x
þ @v

@y
þ @w

@z

� �� �

ð3:40Þ

Substitution in Eq. (3.37) yields after simplification

@

@t
qv½ � þ r � qvvf g ¼ �rpþ lr2vþ fb ð3:41Þ

For inviscid flows the viscosity is zero and the momentum equation for

incompressible and compressible inviscid flows becomes

@

@t
qv½ � þ r � qvvf g ¼ �rpþ fb ð3:42Þ

3.6 Conservation of Energy

The conservation of energy [6, 10] is governed by the first law of thermodynamics

which states that energy can be neither created nor destroyed during a process; it

can only change from one form (mechanical, kinetic, chemical, etc.) into another.

Consequently, the sum of all forms of energy in an isolated system remains

constant.

3.5 Conservation of Linear Momentum 57

Considering the material volume shown in Fig. 3.8, of mass m, density q, and

moving with a velocity v. Defining the total energy E of the material volume at

time t as the sum of its internal and kinetic energies, then E can be written as

E ¼ m ûþ 1

2
v � v

� �

ð3:43Þ

where û is the fluid specific internal energy (internal energy per unit mass). The first

law of classical thermodynamics applied to the material volume states that the rate

of change of the total energy of the material volume is equal to the rate of heat

addition and work extraction through its boundaries. Mathematically this is given

by

dE

dt

� �

MV

¼ _Q� _W ð3:44Þ

The adopted sign convention is such that heat added to the material volume and

work done by the material volume are positive. To apply the Reynolds transport

theorem on the material volume, B is set equal to E and b to e (the total energy per

unit mass) such that

B ¼ E) b ¼ dE

dm
¼ ûþ 1

2
v � v ¼ e ð3:45Þ

The net rate of heat transferred to the material element _Q is the sum of two

components. The first component is the rate transferred across the surface of the

element _QS and the second generated/destroyed (e.g., due to a chemical reaction)

within the material volume _QV . Moreover, the net rate of work done by the material

volume _W is due to the rate of work done by the surface forces _WS and the rate of

work done by the body forces _Wb. Thus the first law can be written as

MV(t)

MV(t+ t)

x

y

zFig. 3.8 A material volume

moves with the particles it

encloses

58 3 Mathematical Description of Physical Phenomena

dE

dt

� �

MV

¼ _QV þ _QS � _Wb � _WS ð3:46Þ

By definition, work is due to a force acting through a distance and power is the

rate at which work is done. Therefore the rate of work done by body and surface

forces can be represented by

_Wb ¼ �
Z

V

fb � vð ÞdV

_WS ¼ �
Z

S

fS � vð ÞdS
ð3:47Þ

The rate of work due to surface forces can be expanded by replacing fS by its

equivalent expression as given in Eq. (3.26) through (3.28). This leads to

_WS ¼ �
Z

S

R � v½ � � n dS ¼ �
Z

V

r � R � v½ �dV ¼ �
Z

V

r � �pIþ sð Þ � v½ �dV

ð3:48Þ

After manipulation, _WS can be rewritten as

_WS ¼ �
Z

V

�r � pv½ � þ r � s � v½ �ð ÞdV ð3:49Þ

If _qV represents the rate of heat source or sink within the material volume per

unit volume and _qS the rate of heat transfer per unit area across the surface area of

the material element, then _QV and _QS can be written as

_QV ¼
Z

V

_qVdV _QS ¼ �
Z

S

_qs � n dS ¼ �
Z

V

r � _qsdV ð3:50Þ

Applying the Reynolds transport theorem and substituting the rate of work and

heat terms by their equivalent expressions, Eq. (3.46) becomes

dE

dt

� �

MV

¼
Z

V

@

@t
qeð Þ þ r � qve½ �

� �

dV

¼ �
Z

V

r � _qsdV þ
Z

V

�r � pv½ � þ r � s � v½ �ð ÞdV þ
Z

V

fb � vð ÞdV þ
Z

V

_qVdV

ð3:51Þ

3.6 Conservation of Energy 59

Collecting terms together, the above equation is transformed to

Z

V

@

@t
qeð Þ þ r � qve½ � þ r � _qs þr � pv½ � � r � s � v½ � � fb � v� _qV

� �

dV ¼ 0

ð3:52Þ

For the volume integral in Eq. (3.52) to be true for any control volume, the

integrand has to be zero. Thus,

@

@t
qeð Þ þ r � qve½ � ¼ �r � _qs �r � pv½ � þ r � s � v½ � þ fb � vþ _qV ð3:53Þ

which represents the mathematical description of energy conservation or simply the

energy equation written in terms of specific total energy. The energy equation may

also be written in terms of specific internal energy, specific static enthalpy (or

simply specific enthalpy), specific total enthalpy, and under special conditions in

terms of temperature.

3.6.1 Conservation of Energy in Terms of Specific Internal

Energy

To rewrite the energy equation [Eq. (3.53)] in terms of specific internal energy, the

dot product of the momentum equation [Eq. (3.23)] with the velocity vector is

performed resulting in

@

@t
qvð Þ þ r � qvvf g

� �

� v ¼ f � v ð3:54Þ

After some manipulations Eq. (3.54) becomes

@

@t
qv � vð Þ � qv � @v

@t
þr � q v � vð Þv½ � � qv � v � rð Þv½ � ¼ f � v ð3:55Þ

Rearranging and collecting terms the following is obtained:

@

@t
qv � vð Þ þ r � q v � vð Þv½ � � v � q @v

@t
þ v � rð Þv

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ f

Eq: 3:21ð Þ

¼ f � v ð3:56Þ

Noticing that the third term on the left side is v � f and replacing f by its

equivalent expression, an equation for the flow kinetic energy is obtained as

60 3 Mathematical Description of Physical Phenomena

@

@t
q
1

2
v � v

� �

þr � q
1

2
v � v

� �

v

� �

¼ �v � rpþ v � r � s½ � þ fb � v ð3:57Þ

This equation can be modified and rewritten in the following form:

@

@t
q
1

2
v � v

� �

þr � q
1

2
v � v

� �

v

� �

¼ �r � pv½ � þ pr � vþr � s � v½ � � s : rvð Þ þ fb � v
ð3:58Þ

Subtracting Eq. (3.58) from Eq. (3.53), the energy equation with specific internal

energy as its main variable is obtained as

@

@t
qûð Þ þ r � qvû½ � ¼ �r � _qs � pr � vþ s : rvð Þ þ _qV ð3:59Þ

3.6.2 Conservation of Energy in Terms of Specific Enthalpy

Rewriting the energy equation in terms of specific enthalpy is straightforward and

follows directly from its definition according to which the specific internal energy

and specific enthalpy are related by

û ¼ ĥ� p

q
ð3:60Þ

Substituting ĥ� p=q
� �

for û in Eq. (3.59) and performing some algebraic

manipulations, the energy equation in terms of specific enthalpy evolves as

@

@t
qĥ
� �

þr � qvĥ
� �

¼ �r � _qs þ
Dp

Dt
þ s : rvð Þ þ _qV ð3:61Þ

3.6.3 Conservation of Energy in Terms of Specific Total

Enthalpy

The energy equation in terms of specific total enthalpy can be derived by expressing

e in terms of ĥ0 to get

e ¼ ûþ 1

2
v � v ¼ ĥ� p

q
þ 1

2
v � v ¼ ĥ0 �

p

q
ð3:62Þ

3.6 Conservation of Energy 61

Then by substituting ĥ� p=q
� �

for e in Eq. (3.53) and performing some algebraic

manipulations, the energy equation in terms of specific total enthalpy is obtained as

@

@t
qĥ0
� �

þr � qvĥ0
� �

¼ �r � _qs þ
@p

@t
þr � s � v½ � þ fb � vþ _qV ð3:63Þ

All forms of the energy equation presented so far are general and applicable to

Newtonian and non-Newtonian fluids. The only limitation is that they are appli-

cable to a fixed control volume.

3.6.4 Conservation of Energy in Terms of Temperature

To be able to write the energy equation with temperature as the main variable some

constraints have to be imposed. Assuming ĥ to be a function of p and T, the fluid is

expected to be Newtonian. Therefore the derivations to follow are applicable to

Newtonian fluids only. If ĥ ¼ ĥ p; Tð Þ, then dĥ can be written as

dĥ ¼ @ĥ

@T

 !

p

dT þ @ĥ

@p

 !

T

dp ð3:64Þ

Using the following ordinary equilibrium thermodynamics relation:

@ĥ

@p

 !

T

¼ V̂ � T
@V̂

@T

� �

p

ð3:65Þ

where V̂ is the specific volume, the expression for dĥ can be modified to

dĥ ¼ cpdT þ V̂ � T
@V̂

@T

� �

p

" #

dp ð3:66Þ

The left side of the specific enthalpy [Eq. (3.61)], with dĥ given by Eq. (3.66),

can be rewritten in terms of T as

@

@t
qĥ
� �

þr � qvĥ
� �

¼ q
Dĥ

Dt
¼ qcp

DT

Dt
þ q V̂ � T

@V̂

@T

� �

p

" #

DP

Dt

¼ qcp
DT

Dt
þ q

1

q
� T

@ 1=qð Þ
@T

� �

p

" #

DP

Dt

¼ qcp
DT

Dt
þ 1þ @ Lnqð Þ

@ LnTð Þ

� �

p

" #

DP

Dt

ð3:67Þ

62 3 Mathematical Description of Physical Phenomena

Substituting Eq. (3.67) into Eq. (3.61) gives the energy equation with T as its

main variable as

qcp
DT

Dt
¼ �r � _qs �

@ Lnqð Þ
@ LnTð Þ

� �

p

Dp

Dt
þ s : rvð Þ þ _qV ð3:68Þ

The above equation is equivalently given by

cp
@

@t
qTð Þ þ r � qvT½ �

� �

¼ �r � _qs �
@ Lnqð Þ
@ LnTð Þ

� �

p

Dp

Dt
þ s : rvð Þ þ _qV ð3:69Þ

The heat flux _qS appearing in all forms of the energy equation represents heat

transfer by diffusion, which is a phenomenon occurring at the molecular level and is

governed by Fourier’s law according to

_qs ¼ � krT½ � ð3:70Þ

where k is the thermal conductivity of the substance. The above equation states that

heat flows in the direction of temperature gradient and assumes that the material has

no preferred direction for heat transfer with the same thermal conductivity in all

directions, i.e., the medium is isotropic. However some solids are anisotropic for

which Eq. (3.70) is replaced by

_qs ¼ � j � rT½ � ð3:71Þ

where j is a second order symmetric tensor called the thermal conductivity tensor.

Consequently, the heat flux in anisotropic medium is not in the direction of the

temperature gradient. In the derivations to follow the medium is assumed to be

isotropic and Eq. (3.70) is applicable. Replacing _qs using Fourier’s law, the energy

equation, Eq. (3.69), becomes

cp
@

@t
qTð Þ þ r � qvT½ �

� �

¼ r � krT½ � � @ Lnqð Þ
@ LnTð Þ

� �

p

Dp

Dt
þ s : rvð Þ þ _qV ð3:72Þ

The expression for s : rvð Þ in terms of the flow variables in a three-dimensional

Cartesian coordinate system is given by

s : rvð Þ ¼ k
@u

@x
þ @v

@y
þ @w

@z

� �2

þ l

2
@u

@x

� �2

þ 2
@v

@y

� �2

þ2
@w

@z

� �2

þ @u

@y
þ @v

@x

� �2

þ @u

@z
þ @w

@x

� �2

þ @v

@z
þ @w

@y

� �2

0

B
B
B
@

1

C
C
C
A

ð3:73Þ

3.6 Conservation of Energy 63

Defining W and U as

W ¼ @u

@x
þ @v

@y
þ @w

@z

� �2

ð3:74Þ

U ¼ 2
@u

@x

� �2

þ @v

@y

� �2

þ @w

@z

� �2
" #

þ @u

@y
þ @v

@x

� �2

þ @u

@z
þ @w

@x

� �2

þ @v

@z
þ @w

@y

� �2

ð3:75Þ

The energy equation in terms of temperature reduces to

cp
@

@t
qTð Þ þ r � qvT½ �

� �

¼ r � krT½ � � @ Ln qð Þ
@ Ln Tð Þ

� �

p

Dp

Dt
þ kWþ lUþ _qV

ð3:76Þ

For later reference the energy equation is expanded to

@

@t
qcpT
� �

þr � qcpvT
� �

¼ r � krT½ �

þ qT
Dcp

Dt
� @ Ln qð Þ

@ Ln Tð Þ

� �

p

Dp

Dt
þ kWþ lUþ _qV

|ffl{zffl}

QT

ð3:77Þ

and rewritten as

@

@t
qcpT
� �

þr � qcpvT
� �

¼ r � krT½ � þ QT ð3:78Þ

The energy equation is rarely solved in its full form and depending on the

physical situation several simplified versions can be developed. The dissipation term

Φ has negligible values except for large velocity gradients at supersonic speeds.

Moreover, for incompressible fluids the continuity equation implies that W ¼ 0 and

because the density is constant it follows that @ Lnqð Þð =@ LnTð ÞÞ ¼ 0. Therefore the

energy equation [Eq. (3.77)] for incompressible fluid flow is simplified to

@

@t
qcpT
� �

þr � qcpvT
� �

¼ r � krT½ � þ _qV þ qT
Dcp

Dt
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

QT

ð3:79Þ

Equation (3.79) is also applicable for a fluid flowing in a constant pressure

system. For the case of a solid, the density is constant, the velocity is zero, and if

changes in temperature are not large then the thermal conductivity may be con-

sidered constant, in which case the energy equation becomes

64 3 Mathematical Description of Physical Phenomena

qcp
@T

@t
¼ kr2T þ _qV ð3:80Þ

For ideal gases @ Lnqð Þð =@ LnTð ÞÞ ¼ �1 and the energy equation for com-

pressible flow of ideal gases reduces to

cp
@

@t
qTð Þ þ r � qvT½ �

� �

¼ r � krT½ � þ Dp

Dt
þ kWþ lUþ _qV ð3:81Þ

If viscosity is neglected (i.e. the flow is inviscid), Eq. (3.81) is further simplified

to

cp
@

@t
qTð Þ þ r � qvT½ �

� �

¼ r � krT½ � þ Dp

Dt
þ _qV ð3:82Þ

3.7 General Conservation Equation

From the above, the governing equations describing the conservation of mass,

momentum, and energy are written in terms of specific quantities or intensive

properties, i.e., quantities expressed on a per unit mass basis. The momentum

equation, for example, expressed the principle of conservation of linear momentum

in terms of the momentum per unit mass, i.e., velocity. The same type of conser-

vation equation may be applied to any intensive property /, e.g., concentration of

salt in a solution or the mass fraction of a chemical species. The variation of / in

the control volume over time can be expressed as a balance equation of the form

Term I Term II Term III

For the fixed control volume shown in Fig. 3.9, the change of / over time within

the material volume can be written using the Reynolds transport theorem as

Term I ¼ d

dt

Z

MV

q/ð ÞdV

0

@

1

A ¼
Z

V

@

@t
q/ð Þ þ r � qv/ð Þ

� �

dV ð3:83Þ

where q is the fluid density and V the volume of the control volume of surface area

S. The term qv/ represents the transport of / by the flow field and is denoted by the

convective flux, i.e.,

3.6 Conservation of Energy 65

J
/
convection ¼ qv/ ð3:84Þ

The second term represents variation of / due to physical phenomena occurring

across the control volume surface. For the physical phenomena of interest in this

book, the mechanism causing the influx/out flux of / is due to diffusion, which is

produced by molecular collision and is designated by J
/
diffusion. Denoting the dif-

fusion coefficient of / by C
/, the diffusion flux may be written as

J
/
diffusion ¼ �C

/r/ ð3:85Þ

and Term II becomes

Term II ¼ �
Z

S

J
/
diffusion � n dS ¼ �

Z

V

r � J/diffusiondV ¼
Z

V

r � C
/r/

� �
dV

ð3:86Þ

where n is the outward unit vector normal to the surface and the negative sign is due

to the adopted sign convention (i.e., inward flux is positive). Term III can be written

as

Term III ¼
Z

V

Q/dV ð3:87Þ

where Q/ is the generation/destruction of / within the control volume per unit

volume, which is also called the source term. Thus the conservation equation can be

expressed as

Z

V

@

@t
q/ð Þ þ r � q/vð Þ

� �

dV ¼
Z

V

r � C
/r/

� �
dV þ

Z

V

Q/dV ð3:88Þ

dS

V

V

Fig. 3.9 Arbitrary fixed

control volume

66 3 Mathematical Description of Physical Phenomena

which can be rearranged into

Z

V

@

@t
q/ð Þ þ r � qv/ð Þ � r � C

/r/
� �

� Q/

� �

dV ¼ 0 ð3:89Þ

For the integral to be zero for any control volume, the integrand has to be zero

giving the conservation equation in differential form as

@

@t
q/ð Þ þ r � qv/ð Þ � r � C

/r/
� �

� Q/ ¼ 0 ð3:90Þ

For later reference the above equation may be rewritten as

@

@t
q/ð Þ þ r � J/ � Q/ ¼ 0 ð3:91Þ

where the total flux J/ is the sum of the convective and diffusive fluxes given by

J/ ¼ J/;C þ J/;D ¼ qv/� C
/r/ ð3:92Þ

The final form of the general conservation equation, Eq. (3.90), for the transport

of a property / is expressed as

@

@t
q/ð Þ

|fflfflffl{zfflfflffl}

unsteady term

þ r � qv/ð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

convection term

¼ r � C
/r/

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

diffusion term

þ Q/

|{z}

source term

ð3:93Þ

By comparing Eq. (3.93) to the various conservation equations derived earlier, it

can be easily inferred that by assigning the right values for /;C/, and Q/,

Eq. (3.93) is a general equation that can represent any of the conservation equa-

tions. This is a very important observation that will reduce the necessary devel-

opments of the numerical techniques in the coming chapters by concentrating on the

general equation [Eq. (3.93)] rather than the individual conservation equations.

3.8 Non-dimensionalization Procedure

The differential equations representing conservation laws are rarely solved using

dimensional variables. The common practice is to write these equations in a

non-dimensional form using dimensionless quantities that are obtained through the

use of proper characteristic scales. The use of non-dimensional variables has several

advantages. It allows reducing the number of appropriate parameters for the

problem considered and helps revealing the relative magnitude of the various terms

in the conservation equation and consequently those that can be neglected.

3.7 General Conservation Equation 67

This simplifies the equation to be solved and leaves only terms of similar order of

magnitude, which results in better numerical accuracy. In addition, the generated

solution will be applicable to all dynamically similar problems.

A dimensional variable is transformed into a non-dimensional one by dividing

the variable by a quantity (composed of one or more physical properties) that has

the same dimension as the original variable. For example spatial coordinates can be

divided by a characteristic length; velocity can be divided by a characteristic

velocity or a combination of quantities lref =qref lref
� �

that have collectively the

same units as velocity (m/s); pressure is usually divided by a reference dynamic

pressure qref vref

2

	

; time can be divided by the ratio of a characteristic length to a

reference velocity lref = vref

� �
, and so on. The best way to fully understand how to

write equations in non-dimensional form is through an example. For that purpose,

an incompressible viscous flow with constant viscosity and thermal conductivity,

and with body forces acting in the y-direction (i.e., the gravitational acceleration is

given by g ¼ 0;�g; 0ð Þ) is considered. The equations governing conservation of

mass, momentum, and energy in a three-dimensional Cartesian coordinate system

with no heat generation are given by

@u

@x
þ @v

@y
þ @w

@z
¼ 0 ð3:94Þ

@

@t
quð Þ þ @

@x
quuð Þ þ @

@y
qvuð Þ þ @

@z
qwuð Þ ¼ � @p

@x
þ l

@2u

@x2
þ @2u

@y2
þ @2u

@z2

� �

ð3:95Þ

@

@t
qvð Þ þ @

@x
quvð Þ þ @

@y
qvvð Þ þ @

@z
qwvð Þ ¼ � @p

@y
þ l

@2v

@x2
þ @2v

@y2
þ @2v

@z2

� �

� qg

ð3:96Þ

@

@t
qwð Þ þ @

@x
quwð Þ þ @

@y
qvwð Þ þ @

@z
qwwð Þ ¼ � @p

@z
þ l

@2w

@x2
þ @2w

@y2
þ @2w

@z2

� �

ð3:97Þ

cp
@

@t
qTð Þ þ @

@x
quTð Þ þ @

@y
qvTð Þ þ @

@z
qwTð Þ

� �

¼ k
@2T

@x2
þ @2T

@y2
þ @2T

@z2

� �

ð3:98Þ

When body forces are of negligible magnitude in comparison with other forces,

the term qg can be set to zero and removed from the equations. In such situation,

the flow field is independent of the temperature field and solution for the velocity

field can be established separately followed by the solution to the temperature field.

However for a flow to exist the fluid should be forced through the domain.

68 3 Mathematical Description of Physical Phenomena

Therefore the fluid should possess an inlet velocity. This velocity becomes an

important parameter (the characteristic velocity) when writing the equations in

non-dimensional forms and the heat transfer mechanism, if any, is said to occur by

forced convection.

On the other hand, when a flow field is naturally established due to a temperature

difference in the domain, body forces cannot be neglected. In such situations,

variations in temperature cause variations in density (as mentioned earlier), which

give rise to buoyancy forces that drive the flow. In this case the transfer of heat is

stated to happen by natural convection. As the flow is initiated naturally, a char-

acteristic velocity is not apparent and cannot be part of the dimensionless number

since its scale is not known. Therefore in order to write the velocity in a

non-dimensional form, a combination of physical quantities that has the same

dimension as a velocity should be used. The following discussion assumes a natural

convection problem.

If the difference in temperature DT ¼ T � T1 (where T1 is a reference tem-

perature between the minimum and maximum temperature in the domain, usually

taken as the average value) is small such that terms of order DT2 or higher can be

neglected, then the value of density at any temperature T can be written as a

function of its value at the reference temperature T1 using a truncated Taylor series

expansion as

q ¼ qjT¼T1
þ dq

dT

T¼T1

T � T1ð Þ ð3:99Þ

where terms of order DT2 or higher are omitted. Introducing the coefficient of

volume expansion b defined as

b ¼ � 1

q

@q

@T

� �

p

ð3:100Þ

the equation for density (or equation of state) becomes

q ¼ q1 1� b T � T1ð Þ½ � ð3:101Þ

which is known in the literature by the Boussinesq approximation [11]. Using this

expression for q in the body force term only and denoting the constant density value

by q to simplify the notation, the y-momentum equation is transformed to

@

@t
qvð Þ þ @

@x
quvð Þ þ @

@y
qvvð Þ þ @

@z
qwvð Þ

¼ � @

@y
pþ qgyð Þ þ l

@2v

@x2
þ @2v

@y2
þ @2v

@z2

� �

þ qgb T � T1ð Þ
ð3:102Þ

3.8 Non-dimensionalization Procedure 69

This clearly shows that in solving natural convection problems the momentum

and energy equations are coupled together necessitating a simultaneous solution of

both equations.

The non-dimensional forms of the conservation equations are obtained by

defining the following dimensionless parameters:

x̂ ¼ x

L
; ŷ ¼ y

L
; ẑ ¼ z

L
; û ¼ u

l= qLð Þ ; v̂ ¼
v

l= qLð Þ ; ŵ ¼ w

l= qLð Þ

t̂ ¼ t

qL2=l
; p̂ ¼ pþ qgy

l2= qL2ð Þ ; T̂ ¼ T � T1
Tmax � T1

ð3:103Þ

where L is a characteristic length, l the dynamic viscosity of the fluid, Tmax the

maximum temperature in the domain, and the over ^ is used to designate

non-dimensional quantities. The various expressions in the conservation equations

are written in terms of the new variables as described next. The procedure is

explained by considering a typical term from each category.

Typical term in the continuity equation:

@u

@x
¼ @ lû= qLð Þ½ �

@ Lx̂ð Þ ¼ l= qLð Þ
L

@û

@x̂
¼ l

qL2
@û

@x̂
ð3:104Þ

Typical terms in the momentum equations:

@

@t
quð Þ ¼ @ lû=Lð Þ

@ qL2̂t=lð Þ ¼
l=L

qL2=l

@û

@ t̂
¼ l2

qL3
@û

@ t̂
ð3:105Þ

@

@t
quuð Þ ¼ @ l2= qL2ð Þûû½ �

@ Lx̂ð Þ ¼ l2= qL2ð Þ
L

@

@x̂
ûûð Þ ¼ l2

qL3
@

@x̂
ûûð Þ ð3:106Þ

p̂ ¼ pþ qgy

l2= qL2ð Þ)
@p̂

@x̂
¼ @ pþ qgyð Þ= l2= qL2ð Þ½ �

� �

@ x=Lð Þ

¼ qL3

l2
@p

@x
) @p

@x
¼ l2

qL3
@p̂

@x̂

ð3:107Þ

l
@2u

@x2
¼ l

@2 lû= qLð Þ½ �
@ Lx̂ð Þ2

¼ l
l= qLð Þ
L2

@2û

@x̂2
¼ l2

qL3
@2û

@x̂2
ð3:108Þ

qgb T � T1ð Þ ¼ qgb Tmax � T1ð ÞT̂ ¼ qgb DTð ÞT̂ ð3:109Þ

Typical terms in the energy equation:

@

@t
qTð Þ ¼ @ q T1 þ DTT̂

� �� �

@ qL2̂t=lð Þ ¼ lDT

L2
@T̂

@ t̂
ð3:110Þ

70 3 Mathematical Description of Physical Phenomena

@

@x
quTð Þ ¼ @ lû T1 þ DTT̂

� �
=L

� �

@ Lx̂ð Þ ¼ lT1
L2

@û

@x̂
þ lDT

L2
@

@x̂
ûT̂
� �

ð3:111Þ

k
@2T

@x2
¼ k

@2 T1 þ DTT̂
� �

@ Lx̂ð Þ2
¼ kDT

L2
@2T̂

@x̂2
ð3:112Þ

Substituting terms by their equivalent expressions, the non-dimensional forms of

the continuity, momentum, and energy equations are obtained as

@û

@x̂
þ @v̂

@ŷ
þ @ŵ

@ẑ
¼ 0 ð3:113Þ

@û

@ t̂
þ @

@x̂
ûûð Þ þ @

@ŷ
v̂ûð Þ þ @

@ẑ
ŵûð Þ ¼ � @p̂

@x̂
þ @2û

@x̂2
þ @2û

@ŷ2
þ @2û

@ẑ2

� �

ð3:114Þ

@v̂

@ t̂
þ @

@x̂
ûv̂ð Þ þ @

@ŷ
v̂v̂ð Þ þ @

@ẑ
ŵv̂ð Þ ¼ � @p̂

@ŷ
þ @2v̂

@x̂2
þ @2v̂

@ŷ2
þ @2v̂

@ẑ2

� �

þ GrT̂ ð3:115Þ

@ŵ

@ t̂
þ @

@x̂
ûŵð Þ þ @

@ŷ
v̂ŵð Þ þ @

@ẑ
ŵŵð Þ ¼ � @p̂

@ẑ
þ @2ŵ

@x̂2
þ @2ŵ

@ŷ2
þ @2ŵ

@ẑ2

� �

ð3:116Þ

@T̂

@ t̂
þ @

@x̂
ûT̂
� �

þ @

@ŷ
v̂T̂
� �

þ @

@ẑ
ŵT̂
� �

¼ 1

Pr

@2T̂

@x̂2
þ @2T̂

@ŷ2
þ @2T̂

@ẑ2

� �

ð3:117Þ

where Gr is the Grashof number, Pr is the Prandtl number, and v the kinematic

viscosity defined as

Gr ¼ gbDTL3

v2
Pr ¼ lcp

k
v ¼ l

q
ð3:118Þ

The Grashof and Prandtl numbers [12–14] are dimensionless groups formed of a

combination of the involved physical properties. Therefore the number of param-

eters affecting the solution was reduced to two and solutions can be generated for

different values of these two parameters. Moreover any single solution will be valid

for many combinations of the physical properties of which these two numbers are

composed, as long as these combinations result in the Gr and Pr values for which

the solution was obtained. The physical significance of these two dimensionless

numbers and others that may arise when writing the conservation equations in

non-dimensional forms using other dimensionless parameters under different con-

ditions is discussed next.

3.8 Non-dimensionalization Procedure 71

3.9 Dimensionless Numbers

Writing the conservation equations in non-dimensional forms, results in dimen-

sionless numbers that are very useful for performing parametric studies of engi-

neering problems. For incompressible viscous flow, the dimensionless parameters

governing natural convection heat transfer were reduced to the two dimensionless

numbers Gr [12–14] and Pr [12–14]. Under different conditions (e.g., compressible

flows, Porous flows, etc.) other types of fluid forces and dissipation terms may be

included in the governing equations resulting in different non-dimensional groups.

For flow in porous media, for example, Darcy number Dað Þ [15, 16] emerges as an

important parameter, for a free surface flow the Weber number Weð Þ [17, 18], for an
open channel flow the Froude number Frð Þ [19], for a compressible flow the Mach

number Mð Þ [20], and so on. Some of the most important dimensionless groups are

discussed below.

3.9.1 Reynolds Number

The Reynolds number Reð Þ [12, 13] is defined as

Re ¼ qUL

l
ð3:119Þ

and may be interpreted as a measure of the relative importance of advection (inertia)

to diffusion (viscous) momentum fluxes. If the momentum fluxes are in the same

direction then the Reynolds number reveals the boundary layer characteristics of the

flow. If the fluxes are defined such that the diffusion is in the cross stream direction,

then as shown in Fig. 3.10 Re conveys the flow regime (i.e. laminar, transitional, or

turbulent).

An example showing the flow field for different values of Reynolds number is

depicted in Fig. 3.11. It represents a driven flow in a square cavity of side

L generated by the velocity U imparted to its top wall. The streamlines shown in

Fig. 3.11 indicates that the strength of the flow increases as Re ¼ qUL=l increases.

Transition region

Flow

Viscous sublayer

Re < 5x105

Re > 5x105

Fig. 3.10 Schematic of the flow over a flat plate showing the laminar, transitional, and turbulent

flow regimes based on the value of Re

72 3 Mathematical Description of Physical Phenomena

3.9.2 Grashof Number

As derived above the Grashof number [12–14] is given by

Gr ¼ gbDTL3

v2
ð3:120Þ

The Grashof number represents the ratio of buoyant to viscous forces. It plays in

natural convection the same role played by the Reynolds number in forced con-

vection. An example showing the effect of Grashof number is depicted in Fig. 3.12.

The physical situation represents natural convection heat transfer in the annulus

between a hot circular cylinder and its cold square enclosure. Isotherms displayed in

the figure are seen to become more distorted at higher values of Gr due to higher

natural convection effects caused by a stronger flow field.

3.9.3 Prandtl Number

The Prandtl number [12–14] is defined as the ratio of momentum diffusivity

(kinematic viscosity v) to thermal diffusivity að Þ, i.e.,

Re = 10 Re = 100 Re = 1000 Re = 4000

Fig. 3.11 Streamlines at increasing values of Reynolds number for driven flow in a square cavity

Gr = 1.43 103
Gr = 1.43 104

Gr = 1.43 105
Gr = 1.43 106

Fig. 3.12 Isotherms at increasing values of Grashof number for natural convection in the annulus

between eccentric horizontal hot circular and cold square cylinders

3.9 Dimensionless Numbers 73

Pr ¼ lcp

k
¼ l=q

k=qcp
¼ v

a
ð3:121Þ

The Prandtl number represents the ratio of hydrodynamic boundary layer to

thermal boundary layer. As displayed in Fig. 3.13, the thermal boundary layer is

larger than the hydrodynamic boundary layer for Pr\ 1 (Fig. 3.13a) and the

opposite is true for Pr[1 (Fig. 3.13b). Both layers coincide for Pr ¼ 1.

For the driven flow in a square cavity problem presented above, isotherms over

the domain are depicted in Fig. 3.14 for different values of Pr while holding Re

constant at 100. The increase in convection over conduction as Pr increases can be

easily inferred from the plots.

Thermal boundary
layer

Wall temperature

Temperature

T(x,y)

Free Stream
Temperature

y

u(x,y)

Hydrodynamic boundary
layer

Free Stream Velocity

Pr <1

Velocity

Hydrodynamic boundary
layer

u(x,y)

y
Free Stream Velocity

Pr >1

Temperature Velocity

T(x,y)

Wall
temperature

Free Stream
Temperature

Thermal boundary
layer

(a)

(b)

Fig. 3.13 The thermal and hydrodynamic boundary layer thicknesses for a Pr\1 and b Pr[1

Pr = 0.1 Pr = 1 Pr = 10 Pr = 100

Fig. 3.14 Isotherms at increasing values of Prandtl number for driven flow in a square cavity

Re ¼ 100ð Þ

74 3 Mathematical Description of Physical Phenomena

3.9.4 Péclet Number

The Péclet number [5] is defined as the ratio of the advective transport rate of a

physical quantity to its diffusive transport rate. For the case of heat transfer, the

Péclet number is given by

Pe ¼ qULcp

k
¼ UL

a
¼ Re�Pr ð3:122Þ

In this situation the Pe is equivalent to the product of the Reynolds number and

the Prandtl number. An example of the effects of Pe is shown in Fig. 3.15, where

isotherms over a flat hot plate are displayed at different values of Péclet number.

Heat transfer is seen to be dominated by conduction at low values of Pe with

convection gaining increasing importance as Pe increases to become clearly the

dominant heat transfer mode at Pe ¼ 1000.

For mass transport, the Péclet number is given by

Pe ¼ UL

D
¼ Re�Sc ð3:123Þ

where D is the mass diffusivity and Sc the Schmidt number. In this case Pe is

equivalent to the product of the Reynolds number and the Schmidt number.

A large Péclet number indicates low dependence of the flow on downstream

locations and high dependence on upstream locations. Therefore simpler compu-

tational models can be adopted for simulating situations with high Péclet numbers.

3.9.5 Schmidt Number

The Schmidt number [14] is defined as

Sc ¼ v

D
ð3:124Þ

The Schmidt number in mass transfer is the counterpart of the Prandtl number in

heat transfer. It represents the ratio of the momentum diffusivity vð Þ to mass

Pe = 1 Pe = 10 Pe = 100 Pe = 1000

Fig. 3.15 Isotherms at increasing values of Péclet number for fluid flow over a flat plate

maintained at a hot uniform temperature

3.9 Dimensionless Numbers 75

diffusivity Dð Þ. Physically, the Sc relates the thicknesses of the hydrodynamic and

mass transfer boundary layers. An example showing the effect of Schmidt number

is shown in Fig. 3.16.

The figure above represents natural convection mass transfer in the annulus

between two horizontal pipes of rhombic cross sections. The solute concentration is

higher along the inner wall of the enclosure. The concentration non-uniformity

causes variations in density establishing a flow field. The strength of the flow

increases with increasing Sc values as manifested by the higher distortion of

iso-concentration lines that indicates an increase in convection mass transfer over

diffusion mass transfer, which dominates at low Sc values.

Sc = 0.07 Sc = 0.7 Sc = 7

Fig. 3.16 Iso-concentrations at increasing values of Schmidt number (other parameters held fixed)

for natural convection mass transfer in the annulus between concentric horizontal cylinders of

rhombic cross sections with larger solute concentration on the inner wall

76 3 Mathematical Description of Physical Phenomena

3.9.6 Nusselt Number

The Nusselt number [12–14] expressed as

Nu ¼ hL

k
ð3:125Þ

is the dimensionless form of the convection heat transfer coefficient h and provides

a measure of the convection heat transfer at a solid surface. The Nusselt number

does not arise as a dimensionless group when writing the conservation equations in

non-dimensional forms; rather, it is widely used to report convection heat transfer

data.

3.9.7 Mach Number

The Mach number Mð Þ [20] is defined as the ratio of speed of an object moving

through a fluid and the local speed of sound [20]. Mathematically it is written as

M ¼ vj j
a

ð3:126Þ

where vj j is the local magnitude of the fluid velocity relative to the medium in

which it is flowing and a is the speed of sound. The general equation for the speed

of sound is given by

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
@p

@q

� �

T

s

ð3:127Þ

For an ideal gas, it reduces to

a ¼
ffiffiffiffiffiffiffiffiffi

cRT
p

ð3:128Þ

where c is the ratio of specific heat at constant pressure to specific heat at constant

volume cp=cv
� �

and R is the gas constant.

Flows for which the Mach number is less than 0.2 can be treated as incom-

pressible. For M\1 the flow is called subsonic, for M ¼ 1 sonic, for 1\M\5

supersonic, and for M[5 hypersonic. Moreover, a flow accelerating from sub-

sonic to supersonic is called a transonic flow. The value of Mach number (less than

1 or greater than 1) at the boundaries of a domain dictates the number of required

boundary conditions there.

Examples of subsonic, transonic, and supersonic flow fields are presented in

Fig. 3.17 via Mach contours. The physical situation represents a fluid flowing over

3.9 Dimensionless Numbers 77

a circular arc bump with a maximum curvature of 10 % the channel height in the

subsonic and transonic cases and of 4 % in the supersonic case. The change in the

flow type from elliptic to hyperbolic (with discontinuities in the form of shock

waves) as the Mach number increases from subsonic M\1ð Þ to supersonic

M[1ð Þ is apparent.

3.9.8 Eckert Number

The Eckert number Ecð Þ [21] is a dimensionless number relating the kinetic energy

of the flow to its enthalpy and is computed as

Ec ¼ v � v
cpDT

ð3:129Þ

where DT is a characteristic temperature difference. This dimensionless number

appears as a factor multiplying the viscous dissipation term U, when non-

dimensionalizing the compressible energy equation. A large value of Ec indicates

high viscous dissipation occurring at high speed of the flow (high kinetic energy). For

small Eckert number Ec 	 1ð Þ several terms in the energy equation become negli-

gible (e.g., viscous dissipation, body forces, etc.). This reduces the energy equation to

its incompressible form (i.e., a balance between conduction and convection).

Fig. 3.17 Mach contours for

the flow over a circular arc

bump at a subsonic,

b transonic, and c supersonic

speeds

78 3 Mathematical Description of Physical Phenomena

3.9.9 Froude Number

The Froude number Frð Þ [19] is a dimensionless number defined as the ratio of a

characteristic velocity Uð Þ to a gravitational wave velocity
ffiffiffiffiffiffi
gL

pð Þ as

Fr ¼ U
ffiffiffiffiffiffi
gL

p ð3:130Þ

It is a measure of the resistance of partially immersed objects moving through

fluids, with higher Fr values indicating higher fluid resistance.

For the free-surface flow shown in Fig. 3.18, the nature of the flow is dictated by

the value of Froude number. For Fr[1 the flow is supercritical and for Fr\1 it is

subcritical. The flow at the interface between the two regions, known as the

“hydraulic jump”, is just critical and is characterized by a Froude number value of 1.

3.9.10 Weber Number

The dimensionless Weber number Weð Þ [17, 18] is defined as

We ¼ qU2L

r
ð3:131Þ

where U (m/s) and L (m) are the characteristic velocity and length, respectively, and

r the surface tension (N/m). The Weber number, which represents the ratio of

inertia to surface tension forces, is helpful in analyzing multiphase flows involving

interfaces between two different fluids, with curved surfaces such as droplets and

bubbles.

Fig. 3.18 A free surface flow

showing the supercritical,

critical, and subcritical

regions

3.9 Dimensionless Numbers 79

3.10 Closure

This chapter has shown that many physical phenomena can be modeled through

conservation equations. These equations are derived from first principles by writing

balances over a finite volume. It was also shown that the conservation equations

governing the transport of mass, momentum, energy, and other specific quantities

have a common form embodied in the general scalar transport equation. This

equation has transient, convection, diffusion and source terms. Each term brings a

characteristic contribution to the equation that needs to be reproduced by the dis-

cretization procedure.

3.11 Exercises

Exercise 1

By comparing the continuity, momentum, and energy equations with the general

scalar transport equation, derive expressions for /, C/ and S/.

Exercise 2

Show that for an incompressible flow of constant viscosity the following holds:

r � l rvþ rvð ÞT
h in o

¼ lr2v

Exercise 3

A steady incompressible flow field is defined by the following velocity vector:

v ¼ xþ yð Þiþ yþ zð Þjþ 2 x� zð Þk

(a) Verify that it satisfies the continuity equation.

(b) Assuming constant viscosity l, calculate the viscous stress tensor s.

(c) Denoting the fluid density by q and neglecting body forces, develop an

equation for the pressure gradient.

Exercise 4

The vorticity x of a flow field is defined as the curl of the velocity vector, i.e.,

x ¼ r� v

Using the above definition of vorticity, show that for an incompressible fluid, the

following relation between the velocity and vorticity vectors holds:

r � v � rð Þv½ � ¼ 0:5r2 v � vð Þ � v � r2v
� �

� x � x

80 3 Mathematical Description of Physical Phenomena

Exercise 5

A flow is said to be irrotational if its vorticity (defined in Exercise 4 above) is zero,

i.e., x ¼ 0. Show that for a steady two dimensional incompressible irrotational flow

the velocity field satisfies the following Laplace equation

r2v ¼ 0

Exercise 6

Consider a two-dimensional square enclosure of side L. The enclosure is filled with

an incompressible fluid of viscosity l and density q. The top side of the enclosure is

covered with an infinite horizontal wall moving with a constant velocity U. The

other sides are fixed in place. Due to the motion of the top wall a flow field is

established within the enclosure. Using appropriate dimensionless variables, write

the simplified momentum equation for the flow field in dimensionless form

showing that the Reynolds number Re ¼ qUL=lð Þ is the only dimensionless group

affecting the flow.

Exercise 7

Consider the steady two dimensional mixed convection heat transfer in a vertical

rectangular channel of width W. A cold fluid of density qin and temperature Tin
enters the channel with a velocity Vin. As it flows vertically upward, the fluid is

heated by the duct walls, which are maintained at the uniform hot temperature Tw.

Taking buoyancy forces into consideration through the Boussinesq approximation

and using the following dimensionless variables

x� ¼ x

W
; y� ¼ y

W
; u� ¼ u

Vin

; v� ¼ v

Vin

; h ¼ T � Tin

Tw � Tin
; p� ¼ pþ qingy

qinV
2
in

write the conservation equations of mass, momentum, and energy in dimensionless

forms. What are the dimensionless groups governing the flow and heat transfer in

the channel? What does each of them represent?

Exercise 8

Estimates the Reynolds number of the following flows:

(a) Water flowing at a speed of 15 km/hr over a whale 10 m long.

(b) Air flowing at a speed of 800 km/hr over the wing of an F16 airplane of mean

chord length 3.450336 m.

(c) Glycerine of dynamic viscosity 0.96 kg/ms and density 1258 kg/m3
flowing at

a speed of 2.8 m/s in a pipe inclined at 25° to the horizontal and of diameter

250 mm.

Exercise 9 Starting from the incompressible version of the Navier-Stokes equa-

tions derive simplified equations based on the following assumptions:

3.11 Exercises 81

(a) Viscous effects are much more significant than any effects of fluid accelera-

tion, i.e.,
@

@t
vð Þ þ r � vv½ � 	 r � lrv½ �

which corresponds to Re ¼ qUL=l 	 1 (Stokes Equations).

(b) Inertial effects dominate and viscous effects are considered to be negligible

throughout the flow domain, i.e.,

@

@t
vð Þ þ r � vv½ �
 r � lrv½ �

which corresponds to Re ¼ qUL=l
 1 (Euler equations).

(c) Derive the Bernoulli equation from momentum conservation with the fol-

lowing hypothesis: one dimensional steady state conditions of a frictionless

fluid l ¼ 0.

References

1. Navier CLMH (1823) Mem Acad R Sci Paris 6:389–416

2. Stokes GG (1845) Trans Camb Phil Soc 8:287–305

3. Hauke G (2008) An Introduction to Fluid Mechanics and transport phenomena. Springer, New

York

4. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics. Springer, New York

5. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing

Corporation, USA

6. Bird RB, Stewart WE, Lightfoot EN (2006) Transport phenomena, 2nd edn. Wiley, USA

7. Falkovich G (2011) Fluid mechanics (A Short Course for Physicists). Cambridge University

Press, Cambridge

8. Emanuel G (2000) Analytical fluid dynamics. CRC Press, Boca Raton

9. Reynolds O (1903) Papers on mechanical and physical subjects-the sub-mechanics of the

universe. Collected Work, vol III, Cambridge University Press, Cambridge

10. Fay JA (1994) Introduction to fluid mechanics. MIT Press, Cambridge Massachussets

11. Boussinesq J (1897) Theorie de l’ecoulement tourbillonnant et tumulueux des liquides and les

lits rectilignes a grande section. Gauthier-Villars et Fils, Des Comptes Rendus des Seances de

L’academie des Sciences, Paris

12. Cengel YA (2003) Heat and mass transfer: a practical approach, 3rd edn. McGraw-Hill,

Boston

13. Incropera FP, DeWitt DP (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley,

Hoboken

14. Bejan A (1984) Convection heat transfer. Wiley, USA

15. Moukalled F, Darwish M (2013) Double diffusive natural convection in a porous rhombic

annulus. Numer Heat Transfer Part A: Appl 65(5):378–399

16. Moukalled F, Darwish M (2010) Natural convection heat transfer in a porous rhombic

annulus. Numer Heat Transfer, Part A: Appl 58(2):101–124

17. Frohn A, Roth N (2000) Dynamics of droplets. Springer, New York

82 3 Mathematical Description of Physical Phenomena

18. Day P, Manz A, Zhang Y (2012) Microdroplet technology: principles and emerging

applications in biology and chemistry. Springer, New York

19. Chanson H (2004) Hydraulics of open channel flow: an introduction, 2nd edn. Butterworth–

Heinemann, Oxford

20. Oosthuizen PH, Carscallen WE (1997) Compressible fluid flow. McGraw-Hill, Singapore

21. Kreith F, Bohn MS (1993) Principles of heat transfer, 5th edn. West Publishing Company,

USA

References 83

Chapter 4

The Discretization Process

Abstract This chapter introduces the different steps of the discretization process,

which include: (i) modeling of the geometric domain and the physical phenomena

of interest; (ii) discretization of the modeled geometric domain into a grid or mesh

that forms the computational domain (this process, also known as meshing or

domain discretization, results in a set of non-overlapping elements, denoted also by

cells, that cover the computational domain); (iii) numerical or equation discreti-

zation that transforms the set of conservation partial differential equations

governing the physical processes into an equivalent system of algebraic equations

defined over each of the elements of the computational domain; and (iv) the

solution of the resulting set of equations using an iterative solver to yield an

intermediate or final solution field. Throughout the chapter, computer implemen-

tation issues are introduced.

4.1 The Discretization Process

The numerical solution of a partial differential equation consists of finding the

values of the dependent variable ϕ at specified points from which its distribution

over the domain of interest can be constructed. These points are called grid ele-

ments, or grid nodes and result from the discretization of original geometry into a

set of non overlapping discrete elements, a process known as meshing. The

resulting nodes or variables are generally positioned at cell centroids or at vertices

depending on the adopted discretization procedure. In all methods the focus is on

replacing the continuous exact solution of the partial differential equation with

discrete values. The distribution of ϕ is hence discretized, and it is appropriate to

refer to this process of converting the governing equation into a set of algebraic

equations for the discrete values of ϕ as the discretization process and the specific

methods employed to bring about this conversion as the discretization methods. The

discrete values of ϕ are typically computed by solving a set of algebraic equations

relating the values at neighboring grid elements to each other; these discretized or

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_4

85

algebraic equations are derived from the conservation equation governing ϕ. Once

the values of ϕ are computed, the data is processed to extract any needed infor-

mation. The various stages of the discretization process are illustrated in Fig. 4.1.

Figure 4.2 shows the process applied to the study of heat transfer from a

microprocessor connected to a heat sink with a copper base that acts as a heat

spreader. The example of Fig. 4.2 will be used to present various concepts related to

the discretization process. Since the intention is to introduce a numerical technique

for solving the physical processes of interest and since the method has to be

implemented in a computer program, the discretization process will be explained

along that spirit. For example, reference will be made to how to store values in a

code as related to interior elements, boundary elements, variables, etc. Throughout

the book a Matlab® based program denoted by “uFVM” will be used as a devel-

opment vehicle to present various details relating to the implementation of these

methods. Furthermore OpenFOAM®, a very popular finite volume-based open

source code will also be presented both from a user and a developer perspective,

again with the aim of moving from the numerics to the implementation details.

Set of Governing Equations

Defined on a Computational

Domain

System of
Algebraic
Equations

Numerical
Solutions

Finite Difference
Finite Volume
Finite Element

Boundary Element

Combinations of
Multigrid Methods
Iterative Solvers

Coupled-Uncoupled

Structured Grids
(Cartesian, Non-Orthogonal)

Block Structured grids
Unstructured Grids

Chimera Grids

Physical
Phenomena

Physical
Domain

Physical ModelingDomain Modeling

Equation DiscretizationDomain Discretization

Solution Method

Fig. 4.1 The discretization process

86 4 The Discretization Process

4.1.1 Step I: Geometric and Physical Modeling

Modeling of physical phenomena is in a way at the heart of the scientific enterprise.

A physical phenomenon cannot generally be considered as understood unless it can

Patch#3

Patch#2 Patch#1
()

t
transient
term

+ v()

convection
term

= ()

diffusion
term

+ Q

source
term

.

.

.

.

.

.

.

.

.

.

.

=

.

.

.

.

.

.

Domain Modeling Physical Modeling

Domain Discretization Equations Discretization

Solution Method

a
C C

+ a
F F

F NB C()

= b
C

Tmicroprocessormicroprocessor

heat spreader baseheat sink T
sink insulated

heat sink

heat spreader base

microprocessor

k T() = q

Fig. 4.2 An illustration of the discretization process

4.1 The Discretization Process 87

be mathematically formulated, and this formulation tested and validated. For our

purpose two levels of modeling are performed, one in relation to the geometry of

the physical domain and a second in relation to the physical phenomena of interest.

At both levels details that are neither relevant nor of interest are ignored or sim-

plified. For example a three dimensional domain could be turned into a two

dimensional depiction, or symmetry can be taken into account to decrease the size

of the study domain. In some cases, physical components may be removed and

replaced with appropriate mathematical representations.

In the example of Fig. 4.2 a microprocessor is connected to a heat sink with a

copper base that acts as a heat spreader. A first model of this system simplifies both

its physics and its geometry. The heat sink and processor are replaced by boundary

conditions that specify the estimated temperature of the heat sink and the expected

operating temperature of the processor, respectively. The physical domain is

modeled as a two dimensional computational domain since the temperature varia-

tion through the thickness of the heat sink will be minimal. For a steady state

solution of the heat flow and temperature distribution in the copper base, only heat

conduction is considered. The result of the modeling process is a system of linear

(or non-linear if k depends on T) partial differential equations, which in this case

involves a simplified form of the energy equation given by

�r � krTð Þ ¼ _q ð4:1Þ

where k is the conductivity of the heat spreader base, and _q is the heat source/sink

per unit volume.

4.1.2 Step II: Domain Discretization

The geometric discretization of the physical domain results in a mesh on which the

conservation equations are eventually solved. This requires the subdivision of the

domain into discrete non-overlapping cells or elements that completely fill the

computational domain to yield a grid or mesh system. This is accomplished by a

variety of techniques resulting in a wide range of mesh types. These meshes are

classified according to several characteristics: structure, orthogonality, blocks, cell

shape, variable arrangement, etc. In all cases the mesh is composed of discrete

elements defined by a set of vertices and bounded by faces. For the mesh to be a

useful platform for equation discretization, information related to the topology of

the mesh elements, in addition to some derived geometric information, are needed.

These include element to element relations, face to elements relations, geometric

information of the surfaces, element centroid and volume, face centroid, area and

normal direction, etc. This information is usually inferred from the basic mesh data.

For certain mesh topologies, details about the mesh can be easily deduced from the

element indices as in structured grids, while for others it has to be constructed and

stored in lists for later retrieval, as is the case with unstructured grids.

88 4 The Discretization Process

Consider the simple domain shown in Fig. 4.3a. The domain consists of a

volume (area for the two dimensional case) and boundaries that account for the

heating or cooling of the microprocessor, a heat sink, and the heat spreader base.

The domain is shown discretized with a simple mesh in Fig. 4.3b. The mesh

boundary is divided into three patches of boundary faces that are assigned numbers,

i.e., Patch#1, Patch#2, and Patch#3. These patches are used to define the physical

boundary conditions for the problem at hand. The mesh consists of 25

non-overlapping elements whose geometry is defined by 40 points (vertices of the

cells). The elements are also bounded by 66 faces (lines in a two dimensional case),

34 of which are interior faces. The algebraic equations that result from the dis-

cretization of the governing equations, as will be explained in step III, are described

for each element in the computational domain with the solution expressed as an

element field with values defined at the centroid of each element. In this example

the elements have a square shape, though other shapes could have been used (e.g.,

triangular elements, as shown in Fig. 4.3c).

The mesh can be described from different perspectives. At the most elementary

level it is a list of vertices or points representing locations in one dimensional, two

dimensional, or three dimensional spaces. The mesh also represents the discretized

domain subdivided into non-overlapping elements, which can be of arbitrary

convex polyhedral shapes. Elements are completely bounded by faces that are

generally shared by neighboring elements, except at the boundaries. Elements can

be defined either in terms of the points that delimit them or in terms of the faces that

bound them. The mesh faces, which are stored in a list, are of two types: (i) interior

faces that are shared by (or connect) two elements, and (ii) boundary faces that

coincide with the domain boundary; these boundary faces have only one contiguous

element. While interior faces are derived from information related to the element

topology, it is essential to provide boundary faces as they define the domain

physical boundary. In two dimensions faces are described in terms of their defining

points. In three dimensions the defining points describe edges that bound the face.

The direction of the normal to an interior face is usually defined based on the

topology of the neighboring elements. On the other hand, the direction of the

T
microprocessor

T
sink insulated

Patch#3

Patch#2 Patch#1

Patch#3

Patch#2 Patch#1

(a) (b) (c)

Fig. 4.3 a Computational domain; b computational mesh (quadrilateral); c computational mesh

(triangular)

4.1 The Discretization Process 89

normal to a boundary face always points outward of the domain. Figure 4.4 shows

some of the components (vertices, faces, and elements shown in Fig. 4.4a–c

respectively) of a mesh. Furthermore the boundary faces are organized into lists of

faces based on the boundary patch to which they belong.

4.1.3 Mesh Topology

During discretization, the partial differential equations are integrated over each

element in the mesh resulting in a set of algebraic equations with each one linking

the value of the variable at an element to the values at its neighbors. The algebraic

equations are then assembled into global matrices and vectors and the coefficients

of every equation stored at the row and column locations corresponding to the

various element indices. The integration of the equations over each element is

referred to as local assembly while the construction of the overall system of

equations from these contributions is referred to as global assembly. Thus while the

discretization of the equations is derived in terms of neighbor elements, the

assembly of the equations in the global matrix accounts for the actual indices of the

elements. This procedure will be detailed in later chapters, however the enabling

ingredients of this procedure are briefly introduced next at their most elementary

level, which is in the form of topological information about elements, faces, and

vertices that are represented in terms of connectivity lists.

Element connectivity relates the local assembly matrix to the global matrix so

that the equations formed for one element are consistent with the equations formed

for the other elements in the computational domain. Generally element to element,

element to face, and element to vertex connectivities are setup. These relate the

element to the neighboring elements, bounding faces, and defining vertices,

respectively. Considering Fig. 4.4, the connectivity for element 9 is shown in

Fig. 4.5.

Patch#3

Patch#2 Patch#1

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32

33 34 35 36

37 38 39 40

Patch#3

Patch#2 Patch#1

1 2 3 4 5

6 7 8 9
13

14 15 16 17 18

10
11 12

19 20 21 22 23

24 25 26
27 28

29 30

31 32

33 34

35 36 37 38 39

40

41

42

43

44

45
464748

49

50

51
525354

55

56

57

62
59

60
61

63
64

65
66

58

Patch#3

Patch#2 Patch#1

1 2 3 4 5 6

12 13 14 15 16 17

18 19 20

23 24 25

21 22

7 8 9 10 11

(a) (b) (c)

Fig. 4.4 a Mesh vertices, b faces, and c elements

90 4 The Discretization Process

Generally for arbitrary elements it is more efficient to assemble flux terms by

looping over faces. In this case it is essential that information about the face element

neighbors be readily available; this is defined in the Face connectivity. For faces,

information about elements sharing the face is stored for use during computations.

The orientation of the face is such that the normal vector to the face points from one

element denoted by element 1 or owner to the second element denoted by element 2

or neighbor. Boundary faces bound only one element, defined as element 1, thus the

normal vector of boundary faces is always oriented outside of the domain. The

connectivity for Face 12 is shown in Fig. 4.6.

Vertex connectivity is useful for post processing and for gradient computation.

As shown in Fig. 4.7, generally it involves the lists of elements and faces that share

the vertex.

F
1

F
2

F
3

F
4

C
Element 9 Connectivity

[10 4 8 15]

[12 8 11 16]

[19 11 12 18]

Neighbours

Faces

Vertices

Fig. 4.5 Element

connectivity

owner neighbour
f

E
1 E

2

S f

Face 12 Connectivity

9

10

[19 12]

Element1

Element2

Vertices

Fig. 4.6 Face connectivity

Vertex Connectivity

Elements

Faces

Fig. 4.7 Vertex connectivity

4.1 The Discretization Process 91

The mapping between local and global indices is briefly illustrated in Fig. 4.8 for

a mesh of five elements.

local element equation is assemble for element 3

element connectivity is used to
transform local indices to global indices

element equation is

Element 3

Neighbors

1

2 3

3

1

2

54

assembled into global matrix

Fig. 4.8 Local element matrix assembly into global matrix

Example 1

For the mesh shown below, derive the element connectivity and represent it in

a global matrix (Fig. 4.9)

Solution

In this mesh element counting starts from 1. The connectivity for the

various elements are given by

1 ! 2; 3

2 ! 1; 3; 4

3 ! 1; 2; 4

4 ! 2; 3

this can be represented in a global matrix as

1 2

3

4

Fig. 4.9 Mesh for example 1

92 4 The Discretization Process

4.1.4 Step III: Equation Discretization

In step III, the governing partial differential equations, are transformed into a set of

algebraic equations, one for each element in the computational domain. These

algebraic equations are then assembled into a global matrix and vectors that can be

expressed in the form

A T½ � ¼ b ð4:2Þ

where the unknown variable T is defined at each interior element and at the

boundary of the computational domain. Boundary values for T are generally

obtained from the specified boundary conditions. To this end an element field has to

be defined for T, and generally for each governing equation.

As schematically depicted in Fig. 4.10, the element field consists of an array of

values defined at the centroid of each element, designated by the interior element

field, which is represented by one array of size equal to the total number of interior

and boundary elements.

The equation discretization step is performed over each element of the com-

putational domain to yield an algebraic relation that connects the value of a variable

� � �
� � � �
� � � �

� � �

2

6

6

4

3

7

7

5

�
�
�
�

2

6

6

4

3

7

7

5

¼

�
�
�
�

2

6

6

4

3

7

7

5

ð4:2Þ

Patch#3

Patch#2 Patch#1

Element Field

1 2 3 4

1 2 3 4

1 2 3 25...

1 2 3 4 25...

interior

patch#1

patch#2

patch#3

Fig. 4.10 Element field

4.1 The Discretization Process 93

in an element to the values of the variable in the neighboring elements. This

algebraic equation is derived by discretizing the differential equation, which for the

example considered is the energy equation written in terms of temperature T, (i.e.,

T is the unknown variable). As shown below, in the finite volume method the

discretization of the equation is performed by first integrating the differential

equation over a control volume or cell to obtain a semi discretized form of the

equation and then approximating the variation of the dependent variable between

grid elements through imposed profiles to obtain the final discretized form. The fact

that only a few grid elements participate in a given discretization equation is a

consequence of the piecewise nature of the chosen profiles. The value of T at a grid

point thereby influences the distribution of T only in its immediate neighborhood.

As the number of grid elements increases, the solution of the discretized equations

is expected to approach the exact solution of the corresponding differential equa-

tion. This follows from the consideration that, as the grid elements get closer

together, changes in T between neighboring grid elements become small, and then

the actual details of the profile assumption become unimportant.

For a given differential equation, the possible discretization equations are by no

means unique, although all types of discretization techniques in the limit of a very large

number of grid elements are expected to give the same solution. The different types

arise from the differences in the profile assumptions and the methods of derivation.

As an example of the equation discretization step using the finite volume method,

the discretized form of the energy equation over the control volume C shown in

Fig. (4.11) is sought. The process starts by integrating Eq. (4.1) over element C that

enables recovering its integral balance form, which was described in Chap. 3, as

�

ZZ

VC

r � krTð ÞdV ¼

ZZ

VC

_qdV ð4:3Þ

3 4 5

14 15 16

8 9 10 f
1

f
2

f
4

f
3

F
1

F
2

F
3

F
4

C

Fig. 4.11 Discretization stencil

94 4 The Discretization Process

Then, using the divergence theorem, the volume integral is transformed into a

surface integral yielding

�

Z

SC

krTð Þ � dS ¼ _qCVC ð4:4Þ

This equation is actually a heat balance over element C. It is basically the integral

form of the original partial differential equation and involves no approximation.

Replacing the surface integral by a summation over the control volume faces,

Eq. (4.4) becomes

�
X

f� nb Cð Þ

krTð Þf � Sf ¼ _qCVC ð4:5Þ

where f represents the integration point at the centroid of the bounding face. This

transformation is the first approximation introduced. Therefore the integral in

Eq. (4.4) is numerically approximated by the fluxes at the centroids of the faces.

This is a second order approximation as will be demonstrated in a later chapter.

Expanding the summation, Eq. (4.5) can be written as

� krTð Þf1 � Sf1 � krTð Þf2 � Sf2 � krTð Þf3 � Sf3 � krTð Þf4 � Sf4 ¼ _qCVC ð4:6Þ

Considering face f1 shown in Fig. (4.12), the surface vector and temperature

gradient in Eq. (4.6) are given by

Sf1 ¼ Dyf1 i

dxf1 ¼ xF1
� xC

rTf1 ¼
@T

@x

� �

f1

iþ
@T

@y

� �

f1

j

ð4:7Þ

where

xC is the x-coordinate of the centroid of element C.

xF1
is the x-coordinate of the centroid of element F1.

Dyf1 is the area of face f1.

Sf1 is the surface vector of face f1 directed out of element C.

rTf1 is the gradient of T at the centroid of face f1.

and by substitution, the first term in Eq. (4.6) is converted to

rTf1 � Sf1 ¼
@T

@x
iþ

@T

@y
j

� �

f1

�Dyf1 i

¼
@T

@x

� �

f1

Dyf1

ð4:8Þ

4.1 The Discretization Process 95

To proceed further, a profile approximating the variation of T between C and F1 is

needed. Assuming linear variation of T, the x-component of the gradient at the face

f1 can be written as

@T

@x

� �

f1

¼
TF1

� TC

dxf1
ð4:9Þ

thus Eq. (4.8) can be approximated as

rTf1 � Sf1 ¼
TF1

� TC

dxf1
Dyf1 ð4:10Þ

or more generally as

� krTð Þf1 � Sf1 ¼ aF1
TF1

� TCð Þ ð4:11Þ

where

aF1
¼ �k

Dyf1
dxf1

ð4:12Þ

Repeating for each of the remaining faces, the following coefficients are obtained:

S f1

S f2

S f3

S f4

x

x

y

y

F
1

F
2

F
3

F
4

C

f
1

f
2

f
4

f
3

Fig. 4.12 Finite volume notation

96 4 The Discretization Process

aF2
¼ �k

Dxf2
dyf2

aF3
¼ �k

Dyf3

dxf3

aF4
¼ �k

Dxf4
dyf4

ð4:13Þ

which when substituted into Eq. (4.6) yields

�
X

f � nb Cð Þ

krTð Þf � Sf ¼
X

F�NB Cð Þ

aF TF � TCð Þ

¼ � aF1
þ aF2

þ aF3
þ aF4

ð ÞTC þ aF1
TF1

þ aF2
TF2

þ aF3
TF3

þ aF4
TF4

¼ _qCVC

ð4:14Þ

or more compactly

aCTC þ
X

F�NB Cð Þ

aFTF ¼ bC ð4:15Þ

where

aC ¼ �
X

F�NB Cð Þ

aF ¼ � aF1
þ aF2

þ aF3
þ aF4

ð Þ

bC ¼ _qCVC

ð4:16Þ

Equations similar to Eq. (4.15) may be derived for all cells in the domain, yielding a

set of algebraic equations, which can be solved using a variety of direct or iterative

methods. Focusing on element C in Fig. (4.13), Eq. (4.15) implies a relation

S f1

S f2

S f
3

Sf4

4

15

1098

F
1

F
2

F
3

F
4

C

f
1

f
2

f
4

f
3

Fig. 4.13 Element notation

4.1 The Discretization Process 97

between TC and the temperatures at its four neighbors namely TF1
, TF2

, TF3
, and TF4

,

which in global assembly would be T9, and T10, T4, T8 and T15.
Similar equations are also derived for boundary elements and their collection

yields the set of equations illustrated in Fig. (4.14), which can be represented in

matrix form as given in Eq. (4.2), where A is the matrix of coefficients, [T] the

solution vector, and b is a vector composed of terms that cannot be included in A.

The methodology to solve Eq. (4.2) is presented in the next section.

Finally it should be stated that the properties of the finite volume method as

related to accuracy, robustness, and other characteristics will be reviewed in later

chapters. This includes examining in more details the finite volume discretization of

the diffusion term, which was presented above for a rectangular Cartesian grid.

4.1.5 Step IV: Solution of the Discretized Equations

The discretization of the differential equation results in a set of discrete algebraic

equations, which must be solved to obtain the discrete values of T. The coefficients

of these equations may be independent of T (i.e., linear) or dependent on T (i.e.

non-linear). The techniques to solve this algebraic system of equations are inde-

pendent of the discretization method, and represent the various trajectories that can

be followed to obtain a solution. For the linear algebraic sets encountered in this

book, the uniqueness of the solution is guaranteed. Therefore if the adopted solution

method gives a solution, it will be the desired solution. All solution methods (i.e.,

all paths to solution) which arrive at a solution will give the same solution for the

same set of discrete equations.

.

.

.

.

.

.

.

.

.

.

.

=

.

.

.

.

.

.

9

9 1084 15

Fig. 4.14 System of equations

98 4 The Discretization Process

The solution methods for solving systems of algebraic equations may be broadly

classified as direct or iterative and are briefly reviewed below.

4.1.5.1 Direct Methods

In a direct method the solution to the system of equations [e.g., Eq. (4.2)] is

obtained by applying a relatively complex algorithm, in comparison with an iter-

ative method, only once to obtain the solution for a given set of coefficients. An

example of a direct method is matrix inversion whereby the solution is obtained as

T½ � ¼ A�1b ð4:17Þ

Therefore a solution for [T] is guaranteed if A−1 can be found. However, the

operation count for the inversion of an N × N matrix is O(N3), which is compu-

tationally expensive. Consequently, inversion is almost never employed in practical

problems. More efficient methods for linear systems are available. For the dis-

cretization methods of interest here, A is sparse, and for structured meshes it is

banded. For certain types of equations (e.g., pure diffusion), the matrix is sym-

metric. Matrix manipulation can take into account the special structure of A in

devising efficient solution techniques. Such methods will be reviewed in Chap. 10.

In general, direct methods are rarely used in computational fluid dynamics

because of their large computational and storage requirements. Most industrial CFD

problems today involve hundreds of thousands of cells, with 5–10 unknowns per

cell even for simple problems. Thus the matrix A is usually very large, and most

direct methods become impractical for these large problems. Furthermore, the

matrix A is usually non-linear, so that the direct method must be embedded within

an iterative loop to update nonlinearities in A. Thus, the direct method is applied

over and over again, making it all the more time-consuming.

4.1.5.2 Iterative Methods

Iterative methods follow a guess-and-correct procedure to gradually refine the

estimated solution by repeatedly solving the discrete system of equations. Let us

consider an extremely simple Gauss-Seidel iterative method. The overall solution

loop for this method may be written as follows:

(a) Guess the discrete values of T at all grid elements in the domain.

(b) Visit each grid element in turn. Update T using

TC ¼

�
P

F�NB Cð Þ

aFTF þ bC

aC
ð4:18Þ

4.1 The Discretization Process 99

The neighboring values are required for the update of TC. These are assumed

known at prevailing values. Thus, grid elements which have already been visited

will have updated values of T and those that have not will have old values.

(c) Sweep the domain until all grid elements are covered. This completes one

iteration.

(d) Check if an appropriate convergence criterion is met. The requirement, for

example, could be that the maximum change in the grid-point values of T be

less than 1 %. If the criterion is met, stop. Else, go back to step b and repeat.

The iteration procedure described here is not guaranteed to converge to a

solution for arbitrary combinations of aC and aNB. Convergence of the process is

guaranteed for linear problems if the Scarborough criterion is satisfied. The

Scarborough criterion requires that aC and aNB should satisfy

�
P

F�NB Cð Þ

aF

aC

� 1 for all grid points

\1 for at least one point

�

ð4:19Þ

Matrices which satisfy the Scarborough criterion have diagonal dominance.

The Gauss-Seidel scheme can be implemented with very little storage. All that is

required is storage for the discrete values of T at the grid elements. The coefficients

can be computed on the fly if desired, since the entire coefficient matrix for the

domain is not required when updating the value of T at any grid point. Also, the

iterative nature of the scheme makes it particularly suitable for non-linear problems.

If the coefficients depend on T, they may be updated using prevailing values of T as

iterations proceed. Nevertheless, the Gauss-Seidel scheme is rarely used in practice

for solving the systems encountered in CFD. The rate of convergence of the scheme

decreases to unacceptably low levels if the system of equations is large. In Chap. 10,

an algebraic multigrid method will be used to accelerate the rate of convergence of

iterative schemes and improve their performance.

4.1.6 Other Types of Fields

In addition to the element field introduced above, other fields are defined for

different purposes. Two such fields include the face field and the vertex field that

are briefly described below.

The face field consists of the array of values defined at the centre of the faces. As

shown in Fig. 4.15, it defines a number of arrays for the interior faces and the

various patch faces. The face field is used, for example, to define the face mass

fluxes for use when solving advective and flow problems.

The vertex field schematically depicted in Fig. 4.16 stores variables at the ver-

tices; these again are grouped into interior vertices and patch vertices. Vertex fields

are usually used for post processing, and in some cases for gradient computation.

100 4 The Discretization Process

4.2 Closure

This chapter overviewed the discretization process, underlining on the way the

basic ingredients needed for the development of a CFD code. The coming chapters

will take each of these ingredients and dissect it, while developing the “uFVM” and

learning about the industrial open source CFD library, denoted by OpenFOAM®.

The next two chapters will further expand on the idea of finite volume mesh and

finite volume discretization.

Patch#3

Patch#2 Patch#1

1 2 3 4

1 2 3 4

1 2 3 25...

1 2 3 33...

Face Field

interior

patch#1

patch#2

patch#3

Fig. 4.15 Face field

Patch#3

Patch#2 Patch#1

1 2 3 8

1 2 3 4

1 2 3 4

1 2 3 25...

Vertex Field

interior

patch#1

patch#2

patch#3

Fig. 4.16 Vertex field

4.2 Closure 101

Chapter 5

The Finite Volume Method

Abstract Similar to other numerical methods developed for the simulation of fluid
flow, the finite volume method transforms the set of partial differential equations
into a system of linear algebraic equations. Nevertheless, the discretization proce-
dure used in the finite volume method is distinctive and involves two basic steps. In
the first step, the partial differential equations are integrated and transformed into
balance equations over an element. This involves changing the surface and volume
integrals into discrete algebraic relations over elements and their surfaces using an
integration quadrature of a specified order of accuracy. The result is a set of
semi-discretized equations. In the second step, interpolation profiles are chosen to
approximate the variation of the variables within the element and relate the surface
values of the variables to their cell values and thus transform the algebraic relations
into algebraic equations. The current chapter details the first discretization step and
presents a broad review of numerical issues pertaining to the finite volume method.
This provides a solid foundation on which to expand in the coming chapters where
the focus will be on the discretization of the various parts of the general conser-
vation equation. In both steps, the selected approximations affect the accuracy and
robustness of the resulting numerics. It is therefore important to define some
guiding principles for informing the selection process.

5.1 Introduction

The popularity of the Finite Volume Method (FVM) [1–3] in Computational Fluid
Dynamics (CFD) stems from the high flexibility it offers as a discretization method.
Though it was preceded for many years by the finite difference [4, 5] and finite
element methods [6], the FVM assumed a particularly prominent role in the sim-
ulation of fluid flow problems and related transport phenomena as a result of the
work done by the CFD group at Imperial College in the early 70 s under the
direction of Professor Spalding [7], with such contributors as Patankar [8], Gosman
[9], and Runchal [10, 11] to cite a few. The FVM owes much of its flexibility and
popularity to the fact that discretization is carried out directly in the physical space
with no need for any transformation between the physical and the computational

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_5

103

coordinate system. Furthermore its adoption of a collocated arrangement [12] made
it suitable for solving flows in complex geometries. These developments have
expanded the applicability of the FVM to encompass a wide range of applications
while retaining the simplicity of its mathematical formulation. Another important
aspect of the FVM is that its numerics mirrors the physics and the conservation
principles it models, such as the integral property of the governing equations, and
the characteristics of the terms it discretizes. In what follows the semi-discretized
form of a general scalar equation is derived. Then the properties required from the
discretization method are discussed along with some guiding principles. The
chapter ends with a discussion of a number of issues pertinent to the FVM. The
transformation of the semi-discretized equation into algebraic equations will be the
subject of a number of chapters to follow.

5.2 The Semi-Discretized Equation

In step 1 of the finite volume discretization process, the governing equations are
integrated over the elements (or finite volumes) into which the domain has been
subdivided, then the Gauss theorem is applied to transform the volume integrals of
the convection and diffusion terms into surface integrals. Following this step, the
surface and volume integrals are transformed into discrete ones and integrated
numerically through the use of integration points (ip). To clarify this approach and
to develop an adequate appreciation for the subtleties of the advanced discretization
schemes discussed in later sections, the following example illustrates the applica-
tion of the technique for a two-dimensional transport problem.

As presented in Chap. 3, the conservation equation for a general scalar variable
/ can be expressed as

@ q/ð Þ
@t

|fflffl{zfflffl}

transient term

þ r � qv/ð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

convective term

¼ r � C
/r/

� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

diffusion term

þ Q/

|{z}

source term

ð5:1Þ

The steady-state form of the above equation is obtained by dropping the transient
term and is given by

r � qv/ð Þ ¼ r � C
/r/

� �
þ Q/ ð5:2Þ

By integrating the above equation over the element C shown in Fig. 5.1; Eq. (5.2) is
transformed to

Z

VC

r � qv/ð ÞdV ¼
Z

VC

r � C
/r/

� �
dV þ

Z

VC

Q/dV ð5:3Þ

104 5 The Finite Volume Method

Replacing the volume integrals of the convection and diffusion terms by surface
integrals through the use of the divergence theorem, the above equation becomes

I

@VC

qv/ð Þ � dS ¼
I

@VC

C
/r/

� �
� dSþ

Z

VC

Q/dV ð5:4Þ

where bold letters indicate vectors, (·) is the dot product operator, Q/ represents the
source term, S the surface vector, v the velocity vector, / the conserved quantity,

and
H

@VC

the surface integral over the volume VC.

5.2.1 Flux Integration Over Element Faces

Denoting the convection and diffusion flux terms by J/;C and J/;D, respectively,
their expressions are given by

J/;C ¼ qv/ ð5:5Þ

J/;D ¼ �C
/r/ ð5:6Þ

Source/
Sink

Transient

Diffusion

Convection

C

F
1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

V
C

Fig. 5.1 Conservation in a
discrete element

5.2 The Semi-Discretized Equation 105

Further, defining the total flux J/ as the sum of the convection and diffusion
fluxes, it can be written as

J/ ¼ J/;C þ J/;D ð5:7Þ

Replacing the surface integral over cell C by a summation of the flux terms over
the faces of element C, the surface integrals of the convection, diffusion, and total
fluxes become

I

@VC

J/;C � dS ¼
X

f� facesðVCÞ

Z

f

qv/ð Þ � dS

0

B
@

1

C
A ð5:8Þ

I

@VC

J/;D � dS ¼
X

f� facesðVCÞ

Z

f

C
/r/

� �
� dS

0

B
@

1

C
A ð5:9Þ

I

@VC

J/ � dS ¼
X

f� facesðVCÞ

Z

f

J
/
f � dS

0

B
@

1

C
A ð5:10Þ

In Eqs. (5.8)–(5.10) the surface fluxes are evaluated at the faces of the element
rather than integrated within it. This transformation has important consequences on
the properties of the FVM, one of which is that it renders the method conservative,
as will be discussed later.

To proceed further with the discretization, the surface integral at each face of the
element in addition to the volume integral of the source term have to be evaluated.
Using a Gaussian quadrature the integral at the face f of the element becomes

Z

f

J/ � dS ¼
Z

f

J/ � n
� �

dS ¼
X

ip�ipðf Þ
J/ � n
� �

ip
xipSf ð5:11Þ

where ip refers to an integration point and ip(f) the number of integration points
along surface f. As seen in Fig. 5.2, a number of options are available with their
accuracy depending on the number of integration points used and the weighing
function ωip. For a simple mean value integration (Fig. 5.2a), also known as the
trapezoidal rule, only one integration point located at the centroid of the face is used
with a weighing function of value equal to 1 (i.e., ip = ωip = 1). This approximation
is second order accurate and is applicable in two and three dimensions. Another
option (Fig. 5.2b) in two dimensions, which is third order accurate, involves two

integration points (ip = 2) positioned at n1 ¼ ð3�
ffiffiffi
3

p
Þ=6 and n2 ¼ ð3þ

ffiffiffi
3

p
Þ=6

where ξ is distance along the face measured from one end and normalized by the
total length, with weights x1 ¼ x2 ¼ 1=2. A third option depicted in Fig. 5.2c uses

106 5 The Finite Volume Method

three integration points (ip = 3) positioned at n1 ¼ ð5�
ffiffiffiffiffi

15
p

Þ=10; n2 ¼ 1=2, and

n3 ¼ ð5þ
ffiffiffi

1
p

5Þ=10, with weights ω1 = 5/18, ω2 = 4/9, and ω3 = 5/18. It is clear
that the computational cost rises with the number of integration points used in the
approximation. With ip(f) denoting the number of integration points along face f,
the general discretized relations for the convection and diffusion terms become

I

@VC

qv/ð Þ � dS ¼
X

f� facesðVÞ

X

ip�ipðf Þ
xip qv/ð Þip� Sf

� �

ð5:12Þ

I

@VC

�C
/r/

� �
� dS ¼

X

f� facesðVÞ

X

ip�ipðf Þ
xip �C

/r/
� �

ip
� Sf

� �

ð5:13Þ

5.2.2 Source Term Volume Integration

Volume integration is used for the source term. Adopting a Gaussian quadrature
integration, the volume integral of the source term is computed as

Z

V

Q/dV ¼
X

ip�ipðVÞ
Q

/
ipxipV

� �

ð5:14Þ

As with surface flux integration, Fig. 5.3 shows different options for volume
integration with their accuracy depending on the number of integration points used
(ip) and the weighing function ωip.

For one point Gauss integration (Fig. 5.3a), ip = ωip = 1 with the integration point
located at the centroid of the element. This approximation is second order accurate
and is applicable in two and three dimensions. In two dimensions, four point gauss

FluxT
f

=

FluxC
f C

+ FluxF
f F

1

+ FluxV
f

FluxT
f

=

FluxC
f C

+ FluxF
f F

1

+ FluxV
f

FluxT
f

=

FluxC
f C

+ FluxF
f F

1

+ FluxV
f

f
1

f
2

f
3

f
4

f
5

f
6

one integration point two integration points three integration points

S
f
1

F
1

F
2

F
3

F
4

F
5

F
6

C

d
CN

1

f
1

f
2

f
3

f
4

f
5

f
6

S
f
1

F
1

F
2

F
3

F
4

F
5

F
6

C

d
CN

1

f
1

f
2

f
3

f
4

f
5

f
6

S
f
1

F
1

F
2

F
3

F
4

F
5

F
6

C

d
CN

1

(a) (b) (c)

Fig. 5.2 Surface integration of fluxes using a one integration point, b two integration points, and
c three integration points

5.2 The Semi-Discretized Equation 107

integration (Fig. 5.3b) involves the use of four integration points. The weights are
computed as the product of the one dimensional weights and the integration points
(ξ, η) are obtained from the one dimensional profiles. Therefore the function is cal-

culated at 3�
ffiffiffi
3

p� �
=6; 3þ

ffiffiffi
3

p� �
=6

� 	
, 3þ

ffiffiffi
3

p� �
=6; 3þ

ffiffiffi
3

p� �
=6

� 	
, 3�

ffiffiffi
3

p� �
=6;

�

3�
ffiffiffi
3

p� �
=6�, and 3þ

ffiffiffi
3

p� �
=6; 3�

ffiffiffi
3

p� �
=6

� 	
with the weights being equal

(ωip = 1/4 for ip = 1 to 4). The nine point gauss integration method (Fig. 5.3c)
involves the use of nine integration points. The accuracy increases with increasing
the number of integration points but so does the computational cost.

5.2.3 The Discrete Conservation Equation for One

Integration Point

While the above terms can be discretized with any specified number of integration
points, it is customary for the finite volume method to use one integration point,
yielding second order accuracy. This was found to be a good compromise between
accuracy and flexibility while keeping the method simple and relatively of low
computational cost. Following the mid-point integration approximation, the
semi-discrete steady state finite volume equation for element C shown in Fig. 5.4
can be finally simplified to

X

f�nbðCÞ
qv/� C

/r/
� �

f
�Sf ¼ Q

/
CVC ð5:15Þ

The aim of the second stage of the discretization process is to transform
Eq. (5.15) into an algebraic equation by expressing the face and volume fluxes in
terms of the values of the variable at the neighboring cell centers. This lineariza-
tion of the fluxes is at the core of the second discretization step.

FluxT

=

FluxC
C

+ FluxV

FluxT

=

FluxC
C

+ FluxV

FluxT

=

FluxC
C

+ FluxV

one integration point

f
1

f
2

f
3

f
4

f
5

f
6

f
1

f
2

f
3

f
4

f
5

f
6

nine integration pointsfour integration points

f
1

f
2

f
3

f
4

f
5

f
6

F
1

F
2

F
3

F
4

F
5

F
6

C

F
1

F
2

F
3

F
4

F
5

F
6

C

F
1

F
2

F
3

F
4

F
5

F
6

C

(a) (b) (c)

Fig. 5.3 Volume integration of source terms using a one integration point, b four integration
points, and c nine integration points

108 5 The Finite Volume Method

5.2.4 Flux Linearization

As schematically depicted in Fig. 5.2a, the face flux can be split into a linear part,
function of the / values at the nodes straddling the face (i.e., /C and /F), and a
non-linear part, which includes the remaining portion that cannot be expressed in
terms of /C and /F . The resulting equation can be written as

J
/
f � Sf ¼ FluxTf

|fflfflffl{zfflfflffl}

total flux
for face f

¼ FluxCf
|fflfflffl{zfflfflffl}

flux linearization
coefficient for C

/C þ FluxFf
|fflfflffl{zfflfflffl}

flux linearization
coefficient for F

/F þ FluxVf
|fflfflffl{zfflfflffl}

non�linearized part

ð5:16Þ

where FluxTf represents the total flux through face f, and is decomposed into three
terms. The first two terms represent the contributions of the two elements sharing
the face and are written via the linearization coefficients FluxCf and FluxFf. The last
term describes the nonlinear contribution that cannot be expressed in terms of /C

and /F and is given by the non-linear term FluxVf. The values of FluxCf, FluxFf,
and FluxVf obviously depend on the discretized term and the scheme used for its
discretization.

The flux linearization is thus obtained by substituting Eq (5.16) into the left hand
side of Eq. (5.15). Repeating for all cell faces yields

X

f�nbðCÞ
J
/
f � Sf

� �

¼
X

f�nbðCÞ
FluxTf
� �

¼
X

f�nbðCÞ
FluxCf /C þ FluxFf /F þ FluxVf

� � ð5:17Þ

f
1

f
2

f
3

f
4

f
5

f
6

F
1

F
2

F
3

F
4

F
5

F
6

C

Fig. 5.4 Fluxes at element
surfaces

5.2 The Semi-Discretized Equation 109

The linearization of the volume flux is performed, as shown in Fig. 5.3a, by
expressing it as a linear function of the element node value /C and is given by

Q
/
CVC ¼ FluxT

¼ FluxC/C þ FluxV
ð5:18Þ

In the case of a constant source term, the volume flux, which represents the right
hand side of Eq. (5.15), reduces to

FluxC ¼ 0

FluxV ¼ Q
/
CVC

ð5:19Þ

Substitution of Eqs. (5.17) and (5.18) in Eq. (5.15), yields the sought after
algebraic relation as

aC/C þ
X

F�NBðCÞ
aF/Fð Þ ¼ bC ð5:20Þ

where the relations between equation coefficients and flux linearization coefficients
are expressed as

aC ¼
X

f�nbðCÞ
FluxCf � FluxC

aF ¼ FluxFf

bC ¼ �
X

f�nbðCÞ
FluxVf þ FluxV

ð5:21Þ

Example 1

Find the linearization coefficients for the discretization of the convection term

when the velocity field is in the positive direction using the approximation

/f ¼ /C (this is known as the upwind scheme).

Solution

J
/
f ¼ qv/ð Þf

thus

J
/
f � Sf ¼ qv/ð Þf � Sf ¼ qf vf � Sf

� �
/f ¼ _mf/f

110 5 The Finite Volume Method

With /f ¼ /C, the coefficients in the total flux equation are obtained as

FluxCf ¼ _mf

FluxFf ¼ 0
FluxVf ¼ 0
and the total flux is expressed as
FluxTf ¼ _mf/C þ 0/F þ 0

5.3 Boundary Conditions

The evaluation of the fluxes at the faces of a domain boundary does not require, in
general, a profile assumption. Rather a direct substitution is usually performed. The
type of boundary conditions are numerous. However, two of the most widely used
ones for general scalars are the Dirichlet and the Neumann boundary conditions. In
mathematical terms these are respectively a value specified (or a first type) and a
flux specified (or a second type) boundary condition.

5.3.1 Value Specified (Dirichlet Boundary Condition)

Consider the case where some scalar / is being convected through an inlet.
Assuming the diffusion of / to be negligible, the boundary condition can be
expressed as

/b ¼ /b;specified ð5:22Þ

For the boundary face shown in Fig. 5.5, the boundary flux is evaluated using the
known value of /b given by Eq. (5.22). Therefore the value of the boundary flux is
not unknown, rather it can be directly evaluated as

J
/
b � Sb ¼ J

/;C
b � Sb

¼ qv/ð Þb � Sb
¼ FluxCb/C þ FluxVb

¼ qbvb � Sbð Þ/b ¼ _mf/b;specified

ð5:23Þ

Thus

FluxCb ¼ 0
FluxVb ¼ _mf/b;specified

ð5:24Þ

5.2 The Semi-Discretized Equation 111

5.3.2 Flux Specified (Neumann Boundary Condition)

Considering the case shown in Fig. 5.6 where the boundary face of the element
C represents physically a wall where a flux for the quantity / is specified.
Mathematically this is equivalent to writing

J
/
b � Sb ¼ J

/
b � nb

|fflfflffl{zfflfflffl}

specified flux

Sb

¼ qb;specifiedSb

ð5:25Þ

In the above equation qb,specified is a known quantity specified by the user,
representing the flux per unit area.

b

S
b

eb

C

t

n

b,specified

Fig. 5.5 Dirichlet boundary
condition

b

S
b

t

n

eb

C

qb,specified

Fig. 5.6 Neumann boundary
condition

112 5 The Finite Volume Method

Thus

FluxCb ¼ 0
FluxVb ¼ qb;specifiedSb

ð5:26Þ

The treatment of these two boundary conditions and others will be detailed in the
following chapters along with the treatment of the terms related to step two
discretization.

5.4 Order of Accuracy

As discussed earlier, fluxes at the faces and sources over the element are evaluated
following the mean value approach, i.e., using the value at the centroid of the
surface (midpoint rule) and cell, respectively. This treatment, in addition to the
assumed variation of / in space around point C, i.e., / ¼ / xð Þ, determine the
accuracy of the discretization procedure. In the adopted method, / is assumed to
vary linearly in space, i.e.,

/ xð Þ ¼ /C þ x� xCð Þ � r/ð ÞC where /C ¼ / xCð Þ ð5:27Þ

5.4.1 Spatial Variation Approximation

The spatial variation of the variable / ¼ / xð Þ within the element shown in Fig. 5.7
can be described via a Taylor series expansion around point xC as

/ xð Þ ¼ /C þ x� xCð Þ � r/ð ÞCþ
1

2
x� xCð Þ2: rr/ð ÞC

þ 1

3!
x� xCð Þ3:: rrr/ð ÞCþ.

þ 1

n!
x� xCð Þn :: . . . ::

|fflfflffl{zfflfflffl}

n�1ð Þtimes

rr. . .r/
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

n times

0

@

1

A

C

þ.

ð5:28Þ

The expression (x − xC)
n in the equation and consequent ones represents the nth

tensorial product of the vector (x − xC) with itself, producing an nth rank tensor.
The operator (:) is the inner product of two 2nd rank tensors, (::) is the inner product
of two 3rd rank tensors, and more generally “ :: . . . ::

|fflfflffl{zfflfflffl}

n�1ð Þtimes

” is the inner product of two

nth rank tensors, all yielding a scalar.

5.3 Boundary Conditions 113

Comparison between the assumed variation given by Eq. (5.27) and the Taylor
series expansion [Eq. (5.28)] indicates an error proportional to |(x − xC)

2| and
implying a second order spatial accuracy.

5.4.2 Mean Value Approximation

The accuracy of the mean value approximation can be derived by integrating the
variable / xð Þ over the cell of centroid C depicted in Fig. 5.8 and leading to

/C ¼ 1

VC

Z

VC

/ dV

¼ 1

VC

Z

VC

/C þ x� xCð Þ � r/ð ÞC þO x� xCj j2
� �h i

dV

¼ /C

VC

Z

VC

dV þ 1

VC

Z

VC

x� xCð Þ � r/ð ÞC dV þ 1

VC

Z

VC

O x� xCj j2
� �

dV

¼ /C þ O x� xj j2
� �

ð5:29Þ

where VC is the volume of the element. The second term is equal to zero because
point C is the centroid of the element. Neglecting the last term in the equation
introduces an error of order 2, demonstrating that the mean value approximation is
second order accurate.

x() x

x
CC

C

C

Fig. 5.7 Variation within an
element

114 5 The Finite Volume Method

The convective flux at face f of element C shown in Fig. 5.9 is computed as

qf vf � Sf
� �

/f ¼
Z

f

qv/ð Þ � dS

¼
Z

f

qf vf /f þ x� xf
� �

� r/ð Þf þO x� xf

2

� �h i

� dS

¼ qf vf/f �
Z

f

dSþ
Z

f

x� xf
� �

� r/ð Þfqf vf � dSþ
Z

f

O x� xf

2

� �

qf vf � dS

¼ qf vf � Sf
� �

/f þ O x� xf

2

� �h i

ð5:30Þ

where again the second term is equal to zero as xf is the centroid of the respective
element surface. Here subscript f denotes the value of the variable, in this case /, at
the face centroid and S is the outward pointing face surface vector.

C

C

Fig. 5.8 Mean-value theorem

C

J
f

,D
S

f
= ()

f
S

f

Diffusion flux f

F

J
f

,C
S

f
= v()

f
S

f

Convection flux

Fig. 5.9 Convection and diffusion fluxes at element faces

5.4 Order of Accuracy 115

For the diffusive flux, truncating second order terms and higher, the following
can be written:

Z

f

C
/r/

� �
� dS ¼

Z

f

C
/r/

� �

f
þ x� xf
� �

� r C
/r/

� �� �

f
þO x� xf

2

� �h i

� dS

¼ C
/r/

� �

f
�
Z

f

dSþ
Z

f

x� xf
� �

dS

2

6
4

3

7
5 : r C

/r/
� �� �

f
þO x� xf

2

� �

¼ C
/r/

� �

f
� Sf þ O x� xf

2

� �

ð5:31Þ

Hence for a second order method, the surface integral and the variation of / within
the element should be second order accurate.

Higher order accuracy can be achieved by increasing the order of accuracy of the
surface integral or of the assumed profile for /. One method developed by Lilek
and Peric [13] in two dimensions used a fourth order accurate surface integral,
evaluated via Simpson’s rule as

Z

f

/dS ¼
/ip1

þ 4/ip2
þ /ip3

6

� �

Sf ð5:32Þ

As shown in Fig. 5.10, for face f the value of / is needed at three integration
points, i.e., the surface centroid ip2, and the vertices of the face ip1 and ip3.

To obtain a formally fourth order accurate discretization, the assumed profile of
/ within the element should also be fourth order accurate such that

/ xð Þ ¼ /C þ x� xCð Þ � r/ð ÞCþ
1

2
x� xCð Þ2 : rr/ð ÞCþ � � � ð5:33Þ

In this case the accuracy of the gradient calculation has to be second order or
higher and that of the Hermitian first order or higher.

ip
1

ip
2

ip
3

f

F

Fig. 5.10 A element face
f showing the integration
points where values are
needed for a higher order
approximation of the surface
integral

116 5 The Finite Volume Method

5.5 Transient Semi-Discretized Equation

For unsteady state the temporal term in Eq. (5.1) is retained and in addition to
integrating over the volume of the element, integration over time is also needed. In
this case the integrated equation becomes

ZtþDt

t

Z

VC

@ q/ð Þ
@t

dVdtþ
ZtþDt

t

X

f�nbðCÞ

Z

f

qv/ð Þf � dS

0

B
@

1

C
A

2

6
4

3

7
5dt

�
ZtþDt

t

X

f�nbðCÞ

Z

f

Cr/ð Þf � dS

0

B
@

1

C
A

2

6
4

3

7
5dt

¼
ZtþDt

t

Z

VC

Q/dV

2

6
4

3

7
5dt

ð5:34Þ

Further simplification of this equation requires a choice with regard to the time
integration accuracy required. This will be dealt with in Chap. 13. For fixed grids,
where the volume and surface of each element are constant in time, the first term
can be integrated as

ZtþDt

t

Z

VC

@ q/ð Þ
@t

dV dt ¼
ZtþDt

t

@

@t

Z

VC

q/dV

0

B
@

1

C
Adt ¼

ZtþDt

t

@ q/
� �

@t
VC dt ð5:35Þ

where

q/C ¼ 1

VC

Z

VC

q/dV ¼ q/ð ÞC þ O D
2

� �
ð5:36Þ

Substituting back, Eq. (5.34) reduces to

ZtþDt

t

@ q/ð Þ
@t

VCdtþ
ZtþDt

t

X

f�nb Cð Þ

Z

f

qv/ð Þf � dS

0

B
@

1

C
A

2

6
4

3

7
5dt

�
ZtþDt

t

X

f�nb Cð Þ

Z

f

Cr/ð Þf � dS

0

B
@

1

C
A

2

6
4

3

7
5dt

¼
ZtþDt

t

Z

VC

Q/dV

2

6
4

3

7
5dt

ð5:37Þ

5.5 Transient Semi-Discretized Equation 117

and using the midpoint rule, Eq. (5.37) becomes

ZtþDt

t

@ q/ð Þ
@t

VCdt þ
ZtþDt

t

X

f�nbðCÞ
qv/ð Þf � Sf

2

4

3

5dt

�
ZtþDt

t

X

f�nbðCÞ
Cr/ð Þf � Sf

2

4

3

5dt

¼
ZtþDt

t

Q
/
CVCdt

ð5:38Þ

Going forward beyond this point requires some assumptions as to how the
variable is changing in time.

5.6 Properties of the Discretized Equations

As the size of the element tends to zero, the numerical solution is expected to be the
exact solution of the general conservation equation [e.g., Eq. (5.2)] irrespective of
the interpolation profile used to evaluate the element / values. However, since
finite volumes are used, it is crucial for the discretized equations to possess some
properties in order to ensure a meaningful solution field. These properties are
discussed next.

5.6.1 Conservation

From a physical point of view it is very important for the transported variables,
which are generally conservative quantities (e.g., mass, energy, etc.), to be con-
served in the discretized solution domain too, otherwise results may be unrealistic.
This property is inherent to the FVM because the fluxes integrated at an element
face are based on the values of the elements sharing the face [8]. Thus for any
surface common to two elements, the flux leaving the face of one element will be
exactly equal to the flux entering the other element through that same face. Thus
these fluxes are of equal magnitudes but of opposite signs (Fig. 5.11). Any method
that possesses this property is said to be conservative.

118 5 The Finite Volume Method

5.6.2 Accuracy

Accuracy refers to how close a numerical solution is to the exact solution. However,
in most of the cases the exact solution for the problem to be solved is unknown.
Therefore a direct comparison to check accuracy is not possible. An alternative is to
consider the truncation error as a measure of accuracy. The error associated with the
first step discretization of the various terms presented above was O|(x − xf)|

2, which
represents a second order accuracy. This means that if the number of grid points is
doubled then the discretization error will be reduced by a factor of 4. The truncation
error of a discretization scheme is the largest truncation error of each of the indi-
vidual terms in the discretized equation. The discretization error does not give the
value of the error on a certain grid. It does tell, however, how fast the error will
decrease with grid refinement. The higher the order of the error the faster it will
decrease with mesh refinement.

5.6.3 Convergence

The nonlinear nature of the conservation equations dealt with here necessitates an
iterative approach. Starting with an initial guess, solutions are obtained by
repeatedly applying a solution algorithm with the solution at the end of an iteration
used as an initial guess for the following iteration. Ideally a solution is said to be
converged when it does not change any further as iterations progress. In practice,
however, a solution is established converged when changes between two consec-
utive iterations fall below a vanishing quantity ε. In general convergence is used to
indicate the obtainment of a solution with any method. Sometimes the term
“convergence” is used to indicate the attainment of a grid independent solution, i.e.,
a solution that does not change with any further grid refinement.

FluxC f C

C

F
1

f

S f

FluxC f C

C

F
1

fS f

FluxT f

FluxFf F FluxVf
FluxC f C FluxFf F

FluxVf

FluxT f=

+ + + +

Fig. 5.11 Fluxes on neighboring elements

5.6 Properties of the Discretized Equations 119

5.6.4 Consistency

A solution to an algebraic equation approximating a given partial differential
equation is said to be consistent if, at each point in the solution domain, the
numerical solution approaches the exact solution of the partial differential equation
as the time step and grid spacing tend to zero, i.e., as the discretization error
approaches zero. For this to be true, the discretization error should be some power
of Δt and/or Δx. If the discretization error is expressed in terms of Δx/Δt then, for
consistency, Δx should tend to zero at a faster rate than Δt.

5.6.5 Stability

Stability refers to the behavior of the discretized equations to be resolved by an
iterative solver. It indicates whether the resulting system of algebraic equations can
be solved under a variety of initial and boundary conditions. In this sense stability is
not really a property of the discretization process but rather a property of the
resulting system of equations. As mentioned in a previous chapter, a sufficient
condition for a system of linear equations to be stable and converge to a solution is
for it to satisfy the Scarborough criterion, i.e., for its matrix of coefficients to be
diagonally dominant.

For transient problems, a stable numerical scheme keeps the error in the solution
bounded as time marching proceeds. The use of explicit or implicit transient
schemes has direct impact on the stability of the numerical method. The stability of
explicit methods is ensured by limiting the size of the time step. On the other hand,
the stability of implicit methods can be enhanced by under-relaxing the discretized
set of algebraic equations either through the use of under relaxation factors or by
applying the false-transient approach, as described in a later chapter.

5.6.6 Economy

Economy is an important consideration in the development and application of CFD
codes. It is understood to mean that the time required to compute realistic flow
problems should not be prohibitive.

5.6.7 Transportiveness

The directional properties exhibited by fluid transport are well known and are
signaled by the change in the type of the transport scalar equation [Eq. (5.2)], which

120 5 The Finite Volume Method

may become hyperbolic under certain conditions. The implications on the finite
volume equation, visualized in Fig. 5.12, can be explained as follows. If there is a
constant source of / within an element C in a flow field with uniform velocity and
diffusivity, then the shapes of the contours of constant scalar / will be influenced
by the ratio of convection to diffusion strengths, i.e., the Péclet number (Pe) defined
as

Pe ¼ Convection strength

Diffusion strength
¼ qu

C=Dx
ð5:39Þ

Based on Eq. (5.39), the case Pe = 0 indicates that the transport of / is governed
by diffusion, which has an elliptic behavior [8]. In this case, isolines of / are
circular and the value of / at C is influenced by the surrounding nodes W and
E (Fig. 5.12). Increasing convection effects (i.e., increasing Pe), the circular con-
tours become elliptic in shape and the region influencing the value of / at C shifts
in the direction of the flow. Therefore for high Pe flows, events at node C will have
a weak or no influence on upstream nodes, while downstream nodes will be
strongly affected.

Failure to observe this requirement in the selected discretization schemes can
give rise to unstable solutions (i..e., unphysical oscillations).

5.6.8 Boundedness of the Interpolation Profile

Ensuring conservation does not guarantee that other important properties of the
original partial differential equation will be maintained by the discretized equation.
For example physical considerations lead to the conclusion that in the absence of

C

Pe = 0 Pe > 0

W E

Fig. 5.12 Illustration of the
transportive property of fluid
flow

5.6 Properties of the Discretized Equations 121

sources, the value of the conserved variable / within the domain should be
bounded by the values at the domain boundaries [14]. The discretized equation

aC/C þ
X

F�NBðCÞ
aF/F ¼ bC ð5:40Þ

would fulfill this requirement when the nodal /C values satisfy the following
constraint:

min
N

i¼1
/Fi

� �
�/C � max

N

i¼1
/Fi

� �
ð5:41Þ

where Fi represents the ith neighbor of C and N their number. This can be achieved
by a judicial control of the discretization schemes and their linearization, as will be
detailed in later chapters.

5.7 Variable Arrangement

While the cell-centered variable arrangement is the one selected in OpenFOAM®

and generally preferred with the FVM (Fig. 5.13a), vertex-centered [15]
(Fig. 5.13b) variable arrangement methods have also been used. Two
vertex-centered arrangements have been adopted resulting in either overlapping
elements or a dual mesh, respectively. Because the dual mesh method is more
popular, it is described next as a representative of vertex-centered methods.

Cell-centered Vertex-centered

(a) (b)

Fig. 5.13 a Cell-centered arrangement; b vertex-centered arrangement

122 5 The Finite Volume Method

5.7.1 Vertex-Centered FVM

In a vertex-centered arrangement the flow variables are stored at the vertices (or
grid points), with elements constructed around the variable locations by using the
concept of a dual mesh and dual cells [16] (Fig. 5.14). Adopting this concept, a cell
can be created around a grid point in several ways. In two dimensions, one
approach (Fig. 5.14a) is by connecting the centroids of the cells having the grid
point in common. As displayed in Fig. 5.14b a second possibility is to join the
centroids of the surrounding elements to the centroids of their faces. The same
construction procedure can be used in three dimensional situations where an ele-
ment around a grid point is created by properly connecting surrounding cells’
centroids, faces’ centroids, and edges’ centroids resulting in non-overlapping
elements.

The use of a vertex-centered arrangement of variables allows for an explicit
profile to be defined over the elements in terms of the vertex variables. In this case
the variables represent point values and variation through the element can be
computed using shape functions or interpolation profiles. This approach permits an
accurate resolution of face fluxes for all mesh topologies, but yields a lower order
accuracy of element-based integrations since the vertex is not necessarily at the
element centroid. Moreover, it increases the storage requirements due to the crea-
tion of larger matrix. Furthermore handling of boundary conditions in cell-vertex
schemes, as shown in Fig. 5.14b, requires additional treatment in order to ensure a
consistent solution at boundary points shared by multiple grid blocks. Still a major
disadvantage is the need to base the mesh on a set of element types for which a
shape function can be defined.

Another shortcoming of the vertex-centered scheme with dual elements appears
at solid boundaries where only a portion of an element is formed and the node
where values are stored is at the wall (Fig. 5.14b). In a regular cell, the integration
of face fluxes results in a residual located at the main point inside the element where
values are stored. In this case however, the residuals will be stored at the wall

(a) (b)

Fig. 5.14 Vertex-centered arrangement: a dual cells connecting centroids of cells, and b dual cells
connecting centroids of cells to centroids of faces

5.7 Variable Arrangement 123

boundary creating a discrepancy and causing an increase in the discretization error
there in comparison with cell-centered schemes. Additional complications may also
arise at sharp edges and branch cuts.

5.7.2 Cell-Centered FVM

The cell-centered variable arrangement is currently the most popular type of variable
arrangement used with the FVM. With this practice, the variables and their related
quantities are stored at the centroids of grid cells or elements. Thus, the elements are
identical to the discretization elements and, in general, the method is second order
accurate since all quantities are computed at element and face centroids, where the
difference between the value of the variable and its average is O(Δx2). Variations
within the cell can be re-constructed using a Taylor series expansion. Another
advantage of the cell-centered formulation is that it allows for the use of general
polygonal elements with no need for pre-defined shape functions. This permits a
straightforward implementation of a full multigrid strategy.

However two important disadvantages of the method are its treatment of
non-conjunctional elements and the manner the diffusion term is discretized on
non-orthogonal cells. The first issue influences the accuracy of the method, the
second its robustness, while both being affected by the quality of the mesh.

Consider the two-cell arrangement shown in Fig. 5.15. It is clear that any
average of a value defined at C and F will be defined at f 0 rather than f, the centroid
of the face. Thus any discretization procedure using this interpolated value will not
have an O(Δx2) accuracy.

For a cell-centered scheme the discretization error depends strongly on the
smoothness of the grid. Results for such a situation are displayed in Fig. 5.16. The
physical situation displayed in Fig. 5.16a represents an annulus between two hor-
izontal cylinders of rhombic cross-sections. The inner cylinder is maintained at the
uniform hot temperature Th while the outer cylinder is kept at the cold temperature
Tc. The difference in temperature creates density variation within the enclosure and
gives rise to buoyancy forces that establish a flow field. Using the grid system

f

S f

C

F

Fig. 5.15 Two non-junctional cell-centered elements

124 5 The Finite Volume Method

displayed in Fig. 5.16a, the velocity and temperature distributions within the
enclosure are obtained numerically using a finite volume method. Generated iso-
therms are displayed in Fig. 5.16b. By carefully inspecting Fig. 5.16b small kinks
can be seen in the region around the horizontal centerline of the domain. The region
around the kinks is magnified and the grid and isotherms in that region are dis-
played in Fig. 5.16c, d, respectively. The kinks in the isotherms are clear in the
magnified plot and are due to the use of the grid with slope discontinuity causing a
discretization error that cannot be reduced independent of how much the grid is
refined. This zero order error does not arise with a cell-vertex scheme. Despite this
fact, for a sufficiently smooth grid, the cell-centered arrangement can attain accu-
racy of order two or higher.

The other issue that affects cell centered FVM is the treatment of
non-orthogonality in the discretization of the diffusion term. This will be covered in
detail in Chap. 8, however a brief explanation is useful at this stage.

In the discretization of the diffusion term (Fig. 15.17) the value of the angle θ

extending between the unit vector e (which is in the direction of the line joining the
centroids of the elements C and F) and the unit vector n (which is normal to the face
shared by the elements C and F) affects the degree of implicitness and hence the
robustness of the method applied in the discretization of the diffusion term.

(a) (b)

(c)

(d)

Fig. 5.16 a Grid used in solving for natural convection in the annulus between horizontal
cylinders of rhombic cross sections; b isotherms over the domain; c a magnified region showing
the grid around the horizontal centerline of the domain; d a magnified region around the horizontal
centerline showing the kinks in the generated isotherms

5.7 Variable Arrangement 125

For discretization, the diffusion term is generally written as

r/ � S ¼ r/ � E
|fflfflffl{zfflfflffl}

Implicit orthogonal�like contribution

þ r/ � T
|fflfflffl{zfflfflffl}

Explicit non�orthogonal like contribution

ð5:42Þ

The larger the angle θ is, the larger the explicit term will be, and the less robust
the discretization method becomes.

To summarize, the vertex-centered scheme with dual elements and the
cell-centered scheme are numerically very similar in the interior of a domain for
steady state calculations. The only situation where the performance of the
vertex-centered scheme is superior to that of the cell-centered scheme is over a
distorted grid. In all other situations, it is more advantageous to use the cell-centered
arrangement as it leads to a more straightforward implementation in a computer code.

5.8 Implicit Versus Explicit Numerical Methods

As described in Sect. 5.1, once the number of integration points and the type of
linearization are defined, the cell-centered finite volume discretization method
results in a set of equations with the values of the dependent variables at the cell
centers as unknowns. The way these unknowns are organized and solved, classifies
the adopted computational approach. Numerical solution schemes are often referred
to as being either explicit or implicit.

An explicit numerical method is one in which the dependent variables are
computed directly via already known values. In this case any discretization operator
can be directly evaluated based on the actual variable values.

On the other hand, a numerical method is said to be implicit when the dependent
variables are treated as unknowns and assembled to form a coupled set of equations
which are then solved via special numerical tools using either a direct or an iterative
solution algorithm.

The conservation equations dealt with in computational fluid dynamics are
nonlinear and the implicit approach is most often preferred over the explicit method
for solving them. Once the proper discretization and linearization are performed, the

S f

n

e dCFf

t

C

F

Fig. 15.17 A non-orthogonal
element

126 5 The Finite Volume Method

last step is to solve the set or system of algebraic equations to get the solution.
Solving the corresponding system with a direct equation solver, as discussed in a
previous chapter, is not feasible. The iterative approach being more economical, is
the most widely, if not the only one, used. In difference with a direct approach,
starting from an initial guess an iterative method progresses toward solution by
using results obtained at the end of an iteration as the initial guess for the following
iteration. The sequence of events is said to be converging if the intermediate
computed solution is approaching the final solution, otherwise it is said to be
diverging. The process is general and is used whether solving for one time step in a
transient problem or for a final solution in a steady state problem. In fact adopting
an iterative approach to obtain a steady state solution is computationally cheaper
than marching in time until steady state is reached. Additional details about matrix
iterative solvers will be covered in Chap. 10.

5.9 The Mesh Support

Now that the basis of the numerics of the FVM and its properties have been
presented, it is worth outlining the needed mesh support. In all preceding deriva-
tions it has been implicitly assumed that certain geometric and topological infor-
mation is readily available. Even though the description of the finite volume mesh
will be the subject of the next two chapters, based on the covered material so far, it
has become possible to draw a simplified list of its characteristics.

The application of the FVM as a numerical discretization technique necessitates
a mesh support that provides a range of information both geometric and topological,
as described next.

For an element, the needed information includes: its index, its centroid, a list of
bounding faces, and a list of neighboring elements. For a face, information is
needed about its index, its centroid, its surface vector, a list of neighboring elements
(2 for an interior face and one for a boundary face), in addition to a list of vertices
that defines it. Also needed is information about the boundaries of the computa-
tional domain, i.e., the boundary faces that define each boundary patch.

Another issue to be resolved is the orientation of the normal vector to an element
face. In the above derivations it was assumed that the normal to all faces of the
element were pointing outward. The normal vectors to faces in a computational
domain cannot be all pointing outward. Generally any element will have some of its
faces with their normal vectors pointing outward while for the remaining faces they
will be pointing inward. This indicates that a proper account should be made of the
face sign.

Why and how the above is defined and used will be the focus of the next chapter.

5.8 Implicit Versus Explicit Numerical Methods 127

5.10 Computational Pointers

Throughout this book uFVM, a Matlab®-based finite volume CFD educational
code, and openFOAM® [17], an open source finite volume code capable of solving
industrial type problems, will be used to illustrate implementation details and
concretize various numerical procedures. Generally, comments about implemen-
tation techniques, adopted methods, and data structure in these two codes will be
added, unless otherwise stated, in the Computational Pointers’s section of every
chapter to follow. Moreover, a number of uFVM test cases (testDiffusion,
testAdvection, testFlow, testSource, etc.) are available for the reader and can be
downloaded from the book website at the URL address mentioned earlier.

5.10.1 uFVM

The computer program uFVM is an unstructured three dimensional finite volume
code that was developed for academic purposes. It is written in Matlab® and as such
lends itself substantially to any type of dissection by the user. Moreover, the
Matlab® environment allows users to unroll the various data structures adopted in
the code at any time during the running of a case. Furthermore because it is
intended for academic and teaching use, clarity of coding was high on the priority
list while devising the implementation details of the various algorithms and
schemes. Still all of its numerics and algorithms are similar in many ways to those
used in industrial oriented CFD codes and thus uFVM is quite useful as a guide for
anyone interested in developing a CFD code.

The discretized system of equations in uFVM is stored in a matrix format such
that each row represents the discretized equation in one element, with the
off-diagonal coefficients representing the mutual influence of neighboring elements.
The computational representation of this matrix usually takes into account the fact
that each row will contain only a small number of non-zero elements, specifically in
each row there will be as many non-zero elements as neighbors to the element
associated with the row.

For the example shown in Fig. 5.18, the mesh consists of 7 elements, and
element 3 has four neighbors. Thus the discretized equation for element 3 will
include 4 coefficients in addition to the diagonal coefficient. It is clear why for large
meshes many of the non-diagonal elements are zero.

In both uFVM and as is shown later in OpenFOAM®, and indeed in all CFD
codes, a sparse matrix is used to store the various coefficients of the resulting
system of equations. In uFVM, the matrix A is stored in an array of arrays, where
the first element of each row represents the diagonal element, while the remaining
elements of the array store the non-diagonal coefficients. The right hand side of the
system is stored in a separate array B. This is illustrated in Fig. 5.18.

128 5 The Finite Volume Method

5.10.2 OpenFOAM®

OpenFOAM® (Open source Field Operation AndManipulation) is an object-oriented
C++ framework that can be used to build a variety of computational solvers for
problems in continuum mechanics with a focus on finite volume discretization.
OpenFOAM® also includes several ready solvers, utilities, and applications that can
be directly used. At the core of these libraries are a set of object classes that allow the
programmer tomanipulatemeshes, geometries, and discretization techniques at a high
level of coding. Tables 5.1, 5.2, 5.3 and 5.4 present a list of the main OpenFOAM®

classes and their functions. These classes represent the basic bricks for the develop-
ment of OpenFOAM® based applications and utilities. They enable programmers
constructing a variety of algorithms while allowing for extensive code re-use.

Another characteristic of OpenFOAM® is its use of operator overloading that
allows algorithms to be expressed in a natural way. For example, the discretization
of the transport equation for a generic scalar / given by

=

1

2 3 4

5 67

1 [3]

2 [3,7]

3 [1 2 5 4]

4 [3 6]

5 [3 6 7]

6 [4 5]

7 [2 5]

Connectivity A B

Fig. 5.18 Coefficients for an element equation with element connectivity

Table 5.1 Numerics and discretization

Objects Type of data OpenFOAM® Class

Interpolation Differencing schemes surfaceInterpolation<template>

Explicit discretization:
differential operator

ddt, div, grad, curl fvc::

Implicit discretization:
differential operator

ddt, d2dt2, div, laplacian fvm::

5.10 Computational Pointers 129

@

@t
/ð Þ

|fflffl{zfflffl}

unsteady term

þ r � v/ð Þ
|fflfflfflfflffl{zfflfflfflfflffl}

convection term

¼ r � D/r/
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

diffusion term

þ P/� C
|fflfflfflffl{zfflfflfflffl}

source and sink term

ð5:43Þ

is basically written in OpenFOAM® as (Listing 5.1)

The fvm::div operator for example, takes the convective flux as a coefficient field
defined over the faces of the control elements and phi as the variable field defined
over the cell centroids, and returns a system of equations including a LHS matrix
and a RHS source that represent the discretization of the convection operator.
These LHS matrices and RHS vectors are generated for each of the operators and
then added or subtracted as needed to yield the final system of equations that

Table 5.2 Computational domain

Objects Type of data OpenFOAM® Class

Variables Primitive variables scalar, vector, tensor

Mesh components Point, face, cell point, face, cell

Finite volume mesh Computational mesh fvMesh, polyMesh

Time Time database Time

Table 5.3 Field operation

Objects Type of data OpenFOAM® Class

Field List of values Field<template>

Dimensions Dimension set up dimensionSet

Variable field Field + mesh + boundaries + dimension GeometricField<template>

Algebra +, −, pow, = , sin, cos… field operators

Table 5.4 Linear equation systems and linear solvers

Objects Type of data OpenFOAM® Class

Sparse matrix Matrix coefficients and manipulation lduMatrix, fvMatrix

Iterative solver Iterative matrix solvers lduMatrix::solver

Preconditioner Matrix preconditioner lduMatrix::preconditioner

Listing 5.1 Script for solving a simple transport equation using OpenFOAM®

130 5 The Finite Volume Method

represent the discretized set of algebraic equations defined over each element of the
computational domain.

The namespaces fvm:: and fvc:: allow for the evaluation of a variety of operators
implicitly and explicitly, respectively.

The explicit operator fvc, named “finite volume calculus”, returns an equivalent
field based on the actual field values. For example the operator fvc::divð/Þ returns
an equivalent geometricField in which each cell contains the value of the diver-
gence of the variable ð/Þ.

The fvm implicit operator, instead, defines the implicit finite volume discreti-
zation in terms of matrices of coefficients. For example fvm::laplacian(/) returns an
fvMatrix in which all the coefficients are based on the finite volume discretization of
the laplacian.

The role of the fvm:: and fvc:: operators is to construct the LHS and RHS of a
system of equations representing the discretized form of Eq. (5.43) over each
element in the mesh. The discretization process yields a system of equations that
can be represented in the matrix form shown in Fig. 5.19.

Each row of the system represents the discretized equation in one element, with
the off-diagonal coefficients representing the mutual influence of the neighboring
elements.

In OpenFOAM® the matrix of coefficients is stored in a class named lduMatrix
and the specialized fvMatrix. The chosen storage format of the coefficients is based
on the ldu sparse format, in which all coefficients are stored in three main arrays:
diagonal, upper, and lower. The diagonal coefficients are thus stored in one array
accessed by diag() function with its dimension being equal to the number of ele-
ments in the computational domain. The upper and lower coefficients are stored
each in an array as shown in Fig. 5.20. The source or the right hand side is stored
under a specific vector called source with its dimension being also equal to the
number of cells over the computational domain.

.

.

.

.

.

The matrix of coefficients "lduMatrix"

.

.

.

.

.

.

Thevector of
unknowns

=

.

.

.

.

.

.

Vector
"source"

Fig. 5.19 The matrix
“lduMatrix” and the vector
“source” in which the
coefficients and sources are
stored

5.10 Computational Pointers 131

It is worth noting that despite defining the fvMatrix class as a “template” the vector
specialization of the class does not imply a block coupled form of the matrix itself but
just a vector of scalar equations that are solved in a standard segregated approach.
This is confirmed by the code defined inside the fvMatrix class shown in Listing 5.2
with its member function, which returns the diagonal vector coefficients of the
matrix, only returning as object a scalar field independently of the template type.

=

lduMatrix

diag() lower() upper()

Fig. 5.20 The ldu sparse matrix storage (lduMatrix)

Listing 5.2 Excerpt of the code defined inside the fvMatrix class returning as object a scalar field

132 5 The Finite Volume Method

More details on the coefficients’ storage techniques used in uFVM and
OpenFOAM® will be presented in Chap. 7.

5.11 Closure

In this chapter a general overview of the FVM was presented. The discretization
process was shown to involve two distinct steps, with step 1 resulting in a set of
semi-discretized equations. The chapter also discussed some guiding principles for
the discretization process, which guarantee that the resulting discretized equation
will possess some desirable attributes. Before embarking onto a detailed description
of the numerical techniques that will be used in step 2 of the discretization process,
the focus of the next chapter will be on the discretization of the computational
domain and some related issues.

5.12 Exercises

Exercise 1

A critical tool used with OpenFOAM® is Doxygen [18]. It is an open source
software that generates automatic documentation from annotated C++ sources.
Doxygen uses the UML (http://www.uml-diagrams.org/class-reference.html) graph
formalism and is capable of visually displaying the relations between the various
classes, inheritance diagrams, and collaboration diagrams, which are all generated
automatically as easily browsed HTML documents. Two options are available to
access Doxygen. The first is to generate the documents by direct compilation on the
local machine (the main files are placed in $WM_PROJECT_DIR/doc/Doxygen).
The second option is to access Doxygen on the web at the address http://www.
openfoam.org/docs/cpp/. This latest option yields always up to date documentation.
To start, either open the browser at the address http://www.openfoam.org/docs/cpp/
or open the file $WM_PROJECT_DIR/doc/Doxygen/html/index.html. Once
opened, click on the Classes button that appears in the menu in the upper part of the
screen. Then click on the Class Index button. Once clicked, a list ordered alpha-
betically of all classes defined in OpenFOAM® is displayed. The inheritance dia-
gram of any class along its public member functions and derived classes are
obtained by simply clicking on the class name appearing in the list. Doxygen is
used to quickly browse all source files as well as checking all the properties of the
classes and namespaces. Basically the most common information to look for are
class inheritances and public member functions as well as public class constructors.

5.10 Computational Pointers 133

(a) Using the Doxygen documentation find the class definition of the following
type of data:

Foam::face
Foam::cell
Foam::fvMesh
Foam::fvMatrix

(b) Find the parent classes for each of the classes of (a).
(c) Find the public constructors for each of the classes defined in (a).
(d) Find all the public member functions defined in each of the classes of (a).
(e) Find all the public member functions defined in the parent class of each of the

classes of (a).

Exercise 2

Run testDiffusion (which is available as a test case with uFVM) for one iteration,
then

(a) Use ‘cfdGetCoefficients’ to get the global matrix data structure and compare it
to that shown in Fig. 5.18.

(b) Use cfdGetMesh to get a reference to the Mesh object and find the definition
of a face, a cell and a vertex.

References

1. Blazek J (2005) Computational fluid dynamics: principles and applications. Elsevier,
Amsterdam

2. Ferziger JH, Peric M (2002) Computational methods for fluid dynamics, 3rd edn. Springer,
Berlin

3. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the
finite volume method. Prentice Hall, New Jersey

4. Courant R, Friedrichs KO, Lewy H (1928) Über die partiellen Differenzengleichungen der
Mathematischen Physik. Math Ann 100:32–74 (English translation, with commentaries by
Lax, P.B., Widlund, O.B., Parter, S.V., in IBM J. Res. Develop. 11 (1967))

5. Crank J, Nicolson P (1947) A practical method for numerical integration of solution of partial
differential equations of heat-conduction type. Proc Cambridge Philos Soc 43:50–67

6. Clough RW (1960) The finite element method in plane stress analysis. Proceedings of second
ASCE conference on electronic computation, Pittsburg, Pennsylvania, 8:345–378

7. Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press,
Massachusetts

8. Patankar SV (1967) Heat and mass transfer in turbulent boundary layers, Ph.D. Thesis,
Imperial College, London University, UK

9. Gosman AD, Pun WM, Runchal AK, Spalding DB, Wolfshtein M (1969) Heat and mass
transfer in recirculating flows. Academic Press, London

10. Runchal AK (1969) Transport processes in steady two-dimensional separated flows. Ph.D.
Thesis, Imperial College of Science and Technology, London, UK

134 5 The Finite Volume Method

11. Runchal AK, Wolfshtein M (1969) Numerical integration procedure for the steady-state
Navier-Stokes equations. Mech Eng Sci II 5:445–453

12. Rhie CM, Chow WL (1983) A numerical study of the turbulent flow past an isolated airfoil
with trailing edge separation. AIAA J 21:1525–1532

13. Lilek Z, Peric M (1995) A fourth-order finite volume method with collocated variable
arrangement. Comput Fluids 24(3):239–252

14. Leonard BP (1988) Universal limiter for transient interpolation modeling of the advective
transport equations: the ultimate conservative difference scheme. NASA Technical
Memorandum 100916, ICOMP-88-11

15. Baliga BR, Patankar SVA (1983) Control volume finite-element method for two-dimensional
fluid flow and heat transfer. Numer Heat Transf 6:245–261

16. Vaughan RV (2009) Basic control volume finite element methods for fluids and solids. IISc
research monographs series, IISc Press

17. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org
18. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

References 135

Chapter 6

The Finite Volume Mesh

Abstract A key ingredient in the implementation of the finite volume method is

setting up the geometrical support framework for the problem at hand. This process

starts with mesh generation, which replaces the continuous domain by a discrete

one formed of a contiguous set of non overlapping elements or cells delimited by a

set of faces, and the defining of the physical boundaries through the marking of the

boundary faces. It continues with the computation of relevant geometric informa-

tion for the various components of the computational mesh, and is completed by

capturing the topology of these components, i.e., how they are related and located

one with respect to the other. Thus the result of the domain discretization step is not

only the set of non-overlapping elements and other related geometric entities and

the generated information about their geometric properties, but also the topological

information about their arrangement and relations. It is this combined information

that defines the finite volume mesh. The objective of this chapter is to clarify the

topological and geometric requirements of the finite volume mesh.

6.1 Domain Discretization

The discretization of the physical domain, or mesh generation, produces a com-

putational mesh (Fig. 6.1) on which the governing equations are subsequently

solved. The methods and techniques used for domain discretization have changed

drastically over the last few decades [1, 2], and, nowadays, have become mostly

automated [3–6]. Before reviewing the types of elements commonly used in a

computational mesh, the characteristics and attributes that the mesh system should

possess in order to be employed in the context of the finite volume method are first

described. These attributes will be presented in the context of computing the gra-

dient of a variable ϕ on both a structured and an unstructured triangular mesh.

In general a geometric domain may be discretized using either a structured or an

unstructured grid system. In a structured mesh, three dimensional elements are

defined by their local indices (i, j, k). A structured grid system has many coding and

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_6

137

performance advantages but suffers from a limited geometric flexibility. Additional

flexibility in the generation of structured meshes can be achieved by employing

multiple blocks to define the geometry, with a structured mesh generated for each

block either independently from other blocks or jointly.

Another way to make the mesh generation more flexible is to avoid the use of

structured grids with their implicit topological information, and to adopt an

unstructured mesh with explicit topological information based on connectivity

tables and geometric entity numbering.

Structured grids remained the staple of numerical simulation for a long time and

it is only in the past two decades that unstructured grids became more popular [7].

Starting in early 1970s, interest in automatic mesh generation escalated as problem

size increased and manual mesh generation became too time consuming [8]. The

first methods were semi-automatic with an operator manually placing points in the

computational domain and then, in a second step, using a computer to generate the

mesh. Nowadays the whole process is fully automated with both points and ele-

ments generated automatically.

Most modern CFD codes have the ability to use unstructured grids in addition to

a variety of hybrid multiblock grids [9]. OpenFOAM® [10] uses unstructured grids

but can also use conforming and non-conforming multiblock grids [11]. The finite

volume method will be presented here in the context of an unstructured grid system.

However as the unstructured finite volume mesh requirements are defined, its

characteristics will be compared to those of a structured grid system.

6.2 The Finite Volume Mesh

The discussion for the requirements of the finite volume mesh will be contextu-

alized in terms of a simple problem, namely the computation of the gradient of an

element field. The gradient will first be computed on a structured grid and then over

an unstructured grid; the differences will help clarifying a number of issues.

Insulated

T
microprocessor

T
sink

node element

face

node element

face

(a) (b) (c)

Fig. 6.1 a Domain of interest, b domain discretized using a uniform grid system, and c domain
discretized using an unstructured grid system with triangular elements

138 6 The Finite Volume Mesh

6.2.1 Mesh Support for Gradient Computation

Many techniques can be used to compute the gradient of an element field, and these

will form the subject of Chap. 9. The method adopted in this chapter is based on the

Green-Gauss theorem [12, 13]. It is relatively straightforward and can be used for a

variety of topologies and grids (structured/unstructured, orthogonal/nonorthogonal,

etc.). The starting point is defining the average gradient over a finite volume ele-

ment of centroid C and volume VC as

r/C ¼
1

VC

Z

VC

r/ dV ð6:1Þ

Then, using the divergence theorem, the volume integral is transformed into a

surface integral yielding

r/C ¼
1

VC

Z

@VC

/ dS ð6:2Þ

where dS is the outward pointing surface vector. In the presence of discrete faces,

Eq. (6.2) can be written as

r/CVC ¼
X

@VC

Z

face

/ dS ð6:3Þ

Next the integral over a cell face is approximated using the mid-point integration

rule to become equal to the interpolated value of the field at the face centroid

multiplied by the face area, resulting in

r/C ¼
1

VC

X

f¼nb Cð Þ
/fSf ð6:4Þ

By reviewing Eq. 6.4 and Fig. 6.2, it is clear that to compute the average of the

gradient over the control element C, information about the face area and direction

(Sf) is required, as well as information about the neighboring elements and the ϕ

values at the element centroids /C;/Fk

� �

. This information is needed to compute the

value of ϕ at the interface (ϕf), which will have to be interpolated in some fashion.

A profile for the variation of the dependent variable ϕ between nodal values is

assumed, which basically introduces an approximation in the evaluation of the

gradient. In all cases the value of ϕf will have to be computed at each face centroid.

Assuming a linear profile for the variation of ϕ between the elements C and

F straddling the interface f, an approximate value for ϕf, denoted by /f , can be

computed as

6.2 The Finite Volume Mesh 139

/f ¼ gF/F þ gC/C ð6:5Þ

One way to calculate the weight factors gF and gC is given by

gF ¼
VC

VC þ VF

gC ¼
VF

VC þ VF

¼ 1� gF ð6:6Þ

Other interpolation practices may be used some of which will be explained later in

the chapter.

Example 1

Compute the gradient for the two fields given in Table 6.1 over the two-

dimensional cell shown in Fig. 6.3 using the surface vector values given in

the table.

f

S
f1

F1

f

C

Fig. 6.2 Gradient computation

Table 6.1 Geometric data for Example 1

Sf V Field (1) Field (2)

C 37.8 1 6

1 (−2.4, −3.24) 1 10

2 (2.4, −3.48) 1 9

3 (4.1, −6.7) 1 5

4 (2.2, 3.7) 1 3

5 (−2.64, 2.9) 1 4

6 (−3.66, 6.82) 1 8

140 6 The Finite Volume Mesh

Solution

For case 1, the field is constant with a value of 1, so the value of the gradient

is expected to be 0.

r/C ¼
1

VC

X

f¼nb Cð Þ
/fSf

¼ 1

VC

/f1
Sf1 þ /f2

Sf2 þ /f3
Sf3 þ /f4

Sf4 þ /f5
Sf5 þ /f6

Sf6
� �

r/C ¼
1

37:8

1 �2:4i� 3:24jð Þ þ 1 2:4i� 3:48jð Þ þ 1 4:1i� 6:7jð Þ
þ 1 2:2iþ 3:7jð Þ þ 1 �2:64iþ 2:9jð Þ þ 1 �3:66iþ 6:82jð Þ

� �

¼ 0iþ 0jð Þ

This is actually a property of the surfaces of closed elements, provided they

all are pointing outward (or inward) they always sum to zero.

For case 2 the gradient is computed as

r/C ¼
1

VC

X

f¼nb Cð Þ
/fSf

¼ 1

VC

/f1
Sf1 þ /f2

Sf2 þ /f3
Sf3 þ /f4

Sf4 þ /f5
Sf5 þ /f6

Sf6
� �

¼ 1

37:8

10 �2:4i� 3:24jð Þ þ 9 2:4i� 3:48jð Þ þ 5 4:1i� 6:7jð Þ
þ 3 2:2iþ 3:7jð Þ þ 4 �2:64iþ 2:9jð Þ þ 8 �3:66iþ 6:82jð Þ

�

!

¼ �15:14i� 19:96j

F
4

F
5

F
3

F
2

F
1

F
6

C
f
3

f
4

f
5

f
6

f
1

f
2

Fig. 6.3 A two dimensional cell for Example 1

6.2 The Finite Volume Mesh 141

6.3 Structured Grids

For a regular structured grid, every interior cell in the domain is connected to the

same number of neighboring cells. These neighboring cells (Fig. 6.4) can be

identified using the indices i, j, and (k) in the x, y, and (z) coordinate direction,

respectively, and can be directly accessed by incrementing or decrementing the

respective indices. This allows for lower memory usage since topological infor-

mation is embedded in the mesh structure through the indexing system. This also

leads to greater efficiency in coding, cache utilization, and vectorization. Structured

grids were widely used in the development of the Finite Volume and Finite

Difference methods.

In a structured grid, one can associate with each computational cell an ordered

set of indices (i, j, k), where each index varies over a fixed range, independently of

the values of the other indices, and where neighboring cells have associated indices

that differ by plus or minus one. Thus, if there are Ni, Nj, and Nk elements in the i, j,

and k index direction, respectively, then the total number of elements in the domain

is Ni � Nj � Nk. In three-dimensional spaces, elements are hexagons with 6 faces

and 8 vertices, with each interior element having 6 neighbors. In two-dimensions,

elements are quadrilaterals with 4 faces and 4 vertices, with each interior element

having 4 neighbors.

6.3.1 Topological Information

Global indices are generally used for building the full system of equations over the

computational domain, while local indices are employed to define the local stencil

for an element, information that is useful during the discretization process. In

structured grid systems local indices are used interchangeably as global indices

1

1

i 1 i +1i Ni

Nj

j +1

j 1

j

Fig. 6.4 Local indices and topology

142 6 The Finite Volume Mesh

because they can be readily translated to global indices and vice versa, as illustrated

in Fig. 6.5. In two dimensional spaces the relation between local indices (i, j) and

the global index (n) is given by

n ¼ iþ j� 1ð ÞNi 1� i�Ni 1� j�Nj ð6:7Þ

and the corresponding global indices for the neighbors of cell (i, j) are obtained as

i; jð Þ ! n

iþ 1; jð Þ ! nþ 1

i; jþ 1ð Þ ! nþ Ni

i� 1; jð Þ ! n� 1

i; j� 1ð Þ ! n� Ni

ð6:8Þ

On the other hand, in three-dimensional spaces the relation is

n ¼ iþ j� 1ð ÞNiþ k � 1ð ÞNi � Nj 1� i�Ni 1� j�Nj 1� k�Nk

ð6:9Þ

and the corresponding global indices for the neighbors of cell (i, j, k) are given by

i; j; kð Þ ! n

iþ 1; j; kð Þ ! nþ 1

i; jþ 1; kð Þ ! nþ Ni

i; j; k þ 1ð Þ ! nþ Ni � Nj

i� 1; j; kð Þ ! n� 1

i; j� 1; kð Þ ! n� Ni

i; j; k � 1ð Þ ! n� Ni � Nj
ð6:10Þ

This greatly simplifies the access to the coefficients and the solution of the system

of equations, since the coefficients constructed over the local stencil of a cell are

basically used in the general system of equations with no need for a translational

a
C 1()

a
C 2()

a
C 3()

a
C n 1()

a
F n Ni() a

F n 1() a
C n() a

F n+1() a
F n+Ni()

a
C n+1()

a
C NiNj()

1

2

n Ni

n 1

n

n+1

n+Ni

NiNj

=

b
1()

b
2()

b
n Ni()

b
n 1()

b
n()

b
n+1()

b
n+Ni()

b
NiNj()

global index

local indices

1 i 1 i +1i Ni

1

Nj

j 1

j

j +1

n = i + j 1() Ni

Fig. 6.5 Local versus global indices

6.3 Structured Grids 143

step between local and global indices as the mapping between them is readily

available. This also applies to the geometric fields and the various conservation

fields that are being resolved.

Example 2

In a 5 × 7 structured grid find the global indices of the neighbors of the

element C defined by the local index (3, 4).

Solution

For the defined mesh Ni = 5 and Nj = 7, the global index of element C(3, 4) is

thus 3þ ð4� 1Þ � 5 ¼ 18, the neighbors of elements C in terms of their local

and global indices are (2, 4)→ 17, (4, 4)→ 19, (3, 3)→ 13, and (3, 5)→ 23.

6.3.2 Geometric Information

As shown in Fig. 6.6, accessing the local geometric information around an element

is quite simple. For element (i, j) the surrounding stored faces are S1(i, j), S2(i, j),

S1(i + 1, j), and S2(i, j + 1). Since for any element the faces have to be pointing

outward (see Fig. 6.6), then

Si�1=2;j ¼ �S1 i; jð Þ
Si;j�1=2 ¼ �S2 i; jð Þ ð6:11Þ

while for other faces, the following applies:

Siþ1=2;j ¼ S1 iþ 1; jð Þ
Si;jþ1=2 ¼ S2 i; jþ 1ð Þ ð6:12Þ

The element field in a structured two or three dimensional mesh is also defined as

an array of size Nx½ � Ny½ � or Nx½ � Ny½ � Nz½ �, respectively. Thus accessing the element

value and its neighbors is equally simple. The element field of a multi-dimensional

system may also be defined using a one dimensional array, which in two

S
i 1/2, j Element i, j()S1 i, j()

S2 i, j()

S
i, j 1/2

Fig. 6.6 Geometric information

144 6 The Finite Volume Mesh

dimensions will be of size Ni � Nj½ � and in three dimensions of size Ni � Nj � Nk½ �.
Representing a multi-dimensional field by a one-dimensional array, with values

stored using the global indexing system, saves a lot of computer memory when a

multi grid system is adopted.

6.3.3 Accessing the Element Field

Accessing the field in a structured grid is as simple as using the indices of the

element. Therefore, in a two-dimensional space, / i; jð Þ or /i;j is the value of field ϕ

at element (i, j). As shown in Fig. 6.7a the values of ϕ at the neighboring cells to

(i, j) are, respectively, /iþ1; j, /i�1; j, /i; jþ1, and /i; j�1.

As mentioned above computing the gradient using Eq. (6.4) requires calculating

the value of ϕ at each face of the finite volume (for our pseudo elements the front and

back faces have the same value and thus will not be included in the computation).

Thus in addition to the value of ϕ at point (i, j), the values of ϕ at the neighboring

points (i + 1, j), (i − 1, j), (i, j + 1), and (i, j − 1) are also needed. In a structured grid

this information is readily available and the value at the face is computed by simple

interpolation between the values of ϕ at the centroids of the two volumes sharing the

face. Using Eq. (6.5), the interpolated value at face (i +1/2, j) in terms of local indices

can be written as

/iþ1=2;j ¼ giþ1=2;j/iþ1;j þ 1� giþ1=2;j
� �

/i;j ð6:13Þ

Details of the linear interpolation will be presented later in the chapter. Referring to

Fig. 6.7a, the gradient at element (i, j) can be computed using local indexing as

r/i;j ¼
1

Vij

/iþ1=2;jSiþ1=2;j þ /i�1=2;jSi�1=2;j þ /i;jþ1=2Si;jþ1=2 þ /i;j�1=2Si;j�1=2
� �

¼ 1

Vij

/iþ1=2;jS1iþ1;j � /i�1=2;jS1i;j þ /i;jþ1=2S2i;jþ1 � /i;j�1=2S2i;j
� �

ð6:14Þ

i 1, j i+1, j

i, j+1

i, j 1

i 1, j+1

i+1, j 1i 1, j 1

i+1, j+1

ij

n-1-Ni n-Ni

n

n+1-Ni

n-1+Ni n+Ni n+1+Ni

n-1 n+1

SW S

C

SE

NW N NE

W E

(a) (b) (c)

Fig. 6.7 Local versus discretization versus global indices. a Local indexing, b global indexing,
and c discretization indexing

6.3 Structured Grids 145

while using a global indexing system, Fig. 6.7b, it becomes

r/n ¼
1

Vn

/nþ1=2Snþ1=2 þ /n�1=2Sn�1=2 þ /nþNi=2SnþNi=2 þ /n�Ni=2Sn�Ni=2
� �

ð6:15Þ

It should be mentioned that S is the outward vector normal to the surface at the

control volume face. Except at the domain boundaries, control volume faces are

shared by two elements. Therefore the outward direction for one element will

represent the inward direction for the other element. Thus to avoid duplicating

surface vectors at interfaces, only one vector is computed and stored at an interface;

the one in the direction of increasing i or j. The embedded features in a structured

grid system allows for the correct direction to be chosen with no need to store any

additional information. For any element (i, j), the surface with an index greater than

i or j is positive while the surface with an index lower than i or j is multiplied by a

negative sign. This explain the negative signs in Eqs. (6.11) and (6.14).

6.3.3.1 Discretization Indexing

In addition to local and global indexing, another type known as discretization

indexing is sometimes used, where the fields and geometric quantities are defined in

terms of their position or neighboring values. Referring to Fig. 6.7c, the gradient at

element (i, j) can be computed using discretization indexing as

r/C ¼
1

VC

/eSe þ /wSw þ /nSn þ /sSs
� �

ð6:16Þ

Thus the algorithm for computing the gradient could be written as

>Loop over elements (i,j)

> initialize element gradient to zero grad(i,j) = 0

> loop over the element faces

> compute the flux_f = phi_f*S_f

> add/subtract flux_f to the element gradient

depending on the orientation of S_f (pointing

out of/into element)

> divide the sum of the fluxes stored in the

gradient by the volume of the element to yield the

element gradient

6.4 Unstructured Grids

Unstructured grids offer more flexibility in meshing a domain both in terms of the

element types that can be used and in terms of where the elements can be con-

centrated. This flexibility, however, comes at the cost of additional complexity.

146 6 The Finite Volume Mesh

In an unstructured mesh system, elements are numbered sequentially, as are faces,

nodes, and other geometric quantities. This means that there is no direct way to link

various entities together based on their indices alone. Thus local connectivity has to

be defined explicitly starting with determining the geometric quantities for a par-

ticular element. In Fig. 6.8, for example, the neighbors of element 9 cannot be

directly derived from its index. Similarly the bounding faces of element 9, or for

that matter their nodes, cannot be guessed or derived from its index in the same way

this can be done in a structured grid.

Therefore detailed topological information about neighboring elements, faces,

and nodes is needed to complement the global indexing of the grid.

6.4.1 Topological Information (Connectivities)

As shown in Fig. 6.9, topological information is developed by explicitly constructing

the local, Fig. 6.9a, and global, Fig. 6.9b, indices that define the geometric component

connectivities (element to element, element to faces, faces to elements, element to

nodes, etc.). To this end, the data structure of elements, faces, and nodes now include

information about neighboring connections in terms of local and global indices.

The gradient computation algorithm can now be expressed in terms of the dis-

cretization indices shown in Fig. 6.9a as

r/C ¼
1

VC

/f1
Sf1 þ /f2

Sf2 þ /f3
Sf3 þ /f4

Sf4 þ /f5
Sf5 þ /f6

Sf6
� �

ð6:17Þ

or in terms of the local numbers of the element faces shown in Fig. 6.9a as

r/ 0ð Þ ¼
1

V 0ð Þ
/ 1ð ÞS 1ð Þ þ / 2ð ÞS 2ð Þ þ / 3ð ÞS 3ð Þ þ / 4ð ÞS 4ð Þ þ / 5ð ÞS 5ð Þ þ / 6ð ÞS 6ð Þ

� �

ð6:18Þ

9

26

21 20 19

22
27

23

18
17

15

11

24

25

7

8
14

10

16

13

12

43215

6

28

Fig. 6.8 Unstructured mesh
global indexing

6.4 Unstructured Grids 147

where the “()” indicates the local index of the face. The gradient relation can be also

written in terms of global indices representing the stored values at the element faces

shown in Fig. 6.9b as

r/9 ¼
1

V9

/16S16 þ /22S22 � /23S23 � /15S15 � /11S11 � /10S10
� �

ð6:19Þ

where the negative signs for terms of faces 23, 15, 11 and 10 are to be noted. While

the local surface vector S is always assumed to be in the outward direction, this is

not necessarily true, as only one normal vector is stored at any one face. A look at

Fig. 6.9 shows that these specific stored surface vectors are actually pointing inward

of element 9, thus the negative sign. Unlike structured grid systems where the

correct direction can easily be obtained, in an unstructured grid the direction of the

normal to the surface should somehow be stored. This will be detailed in the

following section. In order to account for the vector direction, a sign function is

used and the equation for the gradient is modified as

r/k ¼
1

Vk

�
X

n f�nb kð Þh i\k

/nSn þ
X

n f�nb kð Þh i[k

/nSn

0

@

1

A ð6:20Þ

Sf1

Sf2

Sf3

Sf4

Sf5

Sf6

F
4

F
5

F
3

F
2

F
1

F
6

C

11

8

10

21

6
9

16

22
23

15

11
10

Element
Connectivity

Neighbours

Faces

Nodes

[10 11 8 6 1 2]

1 2 3 5 6

[16 22 23 15 11 10]

1 2 3 4 5 6

local index

global index

local index

global index

[21 22 21 14 13 12]

1 2 3 4 5 6 local index

global index

(a) (b)

Fig. 6.9 Element connectivity and face orientation using a local indices and b global indices

148 6 The Finite Volume Mesh

For faces, information about the straddling elements is what defines the topology of

the face. Furthermore the orientation of the face can be defined in a standard fashion

by indexing the elements in a specified order. In this case the normal vector at the

interface between two elements is oriented from element 1 to element 2, which are

also denoted in OpenFOAM® by the owner and neighbor elements, respectively, as

shown in Fig. 6.10.

Therefore if the interface is considered with element 2, then it should be mul-

tiplied by a negative sign. Thus considering the faces that bound element 9, the

connectivity information is defined as shown in Fig. 6.11.

The computation of the gradient can be done for every element. However as the

flux /fSf at every interface is the same for the straddling elements with the

owner

neighbour

face

S
f

owner

neighbour

face

(a) (b)

Fig. 6.10 Owners, neighbors, and faces for a 2D and b 3D elements

96

Face
Connectivity

Elements [9 11]

1 2 local index

global index

9

8

9

11

9 10

9

2

9

1

Face
Connectivity

Elements [8 9]

1 2 local index

global index

Face
Connectivity

Elements [1 9]

1 2 local index

global index

Face
Connectivity

Elements [9 10]

1 2 local index

global index

Face
Connectivity

Elements [2 9]

1 2 local index

global index

Face
Connectivity

Elements [6 9]

1 2 local index

global index

11

8

10

21

6
9

16

22

23

15

11
10

22

15

23

11

16

10

Fig. 6.11 An example of face, element, and node connectivities for unstructured grids

6.4 Unstructured Grids 149

difference being its sign, the computation of the gradient could proceed in a more

efficient manner by computing the gradient over the entire domain (e.g., the entire

domain shown in Fig. 6.12) rather than element by element. This is done by looping

over all the faces in the computational domain and directly updating the value of the

gradient for the elements straddling the interface by incrementing and decrementing

the calculated flux from the gradient of element 1 and element 2, respectively.

Therefore the algorithm on an unstructured grid for calculating a gradient field

becomes

Algorithm for computing the gradient on an unstructured grid system

This basically yields the gradient at each element in the computational domain as

per Eq. (6.20). The same algorithm could be used with a structured grid to reduce

the computational cost.

Example 3

Write the connectivity arrays for elements 1 and 5, and faces 1, 7, 11 and 23

for the mesh shown in Figs. 6.13 and 6.14.

9

26

21 20 19

22
27

23

18
17

15

11

24

25

7

8
14

10

16

13

12

43215

6

28

Fig. 6.12 An unstructured
mesh system

1. Declare gradient array and initialize it to zero

2. Loop over interior faces

> compute flux_f = phi_f*Sf

> add flux_f to gradient of owner element and -

flux_f to gradient of neighbor element

3. Loop over boundary faces

> compute flux_f = phi_f Sf

> add flux_f to gradient of owner element

4. Loop over elements

> divide gradient by volume of element

150 6 The Finite Volume Mesh

Solution

For elements, the neighbors are stored in the increasing index number of

shared faces, and interior faces are stored in increasing index number, fol-

lowed by boundary faces again stored in increasing index number.

element 5

neighbors 6 3

faces 12 13 15 16

element 1

neighbors 2 6 3 8 4

faces 1 3 5 7 14

Fig. 6.13 An unstructured mesh for Example 2

Fig. 6.14 Surface vector direction at faces 1, 7, and 23 for Example 2

6.4 Unstructured Grids 151

For a face the owner is the element of lower index and the neighbor is the

element of higher index. A Boundary face has only an owner. The direction

of the surface vector associated with any face is oriented from owner to

neighbor.

face 1

owner 1

neighbor 2

face 7

owner 1

neighbor 8

face 11

owner 7

neighbor 9

face 23 (a boundary face)

owner 8

neighbor -1 (a boundary face has no neighbor)

6.5 Geometric Quantities

In addition to topological data, the finite volume mesh incorporates information

about its geometric entities, such as the volume of elements, the area of faces, the

centroids of elements and faces, the alignment of faces with the vectors joining the

centroids of the owner and neighbor elements (Fig. 6.15), etc. The calculations of

some of these geometric quantities will be presented next. The type of elements that

S
f1

f

C

N

Fig. 6.15 Angle between surface vector and vector joining the centroids of the owner and
neighbor elements

152 6 The Finite Volume Mesh

can be used in generating the mesh are first described, followed by the techniques

employed for computing the geometric information.

6.5.1 Element Types

An element in the finite volume mesh is basically a polyhedron in a three-

dimensional mesh (Fig. 6.16) or a polygon in a two-dimensional mesh (Fig. 6.17).

The most widely used three-dimensional shapes, as displayed in Fig. 6.16, are

tetrahedrons, hexahedrons, prisms, and in some cases general polyhedrons.

The type of faces for these three-dimensional elements, which also represent the

type of two-dimensional elements (Fig. 6.17), vary greatly, with the ones that are

the most widely used being quadrilaterals, triangles and pentagons, though general

polygons have also been adopted in some applications.

Tetrahedron Hexahedron Prism Polyhedron

Fig. 6.16 Three-dimensional element types

Quadrilateral Triangle Pentagon

Fig. 6.17 Three-dimensional face types or two-dimensional element types

6.5 Geometric Quantities 153

The computation of geometric factors for such elements and faces will now be

detailed. It is worth noting that when working with a two-dimensional mesh the

volume of the elements are considered to be the area of the two dimensional

elements multiplied by a unit dimension in the off plane direction. Thus the tech-

niques to compute the volume of elements of two-dimensional meshes are exactly

those used in computing the surface area of faces of three-dimensional meshes.

Other variables arising during discretization, which are solely dependent on geo-

metric quantities, will be presented when needed.

6.5.2 Computing Surface Area and Centroid of Faces

The general shape of an element face in a three-dimensional finite volume mesh is a

polygon, though triangular and quadrilateral faces are the most widely used. The

computation of the surface vector and centroid follows the same procedure for all

types of polygons. Basically a point is constructed within the polygon based on the

average of all the points that define the polygon. This point is the geometric centre

of the polygon xG ¼ xG; yG; zGð Þ, which coincides with the centroid of the polygon

xCE ¼ xCE; yCE; zCEð Þ only for some very special shapes, which include triangles.

Therefore the geometric centre of k points forming a polygon is computed as

xG ¼
1

k

X

k

i¼1
xi ð6:21Þ

Using the geometric centre (Fig. 6.18) a number of triangles are formed with the

centre as the apex for each side of the polygon. For each of the triangles the centroid

(since for triangles xG and xCE coincide) and area are readily computed. The sum of

their areas will give the total area of the polygon. For computing the centroid the

area-weighted centroid (or geometric centre) of each sub-triangle are summed over

the polygon and divided by the polygon area, yielding the centroid of the polygon.

Mathematically this is computed as

centroid

sub-triangle centroid

polygon center

Fig. 6.18 The geometric centre and centroid of a polygon

154 6 The Finite Volume Mesh

Sf ¼
X

t�Sub�triangles Cð Þ
St

xCEð Þf ¼

P

t�Sub�triangles Cð Þ
xCEð Þt � St

Sf

ð6:22Þ

6.5.2.1 Surface of a Triangle

The area of a triangle is computed using vector product. The magnitude of the

vector product of two vectors represents the area of the parallelogram formed by the

two vectors. Thus the area of the triangle is half the magnitude of the vector product

of the two vectors. Denoting the position vectors of the three vertices 1, 2, and 3 of

the triangle shown in Fig. 6.19 by r1, r2, and r3, respectively, the surface vector of

the triangle can be computed as

S ¼ 1

2
r2 � r1ð Þ � r3 � r1ð Þ ¼ 1

2

i j k

x2 � x1 y2 � y1 z2 � z1
x3 � x1 y3 � y1 z3 � z1

�

�

�

�

�

�

�

�

�

�

�

�

¼ Sxiþ Syjþ Szk

ð6:23Þ

1

2

3

r
1

r
2

r
3

x

y

z

r
2

r
1() r

3
r

1()

S

S f =
r

2
r

1() r
3

r
1()

2

Fig. 6.19 Surface vector and area magnitude of a triangle in a three dimensional space

6.5 Geometric Quantities 155

and the magnitude of the area is given by

S ¼
ffi

S2x þ S2y þ S2z

q

ð6:24Þ

To know whether the surface vector is pointing outward, its dot product with the

position vector that joins the centroid of the element CE to the centroid of the

surface ce is computed. If the sign of the dot product is positive then the surface

vector is pointing outward, otherwise it is pointing inward. The same approach may

be used to discern the orientation of the surface vector in two dimensions.

For a two dimensional grid the surface area represents the volume of the control

cell with a unit depth in the off-plane direction. Therefore the volume of a triangular

cell in a two dimensional grid is calculated using

V ¼ 1

2
r2 � r1ð Þ � r3 � r1ð Þj j ¼ 1

2
x2 � x1ð Þ y3 � y1ð Þ � x3 � x1ð Þ y2 � y1ð Þ½ �

¼ 1

2
x1 y2 � y3ð Þ þ x2 y3 � y1ð Þ þ x3 y1 � y2ð Þ½ �

ð6:25Þ

Note that the signed volume (or area) will be positive if the vertices 1, 2 and 3 are

oriented counterclockwise around the triangle, otherwise it will be negative. Taking

the absolute value of the right hand side of Eq. (6.25) will always result in the

correct volume value.

Example 4

Compute the centroid and area of the polygon shown in Fig. 6.20 whose

coordinates are displayed in Table 6.2.

1

2

3
4

5

G x
G

, y
G()

CE x
CE

, y
CE()

1

2

3

4

5

Fig. 6.20 A polygonal element

156 6 The Finite Volume Mesh

Solution

For this polygon k = 5. Thus its geometric centre G xG; yGð Þ is located at

xG ¼
1

5
1þ 2:4þ 2þ 0:4þ 0ð Þ ¼ 1:16

yG ¼
1

5
6:4þ 4þ 0:2þ 0þ 4ð Þ ¼ 2:92

The polygon is decomposed into 5 triangles of apex G xG; yGð Þ. The centroid
of triangle 1 is located at

xG1 ¼
1

3
1:16þ 1þ 2:4ð Þ ¼ 1:52

yG1 ¼
1

3
2:92þ 6:4þ 4ð Þ ¼ 4:44

In a similar way the centroids of other triangles are found and are presented in

Table 6.3.

The areas of the triangles are found using Eq. (6.25) and for triangle 1 is

given by

S1 ¼
1

2
xG y2 � y1ð Þ þ x2 y1 � yGð Þ þ x1 yG � y2ð Þ½ �

¼ 1

2
1:16 4� 6:4ð Þ þ 2:4 6:4� 2:92ð Þ þ 1 2:92� 4ð Þ½ � ¼ 2:244

In a similar way the areas for the other triangles are found and are presented

in Table 6.4.

Table 6.2 Coordinates of the polygonal element for Example 3

Node 1 2 3 4 5

x 1 2.4 2 0.4 0

y 6.4 4.0 0.2 0 4.0

Table 6.3 Coordinates of the triangles’ centroids

Triangle 1 2 3 4 5

x-centroid 1.52 1.85333 1.18666 0.52 0.72

y-centroid 4.44 2.37333 1.04 2.30666 4.44

Table 6.4 Areas of the various triangles

Triangle 1 2 3 4 5

Area 2.244 2.14 2.62 2.104 1.932

6.5 Geometric Quantities 157

6.5.2.2 Volume and Centroid of Elements

The general procedure followed to compute the volume and centroid of a general

polyhedron is conceptually simple. The process starts by computing the location of

the geometric centre of the polyhedron element and decomposing it into a number

of polygonal pyramids. As shown in Fig. 6.21, each polygonal pyramid is formed

of the geometric centre as the apex and a polygonal face of the element as the base,

with its side faces being triangles.

For a polygonal pyramid, the volume and centroid are readily computed. The

volume is calculated as 1=3ð Þ � Base� Height. The base is basically one of the

surfaces of the element, while the sub-element pyramid centroid, measured from

the centroid of the base, is situated at 1=4 of the line joining the centroid of the base

to the apex of the pyramid. The volume of the polyhedron element is the sum of the

volumes of the polygonal pyramids. As for the centroid it is computed as the

The area of the polygon is found to be

St ¼
X

5

i¼1
Si ¼ 2:244þ 2:14þ 2:62þ 2:104þ 1:932 ¼ 11:04

The coordinates of its centroid can be obtained as

xC ¼
1

St

X

5

i¼1
SixCi ¼ 1:174925

yC ¼
1

St

X

5

i¼1
SiyCi ¼ 2:825940

The difference between the geometric centre and centroid is clear.

d Cf

G

S f

f

G

dGf

S f

Fig. 6.21 A sub-element
pyramid

158 6 The Finite Volume Mesh

volume-weighted average of the centroids of the pyramids. Mathematically this is

computed from the following relations:

xG ¼
1

k

X

k

i¼1
xi

xCEð Þpyramid ¼ 0:75 xCEð Þf þ 0:25 xGð Þpyramid

Vpyramid ¼
dGf � Sf

3

VC ¼
X

� Sub�pyramids Cð Þ
Vpyramid

xCEð ÞC ¼ xC ¼

P

� Sub�pyramids Cð Þ
xCEð ÞpyramidVpyramid

VC

ð6:26Þ

Since the centroid and volume of a polygonal pyramid are easily computed, this

procedure allows accurate computations of both the volume and centroid of an element.

6.5.2.3 Face Weighting Factor

Consider the one dimensional finite volume mesh system shown in Fig. 6.22. The

values of ϕ are known at the control volume centroids C and F, and are to be used to

compute the value of ϕ at the interface f.

A simple linear interpolation will result in the following formula:

/f ¼ gf/F þ 1� gf
� �

/C ð6:27Þ

where

gf ¼
dCf

dCf þ dfF
ð6:28Þ

The simplicity of this formula does not extend into multi-dimensional situations as in

two or three dimensions the circumstances become a bit more complicated. In this

case there is not a unique option for the definition of the geometric weighting factors.

f

C

F

f

C F

Fig. 6.22 One dimensional mesh system

6.5 Geometric Quantities 159

One choice would be to base the weighting factor on the respective volumes, such

that

gf ¼
VC

VC þ VF

ð6:29Þ

This however yields wrong results in certain cases, such as in the configuration

shown in Fig. 6.23.

Another difficulty arises when the points C, f, and F are not collinear as depicted

in Fig. 6.24a.

A better alternative for such cases, as displayed in Fig. 6.24b, is to base the

interpolation on the normal distances to the face, i.e., Cf 0 and Ff 00. Thus the

interpolation factor is computed as

gf ¼
dCf � ef

dCf � ef þ dfF � ef
ð6:30Þ

where ef is the surface unit vector given by

ef ¼
Sf

Sf

ð6:31Þ

f

C

F

Fig. 6.23 Axisymmetric grid system

f

f

C

F

f

f

f

S
f

e
f

d
Cf

d
fF

C

F

(a) (b)

Fig. 6.24 Two dimensional control volume with the points C, f, and F being non collinear

160 6 The Finite Volume Mesh

Example 5

Compute the weighing factor using Eqs. (6.26) and (6.27) for the two tri-

angular elements shown in Fig. 6.25 (Table 6.5).

Solution

To calculate the interpolation factor using Eq. (6.26) the volumes of the two

elements are needed and are computed as

VC ¼
1

2
x1 y2 � y3ð Þ þ x2 y3 � y1ð Þ þ x3 y1 � y2ð Þ½ �

¼ 1

2
0þ 1:2 1� 0ð Þ þ 1 0� 0:4ð Þ½ � ¼ 0:4

VF ¼
1

2
x2 y4 � y3ð Þ þ x4 y3 � y2ð Þ þ x3 y2 � y4ð Þ½ �

¼ 1

2
1:2 0:1� 1ð Þ þ 2 1� 0:4ð Þ þ 1 0:4� 0:1ð Þ½ � ¼ 0:42

gf ¼
VC

VC þ VF

¼ 0:4

0:4þ 0:42
¼ 0:4878

The calculation of gf based on Eq. (6.27) is more involved. The centroids of

the two control volumes are required and are calculated as

xC ¼
1

3
0þ 1þ 1:2ð Þ ¼ 0:7333 yC ¼

1

3
0þ 1þ 0:4ð Þ ¼ 0:4666

xF ¼
1

3
1:2þ 1þ 2ð Þ ¼ 1:4 yF ¼

1

3
0:4þ 1þ 0:1ð Þ ¼ 0:5

1

2

3

4

f

C
Ff

S
f

d
Cf

d
fF

1

2

3

4

f

C
Ff

S
f

d
Cf

d
fF

Fig. 6.25 Two neighboring polygonal elements

Table 6.5 Coordinates of the triangular elements for Example 4

Node 1 2 3 4

x 0 1.2 1 2

y 0 0.4 1 0.1

6.5 Geometric Quantities 161

The face centroid is also required and is found to be

xf ¼
1

2
1þ 1:2ð Þ ¼ 1:1 yf ¼

1

2
1þ 0:4ð Þ ¼ 0:7

The surface vector is calculated as

Sf ¼ y3 � y2ð Þi� x3 � x2ð Þj ¼ 0:6iþ 0:2j

The unit vector normal to the face becomes

ef ¼
Sf

Sf
¼ 0:6iþ 0:2j

ffi

0:62 þ 0:22
p ¼ 0:949iþ 0:316j

The distance from the centroids of the control volumes to the face centroid are

given by

dCf ¼ xf � xC
� �

iþ yf � yC
� �

j ¼ 0:3667iþ 0:2334j
dfF ¼ xF � xf

� �

iþ yF � yf
� �

j ¼ 0:3i� 0:2j

The interpolation factor using Eq. (6.27) is found as

gf ¼
dCf � ef

dCf � ef þ dfF � ef
¼ 0:3667iþ 0:2334jð Þ � 0:949iþ 0:316jð Þ

0:6667iþ 0:0334jð Þ � 0:949iþ 0:316jð Þ ¼ 0:6556

the difference in values is obvious.

6.6 Computational Pointers

6.6.1 uFVM

In ufvm, the processing of all geometric and topological data is performed in one

routine denoted by cfdProcessOpenFoamMesh, which is executed right after

reading the OpenFOAM® mesh with cfdReadOpenFoamMesh. Reading the

OpenFOAM® mesh in its native form, requires reading the various files defining an

OpenFOAM® mesh, namely and in that order, points, faces, owners, neighbours,

and boundaries files.

In cfdProcessOpenFoamMesh the face geometry is initially processed (centroid,

area and surface vector), as shown in Listing 6.1.

162 6 The Finite Volume Mesh

This is followed by processing the basic element geometry (Listing 6.2). The

element volume is computed by subdividing it into non-overlapping pyramids,

whose geometric characteristics can be easily computed.

%

% Process basic Face Geometry

%

numberOfFaces = theMesh.numberOfFaces;

for iFace=1:numberOfFaces

 iNodes = theMesh.faces(iFace).iNodes;

 numberOfiNodes = length(iNodes);

 %

 % Compute a rough centre of the face

 %

 centre = [0 0 0]';

 for iNode=iNodes

 centre = centre + theMesh.nodes(iNode).centroid;

 end

 centre = centre/numberOfiNodes;

 centroid = [0 0 0]';

 Sf = [0 0 0]';

 area = 0;

 %

 % using the center compute the area and centroid

 % of virtual triangles based on the centre and the

 % face nodes

 %

 for iTriangle=1:numberOfiNodes

 point1 = centre;

point2 = theMesh.nodes(iNodes(iTriangle)).centroid;

 if(iTriangle<numberOfiNodes)

 point3 = theMesh.nodes(iNodes(iTriangle+1)).centroid;

 else

 point3 = theMesh.nodes(iNodes(1)).centroid;

 end

 local_centroid = (point1+point2+point3)/3;

 local_Sf = 0.5*cross(point2-point1,point3-point1);

 local_area = cfdMagnitude(local_Sf);

 centroid = centroid + local_area*local_centroid;

 Sf = Sf + local_Sf;

 area = area + local_area;

 end

 centroid = centroid/area;

 %

 theMesh.faces(iFace).centroid = centroid;

 theMesh.faces(iFace).Sf = Sf;

 theMesh.faces(iFace).area = area;

end

Listing 6.1 Processing of basic face geometry

6.6 Computational Pointers 163

6.6.2 OpenFOAM®

As OpenFOAM® [10] uses an unstructured grid platform, all its geometric entities,

such as elements, volumes, areas, and centroids, as well as face weighting factors,

have to be evaluated and stored. This section provides an overview of the geometric

relations needed in the evaluation of the geometric quantities used in OpenFOAM®.

%

% compute volume and centroid of each element

%

numberOfElements = theMesh.numberOfElements;

for iElement=1:numberOfElements

 iFaces = theMesh.elements(iElement).iFaces;

 %

 % Compute a rough centre of the element

 %

 centre = [0 0 0]';

 for iFace=1:length(iFaces)

 centre = centre + theMesh.faces(iFace).centroid;

 end

 centroid = [0 0 0]';

 Sf = [0 0 0]';

 centre = centre/length(iFaces);

 % using the centre, compute the area and centroid

 % of virtual triangles based on the centre and the

 % face nodes

 %

 localVolumeCentroidSum = [0 0 0]';

 localVolumeSum = 0;

 for iFace=1:length(iFaces)

 localFace = theMesh.faces(iFaces(iFace));

localFaceSign = theMesh.elements(iElement).faceSign(iFace);

 Sf = localFace.Sf*localFaceSign;

 Cf = localFace.centroid - centre;

 % calculate face-pyramid volume

 localVolume = Sf'*Cf/3;

 % Calculate face-pyramid centre

localCentroid = 0.75*localFace.centroid +

0.25*centre;

 %Accumulate volume-weighted face-pyramid centre

 localVolumeCentroidSum = localVolumeCentroidSum +

localCentroid*localVolume;

 % Accumulate face-pyramid volume

 localVolumeSum = localVolumeSum + localVolume;

 end

 centroid = localVolumeCentroidSum/localVolumeSum;

 volume = localVolumeSum;

 %

 theMesh.elements(iElement).volume = volume;

 theMesh.elements(iElement).centroid = centroid;

end

Listing 6.2 Processing of basic element geometry

164 6 The Finite Volume Mesh

6.6.2.1 Area and Centroid of Faces

In order to evaluate areas and centers for a generic polygon face, the face is

decomposed into a series of triangular faces. The overall polygon face metrics are

calculated by summing up the properties of each triangular portion. Thus

Eqs. (6.21)–(6.23) have to be applied for each computational cell.

OpenFOAM® constructs centers of faces and calculates their areas in the file

“$FOAM_SRC/OpenFOAM/meshes/primitiveMesh/primitiveMeshFaceCentres-

AndAreas.C” in which the following function is defined (Listing 6.3):

The function has three arguments with the first, defined as const, representing

data read from files, while the second and third arguments designate returned lists of

objects of dimensions equal to the number of faces in the domain, containing the

centers (fCtrs) and areas (fAreas) of the polygonal faces, respectively.

The pointField data is a list of all mesh vertices with each vertex defined using

three spatial coordinates. The second data needed is the face definition. In

OpenFOAM® this is provided in faceList (Listing 6.4), which is a list of identities

of the points defining the faces of the mesh.

Then a for loop is performed for each face. Inside the loop, the number of points

describing the face and their identities are first read in order to access the

void Foam::primitiveMesh::makeFaceCentresAndAreas

(

 const pointField& p,

 vectorField& fCtrs,

 vectorField& fAreas

) const

Listing 6.3 Function used for defining centers and areas of faces

const faceList& fs = faces();

forAll(fs, facei)

{

 const labelList& f = fs[facei];

 label nPoints = f.size();

Listing 6.4 List of the identities of points defining faces

6.6 Computational Pointers 165

coordinates of the corresponding vertices. When a face is defined by only three

vertices, then direct calculations of its centroid location and area are performed, as

shown in Listing 6.5.

In this case the face center fCtrs[facei] is evaluated directly using Eq. (6.21) with

k = 3, while the face area is calculated using Eq. (6.23) where the symbol “^”

represents vector product.

For a generic polygonal shape, the face is first decomposed into triangles. For

that purpose, OpenFOAM® defines estimated centers for faces based on the average

value of vertices defining the face, as displayed in Listing 6.6.

Listing 6.7 indicates that a loop over all faces is performed for calculating the

geometric centers and areas of the triangles into which these faces are decomposed.

// If the face is a triangle, do a direct calculation

for efficiency

// and to avoid round-off error-related problems

if (nPoints == 3)

{

fCtrs[facei] = (1.0/3.0)*(p[f[0]] + p[f[1]] +

p[f[2]]);

 fAreas[facei] = 0.5*((p[f[1]] - p[f[0]])^(p[f[2]] -

p[f[0]]));

}

else

{

Listing 6.5 Equations used in calculating the geometric center and area of a triangular face

vector sumN = vector::zero;vector sumN = vector::zero;

scalar sumA = 0.0;

vector sumAc = vector::zero;

point fCentre = p[f[0]];

for (label pi = 1; pi < nPoints; pi++)

{

 fCentre += p[f[pi]];

}

fCentre /= nPoints;

Listing 6.6 Compute estimated centers for faces

166 6 The Finite Volume Mesh

This is done by finding the face center “c” of each triangle using Eq. (6.21) (the

factor 1=3 is applied later), the face normal vector “n” and its magnitude “a” that

defines the triangle area as stated by Eq. (6.23) (again the factor 1=2 will be applied

later). All metrics of the decomposed triangles are then summed up and normalized

in accordance with Eq. (6.22), where now the factors 1=3 and 1=2 are applied, as

depicted in Listing 6.8.

In case of a degenerate face, i.e., when “sumA < a very small number”, a rescue

value is set for the face.

6.6.2.2 Volume and Centroid of Elements

After computing the normals, areas, and centers of faces, it is possible to evaluate

the metrics of cells. Similar to faces, the basic idea for a polyhedral cell is to

decompose it into a sum of tetrahedra elements. The operations that calculate

for (label pi = 0; pi < nPoints; pi++)

{

 const point& nextPoint = p[f[(pi + 1) % nPoints]];

 vector c = p[f[pi]] + nextPoint + fCentre;

vector n = (nextPoint - p[f[pi]])^(fCentre - p[f[pi]]);

 scalar a = mag(n);

 sumN += n;

 sumA += a;

 sumAc += a*c;

}

Listing 6.7 Decomposing the polygonal faces into triangles and calculating the geometric centers
and areas of these triangles

// This is to deal with zero-area faces. Mark very small

faces

// to be detected in e.g., processorPolyPatch.

if (sumA < ROOTVSMALL)

{

 fCtrs[facei] = fCentre;

 fAreas[facei] = vector::zero;

}

else

{

 fCtrs[facei] = (1.0/3.0)*sumAc/sumA;

 fAreas[facei] = 0.5*sumN;

}

Listing 6.8 Calculating the centroids and areas of faces

6.6 Computational Pointers 167

volumes and centroids of elements are then defined in the file “$FOAM_SRC/

OpenFOAM/meshes/primitiveMesh/primitiveMeshCellCentresAndVols.C” using

the function shown in Listing 6.9.

This function uses four arguments where the first two represent, respectively,

centers and areas of faces. The remaining two arguments return objects containing

centers and volumes of cells. As shown in Listing 6.10, the “for” loops are defined

twice. This redundancy is related to the LDU addressing used in OpenFOAM®,

which will be introduced and described in the Chap. 7.

In order to calculate the cells centroids and volumes, the first step is the eval-

uation of xG, the geometric centers of cells denoted in Listing 6.10 by cEst, using

void Foam::primitiveMesh::makeCellCentresAndVols

(

 const vectorField& fCtrs,

 const vectorField& fAreas,

 vectorField& cellCtrs,

 scalarField& cellVols

) const

{

Listing 6.9 Function used to calculate volumes and centers of elements

 // Clear the fields for accumulation

 cellCtrs = vector::zero;

 cellVols = 0.0;

 const labelList& own = faceOwner();

 const labelList& nei = faceNeighbour();

vectorField cEst(nCells(), vector::zero);

 labelField nCellFaces(nCells(), 0);

 forAll(own, facei)

 {

 cEst[own[facei]] += fCtrs[facei];

 nCellFaces[own[facei]] += 1;

 }

 forAll(nei, facei)

 {

 cEst[nei[facei]] += fCtrs[facei];

 nCellFaces[nei[facei]] += 1;

 }

 forAll(cEst, celli)

 {

 cEst[celli] /= nCellFaces[celli];

 }

Listing 6.10 Compute estimated cell centers

168 6 The Finite Volume Mesh

the first relation in Eq. (6.25). Once the xG values are obtained, calculations of the

pyramids’ volumes and cell centroids proceed by applying Eq. (6.25) using the

code displayed in Listing 6.11.

In the above code, fCtrs corresponds to xCE while “cEst—fCtrs” corresponds to

the distance vector dGf displayed in Fig. 6.21. The final values are obtained, as

shown in Listing 6.12, by dividing cell centroids by cell volumes and then dividing

cell volumes by 3.

The mesh data structure for uFVM and OpenFOAM® will be described in detail

in Chap. 7.

 forAll(own, facei)

 {

 // Calculate 3*face-pyramid volume

 scalar pyr3Vol =

 max(fAreas[facei] & (fCtrs[facei] -

cEst[own[facei]]), VSMALL);

 // Calculate face-pyramid centre

(1.0/4.0)*cEst[own[facei]];

 // Accumulate volume-weighted face-pyramid centre

 cellCtrs[own[facei]] += pyr3Vol*pc;

 // Accumulate face-pyramid volume

 cellVols[own[facei]] += pyr3Vol;

 }

 forAll(nei, facei)

 {

 // Calculate 3*face-pyramid volume

 scalar pyr3Vol =

 max(fAreas[facei] & (cEst[nei[facei]] -

fCtrs[facei]), VSMALL);

 // Calculate face-pyramid centre

vector pc = (3.0/4.0)*fCtrs[facei] +

vector pc = (3.0/4.0)*fCtrs[facei] +

(1.0/4.0)*cEst[nei[facei]];

 // Accumulate volume-weighted face-pyramid centre

 cellCtrs[nei[facei]] += pyr3Vol*pc;

 // Accumulate face-pyramid volume

 cellVols[nei[facei]] += pyr3Vol;

 }

Listing 6.11 Calculating cell centers and volumes

 cellCtrs /= cellVols;

cellVols *= (1.0/3.0);

Listing 6.12 The final values of cell centroids and volumes

6.6 Computational Pointers 169

6.7 Closure

The geometric data defining a finite volume mesh were presented in this chapter. It

was stressed that the finite volume mesh is not simply the set of non-overlapping

elements and nodes. It also includes the set of all geometric quantities with

information about their topologies. The collection of all this represents the infra-

structure needed by the equation discretization method adopted in this book,

namely the Finite Volume Method (FVM).

6.8 Exercises

Exercise 1

Compare the equations presented in the book to the ones used in OpenFOAM® for

computing the interpolation weights at the faces, the owner-Neighbor element

distances, and the non orthogonal coefficient. These can be found in OpenFOAM®

using Doxygen [14] in the functions makeWeights(), makeDeltaCoeffs(), and

makeNonOrthDeltaCoeffs().

Exercise 2

Write a program that reads an OpenFOAM® mesh and checks that for each element

the sum of the surface vectors is zero.

Exercise 3

Start by reading a mesh into uFVM and then investigate the mesh structure (use m =

cfdGetMesh to get access to the mesh data, and then investigate the structure of

an element, a face, and a vertex).

References

1. Thompson JF, Warsi Z, Mastin C (1985) Numerical grid generation. Elsevier Science
Publishers, New York

2. Cheng S, Dey T, Shewchuk JR (2012) Delaunay mesh generation. CRC Press, Boca Raton
3. Thompson JF, Soni BK, Weatherill NP (eds) (1999) Handbook of grid generation, Chapter 17.

CRC Press, Boca Raton
4. George PL (1991) Automatic mesh generation. Wiley, New York
5. Frey P, George PL (2010) Mesh generation. Wiley, New York
6. Bern M, Plassmann P (2000) Mesh generation. Handbook of computational geometry.

Elsevier Science, North Holland
7. Mavriplis DJ (1996) Mesh generation and adaptivity for complex geometries and flows. In:

Peyret R (ed) Handbook of computational fluid mechanics. Academic Press, London
8. Thompson JF, Soni BK, Weatherill NP (1998) Handbook of grid generation. CRC Press, Boca

Raton
9. Chappell JA, Shaw JA, Leatham M (1996) The generation of hybrid grids incorporating

prismatic regions for viscous flow calculations. In: Soni BK, Thompson JF, Hauser J,

170 6 The Finite Volume Mesh

Eiseman, PR (eds) Numerical grid generation in computational field simulations. Mississippi
State University, MS, pp 537–546

10. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org
11. Mavriplis DJ (1997) Unstructured grid techniques. Ann Rev Fluid Mech 29:473–514
12. Lerner RG, Trigg GL (1994) Encyclopaedia of physics. VHC, New York
13. Byron F, Fuller R (1992) Mathematics of classical and quantum physics. Dover Publications,

Mineola
14. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

References 171

Chapter 7

The Finite Volume Mesh in OpenFOAM®

and uFVM

Abstract The implementation of the finite volume mesh can follow many direc-

tions whether in the definition of the mesh fields, the storing of the variables, or

even in determining the connectivity relations. This chapter aims at outlining the

design decisions that shape the implementation of two CFD codes, uFVM an

educational unstructured Finite Volume code and OpenFOAM® an industrial-

strength open source code. The two codes are thus presented, initially in terms of

their data structure and memory management schemes, and then in terms of how

cases are setup. Finally the format of the system of equations generated by each of

the two codes are detailed. The reader will notice that while uFVM shares many of

the implementation details with OpenFOAM®, its simplicity allows for the use of

simpler implementation techniques and data structure.

7.1 uFVM

The unstructured finite volume code uFVM was written to illustrate the various

numerical techniques and algorithms, which collectively form a CFD program.

Furthermore its numerics are in many ways similar to those in OpenFOAM® [1],

making it a good vehicle to understand and present the internals of OpenFOAM®.

The main data structures used in uFVM generally mirrors those in OpenFOAM®

especially in terms of mesh fields and boundary conditions. Still differences

between uFVM and OpenFOAM® will be used to underline various options

available to CFD coders and thus to better present some implementation details.

7.1.1 An OpenFOAM® Test Case

The uFVM code is capable of reading an OpenFOAM® mesh included as part of

any OpenFOAM® test case. An OpenFOAM® test case is a directory that generally

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_7

173

contains at least three folders. Figure 7.1 shows the innards of the cavity test case

folder, which consists of the following three sub-folders:

The ‘time’ directories contain initialization and boundary condition information

about the fields used in the test case. It is also the folder where results for various

time steps are stored. The name of each sub-folder refers to the time at which

simulation was performed. For example, in the cavity tutorial shown in Fig. 7.1, the

velocity field U and pressure field p are initialized from files in the ‘0’ folder 0/U

and 0/p, respectively.

The system directory contains at least three files with information about the case

setup, the schemes to be used, and the various solution parameters. These files are:

(i) controlDict which is concerned with the general control parameters of the test

case such as the simulation starting and ending times, the time step to be used, and

required parameters for data output; (ii) fvSchemes in which the discretization

schemes used in the simulation are defined; (iii) fvSolution that contains infor-

mation related to the solution algorithms and relaxations used during simulation.

The constant directory contains information about relevant physical properties,

e.g., transportProperties, and the data describing the grid system used within a

folder denoted by polyMesh.

For the purpose of understanding the finite volume mesh structure in uFVM,

attention will be focussed on the polyMesh folder in which the information needed

to construct the finite volume mesh is defined.

Fig. 7.1 The cavity

OpenFOAM® case

174 7 The Finite Volume Mesh in OpenFOAM® and uFVM

7.1.2 The polyMesh Folder

The polyMesh subdirectory contains the following files:

points

The file points is a list of vectors denoting the cell vertices, with vertex 0 being the

the first vector in the list, vertex 1 the second vector, etc. The format of the points

file is shown in Listing 7.1.

An example points file is shown in Listing 7.2.

faces

The file faces represents a list of faces, with each face described by a list of indices to

vertices in the points list, where again, the first entry in the list represents face 0, the

second entry represents face 1, etc. The format of the faces file is shown in Listing 7.3.

#number of points

(

(#x #y #z)

)

Listing 7.1 Storing vertices as vectors of coordinates x, y and z

1074

(

(32 16 0.9377383239)

(33.9429245 16.11834526 0.9377383239)

(35.84160614 16.46798134 0.9377383239)

(37.67648315 17.04080009 0.9377383239)

(39.42799377 17.82870483 0.9377383239)

(41.07658768 18.82359314 0.9377383239)

)

Listing 7.2 An example showing how vertices are stored

#number of faces

(

)

#number of points for face 1 (#p1 #p2 #p3)

#number of points for face 2 (#p1 #p2 #p3)

Listing 7.3 Storing faces in the form of points of which the face is composed and their indices

7.1 uFVM 175

Example of a faces file is shown in Listing 7.4.

owners

The file owners is a list in which the owner of faces are stored (Listing 7.5). The

position of the owner in the list refers to the face it belongs to. Thus, the owner of

face 0 is the index stored in the first entry, the owner of face 1 is the index stored in

the second entry, etc. The number of owners is equal to the total number of faces

(interior + boundary faces).

The number of Elements is equal to the largest index of the owners.

An example of an owners file is shown in Listing 7.6.

3290

(

4(36 573 589 52)

4(41 578 634 97)

4(44 81 618 581)

4(30 82 619 567)

4(121 50 587 658)

4(39 120 657 576)

)

Listing 7.4 An example showing how faces are stored

#number of owners

(

#owner of face1

#owner of face2

)

Listing 7.5 The format used to store owners

3290

(

0

1

2

3

4

5

6

)

3290

(

0

1

2

3

4

5

6

)

Listing 7.6 An example showing how owners are stored

176 7 The Finite Volume Mesh in OpenFOAM® and uFVM

The total number of cells (nCells) in the domain can be found in the owners

file header as shown in Listing 7.7.

neighbours

A list of neighbor cell labels (Listing 7.8). The number of neighbors is basically

equal to the number of interior faces.

An example of a neighbours file is shown in Listing 7.9.

boundary

File boundary lists the boundaries of the domain, with the faces of each boundary

type referred to as a patch and assigned a name. The type of each boundary patch

(type) is declared along with its number of faces (nFaces) and the starting face

(startFace), which refers to the index of the first face in the list (Listing 7.10).

 note "nPoints:1074 nCells:918 nFaces:3290 nInternalFaces:1300";

Listing 7.7 Header of owners file

#number of neighbour

(

#neighbour of face1

#neighbour of face2

)

Listing 7.8 The format used to store neighbors

1300

(

22

68

29

96

31

34

)

Listing 7.9 An example showing how neighbors are stored

7.1 uFVM 177

An example of a wall-type boundary patch is depicted in Listing 7.11.

7.1.3 The uFVM Mesh

In uFVM an OpenFOAM® mesh is read using the cfdReadOpenFoamMesh script.

The script starts by reading the points file into the arrays of struct nodes where the

(x, y, z) data is stored. Then file faces is read and the indices of the nodes are stored

into the arrays of struct faces. Information about the face patches is then read from the

file boundary. Finally the files owners and neighbours are read and the struct

elements is composed. The loaded data is processed to compute additional geometric

and topological information in script cfdProcessOpenFoamMesh. The details of a

mesh generated over an elbow and read by uFVM is shown in Listing 7.12.

#boundary patch name

{

type #patchtype;

nFaces #number of face in patch set;

startFace #starting face index for patch;

}

Listing 7.10 Format of a boundary patch

wall-4

{

 type wall;

 nFaces 100;

 startFace 1300;

}

Listing 7.11 An example of a wall-type boundary patch

m = cfdReadOpenFoamMesh('elbow')

m =

 nodes: [1x1074 struct]

 numberOfNodes: 1074

 caseDirectory: 'elbow'

 numberOfFaces: 3290

 numberOfElements: 918

 faces: [1x3290 struct]

 numberOfInteriorFaces: 1300

 boundaries: [1x6 struct]

 numberOfBoundaries: 6

 numberOfPatches: 6

 elements: [1x918 struct]

 numberOfBElements: 1990

 numberOfBFaces: 1990

Listing 7.12 Information uFVM can display about a mesh

178 7 The Finite Volume Mesh in OpenFOAM® and uFVM

As shown in Fig. 7.2 the mesh can be plotted using the cfdPlotMesh command.

Example of information stored in struct nodes is presented in Listing 7.13 by

displaying values for the node of index 1.

Fig. 7.2 a Three dimensional

and b two dimensional views

of the mesh over an elbow

displayed using the

cfdPlotMesh command

n1= m.nodes(1)

n1 =

 centroid: [3x1 double]

 index: 1

 iFaces: [172 328 1355 1386 1677 1891 1893]

 iElements: [112 219 220]

Listing 7.13 An example of information related to a node

7.1 uFVM 179

As shown, the centroid contains the coordinates of the node in question, while

iFaces and iElements are lists of indices of the faces and elements, respectively, that

are connected to the node.

Information stored in struct faces can be obtained in a similar way. For example,

the attributes of the face indexed 3 are given by (Listing 7.14).

The above example shows that the struct faces contains the list of indices of the

nodes defining the face, the indices of the owner and neighbor to the face, the

centroid of the face, its surface vector, and its area. In addition, the distance vector T

joining the centroids of the owner and neighbor elements, the geometric factor gf,

the distance vector CN from the owner element centroid to the surface centroid, and

the normal distance to the wall walldist of the owner element centroid are also

stored. Other components will be described later as needed. Moreover, it should be

noted that the neighbor for a boundary face is set to −1.

As displayed in Listing 7.15 for the element with index 20, which is a boundary

element, the struct elements contains three lists of indices for neighboring elements

(iNeighbours), faces (iFaces), and nodes (iNodes).

m.faces(3)

ans =

 iNodes: [45 82 619 582]

 index: 3

 iOwner: 3

 iNeighbour: 30

 centroid: [3x1 double]

 Sf: [3x1 double]

 area: 5.3046

 CN: [3x1 double]

 geoDiff: 4.5940

 T: [3x1 double]

 gf: 0.4226

 walldist: 0

 iOwnerNeighbourCoef: 1

 iNeighbourOwnerCoef: 1

Listing 7.14 An example of information related to a face

m.elements(20)

ans =

 index: 20

 iNeighbours: [100 103]

 iFaces: [33 34 1317 1493 1494]

 iNodes: [168 79 616 705 617 80]

 volume: 3.2484

 faceSign: [1 1 1 1 1]

 numberOfNeighbours: 2

 centroid: [3x1 double]

Listing 7.15 An example of information related to an element

180 7 The Finite Volume Mesh in OpenFOAM® and uFVM

The order of the element indices and faces indices are synchronized such that

elements are related to faces in the same order, and boundary faces are defined at

the end of the list of faces. The struct elements also stores information about the

element centroid and its volume. The faceSign list indicates whether the element is

an owner (+1) or neighbor (−1) for the respective faces.

Elements can be identified on the mesh as in Fig. 7.3 using the following

command (Listing 7.16):

Information about element (20) were displayed above while the attributes of

element (300), which has two boundary faces, are as shown in Listing 7.17.

Fig. 7.3 A two dimensional

view of the mesh over an

elbow highlighting elements

(20) and (300)

cfdPlotElements([20 300])

Listing 7.16 Script needed for uFVM to display selected elements [here elements (20) and (300)]

highlighted on the mesh

7.1 uFVM 181

Finally information about the various boundary patches, i.e., the list of the

boundary faces is stored in struct boundaries. Each boundary array contains

information about the starting index of the first boundary face, the number of

boundary faces belonging to the patch, in addition to the physical type of the patch

and its name. For the example considered, information about boundary patch {1} is

shown in Listing 7.18.

Moreover, information about the first boundary face, for example, is obtained as

shown in Listing 7.19.

>> m. boundaries(1)

ans =

 userName: 'wall-4'

 index: 1

 type: 'wall'

 numberOfBFaces: 100

 startFace: 1301

Listing 7.18 An example of information stored for a wall boundary

m.elements(300)

ans =

 index: 300

 iNeighbours: [278 302 590]

 iFaces: [407 435 436 2053 2054]

 iNodes: [283 820 679 142 290 827]

 volume: 1.9083

 faceSign: [-1 1 1 1 1]

 numberOfNeighbours: 3

 centroid: [3x1 double]

Listing 7.17 An example of information related to element (300) with two boundary faces

>> m.faces(1301)

ans =

 iNodes: [38 53 590 575]

 index: 1301

 iOwner: 1

 iNeighbour: -1

 centroid: [3x1 double]

 Sf: [3x1 double]

 area: 3.7510

 CN: [3x1 double]

 geoDiff: 5.6264

 T: [3x1 double]

 gf: 1

 walldist: 0.6667

 iOwnerNeighbourCoef: []

 iNeighbourOwnerCoef: []

Listing 7.19 Information about a boundary face

182 7 The Finite Volume Mesh in OpenFOAM® and uFVM

To be noted is the index of the first boundary face, which is 1300+1 since in

Matlab® arrays start at index 1while in theC computer language arrays start at index 0.

Thus to loop over the faces of a certain patch, the index of the starting face and

the number of faces from the struct boundary associated with the said patch are

needed. For example to loop over the faces of patch 2, the following script

(Listing 7.20) can be used:

cfdGetFaceIndicesForBoundaryIndex is defined in Listing 7.21 as follows:

7.1.4 uFVM Geometric Fields

In addition to all data stored in the struct mesh, information about the model to be

solved and the values of the fields of interest should be stored to be accessed when

needed. Three types of locale can be identified and fields of different types can be

defined on them. Namely for locale (Elements, Faces, and Nodes) and for types

(scalars, vectors, and tensors). The various fields are first defined based on their

locale.

7.1.4.1 The Element Fields

An element field is constructed using the following script (Listing 7.22):

theMesh = cfdGetMesh;

iPatch = 2;

iBFaces = cfdGetFaceIndicesForBoundaryIndex(iPatch)

for iBFace=iBFaces

theBFace = theMesh.faces(iBFace);

disp(theBFace) %display theBFace internal fields

end

Listing 7.20 Looping over boundary patch faces

theIndices = cfdGetFaceIndicesForBoundaryIndex(theBoundaryIndex)

%

theBoundary = cfdGetBoundary(theBoundaryIndex);

theNumberOfBFaces = theBoundary.numberOfBFaces;

theStartFace = theBoundary.startFace;

theIndices = [theStartFace:theStartFace+theNumberOfBFaces-1];

%

end

Listing 7.21 Indices of boundary faces for a specific patch

cfdSetupMeshField(theUserName,theLocale,theType,theTimeStep)

Listing 7.22 Script needed to construct an element field

7.1 uFVM 183

where theUserName is the name of the field, theLocale is the geometric entity over

which it is defined (Elements, Faces, Nodes), theType defines the type of the array

elements (Scalar or Vector), and finally the TimeStep indicates the relative time of

the field (Step0, Step1, etc.). For example, the following script (Listing 7.23):

sets up a vector field defined over Elements at time step 0, i.e., at the current time

step.

As shown in Fig. 7.4, the array has the size of the NumberOfElements+

theNumberOfBoundaryFaces since the element array will include the values

defined for each element in the mesh in addition to each boundary face. The

boundary face values represent boundary conditions for that field. These boundary

values are grouped in terms of boundary patches.

Generally they can be accessed as follows: For example to initialize the

boundary values of the UField at patch 1 to a value [1 0 0], the following should be

written (Listing 7.24):

>> UField = cfdSetupMeshField('U:water','Elements','Vector','Step0')

UField =

 userName: 'U:water'

 name: 'U_fluid01'

 type: 'Vector'

 locale: 'Elements'

 phi: [2908x3 double]

Listing 7.23 Example of setting up a vector field

0 1 2 NE...

elements array

... NF

boundary faces

patch#1

(np1 faces)
patch#n

...

patch#2

(np2 faces)

Fig. 7.4 Size of the field array

184 7 The Finite Volume Mesh in OpenFOAM® and uFVM

where the statement in Listing 7.25 given by

evaluates the values in theFormula over theLocale and returns and array of the

appropriate length of type theType (Scalar or Vector).

7.1.4.2 The Face Fields

A face field is constructed with theLocale set to ‘Faces’ as (Listing 7.26)

Again, as shown in Fig. 7.5, the length of the array is equal to numberOfFaces,

which combines the numberOfInteriorFaces plus the sum of all boundary faces.

% get the mesh

theMesh = cfdGetMesh;

% get information about the boundary patch

theBoundary = theMesh.boundaries(iPatch);

numberOfElements = theMesh.numberOfElements;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

numberOfBFaces = theBoundary.numberOfBFaces;

% Starting face

iFaceStart = theBoundary.startFace;

% get information about starting and ending elements

iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;

iElementEnd = iElementStart+numberOfBFaces-1;

% define the indices as an index array

iBElements = iElementStart:iElementEnd;

>> UField.phi(iBElements,:) =

cfdComputeFormulaAtLocale('[1;0;0]','BPatch1','Vector')

ans =

 1 0 0

 1 0 0

 1 0 0

Listing 7.24 The script needed to initialize the boundary value of a field in a patch

cfdComputeFormulaAtLocale(theFormula,theLocale,theType)

Listing 7.25 Statement used to compute values over a locale

cfdSetupMeshField(theUserName,theLocale,theType,theTimeStep)

Listing 7.26 Statement used to construct a face field

7.1 uFVM 185

The boundary faces for any boundary patch can be accessed as (Listing 7.27)

and the boundary elements for a scalar field can then be retrieved using Listing 7.28 as

7.1.4.3 The Node Field

The node field is a list where the indices of vertices of faces are stored. Each face is

referred to by the indices of its vertices in the points list (Fig. 7.6). The position of

0 1 2 NIF... ... NF

interior faces boundary faces

patch#1

(np1 faces)
patch#n

...

patch#2

(np2 faces)

faces array

startFace

for patch#1

startFace

for patch#2
...

Fig. 7.5 Size of faces array

theMesh = cfdGetMesh;

numberOfElements = theMesh.numberOfElements;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

theBoundary = theMesh.boundaries(iPatch);

numberOfBFaces = theBoundary.numberOfBFaces;

%

iFaceStart = theBoundary.startFace;

iFaceEnd = iFaceStart+numberOfBFaces-1;

iBFaces = iFaceStart:iFaceEnd;

%

iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;

iElementEnd = iElementStart+numberOfBFaces-1;

iBElements = iElementStart:iElementEnd;

thBFaces = theMesh.faces(iBFaces)

Listing 7.27 Script to access the various arrays of struct faces

phi_b = phi[iBElements]

Listing 7.28 Accessing the boundary elements of a scalar phi

186 7 The Finite Volume Mesh in OpenFOAM® and uFVM

the face in the list refers to the face index. Therefore face 0 is the first entry in the

list, face 1 is the second entry in the list, and so on.

7.1.5 Working with the uFVM Mesh

Looping over elements, interior faces, boundary faces, boundary elements, or even

boundary patches are common operations that are performed during the discreti-

zation and solution cycles. It is worth reviewing the mechanisms that allow per-

forming these operations readily.

7.1.5.1 Looping Over Elements

This is a simple loop to implement as the number of elements is already known and the

elements are indexed from 1 to the numberOfElements (0 to numberOfElements-1

for OpenFOAM®). Also element fields are indexed in a similar fashion, so accessing

them is as simple as accessing elements. Thus the loop is simply as shown in

Listing 7.29.

To access the boundary elements, the script shown in Listing 7.30 is used.

0 1 2 NP...

points array

Fig. 7.6 A points array

for iElement=1:numberOfElements

theElement = theMesh.elements(iElement)

phi(iElement) % this is field phi at centroid of element iElement

....

end

Listing 7.29 Script used to loop over elements

for boundary = 1:numberOfBoundaries

theBoundary = theMesh.boundaries{1};

end

Listing 7.30 Script used to access boundary elements

7.1 uFVM 187

7.1.5.2 Looping Over Faces

The faces array is constructed so that all interior faces run through indices 1 to

numberOfInteriorFaces followed by the boundary faces that are also arranged

according to the boundary patch to which they belong. Thus looping over the

interior faces is straight forward and is written as in Listing 7.31.

Looping over the boundary faces can be done as shown in Listing 7.32.

If the interest is to loop over the boundary faces of a certain patch, then the loop

runs from a start face defined in the boundary condition to nFaces also defined in

the boundary condition. Thus a loop over the faces of boundary patch n would be

written as depicted in Listing 7.33.

The subroutine cfdGetFaceIndicesForBoundaryIndex is used to directly get

the vector startFace: startFace+nFaces-1.

7.1.6 Computing the Gauss Gradient

Computing the gradient of an element field in uFVM, necessitates the use of many

of the above routines. Function cfdComputeGradientGauss0, displayed in

Listing 7.34, shows the details of the Gauss Gradient implementation.

for iFace=1:numberOfInteriorFaces

theFace = theMesh.faces(iFace)

end

Listing 7.31 Script used to loop over interior faces

for iBFace= numberOfInteriorFaces+1:numberOfFaces

theBFace = theMesh.faces(iBFace)

end

Listing 7.32 Script used to loop over boundary faces

startFace = theMesh.boundaries(n).startFace

nFaces = theMesh.boundaries(n).nFaces

for iBFace = startFace: startFace+nFaces-1

Listing 7.33 Script used to loop over boundary faces of a certain patch

188 7 The Finite Volume Mesh in OpenFOAM® and uFVM

function phiGrad = cfdComputeGradientGauss0(phi,theMesh)

%===

% written by the CFD Group @ AUB, Fall 2014

%===

%

if(nargin<2)

 theMesh = cfdGetMesh;

end

%---

% Initialize phiGrad Array

%---

phiGrad = zeros(theMesh.numberOfElements+theMesh.numberOfBFaces,3);

%---

% INTERIOR FACES contribution to gradient

%---

% get the list of interior faces indices and the list of boundary faces

indices

iFaces = 1:theMesh.numberOfInteriorFaces;

iBFaces = theMesh.numberOfInteriorFaces+1:theMesh.numberOfFaces;

% get the list of element indices and the list of boundary element indices

iElements = 1:theMesh.numberOfElements;

iBElements = theMesh.numberOfElements+1:theMesh.numberOfElements

+theMesh.numberOfBFaces;

% get the list of owners and neighbours for all interior faces

iOwners = [theMesh.faces(iFaces).iOwner]';

iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

% get the surface vector of all interior faces

Sf = [theMesh.faces(ifaces).Sf]’;

% get the geometric factor for all interior faces

gf = [theMesh.faces(iFaces).gf]';

% compute the linear interpolation of phi into all interior faces

phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);

% loop over faces and add contribution of phi face flux to the owner and

neighbour elements of the faces

for iFace=iFaces

 phiGrad(iOwners(iFace),:) = phiGrad(iOwners(iFace),:) +

phi_f(iFace)*Sf(iFace,:);

 phiGrad(iNeighbours(iFace),:) = phiGrad(iNeighbours(iFace),:)

phi_f(iFace)*Sf(iFace,:);

 end

%---

% BOUNDARY FACES contribution to gradient

%---% get the list of

elements owning a boundary face

iOwners_b = [theMesh.faces(ibFaces).iOwner]’;

% get the boundary values of phi

phi_b = phi(iBElements,iComponent);

% get the surface vector of all boundary faces

Sb = [theMesh.faces(iBFaces).Sf]';

% loop over all boundary faces and add phi flux contribution to gradient

for k=1:theMesh.numberOfBFaces

 phiGrad(iOwners_b(k),:) = phiGrad(iOwners_b(k),:) + phi_b(k)*Sb(k,:);

end

Listing 7.34 Computing the Gauss gradient

7.1 uFVM 189

The loop over the boundary faces in Listing 7.34 did not take into account the

patches to which the boundary faces belong, rather it just looped over all boundary

faces. A version that would loop over the various patches and then over their

respective boundary faces would be written as shown in Listing 7.35.

%---

% Get Average Gradient by dividing with element volume

%

% get volume of all elements in mesh

volumes = [theMesh.elements(iElements).volume]’;

% compute the average gradient by dividing the sum of all phi fluxes for an

element by the volume of the element

for iElement =1:theMesh.numberOfElements

phiGrad(iElement,:) = phiGrad(iElement,:)/volumes(iElement);

end

%---

% Set boundary Gradient equal to associated element Gradient

phiGrad(iBElements,:) = phiGrad(iOwners_b,:);

Listing 7.34 (continued)

%---

% BOUNDARY FACES contribution to gradient

%---

% get the list number of boundary Patches

%

theNumberOfPatches = theMesh.numberOfBoundaries;

theEquation = cfdGetModel(theEquationName);

%

for iPatch=1:theNumberOfPatches

%

 theBoundary = theMesh.boundaries(iPatch);

 numberOfBFaces = theBoundary.numberOfBFaces;

%

 iFaceStart = theBoundary.startFace;

 iFaceEnd = iFaceStart+numberOfBFaces-1;

 iBFaces = iFaceStart:iFaceEnd;

%

 iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;

 iElementEnd = iElementStart+numberOfBFaces-1;

 iBElements = iElementStart:iElementEnd;

 iBOwners = [theMesh.faces(iBFaces).iOwner]?;

 phi_b = phi(iBElements,iComponent);

 Sb = [theMesh.faces(iBFaces).Sf]';

 % loop over all boundary faces and add phi flux contribution to gradient

for k= 1: numberOfBFaces

 phiGrad(iBOwners(k),:) = phiGrad(iBOwners(k),:) + phi_b(k)*Sb(k,:);

end

end

Listing 7.35 Boundary faces contribution to gradient implemented by looping over the various

patches and then over their respective boundary faces

190 7 The Finite Volume Mesh in OpenFOAM® and uFVM

7.2 OpenFOAM®

OpenFOAM® [1] uses a finite volume cell-centered discretization of the domain

and handles unstructured mesh data format based on the so called face-addressing

storage. The aim of this data structure is to provide maximum flexibility in the

definition of unstructured grids in order to allow for the use of a general polyhedron

shape.

As shown in Fig. 7.7, a polyhedron is a three-dimensional solid consisting of a

collection of plane polygons, joined at their edges. Tetrahedra (polyhedra with four

triangular faces) and Hexahedra (polyhedra with six faces), for instance, are

polyhedra where the faces are made by polygons of three and four edges, respec-

tively. The possibility to describe any three-dimensional shape and use it as a finite

volume element for the discretization of the equations gives multiple advantages

and flexibility during mesh generation.

An efficient way to describe a mesh constructed using polyhedral elements is the

face addressing. In face addressing the element shape is of no consequence to the

equation discretization process, requiring the use of global addressing when

forming the coefficients. (Details on the formation of coefficients from the local and

global perspective will be detailed later on).

In OpenFOAM® the data for points, faces, and elements are stored in a number

of lists (arrays), as shown in Fig. 7.8. The list of points contains the three

dimensional spatial coordinates, defined as vectors, which correspond to the ver-

tices of the actual mesh. The dimensional unit is the meter. Moreover each vertex

has a label defined by the position in the list, and because of the use of the C++

computer language the label counting starts from zero.

The faces are defined by a list of vertex labels referring to points in which the

ordering is such that each two adjacent points are connected by an edge. The face

list is organized in a way that all internal faces appear first in the list followed by

faces related to the first boundary, then faces related to the second boundary, and so

on. Lists of boundary faces are also named patches. It is important to remember that

internal faces belong to two cells while boundary faces belong to one cell only.

Fig. 7.7 A polyhedron element

7.2 OpenFOAM® 191

Finally the element or cell list is defined by a list of indices, where the position in

that list is the cell index, the first index at any position is the number of faces for that

element, and the face indices at a given position represent the faces for that cell.

OpenFOAM® can read computational grids from any mesh generator software

capable of writing the mandatory files needed by OpenFOAM®. As explained

earlier, the mesh is named polyMesh and has to be defined with a set of proper files.

These files are placed in the directory “constant/polyMesh”. Based on the previous

description the names of the files whose contents are self-explanatory are given by

• points

• faces

• owner

• neighbour

• boundary

In OpenFOAM® the entire boundary of the domain is described as a list of

patches in the file boundary. The file boundary is a list of all defined patches

containing a proper entry named dictionary with each patch declared using the

patch name, its type, its number of faces (nFaces), and the starting face (startFace).

The general syntax used is as written in Listing 7.36.

...

x y z

0 1 . n

points list

faces list

(points indices)

0 1 . k

elements list

(faces indices)

0

1

2

3

np

0

1

2

nf

0

1

2

ne

(coordinates)

Fig. 7.8 Points, faces, and elements lists in OpenFOAM®

PatchName

{

 type patch;

 nFaces 'number of faces';

 startFace 'starting face';

}

Listing 7.36 Script used to create a patch

192 7 The Finite Volume Mesh in OpenFOAM® and uFVM

An example of a boundary file with two boundary types is shown in

Listing 7.37.

From a programming point of view it is worth giving a brief introduction of the

C++ classes that handle the mesh and allow access to specific data.

The base class that handles the “low-level” structure is called primitiveMesh. It

is a generic class that wraps the geometric information of the mesh without

assuming any particular form of discretization. It is the basic class for low level

information about the mesh.

Examples of some of the functions that are members of the primitiveMesh class

are shown in Listing 7.38.

As can be seen, this class allows obtaining specific data of the mesh (e.g., cell

volume, cell centers, face centers, etc.). It is worth noting that the class itself does

not recognize boundaries or domain interfaces. Boundaries and domain interfaces

are defined in the polyMesh class, which is derived from the primitiveMesh class.

In addition to possessing all the attributes of the derived class, the polyMesh class

introduces the handling of boundary definition and information, as shown in

Listing 7.39. Again this class does not require any particular discretization scheme.

2

(

 inlet

 {

 type patch;

 physicalType automatic;

 nFaces 100;

 startFace 9850;

 }

 outlet

 {

 type patch;

 physicalType automatic;

 nFaces 100;

 startFace 9950;

 }

)

Listing 7.37 A boundary file with two boundary types

const labelListList & cellCells() const

const labelListList & pointCells() const

const cellList & cells() const

const vectorField & cellCentres() const

const vectorField & faceCentres() const

const scalarField & cellVolumes() const

const vectorField & faceAreas() const

Listing 7.38 Some functions of the primitiveMesh class

7.2 OpenFOAM® 193

While primitiveMesh and polyMesh are the basic classes of the polyhedral

mesh, the fvMesh class is derived from polyMesh and adds the particular data and

functions needed for the finite-volume discretization. Addressing information as

well as boundary information and specific mesh data are accessible for finite vol-

ume discretization.

OpenFOAM® decomposes the boundary mesh into patches stored in a list

designated by polyPatchList under the class polyBoundaryMesh. Then, similar to

interior mesh, a specialized class denoted by fvBoundaryMesh is derived from

polyBoundaryMesh that inherits its functionalities and expands on it to include

specific functions and data needed for finite-volume discretization. As for internal

discretization, a similar hierarchy of classes composed of primitivePatch,

polyPatch, and fvPatch is defined for boundary discretization. These classes are

specific for the boundary mesh and contain the geometric information of each

boundary. But it is the fvPatch that is used to implement the boundary conditions

during the finite volume discretization. Figure 7.9 presents a schematic of the basic

mesh description used in OpenFOAM®.

In a similar way the fvMesh is used to access all mesh functionalities. Thus, it is

mainly with fvMesh and fvPatch that the discretization classes and functions

interact.

const labelUList & owner () const //Internal face owner.

const labelUList & neighbour () const //Internal face neighbour.

const DimensionedField< scalar, volMesh > & V0 () const

Return old-time cell volumes.

const DimensionedField< scalar, volMesh > & V00 () const

Return old-old-time cell volumes.

 tmp< surfaceVectorField > delta () const

Return face deltas as surfaceVectorField

Listing 7.39 Information that can be obtained from the polymesh class

Patch 3

Patch 1

Patch 2

interior faces

boundary faces

Fig. 7.9 Schematic of the basic mesh description used in OpenFOAM® [1]

194 7 The Finite Volume Mesh in OpenFOAM® and uFVM

Examples of codes for reading and accessing the main properties of a mesh

within the OpenFOAM® framework are now presented.

To read a mesh, the fvMesh class that handles the finite volume mesh and

discretization is needed along with a special constructor as shown in Listing 7.40.

The include statements in Listing 7.40 are required for initialization before

reading the mesh files.

Once the fvMesh instantiation is constructed under the variable named mesh, the

manipulation of the loaded mesh and collection of the necessary data for further

programming can proceed, as shown in Listing 7.41.

To loop over the cell volumes, the dedicated class function for information on

volumes should first be called (Listing 7.42). This is accomplished via

and then a loop over the cell volumes can be performed as shown in Listing 7.43.

#include "setRootCase.H"

#include "createTime.H"

 Foam::Info

 << "Create mesh for time = "

 << runTime.timeName() << Foam::nl << Foam::endl;

 Foam::fvMesh mesh

 (

 Foam::IOobject

 (

 Foam::fvMesh::defaultRegion,

 runTime.timeName(),

 runTime,

 Foam::IOobject::MUST_READ

)

);

Listing 7.40 Script to read a mesh in OpenFOAM®

// read the element centroids

volVectorField C = mesh.C();

// element volumes

volScalarField V = mesh.V();

// surface centroids

surfaceVectorField Cf = mesh.Cf();

Listing 7.41 Extracting data after reading a mesh in OpenFOAM®

const DimensionedField< scalar, volMesh >&cellVolumes = mesh.V();

Listing 7.42 Getting information on volumes

7.2 OpenFOAM® 195

In OpenFOAM® the standard “for” loop is replaced by a more compact syntax

using a macro definition named forAll (Listing 7.44) defined in the UList.H file as

In a similar way access to other mesh information can be performed as shown in

Listing 7.45.

For boundary patches the access procedure is similar except that now each patch

has its own class definition, and the full list of patches is defined in the

fvBoundaryMesh class containing the fvPatches list. Therefore to access bound-

ary data the following is used (Listing 7.46):

 #define forAll(list, i) \

 for (Foam::label i=0; i<(list).size(); i++)

Listing 7.44 Script used to replace the standard “for” loop by the macro forAll

 // internal access

 forAll(cellCenters.internalField(), cellI)

 {

 vector cellCenter = cellCenters[cellI];

 }

 // internal access

 forAll(faceNormals.internalField(), faceI)

 {

 vector faceNormal = faceNormals.internalField()[faceI];

 }

]

Listing 7.45 Script used to access mesh information

 forAll(cellVolumes, cellI)

 {

 scalar cellVolume = cellVolumes[cellI];

 }

Listing 7.43 Looping over all cell volumes

 const fvBoundaryMesh& boundaryMesh = mesh.boundary();

 forAll(boundaryMesh, patchI)

 {

 const fvPatch& patch = boundaryMesh[patchI];

 forAll(patch, faceI)

 {

 vector faceNormal = patch.Sf()[faceI];

 scalar faceArea = patch.magSf()[faceI];

 vector unitFaceNormal = patch.nf()()[faceI];

 vector faceCenter = patch.Cf()[faceI];

label owner = patch.faceCells()[faceI];

 }

 }

Listing 7.46 Accessing data on boundary patches

196 7 The Finite Volume Mesh in OpenFOAM® and uFVM

7.2.1 Fields and Memory

Within the OpenFOAM® generic framework, lists, arrays, and in general containers

of different types and sizes can be defined. For a given mesh and computational

structure, it would be useful to define a specific class capable of combining fields,

lists, and vectors directly with the mesh. A useful class that satisfies this require-

ment is the template class GeometricField<Type,…>. Each data defined using this

class is strictly related to the mesh dimensions, both for the boundaries and interior

domain (be it the number of elements, the number of interior faces or even the

number of interior vertices).

In general the template class GeometricField<Type,…> stores the following

data structure based on three main different characteristics of the mesh:

• volField<Type> A field defined at cell centers;

• surfaceField<Type> A field defined on cell faces;

• pointField<Type> A field defined on cell vertices.

The class also inherits the following properties:

• Dimensions: OpenFOAM® provides a useful feature in handling fields under

the class GeometricField. OpenFOAM® associates with each field a dimension

(meter, kg, seconds, etc.) characterizing the physical meaning of the variable.

Based on that all operations carried out with GeometricField have to be per-

formed with fields of the same dimension (e.g., velocity can be summed up with

velocity not pressure) otherwise a runtime error transpires during execution.

Moreover the dimension of any new field defined as a combination of existing

fields in GeometricField, is automatically generated by OpenFOAM® through

applying the same algebraic relation utilized to generate the new field on the

dimensions of the used fields (e.g., dividing a mass field with a volume field

results in a field having the dimension of density).

• InternalField: This is a repository of size equal to the size of the internal mesh

properties (cell centers, vertices, or faces) in which internal information of a

defined field is stored.

• BoundaryField: contains all information pertinent to a defined variable at the

boundary. A list of patches is developed and each field is defined for the patches

of the boundary with the name GeometricBoundaryField. Operations can be

performed either on the full set of boundaries or on a specific patch using

fvPatchField.

• Mesh: Being a class strictly related to the mesh, each GeometricField contains

a reference to the corresponding mesh.

• Time Values and Previous Values: This class is required to handle the specific

field during simulation. It stores information of the previous two time steps for

second order accuracy in time.

7.2 OpenFOAM® 197

In the following, examples on the use of the specific class GeometricField to

access the main properties of a field associated with a mesh are provided.

In the first example it is required to define the two variables U and T, repre-

senting a velocity and a temperature field, respectively, at the cell center of the

mesh. This will be done using the templates of the specialized class

GeometricField, which supports scalars, vectors, and tensors data type. The script

used is shown in Listing 7.47 in which one of the several constructors of the class

GeometricField is used (other constructors can be found in the header file of the

specific class GeometricField.H).

As can be seen in the code, both fields are linked to the mesh. Both require

specifying the following four arguments: (i) field name, (ii) field dimension,

(iii) initialization, and (iv) boundary conditions. Specific boundary conditions have

to be defined for the field and in this case a zero order extrapolation (i.e.,

“zeroGradient”) is specified for the full set of boundaries and for both variables.

volScalarField T

(

 IOobject

 (

 "T",

 runTime.timeName(),

 mesh,

 IOobject::NO_READ,

 IOobject::AUTO_WRITE

),

 mesh,

 dimensionedScalar("DTVol", dimensionSet(0,0,0,1,0,0,0), 300.0),

 "zeroGradient"

);

volVectorField U

(

 IOobject

 (

 "U",

 runTime.timeName(),

 mesh,

 IOobject::NO_READ,

 IOobject::AUTO_WRITE

),

 mesh,

 dimensionedVector("U",dimensionSet(0,1,-1,0,0,0,0),vector::zero),

 "zeroGradient"

);

Listing 7.47 Script used to define the two variables U and T in OpenFOAM®

198 7 The Finite Volume Mesh in OpenFOAM® and uFVM

Similar constructors can be used for variables defined at faces of the mesh. For

example, the script needed to define the mass flux (volume flow rate) field at cell

faces is shown in Listing 7.48.

In this case the field is constructed with a scalar product between velocity

(interpolated at the face) and face area vectors. This field represents the volume

flow rate at control volume faces. It also represents the mass flow rate field for

incompressible flows with a density value of one.

Once fields are defined, access to specific data in different parts of the mesh is

possible as shown in the scripts below.

7.2.2 InternalField Data

Internal field data can be accessed (Listing 7.49) using

 surfaceScalarField mdot

 (

 IOobject

 (

 "mdot",

 runTime.timeName(),

 mesh,

 IOobject::READ_IF_PRESENT,

 IOobject::AUTO_WRITE

),

 linearInterpolate(U) & blockMesh.Sf()

);

Listing 7.48 Script used to define the mass flux field at mesh faces

// internal access

forAll(T.internalField(), cellI)

{

 scalar cellT = T.internalField()[cellI];

}

// internal access

forAll(U.internalField(), cellI)

{

 vector cellU = U.internalField()[cellI];

}

Listing 7.49 Accessing internal field data

7.2 OpenFOAM® 199

7.2.3 BoundaryField Data

Boundary field data can be accessed (Listing 7.50) using

or in a more compact form via (Listing 7.51)

7.2.4 lduAddressing

OpenFOAM® uses exclusively face addressing in its discretization loops and

coefficients storage. It also uses arbitrary polyhedral elements in its meshes.

A polyhedron element can have any number of faces with a neighbor element

associated with each interior face. The storage of coefficients in OpenFOAM® is

based on the face addressing scheme. In this approach, coefficients are stored

following the interior face ordering, with access to elements and their coefficients,

based on the owner/neighbor indices associated with interior faces. As mentioned in

the previous section, the element with the lower index is the owner while the

neighbor is the element with the higher index. For boundary faces the owner is

always the cell to which the face is attached while no neighbor is defined by setting

the neighbour index to −1. The list of owner or neighbor indices thus define the

order in which the element-to-element coefficients are assembled for the various

integral operators.

const volVectorField::GeometricBoundaryField& UBoundaryList =

U.boundaryField();

// boundary access

forAll(UBoundaryList, patchI)

{

 const fvPatchField<vector>& fieldBoundary = UBoundaryList[patchI];

 forAll(fieldBoundary, faceI)

 {

 vector faceU = fieldBoundary[faceI];

 }

}

Listing 7.50 Accessing boundary field data

// boundary access

forAll(T.boundaryField(), patchI)

{

 forAll(T.boundaryField()[patchI], faceI)

 {

 scalar faceT = T.boundaryField()[patchI][faceI];

 }

}

Listing 7.51 A more compact script to access boundary field data

200 7 The Finite Volume Mesh in OpenFOAM® and uFVM

The above described scheme is denoted by lduAddressing and is implemented

in the lduMatrix class displayed in Fig. 7.10 that includes 5 arrays representing the

diagonal, upper, and lower coefficients and the lower and upper indices of the face

owner and neighbor, respectively. In this scheme, owners represent the lower tri-

angular part of the matrix (lower addressing) while neighbors refer to the upper

triangular part (upper addressing). It is worth mentioning that given a face for an

owner element the lower and upper addressing provide respectively the column and

row where the coefficient of the face flux is stored in the matrix while it is the

opposite for a neighbor cell. For the domain shown on the upper left side of

Fig. 7.10, the owner and neighbor of each face are displayed in the lowerAddr()

and upperAddr() array, respectively. The face number is the position of the owner

or neighbor in the array plus one (since numbering starts with 0). Considering

internal face number 4, for example, its related information is stored in the fifth row

(in C++ indexing starts from 0) of the lower(), upper(), lowerAddr(), and

upperAddr() array, respectively. The stored data indicate that its owner is element

number 2 (lowerAddr() array), its neighbor is element number 4 (upperAddr()

array), the coefficient multiplying /4 in the algebraic equation for element number 2

Fig. 7.10 The lduAddressing and lduMatrix

7.2 OpenFOAM® 201

is stored in the fifth row of the array upper(), and the coefficient multiplying /2 in

the algebraic equation for element number 4 is stored in the fifth row of the array

lower().

Thus the lduAdressing provides information about the addresses of the off

diagonal coefficients in relation to the faces to which they are related. This means

that while the computational efficiency for various operations on the matrix is high

when they are mainly based on loops over all faces of the mesh, direct access to a

specific row-column matrix element is difficult and inefficient. One example is the

summation of the off-diagonal coefficients for each row given by

ac ¼
X

n�nbðCÞ

an ð7:1Þ

In this case the use of face addressing does not allow direct looping over the

off-diagonal elements of each row and performing such operation requires looping

over all elements because it can only be done, as shown in Listing 7.52, following a

face based approach.

In Listing 7.52 ac is the sum of the off-diagonals coefficients, l and u are the

upper and lower addressing while Lower and Upper stores the corresponding

coefficients. As can be noticed the summation is performed looping through all the

faces and the summation of each row is not sequential, depending only on the

owner-neighbor numeration of the mesh.

So in general the lduAddressing introduces a more complex handling of the

matrix operations and it will be reflected also in the implementation of linear solvers

but with the advantage of higher computational speed.

7.2.5 Computing the Gradient

The script used to compute the Green-Gauss gradient in OpenFOAM® is shown in

Listing 7.53.

for (label faceI=0; faceI<l.size(); faceI++)

{

 ac[l[faceI]] -= Lower[faceI];

 ac[u[faceI]] -= Upper[faceI];

}

Listing 7.52 Summation of the off-diagonal coefficients

202 7 The Finite Volume Mesh in OpenFOAM® and uFVM

Foam::fv::gaussGrad<Type>::gradf

(

 const GeometricField<Type, fvsPatchField, surfaceMesh>& ssf,

 const word& name

)

{

 typedef typename outerProduct<vector, Type>::type GradType;

 const fvMesh& mesh = ssf.mesh();

 tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad

 (

 new GeometricField<GradType, fvPatchField, volMesh>

 (

 IOobject

 (

 name,

 ssf.instance(),

 mesh,

 IOobject::NO_READ,

 IOobject::NO_WRITE

),

 mesh,

 dimensioned<GradType>

 (

 "0",

 ssf.dimensions()/dimLength,

 pTraits<GradType>::zero

),

 zeroGradientFvPatchField<GradType>::typeName

)

);

 GeometricField<GradType, fvPatchField, volMesh>& gGrad = tgGrad();

 const labelUList& owner = mesh.owner();

 const labelUList& neighbour = mesh.neighbour();

 const vectorField& Sf = mesh.Sf();

//

 Field<GradType>& igGrad = gGrad;

 const Field<Type>& issf = ssf;

 forAll(owner, facei)

 {

 GradType Sfssf = Sf[facei]*issf[facei];

 igGrad[owner[facei]] += Sfssf;

 igGrad[neighbour[facei]] -= Sfssf;

 }

 forAll(mesh.boundary(), patchi)

 {

 const labelUList& pFaceCells =

 mesh.boundary()[patchi].faceCells();

 const vectorField& pSf = mesh.Sf().boundaryField()[patchi];

 const fvsPatchField<Type>& pssf = ssf.boundaryField()[patchi];

 forAll(mesh.boundary()[patchi], facei)

 {

 igGrad[pFaceCells[facei]] += pSf[facei]*pssf[facei];

 }

 }

 igGrad /= mesh.V();

 gGrad.correctBoundaryConditions();

 return tgGrad;

}

Listing 7.53 Script used to compute a gradient field in OpenFOAM®

7.2 OpenFOAM® 203

The small introduction reported above is neither intended as a replacement of

OpenFOAM® user’s manual [1] nor a replacement of a C++ manual. The purpose

of the above presentation is to introduce the reader to the philosophy and general

concepts that are useful for a quick understanding of the OpenFOAM® framework.

Despite the generality of presentation, the described syntax introduced one of the

main important data defined within OpenFOAM® that are necessary for writing a

complete solver, which will be described in later chapters.

7.3 Mesh Conversion Tools

There are many tools capable of converting mesh files from a variety of format to

the OpenFOAM® format. Some of these tools are as follows [1]:

• ansysToFoam: Converts an ANSYS input mesh file, exported from I-DEAS, to

OpenFOAM® format.

• cfx4ToFoam: Converts a CFX 4 mesh to OpenFOAM® format.

• datToFoam: Reads in a datToFoam mesh file and outputs a points file. Used in

conjunction with blockMesh.

• fluent3DMeshToFoam: Converts a Fluent mesh to OpenFOAM® format.

• fluentMeshToFoam: Converts a Fluent mesh to OpenFOAM® format including

multiple region and region boundary handling.

• foamMeshToFluent: Writes out the OpenFOAM® mesh in Fluent mesh format.

• foamToStarMesh: Reads an OpenFOAM® mesh and writes a PROSTAR (v4)

bnd/cel/vrt format.

• foamToSurface: Reads an OpenFOAM® mesh and writes the boundaries in a

surface format.

• gambitToFoam: Converts a GAMBIT mesh to OpenFOAM® format.

• gmshToFoam: Reads.msh file as written by Gmsh.

• ideasUnvToFoam: I-Deas unv format mesh conversion.

• kivaToFoam: Converts a KIVA grid to OpenFOAM® format.

• mshToFoam: Converts.msh file generated by the Adventure system.

• netgenNeutralToFoam: Converts neutral file format as written by Netgen v4.4.

• plot3dToFoam: Plot3d mesh (ascii/formatted format) converter.

• sammToFoam: Converts a STAR-CD (v3) SAMM mesh to OpenFOAM®

format.

• star3ToFoam: Converts a STAR-CD (v3) PROSTAR mesh into OpenFOAM®

format.

• star4ToFoam: Converts a STAR-CD (v4) PROSTAR mesh into OpenFOAM®

format.

• tetgenToFoam: Converts .ele and .node and .face files, written by tetgen.

• writeMeshObj: For mesh debugging: writes mesh as three separate OBJ files

which can be viewed with e.g. javaview.

204 7 The Finite Volume Mesh in OpenFOAM® and uFVM

7.4 Closure

The chapter overviewed the realization of the FVM in a computer code by

explaining several implementation attributes of the uFVM and OpenFOAM® CFD

codes. The two codes were presented in terms of their data structure, memory

management schemes, and case setup. The next chapter will detail the finite volume

second discretization step as applied to the diffusion flux.

7.5 Exercises

Exercise 1

For the configuration shown in Fig. 7.11

(a) Write the owner and neighbor for each interior face and use it to write the

owners and neighbors lists.

(b) Build the connectivity array for each element by looping over each of the

interior faces using the owner-neighbor information; this is the coefficient

connectivity used in uFVM.

(c) Build the coefficients ldu addressing connectivity used in OpenFOAM®.

1

6 2

3

5 4

8 9 10

137 12

11

1

25

4

10

3

7

86

14

1112

13

15

9

22

21

23

16 17

18

20

19

Fig. 7.11 The rectangular domain discretized with an unstructured grid used for Exercise 1

Exercise 2

Using the uFVM (MATLAB®) code, read the elbow mesh (available at the book

website) and then do the following:

(a) Write a script to loop over all the elements of the domain and print out for each

element its index, and the indices of its faces in the following format “element

[i] → faces[k l m n…]”

7.4 Closure 205

(b) Declare and array phi as an element field (size = 1, Number of

elements + Number of boundary faces), and initialize it using the following

formula: ϕ(x, y, z) = 10xy + 5y2.

(c) Declare a new element array of type vector (size 3, Number of

elements + Number of boundary faces) and use it to compute the gradient of

phi, using the gauss theorem i.e.,

r/ ¼

P
f

/fSf

V

which can be written as follows for the mesh data used:

r/ ¼

P
owner fð Þ

/fSf �
P

neighbour fð Þ

/fSf þ
P

b¼boundary fð Þ

/bSb

V

Exercise 3

Use blockMesh to setup a uniform mesh similar to the one in Fig. 7.12 for L = 1. In

OpenFOAM® and then in uFVM do the following:

(a) Write a program to read the mesh and loop over all boundary patches. Then

for each patch print the centroid and normal vector of its faces.

(b) Modify the program to define a volumeScalarField T. Set the values for T at

element centroids and at the boundaries to 10x2y2, where x and y are the

coordinates of the element centroids and for the case of the boundary the

centroids of the boundary faces.

(c) Write a program to compute the gradient of T and compare its value with the

analytical solution.

patch#1

patch#2

patch#3

patch#4

L

L

L / 2

L / 2

Fig. 7.12 A two dimensional domain generated with blockMesh

206 7 The Finite Volume Mesh in OpenFOAM® and uFVM

Exercise 4

(a) Find in OpenFOAM® using Doxygen [2], the class definition of the data types

points, face, and cell.

(b) Loop over all interior faces (using forAll) and for each face write the owner,

neighbor, and centroid.

(c) Loop over all elements and write for each element the value of the cubic root

of its volume and its centroid.

(d) Loop over all boundary faces and write for each face the owner (parentCell)

and centroid.

(e) Define a surfaceScalarField and set its value to be equal to the x component for

interior faces and the y component for boundary faces.

(f) Find the member function of the surfaceScalarField (GeometricField<>) that

returns the old time values.

References

1. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

2. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

7.5 Exercises 207

Part II

Discretization

Chapter 8

Spatial Discretization: The Diffusion Term

Abstract This chapter describes in detail the discretization of the diffusion term

represented by the spatial Laplacian operator. It is investigated separately from the

convection term, because convection and diffusion represent two distinct physical

phenomena. Thus from a numerical point of view, they have to be handled dif-

ferently, requiring distinct interpolation profiles with disparate considerations. The

chapter begins with the discretization of the diffusion equation in the presence of a

source term over a two-dimensional rectangular domain using a Cartesian grid

system. The adopted interpolation profile for the variation of the dependent variable

between grid points and the basic rules that should be satisfied by the coefficients of

the discretized equation are discussed. The chapter proceeds with a discussion on

the implementation of the Dirichlet, Von Neumann, mixed, and symmetry

boundary conditions. The discretization over a non-Cartesian orthogonal grid is

then introduced, followed by a detailed description of the discretization on

non-orthogonal structured and unstructured grid systems. The treatment of the

non-orthogonal cross-diffusion contribution, which necessitates computation of

the gradient, is clarified. Then anisotropic diffusion is introduced and handled

following the same methodology developed for isotropic diffusion. The

under-relaxation procedure needed for highly non-linear problems is outlined. The

chapter ends with computational pointers explaining the treatment of diffusion in

both uFVM and OpenFOAM®.

8.1 Two-Dimensional Diffusion in a Rectangular Domain

A simple rectangular domain with a regular Cartesian grid, as shown in Fig. 8.1, is

first considered. The aim is to discretize, on this domain, the steady-state diffusion

equation given by

�r � C
/r/

� �
¼ Q/ ð8:1Þ

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_8

211

where ϕ denotes a scalar variable (e.g., temperature, mass fraction of a chemical

species, turbulence kinetic energy, etc.), Qϕ the generation of ϕ per unit volume

within the domain, and C
/ the diffusion coefficient. The equation can be written

more generally in term of a diffusion flux Jϕ,D as

r � J/;D ¼ Q/ ð8:2Þ

where Jϕ,D is defined as

J/;D ¼ �C/r/ ð8:3Þ

Following the first stage discretization presented in Chap. 5, Eq. (8.1) can be

formulated as

X

f�nb Cð Þ

�C/r/
� �

f
� Sf ¼ Q

/
CVC ð8:4Þ

The expanded form of the above equation can be written as

�C/r/
� �

e
� Se þ �C

/r/
� �

w
� Sw þ �C

/r/
� �

n
� Sn þ �C

/r/
� �

s
� Ss ¼ Q

/
CVC

ð8:5Þ

For the uniform Cartesian grid of Fig. 8.1, the surface vectors normal to the

element faces are given by

Se ¼ þ Dyð Þe i ¼ Se ikk ¼ Sei Sw ¼ � Dyð Þw i ¼ � Sw ikk ¼ �Swi

Sn ¼ þ Dxð Þn j ¼ Sn jkk ¼ Snj Ss ¼ � Dxð Þs j ¼ � Ss jkk ¼ �Ssj
ð8:6Þ

Thus for the east face the diffusion flux is found to be

J/;De ¼ � C
/r/

� �

e
� Se

¼ �C/
e Se

@/

@x
iþ

@/

@y
j

� �

e

� i

¼ �C/
e Dyð Þe

@/

@x

� �

e

ð8:7Þ

Following the discrete conservation equation for one integration point discussed

earlier, the discrete form of the diffusion flux can be written as

J/;De ¼ FluxTe ¼ FluxCe/C þ FluxFe/F þ FluxVe ð8:8Þ

To determine the FluxCe, FluxFe, and FluxVe coefficients, a profile describing

the variation of ϕ between the centroids of the two elements sharing the face, where

the gradient has to be computed, is required. Assuming that ϕ varies linearly

212 8 Spatial Discretization: The Diffusion Term

between cell centroids (Fig. 8.2), the gradient at face e along the i direction may be

written as

@/

@x

� �

e

¼
/E � /C

dxð Þe
ð8:9Þ

Substituting into Eq. (8.8), the discretized form of the diffusion flux along face

e is obtained as

FluxTe ¼ �C
/
e Dyð Þe

/E � /Cð Þ

dxe

¼ C
/
e

Dyð Þe
dxe

/C � /Eð Þ

¼ FluxCe/C þ FluxFe/E þ FluxVe

ð8:10Þ

Sw
Se

Sn

Ss

EW

N

S

C

NW NE

SW SE

y()
C

x()
w

x()
e

y()
n

y()
s

x()
C

Fig. 8.1 A uniform Cartesian
grid

Se

e

x
= slope

C E

C E

x
e

Fig. 8.2 Interpolation profile
at face e and slope of gradient

8.1 Two-Dimensional Diffusion in a Rectangular Domain 213

Taking

gDiffe ¼
Dyð Þe
dxe

¼
Sek k

dCEk k
¼

Se

dCE
ð8:11Þ

where dCE is the distance vector between the centroids of elements C and E, the

coefficients become

FluxCe ¼ C
/
e gDiffe

FluxFe ¼ �C
/
e gDiffe

FluxVe ¼ 0

ð8:12Þ

A similar procedure applied to face w yields

FluxTw ¼ � C
/r/

� �

w
� Sw

¼ �C/
wSw

@/

@x
iþ

@/

@y
j

� �

w

� �ið Þ

¼ C
/
wSw

@/

@x

� �

w

¼ C
/
wSw

/C � /Wð Þ

dxð Þw

¼ FluxCw/C þ FluxFw/W þ FluxVw

ð8:13Þ

where now

FluxCw ¼ C
/
wgDiffw

FluxFw ¼ �C
/
wgDiffw

FluxVw ¼ 0

ð8:14Þ

and

gDiffw ¼
Dyð Þw
dxw

¼
Swk k

dCWk k
¼

Sw

dcw

Similar expressions may be written along faces n and s and are given by

FluxTn ¼ FluxCn/C þ FluxFn/N þ FluxVn

FluxTs ¼ FluxCs/C þ FluxFs/S þ FluxVs

ð8:15Þ

214 8 Spatial Discretization: The Diffusion Term

where

FluxCn ¼ C
/
n gDiffn FluxFn ¼ �C

/
n gDiffn FluxVn ¼ 0

FluxCs ¼ C
/
s gDiffs FluxFs ¼ �C

/
s gDiffs FluxVs ¼ 0

ð8:16Þ

and

gDiffn ¼
Snk k

dCNk k
¼

Dxð Þn
dyn

¼
Sn

dCN

gDiffs ¼
Ssk k

dCSk k
¼

Dxð Þs
dys

¼
Ss

dCS

ð8:17Þ

Substituting into Eq. (8.5), the algebraic form of the diffusion equation is

obtained as

aC/C þ aE/E þ aW/W þ aN/N þ aS/S ¼ bC ð8:18Þ

where

aE ¼ FluxFe ¼ �C
/
e gDiffe

aW ¼ FluxFw ¼ �C
/
wgDiffw

aN ¼ FluxFn ¼ �C
/
n gDiffn

aS ¼ FluxFs ¼ �C
/
s gDiffs

aC ¼ FluxCe þ FluxCw þ FluxCn þ FluxCs

¼ � aE þ aW þ aN þ aSð Þ

bC ¼ Q
/
CVC � FluxVe þ FluxVw þ FluxVn þ FluxVsð Þ

ð8:19Þ

or, more compactly, as

aC/C þ
X

F�NBðCÞ

aF/F ¼ bC ð8:20Þ

with

aF ¼ FluxFf ¼ �C
/
f gDifff

aC ¼
X

f�nbðCÞ

FluxCf

bC ¼ Q
/
CVC �

X

f�nbðCÞ

FluxVf

ð8:21Þ

where the subscript F denotes the neighbors of element C (E, W, N, S), and the

subscript f denotes the neighboring faces of element C (e, w, n, s).

8.1 Two-Dimensional Diffusion in a Rectangular Domain 215

8.2 Comments on the Discretized Equation

A proper discretization method should result in a discretized algebraic equation that

reflects the characteristics of the original conservation equation. The properties of

the discretization techniques were introduced in the previous chapter and two

additional rules that the coefficients of the discretized equation have to satisfy are

presented next.

8.2.1 The Zero Sum Rule

Looking back at the discretization process, the first major approximation made was

the linear profile assumption for the variation of ϕ between the centroids of the

elements straddling the element face. The reader might ask why to use a first order

rather than a higher order profile. To answer this question, a one dimensional

configuration with no source term is considered. Under these conditions the dis-

cretized equation reduces to

aC/C þ aE/E þ aW/W ¼ 0 ð8:22Þ

where

aE ¼ �C
/
e gDiffe aW ¼ �C

/
wgDiffw aC ¼ � aE þ aWð Þ ð8:23Þ

In the absence of any source or sink within this one dimensional domain, the

transfer of ϕ occurs by diffusion only and is governed by Fourier’s law (elliptic

equation), i.e., in the direction of decreasing ϕ. As such, the value of ϕe or ϕw should

lie between the values ϕC and ϕE or ϕC and ϕW, respectively, which is guaranteed by

the linear profile. A second order profile (e.g., a parabolic profile) may result in a

value at the face that is higher or lower than the values at the centroids of the cells

straddling the face, which is unphysical. The same is true for other higher order

profiles. If the discretization scheme is to guarantee physical results, then a linear

profile should be used. Moreover, the adopted profile becomes less important as the

size of the element decreases, since all approximations are expected to yield the

same analytical solution in the limit when the size of the element approaches zero.

Furthermore, in the absence of any source term, the multi-dimensional heat con-

duction equation reduces to,

�r � C
/r/

� �
¼ 0 ð8:24Þ

This implies that ϕ and ϕ + constant are solutions to the conservation equation.

A consistent discretization method should reflect this property through its discret-

ized equation and the discretized equation should fulfill

216 8 Spatial Discretization: The Diffusion Term

aC/C þ
X

F�NBðCÞ

aF/F ¼ 0

aC /C þ constantð Þ þ
X

F�NBðCÞ

aF /F þ constantð Þ ¼ 0

9

>>=

>>;

) aC þ
X

F�NBðCÞ

aF ¼ 0

ð8:25Þ

which is actually satisfied by the discretized equation. The above equation, which is

valid in the presence or absence of a source/sink term as revealed by Eq. (8.19),

may be written as

aC ¼ �
X

F�NBðCÞ

aF ð8:26Þ

or as

X

F�NBðCÞ

aF

aC
¼ �1 ð8:27Þ

Thus ϕC can be viewed as the weighted sum of its neighbors, and in the absence

of any source term it should always be bounded by these neighboring ϕF values.

When a source term is present, i.e., when S
/
C 6¼ 0; /C does not need to be bounded

in this manner, and can over/undershoot the neighboring values, but this is perfectly

physical. The extent of over/under shoot is determined by the magnitude of S
/
C with

respect to the size of the coefficients at the neighboring nodes (aF).

8.2.2 The Opposite Signs Rule

The above derivations demonstrated that the coefficients aC and aF are of opposite

signs. This is of physical significance implying that as the value of ϕF is

increased/decreased, the value of ϕC is expected to increase/decrease. This is

basically related to boundedness suggesting that a sufficient condition for this

property to be satisfied is for the neighboring and main coefficients to be of opposite

signs. If not, then the boundedness property may not be enforced.

8.3 Boundary Conditions

It is well known that the analytical solution to any ordinary or partial differential

equation is obtained up to some constants that are fixed by the applicable boundary

conditions to the situation being studied. Therefore, using different boundary

8.2 Comments on the Discretized Equation 217

conditions will result in different solutions even though the general equation

remains the same. Numerical solutions follow the same constrain, necessitating

correct and accurate implementation of boundary conditions as any slight change in

these conditions introduced by the numerical approximation leads to a wrong

solution of the problem under consideration.

Boundary conditions will be discussed as deemed relevant to the terms being

discretized. For conduction/diffusion problems Dirichlet, Neumann, mixed, and

symmetry boundary condition types are encountered, which are detailed next.

Boundary conditions are applied on boundary elements, which have one or more

faces on the boundary. Discrete values of ϕ are stored both at centroids of boundary

cells and at centroids of boundary faces.

Let C denotes the centroid of the boundary element shown in Fig. 8.3 with one

boundary face of centroid b and of surface vector Sb pointing outward. As before,

the discretization process over cell C yields

X

f�nbðCÞ

J/;D � S
� �

f
¼ Q

/
CVC ð8:28Þ

The fluxes on the interior faces are discretized as before, while the boundary flux

is discretized with the aim of constructing a linearization with respect to ϕC, thus

J
/;D
b � Sb ¼ FluxTb

¼ �C/
b r/ð Þb � Sb

¼ FluxCb/C þ FluxVb

ð8:29Þ

The specification of boundary conditions involves either specifying the unknown

boundary value ϕb, or alternatively, the boundary flux J
/;D
b . Using Eq. (8.18), the

discretized equation at a boundary element for the different boundary condition

types of diffusion problems are derived next.

8.3.1 Dirichlet Boundary Condition

A Dirichlet boundary condition is a type of boundary condition that specifies the

value of ϕ at the boundary, i.e.,

/b ¼ /specified ð8:30Þ

218 8 Spatial Discretization: The Diffusion Term

b
S

b

S
n

S
w

S
s

b = specified

SW S

C

N

W

NW

x()
b

Fig. 8.3 Value specified
boundary condition

For this case

FluxTb ¼ �C
/
b r/ð Þb � Sb

¼ �C/
b

Sbk k

dCbk k
/b � /Cð Þ

¼ FluxCb/C þ FluxVb

ð8:31Þ

yielding

FluxCb ¼ C
/
b gDiffb ¼ ab

FluxVb ¼ �C
/
b gDiffb/b ¼ �ab/b

ð8:32Þ

with

gDiffb ¼
Sb

dCb
ð8:33Þ

Thus for element C shown in Fig. 8.3 the aE coefficient is zero reducing the

discretized equation to

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:34Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C
/
wgDiffw

aN ¼ FluxFn ¼ �C
/
n gDiffn

aS ¼ FluxFs ¼ �C
/
s gDiffs

aC ¼ FluxCb þ
X

f�nbðCÞ

FluxCf ¼ FluxCb þ FluxCw þ FluxCn þ FluxCsð Þ

ð8:35Þ

8.3 Boundary Conditions 219

and

bC ¼ Q
/
CVC � FluxVb þ

X

f�nbðCÞ

FluxVf

0

@

1

A ð8:36Þ

The following important observations can be made about the discretized

boundary equation:

1. The coefficient ab is larger than other neighbor coefficients because b is closer to

C and consequently has a more important effect on ϕC.

2. The coefficient aC is still the sum of all neighboring coefficients including ab.

This means that for the boundary element
P

F�NB Cð Þ

aFj j= aCj j\1 giving the

second necessary condition to satisfy the Scarborough criterion, thus guaran-

teeing, at any one iteration, the convergence of the linear system of equations

via an iterative solution method.

3. The abϕb product (=FluxVb) is now on the right hand side of the equation, i.e.,

part of bC, because it contains no unknowns.

8.3.2 Von Neumann Boundary Condition

If the flux (or normal gradient to the face) of ϕ is specified at the boundary

(Fig. 8.4), then the boundary condition is denoted by a Neumann boundary con-

dition. In this case the specified flux is given by

� C
/r/

� �

b
� i ¼ qb ð8:37Þ

which is, in effect, the flux J
/;D
b , since

J
/;D
b � Sb ¼ � C

/r/
� �

b
� Sbk ki ¼ qb Sbk k

¼ FluxCb/C þ FluxVb

ð8:38Þ

where now

FluxCb ¼ 0

FluxVb ¼ qbSb

¼ qb Dyð ÞC

ð8:39Þ

Here the flux components are assumed to be positive when they act in the same

direction as the coordinate system used.

220 8 Spatial Discretization: The Diffusion Term

Thus qb may directly be included in Eq. (8.18) to yield the following discrete

equation for the boundary cell C:

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:40Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C
/
wgDiffw

aN ¼ FluxFn ¼ �C
/
n gDiffn

aS ¼ FluxFs ¼ �C
/
s gDiffs

aC ¼
X

f�nbðCÞ

FluxCf ¼ � aW þ aN þ aSð Þ

bC ¼ Q
/
CVC � FluxVb þ

X

f�nbðCÞ

FluxVf

0

@

1

A

ð8:41Þ

The following important points can be made about the above discretized

equation:

1. A Von Neumann boundary condition does not result in a dominant aC
coefficient.

2. If both qb and S
/
C are zero, then /C will be bounded by its neighbors. Otherwise,

/C can exceed (or fall below) the neighbor values of /, which is admissible. If

/ is temperature, for example, then qb represents the heat flux applied at the

boundary. Therefore if heat is added at the boundary, then the temperature in the

region close to the boundary is expected to be higher than that in the interior.

b
S

b

S
n

S
w

S
s

SW S

C

N

W

NW

x()
b

b nb = qspecified

Fig. 8.4 Flux specified
boundary condition

8.3 Boundary Conditions 221

3. Once /C is computed, the boundary value /b may be computed using

/b ¼
C
/
b gDiffb/C � qb

C
/
b gDiffb

ð8:42Þ

4. Finally the Von Neumann condition can be considered as a natural boundary

condition for the Finite Volume method since, for the case where the specified

flux is zero, nothing needs to be done in terms of discretization for the face,

while a specified value of zero (Dirichlet condition) will still require the dis-

cretization to be carried out.

8.3.3 Mixed Boundary Condition

The mixed boundary condition, schematically depicted in Fig. 8.5, refers to the

situation where information at the boundary is given via a convection transfer

coefficient (h1) and a surrounding value for /ð/1Þ as

J
/;D
b � Sb ¼ � C

/r/
� �

b
� iSb ¼ �h1 /1 � /bð Þ Dyð ÞC ð8:43Þ

which can be rewritten as

�C/
b Sb

/b � /C

dxb

� �

¼ �h1 /1 � /bð ÞSb ð8:44Þ

b S
b

S
n

S
w

S
s

SW S

C

N

W

NW

x()
b

b

h

Fig. 8.5 Mixed type
boundary condition

222 8 Spatial Discretization: The Diffusion Term

from which an equation for /b is obtained as

/b ¼
h1/1 þ C

/
b =dxb

� �

/C

h1 þ C
/
b =dxb

� � ð8:45Þ

Substituting /b back in Eq. (8.43), the flux equation is transformed to

J
/;D
b � Sb ¼ �

h1 C
/
b =dxb

� �

h1 þ C
/
b =dxb

� � Sb

2

4

3

5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Req

/1 � /Cð Þ

¼ FluxCb/C þ FluxVb

ð8:46Þ

where now

FluxCb ¼ Req

FluxVb ¼ �Req/1
ð8:47Þ

Using the flux term given by Eq. (8.47) in the discretized equation of the

boundary element C, the modified equation is found to be

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:48Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C
/
wgDiffw

aN ¼ FluxFn ¼ �C
/
n gDiffn

aS ¼ FluxFs ¼ �C
/
s gDiffs

aC ¼ FluxCb þ
X

f�nbðCÞ

FluxCf ¼ FluxCb þ FluxCw þ FluxCn þ FluxCsð Þ

bC ¼ Q
/
CVC � FluxVb þ

X

f¼nbðCÞ

FluxVf

0

@

1

A

ð8:49Þ

8.3.4 Symmetry Boundary Condition

Along a symmetry boundary the normal flux to the boundary of a scalar variable /

is zero. Therefore a symmetry boundary condition is equivalent to a Neumann

boundary condition with the value of the flux set to zero (i.e., FluxCb = FluxVb = 0).

8.3 Boundary Conditions 223

Thus the modified equation along a symmetry boundary condition can be deduced

from Eqs. (8.40) and (8.41) by setting qb to zero and is given by

aC/C þ aW/W þ aN/N þ aS/S ¼ bC ð8:50Þ

where

aE ¼ 0

aW ¼ FluxFw ¼ �C
/
wgDiffw

aN ¼ FluxFn ¼ �C
/
n gDiffn

aS ¼ FluxFs ¼ �C
/
s gDiffs

aC ¼
X

f�nbðCÞ

FluxCf ¼ � aW þ aN þ aSð Þ

bC ¼ Q
/
CVC �

X

f�nbðCÞ

FluxVf

ð8:51Þ

8.4 The Interface Diffusivity

In the above discretized equation, the diffusion coefficients C/
e ;C

/
w;C

/
n , and C

/
s have

been used to represent the value of C/ at the e, w, n and s faces of the element,

respectively. When the diffusion coefficient C/ varies with position, its value will be

known at the cell centroids E,W,… and so on. Then a prescription for evaluating the

interface value is needed in terms of values at these grid points. The following

discussion is, of course, not relevant to situations of uniform diffusion coefficient.

The discussion may become clearer if the energy equation is considered, in

which case the diffusion coefficient represents the conductivity of the material used

and / denotes the temperature. Non-uniform conductivity occurs in

non-homogeneous materials and/or when the thermal conductivity is temperature

dependent. In the treatment of the general differential equation for /, the diffusion

coefficient C/ will be handled in the same way. Significant variations of C/ are

frequently encountered for example, in turbulent flow, where C/ may stand for the

turbulent viscosity or the turbulent conductivity. Thus, a proper formulation for

non-uniform C
/ is highly desirable.

A simple approach for calculating the interface conductivity is the linear profile

assumption for the variation of C/, between point C and any of its neighbors. Thus,

along the east face the value of C/, is obtained as

C
/
e ¼ 1� geð ÞC/

C þ geC
/
E ð8:52Þ

224 8 Spatial Discretization: The Diffusion Term

where the interpolation factor ge is a ratio in terms of distances between centroids

given by

ge ¼
dCe

dCe þ deE
ð8:53Þ

Hence for a Cartesian grid if the interface is midway between the grid points, ge

would be 0.5, and C
/
e would be the arithmetic mean of C

/
C and C

/
E . Similar coef-

ficients can be defined for other faces as

gw ¼
dCw

dCw þ dwW

gn ¼
dCn

dCn þ dnN

gs ¼
dCs

dCs þ dsS

ð8:54Þ

Therefore it is sufficient to calculate the coefficients of each surface of an ele-

ment only once. Moreover, the use of distances instead of volumes will lead to the

same interpolation factors as the grid here is Cartesian.

This basic approach leads to rather incorrect implications in some cases and cannot

accurately handles, for example, abrupt changes of conductivity that may occur in

composite materials. Fortunately, a much better alternative of comparable simplicity

is available. In developing this alternative, it is recognized that the local value of

conductivity at an interface is not of primary concern. Rather, the main objective is to

obtain a good representation of the diffusion flux Jϕ,D at the interface [1].

For the one dimensional problem shown in Fig. 8.6, it is assumed that the

element C is composed of a material having a thermal conductivity C
/
C, while

element E is made of a material of thermal conductivity C
/
E . For the non-homo-

geneous slab between points C and E, a steady one-dimensional analysis (without

sources) results in (the flux on either side of the interface e is supposed to be the

same)

J/;De � Se ¼
/C � /e

dxð ÞCe
C
/

C

¼
/e � /E

dxð ÞeE
C
/

E

¼
/C � /E

dxð ÞCe
C
/

C

þ
dxð ÞeE
C
/

E

¼
/C � /E

dxð ÞCE
C
/
e

ð8:55Þ

CW

x()
w

x()
C

w e

x()
e

E

Fig. 8.6 Interpolation of properties at element faces

8.4 The Interface Diffusivity 225

Hence the effective conductivity for the slab is found to be

dxð ÞCE
C
/
e

¼
dxð ÞCe

C
/
C

þ
dxð ÞeE

C
/
E

)
1

C
/
e

¼
1� ge

C
/
E

þ
ge

C
/
C

 !

ð8:56Þ

When the interface is halfway between C and E (ge = 0.5), Eq. (8.56) reduces to

C
/
e ¼

2C
/
CC

/
E

C
/
C þ C

/
E

ð8:57Þ

which is the harmonic mean of C
/
C and C

/
E , rather than the arithmetic mean.

It is important to note that the harmonic mean interpolation for discontinuous

diffusion coefficients is exact only for one-dimensional diffusion. Nevertheless, its

application for multi-dimensional situation has an important advantage. With this

type of interpolation, nothing special need to be done when treating conjugate

interfaces. Solid and fluid cells are simply treated as part of the same domain with

different diffusion coefficients stored at the cell centroids. By calculating the face

diffusivity as the harmonic-mean of the values at the centroids sharing the face, the

diffusion flux at the conjugate interface is correctly computed.

Example 1

The heat conduction in the two-dimensional rectangular domain composed of

two materials shown in Fig. 8.7 is governed by the following differential

equation:

r � krTð Þ ¼ 0

where T represents temperature. For the thermal conductivities (k) and

boundary conditions displayed in the figure:

(a) Derive the algebraic equations for all the elements shown in the figure.

(b) Using the Gauss-Seidel iterative method discussed in Chap. 4, solve the

system of equations obtained and compute the cell values of T.

(c) Compute the values of T at the bottom, right, and top boundaries.

(d) Compute the net heat transfer through the top, bottom, and left

boundaries and check that energy conservation is satisfied.

226 8 Spatial Discretization: The Diffusion Term

Solution

The first step is to determine the geometric quantities that are needed in the

solution. The coordinates of the various nodes are found to be

x21 ¼ x20 ¼ x19 ¼ 0 y10 ¼ y11 ¼ y12 ¼ 0

x10 ¼ x1 ¼ x4 ¼ x7 ¼ x18 ¼ 0:05 y21 ¼ y1 ¼ y2 ¼ y3 ¼ y13 ¼ 0:05
x11 ¼ x2 ¼ x5 ¼ x8 ¼ x17 ¼ 0:2 y20 ¼ y4 ¼ y5 ¼ y6 ¼ y14 ¼ 0:15
x12 ¼ x3 ¼ x6 ¼ x9 ¼ x16 ¼ 0:45 y19 ¼ y7 ¼ y8 ¼ y9 ¼ y15 ¼ 0:25
x13 ¼ x14 ¼ x15 ¼ 0:6 y18 ¼ y17 ¼ y16 ¼ 0:3

The distance between nodes are computed as

dx21�1 ¼ dx20�4 ¼ dx19�7 ¼ 0:05 dy10�1 ¼ dy11�2 ¼ dy12�3 ¼ 0:05
dx1�2 ¼ dx4�5 ¼ dx7�8 ¼ 0:15 dy1�4 ¼ dy2�5 ¼ dy3�6 ¼ 0:1
dx2�3 ¼ dx5�6 ¼ dx8�9 ¼ 0:25 dy4�7 ¼ dy5�8 ¼ dy6�9 ¼ 0:1
dx3�13 ¼ dx6�14 ¼ dx9�15 ¼ 0:15 dy7�18 ¼ dy8�17 ¼ dy9�16 ¼ 0:05

Fig. 8.7 Conduction heat transfer in a two dimensional rectangular domain

8.4 The Interface Diffusivity 227

The size of the elements are given by

Dx1 ¼ Dx4 ¼ Dx7 ¼ 0:1 Dy1 ¼ Dy2 ¼ Dy3 ¼ 0:1
Dx2 ¼ Dx5 ¼ Dx8 ¼ 0:2 Dy4 ¼ Dy5 ¼ Dy6 ¼ 0:1
Dx3 ¼ Dx6 ¼ Dx9 ¼ 0:3 Dy7 ¼ Dy8 ¼ Dy9 ¼ 0:1

The computed volumes of the various cells are obtained as

V1 ¼ V4 ¼ V7 ¼ 0:01 V2 ¼ V5 ¼ V8 ¼ 0:02 V3 ¼ V6 ¼ V9 ¼ 0:03

The interpolation factors needed to find values at element faces are cal-

culated as

geð Þ1 ¼ geð Þ4¼ geð Þ7 ¼
V1

V1 þ V2

¼
0:01

0:01þ 0:02
¼ 0:333

geð Þ2 ¼ geð Þ5¼ geð Þ8 ¼
V2

V2 þ V3

¼
0:02

0:02þ 0:03
¼ 0:4

gnð Þ1 ¼ gnð Þ2¼ gnð Þ3 ¼
V1

V1 þ V4

¼
0:01

0:01þ 0:01
¼ 0:5

gnð Þ4 ¼ gnð Þ5¼ gnð Þ6 ¼
V10

V10 þ V15

¼
0:01

0:01þ 0:01
¼ 0:5

The thermal conductivity values over the domain are given by

k1 ¼ k4 ¼ k7 ¼ k10 ¼ k21 ¼ k20 ¼ k19 ¼ k18 ¼ 10�3

k2 ¼ k3 ¼ k5 ¼ k6 ¼ k8 ¼ k9 ¼ k11 ¼ k12 ¼ k13 ¼ k14 ¼ k15 ¼ k16 ¼ k17 ¼ 102

while values at the element faces are found to be

k1�2 ¼
k1k2

1� geð Þ1
	

k1 þ geð Þ1k2
¼

10�3 � 102

1� 0:333ð Þ � 10�3 þ 0:333� 10�2
� 3� 10�3

k1�2 ¼ k4�5 ¼ k7�8 ¼ 3� 10�3 k1�4 ¼ k4�7 ¼ 10�3 k2�5 ¼ k3�6 ¼ k5�8 ¼ k6�9 ¼ 102

Using the above values, the discretized algebraic equations for all elements

are derived next.

Element #1

The needed diffusion terms are calculated as

gDiffe ¼
Dy1

dx1�2
¼

0:1

0:15
¼ 0:667 gDiffw ¼

Dy1

dx21�1
¼

0:1

0:05
¼ 2

gDiffn ¼
Dx1

dy1�4
¼

0:1

0:1
¼ 1

228 8 Spatial Discretization: The Diffusion Term

The interface conductivities are

ke ¼ k1�2 ¼ 3� 10�3 kn ¼ k1�4 ¼ 10�3 kw ¼ k21 ¼ 10�3

The general form of the equation is written as

aCT1 þ aET2 þ aNT4 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �3� 10�3 � 0:667 ¼ �0:002

aN ¼ FluxFn ¼ �kngDiffn ¼ �10
�3 � 1 ¼ �0:001

The west and south coefficients do not appear in the equation as their

influence is integrated through the boundary conditions as

FluxCw ¼ kwgDiffw ¼ 10�3 � 2 ¼ 0:002

FluxVs ¼ 0

FluxVw ¼ �kwgDiffwT21 ¼ �10
�3 � 2� 320 ¼ �0:64

Themain coefficient and source term can now be calculated and are given by

aC ¼ FLuxCe þ FLuxCn þ FLuxCw ¼ 0:002þ 0:001þ 0:002 ¼ 0:005

bC ¼ �FluxVS � FluxVw ¼ 0þ 0:64 ¼ 0:64

Substituting, the discretized algebraic equation is obtained as

0:005T1 � 0:002T2 � 0:001T4 ¼ 0:64

Element #2

The needed diffusion terms are calculated as

gDiffe ¼
Dy2

dx2�3
¼

0:1

0:25
¼ 0:4 gDiffw ¼

Dy2

dx1�2
¼

0:1

0:15
¼ 0:667

gDiffn ¼
Dx2

dy2�5
¼

0:2

0:1
¼ 2

The interface conductivities are

ke ¼ k2�3 ¼ 102 kn ¼ k2�5 ¼ 102 kw ¼ k1�2 ¼ 3� 10�3

8.4 The Interface Diffusivity 229

The general form of the equation is written as

aCT2 þ aET3 þ aWT1 þ aNT5 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �10
2 � 0:4 ¼ �40

aW ¼ FluxFw ¼ �kwgDiffw ¼ �3� 10�3 � 0:667 ¼ �0:002

aN ¼ FluxFn ¼ �kngDiffn ¼ �10
2 � 2 ¼ �200

The south coefficient does not appear in the equation as its influence is

integrated through the boundary conditions as

FluxVs ¼ qbj � S1 ¼ qbj � �Dx2jð Þ ¼ �100 � 0:2 ¼ �20

The main coefficient and source term can now be calculated and are given

by

aC ¼ FLuxCe þ FLuxCn þ FLuxCw ¼ 40þ 0:002þ 200 ¼ 240:002

bC ¼ �FluxVS
¼ 20

Substituting, the discretized algebraic equation is obtained as

240:002T2 � 40T3 � 0:002T1 � 200T5 ¼ 20

Element #3

The needed diffusion terms are calculated as

gDiffw ¼
Dy3

dx2�3
¼

0:1

0:25
¼ 0:4 gDiffn ¼

Dx3

dy3�6
¼

0:3

0:1
¼ 3

The interface conductivities are

kw ¼ k2�3 ¼ 102 kn ¼ k3�6 ¼ 102

The general form of the equation is written as

aCT3 þ aWT2 þ aNT6 ¼ bC

where

aW ¼ FluxFw ¼ �kwgDiffw ¼ �10
2 � 0:4 ¼ �40

aN ¼ FluxFn ¼ �kngDiffn ¼ �10
2 � 3 ¼ �300

230 8 Spatial Discretization: The Diffusion Term

The east and south coefficients do not appear in the equation as their

influence is integrated through the boundary conditions as

FluxVe ¼ 0

FluxVs ¼ qbj � S1 ¼ qbj � �Dx3jð Þ ¼ �100 � 0:3 ¼ �30

The main coefficient and source term can now be calculated and are given

by

aC ¼ FLuxCw þ FLuxCn ¼ 40þ 300 ¼ 340

bC ¼ �FluxVS � FluxVe ¼ 30þ 0 ¼ 30

Substituting, the discretized algebraic equation is obtained as

340T3 � 40T2 � 300T6 ¼ 30

Element #4

The needed diffusion terms are calculated as

gDiffe ¼
Dy4

dx4�5
¼

0:1

0:15
¼ 0:667 gDiffw ¼

Dy4

dx20�4
¼

0:1

0:05
¼ 2

gDiffn ¼
Dx4

dy4�7
¼

0:1

0:1
¼ 1 gDiffs ¼

Dx4

dy1�4
¼

0:1

0:1
¼ 1

The interface conductivities are

ke ¼ k4�5 ¼ 3� 10�3 kw ¼ k20 ¼ 10�3 kn ¼ k4�7 ¼ 10�3 ks ¼ k1�4 ¼ 10�3

The general form of the equation is written as

aCT4 þ aET5 þ aNT7 þ aST1 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �3� 10�3 � 0:667 ¼ �0:002

aN ¼ FluxFn ¼ �kngDiffn ¼ �10
�3 � 1 ¼ �0:001

aS ¼ FluxFs ¼ �ksgDiffs ¼ �10
�3 � 1 ¼ �0:001

8.4 The Interface Diffusivity 231

The west coefficient does not appear in the equation as its influence is

integrated through the boundary condition as

FluxCw ¼ kwgDiffw ¼ 10�3 � 2 ¼ 0:002

FluxVw ¼ �kwgDiffwT20 ¼ �10
�3 � 2� 320 ¼ �0:64

The main coefficient and source term can now be calculated and are given

by

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 0:002þ 0:002þ 0:001þ 0:001 ¼ 0:006

bC ¼ �FluxVw ¼ 0:64

Substituting, the discretized algebraic equation is obtained as

0:006T4 � 0:002T5 � 0:001T7 � 0:001T1 ¼ 0:64

Element #5

The needed diffusion terms are calculated as

gDiffe ¼
Dy5

dx5�6
¼

0:1

0:25
¼ 0:4 gDiffw ¼

Dy5

dx4�5
¼

0:1

0:15
¼ 0:667

gDiffn ¼
Dx5

dy5�8
¼

0:2

0:1
¼ 2 gDiffs ¼

Dx5

dy2�5
¼

0:2

0:1
¼ 2

The interface conductivities are

ke ¼ k5�6 ¼ 102 kw ¼ k4�5 ¼ 3� 10�3 kn ¼ k5�8 ¼ 102 ks ¼ k2�5 ¼ 102

The general form of the equation is written as

aCT5 þ aET6 þ aWT4 þ aNT8 þ aST2 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �10
2 � 0:4 ¼ �40

aW ¼ FluxFw ¼ �kwgDiffw ¼ �3� 10�3 � 0:667 ¼ �0:002

aN ¼ FluxFn ¼ �kngDiffn ¼ �10
2 � 2 ¼ �200

aS ¼ FluxFs ¼ �ksgDiffs ¼ �10
2 � 2 ¼ �200

232 8 Spatial Discretization: The Diffusion Term

All coefficients appear in the equation as this is an internal element. The

main coefficient and source term are calculated as

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 40þ 0:002þ 200þ 200 ¼ 440:002

bC ¼ 0

Substituting, the discretized algebraic equation is obtained as

440:002T5 � 40T6 � 0:002T4 � 200T8 � 200T2 ¼ 0

Element #6

The needed diffusion terms are calculated as

gDiffw ¼
Dy6

dx5�6
¼

0:1

0:25
¼ 0:4 gDiffn ¼

Dx6

dy6�9
¼

0:3

0:1
¼ 3 gDiffs ¼

Dx6

dy3�6
¼

0:3

0:1
¼ 3

The interface conductivities are

kw ¼ k5�6 ¼ 102 kn ¼ k6�9 ¼ 102 ks ¼ k3�6 ¼ 102

The general form of the equation is written as

aCT6 þ aWT5 þ aNT9 þ aST3 ¼ bC

where

aW ¼ FluxFw ¼ �kwgDiffw ¼ �10
2 � 0:4 ¼ �40

aN ¼ FluxFn ¼ �kngDiffn ¼ �10
2 � 3 ¼ �300

aS ¼ FluxFs ¼ �ksgDiffs ¼ �10
2 � 3 ¼ �300

The east coefficient does not appear in the equation as its represents a zero

flux boundary condition. Moreover the main coefficient and source term are

given by

aC ¼ FLuxCw þ FLuxCn þ FLuxCs

¼ 40þ 300þ 300 ¼ 640

bC ¼ FLuxVe ¼ 0

Substituting, the discretized algebraic equation is obtained as

640T6 � 40T5 � 300T9 � 300T3 ¼ 0

8.4 The Interface Diffusivity 233

Element #7

The needed diffusion terms are calculated as

gDiffe ¼
Dy7

dx7�8
¼

0:1

0:15
¼ 0:667 gDiffw ¼

Dy7

dx19�7
¼

0:1

0:05
¼ 2 gDiffs ¼

Dx7

dy4�7
¼

0:1

0:1
¼ 1

The interface conductivities are

ke ¼ k7�8 ¼ 3� 10�3 kw ¼ k19 ¼ 10�3 kn ¼ k18 ¼ 10�3 ks ¼ k4�7 ¼ 10�3

The general form of the equation is written as

aCT7 þ aET8 þ aST4 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �3� 10�3 � 0:667 ¼ �0:002

aS ¼ FluxFs ¼ �ksgDiffs ¼ �10
�3 � 1 ¼ �0:001

The west and north coefficients do not appear in the equation as their

influence is integrated through the boundary conditions as

Req ¼
h1 k18=dy7�18ð Þ

h1 þ k18=dy7�18ð Þ
Dx7 ¼

20 10�3=0:05ð Þ

20þ 10�3=0:05
0:1 ¼ 0:001998

FluxCw ¼ kwgDiffw ¼ 10�3 � 2 ¼ 0:002 FluxVw ¼ �kwgDiffwT19 ¼ �0:64
FluxCn ¼ Req ¼ 0:001998 FluxVn ¼ �ReqT1 ¼ �0:5994

Themain coefficient and source term can now be calculated and are given by

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 0:002þ 0:002þ 0:001998þ 0:001 ¼ 0:006998

bC ¼ �FLuxVw � FLuxVn ¼ 0:64þ 0:5994 ¼ 1:2394

Substituting, the discretized algebraic equation is obtained as

0:006998T7 � 0:002T8 � 0:001T4 ¼ 1:2394

Element #8

The needed diffusion terms are calculated as

gDiffe ¼
Dy8

dx8�9
¼

0:1

0:25
¼ 0:4 gDiffw ¼

Dy8

dx7�8
¼

0:1

0:15
¼ 0:667 gDiffs ¼

Dx8

dy5�8
¼

0:2

0:1
¼ 2

234 8 Spatial Discretization: The Diffusion Term

The interface conductivities are

ke ¼ k8�9 ¼ 102 kw ¼ k7�8 ¼ 3� 10�3 kn ¼ k17 ¼ 102 ks ¼ k5�8 ¼ 102

The general form of the equation is written as

aCT8 þ aET9 þ aWT7 þ aST5 ¼ bC

where

aE ¼ FluxFe ¼ �kegDiffe ¼ �10
2 � 0:4 ¼ �40

aW ¼ FluxFw ¼ �kwgDiffw ¼ �3� 10�3 � 0:667 ¼ �0:002

aS ¼ FluxFs ¼ �ksgDiffs ¼ �10
2 � 2 ¼ �200

The north coefficient does not appear in the equation as its influence is

integrated through the boundary condition as

Req ¼
h1 k17=dy8�17ð Þ

h1 þ k17=dy8�17ð Þ
Dx8 ¼

20 102=0:05ð Þ

20þ 102=0:05
0:2 ¼ 3:9604

FluxCn ¼ Req ¼ 3:9604 FluxVn ¼ �ReqT1 ¼ �1188:12

The main coefficient and source term can now be calculated and are given

by

aC ¼ FLuxCe þ FLuxCw þ FLuxCn þ FLuxCs

¼ 40þ 0:002þ 3:9604þ 200 ¼ 243:9624

bC ¼ �FluxVn ¼ 1188:12

Substituting, the discretized algebraic equation is obtained as

243:9624T8 � 40T9 � 0:002T7 � 200T5 ¼ 1188:12

Element #9

The needed diffusion terms are calculated as

gDiffw ¼
Dy9

dx8�9
¼

0:1

0:25
¼ 0:4 gDiffs ¼

Dx9

dy6�9
¼

0:3

0:1
¼ 3

8.4 The Interface Diffusivity 235

The interface conductivities are

kw ¼ k8�9 ¼ 102 kn ¼ k16 ¼ 102 ks ¼ k6�9 ¼ 102

The general form of the equation is written as

aCT9 þ aWT8 þ aST6 ¼ bC

where

aW ¼ FluxFw ¼ �kwgDiffw ¼ �10
2 � 0:4 ¼ �40

aS ¼ FluxFs ¼ �ksgDiffs ¼ �10
2 � 3 ¼ �300

The east and north coefficients do not appear in the equation as their

influence is integrated through the boundary conditions as

Req ¼
h1 k16=dy9�16ð Þ

h1 þ k16=dy9�16ð Þ
Dx9 ¼

20 102=0:05ð Þ

20þ 102=0:05
0:3 ¼ 5:9406

FluxCn ¼ Req ¼ 5:9406

FluxVn ¼ �ReqT1 ¼ �1782:18

FluxCe ¼ FluxVe ¼ 0

The main coefficient and source term can now be calculated and are given

by

aC ¼ FLuxCw þ FLuxCn þ FLuxCs ¼ 40þ 5:9406þ 300 ¼ 345:9406

bC ¼ �FLuxVn ¼ 1782:18

Substituting, the discretized algebraic equation is obtained as

345:9406T9 � 40T8 � 300T6 ¼ 1782:18

Summary of equations

The discretized algebraic equations are given by

0:005T1 � 0:002T2 � 0:001T4 ¼ 0:64

240:002T2 � 40T3 � 0:002T1 � 200T5 ¼ 20

236 8 Spatial Discretization: The Diffusion Term

340T3 � 40T2 � 300T6 ¼ 30

0:006T4 � 0:002T5 � 0:001T7 � 0:001T1 ¼ 0:64

440:002T5 � 40T6 � 0:002T4 � 200T8 � 200T2 ¼ 0

640T6 � 40T5 � 300T9 � 300T3 ¼ 0

0:006998T7 � 0:002T8 � 0:001T4 ¼ 1:2394

243:9624T8 � 40T9 � 0:002T7 � 200T5 ¼ 1188:12

345:9406T9 � 40T8 � 300T6 ¼ 1782:18

Solution of Equations

To solve the above system of equations via the Gauss-Seidel method, the

equations are rearranged into

T1 ¼ 0:002T2 þ 0:001T4 þ 0:64ð Þ=0:005

T2 ¼ 40T3 þ 0:002T1 þ 200T5 þ 20ð Þ=240:002

T3 ¼ 40T2 þ 300T6 þ 30ð Þ=340

T4 ¼ 0:002T5 þ 0:001T7 þ 0:001T1 þ 0:64ð Þ=0:006

T5 ¼ 40T6 þ 0:002T4 þ 200T8 þ 200T2ð Þ=440:002

T6 ¼ 40T5 þ 300T9 þ 300T3ð Þ=640

T7 ¼ 0:002T8 þ 0:001T4 þ 1:2394ð Þ=0:006998

T8 ¼ 40T9 þ 0:002T7 þ 200T5 þ 1188:12ð Þ=243:9624

T9 ¼ 40T8 þ 300T6 þ 1782:18ð Þ=345:9406

The solution is found iteratively with the latest available values used

during the solution process. Starting with a uniform initial guess of 300 K,

Table 8.1 shows the results during the first two iterations along with the final

converged solution.

8.4 The Interface Diffusivity 237

Values of T along the bottom boundary

These can be calculated from the specified boundary condition, in this case

a specified flux, as

�kb
@T

@y
¼ qb) �kb

TC � Tb

yC � yb
¼ qb) Tb ¼ TC þ

qb

kb
yC � ybð Þ

Using the above equation, the temperatures are calculated as

T10 ¼ T1 ¼ 312:490

T11 ¼ T2 þ
qb

k11
y2 � y11ð Þ ¼ 305:254þ

100

100
0:05� 0ð Þ ¼ 305:304

T12 ¼ T3 þ
qb

k12
y3 � y12ð Þ ¼ 305:254þ

100

100
0:05� 0ð Þ ¼ 305:304

Values of T along the right boundary

The above equation with the heat flux set to zero can be used to calculate

the temperature along the zero flux boundary, leading to

�kb
@T

@y
¼ 0) Tb ¼ TC

The boundary temperatures are therefore given by

T13 ¼ T3 ¼ 305:254 T14 ¼ T6 ¼ 305:154 T15 ¼ T9 ¼ 305:054

Values of T along the top boundary

Using Eq. (8.45) the temperature values along the top boundary are

computed as

T18 ¼
hbT1 þ k18=dy7�18ð ÞT7

hb þ k18=dy7�18ð Þ
¼

20� 300þ 10�3=0:05ð Þ308:867

20þ 10�3=0:05ð Þ
¼ 300:009

T17 ¼
hbT1 þ k17=dy8�17ð ÞT8

hb þ k17=dy8�17ð Þ
¼

20� 300þ 102=0:05ð Þ305:054

20þ 102=0:05ð Þ
¼ 305:004

T16 ¼
hbT1 þ k16=dy9�16ð ÞT9

hb þ k16=dy9�16ð Þ
¼

20� 300þ 102=0:05ð Þ305:054

20þ 102=0:05ð Þ
¼ 305:004

Table 8.1 Summary of results obtained using the Gauss-Seidel iterative method

Iter Tl T2 T3 T4 T5 T6 T7 T8 T9

0 300 300 300 300 300 300 300 300 300

1 308.000 300.083 300.098 308.000 300.037 300.048 306.859 300.031 300.045

2 309.633 300.131 300.146 309.428 300.078 300.094 307.072 300.071 300.090

⋮ … … … … … … … … …

Solution 312.490 305.254 305.254 311.944 305.154 305.154 308.867 305.054 305.054

238 8 Spatial Discretization: The Diffusion Term

Total heat transfer along the left boundary

The total heat transfer along the west boundary is given by

QLeft ¼ q21Dy21 þ q20Dy20 þ q19Dy19

¼ k21
T1 � T21

dx21�1
Dy21 þ k20

T4 � T20

dx20�4
Dy20 þ k19

T7 � T19

dx19�7
Dy19

¼
10�3 � 0:1

0:05
312:49þ 311:944þ 308:867� 3� 320½ �

¼ �0:053398W

Total heat transfer along the top boundary

Along the top boundary, the total heat transfer is computed as

Qtop ¼ q18Dx18 þ q17Dx17 þ q16Dx16

¼ h1 Dx18 T18 � T1ð Þ þ Dx17 T17 � T1ð Þ þ Dx16 T16 � T1ð Þ½ �

¼ 20 0:1 300:009� 300ð Þ þ 0:2 305:004� 300ð Þ þ 0:3 305:004� 300ð Þ½ �

¼ 50:058W

Total heat transfer along the bottom boundary

Knowing the heat flux, the total amount of heat transfer is found as

QBottom ¼ �qbDy ¼ �100� 0:5 ¼ �50W

Check for energy conservation

For conservation, the sum of heat entering and leaving the domain should

be equal to zero. The sum is computed as

QTop þ QLeft þ QBottom ¼ 50:058� 0:053398� 50 ¼ 0:004602 � 0

The slight deviation from zero is due to the use of a limited number of

digits during computations.

8.5 Non-Cartesian Orthogonal Grids

Let us now consider the case of an orthogonal grid that is not oriented along the

x and y axes. As shown in Fig. 8.8, such a grid can be obtained by rotating the

Cartesian grid of Fig. 8.1 by some angle.

The discretized equation for this grid should be exactly the same as the one

obtained for the Cartesian grid. Moreover for similar boundary conditions, the same

solution should be obtained.

8.4 The Interface Diffusivity 239

Consider again the steady state conduction Eq. (8.1)

r � J/;D ¼ Q/ ð8:58Þ

As before its discretized form is given by

X

f�nbðCÞ

� C
/r/

� �

f
� Sf ¼ Q

/
CVC ð8:59Þ

Considering the discretization along face e, the following is obtained:

J/;De � Se ¼ �C
/
e r/ � nð ÞeSe ¼ �C

/
e

@/

@n

� �

e

Se ð8:60Þ

where now

r/ � nð Þe¼
@/

@n

� �

e

ð8:61Þ

is the gradient of ϕ at face e along the n direction. Assuming again a linear profile

for ϕ along the n coordinate axis, the gradient can be written as

@/

@n

� �

e

¼
/E � /C

dCE
ð8:62Þ

The discretization of other terms proceeds as for a Cartesian grid, leading to the

same final discretization equation.

SeSn

Sw

Ss

E

W

N

S

C

NW

NE

SW

SE

x

y

x
y

C

E

W

S
e

n
t

Se = y()
C

Sw

Sw

= y()
C

Sw = Se

Se = Se n

dCE = x()e n

dCE = x()e

E

W

C

y()
C x()

w

x()
e

x()
C

xy

Fig. 8.8 Example of non-Cartesian orthogonal grids

240 8 Spatial Discretization: The Diffusion Term

8.6 Non-orthogonal Unstructured Grid

8.6.1 Non-orthogonality

In the above configurations, the fluxes were normal to the face. In general, struc-

tured curvilinear grids and unstructured grids are non-orthogonal [2–5].Therefore

the surface vector Sf and the vector CF joining the centroids of the elements

straddling the interface are not collinear (see Fig. 8.9). In this case the gradient

normal to the surface cannot be written as a function of ϕF and ϕC, as it has a

component in the direction perpendicular to CF.

Thus while on orthogonal grids the gradient in the direction normal to the

interface yields

r/ � nð Þf¼
@/

@n

� �

f

¼
/F � /C

rF � rCk k
¼

/F � /C

dCF
ð8:63Þ

because CF and n (the unit vector normal to the surface) are aligned, on

non-orthogonal grids [6, 7], the gradient direction that yields an expression

involving ϕF and ϕC will have to be along the line joining the two points C and F.

If e represents the unit vector along the direction defined by the line connecting

nodes C and F then

e ¼
rF � rC

rF � rCk k
¼

dCF

dCF
ð8:64Þ

Therefore, the gradient in the e direction can be written as

r/ � eð Þf¼
@/

@e

� �

f

¼
/F � /C

rF � rCk k
¼

/F � /C

dCF
ð8:65Þ

Thus to achieve the linearization of the flux in non-orthogonal grids, the surface

vector Sf should be written as the sum of two vectors Ef and Tf, i.e.,

Sf ¼ Ef þ Tf ð8:66Þ

S f

n

e dCFf

t

C

F

Fig. 8.9 An element in a
non-orthogonal mesh system

8.6 Non-orthogonal Unstructured Grid 241

with Ef being in the CF direction to enable writing part of the diffusion flux as a

function of the nodal values ϕF and ϕC such that

r/ð Þf � Sf ¼ r/ð Þf � Ef

z}|{
Ef e

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

orthogonal�like contribution

þ r/ð Þf � T
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

non�orthogonal like contribution

¼ Ef

@/

@e

� �

f

þ r/ð Þf � Tf

¼ Ef

/F � /C

dCF
þ r/ð Þf � Tf

ð8:67Þ

The first term on the right hand side of Eq. (8.67) represents a contribution

similar to the contribution on orthogonal grids, i.e., involving ϕF and ϕC, while the

second term on the right hand side is called cross-diffusion or non-orthogonal

diffusion [8] and is due to the non-orthogonality of the grid. Different options for

the decomposition of Sf are available and are discussed next.

8.6.2 Minimum Correction Approach

As shown in Fig. 8.10, the decomposition of Sf is done in such a way as to keep the

non-orthogonal correction in Eq. (8.67) as small as possible, by making Ef and Tf

orthogonal. As the non-orthogonality increases, the contribution to the diffusion

flux from ϕF and ϕC decreases. In this case the vector Ef is computed as

Ef ¼ e � Sf
� �

e ¼ Sf cos h
� �

e ð8:68Þ

S f

E f

Tf

n

e

C

F

f

Fig. 8.10 Decomposing Sf
via the minimum correction
approach

242 8 Spatial Discretization: The Diffusion Term

8.6.3 Orthogonal Correction Approach

This approach, schematically depicted in Fig. 8.11, keeps the contribution of the

term involving ϕF and ϕC the same as on an orthogonal mesh irrespective of the

degree of grid non-orthogonality. To achieve this, Ef is defined as

Ef ¼ Sf e ð8:69Þ

8.6.4 Over-Relaxed Approach

In this approach, the importance of the term involving ϕF and ϕC is forced to

increase as grid non-orthogonality increases. As shown in Fig. 8.12, this is achieved

by selecting Tf to be normal to Sf. Mathematically Ef is computed as

Ef ¼
Sf

cos h

� �

e ¼
S2f

Sf cos h

 !

e ¼
Sf � Sf
e � Sf

e ð8:70Þ

To summarize, the diffusion flux at an element face of a non-orthogonal grid

cannot be written solely in terms of the values at the nodes straddling the face.

S f

E f

Tf

n

e

C

F

f

Fig. 8.11 Decomposing Sf
via the orthogonal correction
approach

S f

E f

Tf

n

e

C

F

f

Fig. 8.12 Decomposing Sf
via the over-relaxed approach

8.6 Non-orthogonal Unstructured Grid 243

A term that accounts for non-orthogonality has to be added. This term is denoted in

the literature by “cross diffusion” and is computed as

r/ð Þf � Tf ¼ r/ð Þf � Sf � Ef

� �

¼

r/ð Þf � n� cos heð ÞSf minimum correction

r/ð Þf � n� eð ÞSf normal correction

r/ð Þf � n�
1

cos h
e

� �

Sf over�relaxed

8

>>><

>>>:

ð8:71Þ

For orthogonal meshes n and e are collinear, the angle θ shown in Fig. 8.9 is

zero, and the cross-diffusion term is zero. When cross diffusion is not zero, and

since it cannot be written as a function of ϕF and ϕC, it is added as a source term in

the element algebraic equation.

All approaches described above are correct and satisfy Eq. (8.59). The difference

between these methods is in their accuracy and stability on non-orthogonal meshes.

The over-relaxed approach has been found to be the most stable even when the grid

is highly non-orthogonal. Nevertheless, the final general form of the discretized

diffusion term is the same for all three approximations.

8.6.5 Treatment of the Cross-Diffusion Term

The cross diffusion term cannot be expressed in terms of nodal values. Due to this

fact, it is treated in a deferred correction manner by computing its value using the

current gradient field and adding it as a source term on the right hand side of the

algebraic equation. Gradients are computed at the main grid points, as described

next, and values at the interfaces are obtained by interpolation.

8.6.6 Gradient Computation

In discretizing the diffusion term over a one-dimensional or orthogonal

multi-dimensional computational domain, it was shown that the gradient of ϕ can be

explicitly written as a function of the cell nodal ϕ values. In non-orthogonal

domains however, the computation of the diffusion flux was found to be more

complex. The non-orthogonal component of the gradient could not be linearized

and written as a function of nodal values, but rather had to be moved to the right

hand side and evaluated explicitly. This means that the gradient has to be evaluated

in order to incorporate its non-orthogonal contribution in the discretization equa-

tion. One widely used approach for computing the gradient at a cell is the

244 8 Spatial Discretization: The Diffusion Term

Green-Gauss or gradient theorem, which states that for any closed volume V,

surrounded by a surface ∂V the following holds:

Z

V

r/ dV ¼

I

@V

/ dS ð8:72Þ

where dS is the outward pointing incremental surface vector. In order to obtain a

discrete version of this equation, the mean value theorem is applied according to

which the integral on the left hand side of Eq. (8.72) and the average gradient over

the volume V are related by

r/V ¼

Z

V

r/ dV ð8:73Þ

Combining Eqs. (8.72) and (8.73), the average gradient over element C shown in

Fig. 8.9 is found to be

r/C ¼
1

VC

I

@VC

/fSf ð8:74Þ

Next the integral over a cell face is approximated by the face centroid value

times the face area. Thus r/C, or simply ∇ϕC, is computed as

r/C ¼
1

VC

X

f�nbðCÞ

/fSf ð8:75Þ

The gradient at the face of an element can then be obtained as the weighted

average of the gradients at the centroids straddling the interface and is given by

r/f ¼ gCr/C þ gFr/F ð8:76Þ

where gC and gF are geometric interpolation factors related to the position of the

element face f with respect to the nodes C and F.

8.6.7 Algebraic Equation for Non-orthogonal Meshes

Splitting the surface vector Sf into the two Ef and Tf vectors and substituting its

equivalent expression into the semi-discretized equation of the diffusion fluxes, yield

8.6 Non-orthogonal Unstructured Grid 245

X

f�nbðCÞ

J
/;D
f � Sf

� �

¼
X

f�nbðCÞ

� C
/r/

� �

f
� Ef þ Tf

� �� �

¼
X

f�nbðCÞ

� C
/r/

� �

f
� Ef

� �

|ffl{zffl}

Orthogonal Linearizeable Part

þ
X

f�nbðCÞ

� C
/r/

� �

f
� Tf

� �

|ffl{zffl}

Non�Orthogonal Non�Linearizeable Part

¼
X

f�nbðCÞ

�C/
f Ef

/F � /Cð Þ

dCF

� �

þ
X

f�nbðCÞ

� C
/r/

� �

f
� Tf

� �

¼
X

f�nbðCÞ

C
/
f gDifff /C � /Fð Þ þ

X

f�nbðCÞ

� C
/r/

� �

f
� Tf

� �

¼
X

f�nbðCÞ

FluxCf

0

@

1

A/C þ
X

f�nbðCÞ

FluxFf/F

� �
þ
X

f�nbðCÞ

FluxVf

� �

ð8:77Þ

where again gDifff is a geometric diffusion coefficient defined as

gDifff ¼
Ef

dCF
ð8:78Þ

Using the above form of the diffusion fluxes and expanding, the final form of the

discretized diffusion equation over unstructured/structured non-orthogonal grid is

obtained as

aC/C þ
X

F�NBðCÞ

aF/F ¼ bC ð8:79Þ

where

aF ¼ FluxFf ¼ �C
/
f gDifff

aC ¼
X

f�nbðCÞ

FluxCf ¼ �
X

f�nbðCÞ

FluxFf ¼
X

f�nbðCÞ

C
/
f gDifff

bC ¼ Q
/
CVC �

X

f�nbðCÞ

FluxVf

� �
¼ Q

/
CVC þ

X

f�nbðCÞ

C
/r/

� �

f
� Tf

� �
ð8:80Þ

Note the change in sign of the non-orthogonal term on the right hand side of the

equation.

Example 2

For the polygonal element C and its neighbor F shown in Fig. 8.13, the

solution at any point satisfies ϕ = x2 + y2 + x2y2. If the volume of cell C is

VC = 8.625 calculate the following:

246 8 Spatial Discretization: The Diffusion Term

1. The gradient of ϕ at (i.e., ∇ϕC) both numerically and analytically.

2. The analytical value of ∇ϕF.

3. Interpolate between the numerical value of ∇ϕC and the analytical value

of ∇ϕF to find an approximate value for r/f1
. Compare with the ana-

lytical value of r/f1
.

4. Express r/f1
· Sf1 in terms of ϕC and ϕF using

(a) The minimum correction approach

(b) The orthogonal correction approach

(c) The over-relaxed approach

Solution

1. Knowing that ϕ = x2 + y2 + x2y2 at any point in the domain, the value of the

gradient at any point can be calculated as

r/ ¼
@/

@x
iþ

@/

@y
j ¼ 2xþ 2xy2

� �
iþ 2yþ 2yx2
� �

j

2,0()

0,1()

0.5,3()

3.5,1.5()

2.5,4()

C 1.75,2()

F 4.25,3.5()

x

y

f
5

2.75,0.75()

S
f
1

S
f
2

S
f
3

S
f
5

n
1

e
1

f
1

f
2

f
3

f
4

f
5

S
f
4

Fig. 8.13 A polygonal element with its geometric entities

8.6 Non-orthogonal Unstructured Grid 247

Therefore the analytical value of ∇ϕC is given by

r/C ¼ 17:5iþ 16:25j

The numerical value of ∇ϕC can be computed using

r/C ¼
1

VC

X

f� nbðCÞ

/fSf

Therefore the values of ϕf and Sf are required. Using the given analytical

expression, the values of ϕ at the various locations are found as

/C ¼ 1:752 þ 22 þ 1:752 � 22 ¼ 19:3125

/F ¼ 4:252 þ 3:52 þ 4:252 � 3:52 ¼ 251:578125

/f1
¼ 32 þ 2:752 þ 32 � 2:752 ¼ 84:625

/f2
¼ 1:52 þ 3:52 þ 1:52 � 3:52 ¼ 42:0625

/f3
¼ 0:252 þ 22 þ 0:252 � 22 ¼ 4:3125

/f4
¼ 12 þ 0:52 þ 12 � 0:52 ¼ 1:5

/f5
¼ 2:752 þ 0:752 þ 2:752 � 0:752 ¼ 12:37890625

The surface vector is given by

Sf ¼ 	 Dyi� Dxjð Þ

where the correct sign is chosen such that the vector is pointing outward. This

is done by computing the surface vector as Sf = Δyi − Δxj and then performing

the dot product of Sf with the distance vector dCF (pointing from C to F). If the

product is positive then the direction of Sf is correct. If the product is negative

then the sign of Sf should be reversed, as shown below.

The distance vectors are computed as

dCf1 ¼ 3� 1:75ð Þiþ 2:75� 2ð Þj ¼ 1:25iþ 0:75j

dCf2 ¼ 1:5� 1:75ð Þiþ 3:5� 2ð Þj ¼ �0:25iþ 1:5j

dCf3 ¼ 0:25� 1:75ð Þiþ 2� 2ð Þj ¼ �1:5i

dCf4 ¼ 1� 1:75ð Þiþ 0:5� 2ð Þj ¼ �0:75i� 1:5j

248 8 Spatial Discretization: The Diffusion Term

dCf5 ¼ 2:75� 1:75ð Þiþ 0:75� 2ð Þj ¼ i� 1:25j

while the tentative surface vectors are given by

Sf1 ¼ 4� 1:5ð Þi� 2:5� 3:5ð Þj ¼ 2:5iþ j

Sf2 ¼ 4� 3ð Þi� 2:5� 0:5ð Þj ¼ i� 2j

Sf3 ¼ 3� 1ð Þi� 0:5� 0ð Þj ¼ 2i� 0:5j

Sf4 ¼ 1� 0ð Þi� 0� 2ð Þj ¼ iþ 2j

Sf5 ¼ 1:5� 0ð Þi� 3:5� 2ð Þj ¼ 1:5i� 1:5j

Performing the dot products, the obtained values are

Sf1 � dCf1 ¼ 2:5iþ jð Þ � 1:25iþ 0:75jð Þ ¼ 3:875[0

Sf2 � dCf2 ¼ i� 2jð Þ � �0:25iþ 1:5jð Þ ¼ �3:25\0

Sf3 � dCf3 ¼ 2i� 0:5jð Þ � �1:5ið Þ ¼ �3\0

Sf4 � dCf4 ¼ iþ 2jð Þ � �0:75i� 1:5jð Þ ¼ �3:75\0

Sf5 � dCf5 ¼ 1:5i� 1:5jð Þ � i� 1:25jð Þ ¼ 3:375[0

Therefore the correct values of the surface vectors should be

Sf1 ¼ 2:5iþ j Sf2 ¼ �iþ 2j Sf3 ¼ �2iþ 0:5j Sf4 ¼ �i� 2j Sf5 ¼ 1:5i� 1:5j

Thus, the numerical value of the gradient at C is obtained as

r/C ¼
1

8:625

84:625 2:5iþ jð Þ þ 42:0625 �iþ 2jð Þ þ 4:3125 �2iþ 0:5jð Þ

þ1:5 �i� 2jð Þ þ 12:37890625 1:5i� 1:5jð Þ

� �

¼ 20:63111iþ 17:31454j

which is close to the analytical value.

2. The analytical value of ∇ϕF is easily calculated as

r/F ¼ 112:625iþ 133:4375j

8.6 Non-orthogonal Unstructured Grid 249

3. The interpolated value of r/f1
is obtained using

r/f1
¼ gf1r/F þ 1� gf1

� �
r/C

where

gf1 ¼
dCf1

dCf1 þ df1F

Performing the calculations, the interpolation factor is found to be given by

dCf1 ¼

ffi

xf1 � xC
� �2

þ yf1 � yC
� �2

q

¼

ffi

3� 1:75ð Þ2þ 2:75� 2ð Þ2
q

¼ 1:4577

dfF ¼

ffi

xF � xf1
� �2

þ yF � yf1
� �2

q

¼

ffi

4:25� 3ð Þ2þ 3:5� 2:75ð Þ2
q

¼ 1:4577

gf1 ¼
1:4577

1:4577þ 1:4577
¼ 0:5

leading to the following value for r/f1
:

r/f1
¼ 66:628055iþ 75:37602j

The analytical value of r/f1
is easily obtained as

r/f1
¼ 51:375iþ 55j

Again values are close.

4. The general form of r/f1
� Sf1 is given by

�r/f1
� Sf1 ¼ Ef1

/C � /Fð Þ

dCF
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

orthogonal�like
contribution

þ �r/f1
� Tf1

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

non�orthogonal like
contribution

with

dCF ¼ 4:25� 1:75ð Þiþ 3:25� 2ð Þj ¼ 2:5iþ 1:5j) dCF ¼
ffi

2:52 þ 1:52
p

¼ 2:9155

The unit vector e1 in the direction of dCF is calculated using

e1 ¼
dCF

dCF
¼ 0:8575iþ 0:5145j

250 8 Spatial Discretization: The Diffusion Term

(a) The minimum correction approach

Using this approach, the expression for Ef1 is computed as

Ef1 ¼ e1 � Sf1
� �

e1 ¼ 2:279iþ 1:368j) Ef1 ¼ 2:658

The normal component is computed as

Tf1 ¼ Sf1 � Ef1 ¼ 0:221i� 0:368j) r/f1
� Tf1 ¼ �13:014

The diffusion flux at the face becomes

�r/f1
� Sf1 ¼ 0:9122 /C � /Fð Þ þ 13:014

(b) The orthogonal correction approach

In this approach, the expression for Ef1 is computed as

Ef1 ¼ Sf1e1 ¼ 2:309iþ 1:385j) Ef1 ¼ 2:693

The normal component is found to be

Tf1 ¼ 0:191i� 0:385j) r/f1
� Tf1 ¼ �16:294

The diffusion flux at the face becomes

�r/f1
� Sf1 ¼ 0:924 /C � /Fð Þ þ 16:294

(c) The over-relaxed approach

The expression for Ef1 is computed as

Ef1 ¼
Sf1 � Sf1
e1 � Sf1

e1 ¼ 2:339iþ 1:403j) Ef1 ¼ 2:728

The normal component is found to be

Tf1 ¼ 0:161i� 0:403j) r/f1
� Tf1 ¼ �19:649

The diffusion flux at the face becomes

�r/f1
� Sf1 ¼ FluxCf1/C þ FluxFf1/F þ FluxVf1

¼ 0:936 /C � /Fð Þ þ 19:649

8.6 Non-orthogonal Unstructured Grid 251

8.6.8 Boundary Conditions for Non-orthogonal Grids

The treatment of boundary conditions for non-orthogonal grids is similar to that for

orthogonal grids with some minor differences related to the non-orthogonal diffu-

sion contribution. This is outlined next.

8.6.8.1 Dirichlet Boundary Condition

For the case of a Dirichlet boundary condition, i.e., when ϕ is specified by the user

at the boundary as shown in Fig. 8.14, the boundary discretization proceeds as in

orthogonal-grids. However, there is a need now to account for the cross-diffusion,

which arises on boundary faces as on interior faces. This happens whenever the

surface vector is not collinear with the vector joining the centroids of the element

and boundary face. The diffusion flux along the boundary face is discretized as

J
/;D
b � Sb ¼ �C

/
b r/ð Þb � Sb ¼ �C

/
b r/ð Þb � Eb þ Tbð Þ

¼ �C/
b

/b � /C

dCb

� �

Eb � C
/
b r/ð Þb � Tb

¼ FluxCb/C þ FluxVb

ð8:81Þ

where

FluxCb ¼ C
/
b gDiffb

FluxVb ¼ �C
/
b gDiffb/b � C

/
b r/ð Þb � Tb

gDiffb ¼
Eb

dCb

ð8:82Þ

Substituting into Eq. (8.79), the modified coefficients are obtained as

aF ¼ FluxFf aC ¼
X

f�nbðCÞ

FluxCf þ FluxCb

bC ¼ Q
/
CVC � FluxVb �

X

f�nbðCÞ

FluxVf

ð8:83Þ

S f

n

e
dCb

b

C

Fig. 8.14 Dirichlet boundary
for a non-orthogonal mesh

252 8 Spatial Discretization: The Diffusion Term

8.6.8.2 Neumann Boundary Condition

The Neumann type condition for non-orthogonal grids follows that for orthogonal

grids. In this case the user-specified flux at the boundary is just added as a source

term as with orthogonal grid. The algebraic equation at the boundary is given by

Eq. (8.40) with the modified coefficients specified by Eq. (8.41).

8.6.8.3 Mixed Boundary Condition

For the mixed boundary condition case (Fig. 8.5), denoting the convection transfer

coefficient by h∞ and the surrounding value of ϕ by /1, the diffusion flux at the

boundary can be written as

J
/;D
b � Sb ¼ �C

/
b

/b � /C

dCb

� �

Eb � C
/
b r/ð Þb � Tb

¼ �h1 /1 � /bð ÞSb

ð8:84Þ

from which an equation for ϕb is obtained as

/b ¼
h1Sb/1 þ

C
/
bEb

dCb
/C � C

/
b r/ð Þb � Tb

h1Sb þ
C
/
bEb

dCb

ð8:85Þ

Substituting ϕb back in Eq. (8.84), the flux equation is transformed to

J
/;D
b � Sb ¼ �

h1Sb
C
/
bEb

dCb

h1Sb þ
C
/
bEb

dCb

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ab

/1 � /Cð Þ �
h1SbC

/
b r/ð Þb �Tb

h1Sb þ
C
/
bEb

dCb
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

S
/;CD
b

¼ FluxCb/C þ FluxVb

ð8:86Þ

where now

FluxCb ¼
h1Sb

C
/
bEb

dCb

h1Sb þ
C
/
bEb

dCb

FluxVb ¼ �FluxCb/1 �
h1SbC

/
b r/ð Þb � Tb

h1Sb þ
C
/
bEb

dCb

ð8:87Þ

8.6 Non-orthogonal Unstructured Grid 253

and the modified coefficients for the boundary element are obtained as

aF ¼ FluxFf � C
/
f

Ef

dCf

aC ¼ FluxCb þ
X

f�nbðCÞ

FluxCf

bC ¼ Q
/
CVC � FluxVb �

X

f�nbðCÞ

FluxVf

ð8:88Þ

8.7 Skewness

To evaluate many of the terms constituting the general discretized equation of a

quantity ϕ, it is necessary to estimate its value at element faces. An estimated value

at the face should be the average value of the entire face. At different steps of the

discretization process, linear variation of variables between nodes is assumed. If

this is extended to variation of variables along the face, then the average value of

any variable ϕ should be found at the face centroid. The common practice is to use a

linear interpolation profile and to estimate the value at the face at the intersection

between the face and the line connecting the two nodes straddling the face. When

the grid is skewed the line does not necessarily pass through the centroid of the face

[9, 10]. An example is depicted in Fig. 8.15 where the intersection point of segment

[CF] with the face is at point, f ′, which does not coincide with the face centroid, f.

To keep the overall accuracy of the discretization method second order, all face

integrations need to take place at point f. Thus a correction for the interpolated value

at f′ is needed in order to get the value at f.

The skewness correction is derived by expressing the value of ϕ at f in terms of

its value and the value of its derivative at f ′ via a Taylor expansion such that

/f ¼ /f 0 þ r/ð Þf 0 � df 0f ð8:89Þ

where df ′f is a vector from the intersection point f ′ to the face centre f.

S f

e
F C

f

f

Fig. 8.15 Non-conjunctional
elements

254 8 Spatial Discretization: The Diffusion Term

8.8 Anisotropic Diffusion

The diffusion equation presented so far assumed the material has no preferred

direction for transfer of ϕ with the same diffusion coefficient in all directions, i.e.,

the medium was assumed to be isotropic. For the case when the diffusion coefficient

of the medium is direction dependent, diffusion is said to be anisotropic [11–16]. As

mentioned in Chap. 3, some solids are anisotropic for which the semi-discretized

diffusion equation becomes

X

f�nbðCÞ

�j/ � r/
� �

f
� Sf ¼ S

/
CVC ð8:90Þ

where κϕ is a second order symmetric tensor. Assuming a general three dimensional

situation, the term on the left hand side, through some mathematical manipulation

[17], can be rewritten as

�j/ � r/
� �

f
� Sf ¼ �

j
/
11 j

/
12 j

/
13

j
/
21 j

/
22 j

/
23

j
/
31 j

/
32 j

/
33

2

6
6
4

3

7
7
5

f

@/

@x
@/

@y

@/

@z

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

f

� Sf ð8:91Þ

Performing matrix multiplication, Eq. (8.91) becomes

�j/ � r/
� �

f
� Sf ¼ �

j
/
11

@/

@x
þ j

/
12

@/

@y
þ j

/
13

@/

@z

j
/
21

@/

@x
þ j

/
22

@/

@y
þ j

/
23

@/

@z

j
/
31

@/

@x
þ j

/
32

@/

@y
þ j

/
33

@/

@z

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

f

Sx

Sy

Sz

2

6
6
4

3

7
7
5

f

ð8:92Þ

Further manipulations yield

�j/ � r/
� �

f
� Sf ¼ �

@/

@x

@/

@y

@/

@z

� �

f

j
/
11 j

/
21 j

/
31

j
/
12 j

/
22 j

/
32

j
/
13 j

/
23 j

/
33

2

6
6
4

3

7
7
5

f

Sx

Sy

Sz

2

6
6
4

3

7
7
5

f

¼ � r/ð Þf � j
/

� �T
� S

h i

f
¼ � r/ð Þf � S

0
f

ð8:93Þ

Substituting Eq. (8.93) into Eq. (8.90), the new form of the diffusion equation

becomes

8.8 Anisotropic Diffusion 255

X

f � nbðCÞ

�r/ð Þf � S
0
f ¼ Q

/
CVC ð8:94Þ

It is obvious that in this form the discretization procedure described above can be

applied by simply setting C
/ to 1 and replacing Sf by S0f . Therefore the same code

can be used to solve isotropic and anisotropic diffusion problems.

8.9 Under-Relaxation of the Iterative Solution Process

For a general diffusion problem, C/ may be a function of the unknown dependent

variable ϕ and the grid may be highly non-orthogonal with a large cross diffusion

term, which is treated using a deferred correction approach. Therefore large vari-

ations in ϕ between iterations result in large source terms and large changes in the

coefficients, which may cause divergence of the iterative solution procedure. This

divergence is usually due to the non-linearity introduced by the coefficients and the

cross-diffusion term, which makes the source term highly affected by the current

solution field which is not yet converged. To promote convergence and stabilize the

iterative solution process, slowing down the changes in ϕ between iterations is

highly desirable and is enforced by a technique called under-relaxation. There are

many ways of introducing under-relaxation. One of the practices will be described

here, others in Chap. 14. Derivations will be performed on the general discretization

equation of the form

aC/C þ
X

F�NBðCÞ

aF/F ¼ bC ð8:95Þ

Equation (8.95) can be written as

/C ¼

�
P

F�NBðCÞ

aF/F þ bC

aC
ð8:96Þ

Let /�C represents the value of ϕC from the previous iteration. If /�C is added to

and subtracted from the right hand side, then Eq. (8.96) becomes

/C ¼ /�C þ

�
P

F�NBðCÞ

aF/F þ bC

aC
� /�C

0

B
@

1

C
A ð8:97Þ

where the expression between the parentheses represents the change in ϕC produced

by the current iteration. This change can be modified by the introduction of a

relaxation factor λϕ, such that

256 8 Spatial Discretization: The Diffusion Term

/C ¼ /�C þ k/

�
P

F�NBðCÞ

aF/F þ bC

aC
� /�C

0

B
@

1

C
A ð8:98Þ

or

aC

k/
/C þ

X

F�NBðCÞ

aF/F ¼ bC þ
1� k/
� �

aC

k/
/�C ð8:99Þ

At first, it should be noted that at convergence ϕC and /�C become equal inde-

pendent of the value of relaxation factor used. This is indeed reflected by Eq. (8.98),

which shows that the converged value ϕC does satisfy the original equation

(Eq. 8.95). This property should be satisfied by any relaxation scheme.

Depending on the value of the relaxation factor λϕ, the equation may be either

under relaxed (i.e., 0 < λϕ < 1) or over-relaxed (i.e., λϕ > 1). In CFD applications,

under relaxation is usually used. A value of λϕ close to 1 implies little under

relaxation, while a value close to 0 produces heavy under relaxation effects with

very small changes in ϕC from iteration to iteration.

The optimum under relaxation factor is problem dependent and is not governed

by any general rule. The factors affecting λϕ values include the type of problem

solved, the size of the system of equation (i.e., number of grid points in the domain),

the grid spacing and its expansion rate, and the adopted iterative method, among

others. Usually, values of λϕ are assigned based on experience or from preliminary

calculations. Moreover, it is not necessary to use the same under-relaxation value

throughout the computational domain and values may vary from iteration to

iteration.

Equation (8.99) can be recast into the form of Eq. (8.95), where now the central

coefficient ac becomes

aC
aC

k/
ð8:100Þ

while the source term is added to produce a new term as

bC bC þ
1� k/
� �

aC

k/
/�C ð8:101Þ

This method of relaxation plays an important role in stabilizing the solution of

non-linear problems.

8.9 Under-Relaxation of the Iterative Solution Process 257

8.10 Computational Pointers

8.10.1 uFVM

In uFVM the implementation of the diffusion term discretization for interior faces is

performed in function cfdAssembleDiffusionTermInterior, the core of which is

shown in Listing 8.1.

In the above, FLUXC1f and FLUXC2f are equivalent to FluxCf and FluxFf in

the text and are the coefficients of the owner and neighbor element, respectively.

Moreover, gamma_f and gDiff_f are arrays defined over all interior faces, and

using the dot notation, the expression gamma_f.* gDiff_f returns an array

containing the product of the respective elements of the gamma_f and gDiff_f

arrays. The dot notation in Matlab® allows for efficient operations over arrays and

for the writing of a clearer code and is used in uFVM whenever practical.

The non-orthogonal term is stored in the FLUXVf coefficient and is equal to

gamma_f .* dot(grad_f(: , :)’,Tf(:, :)’)’.The total flux passing

through face f, FLUXTf, is assembled as in Eq. (8.15).

The diffusion term is setup in cfdProcessOpenFoamMesh.m and Listing 8.2

shows the computation of the gDiff coefficient.

gamma_f = cfdInterpolateFromElementsToFaces('Average',gamma);

gamma_f = [gamma_f(iFaces)];

geoDiff_f = [theMesh.faces(iFaces).geoDiff]';

Sf = [theMesh.faces(iFaces).Sf]';

Tf = [theMesh.faces(iFaces).T]';

iOwners = [theMesh.faces(iFaces).iOwner]';

iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

theFluxes.FLUXC1f(iFaces,1) = gamma_f .* gDiff_f;

theFluxes.FLUXC2f(iFaces,1) = -gamma_f .* gDiff_f;

theFluxes.FLUXVf(iFaces,1) = gamma_f .* dot(grad_f(:,:)',Tf(:,:)')';

theFluxes.FLUXTf(iFaces,1) = theFluxes.FLUXC1f(iFaces) .*

phi(iOwners) + theFluxes.FLUXC2f(iFaces) .* phi(iNeighbours) +

theFluxes.FLUXVf(iFaces);

Listing 8.1 Assembly of the diffusion term at interior faces

258 8 Spatial Discretization: The Diffusion Term

The effects of boundary conditions on the equations of boundary elements

should be accounted for and Listing 8.3 shows the assembly of the diffusion term at

boundary faces for the case of a Dirichlet boundary condition type.

The implementation of other boundary condition types can be reviewed in file

cfdAssembleDiffusionTerm.m.

Once the linearized coefficients are computed for each of the interior and

boundary faces, then assembly into the global (sparse) matrix can proceed. This

approach is used for the discretization of all flux terms in uFVM and the assembly is

performed in the cfdAssembleIntoGlobalMatrixFaceFluxes function.

Listing 8.4 shows the assembly into the sparse LHS matrix and the RHS vector of the

coefficients at interior faces.

theMesh.faces(iFace).dCF = element2.centroid - element1.centroid;

eCF = dCF/cfdMagnitude(dCF);

E = theFace.area*eCF;

theMesh.faces(iFace).gDiff = cfdMagnitude(E)/cfdMagnitude(dCF);

theMesh.faces(iFace).T = theFace.Sf - E;

Listing 8.2 Computing the geometric diffusion coefficient

theMesh = cfdGetMesh;

numberOfElements = theMesh.numberOfElements;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

%

theBoundary = theMesh.boundaries(iPatch);

numberOfBFaces = theBoundary.numberOfBFaces;

%

iFaceStart = theBoundary.startFace;

iFaceEnd = iFaceStart+numberOfBFaces-1;

iBFaces = iFaceStart:iFaceEnd;

%

iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;

iElementEnd = iElementStart+numberOfBFaces-1;

iBElements = iElementStart:iElementEnd;

geodiff = [theMesh.faces(iBFaces).geoDiff]';

Tf = [theMesh.faces(iBFaces).T]';

iOwners = [theMesh.faces(iBFaces).iOwner]';

gamma(iBElements).*dot(grad(iBElements,:)’,Tf(:,:)’)’;

theFluxes.FLUXC1f(iBFaces) = gamma(iBElements).*geodiff;

theFluxes.FLUXC2f(iBFaces) = - gamma(iBElements).*geodiff;

theFluxes.FLUXVf(iBFaces) = -

Listing 8.3 Assembly of the diffusion term at boundary faces for a Dirichlet Condition

8.10 Computational Pointers 259

%

% Assemble fluxes of interior faces

%

for iFace = 1:numberOfInteriorFaces

 theFace = theMesh.faces(iFace);

 iOwner = theFace.iOwner;

 iOwnerNeighbourCoef = theFace.iOwnerNeighbourCoef;

 iNeighbour = theFace.iNeighbour;

 iNeighbourOwnerCoef = theFace.iNeighbourOwnerCoef;

 %

 % assemble fluxes for owner cell

 ac(iOwner) = ac(iOwner)

+ vf_f(iFace)*theFluxes.FLUXC1f(iFace);

anb{iOwner}(iOwnerNeighbourCoef) = anb{iOwner}(iOwnerNeighbourCoef)

+ vf_f(iFace)*theFluxes.FLUXC2f(iFace);

 bc(iOwner) = bc(iOwner)

- vf_f(iFace)*theFluxes.FLUXTf(iFace);

 %

 % assemble fluxes for neighbour cell

 ac(iNeighbour) = ac(iNeighbour)

- vf_f(iFace)*theFluxes.FLUXC2f(iFace);

anb{iNeighbour}(iNeighbourOwnerCoef) = anb{iNeighbour}

(iNeighbourOwnerCoef)

- vf_f(iFace)*theFluxes.FLUXC1f(iFace);

 bc(iNeighbour) = bc(iNeighbour)

+ vf_f(iFace)*theFluxes.FLUXTf(iFace);

end

Listing 8.4 Assembly into LHS spare matrix and RHS array

For each interior face the coefficients are assembled into both the owner and

neighbor element equations. For the owner the coefficients are (ac(iOwner),

anb(iOwner)(iOwnerNeighbourCoef), and bc(iOwner)), while for the

neighbor the coefficients become: ac(iNeighbour), anb(iNeighbour)

(iNeighbourOwnerCoef), and bc(iNeighbour)). The different signs used

in the assembly of the two equations is due to the fact that the face surface vector is

pointing into the neighbor cell and out of the owner cell.

8.10.2 OpenFOAM®

In OpenFOAM® [18] the diffusion term can be evaluated explicitly using “fvc::

laplacian(gamma, phi)”or implicitly via “fvm::laplacian(gamma,phi)” namespaces

and functions. The “fvc::laplacian(gamma,phi)” returns a field in which the laplacian

of a generic field ϕ (phi) is evaluated at each cell. The field is added to the right hand

side of the system of equations. The “fvm::laplacian(gamma,phi)” returns instead an

fvMatrix of coefficients evaluated as per Eq. (8.19),which is added to the left hand side

of the system of equations, in addition to a field containing the non-orthogonal terms

that is added to the right hand side of the system. The definition of the laplacian

operator is located in the directory “$FOAM_SRC/finiteVolume/finiteVolume/

laplacianSchemes/gaussLaplacianScheme” in the files “gaussLaplacianScheme.C”,

“gaussLaplacianScheme.H”, and “gaussLaplacianSchemes.C”.

260 8 Spatial Discretization: The Diffusion Term

The “fvm::laplacian” definition displayed in Listing 8.5 reads

template<>

Foam::tmp<Foam::fvMatrix<Foam::Type> >

Foam::fv::gaussLaplacianScheme<Foam::Type, Foam::scalar>::fvmLaplacian

(

 const GeometricField<scalar, fvsPatchField, surfaceMesh>& gamma,

 const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

 const fvMesh& mesh = this->mesh();

 GeometricField<scalar, fvsPatchField, surfaceMesh> gammaMagSf

 (

 gamma*mesh.magSf()

);

 tmp<fvMatrix<Type> > tfvm = fvmLaplacianUncorrected

 (

 gammaMagSf,

 this->tsnGradScheme_().deltaCoeffs(vf),

 vf

);

 fvMatrix<Type>& fvm = tfvm();

 if (this->tsnGradScheme_().corrected())

 {

 if (mesh.fluxRequired(vf.name()))

 {

 fvm.faceFluxCorrectionPtr() = new

 GeometricField<Type, fvsPatchField, surfaceMesh>

 (

 gammaMagSf*this->tsnGradScheme_().correction(vf)

);

 fvm.source() -=

 mesh.V()*

 fvc::div

 (

 *fvm.faceFluxCorrectionPtr()

)().internalField();

 }

 else

 {

 fvm.source() -=

 mesh.V()*

 fvc::div

 (

 gammaMagSf*this->tsnGradScheme_().correction(vf)

)().internalField();

 }

 }

 return tfvm;

}

Listing 8.5 Calculation of the Laplacian operator

8.10 Computational Pointers 261

with the following additional functions (Listing 8.6):

It is worth noting that in OpenFOAM® the assembly takes place directly into the

global coefficients, which as described earlier in Chaps. 5, 6, and 7 are stored in

three arrays, namely fvm.upper(), fvm.lower(), and fvm.diag(). The

main part of the discretization is defined in the fvmLaplacianUncorrected

function, where Eq. (8.19) is evaluated by first defining an fvMatrix object

and then filling its upper triangle by the extra diagonal coefficients (this approach

relies on the fact that the Laplacian operator returns a symmetric matrix).

template<class Type, class GType>

tmp<fvMatrix<Type> >

gaussLaplacianScheme<Type, GType>::fvmLaplacianUncorrected

(

 const surfaceScalarField& gammaMagSf,

 const surfaceScalarField& deltaCoeffs,

 const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

 tmp<fvMatrix<Type> > tfvm

 (

 new fvMatrix<Type>

 (

 vf,

 deltaCoeffs.dimensions()*gammaMagSf.dimensions()*vf.dimensions()

)

);

 fvMatrix<Type>& fvm = tfvm();

fvm.upper()= deltaCoeffs.internalField()*gammaMagSf.internalField();

 fvm.negSumDiag();

 forAll(vf.boundaryField(), patchi)

 {

 const fvPatchField<Type>& pvf = vf.boundaryField()[patchi];

const fvsPatchScalarField& pGamma = gammaMagSf.boundaryField()

[patchi];

 const fvsPatchScalarField& pDeltaCoeffs =

 deltaCoeffs.boundaryField()[patchi];

 if (pvf.coupled())
 {

fvm.internalCoeffs()[patchi] =

pGamma*pvf.gradientInternalCoeffs(pDeltaCoeffs);

fvm.boundaryCoeffs()[patchi] =
-pGamma*pvf.gradientBoundaryCoeffs(pDeltaCoeffs);

 }

 else

 {

fvm.internalCoeffs()[patchi] = pGamma*pvf.gradientInternalCoeffs();

fvm.boundaryCoeffs()[patchi] = -pGamma*pvf.gradientBoundaryCoeffs();

 }

 }

 return tfvm;

}

Listing 8.6 Additional functions needed for the calculation of the Laplacian operator

262 8 Spatial Discretization: The Diffusion Term

The “deltaCoeffs.internalField()” represents the gDiff field while

gamma indicates the diffusion field. The diagonal coefficients are evaluated in

fvm.negSumDiag(),where the negative sum of the upper and lower coefficients

are assembled into the diagonal coefficients as per Eq. (8.18).

The “fvm.negSumDiag()” method is defined in lduMatrix

Operations.C as (Listing 8.7)

The boundary conditions are implemented exactly as in Eqs. (8.36) and (8.41).

In OpenFOAM® the boundary coefficients are stored in “internalCoeffs”

(FluxCb) and “boundaryCoeffs” (FluxVb), already defined in Sect. 7.6.

In “fvmUncorrected”only the orthogonal discretization is accounted for.

The non-orthogonal contribution is added, as shown in Listing 8.8, using

Again this term represents exactly the implementation of the last term of

Eq. (8.77) in which the snGrad class wraps into the correction function the

non-orthogonal term as shown below in Listing (8.9).

void Foam::lduMatrix::negSumDiag()

{

 const scalarField& Lower = const_cast<const lduMatrix&>(*this).lower();

 const scalarField& Upper = const_cast<const lduMatrix&>(*this).upper();

 scalarField& Diag = diag();

 const labelUList& l = lduAddr().lowerAddr();

 const labelUList& u = lduAddr().upperAddr();

 for (register label face=0; face<l.size(); face++)

 {

 Diag[l[face]] -= Lower[face];

 Diag[u[face]] -= Upper[face];

 }

}

Listing 8.7 Calculation of the negative sum of the upper and lower coefficients

 fvm.faceFluxCorrectionPtr() = new

 GeometricField<Type, fvsPatchField, surfaceMesh>

 (

 gammaMagSf*this->tsnGradScheme_().correction(vf)

);

 fvm.source() -=

 mesh.V()*

 fvc::div

 (

 *fvm.faceFluxCorrectionPtr()

)().internalField();

Listing 8.8 Adding the nonorthogonal diffusion contribution

8.10 Computational Pointers 263

template<class Type>

Foam::tmp<Foam::GeometricField<Type,

Foam::fvsPatchField,

Foam::surfaceMesh> >

Foam::fv::correctedSnGrad<Type>::correction

(

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 const fvMesh& mesh = this->mesh();

 // construct GeometricField<Type, fvsPatchField, surfaceMesh>

 tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tssf

 (

 new GeometricField<Type, fvsPatchField, surfaceMesh>

 (

IOobject

 (

 "snGradCorr("+vf.name()+')',

 vf.instance(),

 mesh,

 IOobject::NO_READ,

 IOobject::NO_WRITE

),

 mesh,

 vf.dimensions()*mesh.nonOrthDeltaCoeffs().dimensions()

)

);

 GeometricField<Type, fvsPatchField, surfaceMesh>& ssf = tssf();

 for (direction cmpt = 0; cmpt < pTraits<Type>::nComponents; cmpt++)

 {

 ssf.replace

 (

 cmpt,

 correctedSnGrad<typename pTraits<Type>::cmptType>(mesh)

 .fullGradCorrection(vf.component(cmpt))

);

 }

template<class Type>

Foam::tmp<Foam::GeometricField<Type, Foam::fvsPatchField, Foam::surfaceMesh>

>Foam::fv::correctedSnGrad<Type>::fullGradCorrection

(

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 const fvMesh& mesh = this->mesh();

 // construct GeometricField<Type, fvsPatchField, surfaceMesh>

 tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tssf =

 mesh.nonOrthCorrectionVectors()

 & linear<typename outerProduct<vector, Type>::type>(mesh).interpolate

 (

 gradScheme<Type>::New

 (

 mesh,

 mesh.gradScheme("grad(" + vf.name() + ')')

)().grad(vf, "grad(" + vf.name() + ')')

);

 tssf().rename("snGradCorr(" + vf.name() + ')');

 return tssf;

}

Listing 8.9 Implementation of the nonorthogonal term into the correction function

264 8 Spatial Discretization: The Diffusion Term

The non-orthogonal correction term is defined in the fullGradCorrection func-

tion where “mesh.nonOrthCorrectionVectors()” returns the T vector of Eq. (8.66).

The type of Laplacian discretization to be used is specified in the “fvSchemes”

file, which is part of the case definition and is located in the system directory

(Listing 8.10), in which Gauss (the only available choice) defines the standard

Gauss discretization resulting in Eq. (8.18), linear refers to the type of interpolation

used for calculating the diffusivity gamma at the face, and corrected describes the

kind of non-orthogonal correction.

More details on the implementation of boundary conditions in OpenFOAM® are

presented in later chapters.

8.11 Closure

In this chapter the discretization of the diffusion equation was described. A number

of issues were also addressed, such as the use of orthogonal and non-orthogonal

grid systems, the implementation of boundary conditions, and under and over

relaxation. The next chapter will concentrate on the calculation of the gradient field.

8.12 Exercises

Exercise I

Consider the diffusion of a property ϕ in the one-dimensional domain shown in

Fig. 8.16 with no internal sources. The domain is subdivided into 5 uniform ele-

ments of size Δx = 1 and subject to a Dirichlet and a Neumann condition at

boundary ‘0’ and ‘6’, respectively. The diffusion coefficient in the domain is

constant with a value of 1, i.e., C/ ¼ 1.

a. Derive the discrete equation for each of the elements.

b. Solve the system of equations using the Gauss-Seidel iterative method and

report the resulting cell-centroid values.

c. Compute the diffusion flux �Cd/=dxð Þ at each of the cell faces and show that

conservation is satisfied throughout the domain

laplacianSchemes

{

 laplacian(gamma,phi) Gauss linear corrected;

}

Listing 8.10 The discretization type for the Laplacian operator

8.10 Computational Pointers 265

d. Compare your solution with the exact solution (Note that even though the

computed solution is conservative, it is not exact).

e. For the case where a zero flux boundary condition is defined at both boundaries

‘0’ and ‘6’, reformulate the equations for elements 1 and 5 and explain why the

equations cannot be solved.

Exercise 2

A fin is exposed to the surrounding fluid at a temperature Ta = 25 °C, as shown in

Fig. 8.17, with a heat transfer coefficient of h = 100 W/m2 K and a thermal

conductivity with value of k = 160 W/m K. The fin has a length L = 0.1 m, a cross

sectional area A = 10−5 m2, and a perimeter P = 0.1004 m.

The temperature distribution in the fin is governed by the following differential

equation

�
d

dx
k
dT

dx

� �

þ
Ph

A
T � Tað Þ ¼ 0

Discretize the above equation by subdividing the computational domain into 5

elements of equal size and find the values of the temperature field at the element

centroids and boundaries in the following two situations:

a. T x ¼ 0ð Þ ¼ 200
C and T x ¼ Lð Þ ¼ 90
C

b. q x ¼ 0ð Þ ¼ 20 kW=m2 and q x ¼ Lð Þ ¼ 10 kW=m2

where q is the rate of heat transfer given by

q ¼ �k
dT

dx

2 3 4 51

x / 2 x

0
= 100

J
6

D
=

d

dx 6

= 10

x

Fig. 8.16 Computational domain for a one dimensional diffusion problem with no internal
sources

266 8 Spatial Discretization: The Diffusion Term

Exercise 3

The heat conduction in the two-dimensional domain shown in Fig. 8.18 is governed

by the following differential equation:

�r � krT ¼ 0

The domain is subdivided into uniform elements and the boundary conditions

are as shown in the figure.

a. Derive the algebraic equations for all elements.

b. Solve the system of equations obtained and compute the T values at the cen-

troids of the elements.

Fin

Ta

h T Ta()

1 2 3 4 5

d

dx
k

dT

dx

x

A

P

L

Fig. 8.17 Computational domain for heat transfer from a fin

1

2

3

4

5

6

3 m
1 m T = 50 C

T = 100 C

T = 200 C

T = 225 C

T = 250 C
T n = 0

T n = 0

Fig. 8.18 Heat conduction in a two dimensional tilted Cartesian domain

8.12 Exercises 267

c. Compute the values of T at the bottom and right boundaries.

d. Compute the net heat transfer through the top and left boundaries

Exercise 4

Consider steady state conduction heat transfer in the non-orthogonal domain dis-

cretized into the four equal elements shown in Fig. 8.19, where L = 1 m. Derive the

discretization equations for the cells using two different methods for the decom-

position of the diffusion flux and compare the temperature values at the element

centroids after 4 coefficient iterations.

Exercise 5

Discretize the equation −∇ · k∇T = Q
T where QT = 500 and k = 200, for the mesh

composed of quadrilateral triangles of side 0.1 shown in Fig. 8.20. Write the

discretized equations in the form of general algebraic equations.

1 2

43

3

4

T = 20 C

T
=

30
C

T n = 0

T n = 0

L

L

Fig. 8.19 Computational domain for Exercise 4

2

1

3

4
b n = 0

a = 40

h = 10

b = 50

Fig. 8.20 A triangular domain covered with an unstructured grid system

268 8 Spatial Discretization: The Diffusion Term

Exercise 6

The gradient for a variable ϕ over the computational domain shown in Fig. 8.21 is

given by

r/ ¼ 20iþ 30j

Compute the value of ϕ at nodes 1 and 2 given that the length and width of the

computational domain are 10 and 5 cm, respectively.

Exercise 7

Using the mesh constructed in exercise 3 of Chap. 7 (displayed in Fig. 7.12), setup

a case in OpenFOAM® and uFVM to solve the diffusion equation subject to the

following conditions ðC/ ¼ 1Þ:
Patch#1 ϕ = 1

Patch#2 ϕ = 0

Patch#3 ∇ϕ · n = 0

Patch#4 h∞ = 1, ϕ∞ = 0.5

Exercise 8

Build an oblique parallelogram (size of horizontal side is 1 and size of oblique side

is 2 inclined at 60 degrees with respect to the horizontal) using blockMesh in

OpenFOAM® with the boundary conditions shown in the figure below to solve the

diffusion equation with no source term in two dimensions. Generate a grid by

decomposing each side of the parallelogram into 50 equal segments. Setup the case

and using a diffusion coefficient of 1 compare the convergence history for the three

different approaches mentioned in this chapter to resolve the non-orthogonal term

for the diffusion equation (one at a time) in uFVM and in OpenFOAM®. Use an

under-relaxation factor of value 0.9 (Fig. 8.22).

2

1

= 20

= 25= 15

= 50

= 20i + 30 j

Fig. 8.21 A rectangular domain decomposed into two triangular elements

8.12 Exercises 269

Exercise 9

a. Use Doxygen [19] to find the list of all overloaded functions under the name

fvmLaplacian and then under then name fvcLaplacian.

b. Define in the dictionary file fvSchemes the option to exclude the non orthogonal

correction (Gauss linear uncorrected;).

c. Define in the dictionary file fvSchemes the option to use a limited non

orthogonal correction (Gauss linear limited 0.8;).

d. List of the possible Laplacian non orthogonal correction type available in

OpenFOAM® (Hint: just mistype a scheme, i.e., banana, and launch any solver

or application).

References

1. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing
Corporation, McGraw-Hill, USA

2. Jiang T, Przekwas AJ (1994) Implicit, pressure-based incompressible Navier-stokes equations
solver for unstructured meshes. AIAA-94-0305

3. Davidson L (1996) A pressure correction method for unstructured meshes with arbitrary
control volumes. Int J Numer Meth Fluids 22:265–281

4. Barth TJ (1992) Aspects of unstructured grids and finite-volume solvers for the Euler and
Navier-stokes equations. Special course on unstructured grid methods for advection dominated
flows. AGARD Report 787

5. Perez-Segarra CD, Farre C, Cadafalch J, Oliva A (2006) Analysis of different numerical
schemes for the resolution of convection-diffusion equations using finite-volume methods on
three-dimensional unstructured grids, Part I: discretization schemes. Numer Heat Transfer Part
B: Fundam 49(4):333–350

6. Demirdzic I, Lilek Z, Peric M (1990) Finite volume method for prediction of fluid flow in
arbitrary shaped domains with moving boundary. Int J Numer Meth Fluids 10:771–790

7. Demirdzic I, Lilek Z, Peric M (1993) A collocated finite volume method for predicting flows
at all speeds. Int J Numer Meth Fluids 16:1029–1050

8. Warsi ZUA (1993) Fluid dynamics: theoretical and computational approaches. CRC Press,
Boca Raton

9. Berend FD, van Wachem GM (2014) Compressive VOF method with skewness correction to
capture sharp interfaces on arbitrary meshes. J Comput Phys 279:127–144

10. Jasak H (1996) Error analysis and estimation for the finite volume method with applications to
fluid flow. Ph.D. thesis, Imperial College London

(0,0) (0.3,0)

(0.5,0.2)(0.2,0.2)

T=273

T=273

T=320

T=320

Fig. 8.22 An oblique parallelogram

270 8 Spatial Discretization: The Diffusion Term

11. Balckwell BF, Hogan RE (1993) Numerical solution of axisymmetric heat conduction
problems using the finite control volume technique. J Thermophys Heat Transfer 7:462–471

12. Wang S (2002) Solving convection-dominated anisotropic diffusion equations by an
exponentially fitted finite volume method. Comput Math Appl 44:1249–1265

13. Jayantha PA, Turner IW (2003) On the use of surface interpolation techniques in generalised
finite volume strategies for simulating transport in highly anisotropic porous media. J Comput
Appl Math 152:199–216

14. Bertolazzi E, Manzini G (2006) A second-order maximum principle preserving finite volume
method for steady convection-diffusion problems. SIAM J Numer Anal 43:2172–2199

15. Domelevo K, Omnes P (2005) A finite volume method for the Laplace equation on almost
arbitrary two-dimensional grids. Math Model Numer Anal 39:1203–1249

16. Eymard E, Gallouet T, Herbin R (2004) A finite volume scheme for anisotropic diffusion
problems. Comptes Rendus Mathematiques (CR MATH) 339:299–302

17. Darwish M, Moukalled F (2009) A compact procedure for discretization of the anisotropic
diffusion operator. Numer Heat Transfer, Part B 55:339–360

18. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org
19. OpenFOAM Doxygen, 2015 Version 2.3.x. http://www.openfoam.org/docs/cpp/

References 271

Chapter 9

Gradient Computation

Abstract As was shown in the previous chapter, the discretization of the gradients

of / at cell centroids and faces is fundamental to constructing the discretized sets of

diffusion equations and, as will be revealed in later chapters, of equations involving

the convection term. In addition, the evaluation of gradients is needed for the

evaluation of various operators. For example, pressure derivatives are directly

needed in the discretized momentum equations, while velocity gradients are

required to compute the production term in turbulence models, and the strain rate in

non-Newtonian viscosity models. This chapter describes several techniques for

evaluating gradients on a general mesh topology. The chapter starts with a

description of the techniques for computing the gradient on cartesian structured

grids and proceeds with gradient evaluation on unstructured grids. The presented

methods follow either the Green-Gauss or the least square approach. Methods to

interpolate the gradient to element faces are also presented.

9.1 Computing Gradients in Cartesian Grids

For the one-dimensional problem shown in Fig. 9.1 discretized using a uniform

grid, a linear profile assumption for the variation of / between cell centroids results

in the following expression for the derivative at cell face e:

d/

dx

� �

e

¼
/E � /C

xE � xC

¼
/E � /C

dxe

ð9:1Þ

In the same way, the derivative at the cell centroid C (Fig. 9.1) can be written

using the values at the two adjacent cells as

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_9

273

d/

dx

� �

C

¼
/e � /w

xe � xw
¼

/Eþ/C

2

� �

� /Cþ/W

2

� �

DxC

¼
/E � /W

2DxC

ð9:2Þ

This expression is usually referred to as the “central difference” approximation

of the first derivative.

For Cartesian grids in multiple dimensions, the derivatives can be computed by

applying the same principle along the respective coordinate directions. Consider,

for example, the two dimensional grid shown in Fig. 9.2, using the central differ-

ence approximation introduced earlier, the partial derivatives in the x and y direc-

tions are obtained as

CW E

ew

x
w

x
e

x
C

x

Fig. 9.1 Computing the

gradient on a uniform one

dimensional grid

Sw
Se

Sn

Ss

y()
n

y()
s

x()
w

x()
e

x()
C

y()
C

EW C

N

SSW

NW NE

SE

x

y

Fig. 9.2 Computing the

gradient on a two dimensional

Cartesian grid

274 9 Gradient Computation

@/

@x

� �

C

¼
/E � /W

xE � xW

@/

@y

� �

C

¼
/N � /S

xN � xS
ð9:3Þ

A similar equation holds in the z direction for three dimensional grids.

When dealing with unstructured grids the computation of the gradient using the

above method becomes unpractical and leads to the use of more general methods,

some of these are now presented.

9.2 Green-Gauss Gradient

This is one of the most widely used methods for computing the gradient. It was

introduced in the previous chapter and will not be repeated here. Rather the final

form of the equation will be given and some additional methods to compute the face

values will be introduced.

As derived in the previous chapter, the gradient at the centroid of an element

C with volume VC (Fig. 8.8) is computed as

r/C ¼
1

VC

X

f�nb Cð Þ

/fSf ð9:4Þ

where f refers to a face and Sf to its surface vector. The face values /f still need to

be defined before the formula can be used. Two approaches are presented for

computing /f . One is face-based with a generally compact stencil involving face

neighbors, and the second is vertex-based with a larger stencil involving vertex

neighbors. The number of cells in this extended stencil is about twice the compact

one.

The use of a compact stencil is attractive with implicit methods because it leads

to more compact Jacobian matrices. However, the enlarged stencil brings more

information into the reconstruction, and is therefore expected to be more accurate.

Method 1: Compact Stencil [1]

For the two and three dimensional grid system shown in Fig. 9.3a, b, respec-

tively, a simple approximation for calculating /f is to use the average values of the

two cells sharing the face. In this case the value of /f is calculated as

/f ¼ gC/C þ 1� gCð Þ/F ð9:5Þ

where gC is a geometric weighting factor equal to

9.1 Computing Gradients in Cartesian Grids 275

gC ¼
krF � rf k

krF � rC k
¼

dFf

dFC
ð9:6Þ

where r designates the position vector and d the distance between two points. When

the face is situated halfway between the two cell centers, /f is found to be

/f ¼
/C þ /F

2
ð9:7Þ

This approach is simple to implement in two and three dimensional situations

and all operations involved are face-based, not requiring any additional grid con-

nectivity. Accuracy-wise, the above relation leads to a second order approximation

of /f only when the segment [CF] and face Sf intersection point coincides with the

centroid of the face Sf , i.e., with the Gaussian integration point f. Thus a second

order accurate representation of the gradient is generally not achieved except for the

above special case.

Such a condition is not usually satisfied with a general structured non-orthogonal

or unstructured grid systems as shown for the two and three dimensional grid

systems displayed in Fig. 9.3c, d, respectively. Rather, the skewness of the mesh

(non-conjunctionality) results in the segment [CF] and the surface Sf intersecting at

C
F

S
f

r
f

C

r
f

r

F

S
fr

F
r

C
F

S
f

r
f

r
F

C

r
f

r

F

S
f

r
F

r

x

y

r
F

r
C

r
f

S f

e
F

C

f

x

y

z

r
C

x

y

r
F

r
C

r
f

S f

e

F

C

f

f

r
f

x

y

z
r

C

(a) (b)

(c) (d)

r
F

r

Fig. 9.3 Conjunctional face in a a two dimensional and b a three dimensional configuration;

non-conjunctional face in c a two dimensional and d a three dimensional configuration

276 9 Gradient Computation

a point f 0, different from the face centroid f. In this case a correction is needed for

the interpolated /f 0 value to get /f . The correction equation is given by

/f ¼/f 0 þ correction

¼/f 0 þ ðr/Þf 0 � ðrf � rf 0Þ
ð9:8Þ

which may also be written in expanded form as

/f ¼ gC /C þ r/ð ÞC � rf � rC
� �� 	

þ 1� gCð Þ /F þ r/ð ÞF � rf � rF
� �� 	

¼ /f 0 þ gC r/ð ÞC � rf � rC
� �

þ 1� gCð Þ r/ð ÞF � rf � rF
� �

|ffl{zffl}

correction

ð9:9Þ

Since gC depends on f 0, Eq. (9.9) indicates that improved estimates of the gradient

can be obtained iteratively. At each iteration, the average value at the face is

computed using the gradients calculated in the pervious iteration. These face values

are then used to compute new estimates of the gradients. Doing excessive number

of iterations may cause oscillations and usually not more than two iterations are

performed.

In this case, the calculation of gC requires locating the intersection point f 0

between [CF] and the face Sf. For that purpose three options will be described.

Option 1: In this option f 0 is taken to be the exact intersection between [CF] and

the face Sf of surface vector Sf. With n denoting the surface unit vector (i.e.,

n ¼ Sf = Sf
�
�

�
�) and e the unit vector along CF (i.e., e ¼ CF= CFk k), the location of

f 0 (Fig. 9.3c, d) can be found by exploiting the orthogonality condition that exists

between n and the segment ff 0 (i.e., n is normal to the face Sf containing the

segment ff 0) to write

rf � rf 0
� �

� n ¼ 0 ð9:10Þ

Further, since f 0 is a point on CF the vector Cf 0 can be expressed in terms of e as

Cf 0 ¼ rf 0 � rC
� �

¼ ke ð9:11Þ

where k is a scalar quantity. Combining Eqs. (9.10) and (9.11) yields

rf 0 ¼
rf � n

e � n
e ð9:12Þ

with f 0 located, gC is computed as

gC ¼
rF � rf 0

�
�

�
�

rF � rCk k
¼

dFf 0

dFC
ð9:13Þ

9.2 Green-Gauss Gradient 277

Then, the calculation procedure involves the following steps:

During the first iteration, calculate the gradient field over the entire domain as

follows:

1. Calculate /f 0 using /f 0 ¼ gC/C þ 1� gCð Þ/F

2. Calculate r/C using r/C ¼
1

VC

X

f� nbðCÞ

/f 0Sf

From the second iteration onward, correct the gradient field according to the

following procedure:

3. Update /f using /f ¼ /f 0 þ gC r/ð ÞC � rf � rC
� �

þ 1� gCð Þ r/ð ÞF � rf � rF
� �

4. Update r/C using r/C ¼
1

VC

X

f� nbðCÞ

/fSf

5. Go back to step 3 and repeat.

Option 2: For f 0 chosen to be at the centre of segment [CF] [Fig. 9.4a in two

dimensions and Fig. 9.4b in three dimensions] the equations become simpler and

the calculation of the gradient field over the domain proceeds as follows:

During the first iteration, calculate the gradient field over the entire domain as

follows:

1. Calculate /f 0 using /f 0 ¼
/C þ /F

2

2. Calculate r/C using r/C ¼
1

VC

X

f� nbðCÞ

/f 0Sf

From the second iteration onward, correct the gradient field according to the

following procedure:

3. Update/f using /f ¼ /f 0 þ 0:5 � r/ð ÞC þ r/ð ÞF
�

� rf � 0:5 � rC þ rFð Þ
�

4. Update r/C using r/C ¼
1

VC

X

f� nbðCÞ

/fSf

5. Go back to step 3 and repeat

C
F

S
f

C
F

f

f

S
f

S f

e
F C

f

f

(a)

(b)

ff

f

Fig. 9.4 Correction to Non-Conjunctionality using the midpoint approach: a two dimensional

configuration; b three dimensional configuration

278 9 Gradient Computation

Option 3: The position of f 0 can be chosen such that the distance ff 0 is the shortest

possible [Fig. 9.5a in two dimensions and Fig. 9.5b in three dimensions], i.e., ff 0½ �
perpendicular to [CF]. This leads to a more accurate computation of the gradient

during the first iteration. In this case f 0 is computed by minimizing the distance

between f and f 0. In general rf 0 is described by

rf 0 ¼ rC þ q rC � rFð Þ ð9:14Þ

where 0 < q < 1.

Denoting the distance f 0f by d, then its square is obtained as

d2 ¼ rf � rf 0
� �

� rf � rf 0
� �

¼ rf � rC � q rC � rFð Þ
�

� rf � rC � q rC � rFð Þ
�

ð9:15Þ

¼ rf � rC
� �

� rf � rC
� �

� 2q rf � rC
� �

� rC � rFð Þ þ q2 rC � rFð Þ � rC � rFð Þ

Minimizing the function d2 with respect to q, yields

@ d2ð Þ

@q
¼ 0) �2 rf � rC

� �
� rC � rFð Þ þ 2q rC � rFð Þ � rC � rFð Þ ¼ 0 ð9:16Þ

Solving, q is obtained as

q ¼ �
rCf � rCF
rCF � rCF

ð9:17Þ

Knowing the q values, the gradient calculation over the domain proceeds as

follows:

During the first iteration, calculate the gradient field over the entire domain as

follows:

1. Calculate rf 0 using rf 0 ¼ rC �
rCf � rCF
rCF � rCF

rC � rFð Þ

2. Calculate gC using gC ¼ rF � rf 0
�
�

�
�= rF � rCk k

S f

e
F C

f

f

C
F

S
f

C
F

f

f

S
f

(a)

(b)

f

f

Fig. 9.5 Correction to Non-Conjunctionality using the minimum distance approach: a two

dimensional configuration; b three dimensional configuration

9.2 Green-Gauss Gradient 279

3. Calculate /f 0 using /f 0 ¼ gC/C þ 1� gCð Þ/F

4. Calculate r/C using r/C ¼
1

VC

X

f� nbðCÞ

/f 0Sf

From the second iteration onward, correct the gradient field according to the

following procedure:

5. Calculate r/f 0 using r/f 0 ¼ gCr/C þ 1� gCð Þr/F

6. Update /f using /f ¼ /f 0 þr/f 0 � rf � rf 0
� �

7. Update r/C using r/C ¼
1

VC

X

f � nbðCÞ

/fSf

8. Go back to step 5 and repeat

Example 1

For the mesh shown in Fig. 9.6, the coordinates of the grid point C and its

neighbors F1 through F6 are given by

C 13; 11ð Þ F1 4:5; 9:5ð Þ F2 8; 3ð Þ F3 17; 3:5ð Þ

F4 22; 10ð Þ F5 16; 20ð Þ F6 7; 18ð Þ

while the nodes n1 through n6 are located at

n1 9; 14ð Þ n2 8; 8ð Þ n3 12; 5ð Þ

n4 17; 9ð Þ n5 17:5; 14ð Þ n6 12; 17ð Þ

C
F

1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

x

y

n
1

n
2

n
3

n
4

n
5

n
6

′f
1

S
f
1

C

f
1

ff

f
2

ff f
3

ff

f
4

ff

f
5

fff
6

ff

′fff
1

ff

Fig. 9.6 Grid layout for

Examples 1 and 2

280 9 Gradient Computation

If the values of the dependent variable / at the centroids are known to be

/C ¼ 167

/F1
¼ 56:75 /F2

¼ 35 /F3
¼ 80

/F4
¼ 252 /F5

¼ 356 /F6
¼ 151

and the values of the gradient of /, r/ð Þ, at all neighboring elements to C

are given by

r/F1
¼ 10:5iþ 5:5j r/F2

¼ 4iþ 9j r/F3
¼ 4:5iþ 18j

r/F4
¼ 11iþ 23j r/F5

¼ 21iþ 17j r/F6
¼ 19iþ 8j

If the volume of cell C is VC = 76, find the gradient r/C using

a. The Green-Gauss method with no correction

b. The Green-Gauss method alongside correction to skewness with f 0 chosen

to be at the centre of segment [CF].

Solution The Green-Gauss method with no correction

a. The interpolation factors are needed to perform the calculations. This, in

turn, necessitates computing the coordinates of the face centroids. The

coordinates of the centroid f1 are found as

xf1 ¼ 0:5 � xn1 þ xn2ð Þ ¼ 0:5 � 9þ 8ð Þ ¼ 8:5
yf1 ¼ 0:5 � yn1 þ yn2ð Þ ¼ 0:5 � 14þ 8ð Þ ¼ 11

�

) f1 8:5; 11ð Þ

In a similar way, the coordinates of other face centroids are found to be

f2 10; 6:5ð Þ f3 14:5; 7ð Þ

f4 17:25; 11:5ð Þ f5 14:75; 15:5ð Þ f6 10:5; 15:5ð Þ

The surface vectors are calculated as

Sf1 ¼ �6iþ j Sf2 ¼ �3i� 4j Sf3 ¼ 4i� 5j

Sf4 ¼ 5i� 0:5j Sf5 ¼ 3iþ 5:5j Sf6 ¼ �3iþ 3j

9.2 Green-Gauss Gradient 281

The interpolation factor (gC)1 is computed using

gCð Þ1¼
F1f1

F1f1 þ Cf1

F1f1 ¼

ffi

4:5� 8:5ð Þ2þ 9:5� 11ð Þ2
q

¼ 4:272

Cf1 ¼

ffi

13� 8:5ð Þ2þ 11� 11ð Þ2¼ 4:5

q

9

>>>>>=

>>>>>;

) gCð Þ1¼ 0:487

In a similar way, the other interpolation factors are found to be

gCð Þ2 ¼ 0:427 gCð Þ3 ¼ 0:502 gCð Þ4 ¼ 0:538 gCð Þ5 ¼ 0:492 gCð Þ6 ¼ 0:455

Using Eq. (9.5) the /f values are computed as

/f1
¼ 110:442 /f2

¼ 91:364 /f3
¼ 123:674

/f4
¼ 206:27 /f5

¼ 263:012 /f6
¼ 158:28

Using Eq. (9.4), r/C is calculated as

r/C ¼
1

76

110:442� �6ð Þ þ 91:364� �3ð Þ þ 123:674� 4 þ

206:27� 5þ 263:012� 3þ 158:28� �3ð Þ

� �

i þ

110:442� 1ð Þ þ 91:364� �4ð Þ þ 123:674� �5ð Þ þ

206:27� �0:5ð Þ þ 263:012� 5:5þ 158:28� 3ð Þ

� �

j

8

>>><

>>>:

9

>>>=

>>>;

¼ 11:889iþ 12:433j

b. The Green-Gauss method alongside correction to skewness with f 0 chosen

to be at the centre of segment [CF].

The values at the f 0 locations are computed as half the sum of the values at

the nodes straddling the face and are given by

/f1
¼ 111:875 /f2

¼ 101 /f3
¼ 123:5 /f4

¼ 209:5 /f5
¼ 261:5 /f6

¼ 158:5

Using these values, the first estimate for the gradient is obtained using

Eq. (9.4) as

r/C ¼ 11:53iþ 11:826j

282 9 Gradient Computation

Defining df = rf − 0.5 × (rC + rF), the various values are found to be

df1 ¼ �0:25iþ 0:75j df2 ¼ �0:5i� 0:5j df3 ¼ �0:5i� 0:25j

df4 ¼ �0:25iþ j df5 ¼ 0:25i df6 ¼ 0:5iþ j

Using /f ¼ /f 0 þ 0:5 � ½ðr/ÞC þ ðr/ÞF � � rf � 0:5 � rC þ rFð Þ
�

the

updated values at the faces are obtained as

/f1
¼ 115:619 /f2

¼ 91:911 /f3
¼ 115:764

/f4
¼ 224:097 /f5

¼ 265:566 /f6
¼ 176:046

These values are used in Eq. (9.4) yielding the updated value of the

gradient as

r/C ¼ 11:614iþ 13:761j

Method 2: Extended Stencil [2]

The value of /f at the surface centroid f can be computed as the mean of the

values at the vertices defining the surface. This necessitates the estimation of

the properties at the vertices. The properties at a vertex node are calculated using

the weighted average of the properties within the cells surrounding that node.

Figure 9.7 shows the cells that are considered for the weighted average of the

properties at the vertex nodes n1 and n2. The weight is taken as the inverse of

the distance of the vertex from the cell centre [3]. The resulting equation for the

properties at the vertices are written as,

Fig. 9.7 Cells Contributing

to node n for the Weighted

Average

9.2 Green-Gauss Gradient 283

/n ¼

PNBðnÞ

k¼1

/Fk

rn � rFk
k k

PNBðnÞ

k¼1

1

rn � rFk
k k

ð9:18Þ

where n refers to the vertex node, Fk to the neighboring cell node, NB(n) the total

number of cell nodes surrounding the vertex node n, and rn � rFk
k k the distance

from the vertex node to the centroid of the neighboring cells.

Once the values /n at the vertices are found, the values /f at the surface

centroids are calculated followed by the gradients at the control volume centroids.

In two dimensional situations, /f is computed as

/f ¼
/n1

þ /n2

2
ð9:19Þ

Then the gradient at C is found using

r/C ¼
1

VC

X

f¼nbðCÞ

/fSf ¼
1

VC

X

f � nbðCÞ

/n1
þ /n2

2

� �

f

Sf ð9:20Þ

In three dimensional situations, the calculations are a little more involved as the

number of a face vertices depends on the element type. The value of /f is found

from the values at the vertices using

/f ¼

Pnbðf Þ

k¼1

/nk

rnk � rf
�
�

�
�

Pnbðf Þ

k¼1

1

rnk � rf
�
�

�
�

ð9:21Þ

where n represents the number of vertices of face f. Once the values /f are cal-

culated, the gradient at C is computed using Eq. (9.4).

One of the disadvantages of this approach is that information from the wrong

side of the cell face also contributes to the weighted average values of the conserved

variables. This can be overcome by using upwind biased gradients as discussed by

Cabello [4]. The higher order calculations based on the upwind biased gradients,

however, have both higher memory overheads required to store the information

about the cells used for the upwind biased gradient calculation and increased coding

complexity.

284 9 Gradient Computation

Example 2

Using the data of example I, calculate /f1
using the extended stencil

approach via Eq. (9.16).

Solution First the distances have to be calculated and are given by

rn1 � rF6
k k ¼

ffi

9� 7ð Þ2þ 14� 18ð Þ2
q

¼ 4:472

rn1 � rF1
k k ¼

ffi

9� 4:5ð Þ2þ 14� 9:5ð Þ2
q

¼ 6:364

rn1 � rCk k ¼

ffi

9� 13ð Þ2þ 14� 11ð Þ2
q

¼ 5

rn2 � rF1
k k ¼

ffi

8� 4:5ð Þ2þ 8� 9:5ð Þ2
q

¼ 3:808

rn2 � rF2
k k ¼

ffi

8� 8ð Þ2þ 8� 3ð Þ2
q

¼ 5

rn2 � rCk k ¼

ffi

8� 13ð Þ2þ 8� 11ð Þ2
q

¼ 5:831

The values at nodes n1 and n2 are computed using Eq. (9.15) as

/n1
¼

151

4:472
þ
56:75

6:364
þ
167

5
1

4:472
þ

1

6:364
þ
1

5

¼ 131:009 /n2
¼

56:75

3:808
þ
35

5
þ

167

5:831
1

3:808
þ
1

5
þ

1

5:831

¼ 79:708

The value of /f1
is found to be

/f1
¼ 0:5 131:009þ 79:708ð Þ ¼ 105:3585

9.3 Least-Square Gradient

Using least-square methods to compute the gradients [5] offers more flexibility with

regard to the order of accuracy achieved [6] and the stencil used [7]. In the

least-square method, the divergence-based gradient can be recovered as a special

case. This flexibility comes at a cost, as proper weighting is needed for the stencil

terms, and computation of the weights adds to the computational cost. The method

is described next.

Considering a control volume and its immediate neighbors (Fig. 9.8), the change

in centroid values between C and F is given by ð/F � /CÞ, if the cell gradient

(r/C) is exact, then the difference can also be computed as

9.2 Green-Gauss Gradient 285

/F ¼ /C þ r/ð ÞC � rF � rCð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

rCF

ð9:22Þ

However unless the solution field is linear the cell gradient cannot be exact

because C has more neighbors than the gradient vector has components. In the least

square methods, a gradient is computed by an optimization procedure that finds the

minimum of the function GC defined as

GC ¼
XNBðCÞ

k¼1

wk /Fk
� /C þr/C � rCFk
ð Þ

� 2
n o

¼
XNBðCÞ

k¼1

wk D/k � Dxk
@/

@x

� �

C

þ Dyk
@/

@y

� �

C

þDzk
@/

@z

� �

C

� �� �2
() ð9:23Þ

where wk is some weighting factor. The various terms in the above equation

represent

D/k ¼ /Fk
� /C

Dxk ¼ rCFk
� i

Dyk ¼ rCFk
� j

Dzk ¼ rCFk
� k

ð9:24Þ

The function GC is minimized by enforcing the conditions

@GC

@
@/

@x

� � ¼
@GC

@
@/

@y

� � ¼
@GC

@
@/

@z

� � ¼ 0 ð9:25Þ

Fig. 9.8 A control volume with its immediate neighbors

286 9 Gradient Computation

to yield the following set of three equations in three unknowns:

XNBðCÞ

k¼1

2wkDxk �D/k þ Dxk
@/

@x

� �

C

þDyk
@/

@y

� �

C

þDzk
@/

@z

� �

C

� �� �

¼ 0

XNBðCÞ

k¼1

2wkDyk �D/k þ Dxk
@/

@x

� �

C

þDyk
@/

@y

� �

C

þDzk
@/

@z

� �

C

� �� �

¼ 0

XNBðCÞ

k¼1

2wkDzk �D/k þ Dxk
@/

@x

� �

C

þDyk
@/

@y

� �

C

þDzk
@/

@z

� �

C

� �� �

¼ 0

ð9:26Þ

which can be written in matrix form as

PNBðCÞ

k¼1

wkDxkDxk
PNBðCÞ

k¼1

wkDxkDyk
PNBðCÞ

k¼1

wkDxkDzk

PNBðCÞ

k¼1

wkDykDxk
PNBðCÞ

k¼1

wkDykDyk
PNBðCÞ

k¼1

wkDykDzk

PNBðCÞ

k¼1

wkDzkDxk
PNBðCÞ

k¼1

wkDzkDyk
PNBðCÞ

k¼1

wkDzkDzk

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

@/

@x

� �

C

@/

@y

� �

C

@/

@z

� �

C

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

PNBðCÞ

k¼1

wkDxkD/k

PNBðCÞ

k¼1

wkDykD/k

PNBðCÞ

k¼1

wkDzkD/k

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð9:27Þ

The solution to the above set of equations yields the gradient r/ð ÞC. A solution

exists provided that the matrix on the left hand side is not singular. Moreover, the

choice of the wk is important in determining the properties of the gradient. For

example if wk is chosen to be 1 for all neighbors of C, then all neighboring points

will have the same weight in the computation of the gradient irrespective of whether

they are near or far from point C. Actually points that are farther from C will have a

more important influence as the error function will be more affected by their error.

Another choice for wk, which was used earlier with the extended stencil method,

is the inverse distance between C and F given by

wk ¼
1

rFk
� rCj j

¼
1

ffi

Dx2Fk
þ Dy2Fk

þ Dz2Fk

q ð9:28Þ

9.3 Least-Square Gradient 287

Other options that can be pursued include the inverse distance raised to any

power n such that

wk ¼
1

rFk
� rCj jn

ð9:29Þ

where n can be set to 1, 2, 3, etc.

As mentioned above, the divergence based gradient is a special case of the

least-square formulation. This can be shown for a Cartesian grid (see Fig. 9.9)

where substituting the geometric quantities into Eq. (9.27) would yield the fol-

lowing set of three equations.

xE � xW 0 0

0 yN � yS 0

0 0 zT � zB

2

4

3

5

@/=@xð ÞC
@/=@yð ÞC
@/=@zð ÞC

2

4

3

5 ¼
/E � /W

/N � /S

/T � /B

2

4

3

5 ð9:30Þ

Solving the above equation, the derivatives in the various directions are found to be

@/

@x

� �

C

¼
/E � /W

xE � xW

@/

@y

� �

C

¼
/N � /S

yN � yS

@/

@z

� �

C

¼
/T � /B

zT � zB
ð9:31Þ

The obtained values are exactly the ones given in Eq. (9.3), demonstrating that the

divergence-based gradient is a special case of the least-square method. Finally it can

easily be demonstrated that the accuracy of the resulting gradient is at least first order.

Indeed, the Taylor series expansion of the / value around node C can be written as

/ rð Þ � / rCð Þ ¼ r/ð ÞC � r� rCð Þ þ O r2
� �

ð9:32Þ

which when solved for r/ð ÞC results in O(r).

W

S
B

z

x

y

x
w

y
s

z
b

E

N
T

x
e

y
n z

t

C

t

b

e
w

n

s

Fig. 9.9 A three dimensional

Cartesian control volume

288 9 Gradient Computation

9.4 Interpolating Gradients to Faces

It was shown in Chap. 8 that the discretization of the diffusion term in

non-orthogonal grids requires the use of correction terms involving gradients at

control volume faces. Thus in this situation the gradients need to be interpolated from

the control volume centroids where they were computed to the control volume faces

where they will be used. Figure 9.10a shows the stencil used in the Gauss gradient

computation for two neighboring control volumes. The gradient at the face will have

exactly the same stencil, while ideally it should be similar to that of Fig. 9.10b.

A better insight is gained by considering the configuration in Fig. 9.11a, which

shows the gradients r/C and r/F of the variable / at the two nodes C and F,

respectively. The interpolated gradient at the face, r/f , is obtained by averaging

the values at nodes C and F, as shown in Fig. 9.11b. It is important for the stencil of

the gradient at the face to be heavily based on the nodes straddling the face, which

is not guaranteed by this simple averaging practice. As schematically displayed in

Fig. 9.11c, this can be accomplished by forcing the face gradient along the CF

direction to be equal to the local gradient defined by the values of / at C and

F. Mathematically this can be written as

r/f ¼ r/f þ
/F � /C

dCF
� r/f � eCF
� �

� �

eCF

|ffl{zffl}

Correction interpolated face gradient

ð9:33Þ

where

r/f ¼ gCr/C þ gFr/F ; eCF ¼
dCF

dCF
; dCF ¼ rF � rC ð9:34Þ

f eCF stencil

C F
f

stencilf eCF

C F
f

(a) (b)

Fig. 9.10 a Interpolated and b corrected gradient at a control volume face

9.4 Interpolating Gradients to Faces 289

where rF and rC are position vectors, as displayed in Fig. 9.3. This approach is

applicable to both structured and unstructured grids. For unstructured grids, while

the stencil used for the face gradient might not be decreased, the gradient across a

face will still be based on the nodes straddling that face.

9.5 Computational Pointers

9.5.1 uFVM

In uFVM, the functions cfdComputeGradientGauss0 and cfdComputeGradi-

entNodal are used to compute the element gradients. The Gauss gradient routine

(Listing 9.1) takes as input the phi element array and returns the element gradient

array. The values are interpolated to the faces using a weighted factor with no

correction for non-conjunctionality, hence the 0 digit in the function name.

S f

n

C

F

f()
C

()
F

dCF

eCF

()
f

()
F

()
C

()
f

()
f

eCF()eCF

F C

dCF

eCF

()
f

()
f

eCF

(a)

(b)

(c)

Fig. 9.11 a Schematics of the

gradients at the two nodes

C and F straddling face f;

b computing r/f as a simple

average of r/C and r/F

using Eq. (9.31); c the

gradient at the face with its

value heavily based on the

nodes straddling the face

290 9 Gradient Computation

function phiGrad = cfdComputeGradientGauss0(phi,theMesh)

%===

% written by the CFD Group @ AUB, Fall 2006

%===

%

if(nargin<2)

 theMesh = cfdGetMesh;

end

theSize = size(phi);

theNumberOfComponents = theSize(2);

if(theNumberOfComponents > 3)

 echo('********* ERROR **********');

 exit;

end

%---

% INTERIOR FACES contribution to gradient

%---

iFaces = 1:theMesh.numberOfInteriorFaces;

iBFaces = theMesh.numberOfInteriorFaces+1:theMesh.numberOfFaces;

iElements = 1:theMesh.numberOfElements;

iBElements = theMesh.numberOfElements+1:theMesh.numberOfElements

+theMesh.numberOfBFaces;

iOwners = [theMesh.faces(iFaces).iOwner]';

iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

Sf = [theMesh.faces(iFaces).Sf]';

gf = [theMesh.faces(iFaces).gf]';

%---

% Initialize phiGrad Array

%---

phiGrad = zeros(theMesh.numberOfElements+theMesh.numberOfBElements,

3,theNumberOfComponents);

for iComponent=1:theNumberOfComponents

 phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);

 %

 for iFace=iFaces

phiGrad(iOwners(iFace),:,iComponent) + phi_f(iFace)*Sf(iFace,:);

phiGrad(iOwners(iFace),:,iComponent) =

phiGrad(iNeighbours(iFace),:,iComponent) =

phiGrad(iNeighbours(iFace),:,iComponent) - phi_f(iFace)*Sf(iFace,:);

 end

end

%---

% BOUNDARY FACES contribution to gradient

%---

iBOwners = [theMesh.faces(iBFaces).iOwner]';

phi_b = phi(iBElements,iComponent);

Sb = [theMesh.faces(iBFaces).Sf]';

for iComponent=1:theNumberOfComponents

 %

 for k=1:theMesh.numberOfBFaces

phiGrad(iBOwners(k),:,iComponent) =

phiGrad(iBOwners(k),:,iComponent) + phi_b(k)*Sb(k,:);

 end

end

function phiGrad = cfdComputeGradientGauss0(phi,theMesh)

%===

% written by the CFD Group @ AUB, Fall 2006

%===

%

if(nargin<2)

 theMesh = cfdGetMesh;

end

theSize = size(phi);

theNumberOfComponents = theSize(2);

if(theNumberOfComponents > 3)

 echo('********* ERROR **********');

 exit;

end

%---

% INTERIOR FACES contribution to gradient

%---

iFaces = 1:theMesh.numberOfInteriorFaces;

iBFaces = theMesh.numberOfInteriorFaces+1:theMesh.numberOfFaces;

iElements = 1:theMesh.numberOfElements;

iBElements = theMesh.numberOfElements+1:theMesh.numberOfElements

+theMesh.numberOfBFaces;

iOwners = [theMesh.faces(iFaces).iOwner]';

iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

Sf = [theMesh.faces(iFaces).Sf]';

gf = [theMesh.faces(iFaces).gf]';

%---

% Initialize phiGrad Array

%---

phiGrad = zeros(theMesh.numberOfElements+theMesh.numberOfBElements,

3,theNumberOfComponents);

for iComponent=1:theNumberOfComponents

 phi_f = gf.*phi(iNeighbours,iComponent) + (1-gf).*phi(iOwners,iComponent);

 %

 for iFace=iFaces

phiGrad(iOwners(iFace),:,iComponent) + phi_f(iFace)*Sf(iFace,:);

phiGrad(iOwners(iFace),:,iComponent) =

phiGrad(iNeighbours(iFace),:,iComponent) =

phiGrad(iNeighbours(iFace),:,iComponent) - phi_f(iFace)*Sf(iFace,:);

 end

end

%---

% BOUNDARY FACES contribution to gradient

%---

iBOwners = [theMesh.faces(iBFaces).iOwner]';

phi_b = phi(iBElements,iComponent);

Sb = [theMesh.faces(iBFaces).Sf]';

for iComponent=1:theNumberOfComponents

 %

 for k=1:theMesh.numberOfBFaces

phiGrad(iBOwners(k),:,iComponent) =

phiGrad(iBOwners(k),:,iComponent) + phi_b(k)*Sb(k,:);

 end

end

Listing 9.1 Function used in uFVM to compute the gradient field at the centroids of elements

following the Green-Gauss approach with phi values at the face computed using simple a weighted

average interpolation technique with no correction to non-conjunctionality

9.5 Computational Pointers 291

The nodal gradient routine, listed below (Listing 9.2), is very similar to the

Gauss gradient routine except that it uses the functions cfdInterpolateFrom-

ElementsToNodes and cfdInterpolateFromNodesToFaces to interpolate phi values

to the face that are subsequently used in the Gauss algorithm.

%

%===

% INTERIOR Gradients

%===

theNumberOfElements = theMesh.numberOfElements;

theNumberOfBElements = theMesh.numberOfBElements;

theNumberOfInteriorFaces = theMesh.numberOfInteriorFaces;

%

phiNodes = cfdInterpolateFromElementsToNodes(phi);

phi_f = cfdInterpolateFromNodesToFaces(phiNodes);

%

phiGrad = zeros(3,theNumberOfElements+theNumberOfBElements);

%---

% INTERIOR FACES contribution to gradient

%---

fvmFaces = theMesh.faces;

% interpolate phi to faces

%

for iFace=1:theNumberOfInteriorFaces

 %

 theFace = fvmFaces(iFace);

 %

 iElement1 = theFace.iOwner;

 iElement2 = theFace.iNeighbour;

 %

Listing 9.2 Function used in uFVM to compute the gradient field at the centroids of elements

following the Green-Gauss approach with phi values at the face computed using nodal values, i.e.,

the extended stencil approach

%---

% Get Average Gradient by dividing with element volume

%---

volumes = [theMesh.elements(iElements).volume]';

for iComponent=1:theNumberOfComponents

 for iElement =1:theMesh.numberOfElements

 phiGrad(iElement,:,iComponent) = phiGrad(iElement,:,iComponent)/

volumes(iElement);

 end

end

%---

% Set boundary Gradient equal to associated element

% Gradient

%---

phiGrad(iBElements,:,:) = phiGrad(iBOwners,:,:);

end

%---

% Get Average Gradient by dividing with element volume

%---

volumes = [theMesh.elements(iElements).volume]';

for iComponent=1:theNumberOfComponents

 for iElement =1:theMesh.numberOfElements

phiGrad(iElement,:,iComponent) = phiGrad(iElement,:,iComponent)/

volumes(iElement);

 end

end

%---

% Set boundary Gradient equal to associated element

% Gradient

%---

phiGrad(iBElements,:,:) = phiGrad(iBOwners,:,:);

end

Listing 9.1 (continued)

292 9 Gradient Computation

For face interpolation of gradients, a variety of interpolation options are allowed

in the function cfdInterpolateGradientsFromElementsToInteriorFaces. The

input to the function is theInterpolationScheme, the element gradient grad, the

element array phi and mdot for cases where an upwind or downwind scheme is

used. The function is shown in Listing 9.3.

%---

% Get Average Gradient by dividing with element volume

%---

for iElement =1:theNumberOfElements

 theElement = fvmElements(iElement);

 phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume;

end

%---

% Set boundary Gradient equal to associated element

% Gradient

%---

for iBPatch = 1:theNumberOfBElements

 iBElement = iBPatch+theNumberOfElements;

 iBFace = iBPatch+theNumberOfInteriorFaces;

 theBFace = fvmFaces(iBFace);

 iOwner = theBFace.iOwner;

 phiGrad(:,iBElement) = phiGrad(:,iOwner);

end

 Sf = theFace.Sf;

 %

 %

 phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf;

 phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf;

end

%===

% BOUNDARY FACES contribution to gradient

%===

for iBPatch=1:theNumberOfBElements

 %

 iBFace = theNumberOfInteriorFaces+iBPatch;

 iBElement = theNumberOfElements+iBPatch;

 theFace = fvmFaces(iBFace);

 %

 iElement1 = theFace.iOwner;

 %

 Sb = theFace.Sf;

 phi_b = phi(iBElement);

 %

 phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sf;

end

%---

% Get Average Gradient by dividing with element volume

%---

for iElement =1:theNumberOfElements

 theElement = fvmElements(iElement);

 phiGrad(:,iElement) = phiGrad(:,iElement)/theElement.volume;

end

%---

% Set boundary Gradient equal to associated element

% Gradient

%---

for iBPatch = 1:theNumberOfBElements

 iBElement = iBPatch+theNumberOfElements;

 iBFace = iBPatch+theNumberOfInteriorFaces;

 theBFace = fvmFaces(iBFace);

 iOwner = theBFace.iOwner;

 phiGrad(:,iBElement) = phiGrad(:,iOwner);

end

 Sf = theFace.Sf;

 %

 %

 phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_f(iFace)*Sf;

 phiGrad(:,iElement2) = phiGrad(:,iElement2) - phi_f(iFace)*Sf;

end

%===

% BOUNDARY FACES contribution to gradient

%===

for iBPatch=1:theNumberOfBElements

 %

 iBFace = theNumberOfInteriorFaces+iBPatch;

 iBElement = theNumberOfElements+iBPatch;

 theFace = fvmFaces(iBFace);

 %

 iElement1 = theFace.iOwner;

 %

 Sb = theFace.Sf;

 phi_b = phi(iBElement);

 %

 phiGrad(:,iElement1) = phiGrad(:,iElement1) + phi_b*Sf;

end

Listing 9.2 (continued)

9.5 Computational Pointers 293

function grad_f=

cfdInterpolateGradientsFromElementsToInteriorFaces(theInterpolationScheme,grad

,phi,mdot_f)

%===

% written by the CFD Group @ AUB, Fall 2006

%===

theMesh= cfdGetMesh;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

iOwners = [theMesh.faces(1:numberOfInteriorFaces).iOwner]';

iNeighbours = [theMesh.faces(1:numberOfInteriorFaces).iNeighbour]';

gf = [theMesh.faces(1:numberOfInteriorFaces).gf]';

if(strcmp(theInterpolationScheme,'Average')==1)

 grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);

 grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);

 grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Upwind')==1)

 pos = zeros(size(mdot_f));

 pos((mdot_f>0))=1;

 %

 grad_f(:,1) = pos.*grad(iNeighbours,1) + (1-pos).*grad(iOwners,1);

 grad_f(:,2) = pos.*grad(iNeighbours,2) + (1-pos).*grad(iOwners,2);

 grad_f(:,3) = pos.*grad(iNeighbours,3) + (1-pos).*grad(iOwners,3);

function grad_f=

cfdInterpolateGradientsFromElementsToInteriorFaces(theInterpolationScheme,grad

,phi,mdot_f)

%===

% written by the CFD Group @ AUB, Fall 2006

%===

theMesh= cfdGetMesh;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

iOwners = [theMesh.faces(1:numberOfInteriorFaces).iOwner]';

iNeighbours = [theMesh.faces(1:numberOfInteriorFaces).iNeighbour]';

gf = [theMesh.faces(1:numberOfInteriorFaces).gf]';

if(strcmp(theInterpolationScheme,'Average')==1)

 grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);

 grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);

 grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Upwind')==1)

 pos = zeros(size(mdot_f));

 pos((mdot_f>0))=1;

 %

 grad_f(:,1) = pos.*grad(iNeighbours,1) + (1-pos).*grad(iOwners,1);

 grad_f(:,2) = pos.*grad(iNeighbours,2) + (1-pos).*grad(iOwners,2);

 grad_f(:,3) = pos.*grad(iNeighbours,3) + (1-pos).*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Downwind')==1)

 pos = zeros(size(mdot_f));

 pos((mdot_f>0))=1;

 %

 grad_f(:,1) = (1-pos).*grad(iNeighbours,1) + pos.*grad(iOwners,1);

 grad_f(:,2) = (1-pos).*grad(iNeighbours,2) + pos.*grad(iOwners,2);

 grad_f(:,3) = (1-pos).*grad(iNeighbours,3) + pos.*grad(iOwners,3);

elseif(strcmp(theInterpolationScheme,'Average:Corrected')==1)

 grad_f(:,1) = (1-gf).*grad(iNeighbours,1) + gf.*grad(iOwners,1);

 grad_f(:,2) = (1-gf).*grad(iNeighbours,2) + gf.*grad(iOwners,2);

 grad_f(:,3) = (1-gf).*grad(iNeighbours,3) + gf.*grad(iOwners,3);

d_CF = [theMesh.elements(iNeighbours).centroid]' -

[theMesh.elements(iOwners).centroid]';

 dmag=cfdMagnitude(d_CF);

 e_CF(:,1)=d_CF(:,1)./dmag;

 e_CF(:,2)=d_CF(:,2)./dmag;

 e_CF(:,3)=d_CF(:,3)./dmag;

 local_grad_mag_f = (phi(iNeighbours)-phi(iOwners))./dmag;

 local_grad(:,1) = local_grad_mag_f.*e_CF(:,1);

 local_grad(:,2) = local_grad_mag_f.*e_CF(:,2);

 local_grad(:,3) = local_grad_mag_f.*e_CF(:,3);

 local_avg_grad_mag = dot(grad_f',e_CF')';

 local_avg_grad(:,1)=local_avg_grad_mag.*e_CF(:,1);

 local_avg_grad(:,2)=local_avg_grad_mag.*e_CF(:,2);

 local_avg_grad(:,3)=local_avg_grad_mag.*e_CF(:,3);

 grad_f = grad_f - local_avg_grad + local_grad;

else

 theInterpolationScheme

 grad,

 phi,mdot

 exit;

end

Listing 9.3 Function used to interpolation the element gradient field to the faces

294 9 Gradient Computation

It should be noted that theInterpolationScheme “Average:Corrected” imple-

ments the face gradient correction technique used to get a more accurate gradient

representation along the CF direction, i.e., Eq. (9.33).

9.5.2 OpenFOAM®

In OpenFOAM® [8] several types of gradient evaluation techniques are defined: the

standard Green-Gauss method, the second order least square method, and the fourth

order least square method. Attention will be focussed here on the Green-Gauss

method. Nonetheless the discretization in all cases is performed explicitly and is

thus part of the fvc operator namespace. The Green-Gauss gradient is defined at the

cell centre, as in Eq. (9.4), and its source code in OpenFOAM is located in the

directory “src/finiteVolume/finiteVolume/gradSchemes/gaussGrad”.

Implementation-wise, the gradient evaluation is performed in the following two

steps:

• Face interpolation of the variable

• Green-Gauss formula evaluation

The interpolation to the face is in the calcGrad routine listed below (Listing 9.4).

As a first step, values are interpolated to the faces and stored in the generic field

“vsf” (the interpolation class will be described with more details in Chap. 11). Then

the gradient is computed based on the Green-Gauss formula in the gradf routine

shown in Listing 9.5.

Foam::fv::gaussGrad<Type>::calcGrad

(

 const GeometricField<Type, fvPatchField, volMesh>& vsf,

 const word& name

) const

{

 typedef typename outerProduct<vector, Type>::type GradType;

 tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad

 (

 gradf(tinterpScheme_().interpolate(vsf), name)

);

 GeometricField<GradType, fvPatchField, volMesh>& gGrad = tgGrad();

 correctBoundaryConditions(vsf, gGrad);

 return tgGrad;

}

Listing 9.4 Script to interpolate variable values to cell faces

9.5 Computational Pointers 295

Foam::fv::gaussGrad<Type>::gradf

(

 const GeometricField<Type, fvsPatchField, surfaceMesh>& ssf,

 const word& name

)

{

// Info << "Calculating gradient for " << name << endl;

 typedef typename outerProduct<vector, Type>::type GradType;

 const fvMesh& mesh = ssf.mesh();

 tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad

 (

 new GeometricField<GradType, fvPatchField, volMesh>

 (

 IOobject

 (

 name,

 ssf.instance(),

 mesh,

 IOobject::NO_READ,

 IOobject::NO_WRITE

),

 mesh,

 dimensioned<GradType>

 (

 "0",

 ssf.dimensions()/dimLength,

 pTraits<GradType>::zero

),

 zeroGradientFvPatchField<GradType>::typeName

)

Foam::fv::gaussGrad<Type>::gradf

(

 const GeometricField<Type, fvsPatchField, surfaceMesh>& ssf,

 const word& name

)

{

// Info << "Calculating gradient for " << name << endl;

 typedef typename outerProduct<vector, Type>::type GradType;

 const fvMesh& mesh = ssf.mesh();

 tmp<GeometricField<GradType, fvPatchField, volMesh> > tgGrad

 (

 new GeometricField<GradType, fvPatchField, volMesh>

 (

 IOobject

 (

 name,

 ssf.instance(),

 mesh,

 IOobject::NO_READ,

 IOobject::NO_WRITE

),

 mesh,

 dimensioned<GradType>

 (

 "0",

 ssf.dimensions()/dimLength,

 pTraits<GradType>::zero

),

 zeroGradientFvPatchField<GradType>::typeName

)

);

 GeometricField<GradType, fvPatchField, volMesh>& gGrad = tgGrad();

 const labelUList& owner = mesh.owner();

 const labelUList& neighbour = mesh.neighbour();

 const vectorField& Sf = mesh.Sf();

 Field<GradType>& igGrad = gGrad;

 const Field<Type>& issf = ssf;

 forAll(owner, facei)

 {

 GradType Sfssf = Sf[facei]*issf[facei];

 igGrad[owner[facei]] += Sfssf;

 igGrad[neighbour[facei]] -= Sfssf;

 }

 forAll(mesh.boundary(), patchi)

 {

 const labelUList& pFaceCells =

 mesh.boundary()[patchi].faceCells();

 const vectorField& pSf = mesh.Sf().boundaryField()[patchi];

 const fvsPatchField<Type>& pssf = ssf.boundaryField()[patchi];

 forAll(mesh.boundary()[patchi], facei)

 {

 igGrad[pFaceCells[facei]] += pSf[facei]*pssf[facei];

 }

 }

 igGrad /= mesh.V();

 gGrad.correctBoundaryConditions();

 return tgGrad;

}

Listing 9.5 Routine used to compute the gradient using the Green-Gauss method

296 9 Gradient Computation

The sum over cell faces is performed using the LDU addressing. As such the

“for” loop that evaluates the sum over the faces of the cell is based only on the

global face numbering and uses the upper and lower addressing vectors to add or

subtract (Listing 9.6) the flux to cell values. After all fluxes have been processed,

the net value is divided by the volume to yield the gradient, as in Eq. 9.4.

The type of gradient is defined in fvSchemes shown in Listing 9.7.

The face interpolation scheme is defined as displayed in Listing 9.8.

The idea of evaluating the gradient based on a generic interpolation scheme that

has to be defined by dictionary, allows computing the gradient with the

Green-Gauss formula in several ways by just changing the interpolation scheme.

If skew correction, as defined in Eq. (9.8), is required then the above interpo-

lation scheme definition should be replaced by (Listing 9.9)

 igGrad[owner[facei]] += Sfssf;

 igGrad[neighbour[facei]] -= Sfssf;

Listing 9.6 Adding or subtracting fluxes to cell values

gradSchemes

{

 default none;

 grad(phi) Gauss;

}

Listing 9.7 Defining the gradient calculation method

interpolationSchemes

{

 interpolate(phi) linear;

}

Listing 9.8 Defining the interpolation method used in calculating face values

interpolationSchemes

{

 interpolate(phi) skewCorrected linear;

}

Listing 9.9 Defining the interpolation scheme to calculate face values with skew correction

9.5 Computational Pointers 297

A more compact syntax can be used for defining the gradient in which the

interpolation type is specified directly under gradSchemes shown in Listing 9.10.

In this case the interpolation method is defined directly in the gradient dictio-

nary. The choice of the syntax type is up to the user keeping in mind that a separate

definition of the interpolation scheme helps clarifying the various steps of the

gradient calculation.

9.6 Closure

This chapter presented the discretization details of two methods for computing the

gradient at the centroids of control volume meshes in general non-orthogonal grid

systems. One method is based on the Green-Gauss theorem and the second on the

Least-Square reconstruction approach. Chapter 10 will be devoted to methods used

for solving systems of algebraic equations.

9.7 Exercises

Exercise 1

In the configuration depicted in Fig. 9.22, the values of the variable / and its gradient

r/ at C are known. Using these known values estimate the value of / at F.

gradSchemes

{

 default none;

 grad(phi) Gauss linear;

}

Listing 9.10 Defining the gradient calculation method: compact syntax

()
C

= 2i + 3.5 j

C = 10.3

C

F

2,1()

4,5.5()

Fig. 9.22 A two dimensional element of centroid C and neighbor F

298 9 Gradient Computation

Exercise 2

For the two cells shown in Fig. 9.23 the value of some scalar ϕ at their centroids

C and F can be calculated from

/ x; yð Þ ¼ 100 x2yþ y2x
� �

The gradient at C and F are also computed to be the exact gradient of the

function at these points such that

r/ x; yð Þ ¼ 100 2xyþ y2
� �

iþ 100 x2 þ 2yx
� �

j

With C and F located at (0.32, −0.1) and (0.52, 0.31), respectively, find the value of

the gradient at face f (0.43, 0.1) numerically (not from the expression for the

gradient) using

a. A simple averaging between C and F.

b. A corrected averaging between C and F.

c. Compare the two computed values with the exact gradient at point f.

Exercise 3

Consider the mesh composed of equilateral triangular elements shown in Fig. 9.24.

The coordinates of the mesh vertices are as shown. The temperatures at the cell

centroids are given by

T x; y; zð Þ ¼ 100 x2 þ y2 þ 1
� �

a. Compute the gradient at 1 using the Green-Gauss method.

b. Compute the gradient at 1 using the least squares approach with a limited stencil

(i.e., nodes 2, 3 and 4) and with an extended stencil (i.e., nodes 2–13) used for

the reconstruction.

c. Compare the least squares gradient with the limited and extended stencil and the

gauss gradient to the exact gradient.

C

F

f

Fig. 9.23 Two elements in a

two dimensional plane with

their centroids C and F

9.7 Exercises 299

Exercise 4

Consider the uniform mesh shown in Fig. 9.25. The coordinates of the mesh

vertices are as shown. The temperatures at the cell nodes are given by

T x; yð Þ ¼ 100 x3 þ y3 þ xyþ 1
� �

compute the gradient at the centroid of cell 1 using the gauss gradient with and

without face corrections and compare to the exact gradient given by

rT x; yð Þ ¼ 100 3x2 þ y
� �

iþ 100 3y2 þ x
� �

j

2

1

3

4

8

10

9

7

5

6

13 11

12

1

1

0.5

11

1/3

0

Fig. 9.24 A domain discretized using triangular elements

1

2

3

4

1

2

(0,0)

Fig. 9.25 Mesh system for

Exercise 4

300 9 Gradient Computation

Exercise 5 (uFVM, OpenFOAM®)

Using uFVM and then OpenFOAM® write a program that

a. reads an OpenFOAM® mesh and sets a scalar field with values equal to

/ x; y; zð Þ ¼ 10x2y2 þ 3y

b. computes the gradients using the second order least square method,

c. computes the gradients using the gauss gradient method with linear

interpolation,

d. computes the gradients using the gauss gradient method with vertex

interpolation,

e. and computes the root mean square error between each of the computed gra-

dients and the exact gradient.

Exercise 6 (uFVM, OpenFOAM®)

Using uFVM and then OpenFOAM® write a program that

a. reads an OpenFOAM® mesh and sets a scalar field with values equal to

/ x; y; zð Þ ¼ 10x2y2 þ 3x

Use the exact gradients at the element nodes to compute the gradients at the

interior faces using

b. simple linear interpolation,

c. corrected linear interpolation,

d. and exact gradient formulation at the face centroids.

e. Compute the root mean square error between each of the computed gradients

and the exact gradient.

Exercise 7

Starting with Eq. (9.8) derive Eq. (9.9).

Hint: rf � rf 0 ¼ rf�rC � rcf 0 ¼ rf�rf � rFf 0 .

Exercise 8 (OpenFOAM®)

a. List all possible gradient type definitions available in OpenFOAM® by modi-

fying the gradSchemes in the fvSchemes dictionary (Hint: just mistype a

scheme, e.g., banana, and launch any solver or application, i.e., gradSchemes

{default banana;}).

b. Define in the dictionary file fvSchemes the option to evaluate the explicit gra-

dient with the least square algorithm.

c. Use the Doxygen documentation [9] to analyze the member function

correctBoundaryConditions and explain its operations and aim.

d. Define in the dictionary file fvSchemes the option to use a limited gradient (face

and cell) (Gauss limited 0.8;).

9.7 Exercises 301

References

1. Ferziger JH, Peric ́M (2002) Computational Methods for Fluid Dynamics, 3rd edn. Springer,

Berlin

2. Soni B (1998) Hybrid techniques in computational fluid dynamics. Technical Report no.

MSSU-COE-ERC-98-3, Engineering Research Center for Computational Field Simulation,

Mississippi State University

3. Frink NT, Parikh P, Pirzadeh S (1991) Aerodynamic Analysis of Complex Configurations

Using Unstructured Grids. AIAA 91-3292

4. Cabello J, Morgon K, Lohner R (1994) A Comparison of Higher Order Schemes Used in a

Finite Volume Solver For Unstructured Grids. AIAA 94-2293. Presented at the 25th AIAA

Plasmadynamics and Lasers Conference, Colorado Springs, CO

5. Musaferija I, Gosman D (1997) Finite-Volume CFD procedure and adaptive error control

strategy for grids of arbitrary topology. J Comp Phys 138:766–787

6. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured

meshes. AIAA 89-0366

7. Ollivier-Gooch C, Van Altena M (2002) A high-order-accurate unstructured mesh finite-volume

scheme for the advection–diffusion equation. J Comp Phys 181:729–752

8. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

9. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

302 9 Gradient Computation

Chapter 10

Solving the System of Algebraic Equations

Abstract The result of the discretization process is a system of linear equations of

the form A/ ¼ b where the unknowns /, located at the centroids of the mesh

elements, are the sought after values. In this system, the coefficients of the unknown

variables constituting matrix A are the result of the linearization procedure and the

mesh geometry, while vector b contains all sources, constants, boundary conditions,

and non-linearizable components. Techniques for solving linear systems of equations

are generally grouped into direct and iterative methods, with many sub-groups in

each category. Since flow problems are highly non-linear, the coefficients resulting

from their linearization process are generally solution dependent. For this reason and

since an accurate solution is not needed at each iteration, direct methods have been

rarely used in CFD applications. Iterative methods on the other hand have been more

popular because they are more suited for this type of applications requiring lower

computational cost per iteration and lower memory. The chapter starts by presenting

few direct methods applicable to structured and/or unstructured grids (Gauss elimi-

nation, LU factorization, Tridiagonal and Pentadiagonal matrix algorithms) to set the

ground for discussing the more widely used iterative methods in CFD applications.

Then the performance and limitations of some of the basic iterative methods with and

without preconditioning are reviewed. This include the Jacobi, Gauss-Siedel,

Incomplete LU factorization, and the conjugate gradient methods. This is followed

by an introduction to the multigrid method that is generally used in combination with

iterative solvers to help addressing some of their important limitations.

10.1 Introduction

The starting point for any linear solver is the set of equations generated by the

discretization process, which are written mathematically as

A/ ¼ b ð10:1Þ

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_10

303

where A is the matrix of coefficients of elements aij;/ the vector of unknown

variables /i, and b the vector of sources bi. Using matrix numbering, the expanded

form of Eq. (10.1) is given by

a11 a12 . . . a1N�1 a1N
a21 a22 . . . a2N�1 a2N

.

.

.
.
.
.

. . .
.
.
.

.

.

.

aN1 aN2 . . . aNN�1 aNN

2

6
6
6
4

3

7
7
7
5

/1

/2

.

.

.

.

.

.

/N

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

b1
b2

.

.

.

.

.

.

bN

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð10:2Þ

Generally each row in the above matrix represents an equation defined over one

element of the computational domain, and the non-zero coefficients are those

related to the neighbors of that element. The coefficient aij measures the strength of

the link between the value of /i at the centroid of the control volume and its

neighbors. As a cell is connected to only few neighbors, with their number

depending on the connectivity of the elements in the discretized domain, many of

the coefficients are zeros and the resulting A matrix is always sparse (i.e., the

non-zero coefficients are a very small fraction of the matrix). If in addition the

method uses a structured grid system, the matrix A will be banded with all non-zero

elements aligned along few diagonals. Therefore methods for efficiently solving

such systems should exploit this characteristic.

As mentioned above techniques for solving algebraic systems of equations are

broadly divided into two categories denoted by direct and iterative methods,

respectively. In a direct method, matrix A is inverted and the solution / is com-

puted in one step as / ¼ A�1b. When the matrix A is large, computing its inverse is

computationally very expensive requiring large memory. It is basically impractical

to apply direct linear solvers in CFD applications as they generally involve non-

linear systems of equations with their coefficients depending on the solution

necessitating the use of an iterative process.

On the other hand, with iterative algebraic solvers the solution algorithm is

repeatedly applied as many times as required until a pre-assigned level of con-

vergence is reached without the need for a fully converged solution be attained at

every iteration.

The presentation starts with few direct linear solvers applicable to structured and

unstructured grid methods. This is followed by a description of solution algorithms

that take advantage of the banded structure of the coefficient matrix in structured

grid systems. The main focus of the chapter is, however, on a specific class of

iterative linear algebraic solvers that has been identified to be generally very effi-

cient and economical with the FVM, and has been exclusively implemented as the

linear solver in almost all finite volume-based codes.

304 10 Solving the System of Algebraic Equations

10.2 Direct or Gauss Elimination Method

Even though direct methods are not efficient at solving sparse systems of linear

algebraic equations due to their high computational cost, their discussion will pave

the way for introducing efficient iterative methods in the next section. The simplest

direct method for finding solutions to the system of equations described by

Eq. (10.1) is the Gauss elimination technique, which will be described first. The

transformation of the system into an equivalent upper triangular system, when using

the Gauss elimination method, has motivated the development of the Lower-Upper

(LU) triangulation method, which will also be presented. In this approach, matrix

A is decomposed into the product of two matrices L and U with L being a lower

triangular matrix and U an upper triangular one. This procedure is also known as

LU factorization. In addition, direct methods benefiting from the banded structure

of A, applicable to structured grid methods, will be discussed.

10.2.1 Gauss Elimination

The best way to describe the Gauss elimination technique is to start with a simple

example. For that purpose a linear system of equations in the two unknowns /1 and

/2 is considered. The equations are given by

a11/1 þ a12/2 ¼ b1 ð10:3Þ

a21/1 þ a22/2 ¼ b2 ð10:4Þ

The system can be solved by eliminating one of the variables from one of the

equations [say /1 from Eq. (10.4)]. This can be done by multiplying Eq. (10.3) by

a21=a11 and subtracting the resulting equation from Eq. (10.4). This yields

a22 �
a21

a11
a12

� �

/2 ¼ b2 �
a21

a11
b1 ð10:5Þ

The obtained equation involves only one unknown. As such it can be used to solve

for /2, which is obtained as

/2 ¼
b2 �

a21

a11
b1

a22 �
a12a21

a11

ð10:6Þ

Knowing /2, its value can be substituted back into Eq. (10.3) to find /1.

Performing this step, /1 is found to be

10.2 Direct or Gauss Elimination Method 305

/1 ¼
b1

a11
�
a12

a11

b2 �
a21

a11
b1

a22 �
a12

a11
a21

ð10:7Þ

The above procedure is composed of two steps. In the first step the equations are

manipulated in order to eliminate one of the unknowns. The end result of this step is

an equation with one unknown. In the second step, this equation is solved directly

and the result back-substituted into one of the equations to solve for the remaining

unknown. The same procedure can be generalized to a system of N equations

described by Eq. (10.1) or (10.2), as detailed next.

10.2.2 Forward Elimination

In the derivations to follow, the first row of A refers to the discretized equation for

/1, the second row represents the equation for /2, and in general the ith row refers

to the equation for /i. The procedure starts by eliminating /1 from all equations

below row 1 in A. To eliminate /1 from the ith row (i = 2, 3,…, N), the coefficients

of the first row are multiplied by ai1=a11 and the resulting equation is subtracted

from the ith row. The system of equations by the end of this step becomes

a11 a12 . . . a1N�1 a1N

0 a022 . . . a02N�1 a02N

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 a0N2 . . . a0NN�1 a0NN

2

6
6
6
6
6
4

3

7
7
7
7
7
5

/1

/2

.

.

.

.

.

.

/N

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

b1

b02

.

.

.

.

.

.

b0N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð10:8Þ

Then /2 is eliminated from all equations below row 2 in the modified A. To

eliminate /2 from the ith row (i = 3, 4,…, N), the coefficients of the second row are

multiplied by a0i2=a
0
22 and the resulting equation is subtracted from the ith row. Then

/3 is eliminated from all rows below the third row in the modified coefficient matrix

and the process is continued until /N�1 is eliminated from the Nth row leading to

the following equivalent system of equations with its matrix A transformed into an

upper triangular matrix:

a11 a12 a13 . . . a1N�1 a1N

0 a022 a023 . . . a02N�1 a02N

0 0 a0033
. . . a003N�1 a003N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 . . . 0 aN�1NN

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

/1

/2

/3

.

.

.

/N

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼

b1

b02

b003

.

.

.

bN�1N

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

ð10:9Þ

The resulting algorithm is as described below.

306 10 Solving the System of Algebraic Equations

10.2.3 Forward Elimination Algorithm

For k = 1 to N 1

{
For i = k +1 to N

{

Ratio =
aik

akk

{
For j = k +1 to N

aij = aij Ratio*akj

}
bi = bi Ratio*bk

}
}

10.2.4 Backward Substitution

The modified system of equations given by Eq. (10.9) indicates that the only

unknown in the Nth equation is /N . Therefore this equation can be used to obtain

/N as

/N ¼
bN�1N

aN�1NN

ð10:10Þ

The (N − 1)th equation is function of /N�1 and /N . Having found /N then this

equation can be used to find /N�1 as

/N�1 ¼
bN�2N�1 � aN�2N�1N/N

aN�2N�1N�1

ð10:11Þ

The process continues moving backward and by the time the ith equation is

reached, the values /iþ1;/iþ2;/iþ3; . . .;/N�1;/N would have become available

and as such /i can be computed using

10.2 Direct or Gauss Elimination Method 307

/i ¼
bi�1i �

PN
j¼iþ1 a

i�1
ij /j

ai�1ii

ð10:12Þ

the process is continued until /1 is calculated. Algorithmically, this is represented

as shown below.

10.2.5 Back Substitution Algorithm

N =
bN

aNN

For i = N 1 to 1

{
Term = 0

{
For j = i +1 to N

Term = Term + aij * j

}

i = i Term

aii

}

Techniques to improve the performance of the method to avoid division by zero

through pivoting (interchanging rows in order to select the largest pivoting element)

and to reduce roundoff errors in large systems are available but are not discussed

here. Interested readers may consult specialized textbooks on the subject [1–4]. The

presented algorithm shows that the method is expensive and the number of oper-

ations required to solve a linear system of N equations is proportional to N3/3 of

which only N2/2 arithmetic operations are required for back substitution. This high

computational cost has enticed researchers to look for more efficient specialized

solvers for systems with sparse matrices.

10.2.6 LU Decomposition

Another direct method for solving linear algebraic systems of equations is the LU or

more generally the PLU (where P refers to the pivoting process mentioned above),

in this book reference is made only to LU factorization method, which are variants

308 10 Solving the System of Algebraic Equations

of the Gauss elimination method. The advantage of these methods over the Gauss

elimination method is that once the (P)LU factorization is performed the linear

system can be solved as many times as needed for different values of the right hand

side vector b without performing any additional elimination, which would still be

required with the Gauss method.

Based on the elimination performed in the previous section, Eq. (10.1) was

transformed into an upper triangular matrix as given by Eq. (10.9), which can be

written as

u11 u12 u13 . . . u1N�1 u1N
0 u22 u23 . . . u2N�1 u2N
0 0 u33 . . . u3N�1 u3N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 . . . 0 uNN

2

6
6
6
6
6
4

3

7
7
7
7
7
5

/1

/2

/3

.

.

.

/N

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼

c1
c2
c3

.

.

.

cN

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð10:13Þ

Using compact matrix notation Eq. (10.13) can be simplified to

U/� c ¼ 0 ð10:14Þ

Let L be a unit lower triangular matrix (diagonal elements are set to 1 in order to

make the factorization unique) given by

L ¼

1 0 0 . . . 0 0

‘21 1 0 . . . 0 0

‘31 ‘32 1 . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

‘N1 ‘N2 ‘N3 . . . ‘NN�1 1

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð10:15Þ

such that if Eq. (10.14) is multiplied by L, Eq. (10.1) is recovered. If this holds,

then the following can be written:

L U/� cð Þ ¼ LU/� Lc ¼ A/� b ð10:16Þ

Based on matrix properties it follows that

LU ¼ A ð10:17Þ

and

Lc ¼ b ð10:18Þ

Equation (10.17) indicates that A is written as the product of a proper lower and an

upper triangular matrix, known as LU factorization.

10.2 Direct or Gauss Elimination Method 309

10.2.7 The Decomposition Step

The efficient procedure to find the L and U coefficients described next is denoted by

the Crout decomposition [1–4]. In the original Crout algorithm a unit upper tri-

angular matrix is used whereas here a unit lower triangular matrix is assumed. The

procedure is based on multiplying L and U to obtain A such that

1 0 0 . . . 0 0

‘21 1 0 . . . 0 0

‘31 ‘32 1 . . . 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

‘N1 ‘N2 ‘N3 . . . ‘NN�1 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

u11 u12 u13 . . . u1N�1 u1N

0 u22 u23 . . . u2N�1 u2N

0 0 u33 . . . u3N�1 u3N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 . . . 0 uNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

a11 a12 a13 . . . a1N�1 a1N

a21 a22 a23 . . . a2N�1 a2N

a31 a32 a33 . . . a3N�1 a3N

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

aN1 aN2 aN3 . . . aNN�1 aNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð10:19Þ

The calculation of the coefficients starts by multiplying the first row of L by all

columns of U, and equating with the corresponding coefficients of A to yield

u1j ¼ a1j j ¼ 1; 2; 3; . . .;N ð10:20Þ

Then the second through Nth rows of L are multiplied by the first column of

U leading to

‘i1u11 ¼ ai1) ‘i1 ¼
ai1

u11
i ¼ 2; 3; . . .;N ð10:21Þ

The process is repeated by multiplying the second row of L by the second through

Nth columns of U to give

u2j ¼ a2j � ‘21u1j j ¼ 2; 3; . . .;N ð10:22Þ

after that the third through Nth rows of L are multiplied by the second column of

U to give

‘i2u22 þ ‘i1u12 ¼ ai2) ‘i2 ¼
ai2 � ‘i1u12

u22
i ¼ 3; 4; . . .;N ð10:23Þ

310 10 Solving the System of Algebraic Equations

In general, the ith row of L is multiplied by the ith through Nth columns of U,

resulting in

uij ¼ aij �
Xi�1

k¼1

‘ikukj j ¼ i; iþ 1; . . .;N ð10:24Þ

and the (i + 1)th through Nth rows of L are multiplied by the ith column of U,

giving

‘ki ¼
aki �

Pi�1
j¼1 ‘kjuji

uii
k ¼ iþ 1; iþ 2; . . .;N ð10:25Þ

For the Nth row of L, its coefficients are multiplied by the coefficients of the Nth

column of U from which uNN is obtained as

uNN ¼ aNN �
XN�1

k¼1

‘NkukN ð10:26Þ

A summary of the LU factorization is shown algorithmically below.

10.2.8 LU Decomposition Algorithm

u1 j = a1 j j = 1 to N

i1 =
ai1

u
11

i = 2 to N

For i = 2 to N 1

{

uij = aij ikukj

k=1

i 1

j = i,i +1,..., N

ki =

aki kju ji

j=1

i 1

uii

k = i +1,i + 2,..., N

}

uNN = aNN NiuiN

i=1

N 1

10.2 Direct or Gauss Elimination Method 311

10.2.9 The Substitution Step

Having decomposed the original matrix A into L and U, the system of equations

can be solved in a two step procedure via Eqs. (10.18) and (10.14). Note that the

two-step procedure is equivalent to solving two linear systems of equations but now

simplified by the fact that L and U are of lower and upper triangular form,

respectively.

In the first step the vector c is obtained from Eq. (10.18) by forward substi-

tution. The process can be described as

c1 ¼ b1

ci ¼ bi �
Xi�1

j¼1

‘ijcj i ¼ 2; 3; . . .;N
ð10:27Þ

In the second step, the / values are found from Eq. (10.14) by back substitution.

The process is described by

/N ¼
cN

uNN

/i ¼
ci �

PN
j¼iþ1 uij/j

uii
i ¼ N � 1;N � 2; . . .; 3; 2; 1

ð10:28Þ

The elements of L and U can be directly stored in the original matrix A if it is no

longer needed. This is because the elements of A are only needed when the cor-

responding elements of either L or U are calculated. The number of operations

required to perform the LU factorization of a square matrix of size N × N is 2N3/3,

which is double the number of operations required to solve the same system of

equations by Gauss elimination. Again the advantage of using LU factorization is

when the same matrix A applies to many systems with different b vectors.

Nevertheless, the main reason for introducing the LU factorization is because it

forms the basis for developing some of the more efficient iterative solvers of linear

algebraic systems of equations, which will be introduced in the next section.

10.2.10 LU Decomposition and Gauss Elimination

It may not be apparent, but Gauss elimination can be used to perform LU

decomposition. It was shown that the forward elimination step results in an upper

triangular matrix U. In the process however, L is actually produced. The elements

of L are the factors (denoted by ratio in the Gauss elimination algorithm) by which

the rows are multiplied during the various elimination steps. The below algorithm,

which assumes a unit lower triangular matrix L, performs the LU decomposition of

A by Gauss elimination.

312 10 Solving the System of Algebraic Equations

10.2.11 LU Decomposition Algorithm by Gauss Elimination

u1 j = a1 j j = 1 to N

For k = 1 to N 1

{
For i = k +1 to N

{

ik =
aik

akk

{
For j = k +1 to N

uij = aij ik *akj

}
}

}

Example 1

Solve the following system of linear algebraic equations using the LU

decomposition technique:

3 �1 0 0

�2 6 �1 0

0 �2 6 �1
0 0 �2 7

2

6
6
4

3

7
7
5

/1

/2

/3

/4

2

6
6
4

3

7
7
5
¼

3

4

5

�3

2

6
6
4

3

7
7
5

Solution

The system is of the form A/ ¼ b. The L and U should satisfy

LU ¼

1 0 0 0

‘21 1 0 0

‘31 ‘32 1 0

‘41 ‘42 ‘43 1

2

6
6
6
4

3

7
7
7
5

u11 u12 u13 u14

0 u22 u23 u24

0 0 u33 u34

0 0 0 u44

2

6
6
6
4

3

7
7
7
5
¼

3 �1 0 0

�2 6 �1 0

0 �2 6 �1

0 0 �2 7

2

6
6
6
4

3

7
7
7
5

10.2 Direct or Gauss Elimination Method 313

Following the procedure described above the elements are calculated as

follows:

u1j ¼ a1j j ¼ 1; 2; 3; 4)

u11 ¼ 3

u12 ¼ �1
u13 ¼ 0

u14 ¼ 0

8

>><

>>:

‘i1 ¼
ai1

u11
i ¼ 2; 3; 4)

‘21 ¼
a21

u11
¼ �

2

3

‘31 ¼
a31

u11
¼ 0

‘41 ¼
a41

u11
¼ 0

8

>>>>>><

>>>>>>:

u2j ¼ a2j � ‘21u1j j ¼ 2; 3; 4)
u22 ¼ a22 � ‘21u12 ¼

16

3
u23 ¼ a23 � ‘21u13 ¼ �1
u24 ¼ a24 � ‘21u14 ¼ 0

8

><

>:

‘i2 ¼
ai2 � ‘i1u12

u22
i ¼ 3; 4)

‘32 ¼
a32�‘31u12

u22
¼ �

3

8
‘42 ¼

a42�‘41u12
u22

¼ 0

8

<

:

uij ¼ aij �
Xi�1

k¼1

‘ikukj i ¼ 3; j ¼ 3; 4)
u33 ¼ a33 � ‘31u13 � ‘32u23 ¼

45

8
u34 ¼ a34 � ‘31u14 � ‘32u24 ¼ �1

8

<

:

‘ki ¼
aki �

Pi�1
j¼1 ‘kjuji

uii
i ¼ 3; k ¼ 4) ‘43 ¼

a43 � ‘41u13 � ‘42u23
u33

¼ �
16

45

uNN ¼ aNN �
XN�1

k¼1

‘NkukN) u44 ¼ a44 � ‘41u14 � ‘42u24 � ‘43u34 ¼
299

45

Therefore the L and U matrices are given by

L ¼

1 0 0 0

�
2

3
1 0 0

0 �
3

8
1 0

0 0 �
16

45
1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

U ¼

3 �1 0 0

0
16

3
�1 0

0 0
45

8
�1

0 0 0
299

45

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

314 10 Solving the System of Algebraic Equations

The c vector should satisfy

Lc ¼ b)

1 0 0 0

�
2

3
1 0 0

0 �
3

8
1 0

0 0 �
16

45
1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

c1
c2
c3
c4

2

6
6
4

3

7
7
5
¼

3

4

5

�3

2

6
6
4

3

7
7
5

with its solution obtained as

c1 ¼ 3

�
2

3
c1 þ c2 ¼ 4) c2 ¼ 6

�
3

8
c2 þ c3 ¼ 5) c3 ¼

29

4

�
16

45
c3 þ c4 ¼ �3) c4 ¼ �

19

45

The solution to the original equation is obtained by solving

U/ ¼ c)

3 �1 0 0

0
16

3
�1 0

0 0
45

8
�1

0 0 0
299

45

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

/1

/2

/3

/4

2

6
6
4

3

7
7
5
¼

3

6
29

4

�
19

45

2

6
6
6
6
6
4

3

7
7
7
7
7
5

with the solution found as

299

45
/4 ¼ �

19

45
) /4 ¼ �

19

299

45

8
/3 � /4 ¼

29

4
) /3 ¼

382

299

16

3
/2 � /3 ¼ 6) /2 ¼

408

299

3/1 � /2 ¼ 3) /1 ¼
435

299

9

>>>>>>>>>>>=

>>>>>>>>>>>;

) / ¼

435

299

408

299

382

299

�
19

299

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

10.2.12 Direct Methods for Banded Sparse Matrices

The Gauss elimination and LU decomposition methods are applicable to any system

of equations. In specific it can be used for solving the system of equations resulting

from the discretization of the conservation equations of interest in this book on

10.2 Direct or Gauss Elimination Method 315

structured or unstructured grid networks. When a structured grid method is used the

discretization process results in a system of equations with the non-zero elements of

its matrix of coefficients aligning along few diagonals. Depending on the discret-

ization stencil used and the dimension of the problem being solved, tridiagonal or

pentadiagonal matrices may arise, for which efficient algorithms have been devel-

oped as described next.

10.2.13 TriDiagonal Matrix Algorithm (TDMA)

The TriDiagonal Matrix Algorithm (TDMA), also known as Thomas algorithm

[5, 6], solves the system of algebraic equations with a tridiagonal coefficient matrix

written as

ai/i þ bi/iþ1 þ ci/i�1 ¼ di i ¼ 1; 2; 3; . . .;N c1 ¼ bN ¼ 0 ð10:29Þ

For the grid arrangement adopted in this book, i refers to the grid point location

shown in Fig. 10.1.

For i = 1 the equation can be used to solve for /1 in term of /2 as

i ¼ 1) a1/1 ¼ �b1/2 þ d1) /1 ¼ �
b1

a1
/2 þ

d1

a1
ð10:30Þ

Similarly for i = 2 Eq. (10.29) with the help of Eq. (10.30) allows expressing /2

solely in term of /3 as

i ¼ 2) a2/2 ¼ �b2/3 � c2/1 þ d2) /2 ¼ �
a1b2

a1a2 � c2b1
/3 þ

d2a1 � c2d1

a1a2 � c2b1

ð10:31Þ

The same can be repeated for /3 through /N suggesting that in general /i can be

expressed as function of /iþ1 according to

/i ¼ Pi/iþ1 þ Qi i ¼ 1; 2; 3; . . .;N ð10:32Þ

Equation (10.32) for i − 1 when combined with Eq. (10.29) results in

1i = 2 3 4 N 2 N 1 N

Fig. 10.1 One dimensional grid arrangement

316 10 Solving the System of Algebraic Equations

/i�1 ¼ Pi�1/i þ Qi�1

ai/i þ bi/iþ1 þ ci/i�1 ¼ di

�

) /i ¼ �
bi

ai þ ciPi�1
/iþ1 þ

di � ciQi�1

ai þ ciPi�1
ð10:33Þ

Comparing Eq. (10.32) with Eq. (10.33) the following recurrence relations for Pi

and Qi are found:

Pi ¼ �
bi

ai þ ciPi�1
Qi ¼

di � ciQi�1

ai þ ciPi�1
i ¼ 1; 2; . . .;N ð10:34Þ

For i = 1 the values for P1 and Q1 are computed from Eq. (10.30) as

P1 ¼ �
b1

a1
Q1 ¼

d1

a1
ð10:35Þ

For i = N, since bN = 0 the following is deduced:

bN ¼ 0) PN ¼ 0) /N ¼ QN ð10:36Þ

The TDMA solution algorithm can be summarized as follows:

1. Compute the values for and using Eq. (10.35)

2. For use forward recursion to compute the values of

and from Eq. (10.34)

3. Set as given by Eq. (10.36)

4. For use backward recursion to compute the values

of from Eq. (10.32)

P
1

Q
1

i = 2,3,..., N Pi

Qi

N = QN

i = N 1, N 2,...3,2,1

i

10.2.14 PentaDiagonal Matrix Algorithm (PDMA)

The PentaDiagonal Matrix Algorithm (PDMA) [7–10], solves the system of algebraic

equations with a pentadiagonal coefficient matrix arising from discretization schemes

that relate the value of /i at grid point i to the values at its two upstream (i − 1 and

i − 2) and two downstream (i + 1 and i + 2) neighboring node values. For the notation

illustrated schematically in Fig. 10.1, the general algebraic equation is written as

ai/i þ bi/iþ2 þ ci/iþ1 þ di/i�1 þ ei/i�2 ¼ fi i ¼ 1; 2; 3; . . .;N ð10:37Þ

Subject to

d1 ¼ e1 ¼ e2 ¼ 0

bN�1 ¼ bN ¼ cN ¼ 0
ð10:38Þ

10.2 Direct or Gauss Elimination Method 317

For i = 1, Eq. (10.37) gives

/1 ¼ �
b1

a1
/3 �

c1

a1
/2 þ

f1

a1
ð10:39Þ

while for i = 2 the value of /2 is found to be

/2 ¼ �
a1b2

a1a2 � d2c1
/4 �

a1c2 � b1d2

a1a2 � d2c1
/3 þ

a1f2 � d2f1

a1a2 � d2c1
ð10:40Þ

The process can be continued for other values of i and in general /i can be

expressed as

/i ¼ Pi/iþ2 þ Qi/iþ1 þ Ri i ¼ 1; 2; 3; . . .;N ð10:41Þ

Computing /i�1 and /i�2 using Eq. (10.41) and substituting their values in

Eq. (10.37), an equation for /i is derived as

/i ¼ �
bi

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1
/iþ2

�
ci þ di þ eiQi�2ð ÞPi�1

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1
/iþ1

þ
fi � eiRi�2 � di þ eiQi�2ð ÞRi�1

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

ð10:42Þ

Comparing Eqs. (10.41) and (10.42) Pi, Qi, and Ri are found as

Pi ¼ �
bi

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

Qi ¼ �
ci þ di þ eiQi�2ð ÞPi�1

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

Ri ¼
fi � eiRi�2 � di þ eiQi�2ð ÞRi�1

ai þ eiPi�2 þ di þ eiQi�2ð ÞQi�1

ð10:43Þ

with their values for i = 1 and 2 given by

P1 ¼ �
b1

a1
Q1 ¼ �

c1

a1
R1 ¼

f1

a1

P2 ¼ �
b2

a2 þ d2Q1

Q2 ¼ �
c2 þ d2P1

a2 þ d2Q1

R2 ¼
f2 � d2R1

a2 þ d2Q1

ð10:44Þ

Since bN�1 ¼ bN ¼ cN ¼ 0 then PN�1 ¼ PN ¼ QN ¼ 0. Thus, the equations for

/N�1 and /N are found from

318 10 Solving the System of Algebraic Equations

/N ¼ RN

/N�1 ¼ QN�1/N þ RN�1

ð10:45Þ

The PDMA solution algorithm can be summarized as follows:

1. Compute the values for , , , , , and using Eq.

(10.44).

2. For use forward recursion to compute the values of ,

, and from Eq. (10.43).

3. Compute and from Eq. (10.45).

4. For use backward recursion to compute the values of

 from Eq. (10.41).

P
1

Q
1

R
1

P
2

Q
2

R
2

i = 3,4,..., N Pi

Qi Ri

N N 1

i = N 2,...3,2,1

i

10.3 Iterative Methods

Direct methods are generally not appropriate for solving large systems of equations

particularly when the coefficient matrix is sparse, i.e., when most of the matrix

elements are zero. This is more so when the linearized system of equations is

nonlinear with solution dependent coefficients, or when dealing with time depen-

dent problems. This is exactly the type of equations encountered when solving fluid

flow problems.

In contrast, iterative methods are more appealing for these problems since the

solution of the linearized system becomes part of the iterative solution process. Add

to that the low computer storage and low computational cost requirements of this

approach relative to the direct method.

There are many families of iterative methods and for a thorough review of this

approach the reader is directed to dedicated books on the topic [11–14]. In this

chapter a brief examination of basic iterative methods is provided along with an

appraisal of multigrid algorithms that are generally used to address their deficiency.

The Gauss elimination and LU decomposition direct methods were introduced for

the sole purpose of clarifying some fundamental numerical processes needed for

understanding iterative methods.

To unify the presentation of these methods, the coefficient matrix will be written

in the following form:

A ¼ Dþ Lþ U ð10:46Þ

where D, L, and U refers to a diagonal, strictly lower, and strictly upper matrix,

respectively.

Iterative methods for solving a linear system of the type A/ ¼ b, compute a

series of solutions / nð Þ that, if certain conditions are satisfied, converge to the exact

solution /. Thus, for the solution, a starting point is chosen (i.e., / 0ð Þ is selected as

10.2 Direct or Gauss Elimination Method 319

the initial condition or initial guess) and an iterative procedure that computes / nð Þ

from the previously computed / n�1ð Þ
field is developed.

A “fixed-point” iteration can always be associated to the above system by

decomposing matrix A as

A ¼M� N ð10:47Þ

Using this decomposition, Eq. (10.1) is rewritten as

M� Nð Þ/ ¼ b ð10:48Þ

Applying a fixed point iteration solution procedure, Eq. (10.48) becomes

M/ nð Þ ¼ N/ n�1ð Þ þ b ð10:49Þ

which can be rewritten in the following form:

/ nð Þ ¼ B/ n�1ð Þ þ Cb n ¼ 1; 2; . . . ð10:50Þ

where B ¼ M�1N and C ¼M�1. Different choices of these matrices define dif-

ferent iterative methods.

Before embarking on the description of the various iterative methods, a minimal

set of characteristics that an iterative method should possess to guarantee conver-

gence is first presented.

A. The iterative equation can be written at convergence as

/ ¼ B/þ Cb ð10:51Þ

which, after rearranging, becomes

C�1 I� Bð Þ/ ¼ b ð10:52Þ

Comparing Eq. (10.52) with Eq. (10.1), the coefficient matrix is obtained as

A ¼ C�1 I� Bð Þ ð10:53Þ

or, alternatively, as

Bþ CA ¼ I ð10:54Þ

This relation between the various matrices ensures that once the exact solution is

reached all consecutive iterations will not modify it.

B. Starting from some guess / 0ð Þ 6¼ /, the method should guarantee that / nð Þ will

converge to / as n increases. Since / nð Þ can be expressed in terms of / 0ð Þ as

320 10 Solving the System of Algebraic Equations

/ nð Þ ¼ Bn/ 0ð Þ þ
Xn�1

i¼0

BiCb ð10:55Þ

then, for the above to be true, B should satisfy

lim
n!1

Bn ¼ lim
n!1

B � B � B � � � � B
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

n times

¼ 0 ð10:56Þ

Equation (10.56) implies that the spectral radius of B should be less than 1, i.e.,

q Bð Þ\1 ð10:57Þ

This condition guaranties that the iterative method is self corrective, i.e., it is

robust to any error adversely inserted into the solution vector /.

More insight into the above condition can be obtained by defining the error e(n)

in the solution as the difference between the exact value and the value at any

iteration (n), then

e nð Þ ¼ / nð Þ � / and e n�1ð Þ ¼ / n�1ð Þ � / ð10:58Þ

Subtracting Eq. (10.51) from Eq. (10.50) and using the definitions in

Eq. (10.58), a relation between the error at iteration n and n − 1 is obtained as

e nð Þ ¼ Be n�1ð Þ ð10:59Þ

Thus, for the method to converge, the following should be satisfied:

lim
n!1

e nð Þ ¼ 0 ð10:60Þ

To translate Eq. (10.60) into something meaningful, the eigenvectors of B are

assumed to be complete and to form a full set, meaning that they form a basis for

RN. This being the case then e can be expressed as a linear combination of the

N eigenvectors v of B. That is

e ¼
XN

i¼1

aivi ð10:61Þ

with each of the eigenvectors satisfying

Bvi ¼ kivi ð10:62Þ

where ki is the eigenvalue corresponding to the eigenvector vi. Starting with the

first iteration, Eq. (10.59) gives

10.3 Iterative Methods 321

e 1ð Þ ¼ Be 0ð Þ ¼ B
XN

i¼1

aivi ¼
XN

i¼1

ai Bvið Þ ¼
XN

i¼1

aikivi ð10:63Þ

For the second iteration, the error is obtained as

e 2ð Þ ¼ Be 1ð Þ ¼ B
XN

i¼1

aikivi ¼
XN

i¼1

aiki Bvið Þ ¼
XN

i¼1

aik
2
i vi ð10:64Þ

This procedure can be continued and it is easily shown by induction that

e nð Þ ¼
XN

i¼1

aik
n
i vi ð10:65Þ

Therefore for the iterative procedure to converge as n approaches infinity, all

eigenvalues should be less than 1. If any of them is greater than 1 then the error

will tend to infinity. This explains the importance of the spectral radius ρ of the

matrix B defined as

q Bð Þ ¼ max
N

i¼1
kið Þ ð10:66Þ

that was mentioned above. The convergence of iterative methods is accelerated

by reducing the spectral radius of the iterative matrix. This is at the heart of

iterative techniques.

C. Some type of a stopping criterion is needed with iterative methods. Many used

criteria are based on a variation of the norm of the residual error defined as

r nð Þ ¼ A/ nð Þ � b ð10:67Þ

One criterion is to find the maximum residual in the domain and to require its

value to become less than some threshold ε to declare a solution converged, i.e.,

Max
N

i¼1

�
�
�
�
bi �

XN

j¼1

aij/
nð Þ
j

�
�
�
�
�
� e ð10:68Þ

or that the root mean square residual be smaller than ε, i.e.,

PN
i¼1 bi �

PN
j¼1 aij/

nð Þ
j

� �2

N
� e ð10:69Þ

Another possible criterion is for the maximum normalized difference between

two consecutive iterations to drop below e. This condition can be written as

322 10 Solving the System of Algebraic Equations

Max
N

i¼1

/
nð Þ
i � /

n�1ð Þ
i

/
nð Þ
i

�
�
�
�
�

�
�
�
�
�
� 100� e ð10:70Þ

10.3.1 Jacobi Method

Perhaps the simplest of the iterative methods for solving a linear system of equa-

tions is the Jacobi method, which is graphically presented in Fig. 10.2.

Considering the system of equations described by Eq. (10.1), if the diagonal

elements are nonzero, then the first equation can be used to solve for /1, the second

equation to solve for /2, and so on. The solution process starts by assigning

guessed values to the unknown vector /. These guessed values are used to calculate

new estimates starting with /1, then /2, and computations proceed until a new

estimate for /N is computed. This represents one iteration. Results obtained are

treated as a new guess for the next iteration and the solution process is repeated.

Iterations continue until the changes in the predictions between two consecutive

iterations drop below a vanishing value or until a preset convergence criterion is

satisfied. Once this happens the final solution is reached. In this method, given some

current estimate / n�1ð Þ, an update is obtained using the following relation:

/
nð Þ
j ¼

1

aii
bi �

XN

j¼1
j6¼i

aij/
n�1ð Þ
j

0

B
B
B
B
@

1

C
C
C
C
A

i ¼ 1; 2; 3; . . .;N ð10:71Þ

-φ n() = φ (n−1)

Fig. 10.2 A graphical representation of the Jacobi method

10.3 Iterative Methods 323

Equation (10.71) indicates that values obtained during an iteration are not used in

the subsequent calculations during the same iteration but rather retained for the next

iteration. Using matrices, the expanded form of Eq. (10.71) is given by

a11 0 . . . 0 0

0 a22 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 . . . 0 aN�1;N�1 0

0 0 . . . 0 aNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

/1

/2

.

.

.

/N�1

/N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

þ

0 a12 . . . a1N�1 a1N

a21 0 . . . a2N�1 a2N

.

.

.
.
.
.

. . .
.
.
.

.

.

.

aN�1;1 aN�1;2 . . . 0 aN�1;N

aN1 aN2 aN3 . . . 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

/1

/2

.

.

.

/N�1

/N

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

¼

b1

b2

.

.

.

.

.

.

bN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð10:72Þ

Solving for / nð Þ, Eq. (10.72) yields

/
nð Þ
1

/
nð Þ
2

.

.

.

/
nð Þ
N�1

/
nð Þ
N

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

¼

a11 0 . . . 0 0

0 a22 . . . 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.

0 . . . 0 aN�1;N�1 0

0 0 . . . 0 aNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�1

b1

b2

.

.

.

.

.

.

bN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

�

0 a12 . . . a1N�1 a1N

a21 0 . . . a2N�1 a2N

.

.

.
.
.
.

. . .
.
.
.

.

.

.

aN�1;1 aN�1;2 . . . 0 aN�1;N

aN1 aN2 aN3 . . . 0

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

/
n�1ð Þ
1

/
n�1ð Þ
2

.

.

.

/
n�1ð Þ
N�1

/
n�1ð Þ
N

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ð10:73Þ

Using Eqs. (10.46) and (10.73) can be more concisely written as

/ nð Þ ¼ �D�1 Lþ Uð Þ/ n�1ð Þ þ D�1b ð10:74Þ

The Jacobi method converges as long as q �D�1 Lþ Uð Þ
	

\1. This condition is

satisfied for a large class of matrices including diagonally dominant ones where

their coefficients satisfy

324 10 Solving the System of Algebraic Equations

XN

j¼1

j6¼i

aij
�
�
�
�� aiij j i ¼ 1; 2; 3; . . .;N ð10:75Þ

10.3.2 Gauss-Seidel Method

A more popular take on the Jacobi is the Gauss-Seidel method, which has better

convergence characteristics. It is somewhat less expensive memory-wise since it

does not require storing the new estimates in a separate array. Rather, it uses the

latest available estimate of / in its calculations. The iterative formula in the Gauss

Seidel method, schematically displayed in Fig. 10.3, is given as

/
nð Þ
i ¼

1

aii
bi �

Xi�1

j¼1

aij/
nð Þ
j �

XN

j¼iþ1

aij/
n�1ð Þ
j

 !

i ¼ 1; 2; 3; . . .;N ð10:76Þ

In matrix form Eq. (10.76) is written as

/ nð Þ ¼ � Dþ Lð Þ�1U/ n�1ð Þ þ Dþ Lð Þ�1b ð10:77Þ

In effect the Gauss-Seidel method uses the most recent values in its iteration,

specifically all /
nð Þ
j values for j < i since by the time /i is to be calculated, the

values of /1;/2;/3; . . .;/i�1 at the current iteration are already calculated. This

approach also saves memory since the newer value is always overwriting the

previous one. The Gauss-Seidel iterations converge as long as

q � Dþ Lð Þ�1U
� �

\1 ð10:78Þ

Although in some cases the Jacobi method converges faster, Gauss-Seidel is the

preferred method.

-=φ n() φ (n−1)

Fig. 10.3 A graphical representation of the Gauss-Seidel method

10.3 Iterative Methods 325

Example 2

Apply 5 iterations of the Gauss-Seidel and Jacobi methods to the system of

equations in Example 1 and compute the errors at each iteration using the

exact solution.

/ ¼
435

299

408

299

382

299
�

19

299

� �

:

As an initial guess start with the field /� ¼ 0 0 0 0½ �

Solution

Denoting with a superscript ð�Þ values from the previous iteration, the

equations to be solved in the Jacobi method are as follows:

/1 ¼
1

3
/�2 þ 3
	

/2 ¼
1

6
2/�1 þ /�3 þ 4
	

/3 ¼
1

6
2/�2 þ /�4 þ 5
	

/4 ¼
1

7
2/�3 � 3
	

with the error given as e ¼ /exact � /computed

�
�

�
�. The solution for the first

iteration is obtained as

/1 ¼
1

3
0þ 3ð Þ ¼ 1) e1 ¼ 1:4548� 1j j ¼ 0:4548

/2 ¼
1

6
0þ 0þ 4ð Þ ¼ 0:6667) e2 ¼ 1:3645� 0:6667j j ¼ 0:6978

/3 ¼
1

6
0þ 0þ 5ð Þ ¼ 0:8333) e3 ¼ 1:2776� 0:8333j j ¼ 0:4443

/4 ¼
1

7
0� 3ð Þ ¼ �0:4286) e4 ¼ �0:06354þ 0:4286j j ¼ 0:3650

Computations proceed in the same manner with solution obtained treated as

the new guess. The results for the first five iterations are given in Table 10.1.

Table 10.1 Summary of results obtained using the Jacobi iterative method

Iter # /1 e1 /2 e2 /3 e3 /4 e4

0 0 1.4548 0 1.3645 0 1.2776 0 0.06354

1 1 0.4548 0.6667 0.6978 0.8333 0.4443 −0.4286 0.3650

2 1.2222 0.2326 1.1389 0.2257 0.9841 0.2935 −0.1905 0.1269

3 1.3796 7.52E−02 1.2381 0.1265 1.1812 9.64E−02 −0.1474 8.38E−02

4 1.4127 4.22E−02 1.3234 4.11E−02 1.2215 5.61E−02 −9.11E−02 2.75E−02

5 1.4411 1.37E−02 1.3411 2.34E−02 1.2593 1.83E−02 −7.96E−02 1.6E−02

326 10 Solving the System of Algebraic Equations

Denoting with a superscript ð�Þ values from the previous iteration, the

equations to be solved in the Gauss-Seidel method are as follows:

/1 ¼
1

3
/�2 þ 3
	

/2 ¼
1

6
2/1 þ /�3 þ 4
	

/3 ¼
1

6
2/2 þ /�4 þ 5
	

/4 ¼
1

7
2/3 � 3ð Þ

with the error given as e ¼ /exact � /computed

�
�

�
�. The solution for the first

iteration is obtained as

/1 ¼
1

3
0þ 3ð Þ ¼ 1) e1 ¼ 1:4548� 1j j ¼ 0:4548

/2 ¼
1

6
2 � 1þ 0þ 4ð Þ ¼ 1) e2 ¼ 1:3645� 1j j ¼ 0:3645

/3 ¼
1

6
2 � 1þ 0þ 5ð Þ ¼ 1:1667) e3 ¼ 1:2776� 1:1667j j ¼ 0:1109

/4 ¼
1

7
2 � 1:1667� 3ð Þ ¼ �0:09523) e4 ¼ �0:06354þ 0:09523j j ¼ 0:03169

Computations proceed in the same manner with solution obtained treated as

the new guess. The results for the first five iterations are given in Table 10.2.

10.3.3 Preconditioning and Iterative Methods

The rate of convergence of iterative methods depends on the spectral properties of

the iteration matrix B, which is contingent on the matrix of coefficients. Based on

that an iterative method looks for a transformation of the system of equations into

Table 10.2 Summary of results obtained using the Gauss-Siedel iterative method

Iter # /1 e1 /2 e2 /3 e3 /4 e4

0 0 1.4548 0 1.3645 0 1.2776 0 0.06354

1 1 0.4548 1 0.3645 1.1667 0.1109 −0.09523 0.03169

2 1.3333 0.1215 1.3056 5.90E−02 1.2526 2.49E−02 −7.07E−02 7.13E−03

3 1.4352 1.97E−02 1.3538 1.07E−02 1.2728 4.76E−03 −6.49E−02 1.36E−03

4 1.4513 3.57E−03 1.3626 1.98E−03 1.2767 8.88E−04 −6.38E−02 2.54E−04

5 1.4542 6.61E−04 1.3642 3.68E−04 1.2774 1.65E−04 −6.36E−02 4.72E−05

10.3 Iterative Methods 327

an equivalent one that has the same solution, but of better spectral properties. Under

these conditions the eigenvalues of the equivalent system are more clustered

allowing the iterative solution to be obtained faster than with the original system.

A preconditioner is defined as a matrix that effects such a transformation.

A preconditioning matrix P is defined such that the system

P�1A/ ¼ P�1b ð10:79Þ

has the same solution as the original system A/ ¼ b, but the spectral properties of

its coefficient matrix P�1A are more conducive. In defining the preconditioner P,

the difficulty is to find a matrix that approximates A�1 and is easy to invert (i.e., to

find P�1) at a reasonable cost.

Writing again Eq. (10.47), but now with P replacing M (i.e., M = P and

A = P − N) the associated fixed point iteration system is given by

/ nð Þ ¼ B/ n�1ð Þ þ Cb

¼ P�1N/ n�1ð Þ þ P�1b

¼ P�1 P� Að Þ/ n�1ð Þ þ P�1b

¼ I� P�1A
	

/ n�1ð Þ þ P�1b

ð10:80Þ

which in residual form can be written as

/ nð Þ ¼ I� P�1A
	

/ n�1ð Þ þ P�1b

¼ / n�1ð Þ þ P�1 b� A/ n�1ð Þ
� �

¼ / n�1ð Þ þ P�1r n�1ð Þ

ð10:81Þ

From both equations it is now clear that the iterative procedure is just a fixed-point

iteration on a preconditioned system associated with the decomposition

A = P − N where the spectral properties are now

q I� P�1A
	

\1 ð10:82Þ

By comparison, the preconditioning matrix for the Jacobi Jð Þ and Gauss-Seidel

GSð Þ methods are simply

PJ ¼ D

PGS ¼ Dþ L
ð10:83Þ

where D and L are respectively the diagonal and lower triangular part of matrix A.

Thus, preconditioning is a manipulation of the original system to improve its

spectral properties with the preconditioning matrix P used in the associated iterative

procedure. As will be described in the following sections, it is possible to develop

328 10 Solving the System of Algebraic Equations

more advanced preconditioning matrices in which the coefficients are defined in a

more complex way.

10.3.4 Matrix Decomposition Techniques

The low rate of convergence of the Gauss-Seidel and Jacobi methods was the prime

motivator for the development of faster iterative techniques. One approach to

accelerate the convergence rate of solvers and to develop iterative methods is

through the use of more advanced preconditioners. A simple, yet efficient, approach

for that purpose is to perform an incomplete factorization of the original matrix of

coefficients A. The stress on incomplete is essential since a complete factorization

of A into a lower L and an upper triangular matrix U is tantamount to a direct

solution and is very expensive in term of memory requirements (fill in and loss of

sparsity) and computational cost.

10.3.5 Incomplete LU (ILU) Decomposition

As can be seen in Example 1, the L and U matrices result in non-zero elements at

locations that were 0 in the original matrix A (this is known as fill-in). So if an

incomplete LU (ILU) factorization of A is performed such that the resulting lower

L and upper U matrices have the same nonzero structure as the lower and upper

parts of A, then

A ¼ LUþ R ð10:84Þ

where R is the residual of the factorization procedure. The matrices L and U being

sparse (same structure as A) are easier to deal with then if they were obtained from

a complete factorization. However, their product being an approximation to A,

necessitates the use of an iterative solution procedure to solve the system of

equations. The first step in the solution process is to rewrite Eq. (10.1) as

A/ ¼ b) 0 ¼ b� A/) A� Rð Þ/ ¼ A� Rð Þ/þ b� A/ð Þ ð10:85Þ

Denoting values obtained from the previous iteration with a superscript n� 1ð Þ,
and values obtained at the current iteration with superscript nð Þ, the iterative process
is obtained by rewriting Eq. (10.85) in the following form:

A� Rð Þ/ nð Þ ¼ A� Rð Þ/ n�1ð Þ þ b� A/ n�1ð Þ
� �

ð10:86Þ

10.3 Iterative Methods 329

Therefore values of / nð Þ at the current iteration can be obtained from knowledge of

/ n�1ð Þ values obtained at the previous iteration. Equation (10.86) is usually solved

in residual form whereby the solution / nð Þ at iteration nð Þ is expressed in terms of

the solution / n�1ð Þ at iteration n� 1ð Þ plus a correction /0 nð Þ, i.e.,

/ nð Þ ¼ / n�1ð Þ þ /0 nð Þ ð10:87Þ

Thus Eq. (10.86) becomes

A� Rð Þ/0
nð Þ

¼ b� A/ n�1ð Þ
� �

ð10:88Þ

Once /0 nð Þ is found, Eq. (10.87) is used to update ϕ at every iteration.

The ILU factorization can be performed using Gaussian elimination while

dropping some non diagonal elements at preset locations. The locations where

elements are to be dropped give rise to different ILU approximations.

10.3.6 Incomplete LU Factorization with no Fill-in ILU(0)

Many variants of the ILU factorization technique exist and the simplest is the one

denoted by ILU(0) [15–17]. In ILU(0) the pattern of zero elements in the combined

L and U matrices is taken to be precisely the pattern of zero elements in the original

matrix A. Using Gaussian elimination, computations are performed as in the case of

a full LU factorization, but any new nonzero element (‘ij and uij) arising in the

process is dropped if it appears at a location where a zero element exists in the

original matrix A. Hence, the combined L and U matrices have together the same

number of non zeros as the original matrix A. With this approach, the fill-in

problem that usually arises when factorizing sparse matrices (i.e., the creation of

nonzero elements at locations where the original matrix has zeros) is eliminated. In

the process however, the accuracy is reduced thereby increasing the number of

required iterations for convergence to be reached. To remedy this shortcoming,

more accurate ILU factorization methods, which are often more efficient and more

reliable, have been developed. These methods, differing by the level of fill-in

allowed, are denoted by ILU(p) where p represents the order of fill-ins. The higher

the level of fill-ins, the more expensive the ILU decomposition step becomes.

Moreover, when used within a multigrid approach (to be explained in a later

section), the ILU(0) method is more than adequate as a smoother. For this reason

higher level methods are not presented and for more information interested readers

are referred, among others, to the book by Saad [12].

An ILU(0) factorization algorithm which assumes L to be a unit lower triangular

matrix and for which the same matrix A is used to store the elements of the unit

lower and upper triangular matrices L and U is as given next.

330 10 Solving the System of Algebraic Equations

10.3.7 ILU(0) Factorization Algorithm

For k = 1 to N 1

{
For i = k +1 to N and if aik 0 Do :

{

aik =
aik

akk

values()

{
For j = k +1 to N and if aij 0 Do :

aij = aij aik *akj u values()
}

}
}

It should be mentioned that the ILU decomposition of symmetric positive def-

inite matrices is denoted by Incomplete Cholesky decomposition. In this case the

factorization is made just of the lower (or upper) triangular part and the approxi-

mation to the original matrix is written as

LL
T
� A ð10:89Þ

where �L is the factorized sparse lower triangular matrix (approximation of L), with

the preconditioning matrix P given by

P ¼ LL
T
� A ð10:90Þ

10.3.8 ILU Factorization Preconditioners

A very popular class of preconditioners is based on incomplete factorizations. In the

discussions of direct methods it was shown that decomposing a sparse matrix A into

the product of a lower and an upper triangular matrices may lead to substantial fill-in.

Because a preconditioner is only required to be an approximation to A�1, it is

sufficient to look for an approximate decomposition of A such that A � LU.

Choosing P ¼ LU leads also to an efficient evaluation of the inverse of the pre-

conditioned matrix P�1 since the inversion can easily be performed by the forward

10.3 Iterative Methods 331

and backward substitution, as described above, in which the exact L and U are now

replaced by the approximations L and U, respectively.

For the ILU(0) method, the incomplete factorization mimics the nonzero ele-

ments sparsity of the original matrix such that the pre-conditioner has exactly the

size of the original matrix. In order to reduce the storage needed, Pommerell

introduced a simplified version of the ILU called diagonal ILU (DILU) [18]. In the

DILU the fill-in of the off-diagonal elements is eliminated (i.e., the upper and lower

parts of the matrix are kept unchanged) and only the diagonal elements are

modified.

In this case it is possible to write the preconditioner in the form

P ¼ D� þ Lð ÞD��1 D� þ Uð Þ ð10:91Þ

where L and U are the lower and upper triangular decomposition of A, and D� is

now a proper diagonal matrix, different from the diagonal of A. The D� matrix is

thus defined, as shown below, in a way that the diagonal of the product of the

matrices in Eq. (10.91) equals the diagonal of A.

10.3.9 Algorithm for the Calculation of D� in the DILU

Method

For i = 1 to N Do :

{
dii = aii

}
For i = 1 to N Do :

{
For j = i +1 to N and if aij 0,a ji 0 Do :

{

d jj = d jj

a ji

dii

*aij

}
}

332 10 Solving the System of Algebraic Equations

In this case the inverse of the preconditioner, which is defined as

P ¼ D� þ Lð ÞD��1 D� þ Uð Þ ¼ LU; L ¼ D� þ Lð ÞD��1; U ¼ D� þ Uð Þ

or

P ¼ D� þ Lð Þ Iþ D��1U
	

¼ LU; L ¼ D� þ Lð Þ; U ¼ Iþ D��1U
	

ð10:92Þ

needed in the solution of P/0 nþ1ð Þ ¼ r nð Þ to find the correction field

/0 nþ1ð Þ ¼ P�1r nð Þ, can easily be calculated using the following forward and back-

ward substitution algorithm.

10.3.10 Forward and Backward Solution Algorithm

with the DILU Method

For i = 1 to N Do :

{
For j = 1 to i 1 Do :

{
ti = dii

1
(ri ij * t j)

}
}
For i = N to 1 Do :

{
For j = i +1 to N Do :

{
'

i = ti dii

1
(uij * t j)

}
}

The clear advantage of the DILU, apart from its recursive formulation, is that it

requires only one extra diagonal of storage.

10.3.11 Gradient Methods for Solving Algebraic Systems

Another group of iterative procedures for solving linear algebraic systems of

equations is the Gradient Methods, which include the Steepest Descent and the

Conjugate Gradient methods. They were initially developed for cases where the

10.3 Iterative Methods 333

coefficient matrix A is symmetric positive definite (SPD) to reformulate the prob-

lem as a minimization problem for the quadratic vector function Q /ð Þ given by

Q /ð Þ ¼
1

2
/TA/� bT/þ c ð10:93Þ

where c is a vector of scalars, and other variables are as defined in Eq. (10.1). The

minimum of Q /ð Þ is obtained when its gradient with respect to / is zero. The

gradient Q0 /ð Þ of a vector field Q /ð Þ, at a given /, points in the direction of

greatest increase of Q /ð Þ. Through mathematical manipulations the gradient is

found as

Q0 /ð Þ ¼
1

2
AT/þ

1

2
A/� b ð10:94Þ

If A is symmetric A ¼ AT
	

, then Eq. (10.94) implies

Q0 /ð Þ ¼ A/� b ð10:95Þ

The minimum is obtained when Q0 /ð Þ ¼ 0, leading to

Q0 /ð Þ ¼ 0) A/ ¼ b ð10:96Þ

Therefore minimizing Q /ð Þ is equivalent to solving Eq. (10.1) and the solution of

the minimization problem yields the solution of the system of linear equations.

Now for the function Q /ð Þ to have a global minimum it is necessary for the

coefficient matrix A to be positive definite, i.e., it should satisfy the inequality

/TA/[0 for all / 6¼ 0. This requirement can be established by considering the

relationship between the exact solution / and its current estimate / nð Þ. If e ¼ / nð Þ �
/ denotes the difference between the exact solution and the current estimate, then

Eq. (10.93) gives

Q /þ eð Þ ¼
1

2
/þ eð ÞTA /þ eð Þ � bT /þ eð Þ þ c

¼
1

2
/TA/þ

1

2
eTA/þ

1

2
/TAeþ

1

2
eTAe� bT/� bTeþ c

¼
1

2
/TA/� bT/þ c
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Q /ð Þ

þ
1

2
eTA/
|fflffl{zfflffl}

eTb¼bTe

þ/TAe
|fflffl{zfflffl}

bTe

0

B
@

1

C
A� bTeþ

1

2
eTAe

¼ Q /ð Þ þ
1

2
eTAe

ð10:97Þ

334 10 Solving the System of Algebraic Equations

indicating that if A is positive definite, the second term will be always positive

except when e = 0, in which case the required solution would have been obtained.

Moreover, when A is positive definite, all its eigenvalues are positive and the

function Q /ð Þ has a unique minimum.

Thus with a symmetric and positive definite matrix a converging series of / nð Þ

can be derived such that

/ nþ1ð Þ ¼ / nð Þ þ a nð Þ d/ nð Þ
� �

ð10:98Þ

where a nð Þ is some relaxation factor, and d/ nð Þ is related to the correction needed to

minimize the said function at each iteration. This can be accomplished in a variety

of ways leading to different methods.

10.3.12 The Method of Steepest Descent

The method of steepest descent for solving linear systems of equations of the form

given by Eq. (10.1) is based on minimizing the quadratic form given by Eq. (10.93).

If / is a one dimensional vector with its components given by the scalar /, then

Q /ð Þ will represent a parabola. Finding the minimum of a parabolic function

iteratively starting at some point /0, involves moving down along the parabola until

hitting the minimum.

The same idea is used in N dimensions. In this case Q /ð Þ may be depicted as a

paraboloid and the solution is iteratively found starting from an initial position / 0ð Þ

and moving down the paraboloid until the minimum is reached. For quick con-

vergence the sequence of steps / 0ð Þ;/ 1ð Þ;/ 2ð Þ; . . . should be selected such that the

fastest rate of descent occurs, i.e., in the direction of �Q0 /ð Þ. According to

Eq. (10.95) this direction is also given by

�Q0 /ð Þ ¼ b� A/ ð10:99Þ

The exact solution being /, the error and residual at any step n, denoted respec-

tively by e nð Þ and r nð Þ, are computed as

e nð Þ ¼ / nð Þ � /

r nð Þ ¼ b� A/ nð Þ ¼ �Q0 / nð Þ
� �

)

) r nð Þ ¼ �Ae nð Þ ð10:100Þ

Moving linearly in the direction of the steepest descent, the value of / at step n + 1

can be expressed in terms of the value of / at step n according to

10.3 Iterative Methods 335

/ nþ1ð Þ ¼ / nð Þ þ a nð Þr nð Þ ð10:101Þ

The value of a nð Þ that minimizes Q /ð Þ should satisfy

d

da nð Þ
Q /ðnþ1Þ
� �

¼ 0 ð10:102Þ

This can be expanded into

d

da nð Þ
Q / nþ1ð Þ
� �

¼ 0)
d

d/ nþ1ð Þ
Q / nþ1ð Þ
� �

" #T
d/ nþ1ð Þ

da nð Þ
¼ 0) r nþ1ð Þ

� �T

r nð Þ ¼ 0

ð10:103Þ

indicating that the new step should be in a direction normal to the old step. The

value of a nð Þ is calculated by using Eq. (10.103) as follows:

r nþ1ð Þ
� �T

r nð Þ ¼ 0) b� A/ nþ1ð Þ
� �T

r nð Þ ¼ 0

) b� A / nð Þ þ a nð Þr nð Þ
� �h iT

r nð Þ ¼ 0

) b� A/ nð Þ
� �T

r nð Þ ¼ a nð Þ Ar nð Þ
� �T

r nð Þ

) r nð Þ
� �T

r nð Þ ¼ a nð Þ r nð Þ
� �T

Ar nð Þ

) a nð Þ ¼
r nð Þ
	
T

r nð Þ

r nð Þð Þ
T
Ar nð Þ

ð10:104Þ

The steepest descent algorithm can be summarized as follows:

 (choose residual as starting direction)

iterate starting at until convergence

 (Compute the residual vector)

(Compute the factor in the orthogonal direction)

r
0() = b A

0()

n()
r

n() = b A
n()

(n) =
r

n()()
T

r
n()

r
n()()

T

Ar
n()

 (Obtain new)
n+1() = n() + n()

r
n()

As presented above, the algorithm necessitates performing two matrix-vector

multiplications per iteration. One of them can be eliminated by multiplying both

sides of Eq. (10.101) by −A and adding b to obtain

336 10 Solving the System of Algebraic Equations

/ nþ1ð Þ ¼ / nð Þ þ a nð Þr nð Þ) b� A/ nþ1ð Þ

¼ b� A / nð Þ þ a nð Þr nð Þ
� �

) r nþ1ð Þ ¼ r nð Þ � a nð ÞAr nð Þ
ð10:105Þ

The equation for r nð Þ in step 1 is needed only to calculate r 0ð Þ, while Eq. (10.105)

can be used afterwards. With this formulation there will be no need to compute

A/ nð Þ, as it was replaced by Ar nð Þ. However a shortcoming of this approach, is the

lack of feedback from the value of / nð Þ into the residual, which may cause the

solution to converge to a value different from the exact one due to accumulation of

roundoff errors. This deficiency can be resolved by periodically computing the

residual using the original equation.

10.3.13 The Conjugate Gradient Method

While the steepest descent method guarantees convergence, its rate of convergence

is low. This slow convergence is caused by oscillations around local minima

forcing the method to search in the same direction repeatedly. To avoid this

undesirable behavior every new search should be in a direction different from the

directions of previous searches [19]. This can be accomplished by selecting a set of

search directions d 0ð Þ; d 1ð Þ; d 2ð Þ; . . .; d N�1ð Þ that are A-orthogonal. Two vectors d nð Þ

and d mð Þ are said to be A-orthogonal if they satisfy the following condition:

d nð Þ
� �T

Ad mð Þ ¼ 0 ð10:106Þ

If in each search direction the right step size is taken, the solution will be found

after N steps. Step n + 1 is chosen such that

/ nþ1ð Þ ¼ / nð Þ þ a nð Þd nð Þ ð10:107Þ

Subtracting ϕ from both sides of the above equation, an equation for the error is

obtained as

e nþ1ð Þ ¼ e nð Þ þ a nð Þd nð Þ ð10:108Þ

Combining Eq. (10.100) with Eq. (10.108), an equation for the residual is found as

r nþ1ð Þ ¼ �Ae nþ1ð Þ

¼ �A e nð Þ þ a nð Þd nð Þ
� �

¼ r nð Þ � a nð ÞAd nð Þ

ð10:109Þ

10.3 Iterative Methods 337

Equation (10.109) shows that each new residual r nþ1ð Þ is just a linear combination

of the previous residual and Ad nð Þ.

It is further required that e nþ1ð Þ be A-orthogonal to d nð Þ. This new condition is

equivalent to finding the minimum point along the search direction d nð Þ. Using this

A-orthogonality condition between e nþ1ð Þ and d nð Þ along with Eq. (10.108) an

expression for a nð Þ can be derived as

d nð Þ
� �T

Ae nþ1ð Þ ¼ 0) d nð Þ
� �T

A e nð Þ þ a nð Þd nð Þ
� �

¼ 0) a nð Þ ¼
d nð Þ
	
T

r nð Þ

d nð Þ
	
T

Ad nð Þ

ð10:110Þ

The above requirement also implies that

d nð Þ
� �T

Ae nþ1ð Þ ¼ 0) d nð Þ
� �T

r nþ1ð Þ ¼ 0 ð10:111Þ

If the search directions are known then a nð Þ can be calculated.

To derive the search direction, it is assumed to be governed by an equation of the

form

d nþ1ð Þ ¼ r nþ1ð Þ þ b nð Þd nð Þ ð10:112Þ

The A-orthogonality requirement of the d vectors implies that

d nþ1ð Þ
� �T

Ad nð Þ ¼ 0 ð10:113Þ

Substituting the value of d nþ1ð Þ from Eq. (10.112) in Eq. (10.113) yields

b nð Þ ¼ �
r nþ1ð Þ
	
T

Ad nð Þ

d nð Þ
	
T

Ad nð Þ
ð10:114Þ

From Eq. (10.109) an expression for Ad nð Þ is obtained as

Ad nð Þ ¼ �
1

a nð Þ
r nþ1ð Þ � r nð Þ
� �

ð10:115Þ

338 10 Solving the System of Algebraic Equations

Combining Eqs. (10.110), (10.114), and (10.115) leads to

b nð Þ ¼
r nþ1ð Þ
	
T

r nþ1ð Þ � r nð Þ
	

d nð Þ
	
T

r nð Þ

¼

r nþ1ð Þ
	
T

r nþ1ð Þ � r nþ1ð Þ
� �T

r nð Þ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

d nð Þ
	
T

r nð Þ

¼
r nþ1ð Þ
	
T

r nþ1ð Þ

d nð Þ
	
T

r nð Þ

ð10:116Þ

The denominator of the above equation can be further expressed as

d nð Þ
� �T

r nð Þ ¼ r nð Þ þ b n�1ð Þd n�1ð Þ
� �T

r nð Þ

¼ r nð Þ
� �T

r nð Þ þ b n�1ð Þ d n�1ð Þ
� �T

r nð Þ

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

¼0

¼ r nð Þ
� �T

r nð Þ

ð10:117Þ

Using Eqs. (10.116) and (10.117), the final expression for b nð Þ is obtained as

b nð Þ ¼
r nþ1ð Þ
	
T

r nþ1ð Þ

r nð Þð Þ
T
r nð Þ

ð10:118Þ

The Conjugate Gradient algorithm becomes

 (choose residual as starting direction)

iterate starting at until convergence

(Choose factor in direction)

(Obtain new)

(calculate new residual)

 (Calculate coefficient to conjugate residual)

 (obtain new conjugated search direction)

d
0() = r

0() = b A
0()

n()

n() =
d

n()T
r

n()

d
n()T

Ad
n() d

n+1() = n() + n()
d

n()

r
n+1() = r

n() n()
Ad

n()

n() =
r

n+1()T
r

n+1()

r
n()T

r
n()

d
n+1() = r

n+1() + n()
d

n()

The convergence rate of the CG method may be increased by preconditioning.

This can be done by multiplying the original system of equations by the inverse of

10.3 Iterative Methods 339

the preconditioned matrix P�1, where P is a symmetric positive-definite matrix, to

yield Eq. (10.79). The problem is that P�1A is not necessarily symmetric even if P

and A are symmetric. To circumvent this problem the Cholesky decomposition is

used to write P in the form

P ¼ LLT ð10:119Þ

To guarantee symmetry, the system of equations is written as

L�1AL�TLT/ ¼ L�1b ð10:120Þ

where L�1AL�T is symmetric and positive-definite. The CG method can be used to

solve for LT/, from which ϕ is found. However, by variable substitutions, L can be

eliminated from the equations without disturbing symmetry or affecting the validity

of the method. Performing this step and adopting the terminology used with the CG

method, the various steps in the preconditioned CG method are obtained.

The preconditioned CG method can be summarized as follows:

 and (choose starting direction)

iterate starting at until convergence

(Choose factor in direction)

(Obtain new)

(calculate new residual)

(Calculate coefficient to conjugate residual)

 (obtain new conjugated search direction)

r
0() = b A

0()
d

0() = P
1
r

0()

n()

n() =
r

n()()
T

P
1
r

n()

d
n()()

T

Ad
n()

d

n+1() = n() + n()
d

n()

r
n+1() = r

n() n()
Ad

n()

n+1() =
r

n+1()()
T

P
1
r

n+1()

r
n()()

T

P
1
r

n()

d
n+1() = P

1
r

n+1() + n+1()
d

n()

Many pre-conditioners have been developed with a wide spectrum of sophisti-

cation varying from a simple diagonal matrix whose elements are the diagonal

elements of the original matrix A (Jacobi pre-conditioner) to more involved ones

using incomplete Cholesky factorization. Nonetheless, the CG method should

always be used with a pre-conditioner when solving large systems of equations.

10.3.14 The Bi-conjugate Gradient Method (BiCG)

and Preconditioned BICG

The matrix of coefficients resulting from the discretization of the diffusion equation

presented in Chap. 8 and some other equations like the incompressible pressure or

340 10 Solving the System of Algebraic Equations

pressure correction equation that will be presented in Chap. 15 are symmetrical

leading to symmetrical systems that can be solved using the CG method discussed

above. However, the matrix A obtained from the discretization of the general

conservation equation arising in CFD applications is unsymmetrical yielding an

unsymmetrical system of equations. To be able to solve this system using the CG

method, it should be transformed into a symmetrical one [20]. One way to do that is

to rewrite Eq. (10.1) as

0 A

AT 0

� �

/
_

/

" #

¼
b

0

� �

ð10:121Þ

where /
_

is a dummy variable added in order to convert the original unsymmetrical

system into a symmetrical one amenable to a solution by the CG method. When

applied to this system, the CG method results in two sequences of CG-like vectors,

the ordinary sequence based on the original system with the coefficient matrix A,
from which ϕ is calculated, and the shadow sequence for the unneeded system with

the coefficient matrix AT, from which /
_

can be calculated if desired. Because of the

two series of vectors the name bi-conjugate gradient (BiCG) is coined to the

method. The same terminology used with the CG method is used here. The series of

ordinary vectors for the residuals and search directions are denoted by r and d,

respectively, and their shadow equivalent forms by r
_
and d

_

. The bi-orthogonality of

the residuals is guaranteed by forming them such that

r
_ mð Þ
� �T

r nð Þ ¼ r
_ nð Þ
� �T

r mð Þ ¼ 0 m\n ð10:122Þ

and the bi-conjugacy of the search directions is fulfilled by requiring that

d
_ nð Þ
� �T

Ad mð Þ ¼ d nð Þ
� �T

ATd
_ mð Þ

¼ 0 m\n ð10:123Þ

Moreover, the sequences of residuals and search directions are constructed such that

the ordinary form of one is orthogonal to the shadow form of the other.

Mathematically this is written as

r
_ nð Þ
� �T

d mð Þ ¼ r nð Þ
� �T

d
_ mð Þ

m\n ð10:124Þ

Several variants of the method, which has irregular convergence with the possibility

of breaking down, have been developed and the algorithm described next is due to

Lanczos [21, 22].

10.3 Iterative Methods 341

The BiCG algorithm of Lanczos can be summarized as follows:

The BiCG method necessitates a multiplication with the coefficient matrix and

with its transpose at each iteration resulting in almost double the computational

effort required by the CG method per iteration.

Preconditioning may also be used with the BiCG method. For the same termi-

nology as for the preconditioned CG method, a robust variant of the method

developed by Fletcher [23] is summarized next.

The preconditioned algorithm for the BiCG of Fletcher is as follows

(P representing the preconditioning matrix):

(choose starting directions)

iterate starting at until convergence

 (Choose factor in direction)

 (Obtain new)

 (calculate new residual)

 (calculate new residual)

 (Calculate coefficient to conjugate residual)

 (obtain new search direction)

 (obtain new search direction)

d
0() = r

0() = d
0() = r

0() = b A
0()

n()

n() =
r

n()()
T

r
n()

d
n()()

T

Ad
n()

d

n+1() = n() + n()
d

n()

r
n+1() = r

n() n()
Ad

n()
r

r
n+1() = r

n() n()
A

T
d

n()
r

n+1() =
r

n+1()()
T

r
n+1()

r
n()()

T

r
n()

d
n+1() = r

n+1() + n+1()
d

n()
d

d
n+1() = r

n+1() + n+1()
d

n()
d

, , (choose starting directions)

iterate starting at until convergence

 (Choose factor in direction)

 (Obtain new)

 (calculate new residual)

 (calculate new residual)

 (Calculate coefficient to conjugate residual)

 (obtain new search direction)

 (obtain new search direction)

r
0() = r

0() = b A
0()

d
0() = P

1
r

0()
d

0() = P
T
r

0()

n()

n() =
r

n()()
T

P
1
r

n()

d
n()()

T

Ad
n()

d

n+1() = n() + n()
d

n()

r
n+1() = r

n() n()
Ad

n()
r

r
n+1() = r

n() n()
A

T
d

n()
r

n+1() =
r

n+1()()
T

P
1
r

n+1()

r
n()()

T

P
1
r

n()

d
n+1() = P

1
r

n+1() + n+1()
d

n()
d

d
n+1() = P

T
r

n+1() + n+1()
d

n()
d

342 10 Solving the System of Algebraic Equations

Other variants of the BiCG method that are more stable and robust have been

reported such as the conjugate gradient squared (CGS) method of Sonneveld [24], the

bi-conjugate gradient stabilized (Bi-CGSTAB)method of Van Der Vorst [25] and the

generalized minimal residual method GMRES [13, 26–29]. These methods are useful

for solving large systems of equations arising in CFD applications as they are

applicable to non-symmetrical matrices and to both structured and unstructured grids.

10.4 The Multigrid Approach

The rate of convergence of iterative methods drastically deteriorates as the size of

the algebraic system increases, with the drop in convergence rate even observed in

medium to large systems after the initial errors have been eliminated. This has

constituted a severe limitation for iterative solvers. Luckily it was very quickly

found that the combination of multigrid and iterative methods can practically

remedy this weakness.

Developments in multigrid methods started with the work of Fedorenko [30]

(Geometric Multigrid), Poussin [31] (Algebraic Multigrid), and Settari and Azziz

[32], and gained more interest with the theoretical work of Brandt [33]. While

high-frequency or oscillatory errors are easily eliminated with standard iterative

solvers (Jacobi, Gauss-Seidel, ILU), these solution techniques cannot easily remove

the smooth or low frequency error components [34]. Because of that these solution

1

5

4

3

2

λ

λ

λ

λ

λ

Fig. 10.4 Schematic of different error modes in a one dimensional grid

10.3 Iterative Methods 343

methods are denoted by smoothers in the context of multigrid methods. An illus-

tration of error frequency is shown in Fig. 10.4 where the variations of error

frequency modes for a one dimensional problem are plotted.

The error modes shown in Fig. 10.4 vary from high frequency of short wave-

length k1 to low frequency of long wavelength k5 and are plotted collectively on the

top of the figure. The one dimensional domain is discretized using the one

dimensional grid shown and the various modes are separately plotted over the same

grid. As can be seen, the high frequency error appears oscillatory over an element

and is easily sensed by the iterative method. As the frequency of the error decreases

or as the wavelength ðkÞ increases, the error becomes increasingly smoother over

the grid as only a small portion of the wavelength lies within any cell. This gets

worse as the grid is further refined, leading to a higher number of equations and

explaining the degradation in the rate of convergence as the size of the system

increases.

Multigrid methods improve the efficiency of iterative solvers by ensuring that the

resulting low frequency errors that arise from the application of a smoother at any

one grid level are transformed into higher frequency errors at a coarser grid level.

By using a hierarchy of coarse grids (Fig. 10.5), multigrid methods are able to

overcome the convergence degradation.

Generally the coarse mesh can be formed using either the topology and geometry

of the finer mesh, this is akin to generating a new mesh for each coarse level on top

of the finer level mesh or by direct agglomeration of the finer mesh elements

[35–40]; this approach is also known as the Algebraic MultiGrid Method (AMG).

In the AMG no geometric information is directly needed or used, and the

agglomeration process is purely algebraic, with the equations at each coarse level

reconstructed from those of the finer level, again through the agglomeration pro-

cess. This approach can be used to build highly efficient and robust linear solvers

Fig. 10.5 A schematic of the
hierarchy of grid systems used
with the multi grid approach

344 10 Solving the System of Algebraic Equations

for both highly anisotropic grids and/or problems with large changes in the

coefficients of their equations.

In either approach, a multigrid cycling procedure is used to guide the traversal of

the various grid hierarchies. Each traversal from a fine grid to a coarse one involves:

(i) a restriction procedure, (ii) the setup or update of the system of equations for the

coarse grid level, and (iii) the application of a number of smoother iterations.

A traversal from a coarse grid to a finer one requires: (i) a prolongation procedure,

(ii) the correction of the field values at the finer level, and (iii) the application of a

number of smoother iterations on the equations constructed during restriction. The

various steps needed are detailed next.

10.4.1 Element Agglomeration/Coarsening

The first step in the solution process is to generate the coarse/fine grid levels by an

agglomeration/coarsening algorithm. Three different approaches can be adopted for

that purpose. In the first approach, the coarse mesh is initially generated and the fine

levels are obtained by refinement [41, 42]. This facilitates the definitions of the

coarse-fine grid relations and is attractive in an adaptive grid setup [41–43].

A major drawback however, is the dependence of the fine grid distribution on the

coarse grid. In the second method, non-nested grids are used [44] rendering the

transfer of information between grid levels very expensive. In addition, both

approaches do not allow good resolution of complex domains. In the third

approach, recommended here, the process starts with the generation of the finest

mesh that will be used in solving the problem. Then coarse grid levels are devel-

oped through agglomeration of the fine-grid elements [45, 46], as shown in

Fig. 10.6, with the agglomeration process based either on the elements geometry or

on a criterion to be satisfied by the coefficients of neighboring elements. The

discussions to follow are pertinent to the third approach.

Coarse grid levels are generated by fusing fine grid elements through an

agglomeration algorithm. For each coarse grid level, the algorithm is repeatedly

applied until all grid cells of the finer level become associated with coarse grid cells.

I

i1
i2

i3

i4
i5

i6

Agglomeration

Fig. 10.6 Agglomeration of a fine grid level to form a coarse grid level

10.4 The Multigrid Approach 345

During this heuristic agglomeration process, fine grid points are individually vis-

ited. A cell is selected as the seed element into which a certain number of neigh-

boring elements satisfying the set criteria are fused to form a coarse element. The

maximum number of fine elements to be fused into a coarse element is decided a

priori. If the chosen seed element fails to form a coarse element, it is added to the

least populated coarse element among its neighbors.

An efficient agglomeration algorithm is the directional agglomeration (DA)

algorithm developed by Mavriplis [47]. In the DA, agglomeration is performed by

starting with a seed element and merging with it the neighboring fine grid elements

based on the strength of their geometric connectivity. The procedure needs to be

performed only once at the start of the solution.

10.4.2 The Restriction Step and Coarse Level Coefficients

The solution starts at the fine grid level. After performing few iterations, the error is

transferred or restricted to a coarser grid level and the solution is found at that level.

Then after performing few iterations at that level the error is restricted again to a

higher level and the sequence of events repeated until the highest or coarsest grid

level is reached. Let kð Þ denotes some level at which the solution has been found by

solving the following system of equations in correction form:

A kð Þe kð Þ ¼ r kð Þ ð10:125Þ

The next coarser level is k þ 1ð Þ to which the error will be restricted. Let GI

represents the set of cells i on the fine grid level kð Þ that are agglomerated to form

cell I of the coarse grid level k þ 1ð Þ. Then, the system to be solved on the coarse

grid at level k þ 1ð Þ is

A kþ1ð Þe kþ1ð Þ ¼ r kþ1ð Þ ð10:126Þ

with the residuals on the RHS of Eq. (10.126) computed as

r kþ1ð Þ ¼ Ikþ1k r kð Þ ð10:127Þ

where Ikþ1k is the restriction operator (i.e., the interpolation matrix) from the fine

grid to the coarse grid as defined by the agglomeration process. In AMG the

restriction operator is defined in a linear manner to yield a summation of the fine

grid residuals as

r
kþ1ð Þ
I ¼

X

i2GI

r
kð Þ
i ð10:128Þ

346 10 Solving the System of Algebraic Equations

Moreover, the coefficients of the coarse element are constructed by adding the

appropriate coefficients of the constituting fine elements. Recalling that a linear

equation after discretization has the form

aC/C þ
X

F¼NB Cð Þ

aF/F ¼ bC ð10:129Þ

which, for the current purpose, is written for the fine grid level in a more suitable

form as

a
kð Þ
i /

kð Þ
i þ

X

j¼NB ið Þ

a
kð Þ
ij /

kð Þ
j ¼ b

kð Þ
i ð10:130Þ

where NB ið Þ refers to the neighbors of element i. Initially Eq. (10.130) is not

satisfied resulting in the following residual:

r
kð Þ
i ¼ b

kð Þ
i � a

kð Þ
i /

kð Þ
i þ

X

j¼NB ið Þ

a
kð Þ
ij /

kð Þ
j

0

@

1

A ð10:131Þ

Denoting by /
kþ1ð Þ
I the solution on the coarse mesh element I that is parent to the

fine mesh element i, the correction on the fine mesh from the coarse mesh can be

written as

/
0 kð Þ
i ¼ /

kþ1ð Þ
I � /

kð Þ
i ð10:132Þ

It is desired for the correction to result in zero residuals over the coarse mesh

element I. These new residuals denoted by ~r
kð Þ
i are calculated as

~r
kð Þ
i ¼ b

kð Þ
i � a

kð Þ
i /

kð Þ
i þ /

0 kð Þ
i

� �

þ
X

j¼NB ið Þ

a
kð Þ
ij /

kð Þ
j þ /

0 kð Þ
j

� �

0

@

1

A ð10:133Þ

or equivalently as

~r
kð Þ
i ¼ b

kð Þ
i � a

kð Þ
i /

kð Þ
i þ

X

j¼NB ið Þ

a
kð Þ
ij /

kð Þ
j

0

@

1

A

|ffl{zffl}

r
kð Þ
i

� a
kð Þ
i /

0 kð Þ
i þ

X

j¼NB ið Þ

a
kð Þ
ij /

0 kð Þ
j

0

@

1

A

¼ r
kð Þ
i � a

kð Þ
i /

0 kð Þ
i þ

X

j¼NB ið Þ

a
kð Þ
ij /

0 kð Þ
j

0

@

1

A ð10:134Þ

10.4 The Multigrid Approach 347

Enforcing the residual sum in I to zero, i.e.,

X

i2GI

~r
kð Þ
i ¼ 0 ð10:135Þ

and substituting Eq. (10.134) in Eq. (10.135) yields

0 ¼
X

i2GI

r
kð Þ
i �

X

i2GI

a
kð Þ
i /

0 kð Þ
i þ

X

i2GI

X

j¼NB ið Þ

a
kð Þ
ij /

0 kð Þ
j

0

@

1

A ð10:136Þ

Rewriting Eq. (10.136) using coarse mesh numbering, the coarse mesh correction

equation becomes

a
kþ1ð Þ
I /

0 kþ1ð Þ
I þ

X

J¼NB Ið Þ

a
kþ1ð Þ
IJ /

0 kþ1ð Þ
J ¼ r

kþ1ð Þ
I ð10:137Þ

where a
kþ1ð Þ
I ; a

kþ1ð Þ
IJ ; and r

kþ1ð Þ
I are derived directly from fine grid coefficients as

a
kþ1ð Þ
I ¼

X

i2GI

a
kð Þ
i þ

X

i2GI

X

j2GI

a
kð Þ
ij

a
kþ1ð Þ
IJ ¼

X

i2GI

X

j62GI

j2NB Ið Þ

a
kð Þ
ij

r
kþ1ð Þ
I ¼

X

i2GI

r
kð Þ
i

ð10:138Þ

This is illustrated in Fig. 10.7.

Restriction

smooth

smooth

A
k+1()

e
k+1() = r

k+1()

A
k()

e
k() = r

k()

aI

k+1() = ai

k()

i GI

+ aij

k()

j GIi GI

aIJ

k+1() = aij

k()

j GI

j NB I()
i GI

rI

k+1() = ri

k()

i GI

Fig. 10.7 The restriction step and assembly of coarse grid level coefficients

348 10 Solving the System of Algebraic Equations

10.4.3 The Prolongation Step and Fine Grid Level

Corrections

The prolongation operator is used to transfer the correction from a coarse to a fine

grid level. Many options may be used. One possibility, depicted in Fig. 10.8, is a

zero order prolongation operator that yields the same value of the error on the fine

grid, i.e., the error at a coarse grid cell will be inherited by all the children of this

cell on the fine grid level.

The correction is basically obtained from the solution of the system of equations

at the coarse grid. The interpolation or prolongation to the fine grid level is

denote as

e kð Þ ¼ Ikkþ1e
kþ1ð Þ ð10:139Þ

where Ikkþ1 is an interpolation matrix from the coarse grid to the fine grid. Finally,

the fine grid solution is corrected as

/ kð Þ / kð Þ þ e kð Þ ð10:140Þ

The number of grid levels used depends on the size of the grid. For a larger number

of grid levels, the procedure is the same as sketched in Fig. 10.8.

10.4.4 Traversal Strategies and Algebraic Multigrid Cycles

Traversal strategies refer to the way by which coarse grids are visited during the

solution process, which are also known as multigrid cycles [48]. The usual cycles

used in the AMGmethod are the V cycle, theW cycle, and the F cycle [35, 36, 49, 50]

displayed in Fig. 10.9.

Prolongation

e
(k) = Ik+1

k
e

(k+1)

correct

k() k() + e
k()

Fig. 10.8 The prolongation
step and fine grid level
corrections

10.4 The Multigrid Approach 349

The simplest AMG cycle, illustrated in Fig. 10.9a, is the V cycle [49, 50] and

consists of visiting each of the grid levels only once. The usual practice is to

perform few iterative sweeps in the restriction phase and then to inject the residual

to a coarser grid until reaching the coarsest level. For very stiff systems, the V cycle

may not be sufficient for accelerating the solution and therefore, more iterations on

the coarse level are required. The W cycle is based on applying smaller V cycles on

each visited coarse grid level. In this manner, the W cycle (Fig. 10.9b) consists of

nested coarse and fine grid level sweeps with the complexity increasing as the

number of AMG levels increases. The F cycle is a variant of the W cycle and can be

thought of as splitting the W cycle in half as shown in Fig. 10.9c. The F cycle

requires less coarse level sweeps than the W cycle but more sweeps than the V

cycle. Therefore, it lies in between the V and W cycling strategies.

10.5 Computational Pointers

10.5.1 uFVM

In uFVM, two linear algebraic solvers are implemented. The successive over-

relaxation method (SOR) and the ILU(0) method. The implementation of these

ProlongationRestriction

L=0

L=1

L=2

L=3

L=4

L=0

L=1

L=2

L=3

L=4

L=0

L=1

L=2

L=3

L=4

(a)

(c)

(b)

Fig. 10.9 a V, b W, and c F multigrid cycles

350 10 Solving the System of Algebraic Equations

methods follows the procedures described earlier. The SOR is located in the file

“cfdSORSolver.m” while the ILU(0) implementation can be found in

“cfdILUSolver.m”.

10.5.2 OpenFOAM®

The organizational structure of iterative linear algebraic solvers in OpenFOAM®

[51] follows the usual approach. It starts by defining the base classes from which

each type of algebraic matrix solvers is established. These algebraic solvers are

grouped under three main categories denoted by solvers, preconditioners, and

smoothers. Smoothers and preconditioners are differentiated by relating to smoo-

thers the fixed point relation and embedding them within the preconditioners

framework. Recalling Eq. (10.81), the preconditioners classes implement the

product P�1r while the smoothers classes advance the solution. Moreover, the

solvers category collects the necessary information related to the implementation of

the conjugate gradient and multigrid algorithms.

The source codes of the linear algebraic solvers reside within the lduMatrix

folder located at “…/src/OpenFOAM/matrices/lduMatrix/” in the following three

subfolders:

• solvers

• preconditioners

• smoothers

The name of each subfolder reflects its functionality. The folder solvers contains

the main codes of the iterative solvers implemented in OpenFOAM®, which are

• diagonalSolver: a diagonal solver for both symmetric and asymmetric problems.

• GAMG: a geometric agglomerated algebraic multigrid solver (also named

Generalized geometric- algebraic multi-grid in the manual).

• ICC: an incomplete Cholesky preconditioned conjugate gradient solver.

• PBiCG: a preconditioned bi-conjugate gradient solver for asymmetric matrices.

• PCG: a preconditioned conjugate gradient solver for symmetric matrices.

• smoothSolver: an iterative solver using smoother for symmetric and asym-

metric matrices based on preconditioners.

The folder preconditioners contains various implementations of the diagonal

ILU denoted by

• diagonalPreconditioner: a diagonal preconditioner.

• DICPreconditioner, DILUPreconditioner: a diagonal Incomplete Cholesky

preconditioner for symmetric and asymmetric matrices respectively.

• FDICPreconditioner: a faster version of the DICPreconditioners diagonal-

based incomplete Cholesky preconditioner for symmetric matrices in which the

reciprocal of the preconditioned diagonal and the upper coefficients divided by

the diagonal are calculated and stored.

10.5 Computational Pointers 351

• GAMGPreconditioner: a geometric agglomerated algebraic multigrid precon-

ditioner. It uses a mutigrid cycle as preconditioner to execute the second part of

Eq. (10.81).

• noPreconditioner: a null preconditioner for both symmetric and asymmetric

matrices.

Finally the smoothers folder contains the following:

• DIC, DILU: a diagonal-based incomplete Cholesky smoother for symmetric

and asymmetric matrices.

• DICGaussSeidel, DILUGaussSeidel: a combined DIC, DILU/Gauss-Seidel

smoother for symmetric and asymmetric matrices in which DIC, DILU

smoothing is followed by Gauss-Seidel to ensure that any “spikes” created by

the DIC, DILU sweeps are smoothed out.

• DILU: a diagonal-based incomplete LU smoother for asymmetric matrices.

• GaussSeidel: The Gauss-Seidel method for both symmetric and asymmetric

matrices.

Furthermore OpenFOAM® defines inside the lduMatrix class three additional

base classes that wrap the three corresponding categories. Thus the lduMatrix.H file

reads (Listing 10.1)

class lduMatrix

{

 // private data

 //- LDU mesh reference

 const lduMesh& lduMesh_;

 //- Coefficients (not including interfaces)

 scalarField *lowerPtr_, *diagPtr_, *upperPtr_;

public:

 //- Abstract base-class for lduMatrix solvers

 class solver

 {

 protected:

 class smoother

 {

 protected:

 class preconditioner

 {

 protected:

Listing 10.1 The three base classes (solver, smoother, and preconditioner) defined with the
lduMatrix class

352 10 Solving the System of Algebraic Equations

So each smoother, solver, and preconditioner has to be derived from these three

base classes. For example, the DILU preconditioner is declared as shown in Listing

10.2,

while the Conjugate Gradient solver is declared as shown in Listing 10.3.

In either case the preconditioner or the solver is evidently derived from the base

class defined under the lduMatrix class.

Having clarified the basic concepts and organizational structure of algebraic

solvers in OpenFOAM®, an example investigating the details of implementing the

preconditioned CG method is now provided. The files are located in the directory

“$FOAM_SRC/OpenFOAM/matrices/lduMatrix/solvers/PCG”.

The class derived from the lduMatrix::solver class, as shown in Listing 10.3,

defines the main member function “solve” using the script in Listing 10.4.

class DILUPreconditioner

:

 public lduMatrix::preconditioner

{

Listing 10.2 Syntax used to declare the DILU preconditioner

class PCG

:

 public lduMatrix::solver

Listing 10.3 Syntax used to declare the PCG solver

 // Member Functions

 //- Solve the matrix with this solver

 virtual solverPerformance solve

 (

 scalarField& psi,

 const scalarField& source,

 const direction cmpt=0

) const;

Listing 10.4 Script used to define the member function “solve”

10.5 Computational Pointers 353

The function “solve” implements the solution algorithm of the chosen linear

algebraic solver in file “PCG.C”. Recalling the preconditioned conjugate gradient

algorithm, its sequence of events are given by

1. Calculate r 0ð Þ ¼ b� A/ 0ð Þ

2. Calculate d 0ð Þ ¼ P�1r 0ð Þ

3. Calculate a nð Þ ¼
r nð Þ
	
T

P�1r nð Þ

d nð Þ
	
T

Ad nð Þ

4. Calculate / nþ1ð Þ ¼ / nð Þ þ a nð Þd nð Þ

5. Calculate r nþ1ð Þ ¼ r nð Þ � a nð ÞAd nð Þ

6. If solution has converged stop

7. Calculate b nþ1ð Þ ¼
r nþ1ð Þ
	
T

P�1r nþ1ð Þ

r nð Þð Þ
T
P�1r nð Þ

8. Calculate d nþ1ð Þ ¼ P�1r nþ1ð Þ þ b nþ1ð Þd nð Þ

9. Go to step 3

The algorithm is directly implemented in “PCG.C” following the same proce-

dure as described next.

In step 1, depicted in Listing 10.5, the residual is evaluated and stored in the rA

variable while the wA variable stores the matrix-solution product A/ 0ð Þ.

Step 2 involves preconditioning. Thus, first the type of preconditioner used is

defined with the object preconPtr as (Listing 10.6).

The constructor used is a generic one based on the base class and the “New”

constructor. The preconditioner type is chosen from the dictionary at run time. Then

the preconditioning operation, P�1r nð Þ, is applied to the residual rA (according to

the equation in step 2 of the algorithm). The result is stored in the same variable wA

 // --- Calculate A.psi

 matrix_.Amul(wA, psi, interfaceBouCoeffs_, interfaces_, cmpt);

 // --- Calculate initial residual field

 scalarField rA(source - wA);

Listing 10.5 Script used to calculate the residuals

 // --- Select and construct the preconditioner

 autoPtr<lduMatrix::preconditioner> preconPtr =

 lduMatrix::preconditioner::New

 (

 *this,

 controlDict_

);

Listing 10.6 Defining the type of preconditioner used

354 10 Solving the System of Algebraic Equations

to reduce memory usage and then used in the evaluation of r nð Þ
	
T

P�1r nð Þ by

simply performing the scalar product of the two vectors wA and rA using the

gSumProd function, as shown in Listing 10.7. Moreover the old value of wArA

from the previous iteration n� 1ð Þ is stored in the variable wArAold.

Following the preconditioned conjugate gradient algorithm, steps 3, 4, and 5 are

performed as displayed in Listing 10.8.

Now the variable wA stores the product Ad nð Þ while pA represents the d nð Þ

vector. Again the product d nð Þ
	
T

Ad nð Þ is performed with the gSumProd function

and stored in the wApA variable. Once alpha is evaluated, the update of residuals

and solution of steps 4 and 5 is performed in the for loop with the variables psiPtr

and rAPtr shown in Listing 10.8 representing / and r, respectively.

 wArAold = wArA;

// --- Precondition residual

 preconPtr->precondition(wA, rA, cmpt);

// --- Update search directions:

 wArA = gSumProd(wA, rA, matrix().mesh().comm());

Listing 10.7 Syntax used to calculate r nð Þ
	
T

P�1r nð Þ and to store its old value

 // --- Update preconditioned residual

 matrix_.Amul(wA, pA, interfaceBouCoeffs_, interfaces_,

cmpt);

 // --- Update solution and residual:

 scalar alpha = wArA/wApA;

 for (register label cell=0; cell<nCells; cell++)

 {

 psiPtr[cell] += alpha*pAPtr[cell];

 rAPtr[cell] -= alpha*wAPtr[cell];

 }

 scalar wApA = gSumProd(wA, pA, matrix().mesh().comm());

Listing 10.8 Script used to calculate a and to update the values of the dependent variable and the
residuals

10.5 Computational Pointers 355

The iteration in the algorithm is completed by executing steps 7 and 8 using the

script in Listing 10.9.

For practical use in test cases, the definitions of the linear solver are made inside

the system directory in the fvSolution under the syntax solvers {} as shown in

Listing 10.10.

The meaning of the various entries in Listing 10.10 are

• solver: defines the type of solver (in this case PCG is the preconditioned con-

jugate gradient for symmetric matrices), with the various options being as

follows:

– “PCG”: preconditioned conjugate gradient (for symmetric matrices only).

– “PBiCG”: preconditioned biconjugate gradient (for asymmetric matrices

only).

– “smoothSolver”: solver used only as a smoother to reduce residuals.

– “GAMG”: generalised geometric algebraic multigrid. It should be used for

the pressure equation on large grids.

scalar beta = wArA/wArAold;

for (register label cell=0; cell<nCells; cell++)

{

 pAPtr[cell] = wAPtr[cell] + beta*pAPtr[cell];

}

Listing 10.9 Script used for calculating new values for b and d to be used in the next iteration

solvers

{

 T

 {

 solver PCG;

 preconditioner DIC;

 tolerance 1e-06;

 relTol 0;

 }

}

Listing 10.10 Definition of the linear solver

356 10 Solving the System of Algebraic Equations

• preconditioner: defines the type of the preconditioner to be used. The two

available options are

– “DIC”: diagonal incomplete-cholesky preconditioner for symmetric

matrices.

– “DILU”: diagonal incomplete-lower-upper preconditioner for asymmetric

matrices.

• tolerance: the maximum allowable value of the absolute residual for the linear

solver to stop iterating.

• relTol: the ratio between the initial residual and the actual residual for the linear

solver to stop iterating.

Other examples are shown in Listing 10.11.

solvers

{

 T

 {

 solver PBiCG;

 preconditioner DILU;

 tolerance 1e-06;

 relTol 0;

 }

}

solvers

{

 T

 {

 solver smoothSolver;

 smoother GaussSeidel;

 tolerance 1e-8;

 relTol 0.1;

 nSweeps 1;

 }

 T

 {

 solver GAMG;

 tolerance 1e-7;

 relTol 0.01;

 smoother GaussSeidel;

 nPreSweeps 0;

 nPostSweeps 2;

 cacheAgglomeration on;

 agglomerator faceAreaPair;

 nCellsInCoarsestLevel 10;

 mergeLevels 1;

 }

}

Listing 10.11 Examples of defining the linear solver

10.5 Computational Pointers 357

10.6 Closure

The chapter introduced the direct and iterative approaches for solving algebraic

systems of equations. In each category a number of methods were described. The

algebraic multigrid technique was also discussed. The next chapter will proceed

with the discretization of the conservation equation and will detail the discretization

of the convection term.

10.7 Exercises

Exercise 1

In each of the following cases obtain the LU factorization of matrix A and use it to

solve the system of equation Ax = b by performing the backward and forward

substitution, i.e., Ly = b, Ux = y:

ðaÞ A ¼

13:0 5:0 6:0 7:0 5:0
2:0 12:0 6:0 3:0 4:0
4:0 2:0 15:0 4:0 5:0
3:0 3:0 5:0 9:0 5:0
4:0 6:0 0 5:0 13:0

0

B
B
B
B
@

1

C
C
C
C
A

b ¼

3:0
12:0
13:0
21:0
13:0

0

B
B
B
B
@

1

C
C
C
C
A

ðbÞ A ¼

14:0 1:0 6:0 7:0 3:0
7:0 10:0 1:0 1:0 1:0
2:0 1:0 10:0 7:0 6:0
4:0 7:0 6:0 11:0 1:0
3:0 3:0 3:0 3:0 14:0

0

B
B
B
B
@

1

C
C
C
C
A

b ¼

13:0
13:0
16:0
13:0
1:0

0

B
B
B
B
@

1

C
C
C
C
A

ðcÞ A ¼

12:0 6:0 1:0 5:0 4:0
4:0 11:0 1:0 0 0

3:0 6:0 14:0 1:0 6:0
6:0 2:0 7:0 10:0 7:0
4:0 1:0 1:0 6:0 12:0

0

B
B
B
B
@

1

C
C
C
C
A

b ¼

13:0
19:0
7:0
22:0
30:0

0

B
B
B
B
@

1

C
C
C
C
A

Exercise 2
Using the Gauss-Seidel and Jacobi methods and starting with a zero initial guess

solve the following systems of equations while adopting as a stopping criteria

max Ax� bk kð Þ\0:1:

358 10 Solving the System of Algebraic Equations

ðaÞ A ¼

6 1 0 3 3

0 6 0 4 3

0 5 6 1 0

5 5 0 6 0

2 0 2 4 10

0

B
B
B
B
@

1

C
C
C
C
A

b ¼

22

21

20

10

22

0

B
B
B
B
@

1

C
C
C
C
A

ðbÞ A ¼

36 4 5 4 0 2

0 40 4 0 0 3

0 0 37 0 2 4

3 2 0 36 1 5

3 3 1 0 36 0

5 0 2 0 2 40

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

b ¼

24

14

19

29

20

8

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ðcÞ A ¼

27 0 0 1

0 27 1 0

0 0 26 1

1 2 5 26

0

B
B
@

1

C
C
A

b ¼

21

3

10

29

0

B
B
@

1

C
C
A

Exercise 3

For the systems of equations in Exercise 2 find the preconditioned matrix P for both

the Gauss-Seidel and Jacobi methods. Use Eq. (10.81) with a zero initial guess to

resolve the systems of equations subject to the same stopping criteria. Compare

solutions with those obtained in Exercise 2.

Exercise 4

Perform the ILU(0) factorization of the following M matrices:

ðaÞ M ¼

6 0 0 1 0 0 0

0 6 0 0 3 1 3

0 0 6 0 2 1 0

0 0 0 6 0 0 0

3 0 0 0 8 0 0

0 0 3 1 1 6 0

0 0 5 0 3 0 6

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ðbÞ M ¼

6 0 0 0 0 3 4 0

3 7 0 0 0 5 0 0

0 0 6 0 5 0 0 0

0 0 0 6 0 0 0 0

0 0 3 0 6 0 0 0

0 0 0 0 0 9 0 0

4 1 0 0 1 0 6 0

0 0 0 0 0 3 0 6

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

10.7 Exercises 359

ðcÞ M ¼

6 0 0 2 0

0 10 0 1 4

0 1 6 0 4

3 0 5 6 5

0 4 0 5 10

0

B
B
B
B
@

1

C
C
C
C
A

Exercise 5
Based on the factorizations in Exercise 4 and knowing that the lower and upper

parts of the factorization correspond to L and U, respectively, find for each of the

cases the error matrix defined as R = M − P.

Exercise 6
Perform the DILU factorization of the following M matrices:

ðaÞ M ¼

9 4 0 0 2 5 0

3 7 0 0 1 2 1

0 5 10 0 5 5 4

0 1 1 6 3 0 0

4 0 0 1 6 1 1

0 5 2 0 0 6 3

4 0 0 0 0 2 8

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

ðbÞ M ¼

6 2 2 3 4 3 4 0

1 6 0 0 1 4 3 0

1 0 10 0 0 3 4 0

2 1 4 8 0 0 1 0

0 0 1 4 8 2 0 0

1 0 3 0 1 8 0 1

2 2 1 1 1 0 6 0

4 0 4 0 0 4 1 6

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ðcÞ M ¼

6 2 3 0 5 0

1 6 0 3 0 1

3 3 8 3 4 0

4 4 1 7 1 0

3 4 0 0 8 0

3 0 4 0 0 6

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Exercise 7

Based on the diagonal factorizations in exercise 6 and using Eq. (10.91), find for

each of the cases the error matrix defined as R = M − P.

Exercise 8

Solve the following systems of equations using the ILU(0) and DILU methods.

Perform three iterations only starting with a zero initial guess.

360 10 Solving the System of Algebraic Equations

ðaÞ A ¼

1 3 0 0 0 0

5 5 0 0 0 2

3 2 7 0 1 2

4 1 2 7 0 1

4 2 0 0 4 0

3 3 2 0 2 10

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; b ¼

26

28

18

26

11

26

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

ðbÞ A ¼

12 3 1 4 4 1

4 7 1 0 3 0

4 5 7 0 0 0

3 2 0 6 2 0

3 0 2 1 7 1

0 0 0 0 0 �1

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; b ¼

25

24

4

4

2

25

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

Exercise 9

Solve the systems of equations in Exercise 8 using the Gauss-Seidel and Jacobi

methods (starting with a zero initial guess) and compare the errors after three

iterations with the errors obtained in exercise 8 and with the exact solution.

Comment on the results.

Exercise 10

Solve the following symmetric systems of equations by performing two iterations

of the preconditioned conjugate gradient method (start with a zero field):

ðaÞ A ¼

6 0 �1 0 �1
0 6 1 1 �1
�1 1 6 0 0

0 1 0 4 �1
�1 �1 0 �1 6

0

B
B
B
B
@

1

C
C
C
C
A

; b ¼

7

9

27

23

1

0

B
B
B
B
@

1

C
C
C
C
A

ðbÞ A ¼

4 1 0 �1 0

1 5 2 �1 3

0 2 5 0 0

�1 �1 0 6 0

0 3 0 0 5

0

B
B
B
B
@

1

C
C
C
C
A

; b ¼

8

2

12

11

30

0

B
B
B
B
@

1

C
C
C
C
A

ðcÞ A ¼

3 1 �1 2 �1 0

1 7 1 1 2 �2
�1 1 7 0 0 0

2 1 0 6 0 2

�1 2 0 0 6 �1
0 �2 0 2 �1 7

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

; b ¼

29

9

3

13

28

27

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

10.7 Exercises 361

Exercise 11

List all the available linear solvers inside OpenFOAM®.

After choosing the smoothSolver in OpenFOAM®, list all implemented smoothers.

Exercise 12
Find in OpenFOAM® the implementation of the BiCG linear solver (PBiCG) and

compare it with the BiCG algorithm of Lanczos.

Exercise 13

Find in OpenFOAM® the implementation of the multigrid V-cycle ($FOAM_SRC/

OpenFOAM/matrices/lduMatrix/solvers/GAMG/GAMGSolverSolve.C) and com-

pare it with the theoretical V-cycle algorithm.

Exercise 14

Verify the correct implementation in OpenFOAM® of the diagonal version of the

ILU(0) developed by Pommerell.

References

1. Duff I, Erisman A, Reid J (1986) Direct methods for sparse matrices. Clarendon Press, Oxford
2. Westlake JR (1968) A handbook of numerical matrix inversion and solution of linear

equations. Wiley, New York
3. Stoer J, Bulirsch R (1980) Introduction to numerical analysis. Springer, New York
4. Press WH (2007) Numerical recipes, 3rd edn. The art of scientific computing. Cambridge

University Press, Cambridge
5. Thomas LH (1949) Elliptic problems in linear differential equations over a network. Watson

Sci. Comput. Lab Report, Columbia University, New York
6. Conte SD, deBoor C (1972) Elementary numerical analysis. McGraw-Hill, New York
7. Pozrikidis C (1998) Numerical computation in science and engineering. Oxford University

Press, Oxford
8. Sebben S, Baliga BR (1995) Some extensions of tridiagonal and pentadiagonal matrix

algorithms. Numer Heat Transfer, Part B, 28:323–351
9. Zhao X-L, Huang T-Z (2008) On the inverse of a general pentadiagonal matrix. Appl Math

Comput 202(2):639–646
10. Karawia AA (2010) Two algorithms for solving general backward pentadiagonal linear

systems. Int J Comput Math 87(12):2823–2830
11. Hageman L, Young D (1981) Applied iterative methods. Academic Press, New York
12. Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn. Society for Industrial and

Applied Mathematics
13. Golub G, Van Loan C (2012) Matrix computations, 4th edn. The Johns Hopkins University

Press, Baltimore
14. Dongarra J, Van Der Vorst H (1993) Performance of various computers using standard sparse

linear equations solving techniques. In: Computer benchmarks. Elsevier Science Publishers
BV, New York, pp 177–188

15. Van Der Vorst H (1981) Iterative solution methods for certain sparse linear systems with a
nonsymmetric matrix arising from PDEProblems. J Comput Phys 44:1–19

16. Meijerink J, Van Der Vorst H (1977) An iterative solution method for linear systems of which
the coefficient matrix is a symmetric M matrix. Math Comput 31:148–162

362 10 Solving the System of Algebraic Equations

17. Beauwens R, Quenon L (1976) Existence criteria for partial matrix factorizations in iterative
methods. SIAM J Numer Anal 13:615–643

18. Pommerell C (1992) Solution of large unsymmetric systems of linear equations. PhD thesis,
Swiss Federal Institute of Technology, Zurich, Switzerland

19. Van Der Sluis A, Van Der Vorst H (1986) The rate of convergence of conjugate gradients.
Numer Math 48(5):543–560

20. Faber V, Manteuffel T (1984) Necessary and sufficient conditions for the existence of a
conjugate gradient method. SIAM J Numer Anal 21:315–339

21. Lanczos C (1950) An iteration method for the solution of eigenvalue problem of linear
differential and integral operators. J Res Natl Bur Stand 45:255–282 (RP 2133)

22. Lanczos C (1952) Solution of systems of linear equations by minimized iterations. J Res Natl
Bur Stand 49(1):33–53 (RP 2341)

23. Fletcher R (1976) Conjugate gradient methods for indefinite systems. In: Watson G (ed)
Numerical analysis Dundee 1975. Springer, Berlin, pp 73–89

24. Sonneveld P (1989) CGS, AFast Lanczostype solver for nonsymmetric linear systems. SIAM J
Sci Stat Comput 10:36–52

25. Van Der Vorst H (1992) BiCGSTAB: a fast and smoothly converging variant of BiCG for the
solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13:631–644

26. Van Der Vorst H, Vuik C (1991) GMRESR: a family of nested GMRES methods. Technical
report 9180, Delft University of Technology, Faculty of Tech. Math, Delft, The Netherlands

27. Southwell R (1946) Relaxation methods in theoretical physics. Clarendon Press, Oxford
28. Demmel J, Heath M, Van Der Vorst H (1993) Parallel numerical linear algebra. Acta

Numerica 2:111–198
29. Saad Y, Schultz M (1986) A generalized minimal residual algorithm for solving nonsymmetric

linear systems. SIAM J Sci Stat Comput 7:856–869
30. Fedorenko P (1962) A relaxation method for solving elliptic difference equations. USSR

Comput Math Math Phys 1(4):1092–1096
31. Poussin FV (1968) An accelerated relaxation algorithm for iterative solution of elliptic

equations. SIAM J Numer Anal 5:340–351
32. Settari A, Aziz K (1973) A generalization of the additive correction methods for the iterative

solution of matrix equations. SIAM J Numer Anal 10(3):506–521
33. Brandt A (1977) Multi-level adaptive solutions to boundary value problems. Math Comput 31

(138):333–390
34. Briggs WL (1987) A multigrid tutorial. Society of Industrial and Applied Mathematics,

Philadelphia, PA
35. Shome B (2006) An enhanced additive correction multigrid method. Numer Heat Transfer B

49:395–407
36. Hutchinson BR, Raithby GD (1986) A multigrid method based on the additive correction

strategy. Numer Heat Transfer 9:511–537
37. Elias SR, Stubley GD, Raithby GD (1997) An adaptive agglomeration method for additive

correction multigrid. Int J Numer Meth Eng 40:887–903
38. Mavriplis D, Venkatakfrishnan V (1994) Agglomeration multigrid for viscous turbulent flows.

AIAA paper 94-2332
39. Phillips RE, Schmidt FW (1985) A multilevel-multigrid technique for recirculating flows.

Numer Heat Transfer 8:573–594
40. Lonsdale RD (1991) An algebraic multigrid scheme for solving the Navier-Stokes equations

on unstructured meshes. In: Taylor C, Chin JH, Homsy GM (eds) Numerical methods in
laminar and turbulent flow, vol 7(2). Pineridge Press, Swansea, pp 1432–1442

41. Perez E (1985) A 3D finite element multigrid solver for the euler equations. INRIA report 442
42. Connell SD, Braaten DG (1994) A 3D unstructured adaptive multigrid scheme for the Euler

equations. AIAA J 32:1626–1632
43. Parthasarathy V, Kallinderis Y (1994) New multigrid approach for three-dimensional

unstructured adaptive grids. AIAA J 32:956–963

References 363

44. Mavriplis DJ (1995) Three-dimensional multigrid reynolds-averaged Navier-Stokes solver for
unstructured meshes. AIAA J 33(12):445–453

45. Qinghua W, Yogendra J (2006) Algebraic multigrid preconditioned Krylov subspace methods
for fluid flow and heat transfer on unstructured meshes. Numer Heat Transfer B 49:197–221

46. Lallemand M, Steve H, Dervieux A (1992) Unstructured multigridding by volume
agglomeration: current status. Comput Fluids 21:397–433

47. Mavriplis DJ (1999) Directional agglomeration multigrid techniques for high Reynolds
Number viscous flow solvers. AIAA J 37:393–415

48. Trottenberg U, Oosterlee C, Schüller A (2001) Multigrid. Academic Press, London
49. Phillips RE, Schmidt FW (1985) Multigrid techniques for the solution of the passive scalar

advection-diffusion equation. Numer Heat Transfer 8:25–43
50. Ruge JW, Stüben K (1987) Algebraic multigrid (AMG). In: McCormick SF (ed) Multigrid

methods, frontiers in applied mathematics, vol 3. SIAM, Philadelphia, pp 73–130
51. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

364 10 Solving the System of Algebraic Equations

Chapter 11

Discretization of the Convection Term

Abstract So far, the discretization of the general steady diffusion equation has

been formulated on orthogonal, non-orthogonal, structured, and unstructured grids.

Another important term, the convection term represented by the divergence oper-

ator, is the focus of this chapter. Initially this term is discretized using a symmetrical

linear profile similar to the one adopted for the discretization of the diffusion term.

The shortcomings of this profile are delineated and a remedy is suggested through

the use of an upwind profile. Even though it leads to physically plausible predic-

tions, the upwind profile is shown to be highly diffusive generating results that are

first order accurate. To increase accuracy, higher order profiles that are upwind

biased are introduced. While reducing the discretization error, higher order profiles

are shown to give rise to another type of error known as the dispersion error.

Methods dealing with this error will be dealt with in the next chapter. Moreover, the

flow field, which represents the driving catalyst of the convection term, is assumed

to be known. The computation of the flow field will be the subject of later chapters.

11.1 Introduction

Although the convection term looks simple, its discretization presents a number of

difficulties that have occupied researchers for more than three decades now. Their

work has shed light on the problems that hindered its discretization and resulted in

the development of a large number of convection schemes. The body of literature is

so large that two chapters are devoted for the analysis of this term. In this chapter

the basic concepts are introduced and High Order (HO) [1–3] upwind biased

schemes are discussed. The bounding of the convective flux, which made possible

the development of non-oscillatory convection schemes of high order of accuracy,

denoted by High Resolution (HR) schemes, will be discussed in the next chapter.

For clarity, the presentation of new concepts will be initially introduced using a

one dimensional grid, and then extended to multi dimensional non-orthogonal grids.

The chapter starts with the discretization of the one-dimensional convection-diffusion

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_11

365

problem to highlight, through a stability criterion, the shortcomings of the central

difference scheme [4, 5]. The upwind scheme [6] is shown to pass the stability test.

The numerical diffusion error associated with low order schemes and the numerical

dispersion error accompanying high order schemes are also explained. The treatment

of the class of HR schemes will be discussed in the next chapter.

11.2 Steady One Dimensional Convection and Diffusion

Initially the derivations are performed for a very simple, one dimensional, steady

convection-diffusion problem to learn as much as possible without being distracted

by the complexity of the calculations. The governing equation for the case studied

can be written as

d qu/ð Þ

dx
�

d

dx
C
/ d/

dx

� �

¼ 0 ð11:1Þ

Luckily an analytical solution for the problem is available, and is used as a refer-

ence with which various numerical solutions are compared.

11.2.1 Analytical Solution

The continuity equation for this steady-state one dimensional problem of constant

cross sectional area is given by

d quð Þ

dx
¼ 0 ð11:2Þ

implying that ρu is constant. Having this in mind and integrating with respect to x,

Eq. (11.1) becomes

qu/� C
/ d/

dx
¼ c1 ð11:3Þ

where c1 is a constant of integration the value of which depends on the boundary

conditions used. Rearranging, Eq. (11.3) is rewritten as

d/

dx
¼

qu

C
/
/�

c1

C
/

ð11:4Þ

366 11 Discretization of the Convection Term

Through a change of variable, Eq. (11.4) is transformed to

dU

dx
¼

qu

C
/
U ð11:5Þ

where

U ¼
qu

C
/
/�

c1

C
/

ð11:6Þ

Separating variables and integrating, the solution to Eq. (11.5) is found to be

dU

U
¼

qu

C
/
dx) Ln Uð Þ ¼

qu

C
/
xþ c3) U ¼ c2e

qu

C/
x

ð11:7Þ

where c2 is another constant of integration. Reverting back to the original variable,

the general solution for / is given by

/ ¼
c2C

/e
qu

C/
x þ c1

qu
ð11:8Þ

Thus the analytical solution between the two pointsW and E shown in Fig. 11.1 and

subject to

/ ¼ /W at x ¼ xW
/ ¼ /E at x ¼ xE

�

ð11:9Þ

is obtained as

/� /W

/E � /W

¼
ePeL

x�xW
L � 1

ePeL � 1
ð11:10Þ

where PeL is the Péclet number (based on the length L), which represents the ratio

of the advective transport rate of / to its diffusive transport rate, and is given by

PeL ¼
quL

C
/

and L ¼ xE � xW : ð11:11Þ

Equation (11.10) is evaluated for different values of PeL and results are displayed in

Fig. 11.2. As shown, variations in / between W and E change from a linear profile

for pure diffusion problems to almost a step profile at high values of PeL.

11.2 Steady One Dimensional Convection and Diffusion 367

11.2.2 Numerical Solution

The discretization of Eq. (11.1) starts by integrating the conservation equation over

the one dimensional element shown in Fig. 11.1 to yield

Z

Vc

r � qv/ð Þ � r � C
/r/

� �� �
dV ¼ 0 ð11:12Þ

CWWW E EE

u
ww u

w
u

e
u

ee

x
w x

e

y
C

x
C

W
WW

C

E
EE

C
S

eS
w ew S

e
S

w

Fig. 11.1 Notation for a one dimensional grid system

0.2

0.2 0.4

0.4

0.6

0.8

1.0

0.6 0.8 1.0

Pe
L
=0

Pe
L
=1

Pe
L
=2

Pe
L
=4

Pe
L
=10

Pe
L
=100

W E

x xW

L

Fig. 11.2 Analytical solutionsof theonedimensional convection anddiffusionproblem for variousPeL

368 11 Discretization of the Convection Term

where v = ui is the velocity vector. The conservation equation can be written in

terms of the convection and diffusion fluxes as

Z

Vc

r � J/;C þ J/;D
� �

dV ¼ 0 where J/;C ¼ qv/ and J/;D ¼ �C
/r/: ð11:13Þ

Then, using the divergence theorem, the volume integral is transformed into a

surface integral giving

Z

Vc

r � J/;C þ J/;D
� �

dV ¼

Z

@Vc

J/;C þ J/;D
� �

� dS ¼

Z

@Vc

qu/i� C
/ d/

dx
i

	

� dS ¼ 0:

ð11:14Þ

Replacing the surface integral by a summation of fluxes over the element faces,

Eq. (11.14) becomes

X

f � nb Cð Þ

qu/i� C
/ d/

dx
i

� �

f

� Sf ¼ 0: ð11:15Þ

Noting that the surface vectors on opposite sides of the element have opposite signs,

the expanded form of Eq. (11.15) for a constant cross section is obtained as

quDy/ð Þe� C
/ d/

dx
Dy

� �

e

	

� quDy/ð Þw� C
/ d/

dx
Dy

� �

w

	

¼ 0 ð11:16Þ

The values of u at the cell faces are known, and those of the gradient can be

discretized in the way previously described. The question is how to proceed in the

discretization of the face values /e and /w in terms of the values at adjacent nodes.

The method of specifying these face values is denoted in the literature by the

“advection scheme”.

11.2.3 A Preliminary Derivation: The Central Difference

(CD) Scheme

At first sight the “obvious” answer would be a linear interpolation profile similar to

the one used for the diffusion term. Hence, the value of / at a given face, say the

right face e, will be computed as

/ xð Þ ¼ k0 þ k1 x� xCð Þ ð11:17Þ

11.2 Steady One Dimensional Convection and Diffusion 369

where k0 and k1 are constants evaluated using the two nodes straddling face e. Thus

using the fact that / ¼ /E at x ¼ xE and / ¼ /C at x ¼ xC, Eq. (11.17) evaluated at

x ¼ xe gives

/e ¼ /C þ
/E � /Cð Þ

xE � xCð Þ
xe � xCð Þ: ð11:18Þ

This is basically the central difference scheme that can be obtained by a Taylor

series expansion where terms involving derivatives of the second order and higher

are neglected, which means it is second order accurate.

For the uniform grid shown in Fig. 11.3, Eq. (11.18) becomes

/e ¼
/C þ /E

2
ð11:19Þ

Example 1

Derive the value of /e for a central difference scheme using a Taylor

expansion approach

Solution

The Taylor expansion about e can be written as

/C ¼/ �DxC=2ð Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

¼/e

þ
@/

@x

�
�
�
�
e

�DxC=2ð Þ þ O Dx2C
� �

¼/e �
/E � /C

dxe

DxC

2

u
ww u

w
u

e u
ee

CWWW E EE

E

C

W ew

w e

Fig. 11.3 The Central Difference scheme profile

370 11 Discretization of the Convection Term

thus

/e ¼ /C þ
DxC

dxe

/E � /C

2

for a uniform grid dxe ¼ DxC yielding

/e ¼
/C þ /E

2

Thus after the discretization of the diffusion term using a linear profile

(Fig. 11.3), the term in the first square bracket of Eq. (11.16) becomes

quDy/ð Þe� C
/ d/

dx
Dy

� �

e

¼ quDyð Þe
/E þ /Cð Þ

2
� C

/ Dy

dx

� �

e

/E � /Cð Þ

¼FluxCe/C þ FluxFe/E þ FluxVe

ð11:20Þ

where

FluxCe ¼ C
/

e

Dye

dxe
þ

quDyð Þe
2

FluxFe ¼ �C
/

e

Dye

dxe
þ

quDyð Þe
2

FluxVe ¼ 0

ð11:21Þ

A similar expression for the term in the second square bracket of Eq. (11.16) can

also be derived and is given by

� quDy/ð Þw� C
/ d/

dx
Dy

� �

w

	

¼� quDyð Þw
/W þ /Cð Þ

2
� C

/ Dy

dx

� �

w

/C � /Wð Þ

	

¼FluxCw/C þ FluxFw/W þ FluxVw

ð11:22Þ

where now

FluxCw ¼ C
/

w

Dyw

dxw
�

quDyð Þw
2

FluxFw ¼ �C
/

w

Dyw

dxw
�

quDyð Þw
2

FluxVw ¼ 0

ð11:23Þ

11.2 Steady One Dimensional Convection and Diffusion 371

Substitution of these values into the convection-diffusion equation yields

aC/C þ aE/E þ aW/W ¼ 0 ð11:24Þ

where

aE ¼ FluxFe ¼ �C
/

e

Dye

dxe
þ

quDyð Þe
2

aW ¼ FluxFw ¼ �C
/

w

Dyw

dxw
�

quDyð Þw
2

aC ¼ FluxCe þ FluxCw ¼
quDyð Þe

2
þ C

/

e

Dye

dxe

� �

þ �
quDyð Þw

2
þ C

/

w

Dyw

dxw

� �

ð11:25Þ

As the problem is one dimensional Dye ¼ Dyw and, without loss of generality, can

be set equal to 1. Moreover, from continuity u is constant and thus

quDyð Þe� quDyð Þw¼ 0. Assuming a uniform diffusion coefficient, the coefficients of

the discretized equation can be simplified to

aE ¼ �
C
/

xE � xC
þ

quð Þe
2

aW ¼ �
C
/

xC � xW
�

quð Þw
2

aC ¼ � aE þ aWð Þ

ð11:26Þ

Substituting back in Eq. (11.24), the value for /C is found as

/C � /W

/E � /W

¼
aE

aE þ aW
ð11:27Þ

If the grid is assumed to be uniform, then the above equation can be written in terms

of PeL as

/C � /W

/E � /W

¼
1

2
1�

PeL

2

� �

ð11:28Þ

where L is xE � xWð Þ, which is the size of two elements. The analytical solution for

the problem can be obtained from Eq. (11.10) by setting x� xWð Þ=L to 0.5 and is

given by

/C � /W

/E � /W

¼
e
PeL
2 � 1

ePeL � 1
ð11:29Þ

The two solutions are compared in Fig. 11.4 as PeL varies from −10 to +10.

Figure 11.4 demonstrates that at low values of PeL the numerical and analytical

372 11 Discretization of the Convection Term

solutions are very close to each other. However as PeL is increased beyond a certain

value the central difference (CD) numerical solution greatly departs from the ana-

lytical solution and becomes unbounded experiencing unphysical behavior.

Whereas the analytical solution approaches asymptotically the values 0 and 1 for

positive and negative values of PeL, respectively, the CD solution decreases linearly

from +∞ to −∞ as PeL increases from −∞ to +∞. This solution indicates that

some of the assumptions used in the discretization of the equation are unrealistic or

unphysical. What is the reason for this behavior?

As depicted in Fig. 11.5, whereas diffusion at point C is equally affected by

conditions upstream and downstream of C (Fig. 11.5a), the advection process is a

highly directional process transporting properties only in the direction of the flow

(Fig. 11.5b). Therefore the linear profile approximation, which assigns equal weight

to both the upwind and downwind nodes, is a good approximation for the diffusion

term (Fig. 11.5a). However it cannot describe the directional preference of con-

vection, for which a step profile is more appropriate (Fig. 11.5b), and is the cause of

the problem.

The combined convection-diffusion zone of influence and the more relevant

profile in this case is schematically depicted in Fig. 11.5c. This zone of influence

approaches the diffusion region displayed in Fig. 11.5a and the advection region

depicted in Fig. 11.5b at low and high values of the Péclet number, respectively.

Fig. 11.4 Comparison of numerical (obtained with the CD scheme) and analytical solutions for

the one dimensional convection and diffusion problem

11.2 Steady One Dimensional Convection and Diffusion 373

diffusion

CW E

x = 0 x = 1

= 1

= 0

diffusion

u

convection

CW E x = 0 x = 1

= 1

= 0

convection

u
convection + diffusion

CW E

x = 0 x = 1

= 1

= 0

convection + diffusion

(a)

(b)

(c)

Fig. 11.5 Zone of influence of a diffusion, b convection, and c combined convection and

diffusion terms and expected problem solution

374 11 Discretization of the Convection Term

Therefore, as long as diffusion is the dominant transfer mechanism, the use of a

linear profile yields physical results. However, once convection overwhelms dif-

fusion, unphysical results are obtained. The value of Péclet number at which this

occurs can be easily calculated. Assuming the flow to be in the positive x direction,

it is noted that there is a possibility for the aE coefficient to become positive, thus

leading to unphysical results (if the flow is in the negative x direction, then aW may

become positive) when,

�C
/

e

Dye

dxe
þ

quDyð Þe
2

[0)
quð Þedxe

C
/

e

[2: ð11:30Þ

Defining the cell Péclet number as

Pe ¼
qudx

C
/

: ð11:31Þ

which, for a uniform grid, is half PeL, then Eq. (11.30) can be rewritten as

Pe[2: ð11:32Þ

Thus for a cell Péclet number (Pe) larger than 2 the discretization process becomes

inconsistent as now an increase in the neighboring value will lead to a decrease in

the value at C. This in turn will lead to a further increase in the neighboring value,

and the error is magnified.

This situation can be avoided by decreasing the grid size so that the cell Péclet

number is smaller than 2. For many practical situations, however, the increase in

storage and computational requirements may be too large to afford. Moreover for

purely convected flows (e.g., Euler flows) this is simply not feasible. Therefore a

remedy is needed.

11.2.4 The Upwind Scheme

When examining the discretization procedure described above, it is noticed that the

reason for obtaining these positive coefficients is because of the adopted linear

symmetric profile. A linear symmetric profile gives equal weights to the two nodes

sharing the face with no directional preference, which is appropriate for

non-directional phenomena with an elliptic type term, such as the diffusion term.

It is simply not adequate for the convection term [4].

A scheme that is more compatible with the advection process is the upwind

scheme [4, 6] schematically displayed in Fig. 11.6. The upwind scheme basically

mimics the basic physics of advection in that the cell face value is made dependent

on the upwind nodal value, i.e., dependent on the flow direction. In this case the cell

face values for the configuration displayed in Fig. 11.6 are given by

11.2 Steady One Dimensional Convection and Diffusion 375

/e ¼
/C if _me[0

/E if _me\ 0

�

and /w ¼
/C if _mw[0

/W if _mw\ 0

�

ð11:33Þ

where _me and _mw are the mass flow rates at faces e and w given by

_me ¼ qv � Sð Þe¼ quSð Þe¼ quDyð Þe
_mw ¼ qv � Sð Þw¼ � quSð Þw¼ � quDyð Þw

ð11:34Þ

Thus, the advection flux at face e can be written as

_me/e ¼ _me; 0k k/C � � _me; 0k k/E

¼FluxCConv
e /C þ FluxFConv

e /E þ FluxVConv
e

ð11:35Þ

where

FluxCConv
e ¼ _me; 0k k

FluxFConv
e ¼ � � _me; 0k k

FluxVConv
e ¼ 0

ð11:36Þ

In Eqs. (11.35) and (11.36), the term a; bk k represents the maximum of a and b.

Moreover, a similar relation can be derived for the advection flux at face w and is

given by

_mw/w ¼ _mw; 0k k/C � � _mw; 0k k/W

¼FluxCConv
w /C þ FluxFConv

w /W þ FluxVConv
w

ð11:37Þ

where now

FluxCConv
w ¼ _mw; 0k k

FluxFConv
w ¼ � � _mw; 0k k

FluxVConv
w ¼ 0

ð11:38Þ

CWWW E EE

u
ww

u
w u

e
u

ee

E

C

W w

e

ew

Fig. 11.6 The upwind scheme profile

376 11 Discretization of the Convection Term

Denoting the contribution of the diffusion flux with a superscript Diff, then sub-

stitution into Eq. (11.15) yields

FluxCConv
e þ FluxCDiff

e þ FluxCConv
w þ FluxCDiff

w

� �
/C

þ FluxFConv
e þ FluxFDiff

e

� �
/E þ FluxFConv

w þ FluxFDiff
w

� �
/W ¼ 0

ð11:39Þ

which can be modified into the form

aC/C þ aE/E þ aW/W ¼ 0 ð11:40Þ

with

aE ¼FluxFConv
e þ FluxFDiff

e

¼� � _me; 0k k � C
/
e

Se

dxe

aW ¼FluxFConv
w þ FluxFDiff

w

¼� � _mw; 0k k � C
/
w

Sw

dxw

aC ¼
X

f

FluxCConv
f þ FluxC

Diff
f

 �

¼ _me; 0k k þ _mw; 0k k þ C
/
e

Se

dxe
þ C

/
w

Sw

dxw

¼� aE þ aWð Þ þ _me þ _mwð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0

bC ¼�
X

f

FluxVConv
f þ FluxV

Diff
f

 �

¼ 0

ð11:41Þ

It is easily seen that the upwind scheme yields negative neighbor coefficients, and

provided continuity is satisfied, the coefficient at the main node is given by,

aC ¼ � aW þ aEð Þ ð11:42Þ

which guarantees the boundedness property.

Invoking the continuity constraint in Eq. (11.41) and assuming uniform grid and

constant diffusion coefficient, the value for /C in terms of /E and /W is obtained

from Eq. (11.40) and Eq. (11.41) as

/C � /W

/E � /W

¼
2þ jj� PeL; 0jj

4þ jj� PeL; 0jj þ jjPeL; 0jj
¼

2þ jj� PeL; 0jj

4þ jPeLj
ð11:43Þ

11.2 Steady One Dimensional Convection and Diffusion 377

The /C profile generated using the upwind scheme (Eq. 11.43) is compared in

Fig. 11.7 with similar ones obtained analytically (Eq. 11.29) and numerically via

the central difference scheme (Eq. 11.28). At low PeL values, profiles indicate

that the upwind scheme is not as accurate as central differencing. This is

expected since the upwind profile is first order accurate while the linear profile

is second order accurate. At high PeL values, the central difference scheme is

unstable as its solution is unbounded and physically incorrect. On the other hand,

even though the upwind scheme is not particularly accurate, it is physically

correct.

Thus there appears to be a tradeoff between accuracy and stability. Using the

upwind scheme, solutions are better behaved and bounded even at high Péclet

numbers. This is however achieved at the cost of low accuracy. On the other

hand, the second order central difference scheme becomes unstable beyond a

certain value of PeL resulting in physically erroneous solutions. Both schemes

seem to be infected by errors, one affecting accuracy while the other affecting

stability. What are these errors? This will be discussed after introducing the

downwind scheme.

Fig. 11.7 Comparison of solutions obtained analytically and numerically using the upwind and

central difference schemes for the one dimensional convection and diffusion problem

378 11 Discretization of the Convection Term

11.2.5 The Downwind Scheme

It is interesting to see what happens if a scheme opposite to the upwind scheme is

used, i.e., the downwind scheme [7, 8]. For this interpolation profile, displayed

in Fig. 11.8, the value at the node on the downwind side of the interface is taken

to represent the value at the interface. Thus, the values at faces e and w are

calculated as

/e ¼
/E if _me[0

/C if _me\ 0

�

and /w ¼
/W if _mw[0

/C if _mw\ 0

�

ð11:44Þ

Using Eq. (11.44), the advection fluxes at the faces can be written as

_me/e ¼� � _me; 0k k/C þ _me; 0k k/E

¼FluxCConv
e /C þ FluxFConv

e /E þ FluxVConv
e

_mw/w ¼� � _mw; 0k k/C þ _mw; 0k k/W

¼FluxCConv
w /C þ FluxFConv

w /W þ FluxVConv
w

ð11:45Þ

Substitution of the above values in the discretization equation, Eq. (11.15), yields

FluxCConv
e þ FluxCDiff

e þ FluxCConv
w þ FluxCDiff

w

� �
/C

þ FluxFConv
e þ FluxFDiff

e

� �
/E þ FluxFConv

w þ FluxFDiff
w

� �
/W ¼ 0

ð11:46Þ

which can be modified into the form

aC/C þ aE/E þ aW/W ¼ 0 ð11:47Þ

CWWW E EE

u
ww

u
w u

e
u

ee

E

C

W

w

e

w e

Fig. 11.8 The downwind scheme profile

11.2 Steady One Dimensional Convection and Diffusion 379

with

aE ¼FluxFConv
e þ FluxFDiff

e

¼ _me; 0k k � C
/
e

Se

dxe

aW ¼FluxFConv
w þ FluxFDiff

w

¼ _mw; 0k k � C
/
w

Sw

dxw

aC ¼
X

f

FluxCConv
f þ FluxC

Diff
f

 �

¼� � _me; 0k k þ C
/
e

Se

dxe
� � _mw; 0k k þ C

/
w

Sw

dxw

¼� aE þ aWð Þ þ _me þ _mwð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

¼0

bC ¼�
X

f

FluxVConv
f þ FluxV

Diff
f

 �

¼ 0

ð11:48Þ

Invoking the continuity constraint in Eq. (11.48) and assuming uniform grid and

constant diffusion coefficient, the value for /C in terms of /E and /W is obtained as

/C � /W

/E � /W

¼
2� jjPeL; 0jj

4� jj� PeL; 0jj � jjPeL; 0jj
¼

2� jjPeL; 0jj

4� jPeLj
ð11:49Þ

Without plotting Eq. (11.49) it is clear that as jPeLj ! 4 the solution becomes

completely unbounded confirming once more the analysis presented above. The

downwind scheme may be beneficial when blended with other schemes to predict

sharp interfaces [7, 8]. Nevertheless its introduction here will be exploited in the next

section to give better insight into stability.

11.3 Truncation Error: Numerical Diffusion

and Anti-Diffusion

Truncation error occurs due to the approximate nature of the discretization process

and is more easily analyzed for one dimensional situations on Cartesian meshes.

The diffusion and anti-diffusion of the upwind, downwind, and central difference

schemes are presented next.

380 11 Discretization of the Convection Term

11.3.1 The Upwind Scheme

Considering the equation discretized via the upwind scheme, the intention is to

recover the integral equation while accounting for the truncation error. To do so, /C

and/W are written as functions of/e and/w, respectively, for the case when the flow

is assumed to be in the positive x direction. In this case the upwind scheme results in

/e ¼ /C and /w ¼ /W : ð11:50Þ

Thus the one dimensional convection diffusion equation discretized using the

upwind scheme simplifies to

quDyð Þe/C � quDyð Þw/W � C
/ d/

dx
Dy

� �

e

� C
/ d/

dx
Dy

� �

w

	

¼ 0: ð11:51Þ

The one dimensional Taylor series expansion of /C with respect to its value at cell

face e is given by

/C ¼ /e þ
d/

dx

� �

e

xC � xeð Þ þ
1

2

d2/

dx2

� �

e

xC � xeð Þ2þ � � �

¼ /e �
d/

dx

� �

e

xe � xCð Þ þ � � �

ð11:52Þ

and for a uniform grid as

/C ¼ /e �
d/

dx

� �

e

dxð Þe
2

þ
1

2

d2/

dx2

� �

e

dxð Þe
2

� �2

� � � ð11:53Þ

A similar expression can be obtained for /W and is given by

/W ¼ /w �
d/

dx

� �

w

dxð Þw
2

þ
1

2

d2/

dx2

� �

w

dxð Þw
2

� �2

� � � ð11:54Þ

Truncating second order terms and higher and substituting into the advection term,

the left hand side of the discretized equation becomes

quDyð Þe/C � quDyð Þw/W � C
/ d/

dx
Dy

� �

e

� C
/ d/

dx
Dy

� �

w

	

¼ quDyð Þe /e �
d/

dx

� �

e

dxe

2

	

� quDyð Þw /w �
d/

dx

� �

w

dxw

2

	

� C
/ d/

dx
Dy

� �

e

� C
/ d/

dx
Dy

� �

w

	

ð11:55Þ

11.3 Truncation Error: Numerical Diffusion and Anti-Diffusion 381

which can be rearranged into

quDyð Þe/C � quDyð Þw/W � C
/ d/

dx
Dy

� �

e

� C
/ d/

dx
Dy

� �

w

	

¼ quDyð Þe/e � quDyð Þw/w

� C
/ þ qu

dx

2

� �

e

d/

dx
Dy

� �

e

� C
/ þ qu

dx

2

� �

w

d/

dx
Dy

� �

w

	

ð11:56Þ

It is clear now that the equation being solved has an added component of diffusion,

which is called truncation error. The value of the numerical diffusion is equal to

C
/
truncation ¼ qu

dx

2
ð11:57Þ

This truncation error, also known as stream wise diffusion, reduces the accuracy of

the solution by altering the magnitude of the diffusion coefficient and consequently

the equation to be solved. Thus the convection and diffusion equation has an

effective modified value of the diffusion effects. On the other hand, this additional

stream wise numerical diffusion is desirable as it stabilizes the solution by keeping

it bounded and physically correct.

It is obvious that to reduce stream wise numerical diffusion a higher order

approximation of the convection term is needed. However, as will be explained in a

later section, this should be done in such a way that the solution remains bounded.

11.3.2 The Downwind Scheme

As with the upwind scheme, /C and /W are written as functions of /e and /w,

respectively, for the case when the flow is assumed to be in the positive x direction.

In this case the downwind scheme results in

/e ¼ /E and /w ¼ /C ð11:58Þ

and the discretized equation becomes

quDyð Þe/E � quDyð Þw/C � C
/ d/

dx
Dy

� �

e

� C
/ d/

dx
Dy

� �

w

	

¼ 0 ð11:59Þ

382 11 Discretization of the Convection Term

For a uniform grid, the one dimensional Taylor series expansions of /E and /C

with respect to their values at cell faces e and w are given by

/E ¼ /e þ
d/

dx

� �

e

dxð Þe
2

þ
1

2

d2/

dx2

� �

e

dxð Þe
2

� �2

þ � � �

/C ¼ /w þ
d/

dx

� �

w

dxð Þw
2

þ
1

2

d2/

dx2

� �

w

dxð Þw
2

� �2

þ � � �

ð11:60Þ

Truncating second order terms and higher and substituting into the advection term,

the left hand side of the discretized equation becomes

quDyð Þe/E � quDyð Þw/C � C
/ d/

dx
Dy

� �

e

� C
/ d/

dx
Dy

� �

w

	

¼ quDyð Þe/e � quDyð Þw/w

� C
/ � qu

dx

2

� �

e

d/

dx
Dy

� �

e

� C
/ � qu

dx

2

� �

w

d/

dx
Dy

� �

w

	

ð11:61Þ

For this profile, numerical diffusion has a negative sign and is equal to

C
/
truncation ¼ �qu

dx

2
ð11:62Þ

which acts at decreasing the diffusion coefficient and in effect is an anti-diffusion

error. Predictions using the downwind scheme are found to cause clipping of the

advected profiles. In fact solutions to the one dimensional convection-diffusion

problem generated using this scheme are more oscillatory than the CD scheme.

11.3.3 The Central Difference (CD) Scheme

The truncation error for the CD scheme is a little more involved to obtain with the

finite volume method as computation of the gradient requires interpolated values at

the element faces and not at nodes where they are available. Assuming the velocity

is known everywhere and the grid is uniform with a size of Dx, the approximation is

simply the one introduced in the calculation of /e � /wð Þ, which can be written as

/e � /wð Þ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Interpolated

¼
1

2
/E þ /Cð Þ �

1

2
/C þ /Wð Þ ¼ /e � /wð Þ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Exact

þ TE ð11:63Þ

11.3 Truncation Error: Numerical Diffusion and Anti-Diffusion 383

where TE refers to truncation error. To calculate this truncation error, the following

Taylor series expansions with respect to the exact /e and /w values are needed:

/W ¼ /w �
Dx

2
/0
w þ

Dx2

8
/00
w �

Dx3

48
/000
w þ

Dx4

384
/iv
w �

Dx5

3840
/v
w þ � � �

/C ¼ /w þ
Dx

2
/0
w þ

Dx2

8
/00
w þ

Dx3

48
/000
w þ

Dx4

384
/iv
w þ

Dx5

3840
/v
w þ � � �

/C ¼ /e �
Dx

2
/0
e þ

Dx2

8
/00
e �

Dx3

48
/000
e þ

Dx4

384
/iv
e �

Dx5

3840
/v
e þ � � �

/E ¼ /e þ
Dx

2
/0
e þ

Dx2

8
/00
e þ

Dx3

48
/000
e þ

Dx4

384
/iv
e þ

Dx5

3840
/v
e þ � � �

ð11:64Þ

Using these expansions, the average values at the faces are obtained as

1

2
/E þ /Cð Þ ¼ /e þ

Dx2

8
/00
e þ

Dx4

384
/iv
e þ � � �

)
Dx2

4
/00
e ¼ /C � 2/e þ /Eð Þ �

Dx4

192
/iv
e þ � � �

1

2
/C þ /Wð Þ ¼ /w þ

Dx2

8
/00
w þ

Dx4

384
/iv
w þ � � �

)
Dx2

4
/00
w ¼ /W � 2/w þ /Cð Þ �

Dx4

192
/iv
w þ � � �

ð11:65Þ

Subtracting the above two terms given in Eq. (11.65), their difference is found to be

1

2
/E þ /Cð Þ �

1

2
/C þ /Wð Þ ¼ /e � /wð Þ þ

Dx2

8
/00
e � /00

w

� �

þ
Dx4

384
/iv
e � /iv

w

� �
þ � � �

ð11:66Þ

Further, the expanded forms of the exact /e and /w with respect to /C are given by

/e ¼ /C þ
Dx

2
/0
C þ

Dx2

8
/00
C þ

Dx3

48
/000
C þ

Dx4

384
/iv
C þ

Dx5

3840
/v
C þ � � �

/w ¼ /C �
Dx

2
/0
C þ

Dx2

8
/00
C �

Dx3

48
/000
C þ

Dx4

384
/iv
C �

Dx5

3840
/v
C þ � � �

ð11:67Þ

In addition, /E and /W can be expanded in terms of /C as

/E ¼ /C þ Dx/0
C þ

Dx2

2
/00
C þ

Dx3

6
/000
C þ

Dx4

24
/iv
C þ

Dx5

120
/v
C þ � � �

/W ¼ /C � Dx/0
C þ

Dx2

2
/00
C �

Dx3

6
/000
C þ

Dx4

24
/iv
C �

Dx5

120
/v
C þ � � �

ð11:68Þ

384 11 Discretization of the Convection Term

Using the above two sets of equations, the following is obtained:

/C � 2/e þ /E ¼ /C � 2/C � Dx/0
C �

Dx2

4
/00
C �

Dx3

24
/000
C �

Dx4

192
/iv
C �

Dx5

1920
/v
C þ � � �

þ /C þ Dx/0
C þ

Dx2

2
/00
C þ

Dx3

6
/000
C þ

Dx4

24
/iv
C þ

Dx5

120
/v
C þ � � �

¼
Dx2

4
/00
C þ

Dx3

8
/000
C þ

7Dx4

192
/iv
C þ

15Dx5

1920
/v
C þ � � �

/W � 2/w þ /C ¼
Dx2

4
/00
C �

Dx3

8
/000
C þ

7Dx4

192
/iv
C �

15Dx5

1920
/v
C þ � � �

ð11:69Þ

Then /00
e � /00

w

� �
is computed as

Dx2

8
/00
e � /00

w

� �
¼

Dx3

8
/000
C þ

Dx5

128
/v
C þ � � � ð11:70Þ

Substituting back, Eq. (11.66) is transformed to

1

2
/E þ /Cð Þ �

1

2
/C þ /Wð Þ ¼ /e � /w þ

Dx3

8
/000
C þ

Dx5

128
/v
C þ � � � ð11:71Þ

Dividing throughout by Dx, the truncation error associated with the calculation of

the gradient is obtained as

TE ¼
Dx2

8
/000
C þ

Dx4

128
/v
C þ � � � ð11:72Þ

which indicates that the method is second order accurate.

11.4 Numerical Stability

The confusion related to truncation error (first order for the physical solution and

second order for the unphysical one) has led many workers to extrapolate that since

central differencing of the diffusion term is so accurate, then central differencing of

the convection term should also be similarly accurate. Of course, as seen in the

previous sections, central differencing of the convection term can lead to unphysical

solutions. The cause for this behavior is that the central difference scheme has no

inherent convective stability when applied to derivatives of odd order like the

convection term.

Leonard [9] advanced the convective stability concept as an explanation to

oscillation in numerical solutions generated by applying the central difference

scheme to convection dominated flows. Leonard used the general one dimensional

unsteady convection-diffusion equation with constant velocity given by

11.3 Truncation Error: Numerical Diffusion and Anti-Diffusion 385

@ q/ð Þ

@t
¼ �

@ qu/ð Þ

@x
þ

@

@x
C
/ @/

@x

� �

þ Q/ ð11:73Þ

to describe this concept. When applying this equation over the element of centroid

C shown in Fig. 11.9, its left hand side (LHS) represents the rate of change of /C

within the control cell per unit time, and its right hand side (RHS) represents the net

influx across the element surface and source terms within the element that are

affecting the value of /C. If there were numerical errors in the RHS then the value

of /C calculated from Eq. (11.73) would either increase or decrease depending on

the scheme used in the discretization process. In an unstable scheme, a small

deviation from the correct value of /C gives a corresponding increase/decrease in

the net influx represented by the RHS. When an iterative procedure is used as part of

the solution mechanism, an increase/decrease in the net influx will further

increase/decrease the value of /C at each subsequent step of the iterative process. In

a stable scheme this change in /C due to errors in the RHS should feed back

negatively into the RHS as a self correction device. Clearly, for this kind of

numerical stability, the RHS should satisfy

@ RHSð Þ

@/C

\0 ð11:74Þ

indicating that the sensitivity to /C of the combination of the modeled terms on the

right hand side of Eq. (11.73) should be negative. In this case, an increase/decrease

in /C will correspond to a decrease/increase in the influx, which will in turn pushes

/C downward/upward towards its correct value. However, stability should not be

confused with boundedness or accuracy. A stable numerical scheme could actually

be unbounded giving rise to over/under shoots and oscillations/wiggles or be very

diffusive and give results that are of low accuracy. The stability here refers to

controlling the numerical error to remain bounded in order for it not to increase

indefinitely as was the case with the central difference scheme where the normalized

E

W

C

w

e

W C E

e

u
w

u
e

w

Fig. 11.9 Insensitivity of CD convection term to the values of /C

386 11 Discretization of the Convection Term

value of /C (Fig. 11.4) was found to vary from +∞ to −∞ while varying Pe from

−∞ to +∞, even though the correct value of /C should vary between 1 and 0. It so

happens that the upwind scheme possesses both the boundedness and stability

characteristics.

With this in mind, the general discretized form of the RHS of Eq. (11.73) is

given by

RHS ¼ � quDyð Þe/e þ quDyð Þw/w

þ C
/ Dy

dx

� �

e

/E � /Cð Þ � C
/ Dy

dx

� �

w

/C � /Wð Þ

	

þ Q
/
CVC

ð11:75Þ

Thus using the central difference scheme, Eq. (11.75) becomes

RHSCD ¼ � quDyð Þe
/E þ /Cð Þ

2
þ quDyð Þw

/C þ /Wð Þ

2

þ C
/ Dy

dx

� �

e

/E � /Cð Þ � C
/ Dy

dx

� �

w

/C � /Wð Þ

	

þ Q
/
CVC

ð11:76Þ

Analyzing the central difference scheme using the above criteria, it is found that for

the diffusion term the sensitivity is given by

@ RHS
Diff
CD

 �

@/C

¼ �2C/ Dy

dx
ð11:77Þ

which is negative since C/ is positive, indicating a stable scheme. However, for the

convective term the sensitivity equation gives

@ RHSConvCD

� �

@/C

¼ �
1

2
_me þ _mwð Þ ð11:78Þ

which is equal to zero for steady flows but not necessarily for unsteady flows. For

unsteady situations, its value will be positive for decelerating flows. In a general

flow, such regions act as wiggle sources and can easily lead to a total numerical

catastrophe when the Péclet number is large enough. Even for steady flows, as its

value is zero, it cannot feed back into the equation to act as a self correction device.

Equation (11.78) also indicates that for steady flow the net convective flux com-

puted with the CD scheme is independent of the value of /C. Therefore, as shown

in Fig. 11.9, the different possible values of /C will result in the same net con-

vective flux over the element of centroid C.

11.4 Numerical Stability 387

With the upwind scheme, the RHS can be obtained from Eq. (11.36) as

RHSUpwind ¼ � _me; 0k k/C þ � _me; 0k k/E � _mw; 0k k/C þ � _mw; 0k k/W

þ C
/ S

dx

� �

e

/E � /Cð Þ � C
/ S

dx

� �

w

/C � /Wð Þ þ Q
/
C

ð11:79Þ

The sensitivity is expected to be negative since the scheme was found to be stable

for all Péclet number, indeed

@ RHSConvUpwind

 �

@/C

¼ � _me; 0k k � _mw; 0k k ð11:80Þ

which is negative or equal to zero for all flows. It will be equal to zero when both

mass flow rates are negative, a situation that does not arise in a one dimensional

situation of constant cross-sectional area. When added to the false diffusion intro-

duced by the first order approximation, Eq. (11.80) indicates that the scheme is very

stable. However, this stability is achieved at the expense of accuracy, as was

demonstrated in the previous section.

For the downwind scheme the RHS is given by

RHSDownwind ¼ � _me; 0k k/E þ � _me; 0k k/C � _mw; 0k k/W þ � _mw; 0k k/C

þ C
/ S

dx

� �

e

/E � /Cð Þ þ C
/ S

dx

� �

w

/W � /Cð Þ

ð11:81Þ

The sensitivity is given by

@ RHSConvDownwind

� �

@/C

¼ � _me; 0k k þ � _mw; 0k k ð11:82Þ

which is always positive or equal to zero for all flows. When this is added to the

anti-diffusion effects it gives a highly unstable scheme.

11.5 Higher Order Upwind Schemes

The previous sections demonstrated that both the upwind and central difference

schemes have severe limitations, the former because of its poor accuracy due to

numerical diffusion, and the latter because of its instability also known as numerical

dispersion error. These shortcomings have provoked a great deal of research to

improve the accuracy and stability of advection schemes by using higher order

388 11 Discretization of the Convection Term

upwind biased interpolation profiles. These higher-order schemes aim at producing

at least a second order accurate solutions, while being unconditionally stable.

To underline the conservation property which associates fluxes with cell faces,

not nodes, in what follows D, C, and U will be used to denote the Downwind,

Upwind, and far Upwind nodes at any particular face. In addition, DD and UU

denote the nodes downstream and upstream of D and U, respectively. The corre-

sponding values at these locations are denoted by /DD;/D;/C;/U and /UU ,

respectively. This notation is displayed graphically in Fig. 11.10 for the cases when

the velocity at the face is either positive (→) or negative (←).

11.5.1 Second Order Upwind Scheme

A second order scheme, requires the use of a linear profile, as was the case with the

central difference scheme. However, instead of a symmetric profile, an upwind

biased stencil is used [10]. As depicted in Fig. 11.11, the linear profile is con-

structed by employing the / values at nodes C and U. Therefore the value at the

face is actually calculated by extrapolation rather than interpolation.

UU U C D DD

f

v
f

UUUCDDD

f

v
f

UU

U

C

D

DD

UU

U

C

D

DD

Fig. 11.10 A schematic showing the UU, U, C, D and DD node locations used in describing

convection schemes

11.5 Higher Order Upwind Schemes 389

11.5.2 The Interpolation Profile

Starting with the linear profile

/ xð Þ ¼ k0 þ k1 x� xCð Þ ð11:83Þ

and fitting it to the nodal values at xC and xU where the / values are /C and /U ,

respectively, the profile becomes

/ xð Þ ¼ /C þ
/C � /U

xC � xU
x� xCð Þ ð11:84Þ

Using the above equation, the / value at face f, shown in Fig. 11.11, is given by

/f ¼ / xf
� �

¼ /C þ
/C � /U

xC � xU
xf � xC
� �

ð11:85Þ

which, for a uniform grid reduces to

/f ¼
3

2
/C �

1

2
/U ð11:86Þ

11.5.3 The Discretized Equation

Using this profile to approximate the interface values in the discretized one

dimensional convection diffusion equation (Eq. 11.16), the fluxes at the faces are

obtained as

DD

Df

C

U

UU

UU U C D DD

f

v
f

Fig. 11.11 The Second Order Upwind (SOU) scheme profile

390 11 Discretization of the Convection Term

_me/e ¼
3

2
/C �

1

2
/W

� �

_me; 0k k �
3

2
/E �

1

2
/EE

� �

� _me; 0k k

_mw/w ¼
3

2
/C �

1

2
/E

� �

_mw; 0k k �
3

2
/W �

1

2
/WW

� �

� _mw; 0k k

ð11:87Þ

Substitution of these fluxes in Eq. (11.16), the discretized form is transformed to

3

2
/C �

1

2
/W

� �

_me; 0k k �
3

2
/E �

1

2
/EE

� �

� _me; 0k k þ
3

2
/C �

1

2
/E

� �

_mw; 0k k

�
3

2
/W �

1

2
/WW

� �

� _mw; 0k k � C
/ S

dx

� �

e

/E � /Cð Þ � C
/ S

dx

� �

w

/C � /Wð Þ

	

¼ 0

ð11:88Þ

which can be modified into the form

aC/C þ aE/E þ aW/W þ aEE/EE þ aWW/WW ¼ 0 ð11:89Þ

where

aE ¼FluxFe ¼ �C
/
e

Se

dxe
�
3

2
� _me; 0k k �

1

2
_mw; 0k k aEE ¼ FluxFee ¼

1

2
� _me; 0k k

aW ¼FluxFw ¼ �C
/
w

Sw

dxw
�
3

2
� _mw; 0k k �

1

2
_me; 0k k aWW ¼ FluxFww ¼

1

2
� _mw; 0k k

aC ¼
X

f � nb Cð Þ

FluxCf

¼C
/
e

Se

dxe
þ C

/
w

Sw

dxw
þ
3

2
_me; 0k k þ

3

2
_mw; 0k k

¼ � aE þ aW þ aEE þ aWWð Þ þ _me þ _mwð Þ

ð11:90Þ

11.5.4 Truncation Error

Following a procedure similar to the one used with the central difference scheme,

the truncation error is found to be

TE ¼ �
3

8
Dx2/000

C �
1

4
Dx3/iv

C þ � � � ð11:91Þ

indicating second order accuracy.

11.5 Higher Order Upwind Schemes 391

11.5.5 Stability Analysis

To check the stability of the SOU scheme, the discretized convective fluxes are

substituted in Eq. (11.75) resulting in the following RHSconvection term:

RHSconvection ¼ �
3

2
/C �

1

2
/W

� �

_me; 0k k þ
3

2
/E �

1

2
/EE

� �

� _me; 0k k

�
3

2
/C �

1

2
/E

� �

_mw; 0k k þ
3

2
/W �

1

2
/WW

� �

� _mw; 0k k

ð11:92Þ

The rate of change of this term with respect to /C is found as

@ RHSconvectionð Þ

@/C

¼ �
3

2
_me; 0k k �

3

2
_mw; 0k k ð11:93Þ

which is always negative indicating a stable scheme, i.e., the solution error will

always remain under control. It should be kept in mind that this is true for the

conditions stated in the derivations and not for the general case when the velocity is

not constant.

11.5.6 The QUICK Scheme

The Quadratic Upstream Interpolation for Convective Kinematics (QUICK) scheme

was developed by Leonard [2]. The method is based on interpolating the value of

the dependent variable at each face of the element by using a quadratic polynomial

biased toward the upstream direction, as shown in Fig. 11.12. The interpolated

value is used to calculate the convective term in the governing equations for the

dependent variable. The calculation of the values of the dependent variable at a cell

face is detailed next.

DD

D

f

C
U

UU

UU U C D DD

f

v
f

Fig. 11.12 The QUICK scheme profile

392 11 Discretization of the Convection Term

11.5.7 The Interpolation Profile

In its original form, the QUICK scheme required the use of a general multi dimensional

second degree polynomial for the calculation of the unknown variable/. However it is

generally sufficient to treat theflowas locally one dimensional [11] and to use a second

order one dimensional profile in each coordinate direction. For the one dimensional

convection-diffusion problem under discussion, the value of / is computed using

/ ¼ k0 þ k1xþ k2x
2; ð11:94Þ

subject to

/ ¼
/U at x ¼ xU
/C at x ¼ xC
/D at x ¼ xD

8

<

:
ð11:95Þ

Applying the conditions given by Eq. (11.95), the profile for / is found to be

/ ¼ /U þ
x� xUð Þ x� xCð Þ

xD � xUð Þ xD � xCð Þ
/D � /Uð Þ þ

x� xUð Þ x� xDð Þ

xC � xUð Þ xC � xDð Þ
/C � /Uð Þ

ð11:96Þ

For the case of a uniform grid, the value of / at the cell face f reduces to

/f ¼
/C þ /D

2
�
/D � 2/C þ /U

8
ð11:97Þ

Thus, the convective fluxes at the element faces can be computed as

_me/e ¼
3

4
/C �

1

8
/W þ

3

8
/E

� �

_me; 0k k �
3

4
/E �

1

8
/EE þ

3

8
/C

� �

� _me; 0k k

_mw/w ¼
3

4
/C �

1

8
/E þ

3

8
/W

� �

_mw; 0k k �
3

4
/W �

1

8
/WW þ

3

8
/C

� �

� _mw; 0k k

ð11:98Þ

Substituting back in the one dimensional convection-diffusion equation

[Eq. (11.16)], the discretized form becomes

3

4
/C �

1

8
/W þ

3

8
/E

� �

_me; 0k k �
3

4
/E �

1

8
/EE þ

3

8
/C

� �

� _me; 0k k

þ
3

4
/C �

1

8
/E þ

3

8
/W

� �

_mw; 0k k �
3

4
/W �

1

8
/WW þ

3

8
/C

� �

� _mw; 0k k

� C
/ S

dx

� �

e

/E � /Cð Þ � C
/ S

dx

� �

w

/C � /Wð Þ

	

¼ 0

ð11:99Þ

11.5 Higher Order Upwind Schemes 393

which can be modified into the form

aC/C þ aE/E þ aW/W þ aEE/EE þ aWW/WW ¼ 0 ð11:100Þ

with the coefficients given by

aE ¼FluxFe ¼ �C
/
e

Se

dxe
�
3

4
� _me; 0k k þ

3

8
_me; 0k k �

1

8
_mw; 0k k

aW ¼FluxFw ¼ �C
/
w

Sw

dxw
�
3

4
� _mw; 0k k þ

3

8
_mw; 0k k �

1

8
_me; 0k k

aEE ¼FluxFee ¼
1

8
� _me; 0k k aWW ¼ FluxFww ¼

1

8
� _mw; 0k k

aC ¼
X

f � nb Cð Þ

FluxCf

¼C
/
e

Se

dxe
þ C

/
w

Sw

dxw
þ
3

4
_me; 0k k �

3

8
� _me; 0k k þ

3

4
_mw; 0k k �

3

8
� _mw; 0k k

¼ � aE þ aW þ aWW þ aEEð Þ þ _me þ _mwð Þ

ð11:101Þ

11.5.8 Truncation Error

Again following the procedure described above, the truncation error is found to be

TE ¼
1

16
Dx3/iv

C �
3

128
Dx4/v

C þ � � � ð11:102Þ

which is clearly third order accurate.

11.5.9 Stability Analysis

To check the stability of the QUICK scheme, the discretized convective fluxes are

substituted in Eq. (11.75) resulting in the following RHSconvection term:

RHSconvection ¼ �
3

4
/C �

1

8
/W þ

3

8
/E

� �

_me; 0k k þ
3

4
/E �

1

8
/EE þ

3

8
/C

� �

� _me; 0k k

�
3

4
/C �

1

8
/E þ

3

8
/W

� �

_mw; 0k k þ
3

4
/W �

1

8
/WW þ

3

8
/C

� �

� _mw; 0k k

ð11:103Þ

394 11 Discretization of the Convection Term

The rate of change of this term with respect to /C is found to be given by

@ RHSconvectionð Þ

@/C

¼ �
3

8
_me; 0k k �

3

8
_mw; 0k k �

3

8
_me þ _mwð Þ ð11:104Þ

which for a uniform velocity is always negative indicating a stable scheme.

However this does not guarantee solution boundedness especially in the general

case of nonuniform velocity.

11.5.10 The FROMM Scheme

The FROMM scheme [12] fits a linear profile between the far Upwind (U) and

Downwind (D) nodes straddling the interface. As depicted in Fig. 11.13, instead of

a symmetric profile, an upwind biased stencil is used to calculate the value of the

dependent variable / at face f. Based on the adopted profile, /U , /C, and /D are

assumed to be collinear.

11.5.11 The Interpolation Profile

Starting with the linear profile

/ xð Þ ¼ k0 þ k1 x� xCð Þ ð11:105Þ

and fitting it to the nodal values at xD and xU where the / values are /D and /U ,

respectively, the profile becomes

/ xð Þ ¼ /U þ
/D � /U

xD � xU
x� xUð Þ ð11:106Þ

DD

D

f
C

U
UU

UU U C D DD

f

v
f

Fig. 11.13 The FROMM scheme profile

11.5 Higher Order Upwind Schemes 395

Using the above equation, the / value at upwind node C is obtained as

/C ¼ /U þ
/D � /U

xD � xU
xC � xUð Þ ð11:107Þ

For the case of a uniform grid the above equation becomes

/C ¼
/D þ /U

2
ð11:108Þ

The required value at the face f, shown in Fig. 11.13, is given by

/f ¼ / xf
� �

¼ /U þ
/D � /U

xD � xU
xf � xU
� �

¼ /C þ
xf � xC

xD � xU
/D � /Uð Þ ð11:109Þ

which, for a uniform grid reduces to

/f ¼ /C þ
/D � /U

4
ð11:110Þ

The final expression for /f given in Eq. (11.109) was obtained by invoking

Eq. (11.107).

11.5.12 The Discretized Equation

Using this profile to approximate the interface values in the discretized one

dimensional convection diffusion equation (Eq. 11.16), the fluxes at the faces are

obtained as

_me/e ¼ /C �
1

4
/w þ

1

4
/E

� �

_me; 0k k � /E �
1

4
/EE þ

1

4
/C

� �

� _me; 0k k

_mw/w ¼ /C �
1

4
/E þ

1

4
/W

� �

_mw; 0k k � /W �
1

4
/WW þ

1

4
/C

� �

� _mw; 0k k

ð11:111Þ

Substitution of these fluxes in Eq. (11.16), the discretized form is transformed to

/C �
1

4
/W þ

1

4
/E

� �

_me; 0k k � /E �
1

4
/EE þ

1

4
/C

� �

� _me; 0k k

þ /C �
1

4
/E þ

1

4
/W

� �

_mw; 0k k � /W �
1

4
/WW þ

1

4
/C

� �

� _mw; 0k k

� C
/ S

dx

� �

e

/E � /Cð Þ � C
/ S

dx

� �

w

/C � /Wð Þ

	

¼ 0

ð11:112Þ

396 11 Discretization of the Convection Term

which can be modified into the form

aC/C þ aE/E þ aW/W þ aEE/EE þ aWW/WW ¼ 0 ð11:113Þ

where

aE ¼ FluxFe ¼ �C
/
e

Se

dxe
þ
1

4
_me; 0k k � � _me; 0k k �

1

4
_mw; 0k k

aW ¼ FluxFw ¼ �C
/
w

Sw

dxw
þ
1

4
_mw; 0k k � � _mw; 0k k �

1

4
_me; 0k k

aEE ¼ FluxFee ¼
1

4
� _me; 0k k aWW ¼ FluxFww ¼

1

4
� _mw; 0k k

aC ¼
X

f � nb Cð Þ

FluxCf

¼ C
/
e

Se

dxe
þ C

/
w

Sw

dxw
þ _me; 0k k �

1

4
� _me; 0k k þ _mw; 0k k �

1

4
� _mw; 0k k

¼ � aE þ aW þ aEE þ aWWð Þ þ _me þ _mwð Þ

ð11:114Þ

11.5.13 Truncation Error

Following a procedure similar to the one used with the central difference scheme,

the truncation error can be derived to be of O Dx2ð Þ, i.e.,

TE ¼ O Dx2
� �

ð11:115Þ

indicating second order accuracy.

11.5.14 Stability Analysis

To check the stability of the FROMM scheme, the discretized convective fluxes are

substituted in Eq. (11.75) resulting in the following RHSconvection term:

RHSconvection ¼ � /C �
1

4
/W þ

1

4
/E

� �

_me; 0k k þ /E �
1

4
/EE þ

1

4
/C

� �

� _me; 0k k

� /C �
1

4
/E þ

1

4
/W

� �

_mw; 0k k þ /W �
1

4
/WW þ

1

4
/C

� �

� _mw; 0k k

ð11:116Þ

11.5 Higher Order Upwind Schemes 397

The rate of change of this term with respect to /C is found as

@ RHSconvectionð Þ

@/C

¼ �
3

4
_me; 0k k �

3

4
_mw; 0k k �

1

4
_me þ _mwð Þ ð11:117Þ

which, for a constant velocity field, is always negative indicating a stable scheme,

but not for the general case when the velocity is varying.

11.5.15 Comparison of the Various Schemes

By comparing the stability of the various schemes presented so far, it is clear that

the most negative (with a coefficient of −3/2) is the one associated with the SOU

scheme. This is followed by the upwind (with a coefficient of −1), then FROMM

(with a coefficient of −3/4), after that QUICK(with a coefficient of −3/8), and

finally the central difference scheme (with a coefficient of zero, i.e., a neutral

sensitivity to changes in /C). The self corrective action discussed above is the sum

of both convection and diffusion contributions. The false diffusion produced by the

upwind scheme adds to its stability and even though its coefficient is −1, is the most

stable scheme. This is demonstrated by the profiles presented in Fig. 11.14, which

represent the solutions using the various numerical schemes of the

convection-diffusion equation over a domain of length L = 1 and subject to the

Dirichlet conditions of / ¼ 1 at x = 0 and / ¼ 0 at x = 1. While all solutions are

stable at low Péclet number (i.e., Pe = 1, Fig. 11.14a), the CD, FROMM, and

QUICK scheme solutions shown in Fig. 11.14b are seen to be wiggly at Pe = 10.

At low Pe, the accuracy of the CD and QUICK schemes is comparable and their

solutions are very close to the exact solution. The least accurate is the solution

produced by the first order upwind scheme. The solution of the FROMM scheme is

(a) (b)

Fig. 11.14 Stability of solutions generated using several convective schemes at two values of cell

Péclet number of a 1 and b 10

398 11 Discretization of the Convection Term

more accurate than the SOU scheme, which, in turn, is more accurate than the

upwind scheme solution, while both the FROMM and SOU scheme solutions are

less accurate than the QUICK scheme solution.

At high Pe, the behavior of the schemes changes. The only stable solutions are

the ones obtained by the upwind and SOU schemes with their profiles being almost

identical indicating that the SOU scheme is still highly diffusive. The CD scheme is

wiggly over most of the domain. The FROMM and QUICK schemes, on the other

hand, show wiggles but of smaller amplitudes. The reason for these wiggles is the

imposed boundary condition at exit from the domain. As the phenomenon is

convection dominated, it is affected by upstream values. At exit from the domain,

the solution faces an imposed value that it has to satisfy, resulting in a large

unexpected gradient causing the over and under shoots to occur. The diffusive

upwind and SOU schemes being based on upstream values only, are smooth and do

not show any sign of under/overshoots for all Pe values as the solution is inde-

pendent of the imposed value at exit. However the SOU scheme is expected to give

rise to oscillations (over/under shoots) in the presence of a high gradient in the

domain like in the presence of a shock wave.

11.5.16 Functional Relationships for Uniform

and Non-uniform Grids

The various interpolation profiles presented so far have been derived on a one

dimensional Cartesian grid. Along a curvilinear coordinate axis, the same functional

relationships can be used by replacing the Cartesian x-axis by a curvilinear f-axis,

as shown in Fig. 11.15. For uniform grid, the functional relationships remain

exactly the same, independent of whether a Cartesian or a curvilinear grid system is

used. For non-uniform grid, the independent variable x appearing in the functional

relationships should be replaced by the more general independent variable f, which

represents distance along the coordinate axis. If O is the origin (Fig. 11.15), then fU
for example is calculated as

C D
DDU

UU

f

v
f

O

Fig. 11.15 Notation on a curvilinear coordinate axis f

11.5 Higher Order Upwind Schemes 399

fU ¼ fUU þ fU � fUUð Þ

fUU ¼

ffi

xUU � xOð Þ2þ yUU � yOð Þ2þ zUU � zOð Þ2
q

fU � fUU ¼

ffi

xU � xUUð Þ2þ yU � yUUð Þ2þ zU � zUUð Þ2
q

ð11:118Þ

Therefore distances are calculated by subdividing the curvilinear line into a number

of straight lines and in general the following applies:

f1 � f2 ¼

ffi

x1 � x2ð Þ2þ y1 � y2ð Þ2þ z1 � z2ð Þ2
q

ð11:119Þ

Adopting a general coordinate system, the functional relationships for the various

schemes presented so far on uniform and non-uniform grids can be derived to be as

shown in Table 11.1.

11.6 Steady Two Dimensional Advection

The steady two dimensional advection equation is given by

r � qv/ð Þ ¼ 0: ð11:120Þ

Integrating over the two-dimensional element of volume VC shown in Fig. 11.16,

using the divergence theorem, and replacing the surface integral by a summation

over the element faces, Eq. (11.120) becomes

Table 11.1 Functional relationships for several convection schemes on uniform and non-uniform

grids

Scheme Uniform grid Non-uniform grid

Upwind /f ¼ /C /f ¼ /C

Downwind /f ¼ /D /f ¼ /D

CD /f ¼ 0:5 /C þ /Dð Þ
/f ¼ /C þ

/D � /C

fD � fC

� �

ff � fC
� �

SOU
/f ¼

3

2
/C �

1

2
/U /f ¼ /C þ

/C � /U

fC � fU

� �

ff � fC
� �

QUICK
/f ¼

3

4
/C �

1

8
/U þ

3

8
/D /f ¼ /U þ

ff � fU
� �

ff � fC
� �

fD � fUð Þ fD � fCð Þ
/D � /Uð Þ

þ
ff � fU
� �

ff � fD
� �

fC � fUð Þ fC � fDð Þ
/C � /Uð Þ

FROMM
/f ¼ /C þ

1

4
/D � /Uð Þ /f ¼ /C þ

ff � fC

fD � fU
/D � /Uð Þ

400 11 Discretization of the Convection Term

X

f� nb Cð Þ

Z

f

J/;C � dS

0

B
@

1

C
A ¼ 0 ð11:121Þ

Using a single Gaussian point for the face integral, the left hand side of Eq. (11.121)

is transformed to

X

f� nb Cð Þ

Z

f

J/;C � dS

0

B
@

1

C
A ¼

X

f� nb Cð Þ

J
/;C
f � Sf

 �

¼
X

f� nb Cð Þ

qv/ð Þf � Sf ð11:122Þ

Substitution of Eq. (11.122) in Eq. (11.121) yields

X

f � nb Cð Þ

qv/ð Þf � Sf ¼ 0 ð11:123Þ

The full discretized form of Eq. (11.120) over a Cartesian grid is obtained as

quDy/
zfflfflffl}|fflfflffl{

_me
0

@

1

A

e

� quDy/
zfflfflffl}|fflfflffl{

� _mw
0

@

1

A

w

þ qvDx/
zfflfflffl}|fflfflffl{

_mn
0

@

1

A

n

� qvDx/
zfflfflffl}|fflfflffl{

� _ms
0

@

1

A

s

¼ 0 ð11:124Þ

Sw
Se

Sn

Ss

EW

N

S

C

NW NE

SW SE

y()
C

x()
w

x()
e

y()
n

y()
s

x()
C

ew

n

s

x

y

Fig. 11.16 Notation for a two dimensional Cartesian grid system

11.6 Steady Two Dimensional Advection 401

Adopting an upwind scheme in each coordinate direction by treating the flow as

locally one dimensional, Eq. (11.124) becomes

aC/C þ aE/E þ aW/W þ aN/N þ aS/S ¼ 0 ð11:125Þ

with the coefficients given by

aE ¼FLuxFe ¼ � � _me; 0k k aW ¼ FLuxFw ¼ � � _mw; 0k k

aN ¼FLuxFn ¼ � � _mn; 0k k aS ¼ FLuxFs ¼ � � _ms; 0k k

aC ¼
X

f� nb Cð Þ

FluxCf ¼ _me; 0k k þ _mw; 0k k þ _mn; 0k k þ _mn; 0k k

¼ � aE þ aW þ aN þ aSð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

P

F�NB Cð Þ

aF

þ _me þ _mw þ _mn þ _ms

ð11:126Þ

If the QUICK scheme is used, the discretized equation is changed into

aC/C þ aE/E þ aW/W þ aEE/EE þ aWW/WW

þ aN/N þ aS/S þ aNN/NN þ aSS/SS ¼ 0
ð11:127Þ

with its coefficients computed as

aE ¼ FluxFe ¼ �
3

4
� _me; 0k k þ

3

8
_me; 0k k �

1

8
_mw; 0k k

aW ¼ FluxFw ¼ �
3

4
� _mw; 0k k þ

3

8
_mw; 0k k �

1

8
_me; 0k k

aEE ¼ FluxFee ¼
1

8
� _me; 0k k aWW ¼ FluxFww ¼

1

8
� _mw; 0k k

aN ¼ FluxFn ¼ �
3

4
� _mn; 0k k þ

3

8
_mn; 0k k �

1

8
_ms; 0k k

aS ¼ FluxFs ¼ �
3

4
� _ms; 0k k þ

3

8
_ms; 0k k �

1

8
_mn; 0k k

aNN ¼ FluxFnn ¼
1

8
� _mn; 0k k aSS ¼ FluxFss ¼

1

8
� _ms; 0k k

aC ¼
X

f� nb Cð Þ

FluxCf ¼ �
X

F�NB Cð Þ

aF þ _me þ _mw þ _mn þ _msð Þ

ð11:128Þ

Both discretized equations are used to solve the pure advection of a step profile in

an oblique velocity field problem. The physical domain is schematically depicted in

Fig. 11.17a. It represents a square domain with a property / being convected in a

field with a velocity v(1,1). The value of / is 1 on the left side of the domain and 0

402 11 Discretization of the Convection Term

on the bottom. In the absence of any diffusion, the exact solution is / ¼ 1 above the

diagonal shown in Fig. 11.17a and / ¼ 0 below it. Figure 11.17b compares the

exact profile at x = 0.5 with similar ones obtained numerically using the upwind and

QUICK schemes.

In comparison with the exact solution, the profile generated by the upwind

scheme is smeared and highly inaccurate but very smooth. This inaccuracy is due to

a new type of error known as cross-stream diffusion, which is caused by the

one-dimensional interpolation profile used, i.e., it is due to treating the flow as

locally one dimensional. The origin of cross-flow diffusion was identified by

Patankar [4] and Stubley [13] as being a multi-dimensional phenomenon. It occurs

only when the velocity field is not aligned with the grid. An approximate expression

for the cross flow diffusion has been given by de Vahl Davis and Mallinson [14] for

two dimensional flows as

C
/
false ¼

q vj jDxDy sin 2hð Þ

4 Dy sin3 hð Þ þ Dx cos3 hð Þ
� � ð11:129Þ

where vj j is the velocity magnitude and h the angle made by the velocity vector

with the x coordinate axis. This error can be reduced by using higher order inter-

polation schemes as demonstrated by the profile generated with the QUICK

scheme. The QUICK scheme profile is shown to be much sharper and more

accurate than the upwind profile however it is infected with over/undershoots near

the sharp gradient. As mentioned earlier this error is called the dispersion error,

which causes the generation of maxima/minima in the solution domain and is a

characteristic of all High Order (HO) schemes.

= 1

= 0

= 1

= 0

v

vv

v

L

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Exact solution

Upwind solution

QUICK solution

y

(a) (b)

Fig. 11.17 a Physical domain and b / profiles along the vertical centerline of the domain for pure

advection of a step profile in an oblique velocity field

11.6 Steady Two Dimensional Advection 403

11.6.1 Error Sources

Based on the discussions in the previous sections the sources of numerical error in

the discretization of the convective flux can be divided into numerical diffusion and

numerical dispersion.

Numerical diffusion, which causes smearing of sharp gradients (Fig. 11.18a) can

also be divided into stream wise and cross stream numerical diffusion. Stream wise

numerical diffusion can be reduced by increasing the order of the interpolation

profile, as shown in Fig. 11.18b, resulting in sharper profiles but inducing

under/overshoots in the presence of large gradients. Cross-stream numerical dif-

fusion, shown in Fig. 11.17b, is caused by the one dimensional nature of the

assumed profile and can be reduced either by interpolating in the direction of the

flow (i.e., multi-dimensional profiles) [15, 16] or by using one-dimensional higher

order interpolation profiles (Fig. 11.18b).

Numerical dispersion error manifests itself through oscillation in the generated

profile in the presence of large gradients rendering the solution unbounded. As

shown in Figs. 11.18b and 11.19 and the results reported in Fig. 11.14b, it exists

with all assumed interpolation profiles except the upwind scheme. It is the result of

the unphysical behavior of the assumed interpolation profile.

U

C
D

DD

f

U

C
D

DD

f

(a)

(b)

Fig. 11.18 a Smearing of sharp profiles by numerical diffusion and b wiggles in the computed

profile due to numerical dispersion

404 11 Discretization of the Convection Term

An evaluation of this error can be obtained by using a simplified version of

Eq. (11.73) in which diffusion and sources are neglecting. If further, velocity and

density fields are considered constants, Eq. (11.73) simplifies to

@/

@t
þ u

@/

@x
¼ 0 ð11:130Þ

Assuming an exact solution of the form

/ x; tð Þ ¼ / tð Þe jkx ð11:131Þ

where j is the imaginary number defined by j2 = −1. Then the exact value of the

gradient becomes

@

@x
/ x; tð Þ ¼ jk/ tð Þe jkx ¼ jk/ x; tð Þ: ð11:132Þ

With an interpolation profile, the numerical approximation of the gradient is written

in terms of / values at locations �MDx; �M þ 1ð ÞDx; . . .; Dx; 2Dx; . . .;NDx as

@

@x
/ x; tð Þ �

1

Dx

XN

n¼�M

an/ xþ nDx; tð Þ ¼
1

Dx

XN

n¼�M

an/ tð Þe jk xþnDxð Þ ð11:133Þ

which, upon substitution of the assumed solution, becomes

@

@x
/ x; tð Þ �

1

Dx

XN

n¼�M

an/ tð Þe jk xþnDxð Þ ¼
1

Dx

XN

n¼�M

ane
jknDx/ x; tð Þ: ð11:134Þ

By comparing the exact and numerical solutions, it is found that

k ¼
�j

Dx

XN

n¼�M

ane
jknDx: ð11:135Þ

U

C
D

DD

f

Fig. 11.19 Numerical dispersion error causing oscillations in the presence of a large gradient

11.6 Steady Two Dimensional Advection 405

In general k is an imaginary number that can be written as

k ¼ Re kð Þ þ j Im kð Þ ð11:136Þ

where Re and Im refer to the real and imaginary part, respectively. Inserting k in the

exact solution, the approximate solution is obtained as

/ x; tð Þ ¼ / tð Þe jkx

� / tð Þe j Re kð ÞþjIm kð Þ½ �x ¼ / tð Þ e jRe kð Þx
|fflfflffl{zfflfflffl}

Phase
Dispersion

e�Im kð Þx
|fflfflffl{zfflfflffl}

Amplitude
Dissipation

ð11:137Þ

Therefore, the numerical solution may include both diffusion (or dissipative) and

dispersion errors. If k is real, only dispersion error occurs. However if k is complex,

then both types of errorswill arise. Based on this analysis, the value of k for the upwind

and CD schemes can be checked. For the upwind scheme, the gradient is computed as

@/

@x
’

/e � /w

Dx
¼

/C � /W

Dx
¼

e jkx � ejk x�dxð Þ

Dx
/ x; tð Þ

¼
1� cos kdxð Þ þ j sin kdxð Þ

Dx
/ x; tð Þ

¼ jk/ x; tð Þ) k ¼
sin kdxð Þ

Dx
� j

1� cos kdxð Þ

Dx

ð11:138Þ

It is clear that the upwind scheme gives rise to both types of errors. For the central

difference scheme, the gradient is given by

@/

@x
’

/e � /w

Dx
¼

/E � /W

2Dx
¼

e jk xþdxð Þ � e jk x�dxð Þ

2Dx
/ x; tð Þ

¼
1

Dx
j sin kdxð Þ/ x; tð Þ ¼ jk/ x; tð Þ) k ¼

sin kdxð Þ

Dx

ð11:139Þ

Since k is imaginary, then only numerical dispersion error arises. This dispersion

error causes oscillations and under/overshoots in the solution.

Having developed a better understanding of numerical dispersion, it is desirable

to develop convective non-oscillatory schemes of high order of accuracy. This has

kept researchers busy for an extended period of time until the bounding of the

convective flux became understood. The development of such schemes will be

detailed in the next chapter.

11.7 High Order Schemes on Unstructured Grids

As for structured grids, the functional relationships of HO schemes are defined as

functions of the values at the U, C, and D nodes. While the C and D nodes are

readily available for any interior face (Fig. 11.20a), defining the U node is not

406 11 Discretization of the Convection Term

straightforward (Fig. 11.20b, c) in an unstructured grid. A simple way around this

difficulty is to simply redefine HO schemes in terms of the gradients at the C and

D nodes, or a combination of thereof. Another approach is to reconstruct a pseudo

U node, which will be detailed in the next chapter and used in developing HR

schemes.

11.7.1 Reformulating HO Schemes in Terms of Gradients

This approach relies on profiles developed over structured grids and is best

explained by rewriting the QUICK [2] scheme using the new terminology and then

generalizing results for any second order profile developed using three points. The

functional relationship of the QUICK [2] scheme can be written as

/f ¼ /C þ
1

4

/D � /U

2

� �

þ
1

4
/D � /Cð Þ ð11:140Þ

By approximating the gradients at the locations C and f in the dCF or f direction as

shown in Fig. 11.19, then the gradients at the centroids C and f are computed as

@/C

@f
¼

/D � /U

2Df

@/f

@f
¼

/D � /C

Df
ð11:141Þ

C F

d
CF

?U C D

f
?UCD

f d
CD

d
CD

(a)

(b) (c)

Fig. 11.20 a An element in an unstructured grid; the upwind node for HO and HR convection

schemes in unstructured grids when the velocity at the element face is b negative or c positive

11.7 High Order Schemes on Unstructured Grids 407

Using Eq. (11.141), Eq. (11.140) can be recast into

/f ¼ /C þ
1

2

/D � /C

2Df

� �
Df

2
þ
1

2

/D � /C

Df

� �
Df

2
ð11:142Þ

or

/f ¼ /C þ
1

2

@/C

@f

Df

2
þ
1

2

@/f

@f

Df

2
ð11:143Þ

Denoting the vector between C and f by dCf , in vector form the above equation

becomes

/f ¼ /C þ
1

2
r/C � dCf þ

1

2
r/f � dCf ð11:144Þ

which is quite suitable for use in the context of unstructured grids since it only

requires information related to gradient at the C and f locations. As long as the

computation of these gradients is second order accurate, the way they are calculated

becomes immaterial. This gives higher flexibility, as compared to the original

formulation, over unstructured grids. Furthermore, Eq. (11.144) suggests that a

profile based on three points can be written as

/f ¼ a/C þ br/C � dCf þ cr/f � dCf ð11:145Þ

where the constants a, b, and c are determined by equating /f to the profile

obtained over structured grids. The general discretized form of Eq. (11.145) can be

found once and then used in all subsequent derivations. This is derived by first

substituting the approximate values of the gradients using Eq. (11.141) to yield

/f ¼ a/C þ br/C � dCf þ cr/f � dCf

¼ a/C þ b
/D � /U

2Df

Df

2
þ c

/D � /C

2Df

Df

2

ð11:146Þ

and then after some algebraic manipulations the final form is obtained as

/f ¼ a�
c

2

 �

/C þ
b

4
þ

c

4

� �

/D �
b

4
/U ð11:147Þ

Using the above equation, the calculation of the a, b, and c coefficients is easily

accomplished. For example the SOU profile in terms of the gradients can be found

as follows:

408 11 Discretization of the Convection Term

/f ¼ a�
c

2

 �

/C þ
b

4
þ

c

2

� �

/D �
b

4
/U

¼
3

2
/C �

1

2
/U

9

>>=

>>;

)

b

4
¼

1

2
) b ¼ 2

b

4
þ

c

2
¼ 0) c ¼ �1

a�
c

2
¼

3

2
) a ¼ 1

8

>>>>>><

>>>>>>:

ð11:148Þ

Thus the equivalent form of the SOU scheme is given by

/f ¼ /C þ 2r/C �r/f

� �
� dCf ð11:149Þ

Following the same procedure, the gradient forms of the schemes presented earlier

are found to be

Upwind scheme : /f ¼ /C ð11:150Þ

Central difference : /f ¼ /C þr/f � dCf ð11:151Þ

SOU scheme : /f ¼ /C þ 2r/C �r/f

� �
� dCf ð11:152Þ

FROMM scheme : /f ¼ /C þr/C � dCf ð11:153Þ

QUICK scheme : /f ¼ /C þ
1

2
r/C þr/f

� �
� dCf ð11:154Þ

Downwind scheme : /f ¼ /C þ 2r/f � dCf ð11:155Þ

A full chapter was devoted to the calculation of the gradient at the element centroid

and faces and the reader is referred to Chap. 9 for the calculation of r/C and r/f .

11.8 The Deferred Correction Approach

The Deferred Correction (DC) procedure of Khosla and Rubin [17] is a compacting

technique that enables the use of HO schemes in codes initially written for low

order schemes without violating any of the stability rules. The approach is appli-

cable on any type of structured or unstructured grid systems. The method is based

on writing the convection flux at a cell face f calculated using a HO scheme as

_mf/
HO
f ¼ _mf/

U
f

|fflffl{zfflffl}

implicit

þ _mf /HO
f � /U

f

 �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

explicit

ð11:156Þ

where the superscripts U and HO refer to the Upwind and High Order scheme,

respectively. By expressing the convection flux in this way, the first term on the

right hand side (RHS) is implicitly evaluated by expressing it in terms of nodal

11.7 High Order Schemes on Unstructured Grids 409

values, while the second term on the RHS is evaluated explicitly using the latest

available / values, i.e., values from the previous iteration in an iterative solution

procedure. In terms of nodal values, Eq. (11.156) is expressed as

_mf/
HO
f ¼k _mf ; 0 k /C � k� _mf ; 0 k /F þ _mf/

HR
f � k _mf ; 0 k /Cþ k � _mf ; 0 k /F

 �

¼ FluxCf/C þ FluxFf/F
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

implicit

þFluxVf
|fflfflffl{zfflfflffl}

explicit

ð11:157Þ

where

FluxCf ¼k _mf ; 0 k

FluxFf ¼ � k � _mf ; 0 k

FluxVf ¼ _mf/
HR
f � FluxCf/C � FluxFf/F

ð11:158Þ

Substituting the convection flux given by Eqs. (11.157) and (11.158) in

Eq. (11.156) and rearranging, the final form of the algebraic equation is obtained as

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð11:159Þ

where

aF ¼ FluxFf ¼ � k� _mf ; 0 k

aC ¼
X

f� nb Cð Þ

FluxCf ¼
X

f� nb Cð Þ

k _mf ; 0 k¼
X

f� nb Cð Þ

_mf þ k� _mf ; 0k
� �

¼ �
X

F�NB Cð Þ

aF þ
X

f� nb Cð Þ

_mf

ð11:160Þ

and

bC ¼ Q
/
CVC �

X

f� nb Cð Þ

FluxVf

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

bDC
C

¼ Q
/
CVC �

X

f� nb Cð Þ

_mf /HO
f � /U

f

 �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bDC
C

ð11:161Þ

the bDCC represents the extra source term arising due to the DC procedure. Moreover,

the DC technique results in an equation for which the coefficient matrix is always

diagonally dominant since it is formed using the upwind scheme.

410 11 Discretization of the Convection Term

Example 2

Derive the coefficients for a deferred correction implementation of the

QUICK scheme

Solution

The conservation equation is discretized into the following algebraic equation

in every cell:

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC

For the quick scheme the value at a cell face is computed as

/f ¼
3

4
/C �

1

8
/U þ

3

8
/D

The coefficients of the algebraic system of equations in a deferred correction

approach are based on the UPWIND convection scheme. As such these

coefficients are given by

aF ¼ �k� _mf ; 0 k

aC ¼ �
X

F�NB Cð Þ

aF þ
X

f� nb Cð Þ

_mf

The difference between the UPWIND and QUICK schemes is explicitly

accounted for in the source term which is modified to

bC ¼ S
/
CVC �

X

f� nb Cð Þ

_mf

3

4
/C �

9

8
/U þ

3

8
/D

� �

This compacting procedure is simple to implement, however as the difference

between the cell face values calculated with the upwind scheme and that calculated

with the HO scheme becomes larger, the convergence rate diminishes.

11.9 Computational Pointers

11.9.1 uFVM

The assembly of the convection term in uFVM is performed in cfd-

AssembleConvectionTerm, where the assembly for the upwind scheme is performed

first for interior faces (cfdAssembleConvectionTermInterior), then for boundary faces

by looping over the various boundary patches (cfdAssembleConvectionTermInletBC,

cfdAssembleConvectionTermOutletBC, etc.).

11.8 The Deferred Correction Approach 411

The core of the interior faces assembly routine is shown in Listing 11.1. The

owner and neighbor indices for the interior faces are first retrieved and an upwind

index is defined (pos). Then the coefficients for the upwind scheme are computed.

The implementation of High Order schemes is performed after the upwind

assembly using the deferred correction method. The assembly of the QUICK

scheme (cfdAssembleConvectionTermDCQUICK) is shown in Listing 11.2.

iUpwind = pos.*iOwners + (1-pos).*iNeighbours;

%get the upwind gradient at the interior faces

phiGradCf = phiGrad(iUpwind,:,iComponent);

%interpolated gradient to interior faces

iOwners = [theMesh.faces(iFaces).iOwner]';

iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

pos = zeros(size(mdot_f));

pos(mdot_f>0)=1;

%

phiGradf =

cfdInterpolateGradientsFromElementsToInteriorFaces('Average:Corrected'

,phiGrad,phi);

rc = [theMesh.elements(iUpwind).centroid]';

rf = [theMesh.faces(iFaces).centroid]';

rCf = rf-rc;

%

corr = mdot_f .* dot(phiGradCf'+phiGradf',rCf')'*0.5;

%

theFluxes.FLUXTf(iFaces) = theFluxes.FLUXTf(iFaces) + corr;

Listing 11.2 Assembly of the QUICK scheme

theMdotName = ['Mdot' theFluidTag];

mdotField = cfdGetMeshField(theMdotName,'Faces');

mdot_f = mdotField.phi(iFaces);

iOwners = [theMesh.faces(iFaces).iOwner];

iNeighbours = [theMesh.faces(iFaces).iNeighbour];

pos = zeros(size(mdot_f));

pos((mdot_f>0))=1;

theFluxes.FLUXC1f(iFaces,1) = mdot_f.*pos;

theFluxes.FLUXC2f(iFaces,1) = mdot_f.*(1-pos);

theFluxes.FLUXVf(iFaces,1) = 0;

Listing 11.1 Convection scheme class declaration

412 11 Discretization of the Convection Term

The deferred correction value is computed for all interior faces as

_mf /HR
f � /UPWIND

f

 �

¼ _mf /C þ
1

2
r/C þr/f

� �
� dCf

|ffl{zffl}

QUICK

� /C
|{z}

UPWIND

0

B
B
@

1

C
C
A

¼ _mf

1

2
r/C þr/f

� �
� dCf

ð11:162Þ

11.9.2 OpenFOAM®

In OpenFOAM® [18] the convection term can be evaluated either explicitly using

fvc::div(mDot, phi) or implicitly via the fvm::div(mDot,phi) function. The fvc::

div(mDot,phi) returns a field in which the divergence of phi is evaluated in each

cell. The field is added to the right hand side of the system of equations. The fvm::

div(mDot,phi) returns the fvMatrix, a matrix of coefficients that are evaluated

based on the linearization of the face fluxes. The matrix of coefficients is then added

to the left hand side of the system of equations.

The scripts of fvm::div and fvc::div functions can be found in the file FOAM_

SRC/finiteVolume/finiteVolume/convectionSchemes/gaussConvectionScheme/

gaussConvectionSheme.C. As already stated, the convection class is based on the

type of interpolation scheme at the face and accordingly the declaration of the class

is performed as displayed in Listing 11.3.

In the above declaration the private member tinterpScheme_ describes the face

interpolation type on which the divergence operator is based. Additionally to the

above mentioned function, the gaussConvectionScheme class defines two auxil-

iary functions named interpolate and flux, as shown in Listing 11.4, which wrap

the surfaceInterpolation class used to perform interpolation from volume fields to

surface fields.

template<class Type>

class gaussConvectionScheme

:

 public fv::convectionScheme<Type>

{

 // Private data

 tmp<surfaceInterpolationScheme<Type> > tinterpScheme_;

Listing 11.3 Convection scheme class declaration

11.9 Computational Pointers 413

For the explicit discretization of convection, the operator defines a field where

the divergence of the cell face fluxes are stored. The code used by the fvc::div

operator for the explicit evaluation of the divergence of a field over a specific

volume is as follows (Listing 11.5):

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 return faceFlux*interpolate(faceFlux, vf);

}

template<class Type>

tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >

gaussConvectionScheme<Type>::interpolate

(

 const surfaceScalarField&,

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 return tinterpScheme_().interpolate(vf);

}

template<class Type>

tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >

gaussConvectionScheme<Type>::flux

(

 const surfaceScalarField& faceFlux,

Listing 11.4 The gaussConvectionScheme class that defines the interpolate and flux functions

template<class Type>

tmp<GeometricField<Type, fvPatchField, volMesh> >

gaussConvectionScheme<Type>::fvcDiv

(

 const surfaceScalarField& faceFlux,

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 tmp<GeometricField<Type, fvPatchField, volMesh> > tConvection

 (

 fvc::surfaceIntegrate(flux(faceFlux, vf))

);

 tConvection().rename

 (

 "convection(" + faceFlux.name() + ',' + vf.name() + ')'

);

 return tConvection;

}

Listing 11.5 Script used for the explicit evaluation of the divergence operator

414 11 Discretization of the Convection Term

The calculation of the divergence of a field involves the following three steps:

1. Evaluating values at the faces of the element.

2. Multiplying the value at the face with the mass flux at the face (i.e., faceFlux).

3. Summing the contributions of all cell faces and dividing the sum by the cell

volume.

First the face value of the generic variable vf is evaluated. Then the estimate

obtained is multiplied by the corresponding face mass flux value using auxiliary

functions. Finally the sum over the faces of the cell is performed using the

surfaceIntegrate function. The implementation of this function can be found

under FOAM_SRC/finiteVolume/finiteVolume/fvc/fvcSurfaceIntegrate.C and

its script is given in Listing 11.6.

template<class Type>

void surfaceIntegrate

(

 Field<Type>& ivf,

 const GeometricField<Type, fvsPatchField, surfaceMesh>& ssf

)

{

 const fvMesh& mesh = ssf.mesh();

 const labelUList& owner = mesh.owner();

 const labelUList& neighbour = mesh.neighbour();

 const Field<Type>& issf = ssf;

 forAll(owner, facei)

 {

 ivf[owner[facei]] += issf[facei];

 ivf[neighbour[facei]] -= issf[facei];

 }

 forAll(mesh.boundary(), patchi)

 {

 const labelUList& pFaceCells =

 mesh.boundary()[patchi].faceCells();

 const fvsPatchField<Type>& pssf = ssf.boundaryField()[patchi];

 forAll(mesh.boundary()[patchi], facei)

 {

 ivf[pFaceCells[facei]] += pssf[facei];

 }

 }

 ivf /= mesh.V();

}

Listing 11.6 Script of the surfaceIntegrate function

11.9 Computational Pointers 415

The implicit discretization of the convection term is performed using the fvm::

div operator. It does so by implicitly expressing the dependent variable value at the

face as function of the owner and neighbor values according to

/f ¼ -
|{z}

owner
coefficient

/O þ 1� -ð Þ
|fflfflfflffl{zfflfflfflffl}

neighbour

coefficient

/N ð11:163Þ

where subscriptsO and N refer to owner and neighbor, respectively, and- represents

the weight assigned to the contribution of the owner to the value at the face. The way

the weight is calculated will be described in the next chapter. The coefficients of /O

and /N are then used to assemble the matrix of coefficients. The script used to

perform implicit discretization of the divergence operator reads (Listing 11.7)

where in a first place an fvMatrix is defined and then, as shown in Listing 11.8, it is

properly filled with the corresponding coefficients as

template<class Type>

tmp<fvMatrix<Type> >

gaussConvectionScheme<Type>::fvmDiv

(

 const surfaceScalarField& faceFlux,

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 tmp<surfaceScalarField> tweights = tinterpScheme_().weights(vf);

 const surfaceScalarField& weights = tweights();

 tmp<fvMatrix<Type> > tfvm

 (

 new fvMatrix<Type>

 (

 vf,

 faceFlux.dimensions()*vf.dimensions()

)

);

 fvMatrix<Type>& fvm = tfvm();

Listing 11.7 Implicit calculation of the divergence of a field

 fvm.lower() = -weights.internalField()*faceFlux.internalField();

 fvm.upper() = fvm.lower() + faceFlux.internalField();

 fvm.negSumDiag();

Listing 11.8 Properly assembling the weights contributions to coefficients

416 11 Discretization of the Convection Term

reverseLinear

clippedLinear<type>

limiterBlended<type>

downwind<type> harmonic<scalar>

CoBlended<type> fixedBlended<type>

surfaceInterpolationScheme<type>

limitWith<type>

midPoint<type>

fieldScheme<type>

outletStabilised<type>

surfaceInterpolationScheme<GType>

limitedSurfaceInterpolati

onScheme<type>

linear<type>

skewCorrected<type>

weighted<type>

localMin<type>

localMax<type>

surfaceInterpolationScheme<scalar>

localBlended<type>

refCount

<GType> <scalar>

Fig. 11.21 UML Graph for the surfaceInterpolationScheme class, where a box with a black border

denotes a documented struct or class for which not all inheritance/containment relations are shown

where the upper and lower vectors are now defined using the interpolation weights

denoted tweights, as described above. Further, Eq. (11.163) indicates that the

implementation of the implicit operator in OpenFOAM® is based on the so called

“downwind” discretization (as explained later) in which all schemes are discretized

in a fully implicit manner independently of the order of accuracy and without using

a deferred correction approach. This technique is also similar to the downwind

weighing factor method that will be described in the next chapter.

As described above for both explicit and implicit discretization methods, the

divergence operator for the calculation of the convection term is based on the face

interpolation and the calculation of the weights. OpenFOAM®performs these tasks

in a base class denoted by surfaceInterpolationScheme. From this base class a

large number of interpolation schemes are derived and implemented, as shown in

the UML graph depicted in Fig. 11.21. For better understanding, additional details

about this class are given next.

11.9 Computational Pointers 417

As mentioned above, the fvc::div and fvm::div operators use the

surfaceInterpolationScheme class to perform the needed tasks for each discreti-

zation method. In this class, the functions used to calculate the values at the faces

(vf) and the weights are displayed in Listings 11.9 and 11.10, respectively, and

where tinterpScheme_ (Listing 11.10) is a surfaceInterpolationScheme object.

and

The definition of the class can be found in FOAM_SRC/finiteVolume/

interpolation/surfaceInterpolation/surfaceInterpolationScheme/Surface Inter-

polationScheme.H where the two main functions (Listings 11.11 and 11.12),

necessary for the calculation of the divergence operator are defined.

template<class Type>

tmp<fvMatrix<Type> >

gaussConvectionScheme<Type>::fvmDiv

(

 const surfaceScalarField& faceFlux,

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 tmp<surfaceScalarField> tweights = tinterpScheme_().weights(vf);

 const surfaceScalarField& weights = tweights();

Listing 11.10 The function used to calculate the weights

template<class Type>

tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >

gaussConvectionScheme<Type>::interpolate

(

 const surfaceScalarField&,

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 return tinterpScheme_().interpolate(vf);

}

Listing 11.9 The interpolation function where the value at the face (vf) is computed

//- Return the face-interpolate of the given cell field

// with explicit correction

virtual tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >

interpolate(const GeometricField<Type, fvPatchField, volMesh>&) const;

Listing 11.11 Definition of the main function for face interpolation

418 11 Discretization of the Convection Term

The interpolate function in Listing 11.9 (here OpenFOAM® adopts the same

function name but for a different implementation) is used with the explicit operator

fvc::div and is defined as a normal virtual function meaning that a derived class

may or may not adopt it. For most of the derived classes this function is not selected

and the definition in the surfaceInterpolationScheme class is based on a modified

form of Eq. (11.163) written as

/f ¼ -
|{z}

owner
coefficient

/O þ 1� -ð Þ
|fflfflfflffl{zfflfflfflffl}

neighbour

coefficient

/N ¼ /N þ - /O � /Nð Þ ð11:164Þ

To implement Eq. (11.164), OpenFOAM® uses auxiliary functions with names

similar to the ones used earlier in the surfaceInterpolationScheme class. First an

interpolate class with a single argument is instantiated from the divergence

operator. Then inside the interpolate function a new interpolate function with two

arguments is introduced along with a new weights function, using the script shown

in Listing 11.13.

The new interpolate function (the one with the two arguments) compute the

face value according to Eq. (11.164). The script used to perform this task is given

by (Listing 11.14)

//- Return the interpolation weighting factors for the given field

virtual tmp<surfaceScalarField> weights

(

 const GeometricField<Type, fvPatchField, volMesh>&

) const = 0;

Listing 11.12 Definition of the main function for weight factors calculation

template<class Type>

tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >

surfaceInterpolationScheme<Type>::interpolate

(

 const GeometricField<Type, fvPatchField, volMesh>& vf

) const

{

 tmp<GeometricField<Type, fvsPatchField, surfaceMesh> > tsf

 = interpolate(vf, weights(vf));

Listing 11.13 The new interpolate function with two arguments

11.9 Computational Pointers 419

where lambda represents the weight - in Eq. (11.164).

As briefly introduced above, the weights function is now a pure virtual function

and it defines the weights of the interpolation. Contrary to the interpolate function,

the weights function being pure virtual has to be redefined for every derived class

(C++ requirement). Looking again at Fig. 11.20, all derived classes have to define

the weights function. The redefinition must be performed by constructing the

proper weights corresponding to the scheme adopted.

For the case of the central difference scheme the weights function is defined in a

class named linear<Type> with its script given by (Listing 11.15),

//- Return the face-interpolate of the given cell field

// with the given weighting factors

template<class Type>

tmp<GeometricField<Type, fvsPatchField, surfaceMesh> >

surfaceInterpolationScheme<Type>::interpolate

(

 const GeometricField<Type, fvPatchField, volMesh>& vf,

 const tmp<surfaceScalarField>& tlambdas

)

{

 const surfaceScalarField& lambdas = tlambdas();

 const Field<Type>& vfi = vf.internalField();

 const scalarField& lambda = lambdas.internalField();

 const fvMesh& mesh = vf.mesh();

 const labelUList& P = mesh.owner();

 const labelUList& N = mesh.neighbour();

 GeometricField<Type, fvsPatchField, surfaceMesh>& sf = tsf();

 Field<Type>& sfi = sf.internalField();

 for (register label fi=0; fi<P.size(); fi++)

 {

 sfi[fi] = lambda[fi]*(vfi[P[fi]] - vfi[N[fi]]) + vfi[N[fi]];

 }

Listing 11.14 Script used to compute face values according to Eq. (11.164)

420 11 Discretization of the Convection Term

where surfaceInterpolation::weights() returns the distance weights based on the

mesh, thus defining the central difference discretization.

Another example is the downwind scheme defined by Eq. 11.44, and for which

the weights function is given by (Listing 11.16)

where the neg function returns 0 for positive fluxes and 1 for negative ones, which

is the opposite of the pos function used with the upwind scheme.

11.10 Closure

The chapter dealt with the discretization of the convection term. The difficulties

associated with the use of a linear symmetrical profile were discussed and remedies

suggested. The upwind scheme, although stable and generates physically plausible

results, is highly diffusive smearing sharp gradients and producing results that are

first order accurate. Upwind-biased HO convection schemes were shown to

improve accuracy but to produce a new type of error known as the dispersion error,

which manifest itself in the solution through wiggles, oscillations, and over/under

shoots across sharp gradients. No attempt was made to address this error in this

chapter. Among other issues, this will form the subject of the next chapter that

further expands on the discretization of the convection term.

//Member Functions

//- Return the interpolation weighting factors

virtual tmp<surfaceScalarField> weights

(

 const GeometricField<Type, fvPatchField, volMesh>&

) const

{

 return this->mesh().surfaceInterpolation::weights();

}

Listing 11.15 Script for calculating the weights of the central difference scheme

//- Return the interpolation weighting factors

virtual tmp<surfaceScalarField> weights

(

 const GeometricField<Type, fvPatchField, volMesh>&

) const

{

 return neg(faceFlux_);

}

Listing 11.16 Script for calculating the weights of the downwind scheme

11.9 Computational Pointers 421

11.11 Exercises

Exercise 1

(a) Find third order accurate expressions, i.e., O Dx3ð Þ, of /U , /C, and /D by

using a Taylor series expansion about the face f for the one dimensional

uniform grid shown in Fig. 11.22.

(b) Derive a high-order scheme using a linear combination a/U þ b/C þ c/Dð Þ
of these expressions in such a way as to eliminate the first and second order

derivatives from the final expression for /f with the additional condition that

a + b + c = 1.

(c) Prove that the scheme you just derived is third order accurate in its repre-

sentation of the convection operator.

Exercise 2

The QUICK scheme fits a quadratic function to three nodal values to estimate the

value of a scalar at a cell face, according to

/f ¼ �
1

8
/U þ

3

4
/C þ

3

8
/D

(a) For a uniform cartesian two dimensional grid write down the expressions for

/e, /w, /n and /s in terms of the values at neighboring nodes, assuming that

the velocity components u and v are known, constant, and positive.

(b) Neglecting diffusion and assuming a uniform source Q/ per unit volume,

derive an algebraic discretization of the / scalar conservation equation given

by

r: qv/ð Þ ¼ Q/

f

Flow direction

x

x

y
UUU C D DD

f

Fig. 11.22 A uniform one dimensional grid system

422 11 Discretization of the Convection Term

in the form

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC

assuming that a cell is of unit depth, with the area of its e, w, n, and s faces

denoted by Se, Sw, Sn, and Ss, respectively, and its volume by VC.

(c) Splitting the QUICK expression for /f into the form “Upwind differenc-

ing” + “deferred correction” so that the coefficients become similar to those of

the upwind scheme, then moving the deferred correction to the source term,

write an expression for this source term.

Exercise 3

In a steady two dimensional situation, the variable / is governed by

r: qv/ð Þ ¼ Q/

where q ¼ 1, Q/ ¼ 15� 3/.

The flow field is such that v = li + 4j everywhere and Dx ¼ Dy ¼ 1. The domain

is discretized using the orthogonal grid shown in Fig. 11.23 with the values of /

given at the inlet boundaries as shown in the figure. Using the finite volume

approach and the Second Order Upwind convection scheme to

(a) derive the algebraic equations for the four control volumes, and

(b) compute the values of /1, /2, /3 and /4 using 3 iterations of a simple

Gauss-Siedel type solver.

v = 1i + 4 j

= 50

= 10

y

2 y

2 xx

1 2

3 4

Fig. 11.23 A two dimensional configuration discretized using a non-uniform Cartesian grid for

the advection of a scalar / in the presence of a source term

11.11 Exercises 423

Exercise 4

Consider the steady transport of a scalar / in the domain shown in Fig. 11.24. The

governing conservation equation is given by

r: qv/ð Þ ¼ 0

where q ¼ 1, v = 2yx2i − 2xy2j, and Dx ¼ Dy ¼ 1=3.

(a) Using the UPWIND scheme, discretize the equation over the computational

domain and find the value of / at each element centroid.

(b) Using the QUICK scheme, applied via a deferred correction approach, dis-

cretize the equation over the computational domain and find the value of / at

each element centroid.

Exercise 5 (OpenFOAM®)

(a) Using Doxygen [19], list all derived classes of the

surfaceInterpolationScheme<Type> class (these classes implement the virtual

interpolate function).

(b) Describe the weights function of the class midPoint<Type>, downwind

<Type> and linear<Type>.

(c) Write a class that inherits the surfaceInterpolationScheme<Type> class and

implements the interpolate function using a geometric average.

= 10

x

y
1 2 3

4 5 6

7 98

= 0

= 0 = 0

= 0

x

y

inlet

outlet

= 0

Fig. 11.24 Convection of a two dimensional scalar field

424 11 Discretization of the Convection Term

Exercise 6 (OpenFOAM®, uFVM)

The advection of a step profile in an oblique velocity field, v = 2i + j, shown in

Fig. 11.25 is governed by

r : qv/ð Þ ¼ 0

For different grid sizes, setup the problem and solve it in OpenFOAM® and uFVM

using the following advection schemes assuming unit dimensions in x and

y directions, and compare results with the exact solution q ¼ 1ð Þ:

(a) UPWIND

(b) QUICK

(c) SOU

Exercise 7 (OpenFOAM®, uFVM)

The Smith-Hutton test governed by

r : qv/ð Þ ¼ 0

and illustrated in Fig. 11.26, involves the pure advection of a step profile in a

rotational velocity field described as

v ¼ 2y 1� x2
� �

i� 2x 1� y2
� �

j

= 1

= 0

v

Fig. 11.25 Advection of a step profile in an oblique velocity field

11.11 Exercises 425

For different grid sizes, solve the test in openFOAM® and uFVM using the

following advection schemes, and compare results with the exact solution q ¼ 1ð Þ:

(a) UPWIND

(b) QUICK

(c) SOU

References

1. Spalding DB (1972) A novel finite difference formulation for differential expressions

involving both first and second derivatives. Int J Numer Meth Eng 4:551–559

2. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic

upstream interpolation. Comput Methods Appl Mech Eng 19:59–98

3. Raithby GD (1976) A critical evaluation of upstream differencing applied to problems

involving fluid flow. Comput Methods Appl Mech Eng 9:75–103

4. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing

Corporation, McGraw-Hill

5. Patankar SV, Baliga BR (1978) A new finite-difference scheme for parabolic differential

equations. Numer Heat Transf 1:27–37

6. Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential

equations by finite differences. Commun Pure Appl Math 5:243–255

7. Moukalled F, Darwish M (2012) Transient schemes for capturing interfaces of free-surface

flows. Numer Heat Transf Part B Fundam 61(3):171–203

8. Darwish M, Moukalled F (2006) Convective schemes for capturing interfaces of free-surface

flows on unstructured grids. Numer Heat Transf Part B Fundam 49(1):19–42

9. Leonard BP (1979) A survey of finite difference of opinion on numerical muddling of the

incomprehensible defective confusion equation. In: Hughes TJR (ed) Finite element methods

for convection dominated flows, AMD-34, ASME

= 10 = 0

= 0

inlet outlet(0,0)(-1,0) (1,0)

(0,1)

= 0

Fig. 11.26 Advection of a step profile in a two dimensional rotational velocity field

426 11 Discretization of the Convection Term

10. Shyy W (1985) A study of finite difference approximations to steady state convection

dominate flow problems. J Comput Phys 57:415–438

11. Leonard BP, Leschziner MA, McGuirk J (1978) Third order finite-difference method for

steady two-dimensional convection. In: Taylor C, Morgan K, Brebbia CA (eds) Numerical

methods in laminar and turbulent flows. Pentech Press, London, pp 807–819

12. Fromm JE (1968) A method for reducing dispersion in convective difference schemes.

J Comput Phys 3:176–189

13. Stubley GD, Raithby GD, Strong AB (1980) Proposal for a new discrete method based on an

assessment of discretization errors. Numerical Heat Transfer 3:411–428

14. de Vahl Davis G, Mallinson GD (1972) False diffusion in numerical fluid mechanics.

University of New South Wales, School of Mechanical and Industrial Engineering (Report

1972/FMT/1)

15. Raithby GD (1976) Skew upstream differencing schemes for problems involving fluid flow.

Comput Methods Appl Mech Eng 9:153–164

16. Darwish M, Moukalled F (1996) A new route for building bounded skew-upwind schemes.

Comput Methods Appl Mech Eng 129:221–233

17. Khosla PK, Rubin SG (1974) A diagonally dominant second-order accurate implicit scheme.

Comput Fluids 2:207–209

18. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

19. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

References 427

Chapter 12

High Resolution Schemes

Abstract This chapter continues the development of convection schemes and

discusses approaches by which boundedness is enforced on High Order

(HO) convection schemes to produce High Resolution (HR) schemes. The recipe

for a HR scheme is shown to involve a combination of a HO profile and a

Convection Boundedness Criterion (CBC) ensuring that no oscillatory behavior is

experienced in the solution. The Normalized Variable Formulation (NVF) and the

Total Variation Diminishing (TVD) frameworks for developing HR schemes are

introduced. Even though the two approaches look very different they are shown to

be almost identical. The Normalized Variable Diagram (NVD) and Sweby’s (or

r � w) diagram for visualizing HR schemes in the NVF and TVD formulation,

respectively, are presented. The functional relationships for several HR schemes are

specified in the context of both the NVF and TVD formulations. In addition to the

Deferred Correction (DC) procedure discussed in the previous chapter, two addi-

tional techniques for the implementation of HO and HR schemes in structured and

unstructured grids are introduced, namely the Downwind Weighing Factor

(DWF) method and the Normalized Weighing Factor (NWF) method.

12.1 The Normalized Variable Formulation (NVF)

The Normalized Variable Formulation (NVF) is a framework for the description

and analysis of High Resolution (HR) schemes. It was introduced by Leonard [1–3]

and gained popularity with the Gaskell and Lau simplified Convection

Boundedness Criterion (CBC) [4]. The Normalized Variable Diagram (NVD) is a

useful tool for the development and analysis of HO and HR schemes.

The NVF is a face formulation procedure based on locally normalizing the

dependent variable for which the value /f at face f is to be constructed. The

approach relies on the upwind /Cð Þ; downwind /Dð Þ; and far upwind /Uð Þ node
values, illustrated in Fig. 12.1, to express the normalized variable as

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_12

429

~/ ¼
/� /U

/D � /U

ð12:1Þ

With this normalization the relation

/f ¼ f /U ;/C;/Dð Þ ð12:2Þ

UUUCDDD f

v
f

UU U C D DDf

v
f

DD

D

C

U

UU

DD

D

C

U

UU

D

C

U

U C Df

v
f

(a)

(b)

Fig. 12.1 A schematic showing a the U, C, and D node locations used in describing convection
schemes on structured grids b the C, D and extrapolated U nodes for an unstructured grid

430 12 High Resolution Schemes

is transformed to

~/f ¼ f ~/C

� �

ð12:3Þ

since the normalized values of /D and /U become equal to

~/U ¼ 0 and ~/D ¼ 1 ð12:4Þ

while the normalized value of /C
~/C

� �

becomes an indicator of smoothness for the

/ field. Values of ~/C between 0 and 1 0\~/C\1
� �

; represent a monotonic profile

while values of ~/C that are less than 0 ~/C\0
� �

or greater than 1 ~/C[1
� �

indicate an extremum at C. In addition, values of ~/C � 0 or ~/C � 1 indicate a

gradient jump. These configurations are illustrated in Fig. 12.2.

Normalization is also useful for transforming the functional relationships of HO

schemes into linear relations between ~/f and ~/C: For example, the normalized

functional relationships of the HO schemes presented in the previous chapter are as

follows:

Upwind: /f ¼ /C) ~/f ¼
~/C ð12:5Þ

Central difference: /f ¼
1

2
/C þ /Dð Þ) ~/f ¼

1

2
1þ ~/C

� �

ð12:6Þ

Second order upwind: /f ¼
3

2
/C �

1

2
/U) ~/f ¼

3

2
~/C

ð12:7Þ

FROMM: /f ¼ /C þ
/D � /U

4
) ~/f ¼

~/C þ
1

4
ð12:8Þ

QUICK: /f ¼
3

8
/D þ

3

4
/C �

1

8
/U) ~/f ¼

3

8
þ
3

4
~/C ð12:9Þ

Downwind: /f ¼ /D) ~/f ¼ 1 ð12:10Þ

Thus, for all HO schemes that are based on three nodal values, ~/f can always be

expressed as a linear function of ~/C; i.e.,
~/f ¼ ‘~/C þ k; where the values of ‘ and

k depend on the scheme. Therefore, if ~/f is plotted as a function of ~/C in the

~/C;
~/f

� �

plane, then the functional relationships of these schemes will appear as

straight lines on the plot. The resultant plot is denoted by the Normalized Variable

Diagram (NVD). An NVD on which the functional relationships of the above

schemes are plotted is displayed in Fig. 12.3.

12.1 The Normalized Variable Formulation (NVF) 431

D

f

CU D

f

CU

C
< 0

U
= 0

D
= 1

f

D

f

CUD

f

CU

C
> 0

U
= 0

D
= 1f

D

f

CUD

f

CU

C
= 1

U
= 0

D
= 1

f

D

f

CU D

f

CU
C

= 0

U
= 0

D
= 1

f

D

f

CU D

f

CU

C

U
= 0

D
= 1

f

(a)

(b)

(c)

(d)

(e)

Fig. 12.2 Schematics of the situations when a ~/C\0; b ~/C[1; c ~/C ¼ 1; d ~/C ¼ 0; and

e 0\~/C\1

432 12 High Resolution Schemes

Example 1

Derive the NVF form of the QUICK scheme.

Solution

Starting with

/f ¼
3

8
/D þ

3

4
/C �

1

8
/U

Applying normalization to both sides yields

/f � /U

/D � /U

¼

3

8
/D þ

3

4
/C �

1

8
/U

� �

� /U

/D � /U

noting that

3

8
þ
3

4
�
1

8
¼

3

8
þ
6

8
�
1

8
¼

8

8
¼ 1

the following is obtained:

U
PW

IN
D

DOWNWIND

S
O

U

QUIC
K

FR
O
M

M

CENTRAL

f

C

3/8

1/4

1/2

3/4

1

0

1/2

1

Fig. 12.3 Some HO schemes written in normalized form and plotted on a Normalized Variable
Diagram (NVD)

12.1 The Normalized Variable Formulation (NVF) 433

/f � /U

/D � /Uð Þ
¼

3

8
/D � /Uð Þ þ

3

4
/C � /Uð Þ �

1

8
/U � /Uð Þ

/D � /Uð Þ

¼
3

8
þ
3

4

/C � /U

/D � /U

� �

thus

~/f ¼
3

8
þ
3

4
~/C

The NVD reveals that except for the first order upwind and downwind schemes,

all second order and third order schemes pass through the point Q 0:5; 0:75ð Þ (for
uniform grids). In fact, it can be shown that for a scheme to be second order

accurate it has to pass through Q. If, in addition, its slope at Q is 0.75 then it will be

third order accurate (e.g., QUICK). The upwind scheme was shown to be very

diffusive, while the downwind scheme very compressive (anti-diffusive). Therefore,

from the NVD it can graphically be deduced that any scheme whose functional

relationship is close to the upwind scheme is diffusive while anyone close to the

downwind scheme is compressive.

Example 2

Show that for schemes developed over uniform cartesian grids to be second

order accurate their functional relationships should pass through the point

Q 1=2; 3=4ð Þ in the NVD.

Solution

Second order schemes involve three points. Expanding /C;/U ; and /D in

terms of /f ; the following is obtained:

/C ¼ /f �
1

2
Dx/0

f þ O Dx2
� �

/U ¼ /f �
3

2
Dx/0

f þ O Dx2
� �

/D ¼ /f þ
1

2
Dx/0

f þ O Dx2
� �

The value of /f is generally obtained as a combination of the values at the

three locations as

a/C þ b/U þ c/D ¼ aþ bþ cð Þ/f þ �
1

2
a�

3

2
bþ

1

2
c

� �

Dx/0
f þ O Dx2

� �

434 12 High Resolution Schemes

The value of /f will be second order accurate if

�
1

2
a�

3

2
bþ

1

2
c

� �

¼ 0) b ¼
c� a

3

A first order approximation of /f is obtained as

aþ bþ cð Þ/f ¼ a/C þ b/U þ c/D) /f

¼
a

aþ bþ cð Þ
/C þ

b

aþ bþ cð Þ
/U

þ
c

aþ bþ cð Þ
/D

) aþ bþ cð Þ~/f ¼ a~/C þ c

For the above approximation to be second order accurate the following

should be true:

aþ
c� a

3
þ c

� �

~/f ¼ a~/C þ c)
2aþ 4c

3

� �

~/f ¼ a~/C þ c

The above equality will be satisfied for any value of a and c, and conse-

quently any second order scheme, when ~/f ¼ 3=4 and ~/C ¼ 1=2; in which

case

2aþ 4c

3

� �

~/f ¼ a~/C þ c)
2aþ 4c

3

� �
3

4
¼

1

2
aþ c)

1

2
aþ c ¼

1

2
aþ c

Therefore all second order schemes pass through the point Q 1=2; 3=4ð Þ:

The HO schemes presented in the previous chapter were shown to drastically

decrease the truncation error suffered by the first order upwind scheme, while

remaining stable. Still, one of the main shortcomings of these schemes is their

unboundedness, i.e., their tendency to produce under/overshoots and even oscilla-

tions near sudden jumps or steep gradients in the convected variable (see Figs. 11.14b

and 11.17). While in some applications small overshoots and/or oscillations may be

tolerable, in others, they can lead to catastrophic results, such as in turbulent flow

calculations where the convected variable can be the viscosity coefficient.

This oscillatory behavior near steep gradients characterizes all HO linear con-

vective schemes. In fact these schemes are not monotonous in the sense that they

produce local maxima and/or minima, i.e., they are not extrema preserving. For a

scheme to be extrema preserving, maxima in the solution must be non-increasing and

minima non-decreasing (the scheme should not produce over/under shoots). In fact it

12.1 The Normalized Variable Formulation (NVF) 435

was demonstrated by Godunov and Ryabenki [5] that any linear numerical scheme

that is monotone can be at most first-order accurate. This implies that all higher order

linear schemes cannot bemonotonicity preserving, and that to construct monotonicity

preserving schemes, non-linear limiter functions should be used. With this under-

standing, work on developing high order oscillation-free convection schemes

resulted in several techniques [6–10] that can be grouped under two categories. In the

first approach [11–13] a limited anti-diffusive flux is added to a first-order upwind

scheme in such a way that the resulting scheme is capable of resolving sharp gradients

without oscillations. In the second category, a smoothing diffusive flux is introduced

into an unbounded HO scheme to damp unphysical oscillations [14–17].

Due to their multi-step nature and the difficulty in balancing the two fluxes, flux

blending techniques tend to be very expensive numerically. This is why in this book

two approaches for developing HR schemes falling under the flux limiter method

will be presented. The first follows a composite procedure whereby high order

schemes are combined with bounded low order ones, with the switch between them

being controlled by a certain criterion [18]. The second method is based on adding

to a diffusive first order upwind term an anti-diffusive flux multiplied by a flux

limiter. In this case, the resulting HR schemes are also denoted by Total Variational

Diminishing (TVD) schemes as explained in a later section.

The composite schemes approach will be presented first within the framework of

the Normalized Variable Formulation (NVF) and will be visualized on a

Normalized Variable Diagram (NVD). Therefore the NVF and NVD are first

described. The use of the NVD will be instrumental for the definition of a criterion

that ensures the boundedness of any high order interpolation scheme.

12.2 The Convection Boundedness Criterion (CBC)

A numerical scheme is expected to preserve the physical properties of the phe-

nomenon it is trying to describe or approximate. Therefore the conditions that a

bounded convection scheme should satisfy can best be understood by analyzing the

physical properties of convection. Since convection transports fluid properties from

upstream to downstream, then approximation to convection should possess this

transportive attribute. Thus, numerical convection schemes should be upwind

biased or else they will lack the convective stability. Therefore in addition to the

values at the nodes straddling the interface /C and /D, the value at the far upwind

node, i.e., /U , is also important in analyzing advective schemes. Values at nodes

farther away are less important. In the NVF presented above, values are normalized

such that the effect of /U is also considered. This is extremely useful as it helps

identifying the conditions for which the numerical convection scheme is monotone.

Whereas Spekreise’s [19] and Barth and Jespersen [20] definition of a monotone

scheme (or bounded scheme) involves all neighbors surrounding the face, Leonard

[21] and Gaskel and Lau [4] based their definition of monotonicity only on the

neighboring points along the local coordinate system such that

436 12 High Resolution Schemes

min /C;/Dð Þ�/f �max /C;/Dð Þ ð12:11Þ

Normalizing, the above condition becomes

min ~/C; 1
� �

� ~/f �max ~/C; 1
� �

ð12:12Þ

The Convection Boundedness Criterion (CBC) for implicit steady state flow

calculation developed by Gaskell and Lau states that for a scheme to have the

boundedness property its functional relationship should be continuous, should be

bounded from below by ~/C and from above by unity, and should pass through the

points (0, 0) and (1, 1), in the monotonic range 0\~/C\1
� �

; and for ~/C[1 or

~/C\0; the functional relationship f ~/C

� �

should be equal to ~/C: The above

conditions illustrated on an NVD in Fig. 12.4, can be mathematically formulated as

~/f ¼

f ~/C

� �

continuous

f ~/C

� �

¼ 1 if ~/C ¼ 1

f ~/C

� �

with ~/C\f ~/C

� �

\1 if 0\~/C\1

f ~/C

� �

¼ 0 if ~/C ¼ 0

f ~/C

� �

¼ ~/C if ~/C\0 or ~/C[1

8

>>>>>>>>>><

>>>>>>>>>>:

ð12:13Þ

The Convection Boundedness Criterion is quite intuitive and can be interpreted

by referring to Figs. 12.4 and 12.5. When /C is in a monotonic profile the inter-

polation profile at the cell surface should not yield any new extremum. Thus it is

constrained by the / values at the nodes straddling the face. As the value of /C get

closer to /D while still in the monotonic regime, the value of /f will also tend

toward /D: When /C becomes equal to /D; then /f also becomes equal to /D and

DOWNWIND

U
PW

IN
D

f

C

1

0

1/ 2

3 / 4

1

Fig. 12.4 The Convection
Boundedness Criterion
(CBC) on an NVD Diagram
showing the region

where ~/f is bounded

12.2 The Convection Boundedness Criterion (CBC) 437

C
f

u v f
0

1

C f

u

v f
0

1

C fu

v f

0

1

Fig. 12.5 Values of ~/f and

the Convection Boundedness
Criterion

thus the condition that ~/C;
~/f

� �

passes through the point (1, 1). When the value of

/C is such that ~/C[1; /f is assigned the upwind value, i.e., /C: This has the

effect of yielding the largest outflow condition possible while fulfilling the condi-

tion that /f is bounded by the nodes straddling the cell face. This behavior means

that any undue oscillation will be damped since /C will tend to a lower value

because outflow is larger than inflow in these conditions.

Therefore if there is no external physical mechanism to yield the extrema

(a source term for example) the extrema will die out. A similar mechanism takes

place when ~/C\0: However as /C gets closer to /U coming from the

non-monotonic region, /f will be equal to the upwind value /C until /C ¼ /U

implying the condition that the profile of /f passes through the point (0, 0).

When ~/C\0 or ~/C[1 the solution will be in a region where convection is

dominant and the upwind approximation will be an excellent one.

12.3 High Resolution (HR) Schemes

Constructing a bounded HO scheme, i.e., a HR scheme, using the NVD is relatively

a simple exercise. Any high order base scheme can be bounded using an ad-hoc set

of curves.

438 12 High Resolution Schemes

To construct a HR scheme, the monotonic profile in the range 0� ~/C � 1 should

pass through the points (0, 0) and (1, 1), while remaining within the upper triangular

shaded region on theNVD (Fig. 12.4). On the other hand, in the non-monotonic range,

i.e., ~/C\0 and/or ~/C[1; the profile should follow the upwind profile. A number of

well-knownHigh-Resolution schemes built in this manner are illustrated in Fig. 12.6.

For improved convergence behavior, any composite HR scheme should avoid

hard angles at its profile connection points as well as at its horizontal and vertical

profiles. For example with the SMART scheme, which is constructed using the

QUICK scheme, the convergence can be substantially improved by a minor

modification to the vertical portion of its composite profile using ~/f ¼ 3~/C in the

region 0� ~/C � 1=6: For the STOIC schemes the modification is applied in the

0� ~/C � 1=5 region. Also the horizontal portion of the composite profile for both

SMART and STOIC may be slightly modified to further improve convergence. For

example, one such modification is to impose a linear profile for 9=10� ~/f � 1;

which corresponds to 7=10� ~/C � 1 altering the last portion of the profile to be

given by ~/f ¼
~/C=3þ 2=3: Other modifications are also possible (e.g., one may

decide to modify the horizontal portion of the composite profile in the

0:95� ~/f � 1 region). A similar modification can also be made for the bounded CD

scheme to improve its convergence characteristics. The modified NVDs of

SMART, STOIC, and SUPERBEE schemes are shown in Fig. 12.7.

Mathematically, the functional relationships of the composite HR schemes

displayed in Figs. 12.6 and 12.7 are given by

MINMOD ~/f ¼

3

2
~/C 0� ~/C �

1

2

1

2
~/C þ

1

2

1

2
� ~/C � 1

~/C
elsewhere

8

>>>>><

>>>>>:

ð12:14Þ

Bounded CD ~/f ¼

1

2
~/C þ

1

2
0� ~/C � 1

~/C
elsewhere

8

><

>:

ð12:15Þ

OSHER ~/f ¼

3

2
~/C 0� ~/C �

2

3

1
2

3
� ~/C � 1

~/C elsewhere

8

>>><

>>>:

ð12:16Þ

SMART ~/f ¼

3

4
~/C þ

3

8
0� ~/C �

5

6

1 5

6
� ~/C � 1

~/C elsewhere

8

>>>><

>>>>:

ð12:17Þ

12.3 High Resolution (HR) Schemes 439

MINMODf

C

1

0

3/ 4

1/ 2 1

f

BOUNDED CD

C
1/ 2

1

1

3/ 4

1/ 2

0

SMARTf

C

1

11/ 2

3 / 4

3 / 8

0

STOIC
f

C

1

11/ 2

1/ 2

3 / 4

0

MUSCL
f

C

1

11/ 2

1/ 4

3 / 4

0

OSHERf

C

1

11/ 2

3 / 4

0

SUPERBEEf

C

1/ 2

3 / 4

1

1

0

2 / 3

1/ 2

Fig. 12.6 NVD of several HR schemes

SMART
f

C

1

11/ 2

3 / 4

1/ 2

1/ 6

0

7 / 10

9 / 10

STOIC
f

C

1

11/ 2

3 / 4

0

7 / 10

9 / 10

1/ 5

3 / 5

SUPERBEEf

C
1/ 2

3 / 4

1

1

0

1/ 3

2 / 3

2 / 3

Fig. 12.7 NVD of the modified SMART, STOIC, and SUPERBEE schemes

440 12 High Resolution Schemes

Modified SMART ~/f ¼

3~/C 0� ~/C �
1

6

3

4
~/C þ

3

8

1

6
� ~/C �

7

10

1

3
~/C þ

2

3

7

10
� ~/C � 1

~/C
elsewhere

8

>>>>>>>>>><

>>>>>>>>>>:

ð12:18Þ

STOIC ~/f ¼

1

2
~/C þ

1

2
0� ~/C �

1

2

3

4
~/C þ

3

8

1

2
� ~/C �

5

6

1
5

6
� ~/C � 1

~/C elsewhere

8

>>>>>>>>><

>>>>>>>>>:

ð12:19Þ

Modified STOIC ~/f ¼

3~/C 0� ~/C �
1

5
1

2
~/C þ

1

2

1

5
� ~/C �

1

2

3

4
~/C þ

3

8

1

2
� ~/C �

7

10

1

3
~/C þ

2

3

7

10
� ~/C � 1

~/C elsewhere

8

>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

ð12:20Þ

MUSCL ~/f ¼

2~/C 0� ~/C �
1

4

~/C þ
1

4

1

4
� ~/C �

3

4

1 3

4
� ~/C � 1

~/C elsewhere

8

>>>>>>>>><

>>>>>>>>>:

ð12:21Þ

SUPERBEE ~/f ¼

1

2
þ
1

2
~/C 0� ~/C �

1

2

3

2
~/C

1

2
� ~/C �

2

3

1
2

3
� ~/C � 1

~/C elsewhere

8

>>>>>>>><

>>>>>>>>:

ð12:22Þ

12.3 High Resolution (HR) Schemes 441

Modified SUPERBEE ~/f ¼

2~/C 0� ~/C �
1

3
1

2
~/C þ

1

2

1

3
� ~/C �

1

2

3

2
~/C

1

2
� ~/C �

2

3

1
2

3
� ~/C � 1

~/C elsewhere

8

>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð12:23Þ

Many other schemes were developed following this methodology such as CLAM

[22], UTOPIA [23], SHARP [8], and ULTRA-SHARP [24, 25], to cite a few.

Example 3

Derive the NVF form of the SMART scheme.

Solution

Starting with the QUICK scheme, we have

~/f ;QUICK ¼
3

4
~/C þ

3

8

On the NVF diagram this looks like the black line. In order to enforce the

CBC, the interpolation profile of the QUICK scheme is modified to follow the

blue lines as shown in the figure below

QUIC
K

f

C

1

11/ 2

3 / 4

3 / 8

0

3
C

3

4

C
+
3

8

1

3
C

+
2

3

C

442 12 High Resolution Schemes

Thus the bounded QUICK scheme, now called the SMART scheme, is

written as

~/f ¼

3~/C 0� ~/C �
1

6
3

4
~/C þ

3

8

1

6
� ~/C �

7

10

1

3
~/C þ

2

3

7

10
� ~/C � 1

~/C elsewhere

8

>>>>>>>>><

>>>>>>>>>:

12.4 The TVD Framework

Another popular approach for developing HR convective schemes is the Total

Variation Diminishing (TVD) framework. In solving numerically an advection

partial differential equation for a variable / of the form presented so far, Total

Variation (TV) is defined as

TV ¼
X

i

/iþ1 � /i

�
�

�
� ð12:24Þ

where i represents the index of a node in the spatial solution domain. A numerical

method is said to be Total Variation Diminishing (TVD) if the TV in the solution

does not increase with time. Mathematically this is equivalent to

TV /tþDt
� �

� TV /tð Þ ð12:25Þ

In his seminal paper, Harten [26] proved that a monotone scheme is TVD, and a

TVD scheme is monotonicity preserving. A monotonicity preserving scheme does

not create any new local extrema within the solution domain, i.e., the value of a local

minimum is non-decreasing, and the value of a local maximum is non-increasing.

It is not intended here to give full mathematical derivations of the TVD

approach. Rather, the intention is simply to explain the methodology for con-

structing TVD schemes. The approach used is based on the work of Sweby [27].

Consider the unsteady one-dimensional convection equation (11.73), which was

used in the previous chapter to study the stability of convection schemes. In the

absence of diffusion and sources this equation reduces to

@ q/ð Þ

@t
¼ �

@ qu/ð Þ

@x
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

RHS

ð12:26Þ

The general discretized form of the RHS term based on a five point stencil can be

written as

12.3 High Resolution (HR) Schemes 443

RHS ¼ �a /C � /Uð Þ þ b /D � /Cð Þ ð12:27Þ

where U, C, and D represent the far upstream, upstream, and downstream nodes

shown in Fig. 12.1a. Sweby and Harten proved that a sufficient condition for a

numerical scheme presented by Eq. (12.27) to be TVD or monotone is for the

coefficients per unit mass flow rate to satisfy the inequalities

a� 0; b� 0; and 0� aþ b� 1 ð12:28Þ

where the expressions for the coefficients a and b depend on the adopted convection

scheme. Referring back to the convection schemes presented above, it was found

that the first order upwind scheme is very diffusive while the second order central

difference scheme is highly dispersive. The need is for a scheme that lies some-

where between the upwind and the central difference schemes, i.e., a scheme that

has the stability of the upwind scheme and the accuracy of the central difference

scheme. Such a scheme can be constructed starting from the central difference

scheme written as

/f ¼
1

2
/D þ /Cð Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

CD

¼ /C
|{z}

upwind

þ
1

2
/D � /Cð Þ

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

anti�diffusive flux

ð12:29Þ

where the notation used earlier is adopted with C denoting the upwind node, D the

downwind node, and f the value at the cell face straddling the C and D nodes. As

implied by Eq. (12.29), the central difference scheme can be written as the sum of

the upwind scheme and a flux which is supposed to be anti-diffusive since the CD

scheme is dispersive. This flux is desirable as it makes the scheme second order

accurate. The side effect is the unphysical oscillation it creates due to the decrease

in numerical diffusion. Therefore a better approach would be one in which a portion

of this anti-diffusive flux is added to the upwind scheme in such a way that the

second order accuracy is preserved without creating any unphysical oscillations.

One way to do that is to multiply this flux by a limiter function (also called limiter

or flux limiter) that will prevent its excessive use in regions where oscillations

might occur (e.g., across large gradients) while maximizing its contribution in

smooth areas. Denoting such a limiter by w rð Þ; where r is usually taken as the ratio

of two consecutive gradients, /f is calculated as

CWWW E EE

w e

m
w w

m
e e

Fig. 12.8 Convective fluxes in a one dimensional domain

444 12 High Resolution Schemes

/f ¼ /C þ
1

2
w rf
� �

/D � /Cð Þwith rf ¼
/C � /U

/D � /C

ð12:30Þ

where U is the node upwind to C and D the node downwind to C. In order to

preserve the sign of the anti-diffusive flux, w rf
� �

is taken to be nonnegative.

Therefore developing a TVD scheme reduces to finding limiters that will make the

numerical scheme TVD or monotone. The conditions that these limiters have to

satisfy in order for the convection scheme to be monotonicity preserving are

derived next by invoking the flux limiter in the discretization of the RHS of

Eq. (12.27) via the interface values given by Eq. (12.30).

Considering the one dimensional domain shown in Fig. 12.8, the convective

fluxes at the element faces are given by

_me/e ¼ /C þ
1

2
w rþe
� �

/E � /Cð Þ

 �

_me; 0k k

� /E þ
1

2
w r�e
� �

/C � /Eð Þ

 �

� _me; 0k k

_mw/w ¼ /C þ
1

2
w rþw
� �

/W � /Cð Þ

 �

_mw; 0k k

� /W þ
1

2
w r�w
� �

/C � /Wð Þ

 �

� _mw; 0k k

rþe ¼
/C � /W

/E � /C

; r�e ¼
/E � /EE

/C � /E

;

rþw ¼
/C � /E

/W � /C

; r�w ¼
/W � /WW

/C � /W

ð12:31Þ

To simplify the derivations to follow, a positive velocity is assumed. Under these

conditions, the discretized form of the RHS of Eq. (12.24) is obtained as

RHS ¼ � _me /C þ
1

2
w rþe
� �

/E � /Cð Þ

 �

� _mw /W þ
1

2
w r�w
� �

/C � /Wð Þ

 �

ð12:32Þ

while the continuity equation is given by

_me þ _mw ¼ 0) _mw ¼ � _me ð12:33Þ

Invoking the continuity constraint, the RHS equation can be rearranged into

RHS ¼ � _me 1þ
1

2
w rþe
� � /E � /Cð Þ

/C � /Wð Þ
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

1=rþe

�
1

2
w r�w
� �

2

6
6
6
4

3

7
7
7
5

/C � /Wð Þ

¼ � _me 1þ
1

2

w rþe
� �

rþe
�
1

2
w r�w
� �

 �

/C � /Wð Þ

ð12:34Þ

12.4 The TVD Framework 445

Comparing Eq. (12.34) with Eq. (12.27), the values of a and b are found to be

a ¼ 1þ
1

2

w rþe
� �

rþe
�
1

2
w r�w
� �

b ¼ 0 ð12:35Þ

For the scheme to be TVD, the following should hold [Eq. (12.28)]:

0� 1þ
1

2

w rþe
� �

rþe
�
1

2
w r�w
� �

� 1 ð12:36Þ

which can be expanded to

1þ
1

2

w rð Þ

r
�
1

2
w rð Þ� 0)

1

2

w rð Þ

r
�
1

2
w rð Þ� � 1) w rð Þ �

w rð Þ

r
� 2

1þ
1

2

w rð Þ

r
�
1

2
w rð Þ� 1)

1

2

w rð Þ

r
�
1

2
w rð Þ� 0) w rð Þ �

w rð Þ

r
� 0

ð12:37Þ

or simply

0�w rð Þ �
w rð Þ

r
� 2 ð12:38Þ

If in addition to having w rð Þ� 0; a condition is imposed whereby w rð Þ ¼ 0 for

negative values of r, then the above conditions will be satisfied if

w rð Þ� 2 and w rð Þ� 2r ð12:39Þ

Combining all conditions that the limiter has to satisfy to produce a TVD

scheme, a criterion similar to the CBC can be developed and is given by

w rð Þ ¼
min 2r; 2ð Þ r[0

0 r� 0

�

ð12:40Þ

TVD Monotonicity Region

2

0

2r

r

r()

Fig. 12.9 TVD monotonicity region on a r � w diagram

446 12 High Resolution Schemes

As depicted in Fig. 12.9, these conditions can be drawn on a r � w diagram,

which is also denoted by Sweby’s diagram, to show the TVD monotonicity region

(blue region in the plot). Using this diagram, it is simple to grasp the formulation of

TVD schemes. Any flux limiter w rð Þ formulated to lie within the TVD monoto-

nicity region yields a TVD scheme. Sweby’s diagram is very similar to the NVD

presented above.

The limiters for all schemes presented so far can be derived and their functional

relationships drawn on Sweby’s diagram. In specific the limiter of the CD is easily

obtained from Eq. (12.29) as wCD rf
� �

¼ 1 while that of the SOU scheme can be

computed as follows:

/f ¼ /C þ
1

2
wSOU rf

� �
/D � /Cð Þ ¼

3

2
/C �

1

2
/U

) wSOU rf
� �

¼
/C � /U

/D � /C

¼ rf

ð12:41Þ

The limiters for both schemes are displayed in Fig. 12.10.

Sweby [27] also noted that because w rf
� �

¼ 0 for rf\0; second order accuracy

is lost at extrema of the solution. The SOU and CD schemes are second order

schemes and by inspecting Fig. 12.10 it is clearly seen that both of them pass

through the point (1, 1). In addition, as demonstrated in the work of Van Leer [28],

any second order scheme can be written as a weighted average of the CD and SOU

schemes. Thus for a scheme to be second order its limiter has to pass through the

point (1, 1) and, as shown in Fig. 12.10, its limiter should lie in the region bordered

by the CD and SOU limiters (blue region in the plot). The corresponding region on

an NVD is shown in Fig. 12.11.

r

0

r()

2r r

1

2

1

UPWIND

SO
U

CD

DOWNWIND

Fig. 12.10 Limiters of SOU and CD schemes on a r � w diagram

12.4 The TVD Framework 447

Adopting this approach and following the procedure used with the SOU scheme,

the functional relationships of the limiters for many of the HO schemes presented

above can be easily computed and are given by

Upwind w rf
� �

¼ 0

Downwind w rf
� �

¼ 2

FROMM w rf
� �

¼
1þ rf

2
SOU w rf

� �
¼ rf

CD w rf
� �

¼ 1

QUICK w rf
� �

¼
3þ rf

4

8

>>>>>>>>><

>>>>>>>>>:

ð12:42Þ

The FROMM scheme is the average of the CD and SOU scheme. Its functional

relationship is mathematically written as

/f ¼
1

2

/C þ /D

2
þ
3

2
/C �

1

2
/U

� �

¼ /C þ
/D � /U

4

/f ¼ /C þ
1

2
w rf
� �

/D � /Cð Þ

9

>=

>;

) w rf
� �

¼
1þ rf

2

ð12:43Þ

The functional relationships of these limiters are displayed in Fig. 12.12. With

the exception of the upwind scheme limiter all others are seen not to be totally lying

within the monotonicity region. As such these schemes are unbounded.

By limiting the w rf
� �

functions of the various schemes given above to lie within

the monotonicity region displayed in Fig. 12.9, these HO schemes are transformed

into HR TVD schemes. Many TVD schemes have been developed in that manner

and the limiters for a number of them are shown in Fig. 12.13a–d with the func-

tional relationships of their limiters given by

f

C

1

0

1/ 2 1

S
O

U

CD

3/4

1/2

Fig. 12.11 Region on an
NVD equivalent to the TVD
monotonicity region on a
Sweby’s diagram for second
order schemes

448 12 High Resolution Schemes

FROMM

CD

SO
U

QUICK

UPWIND

DOWNWIND

0

1

2

1

r
f() 2r

f

r
f

1/2

3/4

Fig. 12.12 High Order schemes and TVD monotonicity region on Sweby’s diagram

MINMOD

2

1

1

0

r
f()

r
f

2r
f r

f

OSHER

2

1

1

0

r
f()

2r
f

r
f

r
f

SUPERBEE

2

1

1

0

r
f()

r
f

r
f

2r
f

MUSCL

2

1

1

0

Van Leer

r
f()

r
f

2r
f

r
f

(a) (b)

(c) (d)

Fig. 12.13 Limiters of the a MINMOD, b OSHER, c MUSCL, and d SUPERBEE TVD schemes
on a Sweby diagram

12.4 The TVD Framework 449

SUPERBEE w rf
� �

¼ max 0;min 1; 2rf
� �

;min 2; rf
� �� �

MINMOD w rf
� �

¼ max 0;min 1; rf
� �� �

OSHER w rf
� �

¼ max 0;min 2; rf
� �� �

Van Leer w rf
� �

¼
rf þ rf

�
�

�
�

1þ rf
�
�

�
�

MUSCL w rf
� �

¼ max 0;min 2rf ; rf þ 1
� �

=2; 2
� �� �

8

>>>>>>>>><

>>>>>>>>>:

ð12:44Þ

12.5 The NVF-TVD Relation

Both NVF and TVD formulations enforce Boundedness following different

approaches, which can be demonstrated to be somewhat related. This is done by

first deriving a relation between rf and ~/C; then comparing the NVF-CBC

(Eq. 12.13) with the TVD-CBC (Eq. 12.40), and finally presenting the general

transformation that allows the functional relationship of any TVD scheme to be

written in the NVF framework and vice versa.

The relation between rf and ~/C can be easily derived starting with the definition

of rf and is obtained as

rf ¼
/C � /U

/D � /C

¼
/C � /Uð Þ= /D � /Uð Þ

/D � /U þ /U � /Cð Þ= /D � /Uð Þ

¼
~/C

1� ~/C

) ~/C ¼
rf

1þ rf

ð12:45Þ

Using Eq. (12.45) a number of linear schemes can be compared in the two

frameworks. The limiter w rf
� �

¼ 0; which represents the Upwind scheme in the

TVD formulation is also equivalent to the upwind scheme in the NVF formulation

(i.e., ~/f ¼
~/C). This follows from the fact that w rf

� �
¼ 0) /f ¼ /U) ~/f ¼

~/C:

The upwind scheme is imposed as a limit for the TVD-CBC when rf � 0; the
equivalent condition in the NVF-CBC is obtained as

rf � 0)
~/C

1� ~/C

� 0)
~/C � 0

~/C[1

(

ð12:46Þ

These also represent the conditions for imposing the Upwind scheme in the

NVF-CBC.

Moreover, on the NVF-CBC, the functional relationship has to increase

monotonically in the region 0� ~/C � 1: On Sweby’s diagram the region extends

over the interval 0� rf\þ1: Both regions represent the same interval as dem-

onstrated by the following relation:

450 12 High Resolution Schemes

~/C ! 1) rf ¼
~/C

1� ~/C

! þ1 ð12:47Þ

Further, for the TVD-CBC condition

w rf
� �

� 2 ð12:48Þ

the equivalent condition in the NVF-CBC can be obtained as follows:

w rf
� �

¼ 2

/f ¼ /C þ
1

2
w rf
� �

/D � /Cð Þ

9

=

;
) /f ¼ /C þ /D � /Cð Þ ¼ /D) ~/f ¼ 1

ð12:49Þ

Thus,

w rf
� �

� 2) ~/f � 1 ð12:50Þ

which is the condition that should be satisfied by the NVF-CBC. The last condition

imposed by the TVD-CBC on w rf
� �

is given by

w rf
� �

� 2rf ð12:51Þ

The equivalent condition using the NVF-CBC is obtained as

w rf
� �

¼ 2rf

/f ¼ /C þ
1

2
w rf
� �

/D � /Cð Þ

9

=

;
) /f ¼ /C þ

/C � /U

/D � /C

/D � /Cð Þ ¼ 2/C � /U

ð12:52Þ

which can be normalized to yield

/f ¼ 2/C � /U) /f � /U ¼ 2/C � 2/U) ~/f ¼ 2~/C ð12:53Þ

This is more restrictive than the NVF-CBC and is the only difference between

the two formulations. Based on this condition, the TVD-CBC and the modified

NVF-CBC would look as shown in Fig. 12.14a with the monotonicity region

reduced to the upwind line and the blue area. While the modified TVD-CBC and

the NVF-CBC (i.e., the condition ~/C ¼ 0 on the NVF-CBC corresponds to rf ¼ 0

on the TVD-CBC) would look as shown in Fig. 12.14b. Regarding second order

accuracy, it was stated that for a TVD scheme to be second order accurate it has to

pass through the point (1, 1), i.e., w 1ð Þ ¼ 1: The equivalent values using the NVF

are found as

12.5 The NVF-TVD Relation 451

rf ¼ 1)
~/C

1� ~/C

¼ 1) ~/C ¼ 1� ~/C) ~/C ¼ 0:5

/f ¼ /C þ
1

2
w 1ð Þ /D � /Cð Þ ¼ /C þ

1

2
/D � /Cð Þ ¼

1

2
/D þ /Cð Þ

) /f � /U ¼
1

2
/D � /U þ /C � /Uð Þ) ~/f ¼

1

2
1þ ~/C

� �

¼ 0:75

ð12:54Þ

r

0

r()

2r r

1

2

1

UPWIND

SO
U

CD

DOWNWIND

DOWNWIND

U
PW

IN
D

f

C

1

0

1/ 2

3 / 4

1

S
O

U

CD

f
=

2
C

DOWNWIND

U
PW

IN
D

f

C

1

0

1/ 2

3 / 4

1
S

O
U

CD

r
0

r()

r

1

2

1

UPWIND

CD

DOWNWINDS
O

U

DOWNWIND

U
PW

IN
D

f

C

1

0

1/ 2

3 / 4

1r
0

r()

2r r

1

2

1

UPWIND

SO
U

CD

DOWNWIND

S
O

U

CD

r f
(

)
=

2
r C

(a)

(b)

(c)

Fig. 12.14 a TVD-CBC on Sweby and Normalized Variable Diagrams. b NVF-CBC on Sweby
and Normalized Variable Diagrams. c TVD-CBC on Sweby and Normalized Variable Diagrams
for second order schemes

452 12 High Resolution Schemes

which is exactly the point Q(0.5, 0.75) found in the NFV. As stated earlier, Van

Leer demonstrated that any second order scheme can be written as a weighted

average of the CD and SOU schemes. Therefore its functional relationship should

lie between the functional relationships of the CD and SOU schemes with their

TVD-CBC monotonicity regions reduced to the upwind line and the blue area

shown on a Sweby diagram and an NVD in Fig. 12.14c.

The above procedure can be generalized to transform any TVD scheme into an

equivalent NVF scheme and vice versa. Starting with a scheme in the NVF

framework, the value at the face /f is expressed as

/f ¼ f ~/C

� �

/D � /Uð Þ þ /U with ~/C ¼
/C � /U

/D � /U

ð12:55Þ

whereas for a TVD scheme /f is given by

/f ¼ /C þ
1

2
w rf
� �

/D � /Cð Þ with rf ¼
/C � /U

/D � /C

ð12:56Þ

Equating the above two /f equations, yields

/f ¼ /C þ
1

2
w rf
� �

/D � /Cð Þ ¼ f ~/C

� �

/D � /Uð Þ þ /U ð12:57Þ

Thus

w rf
� � /D � /Cð Þ

/D � /Uð Þ
¼ 2

f ~/C

� �

/D � /Uð Þ

/D � /Uð Þ
� 2

/C � /Uð Þ

/D � /Uð Þ
¼ 2 f ~/C

� �

� ~/C

� �

ð12:58Þ

The term on the left hand side of the above equation can be modified to

w rf
� � /D � /Cð Þ

/D � /Uð Þ
¼ w rf

� � /D � /U � /C þ /Uð Þ

/D � /Uð Þ
¼ w rf

� �
1� ~/C

� �

ð12:59Þ

leading to

w rf
� �

1� ~/C

� �

¼ 2
f ~/C

� �

/D � /Uð Þ � /C � /Uð Þ

/D � /Uð Þ
¼ w rf

� �
¼ 2

f ~/C

� �

� ~/C

1� ~/C

ð12:60Þ

Equation (12.60) may also be written as

f ~/C

� �

¼
w rf
� �

þ 2rf

2 1þ rf
� � ð12:61Þ

12.5 The NVF-TVD Relation 453

As an example, the functional relationship of the UPWIND Scheme in the NVF

framework is ~/f ¼
~/C; its TVD limiter is found as

~/f ¼
~/C) w rf

� �
¼ 2

f ~/C

� �

� ~/C

1� ~/C

¼ 2
~/C � ~/C

1� ~/C

¼ 0 ð12:62Þ

The TVD limiter for the DOWNWIND Scheme is w rf
� �

¼ 2; its NVF functional

relationship can be obtained as

~/f ¼ f ~/C

� �

¼
w rf
� �

þ 2rf

2 1þ rf
� � ¼

2þ 2rf

2 1þ rf
� � ¼ 1 ð12:63Þ

Knowing the NVF form of the SOU scheme, its TVD limiter is computed as

~/f ¼
3

2
~/C) w rf

� �
¼ 2

3

2
~/C � ~/C

� �

1� ~/C

� � ¼ 2
0:5~/C

� �

1� ~/C

� � ¼
~/C

1� ~/C

� � ¼ rf ð12:64Þ

The same is applicable to other schemes.

Example 4

Starting with the TVD-Van Leer formulation, derive the NVF-Van Leer

scheme.

Solution

The TVD-Van Leer limiter is given by

w rf
� �

¼
rf þ rf

�
�

�
�

1þ rf
�
�

�
�
:

Noting that

rf ¼
~/C

1� ~/C

its TVD functional relationship is transformed to

w rf
� �

¼

~/C

1� ~/C

þ
~/C

1� ~/C

�
�
�
�
�

�
�
�
�
�

1þ
~/C

1� ~/C

�
�
�
�
�

�
�
�
�
�

¼

1� ~/C

�
�

�
�

1� ~/C

~/C þ ~/C

�
�

�
�

1� ~/C

�
�

�
�þ ~/C

�
�

�
�

454 12 High Resolution Schemes

Combining the above equation with the TVD relationship in normalized

form, which is given by,

~/f ¼
~/C þ

1

2
w rf
� �

1� ~/C

� �

yields

~/f ¼
~/C þ

1

2
w rf
� �

1� ~/C

� �

¼ ~/C þ
1

2

1� ~/C

�
�

�
�

1� ~/C

~/C þ ~/C

�
�

�
�

1� ~/C

�
�

�
�þ ~/C

�
�

�
�

1� ~/C

� �

The following three cases are identified:

a. Case 1: 0\~/C\1

In this case ~/C

�
�

�
� ¼ ~/C and 1� ~/C

�
�

�
� ¼ 1� ~/C; thus

w rf
� �

¼ 2~/C

~/f ¼
~/C þ

1

2
w rf
� �

1� ~/C

� �

9

=

;

~/f ¼
~/C þ ~/C 1� ~/C

� �

¼ 2~/C � ~/C

� �2

b. Case 2: ~/C[1

In this case ~/C

�
�

�
� ¼ ~/C and 1� ~/C

�
�

�
� ¼ ~/C � 1; thus

w rf
� �

¼ 0

~/f ¼
~/C þ

1

2
w rf
� �

1� ~/C

� �

9

=

;

~/f ¼
~/C

c. Case 3: ~/C\0

In this case ~/C

�
�

�
� ¼ �~/C and 1� ~/C

�
�

�
� ¼ 1� ~/C; thus

w rf
� �

¼ 0

~/f ¼
~/C þ

1

2
w rf
� �

1� ~/C

� �

9

=

;

~/f ¼
~/C

Combining the results of the three cases into one NVF formulation, the

functional relationship of the Van Leer Scheme becomes

~/f ;VanLeer ¼
2~/C � ~/C

� �2

0\~/C\1

~/C otherwise

8

<

:

12.5 The NVF-TVD Relation 455

12.6 HR Schemes in Unstructured Grid Systems

As mentioned in Chap. 11, another alternative that can be followed to overcome the

hurdle of not having a clear upwind location U in unstructured grids, which is

needed in the calculation of ~/C or rf ; is to create a virtual one. As depicted in

Fig. 12.15, the easiest way is to assume U to lie on the line joining the nodes C and

D such that C is the midpoint of the segment joining the points U and D. With this

assumption and based on the analysis done earlier, the following can be written:

/D � /U ¼ r/C � dUD ¼ 2r/C � dCD ð12:65Þ

from which the value of /U is computed as

/U ¼ /D � 2r/C � dCD ð12:66Þ

where dCD is the vector between the nodes C and D, and dUD is the vector between

nodes D and the virtual node U. As mentioned above U is constructed such that C is

taken to be the centre of the UD segment. With the value of /U computed, the use

of either the NVF or the TVD approach proceeds as described above.

12.7 Deferred Correction for HR Schemes

The numerical implementation of HR schemes is best understood through an

example. For that purpose the multi dimensional advection equation with a source

is considered. Again the velocity field is assumed to be known and the conservation

equation in vector form is given by

r � qv/ð Þ ¼ Q/ ð12:67Þ

?UCD

f d
CD

d
CD

?U C D

f

Fig. 12.15 Virtual upwind
node in unstructured grids

456 12 High Resolution Schemes

Integrating over the element of volume VC shown in Fig. 12.16, applying the

divergence theorem, and replacing the surface integral by a summation over the

element faces, Eq. (12.67) becomes

X

f� nb Cð Þ

qv/ð Þf � Sf ¼ Q
/
CVC ð12:68Þ

Noticing that the mass flow rate at a cell face is given by

_mf ¼ qvð Þf � Sf ð12:69Þ

then Eq. (12.68) can be rewritten as

X

f� nb Cð Þ

_mf/f ¼ Q
/
CVC ð12:70Þ

The value of /f is obtained using any of the advection schemes presented earlier

keeping in mind that, in order to be able to solve for the unknown values at the main

nodes, the algebraic form of the discretized equation should look like

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:71Þ

The difficulty lies in the instability that arises when expressing /f in terms of

nodal values as described next.

C F
f

S
f

v
f

U
UU

DD

Fig. 12.16 Two three-dimensional elements, which represent part of an unstructured grid system

12.7 Deferred Correction for HR Schemes 457

12.7.1 The Difficulty with the Direct Use of Nodal Values

The difficulty that arises when explicitly expressing /f in terms of neighboring

values will be explained by discretizing the convection flux using a TVD scheme.

Referring to Fig. 12.16, the convective flux at a face f is written as

_mf/f ¼ /C þ
1

2
w

/C � /U

/F � /C

� �zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

rþ
f

/F � /Cð Þ

2

6
6
6
6
4

3

7
7
7
7
5

_mf ; 0

� /F þ
1

2
w

/F � /DD

/C � /F

� �zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{

r�
f

/C � /Fð Þ

2

6
6
6
4

3

7
7
7
5

� _mf ; 0

¼ /C þ
1

2
w rþf

� �

/F � /Cð Þ

 �

_mf ; 0

� /F þ
1

2
w r�f

� �

/C � /Fð Þ

 �

� _mf ; 0

ð12:72Þ

Substituting Eq. (12.72) into Eq. (12.70) yields

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:73Þ

where

aF ¼ FluxFf ¼ � � _mf ; 0

þ

1

2
w rþf

� �

_mf ; 0

þ

1

2
w r�f

� �

� _mf ; 0

aC ¼
X

f � nb Cð Þ

FluxCf ¼ �
X

F�NB Cð Þ

aF þ
X

F�NB Cð Þ

_mf

bC ¼ Q
/
CVC

ð12:74Þ

To see the weakness in this formulation, Eq. (12.67) is simplified to the one

dimensional problem depicted in Fig. 12.8. Assuming the flow to be in the positive

direction and using the terminology displayed in the figure, Eq. (12.73) becomes

aC/C þ aE/E þ aW/W ¼ bC ð12:75Þ

458 12 High Resolution Schemes

where

aE ¼ FluxFe ¼
1

2
w rþe
� �

_me

aW ¼ FluxFw ¼ �1þ
1

2
w r�w
� �

 �

_me

aC ¼
P

f� nb Cð Þ

FluxCf ¼ � aE þ aWð Þ

bC ¼ Q
/
CVC

ð12:76Þ

Since 0�w rð Þ� 2; the aE and aW coefficients will be of opposite signs (except

for the UPWIND scheme, i.e., when w rf
� �

¼ 0), thereby violating one of the basic

rules for stability and causing convergence difficulties of the iterative procedure.

Following a similar approach with the NVF leads to the same shortcomings.

A remedy, which was presented in the previous chapter, is the deferred correction

(DC) procedure, in which the coefficients are based on the upwind scheme, while the

difference between the HR and upwind schemes is added as a source term in the

algebraic equation. The DC procedure is simple to implement and can be used in

structured and unstructured grid systems, however as the difference between the cell

face values calculated with the upwind scheme and that calculated with the HR scheme

becomes larger, the convergence rate diminishes. This effect can be easily estimated on

an NVD; the difference between the UPWIND line and that of the chosen HR scheme

is the normalized difference between the cell face values. The larger this difference is,

the lower the convergence rate will be. This has enticed researchers to look for other

techniques for implementing HR schemes that are more implicit not affecting the

convergence rate. Two of these techniques are described in the next section.

12.8 The DWF and NWF Methods

Several techniques have been developed to overcome the reduction in the con-

vergence rate associated with the use of the Deferred Correction (DC) procedure for

the implementation of HR schemes. Two of these methods are presented below,

namely the Downwind Weighing Factor (DWF) method of Leonard and Mokhtari

[25] (implemented in OpenFOAM®) and the Normalized Weighing Factor

(NWF) method of Darwish and Moukalled [29].

The implementation details for both methods are presented in the context of

solving the convection equation (Eq. 12.67) over the three-dimensional unstruc-

tured grid system shown in Fig. 12.16. The discretized equation for the element of

volume VC shown in Fig. 12.16 can be written as
X

f� nb Cð Þ

_mf/f ¼ Q
/
CVC ð12:77Þ

The / values at cell faces are computed using a HR scheme and the objective of

the various methods is to incorporate these values in the discretized equation in the

most effective manner.

12.7 Deferred Correction for HR Schemes 459

12.8.1 The Downwind Weighing Factor (DWF) Method

The Downwind Weighing Factor (DWF) [25] defined as

DWFf ¼
/f � /C

/D � /C

¼
~/f �

~/C

1� ~/C

ð12:78Þ

is used to rewrite the face value such that

/f ¼ DWFf/D þ 1� DWFf

� �
/C ¼ /C þ DWFf /D � /Cð Þ ð12:79Þ

thereby redistributing the HR scheme estimate/f or the normalized value ~/f between

the Upwind and Downwind nodes. The effect is a reduced stencil for the discretized

coefficients. Since the value of /f computed using a HR scheme lies between /C

and /D; the value of DWFf is always between 0 and 1, i.e., 0�DWFf � 1:
Now rather than computing the DWFf explicitly from the computed /f value,

the DWFf can be expressed directly from the functional relationships of the HR

scheme. Table 12.1 presents such relationships for several HO and HR schemes on

uniform grid.

Comparing the TVD formulation given by Eq. (12.30) with Eq. (12.79), it is

clear that

DWFf ¼
1

2
w rf
� �

ð12:80Þ

As shown in the previous section on TVD schemes, the coefficients obtained from

such implementation will not be diagonally dominant and the formulation is thus not

stable for many flow configurations. As the method is used in OpenFOAM®, the

reasons behind the numerical difficulties that are generally experienced by the code

when solving convection dominated flow problems are now clear.

For completeness, the analysis of the implementation via the DWF is presented.

Starting with Eq. (12.79), the convection flux in the general case is written in the form

_mf/f ¼ _mf ; 0

 DWFþ

f /F þ 1� DWFþ
f

� �

/C

h i

� � _mf ; 0

 DWF�

f /C þ 1� DWF�
f

� �

/F

h i ð12:81Þ

with

DWFþ
f ¼

/f � /C

/F � /C

DWF�
f ¼

/f � /F

/C � /F

ð12:82Þ

460 12 High Resolution Schemes

Table 12.1 Functional relationships of the DWFf for some HO and HR schemes on uniform grid

Scheme Downwind weighing factor-NVF

Upwind DWFf ¼ 0

SOU
DWFf ¼

~/C

2 1� ~/C

� �

CD
DWFf ¼

1

2

FROMM
DWFf ¼

1

4 1� ~/C

� �

QUICK
DWFf ¼

1

4
þ

1

8 1� ~/C

� �

Downwind DWFf ¼ 1

MINMOD

DWFf ¼

1

2

~/C

1� ~/C

� � 0� ~/C �
1

2

1

2

1

2
� ~/C � 1

0 elsewhere

8

>>>>><

>>>>>:

Bounded CD

DWFf ¼
1

2
0� ~/C � 1

0 elsewhere

8

<

:

OSHER [30]

DWFf ¼

1

2

~/C

1� ~/C

� � 0� ~/C �
2

3

1
2

3
� ~/C � 1

0 elsewhere

8

>>>>><

>>>>>:

SMART

DWFf ¼

2~/C

1� ~/C

0� ~/C �
1

6
1

4
þ

1

8 1� ~/C

� �
1

6
� ~/C �

5

6

1
5

6
� ~/C � 1

0 elsewhere

8

>>>>>>>>><

>>>>>>>>>:

STOIC

DWFf ¼

2~/C

1� ~/C

0� ~/C �
1

5
1

2

1

5
� ~/C �

1

2

1

4
þ

1

8 1� ~/C

� �
1

2
� ~/C �

5

6

1
5

6
� ~/C � 1

0 elsewhere

8

>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

MUSCL

DWFf ¼

~/C

1� ~/C

0� ~/C �
1

4
1

4 1� ~/C

� �
1

4
� ~/C �

3

4

1
3

4
� ~/C � 1

0 elsewhere

8

>>>>>>>>><

>>>>>>>>>:

12.8 The DWF and NWF Methods 461

The fluxes in Eq. (12.77) can now be expressed as

FluxFf ¼ _mf ; 0

DWFþ

f � � _mf ; 0

 1� DWF�

f

� �

FluxCf ¼ _mf ; 0

 1� DWFþ

f

� �

� � _mf ; 0

DWF�

f

ð12:83Þ

and the discretized equation becomes

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:84Þ

with

aF ¼ FluxFf

aC ¼
X

f� nb Cð Þ

FluxCf ¼ �
X

F�NB Cð Þ

aF þ
X

f� nb Cð Þ

_mf

bC ¼ Q
/
CVC

ð12:85Þ

The coefficients in Eq. (12.85) result in a highly unstable system of equations,

thus requiring substantial relaxation. This can be demonstrated on a simple

one-dimensional mesh (Fig. 12.8). Without loss of generality, a positive flow field

is assumed, which reduces Eq. (12.84) to

aC/C þ aE/E þ aW/W ¼ bC ð12:86Þ

where

aE ¼ FluxFe ¼ _meDWFþ
e

aW ¼ FluxFw ¼ _mw 1� DWF�
w

� �

aC ¼
X

f � nb Cð Þ

FluxCf ¼ � _meDWFþ
e þ _mw 1� DWF�

w

� �� �
þ _me þ _mw

ð12:87Þ

The continuity constraint implies that

_me þ _mw ¼ 0) _mw ¼ � _me ð12:88Þ

thus the coefficients become

aE ¼ FluxFe ¼ _meDWFþ
e

aW ¼ FluxFw ¼ � _me 1� DWF�
w

� �

aC ¼
X

f� nb Cð Þ

FluxCf ¼ � _me DWFþ
e þ DWF�

w � 1
� � ð12:89Þ

462 12 High Resolution Schemes

In the above equation the aE and aW coefficients have opposite signs, a violation to

one of the basic coefficient rules. Furthermore for values of the DWF factors that are

larger than 0.5 (i.e., DWF[0:5), the diagonal coefficient aC becomes negative

resulting in a system not solvable by iterative means. This would occur whenever

/f [0:5 /C þ /Dð Þ a situation common to all HR schemes for /C[0:5: In fact the

DWF moves much of the HR flux influence onto the downwind value causing the

above mentioned issues, a situation that resembles in effect the central difference

scheme.

12.8.2 The Normalized Weighing Factor (NWF) Method

The Normalized Weighing Factor (NWF) method was developed [29] to address

the shortcomings of the DWF method. It operates by linearizing the normalized

interpolation profile such that

~/f ¼ ‘~/C þ k ð12:90Þ

where ‘ and k are constants that represent the slope and intercept of the linear

function within any interval of /f ; with the number of intervals depending on the

HR scheme used. This is an exact representation for nearly all HR schemes.

For example, by equating Eq. (12.90) to the NVF form of the MINMOD scheme

(Eq. 12.14), the values of ‘ and k are deduced to be

‘; k½ � ¼

3

2
; 0

 �

0\~/C\
1

2
1

2
;
1

2

 �
1

2
� ~/C\1

1; 0½ � elsewhere

8

>>>><

>>>>:

ð12:91Þ

In a second step Eq. (12.90) is rewritten as

/f � /U

/D � /U

¼ ‘
/C � /U

/D � /U

þ k ð12:92Þ

and transformed to

/f ¼ ‘ /C � /Uð Þ þ k /D � /Uð Þ þ /U ¼ ‘/C þ k/D þ 1� ‘� kð Þ/U ð12:93Þ

where /U ; /D; and /C are the values at the U, D, and C nodes whose locations

depend on the flow direction. The values of ‘ and k for a number of HO and HR

schemes are listed in Table 12.2 (for unstructured and/or structured uniform grid).

Since for an unstructured grid the U location is virtual, the term involving /U is

treated in a deferred correction fashion. However the value of the resulting deferred

12.8 The DWF and NWF Methods 463

correction source term i.e., 1� ‘� kð Þ/U l� 0; k� 0ð Þ is smaller than the one that

would be obtained with the standard deferred correction treatment (i.e., /U). Thus

the NWF requires less under-relaxation than the standard DC method and thus

allows for faster convergence.

Starting with Eq. (12.93), the convection flux in the general case (i.e., multi

dimensional unstructured grid) can be written in the form

_mf/f ¼k _mf ; 0k ‘þf /C þ kþf /F þ 1� ‘þf � kþf

� �

/þ
U

h i

� k� _mf ; 0k ‘�f /F þ k�f /C þ 1� ‘�f � k�f

� �

/�
U

h i ð12:94Þ

Table 12.2 NVF values of NWF ‘; k½ � factors for some HO and HR schemes

Scheme Uniform grid (NVF)

Upwind ‘; k½ � ¼ 1; 0½ �

SOU
‘; k½ � ¼

3

2
; 0

 �

CD
‘; k½ � ¼

1

2
;
1

2

 �

FROMM
‘; k½ � ¼ 1;

1

4

 �

QUICK
‘; k½ � ¼

3

4
;
3

8

 �

MINMOD

‘; k½ � ¼

3

2
; 0

 �

0\~/C\
1

2
1

2
;
1

2

 �
1

2
� ~/C\1

1; 0½ � elsewhere

8

>>>><

>>>>:

OSHER

‘; k½ � ¼

3

2
; 0

 �

0\~/C\
2

3

0; 1½ �
2

3
� ~/C\1

1; 0½ � elsewhere

8

>>><

>>>:

MUSCL

‘; k½ � ¼

2; 0½ � 0\~/C\
1

4

1;
1

4

 �
1

4
� ~/C\

3

4

0; 1½ �
3

4
� ~/C\1

1; 0½ � elsewhere

8

>>>>>>><

>>>>>>>:

SMART

‘; k½ � ¼

4; 0½ � 0\~/C\
1

6
3

4
;
3

8

 �
1

6
� ~/C\

5

6

0; 1½ �
5

6
� ~/C\1

1; 0½ � elsewhere

8

>>>>>>><

>>>>>>>:

464 12 High Resolution Schemes

and linearized to yield

FluxFf ¼k _mf ; 0k kþf � k� _mf ; 0k ‘�f

FluxCf ¼k _mf ; 0k ‘þf � k� _mf ; 0k k�f

FluxVf ¼k _mf ; 0k 1� ‘þf � kþf

� �

/þ
U� k� _mf ; 0k 1� ‘�f � k�f

� �

/�
U

ð12:95Þ

Substituting Eq. (12.95) into Eq. (12.77) the algebraic equation is obtained as

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:96Þ

where now

aF ¼ FluxFf ¼ kþf _mf ; 0

� ‘�f � _mf ; 0

aC ¼
X

f � nb Cð Þ

FluxCf ¼
X

f � nb Cð Þ

‘þf _mf ; 0

� k�f � _mf ; 0

� �

bC ¼ Q
/
CVC �

X

f � nb Cð Þ

FluxVf

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

bDC
C

¼ Q
/
CVC �

X

f�nb Cð Þ

1� ‘þf � kþf

� �

/þ
U _mf ; 0

� 1� ‘�f � k�f

� �

/�
U � _mf ; 0

h i

|ffl{zffl}

bDC
C

ð12:97Þ

The NWF was originally developed for use on structured grids with its for-

mulation in that context allowing for a full implicit treatment of HR schemes. The

full implicitness of the method on structured grid is the result of /U being an actual

node in the computational domain that can be resolved in the algebraic equation,

which now has a larger stencil that includes the far nodes EE and WW. For the one

dimensional structured grid displayed in Fig. 12.8, the NWF form of the algebraic

equation becomes

aC/C þ
X

F�E;W ;EE;WW

aF/F ¼ bC ð12:98Þ

where

aE ¼ FluxFe ¼ _me; 0k kkþe � � _me; 0k k‘�e þ _mw; 0k k 1� ‘þw � kþw
� �

aW ¼ FluxFw ¼ _mw; 0k kkþw � � _mw; 0k k‘�w þ _me; 0k k 1� ‘þe � kþe
� �

aEE ¼ FluxFee ¼ � � _me; 0k k 1� ‘�e � k�e
� �

aWW ¼ FluxFww ¼ � � _mw; 0k k 1� ‘�w � k�w
� �

aC ¼
X

f� nb Cð Þ

FluxCf ¼ _me; 0k k‘þe þ _mw; 0k k‘þw � � _me; 0k kk�e � � _mw; 0k kk�w

¼ � aE þ aW þ aEE þ aWWð Þ þ _me þ _mwð Þ

ð12:99Þ

12.8 The DWF and NWF Methods 465

In the NWF reformulation of the HR schemes since the value of ‘ is greater than
that of k (see Fig. 12.6), except in a narrow region of the NVD close to the Downwind

line as explained next, the value of aC is always positive and instability does not

arise. Along the Downwind line of the NVD, where ‘; kð Þ ¼ 0; 1ð Þ; a value of zero

for the aC coefficient is obtained. In this case ‘; kð Þ is set to L; 1� L/f

� �
where L is

usually set to the value of ‘ in the previous interval of the composite scheme.

This basically allows the NWF to be much more robust than the DWF as it

guarantees positive aC coefficients.

12.8.2.1 The NWF Method in the Context of the TVD

With the exception of the MUSCL Van Leer limiter, the limiters of the TVD

formulation of all HR schemes presented earlier appear as straight lines on Sweby’s

diagram and as such can be written as a set of linear equations of the form

w rf
� �

¼ mrf þ n ð12:100Þ

where m and n are constants (slope and intercept of the linear function and depend

on geometric quantities only) within any interval of w rf
� �

; with the number of

intervals depending on the HR TVD scheme used. For example, by equating

Eq. (12.100) to the TVD form of the MINMOD scheme (Eq. 12.44), the values of

m and n are deduced to be

MINMOD m; n½ � ¼
1; 0½ � 0\rf\1

0; 1½ � rf � 1

0; 0½ � rf � 0

8

<

:
ð12:101Þ

Substituting Eq. (12.100) in Eq. (12.30), the interface value is found to be

/f ¼ /C þ
1

2
mrf þ n
� �

/D � /Cð Þ

¼ /C þ
1

2
m
/C � /U

/D � /C

þ n

� �

/D � /Cð Þ

¼ 1þ
1

2
m�

1

2
n

� �

/C þ
1

2
n/D �

1

2
m/U

ð12:102Þ

where /U ;/D; and /C are again the values at the U, D, and C nodes whose

locations depend on the flow direction. The values of m and n for a number of HO

and HR schemes are listed in Table 12.3 for uniform grids. Moreover Eq. (12.102)

has the same form as Eq. (12.93) with

‘ ¼ 1þ
1

2
m�

1

2
n and k ¼

1

2
n ð12:103Þ

Thus an approach similar to that of the NVF-NWF can be used for the imple-

mentation of the TVD-NWF.

466 12 High Resolution Schemes

12.9 Boundary Conditions

The Boundary conditions for the convection term are generally much simpler than

for the diffusion term. The particulars of the implementation of the following

boundary conditions: “Inlet”, “Outlet”, “Wall”, and “Symmetry” are now detailed.

Typical boundary elements are shown in Fig. 12.17. A boundary cell, as men-

tioned earlier in this book, is one that has one or more faces on the boundary. Discrete

values of / are stored both at centroids of boundary cells and of boundary faces.

Let C denotes the centroid of the boundary element with one boundary face of

centroid b and of surface vector Sb pointing outward (Fig. 12.17). As before, the

discretization process over cell C of a pure convection problem in a multidimen-

sional domain yields

X

f� nb Cð Þ

J/;C � S
� �

f
¼ 0 ð12:104Þ

The fluxes on the interior faces are discretized as before. Independent of the

boundary condition type, the boundary flux J
/;C
b may be written using the boundary

face centroid value as

Table 12.3 TVD values of NWF m; n½ � factors for some HO and HR schemes

Scheme Uniform grid (NVF)

Upwind m; n½ � ¼ 0; 0½ �

SOU m; n½ � ¼ 1; 0½ �

CD m; n½ � ¼ 0; 1½ �

FROMM
m; n½ � ¼

1

2
;
1

2

 �

QUICK
m; n½ � ¼

1

4
;
3

4

 �

DOWNWIND m; n½ � ¼ 0; 2½ �

OSHER

m; n½ � ¼
1; 0½ � 0\rf\2

0; 2½ � rf � 2

0; 0½ � r� 0

8

<

:

MUSCL

m; n½ � ¼

2; 0½ � 0\rf\
1

3
1

2
;
1

2

 �
1

3
� rf\3

0; 2½ � rf � 3

0; 0½ � rf � 0

8

>>>>><

>>>>>:

SUPERBEE

m; n½ � ¼

2; 0½ � 0\rf\
1

2

0; 1½ �
1

2
� rf\1

1; 0½ � 1� rf\2

0; 2½ � rf � 2

0; 0½ � rf � 0

8

>>>>>>><

>>>>>>>:

12.9 Boundary Conditions 467

J
/;C
b ¼ qv/ð Þb ð12:105Þ

such that

J
/;C
b � Sb ¼ qv/ð Þb � Sb ¼ _mb/b ð12:106Þ

Thus the discretized equation of the boundary cell is expressed as

X

f� nb Cð Þ

qv/ � Sð Þfþ qv/ � Sð Þb¼ 0 ð12:107Þ

where subscript f refers to interior faces and subscript b to the boundary face. The

specification of boundary conditions involves either specifying the unknown

boundary value /b; or alternatively, the boundary flux J
/;C
b : Using Eq. (12.107), the

discretized equations at a boundary element for the different boundary condition

types of convection problems are derived next.

12.9.1 Inlet Boundary Condition

At inlet to a domain (Fig. 12.18), the value of / is usually specified. Since the

velocity field is assumed to be known, then the convective flux at inlet is also known.

Therefore the boundary flux is moved to the right hand side and treated as a source

term. With this modification Eq. (12.107) becomes

b

S
b C

Fig. 12.17 Boundary
elements with one or two
boundary faces

468 12 High Resolution Schemes

X

f� nb Cð Þ

qv � Sð Þf/f ¼ � qv � Sð Þb/b ¼ � _mb/b ð12:108Þ

If a HR scheme is used to discretize the convection flux at interior faces and is

implemented via a deferred correction approach, then the modified algebraic

equation for the boundary element can be written as

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:109Þ

where

aF ¼ FluxFf ¼ �k� _mf ; 0k

aC ¼
X

f� nb Cð Þ

FluxCf ¼
X

f� nb Cð Þ

k _mf ; 0k

¼ �
X

F�NB Cð Þ

aF þ
X

f� nb Cð Þ

_mf

bC ¼ �
X

f� nb Cð Þ

FluxVf ¼ � _mb/b �
X

f� nb Cð Þ

_mf /HR
f � /U

f

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bDCc

ð12:110Þ

where F refers to interior neighboring nodes of the C grid point and f refers to

interior faces of the boundary element.

b

S
b

n

eb

C

Fig. 12.18 Inlet boundary
condition for the convection
flux

12.9 Boundary Conditions 469

12.9.2 Outlet Boundary Condition

At outlet from the domain (Fig. 12.19) no information downstream of the boundary

grid point is available. However, being a directional phenomenon, the value of / at

the boundary is highly dependent on upstream locations. In fact, the upwind and

SOU schemes, for example, do not require any information at outlet since its value

can be expressed as a function of values at upstream nodes. The treatment that has

proven to be very effective at an outlet boundary condition is to assume the /

profile to be fully developed, which is equivalent to assuming that the normal

gradient to the face is zero [i.e., r/ � nð Þb¼ @/=@nð Þb¼ 0]. The usual practice at

an outlet (Fig. 12.19) is to apply the upwind scheme /b ¼ /Cð Þ; which automat-

ically results in a zero normal gradient.

Discretizing the convection flux at interior faces using a HR scheme imple-

mented through a deferred correction approach, the modified algebraic equation for

the boundary element can be written as

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:111Þ

b

S
b

n

eb

C

Fig. 12.19 Outlet boundary condition for the convection flux

470 12 High Resolution Schemes

where

aF ¼ FluxFf ¼ � k� _mf ; 0k

aC ¼
X

f� nb Cð Þ

FluxCf ¼
X

f� nb Cð Þ

k _mf ; 0k

¼ �
X

F�NB Cð Þ

aF þ
X

f� nb Cð Þ

_mf þ _mb

� �

bC ¼ �
X

f� nb Cð Þ

FluxVf ¼ �
X

f� nb Cð Þ

_mf /HR
f � /U

f

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bDCc

ð12:112Þ

where f refers to the interior faces of the boundary element, and C and F refer to

owner and neighbor, respectively.

12.9.3 Wall Boundary Condition

As shown in Fig. 12.20, the normal velocity at a wall is zero. As such the con-

vection flux is zero and does not appear in the algebraic equation.

Again adopting a HR scheme with a deferred correction approach, the modified

algebraic equation for the boundary element can be written as

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC ð12:113Þ

b

S
b

n

eb

C

Fig. 12.20 Wall boundary
condition for the convection
flux

12.9 Boundary Conditions 471

where

aF ¼ FluxFf ¼ �k� _mf ; 0k

aC ¼
X

f�nb Cð Þ

FluxCf ¼
X

f� nb Cð Þ

k _mf ; 0k

¼ �
X

F�NB Cð Þ

aF þ
X

f� nb Cð Þ

_mf

bC ¼ �
X

f� nb Cð Þ

FluxVf ¼ �
X

f� nb Cð Þ

_mf /HR
f � /U

f

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bDCc

ð12:114Þ

Again f refers to the interior faces of the boundary element and C and F refer to

the owner and neighbor nodes, respectively.

12.9.4 Symmetry Boundary Condition

No flow crosses a symmetry boundary. Therefore it is treated in a similar fashion to

a wall boundary condition with the convection flux normal to a symmetry boundary

set to zero.

12.10 Computational Pointers

12.10.1 uFVM

Similar to HO schemes discussed in Chap. 11, HR schemes are implemented in

uFVM using the deferred correction method. The main difference in the imple-

mentation stems from the use of the NVF or TVD relations rather than the calcu-

lation of the face value using directly the gradient. The implementation of the

STOIC HR [31] scheme using the NVF formulation is shown in Listing 12.1

(cfdAssembleConvectionTermDCSTOIC).

It starts with the retrieval of the needed fields, followed by setting the upwind

and downing indices for all interior faces. Then for each face, /C and /D are

identified, /U is constructed, and ~/C is computed and used to calculate the face

value from the NVF relationship of the adopted HR scheme. Finally /f is recon-

structed from ~/f and used in the deferred correction method.

472 12 High Resolution Schemes

theFluidTag = cfdGetFluidTag(theEquationName);

theMdotName = ['Mdot' theFluidTag];

theMdotField = cfdGetMeshField(theMdotName,'Faces');

mdot_f = theMdotField.phi(iFaces);

iOwners = [theMesh.faces(iFaces).iOwner]';

iNeighbours = [theMesh.faces(iFaces).iNeighbour]';

pos = zeros(size(mdot_f));

pos(mdot_f>0)=1;

% find indices of U and D cells

iUpwind = pos .*iOwners + (1-pos).*iNeighbours;

iDownwind = (1-pos).*iOwners + pos .*iNeighbours;

% find phi_C, phi_D and calculate phi_U

phi_C = phi(iUpwind,iComponent);

phi_D = phi(iDownwind,iComponent);

rCD = [theMesh.elements(iDownwind).centroid]'-

[theMesh.elements(iUpwind).centroid]';

phi_U = phi_D - 2*dot(phiGrad(iUpwind,:,iComponent)',rCD')';

SMALL= 1e-6;

% calculate phi_tildaC

nominator = phi_C-phi_U;

denominator = phi_D-phi_U;

divideLoc = find(~((denominator<SMALL) & (denominator>-SMALL)));

phi_tildaC = ones(size(phi_C));

phi_tildaC(divideLoc) = nominator(divideLoc)./denominator(divideLoc);

Listing 12.1 Implementation of the STOIC HR scheme

12.10 Computational Pointers 473

% get phi_tildaf from STOIC function

phi_tildaf = zeros(size(phi_tildaC));

% lower UPWIND section

phi_tildaf = phi_tildaf + (phi_tildaC <=

0) .*(phi_tildaC);

% intermediate section

phi_tildaf = phi_tildaf + (phi_tildaC > 0) .*(phi_tildaC <

0.2).*(3*phi_tildaC);

% CDS section

phi_tildaf = phi_tildaf + (phi_tildaC >= 0.2).*(phi_tildaC <

0.5).*(0.5*phi_tildaC + 0.5);

% SMART section

phi_tildaf = phi_tildaf + (phi_tildaC >= 0.5).*(phi_tildaC <

5/6).*(0.75*phi_tildaC + 3/8);

% DOWNWIND section

phi_tildaf = phi_tildaf + (phi_tildaC >= 5/6).*(phi_tildaC <

1) .*(ones(size(phi_tildaC)));

% upper UPWIND section

phi_tildaf = phi_tildaf + (phi_tildaC >=

1) .*(phi_tildaC);

% calculate phi_f

phi_f = phi_tildaf.*(phi_D-phi_U) + phi_U;

% calculate correction

corr = mdot_f .* (phi_f - phi_C);

% apply deferred correction

theFluxes.FLUXTf(iFaces) = theFluxes.FLUXTf(iFaces) + corr;

Listing 12.1 (continued)

474 12 High Resolution Schemes

12.10.2 OpenFOAM®

As discussed in Chap. 11 the discretization of the convection term in OpenFOAM®

[32] is accomplished through the base class surfaceInterpolationScheme. This

class is inherited by any face interpolation algorithm. High resolution schemes, as

discussed in this chapter, are special face interpolation algorithms. Thus, as dis-

played in Fig. 12.21, OpenFOAM® groups all TVD schemes in a base class,

derived from the surfaceInterpolationScheme class, denoted by the

limitedSurfaceInterpolationScheme class.

As shown in Listing 12.2, this class consists of the following three main func-

tions: the virtual weights function representing the main virtual function of the

surfaceInterpolationScheme class, a local weights function defined with three

arguments, and a new virtual base function called limiter.

LimitedSurfaceInterpolationScheme

<type>

LimitedScheme<type> upwind<type>

SurfaceInterpolationScheme<type>

blended<type> PhiScheme<type>

Fig. 12.21 UML showing the base class that groups all TVD schemes

12.10 Computational Pointers 475

The script of the virtual weights function, shown in Listing 12.3, is given by

template<class Type>

class limitedSurfaceInterpolationScheme

:

 public surfaceInterpolationScheme<Type>

{

// Member Functions

//- Returns the interpolation weighting factors

virtual tmp<surfaceScalarField> limiter

(

 const GeometricField<Type, fvPatchField, volMesh>&

) const = 0;

//- Returns the interpolation weighting factors for the given

// field, by limiting the given weights with the given limiter

tmp<surfaceScalarField> weights

(

 const GeometricField<Type, fvPatchField, volMesh>&,

 const surfaceScalarField& CDweights,

 tmp<surfaceScalarField> tLimiter

) const;

//- Return the interpolation weighting factors for the given field

virtual tmp<surfaceScalarField> weights

(

 const GeometricField<Type, fvPatchField, volMesh>&

) const;

Listing 12.2 The limitedSurfaceInterpolationScheme class showing its three main functions

template<class Type>

tmp<surfaceScalarField>

limitedSurfaceInterpolationScheme<Type>::weights

(

 const GeometricField<Type, fvPatchField, volMesh>& phi

Listing 12.3 Script showing the implementation of the virtual weights function

476 12 High Resolution Schemes

It is clear that executing the script instantiates the additional local weights

function. The three main arguments of the local weights function are the flux phi,

the linear interpolation weights (representing the central differencing weights), and

the returning object of the virtual base class limiter. These are clearly shown in

Listing 12.4 where the local weights function is defined.

template<class Type>

tmp<surfaceScalarField>

limitedSurfaceInterpolationScheme<Type>::weights

(

 const GeometricField<Type, fvPatchField, volMesh>& phi,

 const surfaceScalarField& CDweights,

 tmp<surfaceScalarField> tLimiter

) const

{

 surfaceScalarField& Weights = tLimiter();

 scalarField& pWeights = Weights.internalField();

 forAll(pWeights, face)

 {

 pWeights[face] =

 pWeights[face]*CDweights[face]

 + (1.0 - pWeights[face])*pos(faceFlux_[face]);

 }

Listing 12.4 Script showing the implementation of the local weights function

) const

{

 return this->weights

 (

 phi,

 this->mesh().surfaceInterpolation::weights(),

 this->limiter(phi)

);

}

Listing 12.3 (continued)

12.10 Computational Pointers 477

The calculation of the interpolation weights according to the TVD formulation

implemented in Listing 12.4 may seem, from a first look, a bit unclear. Confusion

may be eliminated by considering the case of a positive flux, for example, for which

the weight - is calculated as

- ¼ -CDwþ 1� wð Þ ð12:115Þ

For a uniform grid -CD ¼ 1=2 yielding

- ¼
w

2
þ 1� wð Þ ¼ 1�

w

2
ð12:116Þ

Recalling Eq. (11.164) and substituting the weight yields

/f ¼ /N þ - /O � /Nð Þ ¼ /N þ 1�
w

2

� �

/O � /Nð Þ ¼ /O þ
w

2
/N � /Oð Þ

ð12:117Þ

which is Eq. (12.30) in the TVD formulation.

So far the implementation of HR schemes in OpenFOAM® following the TVD

formulation has been discussed along with its integration in the standard convection

discretization procedure by properly defining the interpolation weights. Due to the

many TVD schemes that can be used, OpenFOAM® has introduced a base virtual

function denoted by limiter for the implementation of these schemes. The last step

of the computational pointer is to describe how this class is defined and which

classes, this limiter base class, engage.

All TVD limiters are organized through a class named LimitedScheme that

inherits and defines the limiter function of the limitedSurfaceInterpolation

Scheme class. The definition of this class is based on nested template classes

definition in which the derived class is described with a template argument, as

shown in Listing 12.5.

template<class Type, class Limiter, template<class> class LimitFunc>

class LimitedScheme

:

 public limitedSurfaceInterpolationScheme<Type>,

 public Limiter

{

Listing 12.5 The LimitedScheme class with the Limiter template

478 12 High Resolution Schemes

Here Limiter is not a function but just a template definition. Additionally the

virtual limiter class is now specialized (Listing 12.6).

As depicted in Listing 12.7 the definition of the limiter function is practically

linked to an auxiliary function named calcLimiter.

//- Return the interpolation weighting factors

virtual tmp<surfaceScalarField> limiter

(

 const GeometricField<Type, fvPatchField, volMesh>&

) const;

Listing 12.6 The virtual limiter class

 template<class Type, class Limiter, template<class> class LimitFunc>

Foam::tmp<Foam::surfaceScalarField>

Foam::LimitedScheme<Type, Limiter, LimitFunc>::limiter

(

 const GeometricField<Type, fvPatchField, volMesh>& phi

) const

{

 tmp<surfaceScalarField> tlimiterField

 (

 new surfaceScalarField

 (

 IOobject

 (

 limiterFieldName,

 mesh.time().timeName(),

 mesh

),

 mesh,

 dimless

)

);

Listing 12.7 The script used to call the calcLimiter function

12.10 Computational Pointers 479

The core of the calcLimiter function is to evaluate the TVD limiter and to store

it in the tlimiterField, as shown in Listings 12.7 and 12.8.

 calcLimiter(phi, tlimiterField());

 return tlimiterField;

Listing 12.7 (continued)

template<class Type, class Limiter, template<class> class LimitFunc>

void Foam::LimitedScheme<Type, Limiter, LimitFunc>::calcLimiter

(

 const GeometricField<Type, fvPatchField, volMesh>& phi,

 surfaceScalarField& limiterField

) const

{

 const fvMesh& mesh = this->mesh();

 tmp<GeometricField<typename Limiter::phiType, fvPatchField,

volMesh> >

 tlPhi = LimitFunc<Type>()(phi);

 const GeometricField<typename Limiter::phiType, fvPatchField,

volMesh>&

 lPhi = tlPhi();

 tmp<GeometricField<typename Limiter::gradPhiType, fvPatchField,

volMesh> >

 tgradc(fvc::grad(lPhi));

 const GeometricField<typename Limiter::gradPhiType, fvPatchField,

volMesh>&

 gradc = tgradc();

 const surfaceScalarField& CDweights =

mesh.surfaceInterpolation::weights();

Listing 12.8 Script used with the calcLimiter function

480 12 High Resolution Schemes

In the calcLimiter function the following steps are performed:

• Storing a copy of the field to be interpolated in lPhi

• Evaluating the gradient of the lPhi field using fvc::grad(lPhi)

• Collecting the central differencing weights

• Collecting the cell centers

• Evaluating the limiter by calling the nested template class: pLim

[face] = Limiter::limiter.

As an example of a Limiter::limiter function, the TVD formulation of the SUPERBEE

given in Eq. (12.44) is considered. The OpenFOAM® definition can be found in

“$FOAM_SRC/finiteVolume/interpolation/surfaceInterpolation/limited Schemes/Super

Bee/SuperBee.H” file. In this case the script of the limiter function is given in

Listing (12.9) as

pLim[face] = Limiter::limiter

 (

 CDweights[face],

 this->faceFlux_[face],

 lPhi[own],

 lPhi[nei],

 gradc[own],

 gradc[nei],

 C[nei] - C[own]

);
}

 const labelUList& owner = mesh.owner();

 const labelUList& neighbour = mesh.neighbour();

 const vectorField& C = mesh.C();

 scalarField& pLim = limiterField.internalField();

 forAll(pLim, face)

 {

label own = owner[face];

label nei = neighbour[face];

pLim[face] = Limiter::limiter

 (

 CDweights[face],

 this->faceFlux_[face],

 lPhi[own],

 lPhi[nei],

 gradc[own],

 gradc[nei],

 C[nei] - C[own]

);
}

 const labelUList& owner = mesh.owner();

 const labelUList& neighbour = mesh.neighbour();

 const vectorField& C = mesh.C();

 scalarField& pLim = limiterField.internalField();

 forAll(pLim, face)

 {

label own = owner[face];

label nei = neighbour[face];

Listing 12.8 (continued)

12.10 Computational Pointers 481

where the arguments are as stated before including the gradients, the central dif-

ferencing weights, etc., while the returned value follows exactly Eq. (12.44).

The r definition follows the same nested template class and the function

itself is defined in the file “$FOAM_SRC/src/finiteVolume/interpolation/surface

Interpolation/ limitedSchemes/LimitedScheme/NVDTVD.H” according to

Eq. (12.66). The implementation details are given in Listing 12.10.

 scalar limiter

 (

 const scalar cdWeight,

 const scalar faceFlux,

 const typename LimiterFunc::phiType& phiP,

 const typename LimiterFunc::phiType& phiN,

 const typename LimiterFunc::gradPhiType& gradcP,

 const typename LimiterFunc::gradPhiType& gradcN,

 const vector& d

) const

 {

 scalar r = LimiterFunc::r

 (

 faceFlux, phiP, phiN, gradcP, gradcN, d

);

 return max(max(min(2*r, 1), min(r, 2)), 0);

 }

Listing 12.9 The limiter function of the SuperBee scheme

scalar r

(

 const scalar faceFlux,

 const scalar phiP,

 const scalar phiN,

 const vector& gradcP,

 const vector& gradcN,

 const vector& d

) const

{

Listing 12.10 Script used to calculate r

482 12 High Resolution Schemes

 scalar gradf = phiN - phiP;

 scalar gradcf;

 if (faceFlux > 0)

 {

 gradcf = d & gradcP;

 }

 else

 {

 gradcf = d & gradcN;

 }

 {

 return 2*(gradcf/gradf) - 1;

 }

}

 scalar gradf = phiN - phiP;

 scalar gradcf;

 if (faceFlux > 0)

 {

 gradcf = d & gradcP;

 }

 else

 {

 gradcf = d & gradcN;

 }

 {

 return 2*(gradcf/gradf) - 1;

 }

}

Listing 12.10 (continued)

12.11 Closure

The chapter dealt with the bounding of HO convection schemes. This was

accomplished by enforcing a convection boundedness criterion (CBC). The

resulting HO bounded schemes were denoted by HR schemes. The Normalized

Variable Formulation (NVF) and Total Variation Diminishing (TVD) approaches

were introduced as frameworks for the development of HR schemes. Two tech-

niques for the implementation of HO and HR schemes in structured and unstruc-

tured grids were introduced, namely the Downwind Weighing Factor

(DWF) method and the Normalized Weighing Factor (NWF) method. The next

chapter is devoted to the discretization of the unsteady term.

12.12 Exercises

Exercise 1

a. Starting with the NVF form of the SMART scheme derive its equivalent TVD

form.

b. Starting with the TVD form of the OSHER scheme derive its equivalent NVF

form.

12.11 Closure 483

Exercise 2

For non-uniform grids the equations for the various schemes become geometry

dependent. This is also true for the point Q through which schemes have to pass to

be second order accurate.

Find the coordinates of Q in the general case of a non-uniform grid.

Hint: define a normalized space variable as [33]

~x ¼
x� xU

xD � xU

Exercise 3

Derive the DWFf and NWFf relationships of the OSHER and SMART schemes.

Exercise 4

For the one dimensional uniform mesh shown in Fig. 12.22, use the NVF-SMART,

NVF-OSHER, QUICK, and SOU schemes to compute /f for the following

situations:

a. /U ¼ 30; /C ¼ 20; /D ¼ 10

b. /U ¼ 10; /C ¼ 5; /D ¼ 15

c. /U ¼ 30; /C ¼ 10; /D ¼ 5

d. /U ¼ 30; /C ¼ 25; /D ¼ 5

Exercise 5

For the one dimensional mesh shown in Fig. 12.22, use the TVD-VanLeer and

TVD-MINMOD schemes to compute /f for the following situations:

a. /U ¼ 30; /C ¼ 20; /D ¼ 10

b. /U ¼ 10; /C ¼ 5; /D ¼ 15

c. /U ¼ 30; /C ¼ 10; /D ¼ 5

d. /U ¼ 30; /C ¼ 25; /D ¼ 5

Exercise 6

Consider the steady transport of a scalar / in the domain shown in Fig. 12.23. The

governing conservation equation is given by

DU

x

fC

f

Fig. 12.22 A one dimensional uniform grid

484 12 High Resolution Schemes

r � qv/ð Þ ¼ 0

where q ¼ 1; v ¼ 2yx2i� 2xy2j; and Dx ¼ Dy ¼ 1=3:

a. Using the NVF-SMART scheme, applied via a deferred correction approach,

discretize the equation over the computational domain and find the value of / at

each element centroid.

b. Using the TVD-SMART scheme, applied via a deferred correction approach,

discretize the equation over the computational domain and find the value of / at

each element centroid.

c. Using the NVF-SUPERBEE applied via the NVF-NWF method setup the

system of equations over the domain.

d. Using the TVD-MUSCL applied via the TVD-DWF method setup the system of

equations over the domain.

Exercise 7

The advection of a step profile in an oblique velocity field, v ¼ 2iþ j; shown in

Fig. 12.24 is governed by

r � qv/ð Þ ¼ 0

1 2 3

4 5 6

7 98
outlet

inlet

Fig. 12.23 Convection of a
two dimensional scalar field

= 1

= 0

v

Fig. 12.24 Advection of a
step profile in an oblique
velocity field

12.12 Exercises 485

For different grid sizes, setup the problem and solve it in OpenFOAM® and

uFVM using the following HR advection schemes assuming unit dimensions in

x and y directions, and compare results with the exact solution q ¼ 1ð Þ:

a. MINMOD

b. OSHER

c. SMART

Exercise 8

The Smith-Hutton test governed by

r � qv/ð Þ ¼ 0

and illustrated in Fig. 12.25, involves the pure advection of a step profile in a

rotational velocity field described as

v ¼ 2y 1� x2
� �

i� 2x 1� y2
� �

j

For different grid sizes, solve the test in OpenFOAM® and uFVM using the

following advection schemes, and compare results with the exact solution q ¼ 1ð Þ:

a. Bounded CD

b. MUSCL

c. SUPERB

Exercise 9

a. Using Doxygen [34] list all the derived classes of the class

limitedSurfaceInterpolationScheme<Type>.

b. Verify the correct implementation of the derived upwind<Type> class: check

the weights function.

c. Find all OpenFOAM® limiter classes listed in Eq. (12.44) (vanLeerLimiter).

Compare the formula with the OpenFOAM® implementation.

= 10 = 0

= 0

= 0

Fig. 12.25 Advection of a
step profile in a two
dimensional rotational
velocity field

486 12 High Resolution Schemes

References

1. LeonardBP (1988)Universal limiter for transient interpolationmodeling of the advective transport
equations: the ULTIMATE conservative difference. NASA TR-100916, ICOMP-88-11

2. Leonard BP (1987) SHARP simulation of discontinuities in highly convective steady flow.
NASA TM-100240

3. Leonard BP, Lock AP, MacVean MK (1995) Extended numerical integration for genuinely
multidimensional advective transport insuring conservation. In: Proceedings of the ninth
international conference numerical methods in laminar and turbulent flows, vol 9(1), pp 1–12

4. Gaskell PH, Lau AKC (1988) Curvature compensated convective transport: SMART, a new
boundedness preserving transport algorithm. Int J Numer Meth Fluids 8(6):617–641

5. Godunov S, Ryabenki V (1963) Spectral stability criteria for boundary value problems for non
self-adjoint difference equations. Uspekhi Mat Nauk 18:1–12

6. Fromm EA (1968) A method for reducing dispersion in convective difference schemes.
J Comput Phys 3:176–189

7. Sheu TWH, Wang SK, Tsai SF (1998) Development of a high-resolution scheme for a
multi-dimensional advection-diffusion equation. J Comput Phys 144(1):1–16

8. Leonard BP, Niknaffs HS (1991) Sharp monotonic resolution of discontinuities without
clipping of narrow extrema. Comput Fluids 19:141–154

9. Van Leer B (1977) Towards the ultimate conservation difference scheme V. A second order
sequel to Godunov’s method. J Comput Phys 23:101–136

10. Zhu J, Rodi W (1991) A low-dispersion and bounded convection scheme. Comput Methods
Appl Mech Eng 92:87–96

11. Yee HC, Warming RF, Harten A (1983) Implicit total variation diminishing (TVD) schemes
for steady-state calculations. NASA Technical Memorandum 84832

12. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation
laws. SIAM J Numer Anal 21(5):995–1011

13. Chakravarth SR (1987) Development of upwind schemes for the Euler equations. NASA
Contractor Report 4043

14. VanderHeyden WB, Kashiwa BA (1998) Compatible fluxes for Van Leer advection. J Comput
Phys 146:1–28

15. Boris JP, Book DL (1973) Flux-corrected transport: I. SHASTA, a fluid transport algorithm
that works. J Comput Phys 11:38–69

16. Kuzmin D, Turek S (2002) Flux correction tools for finite elements. J Comput Phys
175:525–558

17. Zalesak S (1979) Fully multidimensional flux corrected algorithm for fluid. J Comput Phys
31:335–362

18. Leonard BP (1988) Simple high-accuracy resolution program for convective modelling of
discontinuities. Int J Numer Meth Eng 8:1291–1318

19. Spekreise S (1987) Multigrid solution of monotone second order discretizations of hyperbolic
conservation laws. Math Comput 49(179):135–155

20. Barth T, Jespersen DC (1989) The design and application of upwind schemes on unstructured
meshes. AIAA paper 89-0366

21. Leonard BP (1991) The ULTIMATE conservative difference scheme applied to unsteady
one-dimensional advection. Comput Methods Appl Mech Eng 88(1):17–74

22. Dritschel DG, Fontane J (2010) The combined Lagrangian advection method. J Comput Phys
229:5408–5417

23. Leonard BP, MacVean MK, Lock AP (1993) Positivity-preserving numerical schemes for
multidimensional advection. Technical Memorandum TM-106055 ICOMP-93-05, NASA

24. Leonard BP (1988) Simple high-accuracy resolution program for convective modelling of
discontinuities. Int J Numer Meth Fluids 8:1291–1318

References 487

25. Leonard BP, Mokhtari S (1990) Beyond first-order upwinding: the ULTRA-SHARP
alternative for non-oscillatory steady state simulation of convection. Int J Numer Methods
Eng 30:729–766

26. Harten A (1983) High resolution schemes for hyperbolic conservation laws. J Comput Phys
49:357–393

27. Sweby PK (1984) High resolution schemes using flux limiters for hyperbolic conservation
laws. SIAM J Numer Anal 21(5):995–1011

28. Van Leer B (1974) Towards the ultimate conservative difference scheme, 11. Monotonicity
and conservation combined in a second order scheme. J Comput Phys 14:361–370

29. Darwish M, Moukalled F (1996) The normalized weighting factor method: a novel technique
for accelerating the convergence of high-resolution convective schemes. Numer Heat Transf,
Part B: Fundam 30:217–237

30. Osher S (1984) Shock modeling in transonic and supersonic flow. In: Habashi WG (ed) Recent
advances in numerical methods in fluids, 4. Advances in computational transonics. Pineridge
Press, Swansea

31. Darwish MS (1993) A new high-resolution scheme based on the normalized variable
formulation. Numer Heat Transf, Part B: Fundam 24(3):353–371

32. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org
33. Darwish M, Moukalled F (1994) Normalized variable and space formulation methodology for

high-resolution schemes. Numer Heat Transf, Part B 26(1):79–96
34. OpenFOAM Doxygen, 2015 Version 2.3.x. http://www.openfoam.org/docs/cpp/

488 12 High Resolution Schemes

Chapter 13

Temporal Discretization: The Transient

Term

Abstract The discussions in previous chapters assumed steady state conditions,

which did not require the discretization of the transient term. Accounting for

transient phenomena adds a new dimension to the problem. However since transient

variations are parabolic by nature, there is no need to define a field in the time

dimension, as is the case for the spatial domain. In general only one or two addi-

tional variable fields, or time levels, are stored (depending on the numerical order of

the selected scheme). Another difference with steady state configurations is that

transient systems are modeled using a time stepping procedure. Starting with an

initial condition at time t ¼ t0, the solution algorithm marches forward and finds a

solution at time t1 ¼ t0 þ Dt1. The solution found is the initial condition for the next

time step and is used to obtain the solution at time t2 ¼ t1 þ Dt2. The process is

repeated until the required time is reached. The focus of this chapter is on tech-

niques used for the discretization of the transient term. Two approaches for

developing transient schemes are presented. In the first one Taylor expansions are

used to express the transient term with the aid of nodal values. This is in effect a

finite difference discretization. In the second approach the finite volume method is

used on a pseudo time element in a similar fashion to what was done to the

convection term. Several transient schemes are presented and their characteristics

discussed.

13.1 Introduction

For transient simulations, the governing equations are discretized in both space and

time. While the spatial discretization is performed in the spatial domain as was done

for the steady-state case, the temporal discretization involves setting up a time

coordinate along which the derivative (for the finite difference method) or the

integral (for the finite volume method) of the transient term is evaluated (Fig. 13.1).

In general, the expression for the transient behavior, or time evolution, of a

variable ϕ is governed by an equation of the form

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_13

489

@ q/ð Þ

@t
þ L /ð Þ ¼ 0 ð13:1Þ

where the function L /ð Þ is a spatial operator that includes all non-transient terms

(convection, advection, sources, etc.) and @ q/ð Þ=@t is the transient operator, both

displayed in Fig. 13.1.

Integrating Eq. (13.1) over an element C (Fig. 13.2) yields

Z

VC

@ q/ð Þ

@t
dV þ

Z

VC

L /ð ÞdV ¼ 0 ð13:2Þ

which, after a spatial discretization about the volume centroid, becomes

@ qC/Cð Þ

@t
VC þ L /t

C

� �
¼ 0 ð13:3Þ

where VC is the volume of the discretization element and L /t
C

� �
is the spatial

discretization operator expressed at some reference time t, which can be written in

algebraic form as

spatial operator

tr
a
n
s
ie

n
t
o
p
e
ra

to
r

Fig. 13.1 Time coordinate, transient, and spatial operators

490 13 Temporal Discretization: The Transient Term

L /t
C

� �
¼ aC/

t
C þ

X

F�NB Cð Þ

aF/
t
F � bC ð13:4Þ

In Eq. (13.3) the steady state discrete equation is recovered when t!1. This is

also true when steady state is reached through time marching, i.e., when

/tþDt
C ¼ /t

C. This guarantees that the solution obtained when steady state is reached

is the same as the one that would have been obtained with the problem solved

directly as a steady state one.

For the discretization of the transient term, the practice traditionally has been to

follow a finite difference approach [1–3], whereby a Taylor series expansion of

@ q/ð Þ=@t is used to express the derivative in terms of the discrete nodal values. In

this chapter, another procedure that is more in line with the finite volume approach

will also be presented. In this context, @ q/ð Þ=@t is integrated over a temporal

element [4] and transformed into face fluxes in a similar fashion to what was done

with convection schemes, except that the discretization is now performed along the

transient axes.

Source/
Sink

Transient

Diffusion

Convection

C

F
1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

Fig. 13.2 Spatial element

13.1 Introduction 491

13.2 The Finite Difference Approach

Since in the transient space the grid is structured (Fig. 13.3), it has been quite

common to treat the transient term using the finite difference method. In this

approach, the spatial operator, L /ð Þ, is discretized at time t, while the transient

derivative is evaluated using a combination of Taylor expansions about time

t resulting in a variety of transient schemes, some of which are described next.

13.2.1 Forward Euler Scheme

To evaluate the transient term, a Taylor expansion of the derived quantity about a time

direction is needed. In this first case, the expansion is performed in a forward manner

about time t. That is for some function T, its value at time t þ Dt is expressed using a

Taylor series in terms of the values of T and its derivates at time t as

T t þ Dtð Þ ¼ T tð Þ þ
@T tð Þ

@t
Dt þ

@2T tð Þ

@t2
Dt2

2!
þ � � � : ð13:5Þ

Truncating the series starting with terms of order Dt2, the first derivative can be

formulated as

t

t+ t

t- t

t-2 t

t

Fig. 13.3 Structured transient finite difference grid

492 13 Temporal Discretization: The Transient Term

@T tð Þ

@t
¼

T t þ Dtð Þ � T tð Þ

Dt
þ O Dtð Þ ð13:6Þ

This is now a first order discretization since the equation was divided by Dt to yield

the gradient approximation. Replacing T by q/ð Þ in Eq. (13.6) and substituting the

resulting expression for the derivative in Eq. (13.3), the discretized equation

becomes

qC/Cð ÞtþDt� qC/Cð Þt

Dt
VC þ L /t

C

� �
¼ 0: ð13:7Þ

The transient stencil for Eq. (13.7) shown in Fig. 13.4, indicates that the compu-

tation of qC/Cð Þ at time t þ Dt does not require solving a system of equations.

Rather, values of /C at time t þ Dt can be computed explicitly based on values

from the previous time step since all spatial terms are evaluated at the old time

t. The resulting scheme belongs to the class denoted by explicit transient schemes

[5–12]. The main characteristic of all explicit transient schemes is their capability of

generating solutions by marching in time without the need to solve a system of

equations at each time level. This provides a high computational efficiency and

simplifies the parallelization of the computational mesh. Yet only few commercial

codes have adopted this approach and for an important reason related to a limitation

on the size of Dt, which will be discussed in the next section.

Substituting the discretized algebraic relation of the spatial operator into

Eq. (13.7), the complete algebraic equation is obtained as

atþDtC /tþDt
C þ atC/

t
C ¼ bC � aC/

t
C þ

X

F�NB Cð Þ

aF/
t
F

0

@

1

A ð13:8Þ

C

C

Fig. 13.4 The explicit Euler
stencil

13.2 The Finite Difference Approach 493

where

atþDtC ¼
qtþDtC VC

Dt

atC ¼ �
qtCVC

Dt

ð13:9Þ

In the above equations atþDtC and atC are the diagonal coefficients resulting from the

discretization of the transient term, /tþDt
C and /t

C are the values at time levels t þ Dt

and t, respectively, and aC, aF , and bC are the coefficients obtained from the spatial

discretization.

To simplify notation, throughout this chapter variables referring to values obtained

at a previous time step will be denoted with a superscript ° and variables referring to

values obtained two time steps earlier will be denoted with a superscript °°. On the

other hand no superscript will be used to denote variables at the current time step

except for the coefficient of the unsteady term multiplying /C, which will be denoted

with the superscript �. Adopting the new notation, Eqs. (13.8) and (13.9) become

a�C/C þ a�C/
�
C ¼ bC � aC/

�
C þ

X

F�NB Cð Þ

aF/
�
F

0

@

1

A ð13:10Þ

where

a�C ¼
qCVC

Dt

a�C ¼ �
q�CVC

Dt

ð13:11Þ

Equation (13.10) can be re-arranged into

/C ¼

bC � aC þ a�C
� �

/�C þ
P

F�NB Cð Þ

aF/
�
F

 !

a�C
ð13:12Þ

clearly showing that values of ϕ at the current time step are computed via an

explicit relation without solving a system of equations.

13.2.2 Stability of the Forward Euler Scheme

The convergence and stability of numerical schemeswas initially addressedbyCourant,

Friedrichs, and Lewy [13]. They showed that in order for the solution of a difference

equation to converge to the solution of the partial differential equation the numerical

scheme must use all the information contained in the initial data that influence the

solution. This requirement has become later known as the CFL condition.

494 13 Temporal Discretization: The Transient Term

In reality the CFL condition can be interpreted simply as one of the basic rules that

should be satisfied by the coefficients, namely the opposite signs rule extended to

include the transient coefficients. Thus just as /F is considered a ‘spatial’ neighbor of

/C, /
�
C is a ‘temporal’ neighbor of /C, and the opposite signs rule should equally

apply to both. Noting that the diagonal coefficient is now a�C and the coefficient of its

‘temporal’ neighbor is aC þ a�C
� �

, the opposite signs requirement becomes

aC þ a�C � 0: ð13:13Þ

13.2.2.1 Stability of a Transient-Advection Case

For the one dimensional pure advection problem with a flow moving right wise

shown in Fig. 13.5, the aC and a�C coefficients in the discretized equation of element

C, using the upwind scheme for the interpolation of all variables at an element face,

are given by

aC ¼ _m�e ¼ q�Cu
�
CDyC a�C ¼ �

q�CVC

Dt
¼ �

q�CDxCDyC

Dt
ð13:14Þ

Therefore, the CFL condition requires

aC þ a�C � 0) q�Cu
�
CDyC �

q�CDxCDyC

Dt
� 0 ð13:15Þ

or

Dt�
DxC

u�C
: ð13:16Þ

For convection dominated flows, defining a CFL number as

CFLconv ¼
v�C

�
�
�
�Dt

DxC
ð13:17Þ

CWWW E EE

u
ww

u
w

u
e

u
ee

x
w

x
e

y
C

x
C

Fig. 13.5 A portion of the discretized domain for a one dimensional convection problem

13.2 The Finite Difference Approach 495

implies that for numerical stability the CFL number should satisfy

CFLconv� 1: ð13:18Þ

13.2.2.2 Stability of a Transient-Diffusion Case

For pure diffusion problems, the expression for the CFL number is different. For

that purpose, the one dimensional pure diffusion problem schematically depicted in

Fig. (13.6) is considered.

The aC and a�C coefficients in the discretized equation of element C using linear

interpolation profiles are given by

aC ¼
C
/
e DyC

dxe
þ
C
/
wDyC

dxw
a�C ¼ �

q�CVC

Dt
¼ �

q�CDxCDyC

Dt
ð13:19Þ

Therefore, the CFL condition requires

aC þ a�C � 0)
C
/
e DyC

dxe
þ
C
/
wDyC

dxw
�
q�CDxCDyC

Dt
� 0 ð13:20Þ

or

Dt �
q�CDxC

C
/
e

dxe
þ

C
/
w

dxw

: ð13:21Þ

For the case when the grid is uniform and the diffusion coefficient is constant,

Eq. (13.21) becomes

Dt �
q�C DxCð Þ2

2C
/
C

: ð13:22Þ

CWWW E EE

x
w

x
e

y
C

x
C

Fig. 13.6 A portion of the discretized domain for a one dimensional diffusion problem

496 13 Temporal Discretization: The Transient Term

For diffusion dominated problems, a CFL number is defined as

CFLdiff ¼
C
/
CDt

q�C DxCð Þ2
ð13:23Þ

implying that for stability the following condition should be satisfied:

CFLdiff �
1

2
: ð13:24Þ

13.2.2.3 Stability of a Transient-Convection-Diffusion Case

For the case of a multi dimensional unsteady convection and diffusion problem

(Fig. 13.7) and based on the derivations presented in Chap. 12, the coefficients in

Eq. (13.14) are given by

a�C ¼ �
q�CVC

Dt

aC ¼
P

f � nb Cð Þ

C
/
f

Ef

dCF
þ _m�f ; 0
�
�
�

�
�
�

� � ð13:25Þ

Substituting the expressions for the coefficients from Eq. (13.25) in Eq. (13.13), the

CFL condition becomes

X

f�nb Cð Þ

C
/
f

Ef

dCF
þ _m�f ; 0
�
�
�

�
�
�

� �

�
q�CVC

Dt
� 0 ð13:26Þ

leading to the following constraint on the time step:

Dt�
q�CVC

P

f�nb Cð Þ

C
/
f

Ef

dCF
þ _m�f ; 0
�
�
�

�
�
�

� � : ð13:27Þ

C

F
d

CF

f
S f

E f

Fig. 13.7 A portion of the
discretized domain for a multi
dimensional convection
problem

13.2 The Finite Difference Approach 497

Equation (13.27) is the general requirement for stability of explicit transient schemes.

In fact the conditions obtained earlier for pure convection and pure diffusion in one

dimensional domains can be derived as special cases of Eq. (13.27). For the case of a

one dimensional diffusion problem with a uniform grid of cell size Dx, constant

density q, and a uniform diffusion coefficient C/, Eq. (13.27) reduces to

Dt�
q�C VC

z}|{
DxCDyC

P

f�nb Cð Þ

C
/
f

|{z}

¼C/
e þC

/
w

Ef

z}|{
¼DyC

dCF
|{z}
DxC

þ _m�f ; 0
�
�
�

�
�
�

|fflfflfflffl{zfflfflfflffl}

¼0

0

B
B
@

1

C
C
A

) Dt�
q�C DxCð Þ2

2C
/
C

: ð13:28Þ

While for the case of a one dimensional advection problem discretized using the

upwind scheme and with the flow moving from left to right, Eq. (13.27) reduces to

Dt�
q�C VC

z}|{
¼DxCDyC

P

f�nb Cð Þ

C
/
f

|{z}

¼0

Ef

dCF
þ _m�f ; 0
�
�
�

�
�
�

|fflfflfflffl{zfflfflfflffl}

_m�e¼q
�
C
u�
C
DyC

0

B
B
@

1

C
C
A

) Dt�
DxC

u�C
: ð13:29Þ

This stability constraint is stringent and very restrictive as it forces the use of

extremely small time steps when solving transient problems. That is, whereas the

computational cost at each time step is small in comparison to what would be

required to solve a system of equations at that level, the imposed limitation by the

CFL condition necessitates a larger number of steps to move the solution in time.

Therefore the benefit of reducing the calculations per time step is lost by the much

larger number of time steps required. Moreover, Eq. (13.27) indicates also that

improving the spatial accuracy by decreasing the grid size, decreases further the

maximum time step size that can be used without causing instabilities.

As shown next, such a constraint does not apply to implicit schemes for which

the transient term has always the proper sign.

13.2.3 Backward Euler Scheme

To derive the backward Euler scheme, the value of the function T at time t � Dt is

expressed using a Taylor series using the values of T and its derivates at time t as

498 13 Temporal Discretization: The Transient Term

T t � Dtð Þ ¼ T tð Þ �
@T tð Þ

@t
Dt þ

@2T tð Þ

@t2
Dt2

2!
þ � � � ð13:30Þ

Manipulating Eq. (13.30), an equation for the first derivative is obtained as

@T tð Þ

@t
¼

T tð Þ � T t � Dtð Þ

Dt
þ
@2T tð Þ

@t2
Dt

2!
þ � � � ð13:31Þ

Replacing T by q/ð Þ in Eq. (13.31) and substituting the resulting expression for the

derivative in Eq. (13.3), the discretized equation becomes

qC/Cð Þt� qC/Cð Þt�Dt

Dt
VC þ L /t

C

� �
¼ 0: ð13:32Þ

Then invoking the algebraic relation of the spatial operator and the suggested

notation, the complete algebraic form of the transient scalar equation is obtained as

a�C þ aC
� �

/C þ
X

F�NB Cð Þ

aF/F ¼ bCþa
�
C/
�
C ð13:33Þ

with the coefficients given by

a�C ¼
qCVC

Dt

a�C ¼ �
q�CVC

Dt

ð13:34Þ

The stencil for Eq. (13.33) is shown in Fig. 13.8. It is clear that with the spatial operator

evaluated at the same time level as the new temporal coefficient, resolving the ϕfield at

C

C

Fig. 13.8 Stencil for the
backward Euler stencil

13.2 The Finite Difference Approach 499

a new time level requires solving a system of equations. This type of schemes

requiring the solution of a system of equations is denoted by implicit schemes [5–12].

As can be inferred from Eq. (13.34) aC and a�C are of opposite signs guaranteeing

that /C is bounded by the values of its spatial neighbors at the current time step

t and by the value of its temporal neighbor at the previous time step t � Dt. This

implies that the scheme is always stable independent of the time step used, allowing

for the solution to proceed rapidly by using large time steps. Nonetheless this is not

the ideal scheme as it is of low order and solutions obtained with this scheme are of

low accuracy unless small time steps are used, which puts its use in a quandary.

Adopting large time steps for computational efficiency results in a solution of low

accuracy and using small time steps for higher accuracy is associated with low

computational efficiency.

13.2.4 Crank-Nicolson Scheme

In the Crank-Nicolson scheme [2, 14] a more accurate representation of the tran-

sient term is derived by expressing the values of the function T at times t � Dt and

t þ Dt in terms of the values of T and its derivates at time t as

T t þ Dtð Þ ¼ T tð Þ þ
@T tð Þ

@t
Dt þ

@2T tð Þ

@t2
Dt2

2!
þ
@3T tð Þ

@t3
Dt3

3!
þ � � �

T t � Dtð Þ ¼ T tð Þ �
@T tð Þ

@t
Dt þ

@2T tð Þ

@t2
Dt2

2!
�
@3T tð Þ

@t3
Dt3

3!
þ � � �

ð13:35Þ

Then, subtracting T t þ Dtð Þ from T t � Dtð Þ given in Eq. (13.35), an equation for

the first derivative is obtained as

@T tð Þ

@t
¼

T t þ Dtð Þ � T t � Dtð Þ

2Dt
þ O Dt2

� �
ð13:36Þ

Note that the order of accuracy of the derivative is now O Dt2ð Þ since the second

order derivative is completely eliminated.

Substituting the time derivative given by Eq. (13.36) into Eq. (13.3) yields

qC/Cð ÞtþDt� qC/Cð Þt�Dt

2Dt
VC þ L /t

C

� �
¼ 0 ð13:37Þ

Then invoking the algebraic relation of the spatial operator, and using the suggested

notation, the complete algebraic form of the transient scalar equation is obtained as

a�C/C ¼ bC � aC/
�
C þ

X

F�NB Cð Þ

aF/
�
F

0

@

1

A� a��C /��C ð13:38Þ

500 13 Temporal Discretization: The Transient Term

with the coefficients given by

a�C ¼
qCV

2Dt

a��C ¼ �
q��C V

2Dt

ð13:39Þ

The stencil for Eq. (13.38) is shown in Fig. 13.9. It is clear that the scheme is an

explicit type scheme, since the evaluation of q/ð ÞtþDt can be performed using only

old values. However two old levels are now needed, with the spatial operator being

evaluated at one of these levels.

An analysis of the stability of the CN scheme can be performed after slightly

modifying the original equation. Using the following approximation:

C

C

C

Fig. 13.9 Stencil of the
Crank Nicholson Scheme

13.2 The Finite Difference Approach 501

/� �
/þ /��

2
ð13:40Þ

the algebraic equation [Eq. (13.38)] becomes

a�C/C þ 0:5 aC/C þ
X

F�NB Cð Þ

aF/F

0

@

1

A ¼ bC � 0:5 aC þ 2a��C
� �

/��C þ
X

F�NB Cð Þ

aF/
��
F

0

@

1

A

ð13:41Þ

Thus, the stability condition becomes

aC þ 2a��C � 0: ð13:42Þ

For the one dimensional transient advection problem displayed in Fig. 13.5,

Eq. (13.42) results in

Dt�
2q��C VC

_m�e
¼

2q��C DxCDyC

q�Cu
�
CDyC

�
2DxC

v�e

�
�
�
�
; ð13:43Þ

where it has been assumed that the advection term is discretized using the upwind

scheme. Using the CFL number for convection defined above, Eq. (13.43) is

expressed as

CFLconv� 2 ð13:44Þ

The larger CFL limitation is pleasing, but the improved accuracy is just more

important as it allows for accurate solutions to be achieved without the need to

resort to very small time steps, especially that the second order derivative is now

eliminated from the error. More details on accuracy analysis will be presented in

later sections.

13.2.5 Implementation Details

The CN scheme can also be derived by summing the Forward and Backward

transient Euler schemes [4], as shown next.

Forward Euler !
qC/Cð Þt� qC/Cð Þt�Dt

Dt
VC ¼ �L /t

C

� �
ð13:45Þ

502 13 Temporal Discretization: The Transient Term

Backward Euler !
qC/Cð ÞtþDt� qC/Cð Þt

Dt
VC ¼ �L /t

C

� �
ð13:46Þ

Forward Euler + Backward Euler:

!
qC/Cð Þt� qC/Cð Þt�Dt

Dt
VC þ

qC/Cð ÞtþDt� qC/Cð Þt

Dt
VC ¼ �L /t

C

� �
� L /t

C

� �

!
qC/Cð ÞtþDt� qC/Cð Þt�Dt

2Dt
VC þ L /t

C

� �
¼ 0

! Crank� Nicolson

ð13:47Þ

This formulation points to a simple implementation of the CN scheme within an

implicit scheme framework as a two-step procedure. In the first step a Backward

Euler formulation is used to implicitly find q/ð Þt from

qC/Cð Þtþ
Dt

VC

L /t
C

� �
¼ qC/Cð Þt�Dt ð13:48Þ

while in the second step the CN value at time step t þ Dt is found explicitly as

qC/Cð ÞtþDt� qC/Cð Þt

Dt
VC ¼ �L /t

C

� �
¼

qC/Cð Þt� qC/Cð Þt�Dt

Dt
VC

) qC/Cð ÞtþDt¼ 2 qC/Cð Þt� qC/Cð Þt�Dt
ð13:49Þ

In this derivation it was assumed that the transient time step Dt is divided into

two equal local time steps Dtlocalð Þ, with Dtlocal equals half the set time step Dt.

It is important to note that while the CN scheme is second order accurate, it is

still an explicit scheme, which is constrained by a CFL like condition, as explained

above.

13.2.6 Adams-Moulton Scheme

The development of the second order Adams-Moulton scheme [15, 16] requires

expanding the values of T at t � Dt and t � 2Dt using Taylor series expansions

around t, yielding

T t � 2Dtð Þ ¼ T tð Þ �
@T tð Þ

@t
2Dt þ

@2T tð Þ

@t2
4Dt2

2!
þ � � �

T t � Dtð Þ ¼ T tð Þ �
@T tð Þ

@t
Dt þ

@2T tð Þ

@t2
Dt2

2!
þ � � �

ð13:50Þ

13.2 The Finite Difference Approach 503

The first derivative is obtained by combining the two equations in such a way that

the second order derivative is eliminated, resulting in the following equation:

@T tð Þ

@t
¼

3T tð Þ � 4T t � Dtð Þ þ T t � 2Dtð Þ

2Dt
ð13:51Þ

which, upon substituting in Eq. (13.3), yields

3 qC/Cð Þt� 4 qC/Cð Þt�Dt þ qC/Cð Þt�2Dt

2Dt
VC þ L /t

C

� �
¼ 0 ð13:52Þ

Expanding the spatial term, the final form of the algebraic equation is obtained as

a�C þ aC
� �

/C þ
X

F�NB Cð Þ

aF/F ¼ bC � a�C/
�
C � a��C /��C ð13:53Þ

with the coefficients given by

a�C ¼
3qCVC

2Dt

a�C ¼ �
2q�CVC

Dt

a��C ¼
q��C VC

2Dt

ð13:54Þ

It is clear that the a��C coefficient has a positive sign implying that an increase in /��C
would lead to a decrease in /C. This is mitigated by the large a�C coefficient, which

has the right influence. Thus while the scheme is stable, it is not bounded with

unphysical oscillations expected in certain circumstances.

Example 1

The thermal conductivity of a solid sphere of volume 1 m3 is so high that its

resistance to conduction is very small as compared to its resistance to con-

vection heat transfer with the surroundings. Thus temperature gradients

within the sphere are negligible and the temperature of the sphere is spatially

uniform at any instant. The initial temperature of the sphere is Th and that of

the surroundings is T1. The density, specific heat, sphere surface area, and

convection heat transfer coefficient with the surroundings are ρ, c, As, and

h1, respectively. Neglecting heat transfer by radiation, the energy equation

for the sphere is given by

qcV
dT

dt
¼ �h1AS T � T1ð Þ

Defining a dimensionless temperature as

504 13 Temporal Discretization: The Transient Term

/ ¼
T � T1

Th � T1

the energy equation and initial condition become

d/

dt
¼ �

h1AS

qcV
/ and / 0ð Þ ¼ 1

For a value of h1AS=qcV ¼ 1, compare dimensionless temperature values

obtained analytically with numerical ones generated using the first order

explicit scheme, the first order implicit scheme, and the second order CN

scheme applied via the two-step procedure at times 0.1, 0.2, and 0.3 using a

time step with size of 0.1.

Solution

The governing equation reduces to

d/

dt
¼ �/

subject to

/ 0ð Þ ¼ 1

By separation of variables and application of the initial condition the ana-

lytical solution is found as

/ tð Þ ¼ e�t

Thus the analytical solution at times 0.1, 0.2, and 0.3 are given by

/exact 0:1ð Þ ¼ e�0:1 ¼ 0:9048
/exact 0:2ð Þ ¼ e�0:2 ¼ 0:8187
/exact 0:3ð Þ ¼ e�0:3 ¼ 0:7408

The numerical solution is obtained with V ¼ 1, L /nð Þ ¼ �/n, and

L /nþ1
� �

¼ �/nþ1:

The error in the numerical solution is found using

error ¼ /numerical � /exactj j

Numerical solution using the first order explicit scheme

/tþDt ¼ 1� Dtð Þ/t

13.2 The Finite Difference Approach 505

/explicit 0:1ð Þ ¼ 1� 0:1ð Þ/ 0ð Þ ¼ 0:9 	 1 ¼ 0:9

/explicit 0:2ð Þ ¼ 1� 0:1ð Þ/ 0:1ð Þ ¼ 0:9 	 0:9 ¼ 0:81

/explicit 0:3ð Þ ¼ 1� 0:1ð Þ/ 0:2ð Þ ¼ 0:9 	 0:81 ¼ 0:729

9

>=

>;

)

errorexplicit 0:1ð Þ ¼ 4:8
 10�3

errorexplicit 0:2ð Þ ¼ 8:7
 10�3

errorexplicit 0:3ð Þ ¼ 1:18
 10�2

8

><

>:

Numerical solution using the first order implicit scheme

/tþDt ¼
1

1þ Dt
/t

/implicit 0:1ð Þ ¼
1

1þ 0:1
1ð Þ ¼ 0:9091

/implicit 0:2ð Þ ¼
1

1þ 0:1
0:9091ð Þ ¼ 0:8264

/implicit 0:3ð Þ ¼
1

1þ 0:1
0:8264ð Þ ¼ 0:7513

9

>>>>>>>=

>>>>>>>;

)

errorimplicit 0:1ð Þ ¼ 4:3
 10�3

errorimplicit 0:2ð Þ ¼ 7:7
 10�3

errorimplicit 0:3ð Þ ¼ 1:05
 10�2

8

>><

>>:

Numerical solution using the second order CN scheme

In this case the solution is obtained using Eqs. (13.48) and (13.49) that are

reduced to

/	 t þ Dt=2ð Þ ¼
1

1þ Dt=2
/ tð Þ

/CN t þ Dtð Þ ¼ 2/	 t þ Dt=2ð Þ � / tð Þ

where the total time step Dt has been divided into two equal time steps of

value Dt=2. Applying the above equations, the solutions are found as

/	 0:05ð Þ ¼
1

1þ 0:05
/ 0ð Þ ¼ 0:95238

/CN 0:1ð Þ ¼ 2/	 0:05ð Þ � / 0ð Þ ¼ 0:90476

/	 0:15ð Þ ¼
1

1þ 0:05
/ 0:1ð Þ ¼ 0:861678

/CN 0:2ð Þ ¼ 2/	 0:15ð Þ � / 0:1ð Þ ¼ 0:81859

/	 0:25ð Þ ¼
1

1þ 0:05
/ 0:2ð Þ ¼ 0:779615

/CN 0:3ð Þ ¼ 2/	 0:25ð Þ � / 0:2ð Þ ¼ 0:7406

9

>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>;

)

errorCN 0:1ð Þ ¼ 7:551
 10�5

errorCN 0:2ð Þ ¼ 1:366
 10�4

errorCN 0:3ð Þ ¼ 1:854
 10�4

8

>><

>>:

506 13 Temporal Discretization: The Transient Term

13.3 The Finite Volume Approach

The Finite Volume approach for the discretization of the transient term is very

similar to the discretization of the convective term [4], except that the integration is

carried over temporal rather than spatial element (Fig. 13.10).

Integration of Eq. (13.3) over the time interval t � Dt=2; t þ Dt=2½ � yields

ZtþDt=2

t�Dt=2

@ qC/Cð Þ

@t
VCdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term I

þ

ZtþDt=2

t�Dt=2

L /Cð Þdt

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Term II

¼ 0 ð13:55Þ

With VC treated as a constant, Term I turned into a difference of face fluxes, and

Term II evaluated as a volume integral using the mid point rule, Eq. (13.55)

becomes

VC qC/Cð ÞtþDt=2�VC qC/Cð Þt�Dt=2þL /t
C

� �
Dt ¼ 0 ð13:56Þ

Equation (13.56) is the semi-discretized transient equation, which can be written in

the more standard form by dividing all terms by the temporal element volume, Dt,

leading to

x
C

,t +
t

2
=

C

t+
t

2

x
C

,t
t

2
=

C

t
t

2

Element

(temporal domain)

tt

tb

x
C

,t + t() =
C

t+ t

x
C

,t() =
C

t

x
C

,t t() =
C

t t

tt

L
t()

t

t

Fig. 13.10 Element in the transient domain

13.3 The Finite Volume Approach 507

qC/Cð ÞtþDt=2� qC/Cð Þt�Dt=2

Dt
VC þ L /t

C

� �
¼ 0 ð13:57Þ

To derive the full discretized equation, an interpolation profile expressing the face

values at t � Dt=2ð Þ and t þ Dt=2ð Þ in terms of the element values at tð Þ, t � Dtð Þ,
etc., is needed. The selection of this profile can heavily rely on the understanding

gained from the discretization of the convection term. The choice will obviously

affect the accuracy and robustness of the method. In that regard, it is worth men-

tioning that the integration of the spatial operator is second order in time, but the

accuracy of the operator itself is determined by the options used during its

discretization.

Independent of the profile used, the flux will be linearized based on old and new

values as

FluxT ¼ FluxC/C þ FluxC�/�C þ FluxV ð13:58Þ

where again superscript ° refers to old values. With the linearization completed, the

coefficients of the algebraic equation can then be assembled into

aC aC þ FluxC

bC bC � FluxC�/�C � FluxV
ð13:59Þ

In what follows the discretization for a number of interpolation profiles is presented.

13.3.1 First Order Transient Schemes

The first order implicit and explicit Euler schemes will be constructed next by

adopting an upwind [14, 17] and a downwind [4, 18] transient interpolation profile,

respectively.

13.3.2 First Order Implicit Euler Scheme

The transient first order implicit Euler scheme is obtained by using a first-order

“upwind” interpolation profile [14, 17]. As shown in Fig. 13.11, the value of ρϕ at

the temporal element face is set equal to the value at the centroid of the upwind

element to give

qC/Cð ÞtþDt=2¼ qC/Cð Þt and qC/Cð Þt�Dt=2¼ qC/Cð Þt�Dt ð13:60Þ

508 13 Temporal Discretization: The Transient Term

Using Eq. (13.60), Eq. (13.57) becomes

qC/Cð Þt� qC/Cð Þt�Dt

Dt
VC þ L /t

C

� �
¼ 0 ð13:61Þ

which is the first order implicit Euler scheme. The scheme is linearized as follows:

FluxC ¼
qCVC

Dt

FluxC� ¼ �
q�CVC

Dt

FluxV ¼ 0

ð13:62Þ

13.3.2.1 Numerical Diffusion

As this is a first order scheme, it is expected, based on the knowledge gained from

convection schemes, to produce numerical diffusion. Its value can be determined by

trying to recover the original governing equation using a Taylor series expansion

around time t. The value of q/ð Þt�Dt can be expressed as

q/ð Þt�Dt¼ q/ð Þt�
@ q/ð Þ

@t

�
�
�
�
t

Dt þ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt2

2
þ O Dt3

� �
ð13:63Þ

t+ t

t

t t /2

t+ t /2

L
t()

t t

Fig. 13.11 First order transient upwind interpolation profile resulting in the implicit first order
transient Euler scheme

13.3 The Finite Volume Approach 509

which can be rearranged into

q/ð Þt� q/ð Þt�Dt

Dt
¼

@ q/ð Þ

@t

�
�
�
�
t

�
Dt

2

� �
@2 q/ð Þ

@t2

�
�
�
�
t

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Numerical

diffusion

term

�O Dt2
� �

ð13:64Þ

Substituting Eq. (13.64) into the discretized equation gives

@ q/ð Þ

@t

�
�
�
�
t

þ
1

VC

L /t
C

� �
¼

Dt

2

� �
@2 q/ð Þ

@t2

�
�
�
�
t

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Numerical

diffusion

term

þ O Dt2
� �

ð13:65Þ

In effect a numerical diffusion term has been added to the equation that scales with

the time step in a similar fashion to the upwind scheme for the advection term. So

while the scheme is unconditionally stable, the solution it yields is really a sta-

tionary solution for large time steps.

13.3.3 First Order Explicit Euler Scheme

The transient first order explicit Euler scheme is obtained by using a first-order

“downwind” interpolation profile [4, 18]. As shown in Fig. 13.12, the value of ρϕ at

t+ t

t

t+ t /2

L
t()

t t /2

t t

Fig. 13.12 First order transient downwind interpolation profile resulting in the explicit first order
transient Euler scheme

510 13 Temporal Discretization: The Transient Term

the temporal element face is set equal to the value at the downwind element

centroid, yielding

qC/Cð ÞtþDt=2¼ qC/Cð ÞtþDt and qC/Cð Þt�Dt=2¼ qC/Cð Þt ð13:66Þ

Using Eq. (13.66), Eq. (13.57) becomes

qC/Cð ÞtþDt� qC/Cð Þt

Dt
VC þ L /t

C

� �
¼ 0 ð13:67Þ

which is the first order explicit Euler scheme. The scheme is linearized as follows:

FluxC ¼
qCVC

Dt

FluxC� ¼ �
q�CVC

Dt

FluxV ¼ 0

ð13:68Þ

Note that now the new time is at t þ Dt and that the spatial operator of Eq. (13.67)

has to be evaluated at time t. Thus, it is possible to evaluate the right hand side

completely and find the value of ρϕ at time t þ Dt without the need to solve a set of

linear algebraic equations. This is the explicit scheme and corresponds to the

assumption that ρϕ prevails over the entire time step.

13.3.3.1 Numerical Anti-Diffusion

Again performing a simple Taylor expansion around time t yields

q/ð ÞtþDt¼ q/ð Þtþ
@ q/ð Þ

@t

�
�
�
�
t

Dt þ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt2

2
þ O Dt3

� �
ð13:69Þ

which can be rewritten as

q/ð ÞtþDt� q/ð Þt

Dt
¼

@ q/ð Þ

@t

�
�
�
�
t

þ
Dt

2

� �
@2 q/ð Þ

@t2

�
�
�
�
t

þ O Dt2
� �

ð13:70Þ

Substitution into Eq. (13.67) gives

@ q/ð Þ

@t

�
�
�
�
t

þ
1

VC

L /t
C

� �
¼ �

Dt

2

� �
@2 q/ð Þ

@t2

�
�
�
�
t

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

Numerical

anti�diffusion
term

þ O Dt2
� �

ð13:71Þ

13.3 The Finite Volume Approach 511

Where now the second order differential term has a negative sign, akin to a negative

diffusion or anti-diffusion, with compression effects on profiles, very similar to the

Downwind scheme in advection. Again the anti-diffusion term scales with the time

step. When used in combination with an upwind convection scheme and a Courant

number of 1, it can be shown that the numerical diffusion of the advection scheme and

the numerical anti-diffusion of the explicit Euler scheme for a CFLconv equals to 1 are

of equal magnitudes and of opposite signs. Thus they cancel each other producing

nearly an exact solution. Nonetheless this is not practical as ensuring a CFLconv of 1

on anything but simple one dimensional grids is not an option for real problems.

A related issue to the anti-diffusion behavior is numerical instabilities, which

increases with increasing Dt placing a very strong restriction on the time step. This

can be evaluated by applying the negative neighboring coefficient rule.

13.3.4 Second Order Transient Euler Schemes

Similar to advection schemes, second order transient schemes can be constructed

with a linear interpolation profile. The choice could be a symmetric profile (central

difference) yielding the Crank-Nicolson (CN) scheme [2], or an upwind one (second

order upwind scheme) [4, 19, 20] resulting in the Adams-Moulton scheme [15, 16],

an implicit scheme also known as the Second Order Upwind Euler (SOUE).

13.3.5 Crank-Nicholson (Central Difference Profile)

With the ρϕ computed using linear interpolation between the “Upwind” and

“Downwind” nodes, the Crank-Nicholson scheme shown in Fig. 13.13 is obtained.

For a uniform time step, this is expressed mathematically as

qC/Cð ÞtþDt=2¼
1

2
qC/Cð ÞtþDtþ

1

2
qC/Cð Þt

qC/Cð Þt�Dt=2¼
1

2
qC/Cð Þtþ

1

2
qC/Cð Þt�Dt

ð13:72Þ

Substituting in Eq. (13.57), the discretized equation becomes

qC/Cð ÞtþDt� qC/Cð Þt�Dt

2Dt
VC þ L /t

C

� �
¼ 0 ð13:73Þ

The linearization coefficients for the CN scheme can be written as

FluxC ¼
qCVC

2Dt

FluxC� ¼ 0

FluxV ¼ �
q��C VC

2Dt
/��C

ð13:74Þ

512 13 Temporal Discretization: The Transient Term

The stencil shown in Fig. 13.9 indicates that the scheme is explicit with the value at

level t þ Dt computed explicitly from the values at times t and t � Dt. Thus its

stability is constrained by a CFL limit.

Again in a similar fashion to the finite difference formulation, it can be refor-

mulated in a two-step procedure using Eqs. (13.48) and (13.49), i.e., a first order

implicit Euler step followed by a modified explicit Euler step in the form of

extrapolation.

13.3.5.1 Numerical Accuracy

Expanding q/ð Þ at t þ Dt and t � Dt via Taylor expansions around time t yields

q/ð ÞtþDt¼ q/ð Þt þ
@ q/ð Þ

@t

�
�
�
�
t

Dt þ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt2

2
þ
@3 q/ð Þ

@t3

�
�
�
�
t

Dt3

6
þ O Dt4

� �
ð13:75Þ

q/ð Þt�Dt¼ q/ð Þt �
@ q/ð Þ

@t

�
�
�
�
t

Dtþ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt2

2
�
@3 q/ð Þ

@t3

�
�
�
�
t

Dt3

6
þ O Dt4

� �
ð13:76Þ

Subtracting Eq. (13.75) from Eq. (13.76), the following equation is obtained:

q/ð ÞtþDt� q/ð Þt�Dt

2Dt
¼

@ q/ð Þ

@t

�
�
�
�
t

þ
@3 q/ð Þ

@t3

�
�
�
�
t

Dt2

6
� O Dt3

� �
ð13:77Þ

t+ t

t

t+ t /2

t t /2

t t

L
t()

Fig. 13.13 Second order transient central difference interpolation profile resulting in the transient
CN scheme

13.3 The Finite Volume Approach 513

Substitution into Eq. (13.73) gives

@ q/ð Þ

@t

�
�
�
�
t

þ
1

VC

L /t
C

� �
¼ �

@3 q/ð Þ

@t3

�
�
�
�
t

Dt2

6
þ O Dt3

� �
ð13:78Þ

confirming that the scheme is second order accurate. The third order derivative is a

dispersive term that results in instability.

13.3.6 Second Order Upwind Euler (SOUE) Scheme

Using the second-order “upwind” interpolation profile depicted in Fig. 13.14, the

interface ρϕ values are approximated as

qC/Cð ÞtþDt=2¼
3

2
qC/Cð Þt�

1

2
qC/Cð Þt�Dt

qC/Cð Þt�Dt=2¼
3

2
qC/Cð Þt�Dt�

1

2
qC/Cð Þt�2Dt

ð13:79Þ

Substituting in Eq. (13.57), the discretized ρϕ field equation is obtained as

3 qC/Cð Þt � 4 qC/Cð Þt�Dt þ qC/Cð Þt�2Dt

2Dt
VC þ L /t

C

� �
¼ 0 ð13:80Þ

which is the implicit second order upwind Euler (SOUE) scheme. In this scheme

the values of ρϕ have to be stored for two of the older time steps, with its linear-

ization coefficients given by

t

t+ t /2

t t /2

L
t()

t t

t 2 t

Fig. 13.14 Second order upwind Euler scheme

514 13 Temporal Discretization: The Transient Term

FluxC ¼
3qCVC

2Dt

FluxC� ¼ �
2q�CVC

Dt

FluxV ¼
q��C VC/

��
C

2Dt

ð13:81Þ

13.3.6.1 Numerical Accuracy

The scheme is second order as can be shown from a Taylor series evaluation.

Expanding q/ð Þt�Dt and q/ð Þt�2Dt around time t give

q/ð Þt�Dt ¼ q/ð Þt�
@ q/ð Þ

@t

�
�
�
�
t

Dt þ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt2

2
�
@3 q/ð Þ

@t3

�
�
�
�
t

Dt3

6
þ O Dt4

� �
ð13:82Þ

q/ð Þt�2Dt ¼ q/ð Þt�
@ q/ð Þ

@t

�
�
�
�
t

2Dt þ
@2 q/ð Þ

@t2

�
�
�
�
t

2Dt2 �
@3 q/ð Þ

@t3

�
�
�
�
t

8Dt3

6
þ O Dt4

� �

ð13:83Þ

Multiplying Eq. (13.82) by 4 and subtracting the resulting equation from

Eq. (13.83), an expression for the SOUE is obtained as

3 q/ð Þt � 4 q/ð Þt�Dtþ q/ð Þt�2Dt

2Dt
¼

@ q/ð Þ

@t

�
�
�
�
t

�
@3 q/ð Þ

@t3

�
�
�
�
t

Dt2

3
� O Dt3

� �
ð13:84Þ

Combining Eq. (13.84) and Eq. (13.80), the recovered equation for ρϕ becomes

@ q/ð Þ

@t

�
�
�
�
t

þ
1

VC

L /t
C

� �
¼

@3 q/ð Þ

@t3

�
�
�
�
t

Dt2

3
þ O Dt3

� �
ð13:85Þ

which has a third order numerical dispersion term but no numerical diffusion.

13.3.7 Initial Condition for the FV Approach

The implementation of the finite volume formulation is straight forward except for

the initial time step. As shown in Fig. 13.15, the first temporal element is a

boundary element in time, as such it does not have an upwind neighbor. Rather the

value at the lower element face is used directly at the face resulting in a gradient

that is half the correct numerical value. This comes about because it is computed as

the difference between the values at /
tinitialþDt=2
C and /tinitial

C , which are located half a

13.3 The Finite Volume Approach 515

time step Dt=2ð Þ apart, while dividing their difference by a full time step Dtð Þ
leading to a non-negligible initial error.

This is easily demonstrated by considering the first temporal element in the

discretized equation of the first order implicit Euler scheme. Using Eq. (13.57) the

discretized ρϕ field equation is obtained as

qC/Cð ÞtinitialþDt=2� qC/Cð Þtinitial

Dt
VC þ L /

tinitialþDt=2
C

	

¼ 0 ð13:86Þ

For the first temporal element, the upwind interpolation yields a gradient computed

as the difference between the ρϕ values at tinitial þ Dt=2 and tinitial divided by Dt.

However for the case of a regular element (Fig. 13.16), the gradient is actually

between the ρϕ values at tinitial þ 3Dt=2 and tinitial þ Dt=2, divided by Dt. The

t

t
initial

t / 2

Fig. 13.15 Boundary temporal element

t

t
initial

t

t /2

Fig. 13.16 Treatment of initial condition and the virtual element of centroid tinitial

516 13 Temporal Discretization: The Transient Term

difference between the two gradients is substantial, and any scheme that starts with

the gradient of Eq. (13.86) will result in a large initial error that will affect the

solution at the following steps. This error can be avoided if a grid similar to

Fig. 13.16 is adopted. In this case the solution of the finite difference and finite

volume methods will be basically similar, as for a regular grid.

Adopting this approach, the upwind values at the faces of the first temporal

element spanning the time interval tinitial þ Dt=2; tinitial þ 3Dt=2½ � are obtained as

qC/Cð Þtinitialþ3Dt=2¼ qC/Cð ÞtinitialþDt

qC/Cð ÞtinitialþDt=2¼ qC/Cð Þtinitial
ð13:87Þ

Substituting in Eq. (13.57), the discretized ρϕ field equation becomes

qC/Cð ÞtinitialþDt� qC/Cð Þtinitial

Dt
VC þ L /tinitialþDt

C

	

¼ 0 ð13:88Þ

which is similar to the equation obtained for any internal element.

Example 2

Repeat example 1 using the CN scheme applied via Eq. (13.73) and the

SOUE scheme. Use a time step 0.05 to find the values at 0.1, 0.2, and 0.3.

Solution

The analytical solution at times 0.1, 0.2, and 0.3 were found in example 1.

Since two old values are needed, the value at the first time step is found

using the first order backward Euler scheme. Thus the numerical solution is

obtained using Eqs. (13.61), (13.73), and (13.80), which are reduced to

/EU t þ Dtð Þ ¼
1

1þ Dt
/�

/CN t þ Dtð Þ ¼ /�� � 2Dt/�

/SOEU t þ Dtð Þ ¼
4/� � /��

3 þ 2Dt

Based on the suggested implementation note, the first temporal element spans

the time interval 0:025; 0:075½ �, the second element spans the interval

0:075; 0:125½ �, and so on.

Numerical solution using the second order CN scheme

Applying the above equations, the solutions are found as

13.3 The Finite Volume Approach 517

/EU 0:05ð Þ ¼
1

1þ 0:05
/ 0ð Þ ¼ 0:95238

/CN 0:1ð Þ ¼ /�� � 2Dt/� ¼ 1� 2
 0:05
 0:95238 ¼ 0:90476

/CN 0:15ð Þ ¼ 0:95238� 2
 0:05
 0:90476 ¼ 0:861904

/CN 0:2ð Þ ¼ 0:90476� 2
 0:05
 0:861904 ¼ 0:81857

/CN 0:25ð Þ ¼ 0:861904� 2
 0:05
 0:81857 ¼ 0:780047

/CN 0:3ð Þ ¼ 0:81857� 2
 0:05
 0:780047 ¼ 0:74056

9

>>>>>>>>>>=

>>>>>>>>>>;

)

errorCN 0:1ð Þ ¼ 4
 10�5

errorCN 0:2ð Þ ¼ 1:3
 10�4

errorCN 0:3ð Þ ¼ 2:4
 10�4

8

><

>:

It is clear that the solution error indicates second order accuracy. The slight

differences between the error values obtained here and those reported in

example 1 are due to the number of decimal values carried during

computations.

Numerical solution using the SOUE scheme

/EU 0:05ð Þ ¼
1

1þ 0:05
/ 0ð Þ ¼ 0:9524

/SOUE 0:1ð Þ ¼
4/� � /��

3þ 2Dt
¼

4
 0:9524� 1

3:1
¼ 0:90632

/SOUE 0:15ð Þ ¼ 4
 0:90632 � 0:9524ð Þ=3:1 ¼ 0:86219

/SOUE 0:2ð Þ ¼ 4
 0:86219 � 0:90632ð Þ=3:1 ¼ 0:82014

/SOUE 0:25ð Þ ¼ 4
 0:82014 � 0:86219ð Þ=3:1 ¼ 0:780119

/SOUE 0:3ð Þ ¼ 4
 0:780119 � 0:82014ð Þ=3:1 ¼ 0:74204

9

>>>>>>>>>>>>=

>>>>>>>>>>>>;

)

errorSOUE 0:1ð Þ ¼ 1:5
 10�3

errorSOUE 0:2ð Þ ¼ 1:44
 10�3

errorSOUE 0:3ð Þ ¼ 1:24
 10�3

8

><

>:

The solution is second order accurate, however it is less accurate than the CN

solution.

518 13 Temporal Discretization: The Transient Term

13.4 Non-Uniform Time Steps

So far a uniform time step was considered. In practical applications it is common to

use variable time steps mainly to reduce the computational cost by selecting, at

every time step, the maximum allowable time step value that does not violate the

CFL condition.

For first order schemes, the discretization is not affected by whether the time step

is variable or constant. The situation is different for second order transient schemes

since they use a stencil involving two time step values. For the case of the two step

implementation of the Crank-Nicolson transient scheme nothing changes except

that for each of the two steps a different time step is used. This affects the accuracy

as the spatial derivative is no longer at the center of the temporal element. For other

second order schemes, the interpolation profile has to be modified to account for the

non equal time steps. In what follows a non uniform transient grid is used in the

discretization of the transient term for the standard CN [2] and the SOUE [4, 19, 20]

schemes. While the finite volume and finite difference methods yield equivalent

algebraic relations in a uniform grid, this is not the case for variable time steps as

demonstrated in the derivations to follow.

13.4.1 Non-Uniform Time Steps with the Finite Difference

Approach

13.4.1.1 Crank-Nicolson Scheme

The CN scheme with non uniform time steps is derived, as shown in Fig. 13.17, by

expressing the values of ρϕ at times t þ Dt and t � Dt� in terms of its value and the

values of its derivatives at time t using Taylor series as

q/ð ÞtþDt ¼ q/ð Þtþ
@ q/ð Þ

@t

�
�
�
�
t

Dt þ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt2

2!
þ
@3 q/ð Þ

@t3

�
�
�
�
t

Dt3

3!
þ � � � ð13:89Þ

q/ð Þt�Dt
�

¼ q/ð Þt�
@ q/ð Þ

@t

�
�
�
�
t

Dt� þ
@2 q/ð Þ

@t2

�
�
�
�
t

Dt�ð Þ2

2!
�
@3 q/ð Þ

@t3

�
�
�
�
�
t

Dt�ð Þ3

3!
þ � � �

ð13:90Þ

Then, multiplying Eq. (13.89) by Dt�ð Þ2 and Eq. (13.90) by Dt2 and subtracting the

resulting equations from each other, an equation for the first derivative is obtained as

13.4 Non-Uniform Time Steps 519

t

t

t + t

t

t t

Fig. 13.17 The finite difference temporal mesh of the CN scheme with non uniform time steps

@ q/ð Þ

@t

�
�
�
�
t

�
Dt�ð Þ2 q/ð ÞtþDt� Dt�ð Þ2�Dt2

h i

q/ð Þt�Dt2 q/ð Þt�Dt

Dt Dt�ð Þ2þDt�Dt2
h i ð13:91Þ

Substituting the expression for the gradient from Eq. (13.91) in Eq. (13.3), the

discretized equation for the CN scheme with non uniform time steps is given by

Dt�ð Þ2 q/ð Þ � Dt�ð Þ2�Dt2
h i

q/ð Þ��Dt2 q/ð Þ��

Dt� Dt Dt þ Dt�ð Þ
VC þ L /�C

� �
¼ 0 ð13:92Þ

Expanding the spatial term, the final form of the algebraic equation becomes

a�C þ aC
� �

/C þ
X

F�NB Cð Þ

aF/F ¼ bC � a�C/
�
C � a��C /��C ð13:93Þ

with the time dependent coefficients computed from

a�C ¼
Dt�

Dt Dt þ Dt�ð Þ
qCVC

a�C ¼
Dt � Dt�

Dt þ Dt�
q�CVC

a��C ¼
Dt

Dt� Dt þ Dt�ð Þ
q��C VC

ð13:94Þ

For uniform time steps, the coefficients in Eq. (13.39) are recovered.

520 13 Temporal Discretization: The Transient Term

13.4.2 Adams-Moulton (or SOUE) Scheme

Referring to Fig. 13.18, the Adams-Moulton scheme, also denoted by the SOUE

scheme, with non uniform time steps is derived by expressing the values of the

dependent variable ϕ at times t � Dt and t � Dt � Dt� in terms of its value and the

values of its derivatives at time t using Taylor series as

q/ð Þt�Dt ¼ q/ð Þt� Dt
@ q/ð Þ

@t

�
�
�
�
t

þ
Dt2

2

@2 q/ð Þ

@t2

�
�
�
�
t

þO Dt3
� �

ð13:95Þ

q/ð Þt�Dt�Dt
�

¼ q/ð Þt� Dt þ Dt�ð Þ
@ q/ð Þ

@t

�
�
�
�
t

þ
Dt þ Dt�ð Þ2

2

@2 q/ð Þ

@t2

�
�
�
�
�
t

þO Dt3
� �

ð13:96Þ

Multiplying Eq. (13.95) by Dt þ Dt�ð Þ2=Dt2 and subtracting the resulting equation

from Eq. (13.96), a second order representation of the first derivative (i.e., the

SOUE scheme) is obtained as

@ q/ð Þ

@t

�
�
�
�
t

¼
1

Dt
1þ

Dt

Dt þ Dt�

� �

q/ð Þt� 1þ
Dt

Dt�

� �

q/ð Þt�Dtþ
Dt2

Dt� Dt þ Dt�ð Þ

� �

q/ð Þt�Dt�Dt
�

� �

ð13:97Þ

Substituting the expression for the gradient from Eq. (13.97) in Eq. (13.3), the

discretized equation becomes

t

t

t t

t

t t t

Fig. 13.18 The finite difference temporal mesh of the SOUE scheme with non uniform time steps

13.4 Non-Uniform Time Steps 521

VC

1

Dt
þ

1

Dt þ Dt�

� �

qC/Cð Þ � VC

1

Dt
þ

1

Dt�

� �

qC/Cð Þ�

þVC

Dt

Dt� Dt þ Dt�ð Þ

� �

qC/Cð Þ��þ L /t
C

� �
¼ 0

ð13:98Þ

Expanding the spatial term, the final form of the algebraic equation is written as

a�C þ aC
� �

/C þ
X

F�NB Cð Þ

aF/F ¼ bC � a�C/
�
C � a��C /��C ð13:99Þ

with the time dependent coefficients obtained from

a�C ¼
1

Dt
þ

1

Dt þ Dt�

� �

qCVC

a�C ¼ �
1

Dt
þ

1

Dt�

� �

q�CVC

a��C ¼
Dt

Dt� Dt þ Dt�ð Þ
q��C VC

ð13:100Þ

For uniform time steps the coefficients given in Eq. (13.54) are recovered.

13.4.3 Non-Uniform Time Steps with the Finite Volume

Approach

Following the terminology used with the FVM, the size of a temporal element is

denoted by Dt, while the distance between the centroids of two consecutive tem-

poral elements is designated by dt. For uniform time steps both are equal and the

time between two consecutive computed fields is Dt ¼ dt for both the finite dif-

ference and finite volume methods. For non-uniform time steps the time remains Dt

for the finite difference method, however it becomes dt ¼ Dt þ Dt�ð Þ=2 for the

finite volume method leading to different formulations.

As for the finite difference method, with non-uniform time steps, the current and

old time step values affect the scheme interpolation profile and hence its finite

volume discretization. This is similar to writing the profile for a convection scheme

over a structured non-uniform grid. The procedure used will be illustrated by

considering the CN and SOUE schemes. Extension to other profiles is

straightforward.

522 13 Temporal Discretization: The Transient Term

13.4.4 Crank-Nicolson Scheme

The CN scheme is obtained by calculating the value of ρϕ at an interface as the

average of the ρϕ values at the main points straddling the interface (Fig. 13.19), i.e.,

qC/Cð Þt�Dt=2 ¼
Dt�

Dt þ Dt�
qC/Cð Þtþ

Dt

Dt þ Dt�
qC/Cð Þt� Dt�þDtð Þ=2

qC/Cð Þt�Dt=2�Dt
�

¼
Dt��

Dt� þ Dt��
qC/Cð Þt� Dt�þDtð Þ=2þ

Dt�

Dt� þ Dt��
qC/Cð Þt�Dt

�� DtþDt��ð Þ=2

ð13:101Þ

Substituting in Eq. (13.57), the discretized ρϕ field equation is obtained as

Dt�

Dt þ Dt�
VC

Dt
qC/Cð Þ þ

Dt

Dt þ Dt�
�

Dt��

Dt� þ Dt��

� �
VC

Dt
qC/Cð Þ�

�
Dt�

Dt� þ Dt��
VC

Dt
qC/Cð Þ��þ L /�C

� �
¼ 0

ð13:102Þ

The linearization coefficients for the CN scheme with non uniform time steps are

inferred to be

t

t

t

t t / 2

t

t t + t() / 2

t t

t + t() / 2

t t / 2 t

t

t

t

Fig. 13.19 The finite volume temporal mesh of the CN scheme with non uniform time steps

13.4 Non-Uniform Time Steps 523

FluxC ¼
Dt�

Dt þ Dt�
qCVC

Dt

FluxC� ¼
Dt

Dt þ Dt�
�

Dt��

Dt� þ Dt��

� �
q�CVC

Dt

FluxV ¼ �
Dt��

Dt� þ Dt��
q��C VC/

��
C

Dt

ð13:103Þ

As in the constant time step case, the method is explicit necessitating storing values

of the two previous time steps. Moreover the uniform time steps formulation can be

recovered by setting Dt ¼ Dt� ¼ Dt�� in Eqs. (13.102) and (13.103).

13.4.5 Adams-Moulton (or SOUE) Scheme

With the second-order “upwind” interpolation profile given by Eq. (11.84), the

interface ρϕ values at the faces t þ Dt=2 and t � Dt=2 displayed in Fig. 13.20 are

found to be

t

t

t

t + t / 2

t t / 2

t t + t() / 2

t

t t

t + t() / 2

t t / 2 t

t

t

t

Fig. 13.20 The finite volume temporal mesh of the SOUE scheme with non uniform time steps

524 13 Temporal Discretization: The Transient Term

q/ð ÞtþDt=2 ¼ q/ð Þtþ q/ð Þt� q/ð Þt� DtþDt�ð Þ=2
h i

Dt

Dt þ Dt�

q/ð Þt�Dt=2 ¼ q/ð Þt� DtþDt�ð Þ=2þ q/ð Þt� DtþDt�ð Þ=2� q/ð Þt�Dt
�
� DtþDt��ð Þ=2

h i
Dt�

Dt� þ Dt��

ð13:104Þ

Using this profile approximation, the discretized form of Eq. (13.1) over the ele-

ment C shown in Fig. 13.2 is obtained by substituting Eq. (13.104) in Eq. (13.57)

and is given by

1þ
Dt

Dt þ Dt�

� �
VC

Dt
qC/Cð Þ � 1þ

Dt

Dt þ Dt�
þ

Dt�

Dt� þ Dt��

� �
VC

Dt
qC/Cð Þ�

þ
Dt�

Dt� þ Dt��
VC

Dt
qC/Cð Þ��þL /Cð Þ ¼ 0

ð13:105Þ

The linearization coefficients for the SOUE scheme with non uniform time steps are

inferred to be

FluxC ¼
1

Dt
þ

1

Dt þ Dt�

� �

qCVC

FluxC� ¼ �
1

Dt
þ

1

Dt þ Dt�
þ

Dt�=Dt

Dt� þ Dt��

� �

q�CVC

FluxV ¼
Dt�=Dt

Dt� þ Dt��

� �

q��C VC/
��
C

ð13:106Þ

Similar to the constant time step case, the method is implicit as it requires solving a

system of equations to obtain the ϕ field at every time step. The uniform time step

form of the equation given by Eq. (13.80) is obtained by setting Dt ¼ Dt� ¼ Dt�� in

Eq. (13.105).

13.5 Computational Pointers

13.5.1 uFVM

The discretization of the transient term in uFVM follows the finite volume method

implemented within an implicit framework. The assembly of the transient fluxes

resulting from the first order backward Euler scheme is shown in Listing 13.1.

13.4 Non-Uniform Time Steps 525

13.5.2 OpenFOAM®

In OpenFOAM®, explicit and implicit time derivatives [21] are defined via the

namespaces fvm, fvc and the corresponding functions fvc::ddt(rho, phi) and fvm::

ddt(rho, phi), respectively. Moreover the first and second order upwind Euler

schemes in addition to the second order Crank-Nicholson scheme are available,

with the latter implemented following the two-step approach.

The files of the transient schemes are located in the directory “$FOAM_SRC/

finiteVolume/finiteVolume/ddtSchemes”. A base class denoted by ddtScheme

<Type> is defined from which all time discretization schemes have to be derived.

The first order Euler scheme is implemented in the class EulerDdtScheme. The

class is declared on top of the base class ddtScheme <Type>, as shown in Listing

13.2.

The implementation of the associated fvc and fvm namespaces are defined in the

file EulerDdtScheme.C. The implicit evaluation of the Euler scheme is defined via

the following function in Listing 13.3:

%

theDensityField = cfdGetMeshField(['Density' theFluidTag]);

density = theDensityField.phi(iElements);

density_old = theDensityField.phi_old(iElements);

volumes = [theMesh.elements(iElements).volume]’;

theFluxes.FLUXCE(iElements) = volumes .* density / dt;

theFluxes.FLUXCEOLD(iElements) = - volumes .* density_old / dt;

theFluxes.FLUXTE(iElements) = theFluxes.FLUXCE .* phi;

theFluxes.FLUXTEOLD(iElements) = theFluxes.FLUXCEOLD .* phi_old ;

Listing 13.1 Assembly of the transient fluxes resulting from the implicit Euler scheme

template<class Type>

tmp<fvMatrix<Type> >

EulerDdtScheme<Type>::fvmDdt

(

 const volScalarField& rho,

const GeometricField<Type, fvPatchField, volMesh>& vf

)

Listing 13.3 Definition of the function needed for implicit solution using the Euler scheme

template<class Type>

class EulerDdtScheme

:

 public ddtScheme<Type>

Listing 13.2 Decleration of the EulerDdtScheme class

526 13 Temporal Discretization: The Transient Term

As depicted in Listing 13.4, the first step in this function is the definition of the

fvMatrix in which only the diagonal coefficient vector is filled.

After allocating the needed space for storing the diagonal coefficients and

sources, the values to be stored are defined and computed. As shown in Listing 13.5,

this is accomplished by first defining the reciprocal of the time step as rDeltaT, then

calculating at ¼ qCVC=Dt and storing its value in the fvm.diag() vector. The source

contribution is computed as the product of aot ¼ �q
o
CVC=Dt and the old value of vf

and stored in the fvm.source() vector, where vf is the generic variable used while

applying the time scheme.

The script in Listing 13.6 shows that OpenFOAM®allows explicit evaluation of

the unsteady term using the Euler scheme. In this case, a GeometricField object

containing the value of q/� qo/oð Þ=Dt is returned (here the value is per unit

volume).

scalar rDeltaT = 1.0/mesh().time().deltaTValue();

fvm.diag() = rDeltaT*rho*mesh().V();

fvm.source()=rDeltaT*rho.oldTime()*vf.oldTime().internalField()*mesh

().V();

 return tfvm;

}

Listing 13.5 Calculation of the terms added to the diagonal and source vectors

{

 tmp<fvMatrix<Type> > tfvm

 (

 new fvMatrix<Type>

 (

 vf,

 vf.dimensions()*dimVol/dimTime

)

);

 fvMatrix<Type>& fvm = tfvm();

Listing 13.4 Definition of the fvMatrix

tmp<GeometricField<Type, fvPatchField, volMesh> >

EulerDdtScheme<Type>::fvcDdt

(

 const GeometricField<Type, fvPatchField, volMesh>& vf

)

 return tmp<GeometricField<Type, fvPatchField, volMesh> >

 (

 new GeometricField<Type, fvPatchField, volMesh>

 (

 ddtIOobject,

 rDeltaT*(vf*rho - vf.oldTime()*rho.oldTime())

)

);

Listing 13.6 Explicit calculation of the unsteady term using the Euler scheme

13.5 Computational Pointers 527

The SOUE scheme is implemented in OpenFOAM® under the class

backwardDdtScheme. The definition of the class is on top of the base class, as

shown in Listing 13.7.

In this case OpenFOAM® uses information from the current and the previous

time steps. In the general case, the time steps are different necessitating the use of

two variables to store their values.

The implicit time discretization is defined in a way similar to the first order

transient scheme using the function shown in Listing 13.8 through Listing 13.10.

The part of the function displayed in Listing 13.9 calculates the transient coef-

ficients that multiply the current, old, and old-old values of the dependent variable

and stores the contribution to the diagonal coefficients in fvm.diag() vector.

template<class Type>

tmp<fvMatrix<Type> >

backwardDdtScheme<Type>::fvmDdt

(

 const volScalarField& rho,

 const GeometricField<Type, fvPatchField, volMesh>& vf

)

Listing 13.8 Script used to define the implicit discretization using the SOUE scheme

 scalar rDeltaT = 1.0/deltaT_();

 scalar deltaT = deltaT_();

 scalar deltaT0 = deltaT0_(vf);

 scalar coefft = 1 + deltaT/(deltaT + deltaT0);

 scalar coefft00 = deltaT*deltaT/(deltaT0*(deltaT + deltaT0));

 scalar coefft0 = coefft + coefft00;

 fvm.diag() = (coefft*rDeltaT)*rho.internalField()*mesh().V();

Listing 13.9 Script used to calculate the unsteady coefficients and to store the contribution to the
diagonal coefficients in the fvm.diag() vector

template<class Type>

class backwardDdtScheme

:

 public fv::ddtScheme<Type>

{

 // Private Member Functions

 //- Return the current time-step

 scalar deltaT_() const;

 //- Return the previous time-step

 scalar deltaT0_() const;

Listing 13.7 Script used to define the backwardDdtScheme class for the implementation of the
SOUE scheme

528 13 Temporal Discretization: The Transient Term

In the last part of the function shown in Listing 13.10, the contribution of the

unsteady term is computed and stored in the fvm.source() vector.

By comparing the coefficients of the SOUE scheme with the ones given in

Eq. (13.100) it is easily seen that OpenFOAM® adopts a finite difference approach

for the discretization of the unsteady term whereby the time derivative is approx-

imated via Taylor series expansions.

13.6 Closure

The chapter covered the discretization of the transient term in the unsteady con-

servation equation. For that purpose, two general methodologies were discussed.

One method is based on a finite difference discretization while the other follows a

finite volume approach in which the conservation equation is integrated over a

temporal element. The first order fully implicit and fully explicit transient schemes

were presented. The formulation of higher order approximations was also investi-

gated. This included the CN and the SOUE schemes for uniform and non uniform

time steps. The next chapter is devoted to the discretization of the source term,

relaxation of the algebraic system of equations, and other related details.

13.7 Exercises

Exercise 1

Transient heat transfer for the one dimensional body shown in Fig. 13.21 is gov-

erned by the following energy equation:

@ qcpT
� �

@t
¼

@

@x
k
@T

@x

� �

 fvm.source() = rDeltaT*mesh().V()*

 (

 coefft0*rho.oldTime().internalField()

 *vf.oldTime().internalField()

 - coefft00*rho.oldTime().oldTime().internalField()

 *vf.oldTime().oldTime().internalField()

);

Listing 13.10 Script used to calculate and store contribution to the source in the fvm.source()

vector

13.5 Computational Pointers 529

The body is insulated at one end while subjected to convective heat transfer at the

second end. Other parameters include TR = 330 K, hR = 400 W/m2K, k = 55 W/mK,

q ¼ 7000 kg=m3, and cp ¼ 400 J=Kg K.

(a) Compute the temperature field using the Euler Explicit method for three time

steps. Note that the initial temperature is Ti ¼ 273 K with Dt ¼ 20 s and

Dx ¼ 0:015 m.

(b) Repeat part a using an implicit Euler scheme.

(c) Explain the difference in temperatures between the two methods at time

t = 60 s.

Exercise 2

The body described in Exercise 1 is now insulated at one end while subjected to a

Dirichlet boundary condition at the second end. The initial and boundary conditions

are Ti ¼ 273 K, Tb2 ¼ 330 K while values of other parameters are given by

Dx ¼ 0:015 m; k ¼ 55 W=mK; q ¼ 7000 kg=m3 and cp ¼ 400 J=KgK:

hR

x x

Insulated

T
1

T
2

Tb2
Tb1

TR

Fig. 13.21 One-dimensional domain used for Exercise 1

x x

Insulated

T
1

T
2

Tb2
Tb1

Fig. 13.22 One-dimensional domain used for Exercise 2

Compute the temperature field for three time steps using:

(a) The Adams-Moulton method with uniform time steps Dt ¼ 20 sð Þ.
(b) The finite difference form of the Adams-Moulton method with non-uniform

time steps (Dt1 ¼ 10 s, Dt2 ¼ 20 s, and Dt3 ¼ 30 s).

(c) The finite volume form of the Adams-Moulton method with non-uniform time

steps (Dt1 ¼ 10 s, Dt2 ¼ 20 s, and Dt3 ¼ 30 s). (Fig. 13.22).

Use the implicit Euler scheme for the first time step.

530 13 Temporal Discretization: The Transient Term

Exercise 3

The body described in Exercise 1 is again subjected to a Dirichlet boundary condition

at one end and to a convective heat transfer at the second end. The parameters involved

are Dx ¼ 0:015 m, Ti ¼ 273 K, Tb1 ¼ 260 K, TR ¼ 330 K, hR = 400 W/m2K,

k = 55 W/mK, q ¼ 7000 kg/m3, and cp ¼ 400 J=Kg K (Fig. 13.23).

Compute the temperature field for three time steps using:

(a) The Crank-Nicolson method with uniform time steps Dt ¼ 20 sð Þ.
(b) The finite difference form of the Crank-Nicolson method with non-uniform

time steps (Dt1 ¼ 10 s, Dt2 ¼ 20 s, and Dt3 ¼ 30 s).

(c) The finite volume form of the Crank-Nicolson method with non-uniform time

steps (Dt1 ¼ 10 s, Dt2 ¼ 20 s, and Dt3 ¼ 30 s).

Use the implicit Euler scheme for the first time step.

Exercise 4

Consider the following equation defined over the one dimensional grid shown in

Fig. 13.24:

@/

@t
¼ r � Cr/� b/

x x

T
1

T
2

Tb2
Tb1

hR

TR

Fig. 13.23 One-dimensional domain used for Exercise 3

CW E

x xx

y

Fig. 13.24 One dimensional domain used for Exercise 4

13.7 Exercises 531

(a) Derive the algebraic equation for element C. Use a first order Euler Explicit

scheme for the transient term and linearize the source term given that b is

positive.

(b) Is there a step limitation for the equation derived in (a)? If so derive its

expression in terms of the appropriate variables.

Exercise 5

Use the implicit backward Euler scheme to integrate in time the linear advection

equation given by

@/

@t
þ u

@/

@x
¼ 0 u[0

and the second order central difference approximation for the spatial derivative.

(a) Derive the discretized equation.

(b) Find the accuracy of the scheme

(c) Determine the stability of the scheme.

Exercise 6

Use the fully implicit Euler scheme in time and the central difference scheme in

space to discretize the one dimensional convection diffusion heat equation given by

@ qcpT
� �

@t
þ
@ quTð Þ

@x
¼

@

@x
k
@T

@x

� �

þ S

over a uniform mesh of spacing Dx and write it down in the standard form.

There are two issues that should be considered when choosing the time step:

stability and accuracy. What are the limits for the time step of the two schemes to

achieve stable and accurate solutions? Are these limits similar for both stability and

accuracy?

Exercise 7 (OpenFOAM®)

List from Doxygen [22] all derived classes of the ddtScheme <Type> class.

Exercise 8 (OpenFOAM®)

Find in OpenFOAM® the fvm implementation of the first order implicit Euler

scheme. Compare the implemented algorithm with Eq. (13.28) and the contribution

to the matrix of coefficients with Eq. (13.62).

Exercise 9 (OpenFOAM®)

Compare in OpenFOAM® the fvm implementation of the second order

Crank-Nicolson transient scheme with Eqs. (13.43) and (13.44). The C file is located

in “$FOAM_SRC/finiteVolume/finiteVolume/ddtSchemes/CrankNicolsonDdtScheme

/CrankNicolsonDdtScheme.C”. Hint: In the fvm member function, just check the if

statement when mesh().moving() is false.

532 13 Temporal Discretization: The Transient Term

References

1. Faires JD, Burden RL (1993) Numerical methods. PWS, Boston, pp 152–153
2. Crank J, Nicolson P (1947) A practical method for numerical evaluation of solutions of partial

differential equations of the heat-conduction type. Proc Cambr Phil Soc 43:50–67
3. Shyy W (1985) A study of finite difference approximations to steady state convection

dominated flows. J Comput Phys 57:415–438
4. Moukalled F, Darwish M (2012) Transient schemes for capturing interfaces of free-surface

flows. Numer Heat Transf Part B Fundam 61(3):171–203
5. Ascher U, Ruuth S, Spiteri RJ (1997) Implicit-explicit runge-kutta methods for

time-dependent partial differential equations. Appl Numer Math 25:151–167
6. Ames WF (1977) Numerical methods for partial differential equations. Academic Press,

Orlando
7. Milne WE (1953) Numerical solution of differential equations. Wiley, New York
8. Richtmyer RD (1967) Difference methods for initial value problems, 2nd edn. Wiley, New

York
9. Birkhoff G, Rota G (1989) Ordinary differential equations. Wiley, New York
10. Burden R, Faires JD (2010) Numerical analysis, 9th edn. Brooks, Cole
11. Chapra S, Canale R (2014) Numerical methods for engineers. 7th ed., McGraw Hill, New

York
12. Cheney W, Kincaid D (2013) Numerical mathematics and computing, 7th edn. Brooks/Cole,

Boston
13. Courant R, Friedrichs K, Lewy H (1928) Über die partiellen Differenzengleichungen der

mathematischen Physik. Math Ann (in German) 100:32–74
14. Patankar SV (1980) Numerical heat transfer and fluid flow, Hemisphere, New York
15. Peinado J, Ibáñez J, E. Arias E, V. Hernández V (2010) Adams–Bashforth and Adams–

Moulton methods for solving differential Riccati equations. Comput Math With Appl 60
(11):3032–3045

16. Ferziger JH, Peric M (2013) Computational methods for fluid dynamics, 3rd edn. Springer,
Germany

17. Courant R, Isaacson E, Rees M (1952) On the solution of nonlinear hyperbolic differential
equations by finite differences. Commun Pure Appl Math 5:243–255

18. Darwish M, Moukalled F (2006) Convective schemes for capturing interfaces of free-surface
flows on unstructured grids. Numer Heat Transf Part B Fundam 49(1):19–42

19. Darwish M, Moukalled F (1994) Normalized variable and space formulation methodology for
high-resolution schemes. Numer Heat Transf Part B Fundam 26(1):79–96

20. Leonard BP (1981) A survey of finite differences with unwinding for numerical modeling of
the incompressible convection diffusion equation. In Taylor C, Morgan K (eds.)
Computational techniques in transient and turbulent flow, Pineridge Press, Swansea, UK,
2:1–35

21. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org
22. OpenFOAM Doxygen, 2015 Version 2.3.x. http://www.openfoam.org/docs/cpp/

References 533

Chapter 14

Discretization of the Source Term,

Relaxation, and Other Details

Abstract This chapter is devoted to a number of “small” numerical details that

may have “big” effects on the solution behavior. First the treatment of the source

term in the general case when it is solution dependent (i.e., when Q/ ¼ Q/ /ð Þ) is
examined. The source is linearized in terms of the dependent variable and split into

two parts, one treated explicitly and the second treated implicitly. This is followed

by a discussion of explicit and implicit techniques for under-relaxing the algebraic

equations. Several implicit under-relaxing approaches are presented, starting with

the well known implicit under relaxation method of Patankar (Numerical heat

transfer and fluid flow, 1980) [1], the E-factor method of van Doormaal and

Raithby (Numerical Heat Transfer 7:147–163, 1984) [2], and the false transient

approach of Mallinson and de Vahl Davis (Journal of Computational Physics 12

(4):435–461, 1973) [3]. Then the residual form of the discretized algebraic equation

is introduced. The chapter ends with the presentation of convergence indicators

used to evaluate the solution convergence status.

14.1 Source Term Discretization

Source terms (sink and source) appear in the governing equations of many flow and

transport phenomena problems. Examples include the equations of turbulence

models, chemical reactions, radiation heat transfer, mass transfer, and multiphase

flows, to cite a few. These source terms affect not only the physics of the problem,

but also the numerical stability of computations. However, if properly handled,

source terms may yield improvement in robustness. A general recommendation is to

treat negative values (sinks) implicitly, while positive values (sources) should be

evaluated explicitly.

The treatment of source terms can be clarified by considering the discretized

form of the general conservation equation for the variable / over the element of

centroid C and volume VC with a source explicitly displayed (Fig. 14.1). This

equation is given by

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_14

535

aC/C þ
X

F�NB Cð Þ

aF/F ¼ Q
/
CVC ð14:1Þ

where Q
/
CVC represents the source term integrated over the element C.

In general the source term is a function of the dependent variable / with its

functional relationship expressed as

Q
/
C ¼ Q /Cð Þ ð14:2Þ

In this form the source can be explicitly calculated based on the available /

values, which in an iterative process represent values from the previous iteration.

Whereas this approach is acceptable if the value of Q
/
C is constant or relatively

small, when the variation in Q
/
C is large in comparison with other terms in the

equation the rate of convergence can be negatively affected. In such situations, the

rate of convergence may be improved by linearizing Q
/
C using a Taylor-like series

expansion. Denoting values at the previous iteration with a superscript �, the value

of the source term Q
/
C at the current iteration can be expressed as

Source/

Sink

Transient

Diffusion

Convection

C

F
1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

Fig. 14.1 An element C with

a source term Q/

536 14 Discretization of the Source Term, Relaxation, and Other Details

Q /Cð Þ ¼ Q /�
C

� �
þ

@Q

@/C

� ��

/C � /�
C

� �

¼
@Q

@/C

� ��

/C

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Implicit part

þ Q /�
C

� �
�

@Q

@/C

� ��

/�
C

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Explicit part calculated based on
values from previous iteration

ð14:3Þ

In a control volume context, the right hand side of Eq. (14.1) can be written as

Q
/
CVC ¼

ZZ

VC

Q/dV

¼

ZZ

VC

@Q�
C

@/C

/C

� �

dV þ

ZZ

VC

Q�
C �

@Q�
C

@/C

/�
C

� �

dV

¼
@Q�

C

@/C

VC

� �

/C þ Q�
C �

@Q�
C

@/C

/�
C

� �

VC

¼ FluxCC /C þ FluxVC

ð14:4Þ

Substituting back in Eq. (14.1), the algebraic equation becomes

aC � FluxCC½ �/C þ
X

F�NB Cð Þ

aF/F ¼ FluxVC ð14:5Þ

In this formulation the implicit part of the source, FluxCC [defined in Eq. (14.3)],

is required to be negative to guarantee diagonal dominance or else the Scarborough

criterion may not be fulfilled causing divergence. In addition, for the case when the

variable / is positive-definite, the explicit part, FluxVC [Eq. (14.3)], must be

positive to ensure positive / predictions.

Example 1

In problems involving heat transfer by radiation, the source term in the

energy equation takes the form

QT ¼ A T4
1 � T4

� �

where A is a constant, T is the temperature at any grid point, and T1
represents the non-varying ambient temperature. Integrate this source term

over an element of centroid C and volume VC, then linearize it using different

alternatives and explain their consequences on convergence.

14.1 Source Term Discretization 537

Solution

Z

VC

QTdV ¼ QT
CVC ¼ FluxVC þ FluxCCTC

Several arbitrary choices can be selected to linearize QT .

Option 1

FluxCC ¼ 0

FluxVC ¼ A T4
1 � T4

C

� �
VC

Adopting this alternative may cause the solution to diverge as it results in

negative values for FluxVC, whenever TC[T1, leading to possible

unphysical negative absolute temperature values during the iterative process.

Option 2

Linearizing with respect to the value of temperature of the previous iteration

T�
C, the expanded form of the source term is obtained as

QT
C ¼ QT

C

� ��
þ

dQT
C

dTC

� ��

TC � T�
C

� �

¼ A T�4
1 � T�4

C

� �
� 4AT�3

C TC � T�
C

� �

Comparing with Eq. (14.9), FluxCC and FluxVC are found to be

FluxCC ¼ �4AT�3
C VC

FluxVC ¼ A T�4
1 þ 3T�4

C

� �
VC

This is the ideal approach resulting in a positive FluxVC and a negative

FluxCC and giving the best rate of convergence as the introduced implicitness

in the solution is the optimum one.

14.2 Under-Relaxation of the Algebraic Equations

As described in previous chapters, the end product of the discretization process is a

set of algebraic equations of the form given by Eq. (14.1), in which aF refers to a

neighboring coefficient (Fig. 14.2) representing the effect of the neighboring vari-

able /F on the cell variable /C, bC is the right hand side of the equation that usually

includes the source terms and the effects of other variables, while aC is the main

538 14 Discretization of the Source Term, Relaxation, and Other Details

coefficient of the algebraic equation and contains the effects of various influences,

including the spatial discretization effects, the transient effects, etc. The set of

equations represented by Eq. (14.1) is usually diagonally dominant.

In the iterative solution of the system of algebraic equations it is often desirable

to slow down the changes in the values of the dependent variable from iteration to

iteration. This is needed to improve the convergence of non-linear problems but

also to avoid divergence when starting with a guessed initial field that could be far

from the solution. The non-linearities can arise because of the non-orthogonality of

the grid system, the presence of source terms, the non-linear nature of the modeled

equations, etc. One method commonly used to promote convergence by “slowing

down” (“relaxing”) the (sometimes excessive) changes made to the values of the

variable during solution is the relaxation method. The standard relaxation method

used in many CFD codes is the implicit under relaxation method of Patankar [1],

which was briefly presented in Chap. 8. Other under-relaxation methods have been

presented in the literature such as the E-Factor [2] relaxation method and the False

transient method [3]. Van Doormaal and Raithby [2] have shown that these different

relaxation methods are somewhat related and that the under-relaxation in any of the

methods can be related to the under-relaxation in the other methods, as they all

basically retard the effect of neighboring elements and sources on the under-relaxed

element value. In other words, under-relaxation affects equally the source term in

the concerned element and its spatial coefficients. Some of these relaxation methods

are presented next.

14.2.1 Under-Relaxation Methods

Solution relaxation may be performed either explicitly after the solution at any

iteration is obtained or implicitly by incorporating its effect into the equation before

the solution is obtained. Both methods are outlined below.

aF1

aC aF2

aF3 C
=

bC

Fig. 14.2 Matrix
representation of Eq. (14.1)

14.2 Under-Relaxation of the Algebraic Equations 539

14.2.2 Explicit Under-Relaxation

In the explicit under-relaxation method, at the end of every iteration after a new

solution is obtained, all cells in the computational domain are visited and the

predicted value /
new; predicted
C

� �

in any cell C is modified according to

/
new; used
C ¼ /old

C þ k/ /
new; predicted
C � /old

C

� �

ð14:6Þ

where k/ is the relaxation factor, which for both explicit and implicit relaxation can

be interpreted according to its assigned value as follows:

1. A value of k/\1 results in under-relaxation. This may slow down the speed of

convergence but increases the stability of the calculation, i.e., it decreases the

possibility of divergence or oscillations in the solution.

2. A value of k/ ¼ 1 corresponds to no relaxation. If applied, then the predicted

values during an iteration are the ones used at the next iteration.

3. A value of k/[1 leads to over-relaxation. It can sometimes be used to

accelerate convergence but usually decreases the stability of the calculations.

Explicit under-relaxation is used to under-relax pressure in the SIMPLE algo-

rithm, which will be introduced in the next chapter. Further, in problems where the

fluid properties depend on the solution and are iteratively updated, explicit

under-relaxation may be necessary to promote convergence. Examples include, but

are not limited to, the turbulent viscosity in turbulent flows, the density in com-

pressible flows, and computed interface values using HR schemes. In addition, it

may be used to under-relax individual terms in the conservation equation such as

the source term, and in some cases gradients of solution variables.

14.2.3 Implicit Under-Relaxation Methods

Several approaches in this category have been developed. The standard method that

was presented in Chap. 8 is Patankar’s approach [1], a summary of which is given

here for completeness. Other methods include the E-factor approach and the false

transient technique, which are also discussed.

14.2.3.1 Patankar’s Under-Relaxation

As mentioned above, the iterative solution of a system of equations can be

under-relaxed by introducing a relaxation factor k/ and expressed via Eq. (14.6). To

simplify the notation used with implicit under-relaxation, Eq. (14.6) is modified to

540 14 Discretization of the Source Term, Relaxation, and Other Details

/C ¼ /�
C þ k/ /new iteration

C � /�
C

� �
ð14:7Þ

where /�
C is the value of /C from the previous iteration. In Patankar’s relaxation

approach, /new iteration
C in Eq. (14.7) is replaced by its equivalent expression from

Eq. (14.1) to yield

/C ¼ /�
C þ k/

�
P

F�NB Cð Þ

aF/F þ bC

aC

0

B
@

1

C
A� /�

C

0

B
@

1

C
A ð14:8Þ

re-arranging, the equation becomes

aC

k/
/C þ

X

F�NB Cð Þ

aF/F ¼ bC þ
1� k/
� �

k/
aC/

�
C ð14:9Þ

In Eq. (14.9) the relaxation factor k/ modifies the diagonal coefficient and the

right hand side without modifying the equation mathematically. Since k/\1, under

relaxation increases the diagonal dominance of the algebraic system and enhances

the stability of the iterative linear solver. This is an important advantage when

compared to the explicit approach.

However it is worth noting that the implicit relaxation applies a relation that is

proportional to the diagonal coefficient. Thus the relaxation will be larger for a

larger diagonal coefficient, which translates into a larger relaxation of higher

importance for smaller control volumes. This is demonstrated in the next section.

14.2.3.2 E-Factor Relaxation

The E-Factor method [2] is a reformulation of Patankar’s method. It is derived by

rewriting Eq. (14.1) in the following form:

aC/C ¼ bC �
X

F�NB Cð Þ

aF/F ð14:10Þ

under-relaxing, the right hand side of Eq. (14.10) is transformed to

aC/C ¼ k/ bC �
X

F�NB Cð Þ

aF/F

0

@

1

Aþ 1� k/
� �

aC/
�
C ð14:11Þ

14.2 Under-Relaxation of the Algebraic Equations 541

Replacing the under-relaxation factor with
E/

1þ E/
; Eq. (14.11) becomes

aC/C ¼
E/

1þ E/
bC �

X

F�NB Cð Þ

aF/F

0

@

1

Aþ 1�
E/

1þ E/

� �

aC/
�
C ð14:12Þ

which can be reformulated as

aC 1þ
1

E/

� �

/C þ
X

F�NB Cð Þ

aF/F ¼ bC þ
1

E/
aC/

�
C ð14:13Þ

With this formulation the under-relaxation effect can be readily interpreted in

term of some artificial transient time scale that advances /C at each solver iteration.

The time step Dt can be shown to be proportional to the characteristic time interval

Dt� according to

Dt ¼ E/
Dt� ð14:14Þ

where

Dt� ¼
qCVC

aC
ð14:15Þ

In Eq. (14.15) qC is the density of the fluid in cell C of volume VC. The

characteristic time interval is related to the time required to diffuse and convect a

change of /C across the element. Thus the E-factor is equivalent to an element CFL

number.

It is clear from Eq. (14.15) that the time step advancement of the E-Factor

relaxation is dependent on the cell volume, with the solution in a smaller element

advancing more slowly than in a coarser element. This can be detrimental to the

convergence rate for a steady state solution since it is very common to use highly

stretched elements with small volumes near boundaries, thus forcing a critical

region in the computational domain to advance at a very small time step compared

to the remainder of the domain. This is also a characteristic of the Patankar

relaxation method.

The relation between E/ and k/ can be shown to be

E/ ¼
1

1� k/
: ð14:16Þ

In general values of E/ are chosen in the range of 4–10, corresponding to values

between 0.75 and 0.9 for k/.

542 14 Discretization of the Source Term, Relaxation, and Other Details

Example 2

In the figure below an illustrative boundary mesh is shown. Elements A and D

represent stretched elements near a wall boundary, with the volume ratio of

about VCA
=VCD

� 0:1. The value of the diagonal coefficients for such meshes

are usually dominated by the diffusion coefficient and in this case would be

around aCA
=aCD

� 2 since element A has a boundary face.

Compute the relative pseudo transient time for elements A and D if an

under-relaxation factor of 0.8 is applied (Fig. 14.3).

Solution

Solution starts by computing the equivalent E factor for the applied relaxation

factor

E ¼
1

1� k
¼

1

1� 0:8
¼ 5

thus the pseudo time step for each of the elements is

Dt ¼ E/
Dt�

¼ 5
qCVC

aC

Therefore the relative pseudo time steps for elements A and D can be

computed as

DtA

DtB
¼

VCA

aCA

� �

=
VCD

aCD

� �

¼
VCA

VCD

� �
aCD

aCA

� �

� 0:1
1

2

� �

¼ 0:05

implying that the pseudo time step for element D is nearly 20 times that of

element A.

Element A

Element D

Fig. 14.3 Schematic of a boundary mesh with stretched elements

14.2 Under-Relaxation of the Algebraic Equations 543

14.2.3.3 False Transient Relaxation

The false transient relaxation method [3] is a modification of the Euler first order

implicit transient method, wherein the previous iteration values are used instead of

the old time step values. As in the Euler method the diagonal dominance of the

algebraic equation is increased through the addition of the pseudo-transient term,

aoC/C, to the diagonal coefficient and the pseudo old time step term, aoC/
�
C, to the

right hand side. With these modifications the equation becomes

aC þ aoC
� �

/C þ
X

F�NB Cð Þ

aF/F ¼ bC þ aoC/
�
C ð14:17Þ

where the coefficient aoC is computed as

aoC ¼
qCVC

Dt
ð14:18Þ

and is basically equal to the transient coefficient obtained from the first order

implicit Euler discretization of the transient term, qC is the density, VC the element

volume, and Dt a user-defined false time step. For large values of Dt, the added term

is negligible, and under-relaxation effects are negligible. Therefore the solution of

the equation is the same as the original unrelaxed one. For very small values of Dt,

the value of aoC becomes large dominating other terms. The solution is heavily

under-relaxed leading to minute change in the value of /C (i.e., /C � /�
C).

In addition to allowing the solution to advance consistently over the entire

computational domain, the false transient method ensures the addition of a non-zero

contribution to the diagonal coefficient even in extreme cases when the diagonal

coefficient is zero.

There is no general rule for assigning optimum under-relaxation factors as values

used in one case may not work properly for another case. In addition, different

equations may be assigned different under-relaxation factors. Further, it is not

necessary to use the same under-relaxation value throughout the computational

domain. Furthermore, under-relaxation values may vary from iteration to iteration.

For the SIMPLE algorithm to be described in Chaps. 15 and 16, Raithby and

Schneider [4] derived an optimum relation between the under-relaxation factors for

the velocity and pressure fields, which will be presented in the next chapter.

14.3 Residual Form of the Equation

The discretized algebraic equation has been written so far in its “direct” or “stan-

dard” form as

544 14 Discretization of the Source Term, Relaxation, and Other Details

aC/C þ
X

F�NB Cð Þ

aF/F ¼ bC; ð14:19Þ

which is the form used in OpenFOAM®.

Equation (14.19) can also be written in “correction” or “residual” form by

rearranging its terms so as to solve for the correction needed to satisfy the equation.

Thus if /�
C and /0

C are the previous iteration value of /C and the correction needed

to satisfy Eq. (14.19), respectively, then the solution is given by

/C ¼ /�
C þ /0

C ð14:20Þ

and Eq. (14.19) can be rewritten as

aC /�
C þ /0

C

� �
þ

X

F�NB Cð Þ

aF /�
F þ /0

F

� �
¼ bC ð14:21Þ

or

aC/
0
C þ

X

F�NB Cð Þ

aF/
0
F ¼ bC � aC/

�
C þ

X

F�NB Cð Þ

aF/
�
F

0

@

1

A ð14:22Þ

Note that the right hand side of Eq. (14.22) represents the residual error of the

equation for the field /�
C. Denoting this residual over element C by Res

/
C,

Eq. (14.22) becomes

aC/
0
C þ

X

F�NB Cð Þ

aF/
0
F ¼ Res

/
C ð14:23Þ

It is worth noting that for the exact field Res
/
C would be zero.

While mathematically equivalent to Eq. (14.19), Eq. (14.23) has one numerical

advantage. In this form, numerical errors during the solution of the equation are

slightly less than those associated with the standard form for cases when small

variations are expected for large values of /.

14.3.1 Residual Form of Patankar’s Under-Relaxation

The residual form of the implicit Patankar relaxation equation is derived by

rewriting Eq. (14.19) in the following form:

14.3 Residual Form of the Equation 545

aC /�
C þ /0

C

� �
¼ k/ bC �

X

F�NB Cð Þ

aF /�
F þ /0

F

� �

0

@

1

Aþ 1� k/
� �

aC/
�
C ð14:24Þ

which can be simplified to

aC/
0
C þ k/

X

F�NB Cð Þ

aF/
0
F ¼ k/ bC � aC/

�
C þ

X

F�NB Cð Þ

aF/
�
F

0

@

1

A

2

4

3

5 ð14:25Þ

Noticing that the right hand side of the above equation represents the residual of

the original equation, Eq. (14.25) can be written as

aC

k/
/0
C þ

X

F�NB Cð Þ

aF/
0
F ¼ Res

/
C ð14:26Þ

implying that under-relaxing the equation in residual form necessitates modifying

only the diagonal coefficient.

14.4 Residuals and Solution Convergence

In any iterative solution process it is important to be able to determine when the

solution can be considered good enough, or when the error can be estimated to be

below a certain tolerance, or even to what precision the conservation equations have

been satisfied. Having the tools to answer any of the above questions is an

important ingredient for any CFD code. This can be rephrased as how to evaluate

the degree of convergence of the solution field without knowing the final solution.

To this end a number of indicators were proposed over the years, from the simple

monitoring of a point at a location over a number of iterations, to the monitoring of

an integrated value such as the drag coefficient, the total mass flow, the wall shear

stress, and so on, or more commonly the monitoring of some type of equation

residual. The challenge being that the method has to be used for a wide range of

flow parameters and for a variety of geometries and boundary conditions.

14.4.1 Residuals

As a solution to the discretized system of equations represented by Eq. (14.1) is

sought, the error in the balance equation is quantified by defining the element

residual error as

546 14 Discretization of the Source Term, Relaxation, and Other Details

Res
/
C ¼ bC � aC/C þ

X

F�NB Cð Þ

aF/F

0

@

1

A: ð14:27Þ

It is clear that when the solution is reached and the equation satisfied, the value

of Res
/
C will be zero. Using Res

/
C a number of residual indicators for the whole

domain can be derived as detailed next.

14.4.2 Absolute Residual

As defined by Eq. (14.27), the residual may be a positive or a negative quantity.

Since the sign is immaterial, the absolute value of the Res
/
C, denoted by R

/
C, is used

to decide whether a solution has converged or not. If R
/
C decreases with iterations

then the solution will be converging otherwise it will be diverging. The value of R
/
C

at point C is defined as

R
/
C ¼ bC � aC/C þ

X

F�NB Cð Þ

aF/F

0

@

1

A

	
	
	
	
	
	

	
	
	
	
	
	

ð14:28Þ

14.4.3 Maximum Residual

The solution is assumed to have converged when the maximum value of the

absolute residuals, defined as,

R
/
C;max ¼ max

all cells
bC � aC/C þ

X

F�NB Cð Þ

aF/F

0

@

1

A

	
	
	
	
	
	

	
	
	
	
	
	

¼ max
all cells

R
/
C

� �

ð14:29Þ

over the domain drops below a vanishing quantity e, i.e.,

R
/
C;max � e) solution has converged: ð14:30Þ

14.4.4 Root-Mean Square Residual

Another parameter used as a convergence indicator, is the average of the square root

of the sum of the squares of the absolute residuals R
/
C;rms, mathematically given by

14.4 Residuals and Solution Convergence 547

R
/
C; rms ¼

ffi

P

C�all elements

bC � aC/C þ
P

F�NB Cð Þ

aF/F

 ! !2

number of elements

v
u
u
u
u
t

¼

ffi

P

C�all cells

R
/
C

� �2

number of elements

v
u
u
u
t

:

ð14:31Þ

In this case the convergence criteria is written as

R
/
C; rms � e) solution has converged: ð14:32Þ

14.4.5 Normalization of the Residual

The level of the absolute residual is a strong function of the variable /. Therefore

different variables result in different levels of R
/
C. This makes it difficult to discern

whether a solution has converged or not. In such cases a better insight can be gained

through scaling the different residuals by dividing them by their respective maxi-

mum fluxes. Recalling that aC represents the sum of the fluxes over the element, the

residuals are scaled relative to the local value of the property / to obtain a relative

error by dividing them by the maximum value of aC/C over the domain such that

R
/
C; scaled ¼

aC/C þ
P

F�NB Cð Þ

aF/F � bC

	
	
	
	
	

	
	
	
	
	

max
all cells

aC/Cj j
: ð14:33Þ

The solution is assumed to have converged when the maximum value of the

scaled absolute residuals has dropped below a vanishing quantity e, i.e.,

max
all cells

R
/
C;scaled

� �

� e) solution has converged ð14:34Þ

It is common to require e for scaled residuals to be of the order of 10�3 to 10�5

or less for convergence.

In addition to using either the absolute or scaled residuals, it is always insightful

to monitor integrated quantities, as mentioned above, before concluding that the

solution has converged. Always ensure proper convergence before declaring that a

solution has converged as non-converged solutions can be misleading.

548 14 Discretization of the Source Term, Relaxation, and Other Details

14.5 Computational Pointers

In this section, the source term linearization and relaxation techniques used in

uFVM and OpenFOAM® are discussed.

14.5.1 uFVM

14.5.1.1 Source Term Linearization

The linearization and assembly of the source term in uFVM is implemented in the

function cfdAssembleSourceTerm displayed in Listing 14.1. The function relies on

the linearization set by the user, which has to supply the constant part of the source,

Sb, and the linearized part, Sc. These terms are then added to FLUXV and FLUXC,

as in Eq. (14.4).

It is worth noting that in uFVM the equations are solved in residual form, which

explains the implementation of the total source in FLUXTE, rather than its constant

part only.

14.5.1.2 Under-Relaxation

The implicit under-relaxation method of Patankar is implemented in ufvm. Since

the equations are solved in residual form, their under-relaxation (Listing 14.2)

requires modifying their diagonal coefficients only, as demonstrated by Eq. (14.26).

theEquationField = cfdGetMeshField(theEquationName);

phi = theEquationField.phi(iElements);

%

Sb = cfdComputeFormulaAtLocale(theTerm.Sb,'Interior Elements')';

Sc = cfdComputeFormulaAtLocale(theTerm.Sc,'Interior Elements')';

%

volume = [theMesh.elements.volume];

%

% Assemble Source Term

%

pos = zeros(1,size(phi));

pos(Sc<0) = 1;

theFluxes.FLUXCE = -pos .* Sc .* volume;

theFluxes.FLUXTE = -(Sb +Sc .*phi) .* volume;

Listing 14.1 Linearization and implementation of the source term

14.5 Computational Pointers 549

14.5.2 OpenFOAM®

14.5.2.1 Source Term Linearization

In Sect. 14.1, the treatment of the source in the transport equation of a generic

variable / was discussed. The suggested linearization (or implicit treatment) can be

viewed as imposing an artificial time step onto the matrix of coefficients, thus

affecting the characteristic time of advancing the solution. In addition it increases

diagonal dominance and enhances the solution robustness of the algebraic system of

equations by allowing for an inherent relaxation to come into action when needed.

That is, whenever the negative source term changes substantially, the system

self-adapt the time step resolution in order to capture the characteristics of the

modeled phenomenon. This is in contrast with the non-linearization approach

(explicit treatment), which necessitates heavier under-relaxation of the system of

equations with the relaxation factor being generally not optimal.

For the discretization of the source term OpenFOAM® [5] uses the implicit fvm::

and explicit fvc: : operators. Specifically the implementation of the fvc:: operator

can be found in the directory “$FOAM_SRC/finiteVolume/finiteVolume/fvc/” in

the corresponding files fvcSup.H and fvcSup.C. However it is usually the norm to

define the explicit source term into the equation without the need for using the fvc::

operator. For example considering the case of a generic scalar transport equation

with a source term that does not depend directly on the main variable and thus

cannot be linearized, given by

r � qU/ð Þ � r � kr /ð Þð Þ ¼ aU2 ð14:35Þ

In OpenFOAM® Eq. (14.35) can be implemented, as shown in Listing 14.3,

function cfdApplyURF(theEquationName)

%===

% written by the CFD Group @ AUB, Fall 2006

%===

theEquation = cfdGetModel(theEquationName);

urf = theEquation.urf;

theCoefficients = cfdGetCoefficients;

theCoefficients.ac = theCoefficients.ac/urf;

cfdSetCoefficients(theCoefficients);

Listing 14.2 Implementation of Patankar’s implicit under-relaxation method

550 14 Discretization of the Source Term, Relaxation, and Other Details

with the source term not requiring any special wrapping function or operator.

The implementation of the fvm:: functions can be found in the directory

“$FOAM_SRC/finiteVolume/finiteVolume/fvm/” in the corresponding files

fvmSup.H and fvmSup.C. The discretization of the linearized source is set in

function fvm::Sp. As per Eq. (14.5), the implicit part of the source term is added as

a contribution to the main diagonal of the coefficient matrix. For that purpose the

function Sp is defined in Listing 14.4.

It is worth mentioning that the function Sp treats the source term irrespective of

the sign of the slope of its linearized form. This means that for the case when the

slope of the linearized term is positive the operation may lead to divergence of the

solution algorithm as it destroys the diagonal dominance of the set of algebraic

equations. Thus it is always important to ensure that the implicit treatment is used

only when it results in a negative slope of the linearized term. For the case when the

fvMatrix<scalar> phiEqn

(

fvm::div(mDot,phi) - laplacian(k,phi) == a*magSqr(U)

);

Listing 14.3 Defining an explicit source term without invoking the fvc operator

template<class Type>

Foam::tmp<Foam::fvMatrix<Type> >

Foam::fvm::Sp

(

 const DimensionedField<scalar, volMesh>& sp,

 const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

 const fvMesh& mesh = vf.mesh();

 tmp<fvMatrix<Type> > tfvm

 (

 new fvMatrix<Type>

 (

 vf,

 dimVol*sp.dimensions()*vf.dimensions()

)

);

 fvMatrix<Type>& fvm = tfvm();

 fvm.diag() += mesh.V()*sp.field();

 return tfvm;

}

Listing 14.4 Script used for the definition and implementation of the Sp function

14.5 Computational Pointers 551

slope of the linearized source term can assume, in different regions of the domain,

different values (positive and negative), the negative contributions should be treated

as implicit and positive contribution as explicit. For that purpose OpenFOAM®

provides a special source term function denoted by fvm::SuSp in which the

implicit/explicit treatment is automatically performed. The script of this function is

given in Listing 14.5.

In this function both diagonal and source term vectors are filled depending on the

local sign of the slope of the linearized source term. In fact the use of the max/min

function achieves the selective discretization. For instance, if in a generic cell of the

domain the slope of the linearized source term assumes a negative value (here taken

as positive) the contribution to the source vector is zero (i.e., min(SuSp.field(),

scalar(0)) = 0) and the opposite for the diagonal contribution.

14.5.2.2 Under-Relaxation

The under-relaxation methods used in OpenFOAM® include both the implicit

technique of Patankar and the explicit variable relaxation. More specifically the

template<class Type>

Foam::tmp<Foam::fvMatrix<Type> >

Foam::fvm::SuSp

(

 const DimensionedField<scalar, volMesh>& susp,

 const GeometricField<Type, fvPatchField, volMesh>& vf

)

{

 const fvMesh& mesh = vf.mesh();

 tmp<fvMatrix<Type> > tfvm

 (

 new fvMatrix<Type>

 (

 vf,

 dimVol*susp.dimensions()*vf.dimensions()

)

);

 fvMatrix<Type>& fvm = tfvm();

 fvm.diag() += mesh.V()*max(susp.field(), scalar(0));

 fvm.source() -= mesh.V()*min(susp.field(), scalar(0))

 *vf.internalField();

 return tfvm;

}

Listing 14.5 Script used for the definition and implementation of the SuSp function

552 14 Discretization of the Source Term, Relaxation, and Other Details

implicit under relaxation is applied only to the fvMatrix object (i.e., the actual finite

volume discretization matrix) while the explicit relaxation is defined only for

GeometricField objects.

The explicit relaxation described by Eq. (14.6) can be found in the file

GeometricField.C in the “$FOAM_SRC/OpenFOAM/fields/GeometricFields/

GeometricField” directory. The dedicated function (Listing 14.6) inside the

GeometricField class for performing this task is given by

where the operator “==” defines the new value of the GeometricField itself based

on the current value and the previous one in accordance with Eq. (14.6).

In general to explicitly relax a variable, first its value is stored in theprevIter()

array, after that calculations are performed to obtain the new predicted value, and

finally relaxation is applied. For example, using the pressure “p” as the

GeometricField variable the following should be written (Listing 14.7):

template<class Type, template<class> class PatchField, class GeoMesh>

void Foam::GeometricField<Type, PatchField, GeoMesh>::relax(const

scalar alpha)

{

 if (debug)

 {

 InfoIn

 (

 "GeometricField<Type, PatchField, GeoMesh>::relax"

 "(const scalar alpha)"

) << "Relaxing" << endl << this->info() << " by " << alpha <<

endl;

 }

 operator==(prevIter() + alpha*(*this - prevIter()));

}

Listing 14.6 Script of the function in the GeometricField class for explicit under relaxation

volScalarField p

(

 IOobject

 (

 "p",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

any preliminary operation

Perform the operation for the new predicted pressure

p.storePrevIter();

p=

p.relax();

Listing 14.7 Explicit under relaxation of the pressure field

14.5 Computational Pointers 553

In this case the value of the relaxation factor is directly read from the fvSolution

dictionary. In case the developer requires a certain constant value, say 0.5, the last

line in Listing 14.5 should be replaced by “p.relax(0.5);”.

The Patankar relaxation is applied directly to the matrix of coefficients and in

OpenFOAM® it is implemented inside the fvMatrix class. The file fvMatrix.C in

the directory “$FOAM_SRC/finiteVolume/fvMatrices/fvMatrix” contains the defi-

nition of the implicit relaxation given in Listing 14.8.

The function definition is quite long, mainly due to the constraints imposed by

the diagonal dominance requirement of the matrix of coefficients, but the relevant

code reads (Listing 14.9)

In the first part, after checking the sign of the slope of the linearized source,

references to the diagonal and source vectors are setup. The original diagonal is

stored under the “D0” scalar field and then divided by the relaxation factor “alpha”.

An additional contribution is added to the source vector of the matrix where “psi_”

is the variable associated with the fvMatrix class. The source term looks slightly

different from the right hand side of Eq. (14.4) but defines exactly the same con-

tribution, as shown in the following equation:

template<class Type>

void Foam::fvMatrix<Type>::relax(const scalar alpha)

{

 if (alpha <= 0)

 {

 return;

 }

Listing 14.8 Script for the definition of implicit relaxation

 Field<Type>& S = source();

 scalarField& D = diag();

 // Store the current unrelaxed diagonal for use in updating the

source

 scalarField D0(D);

 // ... then relax

 D /= alpha;

 // Finally add the relaxation contribution to the source.

 S += (D - D0)*psi_.internalField();

Listing 14.9 Excerpts of the script used for implicit under relaxation

554 14 Discretization of the Source Term, Relaxation, and Other Details

1� kð Þ

k
aC/

�
C ¼

aC

k
� aC

� �

/�
C ð14:36Þ

14.6 Closure

The chapter dealt with the treatment of the source term in the general conservation

equation and discussed several methods used for under-relaxing the algebraic

system of equations. The chapter also discussed some of the indicators used for

checking convergence. The next chapter is devote for the solution of incompress-

ible flow problems.

14.7 Exercises

Exercise 1

Linearize the following source term where the dependent variable is /:

Q
/
C ¼ Aþ B /Cj j/C

Exercise 2

Consider the following equation:

@/

@t
�r � Cr/ ¼ �b /� 1ð Þ1=3�j /4 � 1

� �

Derive the algebraic equation for an element C. Use a first order Euler scheme

for the transient term and linearize the source terms given that b and j are both

positive.

Exercise 3

Consider the steady convection diffusion equation given by

r � qv/ð Þ � r � Cr/ ¼ 2� /3

a. Discretize the above equation using the SMART scheme with a deferred cor-

rection approach for the convection term, and linearize the source term.

b. Then apply under-relaxation to the discretized equation using

(i) Patankar’s under-relaxation method

(ii) The E-Factor relaxation method

(iii) The false transient method

14.5 Computational Pointers 555

Exercise 4

In the solution of turbulent flows (which will be the subject of Chap. 17), turbulence

models are introduced. One such models is the well-known two-equation k � e

turbulence model, with k and e governed by conservation equations that have the

form of the general conservation equation. The e equation in the model has the

following source term:

Qe
C ¼ Ce1

e

k
Pk � Ce2q

e2

k

where q is the fluid density, Ce1 and Ce2 are positive constants, and Pk , k, and e are

all positive quantities. Suggest a linearization for Qe
C.

Exercise 5

In solving the momentum equation in rhZ coordinates, the momentum equation in

the h direction has the following source term:

Q
vh
C ¼ �q

vrvh

r

Suggest a linearization for Qvh
C .

Exercise 6

The Fithigh-Nagumo equations, presented below, model the evolution of animal

coat pattern formation. The equations represent concentrations of two chemical

substances influencing skin pigmentation whose reaction-diffusion interaction result

in the formation of patterns that are reminiscent of the zebra or jaguars skins. The

variations in the resulting patterns depend on the constants used in the model. The

model equations are given by

@/

@t
¼ r � ar/þ /� /3 � uþ k

s
@u

@t
¼ r � bruþ /� u

Solve these equations using uFVM and OpenFOAM® for the following values

of the constants:

a ¼ 2:8	 10�4

b ¼ 5	 10�3

s ¼ 0:1

k ¼ �0:005

Let the computational domain be a square of dimension [4, 4] discretized with a

mesh of size 100	 100 elements. As boundary conditions, use a zero gradient over

all boundaries with a random initial conditions for the / (values within [0, 1]) and

556 14 Discretization of the Source Term, Relaxation, and Other Details

initial conditions for u ¼ 1� /. Solve the problem over 5 s with a time step

Dt � 10�4 s, using the first order Euler Implicit Scheme and the second order

Crank-Nicholson scheme and compare results. Make sure that the source term is

linearized.

References

1. Patankar S (1980) Numerical heat transfer and fluid flow. McGraw Hill, New York
2. Van Doormaal JP, Raithby GD (1984) Enhancement to the SIMPLE method for predicting

incompressible fluid flows. Numer Heat Transf 7:147–163
3. Mallinson GD, de Vahl Davis G (1973) The method of the false transient for the solution of

coupled elliptic equations. J Comput Phys 12(4):435–461
4. Raithby GD, Schneider GE (1979) Numerical solution of problems in incompressible fluid

flow: treatment of the velocity-pressure coupling. Numer Heat Transf 2:417–440
5. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

14.7 Exercises 557

Part III

Algorithms

Chapter 15

Fluid Flow Computation: Incompressible

Flows

Abstract In previous chapters the procedure for discretizing and solving the

general transport equation for the variable / in the presence of a known velocity

field was formulated. In general, the velocity field is not known and has to be

computed by solving the set of Navier-Stokes equations. For incompressible flows

this task is complicated by the strong coupling that exist between pressure and

velocity and by the fact that pressure does not appear as a primary variable in either

the momentum or continuity equations. The focus of this chapter is on presenting a

method that addresses these two issues, and computes the flow field for incom-

pressible fluid flows. This is accomplished initially on a one dimensional staggered

grid, then on a collocated one dimensional grid and finally on a collocated three

dimensional unstructured grid. In addition to fully deriving the SIMPLE,

SIMPLEC, PRIME and PISO algorithms, the Rhie-Chow interpolation and its

extension to transient, relaxation and body force terms are clearly formulated.

Finally, the implementation details for a number of frequently encountered

boundary conditions are presented.

15.1 The Main Difficulty

The general conservation equation dealt with in previous chapters can be reformed

into an equation similar to the continuity and momentum equations. Yet the

numerical techniques presented up till now are not enough to allow for the reso-

lution of the Navier-Stokes equations. Solving general fluid flows requires an

algorithm [1] that can deal with the pressure velocity coupling. To understand this

issue, the continuity and momentum equations are reproduced below.

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_15

561

@q

@t
þr � qvð Þ ¼ 0 ð15:1Þ

@

@t
qv½ � þ r � qvvgf ¼ �rpþr � l rvþ rvð ÞT

h io

þ fb

n

ð15:2Þ

That Eqs. (15.1) and (15.2) are nonlinear is not by itself an unsurmountable

difficulty, since such a problem is usually handled by adopting an iterative

approach. Moreover, Eq. (15.2) is a vector equation, which when written in terms of

its components results in a system of scalar equations that can be solved sequen-

tially. Furthermore, the stress tensor can be reformulated into a diffusion-like term

and treated implicitly, with its second part (i.e., the transpose of the velocity gra-

dient) evaluated explicitly based on previous iteration values and added to the

source. The main issue that cannot be addressed directly with the numerics of the

general scalar equation, is the unavailability of an explicit equation for computing

the pressure field that appears in the momentum equation.

A review of Eqs. (15.1) and (15.2) reveals that while the velocity field can be

computed using the momentum equation, the pressure field appearing in the

momentum equation cannot be computed directly from the continuity equation.

This strong yet implicit coupling can be made more evident by rewriting the set of

equations in a matrix form as

Au ¼
F BT

B 0

� �
v

P

� �

¼
fb
0

� �

: ð15:3Þ

In this form, Eq. (15.3) shows a zero diagonal block in the system, which is a

characteristic of saddle point problems, indicating that it cannot sustain the solution

of the pressure and velocity fields by any iterative mean. Consequently, an equation

for pressure is required and should be derived.

One approach is to simply reformulate the system of momentum and continuity

equations by decomposing matrix A into a lower (L) and an upper (U) triangular

matrices as

A ¼
F BT

B 0

� �

¼
F 0

B �BF�1BT

� �

I F�1BT

0 I

� �

¼ LU ð15:4Þ

where the term −BF−1B
T is the Schur complement matrix.

This is in essence the approach that needs to be followed in order to iteratively

solve the Navier-Stokes equations. This technique is embodied in the classical

segregated SIMPLE (Semi Implicit Method for Pressure Linked Equations) algo-

rithm of Patankar and Spalding [1–3].

The solution procedure is based on reformulating the Navier-Stokes equations in

terms of a momentum and a pressure equation, which are then discretized and

solved sequentially. The pressure equation is constructed by combining the semi-

discretized momentum and continuity equations (approximation of the Schur

complement matrix).

562 15 Fluid Flow Computation: Incompressible Flows

The algorithm is driven by a Picard type iterative procedure during which the

momentum equation is solved using the pressure field of the previous iteration. The

resulting velocity field conserves momentum but not necessarily mass. This

velocity field is then used to construct the pressure equation whose solution is used

to correct both the pressure and velocity fields so as to enforce mass conservation.

A new iteration is then started and the sequence is repeated until the velocity and

pressure fields satisfy both mass and momentum conservation.

This algorithm can be described in matrix form as

I D�1BT

0 I

� �
v

p

� �

¼
v�

p�

� �

ð15:5Þ

followed by an update to the velocity field using

F 0

B �BD�1BT

� �
v�

p�

� �

¼
fb
0

� �

ð15:6Þ

where in Eqs. (15.5) and (15.6) F−1 is approximated by its inverse diagonal, D−1,

and the superscript (*) refers to intermediate values at the current iteration.

The steps required are summarized as follows:

• Solve: Fv* = fb
• Solve: −BD−1BTp* = −Bv*

• Update: v = v* − D−1BTp*

• Update: p = p*

This kind of splitting is similar to that used in the SIMPLE family of algorithms,

which is the subject of this chapter.

15.2 A Preliminary Derivation

The difficulties faced in developing a solution algorithm for incompressible flow

problems will be highlighted by performing the discretization in a one dimensional

space over the uniform grid displayed in Fig. 15.1. For simplicity, the flow is

assumed to be steady. The simplified continuity and momentum equations (written

in conservative form) are given by

@ quð Þ

@x
¼ 0 ð15:7Þ

@ quuð Þ

@x
¼

@

@x
l
@u

@x

� �

�
@p

@x
ð15:8Þ

15.2 A Preliminary Derivation 563

15.2.1 Discretization of the Momentum Equation

The discretization of the momentum equation starts by integrating Eq. (15.8) over

element C shown in Fig. 15.1 to yield

Z

VC

@ quuð Þ

@x
dV¼

Z

VC

@

@x
l
@u

@x

� �

dV �

Z

VC

@p

@x
dV ð15:9Þ

The volume integrals of the convection and diffusion terms in Eq. (15.9) are then

transformed into surface integrals by invoking the divergence theorem to give

Z

@VC

quuð Þdy ¼

Z

@VC

l
@u

@x
dy�

Z

VC

@p

@x
dV ð15:10Þ

Representing the surface integrals by summation of fluxes over the faces of the

element, and using a single Gaussian point for the face integrals, the

semi-discretized forms of the left and right hand sides of Eq. (15.8) become

quDyð Þe
|fflfflfflffl{zfflfflfflffl}

_me

ue þ� quDyð Þw
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

_mw

uw ¼ l
@u

@x
Dy

� �

e

� l
@u

@x
Dy

� �

w

�

Z

VC

@p

@x
dV ð15:11Þ

which can be rewritten as

_meue þ _mwuw
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Convection

� l
@u

@x
Dy

� �

e

� l
@u

@x
Dy

� �

w

� �

|ffl{zffl}

Diffusion

¼ �

Z

VC

@p

@x
dV ð15:12Þ

EEECWWW

u
WW

u
W

u
C

u
E

u
EE

w e

x
e

x
w

x
C

y
C

Fig. 15.1 One dimensional domain

564 15 Fluid Flow Computation: Incompressible Flows

The convection and diffusion terms can be discretized using any of the tech-

niques described in previous chapters to yield an algebraic equation of the form

auCuC þ
X

F�NB Cð Þ

auFuF
� �

¼ buC�

Z

VC

@p

@x
dV ð15:13Þ

The discretization of the pressure term is deferred till after the discretization of

the continuity equation.

15.2.2 Discretization of the Continuity Equation

The discretized form of the continuity equation is obtained by integrating Eq. (15.7)

over element C displayed in Fig. 15.1 to give

Z

VC

@ quð Þ

@x
dV ¼ 0 ð15:14Þ

Again making use of the divergence theorem to transform the volume integral

into a surface integral and then into summation of fluxes over the faces of the

element, the discrete form of the continuity equation is obtained as

X

f�nbðCÞ

ðquDyÞf ¼ ðquDyÞe � ðquDyÞw ¼ 0 ð15:15Þ

or
X

f�nbðCÞ

_mf ¼ _me þ _mw ¼ 0 ð15:16Þ

15.2.3 The Checkerboard Problem

The discretization of the pressure term may be accomplished by adopting either of

the following two approaches. In the first approach, the volume integral is com-

puted via a single Gaussian integration point resulting in

Z

VC

@p

@x
dV ¼

@p

@x

� �

C

VC ð15:17Þ

15.2 A Preliminary Derivation 565

Using a central difference scheme, the discretized form of Eq. (15.17) is obtained

as

Z

VC

@p

@x
dV ¼

pE � pW

2Dx
VC ð15:18Þ

In the second approach, the volume integral of the pressure gradient term is

transformed into a surface integral such that

Z

VC

@p

@x
dV ¼

Z

@VC

p dy ð15:19Þ

Rewriting the surface integral as a summation of fluxes over the faces of the

element, Eq. (15.19) becomes

Z

VC

@p

@x
dV ¼

Z

@VC

p dy ¼ peDye � pwDyw ¼ pe � pwð ÞDy ¼ pe � pwð Þ
VC

Dx
ð15:20Þ

Selecting a linear interpolation profile for the variation of pressure, the pressure

gradient term can be rewritten as a function of pressure values at the main grid

points as

Z

VC

@p

@x
dV ¼

1

2
pE þ pCð Þ �

1

2
pC þ pWð Þ

� �
VC

Dx
¼

pE � pW

2Dx
VC ð15:21Þ

Thus either approach leads to the same expression involving the pressure dif-

ference between the alternating points E and W.

In a similar way, using a linear interpolation profile and noticing that the density

is constant and ðDyÞe ¼ ðDyÞw ¼ ðDyÞC, the continuity equation can be expressed

as

uE � uW ¼ 0 ð15:22Þ

which also relates the velocity at two alternating grid points.

In Eq. (15.21) the pressure gradient term in element C depends on the values of

pressure at the two alternating, not consecutive, grid points straddling the element.

The same is true for the continuity equation, which enforces conservation only for

alternating velocity elements. This implies that non-physical zigzag (or checkerboard)

pressure and velocityfields, like the ones shown in Fig. 15.2,will be sensed as uniform

fields by the numerical scheme.

566 15 Fluid Flow Computation: Incompressible Flows

For the pressure and velocity values shown in Fig. 15.2, the pressure gradient at

points W, C, and E are found to be

Z

VW

@p

@x
dV¼ ðpC � pWW Þ

VW

2DxW
¼ ð10� 10Þ

VW

2DxW
¼ 0

Z

VC

@p

@x
dV ¼ ðpE � pW Þ

VC

2DxC
¼ ð�100þ 100Þ

VC

2DxC
¼ 0

Z

VE

@p

@x
dV ¼ ðpEE � pCÞ

VE

2DxE
¼ ð10� 10Þ

VE

2DxE
¼ 0

and the continuity equation seems to be enforced for each element since

Z

VW

@u

@x
dV¼ ðuC � uWW Þ

VW

2DxW
¼ ð1� 1Þ

VW

2DxW
¼ 0

Z

VC

@u

@x
dV ¼ ðuE � uW Þ

VC

2DxC
¼ ð10� 10Þ

VC

2DxC
¼ 0

Z

VE

@u

@x
dV ¼ ðuEE � uCÞ

VE

2DxE
¼ ð1� 1Þ

VE

2DxE
¼ 0

In multi dimensional situations a similar non-physical behavior can arise even if it is

harder to visualize. This sets the ground for the next step that presents one approach

to resolve this problem.

15.2.4 The Staggered Grid

The culprit in the previous formulation is the uncoupling between the pressure and

velocity fields. Coupling can be enforced if the different variables are stored at

ew

10 -100 10 -100 10p:

1 10 1 10 1u:

continuity

gradient

WW W C E EE

Fig. 15.2 A checkerboard
pressure and velocity fields

15.2 A Preliminary Derivation 567

staggered locations such that no interpolation is needed to calculate the pressure

gradient in the momentum equation and the velocity field in the continuity equation.

Such a staggered grid is shown in Fig. 15.3a, b. In the staggered grid the velocity

field is stored at cell faces (Fig. 15.3a), while pressure and all other variables are

stored at cell centroids (Fig. 15.3b).

With this formulation, the discretized continuity equation for element C becomes

X

f�nbðCÞ

_mf ¼ _me þ _mw ¼ 0 or ue � uw ¼ 0 ð15:23Þ

with no need for interpolation as the velocity values are available at the e and

w locations. Moreover, the momentum equation is integrated over elements similar

to element e resulting in the following discretized momentum equation:

aueue þ
X

f�NBðeÞ

auf uf ¼ bue � VeðrpÞe ¼ bue � Ve

pE � pC

dxe
ð15:24Þ

The pressure gradient is related to values at the consecutive grid points strad-

dling the element face with no interpolation needed. Therefore checkerboard

pressure and velocity field solutions are inadmissible as they will be easily detected

and eliminated by the numerical method.

(a)

(b)

WW W C E EE

u
e

u
w

w e

x
e

x
w

x
C

y
C

u
e y

C
WW W C EE

u
w

w e

x
e

x
w

x
C

E

Fig. 15.3 An element for a the momentum equation and b the continuity equation in a one
dimensional staggered grid arrangement

568 15 Fluid Flow Computation: Incompressible Flows

15.2.5 The Pressure Correction Equation

The derivations presented next are based on the work of Patankar and Spalding [2, 3],

who developed the initial implementation of the SIMPLE (Semi Implicit Method for

Pressure Linked Equations) algorithm.

Starting with the continuity and momentum equations given respectively by

(Fig. 15.3)

X

f�nbðCÞ

_mf ¼ 0 ð15:25Þ

aueue þ
X

f�NBðeÞ

auf uf ¼ bue � Ve

@p

@x

� �

e

ð15:26Þ

the solution proceeds by providing an initial guess for the velocity and pressure

fields. Denoting the initial guess or the solution at the starts of any iteration with a

superscript (n), then the tentative velocity and pressure fields are given by u(n) and

p(n). At any iteration, solving the momentum equation first for the velocity field, the

solution obtained is denoted by a superscript * as it is not the final solution at the

current iteration. Thus, the momentum equation satisfies

aueu
�
e þ

X

f�NBðeÞ

auf u
�
f ¼ bue � Ve

@pðnÞ

@x

� �

e

ð15:27Þ

where the pressure field is still based on values from the previous iteration. The

computed velocity field u* satisfies the momentum equation but not necessarily the

continuity equation, since the pressure field is not exact. Therefore a correction is

sought to ensure that the velocity (or the mass flow rate) and pressure fields satisfy

the continuity equation.

Denoting the correction fields with a superscript prime, i.e., u0; p0ð Þ, then the

sought after velocity and pressure are given by

u ¼ u� þ u0

p ¼ p� þ p0
ð15:28Þ

Note that the mass flow rate at cell faces will also be corrected according to

_mf ¼ _m�f þ qu0Sxf

¼ _m�f þ m0f
ð15:29Þ

15.2 A Preliminary Derivation 569

such that the exact mass flow rate satisfies the continuity equation, i.e.,

_me þ _mw ¼ _m�e þ _m0e þ _m�w þ _m0w ¼ 0 ð15:30Þ

which can be rewritten as

_m0e þ _m0w ¼ � _m�e � _m�w ð15:31Þ

This is an interesting form of the continuity equation showing that once the

computed mass flow rate reaches the exact solution and satisfies the continuity

equation, then the RHS becomes zero leading to a zero correction field. Thus it is

the mass conservation error of the current fields that drives the correction field. The

mass flow rates and mass flow rate corrections at an element faces are given by

_me ¼ qv�e � Se ¼ qu�eS
x
e ¼ qu�eDye

_mw ¼ qv�w � Sw ¼ qu�wS
x
w ¼ �qu

�
wDyw

ð15:32Þ

and

_m0e ¼ qv0e � Se ¼ qu0eS
x
e ¼ qu0eDye

_m0w ¼ qv0w � Sw ¼ qu0wS
x
w ¼ �qu

0
wDyw

ð15:33Þ

where in Eqs. (15.32) and (15.33) the fact that Sxe ¼ Dye and Sxw ¼ �Dyw has been

used.

The pressure field does not appear in Eq. (15.31) and to bring it into the

equation, the discrete form of the momentum equation is used. The process starts by

rewriting Eq. (15.26) in a more compact form as

ue þ HeðuÞ ¼ Bu
e � Du

e

@p

@x

� �

e

ð15:34Þ

where

HeðuÞ ¼
X

f�NBðeÞ

auf

aue
uf Bu

e ¼
bue
aue

and Du
e ¼

Ve

aue
ð15:35Þ

For the case of the computed velocity field, the above equation is written as

u�e þ Heðu
�Þ ¼ Bu

e � Du
e

@pðnÞ

@x

� �

e

ð15:36Þ

Subtracting the computed momentum equation, Eq. (15.36), from the exact one,

Eq. (15.34), an equation for the correction field is obtained as

570 15 Fluid Flow Computation: Incompressible Flows

u0e þ Heðu
0Þ ¼ �Du

e

@p0

@x

� �

e

ð15:37Þ

A similar approach is used for the w face yielding

u0w þ Hwðu
0Þ ¼ �Du

w

@p0

@x

� �

w

ð15:38Þ

Substituting Eq. (15.33) into the continuity equation, Eq. (15.31), its expanded

form becomes

qeu
0
eDye þ �qwu

0
wDyw

� �
¼ �ð _m�e þ _m�wÞ: ð15:39Þ

Then replacing the discrete forms of u0e and u0w computed from Eqs. (15.37) and

(15.38), respectively, in Eq. (15.39), an equation involving pressure correction is

obtained and is given by

qe �He u0ð Þ � Du
e

@p0

@x

� �

e

� �

Dye

� qw �Hw u0ð Þ � Du
w

@p0

@x

� �

w

� �

Dyw ¼ � _m�e þ _m�w
� �

ð15:40Þ

In this equation the pressure field appears in a diffusion like form, which after

discretization becomes

qe �He u0ð Þ � Du
e

p0E � p0C
Dx

� �

e

� �

Dye

þ qw �Hw u0ð Þ � Du
w

p0C � p0W
Dx

� �

w

� �

�Dywð Þ ¼ � _m�e þ _m�w
� �

ð15:41Þ

or

� qeD
u
e

Dyw

Dxw

� �

p0E � p0C
� �

� qwD
u
w �

Dyw

Dxw

� �

p0C � p0W
� �

¼ � _m�e þ _m�w
� �

þ qeHe u0ð ÞDye þ qwHw u0ð Þ �Dywð Þð Þ

ð15:42Þ

Rearranging, the pressure correction equation is formulated as

a
p0

C p
0
C þ a

p0

E p
0
E þ a

p0

Wp
0
W ¼ b

p0

C ð15:43Þ

15.2 A Preliminary Derivation 571

where

a
p0

E ¼ �
qeD

u
eDye

dxe

a
p0

W ¼ �
qwD

u
wDyw

dxw

a
p0

C ¼ � a
p0

E þ a
p0

W

	

b
p0

C ¼ � _m�e þ _m�w
� �

þ qeDyeHe u0ð Þ � qwDywHw u0ð Þ½ �

ð15:44Þ

The underlined terms in Eqs. (15.37), (15.38), and (15.44) involve corrections

which become zero at the state of convergence. Therefore they have no effect on the

final solution. Different approximations to these terms result in different algorithms

as will be explained later. In the original SIMPLE algorithm these terms are simply

neglected. Moreover for one dimensional constant area situations Δy may be set to 1

and dropped from the equations.

15.2.6 The SIMPLE Algorithm on Staggered Grid

Using the momentum and pressure correction equations, a solution to the flow

problem can be obtained. In the SIMPLE algorithm this solution is found iteratively

by generating pressure and velocity fields that consecutively satisfy the momentum

and continuity equations, while approaching the final solution (which satisfies both

equations) at every iteration [4–6]. This sequential, rather than simultaneous,

solution of the equations is denoted in the literature by the segregated approach.

The sequence of events in the segregated SIMPLE algorithm can be summarized as

follows:

1. Start with a guessed pressure and velocity fields p(n) and u
(n), respectively.

2. Solve the momentum equation given by Eq. (15.27) to obtain a new velocity

field u�f .

3. Update the mass flow rates using the momentum satisfying velocity field to

obtain the _m�f field.

4. Using the new mass flow rates solve the pressure correction equation to obtain a

pressure correction field p0.

5. Update the pressure and velocity fields to obtain continuity-satisfying fields

using the following equations:

572 15 Fluid Flow Computation: Incompressible Flows

u��f ¼ u�f þ u0f u0f ¼ �D
u
f

@p0

@x

� �

f

p�C ¼ p
ðnÞ
C þ p0C

_m��f ¼ _m�f þ _m0f _m0f ¼ �qfD
u
f Dyf

@p0

@x

� �

f

ð15:45Þ

6. set uðnÞ ¼ u�� and pðnÞ ¼ p�

7. Go back to step 2 and repeat until convergence.

The SIMPLE algorithm is best illustrated via the example presented next.

Example 1

Flow in a Pipe Network

A portion of a water pipe system is shown in Fig. 15.4. The momentum

equation for the flow in the pipes can be written as

_m ¼ quA ¼ �DDP

where DA = 0.5, DB = DF = 0.4, DC = DE = 0.3, DD = 0.19, DG = 0.1875,

and DH = 0.35. Using the SIMPLE algorithm, calculate the unknown mass

flow rates and pressures in the system.

Solution

In this system, the mass flow rate field is used as a variable instead of the

velocity field. This is not problematic since the momentum equation has been

simplified by dropping the convection and diffusion terms as their values are

negligible compared to the pressure head.

p
3

p
6

p
8p

1
= 400

p
2

= 350 p
5

= 300

p
4

= 50 p
7

= 80

m
A

m
B

m
C

m
D

m
E

m
F

m
G

m
H

m
I

= 50

p
9

= 200

Fig. 15.4 A portion of a water pipe system

15.2 A Preliminary Derivation 573

The solution using the SIMPLE algorithm starts by first computing an

initial velocity field using the assumed pressure field, and then predicting a

pressure field that enforces continuity on the just computed velocity field.

This procedure is summarized as

1. Start with a guessed pressure field.

2. Compute the mass flow rates using the given momentum equation.

3. Construct a pressure correction equation that enforces continuity (mass

conservation) and use it to correct the pressure and velocity fields.

No iterations will be needed since there are no non-linear effects induced

by a convection term.

step 1

Start by assigning guessed values to the pressure at the locations where

solutions are to be found. Thus assume the following:

p
ðnÞ
3 ¼ 300 p

ðnÞ
6 ¼ 200 p

ðnÞ
8 ¼ 120 (other values could have been used)

step 2

Based on the assumed pressure values calculate the various mass flow rates

using the momentum equations according to

_m�A ¼ DA ðp1 � p
ðnÞ
3 Þ ¼ 0:5 � 400� 300ð Þ ¼ 50

_m�B ¼ DB ðp
ðnÞ
3 � p2Þ ¼ 0:4 � 300� 350ð Þ ¼ �20

_m�C ¼ DC ðp4 � p
ðnÞ
3 Þ ¼ 0:3 � 50� 300ð Þ ¼ �75

_m�D ¼ DD ðp
ðnÞ
3 � p

ðnÞ
6 Þ ¼ 0:19 � 300� 200ð Þ ¼ 19

_m�E ¼ DE ðp
ðnÞ
6 � p5Þ ¼ 0:3 � 200� 300ð Þ ¼ �30

_m�F ¼ DF ðp7 � p
ðnÞ
6 Þ ¼ 0:4 � 80� 200ð Þ ¼ �48

_m�G ¼ DG ðp
ðnÞ
6 � p

ðnÞ
8 Þ ¼ 0:1875 � 200� 120ð Þ ¼ 15

_m�H ¼ DH ðp9 � p
ðnÞ
8 Þ ¼ 0:35 � 200� 120ð Þ ¼ 28

step 3

Check whether the mass flow rates satisfy continuity by computing
P

�k

_m�k at

all interior points, i.e.,

Node 3 :
X

�k

_m�k
� �

¼ _m�B þ _m�D � _m�A � _m�C ¼ �20þ 19� 50þ 75 ¼ 24

Node 6 :
X

�k

_m�k
� �

¼ _m�G þ _m�E � _m�D � _m�F ¼ 15� 30� 19þ 48 ¼ 14

Node 8 :
X

�k

_m�k
� �

¼ _m�I � _m�G � _m�H ¼ 50� 15� 28 ¼ 7

574 15 Fluid Flow Computation: Incompressible Flows

Since mass conservation is not satisfied, correction fields are needed and

pressure correction equations are derived as follows:

X

�k

_m�k þ _m0k
� �

¼ 0)
X

�k

_m0k
� �

¼ �
X

�k

_m�k
� �

In term of pressure corrections, mass flow rate corrections can be

expressed as

_m0A ¼ DA �p
0
3

� �

_m0B ¼ DB p03
� �

_m0C ¼ DC �p
0
3

� �

_m0D ¼ DD p03 � p06
� �

_m0E ¼ DE p06
� �

_m0F ¼ DF �p
0
6

� �

_m0G ¼ DG p06 � p08
� �

_m0H ¼ DH �p
0
8

� �

Note that p01, p
0
2, p

0
4, p

0
5 and p07 are set to zero since the corresponding

pressure values are known and hence represent the exact values.

The flow field at nodes 3, 6, and 8 are respectively given by

_m0B þ _m0D � _m0A � _m0C ¼ � _m�B þ _m�D � _m�A � _m�C
� �

_m0G þ _m0E � _m0D � _m0F ¼ � _m�G þ _m�E � _m�D � _m�F
� �

� _m0G � _m0H ¼ � _m�I � _m�G � _m�H
� �

and using pressure corrections as

DB p03
� �

þ DD p03 � p06
� �

� DA �p
0
3

� �
� DC �p

0
3

� �
¼ � _m�B þ _m�D � _m�A � _m�C

� �

DG p06 � p08
� �

þ DE p06
� �

� DD p03 � p06
� �

� DF �p
0
6

� �
¼ � _m�G þ _m�E � _m�D � _m�F

� �

� DG p06 � p08
� �

� DH �p
0
8

� �
¼ � _m�I � _m�G � _m�H

� �

After simplification the above equations become

1:39 p03
� �

� 0:19 p06
� �

¼ � _m�B þ _m�D � _m�A � _m�C
� �

1:0775 p06
� �

� 0:1875 p08
� �

� 0:19 p03
� �

¼ � _m�G þ _m�E � _m�D � _m�F
� �

� 0:1875 p06
� �

þ 0:5375 p08
� �

¼ � _m�I � _m�G � _m�H
� �

15.2 A Preliminary Derivation 575

Substituting the tentative mass flow rates, the various correction fields satisfy

1:39 p03
� �

� 0:19 p06
� �

¼ �24

1:0775 p06
� �

� 0:1875 p08
� �

� 0:19 p03
� �

¼ �14

� 0:1875 p06
� �

þ 0:5375 p08
� �

¼ �7

Solving the system of pressure correction equations yields

p03 ¼ �20
p06 ¼ �20
p08 ¼ �20

8

<

:

With the pressure correction computed, the velocity and pressure fields can

now be updated to produce a mass conserving velocity field. The mass flow

rates are computed as

_m��A ¼ _m�A þ _m0A ¼ _m�A � 0:5p03 ¼ 50� 0:5 �20ð Þ ¼ 60

_m��B ¼ _m�B þ _m0B ¼ _m�B þ 0:4p03 ¼ �20þ 0:4 �20ð Þ ¼ �28

_m��C ¼ _m�C þ _m0C ¼ _m�C � 0:3p03 ¼ �75� 0:3 �20ð Þ ¼ �69

_m��D ¼ _m�D þ _m0D ¼ _m�D þ 0:19 p03 � p06
� �

¼ 19þ 0:19 �20þ 20ð Þ ¼ 19

_m��E ¼ _m�E þ _m0E ¼ _m�E þ 0:3p06 ¼ �30þ 0:3 �20ð Þ ¼ �36

_m��F ¼ _m�F þ _m0F ¼ _m�F � 0:4p06 ¼ �48� 0:4 �20ð Þ ¼ �40

_m��G ¼ _m�G þ _m0G ¼ _m�G þ 0:1875 p06 � p08
� �

¼ 15þ 0:1875 �20þ 20ð Þ ¼ 15

_m��H ¼ _m�H þ _m0H ¼ _m�H � 0:35p08 ¼ 28� 0:35 �20ð Þ ¼ 35

while the pressure is updated using

p�3 ¼ p
ðnÞ
3 þ p03 ¼ 300� 20 ¼ 280

p�6 ¼ p
ðnÞ
6 þ p06 ¼ 200� 20 ¼ 180

p�8 ¼ p
ðnÞ
8 þ p08 ¼ 120� 20 ¼ 100

Treat the corrected values as a new guess and repeat. Better estimate for the

mass flow rates are computed using the momentum equations as

576 15 Fluid Flow Computation: Incompressible Flows

_m�A ¼ DA p1 � p
ðnÞ
3

	

¼ 0:5 � 400� 280ð Þ ¼ 60

_m�B ¼ DB p
ðnÞ
3 � p2

	

¼ 0:4 � 280� 350ð Þ ¼ �28

_m�C ¼ DC p4 � p
ðnÞ
3

	

¼ 0:3 � 50� 280ð Þ ¼ �69

_m�D ¼ DD p
ðnÞ
3 � p

ðnÞ
6

	

¼ 0:19 � 280� 180ð Þ ¼ 19

_m�E ¼ DE p
ðnÞ
6 � p5

	

¼ 0:3 � 180� 300ð Þ ¼ �36

_m�F ¼ DF p7 � p
ðnÞ
6

	

¼ 0:4 � 80� 180ð Þ ¼ �40

_m�G ¼ DG p
ðnÞ
6 � p

ðnÞ
8

	

¼ 0:1875 � 180� 100ð Þ ¼ 15

_m�H ¼ DH p9 � p
ðnÞ
8

	

¼ 0:35 � 200� 100ð Þ ¼ 35

The imbalance in the mass flow rate at nodes 3, 6, and 8 are computed as

X

�k

_m�k
� �

¼ _m�B þ _m�D � _m�A � _m�C ¼ �28þ 19� 60þ 69 ¼ 0

X

�k

_m�k
� �

¼ _m�G þ _m�E � _m�D � _m�F ¼ 15� 36� 19þ 40 ¼ 0

X

�k

_m�k
� �

¼ _m�I � _m�G � _m�H ¼ 50� 15� 35 ¼ 0

The pressure correction equations become

1:39 p03
� �

� 0:19 p06
� �

¼ 0

1:0775 p06
� �

� 0:1875 p08
� �

� 0:19 p03
� �

¼ 0

� 0:1875 p06
� �

þ 0:5375 p08
� �

¼ 0

The solution to the pressure correction field is found to be

p03 ¼ 0

p06 ¼ 0

p08 ¼ 0

8

<

:

Thus the solution is obtained in one iteration.

15.2 A Preliminary Derivation 577

15.2.7 Pressure Correction Equation in Two Dimensional

Staggered Cartesian Grids

In a two dimensional Cartesian grid, three grid systems are used. One for the u-

velocity component, a second one for the v-velocity component, and a third grid

system for the pressure and other variables as illustrated in Fig. 15.5.

The derivations presented above for the pressure correction equation in one

dimensional domains can be easily extended into multi dimensional situations. For

element C shown in Fig. 15.6, the pressure correction equation is obtained as

a
p0

Cp
0
C þ a

p0

E p
0
E þ a

p0

Wp
0
W þ a

p0

Np
0
N þ a

p0

S p
0
S ¼ b

p0

C ð15:46Þ

where

a
p0

E ¼ �
qeD

u
eDyC

dxe
a
p0

W ¼ �
qwD

u
wDyC

dxw

a
p0

N ¼ �
qnD

v
nDxC

dyn
a
p0

S ¼ �
qsD

v
sDxC

dys

a
p0

C ¼ � a
p0

E þ a
p0

W þ a
p0

N þ a
p0

S

	

b
p0

C ¼ � _m�e þ _m�w þ _m�n þ _m�s
� �

ð15:47Þ

u velocity CV

main CV

v velocity CV

u

v

p

Fig. 15.5 u, v, and
p elements in a two
dimensional Cartesian
staggered grid

578 15 Fluid Flow Computation: Incompressible Flows

Example 2

In the two dimensional problem shown in Fig. 15.7, the following quantities

are given uw = 50, vs = 20, pN = 0 and pE = 10.

The flow is steady and the density is uniform and equal to 1. The

momentum equations for ue and vn are given by

ue ¼ �de pE � pCð Þ

vn ¼ �dn pN � pCð Þ

where the constants de = 1 and dn = 0.25. The element shown has

Δx = Δy = 1. Use the SIMPLE algorithm to compute the values of ue, vn, and

pC.

y()
n

y()
s

x()
w

x()
e

x()
C

y()
C

EW C

N

SSW

NW NE

SE

ew

n

s

u
eu

w

v
n

v
s

Fig. 15.6 A two dimensional
Cartesian element for the
derivation of the pressure
correction equation

pE =10
uw = 50

vs = 20

pN = 0

Fig. 15.7 The two dimensional domain used in Example 2

15.2 A Preliminary Derivation 579

Solution

Start by assigning a guessed value to the pressure at the C location where

solution is to be found. Thus assume the following:

p
ðnÞ
C ¼ 100 (other values could have been guessed)

Based on the assumed pressure value calculate the various velocities using

the momentum equation according to

u�e ¼ �de pE � p
ðnÞ
C

	

¼ �1 � 10� 100ð Þ ¼ 90

v�n ¼ �dn pN � p
ðnÞ
C

	

¼ �0:25 � 0� 100ð Þ ¼ 25

Since the density is uniform and equal to 1 and Δx = Δy = 1, then

_m�e ¼ u�e ¼ 90

_m�n ¼ v�n ¼ 25

Check whether the mass flow rates satisfy continuity over element C by

computing
P

� f

_m�f at the element faces.

X

� f
_m�f

	

¼ _m�e � _m�w þ _m�n � _m�s ¼ 90� 50þ 25� 20 ¼ 45

In the above mass conservation equation the negative sign for _m�w and _m�s
is explicitly used. Since mass conservation is not satisfied, correction fields

are needed and a pressure correction equation is derived as follows:

X

� f

_m�f þ _m0f

	

¼ 0)
X

� f

_m0f

	

¼�
X

� f

_m�f

	

In term of pressure corrections, mass flow rate corrections can be

expressed as

_m0e ¼ u0e ¼ p0C _m0n ¼ v0n ¼ 0:25 p0C

The correction equation becomes

_m0e þ _m0n ¼ �
X

� f

_m�f) 1:25p0C ¼ �45) p0C ¼ �36

Applying the correction to the mass flow rate and pressure fields, conti-

nuity satisfying fields are obtained as

580 15 Fluid Flow Computation: Incompressible Flows

_m��e ¼ _m�e þ _m0e ¼ _m�e þ p0C ¼ 90� 36 ¼ 54

_m��n ¼ _m�n þ _m0n ¼ _m�n þ 0:25p0C ¼ 25� 0:25 36ð Þ ¼ 16

p��C ¼ p�C þ p0C ¼ 100� 36 ¼ 64

Treat the corrected values as a new guess and repeat.

_m�e ¼ �de pE � p�C
� �

¼ �1 � 10� 64ð Þ ¼ 54

_m�n ¼ �dn pN � p�C
� �

¼ �0:25 � 0� 64ð Þ ¼ 16

The imbalance in the mass flow rate is computed as

X

�f

_m�f

	

¼ _m�e � _m�w þ _m�n � _m�s ¼ 54� 50þ 16� 20 ¼ 0

The pressure correction equations become

1:25 p0c
� �

¼ 0

The solution to the pressure correction field is found to be

p0C ¼ 0

Thus the solution is obtained in one iteration as

ue ¼ 54

vn ¼ 16

pC ¼ 64

15.2.8 Pressure Correction Equation in Three Dimensional

Staggered Cartesian Grid

Without going into details and for completeness of presentation, the pressure cor-

rection equation over the three dimensional staggered Cartesian grid shown in

Fig. 15.8, where the u, v, and w velocity components are stored at the (e, w), (n, s),

and (t, b) element faces, respectively, is given by

a
p0

Cp
0
C þ a

p0

E p
0
E þ a

p0

Wp
0
W þ a

p0

Np
0
N þ a

p0

S p
0
S þ a

p0

T p
0
T þ a

p0

B p
0
B ¼ b

p0

C ð15:48Þ

15.2 A Preliminary Derivation 581

where

a
p0

E ¼ �
qeD

u
eDyeDze

dxe
a
p0

W ¼ �
qwD

u
wDywDzw

dxw

a
p0

N ¼ �
qnD

v
nDxnDzn

dyn
a
p0

S ¼ �
qsD

v
sDxsDzs

dys

a
p0

T ¼ �
qtD

w
t DxtDyt

dzt
a
p0

B ¼ �
qbD

w
bDxbDyb

dzb

a
p0

C ¼ � a
p0

E þ a
p0

W þ a
p0

N þ a
p0

S þ a
p0

T þ a
p0

B

	

b
p0

C ¼ � _m�e þ _m�w þ _m�n þ _m�s þ _m�t þ _m�b
� �

ð15:49Þ

15.3 Disadvantages of the Staggered Grid

The use of staggered grids was critical to the development of the SIMPLE algo-

rithm. Nevertheless adopting a staggered grid arrangement has its disadvantages. As

mentioned above, in two and three dimensions, three and four staggered grid

systems, respectively, are required with the velocity components integrated over

different elements, as shown in Fig. 15.5 for a two dimensional situation.

Besides the memory requirement to store a grid system for every velocity

component and a grid system for pressure and other variables, the staggering

procedure itself becomes an issue for non-Cartesian grids and more so for

unstructured grids.

W

S
B

z

x

y

x
w

y
s

z
b

E

N
T

x
e

y
n z

t

C

t

b

e
w

n

s

Fig. 15.8 A three dimensional Cartesian element for the derivation of the pressure correction
equation

582 15 Fluid Flow Computation: Incompressible Flows

In curvilinear grids, the use of Cartesian velocity components can lead to

problems when one or more of the surfaces become aligned with the staggered

velocity component as shown in Fig. 15.9.

Therefore a better alternative in this case is to use either covariant or contra-variant

curvilinear velocity components, as shown in Fig. 15.10a, b, respectively.

An example of staggering using contra-variant velocity components is shown in

Fig. (15.11).

Fig. 15.9 Staggered Cartesian velocity components in a curvilinear grid system

(a) (b)

f
e

e

C

F

f

e

e

C

F

Fig. 15.10 Curvilinear coordinates a Covariant component and b contra-variant components

Fig. 15.11 Curvilinear velocities: staggering using contra-variant velocity components

15.3 Disadvantages of the Staggered Grid 583

Unfortunately complications arise when discretizing the momentum equations in

curvilinear coordinates [1, 3, 4, 7], due to the increased complexity in the treatment

of the diffusion term, and because the equations gain non-conservative terms.

Another option shown in Fig. 15.12 is to stagger all Cartesian velocity compo-

nents in all directions so as to have all velocity components at all faces. This would

double (in two dimensions) or triple (in three dimensions) the number of momentum

equations to be solved. The problem is further complicated in the case of an

unstructured grid. In this case there is no obvious staggering direction, and the only

way for a staggering concept to apply is by changing the size of the cell elements

used for the pressure and velocity components, or by resorting to staggering all

velocity components along all the faces, again dramatically increasing the number of

variables to be solved. Finally, the geometric information stored is more than dou-

bled, as a new unstructured grid need to be used for the velocity components.

It turns out that the use of a cell-centered collocated grid system (Fig. 15.13),

where all variables are stored at the same location (the cell centroid), is a more

attractive solution. It is worth noting that while the velocity components are stored

at the centroids of the elements as is the case for pressure or any other variable, the

mass flux, a scalar value, in a collocated grid is stored at the element faces. The

mass flux can actually be viewed as a contra-variant component, except that in this

case it is computed using a custom interpolation of the discrete momentum equa-

tion, known as the Rhie-Chow interpolation, which is the subject of the next

section.

Fig. 15.12 Cartesian components defined at each face

Fig. 15.13 Collocated grid arrangement

584 15 Fluid Flow Computation: Incompressible Flows

15.4 The Rhie-Chow Interpolation

The deficiency in the original collocated formulation presented earlier was in the

linear interpolation used to calculate the velocities at the element faces. This

interpolation resulted in decoupling the pressure and velocity values at the cell level

giving rise to the checkerboard problem. In 1983, Rhie and Chow [8] reported on

an interpolation procedure that allowed the formulation of the SIMPLE algorithm

on a collocated grid [9–16]. In their method a dissipation term, representing the

difference between two estimates of the cell face pressure gradient, is added to the

linearly interpolated cell face velocity. As shown in Fig. 15.14 the two pressure

gradient estimates are based on different grid stencils.

This procedure will be shown to be equivalent to constructing a pseudo-

momentum equation at the element face with its coefficients linearly interpolated

from the coefficients of the momentum equations at the centroids of the elements

straddling the face and its pressure gradient computed using a small grid stencil. In

that respect, the Rhie-Chow interpolation simply mimics the small stencil pressure-

velocity coupling of the staggered grid arrangement.

Starting with the discretized x-momentum equations for cells C and F, which are

uC þ HC u½ � ¼ Bu
C � Du

C

@p

@x

� �

C

uF þ HF u½ � ¼ Bu
F � Du

F

@p

@x

� �

F

ð15:50Þ

A uf velocity equation similar to that of Eq. (15.50), with the pressure gradient

linked to the local neighboring pressure values, as illustrated in Fig. 15.14, will

have the following form:

uf þ Hf u½ � ¼ Bu
f � Du

f

@p

@x

� �

f

: ð15:51Þ

Linear
interpolation

Rhie-Chow
interpolation

∂ p

∂x

∂ p

∂x

C Ff

Interpolated face valueFig. 15.14 The two pressure
gradient estimates in the
Rhie-Chow interpolation
technique

15.4 The Rhie-Chow Interpolation 585

Since in a collocated grid, the coefficients of this equation cannot be directly

computed, they are approximated by interpolation from the coefficients of the

neighboring nodes. Using a linear interpolation profile, these coefficients are

computed as

Hf u½ � ¼
1

2
HC u½ � þ HF u½ �ð Þ ¼ Hf u½ �

Bu
f ¼

1

2
Bu
C þ Bu

F

� �
¼ Bu

f

Du
f ¼

1

2
Du

C þ Du
F

� �
¼ Du

f

ð15:52Þ

Employing the values given in Eq. (15.52), the pseudo-momentum equation at

the element face becomes

uf þ Hf u½ � ¼ Bu
f � Du

f

@p

@x

� �

f

ð15:53Þ

This is in all practical sense the momentum equation on a “staggered” grid,

which is reconstructed using the collocated grid momentum coefficients.

In all above equations and for later use, values with an over bar are obtained by

linear interpolation between the values at points C and F according to

hf ¼ gChC þ gFhF ð15:54Þ

where gC and gF are geometric interpolation factors related to the position of the

element face f with respect to the nodes C and F, as explained in previous chapters.

Using Eq. (15.50), Hf is rewritten as

Hf u½ � ¼
1

2
�uC þ Bu

C � Du
C

@p

@x

� �

C

�uF þ Bu
F � Du

F

@p

@x

� �

F

� �

¼ �uf � Du
f

@p

@x

� �

f

þ Bu
f

ð15:55Þ

where the coefficient approximation can be shown to be second order accurate, i.e.,

Du
f

@p

@x

� �

f

� Du
f

@p

@x

� �

f

¼
1

2
Du

C

@p

@x

� �

C

þ Du
F

@p

@x

� �

F

� �

�
1

2
Du

C þ Du
F

� �
�
1

2

@p

@x

� �

C

þ
@p

@x

� �

F

� �

¼
1

4
Du

C

@p

@x

� �

C

�
@p

@x

� �

F

� �

þ
1

4
Du

F

@p

@x

� �

F

�
@p

@x

� �

C

� �

� OðDx2Þ

ð15:56Þ

586 15 Fluid Flow Computation: Incompressible Flows

Substituting Eq. (15.55) into Eq. (15.53), the velocity at the element face using

the Rhie-Chow interpolation method is obtained as

uf ¼ �Hf ½u� þ Bu
f � Du

f

@p

@x

� �

f

¼ uf
|{z}

average

velocity

�Du
f

@p

@x

� �

f

�
@p

@x

� �

f

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

correction term

ð15:57Þ

For a multi dimensional situation, similar interpolation formulae can be derived

for the y and z velocity components and are given by

vf ¼ vf � Dv
f

@p

@y

� �

f

�
@p

@y

� �

f

 !

ð15:58Þ

wf ¼ wf � Dw
f

@p

@z

� �

f

�
@p

@z

� �

f

 !

ð15:59Þ

Equations (15.57)–(15.59) can be written in a vector form, more suitable for

deriving the multi-dimensional pressure correction equation, as

vf ¼ vf � Dv
f rpf �rpf
� �

ð15:60Þ

where

Dv
f ¼

Du
f 0 0

0 Dv
f 0

0 0 Dw
f

2

6
4

3

7
5 ð15:61Þ

and where ∇pf is computed as per Sect. 9.4 using

rpf ¼ rpf þ
pF � pC

dCF
� rpf � eCF
� �

� �

eCF

|ffl{zffl}

Correction to interpolated face gradient

ð15:62Þ

and yielding a stencil in the CF direction formed only from the adjacent cell values

pF and pC as

rpf � eCF ¼ rpf � eCF þ
pF � pC

dCF
� rpf � eCF
� �

� �

eCF � eCF

¼
pF � pC

dCF

ð15:63Þ

With the face velocities closely linked to the pressure of adjacent cells, check-

erboard fields are inadmissible rendering solutions on collocated grids viable.

15.4 The Rhie-Chow Interpolation 587

15.5 General Derivation

Before proceeding with the development of the multidimensional collocated

pressure correction equation, the discretized multidimensional momentum equation

is first presented.

15.5.1 The Discretized Momentum Equation

The momentum equation given by Eq. (15.2) is slightly modified and written as

@

@t
½qv� þ r � fqvvg ¼ �rpþr � flrvg þ r � flðrvÞTg þ fb ð15:64Þ

The discretized form of Eq. (15.64) in the time interval [t − Δt/2, t + Δt/2] is

sought over element C shown in Fig. 15.15.

In Eq. (15.64), the three underlined expressions represent, from left to right, the

unsteady, convection, and diffusion term, respectively. The discretization of these

terms proceeds as presented in previous chapters. The remaining terms are evalu-

ated explicitly and treated as sources. The volume integral of the second part of the

shear stress term is transformed into a surface integral using the divergence theorem

and then into a summation of surface fluxes as

Source/
Sink

Transient

Diffusion

Convection

C

F
1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

Fig. 15.15 Element C in a
general unstructured grid
system

588 15 Fluid Flow Computation: Incompressible Flows

Z

VC

r � l rvð ÞT
n o

dV ¼

Z

@VC

lðrvÞT
n o

� dS ¼
X

f�nbðCÞ

lðrvÞTf � Sf ð15:65Þ

where the expanded form of rvð ÞTf � Sf in a three dimensional coordinate system is

given by

rvð ÞTf � Sf ¼

@u

@x
Sxf þ

@u

@y
S
y
f þ

@u

@z
Szf

@v

@x
Sxf þ

@v

@y
S
y
f þ

@v

@z
Szf

@w

@x
Sxf þ

@w

@y
S
y
f þ

@w

@z
Szf

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

ð15:66Þ

The volume integral of the pressure gradient is also treated as a source term and

evaluated explicitly as

Z

VC

rp dV ¼ ðrpÞCVC ð15:67Þ

or transformed into a surface integral according to Eq. (2.85) and computed as

Z

VC

rp dV ¼

Z

@VC

p dS ¼
X

f�nbðCÞ

pfSf ð15:68Þ

The body force term is integrated directly over the control volume to yield

Z

VC

fbdV ¼ ðfbÞCVC ð15:69Þ

Using a first order Euler scheme for the discretization of the unsteady term, a HR

scheme for the convection term implemented via the deferred correction approach,

and decomposing the diffusion flux into an implicit part aligned with the grid and an

explicit cross diffusion part, the discretized momentum equation is written in vector

form as

avCvC þ
X

F�NBðCÞ

avFvF ¼ bvC ð15:70Þ

15.5 General Derivation 589

where the coefficients are given by

avC ¼ FluxCC þ
X

f�nbðCÞ

ðFluxCf Þ

avF ¼ FluxFf

bvC ¼ �FluxVC �
X

f�nbðCÞ

FluxVf þ
X

f�nbðCÞ

lf ðrvÞ
T
f � Sf � ðrpÞCVC

ð15:71Þ

with the face fluxes calculated using

FluxCf ¼ _mf ; 0
�
�

�
�

|fflfflfflffl{zfflfflfflffl}

convection
contribution

þ lf
Ef

dCF
|fflffl{zfflffl}

diffusion
contribution

FluxFf ¼ � � _mf ; 0
�
�

�
�

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

convection
contribution

� lf
Ef

dCF
|fflffl{zfflffl}

diffusion
contribution

FluxVf ¼ �lf ðrvÞf � Tf þ _mf ðv
HR
f � vUf Þ

ð15:72Þ

and the element fluxes computed from

FluxCC ¼
qCVC

Dt

FluxVC ¼ �
q	CVC

Dt
v	C

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

transient
contribution

� ðfbÞCVC
|fflfflfflffl{zfflfflfflffl}
source term
contribution

ð15:73Þ

Even though the algebraic form of the momentum equation, Eq. (15.70), is

linear, its coefficients depend on the velocity and pressure fields. This nonlinearity

is handled by an iterative process during which the coefficients are calculated at the

start of every iteration based on values of the dependent variables obtained in the

previous iteration. This change in the values of the coefficients results in large

changes in v and affects the rate of convergence to the degree of even causing

divergence. To slow down the changes, under-relaxation can be applied when the

transient time steps used are large. Denoting the under relaxation factor by λv and

adopting Patankar’s implicit relaxation approach, the under relaxed momentum

equation can be written as

avC
kv

vC þ
X

F�NBðCÞ

avFvF ¼ bvC þ
1� kv

kv
avCv

ðnÞ
C ð15:74Þ

590 15 Fluid Flow Computation: Incompressible Flows

By redefining avC and bvC such that

avC
avC
kv

bvC bvC þ
1� kv

kv
avCv

ðnÞ
C

ð15:75Þ

the under-relaxed momentum equation can be rewritten as

avCvC þ
X

F�NBðCÞ

avFvF ¼ bvC ð15:76Þ

For the derivation of the collocated pressure correction equation, the pressure

gradient is taken out of the bvC source term and displayed explicitly to yield

bvC ¼ �VCðrpÞC þ b̂
v

C ð15:77Þ

Substituting back in Eq. (15.76), the momentum equation becomes

vC þ
X

F�NBðCÞ

avF
avC

vF ¼ �
VC

avC
ðrpÞC þ

b̂
v

C

avC
: ð15:78Þ

Defining the following vector operators:

HC½v� ¼
X

f�NBðCÞ

avF
avC

vF

Bv
C ¼

b̂
v

C

avC

Dv
C ¼

VC

avC

ð15:79Þ

Equation (15.78) is reformulated as

vC þHC½v� ¼ �D
v
CðrpÞC þ Bv

C; ð15:80Þ

a form that will be useful in later derivations.

15.5 General Derivation 591

15.5.2 The Collocated Pressure Correction Equation

As in the case of a staggered grid, starting with guessed values or values obtained

from the previous iteration vðnÞ; _mðnÞ; pðnÞ
� �

, the momentum equation, Eq. (15.80),

is first solved to obtain a momentum conserving velocity field v*. Thus the obtained

solution satisfies

v�C þHC v�½ � ¼ �Dv
C rp

ðnÞ
	

C
þBv

C ð15:81Þ

while the final solution should satisfy Eq. (15.80). The difference between these two

equations is that the velocity field in Eq. (15.80) satisfies both the momentum and

continuity equations while the one in Eq. (15.79) does not necessarily satisfy the

continuity equation because of the linearization in which pressure and velocity are

based on the previous iteration values. Therefore corrections to the velocity, mass

flow rate, and pressure fields are needed to enforce mass conservation. Denoting

these corrections by v0; p0; _m0ð Þ the relations between the exact and computed fields

can be written as

v ¼ v� þ v0

p ¼ pðnÞ þ p0

m ¼ m� þ m0

ð15:82Þ

Substituting the mass flow rate given by Eq. (15.82) into Eq. (15.25), the con-

tinuity equation becomes

X

f�nbðCÞ

_m0f ¼ �
X

f�nbðCÞ

_m�f where _m�f ¼ qf v
�
f � Sf ð15:83Þ

with the face velocity computed using the Rhie-Chow interpolation as

v�f ¼ v�f � Dv
f rp

ðnÞ
f �rp

ðnÞ
f

	

: ð15:84Þ

When the computed mass flow rate field is conservative, the RHS of Eq. (15.83)

is zero yielding a zero correction field. On the other hand, an incorrect velocity field

leads to an imbalance in mass and a nonzero value of the RHS of Eq. (15.83)

implying the need for a correction field for conservation to be enforced.

Mass flow rate corrections can be written in terms of velocity corrections, which

can be derived by subtracting Eq. (15.81) from Eq. (15.80) to yield

v0C þHC½v
0� ¼ �Dv

Cðrp
0ÞC ð15:85Þ

592 15 Fluid Flow Computation: Incompressible Flows

A similar equation holds for element F and is given by

v0F þHF ½v
0� ¼ �Dv

Fðrp
0ÞF ð15:86Þ

The mass flow rate correction at a cell face can be expressed as

_m0f ¼ qf v
0
f � Sf ð15:87Þ

where the face velocity correction is obtained by subtracting Eq. (15.84) from

Eq. (15.60) to give

v0f ¼ v0f � Dv
f ðrp

0
f �rp

0
f Þ ð15:88Þ

Substitution of Eqs. (15.87) and (15.88) in Eq. (15.83), leads to the following

form of the pressure correction equation:

X

f�nbðCÞ

qf v
0
f � Sf

� �
þ
X

f�nbðCÞ

qfD
v
frp

0
f � Sf

	

�
X

f�nbðCÞ

qfD
v
f ðrp

0Þf � Sf

	

¼ �
X

f�nbðCÞ

_m�f

ð15:89Þ

In this equation the underlined part represents the effects of the neighboring

velocity corrections on the velocity correction of the element under consideration.

This influence becomes clearer by interpolating Eqs. (15.85) and (15.86) to the face

yielding the following equivalent expression for the underline terms:

v0f þHf v
0½ � ¼ �Dv

f rp
0

� �

f
) v0f þ Dv

f rp
0

� �

f
¼ �Hf v

0½ �: ð15:90Þ

Substituting Eq. (15.90) in Eq. (15.89), the pressure correction equation is

rewritten as

X

f�nbðCÞ

�qfD
v
f rp

0ð Þf � Sf

	

¼ �
X

f�nbðCÞ

_m�f þ
X

f�nbðCÞ

qfHf v
0½ � � Sf

� �
ð15:91Þ

or more explicitly in the form

X

f�nbðCÞ

�qfD
v
f rp

0ð Þf � Sf

	

¼ �
X

f�nbðCÞ

_m�f þ
X

f�nbðCÞ

qf

X

F�NBðCÞ

avF
avC

v0F

0

@

1

A � Sf

0

@

1

A:

ð15:92Þ

In Eq. (15.91) or (15.92) the treatment of the underlined term is critical to

rendering the equation solvable. In the original SIMPLE algorithm it is neglected,

15.5 General Derivation 593

thus linking the velocity correction at a point directly to pressure corrections.

Because this is a correction equation the modification or dropping of the term will

not affect the final solution, since at convergence the corrections become zero.

However it will affect the convergence rate in that the larger is the neglected term

the higher will be the error present in the approximation at each iteration.

The remaining terms in Eq. (15.91) or (15.92) can be easily treated. The coef-

ficients of the pressure correction equation are obtained as per the discretization of

the diffusion term in Chap. 8, specifically the treatment of anisotropic diffusion.

Thus the term on the LHS is modified into a gradient dot product of the form

Dv
f rp

0ð Þf

	

� Sf ¼ rp0ð ÞfD
v
f

T
	

� Sf

¼ rp0ð Þf � D
v
f

T
� Sf

	

¼ rp0ð Þf �S
0
f

ð15:93Þ

The expanded expression of S0f is given by

S0f ¼ Dv
f

T
� Sf ¼

Du
f 0 0

0 Dv
f 0

0 0 Dw
f

2

6
4

3

7
5

Sxf
S
y
f

Szf

2

4

3

5 ¼

Du
f S

x
f

Dv
f S

y
f

Dw
f S

z
f

2

6
4

3

7
5 ð15:94Þ

Working with S0f , the discretization of the pressure correction gradient term

proceeds as usual resulting in

rp0ð Þf � S
0
f ¼ rp

0ð Þf � Ef þ rp
0ð Þf � Tf

¼
Ef

dCF
p0F � p0C
� �

þ rp0ð Þf � Tf

ð15:95Þ

where the following decomposition of S0f was used:

S0f ¼ Ef þ Tf : ð15:96Þ

The type of decomposition could be any of those reviewed in Chap. 8, as will be

detailed later. The underlined term, arising due to grid non-orthogonality, can either

be neglected or retained. If neglected, it will not affect the final solution as it is a

correction term. If retained, then it will be treated explicitly with an internal loop

(non-orthogonal loop in OpenFOAM®). As the solution starts with a zero pressure

correction field at every iteration, the term has to be updated iteratively while

solving the equation.

Dropping the non-orthogonal contribution, the linearized term of the pressure

correction equation becomes

594 15 Fluid Flow Computation: Incompressible Flows

rp0ð Þf � S
0
f ¼

Ef

dCF
p0F � p0C
� �

¼Df p0F � p0C
� �

ð15:97Þ

Substituting back in Eq. (15.91) the algebraic form of the pressure correction

equation is obtained as

a
p0

Cp
0
C þ

X

F�NBðCÞ

a
p0

F p
0
F ¼ b

p0

C ð15:98Þ

with the coefficients given by

a
p0

F ¼FluxFf ¼ �qfDf

a
p0

C ¼�
X

f�nbðCÞ

FluxFf ¼ �
X

F�NBðCÞ

a
p0

F

b
p0

C ¼�
X

f�nbðCÞ

FluxVf þ
X

f�nbðCÞ

qfHf v
0½ � � Sf

� �

¼�
X

f�nbðCÞ

_m�f þ
X

f�nbðCÞ

qfHf v
0½ � � Sf

� �

ð15:99Þ

Note that different approximations to the underlined terms in Eq. (15.99) result

in different algorithms. In the original SIMPLE algorithm these terms are simply

neglected.

Finally the mass flow rate _m�f in Eq. (15.99), is the one computed after solving

the momentum equation using as usual the Rhie-Chow interpolation technique with

the latest velocity field, i.e.,

_m�f ¼ qv�f � Sf ¼ qv�f � Sf � Dv
f rp

ðnÞ
f �rp

ðnÞ
f

	

� Sf : ð15:100Þ

Following the calculation of the pressure correction field, the pressure and

velocity at the element centroids and the mass flow rate at the element faces are all

corrected. As mentioned above, the underlined term in Eq. (15.99) is neglected in

the SIMPLE algorithm resulting in large pressure correction values that may slow

the rate of convergence or cause divergence. To increase robustness and improve

the convergence behavior, pressure correction values obtained from Eq. (15.98) are

explicitly under relaxed. No under relaxation is used when updating the velocity

and mass flow rate fields since the pressure correction will ensure mass conser-

vation for these fields. Denoting the under relaxation factor by λp, the following

correction equations are used:

15.5 General Derivation 595

v��C ¼ v�C þ v0C v0C ¼ �D
v
C rp

0ð ÞC

_m��f ¼ _m�f þ _m0f _m0f ¼ �qfD
v
frp

0
f � Sf

p�C ¼ p
ðnÞ
C þ kpp0C

ð15:101Þ

15.5.3 Calculation of the Df Term

The type of decomposition suggested in Eq. (15.96) could be any of those reviewed

in Chap. 8 with different approaches leading to different expressions for Df as

derived below.

15.5.3.1 Minimum Correction Approach

For this approach Ef is obtained by substituting S0f for Sf in Eq. (8.68) leading to

Ef ¼ eCF � S
0
f

� �
eCF ð15:102Þ

where eCF is a unit vector in the CF direction. Combining Eqs. (15.94), (15.102),

and (8.64), Ef becomes

Ef ¼
dxCFD

u
f S

x
f þ d

y
CFD

v
f S

y
f þ dzCFD

w
f S

z
f

d2CF
dCF ð15:103Þ

Using Eq. (15.103), the following expression for Df is derived:

Df ¼
Ef

dCF
¼

dxCFD
u
f S

x
f þ d

y
CFD

v
f S

y
f þ dzCFD

w
f S

z
f

dxCF
� �2

þ d
y
CF

� �2
þ dzCF
� �2

ð15:104Þ

15.5.3.2 Orthogonal Correction Approach

The definition of Ef in this case is obtained from Eq. (8.69) and written as

Ef ¼ S0f eCF ð15:105Þ

Combining Eqs. (15.105), (15.94), and (8.64), Df is found to be

Df ¼
Ef

dCF
¼

ffi

Du
f S

x
f

	
2

þ Dv
f S

y
f

	
2

þ Dw
f S

z
f

	
2

dxCF
� �2

þ d
y
CF

� �2
þ dzCF
� �2

v
u
u
u
t ð15:106Þ

596 15 Fluid Flow Computation: Incompressible Flows

15.5.3.3 Over-Relaxed Approach

In this method, Ef is computed from Eqs. (8.64) and (8.70) as

Ef ¼
S0f � S

0
f

dCF � S0f
dCF ð15:107Þ

Combining Eq. (15.107) with Eq. (15.94), Df is found to be

Df ¼
Du

f S
x
f

	
2

þ Dv
f S

y
f

	
2

þ Dw
f S

z
f

	
2

dxCFD
u
f S

x
f þ d

y
CFD

v
f S

y
f þ dzCFD

w
f S

z
f

ð15:108Þ

Any of the above approaches can be adopted to calculate the value of Df :

15.5.4 The Collocated SIMPLE Algorithm

The sequence of events in the collocated SIMPLE algorithm is displayed in

Fig. 15.16 and can be summarized as follows:

1. To compute the solution at iteration n + 1, start with the solution at time t for

pressure, velocity, and mass flow rate fields, i.e., p(n), u(n), and _mðnÞ, respectively,

as the initial guess.

2. Solve the momentum equation given by Eq. (15.70) to obtain a new velocity

field v*.

3. Update the mass flow rate at the element faces using the Rhie-Chow interpo-

lation (Eq. 15.100) to compute a momentum satisfying mass flow rate field _m�.

4. Using the new mass flow rates assemble the pressure correction equation

(Eq. 15.98) and solve it to obtain a pressure correction field p0.

5. With the pressure correction field update the pressure and velocity fields at the

element centroids and the mass flow rate at the element faces to obtain

continuity-satisfying fields using Eq. (15.101). These resulting fields are

denoted by u**, _m��, and p*, respectively.

6. Treat the obtained solution as a new initial guess, return to step 2 and repeat

until convergence.

7. Set the solution at time n + 1 (i.e., t + Δt) to be equal to the converged solution

and set the current time n + 1 (i.e., t + Δt) to be n (i.e., t).

8. Advance to the next time step.

9. Return to step 1 and repeat until the last time step is reached.

15.5 General Derivation 597

Example 3

In the two dimensional problem shown below, the following quantities are

given pW = 100, pN = 20 and pE = 50 and an inlet condition at face s with

vs = 20 and zero pressure gradient.

The flow is steady state and the density is uniform of value 1. The

momentum equations for ue and vn are

timeexceeded ?
no

stop

assembleand solvemomentum

equation for v
*

computem
f

*
using the

Rhie Chow interpolation

assembleand solve pressure

correctionequation for p

converged ?

set solutionat time t + t tobe

equal tothe converged solution

yes

advanceintime

set t = t + t

set initial guess m
n()

,v
n()

,
n()

,and p
n()

at timet + t toconverged valuesat timet

correct m
f

*
,v

*
,

n()
,and p

n()
to

obtainm
f

**
,v

**
,

*
,and p

*

set m
f

n()
= m

f

**
,v

n()
= v

**
,

n()
= *

,and p
n()

= p
*

yes

no

repeat

repeat

Fig. 15.16 A flow chart of
the SIMPLE algorithm

598 15 Fluid Flow Computation: Incompressible Flows

uC ¼ �dx pe � pwð Þ

and

vC ¼ �dy pn � psð Þ

where the constants dx = 1 and dy = 0.25. The element shown has

Δx = Δy = 1. Use the collocated SIMPLE algorithm to derive the pressure

correction equation and solve it to find the pressure for element C. Take

p
ðnÞ
C ¼ 70 as an initial guess for pressure at C (Fig. 15.17).

Solution

At the inlet the zero gradient condition can be used to compute

ps ¼ pC ¼ p
ðnÞ
C ¼ 70

now compute u
ðnÞ
C ; v

ðnÞ
C using

u�C ¼ �dx pðnÞe � pðnÞw

	

¼ �1 60� 85ð Þ

¼ 25

and

v�C ¼ �dy pðnÞn � pðnÞs

	

¼ �0:25 45� 70ð Þ

¼ 6:25

since p
ðnÞ
e ¼ 0:5 p

ðnÞ
E þ p

ðnÞ
C

	

; p
ðnÞ
n ¼ 0:5 p

ðnÞ
E þ p

ðnÞ
N

	

and p
ðnÞ
w ¼ 0:5 p

ðnÞ
E þ p

ðnÞ
W

	

Now the pressure correction equation is constructed by substituting the

mass flux and its correction into the mass conservation equation. Using the

Rhie-Chow interpolation the face fluxes are computed as

pW =100

vs = 20

p
E

= 50

p
N

= 20

W C E

N

Fig. 15.17 The two dimensional domain used in Example 3

15.5 General Derivation 599

_m�e ¼ u�eDy ¼ u�e � dx p
ðnÞ
E � p

ðnÞ
C

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

pressure difference

across face

� 0:5 pðnÞe � pðnÞw

	

þ pðnÞee � pðnÞe

	
	

|ffl{zffl}

average pressure difference

across face

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ 0:5 dx pðnÞe � pðnÞw

	

þ dx pðnÞee � pðnÞww

	
h i

|ffl{zffl}

u�e

�dx p
ðnÞ
E � p

ðnÞ
C

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

pressure difference

across face

� 0:5 pðnÞe � pðnÞw

	

þ pðnÞee � pðnÞe

	
	

|ffl{zffl}

average pressure difference

across face

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ �dx p
ðnÞ
E � p

ðnÞ
C

	

¼ �1 50� 70ð Þ

¼ 20

similarly for the n and w face

_m�n ¼ v�nDx ¼ v�n � dy p
ðnÞ
N � p

ðnÞ
C

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

pressure difference

across face

� 0:5 pðnÞn � pðnÞs

	

þ pðnÞnn � pðnÞn

	
	

|ffl{zffl}

average pressure difference

across face

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ �dy p
ðnÞ
N � p

ðnÞ
C

	

¼ �0:25 20� 70ð Þ

¼ 12:5

_m�w ¼ �u
�
wDy ¼ �u

�
w þ dx p

ðnÞ
C � p

ðnÞ
W

	

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

pressure difference

across face

� 0:5 pðnÞe � pðnÞw

	

þ pðnÞw � pðnÞww

	
	

|ffl{zffl}

average pressure difference

across face

2

6
6
6
6
6
4

3

7
7
7
7
7
5

¼ dx p
ðnÞ
C � p

ðnÞ
W

	

¼ 1 70� 100ð Þ

¼ �30

with _ms ¼ �20Dx ¼ �20 the pressure correction equation is constructed

from

_m�e þ _m0e
� �

þ _m�n þ _m0n
� �

þ _m�w þ _m0w
� �

þ _ms ¼ 0

and

600 15 Fluid Flow Computation: Incompressible Flows

_m0e þ _m0n þ _m0w ¼ � _m�e þ _m�n þ _m�w þ _ms

� �

¼ � 20þ 12:5� 30� 20ð Þ

¼ 17:5

now

_m0e ¼ �dx p0E � p0C
� �

_m0n ¼ �dy p0N � p0C
� �

_m0w ¼ dx p0C � p0W
� �

thus we have

� p0E � p0C
� �

� 0:25 p0N � p0C
� �

þ p0C � p0W
� �

¼ 17:5

or

2:25p0C � p0E � 0:25p0N � p0W ¼ 17:5

if the E, N and W values were exact then we would have

2:25p0C ¼ 17:5

or

p0C ¼ 7:78

then we would proceed with correcting the pressure and velocity components

at C to yield

p�C ¼ p
ðnÞ
C þ p0C ¼ 77:78

u0C ¼ 0) u��C ¼ 25

v0C ¼ �dy p0n � p0s
� �

¼ �0:25 0:5p0C � p0C
� �

¼ �0:25 0:5 � 7:78 � 7:78ð Þ

¼ 0:9725

so

v��C ¼ 6:25þ 0:9725

¼ 7:2225

15.5 General Derivation 601

15.6 Boundary Conditions

A boundary element has at least one face located at a boundary patch, which is

denoted as a boundary face (Fig. 15.18). The treatment of boundary conditions at a

boundary face is critical to the accuracy and robustness of any CFD code. Thus for

any pressure-based code to succeed, it is imperative for the boundary conditions of

both momentum and pressure-correction equations to be properly implemented.

This section describes in detail the implementation of a variety of boundary

conditions.

A first note of interest is the expression of the Rhie-Chow interpolation at a

boundary face, which has to be modified since the averaging cannot be performed

in a fashion similar to an interior face. The average at a boundary face is written in

terms of the element value as

hb ¼ hC ð15:109Þ

where b refers to the boundary face centroid and C to the element centroid.

Adopting this practice, the averages in the Rhie-Chow interpolation, the velocity,

and the mass flow rate at a boundary face become

v�b ¼ v�C

rp
ðnÞ
b ¼ rp

ðnÞ
C

Dv
b ¼ Dv

C

ð15:110Þ

n

eb

C

b

S
b

boundary
element

boundary
face

Fig. 15.18 An example of a
boundary element

602 15 Fluid Flow Computation: Incompressible Flows

v�b
|{z}

boundary face

¼ v�b � Dv
C rp

ðnÞ
b �rp

ðnÞ
b

	

|ffl{zffl}

standard Rhie�Chow

¼ v�C � Dv
C rp

ðnÞ
b �rp

ðnÞ
C

	

|ffl{zffl}

boundary Rhie�Chow

ð15:111Þ

_m�b ¼ qbv
�
b � Sb

¼ qb v�C � Dv
C rp

ðnÞ
b �rp

ðnÞ
C

	
h i

� Sb

¼ qbv
�
C � Sb � qbDC p

ðnÞ
b � p

ðnÞ
C

	

� qb Dv
Crp

ðnÞ
b � Tb � Dv

Crp
ðnÞ
C � Sb

	

ð15:112Þ

In what follows the implementation of boundary conditions is first presented for

the momentum equation, followed by the implementation of the boundary condi-

tions for the pressure (correction) equation. For the cases when the boundary

conditions for the momentum and pressure correction equations are co-dependent,

their full treatment is detailed in the pressure correction equation section.

15.6.1 Boundary Conditions for the Momentum Equation

The semi-discretized form of the momentum equation can be expressed as

qvð ÞC� qvð Þ
	

C

Dt
VC

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

element discretization

þ
X

f�nbðCÞ

_mf vf
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

face discretization

¼ �
X

f�nbðCÞ

pfSf
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

face discretization

þ
X

f�nbðCÞ

sf � Sf
� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

face discretization

þ B
|{z}

element
discretization

ð15:113Þ

where the discretization type of the various terms is explicitly stated. Terms that are

evaluated at the element faces should be modified along a boundary face in

accordance with the type of boundary condition used. Therefore, for boundary

elements, the terms evaluated at the element faces are written as

X

f�nbðCÞ

_mf vf
� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

face discretization

¼
X

f�interior nbðCÞ

_mf vf
� �

þ _mbvb
|ffl{zffl}

boundary face

ð15:114Þ

15.6 Boundary Conditions 603

X

f�nbðCÞ

sf � Sf
� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

face discretization

¼
X

f�interior nbðCÞ

sf � Sf
� �

þ sb � Sb
|fflffl{zfflffl}

boundary face

¼
X

f�interior nbðCÞ

sf � Sf
� �

þ Fb
|{z}

boundary

face

ð15:115Þ

X

f�nbðCÞ

pfSf
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

face discretization

¼
X

f�interior nbðCÞ

pfSf
� �

þ pbSb
|ffl{zffl}

boundary face

ð15:116Þ

where subscript b refers to a value at the boundary. As previously stated, the pressure

term may be discretized following either an element or a face discretization. In either

case the expanded form is the same since VC rpð ÞC is calculated as
P

f � nbðCÞ

pfSf

implying that the value at the boundary is always required. To show the way

boundary pressure affects solution, the expanded form of the pressure gradient (i.e.,

face discretization) is adopted in the implementation of boundary conditions.

15.6.1.1 Wall Boundary Conditions

Generally a no-slip or a slip boundary condition may be applied to a moving or a

stationary wall. The implementation involves computing and linearizing the shear

stress at the wall. This is different from the Dirichlet condition, though for a

cartesian grid the two conditions may be shown to be identical.

No-Slip Wall Boundary pb ¼ ?; _mb ¼ 0; vb ¼ vwallð Þ

A no slip boundary condition implies that the velocity of the fluid at the wall vb is

equal to the velocity of the wall vwall. For a stationary wall, the boundary velocity

vb is zero. The known velocity at the wall could be wrongly viewed as a Dirichlet

boundary condition. However this is not really the case, since what is needed is to

have a zero normal boundary flux while also accounting for the shear stress. This

cannot be satisfied by simply setting vb = vwall. Figure 15.19 shows that this can be

guaranteed by ensuring a shear stress that is tangential to the wall in addition to a

boundary velocity equation that is equal to the wall velocity. The force Fb exerted

by the wall on the fluid can be written as

Fb ¼ F? þ Fk ð15:117Þ

604 15 Fluid Flow Computation: Incompressible Flows

where Fk is in the tangential direction to the wall and F? is in the normal direction,

which is supposed to be zero. Thus

Fb ¼ Fk ¼ swallSb ð15:118Þ

where swall is the shear stress exerted by the wall on the fluid given by

swall ¼ �l
@vk

@d?
: ð15:119Þ

In Eq. (15.119) vk is the velocity vector in the direction parallel to the wall and

d? is the normal distance from the centroid of the boundary element to the wall

computed as

n ¼
Sb

Sb
¼ nxi þ nyj þ nzk

d? ¼ dCb � n ¼
dCb � Sb

Sb

ð15:120Þ

and n the wall normal unit vector. The velocity vector vk can be written as the

difference between v and its normal component as

vk ¼ v� v � nð Þn ¼
u� unx þ vny þ wnz

� �
nx

v� unx þ vny þ wnz
� �

ny
w� unx þ vny þ wnz

� �
nz

8

<

:

9

=

;
ð15:121Þ

b

n

v
v

v

wall
b

v

wall

S
b

n

eb

S
b

eb

C

C

Fig. 15.19 A schematic of a no-slip wall boundary condition

15.6 Boundary Conditions 605

From Eq. (15.119), the wall shear stress can be approximated using

swall � �lb
vC � vbð Þjj

d?
¼ �lb

vC � vbð Þ � vC � vbð Þ � n½ �n

d?

¼ �
lb
d?

uC � ubð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz
 �

nx

vC � vbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz
 �

ny

wC � wbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz
 �

nz

8

><

>:

9

>=

>;

ð15:122Þ

from which the boundary force for a laminar flow can be obtained as

Fb ¼ �
lbSb

d?

uC � ubð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz
 �

nx

vC � vbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz
 �

ny

wC � wbð Þ � uC � ubð Þnx þ vC � vbð Þny þ wC � wbð Þnz
 �

nz

8

><

>:

9

>=

>;

ð15:123Þ

Using Eq. (15.123) the coefficients of the boundary elements for the momentum

equation in the x, y and z directions are modified as follows:

u-component equation

auC auC
|{z}

interior faces contribution

þ
lbSb

d?
1� n2x
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

boundary face contribution

0 auF¼b

buC buC
|{z}

interior faces contribution

þ
lbSb

d?
ub 1� n2x
� �

þ vC � vbð Þnynx � wC � wbð Þnznx
 �

� pbS
x
b

|ffl{zffl}

boundary face contribution

ð15:124Þ

v-component equation

avC avC
|{z}

interior faces contribution

þ
lbSb

d?
1� n2y

	

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

boundary face contribution

0 avF¼b

bvC bvC
|{z}

interior faces contribution

þ
lbSb

d?
uC � ubð Þnxny þ vb 1� n2y

	

þ wC � wbð Þnzny

h i

� pbS
y
b

|ffl{zffl}

boundary face contribution

ð15:125Þ

606 15 Fluid Flow Computation: Incompressible Flows

w-component equation

awC awC
|{z}

interior faces contribution

þ
lbSb

d?
1� n2z
� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

boundary face contribution

0 awF¼b

bwC bwC
|{z}

interior faces contribution

þ
lbSb

d?
uC � ubð Þnxnz þ vC � vbð Þnynz þ wb 1� n2z

� � �
� pbS

z
b

|ffl{zffl}

boundary face contribution

ð15:126Þ

The unknown boundary pressure pb is extrapolated from the interior solution

using either a truncated Taylor series expansion around point C such that pressure is

found from

pb ¼ pC þrp
ðnÞ
C � dCb ð15:127Þ

or the mass flow rate expressed via the Rhie-Chow interpolation as

_m�b ¼ qbv
�
b � Sb � qbD

v
C rp

ðnÞ
b �rp

ðnÞ
C

	

� Sb ð15:128Þ

Since the mass flow rate and velocity at the wall boundary are zero, the above

equation reduces to

0 ¼ 0� qbD
v
C rp

ðnÞ
b �rp

ðnÞ
C

	

� Sb ð15:129Þ

which can be modified into

Dv
Crp

ðnÞ
b � Sb ¼ rp

ðnÞ
b � S

0
b

¼ rp
ðnÞ
C � S

0
b

ð15:130Þ

Expressing S0b as the sum of the two vector Eb and Tb, Eq. (15.130) becomes

rp
ðnÞ
b � Eb þ Tbð Þ ¼ rp

ðnÞ
C � S

0
b ð15:131Þ

Since Eb is in the direction of Cb, the above equation can be modified to

DC pb � pCð Þ ¼ rp
ðnÞ
C � S

0
b �rp

ðnÞ
b � Tb

	

ð15:132Þ

from which the boundary pressure is obtained as

pb ¼ pC þ
rp
ðnÞ
C � S

0
b �rp

ðnÞ
b � Tb

	

DC

ð15:133Þ

15.6 Boundary Conditions 607

Slip Wall Boundary pb ¼ ?; _mb ¼ 0;Fb ¼ 0ð Þ

For this boundary condition, the wall shear stress is zero (Fig. 15.20). Therefore the

boundary force is zero. The boundary pressure is computed as for the no-slip wall

boundary case using Eq. (15.127) or Eq. (15.133). The coefficients of the

momentum equation (in vector form) are modified as follows:

avC avC
|{z}

interior faces contribution

0 avF¼b

bvC bvC
|{z}

interior faces contribution

� pbSb
|ffl{zffl}

boundary face contribution

ð15:134Þ

15.6.1.2 Inlet Boundary Conditions

Three types of inlet boundary conditions are considered. (i) specified velocity;

(ii) specified static pressure and velocity direction; and (iii) specified total pressure

and velocity direction. All treatments of the pressure boundary conditions will be

detailed in the pressure correction boundary conditions section.

b

v

S
b

n

eb

wall = 0

C

Fig. 15.20 A schematic of a
slip wall boundary condition

608 15 Fluid Flow Computation: Incompressible Flows

Specified Velocity pb ¼ ?; _mb specified; vb specifiedð Þ

For a specified velocity boundary condition at inlet (Fig. 15.21) the convection

_mbvbð Þ and diffusion Fb ¼ sb � Sbð Þ terms at the boundary face are calculated using

the known values of velocity vb and mass flow rate _mb. The pressure at the

boundary is extrapolated from the boundary element centroid as

pb ¼ pC þrp
ðnÞ
C � dCb ð15:135Þ

The terms involving the boundary velocity are treated explicitly by adding them

to the source term and setting the coefficient avF¼b to zero while adding its value to

the avC coefficient.

The coefficients of the boundary element are modified according to

avC avC

bvC bvC � avF¼bvb

0 avF¼b

ð15:136Þ

b
vb = v specified

pb = ?

S
b

n

eb

C

m
b

=
b
v

b
S

b

Fig. 15.21 A schematic of
specified velocity boundary
condition at inlet

15.6 Boundary Conditions 609

Specified Pressure and Velocity Direction pb ¼ pspecified ;
�

_mb?; ev specified; vb?Þ

In the case of a specified static pressure at inlet (Fig. 15.22), pb is known. The

velocity being unknown, has to be computed from the pressure gradient at the

boundary. To this end, a velocity direction should be specified as part of the

boundary condition.

As the boundary pressure pb is known, its value is directly used in calculating the

pressure gradient in the boundary element without any special treatment. Therefore

pb is used in calculating rpC.
The mass flow rate at the boundary is computed from the continuity equation

(see next section). Then, for a specified velocity direction given by the unit vector

ev, the velocity for a specified pressure boundary condition at inlet is obtained as

_m��b ¼ qbv
��
b � Sb ¼ qb v��b

�
�

�
�ev � Sb) v��b

�
�

�
� ¼

_m��b
qb ev � Sbð Þ

) v��b ¼ v��b

�
�

�
�ev

ð15:137Þ

The velocity at the boundary is computed at every iteration and the problem is

solved as in the case of a specified velocity with the coefficients in the momentum

equation modified according to Eq. (15.136).

b

mb = ?

S
b

n

vb = ?

e
vb (specified)

pb(specified)

eb

C

Fig. 15.22 A schematic of specified pressure and velocity direction boundary condition at inlet

610 15 Fluid Flow Computation: Incompressible Flows

SpecifiedTotal Pressure andVelocityDirection po;b ¼ po;specified ;
�

_mb?; ev specified; vb?Þ

In the case of a specified total pressure at inlet (Fig. 15.23) the velocity direction

should also be specified. However, the magnitude of the velocity and the pressure at

the boundary are unknown though related using the total pressure definition given by

p0 ¼ p
|{z}

static pressure

þ
1

2
qv � v
|fflfflffl{zfflfflffl}

dynamic pressure

ð15:138Þ

where p0 is the total pressure, p the static pressure, ρ the density, and v the velocity

vector. The mass flow rate at the boundary is computed from the continuity

equation (see next section). Knowing the mass flow rate, the velocity is computed

in the same manner as for the specified pressure case using Eq. (15.137). The

velocity is thus treated as a known velocity condition (i.e., a Dirichlet boundary

condition) with the coefficients in the momentum equation modified according to

Eq. (15.136).

15.6.1.3 Outlet Boundary Conditions

Three types of boundary conditions at an outlet are considered: (i) a specified static

pressure, (ii) a specified mass flow rate, and (iii) a fully developed flow.

b

ptotal (specified) = pb + b

vb vb

2

S
b

n

eb

C

pb = ?

vb = ?

mb = ?

Fig. 15.23 A schematic of
specified total pressure and
velocity direction boundary
condition at inlet

15.6 Boundary Conditions 611

Specified Static Pressure pb ¼ pspecified ; _mb?; vb?
� �

For the momentum equation, fully developed conditions are assumed at a specified

pressure outlet (Fig. 15.24) implying a zero velocity gradient along the direction of

the surface vector at outlet. This is also equivalent to assuming the velocity at the

outlet to be equal to that of the boundary element. Thus it is similar to a zero flux

boundary condition whose implementation is rather simple.

The modifications to the coefficients are given by

avC avC
|{z}

interior faces contribution

þ _mb
|{z}

boundary face contribution

0 avF¼b

bvC bvC
|{z}

interior faces contribution

� pbSb
|ffl{zffl}

boundary face contribution

ð15:139Þ

This sets the contribution of the outlet velocity to zero and uses the specified

pressure boundary value in the computation of the pressure gradient.

However to ensure that the flux is zeroed in the outflow surface vector direction

only, the velocity is usually extrapolated to the outlet using the boundary flux,

which is computed from the boundary element flux as

rvb ¼ rvC � rvC � ebð Þeb ð15:140Þ

pb = pspecified

vb = ?

mb = ?

b

S
b

n

eb

C

Fig. 15.24 A schematic of
specified static pressure
boundary condition at outlet

612 15 Fluid Flow Computation: Incompressible Flows

This ensures that the gradient along the boundary surface vector is zero. Then,

using a Taylor series expansion, the velocity at the boundary is computed as

vb ¼ vC þrvb � dCb ð15:141Þ

where rvb is used instead of rvC. Therefore an additional correction is now added

to the source term and the modifications to the coefficients become

avC avC
|{z}

interior faces contribution

þ _mb
|{z}

boundary face contribution

0 avF¼b

bvC bvC
|{z}

interior faces contribution

� _mb rvb � dCbð Þ � pbSb
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary face contribution

ð15:142Þ

Specified Mass Flow Rate _mb ¼ _mspecified ; pb?vb?
� �

Since the flow is incompressible, a specified mass flow rate boundary condition

(Fig. 15.25) is equivalent to specifying the normal component of velocity at the

boundary. The velocity is calculated by assuming its direction to be the same as that

at the main grid point, i.e., evð Þb¼ evð ÞC. Thus, the velocity is expressed as

vb ¼ vbj j evð ÞC ð15:143Þ

vb = ?

b

S
b

n

eb

C

m
b

= m
specified

p
b

= ?

Fig. 15.25 A schematic of
specified mass flow rate
boundary condition at outlet

15.6 Boundary Conditions 613

with vbj j obtained from

_mb ¼ qbvb � Sb ¼ qb vbj j evð ÞC � Sb) vbj j ¼
_mb

qb evð ÞC � Sb
ð15:144Þ

allowing vb to be calculated. Thus for momentum, a specified velocity boundary

condition is applied. The coefficients of the boundary elements are modified

according to Eq. (15.136).

Fully Developed Outlet Flow

For a fully developed flow, the velocity gradient normal to the outlet surface is

assumed to be zero. Hence the velocity at the outlet is assumed to be known and

computed from the zero normal gradient using Eqs. (15.140) and (15.141). As for

the pressure at the boundary, it can be extrapolated from the interior pressure field

using

pb ¼ pC þrpC � dCb ð15:145Þ

The velocity is treated as known and the coefficients of the momentum equation

are modified according to Eq. (15.142).

15.6.1.4 Symmetry Boundary Condition

A scalar is reflected across a symmetry boundary. Thus, a symmetry boundary con-

dition for a scalar variable is imposed by setting its normal gradient to zero, as with an

insulated wall boundary condition. For the velocity vector, the symmetry condition

shown in Fig. 15.26 also implies that it is reflected about the symmetry boundary with

its parallel component (i.e., parallel to the symmetry boundary) retaining magnitude

and direction, while its normal component becoming zero. This results in a zero shear

stress but a non-zero normal stress along the symmetry boundary. Thus, the same

boundary condition can be used to impose a slip wall boundary condition for viscous

flows.

The unit vector in the direction normal to the boundary n and the normal

distance to the boundary d? are given by Eq. (15.120). Therefore the velocity

components normal and parallel to a symmetry boundary satisfy

v? ¼ 0

@vjj

@n
¼ 0

ð15:146Þ

614 15 Fluid Flow Computation: Incompressible Flows

The normal component of velocity can be written as

v? ¼ v � nð Þn ¼

uCnx þ vCny þ wCnz
� �

nx

uCnx þ vCny þ wCnz
� �

ny

uCnx þ vCny þ wCnz
� �

nz

8

><

>:

9

>=

>;

ð15:147Þ

while the parallel component is given by Eq. (15.121). The boundary force Fb can

be decomposed into a normal component F? and a parallel component Fjj. As the

shear stress along a symmetry boundary is zero, the parallel component of Fb is

zero. Denoting the normal stress by r?, the force Fb is given by

Fb ¼ r?Sb ð15:148Þ

The normal stress component can be approximated as

r? ’ �2lb
v?

d?
¼ �2

lb
d?

uCnx þ vCny þ wCnz
� �

nx

uCnx þ vCny þ wCnz
� �

ny

uCnx þ vCny þ wCnz
� �

nz

8

><

>:

9

>=

>;

ð15:149Þ

from which the boundary force is found to be

Fb ¼ Fn ¼ �2
lbSb

d?

uCnx þ vCny þ wCnz
� �

nx

uCnx þ vCny þ wCnz
� �

ny

uCnx þ vCny þ wCnz
� �

nz

8

><

>:

9

>=

>;

ð15:150Þ

S
b

b

n

v
v

v

Symmetry Plane

v

v

v

v

C

C

Fig. 15.26 A schematic of a
symmetry boundary condition

15.6 Boundary Conditions 615

The pressure gradient in the direction normal to a symmetry boundary is zero.

Mathematically this is written as

rpb � n ¼ 0 ð15:151Þ

The pressure at a symmetry boundary should be extrapolated from the interior of

the domain. Therefore to ensure a zero normal gradient, the pressure gradient at the

symmetry boundary is computed as

rpb ¼ rpC � ðrpC � nÞn ð15:152Þ

Thus, the pressure is obtained from

pb ¼ pC þrpb � dCb ð15:153Þ

Using the above equations, the coefficients of the boundary elements for the

momentum equation in the x, y and z directions are modified as follows:

u-component equation

auC auC
|{z}

interior faces contribution

þ
2lbSb

d?
n2x

|fflfflfflffl{zfflfflfflffl}

boundary face contribution

0 auF¼b

buC buC
|{z}

interior faces contribution

�
2lbSb

d?
vCny þ wCnz
 �

nx � pbS
x
b

|ffl{zffl}

boundary face contribution

ð15:154Þ

v-component equation

avC avC
|{z}

interior faces contribution

þ
2lbSb

d?
n2y

|fflfflfflffl{zfflfflfflffl}

boundary face contribution

0 avF¼b

bvC bvC
|{z}

interior faces contribution

�
2lbSb

d?
uCnx þ wCnz½ �ny � pbS

y
b

|ffl{zffl}

boundary face contribution

ð15:155Þ

616 15 Fluid Flow Computation: Incompressible Flows

w-component equation

awC awC
|{z}

interior faces contribution

þ
2lbSb

d?
n2z

|fflfflfflffl{zfflfflfflffl}

boundary face contribution

0 awF¼b

bwC bwC
|{z}

interior faces contribution

�
2lbSb

d?
uCnx þ vCny
 �

nz � pbS
z
b

|ffl{zffl}

boundary face contribution

ð15:156Þ

While this is not a comprehensive list of momentum boundary conditions, it

does cover the most common types.

15.6.2 Boundary Conditions for the Pressure Correction

Equation

The continuity equation for a boundary cell can be written as

X

f�nbðCÞ

_mf þ _mb
|{z}

boundary face

¼ 0 ð15:157Þ

or

X

f�nbðCÞ

ð _m�f þ _m0f Þ þ ð _m
�
b þ _m0bÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

boundary face

¼ 0 ð15:158Þ

where _m�b is the boundary mass flux and _m0b is its correction. While for an internal

face the mass flux and its correction are defined by Eqs. (15.100) and (15.101), for a

boundary face the definition is slightly different. Since at a boundary face only the

boundary cell contributes to the average quantities, the use of Eq. (15.109) in

combination with Eqs. (15.100) and (15.101) gives

_m�b ¼ qbv
�
C � Sb � qbD

v
Cðrp

ðnÞ
b �rp

ðnÞ
C Þ � Sb

_m0b ¼ �qbDCðp
0
b � p0CÞ

ð15:159Þ

In implementing boundary conditions the values of _m�b, _m0b, pb, and p0b must be

calculated. Based on the discussions related to the momentum equation, three types

of boundary conditions can be inferred. The first type is designated by “specified

mass flow rate” (e.g., walls or velocity specified at inlets). For this category _m0b ¼ 0,

which is similar to a zero scalar flux boundary condition, and no modification to the

pressure-correction equation is needed. The pressure however has to be computed at

15.6 Boundary Conditions 617

the boundary from the interior field. The second type of boundary conditions is

termed “pressure specified” where p0b ¼ 0 and for which a Dirichlet-like condition

has to be enforced for the pressure-correction equation. For this condition, _m�b is

computed from the boundary and interior pressure field. In the third type, an

implicit relation exists between the pressure and the mass flow rate, as in a specified

total pressure boundary condition. In this case, an explicit equation is extracted

from the implicit relation and substituted into the pressure-correction equation.

Details regarding the various types of boundary conditions and their imple-

mentation are now given.

15.6.2.1 Wall Boundary Condition

pb ¼ ?; _mb ¼ 0; vb ¼ vwallð Þ or pb ¼ ?; _mb ¼ 0;Fb ¼ 0ð Þ

Whether it is a slip (Fig. 15.20) or no-slip (Fig. 15.19) wall boundary condition the

mass flow rate is zero. Therefore _m0b ¼ 0, which is equivalent to a specified zero

flux and implying that no modification is needed for the pressure-correction

equation. However the pressure at the wall is required and is computed using

Eq. (15.127) or Eq. (15.133) or a low order extrapolation profile, as shown below.

pb ¼

pC þrp
ðnÞ
C � dCb Eq: ð15:127Þ

pC þ
rp
ðnÞ
C � S

0
b �rp

ðnÞ
b � Tb

	

DC

pC

Eq: ð15:133Þ

loworder extrapolation

8

>>>>>><

>>>>>>:

ð15:160Þ

15.6.2.2 Inlet Boundary Conditions

Specified Velocity pb ¼ ?; _mb specified; vb specifiedð Þ

For a specified velocity at inlet (Fig. 15.21), the mass flux is known and its cor-

rection is set to zero, i.e., _m0b ¼ 0. Thus, similar to a wall boundary condition, the

term is simply dropped from the pressure-correction equation. The pressure at the

boundary is extrapolated from the internal pressure field using Eq. (15.127) or

Eq. (15.133) or a low order extrapolation profile as summarized in Eq. (15.160).

Specified Pressure and Velocity Direction pb ¼ pspecified;
�

_mb?; ev specified; vb?Þ

In the case of a specified static pressure at inlet (Fig. 15.22), pb is known and thus

p0b is set to zero but _m0b 6¼ 0. The inlet is treated as a Dirichlet boundary condition

for the pressure-correction equation. The coefficient of the p0 equation becomes

618 15 Fluid Flow Computation: Incompressible Flows

a
p0

C ¼
X

f�nbðCÞ

qfDf

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

interior faces contribution

þ qbDC
|fflffl{zfflffl}

boundary face contribution

ð15:161Þ

Specified Total Pressure and Velocity Direction po;b ¼ po;specified ;
�

_mb?;

ev specified; vb?Þ

As mentioned earlier, for a specified total pressure (Fig. 15.23), the velocity

direction should also be specified. The total pressure relation given by Eq. (15.138)

is first rewritten as a function of the mass flow rate and pressure by replacing the

velocity magnitude by the mass flux. Thus,

_mb ¼ qvb � Sb ¼ qjvbjev � Sb) qjvbj ¼
_mb

ev � Sb

) po;b ¼ pb þ
1

2qb

_m2
b

ðev � SbÞ
2

ð15:162Þ

Using a Taylor expansion about pb, p
0
b is obtained as

pb þ p0b ¼ pb þ
@pb

@ _mb

ð _m0bÞ) p0b ¼
@pb

@ _mb

_m0b ð15:163Þ

Differentiating Eq. (15.162) with respect to _mb and substituting into

Eq. (15.163), the final form of p0b is found to be

p0b ¼ �
_m�b

qbðev � SbÞ
2
_m0b ¼ �

qbv
�
b � v

�
b

_m�b
_m0b ð15:164Þ

Substituting Eq. (15.164) in Eq. (15.159), the mass flux correction is expressed as

_m0b ¼ �qbDC p0b � p0C
� �

) _m0b ¼
_m�bqbDC

_m�b �DCðqbv
�
b � qbv

�
bÞ
p0C ð15:165Þ

Replacing _m0b in the expanded continuity equation (Eq. 15.158) by its expression

from Eq. (15.165), the modified a
p0

C coefficient for the boundary cell becomes

a
p0

C ¼
X

f�nbðCÞ

qfDf

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

interior faces contribution

þ
qb _m

�
bDC

_m�b �DCðqbv
�
b � qbv

�
bÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

boundary face contribution

ð15:166Þ

15.6 Boundary Conditions 619

15.6.2.3 Outlet Boundary Conditions

Specified Pressure pb ¼ pspecified ; _mb?; vb?
� �

For a specified pressure at outlet (Fig. 15.24) p0b is set to zero. On the other hand, _m
0
b

is computed as

_m0b ¼ �qbDCðp
0
b � p0CÞ ð15:167Þ

The velocity direction being needed, it is customary to take the direction of vb to

be that of the upwind velocity vC. The expression of the a
p0

C coefficient in the

pressure-correction equation becomes

a
p0

C ¼
X

f�nbðCÞ

qfDf

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

interior faces contribution

þ qbDC
|fflffl{zfflffl}

boundary face contribution

ð15:168Þ

Specified Mass Flow Rate _mb ¼ _mspecified ; pb?vb?
� �

For a specified mass flow rate at outlet (Fig. 15.25), _m0b is zero and is simply

dropped from the pressure correction equation with no modifications required for

the coefficients of the boundary elements. By setting _m0b to zero in Eq. (15.159), the

pressure correction (or pressure) at the boundary is set equal to the pressure cor-

rection (or pressure) at the boundary cell centroid.

Fully Developed Outlet Flow

For a fully developed flow, the velocity at the outlet is assumed to be known and

computed from the zero normal gradient. This means that _mb at the outlet is known.

Therefore no correction is needed and _m0b is set to zero. However, as the boundary

pressure is unknown, it is extrapolated from the interior pressure field. Since the

velocity is iteratively updated, the above treatment does not guarantee overall

conservation except at convergence. It is customary with incompressible flows to

overcome this issue and to enforce global mass conservation at any iteration by

modifying _mb at the boundary to satisfy overall mass conservation. This is done by

calculating the total mass flow rate entering the domain
P

_min. Then based on

the calculated mass flow rates at outlet boundaries, the total mass flow rate leaving

620 15 Fluid Flow Computation: Incompressible Flows

the domain
P

_mout is computed. The mass flow rate at an outlet is adjusted

according to

_mout _mout

P
_min

P
_mout

ð15:169Þ

To be able to apply the above treatment, the outlet should be placed far away

from any recirculation zone.

15.6.2.4 Symmetry Boundary Condition

The mass flow rate across a symmetry line (Fig. 15.26) is zero and as such its

correction is set to zero, i.e., _m0b ¼ 0. Thus, similar to a wall boundary condition, the

mass flow rate correction term is simply dropped from the pressure-correction

equation. The pressure at the boundary is extrapolated from the internal pressure

field using Eq. (15.127) or Eq. (15.133) or a low order extrapolation profile as

summarized in Eq. (15.160).

15.6.2.5 The Relative Nature of Pressure

For incompressible flow problems in which the normal velocities are prescribed on

all boundaries, a difficulty arises due to the relative nature of pressure. In such

cases, since only the pressure gradient appears in the momentum equation, there is

no means for determining the absolute level of pressure, and only pressure differ-

ences have physical meaning. This indeterminacy of the pressure level leads to a

singular coefficient matrix A and the direct solution of the system A/ ¼ b fails. The

singularity is easily removed by simply setting the pressure at one point in the

domain to a prescribed value. The remaining pressures are then calculated relative

to this value.

15.7 The SIMPLE Family of Algorithms

In the SIMPLE algorithm [13], velocity and pressure are treated in a segregated

(sequential) manner, with the pressure field computed by deriving a pressure cor-

rection equation that exploits the discrete momentum equation to replace the

velocity field in the continuity equation with a pressure term. In the derivation, a

velocity correction term, Hf ½v
0�, was neglected as retaining it renders the equation

unmanageable.

Discarding this term does not affect the final solution since its value is zero at

convergence. Rather, it affects the path to convergence because during the initial

15.7 The SIMPLE Family of Algorithms 621

iterations its value can be significant. This large value may either cause divergence

or slow down the rate of convergence as a result of an overestimated pressure

correction field. To counterbalance that, in SIMPLE the pressure is under relaxed

by computing its value using p ¼ p� þ kpp0, where kp is the pressure under

relaxation factor. For optimum convergence, kp is usually set equal to ð1�kvÞ,
where kv is the momentum under relaxation factor, with more information on this

provided later.

Despite the use of under relaxation, the rate of convergence of the SIMPLE

algorithm remains problem dependent and researchers sought alternatives for fur-

ther improvements. Their effort culminated in the development of a SIMPLE-like

family of algorithms such as SIMPLEC [17], SIMPLER [3], PISO [18], SIMPLEX

[5], PRIME [19], SIMPLEM [20], and SIMPLEST [21]. Moukalled and Darwish

[22] unified the formulation of these algorithms for both incompressible and

compressible flows while Darwish et al. [23] and Jang et al. [24] assessed their

performance. It is not the intention here to give a full account of these algorithms,

rather, attention will be focussed on the two most popular variants, which are the

SIMPLEC (SIMPLE Consistent) algorithm of Van Doormal and Raithby and the

PISO (Pressure-Implicit Split Operator) algorithm of Issa. These two algorithms

present two different approaches for dealing with the Hf ½v
0� term. In SIMPLEC the

velocity correction at the main grid point is approximated as the weighted average

of the velocity corrections at the neighboring locations altering the term Hf ½v
0� into

a modified one, ~Hf ½v
0�, of smaller magnitude, which is then neglected. In the PISO

algorithm, the Hf ½v
0� term is accounted for as part of the split operator approach. In

all other algorithms, the Hf ½v
0� term is neglected as in SIMPLE and modifications

are introduced either to the momentum equations or the Dv operator. Because the

PISO algorithm is equivalent to one step of the SIMPLE algorithm and one or more

steps of the PRIME algorithm, the latter is also detailed.

In the PRIME [19] algorithm the momentum equation is solved explicitly. This

explicit treatment of the momentum equation is justified by its small contribution to

the convergence of the entire flow field. On the other hand, finding the correct

solution for the pressure field represents the most important factor impacting the

overall convergence.

In SIMPLEST [21], the coefficients in the momentum equation are separated

into their convection and diffusion parts with the convection terms treated explicitly

and the diffusion terms implicitly, thus affecting Dv and H. The justification for the

explicit treatment of convection is based on the similarity between the propagation

of disturbances at a finite speed without any change in magnitude in a pure con-

vection situation, and the propagation of error, from a particular point to the

neighboring grid points, in a single iteration of explicit iterative methods. While the

implicit treatment of diffusion is argued based on the similarity between the

propagation of disturbances in a pure diffusion situation instantaneously in all

directions with rapid decay in their amplitude and the reduction of errors throughout

the entire solution domain, in a single iteration, by implicit solution methods.

622 15 Fluid Flow Computation: Incompressible Flows

In SIMPLEM (SIMPLE-Modified) [20], the pressure-correction equation is

solved before the momentum equation implying that the pressure field is computed

using the old velocity field. This results in better pressure corrections than velocity

corrections and interchange the disadvantages and advantages of the SIMPLE

algorithm.

In SIMPLER (SIMPLE-Revised) [3], an additional equation is developed from

which the pressure is directly calculated while the SIMPLE-like pressure-correction

equation is used to update the velocity field. The reason for a separate pressure

equation being that, once the velocity field is updated using the predicted pressure

correction field, it no longer satisfies the momentum equations. Therefore, the

pressure should be calculated from another equation to match the velocities, so that

the momentum equations are also satisfied.

The SIMPLEX algorithm [5] was developed with the aim of ensuring that the

rate of convergence will not degrade with grid refinement. It differs from SIMPLE

in the way the Dv
field is computed. This is done by using an additional set of

equations, which is developed and solved based on the assumption that the influ-

ence of the spatial distribution of pressure difference changes little with grid

refinement. Therefore, if the pressure difference influence is restricted to a cell, it

would be appropriate to assume that, by extrapolation, the pressure difference at the

main grid point adequately represents the pressure differences at the element faces.

Though all of the above algorithms were originally derived for a segregated grid,

they are applicable within a collocated grid framework.

15.7.1 The SIMPLEC Algorithm

The SIMPLEC (SIMPLE-Consistent) [17] algorithm is a modified version of the

SIMPLE algorithm derived by simply assuming that the velocity correction at point

C is the weighted average of the corrections at the neighboring grid points.

Mathematically this is expressed by

v0C �

X

F�NBðCÞ

avFv
0
F

X

F�NBðCÞ

avF

)
X

F�NBðCÞ

avFv
0
F � v0C

X

F�NBðCÞ

avF ð15:170Þ

and using the H operator, Eq. (15.170) can be written as

X

F�NBðCÞ

avFv
0
F

avC
� v0C

X

F�NBðCÞ

avF
avC
) HC½v

0� � v0CHC½1� ð15:171Þ

15.7 The SIMPLE Family of Algorithms 623

Therefore instead of neglecting the HC½v
0� term as in SIMPLE, it is replaced by

the approximate value given by the above equation. With this approximation the

velocity correction given by Eq. (15.85) becomes

1þHC½1�ð Þv0C ¼ �D
v
Cðrp

0ÞC) v0C ¼ �~D
v

Cðrp
0ÞC ð15:172Þ

Equation (15.172) can then be used to derive the pressure correction equation.

The same result can be achieved by adding and subtracting the term
P

F�NBðCÞ

avFvC from the momentum equation obtained by combining Eqs. (15.76)

and (15.77), leading to the following modified equation:

avC þ
X

F�NBðCÞ

avF

0

@

1

AvC þ
X

F�NBðCÞ

avFðvF � vCÞ ¼ �VCðrpÞC þ b̂
v

C ð15:173Þ

which, in turn, can be written as

vC þ ~HC½v� vC� ¼ �~D
v

CðrpÞC þ
~B
v

C ð15:174Þ

By using Eq. (15.174), the velocity correction equation becomes

v0C¼� ~HC½v
0 � v0C� � ~D

v

Cðrp
0ÞC ð15:175Þ

Then the term ~HC½v
0 � v0C� is dropped, which is equivalent to the approximation

given by Eq. (15.171), and the modified velocity correction is used in deriving the

pressure correction equation.

Due to a better estimate in SIMPLEC (i.e., a smaller term is dropped), the

relaxation of pressure becomes unnecessary and as compared to SIMPLE, the

resulting velocity corrections will satisfy better the momentum equations.

Consequently, a higher rate of convergence is obtained. Thus, with the exceptions

of dropping ~HC½v
0 � v0C� rather than HC½v

0� and replacing Dv
C by ~D

v

C, the steps

involved in the SIMPLEC algorithm are similar to those of the SIMPLE algorithm.

15.7.2 The PRIME Algorithm

In the PRIME (PRessure Implicit Momentum Explicit) [19] algorithm, the

momentum equation is solved explicitly. This explicit treatment is justified by the

small contribution to the convergence of the entire flow field by the iterative sweeps

of the momentum equation. On the other hand, finding the correct solution for the

pressure field represents the most important factor in the overall convergence.

Based on this argument, the PRIME algorithm can be summarized as follows:

624 15 Fluid Flow Computation: Incompressible Flows

The momentum equation is solved explicitly to obtain a new velocity field v*

using

v�C ¼ �HC vðnÞ
h i

� Dv
C rp

ðnÞ
	

C
þBv

C ð15:176Þ

This velocity field is employed to derive the pressure correction equation. Thus

defining the correction fields such that

v��C ¼ v�C þ v0C p�C ¼ p
ðnÞ
C
þ p0C ð15:177Þ

the corrected field would satisfy

v��C ¼ �HC½v
��� � Dv

Cðrp
�ÞC þ Bv

C ¼ �HC½v
� þ v0� � Dv

C r pðnÞ þ p0
	
h i

C
þ Bv

C

ð15:178Þ

leading to the following expression relating velocity and pressure correction:

v0C ¼ � HC v� � vðnÞ
h i

þHC½v
0�

	

� Dv
Crp

0
C ð15:179Þ

Substituting Eq. (15.179) and its correction into the continuity equation yields

�
X

f�nbðCÞ

qfDfrp
0
f � Sf ¼ �

X

f�nbðCÞ

_m�f þ
X

f�nbðCÞ

qf Hf v� � vðnÞ
h i

þHf ½v
0�

	

� Sf

h i

ð15:180Þ

where the underlined terms in Eqs. (15.179) and (15.180) are neglected.

The terms neglected in PRIME HC v��vðnÞ
 �

þHC½v
0�

� �
can become smaller

than the term neglected in SIMPLE HC½v
0�ð Þ if HC½v

0� and HC v��vðnÞ
 �

are of

opposite signs. It is worth noting that HC½v
0 ¼ HC� ½v���v�� is a correction to satisfy

continuity, while HC v��vðnÞ
 �

is a correction to satisfy momentum. Usually the

corrector added to satisfy momentum is opposite to that added to satisfy continuity

and hence, the neglected term HC v��vðnÞ
 �

þHC½v
0�

� �
is smaller. Moreover, since

the momentum equations are explicitly solved, no under-relaxation is required. This

has the advantage of increasing the stability of the algorithm.

15.7.3 The PISO Algorithm

In the PISO algorithm [18, 25], the HC½v
0� term is accounted for as part of a

correction procedure composed of two or more steps. The first step is similar to the

15.7 The SIMPLE Family of Algorithms 625

SIMPLE algorithm where v0 is computed from Eq. (15.83) while neglecting HC½v
0�.

The continuity satisfying velocity v** and pressure p* fields are used to recalculate

the coefficients of the momentum equation and then to solve it explicitly. The new

velocity field v*** is used to calculate the mass flow rate field _m��� at the element

faces using the Rhie-Chow interpolation. Then, HC½v
0� is partially recovered in a

second corrector step where the velocity correction is written as

v����C ¼ v���C þ v00C

¼ �H��C ½v
��� � ðDv

CÞ
��ðrp�ÞC þ v00C

¼ �H��C ½v
� þ v0� � ðDv

CÞ
��ðrp�ÞC þ v00C

¼ �H��C ½v
�� �H��C ½v

0� � ðDv
CÞ
��ðrp�ÞC þ v00C

¼ �H��C ½v
�� � ðDv

CÞ
��ðrp�ÞC

|ffl{zffl}

�v��
C

�H��C �D
v
Cðrp

0ÞC
 �

þ v00C

� v��C þ v00C �H��C Dv
Cðrp

0ÞC
 �

ð15:181Þ

In Eq. (15.181) the underlined term represents the portion of the HC½v
0� that is

recovered by the second corrector step. The second velocity correction satisfies

v00C ¼ �H
��
C ½v

00� � ðDv
CÞ
��ðrp00ÞC ð15:182Þ

Using Eq. (15.181) with the Rhie-Chow interpolation between points C and F, a

new pressure-correction field is obtained as

�
X

f � nbðCÞ

qfDfrp
00
f � Sf ¼ �

X

f � nbðCÞ

_m�f þ
X

f � nbðCÞ

qfHf ½v
00� � Sf

� �
ð15:183Þ

where the underlined terms in Eqs. (15.182) and (15.183) are again neglected. This

corrector step may be repeated as many times as desired, each time recovering a

new additional portion of HC½v
0�.

By following the sequence of events, it can be easily seen that PISO may be

considered as a combination of one SIMPLE step and one or more PRIME steps,

hence combining the implicitness of the SIMPLE algorithm with the stability of the

PRIME algorithm. The sequence of events in the collocated PISO algorithm can be

summarized as follows:

1. To compute the solution at time t + Δt, use as an initial guess the solution at time

t for pressure, velocity, and mass flow rate fields p(n), u(n), and _mðnÞ, respectively.

SIMPLE Step

2. Solve implicitly the momentum equation given by Eq. (15.70) to obtain a new

velocity field v*.

3. Update the mass flow rate at the cell faces using the Rhie-Chow interpolation

technique (Eq. 15.100) to obtain a momentum satisfying mass flow rate field _m�f .

626 15 Fluid Flow Computation: Incompressible Flows

yes

no

timeexceeded ?
no

stop

set initial guess m
f

n()
,v

n()
,and p

n()
at time

t + t to converged values at timet

computem
f

*
using the

Rhie Chow interpolation

assembleand solve pressure

correctionequation for p

correct m
f

*
,v

*
,and p

n()
to obtain

m
f

**
,v

**
,and p

*

converged ?

set solutionat time t + t tobe

equal tothe converged solution

yes

advanceintime

set t = t + t

assembleand solveimplicitly

momentumequation for v
*

assembleand solveexplicitly

momentumequation for v

computem
f

using the

Rhie Chowinterpolation

assembleand solve pressure

correctionequation for p

correct m
f

,v

,and p

*
to

obtainm
f

,v

,and p

**

yes

no

set m
f

n()
= m

f

,v

n()
= v

, p

n()
= p

**

number of corrector stepsexceeded ?

SIMPLE

iteration

PRIME

iteration

repeat

repeat

set

m f = m f

v
** = v

p
* = p

**

repeat

Fig. 15.27 A flow chart of the PISO algorithm

15.7 The SIMPLE Family of Algorithms 627

4. Using the new mass flow rates, assemble the pressure correction equation

(Eq. 15.98) and solve it to obtain a pressure correction field p′.

5. Update the pressure and velocity fields at the cell centroids and the mass flow

rate at the cell faces to obtain continuity-satisfying fields using Eq. (15.101).

PRIME Step(s)

6. Using the latest available velocity and pressure fields, calculate the coefficients

of the momentum equation and solve it explicitly.

7. Update the mass flow rate at the cell faces using the Rhie-Chow interpolation

technique.

8. Using the new mass flow rates, assemble the pressure correction equation

(Eq. 15.183) and solve it to obtain a pressure correction field.

9. Update pressure, velocity, and mass flow rate fields using expressions similar to

the ones given in Eq. (15.101).

10. Go to step 6 and repeat based on the desired number of corrector steps.

11. Set the initial guess for velocity, mass flow rate, and pressure as u**, _m��,

and p*.

12. Go back to step 2 and repeat until convergence.

13. Set the solution at time t + Δt to be equal to the converged solution and set the

current time t + Δt to be t.

14. Advance to the next time step.

15. Go back to step 1 and repeat until the last time step is reached.

A flowchart of the PISO algorithm is presented in Fig. 15.27.

15.8 Optimum Under-Relaxation Factor Values for v and p0

To promote convergence in the SIMPLE algorithm the momentum and continuity

equations are under relaxed using the under relaxation factors λv and λp, respec-

tively. An important task is to find the under relaxation values that will result in the

optimum convergence rate. Recalling that the velocity correction is obtained

without any under relaxation from

v0C ¼ �DCðrp
0ÞC ð15:184Þ

Moreover, in calculating the pressure field, the pressure correction is under

relaxed in order for the velocity correction field given by Eq. (15.184) to satisfy the

exact velocity correction equation given by

v0C ¼ �HC½v
0� � kpDCðrp

0ÞC ð15:185Þ

628 15 Fluid Flow Computation: Incompressible Flows

Equating Eqs. (15.184) and (15.185), an expression for λp is obtained as

�DCðrp
0ÞC ¼ �HC½v

0� � kpDCðrp
0ÞC) kp ¼ 1þ

HC½v
0�

v0C

¼ 1þ

X

F�NBðCÞ

avFv
0
F

avCv
0
C

ð15:186Þ

The SIMPLEC algorithm eliminated the need to under relax pressure correction

and resulted in the optimum acceleration rate. Therefore, using the approximation

introduced in SIMPLEC, the velocity correction at C can be written as the weighted

average of the velocity corrections at the neighboring grid points such that

v0C �

X

F�NBðCÞ

avFv
0
F

X

F�NBðCÞ

avF

ð15:187Þ

From Eqs. (15.70)–(15.73) the coefficient avC can be expressed as

avC ¼
1

kv
avC �

X

F�NBðCÞ

avF þ
X

f�nbðCÞ

_mf

0

@

1

A ð15:188Þ

which in the limit of a steady state solution (the case for which under relaxation is

used, since for an unsteady situation the time step plays the role of the under

relaxation factor) reduces to

avC ¼ �
1

kv

X

F�NBðCÞ

avF ð15:189Þ

Substituting Eq. (15.189) in Eq. (15.187), the velocity correction is approxi-

mated as

v0C � �

X

F�NBðCÞ

avFv
0
F

kvavC
) avCv

0
C � �

X

F�NBðCÞ

avFv
0
F

kv
ð15:190Þ

substituting Eq. (15.190) in Eq. (15.186), an expression relating λv and λp is

obtained as

kp � 1� kv ð15:191Þ

Experience has shown that the performance of the SIMPLE algorithm with its

under relaxation factors satisfying Eq. (15.191) is similar to that of the SIMPLEC

algorithm.

15.8 Optimum Under-Relaxation Factor Values for v and p0 629

15.9 Treatment of Various Terms with the Rhie-Chow

Interpolation

15.9.1 Treatment of the Under-Relaxation Term

The use of the collocated grid method with the Rhie-Chow interpolation resulted in

solutions that are dependent on the value of under relaxation factor in the momentum

equation. To eliminate this dependence, a modification to the Rhie-Chow interpo-

lation is required. The under relaxed momentum equation is written as

1

kv
avCvC ¼ �

X

F�NBðCÞ

avFvF þ bvC � VCrpC þ
1� kv

kv

� �

avCv
ðnÞ
C ð15:192Þ

where bvC is the source term of the momentum equation from which the pressure

and under relaxation source terms are extracted and v
ðnÞ
C is the previous iteration

value of velocity at cell centroid C. The corresponding under relaxed momentum

equation using a staggered grid formulation can be expressed as

1

kv
avf vf ¼ �

X

nb�NBðf Þ

avnbvnb þ bvf � Vfrpf þ
1� kv

kv

� �

avf v
ðnÞ
f ð15:193Þ

The Rhie-Chow interpolation method mimics the staggered grid formulation by

forming a pseudo-momentum equation at the cell face. It is because of this

behavioral imitation that the Rhie-Chow interpolation is successful. Therefore as a

guiding principle, the yardstick to any modification to the Rhie-Chow interpolation

should be whether the modified formulation is similar to the staggered grid for-

mulation. Therefore, the form of the under relaxed equation using the Rhie-Chow

interpolation should be given by

1

kv
avf vf ¼ �

X

nb�NBðf Þ

avnbvnb þ bvf � Vfrpf þ
1� kv

kv

� �

avf v
ðnÞ
f ð15:194Þ

The average of the first term on the right hand side is obtained as

�
X

nb�NBðf Þ

avnbvnb þ bvf ¼ �gC
X

F�NBðCÞ

avFvF
� �

þ bvC

0

@

1

A� gF
X

N�NBðFÞ

avNvN
� �

þ bvF

0

@

1

A

¼ gC
1

kv
avCvC þ VCrpC �

1� kv

kv

� �

avCv
ðnÞ
C

� �

þ gF
1

kv
avFvF þ VFrpF �

1� kv

kv

� �

avFv
ðnÞ
F

� �

¼
1

kv
avf vf þ Vfrpf �

1� kv

kv

� �

a
v

f v
ðnÞ
f

ð15:195Þ

630 15 Fluid Flow Computation: Incompressible Flows

Substituting Eq. (15.195) into Eq. (15.194), the extended Rhie-Chow interpo-

lated cell face velocity vf is obtained as

vf ¼ vf � Dv
f rpf �rpf
� �

þ ð1� kvÞ v
ðnÞ
f � v

ðnÞ
f

	

ð15:196Þ

Not accounting for the effect of under-relaxation on the face velocity results in

solutions that depend on the under relaxation factor.

15.9.2 Treatment of the Transient Term

When solving a transient problem with a backward Euler transient scheme the

discretized momentum equation can be written as

avCvC ¼ �
X

F�NBðCÞ

avFvF
� �

þ bvC � VCrpC þ a	Cv
	
C ð15:197Þ

where bvC is the source term of the momentum equation from which the pressure

and transient source terms are extracted. The equivalent equation for the staggered

grid variable arrangement has a similar form given by

avf vf ¼ �
X

nb�NBðf Þ

avnbvnb
� �

þ bvf � Vfrpf þ a	f v
	
f ð15:198Þ

Using the Rhie-Chow interpolation method, a pseudo cell-face equation will be

constructed as

avf vf ¼ �
X

nb�NBðf Þ

avnbvnb þ bvf � Vfrpf þ a	f v
	
f ð15:199Þ

The average of the first term on the right hand side is obtained as

�
X

nb�NBðf Þ

avnbvnb þ bvf ¼ �gC
X

F�NBðCÞ

avFvF
� �

þ bvC

0

@

1

A

� gF
X

N�NBðFÞ

avNvN
� �

þ bvF

0

@

1

A

¼ gC avCvC þ VCrpC � a	Cv
	
C

 �

þ gF avFvF þ VFrpF � a	Fv
	
F

 �

¼ avf vf þ Vfrpf � a	f v
	
f

ð15:200Þ

15.9 Treatment of Various Terms with the Rhie-Chow Interpolation 631

Substituting into Eq. (15.84), the extended Rhie-Chow interpolated cell face

velocity vf is obtained

vf ¼ vf � Dv
f rpf �rpf
� �

þ
a	f D

v
f

Vf

v	f � v	f

	

ð15:201Þ

Not accounting for the effect of the unsteady term on the face velocity results in

solutions that are time step dependent and have an oscillatory behavior for small

time step. This correction is valid only for the first order Euler discretization. In case

of more accurate time discretization schemes similar corrections can be performed

following the same principles.

15.9.3 Treatment of the Body Force Term

When treating body forces in the staggered grid arrangement, the stencil of the body

force term is exactly that of the pressure gradient term. In the case of a collocated

grid arrangement, the body force, velocity, and momentum variables are calculated

at the same location. Thus, in order to have a discretization of the body force that

retains a similar stencil as the pressure, a redistribution of the body force term is

needed. The discretized momentum equation is written as

avCvC ¼ �
X

F�NBðCÞ

avFvF þ bvC � VCðrpÞC þ VCB
v
C ð15:202Þ

where the double bar indicates two averaging steps. The first step is to compute Bv
C

(Fig. 15.28) at the cell face as

Bv
f ¼ gCB

v
C þ ð1� gCÞB

v
F ð15:203Þ

staggered grid

p

x

C Ff

B

Fig. 15.28 Treatment of body force and pressure gradient on a staggered grid

632 15 Fluid Flow Computation: Incompressible Flows

while the second (Fig. 15.29) is to get an average of these face values at the cell

centre.

The average values at cell center can best be derived [26] by considering the one

dimensional situation depicted in Fig. 15.30.

For the case of a stationary fluid, the pressure gradient should be in equilibrium

with the body forces leading to

0 ¼ �rpf þ Bv
f ð15:204Þ

Expanding the above equation, a relation between the pressures at C and F can

be written as

pC ¼ pF þ Bf dy ð15:205Þ

improved treatment

C

standard treatment

C

p

x

p

x

B

B

Fig. 15.29 Standard and
improved Rhie-Chow
treatment of body forces

f

C

F

dCF

y B f

Fig. 15.30 One dimensional stationary fluid

15.9 Treatment of Various Terms with the Rhie-Chow Interpolation 633

or more generally as

pC ¼ pF þ Bf � dCF ð15:206Þ

where Bf is the magnitude of Bf given by

Bf ¼ qf g ð15:207Þ

For incompressible flows, the variation with temperature of the density

appearing in the body force term is modeled using the Boussinesq approximation as

given by Eq. (3.101).

Again for cell C the pressure gradient should be in equilibrium with the body

forces, resulting in

0 ¼ �rpC þ Bv
C) rpC ¼ Bv

C ð15:208Þ

However the pressure gradient for cell C is computed as

rpC ¼

P

f

pfSf

VC

¼

P

f

gCpC þ 1� gCð ÞpFð ÞSf

VC

ð15:209Þ

substituting from Eq. (15.206) gives

rpC ¼

P

f

gC pF þ Bv
f � dCF

	

þ ð1� gCÞpF

	

Sf

VC

¼

P

f

pFSf

VC

þ

P

f

gC Bv
f � dCF

	

Sf

VC

¼ pF

P

f

Sf

VC
|{z}

0

þ

P

f

gC Bv
f � df

	

Sf

VC

¼

P

f

gC Bv
f � df

	

Sf

VC

¼ Bv
C

ð15:210Þ

which implies that

Bv
C ¼

P

f

gC Bv
f � df

	

Sf

VC

ð15:211Þ

634 15 Fluid Flow Computation: Incompressible Flows

The second requirement is that the cell-face velocity be similar to that of the

staggered arrangement equation:

avf vf ¼ �
X

nb�NBðf Þ

avnbvnb þ bvf � Vfrpf þ VfB
v
f ð15:212Þ

where bvC is the source term given in Eq. (15.71) from which the pressure and body

force terms are extracted. The averaging of the coefficients yields

�
X

nb�NBðf Þ

avnbvnb þ bvf ¼ �gC
X

F�NBðCÞ

avFvF
� �

þ bvC

0

@

1

A

� gF
X

N�NBðFÞ

avNvN
� �

þ bvF

0

@

1

A

¼ gC avCvC þ VCrpC � VCB
v
C

h i

þ gF avFvF þ VFrpF � VFB
v
F

h i

¼ avf vf þ Vfrpf � VfB
v
f

ð15:213Þ

and substituting into Eq. (15.179), the extended Rhie-Chow interpolated cell face

velocity vf is obtained as

vf ¼ vf � Dv
f rpf �rpf
� �

þ Dv
f Bv

f � Bv
f

� �

ð15:214Þ

where Bv
f is calculated as

Bv
f ¼ gCB

v
C þ ð1� gCÞB

v
F ð15:215Þ

The above additional treatment of the cell face velocity increases the overall

robustness of the solution procedure for situations where variations in body forces

are important (e.g., free-surface flows).

15.9 Treatment of Various Terms with the Rhie-Chow Interpolation 635

15.9.4 Combined Treatment of Under-Relaxation, Transient,

and Body Force Terms

In general all three terms described above should be dealt with together. This

necessitates modifying the Rhie-Chow interpolation to account for all three effects.

Fortunately this can easily be derived by using the principle of superposition

leading to the following interface velocity:

vf ¼ vf � Dv
f rpf �rpf
� �

þ Dv
f Bv

f � Bv
f

� �

þ
a	fD

v
f

Vf

v	f � v	f

	

þ 1� kvð Þ v
ðnÞ
f � v

ðnÞ
f

	

ð15:216Þ

where in calculating Dv
f the under relaxed value of the avC coefficient is used.

15.10 Computational Pointers

15.10.1 uFVM

In uFVM, the pressure correction equation is implemented in one script file denoted

by cfdAssembleMdotTerm. Listing 15.1 shows the core of the algorithm whereby

the coefficients of the pressure correction equation are assembled by linearizing the

fluxes at each of the interior faces. In addition, the mdot field (i.e., the mass flow

rate at the faces) is calculated based on Eq. (15.216), which is subdivided into 9

terms (i.e., terms I trough IX) and assembled step by step to produce the cell face

velocity. The terms into which the velocity at the face is decomposed are as

follows:

term I: the interpolated velocity field vf ,

terms II and III: the face and average pressure gradients �Dv
f rpf �rpf
� �

,

terms IV and V: the average and redistributed body forces Dv
f Bv

f � Bv
f

� �

,

terms VI and VII: the transient fluxes
a	fD

v
f

Vf

v	f � v	f

	

, and

terms VIII and IX: the relaxation correction term ð1� kV Þðv
ðnÞ
f � v

ðnÞ
f Þ.

636 15 Fluid Flow Computation: Incompressible Flows

 local_FLUXVf = local_FLUXVf - density_f.*dot(p_grad_f',T')';

 %

 % assemble term III

 % density_f ([P_grad]_f.([DPVOL]_f.Sf))

 %

 local_FLUXVf = local_FLUXVf +

density_f.*dot(p_grad_bar_f(iFaces,:)',DUSf(iFaces,:)')';

 %

 % assemble terms IV and V

 % density_f [DBVOL]_f.([B]_f -[[B]]_f).S_f

 %

 local_FLUXVf = local_FLUXVf +

density_f[iFace]*FVVectorDotProduct(FVTensorVectorDotProduct(DB_f,FVVe

ctorSubstract(FVMakeVector(bf1_bar_f[iFace],bf2_bar_f[iFace]),FVMakeVe

ctor(bf1_redistributed_f[iFace],bf2_redistributed_f[iFace]))),S_f) ;

 %

 % assemble terms VI and VII

 % [Dt]_f (U_Old_f -[v_old]_f.S_f)

 %

 U_bar_old_f = [velx_old_bar_f[iFace] vely_old_bar_f[iFace])] *

S_f'

 local_FLUXVf = local_FLUXVf + DT_f*(mdot_old_f[iFace] -

density_old_f[iFace]*U_bar_old_f);

 %

 % assemble terms VIII and IX

 % (1-URF)(U_f -[v]_f.S_f)

 %

 local_FLUXVf = local_FLUXVf + (1.0-Mdot_URF)*(mdot_previous_f -

density_f.*U_bar_f);

 %

 % assemble the flow term dot for the face

 %

 local_mdot_f = local_FLUXCf_1*(pressure[iElement1]+ Pref) +

local_FLUXCf_2*(pressure[iElement2]+ Pref) + local_FLUXVf;

 %

 %

 % Assemble in Global Fluxes

 %

%

 % assemble term I

 % density_f [v]_f.Sf

%

 U_bar_f = (dot(vel_bar_f(:,:)',Sf(:,:)'))';

 local_FLUXVf =local_FLUXVf+ density_f.*U_bar_f;

%

 % Assemble term II and linearize it

 % - density_f ([DPVOL]_f.P_grad_f).Sf

%

 DUSf = [DU1_f.*Sf(:,1),DU2_f.*Sf(:,2),DU3_f.*Sf(:,3)];

 geoDiff =(dot(Sf(:,:)',DUSf') ./ dot(CN(:,:)',Sf(:,:)'))';

 local_FLUXCf1 = local_FLUXCf1 + density_f.*geoDiff;

 local_FLUXCf2 = local_FLUXCf2 - density_f.*geoDiff;

Listing 15.1 Script used for the calculation of the mass flow rates and coefficients of the pressure
correction equation in uFVM

15.10 Computational Pointers 637

15.10.2 OpenFOAM®

The numerical techniques introduced so far are used in what follows to develop

OpenFOAM® [27] applications for solving the incompressible Navier-Stokes

equations.

15.10.2.1 Pressure Correction SIMPLE Solvers

Based on the SIMPLE algorithm, a number of solvers will be constructed. The base

solver, simpleFoam, will be presented first. This is followed by a number of ver-

sions, with each one adding more capabilities to the base code. These solvers can be

summarized as follows:

1. simpleFoam (not the OpenFOAM® built-in solver) is the base code that

incorporates the SIMPLE Algorithm in its most basic form.

2. simpleFoamImproved extends the base code to allow for improved treatment of

relaxation.

3. simpleFoamTransient adds transient capabilities to the steady-state simpleFoam.

4. simpleFoamBuoyancy adds to the code the body force treatment.

More versions will be covered in the chapters to follow, each one with extended

capabilities, added by modifying the base code described in this chapter. A list of

the versions that will be covered in the next chapters is given below.

5. simpleFoamCompressible is the compressible version of simpleFoam (Chap. 16)

6. simpleFoamTurbulent includes capabilities for treating turbulent flows

(Chap. 17).

simpleFoam

Before reviewing the simpleFoam code, some basic notational issues are addressed.

The first step is to define, as shown in Listing 15.2, the geometric fields and

parameters that will be initialized and used in the code.

 theFluxes.FLUXC1f(iFaces,1) = local_FLUXCf1;

 theFluxes.FLUXC2f(iFaces,1) = local_FLUXCf2;

 theFluxes.FLUXVf(iFaces,1) = local_FLUXVf;

 %

 theFluxes.FLUXTf(iFaces,1) = theFluxes.FLUXC1f.*pressureC(iFaces)

+ theFluxes.FLUXC2f.*pressureN(iFaces) + theFluxes.FLUXVf(iFaces);

 %

 mdot_f = theFluxes.FLUXTf(iFaces);

Listing 15.1 (continued)

638 15 Fluid Flow Computation: Incompressible Flows

In Listing 15.2, the #include macro directives outside the main function are

needed to define the types of objects that are then declared and used in the appli-

cation. The #include “fvCFD.H” contains a list of definitions for classes that are in

general necessary to build any application in OpenFOAM®. In the developed

application an additional header, not present in the fvCFD.H header, necessary for

the SIMPLE solver implementation will be added.

The use of the #include statements inside the main function is a compacting

procedure, with each declared statement representing a piece of the code moved to

the corresponding file name. For example, the statement #include “createMesh.H”

just represents the code shown in Listing 15.3, which is necessary to instantiate the

mesh class.

#include "fvCFD.H"

#include "orthogonalSnGrad.H"

// *

* * * //

int main(int argc, char *argv[])

{

include "setRootCase.H"

include "createTime.H"

include "createMesh.H"

Listing 15.2 The #include macro derivatives used to define the types of objects needed

createMesh.H

~~~~~~~~~~~

Foam::Info

    << "Create mesh for time = "

    << runTime.timeName() << Foam::nl << Foam::endl;

Foam::fvMesh mesh

(

    Foam::IOobject

    (

        Foam::fvMesh::defaultRegion,

        runTime.timeName(),

        runTime,

        Foam::IOobject::MUST_READ

    )

);

createMesh.H

~~~~~~~~~~~

Foam::Info

 << "Create mesh for time = "

 << runTime.timeName() << Foam::nl << Foam::endl;

Foam::fvMesh mesh

(

 Foam::IOobject

 (

 Foam::fvMesh::defaultRegion,

 runTime.timeName(),

 runTime,

 Foam::IOobject::MUST_READ

)

);

Listing 15.3 The code representing the #include createMesh.H file necessary to instantiate the
mesh class

15.10 Computational Pointers 639

Once the necessary initialization has been performed, the next step is the

definition of the proper fields or variables needed by the solver. These are defined

in file “createFields.H”. The first defined field, shown in Listing 15.4, is the

pressure field (p).

Since the solution is obtained by solving a pressure correction equation instead

of a pressure equation, a pressure correction field (pp) is also defined (Listing 15.5).

It is worth noting that in Listing 15.5 a different constructor is used to define the

pressure correction field. Since the pressure corrector represents the pressure itself,

the same boundary conditions defined for the real pressure can be used for the

pressure correction field without the need to define the same quantity twice.

The list of pressure boundary types displayed in Listing 15.6 are now copied

under the pbt variable in Listing 15.5 and directly used in the constructor of pp.

Info << "Reading field p\n" << endl;

volScalarField p

(

 IOobject

 (

 "p",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

Listing 15.4 Script used to define the pressure field

const volScalarField::GeometricBoundaryField& pbf=p.boundaryField();

wordList pbt = pbf.types();

volScalarField pp

(

 IOobject

 (

 "pp",

 runTime.timeName(),

 mesh,

 IOobject::NO_READ,

 IOobject::AUTO_WRITE

),

 mesh,

 dimensionedScalar("zero", p.dimensions(), 0.0),

 pbt

);

Listing 15.5 Script used to define the pressure correction field

640 15 Fluid Flow Computation: Incompressible Flows

The corrector should reset to zero the correction field at every iteration and

should also apply a zero value at all boundaries for which a Dirichlet boundary

condition is used for the pressure.

The velocity and corresponding mass flux fields must also to be defined. As

depicted in Listing 15.7, the velocity field is defined through an input file while the

mass flux field can be defined as a derived quantity.

// Set pp boundary values

forAll(pp.boundaryField(), patchi)

{

 if (isType<fixedValueFvPatchScalarField>(pp.boundaryField()

[patchi]))

 {

 fixedValueFvPatchScalarField& ppbound =

refCast<fixedValueFvPatchScalarField>(pp.boundaryField()[patchi]);

 ppbound == scalarField(ppbound.size(),0.0);

 }

}

Listing 15.6 Script showing the declaration of the different pressure boundary types

Info << "Reading field U\n" << endl;

volVectorField U

(

 IOobject

 (

 "U",

 runTime.timeName(),

 mesh,

 IOobject::MUST_READ,

 IOobject::AUTO_WRITE

),

 mesh

);

surfaceScalarField mDot

(

 IOobject

 (

 "mDot",

 runTime.timeName(),

 mesh,

 IOobject::READ_IF_PRESENT,

 IOobject::AUTO_WRITE

),

 linearInterpolate(U) & mesh.Sf()

);

Listing 15.7 Script used to define the velocity and mass flux fields

15.10 Computational Pointers 641

Finally the fluid thermo-physical properties should also be defined. For incom-

pressible laminar flows this involves simply assigning a value to the kinematic

viscosity nu, as shown in Listing 15.8.

After defining all variables the implementation of the SIMPLE algorithm can

proceed. A while loop can be used for the cases when the stopping criterion is the

number of SIMPLE iterations. For each single loop, the momentum and pressure

correction equations are solved and updates of the variables are performed. Starting

with the momentum equation written as (the form solved in OpenFOAM®),

r � vvf g ¼ vr2v�rp ð15:217Þ

where the kinematic viscosity v is defined as

v ¼
l

q
ð15:218Þ

and p represents the pressure divided by the density, i.e.,

p ¼
static pressure

q
ð15:219Þ

its solution is translated into the script shown in Listing 15.9.

Info<< "Reading transportProperties\n" << endl;

IOdictionary transportProperties

(

 IOobject

 (

 "transportProperties",

 runTime.constant(),

 mesh,

 IOobject::MUST_READ_IF_MODIFIED,

 IOobject::NO_WRITE

)

);

dimensionedScalar nu

(

 transportProperties.lookup("nu")

);

Listing 15.8 Code used to define the fluid thermo-physical properties

642 15 Fluid Flow Computation: Incompressible Flows

The first instruction in Listing 15.9 defines the finite volume discretization of the

momentum equation in vector form with its storage matrix (the three components of

the velocity vector are solved in a segregated manner despite its vectorial imple-

mentation). The system is then implicitly relaxed and solved via an iterative solver.

Once the momentum equation is solved, a new guess for the velocity field is

obtained. This velocity does not satisfy the continuity equation in general and the

assembly of the continuity equation in the form of a pressure correction equation is

now required to correct the flow field. The pressure correction equation is written as

�r � ð�Dfrp
0Þ ¼ �r � ðvÞ ð15:220Þ

where a component of �D at an element centroid is computed as

D ¼
V

avc
ð15:221Þ

with values at the faces obtained by interpolation. Its implementation is translated

into the following syntax (Listing 15.10):

// Solve the Momentum equation

fvVectorMatrix UEqn

(

 fvm::div(mDot, U)

 - fvm::laplacian(nu, U)

);

UEqn.relax();

solve

(

 UEqn == -fvc::grad(p)

);

Listing 15.9 Script to solve the momentum equation

pp = scalar(0.0)*pp;

pp.correctBoundaryConditions();

fvScalarMatrix ppEqn

(

 - fvm::laplacian(DUf, pp, "laplacian(pDiff,pp)")

 + fvc::div(mDot)

);

Listing 15.10 Script to implement the pressure correction equation

15.10 Computational Pointers 643

where div(mDot) is basically
P

_mf , while pp represents p′ and is reset to zero at

each iteration. Moreover, the DUf variable is the value of D at the cell face

obtained, as shown in Listing 15.11, by linear interpolation using the values at the

nodes straddling the face. Further, .A() represents the diagonal terms in the

momentum matrix divided by the volume.

Listing 15.12 computes the mass flow rate at cell faces (mDot) using the

Rhie-Chow interpolation where the calculation of ∇pf and rpf is clearly shown.

The pressure correction equation is now fully set and is solved by executing the

statement in Listing 15.13.

Once the pressure correction equation is solved, the velocity, pressure, and mass

flow rate fields are updated using the obtained pressure correction field. Starting

with the mass flow rate field (i.e., the mDot flux), it is updated by executing the

below statement (Listing 15.14).

volScalarField DU = 1.0/UEqn.A();

surfaceScalarField DUf("DUf",linearInterpolate(DU));

Listing 15.11 Script to calculate the values of DUf

const surfaceVectorField ed = mesh.delta()()/mag(mesh.delta()());

Foam::fv::orthogonalSnGrad<scalar> faceGradient(mesh);

surfaceVectorField gradp_avg_f = linearInterpolate(fvc::grad(p));

surfaceVectorField gradp_f = gradp_avg_f - (gradp_avg_f & ed)*ed +

(faceGradient.snGrad(p))*ed;

surfaceVectorField U_avg_f = linearInterpolate(U);

// Rhie-Chow interplation

mDot = (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f)) &

mesh.Sf());

Listing 15.12 Script to compute the mass flow rate at cell faces using the Rhie-Chow
interpolation

ppEqn.solve();

Listing 15.13 Statement used to solve the pressure correction equation

644 15 Fluid Flow Computation: Incompressible Flows

The flux() function in Listing 15.14 provides the matrix multiplication, the extra

diagonal matrix coefficients, and the corresponding solution. Recalling the finite

volume discretization of the diffusion term, each extra diagonal of coefficients

represents a face of the mesh. Thus the update of the fluxes can be performed in a

more consistent way using directly the matrix coefficients and cell values.

A simplified version of the flux() function is shown in Listing 15.15.

In Listing 15.15 the correction flux mDotPrime (Eq. 15.101) is basically eval-

uated by performing a loop over the faces using the upper and lower coefficients of

the matrix and multiplying these coefficients with the corresponding cell values.

Finally the velocity and pressure at cell centroids are updated using the script

shown in Listing 15.16,

where the variable URF is the explicit relaxation factor for pressure update λ
p,

necessary for a stable SIMPLE solver.

for (label face=0; face<lowerAddr.size(); face++)

{

 mDotPrime[face] =

 upperCoeffs[face]*pp[upperAddr[face]]

 - lowerCoeffs[face]*pp[lowerAddr[face]];

}

return mDotPrime;

Listing 15.15 A simplified version of the flux() function where the flux correction mDotPrime is
computed

scalar URF = mesh.equationRelaxationFactor("pp");

p += URF*pp;

p.correctBoundaryConditions();

U -= fvc::grad(pp)*DU;

U.correctBoundaryConditions();

Listing 15.16 Update of the velocity and pressure fields at cell centroids

mDot += ppEqn.flux();

Listing 15.14 Statement used to update the mass flow rate field to satisfy continuity

15.10 Computational Pointers 645

simpleFoamImproved

In simpleFoamImproved the Rhie-Chow interpolation is extended to account for

the relaxation of the velocity field. This is translated into the syntax presented below

in Listing 15.17 that expands the generic Rhie-Chow interpolation to include the

additional term in Eq. (15.196).

Thus the fields mdotf.prevIter() and U.prevIter() need to be defined.

simpleFoamTransient

In simpleFoamTransient the Rhie-Chow interpolation is extended to account for

the transient term. Thus the expression for the mass flow rate becomes (Listing

15.18).

Furthermore the main loop is modified to add a transient loop, with the main

code becoming as shown in Listing 15.19.

// Rhie-Chow interplation

mdotf = (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f)) &

mesh.Sf())

 +(scalar(1) - URFU)*(mdotf.prevIter() - (U_avg_prevIter_f &

mesh.Sf()));

Listing 15.17 Improved Rhie-Chow interpolation accounting for under relaxation

// Rhie-Chow interplation

mdotf = (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f)) &

mesh.Sf())

 +(scalar(1) - URFU)*(mdotf.prevIter() - (U_avg_prevIter_f &

mesh.Sf()))

 + DTf*(mdotf_old - (U_old_f& mesh.Sf()));

Listing 15.18 Rhie-Chow interpolation accounting for the effects of under-relaxation and the
unsteady term

646 15 Fluid Flow Computation: Incompressible Flows

simpleFoamBuoyancy

The simpleFoamBuoyancy solver adds to simpleFoamTransient the following

capabilities: (i) the solution of the energy equation, (ii) the inclusion of a body

source term in the momentum equation, and (iii) an account of the effects of the

body force term redistribution in the Rhie-Chow interpolation.

The codes used to introduce these modifications are shown in Listings (15.20),

(15.21), and (15.22).

 pimpleControl pimple(mesh);

// *

* * * //

 Info<< "\nStarting time loop\n" << endl;

 while (runTime.run())

 {

 #include "readTimeControls.H"

 #include "CourantNo.H"

 #include "setDeltaT.H"

 runTime++;

 Info<< "Time = " << runTime.timeName() << nl << endl;

 scalar iter=0;

while (pimple.loop())

 {

 iter++;

 Info<< "Iteration = " << iter << nl << endl;

//

 U.storePrevIter();

 mdotf.storePrevIter();

 // Pressure-velocity SIMPLE corrector

#include "UEqn.H"

#include "ppEqn.H"

 }

 runTime.write();

 Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

 << " ClockTime = " << runTime.elapsedClockTime() << " s"

 << nl << endl;

 }

Listing 15.19 The main loop used for solving unsteady flow problems

15.10 Computational Pointers 647

The code needed to solve the energy equation is given in Listing (15.20).

The source term in the momentum equation is implemented as (Listing 15.21),

while the calculation of the mass fluxes using the Rhie-Chow interpolation are as

displayed in Listing (15.22).

 // Solve the Energy equation

 fvScalarMatrix TEqn

 (

 fvm::ddt(T)

 + fvm::div(phi, T)

 - fvm::laplacian(K, T)

);

 TEqn.relax();

 TEqn.solve();

Listing 15.20 The script used to solve the energy equation

surfaceVectorField B_f = linearInterpolate(- beta*(T-To)*g);

volVectorField B_reconstructed = fvc::average(B_f);

 solve

 (

 UEqn == -fvc::grad(p) + B_reconstructed

);

Listing 15.21 Accounting for the body force term source in the momentum equation

surfaceVectorField B_reconstructed_f =

linearInterpolate(B_reconstructed);

// Rhie-Chow interplation

phi = (U_avg_f & mesh.Sf())

 - DUf*((gradp_f*mesh.magSf())-(gradp_avg_f&mesh.Sf()))

 + (scalar(1) - URFU)*(phi.prevIter() - (U_avg_prevIter_f &

mesh.Sf()))

+ DTf*(phi_old - (U_old_f& mesh.Sf()))

+ DUf* ((B_f& mesh.Sf()) - (B_reconstructed_f& mesh.Sf())) ;

Listing 15.22 The modified Rhie-Chow interpolation accounting for body forces

648 15 Fluid Flow Computation: Incompressible Flows

15.11 Closure

This chapter presented the segregated pressure-based approach for solving

incompressible flow problems on collocated grids. It also demonstrated that the

success of the Rhie-Chow interpolation on collocated grids is due to its formation of

a pseudo-momentum equation at the cell face that has a tight pressure gradient

stencil similar to the one resulting from a staggered grid formulation. In addition,

the details of implementing the most commonly encountered boundary conditions

in the momentum and pressure-correction equations were discussed. The next

chapter will extend the pressure based method to predict compressible fluid flow at

all speeds.

15.12 Exercises

Exercise 1

A portion of a water-supply system is shown in Fig. 15.31. The flow rate _m in a

pipe section is given by

_m ¼ CDp

where Δp is the pressure drop over the length of the pipe section, and C is the

hydraulic conductance. The following data is known:

p1 ¼ 400; p2 ¼ 350

_mF ¼ 25

CA ¼ 0:4;CB ¼ 0:2;CC ¼ 0:1;CD ¼ 0:3;CE ¼ 0:2

Find p3, p4, p5, _mA; _mB; _mC; _mD and _mE using the following procedure

• Start with a guess for p3, p4, and p5.

• Compute _m� values based on the guessed pressures.

• Construct the pressure-correction equations and solve for p03, p
0
4 and p05.

• Update the pressures and the _m� values

15.11 Closure 649

Do you need to iterate? Why?

Exercise 2

A one dimensional flow through a porous material is governed by

cjujuþ
dp

dx
¼ 0

where c is a constant. The continuity equation is

du

dx
¼ 0

x2�x1 ¼ 1 x3�x2 ¼ 2

SA ¼ 3 SB ¼ 2

Use the SIMPLE procedure for the grid shown in Fig. 15.32 to compute p2, uA,

and uB from the following data:

cA ¼ 0:3 cB ¼ 0:15

p1 ¼ 150 p3 ¼ 18

with the size and area at the center of each control volume given by

DxA ¼ 1;AA ¼ 3

DxB ¼ 3;AB ¼ 2

1 2 3u
A u

B

Fig. 15.32 One dimensional flow in a porous material

p
1

= 400

p
2

= 350

m
A

m
B

m
C

m
D

m
E

p
3

p4

p5

mF = 25

Fig. 15.31 A portion of a water-supply system

650 15 Fluid Flow Computation: Incompressible Flows

Exercise 3

In the Steady, one dimensional, constant density situation shown in Fig. 15.33, the

velocity u is calculated at locations B and C, while the pressure is calculated at

locations 1 and 2. The velocity correction formulae are written as

uB ¼ DBðp1 � p2Þ and uC ¼ DCðp2 � p3Þ

where the values of DB and DC are 3 and 4, respectively. The boundary conditions

are uA = 5 and p3 = 70.

(a) If at a given stage in the iteration process, the momentum equations give

u�B ¼ 4 and u�C ¼ 6, calculate the values of p1 and p2.

(b) Explain how you could obtain the values of p1 and p3 if the right hand

boundary condition is given as uC = 5 instead of p3 = 70.

Exercise 4

Consider the main control volume shown in Fig. 15.34. A staggered mesh is used

with the u and v velocity components stored as shown. The following quantities are

given: uw = 7, vs = 3, pN = 0 and pE = 50. The flow is steady and the density is

constant. The momentum equations for ue and vn are given by:

ue ¼ �DeðpE � pCÞ
vn ¼ �DnðpN � pCÞ

Also given De = 2, Dn = 1.6, and the control volume has Δx = Δy = 1.

(a) Starting with a guessed value of p
ðnÞ
C ¼ 50, use the SIMPLE algorithm to find

ue and vn.

(b) Is an iteration loop needed for this problem? Explain.

1 2 3u
A

u
B

u
C

Fig. 15.33 Incompressible flow in a one dimensional domain

ueuw

vn

vs

pC
pE

pN

Fig. 15.34 A main control volume in a two-dimensional staggered grid arrangement

15.12 Exercises 651

Exercise 5

Consider the simplified one-dimensional Forchheimer model for flow in porous

media given by

bu2 ¼ �k
dp

dx

with the continuity equation given by

dðeuÞ

dx
¼ 0

In the above equations b is a constant and ε is the porosity coefficient that

accounts for the effective porous area.

Devise a SIMPLE-like procedure to compute pC, ue, and uw for the following data:

Dx ¼ 0:1; Dy ¼ 1

bW ¼ 5; bC ¼ 4; bE ¼ 3

ee ¼ 0:9; ew ¼ 0:6

pW ¼ 40; pE ¼ �200

Start with the following initial values for velocity and pressure (Fig. 15.35):

u�e ¼ u�w ¼ 3 and pC ¼ �100:

Exercise 6

Compute the interface velocities ue and uw using the Rhie-Chow interpolation and

compare it to the averaged values �ue and �uw knowing the following data (Fig. 15.36):

pWW ¼ 10; pW ¼ 12; pC ¼ 16; pE ¼ 24; pEE ¼ 40; and

uW ¼ 5; uC ¼ 10; uE ¼ 40:

u
e

u
w

pE
pW

pCpWW pEE

y

x

Fig. 15.35 One-dimensional Forchheimer model for flow in porous media

u
WW

u
W

u
C

u
E

u
EE

w e pE
pW

pCpWW pEE

Fig. 15.36 A one dimensional collocated grid

652 15 Fluid Flow Computation: Incompressible Flows

Exercise 7

In OpenFOAM® develop a SIMPLEC pressure correction algorithm by modifying

the SIMPLE algorithm described in this chapter. Hint: in order to find the sum-

mation of the extra diagonal coefficients use the H1() function of the fvMatrix.

Exercise 8

Check the pisoFoam solver located in $FOAM_SRC/../applications/solvers/

incompressible/pisoFoam/pisoFoam.C and compare it with the algorithm descri-

bed in this chapter, i.e., “The Collocated PISO Algorithm”. Find out the incon-

sistency with the standard OpenFOAM® implementation.

Exercise 9

Develop a pressure correction PISO algorithm for OpenFOAM®.

References

1. Patankar SV (1981) A calculation procedure for two dimensional elliptic situations. Numer
Heat Transfer 4(4):409–425

2. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, NY
3. Patankar SV, Spalding DB (1972) A calculation procedure for heat, mass and momentum

transfer in three-dimensional parabolic flows. Int J Heat Mass Transf 15(10):1787–1806
4. Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible

flow of fluid with free surface. Phys Fluids 8(12):2182–2189
5. Van Doormaal JP, Raithby GD (1985) An evaluation of the segregated approach for predicting

incompressible fluid flows. ASME Paper 85-HT-9, Presented at the national heat transfer
conference, Denver, Colorado

6. Raithby GD, Schneider GE (1979) Numerical solution of problems in incompressible fluid
flow: treatment of the velocity-pressure coupling. Numer Heat Transfer, Part A 2(4):417–440

7. Patankar SV (1975) Numerical prediction of three-dimensional flow. In Launder BE
(ed) studies in convection: theory, measurement, and application, vol 1. Academic, New York,
pp 1–9

8. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing
edge separation. AIAA J 21:1525–1532

9. Rhie CM (1988) A three-dimensional passage flow analysis method aimed at centrifugal
impellers. Comput Fluids 13:443–460

10. Majumdar S (1988) Role of under relaxation in momentum interpolation for calculation of
flow with nonstaggered grids. Numer Heat Transfer 13:125–132

11. Miller TF, Schmidt FW (1988) Use of a pressure-weighted interpolation method for the
solution of incompressible Navier-Stokes equations on a nonstaggered grid system. Numer
Heat Transfer 14:213–233

12. Karki KC, Patankar SV (1988) Calculation procedure for viscous incompressible flows in
complex geometries. Numer Heat Transfer 14:295–307

13. Choi SK, Nam HY, Cho M (1993) Use of the momentum interpolation method for numerical
solution of incompressible flows in complex geometries: choosing cell face velocities. Numer
Heat Transfer, Part B 23:21–41

14. Choi SK, Nam HY, Lee YB, Cho M (1993) An efficient three-dimensional calculation
procedure for incompressible flows in complex geometries. Numer Heat Transfer, Part B
23:387–400

References 653

15. Choi SK, Nam HY, Cho M (1994) Use of staggered and nonstaggered grid arrangements for
incompressible flow calculations on nonorthogonal grids. Numer Heat Transfer, Part B 25
(2):193–204

16. Choi SK, Nam HY, Cho M (1994) Systematic comparison of finite-volume calculation
methods with staggered and nonstaggered grid arrangements. Numer Heat Transfer, Part B 25
(2):205–221

17. Van Doormaal JP, Raithby GD (1984) Enhancement of the SIMPLE method for predicting
incompressible fluid flows. Numer Heat Transfer 7:147–163

18. Issa RI (1982) Solution of the implicit discretized fluid flow equations by operator splitting.
Mechanical Engineering Report, FS/82/15, Imperial College, London

19. Maliska CR, Raithby GD (1983) Calculating 3-D fluid flows using non-orthogonal grid. In:
Proceedings of the third international conference on numerical methods in laminar and
turbulent flows, Seattle, pp 656–666

20. Acharya S, Moukalled F (1989) Improvements to incompressible flow calculation on a
non-staggered curvilinear grid. Numer Heat Transfer, Part B 15:131–152

21. Spalding DB (1980) Mathematical modelling of fluid mechanics, heat transfer and mass
transfer processes. Mechanical Engineering Department Report HTS/80/1, Imperial College of
Science, Technology and Medicine, London

22. Moukalled F, Darwish M (2000) A unified formulation of the segregated class of algorithms
for fluid flow at all speeds. Numer Heat Transfer, Part B 37:103–139

23. Darwish M, Asmar D, Moukalled F (2004) A comparative assessment within a multigrid
environment of segregated pressure-based algorithms for fluid flow at all speeds. Numer Heat
Transfer, Part B 45(1):49–74

24. Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER and SIMPLEC
algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer
Heat Transfer 10:209–228

25. Yen RH, Liu CH (1993) Enhancement of the SIMPLE algorithm by an additional explicit
corrector step. Numer Heat Transfer, Part B 24:127–141

26. Mecinger J (2012) An alternative finite volume discretization of body force field on collocated
grids. In: Petrova R (ed) Finite volume method-powerful means of engineering design.
ISBN:978-953-51-0445-2

27. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

654 15 Fluid Flow Computation: Incompressible Flows

Chapter 16

Fluid Flow Computation: Compressible

Flows

Abstract The previous chapter presented the methodology for solving incom-

pressible flow problem using pressure based algorithms. In this chapter these

algorithms are extended to allow for the simulation of compressible flows in the

various Mach number regimes, i.e., over the entire spectrum from subsonic to

hypersonic speeds. While incompressible flow solutions do not generally require

solving the energy equation, compressibility effects couple hydrodynamics and

thermodynamics necessitating the simultaneous solution of the continuity,

momentum, and energy equations. The dependence of density on pressure and

temperature, a relation expressed via an equation of state, further complicates the

velocity-pressure coupling present in incompressible flows. The derivation of the

pressure correction equation now involves a density correction that introduces to

the equation a convection-like term, in addition to the diffusion-like term introduced

by the velocity correction. Another difficulty is introduced by the complex

boundary conditions that arise in compressible flow problems. Details on resolving

all these issues are presented throughout this chapter.

16.1 Historical

Computational Fluid Dynamics methods have been traditionally classified into two

families denoted by density-based and pressure-based. Specifically density-based

methods have historically dominated the simulation of transonic and supersonic

flows usually encountered in the aeronautics industry, and were well-established

when the SIMPLE algorithm was first instigated. SIMPLE, a pressure-based

method, was initially developed to address this shortcoming and was quite efficient

in resolving incompressible and low Mach number flows.

Early on, efforts were directed towards extending the operation of each of these

approaches to flow regimes customarily dominated by the other. Harlow and

Amsden [1, 2] were amongst the earliest to simulate fluid flow at all speeds. In their

work, the use of pressure as a main variable in preference to density was presented an

© Springer International Publishing Switzerland 2016
F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,
Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_16

655

advantage since its variations remained finite irrespective of the Mach number value.

Nonetheless it was the work of Patankar [3] that provided a clear resolution to this

problem, and allowed for SIMPLE-based methods to genuinely develop into

methods capable of resolving fluid flow at all speeds [4–13]. The critical develop-

ment was the reformulation of the pressure equation to include density and velocity

correction such that the type of the equation changed from purely elliptic for

incompressible flows to hyperbolic in transonic and supersonic compressible flows

[14, 15]. This allowed the SIMPLE-family of methods to seamlessly solve flow

problems across the entire Mach number spectrum, with pressure playing the dual

role of affecting density in the limit of high Mach compressible flow and velocity in

the limit of incompressible flow [16], in order to enforce mass conservation.

16.2 Introduction

An important advantage of the pressure-based approach is its ability to resolve fluid

flows in the various Mach number regimes without any artificial treatment to

promote convergence and stabilize computations. This ability of the pressure based

method is due to the dual role the pressure plays in compressible flows [17], which

can best be described by considering the following two extreme cases:

1. At very low Mach numbers, the pressure gradient needed to establish the flow

field through momentum conservation is so small that it does not significantly

influence the density, and the flow can be considered to be incompressible.

Hence, density and pressure in addition to density and velocity are very weakly

related indicating that variations in density are not sensitive to variations in

velocity. In this case the continuity equation can no longer be considered as an

equation for density, rather, it acts as a constraint on the velocity field.

2. At hypersonic speeds, changes in velocity become relatively small as compared

to the magnitude of the velocity indicating that variations in pressure do sig-

nificantly affect density. Consequently, the pressure now acts on density alone

through the equation of state to satisfy mass conservation [16, 18] and the

continuity equation can be viewed as the equation for density.

The above limiting cases highlight the dual role played by pressure in com-

pressible flow situations. It clearly shows that pressure acts on both the density field

through the equation of state and the velocity field via the gradient in the

momentum equation to enforce mass conservation. This dual role explains the

success of the pressure-based approach to predict fluid flow at all speeds. This fact

however did not deter workers in the density based track from using the artificial

compressibility technique [19] to develop methods capable of solving fluid flow at

all speeds. To overcome degradation in performance due to the stiff matrices

encountered in these methods, preconditioning of the resulting stiff matrices was

introduced and several methods [20, 21] using this technique have recently

appeared in the literature.

656 16 Fluid Flow Computation: Compressible Flows

Similarly several pressure-based methods [22] for predicting fluid flow at all

speeds following either a staggered grid approach [23] or a collocated variable

formulation have been developed. While in some methods primitive variables were

used, others employed the momentum components as dependent variables. Some

workers adopted the stream-wise directed density-retardation concept, which is

controlled by Mach-number-dependent monitor functions [24, 25], to account for

the hyperbolic character of the conservation laws in the transonic and supersonic

regimes. Other techniques used the first order upwind scheme for evaluating the

density at the control volume faces at high Mach number values and the central

difference scheme at low values [26].

This chapter extends the collocated pressure-based technique developed in the

previous chapter allowing the simulation of fluid flows at all Mach number values.

The adopted method is easy to implement, highly accurate, and does not require any

explicit addition of damping terms to improve robustness or to properly resolve

shock waves.

16.3 The Conservation Equations

The conservation equations for solving compressible flow problems include the

continuity, momentum, and energy equations. For a Newtonian fluid behaving as an

ideal gas, these equations can be expressed as

@q

@t
þr � qvð Þ ¼ 0 ð16:1Þ

@

@t
qv½ � þ r � qvvf g ¼ r � lrvf g � rpþr � l rvð ÞT

n o

�
2

3
r lr � vð Þ þ fb

ð16:2Þ

@

@t
qcpT
� �

þr � qcpvT
� �

¼ r � krT½ � þ qT
Dcp

Dt
þ
Dp

Dt
�
2

3
lWþ lUþ _qV

ð16:3Þ

where the form of the energy equation adopted here is the one expressed in terms of

temperature. The above set of equations should be appended by an equation of state

relating density to pressure and temperature, i.e., q ¼ q p; Tð Þ, which for an ideal

gas is given by

q ¼
p

RT
ð16:4Þ

where R is the gas constant.

16.2 Introduction 657

In the derivations to follow, superscript n refers to values used at the beginning

of an iteration, superscript � indicates values updated once during an iteration, and

superscript �� refers to values updated twice during the same iteration.

16.4 Discretization of the Momentum Equation

The discretized momentum equation, Eq. (16.2), over the control volume C shown

in Fig. 16.1 is similar to its incompressible form given in Chap. 15. The only two

differences are related to the interpolation of density to the interface and the

additional term � 2=3ð Þr lr � vð Þ involving the bulk viscosity. Starting with the

first difference, the density in compressible flows is no longer constant and since it

is stored at the control volume centroids it has to be interpolated to find its value at

the control volume faces where it is needed for computing the mass flow rate. The

use of a linear interpolation profile (central difference) causes oscillation at high

speeds. Thus a bounded upwind biased scheme should be used. Any of the bounded

convective schemes presented in Chaps. 11 and 12 can be adopted for that purpose.

The second difference is the additional term involving r lr � vð Þ. This term has

not been discretized so far and its discretized form is obtained by making use of

Eq. (2.85) based on which the volume integral of the gradient of a scalar quantity is

Source/
Sink

Transient

Diffusion

Convection

C

F
1

F
2

F
3

F
4

F
5

F
6

f
1

f
2

f
3

f
4

f
5

f
6

Fig. 16.1 A schematic of a control volume C with its neighbors

658 16 Fluid Flow Computation: Compressible Flows

transformed into a surface integral and then into a summation of fluxes over the

faces of the control volume according to

Z

VC

r lr � vð Þ½ �dV ¼

Z

@VC

lr � vð ÞdS ¼
X

f�nb Cð Þ

lr � vð ÞfSf ð16:5Þ

The divergence of the velocity vector at the faces is computed as

lr � vð Þf ¼ l
nð Þ
f

@u

@x

� �nð Þ

f

þ
@v

@y

� �nð Þ

f

þ
@w

@z

� �nð Þ

f

" #

ð16:6Þ

where the gradient of / ¼ u; v or w is interpolated linearly to the face

@/

@x

� �nð Þ

f

¼ gC
@/

@x

� �nð Þ

C

þ gF
@/

@x

� �nð Þ

F

ð16:7Þ

The final discretized form of the momentum equation is given by Eq. (15.70)

with its coefficients given by Eq. (15.71) with the term � 2=3ð Þ
P

f�nb Cð Þ

lr � vð ÞfSf

added to the source term in that equation.

As for incompressible flow problems, the algebraic equations are under relaxed

and written in the form of Eq. (15.78), which is suitable for the derivation of the

pressure correction equation.

16.5 The Pressure Correction Equation

The pressure correction equation for compressible flows is obtained by a simple

extension of that for incompressible flows. The difference is related to variations in

density which are accounted for by defining a density correction field q0 and

relating it to the pressure-correction field through a pressure-density relation. This,

however, yields substantial differences in the treatment of boundary conditions, as

will be explained later in the chapter.

For an ideal gas the relation between pressure and density is written as

qRT ¼ p ð16:8Þ

Using this relation, an equation relating density correction to pressure correction

can be derived by expanding Eq. (16.8) via a Taylor series to yield

qj p nð Þþp0ð Þ¼ qj p nð Þð Þþ
@q

@p
p0 ¼ q� þ q0) q0 ¼

@q

@p
p0 ¼

1

RT
p0 ¼ Cqp

0 ð16:9Þ

16.4 Discretization of the Momentum Equation 659

The corrected pressure, density, velocity, and mass flow rate fields are defined as

p ¼ p nð Þ þ p0

q ¼ q� þ q0

v ¼ v� þ v0

_m ¼ _m� þ _m0

ð16:10Þ

and the semi-discretized continuity equation can be written in terms of the cor-

rection fields as

q�C þ q0C � q
o

C

� �

Dt
VC þ

X

f�nb Cð Þ

_m�
f þ _m0

f

� 	

¼ 0 ð16:11Þ

where

_mf ¼ q�f þ q0f

� 	

v�f þ v0f

� 	

� Sf

¼ q�f v
�
f � Sf

|fflfflfflfflffl{zfflfflfflfflffl}

_m�
f

þ q�f v
0
f � Sf þ q0f v

�
f � Sf þ q0f v

0
f � Sf

|ffl{zffl}

_m0
f

ð16:12Þ

The second order correction term q0f v
0
f � Sf is usually neglected because it is

considerably smaller than other terms. This approximation does not influence the

convergence rate except during the first few iterations of the solution process. In

addition, the final solution is not affected, since at the state of convergence, the

correction fields vanish.

Using the Rhie-Chow interpolation for v�f and v0f ; _m
�
f and _m0

f are respectively

expressed as

_m�
f ¼ q�f v

�
f � Sf � q�fD

v
f rp

nð Þ
f �rp

nð Þ
f

� 	

� Sf
|ffl{zffl}

q�
f
v�
f
�Sf

ð16:13Þ

and

_m0
f ¼ q�f v

0
f � Sf � q�fD

v
f rp0f �rp0f

� 	

� Sf
|ffl{zffl}

q�
f
v0
f
�Sf

þ
_m�
f

q�f
� Sf

 !

Cq; f p
0
f

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

q0
f
vf �Sf

¼ �q�fD
v
frp0f � Sf þ

_m�
f

q�f
� Sf

 !

Cq; f p
0
f þ q�f v

0
f � Sf þ q�fD

v
f rp0f � Sf

� 	

¼ �q�fD
v
frp0f � Sf þ

_m�
f

q�f
� Sf

 !

Cq; f p
0
f � q�fHf v

0½ � � Sf

ð16:14Þ

where the second order term is neglected. Note the substitution of q0f with Cq; f p
0
f .

660 16 Fluid Flow Computation: Compressible Flows

The underlined term in Eq. (16.14) presents the same difficulties as for the

incompressible algorithm and is usually dropped from the equation. Neglecting this

term, the correction to the mass flow rate becomes

_m0
f ¼ �q�fD

v
frp0f � Sf þ

_m�
f

q�f
� Sf

 !

Cp; f p
0
f ð16:15Þ

where the first term on the right hand side of Eq. (16.15) is similar to that arising in

incompressible flow while the second term is the new density correction contri-

bution. This second term is important as it transforms the pressure correction

equation from an elliptic equation to a hyperbolic one capable of resolving shock

waves that may arise at supersonic and hypersonic speeds. This allows the com-

pressible SIMPLE algorithm to be used for predicting fluid flow at all speeds

without the need for any special preconditioning.

More insight can be gained through a simple normalization procedure whereby

Eq. (16.15) is divided by _m�
f � Sf

� 	

Cp; f

.

q�f yielding a weighting factor of 1 for the

p0f term, and a weighting factor proportional to 1
�
M2ð Þ (where M is the Mach

number of the flow) for the rp0f term, i.e.,

_m0
f ¼ �

RT q�f

� 	2

Dv
f

_m�
f � Sf

� 	 rp0f � Sf þ p0f ð16:16Þ

For flows at low Mach number values, the rp0 correction term dominates

returning the equation to an elliptic form as in the incompressible case. On the other

hand, for flows at very high Mach number values the p0f correction term can no

longer be neglected giving a hyperbolic character to the correction equation. This

combined behavior allows the prediction of fluid flow at all speeds.

Substitution of Eq. (16.14) in the continuity equation, Eq. (16.11), yields the

compressible form of the pressure correction equation and is written as

VC

Dt
Cqp

0
C þ

X

f�nb Cð Þ

�q�fD
v
frp0f � Sf þ

_m�
f

q�f

 !

Cqp
0
f

()

¼ �
q�C � q

�

C

Dt
VC þ

X

f�nb Cð Þ

_m�
f

0

@

1

Aþ
X

f�nb Cð Þ

Hf v
0½ � � Sf

ð16:17Þ

Again the treatment of the underlined term yields the different variants of the

SIMPLE family of algorithms. Dropping the underlined term, the pressure cor-

rection equation for the SIMPLE algorithm is obtained as

16.5 The Pressure Correction Equation 661

VCCq

Dt
p0C

|fflfflfflffl{zfflfflfflffl}

transient�like term

þ
X

f�nb Cð Þ

Cq

_m�
f

q�f

 !

p0f

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

convection�like term

�
X

f�nb Cð Þ

q�f D
v
f rp0ð Þf � Sf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffusion�like term

¼ �
q�C � q

�

C

� �

Dt
VC �

X

f�nb Cð Þ

_m�
f

|ffl{zffl}

source�like term

ð16:18Þ

Equation (16.18) can be obtained directly by substituting Eq. (16.15) in Eq. (16.11).

It is worth stressing that the convection-like term came about naturally during

the derivation of the pressure correction equation and its presence is critical for the

ability of the algorithm to resolve flows at all speeds. Moreover, for flows at high

Mach number values, density correction is convected (i.e., exhibiting a hyperbolic

behavior) and the mathematical operator describing this phenomenon is the first

order divergence operator. Thus, contrary to incompressible flows where only the

diffusion-like term is present implying that the pressure correction equation exhibits

an elliptic behavior, pressure correction solutions of the form p0 þ C can no longer

satisfy the equation. This indicates that while for incompressible flows any pressure

value can be set as a boundary condition without affecting the solution, for com-

pressible flows it is important to define the exact value of pressure at the boundaries

because the chosen value will affect the final solution.

It should also be noted that because at convergence the correction field is zero,

the order of the scheme used to discretize the convection-like term is of no con-

sequence on the accuracy of the final results. However, this is not the case for _m�
f

where the use of high order schemes in its evaluation does improve the shock

capturing properties of the algorithm. Thus, to enhance robustness, it is helpful to

use an upwind scheme for the discretization of the convection like term. Further,

neglecting the non-orthogonal contribution of the diffusion-like term as explained in

Chap. 15, the pressure correction equation and its coefficients become

a
p0

C p
0
C þ

X

F�NB Cð Þ

a
p0

F p
0
F ¼ b

p0

C

a
p0

F ¼ �q�FDf � � _m�
f ; 0

�
�
�

�
�
�
Cq; f

q�f

a
p0

C ¼
VCCq

Dt
þ
X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f�nb Cð Þ

q�fDf

b
p0

C ¼ �
q�C � q

�

C

� �

Dt
VC þ

X

f�nb Cð Þ

_m�
f

0

@

1

Aþ
X

f�nb Cð Þ

q�f Dv
f rp0f

� 	

� Tf

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

non�orthogonal term usually neglected

ð16:19Þ

662 16 Fluid Flow Computation: Compressible Flows

Following the calculation of the pressure-correction field p′ by solving

Eq. (16.19) the velocity, pressure, density, and mass flow rate fields are corrected

using the following equations:

v��C ¼ v�C þ v0C v0C ¼ �Dv
C rp0ð ÞC ð16:20Þ

p�C ¼ p
nð Þ
C þ kpp0C ð16:21Þ

q��C ¼ q�C þ kqCqp
0
C ð16:22Þ

_m��
f ¼ _m�

f þ _m0
f _m0

f ¼ �q��f Dv
frp0f � Sf þ

_m�
f

q��f
� Sf

 !

Cq; f p
0
f ð16:23Þ

where kq is the under relaxation factor for density.

16.6 Discretization of The Energy Equation

The discretization of the unsteady, convection, and diffusion terms of the energy

equation, Eq. (16.3), follows the general procedures described in previous chapters

and will not be repeated.

16.6.1 Discretization of the Extra Terms

The focus here will be on the discretization over the control volume C shown in

Fig. (16.1), of the new terms appearing on the right hand side of Eq. (16.3). These

are specific to the energy equation and have not been handled during the discret-

ization of the general scalar equation. Many of the terms are treated as source terms

and evaluated at the centroid of the element during their integration to ensure a

second order accurate discretization.

16.6.1.1 The Specific Heat Term

The discretization of the term involving the specific heat proceeds as follows:

16.5 The Pressure Correction Equation 663

Z

VC

qT
Dcp

Dt
dV ¼ q��C T

nð Þ
C

Dcp

Dt

� �

C

VC

¼ q��C T
nð Þ

C

c nð Þ
p � c

�

p

Dt
þ u��C

@cp
@x

� � nð Þ

C

þ v��C
@cp
@y

� � nð Þ

C

þ w��
C

@cp
@z

� � nð Þ

C

" #

VC

ð16:24Þ

16.6.1.2 The Substantial Derivative Term

The discretization of the substantial derivative of the pressure term is performed as

Z

Vc

Dp

Dt
dV ¼

Dp

Dt

� ��

C

VC ¼
p�C � p

�

C

Dt
þ u��C

@p

@x

� ��

C

þ v��C
@p

@y

� ��

C

þ w��
C

@p

@z

� ��

C

 �

VC

ð16:25Þ

16.6.1.3 The Dissipation Term

The discretized form of the dissipation term involving the bulk viscosity is obtained as

Z

VC

lWdV ¼ l
nð Þ
C W

��
C VC ¼ l

nð Þ
C

@u

@x

� ���

C

þ
@v

@y

� ���

C

þ
@w

@z

� ���

C

 �2

VC ð16:26Þ

16.6.1.4 The Viscous Dissipation Term

The discretization of the viscous dissipation term is performed in a way similar to

the term involving the bulk viscosity and is given by

Z

VC

lUdV ¼ l
nð Þ
C U

��
C VC

¼ l
nð Þ
C

2
@u

@x

� �2

þ
@v

@y

� �2

þ
@w

@z

� �2
" #��

C

þ
@u

@y

� ���

C

þ
@v

@x

� ���

C

 �2

þ

@u

@z

� ���

C

þ
@w

@x

� ���

C

 �2

þ
@v

@z

� ���

C

þ
@w

@y

� ���

C

 �2

8

>>>><

>>>>:

9

>>>>=

>>>>;

VC

ð16:27Þ

664 16 Fluid Flow Computation: Compressible Flows

16.6.1.5 The Source/Sink Term

The term involving the heat source/sink per unit volume is discretized as

Z

VC

_qV dV ¼ _qVð ÞCVC ð16:28Þ

The discrete forms of the above terms are substituted into the energy equation to

yield the algebraic form of the energy equation as described next.

16.6.2 The Algebraic Form of the Energy Equation

Assuming a first order Euler scheme for the discretization of the unsteady term and

a high resolution scheme for the discretization of the convection term applied in the

context of a deferred correction approach, the final algebraic form of the energy

equation can be written as

aTCTC þ
X

F�NB Cð Þ

aTFTF ¼ bTC ð16:29Þ

where the coefficients are given by

aTF ¼ �kf
Ef

dCF
� � _mf ; 0
�
�

�
� cp
� �

f

aTC ¼ a�C �
X

F�NB Cð Þ

aTF þ
X

f�nb Cð Þ

_mf cp
� �

f
þ �a

cp
C ; 0

�
�

�
�

a�C ¼
qC cp
� �

C
VC

Dt
a
�

C ¼
q

�

C c
�

p

� 	

C
VC

Dt
a
cp
C ¼ qCVC

Dcp

Dt

� �

C

bTC ¼
X

f�nb Cð Þ

kf rTð Þf �Tf

� 	

�
X

f�nb Cð Þ

_mf cp
� �

f
THR
f � TU

f

� 	

þ a
�

CT
�

C

þ TC a
cp
C ; 0

�
�

�
�þ

Dp

Dt

� �

C

þ lC �
2

3
WC þ UC

� �

þ _qVð ÞC

 �

VC

ð16:30Þ

Similar to other variables, under relaxation of the energy equation is usually

required.

16.6 Discretization of The Energy Equation 665

16.7 The Compressible SIMPLE Algorithm

The various elements of the collocated compressible SIMPLE algorithm are dis-

played in Fig. 16.2 and can be summarized as follows:

1. To compute the solution at time t þ Dt, start with the solution at time t for

pressure, velocity, density, temperature, and mass flow rate fields p nð Þ; v nð Þ; q nð Þ;

T nð Þ, and _m nð Þ, respectively, as the initial guess.

timeexceeded ?

no

stop

assembleand solvemomentum

equation for v
*

assembleand solve pressure

correctionequation for p

converged ?

set solutionat time t + t tobe

equal tothe converged solution

yes

advanceintime

set t = t + t

yes

repeat

repeat

set initial guess m
n()

,v
n()

,
n()

,and p
n()

at time t + t toconverged valuesat timet

no

Assembleand solveenergy

equation forT

correct m f

*
,v

*
,

*
,and p

n()

toobtain m f

**
,v

**
,

**
,and p

*

set m f

n()
= m f

**
,v

n()
= v

**
,

n()
=

**
,and p

n()
= p

*

Compute
*
usingtheequationof stateand

m f

*
usingthe Rhie Chowinterpolation

Fig. 16.2 A flow chart of the SIMPLE algorithm for compressible fluid flow

666 16 Fluid Flow Computation: Compressible Flows

2. Solve the momentum equation given by Eq. (16.2) to obtain a new velocity

field v�.

3. Use the equation of state to calculate a new density field q�.

4. Update the mass flow rate at the control volume faces using the Rhie-Chow

interpolation technique (Eq. 16.13) to obtain a momentum satisfying mass flow

rate field _m�.

5. Using the new mass flow rates calculate the coefficients of the pressure cor-

rection equation and solve it (Eq. 16.19) to obtain a pressure correction field p0.

6. Update the pressure, density, and velocity fields at the control volume cen-

troids and the mass flow rate at the control volume faces to obtain

continuity-satisfying fields using Eqs. (16.20)–(16.23).

7. Solve the energy equation to obtain a new temperature field T�.

8. Set v��; _m��; q��; T�, and p� as the initial guess for velocity, mass flow rate,

density, temperature, and pressure.

9. Go back to step 2 and repeat until convergence.

10. Set the solution at time t þ Dt to be equal to the converged solution.

11. Advance to the next time step by setting the current time t to t þ Dt.

12. Go to step 1 and repeat until the last time step is reached.

16.8 Boundary Conditions

Generally, there is no difference in the implementation of boundary conditions for

the momentum equation between incompressible and compressible flow. Therefore

the required modifications in the momentum equation are those discussed in

Chap. 15 and will not be repeated here. However substantial differences do arise

with the pressure correction equation and will form the main subject of this section.

The boundary conditions for the energy equation follow the ones described for a

general scalar variable / and also will not be repeated here (inlet, outlet, Dirichlet,

Van-Neumann, and symmetry conditions).

For a boundary cell, such as the one shown in Fig. 16.3, the continuity equation

is written as

q�C þ q0C � q
�

C

� �

Dt
VC þ

X

f�nb Cð Þ

_m�
f þ _m0

f

� 	

þ ð _m�
b þ _m0

bÞ
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

boundary face

¼ 0 ð16:31Þ

where the contribution of the boundary face is separately displayed with _m�
b rep-

resenting the boundary mass flux and _m0
b its correction. Moreover, expressing the

Rhie-Chow interpolation at the boundary faces by adopting the same approach that

was used for incompressible flow, the velocity, mass flow rate, and mass flow rate

correction at a boundary face are expressed as

16.7 The Compressible SIMPLE Algorithm 667

v�b
|{z}

boundary face

¼ v�C � DC rp
nð Þ
b �rp

nð Þ
C

� 	

|ffl{zffl}

boundary Rhie�Chow

ð16:32Þ

_m�
b ¼ q

nð Þ
b v�C � Sb � q�bD

v
C rp

nð Þ
b �rp

nð Þ
C

� 	

� Sb ð16:33Þ

_m0
b ¼ �q�bDC p0b � p0C

� �
þ

_m�
b

q�b

� �

Cq; bp
0
b ð16:34Þ

The only difference between these expressions and those presented in Chap. 15

is in the correction equation of the mass flow rate, which has an additional term

related to density correction. Moreover, there is no difference in the implementation

of boundary conditions at a wall and a symmetry plane between incompressible and

compressible flows. Therefore the modifications to the boundary elements pre-

sented in the previous chapter for wall and symmetry boundary conditions in the

pressure correction equation are applicable here with no need to be repeated.

The boundary conditions left to be discussed here are those applicable at the inlet

and outlet. For compressible flow, the conditions to be imposed are dictated by the

Mach number values. For an inviscid flow, the mathematical type of the equations

changes from elliptic to hyperbolic as the flow changes from subsonic to super-

sonic. Details regarding their implementation are given next.

b

S
b

n

eb

C

boundary
element

boundary
face

Fig. 16.3 A boundary
control volume

668 16 Fluid Flow Computation: Compressible Flows

16.8.1 Inlet Boundary Conditions

At the inlet to a domain the flow may be subsonic or supersonic necessitating

different treatment since the flow equations may be either of the elliptic or the

hyperbolic type.

16.8.1.1 Subsonic Flow at Inlet

At subsonic speeds several conditions at inlet to a domain can be imposed. This

include specified velocity, specified static pressure and velocity direction, or

specified stagnation pressure and velocity direction. The last type should be used

when transition to supersonic speed occurs within the domain.

Specified Velocity pb ¼ ?; _mb ¼ ?; vb specifiedð Þ

Unlike incompressible flow, since for compressible flow the density depends on

pressure, the mass flux remains unknown even with a specified velocity at inlet

i:e, _m0
b ¼ q0bv

�
b � Sb 6¼ 0

� �
. At an inlet boundary the coefficient multiplying the

pressure correction p0b is given by

a
p0

b ¼ Cq;b
_m�
b

q�b
ð16:35Þ

For implementation in the pressure correction equation, p0b is expressed in terms

of internal nodes and the coefficients at these nodes modified accordingly. For the

constant profile case (i.e., pb ¼ pC), the aC coefficient is obtained as

a
p0

C ¼
VCCq

Dt
þ
X

f�nb Cð Þ

Cq;f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f�nb Cð Þ

q�f Df

|ffl{zffl}

interior faces contribution

þ Cq;b
_m�
b

q�b
|fflfflffl{zfflfflffl}

boundary face contribution

ð16:36Þ

The value of the pressure pb is again obtained by extrapolation from the interior

as explained in the incompressible flow chapter.

Specified Static Pressure and Velocity Direction pb ¼ pspecified ; ev specified;
�

_mb ¼ ?; vb ¼ ?Þ

In the case of a specified static pressure at inlet, pb is known and thus p0b is set to

zero and consequently q0b is also zero. Therefore the implementation is similar to the

incompressible case with the inlet treated as a Dirichlet boundary condition.

Knowing the velocity direction, its magnitude is computed as in the incompressible

16.8 Boundary Conditions 669

case using Eq. (16.33) leading to an equation similar to Eq. (15.137). The coeffi-

cient of the pressure-correction equation becomes

a
p0

C ¼
VCCq

Dt
þ

X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f�nb Cð Þ

q�f Df

|ffl{zffl}

interior faces contribution

þ q�bDC
|fflffl{zfflffl}

boundary face contribution

ð16:37Þ

Specified Total Pressure and Velocity Direction ðpo;b ¼ po; specified ; ev specified;

_mb ¼ ?; vb ¼ ?Þ
For this case, the magnitude of the velocity and the pressure at the boundary are

unknown while related through the total pressure equation given by

po; b ¼ pb 1þ
c� 1

2
M2

b

� �c= c�1ð Þ

ð16:38Þ

where b refers to the boundary, po; b is the total pressure, pb the static pressure, c the

ratio of specific heats, and Mb the Mach number which is equivalent to

Mb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
vb � vb
cRTb

r

ð16:39Þ

Equation (16.37) can be rearranged to give the static pressure in terms of the

total pressure as

pb ¼ po; b 1þ
c� 1

2

_m�
b

� �2

q�b
� �2

ev � nSbð Þ2cRTb

 !�c= c�1ð Þ

ð16:40Þ

where ev is the unit vector in the direction of the velocity vector. Differentiating

Eq. (16.40) with respect to _m�
b gives

dpb

d _m�
b

¼ �
c _m�

bpo; b

q�b
� �2

ev � nSbð Þ2cRTb
1þ

c� 1

2

_m�
b

� �2

q�b
� �2

ev � nSbð Þ2cRTb

 !�
2c�1ð Þ
c�1ð Þ

ð16:41Þ

Substituting Eq. (16.41) into Eq. (15.163) an equation for pressure correction

function of the mass flux correction is obtained as

670 16 Fluid Flow Computation: Compressible Flows

_p0b ¼ �
c _m�

bpo;b

q�b
� �2

ev � nSbð Þ2cRTb
1þ

c� 1

2

_m�
b

� �2

q�b
� �2

ev � nSbð Þ2cRTb

 !�
2c�1ð Þ
c�1ð Þ

_m0
b

¼ cb _m
0
b ð16:42Þ

Replacing p0b in Eq. (16.34) by its equivalent expression given by Eq. (16.42),

the mass flux correction becomes

_m0
b ¼

q�bDb

1þ q�bDbcb �
_m�
b

q�
b

� 	

Cq;bcb

p0c ð16:43Þ

The modified boundary cell coefficient is obtained by substituting _m0
b from

Eq. (16.43) in the expanded continuity equation and is given by

a
p0

C ¼
VCCq

Dt
þ
X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f�nb Cð Þ

q�f Df

|ffl{zffl}

interior faces contribution

þ
q�bDC

1þ q�bDCcb �
_m�
b

q�
b

� 	

Cq;bcb
|ffl{zffl}

boundary face contribution

ð16:44Þ

It should be mentioned that the boundary condition for the energy equation at a

subsonic inlet is usually either a specified static temperature Tb or a specified

stagnation temperature To;b. If the static temperature is specified, then this is similar

to a Dirichlet condition. If the stagnation temperature is specified then at each

iteration the value of the static temperature is extracted from the stagnation tem-

perature equation using

To;b ¼ Tb þ
vb � vb
2cp

ð16:45Þ

and the obtained value treated as known. Thus a Dirichlet-type boundary condition

is also applied.

16.8.1.2 Supersonic Flow at Inlet

Specified static pressure, velocity, and temperature

pb ¼ pspecified ; vb ¼ vspecified ; T ¼ Tspecified
� �

At a supersonic inlet, values for all variables must be specified (pressure, velocity,

and temperature). This is equivalent to a Dirichlet-type condition implying that

_m0
b ¼ p0b ¼ 0. Therefore the a

p0

C coefficient of the boundary cell is found to be

16.8 Boundary Conditions 671

a
p0

C ¼
VCCq

Dt
þ
X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f�nb Cð Þ

q�fDf

|ffl{zffl}

interior faces contribution

ð16:46Þ

16.8.2 Outlet Boundary Conditions

16.8.2.1 Subsonic Flow at Outlet

Specified Pressure pb ¼ pspecified ; _mb ?; vb ¼ ?
� �

At a subsonic outlet, the pressure is usually prescribed. Therefore the pressure

correction p0b is set to zero while the mass flow rate correction _m0
b is computed as

_m0
b ¼ �q�bDC p0b � p0C

� �
þ

_m�
b

q�b

� �

Cq;bp
0
b ¼ q�bDCp

0
C ð16:47Þ

Since the velocity v�b is not known, it is customary to assume its direction to be

that of the upwind velocity v�C. The expression of the ac coefficient in the

pressure-correction equation may be written as

a
p0

C ¼
VCCq

Dt
þ

X

f�nb Cð Þ

Cq; f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f�nb Cð Þ

q�f Df

|ffl{zffl}

interior faces contribution

þ q�bDc
|ffl{zffl}

boundary face contribution

ð16:48Þ

For the energy equation a zero flux Neumann-type boundary condition is

applied.

Specified Mass Flow Rate _mb ¼ _mspecified ; pb? vb?
� �

For a specified mass flow rate at outlet, _m0
b is zero and is simply dropped from the

pressure correction equation with no modifications required for the coefficients of

the boundary elements. By setting _m0
b to zero in Eq. (16.34), an expression for the

pressure correction at the boundary as a function of the pressure correction at the

boundary cell centroid is obtained as

672 16 Fluid Flow Computation: Compressible Flows

p0b ¼
q�bDC

q�bDC �
_m�
b

q�
b

� 	

Cq;b

p0C ð16:49Þ

allowing the boundary pressure and density to be computed. For the energy

equation a zero flux Neumann-type boundary condition is applied.

16.8.2.2 Supersonic Flow at Outlet

At a supersonic outlet none of the variables should be specified and the values of

pressure, velocity, density, and temperature are extrapolated from the interior of the

domain. Thus both _mb and pb are extrapolated from interior cells. This is equivalent

to applying a Neumann boundary condition on pressure-correction, leading to the

following modified aC coefficient

a
p0

C ¼
VCCq

Dt
þ

X

f � nb Cð Þ

Cq;f

q�f
_m�
f ; 0

�
�
�

�
�
�

 !

þ
X

f � nb Cð Þ

q�fDf

|ffl{zffl}

interior faces contribution

þ
_m�
b

q�b

� �

Cq;b

|fflfflfflfflfflffl{zfflfflfflfflfflffl}

boundary face contribution

ð16:50Þ

16.9 Computational Pointers

16.9.1 uFVM

For compressible flows a major modification to the algorithm arises in the assembly

of the pressure equation through the inclusion of the convection like term. This is

added to the cfdAssembleMdotTerm shown in Listing 16.1.

 % assemble terms X (for compressible flow)
 % (mdot_f/density_f)*(rho/ p) P'
 % where mdot_f is the newly computed mdot_f

%
 local_mdot_f = local_FLUXCf_1*(pressure[iElement1]+ Pref) +
local_FLUXCf_2*(pressure[iElement2]+ Pref) + local_FLUXVf;

%
 local_FLUXCf1 = local_FLUXCf1 + max(local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);
 local_FLUXCf2 = local_FLUXCf2 - max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);
 local_FLUXVf = local_FLUXVf -(max(local_mdot_f/density_f(iFace),
0.0)*drhodp_f(iFace)*(pressure(iElement1)+ Pref)- max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace)*(pressure(iElement2)+ Pref));
 local_FLUXVf += -local_mdot_f;

Listing 16.1 Script used to assemble the additional terms for the compressible pressure correction
equation

16.8 Boundary Conditions 673

The other important change is in the treatment of boundary conditions that now

necessitates accounting for a variable density field. For example the supersonic

inlet condition is implemented for the pressure correction equation as shown in

Listing 16.2.

16.9.2 OpenFOAM®

In this section simpleFoam is extended to handle compressible fluid flow at all

speeds. This entails the following modifications to simpleFoam: (i) the addition of

the energy equation to be solved simultaneously with the continuity and momentum

equations, (ii) the use of an equation of state relating density to temperature and

pressure, (iii) and the introduction of the necessary modifications to the pressure

correction equation and to a number of boundary conditions. The resulting code is

denoted simpleFoamCompressible with many of the extensions added in the form

of supplemental include files as shown in Listing 16.3.

 % assemble terms X (for compressible flow)
 % (mdot_f/density_f)*(?rho/?p) P'
 % where mdot_f is the newly computed mdot_f

%
 local_mdot_f = local_FLUXCf_1*(pressure[iElement1]+ Pref) +
local_FLUXCf_2*(pressure[iElement2]+ Pref) + local_FLUXVf;

%
 local_FLUXCf1 = local_FLUXCf1 + max(local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);
 local_FLUXCf2 = local_FLUXCf2 - max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace);
 local_FLUXVf = local_FLUXVf -(max(local_mdot_f/density_f(iFace),
0.0)*drhodp_f(iFace)*(pressure(iElement1)+ Pref)- max(-local_mdot_f/
density_f(iFace),0.0)*drhodp_f(iFace)*(pressure(iElement2)+ Pref));
 local_FLUXVf += -local_mdot_f;

Listing 16.2 Implementation of a supersonic inlet condition

674 16 Fluid Flow Computation: Compressible Flows

The upwind.H and gaussConvectionScheme.H are used to force an upwind

discretization on the convective term of the pressure correction equation. The

bound.H class is used to bound variables within certain limits.

The createFields.H now includes the definition of the density field and other

variables and constants related to compressible flow physics. The psiTermo class,

depicted in Listing 16.4, provides access to the thermophysical relations that are

part of the OpenFOAM® library [27], such as the perfect gas law described in

Eq. (16.4).

#include "fvCFD.H"
#include "psiThermo.H"
#include "RASModel.H"
#include "upwind.H"
#include "gaussConvectionScheme.H"
#include "bound.H"
#include "simpleControl.H"
#include "totalPressureCompFvPatchScalarField.H"
#include "totalPressureCorrectorCompFvPatchScalarField.H"
#include "totalVelocityFvPatchVectorField.H"
#include "orthogonalSnGrad.H"
// *
* * * //

int main(int argc, char *argv[])
{

include "setRootCase.H"
include "createTime.H"
include "createMesh.H"

simpleControl simple(mesh);

include "createFields.H"

Listing 16.3 The include files used in simpleFoamCompressible

16.9 Computational Pointers 675

(
 psiThermo::New(mesh)
);

Info<< "Calculating field rho\n" << endl;

volScalarField rho
(
 IOobject
 (
 "rho",
 runTime.timeName(),
 mesh,
 IOobject::READ_IF_PRESENT,
 IOobject::AUTO_WRITE
),
 thermo->rho()
);

volScalarField& p = thermo->p();
volScalarField& h = thermo->he();

thermo->correct();

volScalarField gammaGas
(
 IOobject
 (
 "gammaGas",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 thermo->Cp() / thermo->Cv()
);

volScalarField RGas
(
 IOobject
 (
 "RGas",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 thermo->Cp() - thermo->Cv()
);

Info<< "Reading thermophysical properties\n" << endl;

autoPtr<psiThermo> thermo

Listing 16.4 An excerpt of the psiTermo class

676 16 Fluid Flow Computation: Compressible Flows

The pressure and enthalpy fields are defined in the thermo class, displayed in

Listing 16.5, and accessed as references in createFields.H.

The velocity is defined as in the incompressible version but the mass flux now

includes density in its definition (Listing 16.6).

volScalarField& p = thermo->p();
volScalarField& h = thermo->he();

const volScalarField::GeometricBoundaryField& pbf=p.boundaryField();
wordList pbt = pbf.types();
volScalarField pp
(
 IOobject
 (
 "pp",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::AUTO_WRITE
),
 mesh,
 dimensionedScalar("zero", p.dimensions(), 0.0),
 pbt
);

Listing 16.5 Defining the pressure and enthalpy field in thermo class

Info << "Reading field U\n" << endl;
volVectorField U
(
 IOobject
 (
 "U",
 runTime.timeName(),
 mesh,
 IOobject::MUST_READ,
 IOobject::AUTO_WRITE
),
 mesh
);
surfaceScalarField mDot
(
 IOobject
 (
 "mDot",
 runTime.timeName(),
 mesh,
 IOobject::READ_IF_PRESENT,
 IOobject::AUTO_WRITE
),
 linearInterpolate(rho*U) & mesh.Sf()
);

Listing 16.6 Defining the velocity and mass flux fields

16.9 Computational Pointers 677

In compressible flows, setting physical limits on some variables such as density

and pressure can enhance robustness, especially during the first few iterations. This

prevents variables from assuming non-physical values (like negative densities or

pressures). Therefore bounds can be set as part of the case definition, as shown in

Listing 16.7, and read in createFields.H.

The momentum equation is defined with a slightly modified syntax that accounts

for density and thermophysical property relations. The syntax of the linearized

formula is given in Listing 16.8.

The first instruction defines the finite volume discretization of the momentum

equation in a vector form (the three components of the velocity are solved in a

segregated manner despite the vectorial implementation). The system is implicitly

relaxed and then solved with an iterative solver.

Once the momentum equation is solved, a new guess of the velocity field is

obtained. This velocity field does not necessarily satisfy the continuity equation.

dimensionedScalar rhoMax(simple.dict().lookup("rhoMax"));
dimensionedScalar rhoMin(simple.dict().lookup("rhoMin"));

dimensionedScalar pMax(simple.dict().lookup("pMax"));
dimensionedScalar pMin(simple.dict().lookup("pMin"));

Listing 16.7 Setting lower and upper bounds for the density and pressure fields

// Solve the Momentum equation
fvVectorMatrix UEqn
(
 fvm::ddt(rho,U)
 + fvm::div(mDot, U)
 - fvm::laplacian(thermo->mu, U)
);

UEqn.relax();

solve
(
 UEqn == -fvc::grad(p)
);

Listing 16.8 Syntax used to solve the momentum equation

678 16 Fluid Flow Computation: Compressible Flows

To enforce mass conservation, assembly of the pressure correction equation is now

required to correct the velocity. Following Eq. (16.19) the syntax used for that

purpose is shown in Listing 16.9.

As for the incompressible case, in order to avoid checker boarding, the mDot

mass flux field is evaluated using the Rhie-Chow interpolation but now taking into

account also the density field, evaluated based on the thermo model as shown in

Listing 16.10.

pp = scalar(0.0)*pp;
pp.correctBoundaryConditions();

surfaceScalarField phid
(
 IOobject
 (

"phid",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mDot*drhodp/(rhofd)

);

fvMatrix<scalar> ppCompEqn
(
 fvm::ddt(thermo->psi(),pp) +
 fv::gaussConvectionScheme<scalar>
 (
 mesh,
 phid,
 tmp<surfaceInterpolationScheme<scalar> >
 (
 new upwind<scalar>(mesh,phid)
)
).fvmDiv(phid, pp)
 - fvm::laplacian(pDiff, pp)
 + fvc::div(mDot) + fvc::ddt(rho)

)

Listing 16.9 Syntax used to assemble the pressure correction equation

16.9 Computational Pointers 679

It is worth mentioning that density is interpolated to faces using an upwind

scheme in order to mimic the hyperbolic behavior of compressible flows.

The pressure correction equation is fully set and is solved using the syntax

displayed in Listing 16.11.

rho = thermo->rho();

Foam::fv::orthogonalSnGrad<scalar> faceGradient(mesh);

surfaceVectorField gradp_avg_f = linearInterpolate(fvc::grad(p));
surfaceVectorField gradp_f = gradp_avg_f - (gradp_avg_f & ed)*ed +
(faceGradient.snGrad(p))*ed;

surfaceVectorField U_avg_prevIter_f = linearInterpolate(U.prevIter());
surfaceVectorField U_avg_f = linearInterpolate(U);

surfaceScalarField rhofd = upwind<scalar>(mesh,mDot).interpolate(rho);
surfaceScalarField rhof("srho",fvc::interpolate(rho));
surfaceScalarField DUf("srUA",fvc::interpolate(DU,"interpolate((1|
A(U)))"));

volScalarField dt
(
 IOobject
 (

 "dt",
 runTime.timeName(),
 mesh,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),

mesh ,
dimensionedScalar("dt" ,runTime.deltaT().dimensions(),

runTime.deltaT().value()),
 zeroGradientFvPatchScalarField::typeName
);
surfaceScalarField dt_f = linearInterpolate(dt);
surfaceScalarField drhodp = linearInterpolate(thermo->psi());

scalar UURF = mesh.equationRelaxationFactor("U");

// Rhie-Chow interplation
mDot = rhof*(
 (U_avg_f & mesh.Sf()) - ((DUf*(gradp_f - gradp_avg_f))
& mesh.Sf())
);
 + (scalar(1) - UURF)*(mDot.prevIter() -
((rhof*U_avg_prevIter_f) & mesh.Sf()))
 + rhof*(DUf/dt_f)*(mDot.prevIter() -
((rhof*U_avg_prevIter_f) & mesh.Sf()));

Listing 16.10 Calculation of mass fluxes at cell faces using the Rhie-Chow interpolation

680 16 Fluid Flow Computation: Compressible Flows

After solving the pressure correction equation, variables that depend on pressure

correction are updated. For the mass flux field this is performed using the syntax in

Listing 16.12, this is similar to the incompressible flux correction.

Where again the flux() function in Listing 16.12 updates the fluxes using directly

the matrix coefficients and cell values. A simplified version of the flux() function is

shown in Listing 16.13.

In Listing 16.13 the correction flux mDotPrime is basically evaluated by per-

forming a loop over the faces using the upper and lower coefficients of the matrix

and multiplying these coefficients with the corresponding cell values.

Finally the velocity, density and pressure at cell centroids are updated using

Eqs. (16.20), (16.21), and (16.22), as shown in Listing 16.14, where the variable

alphaP is the explicit relaxation factor for pressure and density updates kp, neces-

sary for a stable SIMPLE solver.

ppEqn.solve();

Listing 16.11 Syntax for solving the pressure correction equation

mDot += ppEqn.flux();

Listing 16.12 Syntax to update the mass flux field

for (label face=0; face<lowerAddr.size(); face++)
{
 mDotPrime[face] =
 upperCoeffs[face]*pp[upperAddr[face]]
 - lowerCoeffs[face]*pp[lowerAddr[face]];
}

return mDotPrime;

Listing 16.13 A simplified version of the flux() function where the flux correction mDotPrime is
computed

16.9 Computational Pointers 681

In order to account for compressibility effects, the energy equation is introduced

and the related temperature is calculated. In OpenFOAM®, the energy equation

expressed in terms of specific static enthalpy h ¼ CpT
� �

, given by Eq. (3.61), is

solved as depicted in Listing 16.15.

scalar alphaP = mesh.equationRelaxationFactor("pp");

mDot += ppCompEqn.flux();

p += alphaP*pp;
p.correctBoundaryConditions();

rho += alphaP*pp*thermo->psi();

boundMinMax(p, pMin, pMax);
boundMinMax(rho, rhoMin, rhoMax);

U -= fvc::grad(pp)*DU;
U.correctBoundaryConditions();

Listing 16.14 Update of the velocity and pressure fields at cell centroids

fvScalarMatrix hEqn
(
 fvm::ddt(rho,h)
 + fvm::div(mDot, h)
 - fvm::laplacian(turbulence->alphaEff(), h)
 + fvm::SuSp(-fvc::div(mDot),h)
 ==

 fvc::div(mDot/fvc::interpolate(rho)*fvc::interpolate(p))
 - p*fvc::div(mDot/fvc::interpolate(rho))
);

hEqn.relax();
hEqn.solve();

h.correctBoundaryConditions();

thermo->correct();

gammaGas = thermo->Cp()/ thermo->Cv();
gammaGas.correctBoundaryConditions();

RGas = thermo->Cp() - thermo->Cv();
RGas.correctBoundaryConditions();

Listing 16.15 Solving the energy equation

682 16 Fluid Flow Computation: Compressible Flows

Once the energy equation is solved, the new enthalpy is used to update the

temperature and gas properties (e.g., specific heats).

In addition to the main solver, new total pressure and total temperature

boundary conditions are implemented for subsonic inlet patches, these are often

used boundary conditions for the simulation of compressible flows. The boundary

conditions are defined in the directory “derivedFvPatchFields” and are next pre-

sented. For a better understanding, it may be beneficial to read Chap. 18 prior to

going over the implementation process presented below.

• totalPressureComp: This implements the total pressure condition at subsonic

inlet. For that purpose the updateCoeffs() function is modified as shown in

Listing 16.16, which indicates that after gathering the necessary data from the

solver, the boundary static pressure is computed using Eq. (16.40) and the

obtained values are stored in the defined newp variable.

• totalPressureCorrectorComp: This is also needed with a total inlet pressure

boundary condition. Its role is to deal with the mass flow rate correction at inlet

affecting the diagonal coefficient of the boundary element, as expressed by

 const fvPatchScalarField& TB =
 patch().lookupPatchField<volScalarField, scalar>("T");

 const fvPatchField<scalar>& RB =
 patch().lookupPatchField<volScalarField, scalar>("RGas");

 const fvPatchField<scalar>& gammaB =
 patch().lookupPatchField<volScalarField, scalar>("gammaGas");

const fvsPatchField<scalar>& sphi =
 patch().lookupPatchField<surfaceScalarField, scalar>("mDot");

 const fvPatchField<scalar>& srho =
 patch().lookupPatchField<volScalarField, scalar>("rho");

const fvPatchField<vector>& UF =
patch().lookupPatchField<volVectorField, vector>("U");

 scalarField newp = max(min(p0_/pow((scalar(1.0) + (gammaB -
scalar(1.0))*(sqr(sphi)
 /(sqr(srho) * sqr(patch().magSf())))/
(scalar(2.0) * gammaB * RB * TB))
 , gammaB/(gammaB - scalar(1.0))), p0_),SMALL);

 operator==
 (
 newp
);

Listing 16.16 Modified updateCoeffs() function for implementing the total pressure boundary
condition at inlet

16.9 Computational Pointers 683

Eqs. (16.43) and (16.44). In the implementation, the contributions to the coef-

ficients are reset to zero, as can be inferred from Listing 16.17, except for the

gradientInternalCoeffs() that is required to return the correct values. This ensures

that for both the divergence and laplacian operator one boundary condition is

applied.

tmp<Field<scalar> >
totalPressureCorrectorCompFvPatchScalarField::valueInternalCoeffs
(
 const tmp<scalarField>&
) const
{
 return tmp<Field<scalar> >
 (
 new Field<scalar>(this->size(), pTraits<scalar>::zero)
);
}

tmp<Field<scalar> >
totalPressureCorrectorCompFvPatchScalarField::gradientBoundaryCoeffs()
const
{
 return tmp<Field<scalar> >
 (
 new Field<scalar>(this->size(), pTraits<scalar>::zero)
);
}

tmp<Field<scalar> >
totalPressureCorrectorCompFvPatchScalarField::valueBoundaryCoeffs
(
 const tmp<scalarField>&
) const
{

 return tmp<Field<scalar> >
 (
 new Field<scalar>(this->size(), pTraits<scalar>::zero)
);
}

tmp<Field<scalar> >
totalPressureCorrectorCompFvPatchScalarField::gradientInternalCoeffs()
const
{

const fvsPatchField<scalar>& srUA =
 patch().lookupPatchField<surfaceScalarField, scalar>("srUA");

const fvPatchField<scalar>& srho =
 patch().lookupPatchField<volScalarField, scalar>("rho");

 return(deltaM()/(-srUA*patch().magSf()*srho)); //to remove the
laplacian operator (see gaussLaplacianScheme)
}

Listing 16.17 Script used to reset the diagonal coefficients and to return only the diffusion
contribution or a total pressure boundary condition at inlet

684 16 Fluid Flow Computation: Compressible Flows

The modified diagonal coefficient of the pressure correction equation for a

boundary element is computed in Listing 16.18. Here the function deltaM()

implements Eq. (16.44) as is, while the diffusion term “(-srUA*patch().magSf()

*srho)” is removed from the coefficient of the pressure correction equation, as

defined by the laplacian operator (see Chap. 8, computational pointers).

• totalTemp: This function implements for the energy equation the total tem-

perature boundary condition at a subsonic inlet. The idea is to impose a static

temperature as a Dirichlet boundary condition using Eq. (16.45). For that pur-

pose the updateCoeffs() function is modified as in Listing 16.19.

Field<scalar> totalPressureCorrectorCompFvPatchScalarField::deltaM()
const
{

 const fvPatchField<scalar>& T =
 patch().lookupPatchField<volScalarField, scalar>("T");

 const fvPatchField<scalar>& srho =
 patch().lookupPatchField<volScalarField, scalar>("rho");

const fvPatchField<scalar>& RB =
 patch().lookupPatchField<volScalarField, scalar>("RGas");

const fvsPatchField<scalar>& srUA =
 patch().lookupPatchField<surfaceScalarField, scalar>("srUA");

const fvsPatchField<scalar>& sphi =
 patch().lookupPatchField<surfaceScalarField, scalar>("mDot");

 scalarField Dp = patch().magSf()*patch().deltaCoeffs()*srUA;

 scalarField coeff = srho*Dp/(scalar(1.0) + srho*Dp*Cu() - (sphi/
srho)*Cu()/(RB*T));

return (coeff);
}

Listing 16.18 Script used to modify the diagonal coefficient of the boundary element for a total
pressure boundary condition at inlet

16.9 Computational Pointers 685

At each iteration the temperature value is updated based on the inlet total

temperature and the boundary velocity.

• totalVelocity: This function, described in Listing 16.20, implements the updates

to the velocity field required with total conditions applied at a subsonic inlet. For

that purpose a Dirichlet boundary condition is used, with velocity values iter-

atively computed based on the calculated fluxes “mDot” at the boundary itself.

The algorithm is based on grabbing the flux field “mDot” (updated with new

values after solving the pressure correction equation by invoking the “flux()”

function) and dividing the flux by the face area and the corresponding density.

 const fvPatchField<vector>& Up =
 patch().lookupPatchField<volVectorField, vector>("U");

 const fvPatchField<scalar>& gammaB =
 patch().lookupPatchField<volScalarField, scalar>("gammaGas");

 scalarField gM1ByG = (gammaB - 1.0)/gammaB;

 const fvPatchScalarField& TB =
 patch().lookupPatchField<volScalarField, scalar>("T");

 const fvPatchField<scalar>& RB =
 patch().lookupPatchField<volScalarField, scalar>("RGas");

 scalarField psip = scalar(1.0)/(RB * TB);

 operator==
 (
 T0_/(1.0 + 0.5*psip*gM1ByG*magSqr(Up))
);

Listing 16.19 Modified updateCoeffs() function for implementing the total temperature boundary
condition at a subsonic inlet

const fvsPatchField<scalar>& sphi =
 patch().lookupPatchField<surfaceScalarField, scalar>("mDot");

 const fvPatchField<scalar>& rhop =
 patch().lookupPatchField<volScalarField, scalar>("rho");

 vectorField n = patch().nf();
 scalarField ndmagS = (n & inletDir())*patch().magSf();

 scalarField clip = neg(sphi);

 scalarField newvel = (sphi*clip)/(rhop*ndmagS);

 operator==(inletDir()*newvel);
);

Listing 16.20 Updating the velocity at a subsonic inlet for a total pressure boundary condition

686 16 Fluid Flow Computation: Compressible Flows

Additionally, a clipping variable is introduced in order to prevent any “back-

flow” at the inlet. Here the “clip” variable may assume either a value of zero or one.

In fact the “neg” function returns 1 and 0 for negative and positive values,

respectively, preventing outward velocities to be accepted. On the other hand, the

“inletDir” variable gives the velocity direction at inlet, as defined by the user.

16.10 Closure

In this chapter the incompressible segregated pressure based approach developed in

the previous chapter was extended to handle compressible fluid flow at all speeds.

This involved modifying the pressure correction equation to include a convection-

like term that changes its type from elliptic to hyperbolic. It also required alterations

to the momentum equations, the solution of the energy equation, as well as the

addition of an equation of state. Just as critical, are the special boundary conditions

needed in the simulation of compressible flows. A number of boundary conditions

were presented as well as some implementation details.

The needed modifications to the base incompressible code represent a relatively

small change to the bulk of any code and yet allow a drastic extension of its

capabilities. The next chapter will present the additional techniques needed for

dealing with the time averaged Navier-Stokes equations required for solving tur-

bulent flow problems.

16.11 Exercises

Exercise 1 A portion of a gas-supply system is shown in Fig. 16.4. The mass flow

rate _m in a pipe section is given by

_m ¼ qCDp

where Dp is the pressure drop over the length of the pipe section, q is the gas

density, and C is the gas conductance. The following data is known:

p1 ¼ 400; p2 ¼ 350

_mF ¼ 25

CA ¼ CC ¼ 1:2;CB ¼ 1:4;CD ¼ 1:6;CE ¼ 1:8

with the density related to the pressure via p ¼ qR0 with R0 ¼ 2000.

If the direction of the flow is as shown in the figure, find p3; p4; p5; _mA; _mB;
_mC; _mD and _mE using the following procedure:

16.9 Computational Pointers 687

• Start with a guess for p3; p4; and p5.

• Compute _m� values based on the guessed pressures and densities.

• Construct the pressure-correction equations and solve for p03; p
0
4 and p05.

• Update the pressures and the _m� values

Do you need to iterate? Why?

Exercise 2 Consider the flow of an ideal gas in a converging nozzle shown in

Fig. 16.5, where each of the control volumes has Dx ¼ 0:5. The area of the various
surfaces are Abi ¼ 3; Aw ¼ 2:3; Ae ¼ 1:6; Abo ¼ 0:9 with R ¼ 2078 and c ¼ 1:4.

The variable area flow is assumed to be one-dimensional and isentropic. At inlet

the total pressure is po;i ¼ 100701:8 Pa and the stagnation temperature is

To;i ¼ 303K. At exit the static pressure is pe ¼ 105 kPa. Setup the momentum and

pressure correction equations for the three control volumes and obtain the values of

the velocity, pressure, density, and temperature starting with uniform fields of

values M ¼ 0:1 M is the Mach numberð Þ; T ¼ 290K, and p ¼ 105 Pa. Perform

three iterations. Note that there is no need to solve the energy equation as the

temperature field can be extracted from the constant stagnation temperature

condition.

u, p

W C E

m f

ub , pb

b
ewb

i b
o

Fig. 16.5 Converging nozzle

p
1

= 400

p
2

= 350

m
A

m
B

m
C

m
D

m
E

p
3

p
4

p
5

mF = 25

Fig. 16.4 A portion of a gas
supply system

688 16 Fluid Flow Computation: Compressible Flows

Exercise 3 Consider the flow of an ideal gas in a diverging nozzle shown in

Fig. 16.6, where each of the control volumes has Dx ¼ 0:5. The area of the various
surfaces are Abi ¼ 0:9; Aw ¼ 1:6; Ae ¼ 2:3; Abo ¼ 3 with R ¼ 2078 and c ¼ 1:4.

u, p

W C E

m f

ub , pb

b
ewb

i b
o

Fig. 16.6 Diverging nozzle

The variable area flow is assumed to be one-dimensional and isentropic. At inlet

the total pressure is pi ¼ 1bar, the Mach number is Mi ¼ 1:2, and the temperature

is Ti ¼ 303K. At exit the flow remains supersonic. Setup the momentum and

pressure correction equations for the three control volumes and obtain the values of

the velocity, pressure, density, and temperature starting with uniform fields of

valuesM ¼ 1:2; T ¼ 303K, and p ¼ 1bar. Perform three iterations. Note that there

is no need to solve the energy equation as the temperature field can be extracted

from the constant stagnation temperature condition.

Exercise 4 (OpenFOAM®)

Define in the simpleFoamCompressible solver a new variable for the local Mach

number to be visualized during simulation.

Exercise 5 (OpenFOAM®
)

Modify in the totalPressureCorrectorComp boundary condition, the way

Eq. (16.44) is imposed, using now the valueInternalCoeffs() function while reset-

ting the gradientInternalCoeffs(). (Hint: consult Chaps. 11 and 19)

Exercise 6 (OpenFOAM®)

Check the rhoSimpleFoam solver that can be found in $FOAM_SRC/../

applications/solvers/compressible/rhoSimpleFoam/pEqn.C and compare it with the

algorithm described in this chapter.

Exercise 7 (OpenFOAM®)

Develop a compressible PISO algorithm and implement it starting with the

simpleFoamCompressible code described in this chapter.

References

1. Harlow FH, Amsden AA (1968) Numerical calculation of almost incompressible flow.
J Comput Phys 3:80–93

2. Harlow FH, Amsden AA (1971) A numerical fluid dynamics calculation method for all flow
speeds. J Comput Phys 8(2):197–213

16.11 Exercises 689

3. Patankar SV (1971) Calculation of unsteady compressible flows involving shocks. Mechanical
Engineering Department, Imperial College, Report UF/TN/A/4

4. Issa RI, Lockwood FC (1977) On the prediction of two-dimensional supersonic viscous
interactions near walls. AIAA J 15:182–188

5. Hah C (1984) A Navier-Stokes analysis of three-dimensional turbulent flows inside turbine
blade rows at design and off-design conditions. ASME J Eng Gas Turbines Power 106:421–
429

6. Hah C (1986) Navier-Stokes calculation of three-dimensional compressible flow across a
cascade of airfoils with an implicit relaxation method. AIAA Paper 86-0555

7. Issa RI, Gosman D, Watkins A (1986) The computation of compressible and incompressible
recirculating flows by a non-iterative implicit scheme. J Comput Phys 62:66–82

8. Karki KC (1986) A calculation procedure for viscous flows at all speeds in complex
geometries. Ph.D. thesis, Department of Mechanical Engineering, University of Minnesota

9. Van Doormaal JP, Turan A, Raithby GD (1987) Evaluation of new techniques for the
calculations of internal recirculating flows. AIAA Paper 87-0057

10. Rhie CM, Stowers ST (1987) Navier-Stokes analysis for high speed flows using a pressure
correction algorithm. AIAA Paper 87-1980

11. Van Doormaal JP (1985) Numerical methods for the solution of incompressible and
compressible fluid flows. Ph.D. Thesis, University of Waterloo, Ontario, Canada

12. Van Doormaal JP, Raithby GF, McDonald BD (1987) The segregated approach to predicting
viscous compressible fluid flows. ASME J Turbomach 109:268–277

13. Karki KC, Patankar SV (1989) Pressure based calculation procedure for viscous flows at all
speeds in arbitrary configurations. AIAA J 27:1167–1174

14. Demirdzic I, Issa RI, Lilek Z (1990) Solution method for viscous flows at all speeds in
complex domains. In Wesseling P (ed) Notes on numerical fluid mechanics, vol 29, Vieweg,
Braunschweig

15. Demirdzic I, Lilek Z, Peric M (1993) A collocated finite volume method for predicting flows
at all speeds. Int J Numer Meth Fluids 16:1029–1050

16. Moukalled F, Darwish M (2000) A unified formulation of the segregated class of algorithms
for fluid flow at all speeds. Numer Heat Transf Part B: Fundam 37:103–139

17. Rhie CM (1986) A pressure based Navier-Stokes solver using the multigrid method. AIAA
paper 86-0207

18. Moukalled F, Darwish M (2001) A high resolution pressure-based algorithm for fluid flow at
all-speeds. J Comput Phys 169(1):101–133

19. Turkel IE (1987) Preconditioning methods for solving the incompressible and low speed
compressible equations. J Comput Phys 72:277–298

20. Turkel IE, Vatsa VN, Radespiel R (1996) Preconditioning methods for low speed flows. AIAA
Paper 96-2460, Washington

21. Merkle CL, Sullivan JY, Buelow PEO, Venkateswaran S (1998) Computation of flows with
arbitrary equations of state. AIAA J 36(4):515–521

22. Moukalled F, Darwish M (2006) Pressure based algorithms for single-fluid and multifluid
flows. In: Minkowycz WJ, Sparrow EM, Murthy JY (eds) Handbook of numerical heat
transfer, 2nd edn. Wiley, pp 325–367

23. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, NewYork
24. Nerinckx K, Vierendeels J, Dick E (2005) A pressure-correction algorithm with mach-uniform

efficiency and accuracy. Int J Numer Meth Fluids 47:1205–1211
25. Nerinckx K, Vierendeels J, Dick E (2006) A mach-uniform pressure-correction algorithm with

AUSM + Flux definitions. Int J Numer Meth Heat Fluid Flow 16(6):718–739
26. Karimian SMH, Schneider GE (1995) Pressure-based control-volume finite element method

for flow at all speeds. AIAA J 33(9):1611–1618
27. OpenFOAM, 2015 Version 2.3.x. http://www.openfoam.org

690 16 Fluid Flow Computation: Compressible Flows

Part IV

Applications

Chapter 17

Turbulence Modeling

Abstract This chapter addresses some of the challenges that arise when solving

turbulent flow problems. It is not intended to provide a comprehensive account on

turbulence modeling, rather, the intention is simply to introduce the subject and

focus on the implementation details of some of the most popular turbulence models.

The presentation is limited to incompressible turbulent fluid flow and begins with a

general introduction to turbulence modeling. Then the Reynolds stress tensor that

originates from the adopted averaging procedure and the Boussinesq hypothesis

used in modeling the Reynolds stresses are presented. This is followed by a review

of the k − ε and k − ω two-equation models. These are the most popular of the high

Reynolds number and low Reynolds number turbulence models, respectively. The

BSL and SST models are then introduced, both are derived by combining the k − ε

and k − ω models so as to address their respective weaknesses. Finally the treatment

of the near wall region is presented in detail.

17.1 Turbulence Modeling

In deriving the Navier-Stokes equation in Chap. 3 no mention was made to whether

the flow is laminar or turbulent. Whereas laminar flows are stable, turbulent flows

are chaotic, diffusive causing rapid mixing, time-dependent, and involve three-

dimensional vorticity fluctuations with a broad range of time and length scales [1].

Turbulence typically develops as an instability of laminar flows appearing at a

certain critical Reynolds number. In the fluid, these instabilities are caused by the

amplification of the perturbation due to the highly non-linear inertial terms.

The most accepted theory of turbulence is based on the “energy cascade” con-

cept developed by Kolmogorov [2, 3]. According to this theory, turbulence is

composed of eddies of different sizes with each one possessing a certain amount of

energy that depends on its dimension. The larger eddies break up transferring their

energy to smaller size eddies in a chain process by which the smaller newly formed

eddies undergo similar breakup processes and transfer their energy to even smaller

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_17

693

eddies. This break up process continues until the smallest possible eddy size is

reached. The smallest eddies are of scales at which the molecular viscosity is very

effective at dissipating the turbulent kinetic energy as heat.

The smallest turbulent eddies are characterized by the Kolmogorov micro length

(η) and time (tη) scales given by

g ¼ v3

e

� �1
4

tg ¼
v

e

� �1
2 ð17:1Þ

where v is the molecular kinematic viscosity and ε the average rate of dissipation of

turbulent kinetic energy that will be defined later. In addition, the size of the largest

eddies, which is also known by the integral length scale, is defined as being pro-

portional to the size of the geometry involved.

Based on the energy cascade concept a direct numerical solution of the Navier-

Stokes equation for turbulent flows necessitates the use of a very small time step

limited by a Courant number below 1 and a fine mesh (Δx < η) resulting in a large

number of grid points (proportional to Re
3) to resolve the entire spectrum of

temporal and spatial turbulent scales involved. This computationally demanding

approach, which is denoted in the literature by Direct Numerical Simulation (DNS),

has been used by few workers [4–7] in a limited number of simple studies. Due to

its prohibitive computational cost the DNS approach cannot currently be employed

to solve industrial problems. Future advances in computer technology may change

the situation in favor of the DNS.

To reduce the large computational cost associated with a direct solution of the

Navier-Stokes equation, statistical analyses can be used to simplify the resolution of

turbulent flows. The time-dependent nature of turbulence together with its wide

range of time scales suggest that statistical averaging techniques can be applied to

approximate random fluctuations. Time averaging, however, leads to correlations

that are not known a priori arising from the nonlinear terms in the equations of

motion. Modeling these transpiring correlations constitutes the classic closure

problem of turbulence modeling.

Following the statistical approach, workers have devised methods that are

computationally less intensive than the DNS. One such method is the large eddy

simulation (LES) [8–11], in which large scale turbulent structures are directly

simulated whereas small turbulent scales are modeled using sub-grid scale models.

The key concept in the LES is to filter the Navier-Stokes equation to determine

which scales to keep and which scales to discard. This is done by applying a spatial

statistical filter of the form

vðx; tÞh i ¼
ZZZ

Fðx� k : DÞvðx; tÞd3k ð17:2Þ

where the filter function retains values of v occurring on scales larger than the filter

width Δ. The filter function F, is basically some function which is effectively zero

694 17 Turbulence Modeling

for values of v occurring at small scales. Here the symbol 〈 〉 indicates a filtered

variable.

Thus in the LES approach, turbulent structures of scales larger than the set

minimum filter are not filtered. This has the advantage of directly resolving the

larger eddies with the higher content of energy (anisotropic turbulence) while the

smallest eddies are simply modeled. Accurate modeling of these eddies is possible

since at the smaller scale (below the filter width) turbulence can be considered

isotropic and independent of the flow type and boundary conditions. With the

recent advances in computer technology the use of LES to solve industrial problems

is gaining acceptance.

Nevertheless, currently the most popular approach for tackling industrial tur-

bulent flow problems is the one based on solving the Reynolds Averaged Navier-

Stokes (RANS) equations [12] where the statistical averaging is now based not on

spatial averaging but on a proper time. The key approach is to decompose the flow

variables into a time-mean value component and a fluctuating one (Fig. 17.1),

substituting in the original equations, and time-averaging the obtained equations.

Even though the name refers to the Navier-Stokes equation, the decomposition is

applied to all governing equations. Two tracks for averaging the equations have

been followed. The standard Reynolds averaging, which is used to derive the

Reynolds-Averaged Navier-Stokes (RANS) equations [12], and the mass-weighted

or Favre averaging technique employed with turbulent compressible flows and

leading to the Favre-Averaged Navier-Stokes (FANS) equations [13]. Following

either path, the intention is to model all scales of turbulent flow. Therefore with this

approach the mesh size limitation is not as constraining as in the DNS and LES

approaches.

In what follows the development of the RANS equations for an incompressible

flow is presented.

t

Fig. 17.1 Fluctuating and

mean variable components

17.1 Turbulence Modeling 695

17.2 Reynolds Averaging

Let ϕ represents at time t and position x the instantaneous value of any of the flow

variables involved (v, p, e, h, T, ρ, etc.). Then, as shown in Fig. 17.1, it is

decomposed into a mean value component /ðx; tÞ and a fluctuating component

/0ðx; tÞ such that

/ðx; tÞ ¼ /ðx; tÞ þ /0ðx; tÞ ð17:3Þ

the mean value / is computed by any of the three Reynolds averaging techniques

[12] presented below, of which the time averaging is the most widely used.

17.2.1 Time Averaging

Time averaging represents the average of a quantity over a time interval and is

suitable for steady turbulent flows, that is flows which, on average, do not vary with

time. If T is the interval over which averaging is performed, then /, which depends

only on location, is computed as

/ðxÞ ¼ lim
T!1

1

T

ZtþT

t

/ðx; tÞdt ð17:4Þ

If / varies slowly with time in comparison with the time scale of turbulent

fluctuations, the above equation is replaced by

/ðx; tÞ ¼ 1

T

ZtþT

t

/ðx; tÞdt ð17:5Þ

17.2.2 Spatial Averaging

Spatial averaging represents the average of a quantity over a space interval or a

volume V and is suitable for homogeneous turbulence. In this case /, which only

depends on time, is computed as

/ðtÞ ¼ lim
V!1

1

V

Z

V

/ðx; tÞdV ð17:6Þ

696 17 Turbulence Modeling

17.2.3 Ensemble Averaging

Ensemble averaging, which is suitable for any type of turbulent flows including

unsteady turbulent flows, represents the average of many identical quantities at a

certain time. If the number of identical quantities is designated by N, then /, which

in this case is a function of space and time, is given by

/ðx; tÞ ¼ lim
N!1

1

N

XN

i¼1
/ðx; tÞ ð17:7Þ

17.2.4 Averaging Rules

If ϕ and φ are two variables and ϕ′ and φ′ are their fluctuating components, then some

of the averaging rules needed in deriving the RANS equations include the following:

/0 ¼ 0

/ ¼ /

r/ ¼ r/
/þ u ¼ /þ u

/u ¼ /u

/u0 ¼ 0

/u ¼ /uþ /0u0

ð17:8Þ

17.2.5 Incompressible RANS Equations

The incompressible Reynolds-averaged Navier–Stokes equations are based on time-

averaged variables. Decomposing the velocity, pressure, and temperature fields into

v ¼ vþ v0

p ¼ pþ p0

T ¼ T þ T 0

v ¼ uiþ vjþwk
v0 ¼ u0iþ v0jþw0k

ð17:9Þ

and substituting v, p, and T by their decomposed expressions in the incompressible

continuity, momentum, and energy equations given by Eqs. (3.13), (3.39), and (3.78),

17.2 Reynolds Averaging 697

respectively, assuming a Newtonian fluid, and taking the time average, these

equations are transformed to

r � ½qðvþ v0Þ� ¼ 0 ð17:10Þ

@

@t
½qðvþ v0Þ� þ r � qðvþ v0Þðvþ v0Þf g ¼ �rðpþ p0Þ

þr � l rðvþ v0Þ þ rðvþ v0Þð ÞT
h in o

þ fb ð17:11Þ

@

@t
½qcpðT þ T 0Þ� þ r � qcpðvþ v0ÞðT þ T 0Þ

� �
¼ r � krðT þ T 0Þ

� �
þ ST ð17:12Þ

The Reynolds averaged forms of Eqs. (17.10)–(17.12) are obtained as

r � ½qv� ¼ 0 ð17:13Þ

@

@t
½qv� þ r � qvvf g ¼ �rpþ r � s� qv0v0

� 	� �
þ fb ð17:14Þ

@

@t
qcpT
� �

þr � qcpvT
� �

¼ r � krT � qcpv0T 0
� �

þ ST ð17:15Þ

The above Reynolds averaged equations are similar to the original conservation

equations with the exception of the additional averaged products of the fluctuating

components due to the non-linear terms. This introduces six new unknowns (the

components of the tensor �qv0v0, known as the Reynolds stress tensor sR) to the

momentum equations and three new unknown turbulent heat fluxes

_qR ¼ �qcpv0T 0
� 	

to the energy equation. The expanded forms of the Reynolds

stress tensor sR and turbulent heat flux vector are given by

s
R ¼ �q

u0u0 u0v0 u0w0

u0v0 v0v0 v0w0

u0w0 v0w0 w0w0

0

@

1

A _qR ¼ �qcp
u0T 0

v0T 0

w0T 0

2

4

3

5 ð17:16Þ

Consequently the set of RANS equations is not a closed set and to be able to

solve it additional equations for the unknown Reynolds stress components are

required. The process of calculating these Reynolds stresses is denoted in the

literature by turbulence modeling. Attempting to develop such equations by using

the original conservation equations results in additional unknowns (such as triple

products of the fluctuating components) complicating the problem further. The

Reynolds stress tensor comes from the non-linear convection term of both

momentum and temperature confirming that the turbulence itself is the effect of a

non-linear phenomena highly sensitive to any perturbation. Therefore any linear

averaging of the equations, like the Reynolds averaging techniques, cannot reduce

698 17 Turbulence Modeling

the order of the problem. The complexity is actually recursive in that trying to

develop additional equations for the triple products, quadruple products arise and so

on. To overcome this problem, any turbulence model has to close the system of

equations by expressing the non-linear fluctuating stress components only in terms

of the mean components as described next.

17.3 Boussinesq Hypothesis

The direct modeling of the Reynolds stress tensor is based on the Boussinesq

hypothesis [14–16], which in analogy with Newtonian flows assumes the Reynolds

stress to be a linear function of the mean velocity gradients such that

s
R ¼ �qv0v0 ¼ lt rvþ rvð ÞT

n o

� 2

3
qk þ lt r � vð Þ½ �I ð17:17Þ

which for incompressible flows reduces to

s
R ¼ �qv0v0 ¼ lt rvþ rvð ÞT

n o

� 2

3
qkI ð17:18Þ

where from now on the over bar is dropped from the averaged quantities to simplify

the notation, k is the turbulent kinetic energy defined as

k ¼ 1

2
v0 � v0 ð17:19Þ

and μt the turbulent eddy viscosity (in analogy with molecular viscosity), which is

now flow, not fluid, dependent. With this approximation, the problem of calculating

the Reynolds stress components is transformed into computing the turbulent kinetic

energy and turbulent viscosity. For incompressible flows the term −(2/3)ρkI in the

Reynolds stress is usually combined with the pressure gradient term by defining a

turbulent pressure p as

p pþ 2

3
qk ð17:20Þ

thereby reducing the unknowns to μt alone, which is evaluated using a variety of

turbulence models.

In a similar way, the turbulent thermal fluxes are calculated in analogy with

Fourier’s law such that

_qR ¼ �qcpv0T 0 ¼ ktrT ð17:21Þ

where kt is the turbulent thermal diffusivity calculated as will be explained later.

17.2 Reynolds Averaging 699

17.4 Turbulence Models

Several turbulence models based on the Boussinesq hypothesis have been devel-

oped to express the turbulent viscosity, μt, in terms of a velocity ð
ffiffiffi

k
p
Þ and length

‘ð Þ scales such that

lt ¼ q‘
ffiffiffi

k
p

ð17:22Þ

These models are grouped, into four main categories:

• Algebraic (Zero-Equation) Models

• One-Equation Models

• Two-Equation Models

• Second-Order Closure Models

None of the developed models is universally applicable to all flow conditions.

Though each group has certain advantages and strengths.

The zero-equation models [17–19] use an algebraic equation to compute μt
without the need to solve any differential equation. The one-equation models [20–22]

require solving only one transport differential equation to compute the turbulent eddy

viscosity. Two-equation turbulence models [23–35] necessitate the solution of two

transport equations for the calculation of μt. The second-order closuremodels [36–41]

are the most computationally expensive as separate transport equations are solved for

the individual turbulent fluxes (6 equations).

The two-equation turbulence models are the most popular in terms of usage in

the simulation of industrial applications, requiring the solution of two transport

equations while delivering accurate enough predictions. The k − ε model of Jones

and Launder [23] was amongst the earliest two equation models and the most

popular, while the k − ω model of Wilcox [28, 29] comes as a close second. Both

models had undergone many modifications and improvements [26, 30], which have

greatly extended their applicability.

17.5 Two-Equation Turbulence Models

17.5.1 Standard k − ε Model

The well-known k − ε model of Jones and Launder [23], known as the standard

k − ε model, is based on the Boussinesq approximation with the turbulent viscosity

μt and thermal diffusivity kt formulated as

lt ¼ qCl

k2

e

kt ¼
cplt
Prt

ð17:23Þ

700 17 Turbulence Modeling

where ε is the rate of dissipation of turbulence kinetic energy per unit mass due to

viscous stresses given by

e ¼ 1

2

l

q
rv0 þ ðrv0ÞT
� �

: rv0 þ ðrv0ÞT
� �

ð17:24Þ

In the model, the turbulent kinetic energy k and the turbulent energy dissipation

rate ε are computed using

@

@t
ðqkÞ þ r � ðqvkÞ ¼ r � ðleff ;krkÞ þ Pk � qe

|fflfflfflffl{zfflfflfflffl}

Sk

ð17:25Þ

@

@t
ðqeÞ þ r � ðqveÞ ¼ r � ðleff ;ereÞ þ Ce1

e

k
Pk � Ce2q

e2

k
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Se

ð17:26Þ

where

leff ;k ¼ lþ lt
rk

leff ;e ¼ lþ lt
re

ð17:27Þ

with the turbulent Prandtl number (Prt) and other model constants assigned the

following values: Cε1 = 1.44, Cε2 = 1.92, Cμ = 0.09, σk = 1.0, σε = 1.3 and Prt = 0.9.

The compact form of the production of turbulent energy term is given by

Pk ¼ s
R
:rv ð17:28Þ

while its expanded form for incompressible flow can be obtained by multiplying

Eq. (3.75) by μt.

In the derivation of the standard k − ε model the flow is assumed to be fully

turbulent and the effects of molecular viscosity to be negligible. Therefore the

standard k − ε model is a high Reynolds number turbulence model valid only for

fully turbulent free shear flows that cannot be integrated all the way to the wall.

Modeling flows close to solid walls requires integration of the two equations

over a fine grid in order to correctly capture the turbulent quantities inside the

boundary layer as well as the corrections for low Reynolds number effects. A

turbulence model that can be integrated all the way to the wall is denoted in the

literature by a low Reynolds number turbulence model or a low Reynolds number

version. Several so called low Reynolds number k − ε models have been proposed

over the years (see Patel et al. [42] and Wilcox [29] for a review). The idea behind

their development is to damp the turbulent viscosity near the wall through the use of

a damping function that tends towards zero as the distance to the wall decreases,

i.e., as the wall is approached. Constants multiplying source terms in the turbulent

dissipation equation are in some models also damped. All models share the same

basic structure differing in the tuning of the damping functions and in some extra

sources in the dissipation equation.

17.5 Two-Equation Turbulence Models 701

The only exception to this rule is the k − ω turbulence model of Wilcox [28, 29],

which can be integrated all the way to the wall without the need to employ damping

functions. Still the model can also be used as a high Reynolds number model.

One of the main drawback of the two-equation models is the so called stagnation

point anomaly. In high strain regions the two-equation models tend to over predict

the turbulence kinetic energy production Pk. This was originally recognized in

stagnation point flows, but it is a more widespread anomaly. The problem is an

overproduction of the turbulence kinetic energy for the case when a moderate level

of k is subjected to a large rate of strain. This may be attributed to an underesti-

mation of the sink term and/or an overestimation of the turbulent viscosity. These

ideas could be merged together into a bound on the local turbulent time scale ts=k/ε

(Medic and Durbin [43]). The first step is to reformulate the expression for the

turbulent viscosity as

lt ¼ qClkts ð17:29Þ

Then using ts, the ε equation is modified to

@

@t
ðqeÞ þ r � ðqveÞ ¼ r � ðleff ;ereÞ þ Ce1

1

ts
Pk � Ce2q

e

ts
ð17:30Þ

Finally, to constrain the Reynolds stress tensor to be positive definite, a limiter is

applied on ts such that

ts ¼ min
k

e
;

a
ffiffiffi

6
p

ClSt

" #

;

a ¼ 0:6
St ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
St � St
p

St ¼
1

2
rvþrvT
� 	

ð17:31Þ

As a consequence, at a large rate of strain, Pk grows at the rate St rather than S2t .

17.5.2 The k − ω Model

It has already been mentioned how the family of k − ε models are well behaved for

free-shear flows while are likely to fail in predicting flows with adverse pressure

gradient. Another class of models, for which the equation for ε is replaced by an

equation for ω, where ω is the rate at which turbulence kinetic energy is converted

into internal thermal energy per unit volume and time, is better capable of pre-

dicting separated flows.

The first complete turbulence model in this category was proposed by

Kolmogorov [27]. In addition to the same equation for k, Kolmogorov developed a

702 17 Turbulence Modeling

second equation for ω. The reciprocal of ω serves as a local turbulence time scale

while the turbulence length scale is given by
ffiffiffi

k
p

=x. The k − ω model introduced

next is proposed by Wilcox [29] as an evolution to the well-known k − ω model

that Wilcox reported in [28].

The k − ω model of Wilcox [29] is similar in structure to the k − ε model and is

also based on the Boussinesq approximation. Two transport equations are solved to

determine the two (large) scales of turbulence. The specific turbulence dissipation ω

is defined as

x ¼ e

Clk
ð17:32Þ

The advantages of replacing the ε-equation by theω-equation are: (i) the second is

easier to integrate (more robust), (ii) it can be integrated through the sub-layer

without the need for additional damping functions, and (iii) it performs better for

flows with weak adverse pressure gradient. The conservation equations are written as

@

@t
ðqkÞ þ r � ðqvkÞ ¼ r � ðleff ;krkÞ þ Pk � b�qkx

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Sk

ð17:33Þ

@

@t
ðqxÞ þ r � ðqvxÞ ¼ r � ðleff ;xrxÞ þ Ca1

x

k
Pk � Cb1qx

2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Sx

ð17:34Þ

with the model constants assigned the values

Ca1 ¼ 5=9;Cb1 ¼ 0:075; b� ¼ 0:09; rk1 ¼ 2; rx1 ¼ 2;Prt ¼ 0:9:

where

lt ¼ q
k

x

kt ¼
lt
Prt

leff ;k ¼ lþ lt
rk1

leff ;x ¼ lþ lt
rx1

ð17:35Þ

The major drawback of the Wilcox model is its sensitivity to the free stream [30]

specified values, which leads to strong dependence of the solution on the arbitrary

specification of the free stream ω. This dependence is not present in the k − ε

model.

17.5 Two-Equation Turbulence Models 703

17.5.3 The Baseline (BSL) k − ω Model

The Baseline (BSL) model developed by Menter [32] combines the k − ε and k − ω

models so as to take advantage of their respective strength, i.e. the robustness of the

k − ω model near wall surfaces due to its simple low Reynolds number formulation

and its ability to compute flows with weak adverse pressure gradients accurately,

and the better performance of the k − ε model near the boundary layer edge and

away from walls, due to its insensitivity to the free stream values. The basis of this

technique is the transformation of the k − ε model to a k − ω formulation. This is an

exact conversion, except for small contributions from the diffusion term due to the

difference in the diffusion coefficients of the k and ε equations. The k − ω for-

mulation of the k − ε model is given by

@

@t
ðqkÞ þ r � ðqvkÞ ¼ r � ðleff ;krkÞ þ Pk � b�qkx

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Sk

ð17:36Þ

@

@t
ðqxÞ þ r � ðqvxÞ ¼r � ðleff ;xrxÞ

þ Ca2

x

k
Pk � Cb2qx

2 þ 2rx2
q

x
rk � rx

|ffl{zffl}

Sx

ð17:37Þ

The differences between this formulation and the original k − ω model are in the

additional cross-diffusion term appearing in the equation for ω and in the modeling

constants that are given by

Ca2 ¼ 0:4404;Cb2 ¼ 0:0828; rk2 ¼ 1:0; rx2 ¼ 0:856 andPrt ¼ 0:9:

The BSL k − ω model is derived by multiplying the k − ω (Eqs. 17.33 and

17.34) with a blending function F1 and the k − ω formulation of the k − ε model

equations (Eqs. 17.36 and 17.37) by (1 − F1), yielding the following equations for

k and ω [32]:

@

@t
ðqkÞ þ r � ðqvkÞ ¼ r � ðleff ;krkÞ þ Pk � b�qkx

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Sk

ð17:38Þ

@

@t
ðqxÞ þ r � ðqvxÞ ¼ r � ðleff ;xrxÞ þ ~Ca

x

k
Pk � ~Cbqx

2 þ 2ð1� F1Þrx2
q

x
rk � rx

|ffl{zffl}

Sx

ð17:39Þ

These equations are formally very similar to those of the standard k − ω model,

however all their coefficients depend on the blending function F1, in the form

704 17 Turbulence Modeling

~U ¼ F1U1 þ ð1� F1ÞU2 ð17:40Þ

with the constants of the original k − ω model used in Eq. (17.39) given by

Ca1 ¼ 0:5976;Cb1 ¼ 0:075; b� ¼ 0:09; rk1 ¼ 2; rx1 ¼ 2;Prt ¼ 0:9:

The blending function F1 depends on the solution variables and on the distance

d⊥ from the nearest wall and is given as

F1 ¼ tanhðc41Þ ð17:41Þ

where

c1 ¼ Min Max

ffiffiffi

k
p

b�xðd?Þ
;
500v

ðd?Þ2x

 !

;
4qrx2k

CDkxðd?Þ2

 !

CDkx ¼ Max 2qrx2
1

x
rk � rx; 10�10

� � ð17:42Þ

and

lt ¼ q
k

x

kt ¼
lt
Prt

leff ;k ¼ lþ lt
~rk

leff ;x ¼ lþ lt
~rx

ð17:43Þ

The BSL model has a similar performance as the k − ω model for boundary layer

flows and is nearly identical to the k − ε model for free shear flows. Its robustness is

close to that of the k − ω model.

17.5.4 The Shear Stress Transport (SST) k − ω Model

Further modifications to the BSL model yields the Shear Stress Transport (SST)

[32–35] model which, when compared to other eddy-viscosity models, has an

improved adverse pressure gradient performance. The first modification is related to

satisfying Bradshaw’s assumption, which states that the principal shear stress and

the turbulent kinetic energy in the boundary layer are linearly related via an

equation of the form

sxy ¼ qa1k ð17:44Þ

17.5 Two-Equation Turbulence Models 705

On the other hand, the principal shear stress for conventional two-equation

turbulence models can be computed as

sxy ¼ ltX ¼ q

ffi

Production of k

Dissipation of k

s

a1k ð17:45Þ

where Ω is the vorticity. In flows with adverse pressure gradient the ratio of

production of turbulent kinetic energy to its dissipation rate could be much larger

than one, thereby substantially violating Bradshaw’s hypothesis. For Eq. (17.44) to

be satisfied within the framework of eddy-viscosity models, Menter [35] modified

the turbulent viscosity μt in the SST k − ω model by bounding it according to

lt ¼
qa1k

Maxða1x;
ffiffiffi

2
p

StF2Þ
ð17:46Þ

where a1 = 0.31, St is the magnitude of the strain rate defined in Eq. (17.31), and F2

is given by [35]

F2 ¼ tanhðc22Þ with c2 ¼ Max 2

ffiffiffi

k
p

b�xðd?Þ
;
500v

ðd?Þ2x

 !

ð17:47Þ

Moreover, to maintain the original formulation of the eddy-viscosity for free

shear layers, the same blending function approach as for the baseline model is also

adopted in the SST k − ω model. The k and ω equations are given by Eq. (17.38)

and Eq. (17.39), respectively.

The second modification is related to the production of turbulence kinetic energy

Pk in the k equation (Eq. 17.38), which is replaced by ~Pk given by

~Pk ¼ minðPk; c1eÞ ð17:48Þ

where ε is obtained from Eq. (17.32) and the blending function F1 is calculated as in

the BSL model via Eqs. (17.41) and (17.42) with the coefficients computed by

Eq. (17.40) using the following model constants:

Ca1 ¼ 0:5532;Cb1 ¼ 0:075; b� ¼ 0:09; rk1 ¼ 2; rx1 ¼ 2; c1 ¼ 10:

Ca2 ¼ 0:4403;Cb2 ¼ 0:0828; rk2 ¼ 1:0; rx2 ¼ 1:186; and Prt ¼ 0:9:

In addition, the turbulent thermal conductivity and effective turbulent viscosities

for k and ω are computed as

kt ¼
lt
Prt

leff ;k ¼ lþ lt
~rk

leff ;x ¼ lþ lt
~rx

ð17:49Þ

706 17 Turbulence Modeling

17.6 Summary of Incompressible Turbulent Flow

Equations

The incompressible time-averaged continuity, momentum, energy, turbulence

kinetic energy, turbulence dissipation rate, and specific dissipation rate equations

can be written, respectively, as

r � ½qv� ¼ 0 ð17:50Þ

@

@t
½qv� þ r � fqvvg ¼ r � fðlþ ltÞrvg þQv ð17:51Þ

@

@t
ðqcpTÞ þ r � ½qcpvT� ¼ r � cp

l

Pr
þ lt
Prt

� �

rT
� �

þ QT ð17:52Þ

@

@t
ðqkÞ þ r � ½qvk� ¼ r � ½leff ;krk� þ Qk ð17:53Þ

@

@t
ðqeÞ þ r � ½qve� ¼ r � ½leff ;ere� þ Qe ð17:54Þ

@

@t
ðqxÞ þ r � ½qvx� ¼ r � ½leff ;xrx� þ Qx ð17:55Þ

All these equations are similar in structure and can be written in the general form

given by Eq. (3.93). As such, their discretization follows the general procedures

presented in previous chapters. A summary of their discretized forms is given in the

next section.

17.7 Discretization of the Turbulent Flow Equations

The discretization of the unsteady, convection, and diffusion terms appearing in the

conservation equations for turbulent flows, Eqs. (17.50)–(17.55), follows the pro-

cedures described in previous chapters. Moreover the discretization of the

momentum and energy equations lead to the same algebraic equations given by

Eqs. (15.74) and (16.29), with molecular viscosity and thermal conductivity replaced

by (μ + μt) and cp(μ/Pr + μt/Prt), respectively. As the flow is incompressible, the

terms involving ∇ · v are set to zero in these equations. Moreover, at low speeds the

dissipation terms involving Φ and Ψ in the energy equation being very small are

usually neglected. Another difference is related to the implementation of boundary

conditions at a wall, which will be explained later. The discretized equations for k, ε

and ω are presented below assuming a first order Euler scheme for the discretization

of the unsteady term and a high resolution scheme for the discretization of the

convection term applied in the context of a deferred correction approach.

17.6 Summary of Incompressible Turbulent Flow Equations 707

17.7.1 The Discretized Form of the k Equation

The final algebraic form of the turbulence kinetic energy equation can be written as

akCkC þ
X

F�NBðCÞ
akFkF ¼ bkC ð17:56Þ

where the coefficients are given by

akF ¼ �ðleff ;kÞf
Ef

dCF
� jj� _mf ; 0jj

akC ¼ a�C �
X

F�NBðCÞ
akF þ

X

f�nbðCÞ
_mf þ

qC
eC

kC
VC k � e model

b�qCxCVC k � x models

8

<

:

a�C ¼
qCVC

Dt

a�C ¼
q�CVC

Dt

bkC ¼ �
X

f�nbðCÞ
_mf kHRf � kUf

� �

þ a�Ck
�
C þ

ð~PkÞCVC SST k � x model

ðPkÞCVC otherwise

(

þ
X

f�nbðCÞ
ðleff ;kÞf ðrkÞf � Tf

ð17:57Þ

The discretized form of the production of turbulent kinetic energy Pk is given by

Eq. (16.27) with molecular viscosity replaced by turbulent viscosity. Moreover,

similar to other variables, under relaxation of the turbulence kinetic energy equation

is usually required.

17.7.2 The Discretized Form of the ε Equation

The final algebraic form of the turbulence dissipation rate equation can be written as

aeCeC þ
X

F�NBðCÞ
aeFeF ¼ beC ð17:58Þ

708 17 Turbulence Modeling

where the coefficients are given by

aeF ¼ � leff ;e
� 	

f

Ef

dCF
� � _mf ; 0
�
�

�
�

aeC ¼ a�C �
X

F�NBðCÞ
aeF þ

X

f�nbðCÞ
_mf þ Ce2qC

eC

kC
VC

a�C ¼
qCVC

Dt

a�C ¼
q�CVC

Dt

beC ¼
X

f�nbðCÞ
ðleff ;eÞf ðreÞf � Tf �

X

f�nbðCÞ
_mf ðeHRf � eUf Þ þ a�Ce

�
C þ Ce1

eC

kC
ðPkÞCVC

ð17:59Þ

Moreover, similar to other variables, under relaxation of the turbulence dissi-

pation rate equation is usually required.

17.7.3 The Discretized Form of the ω Equation

The final algebraic form of the specific turbulence dissipation equation can be

written as

axCxC þ
X

F�NBðCÞ
axFxF ¼ bxC ð17:60Þ

where the coefficients are given by

axF ¼ �ðleff ;xÞf
Ef

dCF
� jj � _mf ; 0jj

axC ¼ a�C �
X

F�NBðCÞ
axF þ

X

f�nbðCÞ
_mf þ aaddC

a�C ¼
qCVC

Dt

a�C ¼
q�CVC

Dt

bxC ¼
X

f�nbðCÞ
ðleff ;xÞf ðrxÞf � Tf �

X

f�nbðCÞ
_mf ðxHR

f � xU
f Þ þ a�Cx

�
C þ baddC

ð17:61Þ

17.7 Discretization of the Turbulent Flow Equations 709

The expressions for aaddC and baddC depend on the formulation of the k − ω model

used and the different expressions are given as follows:

Original formulation of the k − ω model

aaddC ¼ Cb1qCxCVC

baddC ¼ Ca1

xC

kC
ðPkÞCVC

ð17:62Þ

The k − ω formulation of the k − ε model

aaddC ¼ Cb1qCxCVC þ jj � 2rx2
qC
x2

C

ðrk � rxÞC; 0jjVC

baddC ¼ Ca1

xC

kC
ðPkÞCVC þ jj2rx2

qC
xC

ðrk � rxÞC; 0jjVC

ð17:63Þ

The BSL and SST formulation of the k − ω model

aaddC ¼ ~bqCxCVC þ jj � 2ð1� F1ÞC rx2
qC
x2

C

ðrk � rxÞC; 0jjVC

baddC ¼ ~a
xC

kC
ðPkÞCVC þ jj2ð1� F1ÞC rx2

qC
xC

ðrk � rxÞC; 0jjVC

ð17:64Þ

The discretized form of ðrk � rxÞC is computed as

ðrk � rxÞC ¼
@k

@x

� �

C

@x

@x

� �

C

þ @k

@y

� �

C

@x

@y

� �

C

þ @k

@z

� �

C

@x

@z

� �

C

ð17:65Þ

Again under relaxation of the specific turbulence dissipation equation is usually

required.

17.8 Boundary Conditions

17.8.1 Modeling Flow Near the Wall

As a turbulent flow approaches a wall its mean and fluctuating components of

velocity, and consequently k, vanish creating large gradients. In addition, the very

high turbulent stresses away from the wall, decrease in the near wall layer to values

of magnitude comparable to those of the viscous stresses. Therefore if the near wall

layer is to be resolved, a substantial number of grid points will be required.

Low Reynolds number turbulence models are capable of simulating the damp-

ening effects of the wall but at the expense of using a very large number of grid

710 17 Turbulence Modeling

points. This is the unavoidable cost that has to be payed if accurate solutions of the

flow in the near wall region is required.

On the other hand, the high Reynolds number turbulence approach, exemplified

by the standard k − ε model, avoids the need to resolve the near wall layer through

the use of wall functions. In this method, theoretical profiles between the boundary

surface and the first near-wall node are assumed and superimposed. Compared to

the previous approach, wall functions reduce significantly the computational cost.

The main disadvantage of this methodology however, is related to the validity of

these profiles, which are only known and justified in near-equilibrium boundary

layers. Details regarding this special treatment is explained next.

17.8.2 Standard Wall Functions

The wall functions approach is based on the universal flow profiles in the boundary

layer along a wall, which can be divided into three regions [1] designated by the

viscous sublayer (0 < d+ < 5), the buffer sublayer (5 < d+ < 30), and the inertial

sublayer (30 < d+ < 200), respectively, with the normalized distance to the wall d+

defined as

dþ ¼ d?us
m
¼ yþ ð17:66Þ

where d⊥ is the normal distance to the wall, v is the kinematic viscosity (= μ/ρ), and

uτ is the friction velocity expressed in terms of the wall shear stress τw as

us ¼
ffiffiffiffiffiffiffiffi

jswj
q

s

ð17:67Þ

where jswj is the magnitude of the wall shear stress. Measurements and direct

numerical simulations have shown that turbulence is negligible in the viscous

sublayer, viscous effects are small in the inertial sublayer, while both effects are

important in the buffer layer [44] with the maximum turbulent production occurring

at nearly d+ = 12, with the location slightly dependent on the Reynolds number

making modeling of the flow in the buffer region very difficult. Because of this,

turbulence models avoid the buffer layer near a wall by placing the first internal grid

point either in the viscous or the inertial sublayer. The practice of placing the first

grid point in the viscous sublayer is adopted with low Reynolds number turbulence

models while the other practice is used with high Reynolds number turbulence

models. The empirical relations applicable in the viscous sublayer are given by [45]

17.8 Boundary Conditions 711

uþ ¼ dþ

kþ ¼ 0:1dþ2

eþ ¼ 2
kþ

dþ2
¼ 0:2

xþ ¼ 6

Cb1dþ2

ð17:68Þ

where u+, k+, ε+, and ω+ are the normalized velocity parallel to the wall, normalized

turbulence kinetic energy, normalized turbulence dissipation rate, and normalized

turbulence frequency, respectively. In the general case of a moving wall with a

velocity vw, these variables are defined as

uþ ¼
jv� vwjjj

us

kþ ¼ k

u2s

eþ ¼ ev

u4s

xþ ¼ xv

u2s

ð17:69Þ

where jv� vwjjj is the magnitude of the velocity parallel to the wall.

A comparison of the above profiles with data obtained from direct numerical

simulation reveals that velocity and dissipation rate remain in good agreement up to

d+ = 10, while the turbulence kinetic energy is over estimated at values of d+ > 5.

Finally in the low Reynolds turbulence formulation, the k − ω based models just

require a boundary treatment that satisfies the model asymptotic values. On the

other hand, in the k − ε based models a damping function is added for the eddy

viscosity equation that mimics the direct effect of molecular viscosity on the shear

stress [25]. In the inertial sub-layer, the momentum profile is derived assuming a

one-dimensional Couette flow with zero pressure gradient. Profiles for the turbu-

lence quantities can be derived for a specific turbulence model. For the k − ε and

k − ω models these profiles are given by

uþ ¼ 1

j
LnðdþÞ þ B

kþ ¼ 1
ffiffiffiffiffiffi
Cl

p ¼ 1
ffiffiffiffiffi

b�
p

eþ ¼ v

usjd?

xþ ¼ v

usjd?
ffiffiffiffiffi

b�
p

ð17:70Þ

712 17 Turbulence Modeling

vv

C

n

v
C

d()
C

ww

n

vwall

C
kC C

Fig. 17.2 A boundary

control volume next to a wall

where the von Karman constant κ is assigned the value 0.41, Cμ = β* = 0.09 and

B = 5.25. Data obtained from Direct Numerical Simulation (DNS) indicate excellent

agreement for the velocity profile. On the other hand, turbulent quantities are less

accurate.

As shown in Fig. 17.2, when solving a turbulent flow problem, modifications to

the conservation equations are made at the first interior point C in the control

volume next to the wall. The value of d+ at that location, denoted by dþC , is first
calculated to infer whether the point lies in the viscous or inertial sublayer. The

value of dþC is computed from the definition of d+ and the value of uτ obtained from

the law of the wall as

dþC ¼
ðd?ÞCus

v

kþC ¼
kC

u2s
¼ 1

ffiffiffiffiffiffi
Cl

p) us ¼ C1=4
l k

1=2
C

9

>>=

>>;

) dþC ¼
C1=4
l k

1=2
C

v
ðd?ÞC ð17:71Þ

The transition from the viscous to the inertial layer is assumed to occur at a

limiting value of d+, denoted by dþlim. Different values for dþlim are reported in

different sources. All values however are between 11 and 12. A value of 11.06 is

adopted here. This limiting value marks the intersection between the logarithmic

and the linear profile. If dþC\dþlim then the grid point lies in the viscous sublayer,

otherwise it is located in the inertial sublayer.

If the first grid point is in the viscous sublayer, then the flow is assumed to be

laminar and the viscosity at the wall is set equal to the laminar viscosity μ and the

shear stress is computed as for laminar flows. A fixed value of zero is imposed on

the turbulence kinetic energy with the production of turbulence kinetic energy at the

17.8 Boundary Conditions 713

first interior point modified by assuming that the shear stress is constant over the

control volume with its value computed as

Pk � sw
@ðvC � vwÞjj

@ðd?Þ

�
�
�
�
w

¼ l
ðjvC � vwjjjÞ

2

ðd?Þ2C
ð17:72Þ

In the standard k − ε model the dissipation rate of turbulence kinetic energy at

the centroid of the first control volume next to the wall is computed by setting the

laminar viscosity equal to the turbulent viscosity to yield

eC ¼
Clqk

2
C

l
ð17:73Þ

whereas in the k − ω model the value of the turbulence frequency ωC is computed

from the analytical solution in the viscous sublayer as

xC ¼
6m

Cb1ðd?Þ2C
ð17:74Þ

If dþC [dþlim then the grid point is located in the inertial sublayer and the log-

arithmic wall functions are applied at the first interior point C. The implementation

process involves computing the shear stress using the logarithmic wall function as

swj j ¼ qu2s ¼
qus vC � vwj jjj
1

j
LnðdþC Þ þ B

) sw ¼ �
qus

1

j
LnðdþC Þ þ B

vC � vwð Þjj ð17:75Þ

where the fact that

sw ¼ � swj j
vC � vwð Þjj
vC � vwj jjj

ð17:76Þ

has been used. This shear stress is used in solving the momentum equation either by

invoking its value directly as a source term (τwSb) or via a modified viscosity at the

wall μw computed as

swj j ¼ lw
vC � vwj jjj
ðd?ÞC

¼
qus vC � vwj jjj
1

j
LnðdþC Þ þ B

) lw ¼
qusðd?ÞC

1

j
LnðdþC Þ þ B

ð17:77Þ

with the vector form of the wall shear stress expressed as

sw ¼ �
lw
ðd?ÞC

vC � vwð Þjj ð17:78Þ

714 17 Turbulence Modeling

In either case the implementation follows the procedures described in Chap. 15.

It is worth noting that the shear stress can also be formulated in terms of the

normalized quantities as

swj j ¼ llam
vC � vwj jjj
ðd?ÞC

dþ

uþ

¼ slam
dþ

uþ

ð17:79Þ

In solving the turbulence kinetic energy equation, the value of k is assumed to

prevail over the control volume (i.e., a zero gradient for k is used) with the term

representing the production of the turbulence kinetic energy at the first interior point

next to the wall modified by assuming that the shear stress is constant over the

control volume with its value equal to that at the wall, while the velocity gradient is

computed from the wall function as

uþ ¼ 1

j
lnðdþÞ þ B)

v� vwj jjj
us

¼ 1

j
ln

d?us
m

� �

þ B

)
d v� vwj jjj
� �

dðd?Þ

�
�
�
�
�
�
w

¼ us

jðd?ÞC

ð17:80Þ

Therefore, if the first interior point lies in the inertial sublayer, the production

term in the turbulence kinetic energy equation is computed as

Pk ¼ swj j
us

jðd?ÞC
ð17:81Þ

It is also useful to formulate the production term Pk in terms of the normalized

parameters. Starting with Eq. (17.72), the generic production term can be written as

Pk � sw
@ vC � vwð Þjj

@ðd?Þ

�
�
�
�
w

¼ qu2s
@ vC � vwð Þjj

@ðd?Þ

�
�
�
�
w

¼ qu2s
@uþ

@dþ
u2s
llam

¼ s2lam
llam

dþ

uþ

� �2
@uþ

@dþ

ð17:82Þ

In the k − ε model the ε equation is not solved at the first interior point next to the

wall. Rather its value is set by requiring the dissipation of turbulence kinetic energy

to be equal to its production rate such that

17.8 Boundary Conditions 715

qeC ¼ Pk ¼ swj j
us

jðd?ÞC
¼ qu3s

jðd?ÞC
us ¼ C1=4

l k
1=2
C

9

>=

>;

) eC ¼
C3=4
l k

3=2
C

jðd?ÞC
ð17:83Þ

If the k − ω model is used with wall functions, the same procedure is used. For

the k equation the same modified production term is obtained since Cμ = β �. The ω
equation is not solved for the first interior point and its value is set again by

requiring dissipation of turbulence kinetic energy to be equal to its production rate

such that

qeC ¼ Pk ¼ q
C3=4
l k

3=2
C

jðd?ÞC
xC ¼

eC

ClkC

9

>>>=

>>>;

) xC ¼
k
1=2
C

jC
1=4
l ðd?ÞC

ð17:84Þ

17.8.3 Improved Wall Functions

The above formulation is valid under local equilibrium conditions and results in a

zero viscosity (Eq. 17.77) when τw vanishes, since us ¼
ffiffiffiffiffiffiffiffiffiffi

sw=q
p

, as is the case at

reattachment and separating points. A generalization to the above formulation valid

under local non-equilibrium conditions has been proposed for the k − ε model by

Launder and Spalding [46]. In their work,
ffiffiffi

k
p

is used as the characteristic turbulent

velocity scale, instead of the friction velocity, through the identity

u� ¼ C1=4
l

ffiffiffi

k
p

ð17:85Þ

such that the wall viscosity and shear stress become

lw ¼
qu�ðd?ÞC

1

j
Lnðd�CÞ þ B

sw ¼ qusu
�

us ¼
vC � vwj jjj

1

j
Lnðd�CÞ þ B

ð17:86Þ

where d�C is defined using u � as

d�C ¼
ðd?ÞCu�

m
ð17:87Þ

716 17 Turbulence Modeling

Equation (17.86) clearly indicates that the turbulent viscosity does not vanish

when τw = 0.

Similar to the standard wall functions case, the value of d�C is first computed. If

the value of d�C\d�lim ¼ 11:06 then the first point is in the viscous sublayer and the

procedure described for the standard wall functions is used.

If the value of d�C[d�lim the first interior grid point is located in the inertial

sublayer and the wall viscosity is computed via Eq. (17.86). Using this viscosity the

wall shear stress is obtained and implemented as explained earlier. To find kC, the

k-conservation equation is solved. The procedure described with the standard wall

functions for calculating the production and dissipation terms in the near wall

control volume, assumed that the values of kC and εC prevail over the entire control

volume. Since the Pk and ε values vary drastically across the near-wall cell, eval-

uating them at the cell centre in discretizing the k equation leads to inaccurate

approximations. To improve predictions, Launder and Spalding [46] suggested

suitable approximations for their cell-average values. Starting with the production

term, its average value is computed as

Pk ¼
1

ðd?ÞC

Zðd?ÞC

0

Pkdðd?Þ

¼ 1

ðd?ÞC

Zðd?ÞC

0

swj j
dð v� vwj jjjÞ

d½ðd?Þ�
dðd?Þ ¼

1

ðd?ÞC
swj j vC � vwj jjj¼ lw

vC � vwj jjj
h i2

ðd?Þ2C
ð17:88Þ

Invoking Eq. (17.86), the average production term is found to be

Pk ¼
qC1=4

l

ffiffiffiffiffi
kC
p

ðd?ÞC
1

j
Lnðd�CÞ þ B

� � vC � vwj jjj
h i2

ð17:89Þ

Then, the volume integral of the production term is obtained as

Z

V

PkdV ¼ PkVC ð17:90Þ

To calculate an average turbulence dissipation rate, the integrated value of

dissipation is set equal to the production rate resulting in

Zðd?ÞC

0

qedðd?Þ ¼
Zðd?ÞC

0

Pkdðd?Þ ¼
Zðd?ÞC

0

swj j
d v� vwj jjj
� �

d ðd?Þ½ � dðd?Þ ð17:91Þ

The integral is evaluated by expressing the shear stress and velocity gradients as

17.8 Boundary Conditions 717

swj j ¼ qu2s

d v� vwj jjj
� �

d ðd?Þ½ � �
D v� vwj jjj
� �

D ðd?Þ½ � ¼
vC � vwj jjj
ðd?ÞC

¼ us

ðd?ÞC
1

j
Lnðd�CÞ þ B

� � ð17:92Þ

Thus

Zðd?ÞC

0

qedðd?Þ ¼
Zðd?ÞC

0

qu2s
us

ðd?ÞC
1

j
Lnðd�CÞ þ B

� �

dðd?Þ

¼ qu3s
1

j
Lnðd�CÞ þ B

� �

¼ qC3=4
l k3=2

1

j
Lnðd�CÞ þ B

� �
ð17:93Þ

and the average turbulence dissipation rate is computed as

eC ¼
1

qðd?ÞC

Zðd?ÞC

0

qedðd?Þ ¼
C3=4
l k

3=2
C

ðd?ÞC
1

j
Lnðd�CÞ þ B

� �

ð17:94Þ

while its volume integral is found to be

Z

V

qedV ¼ qeCVC ð17:95Þ

As for the standard wall functions, the ε equation is not solved at the first interior

point next to the wall and its value is set using Eq. (17.83). Moreover, similar

equations can be developed for use with the k − ω model by transforming ε into ω

via Eq. (17.32).

17.8.4 Scalable Wall Functions

The wall functions approach is most accurate when the first grid point in the near

wall region lies in the inertial sublayer at a normalized distance d�[d�low where,

depending on the numerical formulation, d�low � 20. This represents a serious

limitation in situations where the boundary layer is very thin as it cannot be

resolved with a coarse near-wall grid. The scalable wall function approach devel-

oped in [47, 48] overcomes this hurdle by slightly modifying the calculation of the

wall shear stress by redefining u+ as

uþ ¼ 1

j
ln ~d� þ B ð17:96Þ

718 17 Turbulence Modeling

where

~d� ¼ maxðd�; d�limÞ d�lim � 11:06 ð17:97Þ

With this formulation, the definition of ~d� becomes independent of the grid

spacing as it prevents the first grid point from being located in the viscous sublayer

leading to consistent results for grids of arbitrary refinement. The simulation error

introduced is related to not accounting for the viscous sublayer, which is the case

for all wall function formulations. It should be clarified however that this error can

be significant for flows with relatively low Reynolds number. The implementation

of the scalable wall functions is straightforward whereby the procedures described

above remains unchanged with the exception of replacing d� or dþ by, respectively,
~d� or ~dþ.

This approach is usually used when the details of the boundary layer is not of

interest. If the purpose of using a fine grid near the wall is to examine the details of

the boundary layer then a low Reynolds number model should be used as explained

next.

17.8.5 Wall Boundary Conditions for Low Reynolds Number

Models

With low Reynolds number turbulence models a fine grid resolution must be used

in the near wall region in order to properly resolve the viscous sublayer allowing

laminar flow boundary conditions to be applied. Therefore, the boundary condition

to be used at the wall in the momentum equation is the no slip condition presented

in Chap. 15 with no need to be repeated here.

The k − ω and k − ε turbulence models and their variants are examples of this

type. For all these models, the asymptotic boundary conditions applicable for k, ε

and ω are set to

kw ! 0

ew ! 2
vk

ðd?Þ2C
xw ! 10

6v

Cb1ðd?Þ2C

ð17:98Þ

The value for ωw given by Eq. (17.98), which is intended to be applied at the

first interior grid point next to the wall, is valid for grid points located at d þ or

d � < 2.5 with 15–20 nodes needed in that region for grid independent solutions.

The factor of 10 is introduced into Eq. (17.98) based on the recommendation of

Menter as it eliminates the need to specify ω at any other internal point beyond the

one next to the wall.

17.8 Boundary Conditions 719

17.8.6 Automatic Near-Wall Treatment

With the wall functions method the normalized distance to the wall is first calculated to

infer wether the first interior point lies in the viscous or inertial sublayer. In the viscous

sublayer the flow is treated as laminar. Because the standard k − εmodel is valid in the

fully turbulent regions and does not include damping functions tomodel viscous effects

it introduces error into the solution. To eliminate this error care should be exercised to

make sure that the first interior point is in the log region. This however eliminates the

influence of the viscous sublayer, whichmay be significant on the solution. Therefore it

is desirable to have the option of resolving the viscous sublayer without the stringent

requirement of a veryfinegrid near thewall. This is possiblewith the k−ωmodel and its

variants as theω equation can be integrated all the way to the wall without the need for

any additional damping functions. The idea is to develop a method that switches

automatically between the low and the highReynolds number formulation based on the

value of the normalized distance to the wall. This task is achievable by the ω equation

because of its known analytical solutions in the viscous and inertial sublayers. For that

purpose, both solutions are blended smoothly according to [34]

x ¼ ½x2
vis þ x2

log�
0:5 ð17:99Þ

where

xvis ¼
6v

Cb1d
2
?

xlog ¼
u�

jd?
ffiffiffiffiffi

b�
p ¼ ðu�Þ2

jvd�
ffiffiffiffiffi

b�
p ð17:100Þ

The shear stress in the momentum equation is computed as

swj j ¼ qusu
� ¼ q

u�

uþ
vC � vwj jjj ð17:101Þ

with the values of the velocities uτ and u* in the near wall region calculated using

uviss ¼
ffi

l

q

vC � vwj jjj
ðd?ÞC

s

ulogs ¼
vC � vwj jjj

1
j
ln dþC þ B

us ¼ uviss
� 	4þ ulogs

� 	4
h i0:25 ð17:102Þ

u�vis ¼
ffi

l

q

vC � vwj jjj
ðd?ÞC

s

u�log ¼ b�1=4k1=2 u� ¼ u�vis
� 	4þ u�log

� �4
� �0:25

ð17:103Þ

In solving the k equation, the gradient at the wall is set to zero and the production

in the near wall cell is altered to

Pk ¼ swj j
us

jðd?ÞC
¼ q

u�

uþ

� �2@uþ

@dþ
vC � vwj jjj

� �2

ð17:104Þ

720 17 Turbulence Modeling

Based on the grid spacing, this blending approach permits a smooth shift of the

wall treatment from a viscous sublayer to a wall function.

17.8.7 Near-Wall Heat Transfer

Similar to velocity profiles, near wall temperature profiles should also be corrected

when high Reynolds number turbulence models are used. These profiles are

obtained by an adjusted Reynolds analogy from the velocity profiles by altering the

log-law to provide an equation that relates the value of temperature at the near wall

node TC, to that at the wall Tw, and to the wall heat flux qw. The procedure starts by

defining a normalized temperature T+ as

Tþ ¼ Tw � T

T�
ð17:105Þ

where T* is the modified friction temperature given by

T� ¼ qw

qcpu�
ð17:106Þ

and other variables are as defined earlier. Then combining the above two equations,

the normalized temperature equation becomes

Tþ ¼ qcpu
�

qw
ðTw � TÞ ð17:107Þ

For the standard wall functions formulation, if the first interior point is located in

the viscous sublayer then the normalized temperature is calculated as

Tþ ¼ Pr d� ð17:108Þ

whereas if it lies in the inertial sublayer then it is computed using the law of the wall

as

Tþ ¼ 2:12Lnðd�Þ þ bðPrÞ ð17:109Þ

where

bðPrÞ ¼ ð3:85Pr1=3 � 1:3Þ2 þ 2:12LnðPrÞ ð17:110Þ

and Pr is the laminar Prandtl number. For the scalable wall functions formulation

the same equation is used with d+ replaced by ~dþ, as explained earlier. With the

automatic near wall treatment approach, the equation suggested by Kader [49],

which blends the viscous sublayer with the law of the wall, is used. In fact this

17.8 Boundary Conditions 721

approach may also be used with the standard and scalable wall functions approa-

ches. According to this formula the normalized temperature is computed as

Tþ ¼ Pr d�e�C þ 2:12Lnð1þ d�Þ þ bðPrÞ½ �e�1=C ð17:111Þ

with the blending function Γ given by

C ¼ 0:01ðPr d�Þ4
1þ 5Pr3d�

ð17:112Þ

Moreover, Eq. (17.107) can be interpreted in two different ways depending on

the physical boundary condition imposed on temperature. For a given wall heat flux

boundary condition, the numerical condition for Tw will be a fixed value, iteratively

updated, given by

Tw ¼ TC þ
qwT

þ
C

qcpu�

¼ TC þ
qwT

þ
C

qcpC
1=4
l

ffiffiffiffiffi
kC
p

ð17:113Þ

If, instead, temperature is imposed on the boundary, then the temperature gra-

dient must be held fixed numerically and calculated as

qw ¼
qcpu

�

TþC
Tw � TCð Þ

¼
qcpC

1=4
l

ffiffiffiffiffi
kC
p

TþC
Tw � TCð Þ

ð17:114Þ

17.8.8 Other Boundary Conditions

Beside walls, conditions at other boundaries are needed. This include inlet, outlet,

and symmetry boundary conditions. At inlet to a domain the values of the turbu-

lence kinetic energy and dissipation rate, which are usually unknown, are required.

If the values are known from measurements then they should be used, otherwise

they must be estimated. The easiest way is to assign the values for k and ε. Values

may also be specified via the turbulence intensity I defined as

I ¼
ffiffiffiffiffiffiffiffiffiffiffi

v0 � v0
p
ffiffiffiffiffiffiffiffiffi
v � vp ð17:115Þ

722 17 Turbulence Modeling

from which the turbulence kinetic energy is obtained as

k ¼ 1

2
I2ðv � vÞ ð17:116Þ

A value of turbulence intensity between 1 and 10 % is usually used with values

less than 1 % considered low while values higher than 10 % considered high. The

values of the turbulence dissipation rate ε and turbulence frequency ω are computed

from Eqs. (17.23) and (17.32) by specifying a turbulence length scale whose value

is dependent on the largest eddy dimension but it is usually set to one-tenth of the

width of a shear layer or the domain size, with their expressions given by

e ¼ Cl

k3=2

‘

x ¼ k1=2

‘

ð17:117Þ

The value for ε and ω may also be computed from knowledge of k and the

turbulent to laminar viscosity ratio using

e ¼ Clq
k2

l

l

lt

� �

x ¼ q
k

l

l

lt

� � ð17:118Þ

At an outlet and a symmetry boundary, the treatment for k, ε and ω is similar to

that for the general scalar variable / presented in previous chapters and is deemed

unnecessary to be repeated.

17.9 Calculating Normal Distance to the Wall

In the BSL and SST turbulence models, the normal distance to the nearest wall d⊥
is needed over the entire domain to determine the interface between the compu-

tation regions of k − ε and k − ω, as reflected by Eq. (17.42) for the BSL model and

(17.47) for the SST model. Search procedures to compute d⊥ are computationally

expensive in three-dimensional situations even for fixed grids. The situation gets

worse with a moving grid as the search has to be repeated at every time step. This

has forced workers to introduce approximations in the calculation of d⊥ that incur

large errors.

To avoid the expensive search procedures, techniques based on solving differ-

ential equations for d⊥ have been developed. These methods are based on solving a

Poisson, Eikonal, or Hamilton-Jacobi equations [50–53]. The attraction in these

equations is their composition which involves gradient and/or Laplacian operators

17.8 Boundary Conditions 723

that are readily available in CFD solvers. This renders the approach easy to

implement, stable, and economical especially with moving grids.

Adopting a Poisson-like approach, the following differential equation for a

variable ϕ is solved:

r2/ ¼ �1 ð17:119Þ

subject to

/ ¼ 0 on walls

r/ � n ¼ 0 elsewhere

�

ð17:120Þ

The normal distance to the nearest wall is computed using the predicted value of

/ and its gradient as

d? ¼ � r/j j þ
ffi

r/j j2þ2/
q

¼ �

ffi

@/

@x

� �2

þ @/

@y

� �2

þ @/

@z

� �2
s

þ

ffi

@/

@x

� �2

þ @/

@y

� �2

þ @/

@z

� �2

þ2/

s

ð17:121Þ

While solving a turbulent flow problem, Eq. (17.119) is discretized on the grid

network generated for solving the problem using the finite volume method and

following the procedures described in Chap. 8. During the solution procedure, a

converged solution for Eq. (17.119) is first obtained, from which the normal dis-

tances to the wall are computed, prior to solving the turbulent flow problem.

Referring to Fig. 17.3, and recalling that the term gDifff is defined as

gDifff ¼
Ef

dCF
ð17:122Þ

the discretized form of Eq. (17.119) can be written as

aC/C þ
X

F�NBðCÞ
aF/F ¼ bC ð17:123Þ

where

aF ¼ FluxFf ¼ �gDifff
aC ¼

X

f�NBðCÞ
FluxCf ¼ �

X

f�NBðCÞ
FluxFf ¼

X

f�NBðCÞ
gDifff

bC ¼ VC þ
X

f� nbðCÞ
r/ð Þf �Tf

� �
ð17:124Þ

724 17 Turbulence Modeling

Moreover, the Dirichlet and Von Neumann boundary conditions described by

Eq. (17.120) are treated as explained in Chap. 8.

Following the solution for Eq. (17.119), the normal distance to the wall at all cell

centroids in the domain are calculated using Eq. (17.121) with the gradient cal-

culated as detailed in Chap. 9.

17.10 Computational Pointers

OpenFOAM® [54] implements several LES and RANS turbulence models for both

compressible and incompressible flows. The root directory for all models is denoted

by “FOAM_SRC/turbulenceModels”. Incompressible turbulence models are loca-

ted in the sub-directory “FOAM_SRC/turbulenceModels/incompressible” within

which the three sub-sub-directories “LES” (refers to the large eddy simulation

approach), “RAS” (refers to the Reynolds-averaged Navier-Stokes approach), and

“turbulenceModel” reside. The first two sub-sub-directories “LES” and “RAS”

define the special features of the LES and RAS models, respectively, while in

“turbulenceModel” the abstract base classes of both incompressible RAS and LES

models are defined. The base class defines a series of abstract virtual functions that

have to be specified for any derived class as shown in Listing 17.1.

F

S f

E f

Tf

n

e

C

d
CF

Fig. 17.3 A two-dimensional

control volume with its

geometrical quantities

17.9 Calculating Normal Distance to the Wall 725

The base class also defines the normal distance to the wall, which is a useful

quantity for turbulence models that can be used with all derived classes. The

statement used for that is given in Listing 17.2 as

To better understand the code structure that defines the OpenFOAM® turbulence

models, in the following the k − ε model with the Spalding wall functions and the

SST k – ω model are used as examples.

The model definition can be found in the directory “FOAM_SRC/

turbulenceModels/incompressible/RAS” where all the RANS turbulence models are

placed and defined. For the RANS models, OpenFOAM® defines an additional non

virtual base class named RASModel (deriving the turbulenceModel class) from

which all models are derived (Listing 17.3).

 //- Return the turbulence viscosity

 virtual tmp<volScalarField> nut() const = 0;

 //- Return the effective viscosity

 virtual tmp<volScalarField> nuEff() const = 0;

 //- Return the turbulence kinetic energy

 virtual tmp<volScalarField> k() const = 0;

 //- Return the turbulence kinetic energy dissipation rate

 virtual tmp<volScalarField> epsilon() const = 0;

 //- Return the Reynolds stress tensor

 virtual tmp<volSymmTensorField> R() const = 0;

Listing 17.1 Script used to define virtual functions

 //- Return the near wall distances

 const nearWallDist& y() const

 {

 return y_;

 }

Listing 17.2 Statement used to define the normal distance to the wall

726 17 Turbulence Modeling

This class is just a wrapper mainly for bounding the values of the effective

viscosity and turbulence quantities, as well as a dictionary definition.

17.10.1 The k − ε Model

The “kEpsilon” class implements the standard version of the k − ε model given by

Eqs. (17.25) and (17.26). It defines the necessary constants and set of variables used

in the model, as shown in Listing 17.4.

class RASModel

:

 public turbulenceModel,

 public IOdictionary

{

 //- Allow omegaMin to be changed

 dimensionedScalar& omegaMin()

 {

 return omegaMin_;

 }

 //- Const access to the coefficients dictionary

 virtual const dictionary& coeffDict() const

 {

 return coeffDict_;

 }

 //- Return the effective viscosity

 virtual tmp<volScalarField> nuEff() const

 {

 return tmp<volScalarField>

 (

 new volScalarField("nuEff", nut() + nu())

);

 }

Listing 17.3 Script used to define the non virtual base class RASModel

class kEpsilon

:

 public RASModel

{

protected:

 // Protected data

 // Model coefficients

 dimensionedScalar Cmu_;

 dimensionedScalar C1_;

 dimensionedScalar C2_;

 dimensionedScalar sigmaEps_;

 // Fields

 volScalarField k_;

 volScalarField epsilon_;

 volScalarField nut_;

Listing 17.4 Script defining the k − ε model

17.10 Computational Pointers 727

It is selectable from the “RASProperties” dictionary with the name “kEpsilon”

defined under the “TypeName” of the class as (Listing 17.5)

Being derived from the base virtual class “turbulenceModel”, all its virtual base

functions have to be defined as follows (Listing 17.6).

The “divDevReff” function returns the diffusion contribution in the momentum

equation including the Reynolds stress, i.e.,

divDevReffðvÞ ¼ r � s� qv0v0
� 	� �

ð17:125Þ

In this case the type of data returned by the function (Listing 17.7) is in the form

of an fvMatrix defined as

in which the Laplacian of the velocity field is split into an implicit and an explicit

matrix contribution. It is important to mention that the divDevReff term depends

only on the velocity gradient field and the total or effective viscosity (nuEff()). This

tmp<fvVectorMatrix> kEpsilon::divDevReff(volVectorField& U) const

{

 return

 (

 - fvm::laplacian(nuEff(), U)

 - fvc::div(nuEff()*dev(T(fvc::grad(U))))

);

}

Listing 17.7 Implicit and explicit contributions of the Laplacian term

 //- Runtime type information

 TypeName("kEpsilon");

Listing 17.5 Statement used to select the k − ε model

 //- Return the effective stress tensor including the laminar stress

 virtual tmp<volSymmTensorField> devReff() const;

 //- Return the source term for the momentum equation

 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;

Listing 17.6 Statements used to define the effective stress tensor and the diffusion field in the

momentum equation

728 17 Turbulence Modeling

means that OpenFOAM® implements the wall shear stress contribution by modi-

fying only the turbulent viscosity at the wall; thus implementing Eq. (17.77).

The assembly and solution of the turbulence model equations are defined via the

“correct()” member function as in Listing 17.8.

Here OpenFOAM®
first assembles and then solves the ε equation before the k

equation, using the script in Listing 17.9 as

where the G field defines the global production term previously defined in

Eq. (17.28) as Pk. Based on the wall functions approach, it is necessary before

solving the ε equation, to modify the value of ε at all centroids of cells attached to

the wall using Eqs. (17.81) and (17.83). In OpenFOAM® the values of ε and Pk are

altered at the wall by defining a special wall boundary condition for the field ε with

the modification forced through the function “epsilon_.boundaryField().

updateCoeffs();” with the dedicated boundary definition for the dissipation rate ε

found under the directory “FOAM_SRC/turbulenceModels/incompressible/RAS/

derivedFvPatchFields/wallFunctions/epsilonWallFunctions/epsilonWallFunction”.

Based on the wall function model this class has to update the values of the two

variables ε and Pk. This operation is performed by the function “calculate” in which,

void kEpsilon::correct()

{

Listing 17.8 Assembly and solution of the turbulence model

 volScalarField G(GName(), nut_*2*magSqr(symm(fvc::grad(U_))));

 // Update epsilon and G at the wall

 epsilon_.boundaryField().updateCoeffs();

 // Dissipation equation

 tmp<fvScalarMatrix> epsEqn

 (

 fvm::ddt(epsilon_)

 + fvm::div(phi_, epsilon_)

 - fvm::laplacian(DepsilonEff(), epsilon_)

 ==

 C1_*G*epsilon_/k_

 - fvm::Sp(C2_*epsilon_/k_, epsilon_)

);

 epsEqn().relax();

 epsEqn().boundaryManipulate(epsilon_.boundaryField());

 solve(epsEqn);

 bound(epsilon_, epsilonMin_);

Listing 17.9 Assemble and solve the ε equation

17.10 Computational Pointers 729

after defining all necessary variables, a loop cycle changes the corresponding values

(with G in Listing 17.10 corresponding to the Pk production term). The “w” vari-

able is just a weight factor to take into account boundary cells in contact with more

than one wall (i.e., corners). For standard faces “w” has a value of one.

It is important to note that while G or Pk is a source term, ε is a field that is solved

by a transport equation. To impose in a cell a value previously calculated, the matrix

has to be manipulated at the right location, in order to return the correct value.Thus

the class “epsilonWallFunctionFvPatchScalarField” is derived, as shown in Listing

17.11, from the class “fixedInternalValueFvPatchField” according to

with class “fixedInternalValueFvPatchField”, shown in Listing 17.12, being just a

wrapper class containing a special function to manipulate the matrix by imposing

the expected values of the variable in a list of cells.

label cellI = patch.faceCells()[faceI];

scalar w = cornerWeights[faceI];

epsilon[cellI] += w*Cmu75*pow(k[cellI], 1.5)/(kappa_*y[faceI]);

G[cellI] +=

 w

 *(nutw[faceI] + nuw[faceI])

 *magGradUw[faceI]

 *Cmu25*sqrt(k[cellI])

 /(kappa_*y[faceI]);

Listing 17.10 Calculating ε and modifying the production of turbulence kinetic energy in the near

wall cells

class epsilonWallFunctionFvPatchScalarField

:

 public fixedInternalValueFvPatchField<scalar>

{

Listing 17.11 Creating the class “epsilonWallFunctionFvPatchScalarField” from the class

“fixedInternalValueFvPatchField”

730 17 Turbulence Modeling

This function is called form form the “kEpsilon::correct()” class after assembling

the matrix with “epsEqn().boundaryManipulate(epsilon_.boundaryField());”.

Once the ε equation is solved, OpenFOAM® proceeds to assembling and solving

the k equation, as shown in Listing 17.13.

In this case no additional manipulation is required as the production term Pk is

already changed at the wall and the boundary condition for k is just a zero gradient

(“zeroGradient”) type.

After calculating the k and ε values, the turbulent eddy viscosity vt (=μt/ρ) is

updated and then corrected at wall boundaries according to Eq. (17.77). This is

accomplished using the following statements in Listing 17.14:

template<class Type>

class fixedInternalValueFvPatchField

:

 public zeroGradientFvPatchField<Type>

template<class Type>

void Foam::fixedInternalValueFvPatchField<Type>::manipulateMatrix

(

 fvMatrix<Type>& matrix

)

{

 // Apply the patch internal field as a constraint in the matrix

 matrix.setValues(this->patch().faceCells(), this->patchInternalField());

}

Listing 17.12 The functionality of the “fixedInternalValueFvPatchField” class

 // Turbulent kinetic energy equation

 tmp<fvScalarMatrix> kEqn

 (

 fvm::ddt(k_)

 + fvm::div(phi_, k_)

 - fvm::laplacian(DkEff(), k_)

 ==

 G

 - fvm::Sp(epsilon_/k_, k_)

);

 kEqn().relax();

 solve(kEqn);

 bound(k_, kMin_);

Listing 17.13 Assemble and solve the k equation

 // Re-calculate viscosity

 nut_ = Cmu_*sqr(k_)/epsilon_;

 nut_.correctBoundaryConditions();

Listing 17.14 Updating the turbulent eddy viscosity at walls

17.10 Computational Pointers 731

The “volScalarField” nut (vt) is defined in the constructor of the kEpsilon class

shown in Listing 17.15 as

in which the function “autoCreateNut” is used. This function is defined in the file

“backwardsCompatibilityWallFunctions.C”, which is placed in the directory

“FOAM_SRC/src/turbulenceModels/incompressible/RAS/backwardsCompatibility/

wallFunctions”. The “autoCreateNut” acts in order to create the (vt) object by

reading the file and the related boundary types only if it is already present inside the

working directory (Listing 17.16).

For the case when the file “nut” is not found, the standard Spalding wall function

is applied using the boundary patch class definition “nutkWallFunction

FvPatchScalarField”, through the following statement (Listing 17.17):

 nut_

 (

 IOobject

 (

 "nut",

 runTime_.timeName(),

 mesh_,

 IOobject::NO_READ,

 IOobject::AUTO_WRITE

),

 autoCreateNut("nut", mesh_)

)

Listing 17.15 Script used to define the turbulent eddy viscosity

 if (nutHeader.headerOk())

 {

return tmp<volScalarField>(new volScalarField(nutHeader, mesh));

 }

 else

 {

Listing 17.16 “IF” statement for checking the definition of the nut file

 if (isA<wallFvPatch>(bm[patchI]))

 {

 nutBoundaryTypes[patchI] =

 nutkWallFunctionFvPatchScalarField::typeName;

 }

Listing 17.17 Application of the standard Spalding wall function

732 17 Turbulence Modeling

The class “nutkWallFunctionFvPatchScalarField” described in Listing 17.18 is

located in the “FOAM_SRC/turbulenceModels/incompressible/RAS/derivedFv

PatchFields/wallFunctions/nutWallFunctions” directory and inherits a base class

named “nutWallFunctionFvPatchScalarField”, i.e.,

The “nutWallFunctionFvPatchScalarField” in Listing 17.19 is a base class that

wraps the changing of the boundary value of the eddy viscosity “nut” (vt) by

defining the related “updateCoeffs” function as

where the “calcNut” function is defined as pure virtual and it has to be delineated

from the derived class. Based on that the derived class “nutkWallFunction

FvPatchScalarField” implements the “calcNut” function according to Spalding

assumption and Eq. (17.77) as Listing 17.20.

class nutkWallFunctionFvPatchScalarField

:

 public nutWallFunctionFvPatchScalarField

{

Listing 17.18 Class definition

void nutWallFunctionFvPatchScalarField::updateCoeffs()

{

 if (updated())

 {

 return;

 }

 operator==(calcNut());

 fixedValueFvPatchScalarField::updateCoeffs();

}

Listing 17.19 The updateCoeffs() function definition

label faceCellI = patch().faceCells()[faceI];

scalar yPlus = Cmu25*y[faceI]*sqrt(k[faceCellI])/nuw[faceI];

if (yPlus > yPlusLam_)

{

 nutw[faceI] = nuw[faceI]*(yPlus*kappa_/log(E_*yPlus) - 1.0);

}

Listing 17.20 Calculate eddy viscosity at the wall according to Spalding wall function

17.10 Computational Pointers 733

Once the turbulent eddy viscosity is updated based on the wall function value the

momentum shear stress is then correctly evaluated.

17.10.2 The SST k – ω Model

The “kOmegaSST” class implements the version of the SST k − ω model described

by Eqs. (17.38) through (17.49). The set of variables and constants used in the

model are defined by the script shown in Listing 17.21.

class kOmegaSST

:

 public RASModel

{

protected:

 // Protected data

 // Model coefficients

 dimensionedScalar alphaK1_;

 dimensionedScalar alphaK2_;

 dimensionedScalar alphaOmega1_;

 dimensionedScalar alphaOmega2_;

 dimensionedScalar gamma1_;

 dimensionedScalar gamma2_;

 dimensionedScalar beta1_;

 dimensionedScalar beta2_;

 dimensionedScalar betaStar_;

 dimensionedScalar a1_;

 dimensionedScalar b1_;

 dimensionedScalar c1_;

 Switch F3_;

 //- Wall distance field

 // Note: different to wall distance in parent RASModel

 wallDist y_;

 // Fields

 volScalarField k_;

 volScalarField omega_;

 volScalarField nut_;

Listing 17.21 Script defining the SST k – ω model

734 17 Turbulence Modeling

 // Protected Member Functions

 tmp<volScalarField> F1(const volScalarField& CDkOmega) const;

 tmp<volScalarField> F2() const;

 tmp<volScalarField> F3() const;

 tmp<volScalarField> F23() const;

 tmp<volScalarField> blend

 (

 const volScalarField& F1,

 const dimensionedScalar& psi1,

 const dimensionedScalar& psi2

) const

 {

 return F1*(psi1 - psi2) + psi2;

 }

 tmp<volScalarField> alphaK(const volScalarField& F1) const

 {

 return blend(F1, alphaK1_, alphaK2_);

 }

 tmp<volScalarField> alphaOmega(const volScalarField& F1) const

 {

 return blend(F1, alphaOmega1_, alphaOmega2_);

 }

 tmp<volScalarField> beta(const volScalarField& F1) const

 {

 return blend(F1, beta1_, beta2_);

 }

 tmp<volScalarField> gamma(const volScalarField& F1) const

 {

 return blend(F1, gamma1_, gamma2_);

 }

Listing 17.21 (continued)

Additional private member functions (blend, alphaK, alphaOmega, etc.) are now

defined in order to represent the blended coefficients appearing in Eq. (17.39).

Functions F1 and F2 describe the variables given by Eqs. (17.41) and (17.47),

respectively. Function F3 does not appear in Menter’s original model and is a

modification for rough walls introduced by Hellsten [55].

As shown in Listing 17.22, the model is selectable from the “RASProperties”

dictionary with the name “kOmegaSST” defined under the “TypeName” of the

class as

The kOmegaSST class is derived from the base virtual class “turbulenceModel”,

and as such all its virtual base functions are specialized accordingly (Listing 17.23).

 //- Runtime type information

 TypeName("kOmegaSST");

Listing 17.22 Statement used to select the SST k – ω model

17.10 Computational Pointers 735

The implementation of the model is detailed in “FOAM_SRC/turbulence

Models/incompressible/RAS/kOmegaSST/kOmegaSST.C”. As in the kEpsilon class

the correct function solves the full set of equations of the SST turbulence model.

First the ω equation is setup and solved using the script shown in Listing 17.24.

 //- Return the effective stress tensor including the laminar stress

 virtual tmp<volSymmTensorField> devReff() const;

 //- Return the source term for the momentum equation

 virtual tmp<fvVectorMatrix> divDevReff(volVectorField& U) const;

 //- Return the source term for the momentum equation

 virtual tmp<fvVectorMatrix> divDevRhoReff

 (

 const volScalarField& rho,

 volVectorField& U

) const;

Listing 17.23 Specialization of the pure virtual functions defined in the base class “RASModel”

void kOmegaSST::correct()

{

 RASModel::correct();

 const volScalarField S2(2*magSqr(symm(fvc::grad(U_))));

 volScalarField G(GName(), nut_*S2);

 // Update omega and G at the wall

 omega_.boundaryField().updateCoeffs();

 const volScalarField CDkOmega

 (

 (2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_

);

 const volScalarField F1(this->F1(CDkOmega));

 // Turbulent frequency equation

 tmp<fvScalarMatrix> omegaEqn

 (

 fvm::ddt(omega_)

 + fvm::div(phi_, omega_)

 - fvm::laplacian(DomegaEff(F1), omega_)

 ==

 gamma(F1)*S2

 - fvm::Sp(beta(F1)*omega_, omega_)

 - fvm::SuSp

 (

 (F1 - scalar(1))*CDkOmega/omega_,

 omega_

)

);

 omegaEqn().relax();

 omegaEqn().boundaryManipulate(omega_.boundaryField());

 solve(omegaEqn);

 bound(omega_, omegaMin_);

Listing 17.24 Assemble and solve the ω equation

736 17 Turbulence Modeling

In the script, theGfield represents the production termPkdefined inEq. (17.28),while

the CDkOmega and F1 fields are evaluated based on Eqs. (17.41), (17.42), and (17.47).

As in the kEpsilon class the values of ω and Pk are modified at the wall following

the wall functions approach by defining a wall boundary condition class for ω.

Modifications to the field are then enforced through the function “omega_.boundary

Field().updateCoeffs();”. The boundary definition for the eddy frequency ω can be

found under the directory “FOAM_SRC/turbulenceModels/incompressible/RAS/

derivedFvPatchFields/wallFunctions/omegaWallFunctions/omegaWallFunction”.

Based on the wall functions model, this class has to update the values of the two

variables ω and Pk. This operation is performed, as shown in Listing 17.25, by the

usual “calculate” function using Eqs. (17.81), (17.99) and (17.100) (with G cor-

responding to the Pk production term).

To impose the previously calculated cell value, the matrix has to be manipulated

following the same procedure used with the “kEpsilon” model. Once the ω equation

is solved, OpenFOAM® proceeds to assembling and solving the k equation, as

shown in Listing 17.26.

label cellI = patch.faceCells()[faceI];

scalar w = cornerWeights[faceI];

scalar omegaVis = 6.0*muw[faceI]/(rhow[faceI]*beta1_*sqr(y[faceI]));

scalar omegaLog = sqrt(k[cellI])/(Cmu25*kappa_*y[faceI]);

omega[cellI] += w*sqrt(sqr(omegaVis) + sqr(omegaLog));

G[cellI] +=

 w

 *(mutw[faceI] + muw[faceI])

 *magGradUw[faceI]

 *Cmu25*sqrt(k[cellI])

 /(kappa_*y[faceI]);

Listing 17.25 Calculating ω and modifying the production of turbulence kinetic energy in the

near wall cells

 // Turbulent kinetic energy equation

 tmp<fvScalarMatrix> kEqn

 (

 fvm::ddt(k_)

 + fvm::div(phi_, k_)

 - fvm::laplacian(DkEff(), k_)

 ==

 G

 - fvm::Sp(epsilon_/k_, k_)

);

 kEqn().relax();

 solve(kEqn);

 bound(k_, kMin_);

Listing 17.26 Assemble and solve the k equation

17.10 Computational Pointers 737

In this case no additional manipulation is required as the production term Pk is

already modified at the wall and the boundary condition for k is just a zero gradient

(“zeroGradient”) type.

Once the k and ω values are calculated the turbulent eddy viscosity vt(=μt/ρ) is

updated using the script in Listing 17.27, which is in accordance with Eq. (17.46).

The Menter reliability constraint is applied to the eddy viscosity where the

constant b1_ takes the value of 1.0, while the F23 function, described in Listing

17.28, returns by default the proper F2 function defined by Eq. (17.47).

Finally the eddy viscosity is corrected at wall boundaries according to

Eq. (17.77) using the same procedure as in the kEspilon class in which the Spalding

wall function is applied by the class “nutkWallFunctionFvPatchScalarField”.

17.10.3 simpleFoamTurbulent

The simpleFoamTurbulent solver is an extension, for turbulent flow simulations, of

the simpleFoamImproved solver described in Chap. 15. As previously described,

turbulence affects the diffusion terms of the transport equations. Its effects are

embodied into the equations through the effective viscosity, which is the sum of

both laminar and eddy viscosities.

In order to include turbulence in the OpenFOAM® solver, the virtual base class

RASModel is invoked and few modifications are introduced. The first one is to

substitute the constant laminar transport properties with the variable turbulent ones

 // Re-calculate viscosity

 nut_ = a1_*k_/max(a1_*omega_, b1_*F23()*sqrt(S2));

 nut_.correctBoundaryConditions();

Listing 17.27 Updating the turbulent eddy viscosity

tmp<volScalarField> kOmegaSST::F23() const

{

 tmp<volScalarField> f23(F2());

 if (F3_)

 {

 f23() *= F3();

 }

 return f23;

}

Listing 17.28 The F23 function definition

738 17 Turbulence Modeling

through the turbulence model. Therefore in the “createFields.H” file, the object

turbulence of type RASModel is instantiated, as shown in Listing 17.29.

For the definition of the RASModel, it is necessary to activate the single

PhaseTransportModel class that defines the general transport model for the laminar

viscosity (from dictionary it could be set as constant or as function of temperature

like in the Sutherland’s model), the velocity, and the mass flux. As described

earlier, these quantities are necessary to define the transport equations of the tur-

bulent quantities. To be noticed in Listing 17.29 is the definition of object turbu-

lence as “autoPtr”, which basically can be treated as a standard pointer in C++.

The second main modification, as depicted in Listing 17.30, is to the momentum

equation where diffusion is now computed using the divDevReff(U) term previously

described.

The last main modification displayed in Listing 17.31 is in the main solver file

shown below.

Info<< "Reading transportProperties\n" << endl;

singlePhaseTransportModel laminarTransport(U,mdotf);

autoPtr<incompressible::RASModel> turbulence

(

 incompressible::RASModel::New(U, mdotf , laminarTransport)

);

Listing 17.29 Turbulence model definition

fvVectorMatrix UEqn

(

 fvm::ddt(U)

 + fvm::div(mdotf, U)

 + fvm::SuSp(-fvc::div(mdotf),U)

 + turbulence->divDevReff(U)

);

Listing 17.30 Momentum equation detail

include "UEqn.H"

include "ppEqn.H"

 turbulence->correct();

Listing 17.31 Main file modification: turbulence model solution

17.10 Computational Pointers 739

The addition of the statement turbulence->correct() activates, each time it is

called, the solution of the turbulence model equations allowing the calculation of

the eddy viscosity, which is used in the momentum equations.

17.11 Closure

The extra step needed to model incompressible turbulent flows was introduced. The

k − ε, k − ω, and some of their variants were discussed. Modeling of the near wall

region using wall functions was detailed. This concludes the developments intended

to be discussed in this book. The next chapter will discuss the implementation of

boundary conditions in OpenFOAM® and uFVM.

17.12 Exercises

Exercise 1

Given the following turbulent intensities and integral length scales, calculate the

corresponding k – ω − ε values (Table 17.1):

Exercise 2

Given the following turbulent intensities and viscosity ratios calculate the corre-

sponding k – ω − ε values (Table 17.2):

Exercise 3

Modify the standard k − ε turbulence model described above to include the real-

izability constraint described in Eqs. (17.29–17.31).

Table 17.1 Data for

exercise 1
I 0.01 0.05 0.1 0.25 0.5

‘ 0.0001 0.1 0.2 1 10

k

ε

ω

Table 17.2 Data for

exercise 2
I 0.01 0.05 0.1 0.25 0.5

μt /μ 0.1 1 10 100 1000

k

ε

ω

740 17 Turbulence Modeling

Exercise 4

Formulate the realizability constraint of the standard k − ω turbulence model.

Exercise 5

Starting with the BSL k − ω model, show that, if the F1 function is identically one,

the ω-equation corresponds, with minor simplifications, to the standard ε equation

of the k − ε turbulence model.

Exercise 6

Using a Newton-Raphson linearization (i.e., yðxÞ � yð0Þ þ xy0ðxÞ), formulate the

diagonal and the source term coefficients of Eq. (17.63).

Exercise 7

Formulate Eqs. (17.83) and (17.84) based on turbulent dimensionless quantities,

i.e.,

e ¼ eðu�; dþ; k; vÞ
x ¼ xðu�; dþÞ

Exercise 8

Develop an OpenFOAM® application that implements normal distance to the wall

using Eqs. (17.119), (17.120), (17.121).

Exercise 9

Experiments in roughened surfaces indicate that near rough walls the classical

logarithmic law of the wall has a different intercept. This is due to a higher wall

shear stress, which shifts the logarithmic velocity profile downward. With the

assumption that the following formula is applicable:

uþ ¼ 1

j
LnðdþÞ þ B� DB

where DB ¼ 1

j
Lnð1þ hþs Þ (hþs is the equivalent sand grain roughness), find an

equivalent dþeff formulation, valid for both smooth and rough walls, allowing the

logarithmic law of the wall to be re-expressed in its classical form, i.e.,

uþ ¼ 1

j
Lnðdþeff Þ þ B

Exercise 10 (OpenFOAM®)

Using the Doxygen documentation [56], list all derived classes of the base class

RASModel for incompressible flows (i.e., turbulence models available in

OpenFOAM®).

Exercise 11 (OpenFOAM®)

Identify the turbulent quantities that are resolved in each incompressible turbulence

model defined in Exercise 10.

17.12 Exercises 741

Exercise 12 (OpenFOAM®)

Using the Doxygen documentation, list all derived classes of the base class

nutWallFunctionFvPatchScalarField.

Exercise 13 (OpenFOAM
®)

The base class nutWallFunctionFvPatchScalarField defines an additional virtual

base function virtual tmp<scalarField>yPlus () const = 0. Describe the function

definition for each of the derived classes, commenting on the differences.

Exercise 14 (OpenFOAM®)

Compare the implementation in “FOAM_SRC/turbulenceModels/incompressible/RAS/

derivedFvPatchFields/wallFunctions/epsilonWallFunctions/epsilonLowReWallFunction”

with the Low Reynolds number models formulation given by Eq. (17.98).

References

1. Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press, Cambridge. ISBN

978-0-262-20019-6

2. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluids at

very large Reynolds numbers. Doklady AN SSSR 30:299–303

3. Kolmogorov AN (1941) Dissipation of energy in isotropic turbulence. Dokl Akad Nauk SSSR

32:19–21.é

4. Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow

up to Reτ = 590. Phys Fluids 11(4):943–945

5. Scardovelli R, Zaleski S (1999) Direct numerical simulation of free-surface and interfacial

flow. Ann Rev Fluid Mech. 31:567–603

6. Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent flow over a backward-

facing step. J Fluid Mech 330:349–374

7. Choi H, Moin P, Kim J (1993) Direct numerical simulation of turbulent flow over Riblets.

J Fluid Mech 255:503–539

8. Leonard A (1974) Energy cascade in large-eddy simulations of turbulent fluid flows. Adv

Geophys A 18:237–248

9. Sagaut P (2006) Large eddy simulation for incompressible flows-an introduction. Springer,

Berlin

10. Ferziger JH (1995) Large eddy simulation. In: Hussaini MY, Gatski T (eds) Simulation and

modeling of turbulent flows. Cambridge University Press, New York

11. Nieuwstadt FTM, Mason PJ, Moeng C-H, Schuman U (1991) Large eddy simulation of the

convective boundary layer: a comparison of four computer codes. In: Durst F et al (eds)

Turbulent shear flows, 8th edn. Springer, Berlin

12. Reynolds O (1895) On the dynamical theory of incompressible viscous fluids and the

determination of the criterion. Philos Trans Royal Soc London A 186:123–164

13. Favre A (1965) Equations des Gas Turbulents Compressibles. Journal de Mecanique 4

(3):361–390

14. Boussinesq J (1877) Essai sur la théorie des eaux courantes. Mémoires présentés par divers

savants à l’Académie des Sciences 23(1):1–680

15. Schlichting H (1968) Boundary-layer theory, 6th edn. Chapter XIX. McGraw Hill

16. Schmitt FG (2007) About Boussinesq’s turbulent viscosity hypothesis: historical remarks and

a direct evaluation of its validity. Comptes Rendus Mécanique 335(9 and 10):617–627

17. Prandtl L (1925) Uber die ausgebildete Turbulenz. ZAMM 5:136–139

742 17 Turbulence Modeling

18. Baldwin BS, Lomax H (1978) Thin-Layer approximation and algebraic model for separated

turbulent flows. AIAA Paper, Huntsville, pp 78–257

19. Cebeci T, Smith AMO (1974) Analysis of turbulent boundary layers. Ser Appl Math Mech,

vol XV, Academic Press, Waltham

20. Baldwin BS, Barth TJ (1990) A one-equation turbulence transport model for high reynolds

number wall-bounded flows. NASA TM-102847

21. Goldberg UC (1991) Derivation and testing of a one-equation model based on two time scales.

AIAA J 29(8):1337–1340

22. Spalart PR, Allmaras SR (1992) A one-equation turbulence model for aerodynamic flows.

AIAA Paper, Reno, pp 92–439

23. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of

turbulence. Int J Heat Mass Transf 15:301–314

24. Launder BE, Sharma BI (1974) Application of the energy dissipation model of turbulence to

the calculation of flow near a spinning disk. Lett Heat Mass Transfer 1(2):131–138

25. Chien K-Y (1982) Predictions of channel and boundary-layer flows with a low-reynolds-

number turbulence model. AIAA J 20(1):33–38

26. Myong HK, Kasagi N (1990) A new approach to the improvement of k-ε turbulence model for

wall-bounded shear flows. JSME Int J 33:63–72

27. Kolmogorov AN (1942) Equations of turbulent motion of an incompressible fluid. Izvestia

Acad Sci USSR Phys 6(1 and 2):56–58

28. Wilcox D (1988) Reassessment of the scale-determining equation for advanced turbulence

models. AIAA J 26(11):1299–1310

29. Wilcox DC (1998) Turbulence modeling for CFD, 2nd edn. DCW Industries, US

30. Menter FR (1992) Influence of freestream values on k − ω turbulence model predictions.

AIAA J 30(6):1657–1659

31. Menter FR (1993) Zonal two-equation k − ω turbulence model for aerodynamic flows. AIAA

Paper, Orlando, pp 1993–2906

32. Menter F (1994) Two-equation eddy-viscosity turbulence models for engineering applications.

AIAA J 32(8):1598–1605

33. Menter FR, Kuntz M, Langtry R (2003) Ten years of industrial experience with the SST

turbulence model, 4th edn. Turbulence, Heat and Mass Transfer, Antalya, pp 73–86

34. Menter FR, Carregal Ferreira J, Esch T, Konno B (2003) The SST turbulence model with

improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the

international gas turbine congress, Tokyo, IGTC2003-TS-059

35. Menter FR (2009) Review of the shear-stress transport turbulence model experience from an

industrial perspective. Int J Comput Fluid Dyn 23(4):305–316

36. Daky BJ, Harlow FH (1970) Transport equations in turbulence. Phys Fluids 13:2634–2649

37. Fu S, Launder BE, Tselepidakis DP (1987) Accommodating the effects of high strain rates in

modelling the pressure-strain correlation. Report no. TFD/87/5, Mechanical Engineering

Department, Manchester Institute of Science and Technology, England

38. Gibson MM, Launder BE (1986) Ground effects on pressure fluctuations in the atmospheric

boundary layer. J Fluid Mech 86(Pt. 3):491–511

39. Gibson MM, Younis BA (1986) Calculation of swirling jets with a reynolds stress closure.

Phys Fluids 29:38–48

40. Wilcox DC, Rubesin MW (1980) Progress in turbulence modeling for complex flow fields

including effects of compressibility. NASA TP-1517

41. Wilcox DC (1988) Multiscale model for turbulent flows. AIAA J 26(11):1311–1320

42. Patel VC, Rodi W, Scheuerer G (1985) Turbulence models for near-wall and low reynolds

number flows: a review. AIAA J 23(9):1308–1319

43. Medic G, Durbin PA (2002) Toward improved prediction of heat transfer on turbine blades.

ASME J Turbomach 124(2):187–192

44. Sahay A, Sreenivasan KR (1999) The wall-normal position in pipe and channel flows at which

viscous and turbulent shear stresses are equal. Phys Fluids 11(10):3186–3188

References 743

45. Bredberg J (2000) On the wall boundary condition for turbulence models. Department of

Thermo and Fluid Dynamics, Chalmers University of Technology, Internal report 00/4,

Goteborg

46. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput

Methods Appl Mech Eng 3:269–289

47. Grotjans H, Menter F(1998) Wall function for general application cfd codes. In:

Computational fluid dynamics 1998, Proceedings fourth European CFD Conference

ECCOMAS, Wiley, Chichester

48. Menter F, Esch T (2001) Elements of industrial heat transfer prediction. In: Proceedings 16th

Brazilian congress of mechanical engineering (COBEM), pp 117–127

49. Kader BA (1981) Temperature and concentration profiles in fully turbulent boundary layers.

Int J Heat Mass Transf 24:1541–1544

50. Tucker PG (2003) Differential equation-based wall distance computation for DES and RANS.

J Comput Phys 190:229–248

51. Sethian JA (1999) Fast marching methods. SIAM Rev 41(2):199–235

52. Tucker PG, Rumsey CL, Spalart PR, Bartels RE, Biedron RT (2004) Computations of wall

distances based on differential equations. AIAA Paper 2004–2232

53. Xu J-L, Yan C, Fan J-J (2011) Computations of wall distances by solving a transport equation.

Appl Math Mech 32(2):141–150

54. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

55. Hellsten A (1998) Some improvements in menter’s k-omega-SST turbulence model. In: 29th

AIAA fluid dynamics conference, AIAA-98-2554

56. OpenFOAM Doxygen (2015) Version 2.3.x. http://www.openfoam.org/docs/cpp/

744 17 Turbulence Modeling

Chapter 18

Boundary Conditions in OpenFOAM®

and uFVM

Abstract This chapter reviews the implementation of boundary conditions in

OpenFOAM® and uFVM. Details on the data structure needed for their imple-

mentation are presented along with information on how to add new boundary

conditions. The procedure is illustrated through the implementation of the no-slip

wall boundary condition. This is shown to differ from the Dirichlet type currently

implemented in OpenFOAM®.

18.1 Boundary Conditions in OpenFOAM®

Each boundary condition has a physical meaning described mathematically via an

equation, which in the context of a numerical method has to be translated into an

algebraic relation. An inlet boundary condition for instance, describes a known flow

behavior where velocity and pressure satisfy specified physical conditions

expressed using proper mathematical equations. These include a Dirichlet and a

Neumann condition, which should be defined in order to connect the mathematical

model with the boundary conditions of the problem. The implementation of these

conditions will affect the mathematical operator or term to which they apply (i.e.,

divergence, laplacian, gradient, etc.).

In OpenFOAM® [1] almost all definitions of boundary conditions are stored in

the following directory (Listing 18.1):

with the main implemented types of boundary conditions stored in the sub-

directories listed in Listing 18.2.

src/finiteVolume/fields/fvPatchFields

Listing 18.1 OpenFOAM® directory where boundary condition definitions are stored

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_18

745

A brief description of these sub-directories is given in what follows.

The fvPatchField directory contains the general class definition of a boundary

condition, which represents the base class. This class defines the main functions and

data structures that will be used and will be inherited by the genuine classes.

The basic directory contains the basic mathematically defined boundary con-

ditions. These are the Dirichlet type (fixedValue), the Neuman type (zeroGradient

and fixedGradient), and the Robin type (mixed) boundary conditions. One addi-

tional entry included in basic is the coupled boundary condition that implements a

patch to patch type condition, i.e., coupling two boundary patches together (coupled

boundaries).

The constraint directory contains geometric type boundary conditions that derive

from the coupled boundary class. An example is the periodicity boundary condition

depicted schematically in Fig. 18.1. In this case each cell is related to the cell of the

corresponding patch allowing the boundary cells to be treated as internal ones.

Finally the derived directory includes all boundary conditions that are derived

from the basic Dirichlet, Neumann, and Robin boundary conditions. These derived

boundary conditions are simply specializations of the basic types.

basic

constraint

derived

fvPatchField

Listing 18.2 Sub-directories where the main types of boundary conditions are implemented

Periodic

Periodic

inner wall

outer wall

C
1

C
2

b
1 b

2

F
1

F
2

Fig. 18.1 A schematic of a periodic boundary condition

746 18 Boundary Conditions in OpenFOAM® and uFVM

18.2 Boundary Condition Customization

To write a new boundary condition it is essential to understand the role of five main

functions, namely, updateCoeffs, valueInternalCoeffs, valueBoundaryCoeffs,

gradientInternalCoeffs, and gradientBoundaryCoeffs.

updateCoeffs: This member function is responsible for the explicit update of the

values at the boundary face centers. The function is called whenever the patch field

values need to be updated iteratively. For example in the totalTemperature

FvPatchScalarField class, updateCoeffs is used to compute, as shown in Listing

18.3, the static temperature from the specified Total Temperature value according to

the relation T ¼ T0 � 0:5ðc� 1ÞU2=ðcRÞ.

In Listing 18.3 the operator == assigns the computed value to the static

temperature.

Another example is setting a mean value to an entire patch. The idea is to impose

an average value at all faces of a boundary patch based on the average of the values

at the centroids of their associated boundary cells and a specified mean value. The

required updateCoeffs function is written as shown in Listing 18.4.

void Foam::totalTemperatureFvPatchScalarField::updateCoeffs()

{

 if (updated())

 {

 return;

 }

 const fvPatchVectorField& Up =

 patch().lookupPatchField<volVectorField, vector>(UName_);

 const fvPatchField<scalar>& psip =

 patch().lookupPatchField<volScalarField, scalar>(psiName_);

 scalar gM1ByG = (gamma_ - 1.0)/gamma_;

 operator==

 (

 T0_/(1.0 + 0.5*psip*gM1ByG*magSqr(Up))

);

 fixedValueFvPatchScalarField::updateCoeffs();

}

Listing 18.3 Script used to iteratively update the static temperature from total temperature using

the updateCoeffs function

18.2 Boundary Condition Customization 747

Note that the function in this case is a template. Therefore it can be used in

conjunction with a variety of types such as scalars, vectors, or tensors.

With updateCoeffs() the values at the face centroids are set explicitly as for a

Dirichlet condition. However the other functions, valueInternalCoeffs, value

BoundaryCoeffs, gradientInternalCoeffs, and gradientBoundaryCoeffs are used to

linearize the boundary condition in order to complement the updateCoeffs() func-

tion. The valueInternalCoeffs and valueBoundaryCoeffs are generally used to lin-

earize the boundary condition for a divergence operator since for that operator the

value at the patch faces is needed. On the other hand, the gradientInternalCoeffs

and gradientBoundaryCoeffs are used to linearize the boundary condition for a

laplace type operator since for that operator the gradient at the patch faces is

needed. This is summarized in Table 18.1.

To clarify the above, the implementations of two boundary conditions are

considered. The first is the Neuman (zeroFlux) boundary condition, while the

second is the Dirichlet (specifiedValue) boundary condition.

For a Neumann (zeroFlux) boundary condition and assuming an orthogonal

mesh, the value of the boundary patch is equal to the value of the boundary element

since the normal gradient should be equal to zero. For the divergence term where

the boundary patch value will be needed, the specified value at the boundary patch

is written in term of the valueInternalCoeffs and valueBoundaryCoeffs, which

represent the linearization of the boundary element value and its non-linearizable

template<class Type>

void fixedMeanFvPatchField<Type>::updateCoeffs()

{

 if (this->updated())

 {

 return;

 }

 Field<Type> newValues(this->patchInternalField());

 Type meanValuePsi = gSum(this->patch().magSf()*newValues)

 /gSum(this->patch().magSf());

 newValues += (meanValue_ - meanValuePsi);

 this->operator==(newValues);

 fixedValueFvPatchField<Type>::updateCoeffs();

}

Listing 18.4 Another example of using the function updateCoeffs to update boundary values

Table 18.1 A summary of the coefficients used to linearize boundary conditions

Diagonal Coeff Source term

Divergence valueInternalCoeffs valueBoundaryCoeffs

Laplacian gradientInternalCoeffs gradientBoundaryCoeffs

748 18 Boundary Conditions in OpenFOAM® and uFVM

part, respectively. For example, the boundary value of a zero gradient boundary

condition can be written as

/b ¼ FluxCb/C þ FluxVb

¼ valueInternalCoeffs/C þ valueBoundaryCoeffs

¼ 1/C þ 0 ð18:1Þ

The syntax used to implement the zeroFlux condition for the divergence operator is

shown in Listing 18.5.

For the laplacian operator, the gradient at the boundary is needed. In this case the

gradient at the boundary patch is set to zero (zeroFlux). This is done through the use

of the gradient linearization, which is written as

r/b ¼ gradientInternalCoeffs/C þ gradientBoundaryCoeffs

¼ 0/C þ 0
ð18:2Þ

where now the gradientInternalCoeffs is the linearized coefficient and

gradientBoundaryCoeffs is the non-linearized component of the gradient as shown

in Listing 18.6.

template<class Type>

tmp<Field<Type> > zeroGradientFvPatchField<Type>::valueInternalCoeffs

(

 const tmp<scalarField>&

) const

{

 return tmp<Field<Type> >

 (

 new Field<Type>(this->size(), pTraits<Type>::one)

);

}

template<class Type>

tmp<Field<Type> > zeroGradientFvPatchField<Type>::valueBoundaryCoeffs

(

 const tmp<scalarField>&

) const

{

 return tmp<Field<Type> >

 (

 new Field<Type>(this->size(), pTraits<Type>::zero)

);

}

Listing 18.5 Implementation of the zeroFlux boundary condition for the divergence operator

18.2 Boundary Condition Customization 749

A summary of the value of the coefficients used to implement a zeroFlux

boundary condition is given in Table 18.2.

In the above, the value at the boundary is set equal to the value of the boundary

element since a zero flux condition is specified.

For a Dirichlet boundary condition, the contribution to the matrix of coefficients

will be just a source term on the right hand side of the equations. In this case the

boundary condition does not alter the diagonal. The valueInternalCoeffs and

valueBoundaryCoeffs are defined inside OpenFOAM® as

/b ¼ FluxCb/C þ FluxVb

¼ valueInternalCoeffs/C þ valueBoundaryCoeffs

¼ 0/C þ /specified

ð18:3Þ

For the laplacian operator, the gradient at the boundary is based on the Dirichlet

value. In this case the gradient at the boundary patch is set again through the use of

the gradient linearization, which is written as

template<class Type>

tmp<Field<Type> >

zeroGradientFvPatchField<Type>::gradientInternalCoeffs() const

{

 return tmp<Field<Type> >

 (

 new Field<Type>(this->size(), pTraits<Type>::zero)

);

}

template<class Type>

tmp<Field<Type> >

zeroGradientFvPatchField<Type>::gradientBoundaryCoeffs() const

{

 return tmp<Field<Type> >

 (

 new Field<Type>(this->size(), pTraits<Type>::zero)

);

}

Listing 18.6 Implementation of the zeroFlux boundary condition for the laplacian operator

Table 18.2 A summary of the coefficients for a zeroFlux boundary condition

Neumann (zero order) Diagonal Coeff Source term

Divergence Value(1) 0

Laplacian 0 0

750 18 Boundary Conditions in OpenFOAM® and uFVM

r/b ¼ gradientInternalCoeffs/C þ gradientBoundaryCoeffs

¼
�/C þ /b

d
¼ �/C þ /bð Þdelta ¼ �/C deltaþ /bdelta

A summary of the coefficient values is given in Table 18.3, while the template

code is shown in Listing 18.7.

Table 18.3 A summary of the coefficients for a Dirichlet boundary condition

Dirichlet Diagonal Coeff Source term

Divergence 0 Boundary value

Laplacian Delta Boundary value and delta

template<class Type>

tmp<Field<Type> > fixedValueFvPatchField<Type>::valueInternalCoeffs

(

 const tmp<scalarField>&

) const

{

 return tmp<Field<Type> >

 (

 new Field<Type>(this->size(), pTraits<Type>::zero)

);

}

template<class Type>

tmp<Field<Type> > fixedValueFvPatchField<Type>::valueBoundaryCoeffs

(

 const tmp<scalarField>&

) const

{

 return *this;

}

template<class Type>

tmp<Field<Type> >

fixedValueFvPatchField<Type>::gradientInternalCoeffs() const

{

 return -pTraits<Type>::one*this->patch().deltaCoeffs();

}

template<class Type>

tmp<Field<Type> >

fixedValueFvPatchField<Type>::gradientBoundaryCoeffs() const

{

 return this->patch().deltaCoeffs()*(*this);

}

Listing 18.7 Syntax used for the implementation of the Dirichlet boundary condition

18.2 Boundary Condition Customization 751

18.3 Development of a New BC: No Slip Wall Condition

The task is to define a new boundary condition type for the proper implementation

of the no slip condition in the context of the finite volume discretization in

OpenFOAM® (Fig. 18.2).

The no slip condition is a fundamental boundary condition in solving flow

problems. According to Newton’s law, the shear stress experienced by a viscous

fluid flowing past a wall is proportional to the normal gradient of the velocity

parallel to the wall and is expressed mathematically as

swall ¼ �l
@vjj

@ðd?ÞC
’ �

l

ðd?ÞC

ð1� n2xÞ �nynx
�nynx ð1� n2yÞ

� �
uC
vC

� �

ð18:4Þ

where C refers to values at the centroid of the boundary cell. This equation suggests

that the no slip condition is anisotropic because it is function only of the velocity

component parallel to the wall and the normal distance to the wall. For the case when

the wall is aligned with the x-axis, only the x-component of velocity is expected to

affect the shear stress value. In fact from Eq. (18.4) the shear stress equation becomes

swall ¼ �l
@vjj

@ðd?ÞC
’ �

l

ðd?ÞC

1 0

0 0

� �
uC
vC

� �

ð18:5Þ

where it is evident that only the diagonal coefficient of the x-component of velocity

has to be injected into the matrix.

A common simplification for this boundary condition, used in OpenFOAM®, is its

treatment as a Dirichlet boundary condition, i.e., a fixedValue (0 0 0) boundary condition.

b

v

v

v

wall

S
b

n

e
b

C

d
⊥()

C
= d

Cb

d
Cb

⋅e
⊥

e
⊥

⊥

Fig. 18.2 No-slip wall shear stress

752 18 Boundary Conditions in OpenFOAM® and uFVM

Using a Dirichlet condition for the implementation of the no-slip condition at a wall

introduces an important error. This error is due to treating the shear stress distribution

as isotropic with its value influenced by the velocity component (of the internal cells)

normal to the wall. In fact using a Dirichlet boundary condition for the case when the

wall is parallel to the x-velocity component, results in a shear stress evaluated as

swall ¼ �l
@vjj

@ðd?ÞC
’ �l

@v

@ðd?ÞC
’ �

l

ðd?ÞC

1 0

0 1

� �
uC
vC

� �

ð18:6Þ

which, when compared with Eq. (18.2), clearly demonstrates the unphysical

dependence of the wall shear stress on the y-component of velocity.

In the following, the proper implementation of the no slip wall condition in

OpenFOAM® is described. The suggested implementation should always be used

instead of the simplified assumption of a Dirichlet boundary condition for

momentum discretization at a no-slip wall.

As stated above, the definition of a new boundary condition necessitates rede-

fining the proper functions. A good starting point is to use an existing boundary

class, copying it, and modifying it with the new algorithms. For this purpose, the

fixedValue class can be used and altered for vector type. The .H file defining the

new virtual no slip wall class is depicted in Listing 18.8.

namespace Foam

{

/*---*

\

 Class noSlipWallFvPatchVectorField Declaration

*---

*/

class noSlipWallFvPatchVectorField

:

 public fixedValueFvPatchField<vector>

{

protected:

 // Protected data

public:

 //- Runtime type information

 TypeName("noSlipWall");

.

.

.

//- Return the matrix diagonal coefficients corresponding to the

// evaluation of the gradient of this patchField

virtual tmp<Field<vector> > gradientInternalCoeffs() const;

//- Return the matrix source coefficients corresponding to the

// evaluation of the gradient of this patchField

virtual tmp<Field<vector> > gradientBoundaryCoeffs() const;

.

.

Listing 18.8 Synopsis of the .H file for the declaration of the noSlipWallFvPatchVectorField class

18.3 Development of a New BC: No Slip Wall Condition 753

As noticed, just the gradientCoeffs function is redefined, since in the fixedValue

class the valueCoeffs and the updateCoeffs functions are already correctly

implemented.

Once the declarations of the functions are ready, implementation proceeds with

the modifications to the .C file. The starting point is Eq. (18.1) but now written in

three dimensions as

swall ¼ �l
@vjj

@ðd?ÞC

’
l

ðd?ÞC
vjjwall �

l

ðd?ÞC

ð1� n2xÞ �nynx �nznx

�nynx ð1� n2yÞ �nzny

�nznx �nzny ð1� n2z Þ

2

6
4

3

7
5

uC

vC

wC

2

6
4

3

7
5

ð18:7Þ

Equation (18.7) indicates that all elements in the matrix have implicit contri-

butions because they depend on the internal cell value and have to be implemented

with the gradientInternalCoeffs. The other term is the tangential component of the

wall velocity and it depends on the face value only. In this case it is necessary to be

described through the function gradientBoundaryCoeffs. Moreover, a closer look at

the implicit contribution suggests storing its mixed terms on the right hand side of

the equation to be treated explicitly since the momentum equations are solved in a

segregated fashion. Thus Eq. (18.7) is rewritten as

swall ’ �
l

ðd?ÞC

ð1� n2xÞ 0 0

0 ð1� n2yÞ 0

0 0 ð1� n2z Þ

2

6
4

3

7
5

|ffl{zffl}

gradientInternalCoeffs

uC

vC

wC

2

6
4

3

7
5

�
l

ðd?ÞC

0 �nynx �nznx

�nynx 0 �nzny

�nznx �nzny 0

2

6
4

3

7
5

|ffl{zffl}

gradientBoundaryCoeffs

uC

vC

wC

2

6
4

3

7
5þ

l

ðd?ÞC
vjjwall

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

gradientBoundaryCoeffs

ð18:8Þ

754 18 Boundary Conditions in OpenFOAM® and uFVM

Based on the above formulation, the gradienInternalCoeffs function reads as

shown in Listing 18.9.

On the other hand, the calculation of the gradientBoundaryCoeffs is as shown in

Listing 18.10.

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * *

* * * //

tmp<Field<vector> >

noSlipWallFvPatchVectorField::gradientInternalCoeffs() const

{

 vectorField normal = this->patch().nf();

 vectorField impCoeff(this->size(),pTraits<vector>::zero);

 forAll(impCoeff,faceI)

 {

 impCoeff[faceI][0] = (scalar(1.0) - pow(normal[faceI][0],2));

 impCoeff[faceI][1] = (scalar(1.0) - pow(normal[faceI][1],2));

 impCoeff[faceI][2] = (scalar(1.0) - pow(normal[faceI][2],2));

 }

 return -impCoeff*this->patch().deltaCoeffs();

}

Listing 18.9 Script used for calculating the implicit contribution

 +normal[faceI][0]*normal[faceI]

[1]*intField[faceI][1]

 +normal[faceI][2]*normal[faceI]

[0]*intField[faceI][2];

 expCoeff[faceI][1] = boundTanField[faceI][1]

 +normal[faceI][1]*normal[faceI]

[0]*intField[faceI][0]

 +normal[faceI][2]*normal[faceI]

[1]*intField[faceI][2];

 expCoeff[faceI][2] = boundTanField[faceI][2]

 +normal[faceI][2]*normal[faceI]

[0]*intField[faceI][0]

 +normal[faceI][1]*normal[faceI]

[2]*intField[faceI][1];

 }

 return this->patch().deltaCoeffs()*expCoeff;

}

tmp<Field<vector> >

noSlipWallFvPatchVectorField::gradientBoundaryCoeffs() const

{

 vectorField normal = this->patch().nf();

 vectorField expCoeff(this->size(),pTraits<vector>::zero);

 vectorField boundTanField = *this - ((*this) & normal) * normal;

 vectorField intField = this->patchInternalField();

 forAll(expCoeff,faceI)

 {

expCoeff[faceI][0] = boundTanField[faceI][0]

Listing 18.10 Script used for calculating the explicit contribution

18.3 Development of a New BC: No Slip Wall Condition 755

The new boundary condition can now be used with any wall by just defining the

patch type as noSlipWall, as described in Listing 18.11.

18.4 The No-Slip Boundary Condition in uFVM

Adding a new boundary condition in uFVM requires that the boundary be imple-

mented for each term to which it can be applied, thus is not as modular as in

OpenFOAM®. Still it can be quite straightforward as demonstrated for the no-slip

boundary condition.

It is important to emphasize that the no-slip boundary condition is somewhat a

hybrid condition where a flux (the shear stress) has to be computed while ensuring

that the boundary velocities are set to specified values, in this case zero. So it relates

somewhat to the Dirichlet and Neumann conditions.

In uFVM information about boundary conditions are stored in a patch-based

structure composed of the following four arrays:

1. thePatchFlux.FLUXC1f : the linearization coefficient for the owner cell

2. thePatchFlux.FLUXC2f : the linearization coefficient for the neighbor cell

3. thePatchFlux.FLUXVf: the non-linearized part

4. thePatchFlux.FLUXTf: the total flux at the face

in such a manner that the boundary flux is expressed as

thePathFlux:FLUXTf ¼ thePathFlux:FLUXC1f phi owner

þ thePathFlux:FLUXC2 phi boundaryþ thePathFlux:FLUXVf

ð18:9Þ

Equation (18.9) shows how the total flux at any internal face is linearized in

terms of the owner and neighbor elements sharing the face, except that for a patch

the neighbor node is basically the boundary node. For a boundary face, where there

is no neighbor element defined, thePatchFlux.FLUXC2f is always set to zero.

For the no slip condition where the total flux (i.e., the shear stress) depends on

the change of the velocity component parallel to the wall, the expressions of the

various contributions become

 wall

 {

 type noSlipWall;

 value uniform (0 0 0);

 }

Listing 18.11 Script needed to use the no-slip boundary condition at runtime

756 18 Boundary Conditions in OpenFOAM® and uFVM

theFluxes:FLUXC1fðiBFacesÞ ¼ area: � TM: � ð1� dotðnc0; nc0Þ0Þ;

theFluxes:FLUXC2fðiBFacesÞ ¼ 0;

theFluxes:FLUXVfðiBFacesÞ ¼ Fc� area: � TM: � ð1� dotðnc0; nc0Þ0Þ: � velcðiOwnersÞ;

theFluxes:FLUXTfðiBFacesÞ ¼ theFluxes:FLUXC1fðiBFacesÞ: � velcðiOwnersÞ

þ theFluxes:FLUXC2fðiBFacesÞ: � velcðiBElementsÞ

þ theFluxes:FLUXVfðiBFacesÞ;

ð18:10Þ

where Fc is the actual shear flux computed at the patch wall faces as

Fc ¼ �l
v � ejj
d?

ð18:11Þ

The complete code for the implementation of the boundary condition is shown in

Listing 18.12.

function theFluxes =

cfdAssembleStressTermWallNoSlipBC(iPatch,theFluxes,theEquationName,the

Term,iComponent)

theMesh = cfdGetMesh;

theFluidTag = cfdGetFluidTag(theEquationName);

theBoundary = theMesh.boundaries(iPatch);

numberOfElements = theMesh.numberOfElements;

numberOfInteriorFaces = theMesh.numberOfInteriorFaces;

numberOfBFaces = theBoundary.numberOfBFaces;

%

iFaceStart = theBoundary.startFace;

iFaceEnd = iFaceStart+numberOfBFaces-1;

iBFaces = iFaceStart:iFaceEnd;

%

iElementStart = numberOfElements+iFaceStart-numberOfInteriorFaces;

iElementEnd = iElementStart+numberOfBFaces-1;

iBElements = iElementStart:iElementEnd;

%

%

% specifiy the Term Field

%

if(isempty(theTerm.variableName))

 theTermFieldName = theEquationName;

else

 theTermFieldName = theTerm.variableName;

end

theTermField = cfdGetMeshField(theTermFieldName);

velc = theTermField.phi(:,iComponent);

%phiGradient = theTermField.phiGradient(:,:,iComponent);

Listing 18.12 Script used for the implementation of the no-slip boundary condition in uFVM

18.4 The No-Slip Boundary Condition in uFVM 757

Fc = -area.*TM.*((vel_t - vel_wall)*e);

%//

theFluxes.FLUXC1f(iBFaces) = area.*TM.*(1- dot(nc',nc')');

theFluxes.FLUXC2f(iBFaces) = 0;

theFluxes.FLUXVf(iBFaces) = - Fc - area.*TM.*(1-

dot(nc',nc')').*velc(iOwners);

theFluxes.FLUXTf(iBFaces) = theFluxes.FLUXC1f(iBFaces) .*

velc(iOwners) + theFluxes.FLUXC2f(iBFaces) .* velc(iBElements) +

theFluxes.FLUXVf(iBFaces);

end

geodiff = [theMesh.faces(iBFaces).geoDiff]';

Tf = [theMesh.faces(iBFaces).T]';

area = [theMesh.faces(iBFaces).area]';

n = [theMesh.faces(iBFaces).Sf]'./[area area area];

iOwners = [theMesh.faces(iBFaces).iOwner]';

TM=cfdGetUCoef(iPatch,theFluidTag);

%//

vel = theTermField.phi(iOwners,:);

velb = theTermField.phi(iBElements,:);

mag = dot(vel',n')';

vel_n = [mag mag mag].*n;

vel_t = vel - vel_n;

magb = dot(velb',n')';

velb_n = [magb magb magb].*n;

velb_t = velb - velb_n;

vel_wall = velb_t;

nc = n*e;

if(iComponent==1)

 e = [1;0;0];

elseif(iComponent==2)

 e = [0;1;0];

elseif(iComponent==3)

 e = [0;0;1];

end

%

% specifiy the Term Coefficient Field

%

theTermCoefficientField = cfdGetMeshField(['Viscosity' theFluidTag]);

visc = theTermCoefficientField.phi;

%---------------------- End Term Info ----------------------%

%

%

Listing 18.12 (continued)

758 18 Boundary Conditions in OpenFOAM® and uFVM

18.5 Closure

The chapter discussed the implementation of boundary conditions in OpenFOAM®.

It also presented the needed steps for implementing new boundary conditions in

OpenFOAM® by detailing the various required stages for properly adding a no-slip

boundary condition. A brief discussion of boundary conditions in uFVM was also

presented. The next chapter is devoted to detailing the steps needed to solve a

turbulent flow problem in OpenFOAM®.

Reference

1. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

18.5 Closure 759

Chapter 19

An OpenFOAM® Turbulent Flow

Application

Abstract The OpenFOAM® solvers and boundary conditions developed in pre-

vious chapters are used here to solve a small scale turbulent incompressible flow

problem. Details on the case structure, mesh, and solver setup are presented along

with information on monitoring convergence and post processing results.

19.1 Introduction

The design of a car body is a very demanding task that necessitates finding a

compromise between the stylistic constraint of the brand and consumer taste on one

hand, and the engineering requirements of efficient aerodynamics for improved fuel

economy on the other. The use of a CFD tool in this situation is critical, especially

in investigating the aerodynamic forces, the interplay of viscous flow effects and

turbulent boundary layer, the sensitivity of the flow around the vehicle to changes in

its shape, and finally the drag coefficient of the car under various operating

conditions.

In this chapter the simpleFoamTurbulent solver and the boundary conditions

developed and implemented in previous chapters are used to analyze the flow

around a well investigated test case, namely the Ahmed bluff body.

19.2 The Ahmed Bluff Body

In automotive applications, the major factor contributing to drag is the wake that

develops behind the vehicle, with its prediction representing a difficult task in CFD.

This is so because flow separation in turbulent flows is still a challenge to simulate

numerically. Nonetheless determining the size of the flow separation zone greatly

influences the predicted drag force acting on the body. Thus, accurate simulation of

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_19

761

the induced vortex flow and of the separation process is essential for correct pre-

dictions of aerodynamic efficiency.

Current automobile designs have many complex geometrical features that make

them a challenge to model and/or investigate experimentally. Thus for the limited

investigation considered here, the Ahmed bluff body [1, 2], which is schematically

depicted in Fig. 19.1, is chosen. Figure 19.1a shows the side, front, and top views

from which dimensions can be inferred, while Fig. 19.1b presents a three dimen-

sional visualization of the body. Even though it represents simple geometry, Ahmed

body allows for a three-dimensional region of separated flow to be developed and

different flow phenomena to be studied and compared to experimental data.

(a)

(b)

Fig. 19.1 a Side, front, and top views of Ahmed body, b a three dimensional visualization of

Ahmed body geometry

762 19 An OpenFOAM® Turbulent Flow Application

The Ahmed body is a well known configuration and is widely used as bench-

mark. The slant geometry at its back end generates counter-rotating vortices at the

side edges, whose strength is mainly determined by the base slant angle. It comes in

two configurations differing in the slant angle value (25° and 35°). In this simu-

lation the configuration with a 25° slant angle is considered.

19.3 Domain Discretization

The computational domain is depicted in Fig. 19.2 with a symmetry condition

imposed along the mid section of the Ahmed body shape. Symmetry is exploited to

reduce the computational domain and to mitigate the transient flow behavior

expected to develop because of vortex shedding at the body’s rear end. This should

also enhance numerical stability.

Inflow and outflow boundary conditions are placed far from the body to mini-

mize any unwanted interaction with the main flow region, especially between the

outlet and the flow at the rear end of the body.

Themesh is generated by snappyHexMesh, a utility that is part of theOpenFOAM®

[3] package. snappyHexMesh generates three dimensional meshes containing hexa-

hedra (hex) and split-hexahedra (split-hex) elements generated automatically from

triangulated surface geometry in the Stereolithography (STL) format. The mesh

gradually conforms to the surface by iteratively refining a startingmesh andmorphing

the resulting split-hex mesh to the surface. An optional phase will shrink back the

resultingmesh and insert cell layers. The specification ofmesh refinement level is very

flexible and the surface handling is robust with a pre-specified final mesh quality. It

runs in parallel with a load balancing step at every iteration [4].

Fig. 19.2 Computational domain for Ahmed body

19.2 The Ahmed Bluff Body 763

It is beyond the purpose of this book to give a detailed introduction of the

snappyHexMesh application but a commented setup file can be found in the case

directory “Ahmed_body/system/snappyHexMeshDict”. Listing 19.1 shows an

extract of the file.

The mesh is generated by executing, from the case directory, the following

commands in the shown sequence:

blockMesh—dict system/blockMeshDict this defines the general computational

domain within which the snappyHexMesh will operate, the domain should have

within its volume the STL geometry.

snappyHexMesh snappyHexMesh generates themesh in three phases with the result

of each phase written to a folder (1/2/ and 3/).

// Which of the steps to run
castellatedMesh true;
snap true;
addLayers true;

// Geometry. Definition of all surfaces. All surfaces are of class
// searchableSurface.
// Surfaces are used
// - to specify refinement for any mesh cell intersecting it
// - to specify refinement for any mesh cell inside/outside/near

// - to 'snap' the mesh boundary to the surface
geometry
{
 ahmed_body.stl
 {
 type triSurfaceMesh;
 name ahmed_body;
 appendRegionName false;
 }

// Settings for the castellatedMesh generation.
castellatedMeshControls
{

 // Refinement parameters
 // ~~~~~~~~~~~~~~~~~~~~~

 // If local number of cells is >= maxLocalCells on any processor
 // switches from from refinement followed by balancing
 // (current method) to (weighted) balancing before refinement.
 maxLocalCells 300000;

Listing 19.1 An extract of the snappyHexMeshDict file

764 19 An OpenFOAM® Turbulent Flow Application

mv 3/polyMesh constant/ this moves the final mesh generated by snappyHexMesh

into the constant directory to be used for computing the solution.

createPatch—overwrite this deletes any empty patches.

The body fitted grid is composed of about 800,000 polyhedral cells mostly

located in two regions around the car body. This allows for a good resolution of the

wake region while keeping low the number of elements used in the computational

domain. Details of the grid generated around the body is shown in Fig. 19.3.

Fig. 19.3 Grid details around Ahmed body

19.3 Domain Discretization 765

Clustering of mesh elements in the region of interest is a common practice as it

reduces the computational cost while properly resolving the important features of

the flow.

The generated mesh is fully unstructured and uses polyhedral elements with up

to 15 faces. The quality of the mesh is best evaluated using checkMesh, the output

of such an operation is shown in Listing 19.2.

Mesh stats

 points: 806136

 faces: 2331063

 internal faces: 2292117

 cells: 762865

 faces per cell: 6.060285896

 boundary patches: 10

 point zones: 0

 face zones: 0

 cell zones: 0

Overall number of cells of each type:

 hexahedra: 744610

 prisms: 1057

 wedges: 0

 pyramids: 0

 tet wedges: 1

 tetrahedra: 0

 polyhedra: 17197

 Breakdown of polyhedra by number of faces:

 faces number of cells
 4 82

 5 59

 6 4523

 7 1563

 8 410

 9 6961

 10 5

 11 3

 12 2782

 14 2

 15 807

Checking geometry...

 Overall domain bounding box (-5 -0.00189057368 0) (10 5 5)
 Mesh (non-empty, non-wedge) directions (1 1 1)

 Mesh (non-empty) directions (1 1 1)
 Boundary openness (-2.589889552e-17 -1.395011501e-15 -4.461826685e-14) OK.

 Max cell openness = 3.962970386e-16 OK.

 Max aspect ratio = 13.98146561 OK.

 Minimum face area = 1.211564662e-06. Maximum face area = 0.1568483398. Face area

magnitudes OK.
 Min volume = 8.48251732e-09. Max volume = 0.05873313819. Total volume = 374.944525.

Cell volumes OK.
 Mesh non-orthogonality Max: 62.12745867 average: 5.023035258

 Non-orthogonality check OK.
 Face pyramids OK.

 Max skewness = 2.516852961 OK.

 Coupled point location match (average 0) OK.

Mesh OK.

End

Listing 19.2 Grid quality check and details

766 19 An OpenFOAM® Turbulent Flow Application

The physical boundary conditions are set in the boundary file located in the

“Ahmed_body/constant/polyMesh/” directory. This is displayed in Listing 19.3.

10
(
 inlet
 {
 type patch;
 physicalType inlet;
 nFaces 298;
 startFace 2292117;
 }
 outlet
 {
 type patch;
 physicalType outlet;
 nFaces 298;
 startFace 2292415;
 }
 ffmaxy
 {
 type patch;

 nFaces 640;
 startFace 2292713;
 }
 floor
 {
 type wall;
 inGroups 1(wall);
 nFaces 13779;
 startFace 2293353;
 }
 top
 {
 type patch;
 nFaces 520;
 startFace 2307132;
 }
 ahmed_body_body
 {
 type wall;
 inGroups 1(wall);
 nFaces 5750;
 startFace 2307652;
 }
 ahmed_body_body_front_h
 {
 type wall;
 inGroups 1(wall);
 nFaces 864;
 startFace 2313402;
 }
 ahmed_body_body_front_v
 {
 type wall;
 inGroups 1(wall);
 nFaces 1270;
 startFace 2314266;
 }
 ahmed_body_stilts
 {
 type wall;
 inGroups 1(wall);
 nFaces 256;
 startFace 2315536;
 }
 cp
 {
 type wall;
 inGroups 1(wall);
 nFaces 15271;
 startFace 2315792;
 }

)

Listing 19.3 Script used to set the physical boundary conditions

19.3 Domain Discretization 767

The patches inlet and outlet are defined as type patch, while cp is set as a wall,

rather than a symmetry plane. In order to reduce the complexity of resolving the

flow, a slip boundary condition will be used for the cp patch. The “ahmed_body*”

patches that represent the car body are defined as “wall”, while the remaining

patches define the external domain.

19.3.1 Initial and Boundary Conditions

The 0 directory must contain the following four basic files for a turbulent incom-

pressible flow simulation: the velocity U, the pressure p, and for the kEpsilon

turbulence model, the turbulent kinetic energy k, and the dissipation rate ε.

The file U defines the boundary conditions for the velocity (Listing 19.4).

dimensions [0 1 -1 0 0 0 0];

internalField uniform (40 0 0);

boundaryField
{
 inlet
 {
 type surfaceNormalFixedValue;
 refValue uniform -40;
 }
 outlet
 {
 type inletOutlet;
 inletValue uniform (0 0 0);
 value uniform (0 0 0);
 }
 ffmaxy
 {
 type slip;
 }
 top
 {
 type slip;
 }
 ahmed_body_body
 {
 type noSlipWall;
 value uniform (0 0 0);
 }
 ahmed_body_body_front_h
 {
 type noSlipWall;
 value uniform (0 0 0);
 }
 ahmed_body_body_front_v
 {
 type noSlipWall;
 value uniform (0 0 0);

Listing 19.4 Script of the [file

768 19 An OpenFOAM® Turbulent Flow Application

The new noSlipWall boundary condition is employed to impose the no slip

condition at the walls including the body car and the floor. The fluid velocity at inlet

is set at 40 m/s. Along the cp plane, a slip wall boundary condition is used where

the viscous forces are set to zero to mimic a symmetry plane (the slight geometric

error due to meshing on patch cp does not allow the direct use of a symmetryPlane

boundary condition).

The zeroGradient pressure boundary condition uses a zero order extrapolation to

compute the pressure at the boundary. At the outlet, a Dirichlet boundary condition

is applied in order to set a reference pressure (Listing 19.5).

boundaryField
{
 inlet
 {
 type zeroGradient;
 }
 outlet
 {
 type fixedValue;
 value uniform 0;
 }
 ffmaxy
 {
 type zeroGradient;
 }

Listing 19.5 Script of the p file

 }
 ahmed_body_stilts
 {
 type noSlipWall;
 value uniform (0 0 0);
 }
 floor
 {
 type noSlipWall;
 value uniform (0 0 0);
 }
 cp
 {
 type slip;

 }
}

Listing 19.4 (continued)

19.3 Domain Discretization 769

For the kEpsilon model, the turbulent intensity and integral length scale are set at

the inlet boundary, while the standard wall functions are employed along all the

walls automatically (Chap. 17). The k file is shown in Listing (19.6) and the epsilon

file in Listing (19.7).

19.3.2 Systems Files

The controlDict file (Listing 19.8) is configured to perform 500 SIMPLE iterations.

Further, in order to use the new noSlipWall boundary condition for the velocity, the

corresponding library has to be included together with the proper libraries for inlet

turbulence boundary conditions. These are set using the libs declaration. A specific

run-time post processing configuration is also included to monitor iteratively

boundaryField
{
 inlet
 {
 type turbulentIntensityKineticEnergyInlet;
 intensity 0.01;
 value uniform 0.002;
 }
 outlet
 {
 type zeroGradient;
 }

Listing 19.6 Script of the k file

boundaryField
{
 inlet
 {
 type turbulentMixingLengthFrequencyInlet;
 mixingLength 0.01;
 phi phi;
 k k;
 value uniform 0.002;
 }
 outlet
 {
 type zeroGradient;
 }

Listing 19.7 Script of the epsilon file

770 19 An OpenFOAM® Turbulent Flow Application

variations in the lift and drag coefficients, which are set using the functions dec-

laration. Usually for external aerodynamic applications it is more convenient to

monitor loads or forces on the body, rather than the level of residuals, for checking

convergence.

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 500;

libs (
"libNoSlip.so"
"libincompressibleRASModels.so"
"libincompressibleRASModels.so"
);

functions
(

 forceCoeffs1
 {
 type forceCoeffs;
 functionObjectLibs ("libforces.so");
 outputControl timeStep;
 outputInterval 1;
 log yes;

 patches ("ahmed_body*");
 pName p;
 UName U;
 rhoName rhoInf; // Indicates incompressible
 log true;
 rhoInf 1; // Redundant for incompressible
 liftDir (0 0 1);
 dragDir (1 0 0);
 CofR (0.72 0 0); // Axle midpoint on ground
 pitchAxis (0 1 0);
 magUInf 40;
 lRef 1.45; // Wheelbase length
 Aref 2.618; // Estimated
 }

)

Listing 19.8 Script of the controlDict file

19.3 Domain Discretization 771

Linear solvers specifications and relaxation factors are configured in the

fvSolution file displayed in Listing 19.9. Here preconditioned conjugate gradient

methods with incomplete factorization pre-conditioners are chosen for all equations.

For the pressure correction equation (pp), a symmetric matrix solver is specified due

to the laplacian nature of the equation. It is worth mentioning that with a pressure

correction formulation there is no need for non-orthogonal correction iterations.

Spatial discretization settings are configured in the fvSchemes file depicted in

Listing 19.10. For this simulation a first order upwind discretization for convection,

a Gaussian method for gradient reconstruction, and a linear profile for variable face

interpolation are used.

solvers
{
 pp
 {
 solver PCG;
 preconditioner DIC;
 tolerance 1e-06;
 relTol 0.01;
 }

 "(U|k|epsilon)"
 {
 solver PBiCG;
 preconditioner DILU;
 tolerance 1e-15;
 relTol 0.1;
 }
}
SIMPLE
{
 nNonOrthogonalCorrectors 0;
}
relaxationFactors
{
 pp 0.3;
 U 0.7;
 k 0.7;
 epsilon 0.7;
}

Listing 19.9 Script of the fvSolution file

772 19 An OpenFOAM® Turbulent Flow Application

19.3.3 Running the Solver

At the start of the run, the solver provides information about equation residuals and

force coefficients (Listing 19.11). Based on the controlDict setup, force coefficients

are also written in the file Ahmed_body/postProcessing/forceCoeffs1/0/forceCoeffs.

dat that can be used for checking the convergence history.

ddtSchemes
{
 default steadyState;
}
gradSchemes
{
 default Gauss linear;
 grad(p) Gauss linear;
 grad(U) Gauss linear;
}
divSchemes
{
 default Gauss upwind;
 div(phi,U) Gauss upwind;
 div(phi,k) Gauss upwind;
 div(phi,epsilon) Gauss upwind;
 div(R) Gauss linear;

 div((nuEff*dev(T(grad(U))))) Gauss linear;
}
laplacianSchemes
{
 default Gauss linear corrected;
 laplacian(nuEff,U) Gauss linear corrected;
 laplacian((1|A(U)),p) Gauss linear corrected;
 laplacian(DkEff,k) Gauss linear corrected;
 laplacian(DepsilonEff,epsilon) Gauss linear corrected;
 laplacian(DREff,R) Gauss linear corrected;
 laplacian(DnuTildaEff,nuTilda) Gauss linear corrected;
}

interpolationSchemes
{
 default linear;
 interpolate(U) linear;
}
snGradSchemes
{
 default corrected;
}
fluxRequired
{
 default no;
 pp ;
}

Listing 19.10 fvSchemes file details

19.3 Domain Discretization 773

It is worth noting that for the pressure correction equation the residual at any

iteration is always 1, which is due to the way OpenFOAM® normalizes residuals

(Check the computational pointers in Chap. 10).

Figure 19.4a shows the convergence history plots of the residuals of the

momentum equations, while Fig. 19.4b shows the changes in the lift and drag

coefficients as the simulation progresses. Results clearly show that in 300 iterations

the solution has completely converged with changes in the lift and drag coefficient

values becoming negligible.

Figure 19.5 shows the static pressure contours around the body. High pressure

values are evident on the front of the body due to the recovery of the dynamic

pressure contribution. Contours also show a low pressure region immediately

Starting time loop

Time = 1

DILUPBiCG: Solving for Ux, Initial residual = 1, Final residual = 0.02308834211, No

Iterations 2

DILUPBiCG: Solving for Uy, Initial residual = 1, Final residual = 0.07259752325, No
Iterations 1

DILUPBiCG: Solving for Uz, Initial residual = 1, Final residual = 0.05706016776, No

Iterations 1
DICPCG: Solving for pp, Initial residual = 1, Final residual = 0.009688743115, No

Iterations 140

DILUPBiCG: Solving for epsilon, Initial residual = 0.999533875, Final residual =
2.962105429e-05, No Iterations 1

DILUPBiCG: Solving for k, Initial residual = 1, Final residual = 0.000587089458, No

Iterations 1
ExecutionTime = 9.73 s ClockTime = 9 s

forceCoeffs output:

 Cm = 5.971060664
 Cd = 18.59033988

 Cl = 3.888152128

 Cl(f) = 7.915136728
 Cl(r) = -4.0269846

Listing 19.11 Solver verbosity

Fig. 19.4 a Convergence history plots of the residuals of the momentum equations, b variations

of the drag and lift coefficients with time

774 19 An OpenFOAM® Turbulent Flow Application

downstream the front location of the body as a result of the acceleration of the fluid

on a curved surface.

In Fig. 19.6 the recirculation region is evident on the back side of the body

where a low speed region appears.

Fig. 19.5 Pressure contours around the body

Fig. 19.6 Velocity contours around the body

19.3 Domain Discretization 775

The separation region is obvious in the vector plots shown in Fig. 19.7 where a

wake is seen to form behind the body. The formation of this vortex region is

responsible for pressure losses and is the main contribution to the drag on the body.

19.4 Conclusion

The simpleFoamTurbulent solver and boundary conditions developed in previous

chapters were used to solve for the turbulent flow around the Ahmed bluff body.

Despite the low order convection scheme and the relatively coarse mesh used, the

important features of the flow were demonstrated.

References

1. Ahmed SR, Ramm G, Faltin G (1984) Some salient features of the time averaged ground

vehicle wake. SAE Paper 840300

2. Lienhart H, Stoots C, Becker S (2000) Flow and turbulence structures in the wake of a

simplified car model (Ahmed Model). In: DGLR Fach Symposium der AG STAB

3. OpenFOAM (2015) Version 2.3.x. http://www.openfoam.org

4. OpenFOAM® User Guide. http://www.openfoam.org/docs/user/snappyHexMesh.php. London

2012, 2014

Fig. 19.7 Vector plots around body

776 19 An OpenFOAM® Turbulent Flow Application

Chapter 20

Closing Remarks

The book covered the foundations of the Finite Volume Method, a method that is

currently considered to be one of the most reliable and efficient methods for the

simulation of flow and heat transfer problems. It is, thus, not surprising that it is the

main numerical technique used in CFD whether in leading commercial codes or in

open source libraries and frameworks.

While focused on scalar transport and single incompressible and compressible

fluid flow problems, the material presented in this book is quite substantial, ranging

from fundamental issues related to the numerics of the FVM to implementation

details and CFD applications. All topics were introduced from first principles but

were treated thoroughly leading in many cases to covering advanced concepts.

Much of the success of the FVM is attributable to a very active community of

developers who have generously shared their techniques and discoveries in journal

articles, conference proceedings, and books. Nonetheless it all started with a

handful of researchers who were instrumental in setting the foundations for the

method. The following is a very short and incomplete list of those early contributors

whose publications were, at some time, the basic teaching documents for the

method, at least for us the authors. In some way their combined work provided us

with much of our early insight into the method, as such we wish to acknowledge

their contributions:

B. Spalding, S. Patankar, G. Raithby, B.P. Leonard, F. Harlow, I. Raad,

A. Gosman, J.P van Doormaal, S. Muzaferija, I. Demirdzic, M. Peric,

G.E. Schneider, P. Galpin, S. Majumdar, C.W. Hirt, C. Hirsch, and V. Voller.

Finally as with many endeavors, there is space for much improvements. Thus it

is our hope that you will share with us your ideas and suggestions on how to make

the book with the associated codes a better and more useful educational and support

tool.

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6_20

777

Appendix

uFVM

A.1 Introduction

uFVM is a general three dimensional unstructured finite volume-based code

developed in Matlab® for the solution of general single fluid flow and transport

phenomena problems. The code is written for academic purpose and emphasizes

programming simplicity and readability over performance. The code is capable of

dealing with a wide range of flow problems and is easily extensible.

A.2 The Base Structure

The code is composed of task specific functions that mimic the numerical functions

used in the finite volume method. The user can setup a case by writing a script to

read the geometry and define the mathematical model with its associated initial and

boundary conditions. An illustrative script file is presented in Listing A.1 showing a

test case that involves the solution of a simple scalar equation.

© Springer International Publishing Switzerland 2016

F. Moukalled et al., The Finite Volume Method in Computational Fluid Dynamics,

Fluid Mechanics and Its Applications 113, DOI 10.1007/978-3-319-16874-6

779

% Convection-Diffusion Problem Solved on Static Grid

1.clear all;
2.clc;
3.global Domain
4.cfdSetupDomain;

%Reading the Geometry from OpenFOAM
5.cfdReadOpenFoamMesh('Domain25CV');

% setup Fluid
6.cfdSetupFluid('water','MW',18);
7.cfdSetIsTransient

%Creating the Property Fields
8.cfdSetupProperty('Density:water','constant','1000');
9.cfdSetupProperty('SpecificHeat:water','constant','4.186');
10.cfdSetupProperty('conduction:water','constant','4.186');
11.cfdSetupProperty('Velx:water','constant','10');
12.cfdSetupProperty('Vely:water','constant','10');
13.cfdSetupProperty('Velz:water','constant','0');

%=======================
% Setting the equation:
%=======================

14.cfdSetupEquation('T:water','ic','0','urf',1);
% Adding the terms constituting the equation with appropriate coeffi-
cients

15.cfdAddTerm('T:water','Transient','coefficientName','Density:wa-
ter',...

'coeffiecientName','SpecificHeat:water');
16.cfdAddTerm('T:water','Diffusion','coefficientName','conduc-

tion:water');
17.cfdAddTerm('T:water','Convection','coefficientName','Density:wa-

ter',...
'scheme','UPWIND');
% Specifying the Boundary Conditions for the equation

18.cfdSetBC('T:water',1,'type','Specified Value','value','10'); %
Inlet BC

19.cfdSetBC('T:water',2,'type','Outlet'); % Outlet BC
20.cfdSetBC('T:water',3,'type','Specified Value','value','0'); %

Side Walls
21.cfdSetBC('T:water',4,'type','empty'); % Front & Back

% Creating an Mdot Field
22.cfdSetupMdotFields;

% Initializing the special array for each field
23.cfdInitializeFields;

24.time_i=0;
25.time_f=7;
26.dt=1;

Listing A.1 A script for solving a convection-diffusion problem using uFVM

780 Appendix: uFVM

A.3 Reading the Mesh

The uFVM code can read an OpenFOAM® mesh directly from an OpenFOAM®

case directory. Specifically from the polyMesh subfolder that contains the mesh

geometric and topological information. The standard structure of an OpenFOAM®

case folder is presented in Fig. A.1.

The ‘0’ directory is the initialization sub-folder containing the initial and

boundary conditions of the fields defined in the problem model. The ‘constant’

directory contains the dynamicMeshDict, which is a dictionary for dynamic meshes,

and a ‘polyMesh’ directory special for the description of the problem’s geometry.

The ‘system’ directory contains dictionaries that define the case setup. The

controlDict is concerned with the general control parameters of the test case, the

fvSchemes defines the discretization schemes, while the fvSolution contains infor-

mation about the solution algorithms and relaxations to be used in the simulation.

uFVM reads and processes the polyMesh folder information in the

cfdReadOpenFoamMesh function. The function starts by reading the points file

and storing the x, y, z coordinates into a structure array called the nodes array, then

the geometric information is read from the faces file in the form of a list of node

indices for each face. This information is processed and stored in a structure array

% Starting the Time loop
27.for time=time_i:dt:time_f
28.k=1;
29.time_p=time;
30.time_c=time_p+dt;
31.cfdSetTime(time_c)
32.cfdSetDt(dt)
33.cfdTransientUpdate;
34.fprintf('%s %d \n', 'Time:', time_c);
35.disp('---------------------');
36.for iter=1:100
37.cfdUpdateFields;
38.fprintf('%s\n %d \n','Iteration: ',iter);
39.cfdAssembleAndCorrectEquation('T:water');
40.end

% Plotting the temperature field and the residuals of the equation
41.iFigure=time_c;
42.cfdPlotField('T:water',k);
43.colorbar;
44.cfdPlotResiduals;

% A step to save the Phi Field at each time step
45.theMeshField=cfdGetMeshField('T:water');
46.S=theMeshField.phi;
47.Domain.FieldPhi(k).S=S;

48.k=k+1;
%%%

49.end

Listing A.1 (continued)

Appendix: uFVM 781

called faces. Information about the patches and the associated patch faces is then

read from the boundary file and stored in a structure array denoted by boundary.

Finally, the owners and neighbors files are read and the elements structure array is

composed. Then, the topological information for elements, faces, nodes and their

connectivities are processed in function cfdProcessOpenFoamMesh. This is in

addition to secondary geometric information such as the volume and centroids of

Fig. A.1 The standard struc-

ture of an OpenFOAM® case

folder

782 Appendix: uFVM

elements, centroids and area of faces, as well as interpolation factors, and other

geometrical entities.

At this stage, the mesh contains: the nodes array storing for each node its

coordinates, index, and the element/s and faces to which it belongs; the faces array

storing for each face its index, the coordinates of its centroid, area, interpolation

factor, area vector, the owner and the neighbor, patch index and the nodes that

construct it; the elements array storing for each element the index, the indices of the

Fig. A.2 The internal data structure in uFVM

Appendix: uFVM 783

neighbors, the indices of the faces and the nodes constructing the element, volume,

face sign and the coordinates of its centroid. Moreover, a boundary structure array

is created that contains the boundary types included in the problem and read from

the OpenFoam® boundary file. The array contains an index of the boundary patches

and their types, their number of faces and the starting face of each patch. An

illustration of the above described structure is displayed in Fig. A.2.

A.4 Setting-Up the Model

Before setting up the equations underlying the physical model and representing the

major constituents of any case, the fluid/s involved in the problem should be

described. This is done through the function cfdSetupFluid, which is responsible

for defining the type of the fluid, its username, molecular weight, type (com-

pressible or incompressible), in addition to some other related information. It should

be noted at this stage that all the data that will be used by other functions are saved

in a global structure array named Domain. The thermo-physical variables appearing

in the governing equations should be defined as well. This is the role of the special

function cfdSetupProperty. In this function, the user should insert, among others,

the name of the property, its type, and the under relaxation factor needed when

updating its value. All data is stored in an element mesh field.

Now the setup of the governing equations can proceed for any problem by using

the function cfdSetupEquation. This is where the type of the equation (scalar or

vector) is defined along with the initial conditions and the under-relaxation factor.

The user can also choose the gradient type to be used for evaluating the derivatives

appearing in the conservation equation. A field for each equation is stored on an

element mesh size array in the global structure array Domain. For each defined

equation, the user can add the various terms (transient, convection, diffusion,

pressure gradient, stress, source, electric potential, Darcy, buoyancy, and drag

among others) that constitute the equation. Each term is defined in the code using

the function cfdAddTerm. This function relates each term along with the coeffi-

cients (density, viscosity, and diffusion coefficient among others) to its equation

where the information is stored for later use during assembly. The associated

boundary conditions of each equation are then added using the function

cfdAddBC, where the type of the boundary condition (inlet, outlet, specified value,

specified flux, slip, no slip among others) and its value, if needed, are specified. If

any of the equations contains a convective term, then the user has to setup a ‘mdot’

(mass flow rate: density multiplied by the dot product of the velocity vector and the

area vector) field, which creates a mesh field covering the faces of the domain.

784 Appendix: uFVM

The internal structure of an equation (e.g., ‘Velocity:water’) is shown in

Listing A.2.

The structure of a term is shown in Listing A.3.

>> velocityModel.terms{1}

 name: 'Convection'
 variableName: 'Velocity_fluid01'
 coefficientName: 'Density:water'
 type: 'Residual'
 sign: 1
 scheme: 'DEFAULT'

>> velocityModel.terms{2}

 name: 'Stress'
 variableName: 'Velocity_fluid01'
 coefficientName: ''
 type: 'Residual'
 sign: 1
 scheme: 'DEFAULT'
 coefficient: 'Viscosity:water'

>> velocityModel.terms{3}

 name: 'Pressure Gradient'
 variableName: 'Velocity_fluid01'
 coefficientName: ''
 type: 'Residual'
 sign: 1

Listing A.3 Internals of the term structure

velocityModel = cfdGetModel('Velocity:water')

 name: 'Velocity_fluid01'

 userName: 'Velocity:water'

 class: 'Equation'

 type: 'Vector'

 ic: '[1;0;0]'

 urf: 0.8000

 isTransient: 0

 gradientType: 'GAUSS0'

 terms: {1x3 cell}

 residuals: [1x3 double]

 source: ''

 bcs: {1x6 cell}

 tag: '_fluid01'

 rhoName: 'Density:water'

 resArray: [918x3 double]

Listing A.2 Internals of an equation (model) structure

Appendix: uFVM 785

A.5 Setup the Computational Fields

This section describes how fields are initialized in the code, each on its prescribed

locale (elements, faces, nodes). Adding the function cfdInitializeFields into the

script file will automatically initialize the equation field, the property field, and the

‘mdot’ field. An equation is initialized over elements by computing and distributing

the initial conditions onto each interior element along with the previously defined

boundary conditions. After that, a property is initialized over the associated mesh

field, whether it should be computed from a formula or has a constant value, by

evaluating or placing the values over elements or faces. The ‘mdot’ field is ini-

tialized as well by calling the density field (which is a property already defined and

initialized) along with the velocity field to compute the value over each face of the

mesh. Storing all the initialized fields in the appropriate arrays for later commu-

nication is done by each associated function (cfdInitializeEquation,

cfdInitiazeProperty, cfdInitializeMdotField).

A.6 Equation Discretization (Assembly)

After all fields have been initialized and the environment has become suitable to

start the solution process, the function cfdAssembleAndCorrectEquation is

invoked in order to assemble, solve, and correct the equations governing the

modeled problem.

A.6.1 Equation Assembly

For each equation, the internal function cfdAssembleEquation assembles the terms

that have already been associated with the specified equation. A coefficient array

containing the coefficients of the variable, of size equal to the number of control

volumes, is setup using the cfdSetupCoefficients function, as illustrated in Fig. A.3.

A process is initiated in cfdAssembleEquationTerms to loop over each term

and calculate its fluxes according to the selected or default scheme. The calculated

face fluxes and element fluxes are then assembled according to their discretized

form into the global coefficient matrix by cfdAssembleIntoGlobalMatrix

FaceFluxes and cfdAssembleIntoGlobalMatrixElementFluxes, respectively.

After assembling all the terms of a single equation and obtaining the complete array

of coefficients, the residuals of the equation are computed using the function

cfdComputeResidual according to the prescribed equation of the residuals. After

that the under-relaxation factor, already specified for each equation, is applied on

the coefficients.

786 Appendix: uFVM

A.6.2 Solving the Equations

Two algebraic solvers are implemented in uFVM, which are the successive over-

relaxation method (SOR) and the ILU(0) method. The SOR method is simply the

under-relaxed Gauss-Siedel method. With SOR the array containing the coefficients

is imported to the solver, which in turn loops over the elements of the domain to

solve and update the values of the unknown field ϕ. The system of equations is

solved in residual form according to the following equation:

/0
C ¼

bC � aC/C �
P

F�NBðCÞ

aF/F

aC
ðA:1Þ

The ILU(0) method follows the methodology described in Chap. 10, where also

the system of equations is solved in residual form.

Whether solving a simple scalar equation or a set of scalar and vector equations

(i.e., the Navier-Stokes equations), the solutions of these equations have to be

Fig. A.3 Illustration of the array of coefficients

Appendix: uFVM 787

corrected using the cfdCorrectEquation function along with several internal

functions specific for the correction of each type of equations: velocity, scalar or

pressure (which has a specific treatment). After the correction field is obtained, the

phi field at internal nodes is updated. Boundary conditions are corrected, each

according to its specified type through the use of any of the following functions:

cfdCorrectWallZeroFluxBC, cfdCorrectWallSpecifiedFluxBC, cfdCorrect

InletInletBC, and cfdCorrectOutletZeroFluxBC among others. The pressure

equation is corrected by executing cfdCorrectPPField and cfdCorrect

PressureEquation because of the need to correct the pressure correction and

pressure fields. After that, the velocity and the ‘mdot’ fields are corrected at the

interior element faces as well as at boundaries.

A.6.3 Computing the Residuals

The residual of each equation is calculated using the cfdComputeResidual. First a

scaled ϕ for the equation to be solved is calculated as

/scale ¼ maxð/max � /min; absð/maxÞÞ ðA:2Þ

then the residuals are scaled using

R
/
C;scaled ¼

X

all elements

bC � aC/C �
P

F�NBðCÞ

aF/F

aC/scale

ðA:3Þ

and finally the root-mean square residual is computed over the domain as

R
/
C;rms ¼

ffi

P

C� all cells

ðR/
C;scaledÞ

2

number of elements

v

u

u

t

: ðA:4Þ

The obtained value is stored since it is needed as an indicator for the conver-

gence of the solution and can be plotted as explained later.

A.7 Plotting Utilities

Several plotting functions are available in uFVM allowing results in addition to

mesh and geometry to be visualized. A summary of these functions is given below.

cfdPlotMesh plots the domain under consideration along with the mesh that

covers it.

788 Appendix: uFVM

cfdPlotElements plots any element the user choose or a set of specified elements

using the index of each.

cfdPlotFaces plots the faces of the domain using their indices.

cfdPlotPatches plots the full boundary patch that the user choose by using the

index of the patch already defined in earlier stages of a case problem.

cfdPlotContours plots contours of the variable over the domain.

cfdPlotField plots any field defined in the solver, as shown in Fig. A.4.

cfdPlotResiduals plots the residual value of each variable per iteration, as

shown in Fig. A.5.

Fig. A.4 The ϕ field over the domain of interest

Fig. A.5 Variation of the residual of ϕ with iterations for a transient run

Appendix: uFVM 789

cfdPlotVelocity is responsible for plotting the mesh and the velocity vectors on

the element centroids and on boundary faces, as shown in Fig. A.6.

A.8 Interpolation Schemes

Several interpolation functions are included in uFVM serving different purposes. A

summary of these interpolation functions is given below.

1. cfdInterpolateFromElementsToNodes function is used to compute the gra-

dient according to the node-based method and in the cfdPlotField function. A

loop over all nodes is performed and for each node an array is created to store

the indices of the elements sharing the node. The value of the variable at the

node is computed by applying Eq. (9.18).

2. cfdInterpolateFromElementsToFaces function is used in assembling the

stress, diffusion, and ‘mdot’ terms as well as in the initialization of fields. Three

interpolation schemes (Hyperbolic, Upwind, and Average) are implemented in

this function from which the user can choose when computing face values from

element values.

3. cfdInterpolateFromNodesTofaces function is used in computing the gradient

according to the node-based method. For a single face, the value at the face

centroid is computed from the values at the face nodes using Eq. (9.18).

4. cfdInterpolateGradientsFromElementsToInteriorFaces function is used to

interpolate the gradients from elements to interior faces according to the selected

interpolation scheme. Four options are available for this function (Average,

Upwind, Downwind and Corrected Average). The Average scheme depends on

the weighting geometric factor and includes the owner and neighbor of the

Fig. A.6 A plot of the

velocity field over the domain

790 Appendix: uFVM

interior face. The Upwind and Downwind schemes use the value of the upwind

and downwind element, respectively, depending on the direction of the ‘mdot’

vector at the specified interior face. The corrected Average scheme resembles

the Average scheme but with the introduction of a correction to the interpolated

gradient according to Eq. (9.35).

A.9 Test Cases

uFVM comes with a set of basic test cases that can be used to learn how to setup

and run problems using the code. They are also useful as initial templates to setup

new problems. The name of files for all test cases start with ‘test’, some of these test

cases are listed below.

testAdvection.m

testDiffusion.m

testDiffusion01.m

testDiffusion02.m

testDiffusion03.m

testDiffusion04.m

testFlow01.m

testFlow02.m

testGradients.m

testShearRate.m

testSmithHutton.m

testStepProfile.m

testStepProfile2.m

testTemperature.m

testTransient.m

testTurbulence.m

Any test case can be run simply by calling it from within Matlab® as a script

with no input. More information on uFVM can be obtained throughout the book in

the various Computational Pointers sections.

A.10 Closing Remarks

uFVM is mainly used as a teaching tool. It is easy to read but it may take some time

to get used to, especially the setting up of cases. However it provides a clear

implementation of many of the numerics currently used in industrial type CFD

codes. The uFVM code was found to provide good and practical insight to students.

It is our hope that you will find it as useful in your classroom as we have in ours.

Appendix: uFVM 791

	The Finite Volume Method in Computational Fluid Dynamics: An Advanced Introduction with Open FOAM® and Matlab®
	Preface
	Acknowledgments
	Contents
	About the Authors
	Part I: Foundation
	1 Introduction
	Abstract
	1.1 What Is Computational Fluid Dynamics (CFD)
	1.2 What Is the Finite Volume Method
	1.3 This Book
	1.3.1 Foundation
	1.3.2 Numerics
	1.3.3 Algorithms
	1.3.4 Applications

	1.4 Closure

	2 Review of Vector Calculus
	Abstract
	2.1 Introduction
	2.2 Vectors and Vector Operations
	2.2.1 The Dot Product of Two Vectors
	2.2.2 Vector Magnitude
	2.2.3 The Unit Direction Vector
	2.2.4 The Cross Product of Two Vectors
	2.2.5 The Scalar Triple Product
	2.2.6 Gradient of a Scalar and Directional Derivatives
	2.2.7 Operations on the Nabla Operator
	2.2.8 Additional Vector Operations

	2.3 Matrices and Matrix Operations
	2.3.1 Square Matrices
	2.3.2 Using Matrices to Describe Systems of Equations
	2.3.3 The Determinant of a Square Matrix
	2.3.4 Eigenvectors and Eigenvalues
	2.3.5 A Symmetric Positive-Definite Matrix
	2.3.6 Additional Matrix Operations

	2.4 Tensors and Tensor Operations
	2.5 Fundamental Theorems of Vector Calculus
	2.5.1 Gradient Theorem for Line Integrals
	2.5.2 Green's Theorem
	2.5.3 Stokes' Theorem
	2.5.4 Divergence Theorem
	2.5.5 Leibniz Integral Rule

	2.6 Closure
	2.7 Exercises
	References

	3 Mathematical Description of Physical Phenomena
	Abstract
	3.1 Introduction
	3.2 Classification of Fluid Flows
	3.3 Eulerian and Lagrangian Description of Conservation Laws
	3.3.1 Substantial Versus Local Derivative
	3.3.2 Reynolds Transport Theorem

	3.4 Conservation of Mass (Continuity Equation)
	3.5 Conservation of Linear Momentum
	3.5.1 Non-Conservative Form
	3.5.2 Conservative Form
	3.5.3 Surface Forces
	3.5.4 Body Forces
	3.5.4.1 Gravitational Forces
	3.5.4.2 System Rotation

	3.5.5 Stress Tensor and the Momentum Equation for Newtonian Fluids

	3.6 Conservation of Energy
	3.6.1 Conservation of Energy in Terms of Specific Internal Energy
	3.6.2 Conservation of Energy in Terms of Specific Enthalpy
	3.6.3 Conservation of Energy in Terms of Specific Total Enthalpy
	3.6.4 Conservation of Energy in Terms of Temperature

	3.7 General Conservation Equation
	3.8 Non-dimensionalization Procedure
	3.9 Dimensionless Numbers
	3.9.1 Reynolds Number
	3.9.2 Grashof Number
	3.9.3 Prandtl Number
	3.9.4 Péclet Number
	3.9.5 Schmidt Number
	3.9.6 Nusselt Number
	3.9.7 Mach Number
	3.9.8 Eckert Number
	3.9.9 Froude Number
	3.9.10 Weber Number

	3.10 Closure
	3.11 Exercises
	References

	4 The Discretization Process
	Abstract
	4.1 The Discretization Process
	4.1.1 Step I: Geometric and Physical Modeling
	4.1.2 Step II: Domain Discretization
	4.1.3 Mesh Topology
	4.1.4 Step III: Equation Discretization
	4.1.5 Step IV: Solution of the Discretized Equations
	4.1.5.1 Direct Methods
	4.1.5.2 Iterative Methods

	4.1.6 Other Types of Fields

	4.2 Closure

	5 The Finite Volume Method
	Abstract
	5.1 Introduction
	5.2 The Semi-Discretized Equation
	5.2.1 Flux Integration Over Element Faces
	5.2.2 Source Term Volume Integration
	5.2.3 The Discrete Conservation Equation for One Integration Point
	5.2.4 Flux Linearization

	5.3 Boundary Conditions
	5.3.1 Value Specified (Dirichlet Boundary Condition)
	5.3.2 Flux Specified (Neumann Boundary Condition)

	5.4 Order of Accuracy
	5.4.1 Spatial Variation Approximation
	5.4.2 Mean Value Approximation

	5.5 Transient Semi-Discretized Equation
	5.6 Properties of the Discretized Equations
	5.6.1 Conservation
	5.6.2 Accuracy
	5.6.3 Convergence
	5.6.4 Consistency
	5.6.5 Stability
	5.6.6 Economy
	5.6.7 Transportiveness
	5.6.8 Boundedness of the Interpolation Profile

	5.7 Variable Arrangement
	5.7.1 Vertex-Centered FVM
	5.7.2 Cell-Centered FVM

	5.8 Implicit Versus Explicit Numerical Methods
	5.9 The Mesh Support
	5.10 Computational Pointers
	5.10.1 uFVM
	5.10.2 OpenFOAM®

	5.11 Closure
	5.12 Exercises
	References

	6 The Finite Volume Mesh
	Abstract
	6.1 Domain Discretization
	6.2 The Finite Volume Mesh
	6.2.1 Mesh Support for Gradient Computation

	6.3 Structured Grids
	6.3.1 Topological Information
	6.3.2 Geometric Information
	6.3.3 Accessing the Element Field
	6.3.3.1 Discretization Indexing

	6.4 Unstructured Grids
	6.4.1 Topological Information (Connectivities)

	6.5 Geometric Quantities
	6.5.1 Element Types
	6.5.2 Computing Surface Area and Centroid of Faces
	6.5.2.1 Surface of a Triangle
	6.5.2.2 Volume and Centroid of Elements
	6.5.2.3 Face Weighting Factor

	6.6 Computational Pointers
	6.6.1 uFVM
	6.6.2 OpenFOAM®
	6.6.2.1 Area and Centroid of Faces
	6.6.2.2 Volume and Centroid of Elements

	6.7 Closure
	6.8 Exercises
	References

	7 The Finite Volume Mesh in OpenFOAM and uFVM
	Abstract
	7.1 uFVM
	7.1.1 An OpenFOAM Test Case
	7.1.2 The polyMesh Folder
	7.1.3 The uFVM Mesh
	7.1.4 uFVM Geometric Fields
	7.1.4.1 The Element Fields
	7.1.4.2 The Face Fields
	7.1.4.3 The Node Field

	7.1.5 Working with the uFVM Mesh
	7.1.5.1 Looping Over Elements
	7.1.5.2 Looping Over Faces

	7.1.6 Computing the Gauss Gradient

	7.2 OpenFOAM®
	7.2.1 Fields and Memory
	7.2.2 InternalField Data
	7.2.3 BoundaryField Data
	7.2.4 lduAddressing
	7.2.5 Computing the Gradient

	7.3 Mesh Conversion Tools
	7.4 Closure
	7.5 Exercises
	References

	Part II: Discretization
	8 Spatial Discretization: The Diffusion Term
	Abstract
	8.1 Two-Dimensional Diffusion in a Rectangular Domain
	8.2 Comments on the Discretized Equation
	8.2.1 The Zero Sum Rule
	8.2.2 The Opposite Signs Rule

	8.3 Boundary Conditions
	8.3.1 Dirichlet Boundary Condition
	8.3.2 Von Neumann Boundary Condition
	8.3.3 Mixed Boundary Condition
	8.3.4 Symmetry Boundary Condition

	8.4 The Interface Diffusivity
	8.5 Non-Cartesian Orthogonal Grids
	8.6 Non-orthogonal Unstructured Grid
	8.6.1 Non-orthogonality
	8.6.2 Minimum Correction Approach
	8.6.3 Orthogonal Correction Approach
	8.6.4 Over-Relaxed Approach
	8.6.5 Treatment of the Cross-Diffusion Term
	8.6.6 Gradient Computation
	8.6.7 Algebraic Equation for Non-orthogonal Meshes
	8.6.8 Boundary Conditions for Non-orthogonal Grids
	8.6.8.1 Dirichlet Boundary Condition
	8.6.8.2 Neumann Boundary Condition
	8.6.8.3 Mixed Boundary Condition

	8.7 Skewness
	8.8 Anisotropic Diffusion
	8.9 Under-Relaxation of the Iterative Solution Process
	8.10 Computational Pointers
	8.10.1 uFVM
	8.10.2 OpenFOAM®

	8.11 Closure
	8.12 Exercises
	References

	9 Gradient Computation
	Abstract
	9.1 Computing Gradients in Cartesian Grids
	9.2 Green-Gauss Gradient
	9.3 Least-Square Gradient
	9.4 Interpolating Gradients to Faces
	9.5 Computational Pointers
	9.5.1 uFVM
	9.5.2 OpenFOAM®

	9.6 Closure
	9.7 Exercises
	References

	10 Solving the System of Algebraic Equations
	Abstract
	10.1 Introduction
	10.2 Direct or Gauss Elimination Method
	10.2.1 Gauss Elimination
	10.2.2 Forward Elimination
	10.2.3 Forward Elimination Algorithm
	10.2.4 Backward Substitution
	10.2.5 Back Substitution Algorithm
	10.2.6 LU Decomposition
	10.2.7 The Decomposition Step
	10.2.8 LU Decomposition Algorithm
	10.2.9 The Substitution Step
	10.2.10 LU Decomposition and Gauss Elimination
	10.2.11 LU Decomposition Algorithm by Gauss Elimination
	10.2.12 Direct Methods for Banded Sparse Matrices
	10.2.13 TriDiagonal Matrix Algorithm (TDMA)
	10.2.14 PentaDiagonal Matrix Algorithm (PDMA)

	10.3 Iterative Methods
	10.3.1 Jacobi Method
	10.3.2 Gauss-Seidel Method
	10.3.3 Preconditioning and Iterative Methods
	10.3.4 Matrix Decomposition Techniques
	10.3.5 Incomplete LU (ILU) Decomposition
	10.3.6 Incomplete LU Factorization with no Fill-in ILU(0)
	10.3.7 ILU(0) Factorization Algorithm
	10.3.8 ILU Factorization Preconditioners
	10.3.9 Algorithm for the Calculation of {{\bf D}}^{*} in the DILU Method
	10.3.10 Forward and Backward Solution Algorithm with the DILU Method
	10.3.11 Gradient Methods for Solving Algebraic Systems
	10.3.12 The Method of Steepest Descent
	10.3.13 The Conjugate Gradient Method
	10.3.14 The Bi-conjugate Gradient Method (BiCG) and Preconditioned BICG

	10.4 The Multigrid Approach
	10.4.1 Element Agglomeration/Coarsening
	10.4.2 The Restriction Step and Coarse Level Coefficients
	10.4.3 The Prolongation Step and Fine Grid Level Corrections
	10.4.4 Traversal Strategies and Algebraic Multigrid Cycles

	10.5 Computational Pointers
	10.5.1 uFVM
	10.5.2 OpenFOAM®

	10.6 Closure
	10.7 Exercises
	References

	11 Discretization of the Convection Term
	Abstract
	11.1 Introduction
	11.2 Steady One Dimensional Convection and Diffusion
	11.2.1 Analytical Solution
	11.2.2 Numerical Solution
	11.2.3 A Preliminary Derivation: The Central Difference (CD) Scheme
	11.2.4 The Upwind Scheme
	11.2.5 The Downwind Scheme

	11.3 Truncation Error: Numerical Diffusion and Anti-Diffusion
	11.3.1 The Upwind Scheme
	11.3.2 The Downwind Scheme
	11.3.3 The Central Difference (CD) Scheme

	11.4 Numerical Stability
	11.5 Higher Order Upwind Schemes
	11.5.1 Second Order Upwind Scheme
	11.5.2 The Interpolation Profile
	11.5.3 The Discretized Equation
	11.5.4 Truncation Error
	11.5.5 Stability Analysis
	11.5.6 The QUICK Scheme
	11.5.7 The Interpolation Profile
	11.5.8 Truncation Error
	11.5.9 Stability Analysis
	11.5.10 The FROMM Scheme
	11.5.11 The Interpolation Profile
	11.5.12 The Discretized Equation
	11.5.13 Truncation Error
	11.5.14 Stability Analysis
	11.5.15 Comparison of the Various Schemes
	11.5.16 Functional Relationships for Uniform and Non-uniform Grids

	11.6 Steady Two Dimensional Advection
	11.6.1 Error Sources

	11.7 High Order Schemes on Unstructured Grids
	11.7.1 Reformulating HO Schemes in Terms of Gradients

	11.8 The Deferred Correction Approach
	11.9 Computational Pointers
	11.9.1 uFVM
	11.9.2 OpenFOAM®

	11.10 Closure
	11.11 Exercises
	References

	12 High Resolution Schemes
	Abstract
	12.1 The Normalized Variable Formulation (NVF)
	12.2 The Convection Boundedness Criterion (CBC)
	12.3 High Resolution (HR) Schemes
	12.4 The TVD Framework
	12.5 The NVF-TVD Relation
	12.6 HR Schemes in Unstructured Grid Systems
	12.7 Deferred Correction for HR Schemes
	12.7.1 The Difficulty with the Direct Use of Nodal Values

	12.8 The DWF and NWF Methods
	12.8.1 The Downwind Weighing Factor (DWF) Method
	12.8.2 The Normalized Weighing Factor (NWF) Method
	12.8.2.1 The NWF Method in the Context of the TVD

	12.9 Boundary Conditions
	12.9.1 Inlet Boundary Condition
	12.9.2 Outlet Boundary Condition
	12.9.3 Wall Boundary Condition
	12.9.4 Symmetry Boundary Condition

	12.10 Computational Pointers
	12.10.1 uFVM
	12.10.2 OpenFOAM®

	12.11 Closure
	12.12 Exercises
	References

	13 Temporal Discretization: The Transient Term
	Abstract
	13.1 Introduction
	13.2 The Finite Difference Approach
	13.2.1 Forward Euler Scheme
	13.2.2 Stability of the Forward Euler Scheme
	13.2.2.1 Stability of a Transient-Advection Case
	13.2.2.2 Stability of a Transient-Diffusion Case
	13.2.2.3 Stability of a Transient-Convection-Diffusion Case

	13.2.3 Backward Euler Scheme
	13.2.4 Crank-Nicolson Scheme
	13.2.5 Implementation Details
	13.2.6 Adams-Moulton Scheme

	13.3 The Finite Volume Approach
	13.3.1 First Order Transient Schemes
	13.3.2 First Order Implicit Euler Scheme
	13.3.2.1 Numerical Diffusion

	13.3.3 First Order Explicit Euler Scheme
	13.3.3.1 Numerical Anti-Diffusion

	13.3.4 Second Order Transient Euler Schemes
	13.3.5 Crank-Nicholson (Central Difference Profile)
	13.3.5.1 Numerical Accuracy

	13.3.6 Second Order Upwind Euler (SOUE) Scheme
	13.3.6.1 Numerical Accuracy

	13.3.7 Initial Condition for the FV Approach

	13.4 Non-Uniform Time Steps
	13.4.1 Non-Uniform Time Steps with the Finite Difference Approach
	13.4.1.1 Crank-Nicolson Scheme

	13.4.2 Adams-Moulton (or SOUE) Scheme
	13.4.3 Non-Uniform Time Steps with the Finite Volume Approach
	13.4.4 Crank-Nicolson Scheme
	13.4.5 Adams-Moulton (or SOUE) Scheme

	13.5 Computational Pointers
	13.5.1 uFVM
	13.5.2 OpenFOAM®

	13.6 Closure
	13.7 Exercises
	References

	14 Discretization of the Source Term, Relaxation, and Other Details
	Abstract
	14.1 Source Term Discretization
	14.2 Under-Relaxation of the Algebraic Equations
	14.2.1 Under-Relaxation Methods
	14.2.2 Explicit Under-Relaxation
	14.2.3 Implicit Under-Relaxation Methods
	14.2.3.1 Patankar's Under-Relaxation
	14.2.3.2 E-Factor Relaxation
	14.2.3.3 False Transient Relaxation

	14.3 Residual Form of the Equation
	14.3.1 Residual Form of Patankar's Under-Relaxation

	14.4 Residuals and Solution Convergence
	14.4.1 Residuals
	14.4.2 Absolute Residual
	14.4.3 Maximum Residual
	14.4.4 Root-Mean Square Residual
	14.4.5 Normalization of the Residual

	14.5 Computational Pointers
	14.5.1 uFVM
	14.5.1.1 Source Term Linearization
	14.5.1.2 Under-Relaxation

	14.5.2 OpenFOAM®
	14.5.2.1 Source Term Linearization
	14.5.2.2 Under-Relaxation

	14.6 Closure
	14.7 Exercises
	References

	Part III: Algorithms
	15 Fluid Flow Computation: Incompressible Flows
	Abstract
	15.1 The Main Difficulty
	15.2 A Preliminary Derivation
	15.2.1 Discretization of the Momentum Equation
	15.2.2 Discretization of the Continuity Equation
	15.2.3 The Checkerboard Problem
	15.2.4 The Staggered Grid
	15.2.5 The Pressure Correction Equation
	15.2.6 The SIMPLE Algorithm on Staggered Grid
	15.2.7 Pressure Correction Equation in Two Dimensional Staggered Cartesian Grids
	15.2.8 Pressure Correction Equation in Three Dimensional Staggered Cartesian Grid

	15.3 Disadvantages of the Staggered Grid
	15.4 The Rhie-Chow Interpolation
	15.5 General Derivation
	15.5.1 The Discretized Momentum Equation
	15.5.2 The Collocated Pressure Correction Equation
	15.5.3 Calculation of the {{\cal D}}_{f} Term
	15.5.3.1 Minimum Correction Approach
	15.5.3.2 Orthogonal Correction Approach
	15.5.3.3 Over-Relaxed Approach

	15.5.4 The Collocated SIMPLE Algorithm

	15.6 Boundary Conditions
	15.6.1 Boundary Conditions for the Momentum Equation
	15.6.1.1 Wall Boundary Conditions
	15.6.1.2 Inlet Boundary Conditions
	15.6.1.3 Outlet Boundary Conditions
	15.6.1.4 Symmetry Boundary Condition

	15.6.2 Boundary Conditions for the Pressure Correction Equation
	15.6.2.1 Wall Boundary Condition
	15.6.2.2 Inlet Boundary Conditions
	15.6.2.3 Outlet Boundary Conditions
	15.6.2.4 Symmetry Boundary Condition
	15.6.2.5 The Relative Nature of Pressure

	15.7 The SIMPLE Family of Algorithms
	15.7.1 The SIMPLEC Algorithm
	15.7.2 The PRIME Algorithm
	15.7.3 The PISO Algorithm

	15.8 Optimum Under-Relaxation Factor Values for v and p^{\prime}
	15.9 Treatment of Various Terms with the Rhie-Chow Interpolation
	15.9.1 Treatment of the Under-Relaxation Term
	15.9.2 Treatment of the Transient Term
	15.9.3 Treatment of the Body Force Term
	15.9.4 Combined Treatment of Under-Relaxation, Transient, and Body Force Terms

	15.10 Computational Pointers
	15.10.1 uFVM
	15.10.2 OpenFOAM®
	15.10.2.1 Pressure Correction SIMPLE Solvers

	15.11 Closure
	15.12 Exercises
	References

	16 Fluid Flow Computation: Compressible Flows
	Abstract
	16.1 Historical
	16.2 Introduction
	16.3 The Conservation Equations
	16.4 Discretization of the Momentum Equation
	16.5 The Pressure Correction Equation
	16.6 Discretization of The Energy Equation
	16.6.1 Discretization of the Extra Terms
	16.6.1.1 The Specific Heat Term
	16.6.1.2 The Substantial Derivative Term
	16.6.1.3 The Dissipation Term
	16.6.1.4 The Viscous Dissipation Term
	16.6.1.5 The Source/Sink Term

	16.6.2 The Algebraic Form of the Energy Equation

	16.7 The Compressible SIMPLE Algorithm
	16.8 Boundary Conditions
	16.8.1 Inlet Boundary Conditions
	16.8.1.1 Subsonic Flow at Inlet
	16.8.1.2 Supersonic Flow at Inlet

	16.8.2 Outlet Boundary Conditions
	16.8.2.1 Subsonic Flow at Outlet
	16.8.2.2 Supersonic Flow at Outlet

	16.9 Computational Pointers
	16.9.1 uFVM
	16.9.2 OpenFOAM®

	16.10 Closure
	16.11 Exercises
	References

	Part IV: Applications
	17 Turbulence Modeling
	Abstract
	17.1 Turbulence Modeling
	17.2 Reynolds Averaging
	17.2.1 Time Averaging
	17.2.2 Spatial Averaging
	17.2.3 Ensemble Averaging
	17.2.4 Averaging Rules
	17.2.5 Incompressible RANS Equations

	17.3 Boussinesq Hypothesis
	17.4 Turbulence Models
	17.5 Two-Equation Turbulence Models
	17.5.1 Standard k - ε Model
	17.5.2 The k - ω Model
	17.5.3 The Baseline (BSL) k -ω Model
	17.5.4 The Shear Stress Transport (SST) k - ω Model

	17.6 Summary of Incompressible Turbulent Flow Equations
	17.7 Discretization of the Turbulent Flow Equations
	17.7.1 The Discretized Form of the k Equation
	17.7.2 The Discretized Form of the epsilon Equation
	17.7.3 The Discretized Form of the omega Equation

	17.8 Boundary Conditions
	17.8.1 Modeling Flow Near the Wall
	17.8.2 Standard Wall Functions
	17.8.3 Improved Wall Functions
	17.8.4 Scalable Wall Functions
	17.8.5 Wall Boundary Conditions for Low Reynolds Number Models
	17.8.6 Automatic Near-Wall Treatment
	17.8.7 Near-Wall Heat Transfer
	17.8.8 Other Boundary Conditions

	17.9 Calculating Normal Distance to the Wall
	17.10 Computational Pointers
	17.10.1 The k - ε Model
	17.10.2 The SST k - ω Model
	17.10.3 simpleFoamTurbulent

	17.11 Closure
	17.12 Exercises
	References

	18 Boundary Conditions in OpenFOAM® and uFVM
	Abstract
	18.1 Boundary Conditions in OpenFOAM®
	18.2 Boundary Condition Customization
	18.3 Development of a New BC: No Slip Wall Condition
	18.4 The No-Slip Boundary Condition in uFVM
	18.5 Closure
	Reference

	19 An OpenFOAM® Turbulent Flow Application
	Abstract
	19.1 Introduction
	19.2 The Ahmed Bluff Body
	19.3 Domain Discretization
	19.3.1 Initial and Boundary Conditions
	19.3.2 Systems Files
	19.3.3 Running the Solver

	19.4 Conclusion
	References

	20 Closing Remarks
	Appendix: uFVM
	A.1 Introduction
	A.2 The Base Structure
	A.3 Reading the Mesh
	A.4 Setting-Up the Model
	A.5 Setup the Computational Fields
	A.6 Equation Discretization (Assembly)
	A.6.1 Equation Assembly
	A.6.2 Solving the Equations
	A.6.3 Computing the Residuals

	A.7 Plotting Utilities
	A.8 Interpolation Schemes
	A.9 Test Cases
	A.10 Closing Remarks

