
Agent-based Spatial Simulation with NetLogo 2

Agent-based Spatial
Simulation with NetLogo 2

Advanced Concepts

Edited by

Arnaud Banos
Christophe Lang
Nicolas Marilleau

Introduction

The NetLogo platform is perfect for rapidly and effectively prototyping

simple models. Volume 1, Agent-based Spatial Simulation with NetLogo 1,

specifically focused on this remarkable quality [BAN 15a]. NetLogo also

houses a number of commonly unexpected and underestimated resources that

fully justify its status as a platform for agent-based modeling and simulation.

These resources take two different forms. External resources allow

specialized extensions to be directly constructed and/or exploited from within

NetLogo, and allow NetLogo to be dynamically coupled with other libraries,

software programs or platforms. The second form, more typically consisting

of internal resources, arises from the suitability of NetLogo, its language and

its architecture for developing models that are intrinsically more advanced.

The objective of this second book is to give an educational presentation of

these two important dimensions of agent-based spatial simulation with

NetLogo. Readers will be offered a slightly atypical and unconventional

presentation of NetLogo that emphasizes the aspect of being an open

simulation environment (Chapter 1). Chapters 2–5 explore in depth the

opportunities for extending and coupling NetLogo presented in the first

chapter, situating them within a number of fundamental perspectives.

Chapter written by Arnaud BANOS, Christophe LANG and Nicolas MARILLEAU.

The scientific material this book relies on was developed within various research

and pedagogic projects, which benefited from the financial or logistic support of

several institutions: Mission pour l’interdisciplinarité du CNRS/PEPS HUMAIN CNRS
(http://www.cnrs.fr/mi/spip.php?article193), LabeX DynamiTe (http://labex-dynamite.com/

en/the-labex/), ISC-PIF (https://iscpif.fr/), RNSC (http://rnsc.csregistry.org/), MAPS Network

(http://maps.hypotheses.org/).

x Agent-based Spatial Simulation with NetLogo 2

Chapter 2 discusses the question of multiscale modeling, with applications in

road traffic management, and Chapter 3 focuses on coupling macro and micro

models based on networks, with applications in spatial epidemiology.

Chapter 4 explores the notion of network in much more depth, considering

fundamental principles of graph theory but also more advanced features like

dynamic graphs. Chapter 5 focuses on solving so-called “swarm” problems.

Finally, Chapter 6 brings the book to a close by presenting a number of

protocols for exploring complex models in NetLogo. In the same spirit as

Volume 1, this second volume includes examples of NetLogo code and

GitHub links for each of the models encountered. To be read and reread

without moderation!

1

NetLogo, an Open Simulation Environment

1.1. Introduction to extensions in NetLogo

NetLogo is a generic simulation environment in the sense that it was not

designed with any specific domain of application in mind. NetLogo offers a

wide range of features and generic operators to its users. Additionally, to make

up for any missing features, NetLogo is compatible with other platforms and

libraries, as we will demonstrate throughout this book.

There is a vast library of extensions available to users, allowing them to

integrate additional functionality that is not present in the native version of

NetLogo, but which might nonetheless be necessary for the development of a

given model. An official library of extensions is available on the official

NetLogo Website. We will explore some of these extensions later in this

chapter. But many modelers have also developed their own extensions to

tackle specific problems that are of interest to them. These extensions are

developed with an open Java API. We will discuss this in more detail in

section 1.2.

Conversely, NetLogo can also be called and controlled by other programs,

such as OpenMole1, Python2 and R3. To do this, NetLogo provides a Java API

Chapter written by Benoit GAUDOU, Christophe LANG, Nicolas MARILLEAU,

Guilhelm SAVIN, Sébastien REY COYREHOURCQ and Jean-Marc NICOD.

1 http://www.openmole.org/.

2 https://www.pythong.org/.

3 https://www.r-project.org/.

2 Agent-based Spatial Simulation with NetLogo 2

that allows models to be loaded, executed and gives access to their variables

and methods. The usage of this API is presented in detail in section 1.3.

1.1.1. Examples of typical NetLogo extensions

There are many different types of extension. The GitHub page of the

NetLogo platform4 gives one possible list of examples. This list distinguishes

between internally developed extensions, which are included with the

platform (e.g. GIS or network), and extensions developed by the community,

which have to be installed manually (section 1.1.2). In Chapter 3 of Volume 1

[BAN 15a], we presented a number of these extensions (GIS and network) to

showcase some of additional functionnalities of NetLogo.

Some of these extensions include language extensions, which allow the

modeler to manipulate more complex object types than those natively present

in NetLogo. Indeed, the language of the platform has relatively few complex

structures (unlike most programming languages) and primitives for

manipulating them. For instance, the array, table and matrix extensions

are now included with NetLogo. However, extensions such as string and

file are external.

More generally, the functionalities of the NetLogo language can be

augmented with a wide range of extensions, for example to achieve better

network management (network and nw), to provide more primitives for

network analysis (additional metrics and indicators) or to integrate

geographical data represented in vector form into NetLogo models (GIS).

This is not an easy task, but this is absolutely necessary, as NetLogo models

are natively based on a grid-based discrete environment. As another example,

the SQL extension allows models to interact with a database by sending

SQL-formatted queries and receiving data in response. Finally, the sound and

MIDI extensions allow sounds to be integrated into NetLogo models.

There are a number of extensions that enable NetLogo to interact with other

tools. This interaction can take various different forms: it might simply involve

reading or writing files that are compatible with a third-party application. For

example, it is possible to process image files (bitmap), tabular data (csv), Java

4 https://github.com/Netlogo/Netlogo/wiki/Extensions.

NetLogo, an Open Simulation Environment 3

system properties (Props), POV rays (RayTracing), VRML (VRML), NetCDF

(NetCDF), etc. This allows modelers with different backgrounds to increase

the realism of their simulations by exploiting real data in useful formats.

Other extensions allow deeper forms of interaction by directly integrating

third-party functionality into NetLogo; for this kind of interaction, NetLogo

must be able to connect with another application to send requests and retrieve

results, such as Matlab (MATLAB), Prolog (NetProLogo), IODA [KUB 11]

(IODA) and Graphstream5 (gs).

For example, the NetLogo language can be extended with primitives

allowing it to benefit from the scientific calculation tool R [THI 10], and in

particular to call R functions from within a NetLogo model. The R extension

for NetLogo can be downloaded on the Netlogo-R-Extension Website6. It

fulfills the task of communicating data between the two tools, and in

particular performs type conversions from one language to the other. A

working installation of R is required. There is also a reverse extension that

allows NetLogo to be called from R, known as RNetlogo7.

Finally, there are several extensions enabling NetLogo to connect with

various types of hardware (sensors, actuators, etc.). Examples include the

extensions Arduino (microcontroller), GoGo (sensors) and wiimote (game

controller with an accelerometer).

1.1.2. Installing and using extensions in models

The extensions used by NetLogo are located in the extensions folder in

the NetLogo root directory. Each extension has its own separate folder.

To use an extension that is not included with NetLogo, it has to first be

downloaded (usually as an archive file), unzipped and installed. Installation is

extremely simple – the folder extracted from the archive has to copied into

the extensions folder. The folder name must be the same as the name of

the extension.

5 http://graphstream-project.org.

6 http://r-ext.sourceforge.net/.

7 http://cran.r-project.org/web/packages/RNetlogo/index.html.

4 Agent-based Spatial Simulation with NetLogo 2

To use the primitives provided by the extension in a NetLogo model, we

have to first declare the extensions used by the model:

1 extensions [extension_name1 extension_name2]

To use a primitive defined in this extension, we simply call it by its name in

the model prefixed by the name of the extension:

extension_name1:primitive_name parameters

For example, to extend NetLogo functionality to include additional time

management functions, we can use the time extension, also known as the

NetLogo Time Extension8. Once unzipped, the archive produces the folder

time-1.3.0 (which corresponds to Version 1.3.0) containing the source files

of the extension, documentation, example models and .jar files (Java

archives). To use it in a NetLogo model, we have to simply rename this folder

as time instead of time-1.3.0, and copy it into the extensions folder9.

In order to use this extension, we declare it in the model:

extensions [time]

We can now use the primitives defined by this extension using the prefix

time:. For example, time allows us to create a date object (with the create
primitive) and to manipulate it, in order to retrieve the day, month or year of

this date (get primitive), to perform operations on dates (plus primitive) or to

compare dates (is-before, is-after and is-equal primitives)10:

8 https://github.com/colinsheppard/time/.

9 In fact, for this extension (and most other extensions), only the .jar files (time.jar and

joda-time-2.2.jar) are required. These contain the definitions of the new primitives.

10 Other examples are included with the extension.

NetLogo, an Open Simulation Environment 5

let my_date time:create "2016-02-28 17:28:07.777"
print time:get "month" my_date
print time:plus my_date 1.0 "year"

4 print time:is-before (time:create "2016-01-01")
(time:create "2018-01-01")

1.2. Designing and developing extensions

A project that allows minimal extensions to be easily compiled in Scala

with SBT or Maven can be found within the GitHub repository Netlogo-

extension-build-example11.

1.2.1. Environment for compiling extensions

1.2.1.1. Maven and Java

Maven is a software build management system developed by the Apache

Foundation. It works by defining and using Project Object Model (POM) files,

which contain a set of instructions for successfully building the program.

The first step is to install Maven on the workstation.

Maven works by relying on repositories (local or online) containing the

dependencies that must be downloaded at compilation. Since March 2016,

NetLogo uses the online repository Bintray12, and it is no longer necessary

to manually add the Netlogo.jar file to your local repository. Development

versions (NetLogo 6.0) are already available from the online repository.

However, in this book, we will use the stable Version 5.3.1.

As a reminder, since only NetLogo versions 5.3 and later are available

online, we will recall how to register a .jar file in the local repository of

your device. Follow the instructions given in the documentation13. Once you

are in the NetLogo /app/ directory that you wish to install (replace X.X by the

version number), you can run the following command from the command line

to install the .jar file in the local Maven repository:

11 https://github.com/Spatial-ABM-with-Netlogo/Chapitre-A.

12 https://bintray.com/netlogo/NetLogo-JVM/netlogo.

13 https://maven.apache.org/guides/mini/guide-3rd-party-jars-local.html.

6 Agent-based Spatial Simulation with NetLogo 2

mvn install:install-file -Dfile=Netlogo.jar -DgroupId=org.nlogo
-DartifactId=Netlogo -Dversion=X.X -Dpackaging=jar↪→

For the development of most extensions, the Netlogo.jar file and

the scala-library dependency will be enough. Other extensions that use

specific NetLogo functions may, however, require other dependencies, most of

which will be contained in the .jar files in the NetLogo /app/ directory.

Users who wish to develop extensions in Scala or Java will need to pay

attention to the version of NetLogo. NetLogo 5.3 is only compatible with

Scala versions 2.9.x, and NetLogo 5.3.1 is only compatible with Scala versions

2.10.x. In both cases, the Java version needs to be 7.x. We have to wait for the

next version of NetLogo before we can use Scala 2.10.x with Java 8.x.

The simplest solution for compiling an extension is based on the

modification of the JavaHOME variable used by Maven. In Linux, simply type

the following command in the terminal before calling the mvn command:

export Java_HOME=/path/to/jdk7/

The pom.xml file and the Maven project that can be used

to compile a minimal Java extension may be obtained from the

Java-plugin-Netlogo-maven project on GitHub. This project can be

directly opened in the software workbench (or IDE) Java IntelliJ.

The pom.xml file contains the list of dependencies to be loaded

locally or from the Maven repositories, and also the configuration of two

plugins: maven-compiler-plugin and maven-jar-plugin. The first plugin

allows the Java sources to be compiled by running the Maven command

mvn compile in the project root directory. The second one allows the .jar
to be created in the /target repository by running the Maven command

mvn install.

1.2.1.2. SBT and Scala

Simple Build Tool (SBT) is a build system similar to Maven, but which is

commonly used to compile sources written in Scala. NetLogo is compiled with

SBT, since its most recent versions are written in Scala.

NetLogo, an Open Simulation Environment 7

Unlike Maven, which manages dependencies by using pom.xml files,

SBT uses files written in Scala to determine the structure of the project

and its dependencies. One of the most important such files is build.sbt,

which may be found in the project root directory. SBT uses the same

online repositories as Maven to download the right dependencies for

compiling and packaging extensions in development. The primary SBT file,

named build.sbt, uses Netlogo-Extension-Plugin14, which automatically

downloads the right Netlogo.jar file and provides a simplified interface for

packaging extensions.

Since NetLogo version 5.3.1 can only be compiled with Java

7, we must tell SBT where to find this version on your device:

sbt -Java-home /path/to/Java/home.

Even though it may not be immediately useful in our case, note that it is

possible to tell SBT which version of Java it should use to run Java programs

by adding the following lines to build.sbt:

fork in run := true
JavaHome in run := Some(file("/path/to/Java/home/"))

Finally, the extension is compiled by running the sbt compile command,

and the .jar is built by calling sbt package.

1.2.2. Notes on type conversion between NetLogo and Java/Scala

All numeric variables used in NetLogo extensions must be converted into

the Double type, as this is the only numeric type accepted by NetLogo. There

are tools available to developers for converting from Java/Scala to NetLogo.

But conversion in the other direction is not so easy.

Type conversion from NetLogo to Java or Scala is more tricky, in particular

for LogoList lists. Since NetLogo lists are able to contain different types, it is

impossible to know in advance which types of objects are contained in the list

variable. The only solution is to carefully typecast15 each element in the list

before performing any operations.

14 https://github.com/Netlogo/Netlogo-Extension-Plugin.

15 Also known as type coercion, this means converting a variable from one type to another.

8 Agent-based Spatial Simulation with NetLogo 2

1.2.2.1. Java

From Java to NetLogo: numeric type conversion can be performed with

the command Double.valueOf(valueToConvert). This command wraps

the double variables in a Double class, which is understood by NetLogo.

From NetLogo to Java: handling lists requires generous use of try/catch
blocks to detect and convert the types of objects contained in the list. We

will illustrate this conversion when we present the code of the primitive for

calculating the average of a list of values passed as parameters.

1.2.2.2. Scala

Support for automatic type conversion from Scala to NetLogo

has been added by the developers of NetLogo via the following

import, which can be added to the start of a program:

import org.nlogo.api.ScalaConversions.

Calling the function .toLogoObject on any Scala data type (Boolean,
Float, Character, Short, Int, Float, Long, Double, Byte, Seq) initiates

the conversion process, which automatically returns a type that is compatible

with NetLogo.

With SBT, it is possible to initialize an interactive console, which can

access the set of dependencies included in the project. This interactive mode

allows us to enter commands directly into a terminal without having to compile

or package the extension first.

In the root directory, simply type the command sbt console into a

terminal, followed by the following commands:

import org.nlogo.api.ScalaConversions._

val myIntValue:Int = 5
myIntValue.toLogoObject // return Java.lang.Double
val myFloatValue:Float = 2.2
myDoubleValue.toLogoObject // return Java.lang.Double
val myScalaList = Seq(2,3,8)
myScalaList.toLogoObject // return org.nlogo.api.LogoList

NetLogo, an Open Simulation Environment 9

1.2.3. Commentary of an example extension

The .jar file created by Maven or SBT after executing the

second command includes a valid manifest file, which is usually

named my-extension.jar. This should be copied into the directory

/app/extensions/my-extension in NetLogo 5.3, and then called in the program

with the following code: extensions [my-extension].

The extension named my-extension, which we compiled in the previous

few sections, allows us to do three things:

– return the sequence of characters “hello world” (print-message);

– return the average of the numbers passed as parameters (get-mean);

– construct a list of random numbers with length equal to the variable

passed as an argument to the primitive (build-a-random-list).

Calling the following command in the NetLogo observer returns the

character sequence “hello world”: print my-extension:print-message.

Calling the following command in the NetLogo observer returns

the average of the list of numbers passed as parameters: print
my-extension:get-mean list (10, 12, 15).

Calling the following command in the NetLogo observer returns a list of

five random elements: print my-extension:build-a-random-list 5.

The extension code is given in Java in the below examples. Equivalent code

in Scala is also available from the GitHub repository containing the examples

for compilation with Maven and SBT.

1.2.4. Minimum content of an extension

In order for NetLogo to be capable of loading an extension, the .jar
file should contain two elements: a manifest containing NetLogo-specific

properties, and a class implementing the ClassManager interface of the

org.nlogo.api package. The .jar file must contain all classes associated

with the extension.

If additional software libraries are used, they can be placed in the extension

folder in the NetLogo extensions directory.

10 Agent-based Spatial Simulation with NetLogo 2

1.2.4.1. Manifest

The manifest must contain the following three properties:

– Extension-Name, the name of the extension;

– Class-Manager, the extension class implementing ClassManager;

– Netlogo-Extension-API-version, the version of the NetLogo API

used by the extension.

If an extension named test has ClassManager implemented by the class

MyExtension in the package org.test and uses the NetLogo API 5.1, it

needs to have the following Manifest:

Manifest-Version: 1.0
Extension-Name: test
Class-Manager: org.test.MyExtension
Netlogo-Extension-API-Version: 5.3

1.2.4.2. The ClassManager

To develop the DefaultClassManager of the extension, we can extend

the DefaultClassManager class of org.nlogo.api to reduce the list of

methods that we must implement for load(PrimitiveManager). Passing the

PrimitiveManager object as a parameter allows us to add new primitives

(commands or reporters).

Consider the following minimal example of the extension MyExtension:

1 package org.test;

import org.nlogo.api.DefaultClassManager;
import org.nlogo.api.ExtensionException;
import org.nlogo.api.PrimitiveManager;

6

public class MyExtension extends DefaultClassManager {
@Override
public void load(PrimitiveManager primitiveManager) throws

ExtensionException {
//Declare primitives

11 }
}

NetLogo, an Open Simulation Environment 11

To define the call to the three primitives, we replace the comment in the

load function with the following code:

primitiveManager.addPrimitive("print-message", new MyMessage());
primitiveManager.addPrimitive("get-mean", new ComputeMean());

3 primitiveManager.addPrimitive("build-a-random-list", new BuildRandomList());

1.2.5. Snapshot of a primitive

The three primitives are placed in three separate Java files, each of which

contains the description of a primitive:

2

//BuildRandomList.Java
public class BuildRandomList extends DefaultReporter { ... }

//CountCharacter.Java
7 public class CountCharacter extends DefaultReporter { ... }

//MyMessage.Java
public class MyMessage extends DefaultReporter { ... }

These three classes extend the DefaultReporter interface, and so have to

implement the following functions:

public Syntax getSyntax() {...}

public Object report(Argument args[], Context context) throws
ExtensionException, LogoException {...}

In the next sections, we describe the way that these functions are called,

and the results that they return.

1.2.5.1. Displaying “hello world”

These primitives do not take any input parameter, and simply return a

message. The function Syntax.reporterSyntax() therefore only has one

12 Agent-based Spatial Simulation with NetLogo 2

single argument, which indicates the expected type to be returned. Since “hello

world” has the type of a string, we use the code Syntax.StringType().

public Syntax getSyntax() {
2 return Syntax.reporterSyntax(Syntax.StringType());

}

Other types can be returned, such as Syntax.NumberType(), which

indicates that a numerical value should be returned, Syntax.ListType(),

indicating that a list is expected, or any other NetLogo object that can be

manipulated by an extension, as shown by the list of functions defined in

the Syntax object: BooleanType(), AgentsetType(), TurtleType(),
PatchType(), LinkType()...

1.2.5.2. Return the average value of an array of variable size

We can define the call to this primitive in two different ways, either by

using the syntax Syntax.NumberType() | Syntax.RepeatableType()
to define a repeatable number, or by directly using a variable-size

list Syntax.ListType(). Finally, it should also be noted that we

can specify as many Syntax.typeName values as the number of

arguments that we wish to be returned when we call the primitive.

Thus, new int[]{Syntax.NumberType() | Syntax.NumberType(),
Syntax.StringType()} indicates a primitive that takes three input

arguments, i.e. two numbers and one sequence of characters.

// Way 1 using NumberType and RepeatableType
2 public Syntax getSyntax() {

return Syntax.reporterSyntax(new int[]{Syntax.NumberType() |
Syntax.RepeatableType()},Syntax.NumberType());

}

// or Way 2 using ListType
7 public Syntax getSyntax() {

return Syntax.reporterSyntax(new
int[]{Syntax.ListType()},Syntax.NumberType());

}

NetLogo, an Open Simulation Environment 13

In the first case, the primitive is called with: print
(my-extension:get-mean 0.0 5.0 10.0), and in the second case

with: print my-extension:get-mean list 0.0 5.0 10.0 or print
my-extension:get-mean [0.0 5.0 10.0]. The second syntax, shown

below, has the advantage of being more easily understood by beginners,

but requires developers to check the content of the table before performing

any operations. As discussed in the previous section on type conversion,

the methods for retrieving the content of the LogoList variables return a

collection of Object variables that need to be tested16.

Arguments should always be recovered using the “safe methods” provided

by the developers of NetLogo, which we wrapped into a method below.

1 private LogoList getListOrNull(Argument args[]) throws ExtensionException,
LogoException {

try {
return args[0].getList();

} catch (LogoException e) {
return null;

6 }
}

The operation that converts LogoList logoListNumbers into

ArrayList<Double> numbers is defined as follows in our code:

3 public Object report(Argument args[], Context context) throws
ExtensionException, LogoException {

final LogoList logoListNumbers = getListOrNull(args);

// LogoList return an array of Object, so we need to cast to
ArrayList[Double]

8 Double[] logoDouble = null;
try {

Object[] objectArray = logoListNumbers.toArray();
logoDouble = Arrays.copyOf(objectArray, objectArray.length,

Double[].class);
}catch (ClassCastException e){

13 System.out.println("Cast Error, only numbers are supported here");

16 Both versions of the code are available from the GitHub repository online.

14 Agent-based Spatial Simulation with NetLogo 2

}

ArrayList<Double> numbers = new
ArrayList<Double>(Arrays.asList(logoDouble));

18

return average(numbers);

}

Other conversion methods probably exist, but this topic is currently little

documented on the official website. Note that in this last example wrapping

the variable returned by the function average(numbers) in a Double is not

strictly necessary, as Java can perform “autoboxing” in certain conditions:

http://docs.oracle.com/Javase/tutorial/Java/data/autoboxing.html.

1.2.5.3. Construct and return a table of variable size

The first argument new int[]{Syntax.NumberType()} of the function

Syntax.reporterSyntax() states that the primitive expects an integer input.

The second argument Syntax.ListType() tells NetLogo that a list will be

returned.

public Syntax getSyntax() {
return Syntax.reporterSyntax(new

int[]{Syntax.NumberType()},Syntax.ListType());
}

Lists can be constructed using a “builder” provided by the developers:

LogoListBuilder list = new LogoListBuilder();

Adding a Double (not double) can be achieved with a simple loop as a

function of the value n, assigned by calling the getIntValue() method of the

class Argument on the table args[0]:

for (int i = 0; i < n; i++) {
list.add(Double.valueOf(r.nextDouble()));

}

NetLogo, an Open Simulation Environment 15

1.2.6. Future versions of the NetLogo API

Although the NetLogo API has been relatively stable for several versions,

it is expected to change with version 6.0.

Here are a couple of changes that have already been confirmed for the future

version of the API:

– multiple classes will be renamed or reorganized in future. For example,

a new package org.nlogo.core already uses classes from org.nlogo.api,

org.nlogo.nvm, and org.nlogo.agent;

– DefaultReporter and DefaultCommand will be removed, and

org.nlogo.api.Reporter and org.nlogo.api.Command will become

easier to extend.

Since this version is still in development, more information can be found

on the webpage dedicated to the transition17.

Help will be available on the various channels of communication used by

the developers of Netlogo: gitter18, GitHub19 and the NetLogo wiki, which

details the extensions API20, the discussion group21, and the StackOverflow22

website under the NetLogo tag.

1.2.7. Extending the graphical interface

The NetLogo API does not currently allow the development of dedicated

graphics widgets. However, it is possible to add a new tab to the interface and

directly manipulate its AWT/Swing canvas. We will use the GRAPHSTREAM23

software library, which allows graphs to be dynamically manipulated. The

purpose of the extension is to display a graph showing the set of turtles and

the links between them.

17 https://github.com/Netlogo/Netlogo/wiki/Hexy-Extension-Transition-Guide.

18 https://gitter.im/Netlogo/.

19 https://github.com/Netlogo/Netlogo/issues.

20 https://github.com/Netlogo/Netlogo/wiki/Extensions-API.

21 https://groups.google.com/forum/#!forum/Netlogo-devel.

22 http://stackoverflow.com/questions/tagged/Netlogo.

23 http://graphstream-project.org

16 Agent-based Spatial Simulation with NetLogo 2

The following code provides the basic structure of the extension. We will

later show how to develop one part of the missing content. The code is available

in full on GitHub24.

import org.nlogo.api.*;
import org.graphstream.graph.*;

public class GSExtension extends DefaultClassManager {
protected Graph graph;
protected ExtensionContext ctx;

public Graph getGraph() { return graph; }

public ExtensionContext getContext() { return ctx; }

public void load(PrimitiveManager manager) throws ExtensionException {
manager.addPrimitive("init" , new DefaultCommand() {
public void perform(Argument[] arg0, Context arg1) throws

ExtensionException, LogoException {↪→
GSExtension.this.init((ExtensionContext) arg1);

}
});

}

public void init(ExtensionContext ctx) {
this.ctx = ctx;
this.graph = new AdjacencyListGraph("netlogo");
this.graph.addSink(new GSNetLogoSink(this));

addTab();
}

protected void addTab() { ... }
}

1.2.7.1. NetLogo/GraphStream connection
In a simulation, the NetLogo model and the graph coexist separately, and

consistency needs to be maintained between them. Modifications affecting

the NetLogo model must therefore update the graph, and vice versa.

The GSNetLogoSink class of the extension is dedicated to managing this

connection.

24 https://github.com/graphstream/gs-netlogo.

NetLogo, an Open Simulation Environment 17

For the connection from NetLogo to the graph, we will use the functionality

provided by the NetLogoListener interface of the API, which mainly

consists of information about events that occur at the NetLogo interface. The

method that we are interested in, tickCounterChanged(double), informs us

when the system undergoes a new iteration. We can therefore create events to

describe the corresponding changes in the graph at these moments.

To “listen” to changes in the graph and propagate these changes to the

NetLogo model, the GSNetLogoSink class implements the Sink interface of

GraphStream, which connects to the graph.

GSNetLogoSink is structured as follows:

import org.nlogo.api.NetLogoAdapter;
import org.graphstream.stream.Sink;

public class GSNetLogoSink extends NetLogoAdapter implements Sink {
protected World world;
protected GSExtension ext;

public GSNetLogoSink(GSExtension ext) {
this.ext = ext;

}

// NetLogoListener

public void tickCounterChanged(double arg0) { ... }

// Sink

public void nodeAdded(String sourceId, long timeId, String nodeId) {
... }↪→

public void nodeRemoved(String sourceId, long timeId, String nodeId) {
... }↪→

public void edgeAdded(String sourceId, long timeId, String edgeId,
String fromId, String toId, boolean directed) { ... }↪→

public void edgeRemoved(String sourceId, long timeId, String edgeId) {
... }↪→

// ... other methods of Sink not used here
}

18 Agent-based Spatial Simulation with NetLogo 2

To establish the connection between NetLogo and GraphStream, we must

create a shared procedure for identifying agents (nodes) and their connections

(edges). We assume that these objects are characterized by a sequence of

characters of the form breedName.agentNumber. We can therefore add a

method that retrieves the identifier of a Turtle object:

public String getTurtleId(Turtle t) {
return String.format("%s.%d" , t.getBreed().printName(), t.id());

}

The tickCounterChanged(double) method needs to contain code

allowing the NetLogo model to be compared with the contents of the graph.

To do this, we need to iterate over the agents and their existing connections.

This iteration is provided by the World object and its methods turtles() and

links(). A minimal version of the function might look like this:

public void tickCounterChanged(double arg0) {
Collection<Node> nodes = new HashSet<Node>();

for (Agent a : world.turtles().agents()) {
String nodeId = getTurtleId((Turtle) a);
Node = ext.getGraph().getNode(nodeId);

if (node == null)
node = ext.getGraph().addNode(nodeId);

nodes.add(node);
}

// Remove non-existent nodes
Iterator<Node> itNodes = ext.getGraph().getNodeIterator();

while (it.hasNext()) {
Node n = it.next();

if (!nodes.contains(n))
it.remove();

}

Collection<Edge> edges = new HashSet<Edge>();

for (Agent a : world.links().agents()) {

NetLogo, an Open Simulation Environment 19

Link l = (Link) a;
String edgeId = getLinkId(l);
Edge edge = ext.getGraph().getEdge(edgeId);

if (edge == null)
edge = ext.getGraph().addEdge(edgeId, getTurtleId(l.end1())

getTurtleId(l.end2()), l.isDirectedLink());↪→

edges.add(edge);
}

// Remove non-existent edges
Iterator<Edge> itEdges = ext.getGraph().getEdgeIterator();

while (it.hasNext()) {
Edge e = it.next();

if (!edges.contains(e))
it.remove();

}
}

This is a minimal version of the function. It only updates the model in

one direction, from NetLogo to GraphStream. Readers can refer to the project

source code for more details.

1.2.7.2. Creating a new tab

The final part of the extension adds a new tab to the NetLogo interface on

which the graph will be displayed. We will build on the addTab() method

mentioned earlier. We could also add a separate primitive to make displaying

the graph optional.

Tabs are managed by JTabbedPane objects (provided by Swing), which

can be retrieved through the App object: App.app().tabs().

protected void addTab() {
javax.swing.SwingUtilities.invokeLater(new Runnable() {

public void run() {
if (v != null)

v.close();
World w = ctx.workspace().world();
v = new Viewer(g,

Viewer.ThreadingModel.GRAPH_IN_ANOTHER_THREAD);

20 Agent-based Spatial Simulation with NetLogo 2

v.setCloseFramePolicy(Viewer.CloseFramePolicy.HIDE_ONLY);
v.addDefaultView(false);

// Resize the graph to fit NetLogo.

v.getDefaultView().getCamera().setGraphViewport(w.minPxcor(),
w.minPycor(), w.maxPxcor(), w.maxPycor());

↪→
↪→

Tabs tabs = App.app().tabs();
tabs.addTab("GraphStream" , v.getDefaultView());

}
});

}

1.2.8. Example: the RungeKutta extension

In this section, we will present a simple but concrete example of an

extension in a few lines.

The rungekutta extension has been used for epidemiological simulation

models in Chapter 3. It includes a compute-SIR function taking six Double
parameters that calculates the evolution of the population stock passed as

an argument using a fourth-order Runge–Kutta numerical integration method

applied to the SIR equations. These equations and their solutions are described

in more detail in Chapter 3.

override def getSyntax(): Syntax =
Syntax.reporterSyntax(Array(NumberType, NumberType, NumberType,

NumberType, NumberType, NumberType, NumberType, NumberType,
NumberType, NumberType, NumberType), ListType)

↪→
↪→

This function expects the following arguments. We will consider the case

of an initial population of 100 individuals:

– the population stock S (99 susceptible individuals);

– the population stock I (1 infected individual);

– the population stock R (0 recovered individual);

– the Alpha parameter (rate of recovery I to R = 0.2);

NetLogo, an Open Simulation Environment 21

– the Beta parameter (rate of infection S to I = 0.5/100);

– the integration step h.

The following report block passes these arguments to the function that

calculates the evolution step:

@throws(classOf[ExtensionException])
@throws(classOf[LogoException])
override def report(args: Array[Argument], context: Context) =
{

val S = args.apply(0).getDoubleValue
val I = args.apply(1).getDoubleValue
val R = args.apply(2).getDoubleValue

val alpha = args.apply(3).getDoubleValue
val beta = args.apply(4).getDoubleValue
val h = args.apply(5).getDoubleValue

rungeKuta4(Array(S,I,R), alpha, beta, h).toLogoList
}

Once the arguments have been safely retrieved using getDoubleValue,

the values are passed to the rungeKuta4(...) function, which performs

integration then returns an updated table of the SIR stock Array(ds,di,dr).

We still need to convert this table into LogoList using the automatic

conversion function .toLogoList.

Here is an example of how this method can be called in NetLogo:

show rungeKuta:compute-SIR 99.0 1.0 0.0 0.2 (0.5 / 100)
0.01

This call returns the following values, which describe the propagation of

infection:

[98.99504281588354 1.0029542312962296 0.00200295282023009]

The source code of this extension is available in the repository for

Chapter 1.

22 Agent-based Spatial Simulation with NetLogo 2

1.3. Using NetLogo from other platforms

The reason for wanting to use a NetLogo model from outside the NetLogo

interface, i.e. from another language, becomes apparent as soon as we

become interested in automating NetLogo simulations in batch mode (model

exploration), coupling different models together (using the output of one model

as the input of another), or supporting compatibility with other programs.

The NetLogo interface is useful because it allows rapid and visual

development within the context of an “agile”-type approach, which means that

the model is developed and then tested in fast-paced cycles, so that any change

is tested as soon as it is written. The interface has graphical objects, which can

be used to rapidly construct visualizations of models, and a “batch” mode,

which can be used to explore models. However, there are also limitations:

the graphics layout is fixed and is not necessarily suitable for operational

applications. Batch mode is limited to exhaustive model exploration and only

allows integrative coupling (see section 2.5). To overcome these constraints,

NetLogo provides a Java API (included in the official distribution) that

provides an opening to other environments. This API makes it possible to

interact with the model without needing a control interface (modify simulation

parameters, retrieve results, execute, etc.), as well as to modify the model

(by executing NetLogo commands as if they were entered into the interface

“command center”). Due to this API, we can interact with NetLogo from

programs such as R or languages such as Python. As described below, this

interaction unfolds according to a client/server paradigm, in which software

clients such as R or Python send requests to a Java server responsible for

executing the NetLogo model.

This opening to other programs allows us, for example, to:

– take advantage of all of the features of the host language (R – to exploit

all of its statistical primitives, Python – to use numerical calculation libraries

(NumPy25), Java – to use JavaFX graphics elements and any other useful

libraries);

– explore NetLogo models with specific search algorithms (simulated

annealing, genetic algorithms or screening), or even combinations of

algorithms. Given the amount of time required to execute some simulations

25 http://www.numpy.org.

NetLogo, an Open Simulation Environment 23

and the size of the parameter space, exhaustive model exploration is often

impossible. Choosing a suitable exploration algorithm is the crucial first step

toward obtaining results within a reasonable time frame;

– couple models by channeling the output of one model to other models

with essentially zero language-related constraints due to the numerous

gateways available in Java for connecting with other languages.

In the next section, we will give a brief description of the approaches that

can be used to establish an interface between NetLogo and Java, Python and

R. We will omit any specific details relating to the implementation, and simply

explore the basic principles of a simple example of coupling.

1.3.1. Using NetLogo from Java

To run NetLogo commands from Java, we first need to import a library.

import org.nlogo.app.App;

In order to run NetLogo programs, the Netlogo.jar file needs to be

located in one of the directories known to Java (classpath). The same is

true of the lib directory. The latter and the .jar file are included within the

NetLogo distribution.

We will illustrate how to use Java to run a simulation with the example of a

forest fire, Fire.nlogo, which is included within the NetLogo distribution.

new Runnable() {
public void run() {

try {
4 App.app().open("models/Sample Models/Earth Science/" +

"Fire.nlogo");
}
catch(Java.io.IOException ex) {
ex.printStackTrace();

}}};

24 Agent-based Spatial Simulation with NetLogo 2

From here, it is very simple to run NetLogo commands with

App.app.command(), as in the below example. In this case, we assign a value

to a variable and run setup.

App.app.command("set number-of-turtles 100");
2 App.app.command("setup");

In this simulation, we need to be able to retrieve the values of the variables

stored in Java. This will allow us to explore the model, either by means

of sophisticated processing or suitable visual representations. To retrieve the

value of a NetLogo variable, we must use the report function. In the example

below, we display the value of the variable number-of-turtles.

System.out.println(App.app().report("number-of-turtles"));

This example is based on the execution of a NetLogo model in “singleton”

mode. In this mode, running multiple simulations in parallel with the same

model or different models is not possible. The origin of this limitation lies in

the fact that these instructions manipulate static objects. The alternative is to

use the notion of “workspace”. Each simulation is assigned to a workspace,

and so one workspace must be created for each simulation. Each workspace

acts as a wrapper for the context of the simulation with which it is associated,

saving its attributes, model and execution thread.

To implement this approach, we must create an instance of the

HeadlessWorkspace class with its default constructor. We can then open

a model and execute NetLogo commands. The example below reuses the

previous code together with the “Fire” model to execute two simulations in

parallel, each with different parameters:

import org.nlogo.headless.HeadlessWorkspace;
public class SimulationFire {

public static void startModel(int nbTurtles, HeadlessWorkspace wSpace) {
4 Runnable myThread = new Runnable() {

public void run() {
try {

wSpace.open("models/Sample Models/Earth Science/" +
"Fire.nlogo");

wSpace.command("set number-of-turtles " + nbTurtles);

NetLogo, an Open Simulation Environment 25

9 wSpace.command("setup");
wSpace.command("repeat 50 [go]") ;

}
catch(Java.io.IOException ex) {

ex.printStackTrace();
14 }

}
};
myThread.start();

}
19 public static void main(String[] argv) {

HeadlessWorkspace simulation1 = HeadlessWorkspace.newInstance();
HeadlessWorkspace simulation2 = HeadlessWorkspace.newInstance();
SimulationFire.startModel(100, simulation1) ;
SimulationFire.startModel(200, simulation2) ;

24 }
}

More details on these features are available on the NetLogo GitHub page26.

There are technical subtleties relating to memory consumption, controlling

threads and the choice of whether to execute via a graphical user interface

(GUI) or the command line (Headless).

As well as allowing multiple executions, each with its own context, the Java

API provides the key to interoperability with other platforms and development

languages. Java has many possibilities and gateways to other languages (C,

Python, R, etc.). The NetLogo APIs developed by the community for other

programming languages build on these gateways and the native Java API

distributed with NetLogo. In the next part of this section, we will consider two

examples showing how to use NetLogo from other languages and applications:

Python and RNetlogo.

1.3.2. Using NetLogo from Python

Python is a programming language widely used in science, and its

popularity continues to grow. It has many different libraries, in particular

NumPy, which is extremely useful for scientific computations and numerical

simulations of mathematical models based on differential equations.

With NumPy, Python can be viewed as a way of combining mathematical

models and multiagent models. Python also proves very useful for dynamically

generating experimental protocols and automatically executing them.

26 https://github.com/Netlogo/Netlogo/wiki/Controlling-API.

26 Agent-based Spatial Simulation with NetLogo 2

There is no direct interface between Python and NetLogo. This means that

a Java bridge (JavaGateway) is required, running as a background task. This

bridge receives the NetLogo commands from Python and executes them in the

model to obtain the desired results.

One example of such a Java bridge was developed by David Masad, and is

available on the webpage Bad Networking27. We will distribute a modified

version that allows multiple simulations to be executed. The sources and

executable of the modified version can be downloaded from the GitHub page

of this book, at https://github.com/Spatial-ABM-with-Netlogo.

The idea is to run a Java program that will act as a server. The Python

program uses a library (package) that allows it to connect to this server. Each

time that Python wishes to access NetLogo, it sends a request to the Java

program. This program then executes the instructions in the NetLogo model

to obtain the desired results.

Thus, executing a NetLogo model form Python unfolds in the following

stages:

1) check that the Java bridge is running in the background, otherwise start

it up;

2) connect Python to the Java-NetLogo bridge;

3) create as many workspaces as required to run simulations;

4) initialize the simulations with the right parameters;

5) execute the simulations;

6) analyze the results.

The Java server program works according to the above steps. An example

of Java and Python code allowing multiple simulations to be simultaneously

executed from Python and Java commands is available on the GitHub page of

this book.

27 http://davidmasad.com/blog/Netlogo-from-python/http://davidmasad.com/blog/Netlogo-

from-python/.

NetLogo, an Open Simulation Environment 27

Once you have checked that the Java-Netlogo bridge is running properly,

you need to create a JavaGateway object to establish a connection with the

Java server.

import
from py4j.Java_gateway import JavaGateway

connect Python to the Java-Netlogo bridge
5 gw = JavaGateway()
bridge = gw.entry_point

It is now relatively simple to open an example model by creating a

workspace in Java, which is identified by a number in Python:

create one workspace for each simulation we wish to run
sample_models = "/Applications/Netlogo 5.0.2/models/Sample Models/"
forest_fire = "Earth Science/Fire.nlogo"

4 wks1 = bridge.createWorkspace()
wks2 = bridge.createWorkspace()
bridge.openModel(wks1,sample_models + forest_fire)
bridge.openModel(wks2,sample_models + forest_fire)

We can now execute the NetLogo commands by specifying the desired

workspace with its number (this procedure is specific to our interface):

Initialize the simulations with the desired parameters
Parameters of the 1st simulation

3 bridge.command(wks1,"set density 62")
bridge.command(wks1,"random-seed 0")
bridge.command(wks1,"setup")

Parameters of the 2nd simulation
8 bridge.command(wks2,"set density 50")
bridge.command(wks2,"random-seed 2")
bridge.command(wks2,"setup")

Run the simulations
13 bridge.command(wks2,"repeat 50 [go]")

bridge.command(wks1,"repeat 50 [go]")

Process the results of the simulation
...

28 Agent-based Spatial Simulation with NetLogo 2

We can now retrieve the values of the variables and display them:

...
2 # Process the results of the simulation
burned_trees = [0]*2
burned_trees[0] = bridge.report(wks1,"burned-trees")
burned_trees[1] = bridge.report(wks2,"burned-trees")

7 print "the average number of burned tree is: ",
sum(burned_trees)/float(len(burned_trees))

As you can see, this works the same way as Java, except that we can

now use the advanced features offered by Python to automatically execute

a parametrized series of models and construct all sorts of visual results, for

example using libraries such as matplotlib.

1.3.3. Exploring and analyzing models with R

NetLogo can be called from R using RNetlogo28. As presented in the article

(https://www.jstatsoft.org/article/view/v058i02), this package is also based on

the NetLogo Controller API (in Java), with an additional layer that provides a

connection between Java and R. The package can be installed as usual with the

following command in R:

install.packages("RNetlogo")

Once the package is installed, it simply needs to be loaded. This must be

performed once for each NetLogo session, and is done with the following

function:

library("RNetlogo")

28 http://rNetlogo.r-forge.r-project.org/.

NetLogo, an Open Simulation Environment 29

We can now run NetLogo from R. As was the case for Java, there are two

available modes: GUI and headless, i.e. with a graphical interface or from the

command line. To launch the GUI mode29:

install.packages(c("JGR","Deducer","DeducerExtras"))

To actually run it, we need to execute the following commands:

Sys.setenv(NOAWT=1)
library(JGR)
Sys.unsetenv("NOAWT")

4 JGR()

Next, run NetLogo:

1 nl.path <- "/Applications/Netlogo 5.3.1/Java/"
NLStart(nl.path)

We can now control NetLogo with R. For example, we can load a model

(or in our example a library of models using the function NLLoadModel in R),

execute commands on models (with the function NLCommand) and modify the

values of model parameters or execute individual model methods (for example,

setup then go).

;; Load a model
model.path <- file.path("models", "Sample Models", "Earth Science",

"Fire.nlogo")
3 model.library.path <- "/Applications/Netlogo 5.3.1/"

NLLoadModel(file.path(model.library.path, model.path))
;; Execute commands on this model
NLCommand("set density 77")

29 The path is the path to the folder with the Netlogo.jar archive. However, users running

Mac OS X or Linux who wish to run NetLogo in GUI mode will need to use JGC. The

installation steps are given on this page: http://www.deducer.org/pmwiki/pmwiki.php?n=

Main.MacOSXInstallation.

30 Agent-based Spatial Simulation with NetLogo 2

8 NLCommand("setup")
NLCommand("go")
NLDoCommand(10, "go")
NLDoCommandWhile("ticks < 200", "go")

We also need to be able to retrieve the values of variables. This can be done

very simply with the NLreport() command.

burned <- NLReport("number-of-turtles")

As you can see, running NetLogo from R is relatively simple. This allows

you to exploit the powerful calculation functions available in R to explore your

models.

1.3.4. Discussion

The three examples given above show that accessing and externally

controlling a NetLogo model passes through the Java interface distributed with

each version of NetLogo.

Java is an expressive language, which makes it possible to develop

links to most platforms and languages. The communities of the most

commonly used languages in science, such as R and Python, have already

created implementations of these links (RNetlogo and Python-Netlogo
respectively). Most of these links seem to follow a common pattern, using

primitives to load the NetLogo model and then execute commands written in

NetLogo.

If the need should ever arise, the Java interface could definitely be used to

develop an ad-hoc links with specific functionality. This is the principle behind

the Open-Mole platform, a distributed environment for model exploration,

which we will discuss in section 5.6.

1.4. Deploying NetLogo models online

As well as the classical NetLogo application installed on personal

computers, which comes with a well-stocked library of models, NetLogo also

NetLogo, an Open Simulation Environment 31

exists on the Internet. The NetLogo Web30 application is similar to the desktop

version (with somewhat reduced functionality) and can be accessed from a

web browser (section 1.4.1). The NetLogo community is extremely active

on the Internet and on a number of Websites for publishing models. In the

next section, we will present the two best-known of these websites: Modeling

Commons31 dedicated to distributing NetLogo models (section 1.4.2) and the

more general-purpose web portal OpenABM32 for publishing and sharing

models (section 1.4.3).

1.4.1. Netlogo Web

NetLogo Web (http://www.Netlogoweb.org) is one of the official Internet

websites of the NetLogo platform. It gives not only a download link for the

desktop application, but also provides access to an online implementation of

NetLogo via the web browser (see the section presenting NetLogo 1.1).

Figure 1.1. NetLogo Web homepage (March 2016)

The web version of the NetLogo application allows you to run the models

available on the platform, but you can also upload your own models. The usual

features are available: the command center, the code editor and information

relating to the model description. You can run the application as if it were

30 http://www.Netlogoweb.org/.

31 http://modelingcommons.org/account/login.

32 https://www.openabm.org/.

32 Agent-based Spatial Simulation with NetLogo 2

installed on your personal computer. There are, however, some restrictions, as

some features are not yet available. For example, extensions, some language-

specific primitives, file reading and writing, 3D models and BehaviorSpace
are not yet available.

Figure 1.2. Interface of one of the models
available online (March 2016)

Therefore, if your model uses one of the features unavailable in the online

version, you will need to use the desktop version of NetLogo. If not, this

platform is a great way of running models without having to install the

application (Figure 1.2).

1.4.2. Modeling Commons

Modeling Commons33 (Figure 1.3) is an Internet-based platform for

facilitating collaboration between NetLogo modelers. Users can share their

models, as well as edit, create and execute them.

The platform also allows users to save their own personal models, and

specify the level of visibility. Models can be set to private, or restricted to a

certain specific group of users.

33 http://modelingcommons.org.

NetLogo, an Open Simulation Environment 33

Figure 1.3. Modeling Commons homepage (March 2016)

The first step is to create a user account (using the platform is completely

free). This is only required if you wish to save models online, edit them, or

comment on existing models. Browsing and downloading public models do

not require logging in.

You can now upload a model (Figure 1.4). The platform will ask you

to specify the name of the model, provide the filepath on your computer

and optionally upload an image as an illustration. The reading and writing

permissions of the model must then be selected. The model can be set to either

public or private – collaborators can always be added at a later point.

Figure 1.4. Interface for uploading a model (March 2016)

Permissions can be changed by adding collaborators. You can also write a

model description and browse other related tabs: comments, model execution,

34 Agent-based Spatial Simulation with NetLogo 2

code, version history, auxiliary model files, models belonging to the same

family (we will return to this concept later) and an update tab (Figure 1.5).

This final tab allows you to upload an updated version of the model.

Figure 1.5. Model management window (March 2016)

The History tab gives an overview of all versions, and allows you to

download each of them. You can also revert to a previous version.

Finally, the update function allows you to create a child version of

the current parent model. Child models are created by performing the

classical operation of forking, as is common practice within the programming

community. The development of the parent and child models then follows

independent paths. However, the relationship between the two remains visible

in the History tab.

In summary, the Modeling Commons platform is oriented toward sharing

NetLogo models. It provides simple and easy-to-access functionality. The

ability to manage groups and organized models into projects helps to develop

an effective workflow.

1.4.3. OpenABM

OpenABM is a consortium that unites teachers, researchers and

professionals with the objective of promoting agent-based modeling. The

Website34 (Figure 1.6) offers a large collection of resources on related topics.

34 http://www.openabm.org.

NetLogo, an Open Simulation Environment 35

They already have a very extensive library of community-submitted models.

Each model is documented, and the source code is provided.

Figure 1.6. OpenAbm.org homepage (March 2016)

But this platform is much more than just a repository of agent models. The

Education section of the website contains an extensive range of tutorials and

documentation for helping to develop models. There are also links to online

courses, textbooks and a YouTube channel35.

A comprehensive selection of resources is available, such as links to

development platforms, the websites of modeling-related journals and a well-

stocked reading list. There is also a calender of topical events, a forum and job

opportunities.

More than anything else, OpenABM is a platform for sharing models and

resources on agent-based modeling. As a tool, it is truly comprehensive.

1.5. Conclusion

In this chapter, we showed how the openness of the NetLogo platform holds

the key to a great amount of potential.

This is reflected first and foremost in its extensions, which are numerous.

We non-exhaustively listed a couple of examples that we consider to be

particularly significant, such as array, R, gis, sound, raytracing, etc.

35 http://www.youtube.com/user/CoMSESNet/.

36 Agent-based Spatial Simulation with NetLogo 2

We also took the opportunity to explain how to install and use NetLogo

extensions, and showed how to personally design a new extension. We gave

a list of compilation environments and explained the mandatory content of a

minimal extension.

In section 1.3, we examined the possibility of using NetLogo from other

platforms. We considered the cases of Java, Python and R. There are other

platforms that can make calls to NetLogo, such as OpenMole, an environment

dedicated to exploring models using high-performance computations. We will

discuss this further in section 5.6.

Finally, we discussed the different ways of deploying models on the

Internet. NetLogo Web allows models to be executed online, and Modeling

Commons provides additional features to support collaboration. We ended the

chapter by presenting OpenABM, a privileged hub for resources on relevant

topics.

2

Multiscale Modeling:
Application to Traffic Flow

2.1. Introduction

Traffic modeling is a particularly active field, the origins of which can be

traced back to the pioneering work of Greenshield in the 1930s [GRE 35].

Greenshield was the first to formulate a structural relation between the speed

of vehicles on a road and the distance between them. This relation between

the flow rate/density, at the heart of the so-called fundamental diagram (see

Figure 2.1), has been used by all families of traffic flow models developed

ever since. These families of models can be grouped into three distinct but

strongly interconnected subcategories: macroscopic models, which consider

flows of vehicles, microscopic models, which consider individual vehicles and

their interactions, and mesoscopic models, which lie in between the other two

categories.

Each of these families of models, and hence each of the models themselves,

have a number of specific properties. The aim of this chapter is to introduce

some of these models, and show how they can be dynamically linked together.

Chapter written by Arnaud BANOS, Nathalie CORSON, Christophe LANG, Nicolas

MARILLEAU and Patrick TAILLANDIER.

38 Agent-based Spatial Simulation with NetLogo 2

Figure 2.1. Genealogy of traffic flow models based on the fundamental diagram,
reproduced from1 [WAG 15]. The top branch represents the foundations of
macroscopic models. The origins of mesoscopic models are shown in grey, and those
of microscopic models in dashed line. The lower branches correspond to theoretical
developments relating to the fundamental diagram. For a color version of the figure,
see www.iste.co.uk/banos/netlogo2.zip

2.1.1. Coupling models together

Each model is only applicable and valid in certain restricted circumstances.

For instance, a traffic flow model developed for a section of highway will

not be directly applicable to intraurban situations, which have a completely

different road network morphology and driving regimes.

Linking models together is a natural way to expand their scopes

of application. Model coupling provides conceptual methods and tools

1 The full diagram, which is much more comprehensive and also shows the connections

between different models, can be accessed online at doi:10.1007/s13676-014-0045-5.

Multiscale Modeling: Application to Traffic Flow 39

specifically designed to combine models with each other to produce new

models that can be applied to questions and contexts outside of the scope of

each of the initial models.

The question of which models to couple obviously depends on the goals

of the final model, but crucially also depends on the validity and relevance of

each model with respect to the research question.

2.1.1.1. Weak, strong and integrative coupling

There is no single correct way to formulate or represent coupling. But at

the very least, there must exist links between models: these are called coupling

factors. The connections between models can be:

– Direct: the models describe different dynamics (epidemic and mobility),

but these dynamics are nevertheless based on a shared description of system

components (for example, the same individuals are modeled by both models).

One or more of the links might then be obvious, resulting in natural coupling.

– Indirect: the models describe different dynamics (epidemic and

mobility), and each model has its own separate representation of the system

components (e.g. individuals/populations). The link between these models is

no longer natural, and transformation functions are required.

There are three main approaches for implementing the actual coupling:

– Integrative coupling: this is the most common approach. The principle

is to transform and combine the models in order to construct a larger

model. Substantial design, development and validation phases are crucial for

perfecting these kinds of models, which require prior methodological planning

on how the models will be coupled and combined.

– Weak coupling: this is the simplest approach. The models are executed

according to some workflow. The models simply exchange inputs/outputs (the

output from one model is the input of the other), and so remain independent.

One of the limitations of this approach relates to dynamics with competitive,

temporal or spatial aspects, as these factors cannot be taken into account

without implementing scaling procedures.

– Strong coupling: this approach instead considers competitive, temporal

and spatial aspects as the determining factors of the model dynamics.

Submodels are executed in parallel and share information throughout the

40 Agent-based Spatial Simulation with NetLogo 2

simulation. Model synchronization techniques are needed to ensure that the

models are anchored to meaningful “space-times”.

Integrative and strong couplings introduce a high level of interdependency

between the coupled models. This must be controlled with algorithmic tricks

and tried-and-tested techniques to ensure that the models remain consistent.

2.1.1.2. Ensuring temporal consistency

When designing a model, the time scale is a crucial choice that must

be made early in the modeling process, as it affects all subsequent choices.

Changing the time scale of a model involves reconsidering the relevance and

representations of all modeled dynamics, and will often require the model to

be rebuilt. In strong and weak couplings, it is therefore important to conserve

the time scale of each constituent model. If this is not possible, an integrative

approach should be used.

This raises the question of how to combine models with different time

scales without having to modify them. To do this, we need to identify a global

time scale that encompasses the time scales of each model.

One typical approach is to distinguish continuous models (e.g.

mathematical models based on ordinary differential equations or partial

differential equations) from discrete models (such as Markov chains, cellular

automata or multiagent systems).

Continuous models are easy to link together, as the language of

mathematics provides a number of tools for ensuring consistency between

models. Discrete models on the other hand are more difficult to connect. In

these models, time is divided into atomic time units that can take three forms:

– Fixed time steps: atomic time intervals that represent a physical duration

separating two moments at which the model is evaluated. This duration is

chosen arbitrarily after considering the model dynamics. This is the approach

most commonly employed by agent-based models.

– Variable time steps: atomic time intervals that represent a variable

physical duration. This duration is determined by the model as a function of the

intensity of its dynamics (the more a given dynamic affects the phenomenon

being studied, the shorter the time step). Numerical simulation methods such

Multiscale Modeling: Application to Traffic Flow 41

as Runge–Kutta are based on this principle, and coupling tools such as “Virtual
Soil” also use it.

– Events: timestamped actions that trigger the next evaluation and update

the model. These actions are located on a timeline of events. The simulation

aims to unravel this timeline. Coupling approaches such as DEVS [ZEI 97]

and HLA [AWA 13] are based on this method.

To couple models together, it is crucial to choose a common unit of time so

that their execution can be synchronized. Choosing the time scale of a model

is similar to determining the sampling frequency of a signal. Smaller time

scales improve the precision, but increase the cost (computing time and model

complexity), and can lead to modeling inconsistencies (by calculating a value

to an excessive degree of precision relative to the precision of the available

data). However, if the scale is too large, the dynamics of the system may not

be visible. Choosing a suitable time scale is critical, as it strongly influences

subsequent results.

The most common method for selecting this scale is to determine the largest

time step that divides each of the time steps of the coupled models (the GCD

of the time steps – greatest common divisor). This approach is the simplest to

implement, but can be expensive, as all models are evaluated at the smallest

time scale, resulting in excessively many evaluations.

The second approach is to use a variable time step. A default time step

is selected based on the dynamics of the system. Shortly before executing a

model, the time step is subdivided into smaller time steps to match the time

scale of this model. Once the model has finished its execution, the time step

returns to its default periodicity.

However, the method that seems to be widely preferred by coupling

platforms is to consider the time step as a periodic event just like any other

event in a discrete-event model. It then becomes natural to link models with

different time scales: the time steps and events are gathered and combined

along a single execution thread that symbolically represents continuous time.

The execution of the coupled model therefore translates into the successive

execution of an ordered list of timestamped events, which gradually advances

the simulation time.

42 Agent-based Spatial Simulation with NetLogo 2

2.1.1.3. Ensuring data consistency

Consistency of the data is ensured by techniques and tools that implement

formalisms such as DEVS [ZEI 97] and coupling platforms, either general-

purpose such as FMS [VAL 12], HLA [AWA 13] and VLE [QUE 05], or

specialized such as Records [BER 10] and Virtual Soil. These coupling

environments characterize models as a black box equipped with input and

output parameters. Models are connected together with transition functions

responsible for scaling the outputs of one model to serve as the inputs of the

next, while ensuring that the data remain consistent with respect to time.

This view of coupling shows the interest in having simple descriptions for

the links between the models: the resulting model is similar to a workflow

scheduled by a discrete-event clock.

These approaches quickly reach their limits when attempting to model

spatial phenomena. Each model has its own representation of space, which

may be private. This makes it difficult to describe competition for spatial

resources, which is essential in certain areas, such as soil sciences. This seems

to be ultimately due to the mathematical and non-spatial origins of these

formalisms.

More recently, a new perspective has taken the opposite approach to

historical methods by making space the central component around which

the coupling is constructed. Space is represented as a special zone in which

interactions between models result in competition and stigmergy. Within this

framework, space itself must be modeled at multiple scales by using special

architecture, such as holonic [HAS 12] or pseudo-fractal [BLA 09] structures,

to provide the spatial connection between models operating at different scales.

This approach is highly relevant in the domain of urban dynamics, and

can be used to model the socioeconomic phenomena of urban growth. Cities

are often viewed as multiscale spaces hosting different kinds of processes

(demographic growth, economic growth, public sector growth, etc.) each of

which carries a spatial footprint (living quarters, venues for economic and

universal services). It then becomes natural to situate these processes within a

virtual, multiscale space representing a city. These processes can then interact

and cohabit in space, as is readily observed within urban systems.

Multiscale Modeling: Application to Traffic Flow 43

2.1.1.4. Traffic

Traffic flow simulation illustrates both the added value and the difficulty

of model coupling. Traffic can be understood at different scales according

to whether we consider vehicles individually (microscopic scale and discrete

approach) or vehicle flows (macroscopic scale and continuous approach). Most

models are formulated at a single scale, which limits the set of questions

in their fields of applications to which they can provide answers. Model

coupling can be used to overcome these limitations, in particular by coupling

macroscopic and microscopic models. However, a number of questions must

be resolved in order to implement this coupling, as we saw in the previous

section.

To illustrate some of the possible answers to these questions, we propose a

very simply case study of automobile traffic on a closed circuit with NumEdges
edges, each of which is characterized by:

– a fixed length;

– a speed limit;

– a fixed critical concentration;

– one single lane (overtaking is not possible).

The critical concentration parameter is important at macroscopic scales,

since vehicles are considered as a flow rather than strictly individually. Three

distinct but closely interdependent values must be taken into consideration:

– the average speed of the vehicles on the road (V);

– the concentration of vehicles on the road (K), which is given by the

number of vehicles on the road divided by the length of the road;

– the flow rate (Q), which corresponds to the number of vehicles that pass

through a certain point over a given time interval.

These quantities usually satisfy the relation Q = K.V , which lies at the

heart of traffic theory and forms the basis of the so-called fundamental diagram

[GRE 35].

The vehicle flow (macro scale) or the individual vehicles (micro scale)

travel along the circuit, passing from one edge to the next, indefinitely. In the

44 Agent-based Spatial Simulation with NetLogo 2

microscopic case, the transitions between edges are modeled as follows: when

each vehicle arrives within a distance of less than ε from its destination node,

it is immediately moved onto the node, and is assigned a new destination. For

consistency, the value of this parameter is chosen to be less than the distance

that a car can travel at the speed limit on this edge.

Figure 2.2. Fundamental traffic diagram ([BOU 03]), showing the
flow Q as a function of the concentration K

Figure 2.3. The road is a closed circuit composed of
one-way edges of single-lane traffic. At initialization, the vehicles

all start on the same edge

There are many models for describing traffic. In this chapter, we will

explore three of them throughout the next few sections: the macroscopic LWR

model, the mesoscopic Underwood model and the microscopic NaSch model.

Each model corresponds to a specific scale of traffic, and is based on either

an agent-based formalism (abbreviated to ABM for agent-based model) or an

Multiscale Modeling: Application to Traffic Flow 45

equation-based formalism (EBM for equation-based model). These terms are

listed in Table 2.1.

Figure 2.4. If a vehicle is at a distance of less than ε away from its
destination node, it is moved directly onto the node

Model View of traffic Formalism
LWR Macro EBM

Underwood Meso ABM

NaSch Micro ABM

Table 2.1. Scales and formalisms of the considered models

2.2. Two agent-based models: NaSch and Underwood

In these two models (NaSch and Underwood), vehicles are represented

individually. The difference between the two models lies primarily in the way

that vehicles adjust their speeds. On each edge, vehicles adjust their speeds

according to different processes, depending on whether we choose the NaSch

model or the Underwood model (the latter of which exists in multiple variants).

2.2.1. The NaSch model

The NaSch model, named after its creators, Nagel and Schreckenberg,

initially started as a cellular automaton model (see [NAG 92, SCH 02,

SCH 95]), but can be converted to an individual-based model (see [GOD 07,

BAN 09]).

In this model, each vehicle i located on edge j is characterized by:

– its speed, Speedi, satisfying 0 ≤ Speedi ≤ MaxSpeedj , where

MaxSpeedj is the speed limit of edge j;

– the Euclidean distance from the vehicle k that precedes it, Dik.

46 Agent-based Spatial Simulation with NetLogo 2

Figure 2.5. The NaSch model takes into account the speed Speedi of
the vehicle i (which is less than the speed limit), and the distance from

the vehicle in front (Dik)

to compute-Dn
let Dist-Nxt-Nde distance-next-node
if any? cars with [my-current-edge = [my-current-edge] of myself and

distance-next-node < Dist-Nxt-Nde]
4 [

let Distmax max [distance-next-node] of cars with [my-current-edge =
[my-current-edge] of myself and distance-next-node < Dist-Nxt-Nde]

set Dn Dist-Nxt-Nde - Distmax
]

end

Initialization: the initial speed of the vehicles is chosen to be the speed

limit of the edge minus a random amount between 0 and 20% to introduce

heterogeneity into the initial speeds of the vehicles.

to initialize-NasCh-speed
2 ask cars
[
set speed [max-speed-patch-tick] of my-current-edge - random-float 0.2 *

[max-speed-patch-tick] of my-current-edge
]
end

The parameters NaSchFactor and NaSchNoise are defined between 0
and 1, and are involved in updating the speed (acceleration or deceleration)

of each vehicle. The NaSch model follows the rules stated below at each time

step t.

Multiscale Modeling: Application to Traffic Flow 47

Acceleration: assuming that drivers wish to travel as quickly as possible,

if the vehicle is not currently at the speed limit, its speed is increased by

NaSchFactor:

Speedi = min(Speedi × (1 +NaSchFactor),MaxSpeedj)

to accelerate
let MinComp1 min (list ([max-speed-patch-tick] of my-current-edge) (

speed + speed * NaSch-Factor))
set speed max (list 0 MinComp1)

4 end

Deceleration: assuming that drivers wish to avoid collisions, and that speed

is equivalent to a certain distance traveled per time step, if the distance from

the vehicle in front is less than or equal to Speedi, the speed is decreased by

setting its value to:

Speedi = min(Speedi, Dik × (1−NaSchFactor))

1 to decelerate
let MinComp2 min (list (speed) (Dn - Dn * NaSch-Factor))
set speed max (list 0 MinComp2)

end

Random variability: assuming that drivers can overreact, or that their speed

can fluctuate close to the speed limit, the speed of each vehicle is randomly

decreased by Speedi×NaSchFactor (while always remaining positive) with

a certain probability. Hence, if (random-float1) < NaSchNoise :

Speedi = max(Speedi − Speed×NaSchFactor, 0)

1 to randomization
if speed > 0
[
if (random-float 1) < NaSch-Noise
[

6 set speed max (list 0 (speed - speed * NaSch-Factor))
]

]
end

48 Agent-based Spatial Simulation with NetLogo 2

Movement: the distance traveled in each time step t by each vehicle on an

edge is equivalent to the value of Speedi. Each vehicle moves once per time

step as a function of its speed.

1 to adapt-speed
let Dist-Nxt-Nde distance-next-node ; my distance from the next node
if speed < [max-speed-patch-tick] of my-current-edge and Dn > speed
[
accelerate

6]
if (any? cars with [my-current-edge = [my-current-edge] of myself and

distance-next-node < Dist-Nxt-Nde]) and (Dn <= speed)
[
decelerate

]
11 end

to NaSch-model
update-distance-next-node
ask cars

16 [
compute-Dn
adapt-speed
randomization

]
21 end

2.2.2. The Underwood model

The Underwood model [UND 61] operates at mesoscopic scales. The speed

of each vehicle is updated as a function of the number of vehicles on each

edge, independent of their relative positions (see Figure 2.6). We are therefore

interested in the concentration of vehicles on the edge, and not their positions.

In this model, the speed of the vehicles is taken to be equal to their free speed,

i.e. the speed limit on the road: Speedi = MaxSpeed, weighted by the

concentration of vehicles on the edge. The Underwood function depends on

the concentration (CurrentConcentration) and the capacity (Capacity) of

the edge:

Speedi = MaxSpeed ∗ exp(−CurrentConcentration

Capacity
)

Multiscale Modeling: Application to Traffic Flow 49

to update-car-speed-underwood
ask cars
[

4 set speed ([max-speed-patch-tick] of my-current-edge) * exp(- ((
[current-concentration] of my-current-edge) /
([num-max-cars-on-edges] of my-current-edge)))

]
end

Figure 2.6. The Underwood model allows all vehicles to travel at
the speed limit when the edge is empty, and then reduces their
speed exponentially as the concentration on the edge increases

NOTE.– In its simplest version, this model has three fundamental

limitations. First, it is unsuitable for situations with high concentrations, as

the speed of the vehicles is reduced to zero if the concentration on the edge

strongly exceeds its capacity. Furthermore, it is largely deterministic. The

only potential source of randomness is from the scheduling of agents in an

asynchronous implementation such as the one chosen here. Finally, it does not

consider the relative positions of vehicles, and can result in illogical situations.

For example, a vehicle is slowed down by the presence of other vehicles

behind it.

We therefore propose two variations. The first, referred to as “Underwood-
Random”, simply introduces a random component into the model. The second,

which we will call “Underwood-Forward”, considers the relative position

of vehicles on each edge, while retaining the mesoscopic character of the

reference model.

Underwood-Random model: introducing a random component into the

model can be done very simply when the speed is calculated by penalizing

each vehicle by a random factor proportional to its speed (random-float

×(speed× Underwood− Factor)):

50 Agent-based Spatial Simulation with NetLogo 2

to update-car-speed-underwood-random
ask cars
[

4 let speed-underwood ([max-speed-patch-tick] of my-current-edge) *
exp(- (([current-concentration] of my-current-edge) /
([num-max-cars-on-edges] of my-current-edge)))

set speed max (list (speed-underwood - random-float (speed *
Underwood-Factor)) 0)

]
end

Underwood-Forward model: for each vehicle, when calculating the speed,

only the concentration of vehicles on the part of the edge in front of the vehicle

is considered.

Thus, the speed of a vehicle is determined by the Underwood-Random

function, which depends on the concentration and the capacity not of the whole

edge, but only the part located in front of the vehicle (see Figure 2.7):

to update-car-speed-underwood-forward
2 update-distance-next-node

ask cars
[
let Dist-Nxt-Nde distance-next-node
let my-edge my-current-edge

7 let forward-concentration count cars with
[(my-current-edge = my-edge) and (distance-next-node < Dist-Nxt-Nde)]
let speed-underwood ([max-speed-patch-tick] of my-edge) * exp (-

(forward-concentration / (([num-max-cars-on-edges] of my-edge) *
(Dist-Nxt-Nde / [edge-size-patch] of my-edge))))

set speed max (list (speed-underwood - random-float (speed *
Underwood-Factor)) 0)

]
12 end

This refinement of the initial model produces a considerable change in

the traffic dynamics. We observe an increase in the average speed (of around

10 km/h on average in the example), a stabilization in the speed of the fastest

vehicles, which are no longer affected by the vehicles behind them, and an

equally significant decrease in the concentration (see Figure 2.8).

Multiscale Modeling: Application to Traffic Flow 51

Figure 2.7. The Underwood-Forward model allows all vehicles to travel
at the speed limit when they are alone, but forces them to reduce their
speed as a function of the number of vehicles present in front of them

on the edge, as well as the capacity of this part of the edge

Figure 2.8. Impact of the “Forward” component in an Underwood
model with 10 nodes. The rectangle shows the point at which
Underwood-Random was replaced by Underwood-Forward

2.3. An equation-based LWR model

The LWR model [LIG 55, RIC 56] is a flow model inspired by fluid

mechanics that was proposed by Lighthill, Whitham and Richards in 1955.

Whereas the models presented above consider vehicles individually, this model

represents traffic as a continuous flow (macroscopic scale). It is based on

collective behaviors and builds on the fundamental diagram (see Figure 2.9),

which shows the equilibrium states of traffic and hints at the relationship

between concentration and flow rate. This kind of model can be used to

describe phenomena relating to movements and congestion.

The LWR model makes the following assumptions:

1) The road is divided into sections of length x.

52 Agent-based Spatial Simulation with NetLogo 2

2) Time is divided into steps of duration t.

3) The concentration is uniform on each section.

4) A vehicle cannot travel across more than one section in a single time

step.

In this section, we will use the following notation (see [BOU 03]):

– Q(x, t) = flow rate: number of vehicles that pass through x at time t;

– K(x, t) = concentration: number of vehicles present at time t on a section

x of the road;

– V (t, x) = average speed of the vehicles located at x at time t.

The model is determined by the following system [2.1]:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q(x, t) = K(x, t)× V (x, t)

∂Q(x, t)

∂x
+

∂K(x, t)

∂t
= 0

V (x, t) = Vl (K(x, t))

[2.1]

The first equation is the fundamental rule: Q = K × V .

The second equation is the rule of conservation of traffic. The variation over

time in the concentration depends on the inflow and outflow of vehicles. This

corresponds to the change in the flow rate over space.

The third equation is the fundamental diagram of traffic, presented for the

first time in [GRE 35] (see Figure 2.9). This equation allows us to write the

speed as a function of the concentration. So long as the concentration remains

below the critical concentration of the road, vehicles can travel at the speed

limit (or free speed Vl). But if the critical concentration is attained, the speed

decreases and a congestion phenomenon occurs.

Note that in the case of the LWR model, the critical concentration must be

equal to half of the maximum concentration.

Multiscale Modeling: Application to Traffic Flow 53

Figure 2.9. Fundamental diagram of traffic [BOU 03]

Numerical integration of the LWR model: The LWR is a system of

partial differential equations (PDEs). In order to numerically integrate it, we

use the following space-time discretization method presented by Godunov

(see [LEB 96]). We need the following notation: Δx is the discretization step

for dividing the road into sections (Δx is the length of section i). Since Δx is

constant, all sections are the same size.

Δt is the discretization step in time.

The flow rate is assumed to be constant during each time step, which

justifies dividing up space to ensure that the speed does not remain constant

over too large a distance. Accordingly, we assume that it takes Δt to travel

over the length of the space step Δx.

Calculating the inflow and outflow for each section: For each section, we

define the supply and demand functions as follows: the supply is the number

of vehicles able to enter a section, and the demand is the number of vehicles

wanting to leave a section.

Let:

– Qx = maximum flow rate;

– Kc = maximum concentration;

– V l = maximum speed (free speed).

54 Agent-based Spatial Simulation with NetLogo 2

Lebacque showed that the flow rate can be calculated by introducing the

supply functions (S) and demand functions (D) as shown in Figure 2.10.

Figure 2.10. Supply (S) and demand (D) functions according to
concentration (K), defined in [BOU 03]

We chose to represent these supply and demand functions in a

simplified/linear form as shown in Figure 2.11.

Figure 2.11. Simplified representation of the supply
and demand functions

The demand function can also be written as the function [2.2]:

D(K(x, t)) =

⎧⎨
⎩

Qx

Kc
K(x, t) if K(x, t) ≤ Kc

Qx if K(x, t) ≥ Kc

[2.2]

Multiscale Modeling: Application to Traffic Flow 55

This function can be implemented with the following code:

to OfferFunction
ifelse current-concentration <= critical-concentration

3 [
set offer max-flow

]
[
set offer max list 0 ((- max-flow / critical-concentration) *

current-concentration + 2 * max-flow)
8]
end

The supply function can in turn be written as the function [2.3]:

O(Ki) =

⎧⎪⎨
⎪⎩

Qx if K(x, t) ≤ Kc

−Qx

Kc
K(x, t) + 2Qx if K(x, t) ≥ Kc

[2.3]

This gives the following code:

1 to DemandFunction
ifelse current-concentration <= critical-concentration
[

set demand max list 0 ((max-flow / critical-concentration) *
current-concentration)

]
6 [

set demand max-flow ;
]

end

Let Kt+Δt
i and Qt+Δt

i be the concentration and the flow rate in section i at

time t+Δt:

Qt+Δt
i = min (D(Ki), O(Ki+1))

Kt+Δt
i = Kt

i +
Δt

Δx

(
Qt+Δt

i−1 −Qt+Δt
i

) [2.4]

The first equation of [2.4] states that, for a given section i, the flow rate at

time t+Δt is equal to the minimum of the vehicles that wish to exit i and those

56 Agent-based Spatial Simulation with NetLogo 2

that can enter the next section. In other words, if fewer cars wish to exit the

section i than can enter the next section, everyone will be able to get through.

This gives the following code:

1 to UpdateFlow
ask nodes with [any? my-out-edges]
[
set nxt-offer [offer] of one-of my-out-edges

]
6 ask edges

[
set current-flow min list demand [nxt-offer] of end2

]
end

The second equation of [2.4] states that the concentration of section i at

time t+Δt is equal to the concentration at time t plus the number of vehicles

exiting the previous section (i − 1) minus the number of vehicles exiting the

section i. This gives the following code:

to UpdateConcentration
ask nodes with [any? my-in-edges]
[

set prvs-flow [current-flow] of one-of my-in-edges
5]

ask edges
[

set previous-flow [prvs-flow] of end1
set current-concentration (current-concentration + (1 /

max-speed-patch-tick) * (previous-flow - current-flow))
10]

end

One of the assumptions behind these equations is that a vehicle cannot

travel further than the next section within a single time step, which can be

mathematically written as:
Δx

Δt
≥ Vl where Vl is the maximum speed.

This simple model cannot reproduce phenomena such as the accordion

effect in traffic jams, clustering or phases of acceleration/deceleration. Finally,

the LWR model represents uniform traffic moving from one equilibrium state

to another, but does not give a correct description of transition phases. This is

Multiscale Modeling: Application to Traffic Flow 57

why we are interested in a hybrid model that will allow us to couple the LWR

model with other models that operate at microscopic scales.

2.4. Hybrid traffic model

The hybrid or coupled model developed here refers to a model in which the

representation of traffic is equation-based on some parts of the road and agent-

based on others (see, for example, [BOU 03, ABO 14, BUR 06]). Figure 2.12

shows a diagram of this kind of hybrid model.

Passing from one representation to another like this presents several

challenges. We need to go from a real number of cars (continuous

representation) to an integer number of cars (discrete representation). We also

need to take into account the fact that the spatial and temporal dimensions are

not represented in the same way in both models.

Figure 2.12. Representation of a hybrid traffic model

We will continue to consider the example of a closed circuit divided into

NumEdges edges. The traffic on each edge is modeled either by an equation-

based LWR model, or by an agent-based NaSch or Underwood model.

Vehicles: The transition LWR → NaSch/Underwood requires us to derive

an integer number of vehicles from a continuous flow. To implement this

transition from a real number (flow) to an integer (vehicles), we will take the

integer part of the real number to create vehicles, and save the decimal part,

which will accumulate until it reaches a unit, at which point a new vehicle is

created. This accumulation-based system ensures that the number of vehicles

is conserved.

For the transition agent → LWR, vehicles need to be added to the flow

and removed as individual vehicles. Therefore, we will add them to the

concentration on the LWR section, and delete them from the list of agents.

58 Agent-based Spatial Simulation with NetLogo 2

to generateCars-From-LWR [nb]
ask end2
[

4 let considered-edge one-of my-out-edges
if [LWR-Section] of considered-edge = 0
[
hatch-cars nb
[

9 set my-current-edge considered-edge
set current-node [end1] of my-current-edge
set next-node [end2] of my-current-edge
ask my-current-edge
[

14 set current-concentration current-concentration + 1
]
set concentration-of-my-current-edge count cars with

[my-current-edge = [my-current-edge] of myself]
set size 0.4
set shape "arn-car-yellow"

19 update-my-position
]

]
]

end

Space and time: To ensure that time (and consequently speed) is handled

consistently, we chose to subdivide the LWR sections into subsections. In the

case of LWR, one subsection is traversed per time step, whereas the speed of

vehicles is managed according to the specific logic of the NaSch or Underwood

approaches defined as above for individual-based models.

To determine the number of subsections in each LWR section, and ensure

that time is handled consistently, we assume that a vehicle traveling at the

speed limit on a NaSch or Underwood section requires time T to travel

across this section. If there is no congestion (i.e. at free speed), we know

that only one single time step is required to travel across an LWR subsection.

Therefore, subdividing an LWR section into T subsections will ensure that, at

free speed, traveling across an LWR section is equivalent to traveling across

an NaSch/Underwood section.

The number of subsections in each section therefore depends on their length

and speed limit, as shown in Figure 2.13.

Multiscale Modeling: Application to Traffic Flow 59

Figure 2.13. The edges are divided into subedges of equal size.
With a fixed speed limit, the number varies as a function of the

length of the road (here, respectively 1, 3 and 6km)

We begin by determining the number of intermediate nodes per edge in

terms of the length of the edge and its free speed:

set num-subedges int ([edge-size-patch] of one-of edges /
[max-speed-patch-tick] of one-of edges)

We then create nodes for each edge, positioning them equidistantly:

to generate-SubNodes
if traffic-function = "LWR" and not any? edges with [lwr-section = 1]

4 [
ask edges
[
set lwr-section 1

]
9]

ask edges with [lwr-section = 1]
[
let edge-length edge-size-patch
let i 0

14 repeat num-subedges - 1
[
set i i + 1
ask end1
[

19 let ref who
hatch-nodes 1

60 Agent-based Spatial Simulation with NetLogo 2

[
set reference-node ref
set sub-node 1

24 set i-node i
set size size / 2
set shape "dot"
set color white
fd (edge-length / num-subedges) * i

29]
set nb-subnodes i

]
]

]
34 end

Finally, subedges are created in such a way that each intermediate node is

connected with the node before and the node after. These intermediate nodes

might overlap with the initial nodes of the graph if placed at the beginning or

the end of an edge:

1 to generate-SubEdges
ask edges with [lwr-section = 1]
[
ask end1
[

6 let me who
let my-Subnode one-of nodes with [reference-node = me and i-node = 1

and sub-node = 1]
create-edge-to my-subnode
[
set sub-edge 1

11 set lwr-section 1
set shape "link-arn2"
set color green
set thickness 0.05

]
16]

]
if num-subedges > 2
[
ask nodes with [sub-node = 1]

21 [
let next-Subnode one-of nodes with [reference-node = [reference-node]

of myself and i-node = ([i-node] of myself + 1) and sub-node = 1]
if is-agent? next-Subnode
[
create-edge-to next-subnode

26 [
set sub-edge 1

Multiscale Modeling: Application to Traffic Flow 61

set lwr-section 1
set shape "link-arn2"
set color green

31 set thickness 0.05
]

]
]
]

36 ask nodes with [count out-link-neighbors = 0 and sub-node = 1]
[
let my-next-node one-of other nodes with [sub-node = 0 and who !=

[reference-node] of myself] with-min [distance myself]
create-edge-to my-next-node
[

41 set sub-edge 1
set lwr-section 1
set shape "link-arn2"
set color green
set thickness 0.05

46]
]

end

The interface of the hybrid model is shown in Figure 2.14. There are three

LWR sections. The vehicles are colored yellow on “Underwood-Car-Forward”

sections. They merge into the flow in the LWR sections, and reappear at the end

of these sections. The red nodes show that the flow is not necessarily uniformly

distributed over each LWR section, but can vary over its subsections depending

on when and how the vehicles arrive.

2.5. Conclusion and outlook

This chapter develops a simple example to introduce readers to traffic

modeling, and shows how to compare and dynamically couple models that

operate at very different scales. In particular, we coupled a macroscopic

model (LWR) with a mesoscopic model (Underwood and its variants) and a

microscopic model (NaSch). While implementing this coupling, we made sure

to observe the fundamental constraint of conserving the number of vehicles,

but we also ensured that the flow speeds remained consistent in each of the

coupled models.

The proposed implementation in NetLogo is fairly generic, and can

easily be extended to support more complex models, either by developing

its structural components (in particular the choice of road network) or by

62 Agent-based Spatial Simulation with NetLogo 2

elaborating on the processes themselves. In its current state, this model can

be used in experiments to more systematically compare the behavior and

performance of each of the models presented above, and in particular to

explore the performance of the hybrid model as the size of the road network

and the number of vehicles increases. This is a crucial step in adaptively

utilizing the possibilities of each model.

Figure 2.14. Interface of the full model, coupling LWR sections and
Underwood-Forward sections. For a color version of the figure, see

www.iste.co.uk/banos/netlogo2.zip

3

Macro Models, Micro Models and
Network-based Coupling

3.1. Introduction

In this chapter, we will discuss coupling models with different scales to

describe the propagation of a virus within a population. This population is

distributed throughout a set of cities connected by airline routes. Population

movements between cities enable the virus to travel, carried by infected

individuals. In each city, the description of virus propagation is based on

an SIR-type model (presented in more detail in section 3.2). The first

model, called EpiSim [DAU 14], is presented in section 3.3, first in its

aggregate variant, and then in its individual-based variant. Comparing these

two approaches will allow us to discuss the advantages and limitations of each

of them. In the second section, we will present two approaches for coupling

models based on networks. The first approach considers a network of coupled

systems of equations (section 3.5). The second combines an agent-based model

of microscale components with a model of macroscale components based

on systems of equations (section 3.6). This coupled model, called MicMac,

is presented in more detail in [BAN 16]. The added value of micro/macro

coupling is examined in the article [BAN 15b].

This chapter picks up where the last chapter left off. In the previous chapter,

we considered a weak coupling approach combining distinct traffic models

Chapter written by Arnaud BANOS, Nathalie CORSON, Éric DAUDÉ, Benoit GAUDOU and

Sébastien REY COYREHOURCQ.

64 Agent-based Spatial Simulation with NetLogo 2

with different scales. This chapter instead focuses on an integrative coupling

approach that associates two different dynamics modeled at different scales.

3.2. Description of the equation-based SIR model

The dynamics of an epidemic within a population can be formulated with

an SIR model that describes the evolution of the number of susceptible (S),

infected (I) and recovered (R) individuals within the population. This model

is described by the system [3.1] (see [KER 27]).

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dS

dt
= − β

N
IS

dI

dt
=

β

N
IS − αI

dR

dt
= αI

[3.1]

In this model, each city has a population (P) divided into three groups S,

I and R. If the population has not been previously exposed to the virus, then

P = S, and everybody in the city is susceptible. The population is constant,

i.e. demography is not taken into account. The transition from the group of

susceptible individuals to the group of infected individuals is described by the

term
β

N
SI where

β

N
is the contamination rate in the event of contact between

a susceptible individual and an infected individual. The transition from the

group of infected individuals to the group of immune (recovered) individuals is

described by αI , where the α term gives the proportion of infected individuals

that recover at each time step.

This system of equations describes the evolution of the number

of susceptible, infected and recovered individuals over time for fixed

contamination and recovery rates, as shown in Figure 3.1.

There are various different approximation methods for numerically

calculating the solutions of this kind of system, i.e. determining the evolution

of S, I and R over time. As discussed previously (Volume 1, Chapter 5, p. 178

[BAN 15a]), the system dynamics module in NetLogo uses Euler’s method.

We will use this module and hence this method for section 3.3 of this chapter.

In section 3.3, the numerical method that we will use is called fourth-order

Macro Models, Micro Models and Network-based Coupling 65

Runge–Kutta ([BAN 15a] p. 183). It is implemented directly in NetLogo.

Finally, in section 3.6, we will use the Scala extension presented in Chapter

1 of this book.

Figure 3.1. Evolution of the number of susceptible, infected and recovered individuals

over time with α = 0.2,
β

N
= 0.5 (hence, R0 is equal to

β

α
= 2.5) and initial conditions

Sinit = 1000, Iinit = 10 and Rinit = 1. The chosen method of numerical integration
is Runge–Kutta 4, with a resolution of 10−3. For a color version of the figure, see
www.iste.co.uk/banos/netlogo2.zip

In the following sections, whenever an SIR system is used to describe the

population of a city i (for i ∈ 1, ..., NBNodes), we will denote the S, I and R

components of the populations respectively, by Si, Ii and Ri.

3.3. Equation-based and agent-based propagation model: EpiSim

In this section, we will aim to recreate the global dynamics of the aggregate

SIR model with an agent-based model. We will analyze the conditions under

which each of these two models converge and diverge. We will begin by

individualizing the SIR model without spatial constraints, and then we will

gradually add mechanisms for local interactions.

3.3.1. Distributed and non-spatial SIR model

The first stage of modeling is to develop the processes of the

aggregated mathematical model using an agent-based formalism

66 Agent-based Spatial Simulation with NetLogo 2

(EpiSim_Modele.nlogo), while retaining the fundamental assumptions

of the initial approach (EpiSim_Math_Modele.nlogo). To shift from the

first formalism to the second, we need to redistribute the SIR model at

the individual scale. Each agent is therefore assigned a description of its

epidemiological state: S → I → R. Similarly to the aggregate version,

these transitions are not symmetric.

In this first stage, space is not considered, and each agent can potentially

interact with everyone, depending on the contact rate β. The graph of

interactions is said to be trivial. Each agent has two transition functions:

P (S → I) = β
I

N
and P (I → R) = α

This non-spatial model, shown in Figure 3.2, is agent-based, but still

reproduces the same dynamics as the equation-based SIR model given

equivalent initial conditions.

Figure 3.2. Screenshot of the dynamics of the non-spatial model. The Network
parameter is set to “None”, the interactions are “implicit” (each agent can potentially
interact will every other agent), the neighborhood is “global” and individual mobility
(IndividualStatic?) is currently irrelevant

Macro Models, Micro Models and Network-based Coupling 67

3.3.2. Spatially distributed SIR model with local interactions

In this second version of the model, the individual probabilities of transition

are calculated as a function of a local fixed-radius neighborhood of agents

(fixed Euclidean distance around the agent). At each time step, the agents have

unlimited mobility within the domain. In this spatial version of the model,

individuals are randomly distributed over space at initialization and at each

time step. Contacts occur randomly within the neighborhood of each agent,

which can be configured to be more global or local depending on the choice of

spatial constraints. Thus, no a priori structure is defined for potential contacts.

The graph of contacts that did actually occur during the simulation could,

however, be reconstructed a posteriori, to examine its topology.

P (S → I) = β
Ilocal
Nlocal

and P (I → R) = α

Under these conditions, the model shown in Figure 3.3 once again allows

us to obtain dynamics similar to those produced by the equation-based SIR

model.

Figure 3.3. Screenshot of the dynamics of the spatial model with local neighborhoods.
The Network parameter is still set to “None”, interactions remain “implicit”, the
neighborhood is now “local” with a fixed radius of 3 and individual mobility
IndividualStatic? is disabled

68 Agent-based Spatial Simulation with NetLogo 2

3.3.3. Spatially distributed model with local neighborhoods and
explicit contact between individuals

We continue this approach with a fully distributed and behavioral model,

shown in Figure 3.4. Each agent S experiences a number n of contacts

(parameter avg-num-contact), which follows a Poisson distribution with

mean β. Each agent therefore effectively enters into contact with n agents

from its neighborhood V . If the state of one of these n neighbors is I , then

S → I .

P (S → I) = 1 if
∑
V

I ≥ 1 and P (I → R) = α

Figure 3.4. Screenshot of the dynamics of the spatial model with local neighborhoods
and interactions only between individuals. The Network parameter is still set to “None”,
interactions are now “explicit”, the neighborhood remains “Local” with a fixed radius
radius of 3 and individual mobility (IndividualStatic?) is either enabled or disabled

The dynamics produced by the simulations of this model deviate from

previous dynamics, and infection rates are lower than previous versions,

or completely absent. One way of verifying this is to vary the radius,

IndividualsStatic? mobility and avg-num-contact parameters to trigger

the dynamics of an epidemic. These results allow us to improve the model by

relaxing the hypotheses of global spatiality and global interaction. The next

Macro Models, Micro Models and Network-based Coupling 69

model therefore takes into account the movements of agents and the localized

nature of the contacts that could potentially result in virus transmission.

3.3.4. Spatially distributed SIR model with a network of
interactions

With this next version, the structure of potential contacts can be entered

as a model input to specify the network of interactions between agents. Each

agent is represented by a node, and its potential contacts are represented by a

set of connections making up its neighborhood. Hence, mobility is no longer

relevant here, since the network of interactions does not change over the course

of the simulation. At each time step, each agent comes into contact with

other agents selected from the set of level 1 neighbors within the network,

limited to the average number of contacts retained from the previous version

of the model (fixed parameter β which follows a Poisson distribution). In other

words, if the size of the neighborhood is less than avg-num-contact, then

this parameter takes the value of the size of the neighborhood. Other networks

can be constructed in order to study the role of topology in the dynamics of

virus propagation:

– Regular networks: networks such that all vertices have the same number

k of neighbors, also described as k-regular networks.

– Random networks with fixed degree distributions: networks whose

vertices have an average of k neighbors. This number varies locally around the

mean for each vertex. The number of edges is defined beforehand to guarantee

the desired degree distribution, then each edge is connected to two randomly

selected vertices.

– Small world networks: intermediate networks between regular networks

and random networks. To generate these networks, we start with a regular

network and randomly reassign a certain percentage of its edges.

– Scale-free networks (scale-invariant): directed acyclic or star networks

with a strongly heterogeneous distribution for the number k of neighbors of

each node. This distribution follows a power law.

These networks can be characterized by global topological indicators

such as:

– the average degree K: the average number of incident edges to a vertex;

70 Agent-based Spatial Simulation with NetLogo 2

– the clustering coefficient C: this measures the degree to which the

network contains clusters, i.e. groups of vertices strongly linked together and

weakly connected to the rest of the network;

– the average of the C(x) evaluated at each vertex x: this is the number of

existing edges within the neighborhood K(x) of the vertex x divided by the

number of possible edges in this neighborhood;

– the average length of shortest paths: the average of the shortest values for

the distance between any two vertices of the network.

We will present the results of simulations performed with a clustered

network, such that k-degree equal to 6 (Figures 3.5 and 3.6) and 2 test

parameter values corresponding to the high/low values for L. For example,

when the network has a high k-degree, the clustering coefficient C is high, and

the average of the shortest distances L tends to be low. By contrast, the lower

the k-degree of the network, the higher the average of the shortest distances

tends to be.

Figure 3.5. Screenshot of the dynamics of the spatial model, network with
interindividual interactions. The value of avg-num-contact remains fixed at 1.66. The
Network parameter is set to “clustered”, with average-node-degree equal to 6. The α
(0.50) and β (0.20) parameters have been adjusted to obtain a higher R0 (4.1)

Macro Models, Micro Models and Network-based Coupling 71

Figure 3.6. Screenshot of the dynamics of the spatial model, network with
interindividual interactions. The value of avg-num-contact remains fixed at 1.66. The
Network parameter is set to “clustered”, with average-node-degree equal to 12. The
α and β parameters have been adjusted to obtain a higher R0 (4.1)

The simulation calculates several indicators as outputs: the proportion, of

the entire population, of the contaminated individuals at peak contamination

(MaxI); the interquartile range (IQR), which provides an indication of the

duration of the epidemic; and the cumulative percentage of infected individuals

once the epidemic is over (Recovered). In general, the simulations confirm

the initial intuition that the more the network is connected, the faster the virus

propagates through it, and the greater the number of infected nodes.

Studying the influence of the R0 parameter on these indicators and varying

the k-degree parameter shows the “compensating” effect of this parameter

relative to how the degree of network connectivity affects the propagation

dynamics. Recall that the R0 parameter is equal to the probability of infection

multiplied by the average number of contacts divided by the probability

of recovery. The simulations show a strong time shift as a function of the

k-degree parameter: the epidemic “takes off” more quickly as the network

connectivity increases, for fixed R0. This can be observed by comparing the

two experiments shown in Figure 3.5 (11340 ticks) and Figure 3.6 (6322 ticks).

A simple experiment (varying R0, varying the k-degree parameter) allows

this initial intuition to be quickly verified. Also, the R0 threshold value for

a “lightning” epidemic (hyper-fast epidemic that reaches all vertices within a

72 Agent-based Spatial Simulation with NetLogo 2

short period) decreases as the connectivity increases. Note also that the value

of R0 required for the epidemic to affect almost all of the population may be

less than 1 if the network is strongly connected.

3.4. Coupling SIR models based on networks

Assume now that we have the same nodes as the previous models,

representing cities, but that the edges between these cities represent

connections by air. We also define a mobility rate g for each city, representing

the proportion of outbound travelers from that city. This proportion may

vary across the groups of susceptible, infected and recovered individuals.

We could, for example, assume that in the case of a symptomatic disease,

infected individuals will cease to travel, whereas asymptomatic individuals

will continue to do so. With this assumption, the number of infected individuals

is a function of the proportion of asymptomatic cases observed for a given

infectious disease. The mobility rates are, respectively, denoted by gi, gs and

gr. The mobile population of city i is therefore given by g(Si + Ii + Ri), or

by (gsSi + giIi + grRi) in the case where the mobility varies as a function of

infectious state.

Once these mobility rates have been defined, individuals from one city

can travel to adjacent cities. The weight mij of each edge is the fraction of

outbound travelers from node i headed toward node j. The sum of the mij

corresponding to each of the outbound edges at a given node must be equal

to 1:

N∑
j=1, j �=i

mji = 1 with mii = 0

Thus, these nodes and edges define a network of cities, and the population

moves through them. To model these movements, we propose two approaches.

3.5. SIR coupling without scaling: Metapop model

3.5.1. Presentation of the Metapop model

The metapopulation approach considered here takes into account the flow

of travelers from one city to another at each time step of the simulation. Trips

Macro Models, Micro Models and Network-based Coupling 73

are assumed to be instantaneous (the Euclidean distance between any two cities

is zero) since the model does not naturally include a notion of time and its

dynamics are exclusively defined by the number of integration steps. We are

therefore only interested in the epidemic-related dynamics of the city network,

as shown by the model in Figure 3.2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSi

dt
= − β

N
IiSi − gsiSi +

n∑
j=1

gsjmjiSj

dIi
dt

=
β

N
IiSi − αIi − giiIi +

n∑
j=1

gijmjiIj

dRi

dt
= αIi − griRi +

n∑
j=1

grjmjiRj

[3.2]

Note that at each node, these dynamics are given by the initial dynamics of

the epidemic after subtracting all outbound travelers (hence the term −gsiSi

in the group of susceptible individuals) and adding all inbound travelers from

adjacent cities j (hence the term

n∑
j=1

gsjmjiSj in the susceptible group).

Movements are instantaneous, and at each step of the simulation the total

population is given by the sum of the populations at each node.

The interface of the metapopulation model is presented in Figure 3.7.

Figure 3.7. Interface of the metapopulation model, allowing the user to define the
network topology as well as the mobility rates and the initial distribution of the
population. This allows us to observe not only the dynamics of single nodes, but also
those unfolding at the level of the whole network. For a color version of the figure, see
www.iste.co.uk/banos/netlogo2.zip

74 Agent-based Spatial Simulation with NetLogo 2

3.5.2. Numerical integration of a network of coupled SIR using
Runge-Kutta implemented in NetLogo

The fourth-order Runge-Kutta method is used to numerically approximate

the solutions of systems of ODEs. Recall that it works by averaging four

estimates, which makes it more precise than other approaches such as the Euler

method. Its implementation in NetLogo is shown below for an SIR system:

in the following code, the values of S, I and R are currentS, currentI
and currentR. Multiple stages are required to calculate these values for the

next time step, which are specified in full detail in Chapter 5 of Volume 1

[BAN 15a].

to calcK [coef]
2 set tmpS currentS + coef * currentKS

set tmpI currentI + coef * currentKI
set tmpR currentR + coef * currentKR
set nextKS (- beta) * tmpI * tmpS
set nextKI beta * tmpI * tmpS - alpha * tmpI

7 set nextKR alpha * tmpI
end

to stepK [coef]
set nextS nextS + coef * nextKS

12 set nextI nextI + coef * nextKI
set nextR nextR + coef * nextKR
set currentKS nextKS
set currentKI nextKI
set currentKR nextKR

17 end

;; deltaT is the integration step

to RKstepNetwork
22 (foreach (list 0 (1 / 2) (1 / 2) 1) (list (1 / 6) (1 / 3) (1 / 3) (1 /

6)) [
calcK ?1 * deltaT
stepK ?2 * deltaT
])

27 ;; update of the values of currentS, currentI and currentR
set currentS nextS
set currentI nextI
set currentR nextR

end

Macro Models, Micro Models and Network-based Coupling 75

This same method can be applied to the Metapop model with coupled SIR.

We must simply account for inflow and outflow at each of the nodes.

to calcK [coef]
set tmpS currentS + coef * currentKS
set tmpI currentI + coef * currentKI

4 set tmpR currentR + coef * currentKR
set nextKS (- beta / (tmpS + tmpI + tmpR)) * tmpI * tmpS
set nextKI (beta / (tmpS + tmpI + tmpR)) * tmpI * tmpS - alpha * tmpI
set nextKR alpha * tmpI

end
9

to coupling

; Outflow = sum of mij for each out-link of the nodes
14 ; this outflow is multiplied by the population of the nodes later

let sumOutS 0
let sumOutI 0
let sumOutR 0

19

ask my-out-links
[
set sumOutS sumOutS + mij
set sumOutI sumOutI + mij

24 set sumOutR sumOutR + mij
]

; Inflow : sum of mij * gs * tmpS, mij * gi * tmpI, mij * gr * tmpR for
each in-link

; where tmpS, tmpI and tmpR are the number of S, I, R of the source node
during the RK4 procedure

29

let sumInS 0
let sumInI 0
let sumInR 0

34 ask in-link-neighbors
[
let mi [Mij] of out-link-to myself
set sumInS sumInS + gs * tmpS * mi
set sumInI sumInI + gi * tmpI * mi

39 set sumInR sumInR + gr * tmpR * mi
]

; Update of the number of S, I and R in each node, taking into account
outflows and inflows

44 set nextKS nextKS - sumOutS * gs * tmpS + sumInS
set nextKI nextKI - sumOutI * gi * tmpI + sumInI
set nextKR nextKR - sumOutR * gr * tmpR + sumInR

76 Agent-based Spatial Simulation with NetLogo 2

end

49 to stepK [coef]
set nextS nextS + coef * nextKS
set nextI nextI + coef * nextKI
set nextR nextR + coef * nextKR
set currentKS nextKS

54 set currentKI nextKI
set currentKR nextKR

end

to RKstepNetwork
59 (foreach (list 0 (1 / 2) (1 / 2) 1) (list (1 / 6) (1 / 3) (1 / 3) (1 / 6))

[
ask nodes [calcK ?1 * deltaT]
ask nodes [coupling]
ask nodes [stepK ?2 * deltaT]

64])
ask nodes
[
set currentS nextS
set currentI nextI

69 set currentR nextR
]

end

3.5.3. Examples of results

[BAN 15b] presents the results of both models (Metapop and MicMac). We

chose the following indicators to analyze these results:

– MaxI: the maximum number of infected individuals at any given

moment;

– T imeofMaxI: the moment at which the maximum number of infected

individuals occurred;

– Duration: the duration of the epidemic.

This choice of indicators allows us to characterize how the propagation of

the disease though the population changes.

The first interesting result is that if we assume that the network is complete,

the S, I and R populations and the mobility rates are uniformly distributed

over all nodes, and the weights are equal on all edges of the network, then

the MetaPop model is equivalent to an SIR system on the total population.

Macro Models, Micro Models and Network-based Coupling 77

[BAN 15b] also shows the impact of different topologies on the disease

spread. In summary, decreasing the diameter and the average length of paths

in a network increases the value of MaxI and decreases the values of

T imeofMaxI and Duration. This is characteristic of an increase in the rate

of diffusion of a disease within a population.

3.6. SIR coupling with scaling: MicMac model

The MetaPop model assumes that the population moves instantaneously

between cities. We can include this hypothesis in the MicMac model by

introducing a new type of agent (typically representing aircraft) that transports

individuals between cities. This model therefore introduces a change in scale

and a new paradigm, since the epidemiological dynamics of city populations

are described by equations, and the epidemiological dynamics between cities

are modeled by single agents and their movements.

3.6.1. Model presentation

The MicMac model uses the same city agents as above, with the same

equation-based epidemiological dynamics (also described by the SIR model).

The difference between the 2 models lies in the “mobility” component of the

model, which is disaggregated and discrete: individuals are extracted from

each city and travel to other cities by airplane. The flight duration depends on

the distance, and is adjusted to the integration step. A preliminary calibration

phase is performed for each simulation to synchronize the integration step,

flight durations and distances, based on the duration of an observed epidemic.

The same principle of conservation of population is satisfied: the total

population is constant and at any given moment is equal to the sum of the

populations in the nodes and in the airplanes.

The interface of this hybrid model is presented in Figure 3.8.

Whereas the Metapop model had instantaneous movements, in the hybrid

model the dynamics of the epidemic need to be defined. Indeed, the disease

continues to propagate during flights, inside the airplanes. Thus, at each time

step, we need to update the number of individuals both in the cities and in the

air. For now, we will use an ODE-based SIR model to describe contagion in

the air.

78 Agent-based Spatial Simulation with NetLogo 2

Figure 3.8. Interface of the hybrid micro-macro model, allowing the user to define the
network topology, mobility rates, and initial population distribution. We can observe the
dynamics at each node, but also the dynamics of the whole network. At each time step,
the difference between the total population in the network and the initial population is
calculated to ensure that the total population remains constant while passing from the
population to individuals and vice versa

3.6.2. General description of the working principle of the coupling

Figure 3.9 gives a global overview of the dynamics of the MicMac model

in the form of an activity diagram. The simulation loop is divided into 4 main

stages, each of which has its own method for coupling the equation-based

model with the agent-based model.

Firstly, the infectious state of the population in cities (nodes agents) and

aircraft (mobilegroup agents) is updated. This dynamic is described by the

system of SIR equations. Each step of the simulation corresponds to one

integration step of the SIR system: consequently, the numerical solution of

the system and the updates of the agent-based model are synchronized. The

synchronization begins at model initialization by performing a calibration

phase on a test node. The numerical solution is presented in the next section.

Next, new airplanes are created. Each node is assigned a continuous

stock of population representing the proportion that desires to leave. Named

stock-to-flight, this stock depends in particular on a mobility rate

representing the fraction of the total population that can travel by plane at each

time step. The stock is incremented at each simulation step. The algorithm

creates planes according to the following principle: as many full planes as

possible are created at each step of the simulation and each node. Thus, at

each simulation step, if the value of stock-to-flight exceeds the capacity

Macro Models, Micro Models and Network-based Coupling 79

of a plane, a plane agent is created with a destination city chosen randomly

from the neighbors of the current node, containing a number of passengers

equal to its capacity. The population of the aircraft is then extracted from the

city of departure. The number of individuals in each state is proportional to the

distribution within the city, and is calculated using a lottery algorithm specified

in section 3.6.5.2. The number of people in the plane is then subtracted from

the stock-to-flight of that node. While this value remains greater than the

capacity of one plane, another plane is created by following the steps given

above.

Figure 3.9. General activity diagram of the MicMac model

At each step of the simulation, the airplanes travel at a certain speed

(and therefore cover a certain distance). This speed is also calibrated at

initialization. Once a plane reaches its destination city, its population merges

with the global population of the city (see section 3.6.5), and disappears. Thus,

if the plane contained infected persons, they could potentially contaminate the

population in the destination city, allowing the virus to travel from city to city.

3.6.3. Initialization: calibrating the model

At the beginning of the simulation, an SIR model is integrated on a

reference node using the parameter values specified by the user. This node

80 Agent-based Spatial Simulation with NetLogo 2

contains the total population of the model, and uses the same stopping

condition for calibration as the simulation (namely that proportion of infected

individuals is below a certain threshold ε). The number of iterations of the

RK4 method required to achieve this stopping condition is calculated, and

the relation between the duration of the epidemic specified by the user and

the number of RK4 iterations is calculated to determine the “duration” of

each time step. Since the aspect of space is incorporated into the model by

specifying the network structure, this preliminary operation allows the size of

each edge to be derived, but also determines the traveling speed and therefore

the transport time.

3.6.4. Using the RK4 extension to perform numerical integration

The SIR equations of this model are numerically integrated using the RK4

extension (see section 1.2.8 of this book), which is recalled directly in the code

as follows:

set sir rungeKuta:compute-SIR S_Node I_Node R_Node galpha (gbeta / (S_Node
+ I_Node + R_Node)) integrationStep

3.6.5. Switching between the continuous and discrete parts of the
model

The MicMac model associates equation-based dynamics and agent-based

dynamics. For the former, integrating the system of equations can produce

non-integer values for each population stock. For the latter, by definition,

the dynamics are expressed in terms of integer numbers of individuals. The

interface between these dynamics therefore requires a method for transitioning

between continuous and discrete settings.

3.6.5.1. Transition from discrete to continuous

Converting discrete values to continuous values is trivial. Each plane

contains an integer number of susceptible, infected and recovered persons.

Once it arrives at a city, each plane unloads its passengers, which are added

to the city stock for each state.

Macro Models, Micro Models and Network-based Coupling 81

3.6.5.2. Transition from continuous to discrete: the lottery algorithm

The reverse situation arises when a plane is created to travel from one city to

another, specifically when calculating its integer number of passengers. At this

point, we encounter the following problem: how do we obtain integer numbers

of susceptible, infected and recovered populations from three population

stocks, represented as continuous values, while conserving the proportions of

each stock?

To answer this question, we introduce a so-called “lottery” algorithm. We

will present this algorithm here, as it is sufficiently general to be useful for a

wide range of different problems. It is based on two subroutines: find-state
and generate-passengers.

Given a set of (integer) values representing the number of individuals

in each state, find-state randomly chooses a state with probability

proportional to the number of individuals in this state. The function returns

an integer value representing the selected state, corresponding to the index of

the state selected from the list passed as a a parameter.

to-report find-state [#roundedStock]

let roundedPop sum #roundedStock
4 let random-value (random roundedPop) + 1

let state 0
let step-i 0

9 if roundedPop > 0 [
foreach #roundedStock
[
if state = 0 [
set random-value random-value - item step-i #roundedStock

14 ifelse random-value <= 0 [
set state step-i + 1

][
set step-i step-i + 1

]
19]

]
]

report state
24 end

82 Agent-based Spatial Simulation with NetLogo 2

The function generate-passengers takes the list of the number of

individuals in each possible state (pop) and the number of individuals in

the group to be generated (sample_number) as parameters. It generates and

returns a group of sample_number individuals, with the same proportions in

each state as pop. This group has an integer number of individuals in each

state. The returned population is then removed from the population passed as

a parameter. This function takes two preliminary precautions:

– the population passed as a parameter is rounded down to the integer below

for each state. This means that if one state has the value of 0.3, it will be

rounded down to 0.

– it checks that the population passed as a parameter is larger than the

number of agents in the expected output population, after rounding.

The find-state function is then called int(sample_number) times.

Each time that it is called, one individual is extracted from the initial

population and added to the population that will be returned. Consequently

(because of the find-state algorithm), if the number of individuals (in the

population passed as a parameter) in a certain state hits 0 at some point during

the execution of the algorithm, no further individuals will be drawn in this

state.

1 to-report generate-passengers [pop sample_number]

let rounded_pop recompute-rounded-population pop
let S_pop item 0 rounded_pop
let I_pop item 1 rounded_pop

6 let R_pop item 2 rounded_pop

let state 0
let Si 0
let Ii 0

11 let Ri 0

if ((sum rounded_pop) >= int(sample_number))
[
;; One returned state by find-state

16 repeat sample_number
[
;; compute/recompute population at each turn
set state find-state recompute-rounded-population (list S_pop

I_pop R_pop)

21 if state = 1 [

Macro Models, Micro Models and Network-based Coupling 83

set Si Si + 1
set S_pop S_pop - 1

]

26 if state = 2 [
set Ii Ii + 1
set I_pop I_pop - 1

]

31 if state = 3 [
set Ri Ri + 1
set R_pop R_pop - 1

]
]

36]

report (list Si Ii Ri)
end

to-report recompute-rounded-population [pop]
report (list int(item 0 pop) int(item 1 pop) int(item 2 pop))

end

3.6.6. Example results

As above for the MetaPop model, the results are taken from [BAN 15b]. We

we will also consider the same indicators as before. Similarly to the MetaPop

model, the MicMac model can be equivalently rephrased as a system of SIR

ODEs on the total population if we consider the special case of a complete

network and uniformly distributed population over each node. The MicMac

model also requires the assumption of instantaneous travel between cities (or

zero distance between cities).

If we do not assume instantaneous travel or uniform distribution, the model

no longer coincides with classical SIR nor MetaPop:

– MaxI of MetaPop > MaxI of MicMac;

– T imeofMaxI of MetaPop < T imeofMaxI of MicMac;

– Duration of MetaPop < Duration of MicMac;

84 Agent-based Spatial Simulation with NetLogo 2

These results show that diffusion unfolds more slowly in the MicMac

model. This is in particular because a city with an infected individual will not

necessarily infect its neighbors (whereas in the MetaPop model this city would

always send at least a small proportion of infected individuals to its neighbors

once it becomes infected).

The effect of the network topology on the dynamics of the epidemic, on

the other hand, is essentially identical in both MicMac and MetaPop. The

difference lies in the previous comment: propagation will be slower in the

MicMac model because an infected node does not always infect its neighbors.

3.7. Conclusion and outlook

In a massively connected and highly mobile world, studying the diffusion

of epidemics is of great social and scientific value. Modeling not just the spatial

but also temporal character of propagation leads us to consider hybrid models.

In this chapter, we presented a series of different models. The first of these,

the equation-based SIR model, is a macroscopic model based on ordinary

differential equations. We used the assumptions of this model as the basis for a

second, agent-based model that allows us to reproduce similar behavior under

certain conditions (EpiSim). Two approaches were considered to describe

diffusion within a network of interconnected cities. The first approach, fully

macroscopic, describes the population as a homogeneous group. Flows from

one city to another are instantaneous, which excludes temporality or state

changes (S, I , R) during travel. The second, hybrid approach views cities

as homogeneous groups of individuals but allows for heterogeneity in their

movements. It also allows us to include a description of travel times and

distances. Control strategies (quarantine, avoidance, risk culture, etc.) can

be applied to both of these models (MetaPop and MicMac). All strategies

applied to cities at a global scale can be tested with either of these models.

However, strategies related to individual choices can only be tested with the

MicMac model.

4

Networking, Networks and
Dynamic Graphs

4.1. Networking

Networks cannot be confined within a single field of research. The concepts

associated with them have considerably changed over time, and continue to

do so today. This makes it difficult to give a single clear definition of a

network. Networks are also the location of processes and so are embedded in

time, and their structure can change; these are the observations on which our

approach is based. Throughout this chapter, we will attempt to shed light on

these scientific objects by accepting the bias inherently present in the desire

to produce mathematical and computational models for studying networks

with NetLogo.

4.1.1. Networks: a vague, equivocal and often misused concept

Today, networks often obscure the desire to represent the world in terms

of points and the directed and undirected links that express the relationship

between them. This graphical representation is easy to understand and has

obvious advantages, such as providing a discrete description of the universe,

but often acts to hide complexity.

Before we go any further, in the spirit of historicity, it is interesting to

examine the etymology of the French word for network (réseau) to unravel

Chapter written by Stefan BALEV, Antoine DUTOT and Damien OLIVIER.

86 Agent-based Spatial Simulation with NetLogo 2

how its meaning has shifted over the years, and how entire fields have been

built around this concept, both adopting it and adapting it. The origin of

réseau can be traced back to the Latin word Retis, whose influence is still

visible in the formal French expression les rets, meaning “net”. By the 16th

Century, this had mutated into the old French word Resueil, which would later

become résille, referring to contemporary women’s hairnets [MUS 03]. So,

historically, networks encapsulate, imprison and shackle things. In the 17th

Century, textile-based metaphors abounded, and the concept of a network was

understood to describe the intertwining textile or plant fibers employed by

weavers and basket-makers. In [BAK 93], Bakis observes that from the 18th

Century onward, the word réseau has been used in a number of disciplines

in general and scholarly education. The military constructed fortification

networks and Cassini’s triangulation networks allowed geographical space to

be mapped out. Doctors also contributed in the 17th Century by developing

the concept of flows in the description of venous systems by Harvey in 1628

[HAR 28, SCU 01]. At this point, networks already conceptually articulate

and imprison flows, and serve as the location for dynamics. Diderot, in

D’Alembert’s Dream, formulates a metaphor that identifies humans with

musical instruments. A network becomes a set of vibrating strings, strands

capable of developing things, gathered into bundles. This introduces the new

dynamic of structure. In the 19th Century, the world becomes intermeshed by

communication networks [BER 81]: the telegraph (Chappe, 1794), telephone

(Bell, 1876) and all kinds of wireless telegraphy and electromagnetic waves,

ultimately resulting in radio (Morse, Edison, Hertz, Tesla, Branly, Popoff,

Marconi, Lee de Forest, etc.). Saint Simon, in his desire to philosophically

justify the scientific revolution of the 19th Century [MUS 03], recorded his

socially oriented political thoughts. His parallel approach led him to develop

a philosophy of networks and to propose a generalized vision of networks not

limited to their biological or technical aspects, but taking into account their

social dimensions, as explained by Lemoigne in [LEM 90].

The 20th Century enriched the concept of networks by introducing

graph theory, the origins of which may be traced back to Euler (1735)

[EUL 41], although the first paper on graph theory was only published in

1936 by Dénes Köenig [KÖN 90]. Mathematicians, computer scientists and

even physicists immediately embraced graphs as objects and developed a

theoretical background based on an algebraic formalism. Ford and Fulkerson,

for example, studied flows in graphs [FOR 11], and Paul Erdös and Alfréd

Networking, Networks and Dynamic Graphs 87

Rényi proposed a model for random graphs in 1959 [ERD 59] that provides

a powerful paradigm for studying properties such as degree distributions and

connectivity, as well as path-finding and diffusion mechanisms, among other

examples. Since then, new models that better represent the complex types of

networks observed in reality have emerged, such as small-world networks

based on the works of Watts and Strogatz [WAT 98], and scale-invariant

graphs1, proposed by Barabàsi and Albert [BAR 99].

4.1.2. From reality to theory

Mathematically formulating the concept of a network naturally leads to

graphs, which are both mathematical and computational objects that describe

problems composed of a set of objects and the connections between them.

The elements modeled by the graph are called vertices (singular vertex)2,

and the relationships between these nodes are called arrows or edges,

depending on whether or not a direction is specified. Thus, a network is a graph

whose nodes and links have quantitative or qualitative properties, or in other

words signified content [SAU 93]. If these relationships have a direction, we

describe the graph as a directed graph or digraph. So, for a graph G, we write

G = (V,E) where V is the set of vertices of the graph and E is the set of edges

(or arrows in the case of a directed graph). Some problems require us to assign

weights to the vertices and/or edges of a graph. If the elements of a graph have

weights, we say that it is a weighted graph, and can optionally further specify

whether the weights are attached to vertices, edges or both. Thus, a weighted

graph is written as G = (V,E, pV , pE) where pV is a function from V → IR

and pE is a function from E → IR, representing the weights of the vertices and

those of the arrows or edges, respectively.

More generally, we might wish to assign more than one value to the

elements of a graph. These values, which we will refer to as attributes, can

be used to characterize the elements. To do this, we relate an identifier, the key,

to its corresponding value. If the sets KV and KE are the set of possible keys

1 Scale-free.

2 “Nodes” is also used.

88 Agent-based Spatial Simulation with NetLogo 2

for the nodes and arrows/edges, we can generalize the functions pV and pE
given above:{

pV : V ×KV → IR

pE : E ×KE → IR

Graph theory is a particularly broad and highly researched field, and would

be difficult to present in any level of comprehensiveness within these chapters.

The concepts of paths and connectivity are particularly important. Problems

can often be reduced to questions about graph searches, which, for example,

allow us to determine whether two vertices can be reached, or to characterize

the set of vertices that may be reached by starting from a given vertex. The

notion of length will often be useful.

In a graph, it is quite natural to move from vertex to vertex along the arrows

or edges, and this is precisely what our NetLogo turtles do. These movements

generate a path.

DEFINITION 4.1.– Let G = (V,E) be an undirected graph, and let a =
{vi, vj} ∈ E be one of its edges. The vertices vi and vj are said to be adjacent,
and the edge a is incident to the vertices vi and vj . The number of edges
incident to vi is the degree of vi, written as deg(vi). Two edges are adjacent if
they share at least one vertex. A graph is said to be complete if all vertices are
adjacent.

These definitions can be extended to directed graphs, in which case we

speak of the outdegree (deg+(vi)) and the indegree (deg−(vi)) of a vertex v to

denote the number of arrows leaving and entering v.

DEFINITION 4.2.– Let G = (V,E) be an undirected graph. A path of length
k ≥ 1 is an ordered sequence (e1, . . . , ek) of k adjacent edges.

We are often interested in determining whether a path exists, which leads

to the notion of connectivity.

DEFINITION 4.3.– Let G = (V,E) be an undirected graph. The graph G is
connected if for any pair of vertices (vi, vj) there exists a path between them.

Not every graph is connected, in which case we might wish to determine

the maximal connected subgraph, which is one of the graph’s connected

components.

Networking, Networks and Dynamic Graphs 89

DEFINITION 4.4.– Let G = (V,E) be an undirected graph. A connected

component C of this graph is a maximal subset of vertices such that:

– if vi ∈ C, ∀vj ∈ C, i �= j, then there exists a path between vi and vj;

– if vi ∈ C, ∀vk ∈ V \ C, then there does not exist a path bewteen vi and
vk.

It is clear that a graph is connected if and only if it has a single connected

component, and also if the connected components of the graph partition the set

of vertices.

Readers who wish to learn more about graph theory can refer to [BON 76].

This book has been around for some time, but is still viewed as a reference on

the subject. It presents a comprehensive overview of graph theory and is aimed

at a wide audience of both novices and experienced readers.

4.2. Networks and graphs in NetLogo

NetLogo graphs are usually created using the turtles and links objects.

The links are the arrows or edges, and the turtles are the vertices. The

basic primitives in NetLogo are create-link-with, create-link-to,

create-link-from. The first of these creates an edge between the selected

turtle and another turtle. The other two create an arrow from the selected turtle

to another turtle, or vice versa.

In the following sections, we will illustrate our discussion by introducing a

way to generate random graphs in order to showcase the possibilities offered

by NetLogo. Random graphs are the result of simple processes that fix the

number of vertices and then randomly add edges. They have been studied in

depth by Paul Erdős and Alfred Rényi [ERD 59], and also by Edgar Nelson

Gilbert [GIL 59]. They are often used as reference graphs with a fixed number

of edges and vertices that can be proven to have certain properties. For

example, there exist theoretical results on the size of the largest connected

component, and on the distribution of the degrees of the vertices. They also act

as unstructured reference graphs for detecting communities3 using modularity,

3 A set of vertices more strongly connected among themselves than with the other vertices of

the graph.

90 Agent-based Spatial Simulation with NetLogo 2

which is defined as the difference between the edge density of communities

and the average edge density in a random graph [NEW 04].

There are two principal methods for generating random graphs, based on

either the works of Erdős-Rényi, or those of Gilbert. To generate a random

graph, Erdős and Rényi considered the set Gn,m of all graphs with n vertices

and m edges and chose one graph, denoted by G(n,m), from this set. In other

words, they randomly chose a subset of m edges from the
n(n−1)

2 edges of the

complete graph, with equal probability. Gilbert proposed another method that

revolves around the existence or absence of edges. Edges follow a Bernouilli

distribution P(X = x) = px(1 − p)1−x1{0,1}(x) with parameter p. Hence,

each edge vi, vj exists with probability p. Depending on the value of p, this

results in very different behavior in the generated graph. Let G(n, p) be one

such graph. It has the following properties:

The average number of edges is m = pn(n−1)
2 .

The average vertex degree is pn.

As the number of vertices n tends to infinity:

– if p < 1
n , there is high probability that the size of the largest connected

component is of order O(lnn). This is the subcritical case;

– if p = 1
n , there is high probability that the size of the largest connected

component is of order O(n2/3). This is the critical case;

– if p > 1
n , there is high probability that the size of the largest connected

component is of order O(n). This is the supercritical case.

These G(n, p) graphs have similar properties to Erdős-Rényi graphs when

the average number m of edges of G(n, p) is equal to that of G(n,m).

We will now use NetLogo to illustrate some of these properties.

4.2.1. Generating a random graph

To create a random graph, we will use the method proposed by Gilbert.

We therefore begin by creating the set of vertices, then connect them together

with probability Prob (see listing 4.4 line 12). To do this, for a given turtle,

Networking, Networks and Dynamic Graphs 91

we consider all turtles with a greater identifier (who, see Program 4.4 line 11),

since our edges are undirected.

The world is configured as follows:

Location of origin Center
max-pxcor 100
max-pycor 100
world wrap horizontally �
world wrap vertically �
Patch size 4
view update on ticks

globals [MaxDegree]

to setup
ca ; Clean up

5 create-turtles NumberOfNodes [
set shape "circle" ; To represent nodes
set size 2
setxy random-xcor random-ycor ; We randomly position them somewhere

]
10 ask turtles [; Consider each turtle

ask other turtles with [who > [who] of myself][; This ensures that we
only consider each node once

if random-float 1.0 < Prob ; Connections exist with a certain
probability

[
create-link-with myself

15]
]

]
set MaxDegree max [count link-neighbors] of turtles
reset-ticks

20 end

to display-graph
repeat 3 [
layout-spring (turtles with [any? link-neighbors]) links SpringResistance

ReposLength Repulsion
25 display

]
end

Listing 4.1. Generating a random graph

92 Agent-based Spatial Simulation with NetLogo 2

We add a display function that will allow us to prepare the graph for

presentation (layout-spring). It uses an algorithm based on physical forces,

viewing each edge as a spring [TUT 63]. At each iteration, the algorithm

calculates the sum of the forces applied to each of the vertices, then moves

them until a stable state is found. The interface of our simulation is completed

by adding two curves that plot the distribution of the degrees, with linear and

logarithmic scales.

;; Plot setup commands
plot-pen-reset

3 set-plot-x-range 0 MaxDegree + 1

;; Plot update commands
histogram [count link-neighbors] of turtles

Listing 4.2. Distribution of degrees with linear scale

;; Plot setup commands
plot-pen-reset
set-plot-x-range 0 log (MaxDegree + 1) 10

4

;; Plot update commands
let degree 1 ; To avoid log(0)
while [degree <= MaxDegree] [
let nb count turtles with [count link-neighbors = degree]

9 if nb > 0
[plotxy log degree 10

log nb 10]
set degree degree + 1

]

Listing 4.3. Distribution of degrees with logarithmic scale

We also add four monitors to the user interface (Figure 4.1), which will

allow us to compare the theoretical results with the experimental results.

4.2.2. Search for the largest connected component

To find the largest connected component, we need to determine the set of

components. This will require us to visit each of the vertices in the graph.

They are initially all marked as unvisited (set visited? false) and are set

Networking, Networks and Dynamic Graphs 93

to visited when they are considered (set visited? true). To implement

the process, we choose an unvisited vertex and explore the graph from this

vertex, either depth-first or breadth-first. If we have visited the entire graph

from the first vertex, then the graph is connected; otherwise we have simply

characterized one connected component. In this case, we simply choose

another unvisited vertex and repeat the process. To complete the proposed code

(listing 4.4), we add two global variables, which remember the starting vertex

of the largest known connected component RootLargestComponent and its

size SizeLargestcomponent. Each turtle representing a vertex is assigned a

variable that records whether or not it has been visited (visited?).

Figure 4.1. Random graph with its degree distribution, average degree
(theoretical and measured) and the number of edges. For a color

version of the figure, see www.iste.co.uk/banos/netlogo2.zip

globals
[
MaxDegree ; Maximum vertex degree encountered
SizeLargestComponent ; Size of the largest connected component

5 SizeLargestTheoComponent
RootLargestComponent ; Vertex belonging to the largest connected

component so that we can display it
]

turtles-own [visited?]
10

to setup
;; Reuse the code from Listing 4.4
;; and add
determine-connected-components

15

94 Agent-based Spatial Simulation with NetLogo 2

reset-ticks
end

to determine-connected-components
20 set SizeLargestComponent 0

let graphExplored? false
while [not graphExplored?] ; While the graph has not yet been fully

explored
[
let componentRoot one-of turtles with [not visited?]

25 ifelse componentRoot = nobody
[
set graphExplored? true

]
[

30 let sizeComponent 0
ask rootComponent [set sizeComponent path-width]
if sizeComponent > SizeLargestComponent
[
set SizeLargestComponent sizeComponent

35 set RootLargestComponent rootComponent
]

]
]
show-largest-component

40 end

to-report path-width
let size 1
let queue (list self)

45 let node self
let neighbor []
set visited? true
while [not empty? queue]
[

50 set node first queue
set queue butfirst queue
ask node [
set color yellow
set neighbor link-neighbors with [not visited?]

55 if any? neighbor [
set queue sentence queue neighbor
ask neighbor [set visited? true]
set size size + count neighbor

]
60]

]
report size

end

65 to show-largest-component
let x 0
ask turtles [set visited? false]
ask RootLargestComponent [set x path-width]

Networking, Networks and Dynamic Graphs 95

ask turtles with [visited?]
70 [

set color green
ask my-links [set color green
set thickness 0.7
]

75]
end

Listing 4.4. Searching for connected components

We can now compare the theoretical results (see section 4.2) with

the experimental results obtained by simulation (see Figure 4.2). We

calculate the size of the largest connected component using the function

calculate-size-largest-component (see listing 4.5).

to calculate-size-largest-component
ifelse Prob < 1 / NumberOfNodes

3 [
set SizeLargestTheoComponent ln NumberOfNodes
output-print "Subcritical"

]
[

8 ifelse Prob = 1 / NumberOfNodes
[set SizeLargestTheoComponent NumberOfNodes ^ (2. / 3) output-print

"Critical"]
[set SizeLargestTheoComponent NumberOfNodes output-print

"Supercritical"]
]

end

Listing 4.5. Theoretically determining the size of the largest connected component

4.2.3. Searching for the shortest path

Searching for the shortest path according to a given metric is a classical

problem that we often encounter while traveling. Software using satellite

geopositioning attempts to provide somewhat sophisticated assistance in this

task, and relies on classical algorithms from graph theory. We will present

Dijkstra’s algorithm [DIJ 71], which allows us to determine the shortest path

between a start vertex and an end vertex in a graph weighted by positive real

numbers. These real numbers could represent, for example, time, distance or

traffic lights.

96 Agent-based Spatial Simulation with NetLogo 2

Figure 4.2. Random graph and its largest component. For a color
version of the figure, see www.iste.co.uk/banos/netlogo2.zip

The example that we will consider was taken from the French Baccalaureate

examination in 2009 [NAT 09]. Consider the graph shown in Figure 4.3,

where the vertex A represents the location of maintenance services, and

B,C,D,E, F and G represent the locations of public parks. Roads connecting

two locations are represented by edges weighted by the number of traffic lights

present on each road. The following problem was posed: “Determine the path

with the fewest traffic lights between A and G. Your answer should be justified

by specifying an algorithm.”

One of the possible answers to this examination question is Dijkstra’s

algorithm.

As an input, the algorithm takes a weighted graph G = (V,E, pE) where

pE is a function from V → IR+. The algorithm works with both directed

and undirected graphs. It can also be applied to unweighted graphs by simply

taking the function pE → {1}. We begin by choosing a start node, which in

our case is A, and then construct a subgraph in which the vertices are placed in

increasing order with respect to the distance calculated from the start vertex.

The distance is the sum of the weights of the edges traversed. The algorithm

performs the following steps:

1) Assign a value to each vertex of the graph, 0 for the start vertex, ∞ for

the other vertices.

Networking, Networks and Dynamic Graphs 97

A

B

C

D

E

F

G

2

1

2

1

3

4

3

5

3

6

5

1

2

Figure 4.3. Roads connecting public parks and the maintenance
services at A. The numbers on each edge indicate

the number of traffic lights [NAT 09]

2) Choose the current vertex to be the start vertex. Mark this vertex as

visited, all other vertices as unvisited and add them to the set of visitable

vertices.

3) From the current vertex, find the set of unvisited neighbors. For each

element in this set, calculate the hypothetical distance if this element were to

be chosen. Compare this new value with the value previously assigned to the

vertex, and reassign the smallest of the two to this vertex.

4) Mark the current vertex as visited, and remove it from the set of visitable

vertices.

5) If the target vertex has been marked as visited, a solution has been

found. If the set of visitable vertices only contains vertices with the value ∞,

then there does not exist a path between the start vertex and the end vertex.

Otherwise, choose the unvisited node with the smallest assigned value, and

return to step 3.

98 Agent-based Spatial Simulation with NetLogo 2

A, 0

B, 2

C, 1

D, ∞

E, ∞

F, ∞

G, ∞

2

1

2

1

3

4

3

5

3

6

5

1

2

a) We start from node A . Update the neigh-
bors of A , which are B and C . Their assi-
gned values become 2 and 1, whereas the
other nodes keep the value ∞ .

A, 0

B, 2

C, 1

D, 5

E, 4

F, 6

G, ∞

2

1

2

1

3

4

3

5

3

6

5

1

2

b) C is chosen, and we update its neighbors
D , E and F. B does not change, as its value
is smaller.

A, 0

B, 2

C, 1

D, 3

E, 4

F, 6

G, ∞

2

1

2

1

3

4

3

5

3

6

5

1

2

c) B is chosen, and we update its neighborD .

A, 0

B, 2

C, 1

D, 3

E, 4

F, 6

G, 8

2

1

2

1

3

4

3

5

3

6

5

1

2

d) D is chosen, and we update its neighborG .

A, 0

B, 2

C, 1

D, 3

E, 4

F, 5

G, 8

2

1

2

1

3

4

3

5

3

6

5

1

2

e) E is chosen, and we update its neighbor F .

A, 0

B, 2

C, 1

D, 3

E, 4

F, 5

G, 7

2

1

2

1

3

4

3

5

3

6

5

1

2

f) F is chosen, and we update its neighbor G .

A, 0

B, 2

C, 1

D, 3

E, 4

F, 5

G, 7

2

1

2

1

3

4

3

5

3

6

5

1

2

g) G is chosen, and we have fini-
shed constructing the subgraph. The path
ACEFG has the fewest traffic lights (7).

Figure 4.4. Executing Dijkstra’s algorithm

Networking, Networks and Dynamic Graphs 99

To begin, we must first create the graph based on the one shown in

Figure 4.3. We define a breed of turtle to represent the nodes of the

graph: breed [nodes node]. To each turtle with this specific breed,

we assign the information nodes-own [myName]. In this version of the

implementation, only the name of the node is saved. The edges of the graph are

represented as undirected links by NetLogo, and we will use a specific breed:

undirected-link-breed [edges edge] to which we assign the edge

weight edges-own [weight]. One turtle of type nodeName is assigned to

each node, so that we can position the name at the desired location, which

is managed by the methods create-name [which] (see listing 4.6, line 64)

and reposition-name [angle dep] (see listing 4.6, line 76). Nodes and

edges are created with the methods setup-nodes (see listing 4.6, line 21) and

setup-edges (see listing 4.6, line 42). Nodes are created from a string of

characters representing the set of names and a list of positions. We first create

the nodes and then list them in order so that we can set each of their positions.

The edges are created using the list edgesOfGraph, which represents edges as

lists [head tail weight].

breed [nodes node] ; The nodes of the graph
nodes-own [myName] ; Information attached to each node (its name)

undirected-link-breed [edges edge] ; The edges of the graph
5 edges-own [weight] ; The weights of the edges

breed [names name] ; To properly handle the information attached to the
nodes

directed-link-breed [nodeNames nodeName] ; Links connecting the turtle
nodes and the turtle names

10 ;==
;
; Initialization
;
;==

15 to setup ; The usual function
ca
setup-nodes
setup-edges

end
20

to setup-nodes ; Initialize the graph nodes
let string "ABCDEFG" ; Set the node names
let positions [[1 5.5] [4 8] [6.7 5] [10 8] [6.6 0] [12 3.7] [15 6]]

; Position of nodes
25 create-nodes 7 [

100 Agent-based Spatial Simulation with NetLogo 2

set shape "circle 2"
set color 7
set size 3
set heading 0

30]
foreach sort nodes ; List them in order so that the nodes are correctly

positioned
[ask ? ; relative to the list of positions
[
setxy ((first first positions) * 2 + size) ((last first positions) *

2 + size)
35 set positions but-first positions

set myName substring String (who) (who + 1)
create-name myName ; Create a name associated with the node

]
]

40 end

to setup-edges ; Initialize the graph edges
let edgesOfGraph [["A" "B" 2] ["A" "C" 1] ["B" "C" 2] ["B" "D" 1] ["B"

"E" 3]
["C" "D" 4] ["C" "E" 3] ["C" "F" 5] ["D" "E" 3] ["D"

"F" 6]
45 ["D" "G" 5] ["E" "F" 1] ["F" "G" 2]] ; The edges and

their weights
foreach edgesOfGraph ; Iterate through the list of graph edges
[
ask nodes with [myName = first ?] ; Start node
[

50 create-edge-with one-of nodes with [myName = item 1 ?] ; Create the
edge with the end node

[
set weight item 2 ? ; Set the weight of the edge
set label weight ; Display the weight of the edge in the graph

]
55]

]
end

;==
60 ;

; Useful functions
;
;==
to create-name [which]

65 hatch-names 1 [; Each turtle node creates a turtle name
set size 0
set label which
create-nodeName-from myself [; Create a link with the node
tie ; Link them together

70 hide-link
]
reposition-name 160 0.5 ; Reposition so that the label of the name

] ; is in the middle of the node

Networking, Networks and Dynamic Graphs 101

end
75

to reposition-name [angle dep]
move-to one-of in-nodeName-neighbors
set heading angle
fd dep

80 end

Listing 4.6. Dijkstra’s algorithm applied to the French
Baccalaureate problem: creating a graph [NAT 09]

To implement Dijkstra’s algorithm, we will first complete the initialization

phase. We need to fix the start node and the node that we are attempting to

reach. We also need to store the cost of the best path found so far to reach each

node in that node. Initially, the cost is infinite for nodes that have not yet been

visited. For the start node, it is zero. We will complete the listing 4.6 by adding

or modifying the elements in listing 4.7.

; Reuse listing 4.6.
globals [
StartNode
EndNode

5 CurrentNode
Infinity

]

nodes-own [myName value visited? predecessor] ; Information attached to
each node

10

;==
;
; Initialization
;

15 ;==
to setup ; The usual function
ca
setup-nodes
setup-edges

20 setup-dijkstra
end

to setup-dijkstra
set Infinity 1E50

25 ask nodes [; Vertices that have not yet been visited
set value Infinity ; Set to infinity
set visited? false ; Unvisited
set predecessor nobody ; No predecessor is known

]
30 set StartNode one-of nodes with [myName = "A"] ; Define the start node

102 Agent-based Spatial Simulation with NetLogo 2

set EndNode one-of nodes with [myName = "G"] ; Define the node we are
trying to reach

ask StartNode [
set color pink
set value 0

35]
ask EndNode [set color pink]
set CurrentNode StartNode ; Used to search the graph

end

Listing 4.7. Dijkstra’s algorithm applied to the French
Baccalaureate problem: initialization [NAT 09]

We now need to write the algorithm described above in section 4.2.3. The

dijkstra method is the general method that selects the current vertex and the

update-neighbors method finds the set of unvisited neighbors and calculates

the distance required to reach it given the current path: if the result is smaller,

then it is saved.

1

;==
;
; Dijkstra's algorithm
;

6 ;==
to dijkstra
ifelse CurrentNode != EndNode and CurrentNode != nobody ; There exists a

current node
[; and the algorithm has not terminated
ask CurrentNode [

11 update-neighbors ; Update neighbors if necessary
set color 3
set visited? true

]
set CurrentNode min-one-of (nodes with [not visited? and value <

Infinity]) [value]
16 ; Select the node with the smallest value as the current node

]
[
ifelse (CurrentNode = nobody) ; No path?
[output-print (word "No path between vertices " [myName] of StartNode "

and " [myName] of EndNode)]
21 [

ask CurrentNode ; The current node is the destination
[set color 3
set visited? true

]
26]

stop

Networking, Networks and Dynamic Graphs 103

]
end

31 to update-neighbors
ask edge-neighbors with [not visited?] ; Consider unvisited nodes
[; Calculate their values with the chosen paths
let newValue [value] of CurrentNode + [weight] of edge-with

CurrentNode
if newValue < value ; If the path is better than the previous path

36 [; Update
set value newValue ; the value and the predecessor
if predecessor != nobody [ask edge-with predecessor [set thickness

0.1]]
ask edge-with CurrentNode [set thickness 0.4]
set predecessor myself

41 ask out-nodeName-neighbors [set label (word [myName] of myself " "
newValue) reposition-name 140 0.8]

]
]

end

Listing 4.8. Dijkstra’s algorithm applied to the
French Baccalaureate problem: searching [NAT 09]

On the user interface, (see Figure 4.5), three buttons have been created. The

first creates the graph, the second executes the algorithm step-by-step, and the

last runs the full algorithm. An output window has also been added to indicate

if there is no path.

4.2.4. Modularity metric

When studying graphs and networks, we encounter many examples of

graphs arising from both physical and virtual processes that are structured into

communities. These communities may be informally described as groups of

vertices in the graph that are more densely interconnected with each other than

with the rest of the graph (Figure 4.6). The term community is used when

considering graphs from a synchronic perspective, and the term organization
is used from a diachronic perspective when studying the evolution of the

topology of a graph or a network.

Being able to detect these communities will allow us to better apprehend,

understand and represent the structure of the graph. In some graphs, for

example based on social networks or simulated networks of interactions, the

goal is to identify existing, known communities. However, in most cases, our

104 Agent-based Spatial Simulation with NetLogo 2

objective will be to determine whether any such structures exist. We therefore

need an indicator to measure the relevance of the communities that we find.

Figure 4.5. NetLogo interface of the program searching for the shortest
path in a graph using Dijkstra’s algorithm

a

b

c

d

e f

gh

i j

kl

A

B C

Figure 4.6. Example of communities within a graph. The three groups
of vertices with dotted lines are more interconnected among

themselves than with the rest of the graph

Networking, Networks and Dynamic Graphs 105

There are several possible ways of measuring this, but the one that has

proven most useful is the modularity metric introduced by Newman and Girvan

[NEW 04, NEW 06]. The basic idea of this metric is, for a given partition

into communities, to compare the proportion of intracommunity connections

after subtracting the value that this quantity takes in an identical graph with

randomly distributed connections.

To make this idea precise, for a graph with a given partition into k
communities, we define the symmetric k × k matrix e, whose entries ei,j are

given by the proportion of connections between community i and community

j, such that the sum ||e|| of all entries of the matrix is equal to 1. Here is matrix

e for the example in Figure 4.6:

e =

⎛
⎝ 12

42
1
42

1
42

1
42

12
42

1
42

1
42

1
42

12
42

⎞
⎠

In order to be able to apply this concept to directed graphs, we count

the “starting points” of connections rather than the connections themselves.

Thus, within community A, we have 12 starting points, one of which goes to

community B and another of which goes to community C.

The trace of this matrix Tre =
∑

u eii therefore gives the proportion of

intercommunity connections in the graph. If the value of the trace is high,

we can deduce that community structures are strongly present. But this is not

enough, as we could achieve the maximum value for the trace, which is 1,

simply by defining one single community.

The sum of the rows of the matrix ai =
∑

j eij is the proportion of total

connections of a community i. If all of the connections of a graph are uniformly

distributed over the vertices, we would have eij = aiaj . We can use this model

as a reference graph for comparison.

Thus, to compare the proportion of intracommunity connections to this

same proportion in a graph with random connections, we can write the

modularity:

Q =
∑
i

(eii − a2ij) = Tre− ||e2||

106 Agent-based Spatial Simulation with NetLogo 2

For values close to Q = 0, the connections will be distributed almost

randomly, whereas for values close to the maximum value of Q = 1,

community structures will be strongly present.

One broad class of community-searching methods uses the technique

of hierarchically subdividing graphs and then calculating the modularity of

these divisions. The peak values yield the best partitions. One of the easiest

approaches to implement in NetLogo is a method that removes connections

judged to be likely to lie between communities, allowing us to identify

communities as connected components.

The intuition behind these methods is that within a community, there will

be many paths between vertices. But if the graph is very modular, there will be

some small set of unavoidable connections between communities. One typical

example of this kind of connection is given by articulation points, which are

connections through which every path between pairs of distinct vertices must

necessarily pass.

The betweenness centrality [BRA 01, GIR 02] of a connection is the

number of shortest paths between each pair of vertices that must pass through

this connection. We now have O(nm) algorithms to calculate this value, where

m is the number of connections and n is the number of vertices. One such

algorithm is included in the NetLogo Network extension, which we will use

here.

In the next section, we will implement a method for dividing graphs that

works as follows:

1) Calculate the betweenness centrality of each connection.

2) Remove the connection with the highest value.

3) Find the connected components and consider each of them as a distinct

community.

4) Calculate the modularity of the original graph with these communities

(note that the modularity must be calculated with the original graph, before

removing connections).

5) Return to step 1 until each vertex belongs to some community.

Networking, Networks and Dynamic Graphs 107

At the end of this process, the partition with the highest modularity is

chosen as the solution.

To do this, we will need to define a graph, calculate the betweenness

centrality and finally implement a procedure for calculating the modularity.

The first two tasks can be achieved with the Network extension of NetLogo,

which we load in the very first line:

1 extensions [nw]

globals [
; Modularity depends on how the communities are arranged.
modularity

6 ; Number of edges in the graph.
m
; Current number of communities.
components

]
11

; Breeds specific to internal community links...
undirected-link-breed [internal-links internal-link]
; ... or external community links.
undirected-link-breed [external-links external-link]

16 ; The links remember their centrality.
internal-links-own [centrality]

Listing 4.9. Optimizing the modularity, step 1: definitions

We will use global variables to store the value of the modularity while it

is being calculated, the number of connections in the graph, and each of the

communities corresponding to some connected component of the graph as we

gradually remove connections. This will be a set of agentsets containing the

vertices of each community.

To identify the communities by finding connected components, we will

need a graph from which the connections have already been removed.

However, the modularity must be calculated on the original graph. We

will therefore introduce two species for links, named internal-links and

external-links, which, as their names suggest, represent intracommunity

links and intercommunity links, respectively. The internal links store the value

of the centrality.

108 Agent-based Spatial Simulation with NetLogo 2

to setup
ca

3 ; In the network extension, all of the turtles are vertices of the graph
; but the edges belong to the breed "internal-links".
nw:set-context turtles internal-links
set components 1
set-default-shape turtles "circle"

8 load-graph
set m count links
reset-ticks

end

13 ; Load and initialize a graph.
to load-graph
; Load the graph in GraphML format
nw:load-graphml "test.graphml"
; Calculate the initial centrality.

18 betweenness
; Format the graph with an algorithm based on forces.
repeat 5000 [layout-spring turtles links 0.2 5 1]
ask turtles [set color red]

end

Listing 4.10. Optimizing the modularity, step 2: initialization

The initialization procedure tells the Network extension which breeds of

turtle will represent the vertices of the graph (in this case, all turtles), and which

breed of links will represent the connections (in this case, only intracommunity

links). This will allow us to calculate the betweenness centrality on the

modified graph.

To avoid complicating the program, we will assume that the loaded graph

only has one single connected component.

The load-graph procedure uses the Network extension to load a graph by

creating a turtle for each vertex and a link for each connection. The procedure

then initializes each link with a centrality value, and formats the graph to

improve its readability. In the following, we use the graph from Figure 4.6.

; Calculate the betweenness centrality for each vertex of type
"internal-link".

to betweenness
3 ; Assign the value of the betweenness centrality to each internal link of

the graph, and display it.

Networking, Networks and Dynamic Graphs 109

ask internal-links [
set centrality nw:betweenness-centrality
set label precision centrality 1
set color 9.99999

8]
end

Listing 4.11. Optimizing the modularity, step 3: betweenness centrality

The betweenness method from the Network extension calculates the

centrality at each connection, and displays it.

1 Find the next possible community.
to next-communities
; Find the graph link(s) with the highest centrality.
let ml internal-links with-max [centrality]
; Transform these links into external links.

6 ask one-of ml [set breed external-links set color 12 set label ""]
; Calculate the connected components based on the remaining internal

links,
; which tells us the communities (in the form of a list of agentsets).
let communities nw:weak-component-clusters
; If there is a new component...

11 if length communities > components [
set components length communities
; Assign a random color to each community.
foreach communities [
let clr one-of base-colors ; (item (i mod 14) base-colors)

16 ask ? [set color clr]
]
; Recalculate the modularity.
compute-modularity communities
tick

21]
; Recalculate the "betweenness" using only the remaining internal links.
betweenness

end

Listing 4.12. Optimizing the modularity, step 4: finding communities

The next-communities method is tasked with finding the link(s) with

maximal centrality, and randomly selecting one of them to convert to

the external-links breed, the group of links between communities. For

example, we will use the Network extension to identify the connected

components due to nw:weak-component-clusters, which returns a set

110 Agent-based Spatial Simulation with NetLogo 2

of agentsets, one for each community. This set is stored in the global

communities variable, which we will later use to calculate the modularity.

If the number of components has changed, i.e. if we have found a new

partition of the graph into communities, we assign them colors for readability,

and then recalculate the betweenness centrality.

We can repeatedly call this procedure to determine the successive partitions

of the graph into communities. After doing this, we need to calculate the value

of the modularity for each new partition. The best partition is the one with the

highest modularity.

To calculate this, we could directly introduce the matrix e, but in NetLogo

this would require another extension. There is another way to calculate the

modularity that is better suited to NetLogo, by iterating over each community,

since:

Q =
∑
i

(eii − a2ij)

The following procedure implements this formulation:

1 ; Calculate the modularity over all communities passed as arguments.
to compute-modularity [communities]
set modularity 0
foreach communities [
; The current community is i.

6 let i ?
; Proportion of edges with both vertices in community i.
let eii 0
; Proportion of edge end points attached to a vertex in i.
let ai 0

11 ; Shortcut for 2 * m. 2 * m since we are counting edge start points.
let m2 (2 * m)
; For each vertex in i.
ask i [
set ai (ai + ((count link-neighbors) / m2))

16 ; For each internal links in i.
ask link-neighbors [
if member? self i [set eii (eii + (1 / m2))]

]
]

Networking, Networks and Dynamic Graphs 111

21 set modularity (modularity + (eii - (ai * ai)))
]
show components
show modularity

end

Listing 4.13. Optimizing the modularity, step 5: calculating the modularity

Thus, compute-modularity iterates through the set of communities

calculated by next-communities, and determines in each case the value eii
of the proportion of intracommunity connections, and ai the proportion of all

connections within the community. It then updates the value of modularity
by incrementing in the calculation corresponding to the current community.

Our final task is to set up the graphical interface. We propose creating

a button for initialization, and another for switching between partitions into

communities. Finally, including a graph will allow us to observe the evolution

of the modularity value. Figure 4.7 shows the result and the modularity

calculation.

4.2.5. Communities

Other than the method that we just presented, there are a large number of

other algorithms for finding community structures in graphs. Interested readers

can refer to Fortunato [FOR 10] for a relatively comprehensive overview of

this topic. The method that we propose to implement here uses the propagation

of information within the graph, and is particularly well adapted to NetLogo.

The algorithm was suggested by Raghavan, Albert and Kumara [RAG 07].

The central idea is to allow labels to diffuse throughout the graph. These labels

will then be used to identify the communities. The advantage of this algorithm

is that it is directly “agentifiable”: the decisions are made individually by each

turtle-node agent of the graph based on its neighborhood. Hence, no global

knowledge of the state of the graph is required. Another important advantage of

this algorithm is its speed, as it runs in almost linear time. Finally, the algorithm

does not require an objective function like the modularity, although the quality

of the partitions may of course be improved by considering one.

Unlike the previous method, this method is constructive. We start with a set

of nodes, each of which has a different label. We will use the unique NetLogo

112 Agent-based Spatial Simulation with NetLogo 2

identifier of each turtle. Each agent then iteratively selects a new label as a

function of the most common label in its immediate neighborhood, i.e. the

vertices to which it is directly connected by an arrow or an edge. The algorithm

terminates when a consensus is reached, i.e. when the labels no longer change.

Figure 4.7. Setting up the graphical interface to calculate the
modularity. For a color version of the figure, see

www.iste.co.uk/banos/netlogo2.zip

The update process can be synchronous, with all agents updating

themselves based on their neighbors in the previous step, or asynchronous,

in which case all agents update themselves based on the current state of their

neighbors, which may have changed since the beginning of the iteration. The

latter technique is more suitable for NetLogo, and so this is the one that we

chose to implement.

Here are the steps of the algorithm:

1) Assign a unique label to each vertex.

Networking, Networks and Dynamic Graphs 113

2) Iterate over each vertex (in random order) and ask it to choose the

dominant label in its neighborhood.

3) Repeat step 2 until a consensus is reached, i.e. no label changes.

extensions [nw table]

globals [
; Current number of communities.

5 components
; Table relating each known tag to a usage counter.
; Each tag represents a community. The counter represents the
; number of vertices in this community.
tags

10]

turtles-own [
; Community of the vertex.
tag

15]

Listing 4.14. Detecting communities, step 1: definitions

Our algorithm will need the Network extension to load a graph, and the

Table extension, which provides associative tables. The latter are required for

the global tags variable, which records the number of times that each label

is used in the graph. We will update this table so that it only contains tags

currently in use. The size of the table will therefore indicate the number of

communities detected while the algorithm is running, but we will also save

this value in the global components variable so that it is easier to display in

the graphical interface.

We will assign a tag label value to each turtle-node.

to setup
ca
set tags table:make
set-default-shape turtles "circle"

5 load-graph
; The number of initial communities is equal to the number of vertices.
set components count turtles
reset-ticks

end
10

114 Agent-based Spatial Simulation with NetLogo 2

; Load and initialize a graph.
to load-graph
; Load the graph in GraphML format
nw:load-graphml "test.graphml"

15 ; Format the graph with an algorithm based on forces.
repeat 5000 [layout-spring turtles links 0.2 5 1]
; Assign a unique tag/community to each turtle: its NetLogo identifier.
ask turtles [
set tag who

20 ; Assign a color to each tag.
set color one-of base-colors ; there are only 14 base-colors...
; Save the tag.
increment-tag tags tag

]
25 end

Listing 4.15. Detecting communities, step 2: initialization

We begin the algorithm by initializing the global variables and loading the

graph. The load-graph method uses the Network extension to load the graph,

which we already used in the previous section (section 4.6). Each turtle is

assigned a unique label using the NetLogo who function, which returns the

numeric identifier of each turtle. Colors are assigned randomly (unfortunately

NetLogo only supports 14 base colors).

Each time that a new label is encountered, we use the increment-tag
function, which is shown below together with the function that performs the

reverse operation, decrement-tag:

; Increments the usage of a given community/tag, or creates it with counter
equal to 1.

to increment-tag [table t]
ifelse table:has-key? table t [
table:put table t table:get table t + 1

5] [
table:put table t 1

]
end

10 ; Decrements the usage of a given community/tag, or deletes it if the
counter becomes equal to 0.

to decrement-tag [table t]
let tagcount table:get table t - 1
ifelse tagcount = 0 [table:remove table t] [table:put table t tagcount

]
end

Listing 4.16. Detecting communities, step 3: counting labels and communities

Networking, Networks and Dynamic Graphs 115

These functions help to manage the associative table that keeps track of all

labels. As stated above, this table relates each label to the number of vertices

with that label; increment-tag increments this number, creating the label if it

does not exist. decrement-tag does the opposite, and is called when a vertex

of the graph changes its label. It decrements the label counter, and deletes the

label if the counter becomes zero.

Finally, we need to implement the way that labels propagate:

1 ; Find the next possible configuration of communities.
to next-communities
; Each turtle aims to adopt a new community/tag.
ask turtles [
; Temporary table of neighboring communities/tags and their counters.

6 let counts table:make
let countmax -1
; The neighboring community/tag most frequently encountered.
let maxtag 0
let maxcolor 0

11 ; Count the neighboring communities/tags.
ask link-neighbors [
increment-tag counts tag
let tagcount table:get counts tag
if tagcount > countmax [

16 set countmax tagcount
set maxtag tag
set maxcolor color

]
]

21 ; If the most frequent neighboring tag is different from ours,
; switch community.
if maxtag != tag [
decrement-tag tags tag
increment-tag tags maxtag

26 set components table:length tags
set tag maxtag
set color maxcolor

]
]

31 tick
end

Listing 4.17. Detecing communities, step 4: propagating the labels

The idea is to create one table for each turtle with all of the neighboring

labels, and count them. We reuse the increment-tag function on an

associative table local to each agent. We then identify the most common label

116 Agent-based Spatial Simulation with NetLogo 2

within this table (as well as the color of the turtle with this label for display

purposes), and if this differs from the current label, we update the current turtle

and update the global table of labels, once again using increment-tag and

decrement-tag.

We must now simply implement the graphical interface by adding a button

for the setup method and a button for the iterative next-communities
method discussed above. A monitor can be used to show the value of the

global communities variable, indicating the number of labels in the graph.

Our example graph is shown in Figure 4.8.

Figure 4.8. Setting up the graphical interface to detect communities by
diffusion. For a color version of the figure, see

www.iste.co.uk/banos/netlogo2.zip

5

Swarm Problem-Solving

In insect societies, the global “project” is not explicitly programmed
in each individual, but emerges from the sequence of a large number of
elementary interactions between individuals, and between individuals
and their environment. Collective intelligence is in fact constructed
from numerous simple individual elements.1

Jean-Louis Deneubourg

5.1. Introduction

It is increasingly common for algorithms in computer science to be inspired

by “natural” models. This is not a new trend. Computer science has always

drawn from its surroundings as a source of inspiration and our user interfaces

are proof of this. Examples of algorithms and programming models like

this include, among others, simulated annealing [KIR 83], cellular automata

[VON 66], DNA computing [ADL 94, ADL 98], evolutionary algorithms

[GOL 89, HOL 92] and artificial chemistry [BER 90].

Distributed programming with actor-based [HEW 73] or agent-based

paradigms [FER 97, WEI 99] has reinvigorated this approach by searching

for natural adaptive distributed models that can be implemented locally with

Chapter written by Antoine DUTOT and Damien OLIVIER.

1 Jean-Louis Deneubourg, “Individually, insects are stupid. Collectively, they are intelligent.”

Le temps stratégique, no. 65, Geneva, September 1995. Online text viewed on 3rd September

2014: http://www.archipress.org/ts/deneubourg.htm.

118 Agent-based Spatial Simulation with NetLogo 2

limited information. Social insects and collective movements offer a wide

range of rich examples that can be used as natural metaphors for problem-

solving.

In this chapter, we wish to use NetLogo to show how biological

inspiration – with emphasis on collective behavioral phenomena in the

animal world – can be reinterpreted in terms of modeling and programming.

Specifically, we will discuss the concept of collective sorting, and in reference

to section 4.2.5, the search for the shortest path in a graph as well as the

dynamic aspects of these phenomena, before finally constructing solutions by

exploring space with a swarm of particles.

5.2. Collective approaches

When we attempt to describe collective approaches, which involve multiple

types of interaction, we often speak of collective intelligence, or swarm

intelligence, which is a subcategory of distributed artificial intelligence. The

term “swarm intelligence” was introduced by [BEN 93] in cellular robotics: in

this context, a robot is a set of cells that self-organize depending on the task

that they are processing. It was subsequently widely adopted by the computer

sciences.

5.2.1. Swarm intelligence and collective intelligence

Swarm intelligence is inspired by the behavior of groups or societies of

animals in nature. How can the individual members of a colony of ants, which

seem so unsophisticated to us, construct nests that are hundreds of times larger

than their builders, organized and structured so as to support the communal

coexistence of a huge number of individuals, comparable to cities or even

networks of cities extending over multiple kilometers, with storage spaces,

nurseries, chambers, graveyards, temperature control, food supplies, classes

of workers, warriors, and so on? The search for underlying mechanisms and

ways of simulating them in order to benefit from them or discover new such

mechanisms is a major axis of research in swarm intelligence and distributed

artificial intelligence.

The models developed so far by biologists and computer scientists allow

us to simulate some of the behavior of some kinds of social and eusocial

Swarm Problem-Solving 119

animals2. Examples include the building behavior exhibited by termites, bees

and wasps, the hunting behavior of ants and the behavior of schools of fish,

flock of birds, herds and packs. These models are based on formalisms, often

quite simple, which describe the behavior of individuals within a group, rather

than a description of the general evolution of the group.

Collective systems are often capable of learning, adapting to change,

exhibiting resilence against unexpected scenarios, etc., not at individual

levels but as a group. The distinctive feature of these approaches is that the

individuals that make up the swarm usually behave very simply, and in general

reactively, which is of great interest for computational approaches.

Distributed models (individual-based, agent-based, based on some

representation of the interactions, etc.) portray the phenomenon at a level

that allows us to observe the formation of organization and the emergence

of shapes within the group. They allow us to model, describe and study the

interactions of individuals with other individuals and with the environment.

Explicitly modeling these interactions allows us to observe several things:

– the creation of subgroups of individuals within the population;

– the construction of elements in the environment;

– the way that castes operate;

– the feedback effects exerted by these elements on these subgroups and the

population.

Of course, this list is not exhaustive, however, it does indeed show that

individual-based modeling provides a range of essential elements that we can

adapt and exploit for other purposes.

More precisely, what do we mean by a collective approach? All collective

approaches have the following definition in common: behavior of a population
of individuals that interact locally with each other and with their environment.

2 Eusocial societies are characterized as follows: cooperation to care for young; absence of clear

distinction between different generations, with an overlap between at least two generations;

existence of individuals specializing in reproduction; division of labor, polyethism between

castes or age-groups. This footnote only gives a brief idea of the notion of eusociality, in

reference to [MIC 69] and Wilson [WIL 05, WIL 00]. For a wider discussion, readers can refer

to [CRE 95].

120 Agent-based Spatial Simulation with NetLogo 2

This definition is naturally very general, and therefore imprecise. It

reiterates the quote by Jean-Louis Deneubourg given at the beginning of

this chapter, which more specifically targeted societies of insects. The quote,

however, also introduces the idea of a “global project” that is not explicitly

programmed in the insects’ behavior, and talks about “collective intelligence”,

which we can define as the “behavior of a population of individuals with
simple capacities whose local inter-individual and environmental interactions
result in the emergence and execution of a global project that is not explicitly
programmed”.

These two definitions emphasize the local nature of interindividual

interactions. These models are indeed characterized by the fact that they are

completely decentralized. Although many colonies of insects have what we

call a “queen”, these individuals, which have attracted the interest of human

observers for anthropomorphic reasons, are confined to reproduction and never

possess a global understanding of the state of the colony, and only ever issue

orders and instructions that pertain to general behavior3.

This last definition might seem incomplete, as it does not appear to specify

how this global project will be executed. It only speaks of simple behavior at

the levels of individuals, who have no global perspective and no understanding

of the global project.

The answer lies in the very large number of interactions between

individuals and with the environment.

5.2.2. Interactions, self-organization and stigmergy

In the mechanisms of swarm intelligence, we can recognize some of the

elements mentioned earlier [BON 97a, BON 97b]:

– existence of multiple interactions: individual behaviors may influence

and constrain each other;

– amplification by positive feedback: for example, when ants are foraging,

the chemical trail of pheromones left by those that find a source of food

prompts other congeners to follow the same path and reinforce it;

3 However, due to its unique role, the reproductive individual exerts a much stronger influence

on the colony, and affects all other individuals. This is the case in all eusocial populations.

Swarm Problem-Solving 121

– existence of negative feedback: for example the evaporation of

pheromones, which allows ants to abandon unfruitful paths;

– amplification of fluctuations: behavior is not fully deterministic, which

introduces novelty and diversity by creating new positive feedback loops. This

allows ants to discover and exploit new sources of food [RES 94].

In social insect colonies, interactions are therefore a fundamental

component of collective dynamics. However, this usually takes the form of

indirect interactions, notably by modifying the environment. The environment

is in fact a medium of communication on which individual actions leave a mark

(trace): this is called stigmergy. We will reuse this metaphor extensively in our

computational creations.

A formal definition of stigmergy4 is given by [KEN 01]: mode of
communication that modifies the state of the environment in such a way as
to affect the behavior of others, turning the environment into a stimulus.

In general, we can distinguish between two types of stigmergy:

1) qualitative stigmergy;

2) quantitative stigmergy.

The first type introduces the idea that semantics can be attached to the

message deposited in the environment. The second introduces the concept of

attraction in autocatalytic processes. In fact, most examples of quantitative

stigmergy are also, of course, qualitative.

Stigmergy is part of a systemic loop; the environment (self)-organizes,

structures itself by the action of the entities that exist within it, and in turn

exerts an influence on these same entities.

So, stigmergy offers a distributed mechanism for controlling and

coordinating that allows tasks to be executed. Self-organization is a side-effect,

4 We could also have chosen the definition from [GRA 59]: “Tasks are coordinated,
constructions are regulated not directly by the workers, but by these constructions themselves.
‘Workers do not direct their own work; they are guided by it.’ This particular kind of stimulation
is what we call stigmergy (stigma: mark, ergon: work, action = stimulating action)”.

122 Agent-based Spatial Simulation with NetLogo 2

the result of an emergent computation [FOR 91] expressed in the form of

global coherence generated by local interactions.

5.3. Collective sorting

Ants have the ability to collectively sort objects. This ability has long

attracted the interest of naturalists, who in particular like to observe ant

“graveyards”.

Figure 5.1. Ant corpses. Source: [BIA 12]

If corpses are placed in a petri dish, ants will group them into a heap within

a few hours, as shown in the photo in Figure 5.2.

Depending on the species of ant, they can also sort brooding objects such

as eggs, larvae and nymphs. In the next section, our goal will be to model this

kind of collective sorting by attempting to model the behavior of ants.

5.3.1. Ant behavior

Ants behave in an extremely simple way. Each ant is capable of taking

a larva, moving through the environment and putting it down within this

environment. The rules governing this behavior are probabilistic: each ant

moves randomly through its environment, and once it encounters a brooding

Swarm Problem-Solving 123

object in a heap, the lower the density of the heap, the more likely the ant

will pick up the object. Conversely, it is more likely to deposit whatever it is

carrying onto a heap if the heap is dense.

Figure 5.2. Collective sorting. Source: [THE 02]

Thus, patches contain the various objects in the brood: eggs, larvae and

nymphs, with fixed colors. There can only be one single object on each patch.

The environment is organized as a grid with patches of different colors. Black

patches are unoccupied, and the others are filled with brood objects. At each

time step, the turtles representing the ants randomly move to an adjacent tile.

When an ant carries an individual at some stage of metamorphosis, it takes the

color that represents this stage, otherwise they are arbitrarily colored white.

Once an unladen ant arrives on a colored patch, it checks the number of

patches with this same color in its neighborhood. If this number is low, then

it has a high chance of picking up the object. It then takes on the color of the

patch, which becomes black. Conversely, once an ant carrying an object with

color c arrives on a patch, it counts the number of neighbors of this patch
with color c. If this number is high, it will deposit its load based on a random

lottery, changing the color of the patch and once again becoming white.

124 Agent-based Spatial Simulation with NetLogo 2

;;===
;;

3 ;; We create the turtles that will become ants
;;
;;===
to setup
ca ; Clean up the world, variables...

8 initPatches ; Initialize the world with the objects/larvae to be sorted
crt ants ; The turtles are ants!!!
ask turtles
[set shape "ant"
set size 2

13 set color white ; white ant = unladen
setxy random-xcor random-ycor

]
reset-ticks

end
18

;;===
;;
;; Fix the number of objects to be sorted (numObjectsByColor for each color)
;; We will attempt to distribute them uniformly depending on the size

23 ;;
;;===
to initPatches
ask patches [
if (random-float ((world-width * world-height) / (numObjectsByColor *

colors)) < 1)
28 [set pcolor (random colors) * 20 + red]

]
end

;;===
33 ;;

;; The patches contain brood objects
;; At each time step, the ants move onto an adjacent square;
;; If an ant arrives on a colored square, it can "pick it up" or leave it
;; If the local density if its color is low, it will tend to pick it up

38 ;; Otherwise it will tend to leave it.
;;
;; If an ant is carrying a color, it can deposit it or keep it
;; If the local density of the color is high, it will tend to deposit it;
;; If it is low, it will tend to keep it.

43 ;;
;;===
to brood
ask turtles [
ifelse hidden? [ht] [st]

48 ifelse (color = white) ; The ant is unladen
[if (pcolor != black) ; The patch is occupied
[
if count neighbors with [pcolor = [pcolor] of myself] <= random 6
[set color pcolor ; The ant takes the larva

Swarm Problem-Solving 125

53 set pcolor black ; The patch is no longer occupied
]

]
]
[if (pcolor = black) ; If the ant is carrying something it checks

whether the patch is empty
58 [

if count neighbors with [pcolor = [color] of myself] > random 6
[
set pcolor color ; It deposits it
set color white ; It is unladen

63]
]

]
set heading heading + random 60 - random 60
fd 1

68]
tick

end

Listing 5.1. Brood sorting

The NetLogo (world) is configured as follows:

Location of origin Corner, bottom left
max-pxcor 100
max-pycor 100
world wrap horizontally �
world wrap vertically �
view update on ticks

Figure 5.3 shows different stages in the progression of the simulation.

First, the initial state (Figure 5.3(a)), where the brooding objects are uniformly

distributed throughout the environment, followed by the subsequent states of

the brood with the emergence of order in the form of heaps (Figures 5.3(b)

and 5.3(c)), and finally three heaps corresponding to eggs, nymphs and larvae

(Figure 5.3(d)). The number of of elementary moves (1 patch) is 202,039,800.

5.3.2. Model analysis

At this point, it is interesting to discuss the nature of this model. We are

considering a stigmergic process in which the environment self-organizes and

126 Agent-based Spatial Simulation with NetLogo 2

develops structure by means of our virtual ants simulated by NetLogo turtles,

as evidenced by the emergence of different heaps over time. These heaps in

turn act upon the ants present in the virtual environment by prompting them

to deposit objects on the heaps. But does this truly represent a phenomenon of

collective intelligence?

a) Initial state, t = 0 b) t = 39, 051

c) t = 411, 895 d) Sorting finished, there are three distinct

heaps. t = 2, 794, 095

Figure 5.3. Simulation of brood sorting, three stages of
metamorphosis, 100 ants/turtles and 530 objects in each stage.For a

color version of the figure, see www.iste.co.uk/banos/netlogo2.zip

We can repeat these simulations with the same initial parameters but fewer

ants. If we reuse the same fixed values from Figure 5.3, we observe that

although the number of ants decreases, there are ultimately always three

heaps, even with a single ant. This result has been confirmed and extended

by simulation in [MAR 02], and a formal proof is given in [GAU 07]. We can

Swarm Problem-Solving 127

also vary the density of the objects distributed throughout the environment, and

as the authors of [DEN 91] note, we observe that there is a minimum density

threshold required for heaps to emerge.

In this model, although there are positive feedback mechanisms that

amplify the process by forming heaps, there are no negative feedback

mechanisms to limit it. Later, in section 5.4, we will consider an example that

incorporates and requires this kind of feedback to regulate the process.

In conclusion, the natural model of brood sorting has inspired a number

of classification algorithms, descriptions of which can be found in [HAM 10].

The general idea is the following: the information to be sorted is arranged

within a space, and the virtual ants have the ability to move them through

space depending on a distance criterion that reflects the degree of similarity

between objects.

5.4. From food sourcing to finding the shortest path

Jean-Louis Deneubourg et al. observed and demonstrated that some species

of ants are capable of choosing the shortest path to reach a food source. To

show this, they devised a particularly clever experiment [GOS 89, DEN 90]

in the form of a double binary bridge between a food source and a nest of

Argentine ants (Linepithema humile).

Figure 5.4. Double binary bridge. Source: [GOS 89]

The observed mechanism is based on a local and indirect mode of

communication. Ants can deposit chemical molecules known as pheromones

128 Agent-based Spatial Simulation with NetLogo 2

into the environment. These molecules are attractive and attract other ants,

who are then enlisted to forage for food. This reinforces the chemical deposit;

P.P. Grassé [GRA 59] writes of stigmergy, which he defines as: “stimulating

workers through the actions that they perform”, as we noted previously.

Ants continue to randomly explore the environment around their nest.

When one or several ants find food, they bring it back to the nest, depositing

pheromones along their path. These pheromones attract neighboring ants who

are not yet carrying food, which follow the trail back to the food before

returning to the ant colony, in turn reinforcing the pheromone trail. If multiple

paths are possible, the shortest will be used by more ants, and so will be

more attractive. Since pheromones are volatile, they evaporate, and in doing so

penalize longer paths. Note that ants only tend to follow the paths. Each ant can

leave the marked path and discover a new one. This kind of fluctuation allows

ants to adapt to changes in the environment, such as the sudden apparition of

an obstacle.

The ants exhibit self-organization, and four characteristics emerge

[BON 99]:

1) numerous and multiple interactions;

2) fluctuations;

3) a positive feedback mechanism that creates an amplification

phenomenon. A strongly marked path will attract other ants, which will

reinforce it in turn;

4) a negative feedback mechanism that allows the process to be regulated.

In the case of pheromones, this is evaporation.

The experiment by Deneubourg et al. uses a constrained space representing

a network of connections, which can be modeled by a graph. It shows that

Argentine ants are capable of finding the shortest path in a graph by their food-

sourcing algorithm. We will use the example of this experiment to construct a

bioinspired algorithm to search for the shortest path in a graph.

Swarm Problem-Solving 129

5.4.1. From the natural model to the virtual model

Consider a graph G = (V,A, ν) modeled by vertices v ∈ V and edges

given by unordered pairs of vertices a ∈ A such that a = (vi, vj) ∈ V × V .

This graph is equipped with a mapping ν : A → IR+.

Virtual ants roam through the graph and deposit virtual pheromones

throughout the environment of the graph G in the form of numerical values

attached to each edge, which determine the values of the mapping ν. Ants

move through the graph according to these values, which are interpreted as

probabilities. Suppose that an ant coming from the vertex O is located on the

vertex A, and that from there it can travel to the vertices B, C and D via edges

with 10, 30 and 20 units of pheromone (Figure 5.5(a)). It would take the edges

(A,B) with probability 1/6, (A,C) with probability 1/2 and (A,D) with

probability 2/3 (Figure 5.5(b)). The ants construct the path on the way over

between the start vertex and the end vertex, and on the way back they mark the

paths by adding pheromones to the edges that they take. This implements the

positive feedback mechanism.

O

A

B C D

1
3
0

10 3
0

20

a) Quantity of pheromones, the ant is

at A and can only go to B, C and D,

as it already came from O.

O

A

B C D

1/6 3
/6

2/6

b) Converting quantities of

pheromones into probabilities. The

ant is more likely to take the edge

(A,C) than the edge (A,B) or the

edge (A,D).

Figure 5.5. Example of a subgraph with pheromone deposits.
The ant is assumed to be located at vertex A

Negative feedback consists of decreasing the value of the quantity of

pheromone on the edges at each time step. Fluctuations are introduced by the

probabilistic nature of the ants’ decision-making. Modifications to a path are

therefore possible, and the best path can be rediscovered once again.

130 Agent-based Spatial Simulation with NetLogo 2

5.4.1.1. NetLogo code

We will begin by constructing the graph for the double binary bridge. To

do this, we define a specific breed of turtle, which we will call nodes. Each

node knows its own identifier node-id. We define two global variables nest
and food-source to store the start and finish nodes. Each edge (link) will

also store the value of a quantity of pheromone, written pheromone. The

positions list specifies the vertices and their positions within the NetLogo

world [[id− node1[xy]]...[id− noden[xy]]]. The edges list specifies the pairs

of connected vertices.

The NetLogo world is configured as follows:

Location of origin Center
max-pxcor 30
max-pycor 30
world wrap horizontally �
world wrap vertically �
view update on ticks

globals [
food-source ; finish node
nest ; start node

5]

breed [nodes node] ; To construct the graph
nodes-own [node-id] ; Node identifier
links-own [pheromone] ; Quantity of pheromone deposited on the edge

10

;;===
;;
;; Initialization function.
;;

15 ;;===
to setup
ca
setup-graph
reset-ticks

20 end

Swarm Problem-Solving 131

;;===
;;
;; Graph creation function

25 ;;
;;===
to setup-graph
let positions [[1 [0 -27]] [2 [0 -20]] [3 [27 -12]] [4 [-6 -12]] [5 [0

0]] [6 [10 6]] [7 [-22 6]] [8 [0 20]] [9 [0 27]]]
let edges [[1 2] [2 3] [2 4] [3 5] [4 5] [5 6] [5 7] [6 8] [7 8] [8 9]]

30 set food-source 9
set nest 1
set-default-shape nodes "circle"
foreach positions [
create-nodes 1 [

35 set color blue
set size 3
set node-id first ?
setxy first last ? last last ?

]
40]

foreach edges [
ask get-node first ?
[
create-link-with get-node last ?

45 [
set pheromone 0.1 ; To avoid dividing by zero
set thickness 0

]
]

50]
end

;;===
;;

55 ;; Establish id correspondence between graph node and turtle node
;;
;;===
to-report get-node [id]
report one-of nodes with [node-id = id]

60 end

Listing 5.2. Constructing the graph to represent the double binary bridge

We now need to define the ants turtles. To do this, we create the

corresponding space. Each ant moves from-a to-b, saves its path in the

graph (itinerary), waits for waiting-period before leaving the nest and

knows whether or not it is moving from the nest toward the food source, or

vice versa (outward?). We therefore modify and extend the NetLogo code

from listing 5.2.

132 Agent-based Spatial Simulation with NetLogo 2

breed [ants ant] ; Ants looking for the path

4 fourmis-own [
from-a to-b ; From which vertex to which
itinerary ; The path taken
waiting-period ; Waiting period before leaving the nest
outward? ; true -> nest to food source

9]

;;===
;;
;; Initialization function

14 ;;
;;===
to setup
ca
setup-graph

19 setup-ants
reset-ticks

end

;;===
24 ;;

;; Create ants
;;
;;===
to setup-ants

29 create-ants num-ants [; fixed by a cursor on the interface
set shape "ant"
set color red
set outward? true
set waiting-period random num-ants

34 set from-a get-node nest ; Retrieve the corresponding node
set to-b choose-destination ; Find the next vertex
move-to from-a ; The ant rejoins the start node
face to-b ; Face it towards the next node

]
39 end

Listing 5.3. Introducing ants for the double binary bridge

We now write a choose-destination function that determines the next

node for a given ant located at a given node (from-a). This choice depends

on the direction of movement. If it is moving from the food source to the

nest, this is determined by the path (itinerary) that it took on the way there,

otherwise it depends on the adjacent vertices and probabilities as a function of

the quantity of pheromone, as stated above.

Swarm Problem-Solving 133

;;===
;;
;; Determine the next destination of an ant, given the start vertex.
;;

5 ;;===
to-report choose-destination
let id-of-a [node-id] of from-a

;; Did the ant reach the nest or the source?
if id-of-a = food-source [set outward? false] ; The ant reached the

source and must return to the nest
10 if id-of-a = nest ; The ant is in the nest and must travel to the source

[
set outward? true
set itinerary [] ; New path

]
15 ;; We now need to find the destination

let where-to-go 0
ifelse outward?
[; Nest -> source, using pheromones and constructing probabilities
let pheromone-quantity 0

20 let x from-a
let proba []
ask links with [end1 = x] [; Sum the quantity of pheromone on all

edges incidence to a (a to another vertex)
set pheromone-quantity pheromone-quantity + pheromone
set proba lput (list pheromone self) proba ; Build a list of type

((quantity-1 (link vertex-i vertex-j))
25 (quantity-n (link vertex-k vertex-l))

; Suppose that a -> b 10 ; a -> c 30 ; a -> d 20 ((10
(link a b) (30 (link a c) (20 (link a d))

]
set proba sort-by [first ?1 <= first ?2] proba ; ((10 (link a b) (20

(link a d) (30 (link a c))
let probabilities []

30 let cumul 0
foreach proba
[
let p first ?
let link last ?

35 set probabilities lput (list ((p + cumul) / pheromone-quantity)
link) probabilities

set cumul cumul + p
] ; ((10/60 (link a b) (30/60 (link a d)) ((60/60 (link a c))
let rand-num random-float 1. ; rand-num e.g. 0.4
set where-to-go [end2] of last first filter [first ? > rand-num]

probabilities ; where-to-go is therefore d
40 set itinerary fput link [who] of from-a [who] of where-to-go itinerary

; save the edge in the ant's path
]
[; source -> nest, unravel the path

134 Agent-based Spatial Simulation with NetLogo 2

set where-to-go [end1] of first itinerary
set itinerary but-first itinerary

45]
report where-to-go

end

Listing 5.4. Determining the next destination

The final step is to model the movement of the ants and the mechanisms

of evaporation. When an ant reaches the food source and returns to the nest,

it deposits pheromones on the traveled path and chooses a new destination.

Otherwise, it moves toward its destination. Once each ant has moved, we

update the quantity of pheromone.

;;===
;;

3 ;; Advancing the simulation
;;
;;===
to go
ask ants with [waiting-period <= ticks] ; The ants do not all leave at

the same time
8 [

ifelse hide-the-ants [ht] [st]
ifelse distance to-b = 0 ; The ant arrives at a vertex
[
if not outward? [; It is currently returning to the nest,

13 ask link [who] of from-a [who] of to-b ; so it deposits pheromones
on the edges that it crosses.

[
ifelse bias
[set pheromone (pheromone + deposit / link-length)]; The

quantity of pheromone is inversely proportional to the length
of the edge

[set pheromone (pheromone + deposit)]
18 set label pheromone

]
]
set from-a to-b ; Choose new destination
set to-b choose-destination

23 face to-b
]
[; The ant is on an edge
ifelse distance to-b <= 2 ; Is it close to the vertex?
[move-to to-b] ; Yes, go directly to the vertex

28 [fd 1 + random-float 1 ; No, move forwards
]

]
]

Swarm Problem-Solving 135

ask links [set thickness 0]
33 if show-path [shortest-path]

evaporation
tick

end

38

;;===
;;
;; Evaporation mechanism
;;

43 ;;===
to evaporation
ask links [
set pheromone pheromone * (1 - (rho / 100)) ; rho is adjusted through

the interface
]

48 end

Listing 5.5. Handling movements

We complete the code by adding a method to display the shortest path.

1 to shortest-path
let current-node get-node nest
let link 0
ask links [set thickness 0]
while [current-node != get-node food-source]

6 [
set link max-one-of links with [end1 = current-node] [pheromone]
ask link [set thickness 1]
set current-node [end2] of link

]
11 end

Listing 5.6. Displaying the shortest path

Figure 5.6 shows the interface with its various parameters, for example

allowing the quantity of pheromone to depend on the length of the traveled

edge (bias) . This technique is often used, allowing a concept of local quality

to be introduced. Interested readers can experiment with using and turning off

this parameter to see how it affects the process of constructing the solution, in

particular its rapidity and stability. The quantity of the pheromone that can be

deposited by an ant can also be configured, and so can evaporation. Similarly,

136 Agent-based Spatial Simulation with NetLogo 2

we added a way of viewing the shortest path and the ant’s movements. These

options are accessed by elements in the interface.

Figure 5.7 shows the initial state of the simulation and its state after 193

time steps. The shortest path has indeed been found by the ants by factoring

in time through movement, the positive feedback mechanism given by the ants

depositing virtual pheromone and the negative feedback mechanism resulting

from evaporation. In some simulations, we can observe that a false solution

might be constructed at first, usually at an early point in the simulation (see

Figure 5.7(c)), ultimately to be replaced by the correct solution due to the

fluctuations introduced by randomness and negative feedback.

Figure 5.6. Simulating the double binary bridge

This characteristic can be used to introduce dynamics into the environment

such as perturbations in the paths.

Swarm Problem-Solving 137

a) Initial situation. The parameters are the

following: 179 ants, 10% evaporation,

amount of pheromone deposited 10 units

divided by the length of the edge (bias)

b) State after 193 time steps

c) Incorrect solution

Figure 5.7. Result of the double binary bridge simulation

5.4.1.2. Introducing perturbations

Perturbations are introduced as a way of modifying the length of the initial

paths. The code shown here mostly reuses the code given in the NetLogo model

library [WIL 13].

138 Agent-based Spatial Simulation with NetLogo 2

;;===
;;
;; Possibility to interactively modify edge size during simulation

4 ;;
;;===
to modify-graph
if mouse-down? [
let candidate min-one-of nodes [distancexy mouse-xcor mouse-ycor]

9 if [distancexy mouse-xcor mouse-ycor] of candidate < 1 [
let selectedants ants with [from-a = candidate or to-b = candidate]
watch candidate ; Highlight selected vertex
while [mouse-down?] [
display

14 ask subject [setxy mouse-xcor mouse-ycor]
ask selectedants [setxy mouse-xcor mouse-ycor face to-b] ; We cheat,

placing the ants on
; edges

incident
to the
vertex

; being
moved

]
19 reset-perspective

]
]

end

Listing 5.7. Modifying the graph

We update the interface (see Figure 5.6) by adding a button allowing this

method to be called. We can now test the adaptive character of the algorithm

by modifying the graph during simulation. To do this, we can, for example,

modify the initial graph by toggling the longest paths (see Figure 5.8(a)).

The incorrect solution is then “forgotten” due to evaporation and the new

path is discovered by the fluctuations. This property is very important and can

be exploited in the context of dynamic graphs, as was done in [BER 06].

5.4.2. The traveling salesman and Ant System

The traveling salesman problem is what is known as a “toy problem”, in

the sense that it is not necessarily interesting in and of itself, but perfectly

encapsulates a question shared by other more sophisticated versions of the

problem, and that it can be used to give simple demonstrations of methods of

Swarm Problem-Solving 139

solution such as an algorithm based on virtual ants. The statement is relatively

simple:

STATEMENT 5.1.– Given a set of n towns connected by roads with known

lengths, find the shortest path that passes through each town exactly once.

a) Graph at t = 132 b) Modification of graph at

t = 132
c) Double binary bridge at

t = 230 after perturbation

Figure 5.8. Introducing a perturbation. The parameters are the
following: 180 ants, 10% evaporation, quantity of pheromone

deposited 10 units divided by the edge length (bias)

There is an obvious method of solution, which is to construct all possible

paths and calculate their lengths. With n towns, we will have
(n−1)!

2 paths. This

approach very quickly becomes intractable even for relatively low values of n,

as shown by Table 5.1. With only 61 towns, there are more possible paths than

atoms in the universe.

Faced with this problem of combinatorial explosion, we generally choose to

turn to approximate solutions, for which we can use heuristics. There is a rich

body of literature [LAP 92, REG 11] on this subject. We can classify heuristics

into three categories:

1) Constructive heuristics, which gradually determine the path and add an

additional time at each iteration. The stopping condition is based on finding a

path. They tend to construct the best possible path.

2) Heuristics based on local searches that begin with a path and attempt to

improve it by exploring the neighborhood.

3) Composite heuristics combining these two methods.

140 Agent-based Spatial Simulation with NetLogo 2

n Number of paths Time (1 μs/chemin)

5 12 12 μs
10 181, 440 0.18 s
15 4.359× 1010 12 h
20 6.082× 1016 1, 928 years

61 4.160× 1081 13.19× 1067 years

Table 5.1. Number of paths and estimated calculation time as a function of the number
of vertices. The number of paths is comparable with the estimated number of atoms in
the visible universe, which is 1080, and the time required to enumerate all solutions is
similar to the age of the universe, which is 13.798± 0.037× 109 years (data from 2014
[ADE 13])

Algorithms based on ant colonies belong to the last of these categories, and

we will present the original “Ant System” algorithm below, as proposed by

Colorni, Dorigo and Maniezzo [COL 91] and show how to implement it in

NetLogo.

5.4.2.1. Ant System

The problem is modeled by a complete graph G = (V,A, d) made up of

vertices v ∈ V representing towns, and edges of unordered pairs of vertices

a ∈ A such that a = (i, j) ∈ V × V , which represent the roads between

towns. This graph is equipped with a mapping d : A → IR+ that specifies

the distance between two towns. The Ant System (AS) algorithm uses virtual

ants that deposit pheromones in the environment to mark the path that they

take. In fact, this uses the same principle as in section 5.4.1, and extends the

problem. We will present the initial version here, but it is worth noting that

many improvements to AS have been suggested.

At first, the ants are randomly distributed over the set V of vertices. The

algorithm is iterative and has two phases. In the first exploration phase of

each time step, each ant chooses its next vertex. This choice depends on the

distance between the vertex where the ant is located and its next vertex, and

also depends on the quantity of pheromone on the edge that it can potentially

choose to take (see equation [5.1]). Ants cannot return to vertices that they

have already visited, which are deleted from their list of potential destinations.

The second phase revolves around an updating mechanism. Once all of the ants

have finished their route, the pheromones are updated based on the depositing

(see equation [5.2]) and evaporation mechanisms (see equation [5.3]).

Swarm Problem-Solving 141

Movements are probabilistic. For an ant k located on a vertex i, the

probability that it will take the edge (i, j) at time t is given by:

pkij(t) =

⎧⎪⎨
⎪⎩

(τij(t))
α×ηβij

∑

l∈Jk
i

(τil(t))α×ηβil
if j ∈ Jk

i

0 if j /∈ Jk
i

[5.1]

where Jk
i is the set of vertices visited by ant k when it is on vertex i. The

quantity of pheromone on the edge (i, j) is written by τij , and ηij = 1/d(i, j)
determines the visibility. The α and β parameters allow the importance of

pheromone trails to be calibrated relative to the visibility.

After finishing its cycle, ant k deposits a quantity Δτkij of pheromone onto

the edge (i, j) (see equation [5.2]).

Δk
ij =

{
Q
Lk

if ant k passed through (i, j) during its cycle

0 otherwise.
[5.2]

Lk is the length of the cycle of ant k, and Q is a fixed parameter.

Pheromone evaporation allows suboptimal solutions to be avoided. The

attraction of edge (i, j) is given by:

τij(t+ n) = ρ× τij(t) + Δτij [5.3]

(1 − ρ) corresponds to evaporation, n is the order of the set V , i.e. the

number of towns, and Δτij =
m∑
k=1

Δτkij , where m is the number of ants.

5.4.2.2. NetLogo code

We will begin by constructing the complete graph (see listing 5.8). To do

this, we define a breed of turtles (towns), which will be connected by links.

We also add another type of turtle to represent the virtual ants (ants). Each

ant will be capable of remembering its past trajectory and length. An initial

quantity of pheromone is also deposited on the links. Two global variables,

best-path and best-path-length, store the best trajectory found and its

length, which will be displayed in a monitor on the interface. The number of

142 Agent-based Spatial Simulation with NetLogo 2

ants and towns is determined by a slider on the interface associated with the

variables num-ants and num-towns. The full interface is shown in Figure 5.9.

The NetLogo world is configured as follows:

Location of origin Corner, bottom left
max-pxcor 150
max-pycor 150
world wrap horizontally �
world wrap vertically �
view update on ticks

globals [best-path best-path-length]

3 breed [towns town]
breed [ants ant]

links-own [
tau ; Quantity of pheromone

8]

ants-own [
where-am-i ; location of the ant (current town)
my-path ; past trajectory of the ant

13 path-length ; length of this trajectory
]

;;===
;;

18 ;; Initialization functions
;;
;;===
to setup
ca

23 reset-ticks
setup-towns
setup-links
create-ants num-ants
set best-path-length 1E99 ; Choose a very large value

28 end

to setup-towns
set-default-shape towns "circle"
let size 1.5

33 create-towns num-towns [
setxy (0.5 * size-val + random-float (max-pxcor - size-val)) ; Avoid

placing towns too close to the

Swarm Problem-Solving 143

(0.5 * size-val + random-float (max-pycor - size-val)) ; edge of
the NetLogo world

set color blue
set size size-val

38]
end

to setup-links
ask towns [create-links-with other towns]

43 ask links [
set color red
set thickness 0.1
set tau 1E-6 ; This quantity is introduced to avoid dividing by zero

]
48 end

;;============End initialization=================

Listing 5.8. Creating a complete graph and ants

Each ant will construct a path in the graph. If this path is better than the

previously saved graph, it replaces it. We complete the NetLogo code from

listing 5.8 by adding methods for this construction (see listing 5.9). This

first version is only based on a random path through the towns that does not

consider distances. However, we avoid going through the same town twice.

;;===
;;
;; Usual go function
;;

5 ;;===

to go
ask ants [
set my-path construct-path ; The ants construct a path

10 set path-length calcul-length my-path ; Calculate the length of the path
if path-length < best-path-length [; If this is better than the

previous best path
set best-path-length path-length ; save it
set best-path-length path-length
show-best-path ; and display it

15]
]
tick

end

20 ;;===
;;
;; Functions for constructing the path

144 Agent-based Spatial Simulation with NetLogo 2

;;
;;===

25 to-report construct-path
set where-am-i one-of towns ; Place the ant on one of the towns ;
let path (list where-am-i) ; The path starts in the first town
let towns-to-visit [self] of towns with [self != [where-am-i] of myself]

; Construct the list of towns yet to be visited
while [not empty? towns-to-visit] [; While there remain towns to be

visited
30 let where-am-i choose-new-town towns-to-visit ; Choose a new town

set path lput where-i-go path ; Add new town to path
set towns-to-visit remove where-i-go towns-to-visit ; Remove from list

of towns to be visited
set where-i-am where-i-go ; Move the ant.

]
35 report path

end

to-report choose-new-town [towns-to-visit]
40 report first towns-to-visit

end

to-report calcul-length [path]
45 let m but-first lput first path path ; Construct a second list m

let length-val 0 ; path : [(town 3) (town 4) (town 0) (town 2) (town 1)]
; m : [(town 4) (town 0) (town

2) (town 1) (town 3)]
(foreach path m
[ask link [who] of ?1 [who] of ?2 [

50 set length-val length-val + link-length]])
report length-val

end

;;===
55 ;;

;; Display the best known path
;;
;;===
to show-best-path

60 ask links [
hide-link

]
let m but-first lput first best-path best-path ; Construct a second list m
(foreach best-path m

65 [ask link [who] of ?1 [who] of ?2 [
set color yellow
set hidden? false
set thickness 0.6]])

end

Listing 5.9. Constructing a path with ants

Swarm Problem-Solving 145

Figure 5.9. Interface and initial state of the
traveling salesman, 25 towns. For a color version of
the figure, see www.iste.co.uk/banos/netlogo2.zip

The pheromone will introduce bias into the algorithm. In the earlier version

(see listing 5.9), we defined a function choose-new-town that returns the

first town in the list of towns yet to be visited (towns-to-visit), which is

constructed in a random order by NetLogo. We will now modify this function

(see listing 5.10) in order to calculate the probability as a function of the weight

of the edge and the pheromones, using equation [5.1]. The way this algorithm

is written is inspired by the NetLogo code in listing 5.4. Instead of assigning

the probability to the link, we assign it to the vertex incident to where-am-i.

1 to-report choose-new-town [towns-to-visit]
let numerator 0
let denominator 0
let edgeweights []
foreach towns-to-visit

6 [
ask link [who] of where-am-i [who] of ?
[
set numerator tau ^ alpha * (1 / link-length) ^ beta

146 Agent-based Spatial Simulation with NetLogo 2

set denominator denominator + numerator
11 set edgeweights fput (list numerator ?) edgeweights

]
]
set edgeweights sort-by [first ?1 <= first ?2] edgeweights
let p []

16 let cumul 0
foreach edgeweights
[
set p lput (list ((first ? + cumul) / denominator) last ?) p
set cumul cumul + first ?

21]
report last first filter [first ? > random-float 1.] p

end

Listing 5.10. Choosing the next town to be visited by an ant as a function of
probability (see Equation 5.1)

On the interface, we allow the user to configure α and β using the sliders
associated with variables with the same names (see Figure 5.9). We also need

to introduce mechanisms for positive feedback and evaporation as specified

by equations [5.2] and [5.3]. This is done by the method update-pheromone
which is called by the go method at the end of each cycle (see listing 5.11).

The value of ρ is chosen by the user with a slider. We also make it possible

to specify the random seed, so that simulations can be repeated.

to setup
2 ca

reset-ticks
if seed?
[random-seed seed]
setup-towns

7 setup-links
create-ants num-ants
set best-path-length 1E99

end

12 to go
ask ants [
set my-path construct-path ; The ants construct a path
set path-length calcul-length my-path ; Calculate length of the path
if path-length < best-path-length [; If this is better than the

previous best path
17 set best-path my-path ; save it

set best-path-length path-length
show-best-path ; and display it

]
]

Swarm Problem-Solving 147

22 update-pheromone
tick

end

27 to update-pheromone
ask links [set tau (tau * (1 - rho))]
ask ants [
let m but-first lput first my-path my-path ; We construct a second list

m
(foreach my-path m

32 [ask link [who] of ?1 [who] of ?2 [set tau (tau + Q / [path-length]
of myself)]])

]
end

Listing 5.11. Updating the pheromones (see equations [5.2] and [5.3])

It is now possible to explore the influence of these parameters, and also

compare this metaheuristic with others, such as simulated annealing or genetic

algorithms, but we can also compare it with improvements such as the idea of

introducing elitism by increasing the influence of the best path, as was done in

Figures 5.10 and 5.11. The details of this improvement are left as an exercise

for the reader.

5.5. The intentions of a swarm

In 1995, a sociologist, James Kennedy, and an electrical engineer, Russel

C. Eberhart, explored the idea of social interactions as a computational

model. Rather than focusing on advanced cognitive capacities, they examined

interactions between individuals. One of their primary sources of inspiration

was the way that flocks of birds form, and how they feed themselves and

communicate about sources of food. They were inspired by the work of Craig

Reynolds [REY 87], and Heppner and Grenander [HEP 90]. They developed

an optimization model that they named “particle swarm optimization” or PSO,

which we propose to implement in NetLogo.

As early as 1985, Craig Reynolds suggested a particularly simple model

[REY 87] for imitating certain flocks of birds, which he named boids (bird-

oids, like humanoids). This model was based on the principle that individuals

only perceive their congeners within a limited neighborhood, usually within a

fixed angle of vision, and that there are three rules:

148 Agent-based Spatial Simulation with NetLogo 2

1) Cohesion: individuals want to get closer to their neighbors.

2) Separation: if the distance between them is too small, individuals pull

away to avoid collision.

3) Alignment: individuals imitate the average alignment of their neighbors.

a) t = O, total length = 2,169 b) t = 1, total length = 1,563

c) t = 235, total length = 1,228 d) t = 879, total length = 1,190

Figure 5.10. Traveling salesman problem, solved by AS. α = 1, β = 5,
ρ = 0.5, num-towns = num-ants = 90, Q = 100, τ0 = 10−6

In general, individuals start with a certain speed, and have a certain

momentum. Applying these simple rules with parameters to describe their

Swarm Problem-Solving 149

importance and modifying other parameters that, for example, describe the

angle of vision and the momentum allows a wide range of animal formations

observed in nature to be reproduced, such as swarms in compact groups,

columns of fish, herds of grazing animals, etc. Distinct groups can also form.

This can in particular be achieved by introducing different types of boid, for

example with predatory behavior.

a) t = 1, total length = 1,444 b) t = 1, total length = 1,245

c) t = 100, total length = 1,222 d) t = 6, 608, total length = 1,158

Figure 5.11. Traveling salesman problem, solved by AS with elitism.
α = 1, β = 5, ρ = 0.5, num-towns = num-ants = 90, Q = 100,

τ0 = 10−6, e = 5

150 Agent-based Spatial Simulation with NetLogo 2

One of the greatest advantages of this approach, like the models we saw

earlier, is that it works without global orchestration, as seems to be appropriate

for the equivalent natural phenomena. The library of NetLogo models offers

an implementation of this model in Sample Models → Biology → Flocking, as

shown in Figure 5.12.

Figure 5.12. Model of boids in the NetLogo library

Another important aspect of this model is given by the mechanisms

of interaction that it implements, such as imitation (boids align with their

neighbors). This is also one of the driving ideas of PSO, which draws its

inspiration for this from the cultural models proposed by Axelrod [AXE 97], in

which individuals are informed by their neighbors of whether they are close to

or match exactly with an ideal (either physically or in terms of their attributes) .

In these models of adaptive culture, three basic principles emerge [KEN 01]:

1) Evaluation: ability to evaluate stimuli as either positive or negative,

attractive or repulsive.

2) Comparison: ability to compare oneself to others, and compare results.

3) Imitation: after evaluating one’s own state, and comparing it to others,

imitate it if doing so is useful.

Swarm Problem-Solving 151

This kind of behavior is observed in birds. If an area of a field is discovered

with new shoots, more and more birds will quickly flock to that area.

These sources inspired the model proposed by Kennedy and Eberhart.

Their algorithm involves large numbers of individuals that are abstracted as

particles. These particles are placed in a space (or hyperspace, the number

of dimensions can vary) representing the problem so that the positions of

individuals represent a potential solution to the problem, just as the location of

food sources can vary. Just like the boids, these individuals move throughout

the space.

The basic idea of PSO is the following: due to a metric that describes how

well adapted they are to the problem (fitness), they can evaluate the quality

of their position in space. In the basic form of the algorithm, each individual

knows the best values found by the others, and so can compare itself to others

by interacting with them. If the value found by others is better, they can

attempt to imitate by approaching it. Individuals have memory, which allows

them to remember the best position encountered during their movements. The

position is also characterized by a speed and a direction, which can change.

Thus, the search for the best position in space is conducted in parallel by all

individuals, who are influenced simultaneously by their own speeds, the best

solution previously identified and also the best solution found by others, due

to the exchange of information between individuals.

5.5.1. Basic model

The NetLogo library contains a model that implements PSO based on the

earliest works of Kennedy and Eberhart, which we will discuss below. Due

to problems faced by this model, it was subsequently modified into a version

with more localized interactions, which we will explore later by adjusting our

initial algorithm.

5.5.1.1. Model

Having considered the metaphor in its natural setting, we now return to its

application to optimization by formalizing the idea slightly. In optimization,

we often need to find the values of the parameters of a function to determine its

optimal value according to the criteria of a given problem. These parameters,

the domains in which they are defined, and their cardinality form a space (or

152 Agent-based Spatial Simulation with NetLogo 2

hyperspace with one dimension for each parameter). Finding the values of

parameters that optimize the value of the function is equivalent to exploring

this space. A set composed of one value for each parameter corresponds to

a single point within this search space, which in our case we will view as

a particle. The position of a particle i can therefore be seen as a vector
xi.
Evaluating the function at this point yields a value, which we will attempt to

optimize.

Slightly varying the values of this point is equivalent to moving the particle.

The algorithm works step-by-step, moving each particle in turn to search for

the optimal value(s) of the function. Thus, each particle is assigned a velocity

vi that is added to the position
xi to move it for the next step:

xi(t) =
xi(t− 1) +
vi(t)

Particles remember the best position found until this point, and are aware of

the set of positions of other particles, and hence the best overall position. Each

particle works by moving in the direction of its velocity vector, and adjusting

this vector to move closer to the best position
pi found until now, as well as

the best global solution
pg found until now, which act as centers of attraction.

This can be formalized as follows:{

vi(t) =
vi(t− 1) + ϕ1 (
pi −
xi(t− 1)) + ϕ2 (
pg −
xi(t− 1))

xi(t) =
xi(t− 1) +
vi(t)

[5.4]

This formula adjusts the velocity vector
vi of the particle i in the direction

of the the points
pi and
pg. The random values ϕ1 and ϕ2 assign either higher

or lower priority to each of these points. Including the old value
vi(t − 1)
introduces some inertia into the movements. Once the velocity has been

updated, we apply it to the position
xi of the particle.

The velocity in this kind of system might potentially explode. To avoid this,

we define a speed Vmax and bound vi by Vmax.

With this model of behavior, the particles oscillate around the barycenter

[5.5] of their attraction points:

ϕ1
pi + ϕ2
pg
ϕ1 + ϕ2

[5.5]

Swarm Problem-Solving 153

The random ϕ parameters change this attraction point slightly at each

step, without necessarily converging to it. We can control the changes in the

trajectory by means of a weighting factor for the inertia. This is implemented in

the NetLogo example (other controlling techniques exist, based on contrition

coefficients [CLE 02]).

5.5.1.2. First implementation

Based on this model, we will now describe in detail the basic NetLogo

implementation available in the NetLogo model library Sample Models
→ Computer Science → Particle Swarm Optimization. We will not

discuss how to implement the interface, which has already been done, but we

will present some of its elements as required.

The implementation works in two dimensions: it creates a landscape of

patches, each of which has a real value strictly between 0 and 1 except for a

single patch that contains the value 1. The objective of the exercise is of course

to create a swarm of particles in the form of turtles that will attempt to find this

patch. As an optimization model, we can compare this landscape to evaluating

a function with two arguments, the x- and y-coordinates in NetLogo, whose

image is the value of the patch corresponding to these two arguments.

Figure 5.13 shows the model interface with an example landscape.

We begin with the variables that characterize the model:

1 ; Optimization model by swarms of particles, reproduced
; from the NetLogo model library.

patches-own
[

6 val ; each patch is assigned a "fitness" value. The objective of the swarm
; of particles is to find the patch with the best fitness value.

]

turtles-own
11 [

vx ; velocity on the x-axis.
vy ; velocity on the y-axis.

personal-best-val ; best value encountered until now.
16 personal-best-x ; x-coordinate of the best value.

personal-best-y ; y-coordinate of the best value.
]

154 Agent-based Spatial Simulation with NetLogo 2

globals
21 [

global-best-x ; x-coordinate of the best value found by the swarm.
global-best-y ; y-coordinate of the best value found by the swarm.
global-best-val ; best value found by the swarm.
true-best-patch ; patch containing the best value.

26]

Listing 5.12. Initial PSO model (data structures)

Figure 5.13. Initial state of the model, with its landscape
and default values, after calling setup

Each patch is therefore associated with a value val, which corresponds to

evaluating the objective function whose values are given by the coordinates of

the patch. Each turtle is a particle, and is naturally aware of its own position.

They are assigned a velocity in each dimension, vx and vy. To implement

particle memory, i.e. the best position found until now, we use three variables:

personal-best-x and personal-best-y, which store the best position, and

personal-best-val, which stores the value at this position.

Finally, to allow particles to communicate, we use global variables to save

the best position found until now, similarly to how the positions are saved by

each individual particle. Each particle-turtle has access to this and can compare

itself to it. Thus, in some sense, all particles are able to communicate with each

other.

Swarm Problem-Solving 155

Although in a real problem setting we will not necessarily be able to

recognize the solution value as such, this is an example, and the global variable

true-best-patch stops the model when the best value is found.

Next, we create the patch landscape:

to setup-search-landscape
; Create a hilly landscape.
ask patches [set val random-float 1.0]

4

; Smooth the landscape.
repeat landscape-smoothness [diffuse val 1]
let min-val min [val] of patches
let max-val max [val] of patches

9

; Normalize the values between 0 and 1 (0.9999 to make sure that
; only one single patch has value 1 for later).
ask patches [set val 0.99999 * (val - min-val) / (max-val - min-val)]

14 ; make sure that one single patch contains the global optimum, which has
value 1.0.

ask max-one-of patches [val]
[
set val 1.0
set true-best-patch self

19]

ask patches [set pcolor scale-color gray val 0.0 1.0]
end

Listing 5.13. Initial PSO model (initializing the landscape)

The procedure assigns a random value to each patch, then uses the value

of the landscape-smoothness interface to “smooth” the patches relative to

each other by several iterations of diffusion. Finally, we normalize the values

strictly between 0 and 1, and select a random patch to give it the value 1.

Thus, the initialization procedure creates this landscape, and creates a

certain number of turtles (population-size, configurable in the interface)

to model the swarm particles.

156 Agent-based Spatial Simulation with NetLogo 2

to setup
ca

3 setup-search-landscape

; create the particles and position them randomly.
create-turtles population-size
[

8 setxy random-xcor random-ycor

; to each particle, assign a random velocity according to a normal
distribution

; centered around zero with a standard deviation of 1, in both the x-
and y-directions.

set vx random-normal 0 1
13 set vy random-normal 0 1

; the starting point is also the best known position until now.
set personal-best-val val
set personal-best-x xcor

18 set personal-best-y ycor

; choose a random NetLogo base color, excluding gray.
set color one-of (remove-item 0 base-colors)

23 ; make the particle easier to see.
set size 4

]
update-highlight
reset-ticks

28 end

to update-highlight
ifelse highlight-mode = "Best found"
[watch patch global-best-x global-best-y]

33 [
ifelse highlight-mode = "True best"
[watch true-best-patch]
[reset-perspective]

]
38 end

Listing 5.14. Initial PSO model (turtle initialization)

Each particle is randomly assigned a position and a velocity. The velocity

is between 0 and 1. Of course, the current best position is the only one

encountered so far. The update-highlight method displays the best global

patch as well as the best patch found until now.

Swarm Problem-Solving 157

Finally, the go function implements the actual PSO algorithm. At each stage

of the algorithm, each particle performs three steps:

1) Evaluation: test whether its current position is better than the best

position found until now.

2) Comparison: check the best values found by the other particles.

3) Imitation: move, attracted by the particle’s best position and the best

position found by other particles.

This procedure is quite long, so we will split it into these three steps.

to go
2 ask turtles [

; should particles leave a trail?
ifelse trails-mode = "None" [pen-up] [pen-down]

; 1) Evaluation: update the best position found until now by each
particle,

7 ; if necessary.
if val > personal-best-val
[
set personal-best-val val
set personal-best-x xcor

12 set personal-best-y ycor
]

]
...

Listing 5.15. Initial PSO model (evaluation)

In this first part, we note the value of the current patch (which we arrived

at in the previous step). If it is better than the previous best recorded position,

we update it. We save both the position and its value.

...
; 2) Comparison: update the best global position of the swarm if

necessary.
ask max-one-of turtles [personal-best-val]
[

5 if global-best-val < personal-best-val
[
set global-best-val personal-best-val
set global-best-x personal-best-x

158 Agent-based Spatial Simulation with NetLogo 2

set global-best-y personal-best-y
10]

]
if global-best-val = [val] of true-best-patch
[stop]

15 if (trails-mode != "Traces")
[clear-drawing]

...f

Listing 5.16. Initial PSO model (comparison)

In the second part, we do the same with the best global value depending on

the best particle-specific value: we ask each particle for their best value, and

update the global optima. If we observe that the optimal value has been found,

we terminate the simulation.

...
; 3) Imitation :

3 ask turtles
[
set vx particle-inertia * vx
set vy particle-inertia * vy

8 ; change my velocity, "attracted" by the best personal value.
facexy personal-best-x personal-best-y
let dist distancexy personal-best-x personal-best-y
set vx vx + (1 - particle-inertia) * attraction-to-personal-best *

(random-float 1.0) * dist * dx
set vy vy + (1 - particle-inertia) * attraction-to-personal-best *

(random-float 1.0) * dist * dy
13

; change my velocity, attracted by the best global value.
facexy global-best-x global-best-y
set dist distancexy global-best-x global-best-y
set vx vx + (1 - particle-inertia) * attraction-to-global-best *

(random-float 1.0) * dist * dx
18 set vy vy + (1 - particle-inertia) * attraction-to-global-best *

(random-float 1.0) * dist * dy

; speed limits are especially necessary because this environment is
; torus-shaped, and particles can accelerate continuously on the torus

to unreasonable speeds.
if (vx > particle-speed-limit) [set vx particle-speed-limit]

23 if (vx < 0 - particle-speed-limit) [set vx 0 - particle-speed-limit]
if (vy > particle-speed-limit) [set vy particle-speed-limit]
if (vy < 0 - particle-speed-limit) [set vy 0 - particle-speed-limit]

; turn in the direction of my velocity

Swarm Problem-Solving 159

28 facexy (xcor + vx) (ycor + vy)

; move forwards, by an amount determined by my velocity
fd sqrt (vx * vx + vy * vy)

33]
update-highlight
tick

end

Listing 5.17. Initial PSO model (imitation)

Finally, the third part uses the model for movements. The first section (lines

5 and 6) starts with the particle-inertia parameter from the interface,

which is applied to the velocity.

Next, we find (lines 8–18) the NetLogo equivalent of equation [5.4],

applied in two stages, with attraction toward the best point encountered by

the particle, followed by attraction toward the best global point. The ϕ1 and

ϕ2 parameters are specified by the values attraction-to-personal-best
and attraction-to-global-best from the interface, multiplied by a

random value between 0 and 1 that is recalculated at each step. The inertia

parameter added to the model is also taken into account via the term (1 -
particle-inertia).

The method used to calculate the vector in the direction of the best point

encountered personally or the best global point is specific to NetLogo, and

deserves some explanation: we use facexy to point the turtle toward each

of these points. Then, we calculate the distance between the turtle and these

points. Finally, we use this distance multiplied by the primitive vx or vy to

obtain the components of the vectors in the direction of these points. vx and vy
represent one unit along the x- or y-axis in the current direction (facexy) of the

turtle (following a unit vector). Thus, the formulas dist * vx and dist * vy
give the components of the vectors pointing toward the best point encountered

by the particle and the best global point, respectively.

After this, we check (lines 20–25) that the new velocity does not exceed

Vmax, which is determined by the value of the particle-speed-limit
interface.

Finally (lines 28–31), we adjust the orientation of the turtle by that of the

velocity vector, then move it a distance equal to the length of this vector.

160 Agent-based Spatial Simulation with NetLogo 2

5.5.1.3. Results

After using setup to initialize the landscape and the mode, we run the

algorithm with the go method. We can highlight the position of the best

solution by using highlight-mode set to True best, as in Figure 5.14.

Similarly, it is often helpful to turn on particle trails by setting trails-mode
to Traces.

Figure 5.14. Highlighting the target point. For a color version of the
figure, see www.iste.co.uk/banos/netlogo2.zip

When we run the model, we observe that although it does indeed find the

best solution in many cases, sometimes it simply fails. The best value found

is indicated by best-value-found, and is very close to 1, but sometimes the

algorithm cycles around local optima instead of finding the global optimum.

Obviously, we cannot guarantee to find the optimum with this algorithm,

and depending on the problem it can be difficult to know for sure that the

optimum has been found, even when it has.

However, we see that over time, since all particles communicate among

themselves, if they have not discovered the zone with the global optimum,

then are ultimately attracted by a local optimum and bunch up around it. We

can strongly influence this behavior with the inertia to force particles to follow

larger cycles, but this depends on the landscape or the function with which the

particles are embedded, as we can see in Figure 5.15.

Swarm Problem-Solving 161

Figure 5.15. The model is stuck inside a local optimum. For a color
version of the figure, see www.iste.co.uk/banos/netlogo2.zip

The authors of PSO very quickly identified that this behavior is linked to

the fact that particles communicate globally. As we mentioned in section 5.2,

interactions are almost never global in natural models. If we wish to remain

true to the natural source of inspiration, the individuals in the simulation will

likely communicate with their neighbors or acquaintances, but likely not with

the whole group. In the cultural models mentioned earlier, knowledge is not

communicated globally, but is disseminated by acquaintance.

5.5.2. Model with local interactions

Kennedy and Eberhart very quickly suggested a version of PSO in which

the particles have a network of such acquaintances, and do not communicate

globally but only within this network. In their model [EBE 95], they do

not use spatial locality but locality of acquaintance, which remains invariant

throughout the simulation. Usually, particles only know two, four, etc., other

particles, always the same ones, and so form a network of acquaintances

shaped like a ring as shown in Figure 5.16. However, other shapes are also

possible.

The basic idea is that discovering a local optimum influences the network

of acquaintances, and its influence diminishes over distance in the network.

162 Agent-based Spatial Simulation with NetLogo 2

Whereas with global communication individuals end up converging toward a

point that might be a local optimum, networks of acquaintances allow groups to

form, increasing the chance of finding the global optimum without converging

to a unique point in space.

A

B

C

D

E

F

G

H

Figure 5.16. Network of acquaintances in the shape of a ring. Each
particle is connected to four others

The notion of link provided by NetLogo is ideal for implementing this

algorithm. We will use this mechanism, but first we should discuss how to

modify the initial PSO algorithm. In the following, we will retain global search

among all particles, but only for the purpose of terminating the algorithm.

Apart from this, the only modification is to assign a set of “friendly” particles

to each particle and program them to memorize the best value within their

network of acquaintances in addition to their best personal value.

The particle motion formula remains exactly the same, except that the

best global point pg is replaced by the best point within the local network

of acquaintances of the particle pil.{

vi(t) =
vi(t− 1) + ϕ1 (
pi −
xi(t− 1)) + ϕ2 (
pil −
xi(t− 1))

xi(t) =
xi(t− 1) +
vi(t)

[5.6]

Swarm Problem-Solving 163

Let us now consider the changes that must be made to the NetLogo model

above to take into account this network of acquaintances. The first change is to

store the best position found within the network of acquaintances and its value,

as well as the best position found individually by the particle.

turtles-own
[

4 vx ; velocity along the x-axis.
vy ; velocity along the y-axis.

personal-best-val ; best value encountered until now.
personal-best-x ; x-coordinate of the best value.

9 personal-best-y ; y-coordinate of the best value.

; We add a variable for the best value found within the network of
acquaintances.

local-best-val ; best value encountered locally until now.
local-best-x ; x-coordinate of the best local value.

14 local-best-y ; y-coordinate of the best local value.
]

Listing 5.18. PSO model with locality (data structure)

During initialization, we also need to create this network of acquaintances.

We will use the NetLogo links to do this, with a ring-shaped network like the

one described earlier. Since each particle-turtle is numbered, and since this

number can be accessed with the who command, we will use it to create a link

(create-link-with) with the two next particles, as if the set of particles were

arranged as a torus.

; create a network of links between particles so that each particle has
; n neighbors (where n is even) in the form of a ring (unique, to control

the swarm).
to create-the-links

5 ask turtles [
create-link-with turtle ((who + 1) mod population-size)
create-link-with turtle ((who + 2) mod population-size)

]
ask links [set color 15]

10 end

Listing 5.19. PSO model with locality (network of acquaintances)

164 Agent-based Spatial Simulation with NetLogo 2

Of course, we need to slightly update the initialization method to

add a call to the method for creating links (create-the-links) before

update-highlight.

to setup
...

set size 4
]

5 create-the-links
update-highlight
reset-ticks

end

Listing 5.20. PSO model with locality (Initialization)

The method for updating particles as a function of the best personal value

is expanded to include code to update the best local value within the network

of acquaintances (lines 15 and after).

2 to go
ask turtles [

...
; update the best position found by each particle until now

7 ; if necessary.
if val > personal-best-val
[
set personal-best-val val
set personal-best-x xcor

12 set personal-best-y ycor
]

; update the best local position found within the neighborhood
; if necessary.

17 let best max-one-of link-neighbors [personal-best-val]
if [personal-best-val] of best > personal-best-val
[
set local-best-val [personal-best-val] of best
set local-best-x [personal-best-x] of best

22 set local-best-y [personal-best-y] of best
]

Swarm Problem-Solving 165

; if local-best-val = [val] of true-best-patch
; [stop]

27]
...

Listing 5.21. PSO model with locality (Local Comparison)

Finally, the algorithm for movements is almost the same as

the global version. We rename attraction-to-global-best to

attraction-to-local-best in the interface. Next, instead of using

global-best-x and global-best-y, we use the values local-best-x and

local-best-y of the particle.

...
2 ask turtles

[
...

; change my velocity, attracted by the best local value.
7 facexy local-best-x local-best-y

set dist distancexy local-best-x local-best-y
set vx vx + (1 - particle-inertia) * attraction-to-local-best *

(random-float 1.0) * dist * dx
set vy vy + (1 - particle-inertia) * attraction-to-local-best *

(random-float 1.0) * dist * dy

12 ...
]
...

end

Listing 5.22. PSO model with locality (Local Imitation)

If we run this new model, besides the fact that there are links between the

particles, we see that groups form around optima distributed throughout the

landscape. Thus, the models explores space better, and is likely to result in all

particles converging toward a single point, as in Figure 5.17.

The article by Kennedy and Eberhart [EBE 95] studies the differences

between the global and local models, and notes that the version with

acquaintances tends to avoid local optima more, although it requires longer

on average to find the optimum.

166 Agent-based Spatial Simulation with NetLogo 2

Figure 5.17. Search with communication local to the network of
acquaintances. For a color version of the figure, see

www.iste.co.uk/banos/netlogo2.zip

5.5.3. Applications and discussion

We now propose to apply this model to a more concrete example, although

it still very much remains a “toy problem”, and at the same time take the

opportunity to use the GIS (Geographical Information System) extension of

NetLogo mentioned in Volume 1 [BAN 15a] in section 3.6.5. To do this,

we will replace the previous automatically generated landscape with data on

population densities in the Île de France (Paris region), loaded with the GIS

extension, and search for the most densely inhabited communes.

The data that we will use originate from the following Open Data portal:

https://www.data.gouv.fr/fr/datasets/

The data may be found by searching for “données communales population
Île de France” (communal population data Île de France) 5.

They contain a “shapefile” which reproduces the limits and boundaries

between the communes in the Île de France, as well as attributes specifying

5 https://www.data.gouv.fr/fr/datasets/donnees-communales-sur-la-
population-d-ile-de-france-idf/.

Swarm Problem-Solving 167

the population densities within this communes based on various censuses. To

begin with, we will show how to load these data with NetLogo, then we will

replace the automatically generated landscape with these data.

5.5.3.1. Loading the GIS data

First, download the four data files on the page specified above, and place

them in a data folder in the same place as the following NetLogo model

(listing 5.23).

extensions [gis]
globals [pop-dataset]
patches-own [population]

5 to setup
clear-all
; Load the GIS data
set pop-dataset gis:load-dataset

"data/donnees-communales-sur-la-population-dile-de-france.shp"
; Create a link between the size of the NetLogo world and the size of the

data.
10 gis:set-world-envelope (gis:envelope-of pop-dataset)

; Initialize the display.
display-coms

end

Listing 5.23. Loading GIS data

In this part of the model, after declaring the gis extension which is included

by default in standard installations of NetLogo, we will declare a global

pop-dataset variable that contains the set of downloaded geographical data.

We will associate each patch with a population density value, and finally we

will load the data with a setup procedure.

In order to ensure that there are sufficiently many patches, we adjust

max-pxcor and max-pycor to 100 in the graphical interface. The values of

min-pxcor and min-pycor will automatically be set to −100. We also set the

Patch size to 4. This results in a set of 200× 200 patches. Finally, we create

a button for the setup method.

This method uses the gis:load-dataset command and stores the set

of data read from the downloaded files, which is passed as an argument,

in pop-dataset. The next command gis:set-world-envelope links the

space of geographical data with the NetLogo space. It then calls the

display-coms method, which is given in listing 5.24.

168 Agent-based Spatial Simulation with NetLogo 2

to display-coms
2 gis:set-drawing-color black

; Draw the GIS data
gis:draw pop-dataset 1

; Store the data of the intersected polygon in each patch.
7 gis:apply-coverage pop-dataset "PSDC1990" population

ask patches [
; Convert the data strings into numbers, carefully avoiding
; NaN values for zones outside the dataset.

12 ifelse (is-string? population) [set population read-from-string
population] [set population 0]

; Color the patch as a function of the population
set pcolor scale-color red population 200000 0

]
end

Listing 5.24. Displaying GIS data

This procedure performs two actions:

1) Display the GIS data in a separate drawing layer.

2) Update the patches with the densities within each commune and assign

a color accordingly.

The first action is performed by the gis-draw pop-dataset 1 command.

The second action is performed in two steps. First, the data from the GIS

attributes are assigned to the population value associated with each patch.

Here, we chose to use the census from 1990. The apply-coverage command

uses the value of the commune that covers the largest proportion of a patch to

determine which value should be assigned.

Next, for each patch, we convert this value into a color. Since some patches

do not cover any commune and so do not have a value (or more precisely, have

the value NaN , Not a Number), we check that the value is indeed a datastring.

If so, we convert into a number, otherwise we record 0. We use scale-color
between the maximum and minimum popultion to assign a scale from white to

red on the patches to represent density.

Swarm Problem-Solving 169

Figure 5.18 shows the results.

Figure 5.18. Displaying GIS data and population density on each patch
for the communes of Île de France. For a color version of the figure, see

www.iste.co.uk/banos/netlogo2.zip

5.5.3.2. Using PSO with GIS data

We are almost ready to reuse the earlier PSO model and apply it to the data.

The first modification will be to add a population variable representing the

densities on each patch.

patches-own [
population ; Each patch contains a value for the population density of

the commune where it is located.
val ; Fitness value for PSO.

4]

Listing 5.25. PSO with GIS data (data structure)

170 Agent-based Spatial Simulation with NetLogo 2

The data is loaded as shown earlier.

1 to load-gis-data
; Load the GIS data.
set pop-dataset gis:load-dataset

"data/donnees-communales-sur-la-population-dile-de-france.shp"
; Create a link between the size of the NetLogo world and the size of the

data.
gis:set-world-envelope (gis:envelope-of pop-dataset)

6 end

Listing 5.26. PSO with GIS data (loading GIS data)

Finally, we modify the setup-search-landscape method by reusing the

code from earlier (listing 5.27).

to setup-search-landscape
load-gis-data

4 gis:set-drawing-color grey
; Draw the GIS data
gis:draw pop-dataset 1
; Store the data of the intersected polygon in each patch.
gis:apply-coverage pop-dataset "PSDC1990" population

9

ask patches [
; Convert the data strings into numbers, carefully avoiding
; NaN for zones outside the dataset.
ifelse (is-string? population) [set population min (list

read-from-string population 200000)] [set population 0]
14 ; Color the patch as a function of the population

set pcolor scale-color red population 200000 0
set val population / 200000

]
end

Listing 5.27. PSO on the GIS data (Creating the landscape)

Here, the population is normalized between 0 and 1, to fit our algorithm.

Finally, now our algorithm does not know the maximum population value,

so we will allow it to keep running, and we can remove the section of code that

terminates it in the go function (listing 5.28).

Swarm Problem-Solving 171

; if global-best-val = [val] of true-best-patch
2 ; [stop]

Listing 5.28. PSO with GIS data (Model Termination)

Figure 5.19. Search for the most densely inhabited commune. For a
color version of the figure, see www.iste.co.uk/banos/netlogo2.zip

5.6. Conclusion

Throughout this chapter, we showed how some problems can be resolved

by using models biologically inspired by the collective behavior observed in

the animal world. These models are powerful due to their adaptability and

robustness, which explains why they have permeated research fields that use

descriptions phrased in terms of a large number of interacting individuals

operating in a decentralized manner within a dynamic environment. This

touches upon the notion of complex systems, and if we wish to study the

phenomenological aspects associated with swarm intelligence by unraveling

these concepts to their roots, we need to examine the concept of organization.

These individuals can be observed and act as an integral part of the system

to which they belong. Their actions produce feedback which in turn generates

172 Agent-based Spatial Simulation with NetLogo 2

boundaries or shapes, forming organization, and at the same time developing

a notion of what it means to be a part of this organization, and therefore

a selection criterion. Organization thus creates interrelational connections

between individuals, who become parts of a whole. It gives solidarity and

robustness to these connections, and endows the system with a chance

of surviving perturbations. Organization transforms, creates, connects and

preserves. In [MOR 77], Edgard Morin invented the word “organisaction” to

emphasize its active nature. The organization present in this type of model

is derived from the system itself, and exhibits self-organizing properties that

reflect the system’s ability to “create itself” or “self-assemble” by producing its

own, uninterrupted principles of organisaction. This self-organization is what

we wish to replicate in our models, and represents the “emergent” result of

calculations in the form of structures such as paths.

6

Exploring Complex Models in NetLogo

6.1. Introduction

Models and their simulators are becoming increasingly complex. They

are typically the fruit of studying a phenomenon, which leads to a careful

arrangement of theories, hypotheses, field data and paradigms (ODEs, PDEs,

MASes, cellular automata, etc.). But the challenges and ambitions of modelers

are constantly changing and in particular expanding, causing models and

simulations to become increasingly expensive, both in terms of their design

and analysis. Developing high-performance calculation systems and software

for systematic exploration can help to iron out some of these difficulties. But,

it is not enough.

Using simulation to study a model requires a large number of executions

to obtain the desired results in various forms (tables, graphs and databases),

which is a crucial step in evaluating, validating and developing new

knowledge about the studied phenomenon. It is often impossible to conduct

a comprehensive study within a reasonable time frame, given the number

and nature of the parameters that need to be explored. Having to resort to

innovative algorithms to reduce the domain of the parameters to be explored is

unavoidable.

Chapter written by Philippe CAILLOU, Sébastien REY COYREHOURQ, Nicolas MARILLEAU

and Arnaud BANOS.

174 Agent-based Spatial Simulation with NetLogo 2

This chapter aims to show how complex models may be explored by using

new, distributed exploration software that makes high-performance computing

resources and the corresponding exploration methods available to everyone.

6.2. Complex models and simulators

According to [TRE 08] et al., a simulator is a “computer program

capable of interpreting dynamic models. It is used to generate the desired

perturbations” within its models. To achieve this, it uses a programming

language to implement models, and routines to execute, visualize and

configure them.

If we view the simulator as an instrument that breathes life into one or

several models, then it also becomes a tool for manipulating these models, or

in many disciplines, comes to represent the actual model itself. These kinds

of simulators can be viewed as a box equipped with inputs and outputs. Their

internal workings are sufficiently well understood to be recognizable, but our

knowledge of the simulator-model is rarely absolute.

Simulators of complex models are inherently complex systems: they relate

entities and processes via feedback loops that express themselves continuously

as the model unfolds. At this point, it becomes impossible to determine

the direct relationship between inputs and outputs. In order to create a

response mapping for validating, calibrating and operating the model, we

must first explore the parameter space. Exhaustive exploration will provide

a comprehensive response mapping, but will be costly or inaccessible. Partial

exploration of the parameter space produces an imperfect response mapping,

but reduces the costs. Suitably adapted exploration algorithms will improve

the process of producing these mappings, while simultaneously minimizing

the costs associated with production.

6.2.1. Characteristics of complex simulators

Complex simulators are characterized by their complex internal dynamics,

which are often stochastic, and their execution times, which are often long,

but above all else by the way that they directly relate to the line of scientific

questioning at hand.

Exploring Complex Models in NetLogo 175

Complex simulators are described by:

– Strong nonlinearity: the behavior and responses of models of dynamic

systems are not deterministic, and are influenced by the presence of nonlinear

relationships and feedback loops.

– Indefinite or infinite number of reachable states: the complex internal

dynamics of these models, combined with simulation paradigms and

tools, builds randomness into the results. For example, in multiagent

modeling/simulation, randomness is used as an artifact to reorganize agent

scheduling and to simulate a situation in which they are executed in parallel.

In experimental conditions, to obtain significant behavior, we need to execute

the same code a large number of times.

– Large number of parameters to consider: the large number of

parameters combined with the simulation time and dimensions of the complex

phenomenon being studied makes exhaustive exploration of the parameter

space expensive or impossible. This means that deterministic methods that

guarantee the global optimum cannot calculate the solution within a reasonable

time frame.

– Sensitivity of the response to the inputs: small changes in the values of the

parameters produce strong variations in the simulation outputs. This means that

there are a large number of local optima, and search methods that successively

iterate over the immediate neighborhood can prove ineffective.

– Knowledge of available experimental data is often scarce: the lack of

data can make calibrating the model difficult in situations where it would be

desirable to compare simulated results with real results.

6.2.2. Inverse problem-solving by exploration: a necessity

As stated above, complex simulators have several components: a

simulation model; inputs with the measured variables and input parameters;

and outputs with observable variables. This section analyzes the role of each

of these components.

If we consider combinatorial optimization problems such as the Traveling
Salesman Problem (TSP) or Knapsack, the number of combinations to be

evaluated very quickly becomes problematic as the number of objects in

the problem definition increases, assuming that an exact optimal solution is

176 Agent-based Spatial Simulation with NetLogo 2

desired. If we take the more fun example of combinatorial game theory, the

number of legal combinations on a 19 by 19 board in the Chinese game of Go

was estimated to be 2.0816819938210170 by [TRO 07]. Even though Tromp

verified this estimate in 2016 on his website, the questions raised by this

game continue to challenge the best artificial intelligence programs [BOU 01]

even despite spectacular progress in the last few years, most notably by the

application of heuristics that are more effective than conventional approaches.

In the case of discretized continuous problems, such as search for the best

parameter values of a simulation, implementing a comprehensive experimental

protocol (other more targeted strategies exist) poses two problems.

First, discretization does not help to solve the combinatorial problem. To

give a more concrete example, if a simulation has 5 parameters, and each

of these parameters are discretized into 10 steps, then there are already 105

possible combinations to evaluate. If we assume that the simulation model

thus executed is stochastic (10 iterations), and can be run relatively quickly

(1 min), then the total execution time of this procedure, despite only providing

a relatively “coarse” coverage of the parameter space, is approximately equal

to 2 years of calculations. Parallelizing such a calculation, i.e. executing it

on multiple processors or computers in parallel, could obviously reduce this

calculation time to more reasonable scales, but this does not solve a second,

more restrictive problem.

If we choose this grid to discretize the parameters, we risk missing out

on potential solutions. This becomes increasingly difficult and complex as

the number of parameters increases, according to the phenomenon of the

curse of dimensionality described by Richard Bellman. This problem is mainly

statistical in nature; although in one case 100 points might be sufficient to begin

to make inferences in a (0..1) space in 1 dimension (distance of 0.01 between

points), 100 points in the same (0..1) space in 10 dimensions would only cover

a tiny fraction of the available volume. Each point would be surrounded by a

large empty region of space. Making inferences based on such a low coverage

of space is unsafe. To obtain equivalent coverage, with a distance of 0.01
between each point, we would need 1020 points, which seems impressively

high [BEL 61]. The effects of this phenomenon are visualized slightly more

clearly in Figure 6.1.

Among the many tools that are available to researchers for tackling this

exploratory problem, we have decided to present in this chapter a class

Exploring Complex Models in NetLogo 177

of algorithms (evolutionary algorithms, EA) belonging to the family of

metaheuristics. These probabilistic algorithms are capable of exploring large

parameter spaces section-by-section without being limited by the number

of dimensions. Even though these algorithms do not guarantee uniqueness

or optimality of the solution (we will work in terms of local or global

optima) after completing their exploration, they are superior to conventional

deterministic and exact approaches in every way. Due to the two issues

mentioned above (combinatorial explosion and curse of dimensionality), it

would be impossible for an exact deterministic algorithm to guarantee in

advance that an optimal solution will be found. To guide this exploration

as best as possible, probabilistic (Es) and deterministic (for example, A*)

approaches that allow suboptimal solutions can implement heuristics. The best

illustration of how an algorithm based on a heuristic differs from a classical

algorithm was given by [MCC 04]:

Here’s an algorithm for driving to someone’s house: take
Highway 167 south to Puyallup. Take the South Hill Mall exit and
drive 4.5 miles up the hill. Turn right at the light by the grocery
store, and then take the first left. Turn into the driveway of the
large tan house on the left, at 714 North Cedar.

Figure 6.1. Illustration of the effects of the curse of dimensionality on
an experimental setup with 3 points strictly between 0 and 1. For a color

version of the figure, see www.iste.co.uk/banos/netlogo2.zip

178 Agent-based Spatial Simulation with NetLogo 2

Here’s an heuristic for getting to someone’s house: find the
last letter we mailed you. Drive to the town in the return address.
When you get to town, ask someone where our house is. Everyone
knows us – someone will be glad to help you. If you can’t find
anyone, call us from a public phone, and we’ll come get you.

This metaphor also illustrates the extent to which the definition of the

heuristic itself can cause the algorithm to explore very different paths. In this

sense, there cannot exist a perfect heuristic, only heuristics that provide better

or worse results in the context of a given problem.

Using these algorithms remains expensive in terms of computation time,

as a great many simulations (often several hundreds of thousands [SCH 15])

must be performed to advance the exploration procedure implemented by these

algorithms. These approaches usually become impossible to implement on

conventional computers as soon as the simulations begin to take longer than 1

min to run. If we wish to respect good principles of model building by viewing

exploration as a systematic action that generates and measures the model

dynamics each time that the modelers implement a variation in the hypotheses

within the model, it is imperative that these exploration algorithms produce

their results as quickly as possible. These algorithms therefore necessarily

require intensive resources (high-performance computing, HPC).

6.2.3. HPC in simulations

Models and simulators are able to reproduce increasingly broad and

complex phenomena at ever higher levels of expected accuracy. The resources

required to execute simulations are growing, and the required number of

executions is on the rise, meaning that simulation activity occupies an ever-

increasing role in the modeling/simulation process.

Moreover, a vast range of computational resources are available today

on networks (grid computing and clusters) and our own personal computers

(CPUs and GPUs). These resources are often underutilized despite their

significant potential: for example, cleverly utilizing the GPU (available in

every computer) can increase the performance (in terms of memory and

calculation time) by a factor of 10, 100 or even more as compared to running

Exploring Complex Models in NetLogo 179

the same simulation agent on one single core [GIB 15]. The usage of these

resources, however, remains restricted due to their very specific technical

nature.

Thus, given the multidisciplinary nature of the modeling/simulation

activity, and the expense involved in comprehensively studying a simulation

model, designing and developing computing tools have become the most

recent challenges. Finding an answer to these scientific obstacles would

circumvent most of the prerequisites of HPC. This is precisely the objective

pursued by a few cross-disciplinary research projects on distributed systems

based on OpenMOLE and distributed algorithms specific to the world of agent-

based simulation.

The topic of distributing the execution of a simulator is approached from

two different perspectives in the literature: (i) distributing a simulation over

multiple cores and (ii) distributing the experimental protocol over a set of cores

(each simulation runs on one single core).

We will focus on the second of these points below. Readers may, however,

refer to [ROU 16] for more information on distributing simulations.

Softwares, such as OpenMole, are now available that allow us to exploit

these kind of resources and explore new models and algorithms.

The set of components presented in this chapter (modified model,

exploration, results and graphs) may be downloaded from the following online

repository: https://github.com/Spatial-ABM-with-Netlogo/Chapitre-F.

OpenMOLE is required in order to execute the exploration workflows

described in this chapter (replications and calibration). A stable version is

available at http://www.openmole.org/, and the most recent version is available

at http://next.openmole.org/.

6.2.4. The underlying model: NetLogo Ants

The Ants simulation model by Wilensky [WIL 97] reproduces in NetLogo

a model that was originally developed in StarLogo. It is available from the

NetLogo website, and is included by default in the software model library.

180 Agent-based Spatial Simulation with NetLogo 2

This NetLogo model represents a colony of ants as they forage for food.

Each ant follows a set of simple rules, but viewed as a whole the colony reacts

in complex ways. When an ant finds a piece of food, it brings it back to its nest,

and leaves a chemical trail behind it. If other ants “smell” this trail, they follow

it until they reach the food. As increasingly many ants transport the food back

to the nest, they reinforce the chemical trail.

This model consists of three parameters:

– a Population of initial ants;

– an Evaporation-rate that controls the evaporation of the chemical trail;

– a Diffusion-rate that controls the diffusion of the chemical trail.

6.2.5. Calibrating a model by optimization

One conceivable way of calibrating a simulation model is to reduce it

to an optimization problem. In other words, once an expert has specified

criteria (data series, patterns or schematic facts [GRI 05]) for the outputs of

simulation, the objective is to experiment with the model in order to test its

ability to reproduce (or not) these criteria when its exploration is guided by an

optimizer (which is assumed to be more sophisticated than a random walk) that

ranges over a broad spectrum of admissible dynamics (initial conditions, game

parameters and parameter values, mechanisms, bounds for admissible values

and stopping conditions).

Exploring Complex Models in NetLogo 181

Whatever the output of this optimization, alone it cannot provide sufficient

evidence to definitively validate or reject the assumptions embodied by the

model in the context of an attempt to elucidate a complex phenomenon, since

simulations are reconstructions of reality within an artificial environment (and

are therefore are projections of expert knowledge that is necessarily biased and

incomplete) [BUL 05] and also because the principle of equifinality in complex

systems (i.e. the possibility that a system may reach the same end state by

means of different initial states and trajectories) prevents us from drawing any

such conclusions [REY 15].

Without going into the full details of the conventional mathematical

notation typically found in this area of the literature (see [WEI 11] and

[REY 15] to find out more), at least two spaces must be defined to describe

how evolutionary algorithms work, which in our case will fulfill the role of

optimizer.

For [WEI 11, WEI 22], the mathematical meaning of optimization is “ [...]
is the process of solving an optimization problem, i. e. finding suitable solutions
for it. Optimization problems require finding [...] an input value x∗ for which
a mathematical function f takes on the smallest possible value (while usually
obeying to some restrictions on the possible values of x∗)”, where in this case

the mathematical notation ∗ denotes an optimal value.

The problem space X of an optimization problem may be defined as the

vector containing all elements x that could be solutions. A candidate solution
x is defined as an element of the problem space X of an optimization problem.

The objective of optimization is to use a suitable optimization algorithm

to determine the vector of candidate solutions x∗ that best fulfills the criteria

defined by the user. This assumes that we are able to characterize a candidate

solution x1 in X relative to another candidate solution x2 in X.

As already discussed above, the optimizer algorithm that explores the space

intelligently is guided by a heuristic function, or more precisely an objective

function: an objective function f : X → R is a mathematical function which
is subject to optimization.

When this objective function takes a candidate element x from the problem

space X as a parameter, it returns a value f(x) that describes its quality with

respect to the optimization problem.

182 Agent-based Spatial Simulation with NetLogo 2

However, most problems will require multiple criteria to be optimized

simultaneously. We will therefore directly consider the question of how

to define this kind of problem, which can be summarized as follows:

min(f1(x), . . . , fk(x) with k > 2.

The literature also often refers to this kind of problem by using the notation

of vector functions
f . We define a set
f : X → R
n made up of n objective

functions fi : X → R with ∀i ∈ 1 . . . n. Applied to a candidate solution

x ∈ X, this function returns a real vector of dimension n that can be projected

in a space R
n, which is also known as the objective space Y.

In summary, each pair composed of one target function vector
f and one

candidate solution x is evaluated to give a real vector of dimension n that

situates the candidate solution within the objective space R
n, also called Y.

The optimizer will choose the next candidate solution x to evaluate based

on the position of the current candidate solution within this space Y. Before

discussing in any more detail the principles used by the optimizer to concretely

make this decision in a multiple-criteria space Y that requires a compromise,

we will define the problem space, the objective space and the objective

functions within the context of the Ants model.

6.2.6. Formulating objectives for the Ants model

In the Ants model, we saw that there are three parameters that can be varied

as model inputs.

The evaporation parameters Evaporation− rate and Diffusion− rate
each range over the domain R between the values of 0.0 and 99.0. We will also

define three objective functions {f1, f2, f3}.

The population parameter is set to 125 ants in the colony by default, but we

can also choose values in N between 0 and 250:

– the space X is a cube {N,R,R} bounded by {[0, 250], [0, 99.0], [0, 99.0]};

– the space Y relates each point x ∈ X to a point with value f1, f2, f3 in

the unbounded domain {R,R,R}.

Exploring Complex Models in NetLogo 183

Each of the objective functions {f1, f2, f3} are based on the time elapsed

between the beginning of the simulation t0 and the moment at which a heap of

food fully disappears.

– f1 records the time in the simulation (ticks) at which food heap 1

disappears;

– f2 records the time in the simulation (ticks) at which food heap 2

disappears;

– f3 records the time in the simulation (ticks) at which food heap 3

disappears.

The NetLogo function that computes the objective functions is given in

listing 6.1. This calculation is performed at each iteration of the simulation,

during the go loop.

to compute-fitness
if ((sum [food] of patches with [food-source-number = 1] = 0) and

(final-ticks-food1 = 0)) [
3 set final-ticks-food1 ticks]

if ((sum [food] of patches with [food-source-number = 2] = 0) and
(final-ticks-food2 = 0)) [

set final-ticks-food2 ticks]
if ((sum [food] of patches with [food-source-number = 3] = 0) and

(final-ticks-food3 = 0)) [
set final-ticks-food3 ticks]

8 end

Listing 6.1. Function to calculate the objective functions

6.2.7. Adapting the NetLogo Ants model to be used by an
optimizer

To feed these values into the optimizer, the simulation needs to terminate

somehow. We must therefore choose a stopping condition to substitute for a

manual click on the stop button by the NetLogo user. The simplest stopping

condition in this case would be to terminate the simulation when there is

no longer any food available, as shown in listing 6.2. The user does not

intervene, and the optimizer itself calls the function run-to-grid to execute

the simulation until the stopping condition is reached.

184 Agent-based Spatial Simulation with NetLogo 2

to-report go-stop?
2 ifelse (count-food > 0)[

report true
][
report false

]
7 end

to-report count-food
report sum [food] of patches

end
12

to run-to-grid
setup-ants
while [go-stop? = true]
[go

17]
end

Listing 6.2. Stopping condition for the simulation

However, we must be careful to note that, as the optimizer attempts to find

the best set of parameters values to minimize the three objective functions, it

might produce combinations that push the model or model hypotheses to their

limits.

For example, what happens in our simulation model if we
choose the following parameter values?

We can fix the value of the random seed in the setup code in listing 6.3

to see how our program behaves. The results of this experiment are shown in

Table 6.1.

to setup
2 clear-all

random-seed 42
initialize-globals
setup-ants

end

Listing 6.3. Choosing a random seed of 42 in the setup

Exploring Complex Models in NetLogo 185

Population Evaporation−Rate Diffusion−Rate tstop
1 125 25.0 25.0 2583 ticks
2 0 25.0 25.0 ∞
3 25 25.0 25.0 8825 ticks
4 125 0.0 0.0 1374 ticks
5 125 99.0 0.0 1261 ticks
6 125 0.0 99.0 1201 ticks
7 125 99.0 99.0 1254 ticks

Table 6.1. Let us test each of these conditions
with the same random seed (42)

– In case (2), the simulation never terminates, as the stopping condition

is never met. This behavior is clearly undesirable and risks obstructing the

exploration conducted by the metaheuristic. We must therefore specify a value

> 0 for the ant population.

– Case (3) shows that with fewer ants, the simulation requires much longer

to fulfill the stopping condition. There may therefore be very high variability in

the execution times of the model, depending on the parameter values selected

for its evaluation.

– Cases (4,5,6) are interesting, as they produce results that are likely

counter-intuitive. Indeed, in terms of the total execution time, this random seed

yields better results than randomly chosen parameter values (1).

– Indeed, in case (1), we see that poor calibration results in a vacuum effect.

The ants that could potentially head toward the pile of food are diverted from

their tracks by an olfactory trail that mistakenly redirects them toward the

anthill.

186 Agent-based Spatial Simulation with NetLogo 2

This can also be explained by a flaw in the mechanisms originally designed

by the modeler, as ants cannot detect chemical trails between 0.05 and 2.

However, diffusion and evaporation begin cumulating at a unit value of 60,

which is equivalent to the chemical trace deposited on each patch by an ant

that has found food. Therefore, in all of these cases, the model mechanisms

are almost ineffective, and reduce to case (4) in which the ants simply move

according to a random walk.

Will the optimizer be able to find better values in this
activation zone?

If not, we will need to review either the parameters or the mechanism

governing the depositing and trace detection behavior of each ant.

There are several approaches that modelers can take to avoid or limit the

occurrence of behavior that might obstruct exploration:

– fixing the values of parameters that could potentially cause problems,

optionally allowing them to vary at a later point;

– identifying beforehand combinations of parameter values that might

cause problems, and then forbidding the optimizer from choosing them;

– introducing an artificial parameter or mechanism (in other words, one that

is external to the original assumptions) into the model, for example by setting

a maximum threshold of objects (turtles in NetLogo);

– introducing more restrictive stopping criteria;

– directly penalizing undesirable behavior in the objective functions.

Intensive exploration of the search space by the optimizer and the large

number of executions of the simulation that this requires place great strain

on the simulation process. A number of errors often resurface: division by

zero, unexpected behavior, memory overflow, etc. In this sense, this kind of

exploration is part of the “internal validation” of the model [AMB 06].

6.2.8. Choosing an optimizer, evolutionary algorithms

One of the EAs that might help us with this kind of calibration is natively

included in OpenMOLE: the genetic algorithm called NSGA 2 [DEB 00].

Exploring Complex Models in NetLogo 187

Figure 6.2. NSGA 2 step-by-step procedure, inspired
by the original diagram from [DEB 00]

The NSGA-2 algorithm uses a population of size 2 ∗ N , represented in

this diagram by the population Rt. In this algorithm, the best individual is

guaranteed to be retained in the population Rt used to evaluate the fitness.

This property is called elitism in the literature on EAs.

Due to this behavior, the first iteration I0 of the NSGA 2 algorithm is

different from the rest of the procedure, and begins with a population P =2∗N
of individuals with randomly initialized parameter values.

In Figure 6.2, we explain some of the most important parts of this algorithm,

starting with the I1 step:

– In step 2, the population Rt is classified using the non-dominated sorted
(NDS) algorithm developed by Goldberg [GOL 89]. but which was only

implemented for the first time in NSGA by Deb [DEB 00]. This algorithm

groups individuals into successive fronts F1..n using a fitness value calculated

according to the principle of Pareto dominance.

The definition of Pareto dominance and a detailed example of how to

calculate it will be given at a later point in this section.

188 Agent-based Spatial Simulation with NetLogo 2

– In step 3, we see that the NSGA 2 algorithm only fully retains the fronts

F1 and F2. The algorithm truncates the last front F3, since the sum of the

individuals from the fronts selected between F1 and F3 must be ultimately be

equal to N .

– In step 4, the algorithm truncates F3. But since the individuals in F3

cannot be discriminated on the sole basis of their objective values (recall that

the fitness values are equal for all individuals in a given front), NSGA 2 uses

a specific classification based on a so-called crowding distance to ensure that

some diversity is preserved by this truncation.

– In step 5, the offspring population Qt+1 of size N is generated

by selecting (binary tournament selection based on this same crowding

operator), recombining and mutating the individuals randomly selected from

the population Pt+1.

– In step 6, this new offspring population Qt+1 is evaluated. Each individual

is assigned a new vector of values obtained by evaluating this individual on

each objective function.

– In step 7, the new population Qt+1 and the existing population Pt+1 are

merged into the population Rt+1.

Figure 6.3. Steps of the NDS algorithm for calculating successive
fronts with two objectives functions to be optimized. The algorithm

produces five fronts, F1 to F5

Exploring Complex Models in NetLogo 189

The individuals in a Pareto front cannot be distinguished based solely on

their objective values. For example, in Table 6.2, if we assume that the best

individual is the one that minimizes the value of the objectives f1 and f2, we

see that Id is better than Ic on f1, but that Ic is better than Id on f2.

The Pareto front gathers together individuals that are not dominated by any
other individuals in the population. The conventional definition of dominance

states that an element x1 dominates (is preferred to) an element x2(x1
 x2)
if x1 is better than x2 in at least one objective function and not worse with
respect to all other objectives [WEI 11, WEI 65].

If we apply this definition to the population {a..o} shown in Figure 6.2, we

find the following Pareto front of non-dominated individuals: {e, d, c, b, a}.

The NDS algorithm included in Goldberg and Deba’s NSGA 2 calculates

the successive fronts Fi..n by re-evaluating and deleting non-dominated

individuals {I∅} within the population P at each step. For example, to

calculate the next front F2 in Figure 6.3, Deb proposes to delete all non-

dominated individuals I∅ in the front F1 of the population: Pt = Pt − I∅
before recalculating the new rank of the remaining individuals according to the

dominance criterion. In this example, we delete the individuals {e, d, c, b, a},

and calculate the new Pareto front as {f, h, j, k, l}.

Individuals f1 f2 Dominated by Fitness value

a 3.5 1 ∅ 1
b 3 1, 5 ∅ 1
c 2 2 ∅ 1
d 1 3 ∅ 1
e 0.5 4 ∅ 1
f 0.5 4.5 {e} 2
g 1.5 4.5 {d, e, f, h} 3
h 1.5 3.5 {d} 2
i 2 3.5 {c, d, h} 3
j 2.5 3 {c, d} 2
k 3.5 2 {a, b, c} 2
l 4.5 1 {a} 2
m 4.5 2.5 {a, b, c, k, l} 3
n 4 4 {a, b, c, d, e, h, i, j, k, o} 5
o 3 4 {b, c, d, e, h, i, j} 4

Table 6.2. Example of fitness values calculated
using the NDS algorithm with a population of individuals

evaluated using two objective functions f1, f2

190 Agent-based Spatial Simulation with NetLogo 2

6.3. Using NetLogo with OpenMOLE

6.3.1. Presentation of OpenMOLE

OpenMOLE allows us to construct, modify and execute workflows on

distributed computing environments. A workflow may be viewed as a classical

processing chain composed of various tasks/processing steps connected

together with transitions. Unlike other existing workflow engines (Taverna,

Kepler, etc.), OpenMOLE can integrate any kind of task into its workflow so

long as it is available either in native form or as a software plugin (Figure 6.4).

One such example is the NetLogo plugin, originally developed for Jéremy

Fiegel’s model, which we were able to reuse to seamlessly integrate the

SimpopLocal model into our workflows. OpenMOLE can manage workflows

with complex topologies involving loops, trigger conditions for transitions,

aggregation, etc. One particular characteristic of OpenMOLE is the atomicity

of tasks, which allows us to parallelize workflows without requiring the user

to manage any of the drawbacks usually associated with competition.

Figure 6.4. Tasks can have different types

The most significant difference from conventional processing chains is that

the execution of any of these tasks may be delegated to HPC environments
automatically and transparently, with (or without) an explicitly declared

experimental protocol.

Each task has inputs and outputs that depend on processing. The workflows

are executed in a similar manner to a fluid that is allowed to flow within a

Exploring Complex Models in NetLogo 191

constrained environment, starting at a fixed point specified by the user, moving

(or carried, in the spirit of the metaphor) from task to task by the transitions,

which are responsible for the information submitted to them at the end of each

processing step, until this fluid arrives at its destination. The values of the

inputs become known at the point in time when the task is executed, based

on the results that were produced and transmitted into the execution flow by

previously executed tasks. After each processing step, the tasks can convey

outputs to this flow, which will be transmitted to the next task.

Finally, workflows can be constructed by using a dedicated programming

language (Domain Specific Language (DSL)1), or written interactively and

graphically with a user interface. There is much more information on all of

these concepts in publications on the software [REU 13], and its webpage. The

best way to proceed is to give a very simple and visual example of a workflow

that allows us to run a few replications of a NetLogo simulation model, as

shown in Figure 6.5.

6.3.2. Workflow for testing randomness

The effect of randomness on model dynamics is difficult to pinpoint, but

has a very strong impact on the results of exploration based on metaheuristics.

One of the ways to smooth the effects of randomness is to perform a certain

number of replications when executing the simulations. This means repeatedly

executing a simulation with identical parameter values but different random

seeds with the goal of measuring the influence of randomness on variations in

the measured objectives. It may come as a surprise that there is no “magic”

number for the correct number of replications. It can depend on the measured

objective, as well as on the values chosen for the parameters. More systematic

exploration is required to begin to formulate an answer to this question. The

shape of the distribution thus obtained is also unlikely to be Gaussian, which

means that using the mean value to summarize the results is often not a good

idea.

1 Dedicated languages provides a range of software-specific primitives to modelers for

constructing and executing workflows, similar to how NetLogo handles Turtles.

192 Agent-based Spatial Simulation with NetLogo 2

a)

b)

Figure 6.5. a) When we first create a workflow, we need to parametrize the two first
tasks, Et (Exploration task) and Nt (Netlogo task). For the exploration task Et, we have
to choose a sampling that will allow us to generate the experimental protocol. The
NetLogo model has to define its inputs and outputs: the density parameter of the
model is set to have value 60, but the $seed needs to be passed as an input to the task
when it is executed in order for the model to work. The expected output of the model
is the time t at which the fire definitively ends, and the model terminates: tend−of−fire

b) The workflow is executed. The first step is to generate the experimental protocol.
Values for the $seed are generated and assigned to future executions of the model
(eight seeds for eight instances of the model). OpenMOLE manages the distribution of
calculations, and the models are instantiated with the right parameters and executed
in different parts of the world. Once all of the tasks have been executed, the 8 values
of tend−of−fire are collected and aggregated in a list by the task At (Aggregation task)

Exploring Complex Models in NetLogo 193

300

330

360

10 50 100 1000
replications_nb

m
ed

F
oo

d1

1100

1200

1300

10 50 100 1000
replications_nb

m
ed

F
oo

d2

2200

2300

2400

2500

10 50 100 1000
replications_nb

m
ed

F
oo

d3

Figure 6.6. Distribution of the median values of the three objective functions as a
function of the number of replications with fixed parameter values. Each box shows
the median value and quartiles, the lines show the maximum and minimum values, the
dots are outliers and the diamonds are the mean values. The high dispersion of the
values in the cases with fewer replications shows that if the number of replications is
too low, any results obtained are unstable and might be due to chance

To create this kind of chart, we perform 100 series of 10, 50, 100 and

1000 replications with a set of test parameter values set to {population =
125.0, diffusion − rate = 25.0, evaporation − rate = 25.0}. Other

parameter values would likely yield different results.

In the example of Ants, we can clearly see that the value obtained for the

objectives medianFood1,medianFood2,medianFood3 depends strongly

on the number of replications. If the number of replications is too low, it

is entirely possible that the optimizer will judge as satisfactory candidate

solutions that only produce satisfactory fitness values “every now and again”.

If performing the ideal/sufficient number of replications is not possible,

which is often the case, it is a good idea to frequently re-evaluate the candidate

solutions chosen by the optimizer. This is particularly important in the case of

EAs based on a population of candidate solutions, as these algorithms retain

and reuse the best individuals from each iteration. If an individual enters this

population “by chance”, it will continue to produce offspring whose estimated

capacity is biased.

The workflow that allowed these results to be generated is composed of a

chain of the following tasks (read from left to right), which we will go on to

examine step-by-step.

194 Agent-based Spatial Simulation with NetLogo 2

exploration -< Strain(replication -< (ants on env by 50) >- medians)
hook saveHook↪→

The first exploration task plans the exploration (symbolized by -<) of the

series of replications, each of which involves executing a second exploration

task named replication. The first exploration task will plan x1 series of

replications, each of which will contain x2 replications of the ants model.

The ants task that defines the NetLogo model is executed by

groups (50 simulations performed by each node) within the programming

environment env (((ants on env by 50)) before aggregating the set of

results (symbolized by >-), which allows the median to be calculated (one

median for x2 replications) by the medians task. The saveHook task is

responsible for writing the results to a final csv file each time that a median

is calculated.

The first exploration task of type ExplorationTask plans the execution

of 100 series of replications (the variable i takes values from 0 to 100)

with the following parameters for the Ants model (gPopulation = 125,

gDiffusionRate = 25, gEvaporationRate = 25). These parameters are sent

to the second exploration task via the outputs of this task.

val exploration = Capsule(
ExplorationTask(i in (0.0 to 100.0 by 1.0)) set (

name := "Series of replications" ,
gPopulation := 125.0,
gDiffusionRate:= 25.0,
gEvaporationRate := 25.0,
outputs += (gPopulation,gDiffusionRate,gEvaporationRate))

)

When each exploration task is executed, it will call another

ExplorationTask task named replication. This new task determines the

number of model replications that are needed before aggregation.

val replication = Capsule(ExplorationTask(seed in
(UniformDistribution[Int]() take 50)), strain = true)↪→

Exploring Complex Models in NetLogo 195

In this task, we define 50 random seeds (seed variables) that will be

transmitted with the other parameters that were already passed to the NetLogo

task by the exploration task earlier in the workflow (via the option scala
strain = true), which we describe below.

To define and use a NetLogo 5 model within an OpenMOLE workflow,

we need to configure a Netlogo5Task, which we will then store in an ants
variable.

This task takes two parameters, the system path pointing to a model

file to load (./my/model/repository/ants.nlogo) and a list of NetLogo

commands (see the cmds variable). Among the commands passed in this

way, random ${ seed } sets a random seed value in NetLogo for the seed
variable passed as an input to the task by OpenMOLE (substitution is indicated

by ${ }), and run-to-grid is the function that begins the simulation.

The parameters that we want to vary (inputs) in the model, and

the expected results from execution (outputs), are linked to variables

declared in the OpenMOLE workflow by the methods netLogoInputs,

netLogoOutputs, inputs, outputs. Thus, the gPopulation parameter

is defined as a Val[Double] in the OpenMOLE workflow, and is

linked to the global variable gpopulation in NetLogo by the command

netLogoInputs += (gPopulation, "gpopulation"). This is equivalent

to the set gpopulation value command, where value is given by the

value of the variable gpopulation routed through the OpenMOLE workflow.

Therefore, if an experimental protocol defined in OpenMOLE changes the

value of gPopulation, this will be subsequently reflected in the simulation

model.

// Define the input variables
val gPopulation = Val[Double]
val gDiffusionRate = Val[Double]
val gEvaporationRate = Val[Double]
val seed = Val[Int]

// Define the output variables
val food1 = Val[Double]
val food2 = Val[Double]
val food3 = Val[Double]

196 Agent-based Spatial Simulation with NetLogo 2

// Define the NetlogoTask
val cmds = Seq("random-seed ${seed}" , "run-to-grid")

val ants =
NetLogo5Task(workDirectory / "ants.nlogo" , cmds) set (
// Map the OpenMOLE variables to NetLogo variables
netLogoInputs += (gPopulation, "gpopulation"),
netLogoInputs += (gDiffusionRate, "gdiffusion-rate"),
netLogoInputs += (gEvaporationRate, "gevaporation-rate"),
netLogoOutputs += ("final-ticks-food1" , food1),
netLogoOutputs += ("final-ticks-food2" , food2),
netLogoOutputs += ("final-ticks-food3" , food3),
// The seed is used to control the initialization of the random

number generator of NetLogo↪→
inputs += seed,
outputs += seed

)

OpenMOLE allows us to specify on which environment this NetLogo task

ants will be executed. We could equally choose to use multiple processors on

our local computer (val env = LocalEnvironment(5)) as cluster or grid

computing (val env = EGIEnvironment("vo.complex-systems.eu")).

The list of distributed environments compatible with OpenMOLE is described

in more detail on the website of the software: http://www.openmole.org/

Once the 50 replications have been executed, OpenMOLE aggregates the

results (>- operator) returned by the NetLogo task ants within the Scala task

medians, which is responsible for calculating the medians of the results for

each vector of 50 values associated with each objective function. Three new

variables are required (medFood1, medFood2,medFood3) to store and transport

the results of these calculations in the rest of the workflow as an output of the

ants task.

val medFood1 = Val[Double]
val medFood2 = Val[Double]
val medFood3 = Val[Double]

val medians =
Slot(ScalaTask("""
import math.abs

Exploring Complex Models in NetLogo 197

val medFood1 = food1.median
val medFood2 = food2.median
val medFood3 = food3.median""") set (
name := "medians" ,
inputs += (food1.array, food2.array, food3.array),
outputs += (medFood1, medFood2, medFood3)

))

Finally, a hook ensures that the data are recovered and written into

a csv file with each of the variables (gPopulation, gDiffusionRate,

gEvaporationRate, medFood1, medFood2, medFood3) injected into the

workflow by the various tasks.

val saveHook = AppendToCSVFileHook(workDirectory /
"/results/replication/ants_100s_50r.csv" , i, gPopulation,
gDiffusionRate, gEvaporationRate, medFood1, medFood2, medFood3)

↪→
↪→

The syntax for describing workflows is liable to change, so the full and up-

to-date workflow named ants_replication.oms is available on the GitHub

repository for Chapter F in the folder scripts_experience/replications.

Descriptions of the steps required to launch the four experiments (100 times

10, 50, 100 and 1000 replications) and generate the figures with R are given in

the README file of this repository.

6.3.3. Workflow for calibrating with EA

The workflow for defining an optimization process that uses evolutionary

algorithms is even simpler, since specialized tasks exist to encapsulate the

complexity of these algorithms in OpenMOLE. To define and use these

algorithm, OpenMOLE relies on a framework named MGO, which is available

at the following link: https://github.com/openmole/mgo.

(evolution on env by 20 hook savePopulationHook)

198 Agent-based Spatial Simulation with NetLogo 2

The ants task is identical in every respect to the one described in the above

workflow. The evolution task guides the exploration of the model based on

metaheuristics.

The NGSA 2 algorithm that we described in this chapter is reproduced by

this specialized NSGA2 task.

val nsga2 =
NSGA2(
mu = 200,
genome = Seq(gPopulation in (25.0, 250.0), gDiffusionRate in (0.0,

99.0), gEvaporationRate in (0.0, 99.0)),↪→
objectives = Seq(food1, food2, food3),
replication = Replication(seed = seed, aggregation = Seq(median,

median, median), max = 100)↪→
)

This task determines the following:

– the vector of genome values, i.e. the values that the optimizer is

authorized to explore between the max and min bounds: gPopulation, :

gDiffusionRate, : gEvaporationRate;

– the objective functions, already precalculated here as an output of the

model: food1, : food2, : food3;

– the method for summarizing each vector of objectives, whose size is

equivalent to the number of replications performed. In this example, the chosen

method is to calculate the median of each objective. Within the framework of

stochastic simulation, the optimizer relies on this vector of objective functions

in aggregate then summarized form for evaluation.

How to manage the number of replications is left unspecified, allowing the

optimizer to determine the most stable solutions that minimize this number

during optimization, subject to a maximum of 100 authorized replications.

The task nsga2 is then passed as a parameter to an evolution task

that specifies the type of execution when we execute this metaheuristic on a

distributed computing environment.

Exploring Complex Models in NetLogo 199

val evolution =
SteadyStateEvolution(
algorithm = nsga2,
evaluation = ants,
parallelism = 500,
termination = 2000

)

There are several execution types, but here we chose a SteadyState
distribution. Unlike conventional generation-based distributions, which wait

until all candidate solutions have been evaluated before generating a new

population of individuals for evaluation (offspring), this distribution generates

new offspring “on the fly”. Recall that, here, a candidate solution is a set

of parameter values for the ants simulation, executed x times (where x is

between 1 and 100). The median, calculated for each of the objectives over

x replications, allows the optimizer to evaluate the quality of the candidate

solution relative to other previously evaluated individuals present within the

population. In other words, with this form of distribution, each previously

evaluated candidate solution is directly compared to the rest of the general

population based on the value of these objectives at time t before a new

candidate solution is generated for evaluation (1 new offspring).

The parallelism parameter determines the number of simultaneous

offspring, and therefore describes the degree of parallelism that we wish to

introduce into the metaheuristic algorithm within the distributed environment.

Without going into further detail, it is important to understand that this kind

of evaluation allows the distributed calculation resources to be utilized much

more efficiently and continuously than a generation-based distribution, in

which these resources are only used in successive waves (we have to wait until

each wave is complete before a new wave can be formed).

Finally, the termination parameter determines the stopping condition of

the optimizer. This can be given in terms of a duration, but also a number of

generations, as is the case here.

The OpenMOLE workflow named ants_calibration.oms
corresponding to this experiment is available on the GitHub repository

for Chapter F, in the folder scripts_experience/calibration. A

description of the steps required to set this experiment up and generate a video

200 Agent-based Spatial Simulation with NetLogo 2

showing how the optimization unfolds with the GnuPlot tool or R is also

available in the README file of the same repository.

6.4. Analysis and interpretation of results

Calibration and model exploration generate a large body of data that

is difficult to analyze directly. Optimizing an objective function with three

parameters such as the one given above generates a table with the configuration

of the Pareto front, which takes several hundreds of lines to specify the

parameters (3 in this case) and objective values (3). Analyzing and interpreting

the resulting file is a skill in its own right, but is necessary in order to

understand how the simulation works.

6.4.1. Analysis tools

The data source to be analyzed is generally presented in the form of one or

several CSV files generated by OpenMole (with one row per simulation and

one column per parameter/variable). To analyze this kind of file, several tools

are available, depending on user preferences and the type of analysis they wish

to perform:

– A spreadsheet (Excel, Calc, etc.) can provide a quick initial overview.

Pivot tables in Excel in particular can be used to calculate distributions with

different filters. This solution has the advantage of being simple and quick,

but does not support in-depth studies: the methods for statistical processing,

graphical representation and processing large amounts of data are limited in

current spreadsheet tools.

– The data can be explored with NetLogo. In Volume 1, we explained how

to produce complex graphs with NetLogo (in particular scatter plots) and how

to define one agent for each simulation point so that we can use the main view

for visualization. By defining a user interface that allows us to select the axes

(or generate the graphs in which we are interested), NetLogo lets us visualize

datasets and even process them further. The advantage of this is that we do not

have to define a new language for analysis, we preserve a certain degree of

flexibility in interactions via the user interface, and similarly we can visualize

the dynamics of the data. However, NetLogo is not specifically designed for

data visualization, and performing statistical processing with some kinds of

Exploring Complex Models in NetLogo 201

graphs (such as the box plot graph of Figure 6.6) can be difficult or impossible,

whereas it would only take a few lines with a suitable analysis tool.

– Statistical processing software (such as R) allows us to easily process

this kind of file and data. It requires us however to adapt to a new language.

We will continue to use R (which we introduced in Volume 1), which has the

advantage of being free and widely adopted within the scientific community,

including the humanities.

6.4.2. Choosing the graph

Displaying data in the form of a graph helps us to both interpret and convey

a message. Depending on the type of graph, the information that it contains

will be very different: a distribution that is readily visible on a pie chart will

be hidden on a curve. Given the range of types of graph that exist, it would

be impossible to specify an exhaustive method for selecting which one to use.

One potential first approach developed by Dr. Abela2 is shown in Figure 6.7.

This approach, which already differentiates between 21 possible cases, will

however still need to be adapted to the application.

In our case, in which we analyze configurations of simulation agents,

certain properties will guide the choice of which representation to use:

– Particularly high numbers of variables: the simple case of the Ant model

already has 3 parameters and 3 objective variables. Graphs with 2 or 3 variables

(in 3D) are generally insufficient to give an overview of the values of all

variables. One possibility is to perform dimensionality reduction (e.g. with

PCA). An alternative solution is to use a matrix of graphs such as that of

Figure 6.8.

– Inherent randomness of agent-based simulations: Since agent-based

simulations are stochastic models, each graph needs to show the results of

multiple simulations. This is possible either by directly displaying multiple

simulations (scatter plot), such as Figure 6.8, by displaying information

relating to the distribution (diagonal of Figure 6.8), by showing the

quartiles/deciles (box plot figures such as Figure 6.6), or finally by including

information such as the standard deviation/variance.

2 http://extremepresentation.typepad.com/blog/2009/09/aide-%C3%A0-la-s%C3%A9lection-

de-graphiques-chart-chooser-in-french.html.

202 Agent-based Spatial Simulation with NetLogo 2

���������	�
�������������	
������ ��������� ��������	�����	

�������	

����������� �	
����������
Circular Area Chart Line Chart Column Chart Line Chart

Scatter Chart

3D Area Chart

Pie Chart Waterfall Chart Stacked 100% Column Chart
with Subcomponents

Stacked Area ChartStacked 100%
Area Chart

Stacked
Column Chart

Stacked 100%
Column Chart

Bubble Chart

Scatter Chart

Variable Width
Column Chart

Table or Table with
Embedded Charts

Bar Chart Column Chart

Column Histogram

Line Histogram

�� ���
�������

���
�������

 �����
������

!�"�
����#�$���
����#�

�������������
%���&��	&��&

!�"�!�
'������������

(����������%���&��	����

�	����&��	������

)*����+�#�"�+
��,������*��-

!�"�&��	�"�"�&

$���'����������

$���&��	�&�&�

!�"�
����#�

'"������.��� /��0'"������.�������

$���
����#�
�
�

 ���������$���'����������� !�"�'���������'�

(������	�������

�������	�
��

�� � � ����	�������
��	�������

$��
..�.

�����

!�"
.�.

�����

���
���������� � ��

�� ���
���������� ��

�������
	����������
	����������
	���

�����	����
��	

 �	%��� *�������
�1���������

���+	+��������+�+�
 +��������������������

'�	%������%�%�
%������	%�1�'�		%

 �������

(��"�2������2�2�
.�3���������!��������

2��������#������+����#�#
.�3���������!��������

������2�(��"�22�
���!������.�3��������

2��������#������+����#�#
.�3���������!��������

'*��������
(������	�������

Figure 6.7. Aide for choosing the chart type
depending on the objective

6.4.3. Interpreting the results

An evolutionary algorithm was used to find the minimum values for the

objectives achieved by the Ants model. In other words, we ask the optimization

algorithm to tell us, insofar as is possible, which parameter values (genome)

would minimize the time (three objective functions food1, food2, food3)

required to consume the heaps of food 1, 2 and 3. After a certain number

of iterations, we obtain a population P comprised of the 200 best individuals

obtained over 2000 generations (population2000.csv). The Pareto front (non-

dominated individuals) is a subset of this population. Once the algorithm has

converged satisfactorily to a relatively specific region of parameter values

(see the video in the GitHub repository), we can consider this population as

a whole without needing to recalculate the Pareto front. The corresponding

results file generated by OpenMOLE is a CSV file consisting of 8 columns:

Exploring Complex Models in NetLogo 203

the 3 parameters (columns 2 to 4), the 3 variables describing the optimization

(columns 5 to 7) and 2 variables describing the optimization (columns 1 and 8).

The solutions suggested by the algorithm can be described by

6 dimensions: the 3 dimensions corresponding to the parameters

(gPopulation, gDiffusionRate, gEvaporationRate) and the 3

dimensions corresponding to the optimized variables (food1, food2, food3).

Each of these dimensions is an important part of the solution description,

which is why it is difficult to visualize the results of this algorithm. Matrices

of graphs (plot matrices) like Figure 6.8 allow us to visualize all pairs of

variables (pivot charts or scatter plots), and give information relating to the

variables on the diagonal (single distribution). The advantage of R is that these

kinds of graphs can be generated in 2 lines: one to load the data, and another

to display the graph (listing 6.4).

library(httr)
library(GGally)
library(readr)

4

calibration<-read_csv("./calibration/resultats/population2000.csv")
ggpairs(data=calibration,
columns=c(2:7),
upper = list(continuous = wrap("density", alpha = 0.5)),

9 lower = list(continuous = "points"),
diag = list(continuous = "barDiag"),
title="scatter matrix")

Listing 6.4. R code to read data and generate a matrix of
graphs (like in Figure 6.8 without the clusters)

The code in listing 6.4 (which requires libraries for graphics and importing,

which are loaded at the start) allows us to: 1) import the data obtained at the

end of optimization; 2) create a matrix of graphs by specifying which CSV

columns should be used (columns 2 to 7), the type of graph to show on the

diagonal (diag =), above the diagonal (upper =), and below the diagonal

(lower =). In our case, we chose to display the densities as a histogram on

the diagonal, to show points (scatter plots) below the diagonal, and densities

(contours) above. This type of graph (which is exactly equivalent to Figure 6.8

except without different types of points) already provides us with a global

description of the results.

204 Agent-based Spatial Simulation with NetLogo 2
scatter m

atrix

gPopulationgDiffusionRategEvaporationRatefood1food2food3

gP
opulation

gD
iffusionR

ate
gE

vaporationR
ate

food1
food2

food3

0 10 200 25 50 75

1000 25 50 75

100

200

300

400

500

200

400

600

800

500

1000

1500

2000

2500

150
200

250
0

25
50

75
100

0
25

50
75

100
200

300
400

500
200

400
600

800
1000

2000

Figure 6.8. Matrix of graphs describing pairs of variables for 200 configurations
obtained after 2000 optimization steps. The graphs on the diagonal of the matrices
describe the distribution of the values of each variable. The graphs under the diagonal
represent the values of each configuration of pairs of variables with one point per
configuration (scatter plot). The graphs above the diagonal show the same information
in the form of densities (contours). The configurations are organized into 4 groups
obtained by clustering and identified by color/shape. For a color version of the figure,
see www.iste.co.uk/banos/netlogo2.zip

Exploring Complex Models in NetLogo 205

The diagonal of the graph allows us to describe each of the variables

individually. We can see that almost all configurations have low evaporation

rates and rather high populations. The diffusion rate on the other hand

is distributed homogeneously, peaking at the maximum value (100). The

distributions of the objective variables also vary: food1 takes low values (less

than 300 except for 2 around 500), food2 has a relatively wide distribution

of up to 600 and food3 has a dense distribution up to 1000 and a tail up to

2500. The absolute values of the objective functions are important here, more

so than for the values of the parameters, since they are directly comparable

(they represent the number of steps before the food is exhausted). Food source

1 always runs out quickly: even for the two other cases that seem high,

their value (500) is located around the average of source 2, which would be

comparatively low for source 3.

In order to more accurately describe the configurations thus obtained, it is

helpful to reorder them into groups. This makes it easier to acquire a global

overview of the properties of a given set of configurations. Although it is

relatively easy to describe the group of 2 configurations with high food1
values (the two points are relatively distinct from the others), it is not so

easy to locate the other groups of configurations on the graph. To gather these

configurations together, we can group the points using a clustering algorithm.

We must bear in mind that this analysis is done with a stable population of

evaluated solutions, and therefore revolves very tightly around a few key types

of behavior exhibited by the boundaries, which inform the modeler about the

contradictions that the optimization algorithm must face to minimize these

three objectives simultaneously. We can clearly see that the gaps vary strongly

depending on the objectives, which can sometimes create problems for the

optimizer.

In our case, we will use a simple clustering algorithm (KMeans with 4

classes) with the 6 dimensions of the parameters and the variables, and after

normalizing the values (so that they are homogeneous across different scales).

Clustering then allows us to identify configurations by comparing different

matrix cells using color coding and shapes (Figure 6.8). The full code of the

graph, including clustering, is given in listing 6.5.

206 Agent-based Spatial Simulation with NetLogo 2

install.packages("httr")
install.packages("plotly")
install.packages("GGally")

4 install.packages("readr")
install.packages("factoextra")

library(httr)
library(plotly)

9 library(GGally)
library(readr)
library(factoextra)

calibration<-read_csv("./calibration/resultats/population2000.csv")
14

calibration_clust<-calibration[2:7]
calibration_clust<-scale(calibration_clust)
km.res <- kmeans(calibration_clust, 4, nstart = 25)
calibration$clust=as.factor(km.res$cluster)

19

pp=ggpairs(data=calibration,
columns=c(2:7),
upper = list(continuous = wrap("density", alpha = 0.5)),
lower = list(continuous = "points"),

24 diag = list(continuous = "barDiag"),
title="scatter matrix",
mapping=aes(color=clust,shape=clust))

print(pp)

Listing 6.5. Full R script for generating a matrix of graphs using
clustering to divide up and regroup the points (results in Figure 6.8)

Using these groups and all of cells of the matrix, we can describe the

configurations obtained by the EA more precisely:

– The first configuration (blue square) corresponds to the two solutions with

high food1 values identified earlier. This configuration is interesting because

it is the only one with a high value for the evaporation rate. It shows the benefit

of exploring with EAs, as they succeed in finding this kind of configuration,

which despite being very different from the others is nonetheless effective: by

combining a high evaporation rate with a high population and low diffusion,

we can achieve good results for two of the three objectives (food2 and food3),

and slightly worse results for food1.

– Distinguishing between the three other configurations is easy on

the scatter plot and contour plot of the pair food3/gDiffusionRate:

Exploring Complex Models in NetLogo 207

configuration 2 (purple cross) has a low diffusion rate, configuration 3 (red

circle) has a high diffusion rate and configuration 4 (green triangle) has high

values for food3:

- if we examine configuration 2 (purple cross), we can see on the

distribution graphs that it is characterized by low rates of evaporation and

diffusion. Combining these two (which is made possible by a high population)

leads to especially good results for the food2 indicator (and reasonable results

for food1 and food3);

- the third configuration (red circle) has high diffusion. This situation

(which is compatible with but does not require low population) leads to good

results for food1 and average results for food2 and food3;

- finally, configuration 4 (green triangle) is the one with low (or even

very low) success in terms of food3 (high values). This configuration can be

described as an extreme version of configuration 3: with a smaller population,

even higher diffusion rates and evaporation rates that are also higher, we

achieve poor results on food3 but we still get good results for food1 and

food2.

6.5. Conclusion

The integrated exploration tools in NetLogo quickly reach their limits

as models become larger and require greater numbers of parameters: only

exhaustive exploration of the parameter space is available for the behavior
space and the available metaheuristics are limited (they do not support

multiple objectives); parallelization is limited to only the cores available on

the computer on which NetLogo is running; the choice of graphs offered by

NetLogo is limited.

Using external tools such as R and OpenMOLE has proven to be invaluable.

R allows us to analyze simulation results with a vast panel of statistical tools.

OpenMOLE supports access to distributed computing power (grid computing,

clusters) that can significantly reduce the computation time from several days

or even years to a few minutes or hours.

208 Agent-based Spatial Simulation with NetLogo 2

Exploration tools such as OpenMOLE have become essential today, and

will continue to gain in popularity in future. These platforms will gradually

move closer to end users by incorporating general-purpose toolkits and other

more specialized toolkits for specific applications, with increasingly simple

and user-friendly syntax for describing models.

Conclusion

Agent-based models can help us to understand and explore spatial systems!

Agent-based modeling is flexible, intuitive and is closely connected to both

data and theory, which gives it a very special role within most scientific

communities. These models are as much tools for understanding, exploring

and writing scenarios as they are a medium for cross-disciplinary exchange.

Following on from Volume 1, Agent-based Spatial Modeling with NetLogo
[BAN 15a], which discusses how to model spatial phenomena with agents

from a methodological and practical perspective, this second volume has

attempted to be both more advanced and more open. It uses examples to show

that very sophisticated models can be developed and operated in NetLogo,

in particular due to the possibilities of dynamic coupling with specialized

extensions and other libraries, software programs and platforms. In this

spirit, a range of fundamental topics have been selected for discussion and

systematically illustrated with examples: multi-scale modeling, coupling of

micro/macro models based on networks, analysis of dynamic graphs, swarm

problem-solving, as well as the implementation of complex model exploration

protocols, all of which represent thriving areas of research that can be explored

with NetLogo in a way that could almost be described as “experimental”.

Chapter written by Arnaud BANOS, Christophe LANG and Nicolas MARILLEAU.

Bibliography

[ABO 14] ABOUAÏSSA H., KUBERA Y., MORVAN G., “Dynamic hybrid traffic flow

modeling”, arXiv preprint, arXiv:1401.6773, 2014.

[ADE 13] ADE P., AGHANIM N., ARMITAGE-CAPLAN C. et al., “Planck 2013 results. I.

Overview of products and scientific results”, arXiv preprint, arXiv:1303.5062, 2013.

[ADL 94] ADLEMAN L.M., “Molecular computation of solutions to combinatorial problems”,

Science, vol. 266, no. 5187, pp. 1021–1024, November 1994.

[ADL 98] ADLEMAN L.M., “Computing with DNA”, Scientific American, vol. 279, no. 8,

pp. 34–41, 1998.

[AMB 06] AMBLARD F., ROUCHIER J., BOMMEL P., “Evaluation et validation de modèles

multi-agents”, in AMBLARD F., PHAN D. (eds), Modélisation et Simulation Multi-Agents,

Hermes Science-Lavoisier, pp. 103–120, 2006.

[AWA 13] AWAIS M.U., MUELLER W., ELSHEIKH A. et al., “Using the HLA for distributed

continuous simulations”, in 2013 8th EUROSIM Congress on Modeling and Simulation,

IEEE, pp. 544–549, 2013.

[AXE 97] AXELROD R., “The dissemination of culture: a model with local convergence and

global polarization”, Journal of Conflict Resolution, vol. 41, no. 2, pp. 203–226, 1997.

[BAK 93] BAKIS H., Les Réseaux et leurs enjeux sociaux, Presses universitaires de France,

Paris, 1993.

[BAN 09] BANOS A., “Simulating pedestrian behavior in complex and dynamic environments:

An agent-based perspective”, in BAVAUD F., MAGER C. (eds), European Handbook of
Theoretical and Quantitative Geography, FGSE, Lausanne, pp. 1–27, 2009.

[BAN 15a] BANOS A., LANG C., MARILLEAU N. (eds), Agent-based Spatial Simulation with
NetLogo 1, ISTE Press Ltd, London and Elsevier Ltd, Oxford, 2015.

[BAN 15b] BANOS A., CORSON N., GAUDOU B. et al., “The importance of being hybrid

for spatial epidemic models: a multi-scale approach”, Systems, vol. 3, no. 4, pp. 309–329,

2015.

212 Agent-based Spatial Simulation with NetLogo 2

[BAN 16] BANOS A., CORSON N., GAUDOU B. et al., “Coupling micro and macro dynamics

models on networks: application to disease spread”, in Multi-Agent Based Simulation XVI,
International Workshop, MABS 2015, Istanbul, Turkey, pp. 19–33, 2016.

[BAR 99] BARABÁSI A.-L., ALBERT R., “Emergence of scaling in random networks”,

Science, vol. 286, no. 5439, pp. 509–512, 1999.

[BEL 61] BELLMAN R.E., Adaptive Control Processes: A Guided Tour, MIT Press, 1961.

[BEN 93] BENI G., WANG J., “Swarm intelligence in cellular robotic systems”, in DARIO P.,

SANDINI G., AEBISCHER P. (eds), Robots and Biological Systems: Towards a New
Bionics?, Springer Berlin Heidelberg, 1993.

[BER 81] BERTHO-LAVENIR C., CARRÉ P.-A., GUERRIER C., Télégraphes et Téléphones:
de Valmy au Microprocesseur, Librairie générale française, Paris, 1981.

[BER 90] BERRY G., BOUDOL G., “The chemical abstract machine”, in Proceedings of the
17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, New

York, pp. 81–94, 1990.

[BER 06] BERTELLE C., DUTOT A., GUINAND F. et al., “Organization detection using

emergent computing”, International Transactions on Systems Science and Applications,

vol. 2, no. 1, pp. 61–69, 2006.

[BER 10] BERGEZ J., GARCIA F., RAYNAL H., “RECORD: an integrated framework to build,

evaluate and simulate cropping systems”, in Agro2010’the XIth ESA Congress, Agropolis

International Editions, Montpellier, pp. 929–930, 2010.

[BIA 12] BIADA L., “Ant cemetery”, https://flickr.com/photos/pedroscreamerovsky/69115494

46, April 2012.

[BLA 09] BLANCHART E., MARILLEAU N., CHOTTE J.-L. et al., “SWORM: an agent-based

model to simulate the effect of earthworms on soil structure”, European Journal of Soil
Science, vol. 60, no. 1, pp. 13–21, 2009.

[BON 76] BONDY J.A., MURTY U.S.R., Graph Theory with Applications, Macmillan, 1976.

[BON 97a] BONABEAU E., THERAULAZ G., “Auto-organisation et comportements collectifs:

La modélisation des sociétés d’insectes”, in THERAULAZ G., SPITZ F. (eds), Auto-
Organisation et Comportement, Hermes Science, Paris, pp. 91–140, 1997.

[BON 97b] BONABEAU E., THERAULAZ G., DENEUBOURG J.-L. et al., “Self-organization

in social insects”, Trends in Ecology & Evolution, vol. 12, no. 5, pp. 188–193, 1997.

[BON 99] BONABEAU E., DORIGO M., THERAULAZ G., Swarm Intelligence, From Natural
to Artificial Swarm Intelligence, Oxford University Press, 1999.

[BOU 01] BOUZY B., CAZENAVE T., “Computer go: an AI oriented survey”, Artificial
Intelligence, vol. 132, no. 33, pp. 39–103, 2001.

[BOU 03] BOURREL E., Modélisation dynamique de l’écoulement du trafic routier: du

macroscopique au microscopique, PhD thesis, University Nice Sophia Antipolis, 2003.

[BRA 01] BRANDES U., “A faster algorithm for betweenness centrality”, Journal of
Mathematical Sociology, vol. 25, no. 2, pp. 163–177, 2001.

Bibliography 213

[BUL 05] BULLE N., “Les modèles formels et l’explication en sciences sociales”, L’Année
Sociologique, vol. 55, no. 1, p. 19, 2005.

[BUR 06] BURGHOUT W., KOUTSOPOULOS H., “Hybrid traffic simulation models: vehicle

loading at meso–micro boundaries”, in International Symposium of Transport Simulation,

2006.

[CLE 02] CLERC M., KENNEDY J., “The particle swarm – explosion, stability, and

convergence in a multidimensional complex space”, IEEE Transactions on Evolutionary
Computation, IEEE, vol. 6, no. 1, pp. 58–73, 2002.

[COL 91] COLORNI A., DORIGO M., MANIEZZO V., “Distributed optimization by ant

colonies”, in Proceedings of the First European Conference on Artificial Life, Paris,

pp. 134–142, vol. 142, 1991.

[CRE 95] CRESPI B.J., YANEGA D., “The definition of eusociality”, Behavioral Ecology,

vol. 6, no. 1, pp. 109–115, 1995.

[DAU 14] DAUDÉ E., LAPERRIÈRE V., LEMOY R. et al., “EpiSim: simulation d’épidémies”,

in MAPS C. (ed.), Recueil de Fiches Pédagogiques du Réseau MAPS, pp. 47–68, July 2014.

[DEB 00] DEB K., AGRAWAL S., PRATAP A. et al., “A fast elitist non-dominated sorting

genetic algorithm for multi-objective optimization: NSGA-II”, Lecture Notes in Computer
Science, vol. 1917, pp. 849–858, 2000.

[DEN 90] DENEUBOURG J.-L., ARON S., GOSS S. et al., “The self-organizing exploratory

pattern of the Argentine ant”, Journal of Insect Behavior, vol. 3, no. 2, pp. 159–168, March

1990.

[DEN 91] DENEUBOURG J.-L., GOSS S., FRANKS N. et al., “The dynamics of collective

sorting robot-like ants and ant-like robots”, Proceedings of the First International
Conference on Simulation of Adaptive Behavior on From Animals to Animats, pp. 356–363,

1991.

[DIJ 71] DIJKSTRA E.W., A Short Introduction to the Art of Programming, Technische

Hogeschool, vol. 4, 1971.

[EBE 95] EBERHART R., KENNEDY J., “A new optimizer using particle swarm theory”,

in Proceedings of the Sixth International Symposium on Micro Machine and Human
Science, New York, vol. 1, pp. 39–43, 1995.

[ERD 59] ERDŐS P., RÉNYI A., “On random graphs”, Publicationes Mathematicae Debrecen,

vol. 6, pp. 290–297, 1959.

[EUL 41] EULER L., “Solutio problemata ad geometriam situs pertinentis,

Commentarii Academiae Scientiarum Imperialis Petropolitanae”, Commentarii
Academiae Scientiarum Petropolitanae, vol. 8, pp. 128–140, available at

https://math.dartmouth.edu/ẽuler/docs/originals/E053.pdf, 1741.

[FER 97] FERBER J., PERROT J.-F., Les Systèmes Multi-Agents: Vers une Intelligence
Collective, InterEditions, Paris, 1997.

[FOR 91] FORREST S., Emergent Computation, MIT Press, 1991.

[FOR 10] FORTUNATO S., “Community detection in graphs”, Physics Reports, vol. 486,

nos. 3–5, pp. 75–174, 2010.

214 Agent-based Spatial Simulation with NetLogo 2

[FOR 11] FORD L.R., FULKERSON D.R., Flows in Networks, Princeton University Press,

2011.

[GAU 07] GAUBERT L., REDOU P., HARROUET F. et al., “Analyse mathématique du tri du

couvain par les fourmis: auto-organisation fonctionnelle dénuée d’intelligence collective”,

in CAMPS V., MATHIEU P. (eds), JFSMA 2007 , Cepadues Editions, pp. 13–22, 2007.

[GIB 15] GIBSON M.J., KEEDWELL E.C., SAVI D.A., “An investigation of the efficient

implementation of cellular automata on multi-core CPU and GPU hardware”, Journal of
Parallel and Distributed Computing, vol. 77, pp. 11–25, 2015.

[GIL 59] GILBERT E.N., “Random graphs”, The Annals of Mathematical Statistics, vol. 30,

no. 4, pp. 1141–1144, 1959.

[GIR 02] GIRVAN M., NEWMAN M.E.J., “Community structure in social and biological

networks”, Proceedings of the National Academy of Sciences, vol. 99, no. 12, pp. 7821–

7826, 2002.

[GOD 07] GODARA A., LASSARRE S., BANOS A., “Simulating pedestrian-vehicle

interaction in an urban network using cellular automata and multi-agent models”,

in SCHADSCHNEIDER A., PÖSCHEL T., KÜHNE R. et al. (eds), Traffic and Granular
Flow ’05, Springer, pp. 411–418, 2007.

[GOL 89] GOLDBERG D.E., Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989.

[GOS 89] GOSS S., ARON S., DENEUBOURG J.L. et al., “Self-organized shortcuts in the

Argentine ant”, Naturwissenschaften, vol. 76, no. 12, pp. 579–581, 1989.

[GRA 59] GRASSÉ P.-P., “La reconstruction du nid et les coordinations interindividuelles

chez Bellicositermes Natalensis et Cubitermes sp. la théorie de la stigmergie: Essai

d’interprétation du comportement des termites constructeurs”, Insectes Sociaux, vol. 6,

no. 1, pp. 41–80, March 1959.

[GRE 35] GREENSHIELDS B., CHANNING W., MILLER H. et al., “A study of traffic

capacity”, in Highway Research Board Proceedings, National Research Council (USA),

1935.

[GRI 05] GRIMM V., REVILLA E., BERGER U. et al., “Pattern-oriented modeling of agent-

based complex systems: lessons from ecology”, Science vol. 310, no. 5750, pp. 987–991,

November 2005.

[HAM 10] HAMDI A., ANTOINE V., MONMARCHÉ N. et al., “Artificial ants for automatic

classification”, in MONMARCHÉ N., GUINAND F., SIARRY P. (eds), Artificial Ants. From
Collective Intelligence to Real-life Optimization and Beyond, Wiley, pp. 266–287, 2010.

Bibliography 215

[HAR 28] HARVEY W., LEAKE C.D., Exercitatio Anatomica de Motu Cordis et Sanguinis in
Animalibus, available at http://www.biodiversitylibrary.org/bibliography/6405, Springfield

III: Thomas, 1928.

[HAS 12] HASSOUMI I., LANG C., MARILLEAU N. et al., “Toward a spatially-

centered approach to integrate heterogeneous and multi-scales urban component models”,

in Advances on Practical Applications of Agents and Multi-Agent Systems – 10th
International Conference on Practical Applications of Agents and Multi-Agent Systems,

pp. 81–86, 2012.

[HEP 90] HEPPNER F., GRENANDER U., “A stochastic nonlinear model for coordinated bird

flocks”, in KRASSNER S., (eds.), The Ubiquity of Chaos, AAAS, pp. 233–238, 1990.

[HEW 73] HEWITT C., BISHOP P., STEIGER R., “A universal modular ACTOR formalism for

artificial intelligence”, in Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, San Francisco, pp. 235–245, 1973.

[HOL 92] HOLLAND J.H., Adaptation in Natural and Artificial Systems, MIT Press, 1992.

[KEN 01] KENNEDY J., EBERHART R.C., Swarm Intelligence, Morgan Kaufmann

Publishers, 2001.

[KER 27] KERMACK W.O., MCKENDRICK A.G., “A contribution to the mathematical theory

of epidemics”, Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 115, no. 772, pp. 700–721, 1927.

[KIR 83] KIRKPATRICK S., GELATT C.D., VECCHI M.P., “Optimization by simulated

annealing”, Science, vol. 220, no. 4598, pp. 671–680, 1983.

[KUB 11] KUBERA Y., MATHIEU P., PICAULT S., “IODA: an interaction-oriented approach

for multi-agent based simulations”, Autonomous Agents and Multi-Agent Systems, vol. 23,

no. 3, pp. 303–343, 2011.

[KÖN 90] KÖNIG D., Theory of Finite and Infinite Graphs, Birkhäuser, Boston, 1990.

[LAP 92] LAPORTE G., “The traveling salesman problem: An overview of exact and

approximate algorithms”, European Journal of Operational Research, vol. 59, no. 2,

pp. 231–247, 1992.

[LEB 96] LEBACQUE J.-P., “The Godunov scheme and what it means for first order traffic

flow models”, Internaional Symposium on Transportation and Traffic Theory, pp. 647–677,

1996.

[LEM 90] LEMOIGNE J.-L., “La mémoire du réseau: tout s’écoule... et pourtant”, Flux, vol. 6,

no. 2, pp. 25–32, 1990.

216 Agent-based Spatial Simulation with NetLogo 2

[LIG 55] LIGHTHILL M.J., WHITHAM G.B., “On kinematic waves. II. A theory of traffic

flow on long crowded roads”, Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, vol. 229, no. 1178, pp. 317–345, 1955.

[MAR 02] MARTIN M., CHOPARD B., ALBUQUERQUE P., “Formation of an ant cemetery:

swarm intelligence or statistical accident?”, Future Generation Computer Systems, vol. 18,

no. 7, pp. 951–959, 2002.

[MCC 04] MCCONNELL S., Code Complete, Second Edition, Microsoft Press, 2004.

[MIC 69] MICHENER C.D., “Comparative social behavior of bees”, Annual Review of
Entomology, vol. 14, no. 1, pp. 299–342, 1969.

[MOR 77] MORIN E., La méthode, Tome 1: la nature de la nature, Seuil, Paris, 1977.

[MUS 03] MUSSO P., Critique des réseaux, Presses universitaires de France, 2003.

[NAG 92] NAGEL K., SCHRECKENBERG M., “A cellular automaton model for freeway

traffic”, Journal de Physique I, vol. 2, no. 12, pp. 2221–2229, 1992.

[NAT 09] ÉDUCATION NATIONALE, “Épreuve de Mathématiques – Spécialité du baccalauréat

ES”, 2009.

[NEW 04] NEWMAN M.E., GIRVAN M., “Finding and evaluating community structure in

networks”, Physical Review E, vol. 69, no. 2, p. 026113, 2004.

[NEW 06] NEWMAN M.E., “Modularity and community structure in networks”, Proceedings
of the National Academy of Sciences, vol. 103, no. 23, pp. 8577–8582, 2006.

[QUE 05] QUESNEL G., DUBOZ R., VERSMISSE D. et al., “DEVS coupling of spatial and

ordinary differential equations: VLE framework”, OICIMS, vol. 5, pp. 281–294, 2005.

[RAG 07] RAGHAVAN U.N., ALBERT R., KUMARA S., “Near linear time algorithm to detect

community structures in large-scale networks”, Physical Review E, vol. 76, no. 3, p. 036106,

2007.

[REG 11] REGO C., GAMBOA D., GLOVER F. et al., “Traveling salesman problem heuristics:

Leading methods, implementations and latest advances”, European Journal of Operational
Research, vol. 211, no. 3, pp. 427–441, June 2011.

[RES 94] RESNICK M., Turtles, Termites, and Traffic Jams, MIT Press, 1994.

[REU 13] REUILLON R., LECLAIRE M., REY-COYREHOURCQ S., “OpenMOLE, a workflow

engine specifically tailored for the distributed exploration of simulation models”, Future
Generation Computer Systems, vol. 29, no. 8, pp. 1981–1990, 2013.

[REY 87] REYNOLDS C.W., “Flocks, herds and schools: A distributed behavioral model”,

Computer Graphics, vol. 21, no. 4, pp. 25–34, 1987.

[REY 15] REY-COYREHOURCQ S., “Une plateforme intégrée pour la construction

et l’évaluation de modèles de simulation en géographie”, available at

http://these.sebastienreycoyrehourcq.fr/, 2015.

[RIC 56] RICHARDS P. I., “Shock waves on the highway”, Operations Research, vol. 4, no. 1,

pp. 42–51, 1956.

Bibliography 217

[ROU 16] ROUSSET A., HERRMANN B., LANG C. et al., “Using nested graphs to distribute

parallel and distributed multi-agent systems”, in International Conference on Parallel,
Distributed, and Network-Based Processing, 2016.

[SAU 93] SAUSSURE F.D., BALLY C., DE MAURO T., Cours de Linguistique Générale,

Payot, 1993.

[SCH 95] SCHRECKENBERG M., SCHADSCHNEIDER A., NAGEL K. et al., “Discrete

stochastic models for traffic flow”, Physical Review E, vol. 51, no. 4, p. 2939, 1995.

[SCH 02] SCHADSCHNEIDER A., “Traffic flow: a statistical physics point of view”, Physica
A: Statistical Mechanics and its Applications, vol. 313, no. 1, pp. 153–187, 2002.

[SCH 15] SCHMITT C., REY-COYREHOURCQ S., REUILLON R. et al., “Half a billion

simulations: Evolutionary algorithms and distributed computing for calibrating the

simpoplocal geographical model”, Environment and Planning B: Planning and Design,

vol. 42, no. 2, pp. 300–315, 2015.

[SCU 01] SCULTETUS A.H., VILLAVICENCIO J., RICH N.M., “Facts and fiction surrounding

the discovery of the venous valves”, Journal of Vascular Surgery, vol. 33, no. 2, pp. 435–

441, 2001.

[THE 02] THERAULAZ G., BONABEAU E., NICOLIS S.C. et al., “Spatial patterns in ant

colonies”, Proceedings of the National Academy of Sciences, vol. 99, no. 15, pp. 9645–

9649, 2002.

[THI 10] THIELE J.C., GRIMM V., “NetLogo meets R: Linking agent-based models with a

toolbox for their analysis”, Environmental Modelling and Software, vol. 25, no. 8, pp. 972–

974, 2010.

[TRE 08] TREUIL J.-P., DROGOUL A., ZUCKER J.-D., Modélisation et Simulation à Base
d’Agents, Dunod, 2008.

[TRO 07] TROMP J., FARNEBACK G., “Combinatorics of Go”, in VAN DEN HERIK,

CIANCARINI H., DONKERS P. (eds.), Computers and Games, pp. 72–83, Springer, 2007.

[TUT 63] TUTTE W.T., “How to draw a graph”, Proceedings of the London Mathematical
Society, vol. 3-13, no. 1, pp. 743–767, 1963.

[UND 61] UNDERWOOD R.T., “Speed, volume, and density relationships”, Bureau of

Highway Traffic, Yale University, 1961.

[VAL 12] VALCKE S., BALAJI V., CRAIG A. et al., “Coupling technologies for earth system

modelling”, Geoscientific Model Development, vol. 5, no. 6, pp. 1589–1596, 2012.

[VON 66] VON NEUMANN J.V., Theory of Self-Reproducing Automata, University of Illinois

Press, 1966.

[WAG 15] VAN WAGENINGEN-KESSELS F., VAN LINT H., VUIK K. et al., “Genealogy of

traffic flow models”, EURO Journal on Transportation and Logistics, vol. 4, no. 4, pp. 445–

473, 2015.

[WAT 98] WATTS D.J., STROGATZ S.H., “Collective dynamics of ‘small-world’networks”,

Nature, vol. 393, no. 6684, pp. 440–442, 1998.

218 Agent-based Spatial Simulation with NetLogo 2

[WEI 99] WEISS G. (ed.), Multiagent Systems: A Modern Approach to Distributed Artificial
Intelligence, MIT Press, 1999.

[WEI 11] WEISE T., Global Optimization Algorithms – Theory and Application, available at:

www.it-weise.de, 2011.

[WIL 97] WILENSKY U.J., “NetLogo Ants model”, Center for Connected Learning and

Computer-based Modeling, Northwestern University, available at http://ccl.northwestern.

edu/netlogo/models/Ants, 1997.

[WIL 00] WILSON E.O., Sociobiology: the New Synthesis, Belknap Press of Harvard

University Press, 2000.

[WIL 05] WILSON E.O., HOLLDOBLER B., “Eusociality: Origin and consequences”,

Proceedings of the National Academy of Sciences, vol. 102, no. 38, pp. 13367–13371, 2005.

[WIL 13] WILENSKY U., “Mouse Drag One Example”, https://modelingcommons.org/

browse/one_model/2330#model_tabs_browse_info, 2013.

[ZEI 97] ZEIGLER B.P., MOON Y., KIM D. et al., “The DEVS environment for high-

performance modeling and simulation”, IEEE Computational Science & Engineering,

vol. 4, no. 3, pp. 61–71, 1997.

List of Authors

Stefan BALEV
LITIS – NORMASTIC FR
CNRS 3638
University of Le Havre
France

Arnaud BANOS
UMR Géographie-cités
CNRS, University of Paris 1
Panthéon-Sorbonne
University of Paris 7 Diderot
France

Philippe CAILLOU
LRI Laboratory
University of Paris Sud
Orsay
France

Nathalie CORSON
University of Normandy
UNIHAVRE, LMAH
FR-CNRS-3335
ISCN
Le Havre
France

Éric DAUDE
UMR IDEES 6266
CNRS
Rouen
France

Antoine DUTOT
LITIS – NORMASTIC FR
CNRS 3638
University of Le Havre
France

Benoit GAUDOU
IRIT Laboratory
University Toulouse 1 Capitole
Toulouse
France

Christophe LANG
Institut FEMTO-ST/DISC
UMR 6174, CNRS
University of Burgundy
Franche-Comté
Besançon
France

220 Agent-Based Spatial Simulation with NetLogo 2

Nicolas MARILLEAU
UMI 209 UMMISCO
IRD-UPMC
Bondy
France

Jean-Marc NICOD
Institut FEMTO-ST/AS2M
UMR 6174, ENSMM, CNRS
University of Burgundy
Franche-Comté
Besançon
France

Damien OLIVIER
LITIS – NORMASTIC FR
CNRS 3638
University of Le Havre
France

Sébastien REY COYREHOURCQ
UMR IDEES 6266
CNRS
Rouen
France

Guilhelm SAVIN
LITIS – NORMASTIC FR
CNRS 3638
University of Le Havre
France

Patrick TAILLANDIER
MIAT, INRA
Toulouse
France

Index

.jar, 9

A, B, C, D

actor-based, 117
agent-based, 117
amplification of fluctuations, 121
asynchronous, 112
betweenness centrality, 106
calibrating a model, 180
calibration, 200
collective

approaches, 118
intelligence, 118

communities, 103
complex simulators, 174
connected component, 89
conservation of traffic, 52
continuous models, 40
continuous, 80
coupling, 78

models, 63
critical concentration, 43
degree distribution, 93
Dijkstra, 95
directed graph, 88
discrete, 80

models, 40

distributed
artificial intelligence, 118
systems, 179

E, F, G

epidemic, 64, 71
exploration, 174
extensions, 1
flocking, 150
fundamental diagram, 37, 38, 43, 52
genetic algorithm, 186
GIS, 166
Godunov, 53
graph, 16

theory, 86
graphical interface, 15
GraphStream, 16

H, I, J, L

heuristics, 139
high-performance computing, 178
hybrid traffic model, 57
imitation, 150
indegree, 88
Java, 7, 23
LWR, 44, 51

222 Agent-based Spatial Simulation with NetLogo 2

M, N, O, P

Maven, 5
mesoscopic models, 37, 38
metaheuristic, 147
metapopulation, 72
model

coupling, 39, 43
exploration, 200

modeling commons, 31, 32
modularity, 89, 103
NaSch model, 44, 45
negative feedback, 121
NetLogo

API, 15
Web, 31

networks, 85
numerical integration, 74, 80
OpenABM, 31, 34
OpenMole, 1
OpenMOLE, 190
optimization, 181
outdegree, 88
Pareto front, 189
particle swarm, 147
pheromones, 120

positive feedback, 120
propagation of information, 111
Python, 1, 25

R, S, T, U

R, 1, 28, 203
random graphs, 89
resilence, 119
Runge-Kutta, 20
SBT, 6
scala, 6
shortest path, 95
simulation, 173
simulator, 174
SIR model, 64
stigmergy, 121
swarm intelligence, 118
synchronous, 112
systemic loop, 121
time scale, 40
traffic

flow, 43
modelling, 37

Underwood model, 44, 48
undirected graph, 88

First published 2017 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd
27-37 St George’s Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.elsevier.com

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

For information on all our publications visit our website at http://store.elsevier.com/

© ISTE Press Ltd 2017
The rights of Arnaud Banos, Christophe Lang and Nicolas Marilleau to be identified as the authors of this
work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress
ISBN 978-1-78548-157-4

Printed and bound in the UK and US

