
Agent-based Spatial Simulation with NetLogo

Agent-based Spatial
Simulation with NetLogo

Volume 1
Introduction and Bases

Edited by

Arnaud Banos
Christophe Lang
Nicolas Marilleau

First published 2015 in Great Britain and the United States by ISTE Press Ltd and Elsevier Ltd

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Press Ltd Elsevier Ltd
27-37 St George’s Road The Boulevard, Langford Lane
London SW19 4EU Kidlington, Oxford, OX5 1GB
UK UK

www.iste.co.uk www.elsevier.com

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical treatment
may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and
using any information, methods, compounds, or experiments described herein. In using such information
or methods they should be mindful of their own safety and the safety of others, including parties for
whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence
or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in
the material herein.

For information on all our publications visit our website at http://store.elsevier.com/

© ISTE Press Ltd 2015
The rights of Arnaud Banos, Christophe Lang and Nicolas Marilleau to be identified as the author of this
work have been asserted by them in accordance with the Copyright, Designs and Patents Act 1988.

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
Library of Congress Cataloging in Publication Data
A catalog record for this book is available from the Library of Congress
ISBN 978-1-78548-055-3

Printed and bound in the UK and US

1

Introduction to the Agent Approach

1.1. Introduction

When we need to study a real system made up of interconnected

elements, where each of these systems has its own dynamics, it is often

impossible to foresee the emergence of a global dynamics for the

system. In this case, what is in question is a complex system, because

any one modification, even if it is marginal in terms of its one or

several constituent elements, may lead to a dramatic change in overall

operation of the system. It becomes clear that these phenomena may

well be understood and observed only through the construction of a

model. Even if in certain particular cases the model may be resolved

analytically, as is the case for the Lotka–Voltera prey-predator

models [VIA 11], computer simulation is indispensable in all other

cases, i.e. in most thematically interesting cases. As such, agent

modeling is one possible response for studying complex spatial

systems.

Multi-agent systems (MAS) originally came into existence in the

1980s, at the crossroads of Distributed Artificial Intelligence1 (DAI)

Chapter written by Fabrice BOUQUET, Sébastien CHIPEAUX, Christophe LANG,

Nicolas MARILLEAU, Jean-Marc NICOD and Patrick TAILLANDIER.

1 DAI is concerned with the design of distributed IT systems which can solve problems

using reasoning algorithms.

2 Agent-based Spatial Simulation with NetLogo 1

and Artificial Life2 (A-Life) [FER 95], and are currently extremely

popular. What is unique about them is their capacity to make apparent

collective behaviors resulting from individual actions and

interactions [JEA 97].

Within the domain, MAS are viewed as an entirely simulatory

approach, which complements traditional techniques based on

analytical, stochastic or other types of models [VAR 13]. As with the

object concept [BOO 91], MAS engage a process of structuring

thought which helps researchers or those involved in industry to solve

the various problems they face. MAS are considered as the logical

continuation of the object concept [FER 95, WOO 97] which brings

increased modularity due to its ability to adapt, to learn and to be

autonomous.

The fundamental principle upon which the multi-agent paradigm is

based is that of breaking down complex objects into new, smaller

problems, which are easier to model [BER 05]. Thus, the agent

paradigm is “more a way of thinking than an implementation

technique” [FOU 05]. It simply organizes our thought by analogy with

the world around us. It is an elegant and intuitive way of envisaging

and representing a complex phenomenon. In fact, this is one of the

reasons why this approach has been adopted in a wide range of

disciplines such as social sciences, ecology and finance, among others.

In this chapter, we will introduce the concept of the multi-agent

system, beginning with a presentation of two examples of the use of

such systems, in social sciences and soil sciences. We will then discuss

the major trends in modeling and situate agents within the context of

this work. Following this, we will formally define MAS before finally

applying them to two concrete examples.

2 According to Christopher Langton in [LAN 89], “artificial life is the study of

systems constructed by humans that exhibit behaviors typical to natural living systems”

(definition taken from [REN 02]).

Introduction to the Agent Approach 3

1.2. Two different MAS shown through examples

In order to illustrate the extraordinary expressive capacity of MAS,

we have selected two concrete case studies which lead to two

diametrically opposed models. The first case study, from social

sciences, is concerned with the mobility between towns of

town-dwellers, and the second case study, from ecology, studies soil

sustainability.

1.2.1. MAS in social sciences

The agent paradigm is a modeling approach which is very well

suited to the representation of the human being as an autonomous,

intelligent individual, who is capable of learning and communicating

with others. The agent approach also offers the advantage of providing

a natural representation of the individual [SAN 05]. As a result, the

model can be used to address a research question which may apply to a

range of disciplines, such as the sustainability of a town, through one

of its core components, daily mobility. If we consider a town to be a

form of spatial organization, it is one that provides conditions which

favor social interaction. As such, it follows that an ever-increasing

number of daily transport journeys are required in order to achieve the

objective of linking places. Urban spread, the functional specialization

of urban areas and the low social value placed on mobility are factors

that contribute to this trend and intensify its effects.

The right to a given level of mobility, linked to the desire for

increasingly individualized and autonomous lifestyles, may result in

significantly reduced accessibility of the town and its services. Given

that “too much mobility kills a town”, if a town’s development has to

be harmonious and sustainable, then researchers need to identify the

conditions according to which daily and individual mobility do not

prevent the town from fulfilling its role. This study must also take into

account the management of urban growth, which nowadays causes

many problems such as urban spread, congestion, energy consumption

and production, and risks and dangers to the population.

4 Agent-based Spatial Simulation with NetLogo 1

Under these conditions, it is natural and logical to use the agent

approach to model individuals who move around the urban zone

according to timetables and certain socioeconomic characteristics: the

city-dweller is an intelligent agent attempting to carry out a series of

activities; the town is an environment regulated by transport and traffic

rules. This approach is quite similar to a city-dweller/agent bijection.

1.2.2. MAS in soil sciences

The versatility of the MAS means that the approach is totally

malleable, and its use may be adapted at will for the case study or

research question to which it is applied: this approach may even be

implemented for the study of soils.

Soil is a key component of ecosystems, which is the support for one

of the main ecosystem services: the production of biomass (food,

fodder, energy, wood and fibers). It is a critical resource, and one that is

under threat. It is also non-renewable. As a result, it is essential to

promote sustainable management practices both to halt its degradation

and to foster its rehabilitation. New techniques for the rehabilitation of

soil, such as soil building, are currently being developed. In order to

evaluate the level of ecosystem service that a rehabilitated soil can

provide, and in order to predict its development and sustainability,

computer modeling and simulation tools are required. However, the

multi-level character of soils and the overlapping of ecosystem

processes involved within them mean that it is often difficult to model

their complex systems using a classical macroscopic approach. In fact,

soil is characterized by both biotic processes (linked to living

organisms such as earthworms) and abiotic processes (linked to

non-living elements such as the physics of the materials and the flow of

liquids), which interact at various levels, from macro-fauna (such as

termites and earthworms) or macro-aggregate (such as silt or clays) to

microbes and the micro-structure (clay) of soil. Therefore, it is

necessary to use modeling approaches which can handle this

overlapping of various levels.

Agent-based modeling is particularly well suited to this context. For

example, the Sworm model [MAR 08] describes a dynamic

Introduction to the Agent Approach 5

three-dimensional space in the form of a fractal made up of cubic cells.

Each cell assumes the role of a soil aggregate with a particular

behavior. As such, each cell can be represented by an agent with its

own dynamics and its set of interactions, irrespective of its size. Its

behavior can be driven by submodels such as the Mior model for the

decomposition of organic material [MAS 07] or other models for water

retention.

In contrast to the preceding model, the agents no longer represent

individuals within a space under study, but rather they represent portions

of space animated by biological processes. Due to the sheer number

of microbes, it is technically impossible to represent each of them by

an agent. Also, the current state of knowledge on microbial individuals

means that it is impossible to define behaviors at their level.

1.2.3. Summary

It can be seen through these two examples, respectively, from social

and soil sciences that MAS are malleable as a function of the context,

the state of knowledge of the real system and the underlying research

question. The fact that they are different helps our purpose, which

consists of demonstrating the versatility of MAS. In this regard, the

major challenge to design an agent-based model is not its

computer-based implementation, but rather the identification of

relevant elements to include in the model, and choosing how to

represent them.

Quite apart from the capacity of an MAS to represent a system

under study, its proximity to the real system means that it is intuitive

and enables interdisciplinary dialogue. For the examples cited above,

there is collaboration between mathematicians, geographers,

economists and computer scientists, among others. The model

becomes an element which brings them together, engenders ideas and

favors the emergence of new research questions upon which all parties

can agree. This does not at all conflict with the advancement of a

particular research project within a particular discipline, which can

6 Agent-based Spatial Simulation with NetLogo 1

quite feasibly happen alongside contribution to the common project

driven by the model.

1.3. Agents and the major trends within spatial modeling

1.3.1. Major trends in spatial modeling

As has been the case in many other disciplines, the systematic and

reasoned use of models has been developed over the last few decades

with a view to understanding and modeling how spaces operate.

In 1999, the modeling group of GDR Libergéo was formed in order

to take stock of all the spatial models developed in various French

research centers. This group surveyed 20 or so models and classified

them using a model comparison grid, with the aim of describing,

classifying and comparing all types of models (e.g. graphic, statistic

and simulation).

There are many different definitions of the terms “model”. In 1973,

Haggett defined models in the following way [HAG 73]:

MODEL.– Models are schematic representations of reality,

which are created to help us understand and explain reality.

A model may be considered as a formal representation of the theory

of a system under study [WIL 74]. More generally, models may be

viewed as an abstraction or approximation of reality which is created

through a simplified vision of complex real-world relationships in

order to make it possible to understand and manipulate them.

Nowadays, it is very difficult to define the position of one model

in relation to another, mainly because models have been insufficiently

categorized and formalized.

For over 30 years, geographers have been working with models of

increasing complexity. From maps to computer models, through

choremes and traffic management, forecast or optimization models:

differentiating and categorizing models is not always a straightforward

Introduction to the Agent Approach 7

business. Whenever we use a map, graph theory or perhaps an

optimization model for a town’s public transport system, we are

working with models and modeling.

In [BRI 00], Briassoulis cites various instantiations of models for

the dynamics of territories. These can be classified into four major

categories:

1) statistical and econometric models;

2) optimization models;

3) models of spatial interaction;

4) simulation models.

1.3.2. Properties of modeling approaches

1.3.2.1. Statistical and econometric models

The application of statistical techniques in order to derive the

mathematical relationships between dependent variables (factors

whose value is influenced by other factors) and independent variables

is widespread in the modeling of socioeconomic systems and in other

fields [ANS 98].

The most commonly used statistical technique is multiple

regression analysis (and its variations such as regression in stages or

two-stage least squares regression analysis), although other

multivariate techniques are also widely used (such as factorial analysis

or canonical analysis) [KLE 07].

Econometric models are applications of multiple regression

techniques that are used to analyze economic questions. They are

systems of equations which express the relationships between demand

and/or supply and their root causes, and the relationship between

demand and supply themselves (economic/market equilibrium)

[BAT 76, WIL 74]. Generally known as econometric analysis, this set

of specialized statistical techniques was developed in order to estimate

their coefficients [JUD 88].

8 Agent-based Spatial Simulation with NetLogo 1

The work of Irwin and Bockstael [IRW 02] should be mentioned at

this point: they use an economic model to describe to what extent it is

worthwhile for the owner of an undeveloped plot of land to transform it

into a site for building habitation, depending on the sale value of the land

once it has been transformed into a usable site and the cost of achieving

this.

1.3.2.2. Models of spatial interaction

These models, also known as gravity models, are used to model a

variety of types of interactions which result from a multitude of human

activities, such as commuting to work, shopping, traveling around town

and mobility in general.

Haynes and Fotheringham [HAY 84] define spatial interactions in

the following way:

SPATIAL.– “Spatial interaction” is a general term which is

used to cover any movement in space which results from a

human process. This includes commuting to work,

migration, information, and the flow of goods.

The study of spatial interactions usually implies the study of two

interacting entities and the form of their interaction. In the case of the

analysis of the dynamics of territories, the interacting entities are often

people living within them or engaging in an activity (most often work

or shopping), with origin and destination zones.

These interactions may assume various forms, such as displacements

or flows of goods and information.

1.3.2.3. Optimization models

Optimization involves using operation research algorithms to

minimize or maximize a given objective function. Constraints imposed

within the system (such as availability of technologies and capacity

levels) and hypotheses formulated concerning the exogenous variables

are considered while this optimization is being achieved. Thus, it can

be said that optimization models seek the solution to a limited number

of problems under certain constraints.

Introduction to the Agent Approach 9

The use of optimization models is generally focused on the

improved use of resources available within the system. They are also

used to facilitate the achievement of objectives by the entities within

the system.

A well-known example of an optimization model is Schlager’s

Southern Wisconsin Regional Plan Model [SCH 65], which offers an

objective function in order to minimize the cost of urban development

within a given zone of the territory under study, provided that land is

available.

1.3.2.4. Simulation models

Batty [BAT 76] states that “all mathematical models which include

the large scale use of computer systems are considered to be simulation

models”. However, even though we consider “simulation” to be a

modeling technique, it also has a more precise meaning. Wilson

[WIL 74] suggests a more comprehensive definition and a precise

usage framework for simulation models: simulation techniques involve

“a set of rules which make it possible for a set of numbers to be

actioned simultaneously, generally through the use of computer

systems, though the rules for and the consequences of their application

cannot be transcribed in the form of algebraic equations. Sometimes

the simulation technique naturally lends itself to solving a particular

problem. This happens, for example, when the basic theory is

comprised of a set of relationships which imply certain probabilities.

Thus, it is necessary to use simulation techniques for situations that are

too complicated to be manipulated with direct algebraic techniques”.

In this chapter, we take a simulation model to be the animation of a

model with a view to gain understanding, insights and even a forecast

of future events.

Simulation models are generally categorized according to the level

of spatial analysis (level of spatial detail) they refer to, because there is

a close link between the spatial level of the analysis and the theoretical

level of the aggregation used (or that is possible). A distinction should

be made between three scales of models, depending on the reference

system under study. For example, if we consider the study of a country:

10 Agent-based Spatial Simulation with NetLogo 1

– local level simulation models (for example, a town or

municipality);

– regional level simulation models (a state, county or region);

– global level simulation models (the country as a whole).

A distinction should also be made regarding the level of analysis of

the individuals: there are different aggregation levels for models (e.g.

individuals, households and social groups).

1.3.3. How to model a system

Obviously, in order to model a system, the distance between the

model and the system being modeled needs to be made as small as

possible. This is a challenging exercise for several reasons. In fact, a

very good knowledge of the system being modeled is required, suitable

modeling tools need to be found, and the model needs to be created

with these tools, while the constraints inherent in the system that is

being modeled also need to be observed.

A model always seeks to address a research question. This is a

precondition required for the identification of the constituent elements

of the target system. To achieve this, it is necessary to reveal the active

elements, the interactions between them and the surrounding elements,

and to characterize the autonomous entities and their behaviors. The

place is also of prime importance, and its topology and properties must

be considered. Relationships have a great significance in the process.

They are often the key to the complexity of systems. Thus, the model

does not need to aim to cover all of the aspects of the modeled system.

Rather, it can concentrate on its particularities.

Model validation is a complex stage in this process. How can we

ensure that the model is representative of the simulated system?

Indicators built into the model may be used as a basis for this

investigation; they may be compared to the real-world experimental

values. Researcher expertise is also invaluable in supporting this stage:

simulation experiment results can be compared with knowledge gained

on the ground.

Introduction to the Agent Approach 11

The step-by-step method that we suggest is presented here:

1) definition of the scientific questions that the model aims to

address;

2) identification of the target system’s constituents;

3) collection of data required to construct the model;

4) definition of the agents and the environment. Definition of the

interactions between all the model’s elements;

5) implementation of the model;

6) calibration of the model through successive simulations;

7) exploration of the model which answers the scientific questions,

or redefinition of these questions.

Stage 2: identify the

elements (entities,

dynamics) of the

model Stage 4: define

the agents

(characteristics,

dynamics)Stage 3:

collection of

data

Stage 6:

calibration

of the model

Stage 5:

implementation

of the model

Stage 7:

exploration

of the model

Stage 1: define

the model

questions

Figure 1.1. Stages of modeling

1.4. The agent paradigm

Let us now provide a more formal introduction of the concepts from

the world of agents.

1.4.1. Basic concepts

One of the most influential definitions of the concept of agent, which

is used as a reference point by the French research community, was

12 Agent-based Spatial Simulation with NetLogo 1

suggested by Jacques Ferber in [FER 95]. According to this definition,

the agent is:

CONCEPT OF AGENT ACCORDING TO J. FERBER.– a

physical or virtual entity:

– which is able to act in an environment;

– which can communicate directly with other agents;

– which is driven by a set of tendencies (in the form

of individual objectives or a satisfaction, perhaps even

survival function, which it aims to optimize);

– which possesses its own resources;

– which is capable of perceiving its environment (in a

limited manner);

– which has only a partial representation of this

environment available to it (it may even possibly have no

representation of it);

– which has skills and offers services;

– which may possibly be able to reproduce;

– whose behavior tends to satisfy objectives, while

taking the resources and skills at its disposal into account,

and as a function of its perception, representations, and the

communications it receives.

This definition states the minimum properties that an entity must

have in order to be considered an agent. These characteristics may be

summarized in four words [WOO 97]:

– autonomy: ability to evolve according to its own behavior without

external intervention;

– reactivity: ability to react to external events;

– proactivity: ability to make decisions in a more or less developed

way in order to achieve its objectives;

– sociability: ability to interact with other agents.

In the same spirit as the above definition, Jacques Ferber interprets

the concept of a multi-agent system as [FER 95]:

Introduction to the Agent Approach 13

CONCEPT OF MULTI-AGENT SYSTEM.– being composed

of the following elements:

– an environment E, i.e. a space which has a metric;

– a set of objects O: these objects are situated, i.e. for

each object, for a given moment, they can be associated

with a position in E. These objects are passive, i.e. they

can be perceived, created, destroyed and modified by the

agents;

– a set of agents A, which are particular objects (A ⊆
O), which represent the system’s active entities;

– a set of relationships R which brings the objects (and

thus the agents) together with each other;

– a set of operations Op which makes it possible for the

agents from A to perceive, produce, consume, transform

and manipulate the objects from O;

– operators responsible for representing the application

of these operations and the world’s reaction to this

modification attempt, which we will call the laws of the

Universe.

This definition can be summarized using four core

concepts [OCC 01]:

– agents: set of active entities in the system which have their own

behavior;

– environment: medium in which the agents evolve. Its structure

depends on the domain of application. However, it is often spatialized;

in other words, it is accorded a metric;

– interactions: set of languages and exchange protocols between

the agents. These are sometimes low level, originating from physics

models, or high level, like language acts;

– organization: set of groupings of agents with federating entities

where all the agents have a common goal.

This summary has been the subject of a modeling approach named

Vowel after the A,E,I,O [DEM 95, DEM 97, DEM 03]. These four

components define the concept of multi-agent system in a general

manner. There are currently a very large number of formalisms and

14 Agent-based Spatial Simulation with NetLogo 1

run-time environments based on this type of approach. Therefore, we

will now address the question of whether a multi-agent system is a

process for reflection or an implementation tool.

1.4.2. Interactions

The richness of MAS lies, to a large extent, in the interactions that

occur between agents. These interactions can be expressed in many

ways.

The organization Foundation for Intelligent Physical Agents (FIPA)

has published a set of rules and standards regarding these interactions.

These rules can be summarized as follows [FAP 00]:

– agents can communicate with each other;

– an agent provides a set of services and makes them available to all

other agents in the system;

– each agent is responsible for limiting its accessibility to other

agents;

– each agent is responsible for defining its relationships, contracts,

etc., with other agents. Thus, an agent directly “knows” (through its set

of knowledge) all the agents with which it can interact;

– each agent knows, with its name, the way in which it can be

accessed from outside the system. As a result, the agents are supposed

to interact autonomously and without constraints.

The medium through which these interactions are conducted is

variable. The agents can exchange through sending messages, which

generally have standardized contents. A large number of works have

examined the creation of oriented languages, commonly known as

Agent Communication Language (ACL). Some of the best known

languages are FIPA-ACL [FOU 02]. This type of communication

means that exchanges can take place from point to point or that an

agent can be transmitted toward a community of agents.

Another technique is that of the blackboard, which consists of

allowing agents a board where they can read or write in order to

Introduction to the Agent Approach 15

communicate with the community of agents. This is a transmission

pattern.

Finally, there is the type of communication which we will call

diffuse. The agents can, through mechanisms of perception and action

respectively, perceive a change in others or in the environment, and can

act on others and on the environment. This is also a form of

communication.

1.4.3. Types of agents

All those with an interest in agents agree on the fact that, for

pedagogical purposes, there are two main categories of

agents [FER 95]: reactive and cognitive. The first category of agents is

based on simple behaviors which correspond to a stimuli-action
strategy. In contrast, the second category of agents has genuine

faculties for reflection and adapting its behavior.

Many agent architectures for representing spatial phenomena have

been suggested in the literature. In this context, the belief desire

intention (BDI) approach describes a humanized decision-making

process for agents [RAO 91]. This architecture is based on a simple

idea: the achievement of a desire is made through carrying out

intermediary intentions which are identified through an analysis of the

agent’s beliefs about its world.

We might be tempted to state that the BDI architecture is ideal.

However, the decision-making process for purely cognitive agents

(such as BDI agents) demands high use of computer resources

(processor calculation time and memory, for example). Their

wide-scale use creates performance issues. Brownian agents seem to be

a solution, given that they combine the properties of reactive and

cognitive agents [SCH 03, SCH 02]. In fact, their behavior derives

from the evaluation of a set of variables combined with pure analytical

or stochastic laws. In this way, Brownian agents maintain the

simplicity of reactive agents, but also have at their disposal behavior

imitative of cognition, through the stochastic functions that are a part

16 Agent-based Spatial Simulation with NetLogo 1

of them. These kind of agents are suitable for the representation of the

movement of a large number of humans, as is proposed in [GLO 04].

In reality, agents and multi-agent systems are designed on a case-

by-case basis in order to simulate complex phenomena as much as

possible; they are often at the crossroads of reaction and cognition,

bringing together internal variables of state and memory, reactiveness

and cognition, or determinism and stochasticity of behaviors. As a

result, they often present a hybrid architecture which combines:

– reactive behavior rules which are based on stimuli received or

perceived by the agent (events, messages, observations or stochastic

laws); the reactive behavior rules may apply some actions or call some

high level cognitive functions;

– cognitive behavior rules which use developed algorithms and the

agent’s knowledge, for example a shortest route algorithm based on a

mental map of the space structured in the form of a graph.

This general architecture is developed in more detail as a function

of the case study in question, in particular, through the inclusion of an

agent architecture (e.g. BDI or adaptive), or even through the definition

of an organizational model.

1.4.4. MAS organization paradigms

Like all distributed systems, there are two main types of control in

MAS: centralized control, in which a master agent manages work,

organizes solutions and mediates conflicts, and distributed control

where the system is said to be evolutive and where each agent has a

total or partial plan of action. In practice, we find totally centralized

architectures, totally distributed architectures or architectures that

combine both these approaches.

As outlined by J. Ferber [FER 03], during the development of a

multi-agent environment, two possibilities are available to us: a

development focused on agents or a development focused on the

organization. Agent-centered multi-agent systems (ACMAS) are

modeled in terms of the mental states of the agent and are very useful

Introduction to the Agent Approach 17

in the case of highly cognitive agents. In the case of a complex system,

it is impossible to be fully aware of the development and the behavior

of the system as a whole solely on the basis of the behavior of the

various agents. Their interactions need to be taken into account, and an

overall point of view needs to be taken, which is why an ACMAS is

not recommended for modeling a complex system.

We will further describe the organization-centered multi-agent

systems approach (OCMAS) and the Agent/Group/Role model (also

known as an AGR or Aalaadin model [FER 98]).

1.4.4.1. General principles of OCMAS

If we consider matters in terms of organization, this provides us

with a new approach toward describing the structure and the

interactions which appear within an MAS. The organizational level

(also called social level in [JEN 00]) is located at a level above that of

the agents, which is the only level that is considered in ACMAS.

The organizational level describes the structural and dynamic

aspects of the organization. It is based on three principles summarized

as follows:

PRINCIPLE 1.1.– the organizational level describes the what and not

the how. It imposes a structure on the actions of the agents, but does

not describe the way in which they behave. In other words, the

organizational level does not contain a code which can be executed by

the agents, but rather it provides specifications regarding the limits and

the expectations it is possible to have on agent behavior.

PRINCIPLE 1.2.– no description of an agent and no mental state are

present at the organizational level. This level states nothing regarding

the manner in which agents will interpret it. A colony of ants is

considered an organization in much the same way as the board of a

company. The organizational level of mental states such as beliefs,

desires, intentions or goals is not discussed.

PRINCIPLE 1.3.– an organization makes it possible to break a system

down. Each part (or group) provides a context for interactions between

the agents. A group provides the boundaries agents belonging to the

18 Agent-based Spatial Simulation with NetLogo 1

same group can interact freely. On the other hand, a group is completely

inaccessible for agents that do not belong to it.

These three principles have the following significance:

1) an organization may be viewed as a dynamic structure, whose

agents are various components. Joining a group or playing a role may

be viewed as integration;

2) modeling a system at the organizational level may leave the

implementation choices open, such as the fact that a specific agent plays

a specific role;

3) it is possible to create truly “open systems”, where the internal

architecture of the agents is not specified;

4) it is possible to create secured systems through using groups in

a “black box” method, where whatever happens inside cannot be seen

from outside. It is also possible to define a security policy in order to

exclude “undesirable” agents from joining a group.

1.4.4.2. The agent group role (AGR) model: an example of OCMAS
organization

The AGR model is based on three primitive concepts: agents, groups
and roles, which are structurally connected and cannot be defined by

other primitives. These concepts satisfy a set of axioms that unify them.

– Agent: an agent is an active communicative entity which can play

several roles and can be a member of several groups. An important

characteristic of the AGR model, which is in agreement with the second

principle described above, is that there is no constraint placed on the

architecture of an agent or on its mental capacities. An agent can be as

reactive as an ant or as cognitive as a human, without any restriction.

– Group: groups are the atomic aggregation sets for agents. A group

is formed from a set of agents which share common characteristics,

and is used as a context for activities, making it possible to divide

organizations into different sections. Following the third principle, two

agents can only communicate if they belong to the same group; but an

agent may, however, belong to several different groups. This makes it

possible to define organizational structures.

Introduction to the Agent Approach 19

– Role: the role is an abstract representation of the function, service

or identification of an agent within a group. An agent must play at least

one role within a group. Roles are local to groups and must be solicited

by an agent. Several different agents may play the same role.

The groups may overlap because an agent may be a member of

several groups at the same time. This overlap property for groups

makes it possible to conceptualize a world where all the agents are at

the same level and are not organized in a fixed manner into a rigid

structure. Organization and hierarchy occur at the group level and can

thus change over time.

The three above-defined concepts of agent, group and role are linked

by a set of five axioms:

1) each agent is a member of (at least) one group;

2) two agents can only communicate if they are members of the same

group;

3) each agent plays (at least) one role in a group;

4) an agent is a member of the group within which it plays a role;

5) a role is defined with a group structure.

The AGR model makes it possible for us to define a dynamic

organization of the agents. The organization of agents within an MAS

is an element which structures the process. When the system being

studied is considered at different scales, it needs to be possible to see

or represent the fact that a group of interacting agents can behave in a

specific way and, at another level of abstraction, can act as if they were

a single entity.

1.4.5. Agent platforms

The current strong position of agent-based modeling has in part

been made possible by the development of new platforms which allow

modelers, including those who have no information technology (IT)

background, to define this type of models with ease. There are

nowadays many platforms available for the definition and simulation of

20 Agent-based Spatial Simulation with NetLogo 1

agent-based models, some of which are open source. These platforms

may be divided into two non-exclusive categories on the basis of the

type of languages used to define the models.

The first category of platforms defines models using a generic

programming language, such as Java, C++ or Python. These platforms

are generally intended for IT engineers and are often more suitable for

the development of large models. The best-known open-source

platforms for this category are Swarm [MIN 96], Cormas [BOU 98],

Mason [LUK 04] and Repast [NOR 13].

The second category of platforms uses a dedicated modeling

language to define models. These models are generally easier to use

than those in the first category and are therefore intended for a wider

range of users. However, the user is required to have algorithmic skills.

The best-known open-source platforms in this category are NetLogo

[TIS 04] and GAMA [GRI 13].

Platforms in the final category define models using a graphic

modeling language. In general, users of these platforms need only have

very little knowledge of algorithms, or sometimes even nothing at all.

An additional advantage of these models is that they facilitate dialogue

between modelers and thematic modeling technicians. However, they

are limited to the definition of simple models and do not provide the

same rich resources as the other categories of platforms. The platforms

in this category include StarLogo TNG [RES 96] and MAGeo

[LAN 13].

It should also be noted that there is a current trend to integrate

several ways for defining models within a platform. For example, in

the latest version of the Repast platform, there are three possible

methods for defining models: in Java, in Relogo (where the language

from the NetLogo platform is used in a Repast model) and by graphic

modeling. Cormas and GAMA also offer graphic modeling tools in

their latest versions.

Among all the platforms, NetLogo ranks first because of the

simplicity of its use. Even if this platform does not offer the possibility

Introduction to the Agent Approach 21

of defining models as complex as those that can be defined with

GAMA or Repast, it has the advantage of being very easy to use, even

for those who are modeling for the first time, or who have a low level

of algorithmic knowledge. Another advantage of this is that many of

the other platforms currently available have adopted some of its

concepts. This means that it can be a good way to start working with

these concepts before moving on to more complex platforms such as

GAMA or Repast.

1.5. Observing a phenomenon through agents

Before simulation occurs, MAS are also involved in explicating

knowledge linked with the initial research question. There are various

possible approaches for structuring the modeler’s thought and the

formalization of the problem. First, we might mention mathematical

approaches such as ordinary differential equations (ODE) and partial

differential equations (PDE), stochastic methods (such as Bayesian

networks and Markov chains). After this come IT approaches (through

simulations), such as cellular robots, individual-based approaches and

MAS. In this context, MAS play a very particular role due to their

proximity to reality and their adaptability to all contexts.

We will first present a method for modeling a real phenomenon using

agents. We will illustrate our explanation with an example from social

sciences concerning inter-urban dynamics.

1.5.1. Two agent approaches to a real phenomenon

With regard to MAS as modeling tools, there are two major

trends [EDM 04]. The first trend is parsimonious modeling, known as

keep it simple stupid (KISS), where the observed system is reduced to

its simplest representation in order to highlight its dynamics. Thus, we

speak of a comprehension model for KISS. The second modeling trend

is keep it descriptive stupid (KIDS), in which the observed system is

described in all its complexity on the basis of field data, particularly

using geographic information systems (GIS), in order to describe the

22 Agent-based Spatial Simulation with NetLogo 1

real system as accurately as possible. In this case, we speak of a

descriptive model. Typically, in order to understand the difference

between the above-cited approaches, we add the following details.

The KISS approach aims to simplify the model as much as possible

in order to construct an intelligible controlled environment focused on

the system’s dynamics which is under study. This can be seen through

microscopic or macroscopic observation of the system by simulation.

If an example from epidemiology is simplified, the acquired immune

deficiency syndrome (AIDS) model from the NetLogo library is

obtained. This model describes a homogenous space with infected or

healthy individuals, with random circulation patterns, where there is an

infection at each meeting. KISS modeling makes it possible to

understand the dynamics observed by simulation, taking a certain

number of parameters into account. Due to the short timeframe of these

experiments, the modeling may be interactive. It is thus possible to

define serious or multi-actor games for an almost exhaustive

exploration of the value of the parameters, or potentially for the

identification of scenarios which might be simulated as a next step,

using a KIDS model. The aim of the KIDS approach is to describe the

system in the finest possible detail. For example, the individuals in the

AIDS model mentioned above would, through this approach, have a

realistic circulation behavior (such as pendulum movement, or

movement linked to place of residence) which is linked to field studies

conducted. Therefore, KIDS modeling comes into its own when what

is required is an appreciation of a system’s future or a method for

evaluating and decision-making policy on the ground. However, the

number of parameters involved is often very high, and the calculation

time may be as long as several hours, or even several days. This means

that KIDS models cannot be used interactively. Before any simulation,

the scenario needs to be thought of carefully because it is impossible to

completely explore this type of model.

In order to provide a clearer idea of the KISS and KIDS

approaches, we will provide a concrete example of their use in the

section that follows.

Introduction to the Agent Approach 23

1.5.2. Agent modeling through an example: the MIRO project

The Modélisation Intra-urbaine des Rythmes quOtidiens (MIRO)

project (financed by Programme de Recherche Et D’Innovation dans
les Transports terrestres (PREDIT) 2004-2007, Agence Nationale pour
la Recherche (ANR) 2009-2013, Ministère de l’Ecologie, du
Développement Durable et de l’Energie (MEDDE) 2014-2015) aims to

explore, through computer simulation, the possible impacts of urban

policies on the spatiotemporal accessibility of a town to citizens, and

the consequences that these policies have on the daily mobility of the

citizens. It also aims to establish territorial diagnostics (local gains and

losses in terms of accessibility) and social diagnostics (populations

which are favored or disadvantaged by the different tested policies).

Finally, it facilitates the exploration of the possible global impacts of

the modification of individual behaviors, which focuses more on the

bigger picture than on the maximization of one individual useful

feature. The agent approach makes it possible to see the town through

various points of view through scenarios that modify its structure, its

services and its inhabitants with the aim of observing the new

dynamics which result from these changes.

From this point of view, a comprehension model (of the KISS type)

and a descriptive model (of the KIDS type) which show the same

dynamics, but with different modeling goals, would complement each

other perfectly.

1.5.2.1. The SMartAccess model

SMartAccess is a pedagogical comprehension model which allows

the user to construct an imaginary town and to test urban planning

hypotheses.

The synthetic character of this model means that it is perfectly

suited to testing urban structures (such as compact towns or urban

villages); it is also suited to defining, in an iterative and interactive

manner and based on a large number of macroscopic and microscopic

indicators, urban configurations that meet certain sustainability criteria.

One of its aims is to help users become aware of how difficult it is to

take charge of the development of a complex urban system; this

24 Agent-based Spatial Simulation with NetLogo 1

becomes even more difficult when we want to achieve several goals,

some of which are mutually incompatible.

Figure 1.2. Screenshot from the SMartAccess model. For a color version of the
figure, see www.iste.co.uk/banos/netlogo.zip

1.5.2.2. The GaMiroD model

GaMiroD is a descriptive model which has been applied to the

towns of Dijon and Grenoble. It was developed using the GAMA

platform [DRO 13], which allows the simulation of several hundred

thousand inhabitants. In contrast to the SMartAccess model, the

GaMiroD model attempts to describe the towns of Dijon and Grenoble,

and their dynamics, as accurately as possible.

This model has been developed in line with the available field data,

which are:

– structure: the road network is built using the geographic

information systems of Dijon and Grenoble, which address not only

the existing physical network but also the rules for circulation on it (e.g.

direction of movement and speed restrictions);

– description of services: most of the two towns’ services are

described following the classification categories of Siren data. As a

result, each building in each town is classified according to one or

several functions (e.g. residential, school, shop and supermarket) and

opening hours are indicated;

Introduction to the Agent Approach 25

– population: population of the models mirrors the real population of

120,000 and 400,000 individuals, respectively, for Dijon and Grenoble.

This “synthetic” population is built using INSEE data from 1999 and a

survey on household mobility from 2009.

Figure 1.3. Screenshot from the GaMiroD model. For a color version of the
figure, see www.iste.co.uk/banos/netlogo.zip

The aim of these two case studies was to enable testing of scenarios

involving change in the urban environment. The studies were also

linked to local public policy actions arising from a desire to achieve

sustainable development: (1) the construction of a dedicated

infrastructure for public transport and (2) the implementation of an

urban regulated traffic zone to reduce pollution. Applying the

GaMiroD prototype for both sites facilitated the detailed verification of

whether it would be possible to reproduce the protocol, and made it

possible to test the model’s calculation abilities for two towns of

differing sizes.

1.5.3. Critical analysis

Through the SMartAccess and GaMiroD experiments, we can

clearly see the approach’s level of expressiveness: one problem can be

tackled from several points of view, with an extended scale and detail

of description. The closeness of the approach to the real system and

available field data enable the exchange of knowledge and skills

between modelers and field experts. The agent model can thus become

26 Agent-based Spatial Simulation with NetLogo 1

a basis for discussion. It plays the role of an intuitive representation of

a complexity being studied, while also playing a role in the integration

of all of the contributions of the various actors involved. It links a

simple idea on the system with theories and concepts, all the while

using field data. This centralizing role of the agent model makes it

possible to capitalize on the experience and skill of all the disciplines

which are collaborating in the project. Discussions and negotiations

lead to the controlled emergence of a model whose simulation provides

a virtual reproduction of the modeled realities through a scenario

which needs to be observed. The observation of this scenario thus leads

to the validation/invalidation of an initial collective understanding of

the real system and makes new phenomena, which had not yet become

apparent, observable. Bringing all the points of view together and

opposing them with each other guarantees the quality of the modeling

process and the simulation results, even though there is no formal

framework. Experience has shown that the MAS which correspond to

the method supported in this book are rarely very far from reality.

In fact, the extreme versatility of MAS makes them an approach

which is fit for many purposes, and which can be adapted to any

situation. However, the high level of flexibility of MAS may also be a

point of weakness: the permissiveness of such systems is a source of

modeling errors and of uncertaincy in the models. It may lead to

conditions favorable to uncontrolled increase in complexity and

combinatorial uncertainties. This, in turn, leads to difficulties in the

verification and validation of data.

As a result, one of the primary concerns of a modeler is the

production of a model which can be trusted, where the simulations

based on the model really do simulate the system which is under study.

To achieve this, modelers must pay much attention to the modeling

hypotheses, data and inevitable simplifications. For example, for the

modeling of road traffic within a town, one of the first simplifications

for modeling would be to break down the sections of the road network

into cells of the same size. Vehicles then move from cell to cell over

time. Another simplification might be to define a temporal budget and

to carry out the circulation around the model in line with this budget.

Introduction to the Agent Approach 27

The greater the distance traveled, the larger the expenditure of the

vehicle in terms of the budget. If the goal is to study interactions

between vehicles, for example to make it possible to observe an

“accordion” phenomenon on a portion of the network, the first

modeling assumption discussed will be well suited to this purpose,

because it shows the space that the vehicles occupy (each cell is

occupied by one vehicle at the most). However, the second

simplification makes it possible to ensure that a vehicle will reach its

destination within a given time, but it does not allow the observance of

friction between vehicles. Thus, we have two models of traffic, where

one describes the interaction between vehicles and the other is

concerned with journey time. The second simplification would be

suited to studying the accessibility of a town’s services.

The choice of one modeling strategy over another is made through

intuition and modeling experience or through a trial and error method

based on experiment plans. To return to the above example, if we try to

study accessibility using the first simplification, we will notice a

significant error in the time of travel in relation to the theoretical

journey times; these errors will disappear if we use the second

approach. Additionally, tests also facilitate the refinement of the model

constants, such as the spatial size of a cell for the first simplification.

Thus, validation and verification of the model are a significant and

essential part of the modeling–simulation process. As we have

previously stated, validation requires broad experimental experience

acquired through a large number of simulations (several thousand, or

even several hundred thousand), where results must be compared to

field data. Verification is more formal. It cannot be envisaged for the

model as a whole, but can only be applied to certain individual aspects

of the model such as exchange protocols between the vehicles, or that a

vehicle never leaves the road. It should be remembered that any model

is a point of view on a reality, but it is never actually real in itself.

Modeling strategy and modeling validation are addressed in

sections 2.5 and 4.4, respectively.

28 Agent-based Spatial Simulation with NetLogo 1

1.6. Summary

This chapter has presented the basic concepts of MAS. We have

introduced the core definitions and the organizational paradigms. We

have also presented the key trends in spatial modeling in order to place

agent models into context. The examples that we have provided have

also shown the rich expressiveness of these systems when it comes to

creating models of complex distributed systems. However, before we

can build models and explore them through simulation, we need to

address the question of description formalisms in agent models.

The next chapter will aim to demonstrate how to manipulate these

various formalisms.

2

Description Formalisms
in Agent Models

2.1. Introduction

This chapter will aim to present good practice in, and the benefits

of, formalization in modeling multiagent systems (MAS). To achieve

this, the authors will first reiterate the usefulness of modeling systems,

while placing the paradigms associated with a multiagent approach in

context. Then, they will argue that the use of graphic modeling

languages enhances the exchanges between the parties involved in the

design of an MAS. Following this, two types of graphic models based

on the same semantic base are presented: Unified Modeling Language
(UML) and Agent Modeling Language (AML). The first graphic model

is intended for general use and facilitates its users to analyze the

ontology and dynamics of the modeled system. The second graphic

model uses paradigms specific to agents and facilitates its users to

create a design which is closer to the MAS which will be produced.

After having discussed the relative merits of each of these graphic

model types and presented some possible extensions, the chapter

discusses the utility of, and a method for, documenting a multiagent

model. In order to do this, the Overview, Design concepts, Details

Chapter written by Fabrice BOUQUET, David SHEEREN, Nicolas BECU,

Benoît GAUDOU, Christophe LANG, Nicolas MARILLEAU and Claude MONTEIL.

30 Agent-based Spatial Simulation with NetLogo 1

(ODD) protocol, which guides the modeler in the creation of a

documentation of the objectives, constitutive elements and specific

properties of the model, is presented.

We illustrate each of the concepts presented (UML, AML and ODD)

through their application to an example which will be a recurrent theme

in the remaining of this chapter.

2.2. Recurrent example

Many applications exist which have clearly demonstrated the utility

of the agent approach for modeling complex phenomena. These

involve numerous domains, such as ecology, social science or

epidemiology. We have chosen to address the domain of epidemiology

because, first, this theme takes in several other domains, in particular

ecology and social sciences, and second, a wide range of multiagent

concepts can be involved in modeling complex phenomena such as

these.

As such, this chapter, and those that follow it, will be thematically

linked through a recurrent modeling example which is based on an

epidemiological phenomenon. The phenomenon in question is the

geographic dispersion of an epidemic transmitted to humans by

mosquitoes. The aim of the model is to understand and measure the

impact of the pendular journeys people take (moving from home ↔
work) on the development and spread of a contagious disease.

We have decided to study malaria, which is present in many African

countries, and we apply this to the Maroua subregion of Cameroon (see

Figure 2.1).

The only way in which malaria is transmitted to humans is through

the bite of an infected anopheles mosquito. A healthy mosquito becomes

infected when it bites an infected person. People cannot pass the disease

on to other people, and mosquitoes cannot pass the disease on to other

mosquitoes. By itself, the mosquito has a very small movement radius,

of approximately 50 m a day, but it is present throughout the territory.

Description Formalisms in Agent Models 31

However, the real vector for the spread of the disease seems to be people

because they need to travel over large distances to conduct their daily

activities.

Figure 2.1. Map of the Maroua subregion (Cameroon)

Most of the inhabitants of the Maroua live in urbanized areas (black

in Figure 2.1). The crop farmers of the region travel in a pendular

movement between their homes (in town) and the area that they farm,

outside the town (white and gray areas in Figure 2.1). The wetland

zones correspond to wet areas where the mosquitoes can lay their eggs.

In the following, this system will be modeled using UML (section

2.3.1), and then AML (section 2.3.2), and will be documented using the

ODD protocol (section 2.4). In this way, the readers will discover the

different forms of model description through an example of each.

32 Agent-based Spatial Simulation with NetLogo 1

2.3. Formalization of agent models

In this section, we will first detail the reasons for formalizing MAS,

and then we will present two tools designed to aid this formalization –

UML and AML – which we will illustrate using our recurring example.

Formalization is a process which has three goals. The first goal is

related to the system under study. A tool is required that is suitable

for gaining an understanding of the system concerned. The second goal

is connected with abstraction, which helps us to not be restricted by

technical considerations linked to the simulation components. The third

goal is the generation of a code, which will make it possible to transition

from model to implementation. In addition, graphic formalizations, such

as UML and AML, also allow us to streamline communication about

the content of the model among several people. These languages have

the advantage of being able to synthetically show, using one or several

diagrams, complex mechanisms and structures. The graphic nature of

these diagrams simplifies their understanding for non-programmers.

In this chapter, we have chosen to concentrate on UML and AML;

the latter is an extension of the former, and it is more specifically

dedicated to the agent paradigm through its formalization of the

description of agent behaviors and interactions.

The various diagrams developed from UML may also, of course,

be used for model development. However, its generic nature causes

certain problems when it comes to using it within a specific context.

Thus, for spatialized simulations, it is necessary to use a language which

can represent space and its constraints, such as the representations

underlying Geographic Information Systems (GIS) [CHI 13].

2.3.1. UML

In the 1970s and 1980s, there was disagreement between those

who believed in modeling data and those who believed in functional

modeling. In this period, the use of flow and relational diagrams was

generally considered to be mutually exclusive.

Description Formalisms in Agent Models 33

These two camps finally came to an agreement at around the end of

the 1980s, and realized that most projects could benefit from the use of

both model types. This reconciliation was followed by the emergence

of numerous object-oriented analysis and modeling methods. However,

each method had its own specific notation and definition of terms such

as object, type and class. There was no common standard. The number

of modeling languages increased from less than 10 to more than 50

between 1989 and 1994.

At the end of 1994, Grady Booch and Jim Rumbaugh announced

their collaboration on the development of a Unified Method. They

were later joined by Ivor Jacobson. In the end, after several years

of experimentation with various notations and concepts, the group

established a semantics for object-oriented concepts and agreed on a

common notation on the basis of several of the notations and concepts

with which they had experimented.

During 1996, the Unified Method developed into the UML. This new

name was designed to emphasize the fact that UML was a modeling

language and not a method. Its aim was to provide an expressive

notation to define a semantics for implied concepts, and to leave the

development process choice open. In the end, UML, developed from the

combination of the three methods of object modeling, Object Modeling

Technique (OMT), Booch and Object Oriented Software Engineering

(OOSE), became an essential standard. Originally created to enable a

developer to represent, specify, analyze and visualize the structure of a

project in object-oriented programming, UML is today used in a large

number of fields.

The development of UML is quite like the development of software

in that there are major versions as well as improvements and extensions.

The current version of UML is version 2.0 [OMG 05], which is divided

into four parts:

– UML 2.0 Superstructure: diagrams used for modeling;

– UML 2.0 Infrastructure: foundations shared with MOF 2.0;

– UML 2.0 OCL: the language of constraints;

34 Agent-based Spatial Simulation with NetLogo 1

– UML 2.0 Diagram Interchange: makes it possible for exchange of

diagrams between tools to take place (including from a graphic point of

view).

UML Superstructure contains various types of diagrams:

– six structure diagrams: classes, objects, composite structures,

components, deployments and packages;

– three behavior diagrams: activities, use cases and state machines;

– four interaction diagrams: sequence, communication, overview of

interactions and timing.

2.3.1.1. Formalization of model structure (static diagrams)

This section presents the descriptive aspect of UML modeling. This

is also known as the static part, or the structure. Here, we will only

present two of the six structure diagrams: class diagram and object

diagram. These are the diagrams that are most widely used in UML

modeling. The class diagram is also used for meta-models (models of

models), also known as ontology.

2.3.1.1.1. Class diagram

The UML class diagram allows us to model the structure, i.e. the

static part of a system. Classes are essential in that they define an

abstract type which will later make it possible to instance objects in the

object diagram. Figure 2.2 presents the complete class diagram for our

recurring example. We can see the class Entity. This class possesses

the Boolean-type attribute is-infected and a function infect()

which makes it possible to infect another Entity. Furthermore, this

is a situated entity, and thus possesses the attribute CurrentPosition

which is the location in which it is found, and the method move. In this

diagram, classes are not isolated. There may be links between them,

known as relations. There may also be relations between classes for

various reasons:

– Heritage allows one class to inherit all of the attributes and

methods of the mother class from which it is descended. This relation

is represented by a bold arrow. Thus, the classes Mosquito and

Human inherit the attribute is-infected from the class Entity. In

Description Formalisms in Agent Models 35

addition to attributes and inherited methods, the class Mosquito also

possesses the attribute patient0. This represents the mosquitoes that

are contaminated at the initialization of the simulation, known as patient

zero. This patient is represented by a Boolean which is true in this case

and would otherwise be false.

– Association makes it possible to link two classes. It may be

named and may contain information on multiplicity (cardinality) and

navigation (direction of the relation). In the example, we have shown

the association Has contaminated which is connected in a specific

way, because it links Entity and itself (reflexive association) to

indicate the chain of infection, showing who has contaminated and

the infected entity. The cardinality “*” indicates that an entity can

be the contaminator of zero or several entities, and the cardinality

“0..1” at the other end of the association indicates that an entity has

been infected by zero or a single contaminator. There are two special

association cases: aggregation and composition. These are represented,

respectively, by an empty and a filled-in diamond on the aggregate side.

In our example, a composition relationship links the places (the class

Place) to their Territory (aggregate).

- contaminated

is-infected: Boolean

- infected

Entity Territory

move ()

infect ()

time-step: Integer

init-globals ()

loading-map ()

simulate ()

«agent» «environment»

«agent»

Mosquito

date: Integer

generation: Integer

Infection

patient0: Boolean

bite ()

init-mosquito ()

go-mosquito ()

begin-work: Integer

end-work: Integer

«agent»

Human

init-human ()

go-human ()

goto-work()

goto-home()

* live 1

* work 1

currentPosition

Place

- place

- place
nature

- zone

coordX: Integer

coordY: Integer

create-mosquito ()

«enumeration»

Zone

AGRICULTURAL

URBAN

WETLAND

Figure 2.2. Representation of the class diagram from the recurring example

36 Agent-based Spatial Simulation with NetLogo 1

2.3.1.1.2. Representation of the recurring example with UML

In the UML model, we have grouped the common elements of the

mobile entities (mosquitoes and humans) together in a class Entity.

We represent the concept of contamination between entities with an

association which has attributes, called “Infection”. The information

does not appear in the diagram (because we have not presented the

constraints), but an entity cannot be infected by an entity of a different

subtype. For this reason, information regarding the source is maintained

through association, and information concerning the date and generation

is also maintained through the association attributes.

The territory is made up of elements from the class Place which

corresponds to the various possible soil occupation zones, specified

through the attribute “nature” in the class Place. This is an enumerated-

type attribute, whose various modalities are specified in the class Zone.

Furthermore, in our representation, the Territory also plays the role

of environment for the system and contains the representation of time

(time-step) in the simulation and the entire management part of

the system. We find these same elements of simulation management

for beginning the simulation after the various components have been

initialized and the card has been charged. A Place is denoted by its

coordinates, which represent the center of the zone. Initially, it needs

to be possible to create infected mosquitoes. This is performed by the

method create-mosquito.

2.3.1.1.3. Object diagram

The object diagram facilitates the classes defined in the class

diagram to be instanced as real objects. This diagram is useful for

giving an image of the state of the system at time t. In order to model

the initial state of the system, for example, an object diagram is used.

In Figure 2.3, we have represented three entities, two of which are

mosquitoes (a zero patient and an uncontaminated mosquito) and the

last one is a human. At time t, the communication chain is limited to

the zero patient. It is possible to give object values to all or part of the

attributes. In the example, we have not shown all of the objects and

relations. For example, the agents are situated and they should be in a

Description Formalisms in Agent Models 37

relation with the instances of the class Place. Furthermore, we have

only represented one Place1-3.

bzz1: Mosquito

bzz2: Mosquito

patient0 = false

is-infected = false

patient0 = true

is-infected = true

place 1-3: Place

José: Humain

is-infected = false

coordX = 1

coordY = 3

- hhuman

- hplace

Figure 2.3. UML object diagram

2.3.1.1.4. Meta-model

A meta-model is a modeling language which makes it possible

to describe another language, much like grammar which is used to

describe real language. In UML, the class diagram represents all of

the elements permitting the description of a UML model. This means

that the language can represent or define itself by itself, and can also

define a new framework for modeling. In this way, it becomes possible

to extend or specialize UML, as suggested by the creators of AML. We

will observe this in much detail in the section that follows.

2.3.1.2. Formalization of model operation (dynamic diagrams)

This section presents the analytical diagrams, which are also

sometimes known as dynamic diagrams, because they enable the

description of the dynamic aspect of the system. It brings together all

of the behavior diagrams and the interaction diagrams. Of the seven

possible diagrams, we will only present three diagrams here: activity

diagram, state-transition diagram and sequence diagram. We will

conclude by discussing the coherence verification features. Coherence

verification can be carried out on the basis of meta-modeling elements,

and using all of the information provided by the various diagrams.

38 Agent-based Spatial Simulation with NetLogo 1

2.3.1.2.1. Activity diagram

The UML activity diagram is one of the diagrams which allow

the modeler to represent the behavior of an object using nodes (of

activity, action, control or objects) and transitions. Activity diagrams

are suitable for specifying sequential or concurrent treatments. They

provide an overview of the control flows from one activity to the other.

In Figure 2.4, we show activity linked to the movement of a mosquito.

This can be seen as an activity related to the method go-mosquito.

Thus, the mosquito moves about and, if there is a human in the area, it

bites them.

Movement

Move

Humans present?
Yes

No

Bite

Figure 2.4. UML activity diagram

2.3.1.2.2. State-transition diagram

The role of the state-transition diagram is to represent finite-state

automata (i.e. entities that are characterized by a set of states which,

at any given moment, are in a specific state) in the form of a set of

transitions, which may or may not be labeled. A state is characterized by

the value of the attributes of a system at a time t. A transition represents

the transition from one state to another; such a transition is generally

triggered by an event. This triggering may be automatic, when the event

that triggers the change is unspecified. It is also possible to condition the

Description Formalisms in Agent Models 39

triggering of a transition using guards: these are Boolean expressions,

expressed in natural language or in Object Constraint Language (OCL),
for example. In Figure 2.5, we show the lifecycle of a mosquito. It

begins its life and moves around until it dies or is killed by a human.

If this does not happen, it lands on a person and biting them each time

is possible. During the exchange of fluid, one or the other of the entities

involved may become infected with malaria. It should be noted that the

mosquito never rests and as soon as it is in the same place as a human,

it will bite the human.

Mosquito life

moving ()

bite ()

Positioned and ready

to bite

Flying

dying ()

crushed ()

crushed ()

positioning ()

Positioned after biting

fly off ()

Figure 2.5. UML state-transition diagram

2.3.1.2.3. Sequence diagram

Sequence diagrams are used to represent interactions between the

modeled system’s entities (actors or objects). It makes exchanges

(synchronized or non-synchronized) visible. There is a composition

language available, which means that parallel treatments can be

expressed using interaction frameworks which may contain algorithms.

In Figure 2.6, an exchange is shown between the three entities of the

object diagram, showing a contamination cycle.

40 Agent-based Spatial Simulation with NetLogo 1

2.3.1.2.4. Consistency checking

As with any representation, it is important to check the consistency

of the model. Currently, there are tools available which can help make

these checks, such as ATL. ATL1 is a model transformation language,

which works at the meta-model level, and has been in development

since 2003 at the University of Nantes. It aims to make it possible to

express model transformation rules and to execute them. Since January

2007, ATL has been part of the Eclipse Model-to-Model (M2M) section,

and thus it is recommended for use as a tool for transforming one

model into another. In addition, it is integrated as a plugin to the design

platform Eclipse. To achieve this, a meta-model needs to be defined,

which enables the representation of a model, as shown in Figure 2.7.

bzz1: «agent» Mosquito bzz2: «agent» Mosquito José: «agent» Human

1: bite

1.1: infect

1.2: infect

2: bite

2.1: infect

2.2: infect

Contamination

Figure 2.6. UML sequence diagram

This meta-model contains a meta-class Problem and a meta-list

Severity. This meta-model allows us to instance problems detected

1 ATL is an abbrevation of ATLAS Transformation Language.

Description Formalisms in Agent Models 41

in the model in order to identify their source (attribute location),

description and severity. Their severity lets us know whether the error is

critical for code generation. If this is the case, then no code is generated.

On the other hand, if there are only warnings and not critical errors

detected, then code generation takes place.

Figure 2.7. Problem meta-model

Modeling like this can be carried out using standard UML; however,

when it is conducted in this way, it would be initially difficult to

understand and could not be used as a tool for communication.

This is why the following section discusses the AML extension

which has been added to UML.

2.3.2. AML

Since the UML language is very general and is oriented

toward object programming, much work has been conducted on the

development of a suitable graphic formalism, which might perhaps even

be dedicated to the agent paradigm.

The development, since the mid-1990s, of MAS design methods

(e.g. Gaia [ZAM 03], TROPOS [BRE 04] or Prometheus [PAD 02]) has

naturally been accompanied by the development of various dedicated

graphic modeling languages (e.g. Agent UML (AUML) [BAU 01b] or

AML [CER 07]) which are more or less based on UML, and which

aim to supplement UML with concepts specific to the domain of

MAS. Of these languages, we will be particularly concerned with

42 Agent-based Spatial Simulation with NetLogo 1

AML [TRE 05, CER 07]. AML is a semi-formal language for modeling

and documenting applications based on MAS. It was developed as an

extension to UML 2.0 [OMG 03]. The main aims of the designers of this

language are to include and bring together the preexisting concepts from

various agent architectures (in particular, Beliefs Desires Intentions
(BDIs)), and preexisting languages and modeling methods. Thus, AML

seeks to be suitable for any type of agent-based applications and to be

independent from the methodology and development platform used and

from the case to which these are being applied.

2.3.2.1. Formalizing model structure (agent-group-role)

2.3.2.1.1. Agents

This section emphasizes the description of the model structure,

which in UML is conducted mainly by using class diagrams. In

contrast to UML, with which only classes may be defined, by using

AML we can refine and represent various types of entities involved

in MAS and agent-based simulations. Figure 2.8 is a fragment of

a complete AML meta-model. It presents the hierarchy of AML

entities on a general level. A more detailed description will not

be given here. Similarly, the concepts and formalisms used in the

structure model are lower level concepts. For example, we will directly

use the concept of agent without reference to the fact that it is a

specialization of AutonomousEntityType which is descended from the

entities BehavioredSemiEntityType, MentalSemiEntityType, etc.

The principal entities are the agents (autonomous entities which can

perceive, interact and have a certain behavior within their environment;

these also have mental attitudes and social abilities), the resources

(entities without their own autonomous behavior, which are used

by agents; their availability is an important characteristic) and the

environments (the entities within which the other entities develop).

AML also makes it possible to define the entities’ role and organization,

which are linked to the social capacities of the agents. These two

concepts are close to those presented in the Agent, Group, Role (AGR)

model [FER 04]. An organization also means that a set of agents which

are considered at a higher level as a single agent can be represented.

Description Formalisms in Agent Models 43

Type

(from UML)

EntityType BehavioredSemiEntityType

(from Basic Behaviors)

SocializedSemiEntityType

(from Social Aspects)

MentalSemiEntityType

(from Mental States)

BehavioralEntityType

AutonomousEntityType

Figure 2.8. Entity hierarchy in AML

Each entity is represented, graphically speaking, by a UML class

with a stereotype unique to the entity and/or an icon, which specifies

to which type the entity belongs. Figure 2.9 depicts the entity. It is

characterized by a list of attributes, a list of operations, the elements

which composes it (the field part in UML 2), and behaviors. The

parts are particularly useful for specifying which agents make up an

organization. Behaviors are complex actions composed of operations or

perhaps even other behaviors. The way in which these are conjugated

for different types of entities is shown in Figure 2.10.

«stereotype»
Name Icon

List of attributes

List of operations

Parts
Behaviour

Figure 2.9. Description of an entity in AML

Finally, the AML formalism is very open and it is possible to

describe the same element of the system within the modeled system

in several ways. Thus, in the description of the formalism that follows,

44 Agent-based Spatial Simulation with NetLogo 1

we will detail the methodological choices that we have made. We will

present AML modeling based on the AGR approach.

Type of entity Stereotype Icon

Agent

Environment

Resources

Organization

Role

«agent»

«environment»

«resources»

«organization unit»

«entity role»

Figure 2.10. Stereotype and icon for each type of entity

The agent is the central element of the modeling. At the lowest level,

it is described as in Figure 2.9. At higher levels, it is possible to refer to

an agent that has already been described, simply by using its name and

the agent icon.

An agent is identified by a name, and for a given agent there may

be several instances, and thus several agents of the same type. It is,

therefore, important to make a distinction between the agent type (which

is close to the UML class concept) and the agent itself, which will be

present within the system (instance).

As shown in Figure 2.9, following this we find the list of agent

attributes and the list of its operations (the actions that it can carry

out). The parts part of the agent will always remain empty within this

chapter. In fact, for the purposes of this work, we consider that an agent

cannot be made up of other agents (as is the case in an implementation in

NetLogo)2. The final part, behaviors, contains the fragment behaviors.

These make it possible to describe the complex behaviors that the agent

2 In contrast to NetLogo, other agent-based modeling and simulation platforms (such

as GAMA [GRI 13] or Cormas [LEP 12]) allow for the definition of agents as being

made up of other agents.

Description Formalisms in Agent Models 45

can accomplish by breaking down them into several simpler actions.

Fragment behaviors can also be used to describe reusable actions by

other agents. As described in section 2.3.2.2.2, this part of the agent

is fulfilled only if the agent is able to conduct complex actions. This

concept will be described in much detail in the interaction model.

2.3.2.1.2. Groups

The concept of group does not exist as such in AML. In its place are

organization units. These are used in AML to describe organizational

structures, environments which specify social arrangements between the

entities in terms of interaction, roles, constraints, etc. This approach is

relatively close to the notion of group as it is introduced into the AGR

model. As a result, we have decided to use OrganizationUnitType to

describe the groups of our MAS. In the same way as for agents, it is

essential to make a distinction between the group as a structure and the

group as an instance.

In the AGR approach, the group is an abstract notion, allowing us

to bring together the agents which share characteristics or resources.

As it stands, the AML formalism shown in Figure 2.9 is too rich. In

fact, a group, as defined in the AGR model, has neither attributes nor

methods. This formalism nonetheless allows us to model the notion of

an agentified group.

Our model must actually be able to describe the fact that a set

of agents may be considered as a unique entity at a higher level of

abstraction. We represent this in AML using OrganizationUnitTypes
and a specific role of leader for each group. This role will always have

the name of leader followed by the name of the group to which it is

attached.

In a model, a group will have its empty attribute list, operation list
and behavior parts. The parts part is the only one that will be full: this

is the part that makes it possible to describe the group’s structure, that

is to describe what it is made up of. A group may be made up of agents,

other groups or possibly both. In this part the various roles which the

group’s agent may play are also found, with the specific role of Leader
which is present in each group.

46 Agent-based Spatial Simulation with NetLogo 1

2.3.2.1.3. Roles

According to the AGR model, a role belongs to a group. In our

structure model, we represent this by placing all of a group’s roles in

the group’s parts part.

In AML, a role is described as shown in Figure 2.9. The concept

of role is as defined by Ferber [FER 98] for the AGR mode. Thus, a

role cannot be made up of other roles, and for this reason, the parts
part is always empty. The three other parts may or may not be empty,

depending on whether the role gives access to attributes, simple methods

or complex methods.

The systematic existence of the specific Leader role for each

agentified group should be noted. For this role, the attribute list part

(respectively, operation list) allows us to describe the list of attributes

(respectively, methods) of the agentified group, that is the agent playing

the role of the group leader. The behaviors part makes it possible to

describe the complex actions that the agentified group (and thus the

agent playing the role of Leader) is capable of carrying out. As with

a more classical role, these parts may be empty.

According to the definition of role in the AGR model, two more

things need to be modeled: the fact that some roles require prerequisites

to be carried out, and that some roles may make it possible to direct

other agents. As AML is based on UML 2 and is compatible with it, the

prerequisites may be described using OCL constraints on the relation

of “playing a role”; the graphic representation of this is shown in

Figure 2.12. The hierarchy between the roles is expressed using links

between the roles, as shown in Figure 2.11.

There are two types of relationships between entities: “peer-to-peer”

relationships and “master/slave” relationships. There are three types of

links between two roles in order to show these types of relationships.

“Peer-to-peer” (a) relationships are shown by black and white triangles.

These “peer-to-peer” relationships are the relationships between entities

of the same social status and that have the same level of authority.

Description Formalisms in Agent Models 47

Figure 2.11. Types of link between roles in AML

Relationships of the “master/slave” type are shown by the links

(b) and (c). The link (b), a black triangle, represents the leader (or

superOrdored in AML). A leader can control the behavior of the agents

under its command. On the other side of the relationship is the link (c),
made up of a white triangle, which represents the subordinate. An (a)-
type link is always associated with another (a) link, and the (b)-type

link is always associated with a (c)-type link.

Now that we can link the roles with each other, let us see how we

can link the roles to agents.

Figure 2.12. Playing a role in AML

Figure 2.12 shows the association between a role and an agent, which

means that the agent plays the role in question. The half-circle faces

toward the role. We can also specify the role’s multiplicity, that is the

maximum number of agents which can play this role in this group at the

same time.

We have now shown the three essential components of the AGR

model, which are the agents, the groups and the roles. There are,

however, two further entities which are used in the structure model:

environment and resources.

48 Agent-based Spatial Simulation with NetLogo 1

2.3.2.1.4. Environment and resources

The environment is a logical and physical entity which surrounds all

the system’s entities. Its AML representation is shown in Figure 2.9.

There is a maximum of one unique environment in the structure model.

The environment may not be present if it does not contribute anything

to the model.

We have assumed that the resources are connected to the

environment, as this is the global entity in our system. Thus, the

parts part, renamed Resource List, contains the system’s resource(s).

The three other parts of the environment may be used. From the

environment, we only consider the system’s global variables (such as

temperature) and the operations which make it possible to modify these.

The resources are physical entities (for example, raw materials in a

production system) or computerized entities (for example, a database).

Simple resources are accounted for in our system: these are not made up

of other elements. As such, a resource will never have any parts in its

representation (see Figure 2.9). A resource may possess one or several

attributes (such as a capacity). Finally, in the case of an information

technology (IT) resource, it is considered that this may contain simple

or complex operations. In the case of a knowledge bank, for example,

these operations may be used by agents which have access to it.

2.3.2.1.5. Representation of the recurrent example with AML

In the AML representation of the recurrent example, we have chosen

to take the opposite of the UML representation for the formalization

of the link between infections. In fact, because AML allows us to

adopt the AGR approach, we have decided to use this to represent the

infection. Here, we have two roles. The first role is concerned with the

contaminator. This is a specific role within a group, which allows us

to find out the source of the contamination for all of the infections of

the group Infection. The second role is concerned with the infected

entity. It indicates, when an entity is infected, the date of the infection

and where it came from. It also makes it possible to acquire the

infection capacity (operation infect()) and for it to become, in turn,

a contaminator of the group Infection. The second group patient0

Description Formalisms in Agent Models 49

makes it possible to manage mosquitoes that are infected at the system’s

initial state. As for the rest of the system, the same elements are present

as with the UML model. One small variation is that complex behaviors

based on other operations or system behavior, such as goto-work,

which uses movement to go from a specific Place to another, from

home to work, can be highlighted (using the circular arrow).

«agent»
Entity

«enumerate»
Zone

«environment»
Territory

«role»
Infected

«group»
Infection

«group»
Patient0

«resources»
Place

«agent»
Human

«resources»
Mosquito

move ()

bite
init-mosquito ()
go-mosquito ()

* currentPosition 1

nature

* live 1
* work 1

1
* *

AGRICULTURAL
URBAN
WETLAND

begin-work: Integer
end-work: Integer

init-human ()

go-human ()
goto-work ()
goto-home ()

time-step: Integer

loading-map ()

init-global ()
simulate ()

coordX: Integer
coordY: Integer
size: Integer

create-mosquito ()

date: Integer
generation: Integer

infect ()

infect ()

contaminator: Entity [1]
infected: infected [0..N]

infected: infected [1..N]

Figure 2.13. AGR representation with AML for the recurrent example

This concludes the descriptive part; let us now focus on the analytical

part, which contains the interactions and the actions.

2.3.2.2. Formalization of model operation (interactions and actions)

In this section, we will present the modeling elements which allow

us to describe the dynamic part of the models, in particular interactions

and actions.

2.3.2.2.1. Interaction model

There are two types of interaction: interactions between an agent

and one or several other agents, and interactions between an agent and

its environment, which is where the agent and its resources are based.

Here, we will consider several interactions, which can be classified into

five major types:

– communication: three types of communication may be listed:

sending messages, using a blackboard and communication with markers

(such as pheromones). A message may also have several consequences

50 Agent-based Spatial Simulation with NetLogo 1

for the agent: it may change its state, it may make it send a reply or it

may make it carry out a particular action;

– reaction: a distinction is made between actions and agents, and

the effects that these actions produce. An action carried out may

have consequences on one or on several agents, as well as on the

environment;

– cooperative and/or complex actions: some actions cannot be

carried out by one agent alone, and require cooperation between several

agents. Also, some complex actions may be broken down into several

simpler actions. This is especially the case for the actions known as at
a high level of abstraction, which will be discussed later in more detail;

– scheduling: due to the action model, which provides the starting

and ending dates for each of the actions carried out, we can check if

a scheduling is possible or not. Additionally, we can produce a naive

scheduling if we are lacking this. In this way, it is possible to check that

an agent does not complete an action before one which precedes it has

been completed (by it or another agent);

– knowledge and learning: agents are able to memorize, learn and

modify their basic knowledge as the system develops. As this part is in

itself a very important subject, these two concepts are very minimal in

our model, and their further development is one of the possible ways in

which the system may develop.

2.3.2.2.2. Actions

The AML formalism is open with regard to modeling choices, and

thus the same model, even a very simple one, may be described in

several ways with this formalism. We will, therefore, specify and detail

certain modeling choices.

It is possible to describe the actions and capacities of agents on

different levels. Therefore, the choice of modeling is made on the basis

of the type of action. The discriminating factor is the fact that there is

no special precondition or postcondition. We consider a condition to be

special if it does not relate uniquely to the capacity and knowledge of

the agent regarding the accomplishment of the action.

Description Formalisms in Agent Models 51

Thus, a simple action is an action without any special preconditions

or postconditions. It will be described directly in the organizational part

of the agent.

2.3.2.2.3. Complex actions

Cooperative actions and complex actions are described in the

structure model using the AML concept fragmentBehavior.

Figure 2.14. Description of a behavior in AML

Figure 2.14 shows what is known in AML as fragment of behavior.

These are used in two cases: for describing behaviors which could be

reused and for breaking down a complex behavior into several simpler

behaviors. In the first case, this means that we make several behaviors

correspond to a fragment of behavior. In this way, an agent which has

this fragment of behavior has these operations. We do not use them as

they are, but rather we use them to describe the actions that may be

described as complex. Also, the parts attribute list and parts always

remain empty. If the complex action may be divided into several simple

actions, these will appear in the part operation list. If the complex

action may be divided into several actions which are also complex in

themselves, then these will appear in the part behaviors.

2.3.3. UML versus AML

UML is very widely used. Its expressiveness means that it is a

modeling and communication system which is suitable for our needs.

52 Agent-based Spatial Simulation with NetLogo 1

It can be used alongside other languages and/or formalisms, or can also

have extensions added to it as necessary. OCL also allows us to express

the properties of the system.

The UML approach in an MAS implementation can lead to

additional complexity. In particular, this occurs when the model needs

to include those MAS paradigms that it does not allow to be suggested

natively (such as AGR). In this case, it is necessary to redefine these or

to add information to link these with the implementations.

The risk that this approach leads to is the loss of illustrative and

intuitive aspects. Thus, the complexity is not due to the system under

study, but rather it is due to the modeling elements.

For example, how can the different levels of abstraction of which a

system is comprised of be expressed? How can the autonomy of entities

at each of these levels be expressed, with perception, knowledge,

capacities and access to various resources?

Obviously, AML formalism, which has been defined for this very

purpose, does offer these concepts. Those who do not like it argue that

it is unfortunately not widespread. This comes partially from the fact

that there are only a few tools which support the use of this language.

It is important to note that AML is extremely powerful and modular;

this is in part due to the fact that it is descended from UML. However,

AML is not easy to grasp as a whole. In addition, all of its complexity is

not necessarily useful in the context of agent-based simulation. In this

chapter, we have not presented an exhaustive list of all the concepts

which exist in AML, but rather we have limited ourselves to those

that seem relevant to the domain of agent-based simulation, and which

have been used in the example. For a more complete overview of the

concepts available in AML, the readers may refer to the reference work

on AML [CER 07].

In this chapter, we will be concerned with the link between the

models, in particular between UML and the tool NetLogo.

Description Formalisms in Agent Models 53

2.3.4. Other variations of UML

Although there are other ways of modeling MAS, these methods

are for the most part focused on a particular field, and cannot be

used in a more general case. However, we should highlight several

of the works which propose a modeling or specification language:

Agent Communication Language specification from the Fondation

for Intelligent Physical Agent (FIPA ACL) [FOU 97], Knowledge

Query and Manipulation Language (KQML) [FIN 94], Taming Agents

and Objects (TAO) [SIL 03], Object-Process Methodology for Multi-

Agent System (OPM/MAS) [STU 03], AUML [ODE 00, BAU 01a] and

[ODE 01].

The most developed and successful of these approaches is the

AUML approach. AUML [ODE 00, BAU 01a] suggests mechanisms for

modeling interaction protocols in MAS. In order to achieve this, a new

diagram class has been introduced in UML: protocol diagrams. These

extend UML state and sequence diagrams in several ways. The specific

extensions introduce the agents’ roles and their simultaneous execution

sequences, extend the messages’ semantics and model the interaction

protocols.

AUML was put forward and accepted for inclusion in the standard

FIPA’99. However, AUML does not offer a graphic solution to the

problem of agentified groups.

2.3.5. Formalizing changes in behavior in UML

The concept of role which we outlined in the AGR approach is also

useful for specifying a behavior which will change over time at the level

of the same entity. Although this concept is directly available in AML,

it is not when the modeler decides to use a UML formalization. In this

section, we will show how modelers can structure their model to show

changes in behavior; this is achieved through the use of a Design Pattern
such as Actor-Role [COA 97].

The Actor-Role design pattern involves representing the attributes

and actions linked to a behavior within a specific class (the class role),

54 Agent-based Spatial Simulation with NetLogo 1

and which is associated with the Agent class. As Bommel explains:

“when we concern ourselves with the representation of humans or

animals which can evolve, transform, and change behavior throughout

their life, it is useful [...] to associate a specific behavior with the agent

that plays this role, [...] in order to allow it to change role (and thus

behavior) over time” [BOM 09]. In this way, when an entity changes

behavior, no major modification needs to be done to the entity, and all

that needs to be done is to associate a new behavior to it. When this

logic is applied to spatial entities, we more readily refer to state rather

than role. The application of this pattern thus consists of specifying

a distinctive class to which the spatial entity pertains, along with the

actions and attributes linked to a certain state. This structure proves

itself to be particularly relevant in the modeling of occupations of

space, to which states bring specific dynamics. It also makes it possible

to organize these dynamics clearly, and thus to communicate more

effectively with regard to the content of the model.

We propose to extend our recurrent example to present the

application of the Actor-Role pattern to the dynamics of spatial entities.

Thus, we will illustrate its use on a well-known case in the study of

change in soil occupation.

Plot of land

daysToHarvest = 90 daysToHarvest = 120

Maize

Forest

qtStocked

stockCarbon

Rapeseed

calculateProduction

production

daysToHarvest

Fallow

changeOccupation

surface area

soilOccupation

age

grow old

Crop

Figure 2.15. A class diagram for modeling changes in soil occupation
(figure adapted from [LE 05])

Description Formalisms in Agent Models 55

In the example in Figure 2.15, the Agent-Role pattern is found at the

level of the association between the plot of land and its occupation of

the soil. In this model, an instance of plot of land does not change over

time: its surface area remains constant. However, its soil occupation

may change. Several types of soil occupation are possible, each of which

possesses its own dynamics. A soil occupation of the type cultivation

(specialization) can calculate production once its age has reached the

number of days before harvest. As for a forest, within this model it has

the function of a carbon sink. Using this structure, the operation of a

third agent, which uses for cultivation purposes a plot of land previously

used as forest, consists of replacing the association of the plot of land to

an instance of the class forest with an association to an instance of the

class Rapeseed, for example.

Although this architecture is clearly advantageous in terms of its

clarity, implementing it within NetLogo can be difficult because only

one level of inheritance is possible in this platform, and this level of

inheritance is reserved for the turtle class. In practice, the modeler is

often obliged to specify the attributes and code the operations of all the

types of occupation (or roles) for a class, and then to add the conditions

which ensure that the entity cannot execute methods which correspond

to another type than the one it belongs to at the current time. Also,

the modeler needs to ensure that the attributes of a type are correctly

reinitialized each time the soil occupation changes.

The above discussion illustrates the difference, however excellent

the design, between a model which makes it possible to take all of

the paradigms into account and the reality of implementation. This

implementation needs to be conducted in an environment or using

languages which require a certain vigilance regarding the concepts, or

even profound adaptations of these, such as the absence of the concept

of objects.

2.4. Description and documentation of agent models

This section addresses the question of describing and documenting

a multiagent model. Section 2.4.1 will remind the readers of the roles

56 Agent-based Spatial Simulation with NetLogo 1

that the documentation and standardization of a model fulfill, which

are, among many others, making it easier to understand and explain the

structure and operation of the model, to spread information about it and

communicate about it with others, to compare it, replicate it, to use it for

other purposes and to reuse it, and to ensure that it is complete. Section

2.4.2 presents a protocol in detail, which has become a de facto standard

for describing multiagent models: the ODD protocol [GRI 06, GRI 10]).

A brief history of this protocol will be given, outlining the goals that

underlied its creation. The various elements which define the ODD

protocol (in its revised version) are then discussed: (1) the model’s

aim, (2) entities, state variables and scales, (3) general operation of

the model and process scheduling, (4) underlying design concepts,

(5) initialization, (6) input data and (7) submodels. Section 2.4.3 will

then illustrate, using various examples, ODD implementation, while

highlighting frequently occurring usage or interpretation errors. This

section also shows the link which exists between the diagrams created

during the model’s design phase and the protocol’s components.

2.4.1. Why describe and document?

The definitions of models and modeling given by Jean-Louis Le

Moigne [LE 90] emphasize intelligibility as one of the most important

properties of a model:

– A model is an intelligible, artificial, symbolic representation of

situations in which we are involved.

– Modeling is the act of intentional development and construction of

models, which are likely to render intelligible a phenomenon perceived

as complex, and to amplify the reasoning of the actor by projecting

a deliberated intervention within the phenomenon; the particular aim

of this reasoning is to anticipate the consequence of possible plans of

action.

In this way, a model builds an organized set of knowledge which

represents a complex system. Questions are being asked about this

system; its current operation needs to be understood, and also, possibly,

the way that it has developed in the past. Also, its future possible

development needs to be known, along with how it is impacted by

Description Formalisms in Agent Models 57

various scenarios, and this development needs to be influenced to lead

it toward some desirable outcome.

The documentation of a model thus becomes fundamental in the

mobilization, understanding and sharing of the knowledge which it

brings, and the efficient use of this knowledge. The documentation must

make it possible to describe the model in an instructive, explicit and

unambiguous manner, which is relevant for as wide a public as possible.

2.4.1.1. Instructive description of knowledge obtained using the model

The instructive character of the documentation of a model is in

its capacity to address progressively the model’s different levels of

description, from the most general down to the most detailed. This is

because we cannot directly go into the detail or the code of a complex

model. As a result, it is essential to have an overview to understand

the model’s context and aims, to understand what the model is doing

before understanding how it is made, and then to focus little-by-little

on its global components, and their interactions. Following this, we

can progressively move on to the detail of the manipulated data and

modeled processes. It is precisely to this end that the ODD protocol was

developed. This protocol will be described in the section 2.4.2.

2.4.1.2. Explaining the structure and operation of the model without
ambiguity

For a model considered stable, none of the aspects should remain

implicit or vague to the extent where a knowledge gap exists in

understanding the model or rendering it operational. This is a difficulty

that frequently occurs when a model is being conceptually refined so

that it can be transformed into an operational computerized model. It

is this stage which generally makes gaps, ambiguities or incoherencies

apparent, which then require a return to the conceptual model and

the further redetailing or redefinition of certain aspects of this model.

There is a sort of dialectics between the conceptual model and the

computerized model which means that several cycles are necessary

in order to elicit the knowledge carried by the models progressively.

The main difficultly clearly lies in the manner in which the model’s

documentation takes the organization of the modeled system into

58 Agent-based Spatial Simulation with NetLogo 1

account, the interactions between its components and the properties

which emerge from an organizational level in relation to the underlying

level(s), all the while managing a record and justification for the

decisions taken along the path for attaining a stable version of the

model.

In the context of this modeling process, ambiguity takes on a

particular character. At the beginning of the model design process,

it may be useful to accept some ambiguity in order to avoid undue

focus or time spent considering a point which might lead to problems

between those parties involved in the modeling. However, it is also

important to remove the ambiguity later in the refinement of the design

by specifying the conditions which lead to accepting or refusing it.

Temporary ambiguity may thus contribute flexibility which is useful

for the modeling process, particularly in the case of a process which

is being conducted together by several parties.

2.4.1.3. Taking the multiplicity of model users into account

The documentation of a model must be relevant to its users at

different stages of its development and implementation. Therefore,

the model must be made comprehensible to the various stakeholders

in the modeling process, which may comprise people with specific

knowledge bases (such as scientific, institutional, technical or empirical)

and discipline-related interests (thematic or computer-related). A model

must be understandable to the various types of users who contributed to

its development, as well as to people other than the initial stakeholders,

who may wish to use or further develop the model. This involves several

levels of documentation, which are not necessarily hierarchical. The use

of different forms of documentation (written, graphic, diagram, video,

etc.) may also favor the comprehensibility of the model to a varied

public. It is necessary to take several points of view into account when

building a model of a complex system, and similarly the documentation

of a model must make it possible to observe and understand these

different points of view.

Description Formalisms in Agent Models 59

2.4.1.4. Including mobilized meta-knowledge when building the model

The documentation must also explain why certain aspects have been

included in the model, and why others have not. Grimm [GRI 99] has

remarked that one of the advantages of individual-centered models

is that they can integrate empirical knowledge, with all the difficulty

of defining the criteria making it possible to decide whether certain

empirical knowledge should or should not be fed into the model. It is a

requirement of relevant documentation that it should make these criteria

clear.

Thus, documenting a model involves more than the mere description

of the knowledge it contains; it also requires the description of the

meta-knowledge which led to the elicitation of this knowledge (i.e. the

model’s hypotheses).

2.4.1.5. Making it possible to replicate the model

The documentation associated with a model should make it possible

to replicate the model. Starting from an analysis of several examples

of replication, Bommel [BOM 09] highlighted the inadequacies

of descriptions of many models, with particularly weaknesses in

specifications relative to the management of time and interactions.

He considered this stage of replication to be necessary, and that it

should be executed as far as possible by modelers other than the

initial designers to enhance the reliability of the simulators and allow

a true refutation of models. Literature on the topic has only recently

become preoccupied with this question in relation to multiagent models

[GRI 06]. A particular reason for this is that their usage has undergone

considerable development in several disciplines which handle complex

systems. By suggesting a protocol such as ODD, a first stage is available

which makes it easier to write and read multiagent models, resulting

in a description of these systems which is sufficiently comprehensive

to allow them to be replicated. The first revision of this protocol was

published in 2010 [GRI 10], and had a basis in the experiences of the

many researchers who had begun to use the protocol.

60 Agent-based Spatial Simulation with NetLogo 1

2.4.1.6. Working alongside the model development cycle

The question of writing and reading a model has a particular

connection with two aspects of its lifecycle: first, how the creation of

the model can be facilitated (effective writing), and second, how to

facilitate its use and integration into other models (effective reading).

These two aspects are not separated in time, but rather are closely linked

to each other. Indeed, the writing phase presupposes the involvement

of a certain number of people who must be able to share the state

of development of the model as it develops, and thus must be able to

read the model as effectively as possible. Similarly, once the model is

considered to have reached a certain level of completion, being able

to read it conditions the writing of new developments of it, or its

integration into more comprehensive models.

Complex models can often be divided into a set of submodels which

mutually interact, each of which makes up a model in itself, potentially

of a nature different from the others. The integration of several models

thus requires good description of each of them, which in particular

renders the definition of information communication interfaces between

them as effective as possible.

2.4.1.7. Developing relevant forms for visualizing a model

How can the most relevant possible forms of visualization be

developed for making the constitutive processes of the model clear,

and for presenting, analyzing and interpreting outputs from the

model simulations? Visualization is not only involved in making

the conceptual model operational, but it also makes it possible to

elicit knowledge for building the conceptual model [BEC 03]. Thus,

developing a graphic visualization of a mathematical law associated

with a submodel makes it possible to explain and visualize the effects of

this law in light of various hypotheses, and, using this as a starting point,

to calibrate the model more effectively, or even to alter its structure

when required. In this way, comprehension is enhanced by making it

possible to find the basis for the results, and to examine the chain of

causalities and interactions which led to these, to be able to see the

reason for them, and thus to gain a better understanding of the system

under study. Graphic interfaces promote communication between the

Description Formalisms in Agent Models 61

partners, and can potentially serve to mediate if there is some difficulty

in reaching a shared vision. They contribute to the transparency of

models, that is to say they help them to be understood quite easily by a

wide range of people [WAL 77].

Analysis and understanding of the behavior of models is one of the

key factors in their validation. Here, the word “validation” is taken

to mean “acceptable for its intended use because it meets specified

performance requirements” [RYK 96] and “are well designed and

justifiable” [SIN 00].

Visualizing a model entails visualizing the knowledge that it

contains, and in particular the knowledge pertaining to its dynamics

and organization: static documentation is insufficient for these. In other

words, the visualization of a model may be considered to be a dynamic

form of documentation. UML and AML, which we have previously

discussed, are very good examples of this.

2.4.2. How can models be described and documented?

In response to the recurrent difficulty of obtaining complete and

homogenous documentation of multiagent models, a protocol has

recently been suggested for the description of these models in a

more formal manner. This is the ODD protocol suggested by Grimm

et al. [GRI 06]. ODD offers a predefined documentation structure,

which means that modelers can specify an aim for the model, its

components and the way in which the properties specific to the MAS

are taken into account (e.g. emergence or adaptation). The first version

of the ODD protocol was published in 2006 [GRI 06]. After testing

within the research community, a revision was offered in 2010 [GRI 10,

POL 10, RAI 11]. Today, ODD has become a de facto standard for

describing and communicating an agent model. It has been adopted by

many modelers (e.g. [POL 08, NAI 10, CAI 13]).

2.4.2.1. ODD protocol components

ODD describes a multiagent model by making a distinction between

three major parts (Table 2.1): the elements that provide an overview of

62 Agent-based Spatial Simulation with NetLogo 1

the model, the design concepts and the model details. We will present

each of these elements below in the order recommended by the protocol.

2.4.2.2. Overview

The first part of ODD aims to provide a synoptic vision of the

modeled system, from the point of view of its structure as well as its

dynamics. It is made up of three main elements.

ODD (in English) ODD (in French)

Overview 1. Purpose Vue d’ensemble 1. Objectif

2. Entities, state variables

and scale

2. Entités, variables d’état,

échelle

3. Process overview and

scheduling

3. Processus et

ordonnancement

Design concepts 4. Design concepts

– Basic principles

– Emergence

– Adaptation

– Objectives

– Learning

– Prediction

– Sensing

– Interaction

– Stochasticity

– Collectives

– Observation

Conception 4. Eléments de conception

– Principes

– Émergence

– Adaptation

– Objectifs

– Apprentissage

– Prédiction

– Perception

– Interaction

– Stochasticité

– Coopération /

Agrégation

– Observation

Details 5. Initialization Détails 5. Initialisation

6. Input data 6. Données d’entrée

Submodels 7. Sous-modèles

Table 2.1. ODD protocol components divided into three categories (as per
Grimm et al. [GRI 06, GRI 10])

2.4.2.2.1. Purpose

The purpose of the model is indicated in a concise but precise

manner. What is it for? What is the modeling question that is being

addressed? The protocol component defines the “What?”.

Description Formalisms in Agent Models 63

2.4.2.2.2. Entities, state variables and scale

Once the purpose of the model has been declared, its various

components are specified. Which entities are represented? What are

the attributes that characterize these entities? What spatial and temporal

scales are used? In other words, “of what” is the model made?

The entities involve all the categories of the model (agents and

groups of agents, spatial entities and global environment). These are

described in terms of properties, known as state variables in ODD,

which have values that may or may not evolve during the simulation

(e.g. an agent’s name, the behavior strategy of a group of agents, the

modality of soil occupation of a plot or the global rate of harvesting of

a resource). The initial values are provided at the model’s initialization.

These state variables (quantitative, nominal qualitative or ordinal)

should not include derived or aggregate variables, whose values result

from a combination or a calculation conducted by using other variables

(e.g. total quantity of food consumed during the simulation, average

animal density per hectare or distance to the nearest neighbor).

As for the choice of spatial and temporal scales, this involves, on

the one hand, specifying the spatial resolution of the patches or the

area actually covered by the patch and, on the other hand, the temporal

resolution or the real duration represented by a time-step in the model.

The temporal horizon is also specified (duration or planned length of

the simulation).

2.4.2.2.3. Process overview and scheduling

Following the structure, the model dynamic is described. How do the

entities behave at each time-step? How does the environment change?

What order is the simulation organized into? The set of processes and

the way they are scheduled are mentioned.

Processes are designated by verbs (e.g. moving, fleeing and updating

the quantity of grass consumed) and they refer to the submodels listed

in the third part of the protocol. The operation properly speaking of the

processes is thus not provided at this level. The list of actions carried out

and the order in which they occur are all that are provided at this stage.

64 Agent-based Spatial Simulation with NetLogo 1

The actions are those carried out by the models entities (the agents or

the patches) and also those carried out by higher level entities such as

the model itself or the observer (for updating global indicators and the

associated graphics).

The ODD protocol does not impose any particular formalism for

the presentation of this varied information. However, it is advisable

to use a UML class diagram to describe the model’s structure

(see section 2.3.1.1). The scheduling of the process may also be

described using a UML activity diagram (see section 2.3.1.2).

2.4.2.3. Design concepts

Elements of documentation which are important for interpreting

results are information on the emerging properties of the model, the

hypotheses put forward and the capacities of certain agents (e.g.

adaptation or learning). These elements are often not particularly

formalized. In this part, ODD suggests a list of 11 items which provide

information, not on the operation of the model, but on the way in which

the concepts specific to the modeling have been taken into account. All

of these concepts can be made explicit through answering the various

questions suggested by the protocol, which are in the form of a checklist

[GRI 10].

The ODD protocol makes it possible not to provide information

about all of the concepts suggested in this part because some of these

concepts may not be appropriate to the model that is being developed.

Also, it is possible to add certain concepts unique to the user. However,

in this case, it is advisable to explicitly specify that these are not

elements that are provided by the standard.

2.4.2.4. Details

After a sketch of the model, with its main dynamics, has been

created, this third part addresses the technical details which should

make it possible to reimplement that model as a whole. ODD offers

information provision at this level for three elements: initialization,

input data and submodels.

Description Formalisms in Agent Models 65

Principles

Emergence

Adaptation

Goals

Learning

Prediction

Perception

Interaction

Stochasticity

Co-operation /

aggregation

Observation

What are the concepts, hypotheses or theories underlying the model design? At what are

level are they integrated into the model?

What are the emerging concepts not foreseen by the model, which result in interactions

between or adaptations among agents? What are the expected emergent phenomena

which result from the rules introduced into the model?

Do the agents always retain the same behavior? Are they able to adapt during the simula-

tion? Do they have the choice to behave according to several alternatives? What are the

decision-making rules which regulate this choice? What are the conditions for a potential

change in behavior?

Do the agents seek explicitly or implicitly to reach a goal in relation to their adaptive behav-

ior? What is this goal? What is its indicator/criteria? What is the usefulness/fitness function?

Does the experience acquired by the agents during the simulation make their decisions

change? Are they able to learn? How are these learning mechanisms implemented?

Can the agents evaluate the consequences of a decision that they might make? How do

they predict the effect of their decision? Are they able to do this?

To what information do the agents have access? What are the state variables that they

perceive or receive from other agents (internal variables or variables relative to the

environment)?

What direct or indirect interactions are integrated into the model? Upon what mechanisms

present in the reality of these interactions are they based? Are they local or global interac-

tions? Does the model allow the agents to communicate? In what form?

Which model processes or variables introduce a random element? Why is this random

element represented?

Is there an organizational level in the model which is made up of groups of agents? Are

these group products of an emergence phenomenon or explicitly defined because they

share common properties (notion of breeds in NetLogo)?

What are the indicators observed during the simulation for the understanding and the

analysis of the model's behavior? What are the outputs (e.g. data or graphs)?

Figure 2.16. The key questions ODD proposes in order to specify the agent
model’s design elements (taken from [GRI 06, GRI 10])

2.4.2.4.1. Initialization

The documentation should specify all the simulation’s initial

conditions. How many agents are there? How are they distributed in

space? What are the initial values of the variables and the parameters?

What is the state of the environment? Are the initialization conditions

constant and based on reference data, or are they stochastically fixed?

The idea here is to provide all the information required for the

reproduction of the results of a simulation.

2.4.2.4.2. Input data

The dynamics represented in the model may be based on auxiliary

data (for example, an imported predefined spatial environment), they

may be modulated by forcing factors (for example, relief, surface

temperature and quantity of precipitation) or they may integrate an

existing model (for example, the growth curve of a plant species). If

this is the case, this is the level where it should be mentioned. If not,

66 Agent-based Spatial Simulation with NetLogo 1

the protocol recommends that it should be explicitly indicated that the

model does not call for particular input data. It should be noted that

this documentation element does not concern the value of parameters or

state variables, which may also come from external files.

2.4.2.4.3. Submodels

The processes that make up the model and their order of execution

were specified in the first part of the ODD. In this part, the operation

of each of them should be precisely indicated, as well as the reasons

why certain hypotheses were adopted, and how these submodels

were calibrated, along with any usage limitation they may have. The

submodels may be composed of equations, algorithms or specific rules,

all the parameters of which must be explained and justified. If the

submodels are based on theories or methods that have already been

published, these publications should be referenced.

2.4.3. ODD documentation of the recurrent example

In order to illustrate the use of the ODD protocol, the recurrent model

will be presented below, documented according to this standard.

2.4.3.1. Overview

2.4.3.1.1. Purpose

The aim of the model in the recurrent example is to explore

the propagation conditions for malaria in the subregion of Maroua

(Cameroon) in light of the pendular mobility patterns of farmers, who

make a daily journey between their homes (in town) and their plots of

land (outside town). The goal is to understand and measure the impact

of these journeys on the spread of the illness.

2.4.3.1.2. Entities, state variables and scale

The model is made up of two agent categories: humans (farmers) and

mosquitoes. These two types of entities are characterized by a state of

infection (is-infected?) and an attribute which indicates whether the

agent is a source of the epidemic or not (is-infection-exterior?).

Each agent is also located in space (attributes xcor and ycor). Human

Description Formalisms in Agent Models 67

agents also know the place where they work and where they live

(attributes home and work) as well as the time when work begins and

when it ends (attributes beginning-work and end-work).

The environment in which the agents are situated is made up of a

set of places (spatial units) which are characterized by a soil occupation

(attribute nature of the class Place) linked to a color (attribute pcolor).

For each place, it is specified whether the place is a dwelling place or

not (attribute place-dwelling?). The spatial units correspond to 50

m x 50 m cells which form a rectangular grid, representing the territory

(dimension: 523 x 424 cells). These dimensions are imposed by the map

taken as input data (see the Initialization of the ODD description part).

As for temporal resolution, the simulation time-step is set at 10 min

(which makes 240 simulation steps per day). The model is built to carry

out simulations of up to 30 days.

Several variables are also defined as model parameters: the number

of mosquitoes present in the environment (number-mosquitoes), the

number of farmers (number-humans), the distance from which a

mosquito can reach farmers to bite them (distance-contamination)

and the home–work distance for each farmer (distance-home-work).

The model makes provision for an activation or non-activation of

mosquito reproduction (reproduction-mosquitoes?) as well as for

possible contagion between farmers and mosquitoes during the journey

between home and work (contagion-transport?).

A simplified presentation of the model structure is given in the UML

class diagram (Figure 2.2). The set of state variables is reproduced in

Table 2.2.

2.4.3.1.3. Process and scheduling

At each time-step, the processes are conducted in the following

order: (1) the mosquito agents act by moving randomly through space,

biting a human present in the radius of contamination (procedure

go-mosquitoes) and (2) depending on the time of day, the humans

go at work (procedure goto-work), stay at work and go back at home

at the end of the day (procedure goto-home). These farmer actions

68 Agent-based Spatial Simulation with NetLogo 1

are included in the procedure go-humans. Within each set of agents,

the simulation platform chooses the order in which the agents carry

out their tasks. At the end of each time-step, the simulator updates

the different output indicators: the number of mosquitoes and farmers

infected according to the time.

The dynamics of the patches is limited to the creation of new

mosquitoes (go-patches).

Entity Variable name Possible values

Human and mosquito xcor [0,523]

ycor [0,424]

is-infected? {true,false}

is-infection-exterior? {true,false}

Human home one patch

work one patch

start-work [0,240]

end-work [start-work,240]

Patch pcolor [0,240]

place-dwelling? {true,false}

Global step-time [0,2400]

Parameters number-mosquitoes [0,1000]

number-humans [0,2000]

distance-contamination [0,10]

distance-work-home [1,500]

Patch contagion-transport? {true, false}

reproduction-mosquitoes? {true,false}

Table 2.2. Summary of the different state variables and parameters

2.4.3.2. Design concepts

2.4.3.2.1. Principle

It is hypothesized that the human agents perform a pendular

movement: during the day, they begin traveling to their workplace,

remain immobile at the workplace in order to work and then return to

Description Formalisms in Agent Models 69

their homes. In addition, various studies have shown that mosquitoes

are present throughout the territory and that their range of movement

remains very local. This is why the hypothesis that they move randomly

within a limited radius is realistic.

2.4.3.2.2. Emergence

A spatial propagation phenomenon for the disease is observed,

which follows the movement of the human agents.

2.4.3.2.3. Perception

The mosquitoes have the capacity to perceive nearby farmers (that is

those who are present within a radius that is less than the parameter

distance-contamination). As for the farmers, they are aware of

time, and this helps them decide whether it is time to go to work, to

stay in work or to go home. However, they cannot perceive the other

farmers or the mosquitoes.

The cells know whether the mosquitoes are located on them (in order

to decide they are producing a new mosquito agent or not).

2.4.3.2.4. Interaction

The only interactions present in the model are the interactions

between a human agent and a mosquito agent. When a mosquito

perceives a farmer within its contamination zone, it will bite that farmer.

If one of the two agents is a carrier of malaria, the other will be infected.

If both agents are in the same state of contamination, the bite will have

no effect.

2.4.3.2.5. Stochasticity

The model contains a share of stochasticity, both in the initialization

and in the dynamics. In particular, the position of the mosquitoes in

space (with respect to the humans) is random for one of the cells (with

respect to dwelling places). The position of the human workplace is

also random among the cells that are not dwelling zones. The first

infected mosquito is also chosen at random. During the simulation, two

dynamics include an aspect of randomness. During the creation of a

new mosquito, it is placed onto one of the neighboring cells (chosen at

70 Agent-based Spatial Simulation with NetLogo 1

random) of the wetland cell that “produces” the mosquito. In addition,

the movement of the mosquito is also partially random: it moves at a

constant distance but in a direction that is chosen at random.

2.4.3.2.6. Observation

The main display of the simulator is a map showing the land

occupation types (black cells for dwelling places, blue for wetlands

and black for farming land), along with the mosquitoes and humans.

This display is updated at each time-step, allowing the observer to see

the dynamics of the movements. In addition, the graph of interactions

between humans and mosquitoes (bites) is also displayed, and is

updated at each time-step.

During the simulation, the development of the number of mosquitoes

and humans can be seen through a curve which shows these values over

time.

The simulator can also calculate and display (when this is required

by the user) the average number of human–mosquito interactions (i.e.

the number of mosquito bites) which have occurred before a human is

infected.

2.4.3.3. Details

2.4.3.3.1. Initialization

The first stage of simulation initialization is the loading of the map,

which sets the color (and thus the usage type for the soil) for the

different cells. Following this, the mosquitoes are randomly created

throughout the space with a healthy infectious status (is-infected?

and is-infection-exterior? are initialized at false). The human

agents are then randomly created at dwelling zones, with a workplace

chosen randomly in the non-dwelling zones and a healthy infectious

status. Finally, an epidemic is created: one of the mosquitoes is chosen

at random and becomes infected. It is also noted as being the source of

the epidemic (is-infection-exterior? is set as true).

2.4.3.3.2. Input data

As an input, the models take a map of soil use in the Maroua

subregion, in the form of a raster image. Only three types of soil use

Description Formalisms in Agent Models 71

are shown on this map: dwelling place (in black), wetland (in blue) and

farmed land (in white).

2.4.3.3.3. Submodels

We can make a distinction between three submodels within the

model, which correspond to the three main dynamics of the model:

pendular movement: the behavior of the human agents is limited

to their pendular movement – each day, they go to work in the

morning, work (and thus remain immobile) during the day and then

return home in the evening. The choice between these categories is

made as a function of the simulation step during the day (i.e. as a

function of the simulation step). We have refined this model to allow

for infection during the journey (parameter contagion-transport?):

when contagion-transport? is false, in order to avoid any contact

between humans and mosquitoes during the journey, we consider that

the human displacement is instantaneous (whereas, it takes several

simulation steps when contagion-transport? is true);

demography of the mosquitoes: we have introduced a very simple

reproduction dynamics for the mosquitoes, based on the fact that they

lay eggs in water and spend the start of their life (as an egg, larva and

nymph) in the water: each day (and thus every 240 simulation steps), the

wetland cells (which are blue) will create a mosquito agent if another

mosquito agent is present in the cell;

infection: at each simulation step, all the human agents who are

within the contamination radius of a mosquito are bitten. For each

mosquito–human interaction, if the infectious state of one of the two

agents is infected and the other is healthy, then the healthy agent

becomes infected. If both are either healthy or infected, their infectious

state remains unchanged.

2.5. Discussion on documentation

Nowadays, modelers have many languages available to them for

formalizing and documenting their MAS.

72 Agent-based Spatial Simulation with NetLogo 1

UML is well suited to the description of the structure and the

behavior of the model. It remains more widely used and offers a

semantics which is rich enough to describe many MAS. In the case

of models which include more complex organizations or actions, the

use of AML, enriching the UML notation, can be particularly useful.

In any case, an MAS should be described at the very least by a class

diagram, which describes its structure, and by activity or state-transition

diagrams, which model the behavior of the entities.

As for the documentation, the ODD protocol is becoming

increasingly widely used by modelers, especially for presenting

multiagent models in research literature. It is gradually becoming a

recognized standard, on the same level as UML. It may also be noted

that the ODD descriptions include increasingly UML class diagrams

for explaining the structure of models being presented graphically

and synthetically, which demonstrates the complementarity of the

tools. ODD offers predefined documentation structure (the packaging),

whereas UML allows the production of a part of the content in the form

of diagrams.

The designer’s attempt to formalize and document the model is

essential in the lifecycle of the MAS. It makes it possible to use the

model in a more reliable and enlightened way, so the users can gain

a better understanding of the questions it attempts to contribute to

answering and can see precisely what structure and operation of the

representations are use to achieve this. However, much more remains

to be done in this field not in terms of the design, but in terms of the

use of models, first, in order to increase their reliability and, second, to

facilitate informed use of them:

– make models more reliable to use: this will involve the transition

from a documentation of a model as the result of a modeling process

to a documentation of the modeling process itself. It will include the

justification of choices made and test methodologies used to ensure that

insofar as possible the computer implementation of the model is faithful

to the conceptual model that was developed. This aspect also includes

a quality documentation of the usage conditions of a model so that it is

used advisedly to address the question that has been targeted throughout

Description Formalisms in Agent Models 73

its development, and so that the risks of abusive use to resolve problems

to which it is not suited are avoided;

– make models easier to use: it is also becoming important to

facilitate the uptake and analysis of a model’s results, for example, by

the definition of the different usage scenarios and a detailed analysis of

the results obtained.

Recent studies have shown that this question is beginning to be

addressed, for example, with the development of the tool Transparent
and Comprehensive Ecological modeling documentation (TRACE)

[GRI 14], which offers standardization of the documentation associated

with the models’ objectives, with their design and with their

implementation.

It is now more important than ever to provide conditions which favor

the establishment of connections between the designers and users of

models, in a process of mutually working alongside each other.

3

Introduction to NetLogo

3.1. Introduction

NetLogo is a programming environment which allows for the

construction and exploration of agent-based models. Developed at the

Center for Connected Learning, the software currently draws from

StarLogoT1, which is available for Mac OSX, and StarLogo2, which

was developed at MIT’s Media Laboratory. It is the latter that has had

the greatest influence on the programming language used by NetLogo,

known as Logo3, which was itself inspired by the Lisp programming

language family. The history of Logo allows for a partial understanding

of NetLogo’s philosophy.

3.1.1. A little history

When NetLogo is presented in workshops, the first advantage

expressed is that of how easy it is to pick up and use. This stems

both from its graphical interface and the programming language used,

Chapter written by Frédéric AMBLARD, Eric DAUDÉ, Benoît GAUDOU,

Arnaud GRIGNARD, Guillaume HUTZLER, Christophe LANG, Nicolas MARILLEAU,

Jean-Marc NICOD, David SHEEREN and Patrick TAILLANDIER.

1 http://ccl.northwestern.edu/cm/StarLogoT/.

2 http://education.mit.edu/starlogo/.

3 http://el.media.mit.edu/logo-foundation/index.html.

76 Agent-based Spatial Simulation with NetLogo 1

which is known as Logo. This language was created in 1967 by a

collaborative effort between Wallace Feurzeig and Seymour Papert.

Papert was largely inspired by the constructivism of Jean Pigaet with

whom he had worked several years before. With the advent of the first

computers in the 1980s, researchers began to ask themselves about their

utility within an educational context: how were computers to be used to

enable the teaching of dynamic and complex worlds? Computers needed

to be a medium that bridged the difference between the learner’s need

for knowledge and the world to be explored, which implied a need for

a language permitting the learner and the computer to communicate.

However, none of the programming languages available at the time were

adapted for use by young learners. It is from the observation of this fact

that the premise for Logo came about, a language that was intuitive for

the learner and close to natural language as a result of being interactive,

modular and flexible.

Logo is an interpreted programming language, which means that

each line (containing a particular command) inputted by the user is

immediately executed. These commands are interpreted by Logo as an

order (e.g. the jump 10 command results in the turtle moving by 10

steps), which will send back an error message if the command cannot

be carried out. The language is modular, which means that commands

can be grouped to form more complex sequences that can be made

into new terms and are combined to form the complete program. This

modularity allows for the construction of large projects. Finally, Logo

is flexible as it does not require the direct input of the figures used.

Type assignment is done based on the data used in the instructions.

Even though this might be slightly perturbing for those used to other

programming languages, the choice to not require direct input was made

as it is closer to the way that non-programmers think. This choice is also

found in other programming languages such as Caml4 or Python5.

There is only one single syntactic rule used in Logo: that of prefix

notation. A command must always be placed before any eventual

4 http://caml.inria.fr/caml-light/index.en.html.

5 https://www.python.org/.

Introduction to NetLogo 77

variables. Thus, the jump command followed by the variable 10 which

makes the turtle move by 10 steps is written as follows: jump 10. To this

rule is added that of the left–right analysis of instructions. Therefore, for

the jump random sqrt 4 command, the evaluator begins by reading

the jump command, which receives the single variable random, which

receives the single variable sqrt, which, in turn, receives the single

variable 4. In practice, this leads to first executing the square root of 4,

with the other instructions being put on hold, while the value of their

respective variables is being calculated. Next, the random command is

executed with the value 2 as a variable. Finally, the jump command is

executed resulting in a jump of a number of steps corresponding to the

result given by the random command with 2 as its input variable.

3.1.2. Purpose of the chapter

This chapter aims to help readers new to programming to discover

the NetLogo modeling and simulation platform in an educational

manner. The final aim is for such an individual to be able to write

their own models and simulate them within NetLogo by the end of the

chapter. So as to accomplish this, the reader will be instructed in the

development of a simple model which will be expanded upon later.

This first experience of developing a multiagent model is simplistic

but remains nonetheless complete and enables us to understand and

grasp the main concepts and techniques useful for defining models and

simulations.

The remaining chapter is organized into five sections. In the first

section, we will see that, using its metamodel, the NetLogo platform

is particularly well-adapted for representing spatial phenomena. In the

second section, we will present the tool interface used in NetLogo.

In the third section, we will develop a simple model step by step,

while referring to the metamodel viewed previously. The fourth section

introduces the interaction model used for the behaviors of the agents.

Before concluding, we will put forward a brief presentation of the

additional functionalities offered by NetLogo.

78 Agent-based Spatial Simulation with NetLogo 1

3.2. Metamodel of NetLogo

The NetLogo platform corresponds to a simulation approach said to

be “in time-discrete intervals”, which means that it makes a collective

group of entities evolve in successive time intervals of equal length6.

The corresponding modeling approach therefore consists of identifying

the entities that are to be incorporated into the model and then defining

the behavior of each one across each time interval. This approach is

centered on the entities involved, otherwise known as agents. NetLogo’s

metamodel identifies three different types of entities which can be

modeled: 1) the environment: this is a rectangular space modeled in

the form of a regular grid of n x m square tiles (patches); 2) the mobile

agents (turtles): these move within the environment and interact with it

and each other; 3) the links: these are dynamically created inbetween

the turtle agents.

Finally, there is a specific agent known as the observer, which exists

outside of the model. Its role is to control and monitor the execution

of the simulation. This agent creates all the entities within the model

(patches, turtles and links) and controls their simulated behavior.

NetLogo proposes a particularly useful functionality for the

manipulation of agent-based models. It allows us to give instructions

to groups or subgroups of agents, or agentsets. As a result, it is possible

to collectively control all of the turtles as well as to pick a smaller subset

and give it instructions that are not followed by the remaining agents.

So as to do this, it is possible to create species or breeds which can be

manipulated as groups of agents.

3.2.1. Patches

The environment is a rectangular space made up of a grid of n x m
squares that are known as patches. Each patch corresponds to a square

of the grid, within which movement is impossible. Each patch also has

a corresponding position within the two-dimensional (2D) space of the

6 In NetLogo, a unit of time is known as a tick.

Introduction to NetLogo 79

environment. All patches are also autonomous agents with their own

state and behavior that is independent of that of the surrounding patches.

Figure 3.1. A NetLogo model’s corresponding metamodel

3.2.1.1. Topology of the environment

The modeler has the possibility, by use of the interface, to choose

the topology of the environment, by determining whether the grid

should be horizontally or vertically continuous. To do this, all that is

needed is to edit the large black square on the Interface tab. Making

the grid horizontally continuous means that the first and last columns

of patches are effectively next to each other. Therefore, two patches
belonging, respectively, to the first and last columns of a single line

80 Agent-based Spatial Simulation with NetLogo 1

become neighbors. In the same manner, making the grid vertically

continuous means that the first and last lines of patches become

adjacent. By default, the environment is continuous along both axes,

which corresponds to a toroidal topology. When the environment is

only continuous along a single axis, its topology is a cylinder, either

horizontally or vertically oriented. If the environment is not continuous

along either axis, then its topography is that of an enclosed, 2D square.

This same interface also allows the user to divide the simulation

space into patches of different sizes, effectively changing the resolution

used. It must, however, be noted that all patches must be rectangular

in shape. If the modeler requests a higher number of patches along a

particular axis, then the space is not sectioned into smaller segments

but instead, the size of the environment is increased along the axis in

question. This leads to a simulated environment that is rectangular in

shape.

3.2.1.2. Patch variables

The state of each patch is defined using a certain number of

predefined variables to which any number of additional variables can

be added.

The most commonly used predefined variables are the pcolor

variable, which defines the color of the patch and the pxcor and pycor

variables, which, respectively, define its x and y coordinates. Since the

position of the patch is fixed within the grid, its coordinates can only be

read, not edited. On the other hand, their color can be modified. Other

than their position and color, patches can be linked with a text label

(plabel) to which a numerical value or string can be added, and whose

color can also be defined (plabel-color). The size of the patches and

the size of their labels can only be indirectly modified via use of the

interface.

3.2.1.3. Patch primitives

Patches can be manipulated using primitives defined within

NetLogo. Below are some of the most commonly used primitives:

– neighbors: enables access to its neighbors;

Introduction to NetLogo 81

– distance: returns the distance between the agent that called the

function and another agent given as a variable;

– sprout-<breeds>: creates a certain number of agents of the

breeds species on the patch that called the command;

– diffuse: this command is a little particular as it is a primitive of

the observer. It allows for the spreading of variables to its neighbors;

etc.

3.2.2. Turtles

The turtles are the mobile agents in the simulation. They are

designed to move around the environment and therefore on and across

the patches. They are spatially located within the environment and are

visible on the grid. The turtles can view their environment and the

other agents within it. They have an action capacity, a characteristic

that is essential for an agent. It is possible to define more detailed agent

types than the simple turtles with the keyword breed. They can then be

assigned specific attributes and a unique behavior.

3.2.2.1. Turtle variables

Just as with the patches, the state of each turtle is defined using

a certain number of predefined variables to which any number of

additional variables can be added. The turtles share certain variables

with the patches such as color (color) as well as having their own

location coordinates on the patch grid (xcor and ycor). Equally, labels

can be assigned to them, as well as the color of these (label and

label-color). The size variable allows us to modify the turtle’s size

and who returns the turtle’s identity (id).

3.2.2.2. Turtle primitives

Turtles can be manipulated using primitives defined within NetLogo.

Here again, some of the most commonly used variables are listed below:

– distance: returns the distance between the turtle that called the

function and another turtle given as a variable;

– die: kills the turtle;

82 Agent-based Spatial Simulation with NetLogo 1

– hatch: creates a given number of turtles that are daughters of the

selected turtle. The children are created identical to the mother and are

placed at the same location as it;

– forward: moves the turtle forward a given number of steps;

– move-to: the turtle moves to the location of an agent given as a

variable;

– left, right: allows the turtle to turn left or right, respectively,

by a given number of degrees;

– <breeds>-here: returns a group of agents containing the turtles
that are on the patch of the agent that called the command; etc.

3.2.3. Links

The links are also agents but they have the particular function of

linking two turtles together. The turtles are then known as nodes. The

link is clearly represented by a line linking the two turtles. As a result

of this, links are not located on the patch grid. There are two types of

links: directed and undirected. Just as with the turtles, the modeler can

define their own link types.

3.2.3.1. Link variables

As with the other agents, the state of each link is defined using

predefined variables to which any number of additional variables can

be added. Again, certain variables described earlier can also be used:

color, label and label-color. Also useful are end1 and end2 which

describe the nodes at either end of the link.

3.2.3.2. Link primitives

Links can be manipulated using primitives defined within NetLogo.

Once again, some of the most commonly used primitives are listed

below:

– create-links-to, create-links-from, create-links-

with: these are different ways of creating links;

– link-with: returns the link between the turtle calling the function

and another turtle given as a variable;

Introduction to NetLogo 83

– my-links: returns a list of all the undirected links that are

connected to the turtle calling the function;

– link-neighbors: returns a group of agents. It contains all the

turtles found at the other end of links connected to the turtle calling the

function;

– my-in-links: returns a group of agents. It contains all the

directed links leading to the turtle calling the function;

– my-out-links: returns a group of agents. It contains all the

directed links leaving from the turtle calling the function; etc.

3.2.4. The observer

The observer is located outside the simulation space and controls

and monitors its progress. It allows for the sending of instructions to

all the agents in the simulation. It is the link between the user and the

agents.

3.3. The NetLogo software interface

The NetLogo interface is centered around three tabs: Interface,

Information and Code. This allows for rapid switching between

the development and simulation aspects of a model, and therefore

allows for an incremental modeling process which alternates between

development and testing phases.

It is these three tabs (Interface, Info and Code) that the user is

presented with upon first launching the NetLogo software application,

all of which have specific roles within the modeling process.

The Info tab is used to document the model. NetLogo provides a

basic framework which can be modified (with the edit button) to be

perfectly suited to the needs of the modeler. The description can, for

example, be an Overview, Design concepts, Details (ODD) description

of the model. It should be noted that this documentation is saved along

with the model and will, as such, be transmitted along with it.

84 Agent-based Spatial Simulation with NetLogo 1

The Code tab mainly contains an editable text field within which

the modeler writes their NetLogo code. Notably, it contains a Check
button which is activated whenever the file is saved. It allows for the

detection of syntactic mistakes in the NetLogo code entered in the text

field. This check also occurs automatically whenever the user switches

between tabs. If a mistake is discovered, a yellow band appears above

the tab. The tab also contains a scrollable list that contains the different

procedures contained in the model, for quick and easy access.

Finally, the Interface tab contains the graphical interface of the

simulator. When a new model is created, a default environment is

displayed. This environment can then be easily modified by the modeler,

who can add control elements to the simulation (such as buttons),

elements which allow for control more than various input values of

the simulation variables (sliders, switches, choosers, etc.) or to display

returned values and other simulation indicators (monitors, plots, etc.).

At the lower end of the interface, tab can be found the Command
Center, which contains the console that displays all of the messages

produced during the simulation. However, this is not the extent of its

utility; the user may also choose to use it to execute NetLogo code

on the spot, which most notably allows for the testing of a currently

running simulation. They may also choose within what context this

code is executed, determining which specific entities (observer, turtles,

patches or links) are to be affected by it.

Figure 3.2. The NetLogo software interface, with details
of each of the three tabs

Introduction to NetLogo 85

3.4. Step-by-step creation of a simple model

A NetLogo program is a sequence of procedures which permits the

simulation of the behaviors of created objects (agents and environment)

during their execution. As seen in the previous chapter, a multi-agent

system (MAS) is characterized by a static architecture (the environment

and species) and individual behaviors which determine the dynamics of

the system, the interactions therein and, as a result, can show emergent

behavior. The dynamics of the system are largely determined by the

initial situation which can be calibrated in order to receive interesting

results.

Therefore, the development of a NetLogo model is centered around

defining the following elements:

1) the model’s structure, which involves defining the model’s global

variables, the structure of the environment and the species within it;

2) an initial state, with variables defined in the user interface;

3) the behaviors of the agents and environment using procedures;

4) the model’s outputs.

Figure 3.3 proposes a suggested setup of a NetLogo model, which is

as follows:

– expressing and defining the structure of the world to be simulated,

of the global variables and species;

– defining an initial state described within a set of procedures with

the setup prefix (of which there should be one per species). These

procedures are called in by a general procedure conventionally named

as setup;

– defining the agents’ behaviors;

– defining the agents’ lifecycle and of the environment within a set of

procedures with the go prefix (again, there should be one per species).

These procedures are called in by a general procedure conventionally

named go;

86 Agent-based Spatial Simulation with NetLogo 1

– defining procedures that will be used for the model’s outputs,

notably in the form of charts and/or tables.

COMMENT 3.1.– The NetLogo language can be expanded by means

of extensions (e.g. for the manipulation of geographical information

systems (GIS) data). It is mandatory to declare the extensions used

when creating a program, prior to defining global variables and species.

The program can then be organized in a logical manner, based on

the temporal order in which various elements will be executed when

running the program. This begins with the initialization procedure,

followed by the actions of the various agents, the sequencing within

each iteration of the simulated world and finishes with the outputs, such

as charts, tables or other graphical representations of data.

In the case of a large model, it is possible to split the model into

several files. The includes primitive adds new tabs which allow for

quick access to any additional files included in the model. This primitive

must link to files in the NetLogo file extension format (.nls).

3.4.1. Creating the structure of the world and defining its initial state

The modeler’s first task is to create and initialize the world which

will function as an environment for the simulation’s agents. This is done

both with the use of NetLogo’s graphical interface and by writing code.

3.4.1.1. Defining the simulation space

NetLogo allows for the creation of a single modeling and simulation

space per case study. It is this space that can be edited from the

Model Settings window (Figure 3.1). The topology of the simulated area

(World wraps), the origin of the x and y coordinates (location of origin)

and its dimensions (pxcor and pycor) are selected from this window.

In the example of Figure 3.4(a), the origin (0, 0) is placed in the center

of the space, its topology is toroidal and the space is made up of 10,201

patches spread over 101 lines and 101 columns.

A patch is characterized by its position in the simulation space which

is identified from the coordinate system chosen. Figure 3.4(b) represents

Introduction to NetLogo 87

the layout of the environment’s patches in the form of a matrix; the

patch (−4, 5) corresponds to the cell with coordinates x = −4 and

y = 5 in the matrix.

Defining the model’s

variables

Initialization procedure &

initial conditions

Agent procedures

Simulation part

Plot updates

Intermediate calculations

Figure 3.3. Structure of a NetLogo model

88 Agent-based Spatial Simulation with NetLogo 1

a)

b)

Figure 3.4. a) World configuration interface and b) representation of the
environment in matrix form

3.4.1.2. My first procedure

3.4.1.2.1. Creation of a setup button

The only way for a user to launch a simulation, that is to say, to

execute any of the model’s procedures, is to activate a button within

the interface. A right click in any empty space on the interface will

bring up a menu containing the various different elements that can be

added, from which the user can make their choice. Start by creating a

single button, which will prompt a window to open with options for its

configuration (Figure 3.5).

The Commands text input field allows the modeler to describe the

actions to be executed when the button is activated, which is written

in NetLogo code. Buttons are most commonly used to call a procedure

from the model. For this to happen, the procedure name must be written

within this field. In Figure 3.5, clicking on the button launches the

setup procedure (which we will define in the following paragraph).

The button’s text appears in red if there are any errors detected in the

code assigned to it or within any procedures the button may call. The

name of the button corresponds to what is written in the Display name
field, and will default (if said field is empty) to the text in the Commands
field.

Introduction to NetLogo 89

A procedure is always executed in a specific context (that of the

observer, the turtles, the links or the patches). For example, executing

a procedure in the context of a turtle allows for the usage of turtle-

specific variables (e.g. color) within the procedure, the variables that

do not perhaps apply to patches (which have a pcolor variable, but not

a color one), links or the observer. The scrollable Agent list allows the

user to define within which context the Commands code is executed:

if patches is selected, then the code is applied to all the patches in the

model.

Figure 3.5. Button creation

3.4.1.2.2. The setup procedure

Once the setup button has been created, the modeler must write the

corresponding setup procedure. A procedure always has the same form

in NetLogo:

to nom_procedure

[NetLogo code instructions or

calls of procedures defined within the model]

end

We want to write a procedure called setup which displays the

message “model initialization” in the observer.

90 Agent-based Spatial Simulation with NetLogo 1

to setup

show "model initialization"

end

COMMENT 3.2.– The instruction show displays (in the observer) the

message entered as a variable. This message can be a character string

(which is written in between inverted commas), a numerical value or a

color, such as show "my message", or show 3.14.

A setup procedure also always has the same form in NetLogo:

– it begins by setting the simulation back to its initial state, due to the

clear-all primitive: the values of all variables are set to their defaults

(parameters, patch variables), all turtles and any remaining links are

killed and all output displays are cleared;

– it initializes the global variables and the state of each patch and

creates and initializes the different agents;

– it resets the tick counter and sets the output displays to their values

at the initial state (reset-ticks primitive).

to setup

clear-all

[global variable initialization]

[agent creation and initialization]

reset-ticks

end

3.4.1.2.3. Initializing the environment: loading an image

One of the tasks of the setup procedure is to initialize the

environment and therefore to define the initial state of all patches. In

the example we have been using throughout the text, we will start

by initializing the environment to represent the studied region. So

as to accomplish this, we have a map of land use in the subregion

of Maroua at our disposal, in the form of a raster image named

as landuse87NBB.BMP. This image has a resolution of 523 by 424

pixels. Each type of land use is characterized by a particular color.

So as to import the data available within this image, we use the

Introduction to NetLogo 91

import-pcolors primitive. This command scans the image, resizes it

to the scale of the environment and then assigns each patch the color of

the corresponding pixel (pcolor variable of the patches). Figure 3.6(a)

displays the result of importing an image into an environment with a

lower resolution, that is to say a lower number of patches than there

are pixels contained in the image and Figure 3.6(b) shows the result of

importing an image of equal resolution to that of the environment.

to setup

...

show ‘‘Model initialization’’

import-pcolors ‘‘landuse87NBB.BMP’’

...

end

a)
b)

Figure 3.6. Importing a same image into an environment of a) 50 patches by
50 patches and b) of 523 patches by 424 patches

3.4.1.3. Diversifying the world

By default, NetLogo only recognizes three agent types in its

simulation models: patches, turtles and links. Yet, it is often useful,

or even necessary to be able to create different agent types with

specific attributes. In NetLogo, new agents are created using the

keywords breed (for new turtle types) and directed-link breed or

undirected-link breed (for new link types). These keywords are

92 Agent-based Spatial Simulation with NetLogo 1

assigned by several variables: the name of the new agent group (in the

form of an agentset) of this species as the first variable and the name of

an individual agent of the species as the second variable7.

As presented in the Unified Modeling Language (UML) diagram of

our example, we need to create two different new turtle agent types:

mosquitoes and humans. The term mosquito is therefore the name of

the species, and the term mosquitoes indicates the collective group of all

existing mosquito agents. Furthermore, to represent the infection class

that links two agents, we have created an additional link type: infection.

breed [mosquitoes mosquito]

breed [humans humain]

directed-link-breed [infections infection]

The defining of species also creates global variables: for example,

mosquitoes will be able to be used within the model and will

contain all agents of this species (which would, for example, be useful

for ordering all the mosquito agents to move). The term will also

be able to be used with primitives: for example, create-<breeds>

is used to create mosquito agents by replacing <breeds> by

mosquitoes: create-mosquitoes 50 will create 50 mosquitoes.

Many other primitives can adopt this ability, such as <breeds>-at and

<breeds>-on.

It should be noted that each agent type created in this fashion

possesses any variables that the current turtles own (such as xcor,

ycor, color, heading, etc.). Similarly, new link types will be given

the variables of existing links. Nonetheless, it is possible to give

additional variables to both the basic agent types in NetLogo (patches,

turtles and links) and any and all new species created by the modeler.

Importantly, when a variable is added to the turtle agent group, this

variable will also be added to any other existing turtle species.

7 Conventionally, the first variable is the pluralized form of the second variable

(mosquitoes/mosquito or wolves/wolf as in the classic predator-prey model in the

NetLogo model library.

Introduction to NetLogo 93

The modeler can add new variables to the patches, turtles or links
as well as all other breeds, by using the keywords patches-own,

turtles-own, links-own or <breeds>-own:

patches-own [pvar1 pvar2 ...]

turtles-own [var1 var2 ...]

links-own [lvar1 lvar2 ...]

<breeds>-own [bvar1 bvar2 ...]

This command, which will be executed before any other event in the

procedure, allows for the creation of additional variables belonging to

the patches (pvar1, pvar2, etc.). Each agent that is created (whether

a patch, turtle, link or other species) is as a result given an instance of

these variables which can be locally modified, independently from the

other agents.

In the example that we have been studying, we wanted all the agents

(mosquitoes and humans) to have an infectious state. Therefore, we add

an is-infected? variable to the turtles, and as a result, to all species

(in this case, humans and mosquitoes) so as to avoid having to add

this variable to both species manually. Nonetheless, the mosquitoes and

humans each have their own personal variables: the mosquitoes have the

variable is-infected-external? which specifies whether a mosquito

has been infected by another agent during the simulation or if it was a

source of the epidemic, infected prior to the launch of the simulation.

turtles-own [is-infected?]

humans-own [house work begin-work end-work]

mosquitoes-own [is-infected-external?]

patches-own [location-home?]

infections-own [date generation]

3.4.1.4. Populating the world

We will now create and initialize the different agents which we

want to be present in the model. When the agents are created with the

94 Agent-based Spatial Simulation with NetLogo 1

setup procedure, the create-<breeds> primitive must be used8. This

primitive creates new agents of this breed, the number of which is given

as a variable, and calls the commands in between the brackets for each

of the agents, respectively.

create-<breeds> number [

[grouped commands which apply to all the

newly created agents]

]

These commands usually serve to initialize each of the agents’

variables. To modify the value of an existing variable (or, more generally

speaking, of an individual variable), the modeler uses the set primitive

which gives the variable (given as a variable of the primitive) the value

of an expression:

set variable expression

The set command can only be used for existing variables. It is

sometimes useful to define local variables, that is to say variables which

exist only for the current procedure, such as to store the results of

intermediate calculations, for example. So as to accomplish this, the

modeler must use the let primitive, which will both create a new

variable (given as a variable of the primitive) and assign it the value

of the following expression:

let variable expression

For example, the following code (inspired by our running example)

allows for the modeler to write a procedure init-humains which

creates 50 human agents and gives them each a position, a color,

a size (inherited from the turtles) and the is-infected? and home

variables.

8 When creating a new turtle breed, the primitive hatch-<breeds> number
[commands] must be used; on the other hand, if a new patch form is being created,

the primitive sprout-<breeds> number [commands] must be used.

Introduction to NetLogo 95

to init-humans

let list-houses patches with [locationHome?]

create-humans 50

[

set home one-of list-houses

setxy [pxcor] of house [pycor] of house

set size 24

set is-infected? false

set color green

]

end

For each of the 50 human agents who are created, the program

initializes the size variable (set to 24), is-infected? (set to false),

which means that the agent was not infected at the start of the

simulation, and color (set to green). To initialize the home variable, we

begin by selecting all the patches which are houses and can be homes:

let list-houses patches with [locationHome?])

and we store the list of these patches within the list-houses variable.

The with variable carries out a search within an agentset (a list of

agents) so as to put together a new agentset containing all the agents that

satisfy the expression run in the variable that is to its right (in this case

[locationHome?], which is to say that their locationHome? variable

has the value true).

Then, we initialize the house variable with respect to one of the

patches of this agentset with the one-of primitive.

The setxy primitive assigns a value to the agent’s position variables

(xcor, ycor). Here, we give the agent the coordinates of its home

variable as it is initial position: the of primitive returns the value of

the variable given as a variable to the left of the agent that is placed on

the right ([pxcor] of home).

96 Agent-based Spatial Simulation with NetLogo 1

3.4.1.5. Influencing world creation: modifiable variables

The modeler may consider that the initial number of human agents

should be a variable of the model. This may be so that it can be modified

by the user during the simulation or so that it can be modified so as to

explore the model in full detail. In such cases, the modeler has the option

of adding an element to the interface, such as a slider, so as to make the

variable manually modifiable (Figure 3.7).

Figure 3.7. Creating a slider that controls the value
of the number-human variable

Adding a slider to the interface means that a new global variable

must be created and initialized (within the Global variable field), which

will be able to be used within the model, for example, for the creation

of as many new agents as the user should want.

to init-human

...

create-humans number-human [....]

...

end

Introduction to NetLogo 97

3.4.2. Introducing environmental behaviors

3.4.2.1. Simulation lifecycle

The simulation’s lifecycle is managed by a procedure usually named

as go (see Figure 3.8). It successively describes the behavior of the

environment and the agents for each time frame (tick). This procedure

is called into action by clicking on a button or by somehow modifying

another element of the interface.

Figure 3.8. Illustrating different button modes

Two different execution modes of the model can be identified with

the interface: a step-by-step mode (step button) and an automatic mode

(go button) are available. To define a step-by-step mode, a simple button

that calls the go procedure is created within the interface. Every time

that this button is clicked, a single tick passes. The automatic mode

requires the creation of a similar button that also calls the go procedure.

However, in this case, the check box next to forever must be ticked.

98 Agent-based Spatial Simulation with NetLogo 1

When this button is first clicked, it remains activated and calls the go

procedure at regular intervals, until clicked again.

The go procedure activates the behavior of the grid’s cells

(patches) and the different agents (mosquitoes and humans). In practice,

this means that the go-patches, go-mosquitoes and go-humans

procedures are called and executed. The go procedure finishes with

the ticks command, which ends the current tick and incrementally

increases the tick counter.

to go

go-patches

go-mosquitoes

go-humans ; calling the go-humans procedure

which models the human

agents’ behavior

ticks ; passing to the next tick end

to go-humans

ask humans

[

... ; behavior of a human

]

end

COMMENT 3.3.– The ask command is one of the most important

available in the NetLogo language. It asks all of the agents contained

within a list (list_of_agents) given as its variable to execute the

commands defined within the section enclosed by square brackets

([...]). In other words, this command can be read as saying: for EACH
agent contained within list_of_agents, EXECUTE the instructions

contained within the bracketed section.

ask listofagents

[

... ; commands detailing all actions

; to be carried out by an agent.

]

Introduction to NetLogo 99

3.4.2.2. Environmental behaviors

Introducing a behavior within the environment serves to model the

phenomena which apply at the spatial level rather than at the level of

the individual, for example, the spreading of a forest fire, the dispersion

of a virus by winds or the pollination of a space. In the case of the

example we are using, the environmental behaviors enable us to model

the proliferation of mosquitoes.

In an environment represented in grid form (as in NetLogo’s case),

giving it dynamic behaviors effectively models a phenomenon of the

studied system that is composed of a simulated environment within

which the turtles evolve. As a result, each patch agent within the

simulation space has a specific behavior associated with it. Furthermore,

each patch behaves individually by evolving its internal state and acting

within the world.

The behavior of the patches is usually controlled by a procedure that

is assigned this job alone. It is known as go-patches by convention.

This procedure analyses all of the patches and executes each of their

respective behaviors. So as to do this, it uses the if and ask operators

as well as the other operators associated with patches, as listed in the

documentation.

In our running example, the mosquito proliferation is periodic if and

only if this behavior is activated by the reproductionMosquitoes?

variable that is present on the interface. In this case, a conditional order

is used.

In the NetLogo language, the if-then command is different from

the if-then-else command. The if command executes the instructions

located in the associated section if the condition is satisfied. The ifelse

command adds an alternative section which is executed when the

condition is not satisfied.

...

; Previous instructions

if condition

100 Agent-based Spatial Simulation with NetLogo 1

[

... ; group of instructions to be executed if

condition is satisfied

; (condition = true).

]

; Following instructions

...

...

; Previous instructions

ifelse condition

[

... ; group of instructions to be executed if

condition is satisfied

; (condition = true).

]

[

... ; group of instructions to be executed if

condition is not satisfied

; (condition = false).

]

; Following instructions

...

In NetLogo, a condition is a Boolean expression which has a true or

false value. Such an expression is made up of, among other things: 1)

equality operators (=), inequality operators (<>) and relational operators

(>, <, <=, >=) between different variables (numeric or alphanumeric);

2) binary Boolean operators such as and or or and 3) the unary operator

not.

As we have seen before, the mosquito proliferation is periodic.

It is also a function of an activation variable within the interface

which allows for the activation of the mosquito proliferation

phenomenon. As such, the activation condition of the cell

behavior (if (reproductionMosquitoes?) and (ticks mod

timeStep = 0)) is split into two parts:

Introduction to NetLogo 101

– reproductionMosquitoes?, a variable defined within the

interface as part of a switch element (interface element allowing for a

choice between only two options);

– ticks mod timeStep, where ticks is a NetLogo variable that

indicates the number of ticks that have passed since the beginning of

the simulation and timeStep is an interface variable that determines

the number of ticks between two proliferation events. When ticks

is a multiple of timeStep, the result of the ticks mod timeStep

calculation is equal to 0.

COMMENT 3.4.– mod gives the remainder of a euclidean division

between two whole numbers. For example, 10 mod 8 returns 2.

When combined, the ask command and the with operator allow

for the assigning of a specific behavior to a reduced agent population

depending on the modeling hypotheses. In our example, two hypotheses

are adopted: 1) only the humid areas (in blue), where stagnating water

is present, allow for the proliferation of mosquito larvae – (pcolor

= blue); 2) mosquito proliferation can only take place if they are

locally present, that is to say when their number is 1 or greater –

(count moustiques-here >= 1).

Figure 3.9. Cells selected (in light gray) with the neighbors
and neigbors4 commands

Each selected cell creates a new mosquito agent and places it

somewhere in its surroundings. Initially, a cell is randomly chosen

(with the one-of operator) from the adjacent cells: whether the 8 that

102 Agent-based Spatial Simulation with NetLogo 1

surround the selected cell (neighbors operator), or whether the 4 that

share a side with the currently selected cell (neighbors4 operator).

Then, a mosquito agent is created with the sprout-mosquito

command.

The sprout-<breeds> and hatch-<breeds> commands allow for

the creation and initialization of turtles of a given species in the same

way as the create command (as discussed in section 3.4.4.1). However,

these three commands distinguish themselves by the context in which

they are used: create is used in the general context by a procedure

called by the interface or by the user; hatch can only be used for turtles
and sprout can only be used for patches (see example below). The

sprout-<breeds> and hatch-<breeds> commands are nonetheless

used in the same way as the previously discussed create-<breeds>

command:

ask patches [

sprout-<breeds> number [

... ; set of instructions which apply to each agent

; created for its initialization]

]

]

OR

ask <breeds> [

hatch-<breeds> number [

... ; set of instructions which apply to each agent

; created for its initialization]

]

]

In our example, the newly-created mosquito is placed in the center

of the myNeighbor cell by the following command:

setxy [pxcor] of myNeighbor [pycor] of myNeighbor

Finally, the complete go-patches procedure is as follows:

Introduction to NetLogo 103

to go-patches

if (reproductionMosquitoes?) and (ticks mod

timeStep = 0)

[

ask patches with [(pcolor = blue) and count

mosquitoes-here

>= 1)]

[

let myNeighbor one-of neighbors

sprout-mosquitoes 1

[

setxy [pxcor] of myNeighbor [pycor] of myNeighbor

set size 5

set shape "butterfly"

set isInfected? false

set isInfectionExternal false

set color black

]

]

]

end

3.4.2.3. Turtle agent behaviors

Defining turtle behavior is done in the same way as behaviors are

added to patches: a procedure go-<breed> is usually implemented for

each species. Apart from the commands detailed in the previous section,

a turtle’s behavior will often use movement commands to enable the

agent to move within the environment.

A turtle agent is considered to be a self-supporting entity that has an

x, y position (within the xcor and ycor variables) and an orientation

(heading). This direction is represented by an angle α in degrees

measured between the y-axis and the tangential trajectory of the agent

(its speed vector).

So as to move, the turtle agents perform commands which modify

their position and orientation. These are limited to:

104 Agent-based Spatial Simulation with NetLogo 1

– forward Δ or fd Δ → moves the turtle a distance of value Δ
(forward motion);

– back Δ or bk Δ → reverses the turtle a distance of value Δ
(backward motion);

– move-to Ω → moves the turtle to the center of an agent Ω;

– setxy xy → moves the turtle to the coordinates given by x and y;

– left α or lt α → turns the turtle to the left by an angle of α in

degrees (anticlockwise rotation);

– right α or rt α → turns the turtle to the right by an angle of α in

degrees (clockwise rotation);

– face Ω → makes the turtle face an agent Ω;

– facexy xy → make the turtle face the coordinates given by x and

y.

y

O x

α

Figure 3.10. An agent’s orientation is defined by the angle α between the
y-axis and the agent’s trajectory (this angle is given in degrees, and in a

clockwise direction)

In our example, the mosquitoes have a movement behavior

consistent with Brownian motion, which is made up of a rotation and a

forward movement. The lt random 360 command rotates the chosen

agent to the left (lt) by an angle α chosen randomly from the domain

α ∈ [0; 360[. Then, the fd 1 command moves the agent forward by 1

unit.

to go-mosquitoes

ask mosquitoes

[

lt random 360

Introduction to NetLogo 105

fd 1

bite

]

end

Many other commands exist, most notably die, which instantly kills

the agent (removing it from the simulation). We invite the reader to

discover these within the relevant documentation when they further

experiment with modeling.

3.4.2.4. Visualization

A multiagent simulation can produce a multitude of results. It is

useful for the modelers to be able to analyze and intelligently synthesize

these so as to display them within the interface in the form of monitors,

graphs or 2D maps.

3.4.2.4.1. 2D display of the simulated world

Displaying the simulation within a 2D graphical interface is

obligatory and cannot be removed. The display can be resized and there

is an option to visualize the multi-agent systems (MAS) in pseudo-3D.

However, the interface and its use are heavily restricted because of its

uniqueness and due to the fact that it does not offer different viewpoints

of the simulated world without specifically programming these in. If

this were to be the case, special procedures would have to be created to

change the patch colors as well as the size and color of the turtles and

links, based on their internal states.

NetLogo distinguishes between two different display modes: 1) the

first is known as on tick mode, which updates the interface on each

tick; 2) the other is known as continuous mode, which updates the

interface independently of the model’s execution, which can lead to

the display refreshing inconsistently. While developing and testing the

model, it is advisable to use on tick mode, which will allow for a

rigorous visualization of the model. The continuous mode can then used

while exploring a complete, finished model, as it considerably reduces

the amount of time needed for the simulation.

106 Agent-based Spatial Simulation with NetLogo 1

3.4.2.4.2. Displaying alphanumeric results

A monitor (Monitor in NetLogo’s interface) is an alphanumeric

section of the interface which displays a variable or the result of

an expression (reporter). This type of display is very useful for

obtaining aggregated results about the turtles, patches and links during

a simulation.

Figure 3.11. The configuration interface used for monitors

Figure 3.11 shows a monitor named “average generation number”.

Via the mean([generation] of links) expression, this monitor

calculates the average of the values of the generation variable that the

link agents possess, which effectively calculates the average distance

between contaminated individuals and individual who was the source

of the contamination.

3.4.2.4.3. Displaying results in graphical form

A graph (called a plot in NetLogo’s interface) is a part of the

interface which follows one or more variables that evolve with the

progression of the simulation. This type of display resembles the

monitor, but with the added factor of time at the expense of precision.

Several graphs may be used within the same model. Each shows one

or more series of points (which is known as pens in NetLogo) displayed

Introduction to NetLogo 107

in an orthonormal plane bounded by axes with set coordinates (X min,

X max and Y min, Y max).

Figure 3.12. The configuration interface used for graphs

For each series, the user must define a display mode (line, point or

bar), the interval between two values along the x-axis, an expression

that sets the value of the first point and a second expression that defines

the value of each of the subsequent points to be graphed for each tick of

time.

It is possible to modify a graph with programming code. This

feature gives the user many more possibilities than NetLogo’s graphical

interface. The following primitives are used along with the do-plot

procedure to redefine the manner in which a graph will update:

– set-current-plot name_graph → selects a graph

(name_graph) to be modified;

– set-current-plot-pen nane_series → selects a series

(name_series) of the previously selected graph that is to be modified;

– plot y→ add a point to the previously selected series. This point

is situated at the y coordinate of the previous point to which is added the

value of the interval as defined in the configuration interface;

108 Agent-based Spatial Simulation with NetLogo 1

– plotxy x y → adds a new point at the x, y coordinates of the

previously selected series.

Initially, the do-plot procedure selects a graph:

set-current-plot "number of infected"

and then, a series: set-current-plot-pen "pen-mosquitoes".

Finally, the plot count mosquitoes with [isInfected?]

command calculates the number of infected mosquitoes and updates

the series. The two previous commands (set-current-plot-

pen and plot) update the second series named as pen-humans.

to go

go-patches

go-mosquitoes

go-humans

do-plot ticks; passing to next tick

end

to do-plot

set-current-plot "number of infected"

set-current-plot-pen "pen-mosquitoes"

plot count mosquitoes with [isInfected?]

set-current-plot-pen "pen-humans"

plot count humans with [isInfected?]

end

In the case of the running example, two series need to be updated on

the same graph.

3.5. Agent–agent and agent–environment interactions

3.5.1. Agent–agent interactions

One of the advantages of multiagent simulation, notably compared

to microsimulation, is that it is possible to model interactions between

Introduction to NetLogo 109

different agents. In NetLogo, interactions take the form of commands

and “questions” (ask commands) that certain agents can make of others.

By respecting the principle aim of encapsulation in this manner, the

agents are not allowed to directly modify the variables of other agents

within the model. So as to do this and as such to implement an

interaction, an agent (a) must ask another agent (b) to do something

by using the ask primitive that has previously been introduced.

As such, within our example, a random human agent that would

destroy all of the mosquitoes would appear in the following form:

ask one-of humans

[

ask mosquitoes [die]

]

The one-of command allows for the random selection of a single

element of a particular group (in this case, humans). The corresponding

program would be translated as follows: ask one of the humans to ask

each of the mosquitoes to die.

It should be noted that this question takes the form of an order in

the sense that the agent who receives it does not have the possibility to

refuse to carry it out or discuss its terms. It is an imperative demand

which enters the communications in the form of a message written in

object-oriented language.

So as to have a wider scope of expression of the interactions, it may

be necessary to reference each of the agents concerned: the asker (a)

and the executer (b). NetLogo allows this by using the keywords self

and myself. The self term corresponds to the selected agent (who is

the executer in our case) and myself corresponds to the agent from the

superior level (who is the asker in our case).

In the case of the infection of a human by a mosquito in our model,

the mosquitoes are hence asked to carry out the attack procedure:

110 Agent-based Spatial Simulation with NetLogo 1

to go-mosquitoes

ask mosquitoes

[

...

attack

]

end

The attack procedure is therefore carried out by a mosquito. In

an object-focused view, attack would be a method belonging only

to the mosquito. As such, it can be said that the corresponding code

will be carried out from the point of view of the latter. To carry

out its attack, the mosquito begins by putting together a list (an

agentset) of the humans who surround it (at a distance lesser than the

distance-contamination variable).

to attack

let humansNear humans with [distance myself <

distance-contamination]

In this case, myself refers to the mosquito which is currently

carrying out the procedure and the humansNear group will contain all

of the humans at a lesser distance than the distance-contamination

variable relative to the mosquito in question.

The attack itself then translates to a question posed by the mosquito

to all nearby uninfected humans to let it infect them (as long as the

mosquito itself is infected, naturally) and will be written as follows:

to attack

;;context of a mosquito agent

ask humansNear

[

;;context of a human agent

if (not [isInfected?] of self) and [isInfected?]

of myself

[

Introduction to NetLogo 111

While this code is being carried out, we will be changing context,

passing from the context of the mosquito agent to that of the human

agent. This will cause the evolution of the agents that the self and

myself primitives refer to.

In the context of the mosquito agent (before the ask humansNear

command), self refers to the mosquito agent which is currently

executing the code and myself, which by default should refer to the

agent which asked the formerly mentioned mosquito to execute the

procedure, actually refers to nothing at all (nobody), since the command

was called by the model at a upper level.

In the context of the human agent (after the ask humansNear

command, which asks each of the human agents in the humansNear

group to execute the subsequent code), self refers to the human agent

that is currently executing the code and myself refers to the mosquito

agent which asked it to do so.

To practically illustrate the references detailed above, the human and

mosquito agents which both own a Boolean (true/false) isInfected?

variable allowing us to store whether the agent is infected or

not, [isInfected?] of self corresponds to the isInfected?

variable of the human agent (self refers to the current context)

and [isInfected?] of myself corresponds to the isInfected?

variable of the mosquito agent. Finally, myself refers to the context

of the upper level.

The if (not [isInfected?] of self) and [isInfected?]

of myself command can, as such, be translated as follows: “if the

currently selected human agent is not infected and the mosquito is

infected, then...”.

Let us briefly return to the process that puts together the humansNear

group:

to attack

let humansNear humans with [distance myself <

distance-contamination]

112 Agent-based Spatial Simulation with NetLogo 1

Please note the reference to myself. In this situation, the code:

[distance myself < distance-contamination] is executed in

the context of a human agent and myself refers to the mosquito agent

of the upper level that is currently executing the attack procedure.

3.5.2. Structuring interactions as part of a social network composed
of links

Originally, NetLogo was more of a platform designed to simulate

spatial phenomena, as shown by the numerous examples available

in the Models Library. Nonetheless, since social networks were

being more and more often used in multiagent simulations to model

interactions between individual agents, NetLogo satisfied the demand

for this functionality by introducing links in its 4.0 version. As

shown in Figure 3.1, the links take the shape of special agents which

link two turtles and can be selectively given directionality. When

directed, link creation takes on the form of NetLogo’s common syntax

(create-link-to, creation-<breed>-to, create-link-from),

which are commands that link the agent calling for the creation of the

link to the agent given as a variable:

if any? humans-near with [is-infected?] [

become-infected

ask one-of humans-near with [is-infected?]

[

create-infection-to myself

[

create date ticks

]

]

]

The infection species is a special class of link (or a link type created

in the context of this model), create-infection-to myself creates

a link between the agent executing the function and the agent of the

upper level (myself), with the direction of the link being specified by

the use of from or to (a link is created going toward or away from an

agent).

Introduction to NetLogo 113

3.5.3. Adjacency

When we wish to simulate spatial interactions between entities, such

as in the case of a prey-predator model, the notion of adjacency is

extremely important: a predator may only eat its prey when immediately

adjacent to it. Identifying which entities are adjacent to an agent

depends upon the type of topology of the environment (adjacency is not

the same on a grid as it is within a network). In the environment defined

within NetLogo (a continuous environment coated in a grid made up

of patches), there are two ways in which adjacency can be calculated.

The first solution consists of selecting the subgroup of agents that is at

a distance less than a given threshold (e.g. a perception threshold):

ask turtles with [distance myself

< threshold-perception]|.

The second solution consists of using, perhaps less precisely, the

patches which pave the environment upon which exist the turtles.

The keyword here will allow for the grouping of all the turtles which

are found on the patch which is calling the (ask turtles-here[...])

command. Also, the neighbors keyword gives access to all the patches

adjacent to the current patch. Therefore, to access any turtles which

might be found on adjacent patches (and as such, within proximity) all

that is necessary is to ask which turtles are found on adjacent patches,

as follows: (ask turtles-on neighbors).

The same principle has been kept for the links with which it is

essentially needed to access some or all of the neighbors linked to a

specific agent, and as such ask one-of link-neighbors gives access

to each of the agents (which are selected in a random order) that are

linked to the chosen agent.

Despite the very intuitive implementation of these different

functions, identifying the types of functions that can be used or

combined across the three main agent types (turtles, patches and links)

can be difficult. Once each of these three different approaches has been

114 Agent-based Spatial Simulation with NetLogo 1

well identified and understood, NetLogo allows for these functions to

be easily combined together.

3.6. Introduction to NetLogo’s additional functionalities

As well as the basic model editing and simulation execution tools

presented in this chapter, NetLogo provides a collection of additional

tools useful for modelers. Additionally, numerous extensions have been

created for NetLogo, which serve to extend its language with the aim of

integrating new objects into its simulations (such as GIS or networks).

3.6.1. The Behavior space tool

Accessible from the Tools menu, the Behavior space tool allows for

the quick setup of experimental test designs to be performed on the

model. Global variables and parameters can be defined with all their

possible values for their exploration. It then executes an exhaustive

experimental design and is able to save any interesting variables or

indicators within a .csv file, to be studied using appropriate tools at a

later date. Despite the limited capacity of the Behavior Space, it is often

necessary to use it to launch quick and simple test designs that can help

with the detection of any eventual bugs before using more powerful

tools whose primary purpose is to study models in great depth (such as

OpenMole9). The study of a model and the usage of the Behavior Space
are described in the following section.

3.6.2. Multiplayer (HubNet)

HubNet is a NetLogo mode dedicated to the management of

individual, remote interfaces. This mode is particularly useful for

the implementation of serious participatory games where each actor

connects, via a local network, to a same simulation within which they

play a particular role. HubNet modifies the model based on a particular

viewpoint, structured by its own interface which contains a personalized

9 http://www.openmole.org/.

Introduction to NetLogo 115

view of the simulation as well as any specific actions available to that

player. The user interface is graphically constructed by a instructive

interface (HubNet Client Editor) but user management is carried out

within NetLogo via specific primitives such as hubnet-send-message.

Participative simulation is further detailed in section 6.5.3.

3.6.3. Dynamic systems

While multiagent modeling concerns itself with the individual

behaviors of agents, modeling based on dynamic systems is instead

focused on the global behaviors of the agent population. The System
Dynamics Modeler extension (menu Tools then System Dynamics
Modeler) allows for the representation of systems in which there are

few entities that effectively represent groups of individuals. Values that

are associated to entities evolve thanks to the interactions between

these entities. This evolution is commonly represented by a system

of ordinary differential equations. Four basic elements allow for the

construction of a dynamic system diagram: stocks, variables, flows and

links.

Figure 3.13. The configuration interface used for modeling dynamic systems

116 Agent-based Spatial Simulation with NetLogo 1

A stock represents an aggregate, such as a population of healthy

humans, a population of contaminated humans or a population of

mosquitoes. A flow represents a quantity that passes from one stock to

another and of which the volume is controlled by a tap. For example, the

flow between the stock of healthy humans and the stock of contaminated

humans is a function of the interactions between the stock of healthy

humans and the stock of mosquitoes. A variable can represent a constant

or an equation that depends on other variables. For example, a variable

representing the infection rate is added to the interaction between the

stock of healthy humans and the stock of mosquitoes. Finally, a link

allows for a value resulting from a stock or a variable to be available

(known) to several entities of stocks or variables. As a result, the flow

between the two human stocks depends on the stock of mosquitoes. This

module, as well as modeling based on equations, is presented in greater

detail in section 5.5.

3.6.4. Introduction to models in 3D environments

3D, or the use of a 3D space for the movement of agents, allows

for the modeler to have access to many improvements with respect to

display and interaction (made realistic and immersive, superimposing

additional information throughout the simulation, etc.). However, the

introduction of 3D into a model does not have as its only goal to make

the environment more realistic, it also allows for a more intuitive and

immersive study of the model.

Figure 3.14. Example of 3D models in NetLogo3D: a) a water drop falling on a solid
surface, b) a 3D fractal tree, c) termites, d) a bouncing ball and e) turtles evolving upon
a 3D surface. For a color version of the figure, see www.iste.co.uk/banos/netlogo.zip

Introduction to NetLogo 117

NetLogo allows for a 3D world to be easily defined using

NetLogo3D (an application bundled with NetLogo). The environment

in a 3D world possesses a width, a height and a depth. The patches
become cubes with an additional coordinate pzcor. Now the turtles also

possess three Cartesian coordinates xcor, ycor and zcor as well as

an orientation defined by three variables (heading, pitch and roll).

The viewpoint from which the user sees the world corresponds to the

location and orientation of the observer, which faces an initial point

as defined by the face or facexyz commands. Its position is defined

by the setxyz command. An agent may move within the 3D world

using the follow, follow-me, ride and ride-me primitives. It is

also possible to change the viewpoint of the simulation by using the

watch and watch-me primitives. Finally, it is possible to import 3D

shapes into the environment with the load-shapes-3d primitive.

Figure 3.15. An environment modeled in NetLogo3D

When NetLogo3D is launched, the world is represented in the shape

of a cube. The Model Settings add limiting coordinates in the third

dimension (max-pzcor and min-pzcor), which are added to the x and

y coordinate information available previously (max-pxcor, min-pxcor,

max-pycor and min-pycor).

It should be noted that a model written in NetLogo can often be

opened with NetLogo3D and will then be displayed on a 2D plane.

The opposite is scarcely true, as the 3D primitives and variables are

not recognized by NetLogo.

118 Agent-based Spatial Simulation with NetLogo 1

3.6.5. Geographical information systems

When the heterogeneous nature of environmental data is an

important element affecting the dynamic of a multiagent system, then

the use of the GIS extension (extensions [gis] at the beginning of

the main block of code) is most useful.

Various raster file formats, such as ascii grid (.asc and .grd)

and vector shapefiles (.shp), can be read with the use of the

gis:load-dataset "name.(shp l asc)" primitive. The included

operations consist of reading the data, defining its coordinate system and

defining or executing operations upon this data. It is therefore possible

to import a group of values by patch, by points, by lines or by polygons.

Figure 3.16. Examples of importing geographical data. For a color version of
the figure, see www.iste.co.uk/banos/netlogo.zip

In a general sense, the information needed to be able to project the

values resulting from a GIS layer into NetLogo are the [minimum-

x maximum-x minimum-y maximum-y] coordinates of the GIS layer

and the [min-pxcor max-pxcor min-pycor max-pycor] coordinates of

the NetLogo space. It is possible to use one of the GIS extensions’

primitives to transfer these values, as follows:

– in a predefined domain, with:

gis:set-transformation gis:envelope-of name_of_the_layer

[min-pxcor max-pxcor min-pycor max-pycor]

– in the entire domain, with:

gis:set-world-envelope gis:envelope-of name_of_the_layer

A group of primitives can then be used to perform operations of

this data such as selection based on a variable’s value, the calculation

of polygon centroids, the intersection between two entities with

gis:intersects? A B, or A and B, can be of the VectorDataset type,

VectorFeature, turtle, link, patch, agentset or list, or even to assign the

values of a variable to patches or to turtles.

Introduction to NetLogo 119

Figure 3.17. Display of different layers of information. For a color version of
the figure, see www.iste.co.uk/banos/netlogo.zip

Finally, it is also possible to put together .shp data files from the

turtle, patch and link data so as to read a work with them in GIS.

For example, the gis:turtle-dataset turtles primitive returns all

the values of the agentset’s variables. These are then modified and

saved with the use of the gis:store-dataset primitive. The following

command:

gis:store-dataset gis:turtle-dataset turtles “centroid”

allows for the turtles which happen to be centroids of polygons to

be exported within a .shp file. In this manner, NetLogo data can be

transformed into a format that can be read by a GIS such as QGIS

(previously known as QuantumGIS).

Figure 3.18. Comparing the display of a shapefile in NetLogo and QGIS

3.6.6. Algorithms in graphs

As mentioned in this section and the previous sections, agents

are entities that interact with each other regardless of adjacency,

as well as the environment that surrounds them. It is possible to

display a representative graph of these interactions, in which agents

120 Agent-based Spatial Simulation with NetLogo 1

are represented by vertices and the interactions are shown by edges.

Relationships between the various elements may be expressed or

implied. For example, if we were modeling a city with roads and

intersections, the relationships are clearly stated with weights associated

with the edges that can be distances or traffic density (maximum and/or

current) which cannot be exceeded. Equally, if the model contained

drains and sewers, the limit to be exceeded would be a flow rate

assigned as before to the edges. On the other hand, the relationships

between a model’s entities may be implied and therefore depend on

properties associated with a particular agent, which will vary greatly

over the course of the simulation. For example, it is possible to model

relationships such as those based on affinities between agents, such as

musical tastes, belonging to a same company, friendships via social

networks, coworkers, etc. Here, again, it is possible to create graphs

that are the result of focusing on a particular relationship present during

the model’s simulation. It is also possible to combine several of these

into yet another graph.

Once a graph has been created from the model, it can be useful to

extract information from it to better analyze the model. In this situation,

the graph has the only purpose of clearly displaying a particular property

of the model. In fact, this display of data is very broad, as any data can

be displayed on a graph, provided that it makes sense. This ranges from

tubular representation to the representation of lists and all unorganized

relationships as well as the absence of relationships.

When a graph has been put together and correctly displays the

chosen data, it is possible to benefit from a large amount of reading

around the study of graphs. The first use of a graph goes back to the

18th Century. Léonhard Euler showed the inhabitants of Königsberg –

who had invited him there in 1736 – that it was not possible to cross

all of the bridges in the town once and only once. He set down the

conditions that a graph must respect for this challenge to be solved.

Hence, such a graph is today referred to as an Eulerian graph. His results

were published in 1741, but without a proof. It was Hierholzer who

eventually published the proof in 1873. The origins and rise of modern

graph theory are attributed to Claude Berge, who developed his ideas

Introduction to NetLogo 121

on the topic in the late 1950s. It was the advances in computational

techniques which helped to highlight the utility of graphs for a great

number of fields, as automatic computer processing made them a viable

tool for data analysis, which was not the case when all graphing had to

be done manually. As a result of this, a great number of algorithms were

developed to help exploit the numerous properties of graphs, whether on

a literal or theoretical level.

Among the algorithms, which immediately appear to be of use for

the exploitation of a multiagent model, are the following: Dijkstra,

Bellman-Ford and Floyd-Warshall’s algorithms, for finding the shortest

path; Bellman-Ford’s algorithm, for finding the longest; Tarjan’s

algorithm, for finding the strongly connected components of a graph;),

Ford–Fulkerson’s algorithm, for calculating the maximum flow in a

flow network; the Hungarian algorithm, a combinatorial optimization

algorithm; the Traveling Salesman algorithm (if one passes once

through each edge) or Eulerian algorithm (passing only once through

each vertex), used for pathing and routing problems; and Prim and

Kruskal’s algorithms, for finding minimum spanning trees in weighted

graphs.

Equally, it is possible to use a particular type of graph to display

social networks, these are known as small-world networks. They allow

us to show relationships between nodes, with very dense areas in some

places. They are based on the concept that everyone is linked to all

others in some fashion, whether through common likes or dislikes, or

any other property of social relations, and that this link is very short.

Milgram carried out the first experiment of its kind in the United States

(published in 1967 amid high criticism) during which envelopes were

handed from person to person, from the sender to the recipient. One

of the letters took only 4 days to arrive at destination. Within the same

school of thought, mathematicians created a number, the Erds number,

which gives the “collaborative distance” between any researcher to the

Hungarian mathematician Paul Erdös, measured from co-authorship of

scientific papers. For example, if I were to publish a paper with Paul

Erdös, I am at a distance of 1 from him, yet if I publish instead with

one of his co-authors, I am at a distance of 2, and so on. The same

122 Agent-based Spatial Simulation with NetLogo 1

calculation was made to find the average distance between individual

Facebook users. Thus, the study of the interactions between actors in a

social model can be beneficial for its analysis in a multiagent simulation.

Finally, graphs are excellent at displaying classifications of agents

based on their intrinsic or acquired properties. They allow for agent

populations with common or similar characteristics to be clearly visible,

which, in turn, means that the main groups and subgroups of a

simulation can be easily identified, which may not have been possible

beforehand, as the creators of the model will not necessarily have been

able to predict which groups would emerge as the largest. As well as

being able to follow the evolution of a model during its simulation,

the capacity for illustrating the emergence of new agent categories is

another benefit for a study of a multiagent simulation. As a result of

this brief presentation on the uses of graphs in the context of multiagent

simulations, it is quite clear that a comprehensive understanding of their

functionality is important for the creation and analysis of multiagent

models. This is the case at the simulation level, by influencing agent

behavior based on the decisions they may make during the course of

a simulation. This is also true during analysis, where they can be used

to explain the reasoning behind the creation of a simulation, such as

a study of the impacts of roadworks on urban journeys or a study of

emergent behaviors outside city sports facilities.

3.6.7. NetLogo dictionary and abbreviated commands

All of NetLogo’s commands are documented on the software’s

website, in the NetLogo dictionary10. The site allows most notably to

identify which instructions can be used in the context of the observer
(), of a turtle (), of a patch () or of a link ().

The NetLogo dictionary also introduces an abbreviated notation for

the main commands. Both forms of a command (full and abbreviated)

are exactly the same in terms of functionality. For example:

– create-turtles can be abbreviated to crt;

10 http://ccl.northwestern.edu/netlogo/5.0/docs/dictionary.html.

Introduction to NetLogo 123

– create-turtles 10 [...] is equivalent to crt 10 [...].

3.7. Conclusion

This chapter introduced the basics of the NetLogo language by the

use of our running example. While not comprehensive, it gives the

reader the basics needed to build their first models. It also allows them

to understand our example, as well as the various models supplied with

the NetLogo software. Yet, it is only practice that will help the reader to

master the language and use it without external help.

Now that the model has been built and tested, and that the modeler

has “played” with their model, that is to say that they have changed it by

modifying its basic variables, a more in-depth analysis of simulations is

necessary (notably, to carry out a sensitivity test). This is the aim that

the following chapter has been given, by describing the Behavior Space
tool that was briefly introduced previously.

4

Agent-based Model Exploration

4.1. Introduction

4.1.1. Introductory example

The previous chapters have allowed us to introduce the basics of

agent-based model creation with NetLogo. This has resulted in a model

such as the one used in our running example. Once the model has been

built, the aim is to manipulate it in such a way that new knowledge about

the modeled phenomenon can be created. For example, we could look to

study the rate of infection resulting from certain parameter values. The

use and study of a model is nonetheless as complex as its creation. As

such, using our model, we could launch the simulation with standard

initial parameters (say 300 humans, 500 mosquitoes, a contamination

distance of 5 and a work–home distance of 500), and we would obtain

the graph in Figure 4.1(a), indicating no infection beyond the source

mosquito, which would lead us to conclude that these parameters lead

to no infections. However, upon relaunching the simulation with the

exact same values, we might obtain the graph in Figure 4.1(b), with the

infection present in almost 100% of individuals after 1,000 iterations.

Such results, typical of stochastic models, invite us to proceed to a

more detailed analysis of the situation:

Chapter written by Arnaud BANOS, Philippe CAILLOU, Benoît GAUDOU and

Nicolas MARILLEAU.

126 Agent-based Spatial Simulation with NetLogo 1

Number of infected agents

N
u

m
b

e
r

o
f

in
fe

ct
io

n
s

Time

mosquito_pen

human_pen

Number of infected agents

N
u

m
b

e
r

o
f

in
fe

ct
io

n
s

Time

mosquito_pen

human_pen

Figure 4.1. Evolution of the number of humans and mosquitoes infected after
1,000 iterations, during two separate simulations based on the same initial
conditions (identical initialization parameters). For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

– Where does the infection come from during the simulation?

It would be useful to better visualize the simulation by perhaps

representing the distribution of infection dates (Figure 4.2 (a), see

section 4.2.2) and the infection sites compared to the movements of the

source mosquito (Figure 4.5, see section 4.2.3.1)

Dates of infection Infections - parameter variability

Figure 4.2. Distribution of the agent infection dates during the course of a simulation
(on the left) and the change in infection count across several simulations with different
values for one of the model’s variables (on the right). For a color version of the figure,
see www.iste.co.uk/banos/netlogo.zip

– How can several simulations be displayed in order for a

comparison? Given the different results obtained across several

simulations, it is interesting to display a graph that compares different

simulations (for example, the infection count across several simulations,

Figure 4.2 (b), see section 4.2.6)

Agent-based Model Exploration 127

– How can the impact of different parameters on the final result

be analyzed? We have defined four main parameters, but which has

the greatest effect, and which of these have an impact upon the final

infection count? Ideally, a large number of simulations would be carried

out with different values for the parameters (for example, to analyze the

impact of the contamination distance, Figure 4.2 (b), see section 4.3.2

for the definition of exploration and section 4.3.3.1 for a graph). We

would also like to be able to say whether or not the impact is statistically

significant (see section 4.3.4).

4.1.2. Objectives

More generally speaking, creating a simulation model is only the

first step to receive useful results. Any data received from running a

simulation once will not necessarily be the same if you launch the

same simulation again: random phenomena or even simply the order

in which certain agents act may have important consequences leading

to widely varying results, even based on the same initial conditions.

In our running example, the first infected mosquito may remain in a

corner without infecting anyone, as his movements are random. Equally,

if a human is infected near the start of the simulation, the infection

might spread very quickly, as this agent will rapidly transmit it to

his/her neighbors as he/she moves around. This instability phenomenon

is even more amplified when the parameters are modified. The inherent

unpredictability in complex systems renders a systematic exploration of

a model very important, which is facilitated by certain functionalities

offered by NetLogo, most particularly graphs and the BehaviorSpace.

Exploring a simulation consists of studying the behavior of the

model during and after its execution, and in particular, observing

variables defined as objectives (such as the number of infected

individuals). Three main approaches are detailed as following:

– How does the model behave during a simulation for a given set

of parameters? This first exploration step, which will be covered in

the following section, is primarily based on numerical indicators and

graphs, updated dynamically throughout the simulation.

128 Agent-based Spatial Simulation with NetLogo 1

– How do the different parameters influence the model’s behavior?

Here, a possibility is to carry out several simulations with different

parameter values, whether similar or far apart, thus to study the

sensitivity of the model to different parameter changes. By doing

this, we carry out an exploration of the parameter space. NetLogo’s

BehaviorSpace allows for this type of exploration and will be covered

in a second section. Analyzing data resulting from the implemented

experimental design, with the goal of obtaining results from the

sensitivity analysis, mainly requires the use of external tools such as

R or Excel. This option will be covered at the end of the second section.

– How can we arrive at one of the simulation’s specific objectives?

The goal here is to test virtual scenarios, searching for the

“best” solution. For example: whom to vaccinate and at which

point in time so that an epidemic spreads as slowly as possible?

This is a case of objective optimization. This type of approach,

typical of what is known as an “inverse problem”, can be carried

out in NetLogo with the help of the Behavior Search extension

(http://behaviorsearch.org/documentation/tutorial.html), or in a more

sophisticated manner with the OpenMole platform (http://www.

openmole.org/), which allows for distribution of simulations on

distributed computing environments. This type of approach will not be

studied in this chapter and will instead be covered in its own chapter in

Volume 2 [BAN 15].

4.2. Exploring a simulation

4.2.1. Objectives

NetLogo’s interface is one of its main assets. Simple in use, it offers

numerous possibilities for the exploration of models and in particular,

the exploration of dynamic graphs which allow the user to follow

the behavior of chosen variables during the simulation. The basics of

graph creation in NetLogo were presented in Chapter 3. We will now

concentrate on the use of these graphs for studying models.

Understanding what is happening during a single simulation requires

an initial effort to obtain pertinent data. Knowing which data would

Agent-based Model Exploration 129

be interesting to extract out of a simulation depends on the simulation

itself. For example, the interface of a social network simulation will be

different from that of a stadium evacuation simulation. We will now

present several commonalities and examples which demonstrate the

different possible situations.

During a simulation, two different information types that can be

studied may be distinguished as follows:

– variables belonging to agents, which may be represented as

distributions or scatter plots;

– aggregated variables (such as the average evacuation speed of the

number of infected individuals). These values will have a unique value

at each tick of time, and are usually represented as time series (evolution

of the number of infected agents) or coupled in an xy-plot (the number

of humans infected over the number of mosquitoes).

We will now define three graph types which facilitate the analysis of

these data categories:

– The study of the distribution of a variable within an agent

population with the help of a histogram;

– Following an agents trajectory with an xy-plot;

– The use of a same graph across different simulations to carry out

an initial sensibility study with identical or different parameters.

We will also modify the observers main window so as to produce

maps, display infection links and follow a specific agent.

4.2.2. Using a histogram to display distributions

Objective: displaying the distribution of infection dates (Figure 4.3)

Method: using a histogram whose range of axes is automatically

defined.

Histograms are particularly useful for studying the distribution of

values against a continuous variable. For example, we will display the

distribution of the infection date of each agent, which is stored in the

130 Agent-based Spatial Simulation with NetLogo 1

date variable of each infection link (see running example). NetLogo

can automatically display this with a predetermined discretization.

Dates of infection

Figure 4.3. Distribution of the number of infected individuals (along the
y-axis) relative to the infection date (along the x-axis)

Figure 4.4. Settings window for the graph displaying the distribution of
infections in the form of a histogram

The commands used to create a histogram are as follows:

– histogram allows for the displayed variable to be specified (date

of each agent link infection with [date] of infections). This

Agent-based Model Exploration 131

command allows for the creation of a histogram from any numerical

list (non-number variables are ignored);

– set-histogram-num-bars allows for the number of classes of

the histogram to be specified. A default value (10 in this case) must be

given, but a slider named after this value could also be created, which

would allow for the dynamic modification of the number of classes of

the histogram.

4.2.3. Using an xy-plot

Objective: displaying the locations of all infection events with a color

dependent on the date and trajectory of the first infected mosquitoes

(Figure 4.5).

Method: creating an xy-plot, defining a color taken from a color

pallet based on a variable, adding pens and naming them automatically.

XY-plots allow for points to be traced and if desired, joined, by

setting two coordinates (as opposed to series where the x-axis always

displays time).

They can be used in many different ways during a simulation:

– to represent the change of a variable relative to another so as to

display the evolution of the number of infected humans as compared to

the number of infected mosquitoes, for example:

- a particular situation consists of displaying x and y positional

coordinates along the x- and y-axes, respectively. In this case, the

change of position and therefore the trajectory of one or several agents

is displayed. However, it is also possible to display the change of

average position, such as to show where the current center of infection

is situated;

– finally, it is also possible to display the location of particular

events, such as infection sites.

4.2.3.1. Displaying a group of points (individuals/elements)

A certain number of primitives are used to define the tracing of

xy-plots. The plotxy primitive allows for a point to be added to the

132 Agent-based Spatial Simulation with NetLogo 1

current graph by specifying the x and y coordinates. For example,

in order to display the location of each infection recorded in the

infection links, the following command can be used to update the

graph in Figure 4.5:

ask infections

[

set-plot-pen-color scale-color red date 0 ticks

plotxy lieuInfectionX lieuInfectionY

]

Mosquito/human position at point of infection
mosquitoes

humans

mosquito432

Figure 4.5. Display of infection sites and of the trajectory of the first infected
mosquitoes. The red/blue color of the infection sites is darker for earlier infections.
For a color version of the figure, see www.iste.co.uk/banos/netlogo.zip

The scale-color command allows for a color gradient to be easily

defined by using a variable to define each level. Here, the date variable

(infection date, attribute of each infection link) is used to display the

location with a color (red) that is darker for earlier infections. The last

two variables allow for the minimum (0) and maximum (ticks) limits

of the scale to be defined.

4.2.3.2. Displaying one or several trajectories with the help of dynamic
pens

As well as infection sites, we might wish to add the trajectories of the

initially infected mosquito or mosquitoes. If we want a separate color for

each originally infected mosquito, NetLogo allows for new pens to be

Agent-based Model Exploration 133

dynamically created. In this situation, we can create a new pen for each

originally infected turtle (with isInfectionExternal being true).

Figure 4.6. Defining an xy-plot, with a pen for human infections and another
for mosquito infections

Figure 4.7. Defining the xy-plots mosquito pen: points are placed at the infection site
with a color that is lighter the closer the infection date (date) is to the current time of
the simulation (ticks)

134 Agent-based Spatial Simulation with NetLogo 1

In the update field of the graph, enter:

ask turtles with [estInfectionExterieur]

[

create-temporary-plot-pen word breed who

set-plot-pen-color green

plotxy pxcor pycor

]

create-temporary-plot-pen creates the new pen for each identified

agent. The only variable that this command takes is that of the pen

name (which appears in the key). To obtain the name of the agent, its

(breed) and identifier (who) are concatenated with the help of the word

command. This gives us a legible (species) and unique (identifier) name

for each trajectory.

Mosquito/human position at point of infection
mosquitoes

humans

Figure 4.8. Displaying infection sites with a color gradient dependent on the
infection date. For a color version of the figure, see

www.iste.co.uk/banos/netlogo.zip

As this is a new pen, we cannot write this command in the pen update

field (Pen update command) but instead it must be written in the graph

update field (Plot update command). Another solution would be to place

this command directly within the model’s code, while specifying which

graph is used with a similar command to the following:

Agent-based Model Exploration 135

set-current-plot "Position of mosquitoes and humans at

moment of infection"

4.2.3.3. Following the infection source mosquito with watch-me

Given the large number of displayed agents, it may be useful

to focus on a single agent. The watch-me command allows for an

agent to be focused upon (the initially infected agent, for example).

A simple implementation of this is to create a switch named

Follow_Source-Agent?, and then to call a simple procedure that uses

this Boolean value within the Go procedure.

to follow-source-agent

if FollowSource-Agent? and source-agent-follow? = 0

[

ask turtles with [isInfectionExternal]

[

watch-me

] set source-agent-follow? 1

]

if not FollowSource-Agent? and source-agent-follow? = 1

[

reset-perspective

set source-agent-follow? 0

]

end

The highly permissive character of the NetLogo language

should be noted here, as it allows for a high-level primitive

(reset-perspective) to be called by an agent. This

permissivity offers great flexibility but is not always free from

ambiguities and requires a certain formality. Equally, calling the

follow-source-agent procedure from within the Go procedure,

while practical, means that it is called at each tick. Resorting to a global

variable (source-agent-follow?) allows for its use to be limited by

introducing an intermediate test: the agent is only focused upon if the

switch is activated and if the agent in question is not already being

followed. We will see an alternative approach later, which separates the

call function from the central Go procedure.

136 Agent-based Spatial Simulation with NetLogo 1

Figure 4.9. Result of using the watch-me command which allows for an agent
to be followed. For a color version of the figure,

see www.iste.co.uk/banos/netlogo.zip

4.2.4. Mapping with the help of patches

Objective: cartographic display of spatial variables (Figure 4.10).

Method: constructing a smoothed thematic map with the help of the

diffuse and scale-color primitives.

Mapping spatial variables is particularly useful in the case of

spatial models such as the one developed here. NetLogo does not

have any predefined tools in this field, but certain included primitives

offer remarkable possibilities, notably when the base patch entities

are exploited. Nonetheless, there remains a delicate issue with the

interaction with the user. The user must be able to create their maps at

any moment, without interrupting the simulation, and without excessive

computation time. This is all the more true with a larger number of

patches: in our example, there are 222,700, a value which can be

obtained by entering show count patches in the observer field.

Unlike the approach detailed in the previous example, the principal

idea here is to only activate this cartographic option at the user’s

request, at the press of a button (Map) and with the help of a

Agent-based Model Exploration 137

scrollable menu (Chooser) which facilitates them to choose the variable

to be mapped : "Number of infected humans" or "Number of

infected mosquitoes"

Nevertheless, two important bridges must be crossed before arriving

at proper cartographic representation. The first step consists of creating

the spatial variable at the correct locations. While attempting to exploit

the possibilities offered by the patches, it is during this stage that

the new nb-infections-humans and nb-infections-mosquitoes

must be stored:

patches-own[

locationHome?

nb-infections-humans

nb-infections-mosquitoes

]

The second step consists of updating these two variables throughout

the simulation. In order to accomplish this, the principal process

that influences the calculation of these variables is used, which

is the Sting procedure in our case. At the moment when an

interaction between a mosquito and a human takes place, the

virus can be effectively transmitted from the mosquito to the

human, or the other way round. In both cases, a record of this

“transaction” is kept by incrementally increasing the variable of the

corresponding patch (nb-infections-humans in the first case and

nb-infections-mosquitoes in the second):

ask patch-here [

set nb-infections-humans

nb-infections-humans + 1

]

Once this variable is updated, it becomes possible to map it with the

use of two of NetLogo’s primitives: diffuse and scale-color. The

former (diffuse) allows for the smoothing of the variable in question

by taking the value of each of a patch’s neighboring patches. The

138 Agent-based Spatial Simulation with NetLogo 1

amount of smoothing depends not only on the numerical variable (here,

0.5), but also on the number of iterations of the procedure (repeat

20). The scale-color procedure, already discussed earlier, allows for

the simple creation of a color gradient once the lower (min-VC) and

higher (max-VC) limits have been defined. For increased legibility, it is

possible to turn off the graphical display of the agents present (humans

and mosquitoes but also links):

to map

if MappedVariable = "Number of infected humans"

[

ask turtles [ht]

ask links [hide-link]

ask patches [set pcolor black]

repeat 20 [diffuse nb-infections-humans 0.5]

let min-VC min [nb-infections-humans] of patches

let max-VC max [nb-infections-humans] of patches

ask patches with [nb-infections-humans > 0]

[set pcolor scale-color red nb-infections-humains

min-VC max-VC]

]

if MappedVariable = "Number of infected mosquitoes"

[

ask turtles [ht]

ask links [hide-link]

ask patches [set pcolor black]

repeat 20 [diffuse nb-infections-mosquitoes 0.5]

let min-VC min [nb-infections-mosquitoes] of patches

let max-VC max [nb-infections-mosquitoes] of patches

ask patches with [nb-infections-mosquitoes > 0]

[set pcolor scale-color green nb-infections-

mosquitoes min-VC max-VC]

]

if MappedVariable = "Land use"

[

ask turtles [st]

ask links [show-link]

Agent-based Model Exploration 139

ask patches [set pcolor black]

ask patches with [not locationHome?] [set pcolor

white]

ask patches with [locationHome?] [set pcolor gray]

]

end

The maps obtained (Figure 4.10) allow for the spatial distribution

of the mosquito–human and human–mosquito transmissions to be

visualized.

Figure 4.10. Spatial distribution of the mosquito–human and human–mosquito
transmissions. For a color version of the figure, see

www.iste.co.uk/banos/netlogo.zip

4.2.5. Display of the mosquito/human interaction network

The model is based on dynamic interactions between humans

and mosquitoes. Due to this, it is useful to visualize the underlying

interaction network. In order not to penalize the execution of the

model by displaying an ever-increasing number of links, we may use

a Show_Links? switch, which will activate and deactivate the display.

The show-hide_links procedure, called from within the Go

function, allows for the display of the dynamically created interaction

network. The scale-color procedure is once again very useful for

differentiating objects. In this case, it takes the infection date as a

variable: the later the infection, the lighter the link color.

140 Agent-based Spatial Simulation with NetLogo 1

to show-hide_links

ifelse Show_Links? and any? links

[

let min-date min [date] of

links let max-date max [date] of links

ask links

[

set hidden? false

if min-date != max-date [set color scale-color green

date min-date max-date]

]]

[ask links [set hidden? true]]

end

The link primitives (links) allow for the simple manipulation of the

graph. As such, the my-in-links and my-out-links functions called

by the human agents would allow for the subgraphs of the mosquito–

human infections and the human–mosquito infections to be displayed

separately and respectively. A dynamic coupling with the GraphStream

software (http://graphstream-project.org/) would allow for real-time

calculations of the graph indicators, describing the structures displayed

within NetLogo more precisely.

4.2.6. Use of graphs across several simulations

Objective: following the infection count across several simulations

(Figure 4.15).

Method : creating a graph that does not reset in between simulations.

Graphs allow us to follow the state of a simulation at a particular

instant (distributions) or its evolution across time (series). It may also be

interesting to follow a variable across several simulations, or to compare

its evolution between several simulations.

The definition of “persistent” graphs differs from that of standard

graphs in the following two ways:

Agent-based Model Exploration 141

– the simulation must not clear the graph when it relaunches;

– the definition of a temporary graph must take into account that the

pens must pass through the origin again, without drawing a line between

the last point and the origin.

To accomplish the first objective, the commonly used clear-all

function must not be used, as it automatically calls the clear-plots

function, which clears all graphs.

A function alternative to setup must be created which includes all

the elements of the basic function except for the function that clears all

graphs:

to clean

clear-ticks

clear-turtles

clear-patches

clear-drawing

clear-globals

load-map

init-mosquito

init-human

create-epidemic

reset-ticks

end

We can link this function to an alternative button to the standard

Setup (Figure 4.11).

Once this has been carried out, certain graph types can already be

persistently used, such as the xy-plot displaying the infection age and

the trajectory of the original host mosquitoes defined in the previous

section (Figure 4.12). In this case, we can visualize the trajectories of

the mosquitoes as well as the infection locations and dates across three

simulations.

142 Agent-based Spatial Simulation with NetLogo 1

setup - except graphs

Follow source agent

Figure 4.11. Defining a button which calls the clean function, as
opposed to the setup function, which allows for the simulation

to be reset without clearing the graphs

Mosquito/human position at point of infection
mosquitoes

humans

mosquitoes389

mosquitoes660

mosquitoes279

Figure 4.12. xy-plot of the infection locations and mosquito trajectories across
three successive simulations, which notably allows for the random locations
of origin of the source mosquitoes. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

Numerous graphs are not, however, able to be used across different

simulations. For example, a series representing the number of infected

mosquitoes and humans leads to the following result (Figure 4.13). In

effect, in a basic series graph, the x-axis is incrementally increased

at each period. Also, when passing to the next simulation, the pen

remains active and NetLogo therefore links the last value of the previous

simulation to the first value of the new simulation.

Agent-based Model Exploration 143

N
o
m

b
re

 d
’i

n
fe

ct
és

Nombre d’infectés

pen-moustiques pen-humains

581

0

0 Temps 2740

Number of infected agents

N
u

m
b

e
r

o
f

in
fe

ct
io

n
s

Time
mosquito_pen human_pen

Figure 4.13. Series graph used across three simulations: the simulation data
is combined without returning to the origin for each new simulation

One solution for defining a graph in series consists of:

– using an xy-plot with the x-axis manually defined as representing

time (ticks);

– deactivating the pen (plot-pen-up) while moving to a new

simulation, that is to say when ticks is equal to 0.

The pen update command hence becomes (Figure 4.14):

if ticks = 0

[

plot-pen-up

]

plotxy ticks count infections

plot-pen-down

This type of graph allows us to easily compare the same variable

across several simulations (in our case, with the same parameters so as

to carry out an initial stability test of the variable with said parameters)

(Figure 4.15).

144 Agent-based Spatial Simulation with NetLogo 1

Figure 4.14. Defining a new graph representing the infection count across
several simulations, and defining the pen for this persistent series graph

Infections - persistent

Figure 4.15. Following the infection count across three successive simulations
with identical parameters

4.3. Exploring several simulations

4.3.1. Introduction

The persistent graphs studied in the previous section allow for the

user to form an initial idea as to the behavior of the model across several

simulations. Nonetheless, this does not allow for a more systematic

and detailed study of the variable stability or the models parameter

space. For this, NetLogo’s BehaviorSpace allows for a large number

of simulations to be launched by specifying the parameter values and

the desired number of simulations (replications) to be launched for each

combination of values.

Agent-based Model Exploration 145

This tool is particularly useful for:

– studying the stability of the results obtained with the current

parameter values. This type of analysis may be carried out by analyzing

the standard deviation of the results obtained across several replications;

– studying the impact of each variation of a parameter’s value

around the current solution (local sensitivity) so as to identify the most

influential parameters;

– exploring the spread of possible results for each of the acceptable

parameter values (exploring the parameter space). This gives an

impression of the results attainable by the simulation based on the main

possible configurations.

The BehaviorSpace allows for simple experiment designs to be

defined (complete designs), to run these (this can be optionally done

in parallel, on several cores), and to export the data resulting from these

experiments in CSV files. The goal is usually not to analyze these within

NetLogo, as its processing features are rather limited.

4.3.2. Exploring the parameter space: the BehaviorSpace, step by step

The BehaviorSpace tool is found in the Tools menu. It allows for

different experiment plans to be defined (experiments, see Figure 4.16).

Each experiment plan defines the values taken by the parameters, the

number of times that the simulation is replicated for each combination

of parameters, the exit variables and the stop conditions, etc.

initial situation (1 run)
global analysis (1000 runs)

Figure 4.16. The BehaviorSpace’s startup window, giving access to the list of already
defined experiment plans, allowing for their modification (Edit), their duplication
(Duplicate), their deletion (Delete), their execution (Run) or for the creation of another
(New)

146 Agent-based Spatial Simulation with NetLogo 1

By default, the experiment plan is defined as the current situation:

a single execution with the parameters fixed to their current values and

with no stop conditions (see Figure 4.17).

Figure 4.17. Experiment plan with the current parameter values and a single
execution by default

We will define an experiment plan whose goal is to analyze what

influences the number of humans infected after 1,000 ticks of time

(Figure 4.18):

– observed variables: number of humans infected at the end of the

execution, proportion of infected humans, number of mosquitoes and

proportion of infected mosquitoes;

– variable parameters: number of initial humans and mosquitoes,

contamination distance and home–work distance.

Agent-based Model Exploration 147

Figure 4.18. Defining an experiment plan to globally
explore the parameter space

We begin by defining a new experiment plan (New). The different

options to be defined are:

– Experiment name: the name of the experiment which will allow

for easy identification and which will determine the default name of

savefiles. Example: global exploration.

– Vary variables as follows: determines the values which will be

taken by the parameters. Each line corresponds to a variable. After

having specified the name of the variable in between quotation marks,

we can specify the values taken by the parameters in two different ways:

- by directly stating which values will be taken by the variable,

for e.g. [“number-mosquito” 300 500 1000] which indicates that

the possible values for number-mosquito are 300, 500 and

1,000, or [“contagion_transport” true false] to indicate that

contagion_transport can take the values true and false;

- by specifying an initial value, an increment and a final

value for the variable, in the form [“name-variable [initial

increment final]]. For example, [“number-human” [100 100

300]] indicates that number-human will take the values 100, 200 and

148 Agent-based Spatial Simulation with NetLogo 1

300 (which is, in this case, equivalent to writing [“number-human”

100 200 300]).

– Repetitions: the number of times (replications) that each

configuration will be executed. For identical parameter values, the

observed variable may have different values (due to the stochasticity

present within the model) and the simulation may be executed several

times for each combination of chosen values so as to obtain more precise

results.

– Measure runs using these reporters: the observed values which

will be exported into a savefile. Each line defines an exported value. It

may be a global variable (of the type date-first-infection) or more

commonly a sum: e.g. count humans with [isInfected?] which

returns the number of infected humans.

– Measure runs at every step: if this box is ticked, the previously

defined observed values will be recorded at each simulation step.

Otherwise, only the final value will be recorded.

– Setup commands: the commands to be executed at the start of

each simulation. Usually, this will be the setup command, but other

commands may also be included, if desired. A command different to

setup may be used if we specifically require a certain graph or global

variable to be conserved throughout the exploration (see following

section on advanced analysis).

– Go commands: the command to be executed at each simulation

step, usually go.

– Stop conditions: a stop condition if we desire for the simulation

to end before the specified time limit (or if no limit is given). For

example, if we wanted only to analyze the date of the first human

infection, the stop condition could be defined as: any? humans with

[isInfected?] and to export the infection date by adding ticks in

the following variables.

– Final commands: potential commands to be executed when the

stop condition or the time limit are reached. It is possible to export plots

or to save the state of the world as new files, for example.

– Time limit: the maximum number of steps that the simulation may

reach.

Agent-based Model Exploration 149

The BehaviorSpace will carry out all the possible combinations

between the parameters defined in the list. The number of defined

simulations can as such increase exponentially: four parameters with

five values each already represent 5 x 5 x 5 x 5 = 625 possible

combinations. With 10 parameters and 10 values per parameter, we

reach 1010 combinations, which means that 10 million simulations must

be carried out for a complete study.

The order in which the parameters are listed determines the order

in which the simulations will be executed. Let us take the example of

two parameters with two and three values, respectively, and a single

execution per configuration:

[“contagion_transport” true false]

[“number-human” 100 200 300]

The six simulations will be successively executed as follows: (100;

true), (200; true), (300; true), (100; false), (200; false), (300; false).

Once the experiment plan has been defined, we can execute it by

selecting it in the experiment list and clicking on Run. In this case, we

can choose the execution options (Figure 4.19):

Figure 4.19. Choice of options for launching an experiment
plan within the BehaviorSpace

Spreadsheet output and Table output allow for the file export format

to be chosen:

– Spreadsheet will generate a spreadsheet with a single line per

simulation step (so a single line if only the final value is exported),

and one column per variable – simulation couple. If the plan includes

6 simulation runs and 4 observed variables, the spreadsheet will be

150 Agent-based Spatial Simulation with NetLogo 1

composed of 6 × 4 = 24 columns (as well as the column with headings).

An example is given in Figure 4.21. This layout is adapted when all

the intermediate steps are recorded (Measure runs at every step ticked

within the experiment plan options window).

– Table will generate a file with one line per simulation–iteration

couple (so as many lines as there are simulations if only the final value

is recorded, and n*m lines if n simulations are executed with m recorded

iterations). Each column will correspond to a variable. One example is

given in Figure 4.20. This layout is made for the analysis of data from a

large number of simulations.

Figure 4.20. Example of a CSV table (imported into OpenOffice) obtained
from the BehaviorSpace with the Table output box ticked

Figure 4.21. Example of a CSV table (imported into OpenOffice) obtained
from the BehaviorSpace with the Spreadsheet output box ticked

Simultaneous runs in parallel: number of simulations which will be

run at the same time. NetLogo is able to run several simulations at once

to speed up the analysis, as long as the computer’s processor contains

several cores (choosing a value higher than the number of cores would

Agent-based Model Exploration 151

slow down the execution instead of speeding it up). The default value

is equal to the number of cores. This option is tempting but has several

consequences:

– Using all of a processor’s cores makes any other use of the

computer during the execution of the experiment plan very difficult as

all of the processing power is being used by NetLogo. At least one or

two cores should be left free so that continued use of the computer is

possible.

– As the number of parallel simulations increases, so does the

memory used by NetLogo.

– Only one simulation can access the graphical display, which means

that if several simulations are running alongside each other, they will not

be able to be observed or displayed in graphs (see the use of graphs with

the BehaviorSpace in the following section).

– If any global variable is conserved in between simulations, their

value will depend on which core they are being run on (see the following

section).

– The order of the lines of exported data will be randomly arranged

if simulations are running in parallel, especially if variables are being

exported at each iteration.

Once the options and filenames have been chosen, the simulations

will be successively executed (and occasionally in parallel depending

on the chosen options). In order to speed up the processing, it is

possible to turn off the main view updates update view update and/or

the graph and monitor updates (update plots and monitors). If the user

has chosen to record each iteration’s variables, a graph displaying these

variables within the current simulation will automatically be generated

(see Figure 4.22).

4.3.3. Analyzing data within NetLogo (advanced use of
BehaviorSpace)

Basic use of the BehaviorSpace allows for data tables to be easily

obtained, which can then be analyzed with external tools (Excel, R,

etc.). Nonetheless, it is possible to obtain an initial display of data within

152 Agent-based Spatial Simulation with NetLogo 1

the simulation, of which we will present certain uses for carrying out a

data analysis of the results within NetLogo.

Run #1 of 6, step #369

Total elapsed time: 0:00:49

transport_infection = true

number-human = 100

0 count humans wit...

1 count mosquitoes...

2 (count humans wit...

3 (count mosquitoes...

Figure 4.22. Monitor window for the BehaviorSpace execution, with the number
of completed and total simulations, as well as information about the current
simulation and interface updating options. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

4.3.3.1. Use of graphs with BehaviorSpace

4.3.3.1.1. Constraints specific to BehaviorSpace

In the previous section, we studied the use of a graph across several

simulations. It is possible to use the same principle and to improve it

with the BehaviorSpace. As such, existing persistent graphs will work

with the BehaviorSpace, and will allow for series graphs or xy-plots to

be viewed across several simulations. The use of persistent graphs with

the BehaviorSpace does, however, have two constraints:

– Just as a new initialization button calling the clean function was

needed, the standard setup function (which usually calls the clear-all

and therefore clear-all-plots functions) must be replaced by a

new function such as clean so as to initialize simulations within the

experiment plan.

Agent-based Model Exploration 153

– Only one simulation can access the interface at any given point

in time; so if several simulations are being run in parallel (on several

cores), only one of them will be displayed upon the graphs.

4.3.3.1.2. Transferring BehaviorSpace parameters onto a graph

In order to visualize the impact of a parameter on a variable, the

BehaviorSpace allows for a large number of simulations to be run

while varying one or several parameters, and for the results of each

simulation to be displayed on persistent graphs. In order to obtain a

more legible and complete result, it is possible to add the value of each

pen’s parameter as a tag, which gives a graph similar to the following

one.

Even so, this adds additional constraints relative to the simple

persistent graph previously defined:

– It is unfortunately impossible to ask the BehaviorSpace or the user

what the name of the variable currently being analyzed is, therefore the

graph’s update function must be modified.

– Although a pen is defined by its name, this will depend on its value

in this case, which means that the pen must be dynamically created and

this can only occur at the beginning. The graph will therefore initially

not have any pens, and the pen will be added when the graph next

updates.

– The type of pen must also be defined, with the use of the

set-plot-pen-mode command, which allows for the type of graph

to be created by the pen (it corresponds to a choice taken from the

scrollable mode menu in the advanced pen configuration window):

1) set-plot-pen-mode 0 will cause the pen to trace lines (series

graphs or connected xy-plots), see Figure 4.23;

2) set-plot-pen-mode 1 will create a histogram;

3) set-plot-pen-mode 2 will draw points (such as for xy-plots,

see following example).

– The name of the pen to be created or chosen may be the

name of the parameter followed by its chosen value, created

154 Agent-based Spatial Simulation with NetLogo 1

by using the concatenation function: word : word "distance"

distance-contamination.

– Verifying the existence of a pen (once it has been created) can be

done with plot-pen-exists?.

– A pen’s color can be chosen from a color pallet by using

scale-color. In order to better differentiate pens and if one is certain

that the number of pencils will remain low, NetLogo’s included color list

(base-colors), which offers 14 basic colors, may be used. To receive

a reference and to choose the color, the BehaviorSpace run number may

be used with the behaviorspace-run-number variable.

The update function of the graph may be written as follows:

ifelse plot-pen-exists? word "distance"

distance-contamination

[

set-current-plot-pen word "distance"

distance-contamination

]

[

ifelse (behaviorspace-run-number < 14)

[

create-temporary-plot-pen word "distance"

distance-contamination

set-plot-pen-color item behaviorspace-run-number

base-colors

]

[

set-plot-pen-color wrap-color behaviorspace-run-number

]

]

set-plot-pen-mode 0

if ticks = 0

[

plot-pen-up] plotxy ticks (100 * (count infections) /

(count turtles))

plot-pen-down

Agent-based Model Exploration 155

This function allows for the display of the number of infections

against the value of the distance-contamination parameter

(Figure 4.23).

Infections - parameter variability

Figure 4.23. Infection count obtained across several infections by using a pen
with the value of its distance-contamination parameter for each

simulation. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

4.3.3.2. Analyzing data with BehaviorSpace

In order to delve further within data analysis, data manipulation

and aggregation across several simulations is necessary. NetLogo is not

suitable for this type of analysis, and it would perhaps be advisable

to use an external software such as R (see the next section) or Excel.

It is nonetheless possible to carry out certain analyses directly within

NetLogo so as to illustrate their potentials and limitations.

The aim is to carry out:

– a representation of the average infection count obtained across

the previous simulations, which approximately equates to the standard

deviation (Figure 4.24);

– a sensitivity analysis to view the part of the variance represented

by each variable. This analysis allows us to see which variables have the

largest impact on the final result, the infection count (Figure 4.27).

156 Agent-based Spatial Simulation with NetLogo 1

In order to achieve this aim, the following must be done:

– creating global variables which will record the values of the

variable to be analyzed within each simulation;

– updating these variables with their new values;

– making sure these values are not cleared when the simulations are

reset.

4.3.3.2.1. Graph of the average and standard deviation

This type of graph allows for the evolution of the average and the

stability of a result, whether for fixed parameters or not, to be seen

in a more synthetic manner than a graph superimposing all of the

simulations.

For example, Figure 4.24 is obtained after 81 simulations following

an exploration of the parameter space (4 parameters with 3 values each).

The graph is illegible and gives little useful information (other than the

fact that the result is unpredictable. . .). Representing the average and

standard deviation allows for the data to be synthesized: the average is

clearly increasing by jumps per day (transports). The standard deviation,

and thus the instability, becomes particularly high from the fourth day

onward, but remains stable at a very high level afterward.

mean

running total

+ standard deviation

- standard deviation

plot 1

Figure 4.24. On the left, the infection counts obtained over 81 simulations
with different parameters. On the right, a representation of the average (in

purple) plus or minus the standard deviation (in blue) of the previous
simulations, as well as of the current one (in red). For a color version of the

figure, see www.iste.co.uk/banos/netlogo.zip

Agent-based Model Exploration 157

Results such as those shown in Figure 4.25, obtained after 10

simulations with identical parameters, demonstrate great stability after

the fourth day (as every entity is infected), while the first three days

remain highly unpredictable (with a large standard deviation).

Infections - persistent

mean

running total

+ standard deviation

- standard deviation

plot 1

Figure 4.25. Results of 10 simulations with identical parameters and a high
transmission distance. For a color version of the figure, see

www.iste.co.uk/banos/netlogo.zip

4.3.3.2.2. Creating global variables to record the values of the variable

to be analyzed within each simulation

In the section at the beginning of the NetLogo code, where species

are declared, the global variable which will stock the variable values

must be added:

globals [list-variable]

Then, the following initialization is added to the setup function (and

not to the clean function, as this initialization must only be carried out

once):

set list-variable [[]]

4.3.3.2.3. Updating these variables with the new values

The values can be added to the list both within the NetLogo code

and within the update function of the graph. The advantage of using

the update function is that it will not be called during usage of the

BehaviorSpace where plots are not being updated, which will reduce

158 Agent-based Spatial Simulation with NetLogo 1

the memory use and calculation time. The plots update function is

therefore:

while [(length list-variable) < (ticks + 1)]

[

set list-variable lput [] list-variable

]

let current-list item ticks list-variable

set current-list lput

(100 * (count infections) / (count turtles))

current-list

set list-variable replace-item ticks list-variable

current-list

list-variable is a list of lists containing the value taken by the

variable for each tick of the previous simulations. If 10 simulations with

a length of 50 ticks are carried out, then list-variable will contain

50 lists of 10 elements.

The first section of the code serves to add an empty list if the current

tick has not been reached during previous simulations.

The second section finds the list corresponding to the current tick,

adds the target variable (the infection count) to it and replaces the old

list by the updated current-list version.

4.3.3.2.4. Defining graph and pen updates

Once the value has been saved within list-variable, all that is

needed is to define the pens which will display the average plus and

minus the standard deviation, and potentially the current simulation

(Figure 4.26).

In order to calculate the average and standard deviation, NetLogo

has the mean and standard-deviation functions allowing for these

values to be obtained from a list.

Agent-based Model Exploration 159

Figure 4.26. Defining the average and standard deviation pens of the graph

The mean pen will therefore be defined by:

plotxy ticks mean item ticks list-variable

For standard deviation, it is necessary to verify that the number of values

is greater than or equal to 2 in order to avoid the standard-deviation

function returning an error message:

if length item ticks list-variable > 1

[

plotxy ticks (mean item ticks list-variable +

standard-deviation item ticks list-variable)

]

4.3.3.2.5. Making sure these values are not cleared when the

simulations are reset

One final important element to take into account when global

variables are being used to store values across several simulations: these

global variables must not be cleared when the simulation is reset. This

problem is identical to that with graph reinitialization when defining

persistent graphs.

The clear-all function that is usually used calls the

clear-globals function, which clears all global variables. We

have seen in the previous section that a new initialization function

clean has to be defined, which does not call clear-all, but instead

calls all of its elements barring clear-plots. Two solutions are

possible for conserving global variables:

160 Agent-based Spatial Simulation with NetLogo 1

– not calling clear-globals, but then care must be taken to clear

the global variables which are not to be kept;

– using let to keep the desired global variables: since local variables

are not cleared by clear-globals, we can make the clean function

keep the values of list-variable, for example:

let list-variable-temp list-variable

clear-globals

let list-variable list-variable-temp

4.3.3.3. Analyzing variance: presentation

Going even deeper within data analysis, we can wish to understand

where the variability of received results arises from. For example, let

us return to the 81 executions needed for a complete exploration of

the parameter space for a model with three values for four parameters,

which led to the infection count graph in Figure 4.24. These graphs

show that results can vary considerably depending on the parameter

values, and it is thus important to correctly calibrate these parameters

if we want to obtain realistic results. However, searching for the correct

parameter values is complicated and costly (when it is even possible),

and it might be interesting to know which parameters have the greatest

impact upon the result. If certain parameters have no impact, it is hardly

important to precisely define them, and more attention should instead

be put toward refining those with a greater importance.

To determine the weight of each parameter on the result (and thus to

perform a sensibility analysis based on the variations of a parameter), a

possible method is a variance analysis [FAI 13, SAL 09].

We will now break up the variance of a variable x, based on three

parameters i, j and k, with n observations of x, written as xijk (to

simplify the notation, the parameter k indicates the kth simulation for

each of the i and j parameters). This analysis can be generalized to any

number of parameters. The variance (square of the standard deviation

Agent-based Model Exploration 161

calculated above) summarizes the deviations from the mean of the

variable:

V (x) =
1

(n− 1)

∑
ijk

(xijk − x...)2

where x... and x both represent the observed global mean of x: x... =
x = 1

n

∑
ijk xijk.

As n− 1 is constant for all variables, we can consider only the sum

of squares (SS) for charts/analysis:

SStotal =
∑
ijk

(xijk − x...)2

These deviations correspond to the instability and unpredictability of

the variable under study. It is possible to break down these deviations.

For example, for the first parameter, two extreme cases would be:

– if this parameter is responsible for all the changes in the x
variable, this would indicate that if the value of this parameter is

fixed, so would be x. For a value of i, x will always be identical and

therefore equal to the means of x for this value of i: xijk = xi..,
with xi.. = 1

njnk

∑
jk xijk. Here, SStotal =

∑
ijk (xi.. − x...)

2 =

nj .nk
∑

i (xi.. − x...)
2, which means that the deviations correspond to

the deviations between the partial means of the parameter and the global

variable. The variability within classes is as such nil for the parameter,

and the variability between classes is at maximum;

– if no parameters in a sufficiently large sample size have any

impact on the final result, the mean of each parameter value will be

equal to that of the global variable: xi.. = x.... This will also be true

for each parameter couple: xij. = x... In this case, the previously

calculated value, which is the variability between classes, will be nil.

Any and all variability will depend on the remainders: any variations

of x which are not contained in the means: SStotal = SSresidual =∑
ijk (xijk − xij.)

2. The residual SSs will measure what results from

inherent randomness and from non-measured parameters. The higher

this value, the less predictable the model is, if only the tested parameter

values are known.

162 Agent-based Spatial Simulation with NetLogo 1

The general case is situated in between these two extremes.

When only one parameter, i, exists (and there remain nk

observations for each value of i), the variability (SStotal) can be broken

down between the variability between classes (SSvariable) and the

residuals (variability within classes, SSresidual)

SStotal = SSvariable + SSresidual

∑
ik

(xik − x)2 = nk

∑
i

(xi. − x)2 +
∑
ik

(xik − xi.)
2

For example, if the number of humans takes the values 100, 200 and

300, the variability from the number of humans (nh) will be:

SSnh = nk(xnh=100 − x)2 + nk(xnh=200 − x)2 + nk(xnh=300 − x)2

For a larger number of parameters, the effect of interactions between

parameters must be added: the interaction SSs measure the impact of

independent parameters. For example, this may be useful if both the

number of humans and mosquitoes must be high for the infection to be

significant (as opposed to only one of the values being large).

SStotal = SSvariable + SSinteraction + SSresidual

The variable SSs (the variability between intermediate and global

means described previously) are easily calculated and will be analyzed

within NetLogo. For the interaction SSs, see section 4.3.4.

4.3.3.4. Graph of the variance analysis

The graph obtained (Figure 4.27) represents the evolution of the

percentage of total variance attributed to each variable (which is

identical to the part of the SStotal).

To carry out the variance analysis, the variable values must be stored

as with the previous graph, and the values of each parameter must be

known for each simulation that is run (so as to be able to calculate the

partial means depending on the parameter values).

Agent-based Model Exploration 163

distance-contamination

distance-work-home

number-humans

number-mosquitoes

Figure 4.27. Breaking down the infection count variance from
the exploration of a 4 parameter space

The process this graph follows can be summarized in several steps:

– creation of global variables for storing parameter names and

values;

– storing of global variables in between simulations;

– recording of the parameter values at each period;

– calculation of parameter variance;

– display of these values on the corresponding pen.

4.3.3.4.1. In the NetLogo code

Creation of global variable for storing parameter names and values

As with the previous graph, we will use global variables to store

the names of the studied parameters as well as their lists of values. We

will also continue to use the list-variable variable which we defined

previously so as to keep the chosen variable’s list of values (here, the

infection count).

globals [list-variable list-parameter-values

list-parameters]

These variables are initialized within the setup as follows:

set list-variable [[]]

164 Agent-based Spatial Simulation with NetLogo 1

set list-parameter-values [[]]

set list-parameters ["distance-contamination"

"distance-work-home"]

Storing of global variables in between simulations

As with the previous graph, we use the clean function (which

does not call clear-global) to store the variable values in between

simulations.

4.3.3.4.2. In the BehaviorSpace experiment setup options

Defining the list of parameters to be followed within the BehaviorSpace

Due to list-parameters being defined as a global variable, it is

possible to choose and analyze different parameters in each experiment

(the same method can be used for the variable to be analyzed, which

here is still the global infection count).

The list-parameters variable is therefore defined within the setup
of the experiment plan (Figure 4.28).

set list-parameters

["distance-contamination"

"distance-work-home"

"number-human"

"number-mosquito"]

clean

4.3.3.4.3. In the graph setup options

Recording the parameter value at each tick

The graph’s setup function will be used to record the parameter

values for the current simulation. The code will be split into two parts.

First, the function will check that the variable containing the

parameter values (list-parameter-values) contains at least as many

lists as there are values (a list per parameter is required). If this is not

the case, empty lists are added:

Agent-based Model Exploration 165

while [(length list-parameter-values) < (length

list-parameters)]

[

set list-parameter-values lput [] list-parameter-

values

]

Figure 4.28. Defining an experiment plan allowing for a sensitivity
analysis of the infection count

Then, the function will go through the parameter list defined

in parameters-list. We are now interested in the ith parameter

corresponding to the ith list of list-parameter-values.

We cannot add a new value corresponding to the parameter value

of the current simulation to this list without running into one of

166 Agent-based Spatial Simulation with NetLogo 1

NetLogo’s limitations: we have the variable name (it is the ith element

of list-parameters copied into current-parameter), but there is

no simple way to obtain its value from its name.

We will therefore use NetLogo’s Run function, which allows for an

instruction to be directly passed from a text to a command line. It is

impossible to create a local variable with this command, as it would be

instantly deleted; instead, this command will be directly executed so as

to update list-parameter-values, by adding the new value:

Run (word "set list-parameter-values replace-item i

list-parameter-values lput " current-parameter "

current-list")

If current-parameter is equal to “distance-contamination”,

the command given to NetLogo will be:

set list-parameter-values replace-item i list-parameter-

values

lput distance-contamination current-list

The command places in ith position in list-parameter-values

the current-list list to which distance-contamination is added.

if ticks = 0

[

clear-plot

while [(length list-parameter-values) < (length

list-parameters)]

[

set list-parameter-values lput [] list-parameter-values

]

let i 0

while [i < length list-parameters]

[

let current-parameter item i list-parameters

let current-list item i list-parameter-values

Run (word "set list-parameter-values replace-item i

Agent-based Model Exploration 167

list-parameter-values lput" current-parameter "

current-list")

set i i + 1]]

Calculating parameter variance and display of values

The graph’s update function will carry out the calculations and

display them for each of the parameters:

let i 0

let current-list item ticks list-variable

if length current-list > 1

[

let total-pop length current-list

let global-mean mean current-list

let total-variance variance current-list

if total-variance > 0

[

while [i < length list-parameters]

[

let parameter-values item i list-parameter-values

The aim is to calculate, for each parameter, the parts of SSvariable:∑
ni.(xi. − x)2/SStotal

With ni., the number of simulations carried out with the value of the

i parameter is xi. =
∑

jk xijk/ni.

and SStotal = (n− 1) ∗ V (x)

Independent from the current parameter are the following:

– Current-list corresponds to the list of variable values for the

current tick during previous simulations (the xijk);

– Total-pop corresponds to the total number of simulations that

have been carried out (n);

– Global-mean corresponds to the global mean (x);

– Total-variance corresponds to the global variance (V (x)).

168 Agent-based Spatial Simulation with NetLogo 1

Therefore, we need to calculate xi., as well as ni., the population

size and the mean of the xijk – all simulations using the same parameter

value.

During the loop, we are interested in the ith parameter, and

parameter-values will correspond to the values of this parameter

during previous simulations:

if (length current-list) < (length parameter-values)

[

set parameter-values sublist parameter-values

(length parameter-values - length current-list)

(length parameter-values)

]

If the list of values is smaller than the list of parameter values, the

last parameter values of the list are used.

let unique-values []

let unique-means []

let unique-size []

To explain the importance of these three variables, let us say

that we have carried out six simulations, with the two parameters

number-human and number-mosquito set to the following values:

– Number-human [100 200 100 200 100 200];

– Number-mosquito [100 100 500 500 1000 1000].

Let us also state that the infection counts for the current tick (the xijk
values contained in current-list) are the following: [2 2 2 10 10

10].

For the first parameter (i=0), parameter-values will therefore be

[100 200 100 200 100 200].

We will attempt to find the means of xijk for the two values taken by

parameter-values, 100 and 200. In order to do this, we use:

Agent-based Model Exploration 169

– Unique-values to store the different values taken by the

parameter. At the end, unique-values = [100 200];

– Unique-means to store the sum of the xijk corresponding to each

unique value (which we will divide by the number of elements to find

the mean). At the end, unique-means=[2+2+10 1+10+10]=[14 21];

– Unique-size to store the number of simulations corresponding to

each unique value. At the end, unique-size=[3 3].

(foreach current-list parameter-values

For each current-list / Parameter-values couple, ?1 will be

the current xijk, with ?2 being the current parameter value

[

let index position ?2 unique-values

index is the position of ?2 in the already identified parameter values.

If the value does not yet exist, it will be added:

ifelse index = false

[

set unique-size lput 1 unique-size

set unique-values lput ?2 unique-values

set unique-means lput ?1 unique-means

]

Otherwise, the mean and size lists are updated by the current value:

[

set unique-means replace-item index unique-means

(?1 + item index unique-means)

set unique-size replace-item index unique-size

(1 + item index unique-size)

]

])

170 Agent-based Spatial Simulation with NetLogo 1

Then, the SS is calculated. In order to do this, the variance is updated

for each mean – size couple:

let var-part 0

(foreach unique-means unique-size

[

set var-part (var-part + ?2 * (?1 / ?2 -

global-mean) ^ 2)

])

Finally, we divide by the population (so as to obtain the parameter

variance) and by the total variance (to obtain the proportion of the total

variance):

set var-part var-part / (total-pop - 1) * 100 /

total-variance

The result can then be displayed, by creating the appropriate pen if

it does not yet exist:

ifelse plot-pen-exists? item i list-parameters

[

set-current-plot-pen item i list-parameters

]

[

create-temporary-plot-pen item i list-parameters

set-plot-pen-color item i base-colors

]

plotxy ticks var-part

set i i + 1

The graph’s complete update function is thus:

let i 0

let current-list item ticks list-variable

if length current-list > 1

[

let total-pop length current-list

Agent-based Model Exploration 171

let global-mean mean current-list

let total-variance variance current-list

if total-variance > 0

[

while [i < length list-parameters]

[

let parameter-values item i list-parameter-values

if (length current-list) < (length parameter-values)

[

set parameter-values sublist parameter-values

(length parameter-values - length current-list)

(length parameter-values)

]

let unique-values []

let unique-means []

let unique-size []

(foreach current-list parameter-values

[

let index position ?2 unique-values

ifelse index = false

[

set unique-size lput 1 unique-size

set unique-values lput ?2 unique-values

set unique-means lput ?1 unique-means

]

[

set unique-means replace-item index unique-means

(?1 + item index unique-means)

set unique-size replace-item index unique-size

(1 + item index unique-size)

]

])

let var-part 0

(foreach unique-means unique-size

[

set var-part (var-part + ?2 * (?1 / ?2 -

172 Agent-based Spatial Simulation with NetLogo 1

global-mean) 2)

])

set var-part var-part / (total-pop - 1) * 100 /

total-variance ifelse plot-pen-exists? item i

list-parameters [set-current-plot-pen item

i list-parameters] [create-temporary-plot-pen

item i list-parameters set-plot-pen-color

item i base-colors] plotxy ticks var-part set

i i + 1]]]

The graph obtained (Figure 4.27) allows for the part of the variance

that each variable is causing to be clearly seen. The contamination

distance appears to be the variable with the greatest effect during the

first few days. Slowly, however, its importance diminishes and the total

human population becomes more important. The work–home distance

and the number of mosquitoes seem to have a much lesser impact.

The use of this graph/analysis has several limitations which must be

noted:

– These results do not take into account the interactions between

variables. A more complete variance analysis would allow for a larger

part of the total variance to be explained by analyzing the impact of

couple variables (the impact of a simultaneous increase of two factors).

– The calculations undertaken here do not allow us to say whether

the results obtained are of any significance. Hypothesis tests must

instead be added, similar to those we will use with the R software in

the following section.

– From a technical point of view, this graph and the previous graph

require a large number of calculations and a great deal of memory space

to store the value history. They therefore slow down the exploration of

the mode incredibly (and do not allow for running parallel simulations).

As such, they should only be used as a first approach before carrying a

more detailed (and faster) analysis with external tools.

Agent-based Model Exploration 173

4.3.4. Data analysis beyond NetLogo: the example of R

The files obtained from the BehaviorSpace may be analyzed with

external tools. For example, the R freeware (http://www.r-project.org/)
can be used to carry out simple or complex statistical analyses.

Based on the file from the previous analysis (three different values

for four parameters, with one execution per combination), obtained in

the form of a table, we will carry out a variance analysis in order to

test whether the results are significant or not (see section 4.3.3.3 for a

description of a variance analysis). The type of results obtained at the

end of the procedure is as follows:

Df Sum Sq Mean Sq F value Pr(>F)

distance.contamination 1 1.389 1.3893 15.407

0.000212 ***

distance.travail.maison 1 0.703 0.7029 7.795

0.006873 **

number.mosquito 1 0.095 0.0950 1.053 0.308539

number.human 1 1.712 1.7124 18.989

4.78e-05 ***

4.3.4.1. Preliminary stage: modifying the CSV file

The file obtained from NetLogo is a CSV file (see Figure 4.20) which

needs to be modified so that it may be imported by R.

By opening the file with a text editor (such as NotePad++ on

Windows), we will modify the file in two ways:

1) Removing the first lines which are not needed for the analysis

The first 6 lines are deleted (all those before the variable list):

Deleted lines:

"BehaviorSpace results (NetLogo 5.1.0)"

"landuseV5a.nlogo"

"stability analysis"

174 Agent-based Spatial Simulation with NetLogo 1

"08/11/2014 18:00:06:646 +0200"

"min-pxcor","max-pxcor","min-pycor","max-pycor"

"0","523","0","424"

Lines kept:

"[run number]","distance-contamination",

"distance-work-home",

"number-mosquito","number-human","[step]",

"count humans with [isInfected?]",

"count mosquitoes with [isInfected?]",

"(count humans with [isInfected?]) / number-human",

"(count mosquitoes with [isInfected?]) /

number-mosquito"

"1","3","100","300","100","1000","6","8","0.06",

"0.026...67"

"2","3","100","300","200","1000","30","24","0.15","0.08"

2) Removing the inverted commas

NetLogo adds inverted commas (") all over the place, including

around numerical values. Therefore, a Search/Replace operation must

be carried out to replace all occurrences of " by a blank space so as to

remove them.

Once these modifications have been made, the file can be used with

R.

4.3.4.2. Analysis with R

Once the current directory has been defined, the file can be imported

into R:

> dataexf=read.table("landuse.csv",header=T,sep=",

",dec=".")

We can now check that the values and columns correspond correctly

by displaying a data synthesis:

Agent-based Model Exploration 175

> summary(dataexf)

X.run.number. distance.contamination distance.work.home

number.mosquito number.human X.step.

Min. : 1 Min. : 3 Min. : 100.0

Min. : 300 Min. :100 Min. : 1000

1st Qu.: 21 1st Qu.: 3 1st Qu.: 100.0

1st Qu.: 300 1st Qu.:100 1st Qu.:1000

Median : 41 Median : 5 Median : 500.0

Median : 500 Median :200 Median : 1000

Mean : 41 Mean : 6 Mean : 533.3

Mean : 600 Mean :200 Mean :1000

3rd Qu.: 61 3rd Qu.:10 3rd Qu.:1000.0

3rd Qu.: 1000 3rd Qu.: 300 3rd Qu.:1000

Max. : 81 Max. : 10 Max. :1000.0

Max. : 1000 Max. : 300 Max. :1000

count.humans.with..isInfected..

count.mosquitoes.with..isInfected..

X.count.humans.with..isInfected......number.human

Min. : 0.00 Min. : 1.0

0 :25

1st Qu.: 0.00 1st Qu.: 1.0

1 :14

Median : 52.00 Median : 64.0

0.01 : 2

Mean : 98.96 Mean :198.2

0.06 : 2

3rd Qu.:199.00 3rd Qu.:290.0

0.78 : 2

Max. :300.00 Max. :973.0

0.98 : 2

(Other):34

X.count.mosquitos..with..isInfected......

number.mosquitos

0.0010 : 9

0.0033333333333333335: 9

176 Agent-based Spatial Simulation with NetLogo 1

0.0020 : 8

0.128 : 2

0.58 : 2

0.918 : 2

(Other) : 49

If we want to carry out operations between columns (in a faster

manner than with NetLogo), or if we have forgotten to calculate

the target variable (like in this situation, where we only have the

total of mosquitoes and the total of infected humans), we can use

R’s functionalities to perform calculations on matrices. Here, we will

replace column 6 (which contained the final tick, 1000) by the infection

count and then rename the column:

> dataexf[,6]<-(dataexf[,7]+dataexf[,8])/(dataexf[,4]+

dataexf[,5])

> colnames(dataexf)[6]<-"infections"

We check that the values are coherent:

> dataexf[,6]

[1] 0.0350000000 0.1080000000 0.0016666667 0.0016666667

0.1157142857 0.1650000000 0.0018181818 0.1725000000

0.1246153846 0.0025000000

[11] 0.1980000000 0.1350000000 0.0066666667 0.4414285714

0.2375000000 0.0009090909 0.0008333333 0.8446153846

0.0100000000 0.0020000000

[21] 0.3466666667 0.0016666667 0.1442857143 0.0012500000

0.0009090909 0.6875000000 0.0492307692 0.0850000000

0.0240000000 0.0016666667

[31] 0.0016666667 0.4128571429 0.5462500000 0.0254545455

0.3675000000 0.1138461538 0.5375000000 0.3240000000

0.7816666667 0.1216666667

[41] 0.8357142857 0.0012500000 0.0009090909 0.7766666667

0.2900000000 0.5825000000 0.6960000000 0.9266666667

0.6466666667 0.8628571429

[51] 0.0012500000 0.0009090909 0.7558333333 0.9538461538

0.0025000000 0.0080000000 0.0016666667 0.3333333333

0.3385714286 0.7462500000

Agent-based Model Exploration 177

[61] 0.0009090909 0.6466666667 0.7430769231 0.0025000000

0.0020000000 0.9833333333 0.0016666667 0.9500000000

0.9837500000 0.8545454545

[71] 0.9316666667 0.9792307692 0.0025000000 0.9760000000

0.9650000000 0.0016666667 0.9414285714 0.9787500000

0.0009090909 0.0008333333

[81] 0.9769230769

> summary(dataexf[,6])

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0008333 0.0020000 0.1443000 0.3440000 0.7431000 0.9838000

>

We can then launch the variance analysis in a single line:

> aovexf<-aov(infections~distance.contamination

*distance.work.home*number.mosquito

*number.human,data=dataexf)

Then we display a synthesis of results:

> summary(aovex)

Df Sum Sq Mean Sq F value Pr(>F)

distance.contamination 1 1.389 1.3893 15.407 0.000212 ***

distance.work.home 1 0.703 0.7029 7.795 0.006873 **

number.mosquito 1 0.095 0.0950 1.053 0.308539

number.human 1 1.712 1.7124 18.989 4.78e-05 ***

distance.contamination:distance.work.home

1 0.012 0.0118 0.130 0.719290

distance.contamination:number.mosquito

1 0.043 0.0431 0.478 0.491639

distance.work.home:number.mosquito 1

0.176 0.1765 1.957 0.166583 d

istance.contamination:number.human 1

0.653 0.6531 7.242 0.009044 **

distance.work.home:number.human

1 0.104 0.1040 1.154 0.286717

number.mosquito:number.human

1 0.066 0.0660 0.732 0.395395

distance.contamination:distance.work.home:number.mosquito

1 0.305 0.3053 3.386 0.070328

178 Agent-based Spatial Simulation with NetLogo 1

distance.contamination:distance.work.home:number.human

1 0.144 0.1440 1.597 0.210906

distance.contamination:number.mosquito:number.human

1 0.051 0.0512 0.568 0.453742

distance.work.home:number.mosquito:number.human

1 0.000 0.0001 0.001 0.973626

distance.contamination:distance.work.home:number.mosquito

:number.human

1 0.022 0.0221 0.245 0.622349

Residuals 65 5.861 0.0902 ---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The third column (Sum Sq) corresponds to the sums of the squares

of the deviations (SS), such as those which we calculated with NetLogo

in the previous part (the 4 first lines).

We can also obtain each variable relative part by dividing each SS

by the total of the deviations (this also gives us the part of the variance):

> round(summary(aovex)[[1]][2]/

sum(summary(aovex)[[1]][2])*100,2)

zSum Sq

distance.contamination 12.25

distance.work.home 6.20

number.mosquito 0.84

number.human 15.10

distance.contamination:distance.work.home 0.10

distance.contamination:number.mosquito 0.38

distance.work.home:number.mosquito 1.56

distance.contamination:number.human 5.76

distance.work.home:number.human 0.92

number.mosquito:number.human 0.58

distance.contamination:distance.work.home

:number.mosquito 2.69

distance.contamination:distance.work.home

:number.human 1.27

distance.contamination:number.mosquito

:number.human 0.45

Agent-based Model Exploration 179

distance.work.home:number.mosquito:number.human 0.00

distance.contamination:distance.work.home

:number.mosquito:number.human 0.19

Residuals

We can confirm the results obtained from NetLogo in the previous

section: the parameters with the greatest impacts are clearly number-

human (15% of the total variance) and distance-contamination (12% of

the total variance).

The complete analysis done with R offers us numerous additional

information relative to our NetLogo graph:

– We also have the weight of paired factors now: the combined

impact of distance-contamination and number-human also appears

to be rather important (5.7% of the variance).

– The residual part (Residuals) is particularly interesting: it

corresponds to the variance which is not explained by the deviations

between partial means and the global mean, that is to say, all the

deviations obtained with identical parameters. This is the variance

which is due to other parameters or random phenomena present in the

model (in our case, mosquito movement and, more importantly, the

location of the original infected mosquito). We can see that our four

parameters only justify 48% of the total variance. The model is therefore

very unstable even with fixed parameters.

– Another piece of useful information received in the R analysis is

the statistical test carried out for each parameter ((F value, Pr(>F)).

The columns correspond to a Fisher’s test which tests the following

hypothesis: “the parameter has no impact upon the variable” (if we

assume a linear impact). The indicated probability is the probability

that this statement is true. There is therefore 0.02% probability that,

with the obtained results, the distance-contamination parameter

has no impact on the count-infection variable. The stars (*** ** *)

synthesize this value. This value gives the analysis a statistical

justification (the impact of distance-contamination is statistically

significant within our model). Nonetheless, care must be taken so as

180 Agent-based Spatial Simulation with NetLogo 1

not to misinterpret this value: a parameter without a star (*) (where

Pr>10%) does not mean that the parameter has no impact, but instead

that no conclusion can be made using the obtained results.

4.4. Conclusion

The exploration of NetLogo models is greatly facilitated, both by the

graphical, dynamic and reactive interface and by the BehaviorSpace,

an integrated tool which allows for experiment plans to be carried

out simply and intuitively. Coupled with NetLogo graphs, or with an

external data analysis software such as R, this tool offers robust and

statistically founded analysis perspectives for any NetLogo model.

Several important and more advanced aspects of model exploration

with NetLogo have nonetheless not been covered here and will be

specifically focused upon in Volume 2 [BAN 15].

First, these need to be done with automatic calibration of models,

as well as optimization, which requires the maximization/minimization

of an objective function, which might allow for a configuration

that minimizes the final infection count to be found. This

process requires a large number of calculations and is thus

not included within the BehaviorSpace, but can nonetheless be

used in NetLogo with the help of the BehaviorSearch extension

(http://behaviorsearch.org/documentation/tutorial.html), or in a more

sophisticated manner with the OpenMole platform ([REU 13]

http://www.openmole.org/), which allows for the distribution of

simulations on distributed computing environments.

Second, this has to be done with the direct integration of R’s or

GraphStream’s analysis functions into the NetLogo code, via the use

of existing plug-ins, so as to directly obtain the statistical indicators (R)

or graphs (R, GraphStream) necessary for the evaluation of the model

within NetLogo.

Agent-based Model Exploration 181

Finally, this has to be done with the use of more advanced statistical

tools such as clustering algorithms, with or without interaction with the

NetLogo model, allowing for the analysis of homogeneous groups of

individuals or of parameter groups which produce homogeneous results

from an exploration of their parameter space.

5

Dynamical Systems with NetLogo

5.1. Introduction

Numerous scientific fields are involved in the study of real-world

phenomena based on theoretical models. These can have many different

roles, going from describing problems, so as to understand them

better, to predicting how they will evolve. This last aspect requires

the representation of the phenomenon’s dynamics, which allows for

the chosen model’s evolution over time to be followed. In order to

accomplish this, the problem can be presented at different scales.

Roughly speaking, it can be said that there are two main scales: the

microscopic scale, which is centered on the modeling of individuals, and

the macroscopic scale, which relies on mathematical theories proposed

in the context of dynamic systems.

In this chapter, this dual notion is developed upon with particular

focus given to system dynamics. In order to support our aims, we will

study the spread of panic in a crowd.

Crowd behavior has been studied since the mid-20th Century

by sociologists [BON 03]. It is only recently that physicians,

mathematicians and computer scientists have considered the subject.

The problems studied, as well as the tools used to do so, have

Chapter written by Nathalie CORSON and Damien OLIVIER.

184 Agent-based Spatial Simulation with NetLogo 1

changed, by reducing qualitative aspects and instead favoring models

and attempting to turn them into methods of study, prediction and

exploratory research. This is all the more true considering recent

catastrophes, such as those in 2006, during the yearly pilgrimage to

Mecca, or in 2010, during the Love Parade in Duisburg, that have shown

the importance of a better understanding of the collective phenomena

which develop within crowds.

The latter two are composed of groups of individuals with interacting

heterogeneous behaviors. They also contain organizations (groups,

families, etc.) which act upon the same individuals.

This describes a complex system that, as with all complex systems,

possesses properties of robustness and resilience when faced with

internal or external events. Emergent phenomena may also occur.

Nonetheless, even if a crowd is a resilient system, it can deviate from

its course, especially when a panic event occurs; a phenomenon which

constitutes the specific issue discussed within the chapter.

Our aim is therefore to reflect upon this collective phenomenon as

well as to suggest a research process. NetLogo is a perfectly adapted

tool for this context.

Once the panic propagation has been modeled into ordinary

differential equations (ODEs), the equational model is implemented

with NetLogo’s System Dynamics Modeler module. The results will

then be compared with those obtained with classical analysis methods

so as to evaluate the accuracy of this tool.

Finally, we will consider how aggregate and agent-based modeling

can be compared.

5.2. Aggregate model versus agent-based model

Questioning different forms of modeling naturally leads to

attempting to define the scientific notion of a model. A model is

composed of a simplified representation of a studied reference system.

It must specifically allow for the functioning of the system to be

Dynamical Systems with NetLogo 185

understood and thus allow for questions about it to be answered. This

representation is constructed with a language. The differences between

aggregate modeling and agent-based modeling are related not only to

the languages used but also to their possibilities, since they capture

the various elements of the problem and depend on domain ontology

and the epistemological beliefs of each scientific field. While models

were previously linguistic and descriptive or mathematical and rigid,

since the introduction of computational tools, new forms that allow for a

simplified system to be followed over time have been created [COQ 96].

The models presented in the previous chapters are computer models,

whereas those discussed in this chapter are mathematical. The latter

offer a strong formalism, based on expression rigor and structural

consistence at the expense of flexibility and expressivity. Conversely,

computer models are heavily descriptive and offer a high level of

flexibility but have problems with generalization.

Agent-based modeling focuses on a particular level of organization,

the individual. The simulation of a group of individuals leads to the

emergence of collective behaviors. The focus is no longer on the

population but instead on the individual. It is for this reason that such

models are placed in the “bottom-up” category, due to the fact that they

are defined based on their constituents and because their simulation

allows for the behavior of the “higher level” to be studied, that is to say

that of the system as a whole. The study of an individual’s or a group’s

behavior is then possible. This scale has certain disadvantages, however,

as it sometimes leads to very complicated models whose global behavior

is difficult to analyze and document. It is a modeling method that is well

adapted to the study of complex systems, as long as we are interested in

the system dynamics created from the interaction of the entities within

it. Stochastical elements can easily be introduced. Agent-based models

often allow for the effects of spatialization to be taken into account,

but can struggle with quantitative aspects or with generalization and

predictability. Calculation time constraints often also have to be taken

into account.

Aggregate modeling allows for the evolution of specific variables

to be compared against a parameter often time. It describes the

186 Agent-based Spatial Simulation with NetLogo 1

evolution of populations of individuals with specific characteristics,

and not the evolution of the individuals themselves. Their evolution

over time is usually considered to be continuous, which translates itself

mathematically into one or a system of ODEs (ODE). This approach

aggregates a set of interacting elements that make up a system whose

characteristics are the emergent result of the global dynamic. Stability,

structure, order and equilibrium are usually an average, resulting from

a large number of interactions. Behind the “regularities” is hidden the

disorder which created them. ODEs provide an remarkable tool for

the study of such systems and their progress over time. They most

particularly allow for the study of sensitivity to initial conditions, as well

as to equilibrium conditions. However, certain limitations can appear

when it comes to taking account of spatial or temporal dimensions or

the heterogeneity of the system’s components.

As well as the mathematical formality that is so well adapted

for this type of modeling, there exists a number of algorithmic

formalities as well as graphical display methods of agent-based

modeling (StarLogo [RES 97], Unified Modeling Language (UML),

Agent Modeling Language (AML) (Chapter 2)) or even graphical

display methods of aggregate modeling, such as Forrester diagrams,

which are integrated within NetLogo’s System Dynamics Modeler

module that we will present later.

5.3. Aggregate representation of the spread of panic

By “aggregate representation” of the spread of panic, we are

referring to the representation of this issue with a dynamic system. This

consists of describing such a system using measurable quantities whose

evolution will be followed over time. The variables which represent

these quantities are known as state variables. In this section, we will

introduce these variables and their respective evolutions in the specific

context of the spread of panic [BON 03].

In this section, we base our model on a real event described by

the U.S. Press [US 83a, US 83b], which occurred in 1883 on Brooklyn

Bridge. This bridge crosses the East River and links the Manhattan and

Dynamical Systems with NetLogo 187

Brooklyn neighborhoods of New York. On the 24th of May 1883, the

bridge was inaugurated, which elicited a lot of interest from the local

population. On the 30th of May, at about 4 pm, there were more than

1,600 individuals crossing the bridge at the same time. People were

wandering around and looking at passing boats. A group of men then

decided to cross the bridge as quickly as possible, each placing his hands

on the shoulders of the person preceding him. People began pushing

each other, and according to several accounts, someone shouted that the

bridge was collapsing. The confusion of cries led several individuals

to believe that the bridge was really collapsing, despite the best efforts

of the authorities that were present. The panic then spread across the

entire bridge as a result of behavioral contamination, and the resulting

scramble for safety led many individuals to find themselves crushed

against security grating. The death toll reached a total of 12, with many

others injured, and it took a year for the population to be completely

reassured that the bridge was safe, the result of Phineas T. Barnum

making 21 elephants cross it.

The threat of a perceived danger can cause a variety of different

reactions within a crowd, linked to each individual’s emotions. This

observation naturally leads to the concept of separating individuals into

different categories or compartments corresponding to their emotional

state, whereupon they can be counted. Depending upon the evolution of

the situation, the environment and themselves, the state of an individual

will vary. This is represented by a change of compartment. Furthermore,

there are imitation processes within crowds which are similar to

behavioral contamination phenomena. We will therefore observe the

variation of the population within each compartment, as well as the

dynamics of the spread of panic through the crowd.

This type of compartmental modeling which we are using is

already widely used in epidemiology for the study of the spread of an

illness where each individual is considered to possibly be healthy but

susceptible of being infected (S), already infected (I) or immunized

(R). This model, known as SIR, was put forward by Kermack and

McKendrick in 1972 [KER 39, KER 91].

188 Agent-based Spatial Simulation with NetLogo 1

In order to study this process, we will consider that a phenomenon

likely of creating a panic reaction has occurred. Following this event, we

count the number of calm, scared and panicked individuals1. This results

in three compartments to which each individual can belong being clearly

defined. We also suppose that the phenomenon is sustained (possibly

self-sustained, remembered, etc.) and that this might cause fear in other

initially calm individuals. However, the panic state can only be reached

by individuals that are already scared as a result of an amplification

process caused by other panicked individuals. The modification of the

panicked individuals’ emotional states can be linked to temporal factors

of stimulus disappearance, forgetfulness, etc.

In the case of our problem, we define three compartments: non-

panicked people (NPP), people susceptible to panic (PSP) and panicked

people (PP) [PRO 05, PRO 07]. Thus, calm individuals are placed

within the NPP compartment. The number of individuals within this

compartment is recorded as x. Scared individuals are placed within the

PSP compartment. The number of individuals within this compartment

is recorded as y. Finally, panicked individuals are placed within the PP

compartment. The number of individuals within this compartment is

recorded as z.

From the initial spread of N individuals in each of the three

compartments, passing in between compartments can be done in

different ways:

– An α1 proportion of calm individuals can become scared. We

mention this transition rate as α1 (Figure 5.1: NPP
α1−→ PSP).

– Scared individuals can become calm, with a transition rate of α2

(Figure 5.1: PSP
α2−→ NPP).

– Panicked individuals can pass into the group of scared individuals,

with a transition rate of β2 (Figure 5.1: PP
β2−→ PSP), or into the group

of calm individuals, with a transition rate of λ2 (Figure 5.1: PP
λ2−→

NPP).

1 The range of possible emotions is much wider [DAM 94, FRI 86, LUM 04, SCH 99a,

SCH 99b, WAT 92] but for simplicity’s sake, we focus here on only three of them.

Dynamical Systems with NetLogo 189

– Scared individuals might, as a result of contact with panicked

individuals, become panicked themselves, with a “contamination” rate

of β1 × z, proportional to the number of panicked individuals in the

population (Figure 5.1: PSP
β1z−→ PP).

Figure 5.1. Compartmental model of panic propagation. The individuals of the NPP
class are calm, those of the PSP class are afraid, whereas those in the PP class
are panicked. Only the passing from the PSP to the PP class occurs by behavioral
contamination (bold arrow)

Following this, the problem is first represented by NetLogo with

a Forrester diagram, and then by a system of ODEs. The former

allows for the model to be graphically constructed in terms of stocks

(compartments) and flows. NetLogo translates this representation into

equations and performs calculations so as to obtain certain numerical

results. The equations obtained from NetLogo’s translation of the

Forrester diagram are the same as those put together by more commonly

used dynamic system problem modeling tools.

5.3.1. Representing dynamic systems with NetLogo

The study of dynamic systems owes much to J.W. Forrester who put

forward a modeling method known as DYNAMO [FOR 61, FOR 68,

FOR 69], since largely adopted by STELLAR and by NetLogo’s

System Dynamics Modeler module. The approach is systematic and

based on interaction and feedback loop concepts; it forms part of the

broader scope of the study of complex systems.

5.3.1.1. Method: Forrester diagram

At the methodological level, it is necessary to state which elements

belong to the environment and the system as well as its eventual

190 Agent-based Spatial Simulation with NetLogo 1

decomposition. This allows for the entering (input) and exiting (output)

elements to be identified. The system dynamics govern the change

of inputs to outputs. It is also at this level that positive and negative

feedback loops must be identified. Negative feedback loops have a

stabilizing effect as they reduce the phenomenon, whereas positive

feedback loops amplify it. This conceptualization stage identifies

whether the model is influential or causal.

The following step consists of formalizing the model by specifying

the stock variables2 which characterize the model at any time t. Their

values vary depending on the flows which feed or empty the stocks.

The flows therefore consist of transport channels of matter or energy.

They are conservative and are controlled by taps which regulate the

flow depending upon the forces acting upon the system. Finally, the

auxiliary variables can be either constant, or the result of an equation

which can itself depend upon other variables. They offer the possibility

of introducing nonlinearity. These informations are represented within

the model by links which act as information routes. They also allow

for stocks, flows and auxiliary variables to be connected and for these

interactions to be represented as a result.

5.3.1.2. Tool: System Dynamics Modeler - NetLogo

Modeling a dynamic system with NetLogo consists of creating

a Forrester diagram. This is possible due to the System Dynamics

Modeler module, which can be found in the Tools menu

(Ctrl+Shift+D). When this module is opened, a second window appears,

containing the Diagram and Code tabs. The Diagram tab allows for the

diagram’s basic elements and relationships to be created, which we will

present as we progress (see Figure 5.3). The diagram is then translated

into NetLogo code which can be read but not directly edited from within

the Code tab.

2 The terminology is vast, so a stock can also be referred to as a level, an accumulation

compartment or a state.

Dynamical Systems with NetLogo 191

Thus, the new window is used for creating the model, whereas the

primary interface, with the Interface, Info and Code tabs, is used for

the simulation of the model.

To begin, it is customary to create a button which will initialize the

model.

In order to do this, we create a Button within the main interface,

named as Setup, which takes the following command, as shown by

Figure 5.2:

clear-all system-dynamics-setup

Once created, this Button appears in red as the procedure

(system-dynamics-setup) has not yet been defined.

Figure 5.2. Creating the Setup initialization button

Let us now return to our case study and follow the previously defined

methodology. The following should be defined first (see Figure 5.3):

1) the state variables, named as stocks in NetLogo terminology;

2) the connecting flows between stocks, named as flows;

3) the information channels (links) which manipulate auxiliary

variables or other parameters (variables) which act upon the evolution

of the model.

Figure 5.3. The tools of NetLogo’s System Dynamics Modeler module

192 Agent-based Spatial Simulation with NetLogo 1

We have already defined three emotional states which determine the

size of the stocks:

– the stock represented by x is the number of calm individuals,

belonging to the NPP compartment;

– the stock represented by y is the number of scared individuals,

belonging to the PSP compartment;

– the stock represented by z is the number of panicked individuals,

belonging to the PP compartment.

The creation of these stocks has two steps (Figure 5.4):

1) Creating the stock in the Diagram tab, where the stock is assigned

a name (here Name: x) and given an initial value (here Initial

value: xInit). It is also given a number as an initial value, but the

use of a global variable allows for the user to modify it more easily

through use of the Interface. Because we are dealing with population

sizes, the setting which allows for negative values (Allow negative

values) must be unticked.

2) Defining a global variable in the interface, using an Input of

type: Number. It is also possible to replace the Input by a Slider

depending on the user’s preference. The aim is to be able to easily

modify the initial conditions of the stocks from the primary interface,

when necessary.

This procedure must be repeated for each of the three studied

variables: x, y, z.

In order to make the simulation interface more understandable, it is

possible to add Notes.

Figure 5.5 shows the result of repeating this procedure for each of

our variables.

Figure 5.1, showing a representation of the compartmental model,

illustrates the fact that the dynamics of the studied model are influenced

by five parameters: α1, α2, β1, β2 and λ2.

Dynamical Systems with NetLogo 193

Figure 5.4. Creating the x compartment (stock)
in the System Dynamics Modeler

We will create five corresponding Variables in the Diagram

interface: alpha1, alpha2, beta1, beta2 and lambda2 to which we

will give the respective Expressions: ValueAlpha1, ValueAlpha2,

ValueBeta1, ValueBeta2 and ValueLambda2.

These Expressions correspond to global variables which must be

created in the form of Inputs (of Number type) or Sliders in the

primary interface so that the user may modify them easily.

Figure 5.6 presents the creation of these variables.

The flows show the size and directions of the flows in between

Stocks: x, y and z. As shown in Figure 5.9, we therefore create five

Flows which take these emotional state changes into account (xToy,

yToz, etc.).

For example, passing from the NPP class to the PSP class – so

from the x stock to they stock – is controlled by a transition rate

alpha1 and depends on the x Stock. In the Diagram tab, the expression

which calculates this flow is therefore: x × alpha1 (see Figure 5.7).

Furthermore, the yToz Flow has the particularity of happening as a

result of contamination in between individuals in the PP (z) class

and those in the PSP (y) class. This flow therefore depends on

the encounters between individuals from the y and z Stocks (these

194 Agent-based Spatial Simulation with NetLogo 1

encounters are written as y × z) and on the contamination rate β1 (and

therefore on the beta1 Variable). This is written as: y × z × beta1

(see Figure 5.8).

initial conditions

Figure 5.5. Creating the x, y and z compartments (stocks) in the System Dynamics
Modeler, and creating the Inputs that can be used to assign initial values to each of
these variables, as well as adding a Note: Initial conditions on the interface so
as to make it easier and clearer to use

parameters values

initial conditions

Figure 5.6. Creating the five Variables: alpha1, alpha2, beta1, beta2 and
lambda2 to which we give the respective Expressions: ValueAlpha1, ValueAlpha2,
ValueBeta1, ValueBeta2 and ValueLambda2, which are global variables controlled
by Inputs within the interface

Figure 5.9 shows the Flows, which describe the shifts between

compartments.

Dynamical Systems with NetLogo 195

parameters values

initial conditions

Figure 5.7. Flow describing movement from the x Stock to the y Stock

parameters values

initial conditions

Figure 5.8. Flow describing movement from the y Stock to the z Stock

Finally, we associate links to each of the five Variables and the

Flows that they impact (see Figure 5.10).

In order to be able to launch the simulation, we create a button

within the primary interface, which we will call name: Go, and whose

Command is:

system-dynamics-go

as shown by Figure 5.11. Furthermore, for the simulation to run across

several steps of time, the Forever box should be ticked.

196 Agent-based Spatial Simulation with NetLogo 1

parameters values

initial conditions

Figure 5.9. Diagram with all the Flows representing the movements from
each compartment to the others

parameters values

initial conditions

Figure 5.10. Diagram with all Flows and Links representing the movements
from each compartment to the others

The diagram created is then directly translated into NetLogo code.

NetLogo’s main interface is henceforth used to manage the simulation

and its display.

Before discussing the possible simulations and outputs resulting

from such a model, the next section will show that it is possible to build

a system of ODEs equivalent to the diagram created here.

Dynamical Systems with NetLogo 197

initial conditions

parameters values

Figure 5.11. Creating the Go button

5.3.2. Constructing a dynamical system model by a system of ODEs

As previously indicated, it is also possible to model the problem with

a system of ODEs. We will presently explain how this model should be

created. As a reminder, a system of ODEs is a dynamic system which

describes the evolution of variables over time using equations. In the

case we are discussing, these variables are x, y and z and represent

the number of individuals in the NPP, PSP and PP compartments,

respectively. The inputs and outputs of each compartment are the

addition of individuals entering and the subtraction of individuals

leaving, respectively.

The variation of NPP ’s x population for a given step of time (dt)
is characterized by the derivative of this x value compared to time,

written as
dx

dt
. For each compartment, this variation is a result of the

entry and exit of individuals. Following a disturbance, a proportion

(α1) of calm individuals become afraid and no longer belong to the

NPP compartment but instead are part of the PSP compartment.

Thus, this transition can be seen within the system as a subtraction of

individuals from the NPP compartment (−α1x) and an addition of

these to the PSP compartment (+α1x). A proportion of individuals

(α2) of the PSP compartment become calm again. This change of

state is seen as a transition (−α2y) of PSP individuals to the NPP

198 Agent-based Spatial Simulation with NetLogo 1

compartment (+α2y). The same applies for the restoration of panicked

individuals from the PP compartment to a calm state. The PP
population diminishes by−λ2z, whereas the NPP increases by +λ2z.

Finally, the contamination effect appears in the form of the nonlinear

term β1yz, which increases the PP population and reduces that of the

PSP . It highlights the fact that the contamination rate is proportional,

with a coefficient of β1, to the number of panicked individuals (z).

Therefore, the system of differential equations that describes the

spread of panic through a group of N individuals is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −α1x+ α2y + λ2z

dy

dt
= +α1x− α2y + β2z − β1yz

dz

dt
= +β1yz − β2z − λ2z

We have now defined our problem by translating it into an equational

model composed of three ODEs, which describe the relationships

between variables and their derivatives. The system discussed is

autonomous as time does not explicitly appear within the equation

terms. Furthermore, it is nonlinear as it contains the term β1zy that is

not represented by a straight line, and is said to be of first order because

it shows the first derivative of each variable.

We consider that the system is isolated, that is to say there are no

births or deaths, and that the total population (N) therefore remains

constant. As a result:

x+ y + z = N

Equally:

x ≤ N, y ≤ N, z ≤ N

Dynamical Systems with NetLogo 199

Since our values represent population sizes, we are only interested

in positive values for x, y and z; therefore:

x ≥ 0, y ≥ 0, z ≥ 0

Furthermore, since the total population is constant, all individuals

that leave a compartment must enter another, which gives us:

dx

dt
+

dy

dt
+

dz

dt
= 0

We presented two different formats for defining dynamic systems:

the former was graphical, generating an algorithm, and the latter was

equational. Nonetheless, these two forms present many similarities.

Indeed, the code generated by NetLogo within the Code tab of the

System Dynamic Modeler module is as follows (this is an extract).

Note that we have grayed out all lines which control the variations that

impact the NPP (x) compartment:

to system-dynamics-go

;; NetLogo saves global variables within local variables

;; so as to avoid side effects. ;; In gray: everything which

affects the NPP compartment.

let local-alpha1 alpha1 let local-alpha2 alpha2 let

local-beta1 beta1 let local-beta2 beta2 let local-lambda2

lambda2 let local-xToy xToy ;; Movement from the x compartment

to y let local-yToz yToz let local-yTox yTox ;; Movement

from the y compartment to x let local-zToy zToy let

local-zTox zTox ;; Movement from the z compartment to x

;; Updating the x stock variables for the NPP compartment.

;; Using copies of variables to solve the ;; problem of

dependency within equations.

let new-x (x - local-xToy + local-yTox + local-zTox

) let new-y (y + local-xToy - local-yToz - local-yTox +

local-zToy)

let new-z (z + local-yToz - local-zToy - local-zTox)

200 Agent-based Spatial Simulation with NetLogo 1

;; Updating the global variables from local variables.

set x new-x set y new-y set z new-z

;; Time advances by a single unit.

tick-advance dt end

;; Flow of individuals between x and y to-report

xToy report (alpha1 * x) * dt end

;; Flow of individuals between y and z to-report yToz report

(y * z * beta1) * dt end

;; Flow of individuals between y and x to-report

yTox report (alpha2 * x) * dt end

;; Flow of individuals between z and y to-report zToy report

(beta2 * z) * dt end

;; Flow of individuals between z and x to-report

zTox report (lambda2 * z) * dt end

Let us remind ourselves that the equational system is given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

dx

dt
= −α1x+ α2y + λ2z

dy

dt
= +α1x−α2y + β2z − β1yz

dz

dt
= +β1yz − β2z−λ2z

Thus, we can see that the same information is contained in both

representations.

To analytically solve a system of ODEs, we must find the functions

x(t), y(t) and z(t) that will satisfy all the systems equations. These

solutions constitute the trajectories of the system’s variables. It is,

however, rarely possible to solve this analytically and the solution

must be found by using numerical methods, perhaps complimented by

Dynamical Systems with NetLogo 201

theoretical studies relating to the existence of solutions and their nature,

for example.

The use of NetLogo’s System Dynamics Modeler module has

several advantages. It can be used without any prior knowledge of

mathematical tools relating to the modeling of dynamic systems.

Furthermore, it allows for a simple and quick manipulation of the

initial conditions and parameters. Equally, as previously specified,

since it is rarely possible to solve such a system analytically, we

will use numerical integration methods in order to obtain approximate

trajectories (see the following section) and the use of NetLogo does not

require the implementation of these methods, which are present within

the model. Therefore, displaying these trajectories is easy.

Without modification, however, the possibilities offered by this

module are relatively limited and the calculation time needed to obtain

the trajectories is significant.

Moreover, only the equational representation allows for a theoretical

study.

We will now present several numerical and theoretical tools that can

be used to study our problem.

5.3.3. Study of the dynamic system

5.3.3.1. Numerical study

Let us consider the following ODE:

dy

dt
= f(y, t),with y(t0) = y0 [5.1]

Numerically solving this equation consists of using an iterative

algorithm that gives the values of y(t) starting from y0 at time t0. This

amounts to numerically integrating the differential equation.

5.3.3.1.1. Numerical integration of a system of ODEs: methods

In 1768, Leonhard Euler put forward the first numerical method for

integrating differential equations. It was based on the finite expression

202 Agent-based Spatial Simulation with NetLogo 1

of the derivative:

dy

dt
= lim

h→0

y(t+ h)− y(t)

h

If we take h to be a sufficiently small step of time:

y(t+ h) = y(t) + h
dy

dt
+ o(t), o(t) representing the error [5.2]

By substituting [5.1] into [5.2]:

y(t+ h) = y(t) + hf(y, t) + o(t)

Considering a step h that is strictly positive and yi, which is the

approximate value of y at time ti = t0+ ih, and if o(h) is ignored, then

we obtain a concise formulation of the Eulerian method:

y0 = y(t0)

yi+1 = yi + hf(ti, yi), i > 0

The general idea, as shown in Figure 5.12, is to approach a point

(t0, y(t0)) with an unknown function by its tangent, which can then be

determined. We then apply this process at each step. The constructed

function is continuous and refined in stages.

Figure 5.12. Eulerian method

Dynamical Systems with NetLogo 203

NetLogo allows us to illustrate how this process functions. The exact

solution to the ODE dy
dt = y with the initial condition of y(0) = 1 is

y(t) = et. This result can be obtained using turtles, or with the Eulerian

method, and we can therefore observe the effect of the step h. This

corresponds to the following commented code:

turtles-own [x y] ;; Position of

the turtle of the representation of the globals plane

[exact-turtle approached-turtle step scale-on-x scale-on-y]

to setup ca set step 0.05 ;; no calculation for the exact

function set scale-on-x 2 / (max-pxcor) ;; x-axis set

scale-on-y (exp 2) / (max-pycor) ;; y-axis setup-axes

setup-exact end

to setup-axes ask patches ;; We trace the vertical and

horizontal axes [;; in white. if (pxcor = 0 or pycor = 0)

[set pcolor white]] end

to setup-exact ;; Creation and initialization of the turtle

create-turtles 1 ;; which represents the exact solution

[set exact-turtle self ;; We save its identity set color

gray set pen-size 2 set x 0 ;; We initialize its position

at x = 0 set y exp x ;; We calculate y setxy x / scale-on-x

y / scale-on-y ;; We position it within pen-down

;; the NetLogo world] end

to setup-approached create-turtles 1 ;; Creation and

initialization of the turtle [;; which represent the

approached solution set approached-turtle self

;; We save its identity set color light gray set pen-size 1

set x 0 set y 1 ;; We initialize its position at x = 0

and y = 1 setxy x / scale-on-x y / scale-on-y

;; Translation into pen-down

;; the NetLogo world] end

to maj-y-exact ;; The exact solution function of the ODEs

set y exp x ;; y = ex end

to trace-exact ;; Calculation of a point of the exact

solution set x x + pas ;; The curve will be constructed

204 Agent-based Spatial Simulation with NetLogo 1

point by point set y exp x setxy x / scale-on-x

y / scale-on-y ;; Translation into end

;; the NetLogo world

to trace-approached ;; We trace the line segment set x

x + h ;; We calculate the new value of x set y (1 + h) * y

;; We calculate the new value of y ;; We move the turtle

in a straight line ;; from its old position to the new one

facexy x / scale-on-x y / scale-on-y jump

distancexy (x / scale-on-x) (y / scale-on-y) end

to go-exact ;; Turtle representing the exact solution ask

exact-turtle ;; traces the curve point by point [;; until

the predefined limit is reached

while [x + pas <= 2] [exact-trace]]

end

to go-approached ;; Turtle representing the approached

solution setup-approached ;; traces the line segments

ask approached-turtle ;; until the predefined limit

[while [x + h <= 2] [approached-trace] die

;; We kill the turtle so as to be able to begin a new

approximation if needed.] end

The configuration of the NetLogo world is illustrated in Figure 5.13.

The essential parameters are location of origin: Custom,

max-pxcor 400, min-pxcor -10, max-pycor 300, min-pycor -10

and Patch size 2. We also need to associate a setup Button within

the interface to a procedure of the same name, a exact curve Button

to the go-exact procedure and an approached curve Button to

the go-approched procedure. A Slider that allows us to define the

value of h to any number between 0.001 and 1 also needs to be added.

The Eulerian method can then be observed in the proposed example,

along with the influence of the h step upon the approximated value (see

Figure 5.14).

Numerous other approximation methods have since been developed,

based on the discretization of the study interval into a certain number of

steps. Depending on the type of formula used to approach solutions, we

Dynamical Systems with NetLogo 205

can distinguish numerical methods with one or several steps, which can

be express or implied.

Figure 5.13. Configuration of the NetLogo World

Figure 5.14. The et function (in white) and the approximations (in gray)
obtained for h = 1, h = 0.5 and h = 0.05. For a color version of the figure,

see www.iste.co.uk/banos/netlogo.zip

206 Agent-based Spatial Simulation with NetLogo 1

Several criteria are used to measure the performance of numerical

methods: the consistency of a method indicates that the theoretical error,

present as the solution is approached, tends toward 0 at every step.

Stability shows a capacity for controlling the buildup of rounding errors.

Together they insure convergence, that is to say the ability to make the

global error tend to 0.

Among the most commonly used methods for approximative

numerical analysis of solutions of differential equations, we find the

methods developed in 1901 by the mathematicians Carl Runge and

Martin Wilhelm Kutta. These methods are based on the principle of

iteration, which is to say that the first approximation of a solution is

used to calculate a second, more accurate estimation, and so on.

Runge–Kutta’s first-order method (RK1) is equivalent to the

Eulerian method for solving first-order differential equations.

Runge–Kutta’s second-order method (RK2), or the mid-point

method, is a variation of the Eulerian method (see Figure 5.15).

It consists of estimating the derivative at the mid-point of the

integration step and recalculating the complete integration step from

this estimation.

Figure 5.15. Estimating the mid-point derivative for the current interval

Dynamical Systems with NetLogo 207

In Figure 5.15, we have the following:

⎧⎪⎨
⎪⎩

k1 = hf(tn, yn)

k2 = hf(tn + h/2, yn + k1/2)

yn+1 = yn + k2

Runge–Kutta fourth-order method (RK4) is shown by Figure 5.16.

It consists of using the mean of four estimations, which makes it more

accurate than the previous methods. In fact, this integration method

allows for fourth-order precision by recalculating the derivative four

times: once at the start point, twice at mid-points and once at an

estimated end point. In Figure 5.16, the following is shown:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

k1 = hf(tn, y(tn))

k2 = hf(tn + h/2, yn + k1/2)

k3 = hf(tn + h/2, yn + k2/2)

k4 = hf(tn + h, yn + k3)

yn+1 = yn + k1/6 + k2/3 + k3/3 + k4/6

Figure 5.16. Second estimation of the derivative at the mid-point of the
interval and estimation of the derivative at the end point of this interval

The extent of an error within a method corresponds to the difference

between the approximation calculated by the method and the analytical

solution. The integration step (h) used gives the order of the error. In

208 Agent-based Spatial Simulation with NetLogo 1

fact, for a step method, the error will be of the order of h2, whereas for

a method with 4 steps, it will be of the order of (h2)4. Consequentially,

for a single-step method to obtain the equal level of precision as a four-

step method, it is necessary to choose an integration step of the order of

104 times greater than that if the four-step method were to be used.

The integration step used for the numerical simulations performed

by the System Dynamics Modeler module is modifiable from within

the interface, as shown in Figure 5.17. Usually, it varies from 10−5

for systems which require great precision to 10−2 for more simplistic

systems.

Figure 5.17. The integration step used for the numerical Eulerian method in
NetLogo’s System Dynamics Modeler module is easily modified by the user

in the Diagram window

5.3.3.1.2. Numerical integration of an ODE system: application within

a panic model

In order to numerically integrate the dynamic system that the module

created from the Forrester diagram, NetLogo uses the system-dynamics
procedure, which implicitly calls the Eulerian method.

As a result, as long as all of the parameter and initial condition values

are known, it is possible to numerically integrate the system so as to

observe its paths, that is to say the successive values taken by each of

the variables over time.

This integration method is automatically used by NetLogo and

therefore there is no need to code it in.

Indeed, in the Code tab of the Diagram window of the System

Dynamics Modeler, the following code can be seen:

Dynamical Systems with NetLogo 209

to system-dynamics-do-plot if plot-pen-exists? "x"

[set-current-plot-pen "x" plotxy ticks

x] if plot-pen-exists? "y" [set-current-plot-pen

"y" plotxy ticks y] if plot-pen-exists?

"z" [set-current-plot-pen "z"

plotxy ticks z] end

There are three required steps for the display of results of numerical

simulations on the main interface:

– adding the Command : system-dynamics-do-plot in the Setup

button (see Figure 5.18);

– adding the Command : in the Go button (see Figure 5.18);

– adding a Plot to the interface, for which the axis names and path

colors must be defined [5.19].

Please note that it is also possible to create Monitors within the

Interface, which can display the value of Stocks as the time passes

(see Figure 5.20).

parameters values

initial conditions

parameters values

initial conditions

Figure 5.18. Adding the Command : system-dynamics-do-plot in the
Setup and Go buttons

Moreover, knowing the precision limitations of the Eulerian method,

it is also possible to use the RK4 method. This method is not available

directly within NetLogo but there is an extension available here

[CHA 13], within which the RK4 method is coded in the NetLogo

language.

The numerical study of a system of ODEs can be done using

numerous tools that cover the study areas that interest us. The first

210 Agent-based Spatial Simulation with NetLogo 1

important result is the observation of temporal series that give the

evolution of each of the variables over time.

parameters values

initial conditions

Figure 5.19. Creating a Plot that will display the paths calculated by the
numerical integration method

parameters values

initial conditions

Figure 5.20. Creating Monitors that will display the values of the x, y and z
Stocks throughout the simulation

It is also possible to study the evolution of the variables relative

to each other. NetLogo is, in fact, able to display these paths. We can

therefore observe the evolution of the number of panicked individuals

compared to the number of scared individuals.

Dynamical Systems with NetLogo 211

If we concern ourselves with the influence of the parameter values or

initial conditions on the dynamic of the system, it is possible to modify

these values in order to observe the result of these modifications on its

behavior.

parameters values

initial conditions

Figure 5.21. Evolution of the number of calm (x), scared (y) and
panic-stricken (z) individuals over time for fixed parameter values and initial

conditions

5.3.3.2. Theoretical study

Once such a model has been constructed, beyond numerical

integration that allows for an rough idea of the system paths, it is useful

to carry out a theoretical study. We will only list a few of the steps that

make up the study of such a system, without entering into the specifics

of mathematical study.

Thus, a first step consists of proving that there exists at least one

solution to the system.

We should remember that a SOLUTION of a system of three

differential equations is a set of three derived variables x(t), y(t) and

z(t), which satisfy the system for a given interval. When these functions

are traced, (t, x(t)), (t, y(t)) and (t, z(t)) then give trajectories of

the solution, and the set of all possible x(t), y(t) and z(t) values for

any time t in the defined interval is called the phase portrait of the

differential equation.

212 Agent-based Spatial Simulation with NetLogo 1

Let us now suppose that we know the system’s initial state, that is

to say that we know the number of calm (x), scared (y) and panicked

(z) individuals at time t = 0. Let us write these initial conditions as

x0, y0, z0. In this situation, the system of differential equations (with

these initial conditions) is known as the Cauchy problem.

Cauchy’s problem has a characteristic that makes it unique. For

any given initial condition, it will give a single unique solution to the

differential system.

The next step consists of proving that these solutions are positive.

Indeed, due to the fact that we are dealing with the evolution of the

number of individuals in each compartment, it is important to make

sure that these quantities are positive. It is also important to show that a

solution is bounded.

We will not explain the details of this theoretical existence study,

uniqueness, positivity or the bounding of solutions here.

Among the elements used for the study of differential equation

systems, we find the search for equilibrium points.

The EQUILIBRIUM POINTS of a model correspond to the values of

x, y and z for which x, y and z remain constant over time. Let xe,

ye and ze represent these equilibrium values. This means that if we

begin with xe calm individuals (in the NPP compartment), ye scared

individuals (in the PSP compartment) and ze panicked individual (in

the PP compartment), the number of individuals in each of the x, y and

z states will remain constant over time and the numerical simulation of

these values will give lines parallel to the x-axis with zero gradient, as

shown in Figure 5.22. These points therefore correspond to the solutions

of
dx

dt
=

dy

dt
=

dz

dt
= 0.

Thus, the system [5.1] has the following equilibrium points:

– a trivial equilibrium point which indicates that without an initial

population and since the system does not have any external input, the

values of x, y and z will remain constant and nil;

Dynamical Systems with NetLogo 213

– an equilibrium point without panicked individuals. In the absence

of panic, there are therefore a number of calm individuals and a number

of scared individuals such that these values remain constant and no

individual becomes panicked. This point has the following coordinates:(
N − β2 + λ2

β1
− β1α1N − (α1 + α2)(β2 + λ2)

β1(α1 + λ2)
,
β2 + λ2

β1

β1α1N − (α1 + α2)(β2 + λ2)

β1(α1 + λ2)

)

– an endemic equilibrium point. For these values of x, y and z, the

number of individuals in each of the compartments remains constant

and the panic phenomenon therefore remains present.

Figure 5.22 presents the evolution of the system when the initial

conditions correspond to the equilibrium point.

initial conditions

parameters values

Figure 5.22. Evolution over time of the number (x) of individuals in the NPP
compartment (in black), the number (y) of individuals in the PSP compartment (in
gray) and the number (z) of individuals in the PP compartment (in light gray), with the
initial conditions corresponding to the equilibrium point where x0 = xe, y0 = ye and
z0 = ze, corresponding to the endemic equilibrium for the following fixed parameter
values: α1 = 0.4, α2 = 0.1, β1 = 0.001, β2 = 0.4 and λ2 = 0.05

Let us suppose that the initial conditions (the values of x, y and z)

are close to the values of xe, ye and ze corresponding to the non-trivial

214 Agent-based Spatial Simulation with NetLogo 1

equilibrium point without panic. Then, if after a certain amount of time,

the number of panicked individuals tends toward 0 and the number of

calm and scared individuals tend toward xe and ye, respectively, then

this equilibrium without panic is locally stable. Finally, if the values of

x, y and z tend toward the equilibrium values, no matter what the initial

conditions are, then the equilibrium point is globally stable.

There are theoretical methods that allow for the stability of

equilibrium points to be determined, but we will not discuss these here.

Figures 5.23, 5.24 and 5.25 show the evolutions of the system while

starting further away from the equilibrium point.

parameters values

initial conditions

Figure 5.23. Evolution over time of the number (x) of individuals in the NPP
compartment (in black), the number (y) of individuals in the PSP compartment (in
gray) and the number (z) of individuals in the PP compartment (in light gray), with
the initial conditions close to the equilibrium point. It can be seen that the paths quickly
tend toward the equilibrium values observed on the graph in Figure 5.22

Moreover, it is possible to calculate a coefficient (R0), named as the

basic reproduction number, which depends on the model’s parameters.

This coefficient, often used in epidemiology, allows for the number of

secondary infections, that is to say the number of individuals infected

by a single infected individual. This R0 gives the conditions for which

the panic dies out or spreads. Essentially, this amounts to finding the

parameter conditions that result in a globally stable equilibrium point

without panic:

Dynamical Systems with NetLogo 215

parameters values

initial conditions

Figure 5.24. Evolution over time of the number (x) of individuals in the NPP
compartment (in black), the number (y) of individuals in the PSP compartment (in
gray) and the number (z) of individuals in the PP compartment (in light gray), with
the initial conditions further away from the equilibrium point. It can be seen that the
paths quickly tend toward the equilibrium values observed on the graph in Figure 5.22

parameters values

initial conditions

Figure 5.25. Evolution over time of the number (x) of individuals in the NPP
compartment (in black), the number (y) of individuals in the PSP compartment (in
gray) and the number (z) of individuals in the PP compartment (in light gray), with
the initial conditions very far away from the equilibrium point. It can be seen that the
paths quickly tend toward the equilibrium values observed on the graph in Figure 5.22

– if R0 < 1, then any panicked individual invokes panic in an

average of less than one other individual. This means that panic will

tend to die out;

216 Agent-based Spatial Simulation with NetLogo 1

– if R0 > 1, then any panicked individual invokes panic in an

average of more than one other individual. This means that panic will

tend to spread.

5.4. Agent-based panic propagation model

It is possible to construct an agent-based model that corresponds to

the aggregate model proposed previously.

An agent-based model takes all individual agents into account, as

well as any potential heterogeneity criteria. This type of model is well

covered within this publication and we suggest that the other chapters

should be studied for further information.

Nonetheless, we wish to highlight the fact that the model presented

in equational form can also be represented as an agent-based model, as

will be shown with an extremely simple model based on agents with

changing states.

With the panic problem, we can, for example, consider mobility,

personality or social criteria. The richness of the model then depends on

what we wish to study, but the law of parsimony must be remembered.

In our case, we will simply observe the propagation phenomenon and

its global behaviors such as persistence and extinction.

In order to come as close to the aggregate model that was presented

in the previous sections as possible, we will consider the agents who:

– do not move;

– have a global oversight of the environment;

– can be panicked (PP), are susceptible to panic (PSP) or are calm

(NPP). This sets the state of a given individual.

This individual can then change state depending on the automatic

transition controller labeled with probabilities.

a1 therefore represents the probability that a single calm agent

(NPP) becomes susceptible to panic (PSP), and as a result, we can

Dynamical Systems with NetLogo 217

take the α1 rate of the aggregate model and apply it to an agent. In the

same fashion, b2, a2 and l2 are probabilities that correspond to the β2,

α2 and λ2 rate, respectively.

NPP PSP PP

a1

1− a1

b1 × VPSP

1− (b1 × VPSP)− a2

b2

1− b2 − l2

a2

l2

Figure 5.26. Automatic controller of an agent’s state labeled with probabilities

Passing from the PSP to the PP state occurs by contamination, and

it is therefore dependent on the surroundings of each PSP agent; the

higher the number of PP agents surrounding a PSP agent, the higher

the likelihood for it to pass into a PP state. This contamination can be

modeled, either from the spatial location of agents by searching for the

number of PP agents within a given distance, or from an average, given

by VPSP in Figure 5.26 in both cases. Insofar as we do not take mobility

into account, the spatial spread of agents is not essential and we will

therefore use the second option.

Let us consider a population of N agents composed of x NPP
agents, y PSP agents and z PP agents. For a given distance, there

are agents with 0, 1, 2, 3 . . . neighbors. Let us set Nk as the number of

agents with k neighbors, which gives us the following P (k) distribution:

P (k) =
Nk

N

which gives an average contact value for each individual:

< k >=
∑
k

k × P (k)

218 Agent-based Spatial Simulation with NetLogo 1

If we now attempt to calculate VPSP, the average number of PP
neighbors to a panicked PSP agent:

VPSP =< k > × z

N
with z agents from PP

If we consider β1, the transition rate used in our aggregate model,

the number of PSP agents contaminated by PP agents for each step

of time is:

β1
N

× y × z = b1
< k >

N
× y × z

Therefore, the probability b1 that a PSP agent is contaminated by a

PP agent is:

b1 =
β1

< k >

We suggest that the reader should develop this agent-based model of

the problem that we are studying in this chapter, in order to compare the

results with those obtained with the aggregate model.

5.5. Dynamic system version of our running example model

Let us remind ourselves of the running example model presented

throughout the past chapters. This model deals with the geographical

spread of an epidemic transmitted from mosquitoes to human. We will

now set out the modeling hypotheses, as this is currently useful.

We are dealing with four distinct populations:

– healthy mosquitoes (hM);

– infected mosquitoes (iM);

– healthy humans (hH);

– infected humans (iH).

Population evolution and the passing from one population to another

are governed by the following:

Dynamical Systems with NetLogo 219

– human demographics are not taken into account;

– mosquito births are taken into account (birth-rate) but their

mortality is not, and all born mosquitoes are healthy, no matter the state

of the parent;

– healthy mosquitoes become infected upon biting an infected

human, with the following rate: infection-rate-HtoM;

– infection is passed to the human population only from the bites of

infected mosquitoes: infection-rate-MtoH.

Following these rules, it is possible to construct the diagram in

Figure 5.27.

Figure 5.27. NetLogo representation of the running example

It can also be described as the following dynamic system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dMs

dt
= BirthRate(Ms+Mi)− InfectionRateHtoM.Hi.Ms

dMi

dt
= InfectionRateHtoM.Hi.Ms

dHs

dt
= −InfectionRateMtoH.Mi.Hs

dHi

dt
= InfectionRateMtoH.Mi.Hs

220 Agent-based Spatial Simulation with NetLogo 1

Thus, we can observe the evolution of all four populations

(healthy/infected, mosquitos/humans) over time (see Figure 5.28).

Figure 5.28. Evolution of the populations of healthy mosquitoes, infected mosquitoes,
healthy humans and infected humans in the running example. The parameter values
are fixed as indicated in the inputs, with a mosquito birth rate of 0.02, a mosquito
infection rate (by humans) of 0.002 and a human infection rate (by mosquitoes) of
0.001, and with initial populations of 200 healthy mosquitoes, 30 infected mosquitoes,
100 healthy humans and 10 infected humans. A large increase in the number of
infected mosquitoes and a small increase in the number of infected humans can then
be observed (with an obvious decline of healthy individuals of both species). These
results are due to the fact that there is no mortality or cure. Note that the human
population remains constant, whereas the mosquito population increases incessantly,
due to mosquito births being taken into account. For a color version of the figure, see
www.iste.co.uk/banos/netlogo.zip

Figure 5.29. Evolution of the populations of healthy mosquitoes, infected mosquitoes,
healthy humans and infected humans in the running example. Note that the populations
show similar behavior even when the initial conditions are modified. For a color version
of the figure, see www.iste.co.uk/banos/netlogo.zip

For this particular example, the importance of spatial spread should

be noted, notably for the process that leads humans and mosquitoes to

Dynamical Systems with NetLogo 221

meet. In the “dynamic system” version of this problem, we implicitly

assume that all of the mosquitoes are interacting in between each other

and with humans. Thus, the actual “meeting” is not taken into account,

whereas this plays an important role in the case of the agent-based

model.

6

How to Involve Stakeholders in the
Modeling Process

6.1. Introduction

The analysis of complex systems (CS) involves the use of different

points of view so as to be able to understand the different aspects of the

system’s entities, and to characterize their interactions. Modeling and

simulating CS are activities where collaboration between researchers

is the rule rather than the exception. Indeed, as a result of the

complexity of studied systems, it is often essential to bring together

different perspectives from different fields of study. Thus, the popular

idea of a solitary researcher that is able to collect data, put together

conceptual models and use these with computing tools, is gradually

being replaced with that of an interdisciplinary group usually composed

of thematicians, computer scientists and mathematicians. For such a

group, the model (or the simulation) is at once: (1) the reason for their

coming together, (2) their collective objective and (3) the basis for their

collective work.

Similarly, more and more uses for multiagent simulation emerge

from laboratories and show that this approach has practical value: in

Chapter written by Nicolas BECU, Frédéric AMBLARD, Nicolas BRAX,

Benoît GAUDOU and Nicolas MARILLEAU.

224 Agent-based Spatial Simulation with NetLogo 1

the field of decision-making (multiagent simulation allows for scenarios

to be tested, and for their impacts and any implementation biases to

be qualitatively identified), in the field of marketing (the tool allows

for new product selling strategies to be put together), or to aid with

the design of public policies (e.g. with respect to land use). Two main

trends present relatively different epistemological positions relative to

the use of such models by society. On the one hand, the first approach

uses multiagent simulation to aid with decision-making, where the

modeling process aims to create a product (the multiagent model),

which would allow for a decision to be made based on elements

that could not be taken into account with more traditional modeling

methods. It is then seen as software which allows for scenarios to be

tested, whether to support decisions, training, or to give an indication

of reasonable expectations. On the other hand, the second approach

is that of participatory simulations, which distinguishes itself from the

first approach due to the fact that it integrates elements affected by the

application’s field into the modeling process and the framework of the

tool’s use [VOI 10].

A specific use of this process involves land use management,

particularly to do with the collective management of renewable

resources. The stakeholders tend to be all or some of the individuals

affected by the management plan and may be involved in its

proceedings, whether during the construction of the simulation or,

subsequently, as users of it. Here, the tool serves as a substrate to

help with the search for collective solutions (this could allow for

management scenarios to be tested collectively), or as a tool allowing

for individual management strategies and the ways in which they

affect each other to be identified (usually, this requires the actor to be

considered as a user of the simulation, a “player” if you will, which can

subsequently be asked about any strategies adopted during the course of

the “game”.

Therefore, whether for the interdisciplinary group or for

stakeholders involved in a collective project, there is an evident

necessity to be able to bring several stakeholders together (modelers,

thematicians and terrain stakeholders) into the modeling and simulation

How to Involve Stakeholders in the Modeling Process 225

(M&S) processes. This entails ethical and deontological challenges

(such as how to integrate the knowledge of a third party into a group

work), epistemological challenges (such as researchers from different

disciplines that have different methods for the creating and processing

of knowledge), organizational challenges (such as how to practically

organize collective M&S work) and technical challenges (such as

working out which tools will facilitate group work on a model).

Only the last two organization problems, the methodological and

technical aspects, will be discussed in this chapter. Readers interested

in deontological aspects are advised to refer to works on companion

modeling [COM 05]. As for issues related to interdisciplinary work,

they will not be covered at all as they go beyond the limits of our

subjects.

This chapter will focus on two principal methods for collaboration

between several individuals working on a simulation model:

– The first method requires the interaction of users/stakeholders with

a simulation. In this section, we will discuss the use of participatory

simulation from the viewpoint of role-playing games, as well as

NetLogo’s HubNet tool that allows for several computers to connect

to a single simulation and for their users to interact with it as a result

[BLI 05]. This method aims to improve user cooperation.

– The second method requires the interaction of several modelers

so that they may carry out experimentation upon a simulation model.

We will present the PAMS technology which allows for NetLogo to be

emulated within an Internet browser, which allows for several physically

distant users to synchronously work on the development of a model

and analyze its simulations. This method aims to improve collaborative

work.

6.2. Diversity of multiagent approaches in modeling

6.2.1. Participatory simulation

Generally speaking, participatory approaches require dialogue

between stakeholders founded upon mutual respect and recognition

of the knowledge each individual entertains. So as to facilitate this

226 Agent-based Spatial Simulation with NetLogo 1

dialogue, or at least to guide it, various types of consultation tools can

be used. These tools serve to collectively develop supportive knowledge

products, such as spatial representations (land mapping), decision trees

(problem trees) and cognitive schemata (cognitive mapping). These

knowledge support products express the “internal” representations of

individuals and serve as intermediaries between them [VIN 99]. The

dialogue between stakeholders can then be organized around this

intermediate object and will be facilitated as a result of the fact that

it structures, organizes and sometimes even creates knowledge. Thus,

these are all knowledge sharing devices, which display representations

of a given issue.

When the knowledge sharing tool used is a simulation model,

we refer to it as participatory simulation. Very often, resorting to a

model comes as a result of a necessity to represent temporal or spatial

dynamics. Then the issue at hand involves multiple interactions between

stakeholders or between stakeholders and resources, and we should look

toward using multiagent modeling. Moreover, as with any participatory

approach, different levels of involvement can be distinguished between

stakeholders, from their consultation by a public organization to

their role in the setup of projects and decision-making. As this is

participatory modeling, the involvement of stakeholders can change at

various different levels, such as: the prior identification of requirements,

the construction of the conceptual model, the development of the

operational model (IT implementation or other), the defining of

indicators and different scenarios to be tested and the analysis of the

simulation results.

Among the various participatory modeling approaches, companion

modeling, or ComMod, uses a well-defined scientific framework that

defines how stakeholders are involved in the M&S process and limits

certain problems that are sometimes found in participatory approaches

such as manipulation, not taking into account the points of view of some

stakeholders or the deviation from the current issues of the intervention

context. Apart from being a methodological framework, companion

modeling has an ethical stance that defines the rules and responsibilities

of the project’s protagonists. This position has three requirements: a

How to Involve Stakeholders in the Modeling Process 227

continuous and iterative confrontation between theories and grounds;

accepting the legitimacy of different points of view, and taking them all

into account even if they are contradictory; and reevaluating the project

whenever a new element is introduced [COM 05].

The objective of a companion modeling operation is either the

creation of knowledge (for researchers or local stakeholders) through

a better understanding of a system of interactions, or to support

negotiations during a process which explicitly requires a transformation

of either resource management practices or socioeconomic interactions.

In both cases, the method consists of using M&S tools to put together

a shared (but not necessarily unifying) representation of the studied

system, which also details its dynamics and provides a scenario

analysis support tool. Two main simulation tools are used in ComMod

approaches: computer simulation models and roleplay simulation.

These two arrangements are similar: roleplay simulation – as its name

implies – is a simulation where the stakeholders play a role, while

computer simulations use virtual agents [BEC 10]. The aim is to share

the various points of view about the studied situation, and to make them

clearer. Specifically, the use of models is reflexive: the stakeholders

learn collectively by creating, modifying or observing models. These

tools allow for the stakeholders to suggest hypotheses to propose

scenarios and to observe their consequences together. The use of such

tools by stakeholders is done in an iterative manner and continues across

participatory workshops spread over time (called Strong Collective

Time) and interposed with period of laboratory work allowing for the

previous session to be analyzed and for the next session to be prepared

[BEC 08]. Thus, the experimentation presented in this chapter only

represents a single brainstorming of a companion modeling approach.

For more information on companion modeling, the readers may refer to

the comprehensive synthesis [ETI 10].

6.2.2. Collaboration within modeling and simulation (M&S)

The project “tradition” that has become embedded within the

scene of international research over the past several decades has

increased the need for laboratories and researchers of different scientific

228 Agent-based Spatial Simulation with NetLogo 1

fields and from different regions of the world to collaborate around

complex issues. Even though this situation presents a much-needed

opportunity for researchers who do not benefit from a sufficiently

developed local scientific environment (in particular, researchers in

developing countries), it remains nonetheless true that geographical

separation, cultural differences and potential language issues often

hinder international and interdisciplinary exchanges, which are less

efficient than those that result from local interactions.

Collaboration plays an important role throughout the entirety of

the scientific processes of M&S of a CS. It is therefore necessary

to have methods and tools for both modeling and experimentation at

our disposal. These two aspects will be covered in the two following

sections.

6.2.2.1. Collaboration within simulation

The development of information technology that has taken place

over the past 20 years allows for new collaboration methods that

could partially solve these problems to be considered. They allow,

among other things: (1) for researchers in laboratories in different

locations, perhaps even on different continents, to be united within a

single “platform”; (2) for resources to be shared no matter what their

location; and (3) for the interactions between stakeholders as well as

for the successive versions of their shared work to be stored. Thus,

we meet the domain of “e-science”, which is currently in increasingly

rapid expansion. Within this domain, there are a plethora of studies,

projects and platforms such as EGEE or GLOBUS [TAY 07, WAN 09].

This research deals with the sharing and management of distributed

computing resources, most particularly relative to the provision of

clusters and high-performance computing grids via the use of computer

networks. Other studies do not define material resources, but instead

refer to the simulator as an element subject to sharing [JAG 10].

KEPLER [BAR 10], VLE [QUE 09] and NetLogo’s HubNet contribute

to the domain. These tools ensure, to a certain extent, the sharing

of models as they allow for simulators and their associations to be

capitalized upon by creating new partnerships. However, these are

not truly collaborative environments as they do not include any tools

How to Involve Stakeholders in the Modeling Process 229

making possible direct interaction between users. Web-based simulation

groupwares (WBSGs), such as PAMS [NGU 09] and BSCW [KOR 08],

add a truly collaborative dimension by providing tools, thereby

facilitating joint manipulation of simulators. Yet once again, these

are focused exclusively on simulative aspects and omit the modeling

process proper, which is however crucial for the study of a complex

structure of natural system.

6.2.2.2. Collaboration within modeling

Besides the domain of collaborative systems, current platforms

dedicated to the study of CS are better simulation tools than complete

M&S environments, so much that they contain few or no modeling

tools. As a result of this, developer communities working around

popular platforms such as Repast [NOR 13], Cormas [BOM 14]

and GAMA [DRO 13] have recently introduced graphical modeling

tools such as Repast-Eclipse IDE, executable UML and GAMAGraM,

respectively. In the fields of multiagent systems, many new languages

and methodologies have also been proposed [CHI 13].

It is expected to develop tools dedicated to CS M&S from software

engineering-oriented groupwares. However specific features of CS

should be highlighted, as they result in the design of dedicated tools

differing from these of “traditional” collaborative software engineering

in several major aspects [GAU 11]:

– Modeling process variability: software engineering typically

requires the use of a previously established and well-defined

methodology. In the research world, even if a specific methodology

exists, it is likely to considerably vary over the course of any project,

most particularly due to the research subject requiring the emergence

of facts and new developments to be integrated within the project if

necessary. In this situation, methodological aspects are therefore often

products of research work, along with all other initially defined goals.

– Modeled system complexity: in contrast to the world of software

engineering, the inner workings of CS are often poorly understood by

experts. Moreover, these systems have dynamics that are so complex

that it can seem impossible or even idealistic to wish to display it as a

comprehensible (analytical) model and for a simulation of it to give the

230 Agent-based Spatial Simulation with NetLogo 1

predicted results. Depending on the modeling aims, different scales of

time and space must be considered, which require the incorporation of

multiple viewpoints.

– Wealth of perspectives and skills: the numerous interactions

between researchers have the advantage of offering a significant

richness of skills and opinions of the modeled system. Conversely,

this wealth can be a source of misunderstanding as the concepts,

terminology and aims can be different if not even conflicting. A CS

modeling environment must be able to take advantage of this wealth in

a controlled manner.

– Model verification/validation: although it is possible for certain

properties of a model to be locally verified, complete model validation

is most often impossible as a result of the complexity of the studied

systems. Only simulative verification and the explanation of the

observed behaviors allow for the validity of a model and subsequent

simulators to be estimated.

To summarize, in the case of computational and/or mathematical

modeling of a CS, researchers are faced with multiple difficulties:

different disciplinary approaches, the distributed nature of projects,

the complexity of the systems studied and the emergent aspect of the

research method. It is to allow researchers to overcome these difficulties

that tools for long-distance collaboration must be imagined and created.

In addition to their ability to remotely manage projects, they must also

allow for the specifics of CS modeling to be taken into account.

6.3. Simulating stakeholder games and learning about others:
NetLogo’s HubNet system

6.3.1. The HubNet technology

The technology of HubNet allows for NetLogo to be used

in the context of participatory simulation [BLI 05]. Indeed, it

proposes protocols and communication methods between users and the

simulation conducted within the NetLogo environment. As such, users

can directly act upon the simulation environment via terminals linked to

the system.

How to Involve Stakeholders in the Modeling Process 231

Setting up such an activity requires the activation of a server in the

NetLogo simulation that is to be used, allowing for other terminals,

belonging to clients, to connect to the server via HubNet and to act

upon the environment which is then presented to them.

Figure 6.1. Clients and Servers

With the server, the operator will have the possibility to create

a multiuser session, authorize the connection of clients and specify

whether the 2D view and plots are displayed on their interfaces, all

with the help of the HubNet Control Center tool.

The clients will have to launch the NetLogo’s HubNet program,

which is a software that runs separately from NetLogo’s main program.

Within this software, they must specify their username, which will be

visible to the server, and then give the server’s IP address or name,

before connecting. Once the connection has been established, the client

interface is displayed, and the user can then interact with the simulation

currently being run on the server.

232 Agent-based Spatial Simulation with NetLogo 1

The content of this client interface is predefined by the modeler

via the HubNet Client Editor tool. This tool is displayed as a likeness

of NetLogo’s main interface, allowing for buttons, fields, graphs,

text and a workspace viewfinder to be added and defined. Buttons,

pens and monitors are specified with the help of tags, not with the

command or reporter as within NetLogo’s primary interface (i.e. direct

creation, movement, addition and removal of elements). These tags are

information packages sent from the clients to the server in the form of

messages. More specifically, when a user carries out an action within the

client interface, a message is sent to the server, containing two elements:

the source (name of the client sending the message) and tag (name

of the effectuated action). Plots and the remote view are effectively

mirroring elements that are already present within the main interface,

and thus, a graphing pen can only be added to the client interface if it has

previously been identified on the main interface. All of the primitives

specific to HubNet are available online, on NetLogo’s site.

Once the client interface has been defined, it is then possible to

define how the client–server setup is used, as will be covered in the

following section as part of a discussion surrounding participatory

roleplay simulation.

6.3.2. Participatory roleplay simulation

6.3.2.1. The concept of roles and forms of learning

Participatory roleplay simulation is a form of hybrid simulation

combining multiagent simulation and a role-playing game [LE 14] . In

this system, some of the system’s agents will be controlled by human

players. These “controlled” virtual agents are therefore the players’

avatars. Players may have one or more avatars; there are no specific

rules on this subject. In certain participatory role-playing simulations,

a player could thus control the avatar corresponding to the agricultural

agent, whereas another player could control a population of bird agents

that evolve upon the agricultural land represented by the simulation.

How to Involve Stakeholders in the Modeling Process 233

The concept of roles requires a precise interaction framework

between the player and the simulation, as well as between the players

themselves. A role is defined by a personal aim, a set possible actions
and of available information [BAR 03]. Depending on these elements,

the player will have to devise a strategy in order to reach their objective

in order to collect information and analyze it, then take decisions and

choose actions to perform. The actions that they make their avatar

perform will affect the simulation (virtual entities will be modified).

The simulation’s new state will then influence the following choices

made by players. In parallel with players modifying the simulation

state, the simulation continues to run step by step, allowing for the

evolution of all virtual entities following the set of rules defined by

the modeler. Therefore, within participatory role-playing simulations,

two main role-playing game concepts can be found, which are turns of
play (equivalent to the simulation’s time steps) and rules (equivalent to

algorithms defined by the modeler to simulate the virtual entities’ own

dynamics) [BAR 03].

Within this methodological framework, the creator of such a

simulation can then define different interaction modes between the

players and the simulation. Interactions between players may be limited

to the impact that each has upon virtual entities, including other players’

avatars; for this the different players do not have to be in the presence

of each other, at the same location. However, a setup where player can

directly interact between themselves, before or during the decisions they

take upon the simulation. A second level of interaction is then added to

the interactions between virtual entities.

It is this type of setup, where players are gathered at the same

location, which is usually chosen for companion modeling . The reason

for this is that this type of modeling adapts participatory simulation

in order to create social learning, that is to say, learning about others

and how we interact with them [ASS 13]. To do this, the overseer of a

participatory simulation session will make each participant experience

a moment of interaction with the others (by making them play with

participatory simulation), and will then ask each of them to explain

to the other participants about why they made particular decisions

234 Agent-based Spatial Simulation with NetLogo 1

and what was learnt from the experience. During this debriefing, the

overseer plays on the experiential learning of the participants, that is

to say what they “learnt by doing” [PRU 02]. This is a crucial moment

of the learning process, as each one must analyze their own behavior

and come up with new concepts that will change the way in which they

perceive the world and their place among others [ETI 11]. Due to the

fact that companion modeling seeks to create this form of learning,

participatory simulation sessions are almost systematically done face-

to-face and they are followed by a debriefing that can take as much

time, if not more, as the simulation itself.

6.3.2.2. Setting up and running a session

Once the model and the HubNet client interfaces have been created,

the setup requires as many computers as there are roles, with an

additional computer running the server, and for all of these to be

connected together in a network. The NetLogo model is then run on

the server computer, the HubNet activity is started on the server (with

the hubnet-reset command) and the server is then ready for clients to

connect to it.

The individual who is in charge of setting the session up and

beginning the server is often the person hosting the session (sometimes

also known as game master (GM), as in role-playing games). In the

room dedicated to the session, the GM sits at the server terminal

whereas the other players use the client terminals. The GM is

responsible for:

– the authorization of player connection and their subsequent

monitoring throughout the session. In fact, an interface that shows the

list of current participants, with options to invite new players or to kick

current ones, is displayed to the GM. This interface also allows for

communication with one or several of the participants, which means

that individual or collective instructions can be issued at any time;

– managing the correct progress of the simulation. It is the GM who

launches the simulation once all expected participants are connected,

and he/she will then follow its operation. They can also act directly

upon the environment by modifying parameters or emphasizing certain

elements, and can send information to the players, etc.;

How to Involve Stakeholders in the Modeling Process 235

– conducting the debriefing session that follows the game.

Given the numerous duties of the GM, it can sometimes be useful

to have a team of individuals conduct an animation session, which

allows for the tasks to be given to different individuals. For example,

one person could be in charge of setting up the session and other

technical jobs, while another person leads the game and then conducts

the debriefing session. Another example is that one person sets up the

game and manages it until the end of the round, while the other person

merely observes the game and only leads the debriefing session that

follows. The second case is interesting as it allows for the debriefing

leader to have a better overview of all the player interactions that occur

during the game. This contrasts with the first example, as an overview

is not always easy when one is managing the session.

As for the players, their roles are identical to that of the other

agents: the participants’ interface is constructed such that the actions

and sensory information that are usually available to the simulation

agents are also presented to them. As such, the simulation’s stakeholders

have, with respect to the environment, the same capacities as the agents

as far as knowledge and action capabilities are concerned. They are also

represented within the environment by a virtual avatar that is displayed,

by default, as that of any other of the system’s agents. This all shows

that the interface is only made available to the players in order to allow

them to visualize all information they have access to and to act upon the

environment, to the extent that they are permitted and based on their own

reasoning. It should however be noted that each stakeholder can have a

role that differs from another, similarly to the agents with their own

specific operative rules. In this case, the interface is the same for each

participant except for certain elements that only certain players will be

given access to during setup. Again, the stakeholders of a participatory

simulation are at an equal level to the agents, and it is at setup that

specific players will be given access to certain information or operative

capabilities or not. In certain setups, players can have access to the main

interface that is on the server, in addition to their client interface. This

can be useful when the GM wants the players access to any information

that cannot be displayed upon their client interface, and it is wished that

this information should be made public, that is to say that all players are

236 Agent-based Spatial Simulation with NetLogo 1

able to access it. In this situation, during game setup, the GM will take

care to connect the server computer to a projector that can then display

the model’s main interface on a wall.

A session contains three separate parts. The first part is for setup

of the game environment, for clients to connect to the server, and will

also be used to cover the rules of the game. This is also when the

individual roles will be distributed to the players and when these will

be able to familiarize themselves with the computer interface. It is also

often useful to play a “test round” in order to enable the player to try

out different actions available on their interface and observe the effects

these have on the simulation. Once this test round is over, the simulation

is reinitialized and the game can start. The game round corresponds to

the second part of the session. It can begin by a moment whereupon each

player presents themselves orally to the rest of the group, based on their

character role. This allows for each participant to better identify with

their role and also serves the purpose of being an icebreaker, as players

tend to caricature their roles during this public presentation, which never

fails to incite laughter and relaxes the atmosphere. Then the GM begins

the first turn and lets the players know how long they have to make

decisions, discuss with others and carry out their actions. Once the turn

is over, the GM moves the simulation forward by a step of time. At the

beginning of the next turn, the clients will discover the new state of the

system and they have to think of new actions to complete. This sequence

repeats until the final predefined turn is reached. The number of total

turns is usually announced by the GM at the beginning of the session.

Once the last turn is over, the third part of the session, the debriefing,

begins. This usually begins with a look at the results of the game, which

the GM asks each of the players to comment upon. The results can

take the form of graphs, simulated scores or a map of the 2D view of

the main interface. Then, each of the participants is invited to express

themselves about the strategy they chose to adopt during the game, the

constraints they encountered (whether linked to their own role or to do

with interactions with others) and how their strategy had to be modified

as the simulation progressed. The other participants can respond to the

given explanations and the resulting discussion is likely to produce new

learning about how the others understand the impacts of their actions.

How to Involve Stakeholders in the Modeling Process 237

The debriefing often finishes by allowing each participant to propose

solutions for the various encountered issues, whether of coordination

between players, of prioritizing different aims or of inequalities between

the different roles/players and their understanding of the system and its

operation.

We will now present a specific example of a participatory roleplay

simulation setup, with the help of the SimPAGE experiment which

took place in the context of a partnership between EDF’s R&D

department (EDF is the French national electricity company) and the

IRIT laboratory of Toulouse, surrounding an issue of water management

in the Adour-Garonne watershed in the south-west of France.

6.3.3. SimPAGE – learning from participatory simulation

The issue covered by the SimPAGE process is the management
of minimum summer water levels (from 1 July to 31 October) in the

Adour-Garonne catchment basin in Midi-Pyrénées, France. In this large

hydrographic basin of the south-east, water scarcity has been increasing

for several decades as a result of two activities: first, between 1985

and 1995, the area of irrigated surfaces greatly increased despite an

improvement of irrigation equipment: second, the available water tends

to become rarer in summers with recorded global warming. Two terms

were defined for use in this context: the lowest water level target flow

rate (LTF) and crisis flow rate (CRF). The LTF corresponds to a level

of satisfaction of all needs guaranteeing the correct functioning of the

aquatic environment. The CRF is a value below which the drinking

water supply and the survival of species within the environment are

threatened. The aim in terms of quantitative management is achieving

the LTF for at least 8 years out of 10. Thus, to achieve this goal,

a management plan that groups the different stakeholders as well as

restrictive measures exists. It is the departmental prefects who can issue

restriction orders or temporarily suspend usage of the resource in the

event of water shortages.

So as to make EDF’s R&D team collectively think about this issue

and the interdependencies between the various stakeholders involved in

238 Agent-based Spatial Simulation with NetLogo 1

maintaining this minimum water level flow rate, a project to create and

use a participatory roleplay simulation was put in place. EDF R&D’s

aims were:

– to develop a platform integrating the different resource, usage

and management aspects and allowing for potential scenarios to be

simulated;

– to analyze the behavioral dynamics of the stakeholders by using

participatory simulation as a laboratory for social experimentation;

– to evaluate the tool’s potential as a support for training water

stakeholders (both internally, within EDF, as well as externally) so as to

improve understanding of viewpoints of different users of the resource

and of their interaction difficulties.

We will now describe this process, beginning with the multiagent

model that has been developed, followed by the participatory simulation

sessions that were organized, and finishing by describing what has been

learnt from these sessions.

6.3.3.1. Multiagent simulator

6.3.3.1.1. The environment model

The model of the chosen environment therefore involves the Portet,

Roquefort, Foix and Montréjeau watersheds. So as to define this

environment based on a geographical information system (GIS), the

followed steps are:

– tracing the boundaries of all the watersheds involved;

– importing the boundaries of each of the township areas for each of

the watersheds;

– working out their centroids and linking it with the irrigated area

and drinking water usage of the corresponding township;

– positioning existing dams and reservoirs;

– positioning the drinking water extraction points;

– positioning the irrigation water extraction points;

– importing river courses.

The hydrological model of the rivers was then created in the form of

a hydrograph network. Each node of the network corresponds either to

How to Involve Stakeholders in the Modeling Process 239

the confluence points of rivers or to the extraction point (of drinking

or irrigation water). Once each of these points has been positioned,

the hydrological network was reconstructed step by step by linking

the nodes. This approach allows for the network complexity to be

limited to only the data available and which is of use to the model. The

flow mechanics have been modeled in the form of a flow circulating

through this network, with a unique fictitious source upstream and

going toward a common outlet. Furthermore, a function allowing for

evapotranspiration in the network was added. As for the weather pattern,

a linear model was used. It leads to the basin’s diffuse inputs from

rainfall to aggregate into a single source which enters upstream near

the Pyrenees at each turn of the hydrological cycle. The model was

calibrated using data that correspond to the average throughput of the

Garonne over several years, with a min-max deviation, as issued by the

Adour-Garonne Water Agency.

Figure 6.2. Environment display of the model: the drinking water extraction points are
represented by green houses, the irrigation water extraction points by yellow wheat,
and dams and reservoirs by orange symbols. The nodes of the hydrological network
are represented by blue circles, and the network itself is displayed in the form of links
between these. For a color version of the figure, see www.iste.co.uk/banos/netlogo.zip

6.3.3.1.2. The agent model

There are five categories of agents used in this model: farmers,

hydroelectric dam managers, industries, drinking water managers and

240 Agent-based Spatial Simulation with NetLogo 1

a prefect that represents the catchment’s administrative authorities. The

role and actions of each of these are detailed in the following table.

Prefect The authority which can set a water consumption policy so as to

preserve everyone’s right as well as the environment.

Farmers They must irrigate their fields. They control an area that requires

(farmer) agents water, which can only be sourced from nearby rivers.

Hydroelectric dam They manage the flow of water to produce electricity.

managers They own dams with a certain reservoir capacity and

valves to regulate the flow of water downstream.

Drinking water They draw water from the river network for public needs.

managers They are aware of the needs of the population within their zone.

Industries They use water for manufacturing and their production levels

depend on the amount of water they draw from rivers.

Table 6.1. Description of the agent’s objectives and available actions

We will not describe all of the agent models in full detail in this

chapter; instead, we will limit ourselves to that of the agricultural agent.

Readers who are interested to know more details about this model are

advised to refer to [BRA 10].

The agricultural agents represent uniform management entities at

the scale of a township. Each one makes decisions about the water

they source from the closest point of the river to the township, as well

as irrigation decisions (relative to volume and dates). Their behavior

is adaptive, which means that it evolves based on the state of the

surrounding environment.

The above description of the agricultural agent’s implementation

shows that the model incorporates rules and algorithms that allow for the

agent to autonomously evolve within the simulation. This is the same for

all the other agents in the simulation. When the model has to be used in

the context of a participatory simulation, the host will be able to decide

which agents are to act autonomously (based on implemented rules) and

which are to be controlled by players.

How to Involve Stakeholders in the Modeling Process 241

Resource availability (incertitude)

Decreasing Stable or increasing

Production

level (stake

affected by

decision)

Decreasing The agent searches for an

alternative solution and

adopts a behavior that is

working for another nearby

agent. If none are available,

the agent experiments with

new behaviors (random
behavior).

Rational behavior, the

agent follows technical

recommendations (in

this case, based on

the graph defining

water requirements for

sweetcorn).

Stable or

increasing

The agent observes the

behavior of nearby agents

and adopts the majority
behavior.

The agent’s behavior is

not put into question,

all therefore everything

operates as usual.

Table 6.2. Behavior of agricultural agents depending on the incertitude
created by the current availability of the resource and the difference between

expected and actual production levels

6.3.3.2. The SimPAGE participatory simulation

6.3.3.2.1. Roles and player immersion

The participants can take on the role of farmers, hydroelectric dam

managers, drinking water managers, industrial tycoons or a prefect.

Since there are actually a large number of farmers in the Adour-Garonne

basin, the simulation was developed such that when a player controls

one of the farmer agent-avatars all the other virtual farmer agents will

adopt a behavior similar to that of the player (see Table 6.2).

The immersion of the participants in the roleplay setting is an

important aspect to take into account during a participatory simulation

because it will influence the quality of social interactions that occur

between participants. The way that this immersion is achieved highly

depends on the context and issue studied. For the study of the Adour-

Garonne case, as for most of the cases linked to communal renewable

resources, two types of objectives must be considered: individual and

collective, which can occasionally be contradictory [OST 94]. These

two aspects had to be explicitly defined in the introduction to the

roleplay simulation. In order to make the participants aware of the issues

surrounding water management in the whole watershed (collective

242 Agent-based Spatial Simulation with NetLogo 1

objective), the game session begins with a slideshow displaying photos

of different water uses and resource conditions (for example, rivers

at low water levels). Furthermore, the main interface of the model

is projected upon the wall for reference during the game. It displays

information that is common to all player (river water level, rainfall,

etc.). Finally, a public announcement is made throughout the game

about changing hydrological conditions in the basin. These different

elements all remind the players about the collective implications of

their individual decisions. As for player immersion in their individual

roles, the layout of the room and the role cards are important. Thus,

the participants are seated at separate desks (each one with a computer

allowing for interaction with the simulation) and receive an individual

role card. The cards give information about the player’s aims (for

example, to store water in the case of the hydroelectric dam manager),

the means to reach their goals (for example, water sources for the farmer

role, setting up a meeting for the prefect role), as well as figures and

tables summarizing the technical aspects of a role (for example, the

graph showing how the hydroelectric reservoirs fill up). The role card

aims to immerse the player in a specific role and provides guidance in

the form of a set of rules and options that enable decision-making.

The interaction of players with the computer model requires custom

computer interfaces that provide additional information (local resource

conditions) and allow players to make their decisions at every turn.

6.3.3.2.2. Steps involved in a game turn

Once the environment is set up, the role cards have been distributed

and the players are ready, the simulation begins. Each iteration of the

simulation goes through the exact same stages:

– the farmer, industry and drinking water management agents

indicate the quantity of water they wish to take for the next 10 days;

– the simulation runs one turn of the game (1 game turn = 10 days)

by taking these indications into account and simulated 10 real days: crop

growth, production levels, satisfaction of drinking water consumers, etc;

– during this time interval, the prefect monitors the flow in different

rivers and raises an alert if necessary;

How to Involve Stakeholders in the Modeling Process 243

Figure 6.3. Example of a role card.

Figure 6.4. Client interface for each role. For a color version
of the figure, see www.iste.co.uk/banos/netlogo.zip

244 Agent-based Spatial Simulation with NetLogo 1

– at any instant, depending upon the scenarios that we wish to test

by simulation, an agent or a hydroelectric dam manager can decide to

release some of the stored water to increase water levels downstream;

– the hydrological model used allows us to avoid the issue of having

to apply a water sharing rule, due to each stakeholder having access to

different extraction points and the flow dynamics of non-extracted water

that is in place between extraction points;

– the simulation continues for another 10 days, as long as the period

of low water levels has not ended.

During the eight game rounds, players are free to put together a

strategy that can either attempt to satisfy both collective and individual

aims, or follows a more individualistic path. The role of prefect has a

clear collective strategy because its individual goal directly depends on

the decisions made by other roles. It is also the only one with the ability

to call all participants together for a meeting.

6.3.3.2.3. Sessions conducted and recording of results

The SimPAGE participatory simulation was developed and used in

the context of a partnership with EDF R&D. It is within the company

that the gaming sessions were held. During each session, a number of

recordings were made so that the events of the game and the resulting

learning could be analyzed later. Four recording methods were used:

– an automatic recording of all the manipulations carried out on the

custom interface (including comments that the participants could type

to explain the decisions they were making);

– a video recording of the moments when the prefect asked for

a meeting between players to discuss their collective management of

water;

– the use of an individual whose role was to observe the attitudes and

interactions of the participants during the session;

– and finally, an audio recording of the debriefing during which the

participants are invited to explain the reasons behind their decisions.

It is from these recordings that we carried out a retrospective analysis

of any induced learning.

How to Involve Stakeholders in the Modeling Process 245

6.3.3.3. The induced learning

6.3.3.3.1. Learning about constraints and individual impacts

The sessions enabled participants to better understand the challenges

that water users face while trying to meet their water needs. For

example, participants who played the role of a farmer had to repeatedly

adapt their decisions during the turns of the game so as to reach their

production goal. One reason is that they had to understand the technical

aspects of this role (none of the participants had previous experience in

the agricultural sector). The second reason is that they had to take the

decisions of other water users into account. Another example is the case

of the role of drinking water manager for which one of the participants

complained to the others that his actions had little or no impact on the

system. The relevance of having this role in the participatory simulation

was questioned as a result. [BAR 07] suggested that the roles with

little impact upon the system should not be included in a participatory

simulation due to the lack of interest for participants. However, in such

a case the role is useful because it allows them to become aware of the

reality that drinking water has a low impact compared to other water

use. In addition, the role-playing game highlights the duality between

the individual goals and collective interests. The actors sometimes have

difficulties when trying to respond to both at once. The role of the

hydroelectric dam manager clearly illustrates this problem. During the

sessions, participants in this role had to produce energy (and for this

they had to fill their reservoirs), and, at the same time, had to follow the

orders of the prefect player, who was asking them to release water to

maintain a minimum water level downstream. Despite the participants

being all employees of EDF, and the fact that those who embodied the

role of dam manager had actual dam management skills, the difficulty

to meet the electricity production goal as well as maintaining the LTF

generated many debates and negotiations that sometimes became very

heated.

6.3.3.3.2. Learning from the interactions between stakeholders and

power relations

The case of the dam manager mentioned above illustrates how

participatory simulation highlights the power relations between the

246 Agent-based Spatial Simulation with NetLogo 1

different roles. For example, during a session, the participant with the

role of prefect made many attempts to convince the dam manager

to release water from the dam following the quantities that they had

fixed, not only using various technical arguments, but also using their

status as state authority to impose their choices. These negotiations took

place during the consultation meeting between participants organized

at mid-game as well as during face-to-face discussions. The prefect

player attempted to apply the same strategy with the farmer players,

but without success. Thus, this example illustrates how participatory

simulation can reveal power relationships and gives the ability for us to

learn from it. During another session, we simulated a climate change

scenario to reinforce the difficulty for the dam manager to maintain a

minimum water level. This also had the effect of increasing tensions

and power relationships among participants. In this way (by adjusting

the parameters of the simulation), it is possible to orient the path of a

session and bring attention to particular aspects such as the negotiation

process, for example. In summary, participatory simulation induces an

individual learning process about the constraints that each user has to

face, about the non-triviality of combining different objectives, and

the importance of power relations in the negotiation process. Relative

to this last aspect, the SimPAGE experiment was particularly useful

for showing the participants to which point collective decisions are

not only affected by technical criteria, but also by social pressure,

power relations and lobbying processes. Participatory simulation then

becomes an arena within which stakeholder interactions occur and can

be observed. The participant plays a role, but due to the distance from

the reality represented by the simulation, it is also an observer of social

interactions [DAR 03].

6.4. Exchanging and questioning knowledge: the PAMS
collaborative portal

The experiment shows that exchanges during a modeling–simulating

activity are, more often than not, carried out via a variety of independent

tools. The use of instant messaging tools and/or video-conferences

are the easiest methods of communication. The participants then

communicate either by voice or by text such that, each on their

How to Involve Stakeholders in the Modeling Process 247

own, they may replicate the model or execute the simulator. Thus, to

eliminate any comprehension or distortion problems, the use of screen

sharing tools or remote control is often necessary. Collaborative Portal

for Aiding Modeling and Simulation (PAMS) (Portail collaboratif
d’Aide la Modélisation-Simulation in French) is one of the very

few initiatives that introduces collaboration into the center of the

process of modeling and simulation. This tool’s originality lies in

its placement of the simulator at the center of the collaboration. It

then becomes an exchange support and media, shared by the research

group. PAMS therefore facilitates researchers to work upon a simulator

together by manipulating, configuring (especially by modifying the

input parameters) and analyzing the results.

6.4.1. Sharing the PAMS simulation

PAMS supports several generic simulation platforms including

NetLogo [NGU 09]. PAMS’s architecture has the advantage of being

modular and thus allowing easy integration of new simulation platforms

(like Repast [CHA 09] for example) or ad hoc simulators. In addition to

the main tool for collaboration with the simulator, PAMS also provides

all the generic, standard and essential collaboration tools for easy

communication (messaging, video-conferencing, forums, etc.).

PAMS is based on free and open-source technology. Particularly, we

use OpenMeeting1 for creating synchronous collaborative tools such

as video and messaging, and asynchronous tools such as forums, file

sharing, etc. It presents the advantage of being able to be integrated

within most Content Management Systems (CMS) such as SPIP2 which

manage the web interface.

From a technical point of view, PAMS uses a combination of

standard web application technologies: a web application server based

on JSP, AJAX and Servlets (on a Tomcat server), an application server

based on distributed components (Java Enterprise Bean (EJB) on a

1 http://openmeetings.apache.org.

2 http://www.spip.net.

248 Agent-based Spatial Simulation with NetLogo 1

Jonas server) notably, to execute the simulations and a MySQL database

server to record the results. PAMS was developed with a modular

architecture in mind, so that it could be easily extended. The architecture

is detailed in [NGU 13].

As mentioned in the previous paragraphs, PAMS was designed to

easily integrate new models and simulators. For existing platforms

in PAMS (including NetLogo and GAMA), all that is required is to

upload the template on the PAMS server via a dedicated web interface.

Regarding new simulators, they can be easily integrated as long as

they have a certain architecture, that is to say, they all have a function

that initializes the simulation, advances to the next simulation iteration,

recovers or fixes the value of local variables and parameters of the

simulator.

6.4.2. Usage example: the MIRO project

As a reminder (see section 1.6), the MIRO project (financing

PREDIT 2004–2007, ANR 2009–2013, MEDDE 2014–2015) sought

to explore the possible impacts of urban policies on the spatiotemporal

accessibility of the town for its citizens and the results of this on

their daily mobilities by computer simulation. It also aims to establish

territorial (losses and gains of localized accessibility) and social

diagnostics (populations privileged and disadvantaged by the different

policies tested).

Finally, it explores the possible global impacts of individual behavior

changes, less focused on the maximization of individual utility and

taking greater account of global issues.

Three models were developed from this perspective (see Figure 6.5).

GaMiroD is a descriptive model which was applied to the towns

of Dijon and Grenoble. This model was developed within the GAMA

platform [DRO 13]. The purpose of these two case studies was to test

scenarios involving a change in the urban environment that also relate

to local public policy actions promoted by sustainable development

How to Involve Stakeholders in the Modeling Process 249

goals (construction of a collective transport infrastructure on its own

site; establishment of an urban zone with traffic regulation to reduce the

effects of pollution).

In parallel, the SMArtAccess model was developed with the

NetLogo platform. This is an explanatory model facilitating the user

to build a city, placing commercial and public services, as well as

places of work and residence, and then to populate it with autonomous

agents performing various sequences of activities using different modes

of transport (walking, public transport and cars). The aim of the user

is not only to test urban models (compact cities, urban villages, etc.)

but also to define, in an iterative and interactive manner and based

upon a large number of macroscopic and microscopic indicators, urban

configurations satisfying certain sustainability criteria. The aim of this

game is to get users to become aware of the difficulty of controlling

a complex urban system, especially when we seek to achieve several

goals, some of which are mutually incompatible.

Figure 6.5. The 3 models developed by the MIRO project. For a color version
of the figure, see www.iste.co.uk/banos/netlogo.zip

Then, the SMArtAccess model was deployed on the PAMS platform

with the aim of constructing a participative, multiplayer model. Via

a web interface (see Figure 6.6), this version of the model (called

SM2A2) allows for five people to play collaboratively to identify

250 Agent-based Spatial Simulation with NetLogo 1

adopted scenarios. Each of the participants takes on a role (developer,

carrier, citizen, etc.) and can only act within one part of the model and

the environment created as part of this role (e.g. the developer player

defines the road network, the Action Priority Zone for air, etc.). The aim

of this serious game is to get the players to be aware of the difficulty of

acting sectionally on a CS, driven by its own dynamic and subject to the

uncoordinated yet interdependent actions of other actors.

Figure 6.6. Smart Access within the PAMS portal (SM2A2)

SM2A2 was the subject of many experiments which involved

masters students, researchers, communities and administrative

governments (City of Dijon, Grenoble City, World Organization of

Health, Ministry of Ecology) as well as industrial organizations.

6.5. The issues to which multiagent models may provide answers

We have now covered two large areas of modeling and multiplayer

simulation: participatory simulation and collaborative M&S. We will

now conclude this chapter by describing how these tools can address

three major issues of the multiagent modeling community.

6.5.1. Revealing behaviors and joint model building

Participatory simulation allows for the processes and dynamics of

a human player’s behavior to be observed (in sociological, cognitive

How to Involve Stakeholders in the Modeling Process 251

and psychological aspects). Indeed, it is possible to follow the

evolution of the logic behind their actions and reasoning by analyzing

their operations on the computer, their oral exchanges with other

players, their behavior during group discussions and their individual

choices. It is then possible to establish hypotheses about the individual

and collective behaviors related to how the situation evolves. This

prospective aspect can then be used to establish collective strategies

that will be tested through simulation. Participatory simulation therefore

acts both as an indicator of individual behaviors and as a place

of experimentation with implementing strategies constructed from

interactions with others.

6.5.2. Tools favoring interdisciplinarity

Participatory simulation appears to be unifying and encourages

the integration of different skills and disciplines. Role-playing allows

for actors with different profiles (farmers, dam managers, etc.) to be

brought together within a same setup. In a broader perspective, the

development of an application such as SimPAGE initially requires the

integration of expert knowledge about the modeling of water networks,

then uses computer skills to develop a simulation platform and finally

uses social science knowledge to define a participatory framework and

analyze the results of participatory simulations. During the participatory

simulation sessions, the scientists discover the integrated platform and

the work carried out by each of the participants in the project. An

interdisciplinary learning process then occurs. Each scientist took the

time to understand the work of the others and to explain their own

work. Discussions on the methodological approach took place about

inconsistencies of the model related to interdependencies between

disciplines. As scientists played the role of different actors of the

system, each of them could use the tool by interacting with the computer

and could see the consequences of their decisions on the part of the

system they had developed. In the case of the SimPAGE experiment,

the collective learning process was therefore also a way to validate the

model and to detect its limitations.

252 Agent-based Spatial Simulation with NetLogo 1

6.5.3. Mediation and training

Participatory simulation is a technological device highly effective at

producing exchanges between participants. It provides a framework that

favors the sharing of knowledge and collective action [BEC 10]. Thus,

the use of such tools in the context of training professional individuals

(industrial sector employees, environmental managers, elected officials)

is entirely possible. When participatory simulation is used with a single

stakeholder category (such as with a group of dam managers), sessions

can be a good way to raise awareness of the impacts their decisions

can have on water resources and other water uses. When sessions are

organized with a mixed professional group whose interests may conflict,

participatory simulation can facilitate and improve the exchange

of information between stakeholders by comparing perceptions and

explicitly showing the logical reasoning behind different actions.

Similarly, during the collaborative development of a model, a

learning process takes place between the scientists involved: each

specialist provides part of the solution to the problem from their own

scientific field and can gain a better understanding of other scientific

disciplines (related to their questioning, methods and approaches).

When business people are also involved, scientists can better understand

the issues related to a particular objective or physical constraint. For

the group, collaborative modeling is therefore a good way to build a

shared representation of the model so as to better define the interactions

between different activities and to anticipate potential difficulties related

to the complexity of the studied systems. However, such applications

are conditioned by the participation willingness of professionals and

of scientists. This willingness may even be more difficult to achieve in

the context of participatory simulations, which often have similarities to

games, which may put some people off. In these conditions, the use of

other forms of collaborative simulation has to be favored.

Bibliography

[ANS 98] ANSELIN L., BERA A.K., “Spatial dependence in linear regression

models with an introduction to spatial econometrics”, Statistics Textbooks
and Monographs, Marcel Dekker AG, vol. 155, pp. 237–290, 1998.

[ASS 13] ASSOCIATION C., “La modélisation d’accompagnement:

fondements et éthique d’une démarche de concertation pour un

développement durable”, Proceedings of ComMod, 2013.

[BAN 15] BANOS A., LANG C., MARILLEALU N., Agent-based Spatial
Simulation with NetLogo Volume 2: Implementation, ISTE Press and

Elsevier Ltd, London and Oxford, 2015.

[BAR 03] BARRETEAU O., “The joint use of role-playing games and models

regarding negotiation processes: characterization of associations”, Journal
of Artificial Societies and Social Simulation, vol. 6, no. 2, 2003, available

at http://jasss.soc.surrey.ac.uk/6/2/3.html.

[BAR 07] BARRETEAU O., LE PAGE C., PEREZ P., “Simulation and gaming

in natural resource management”, Simulation and Gaming, vol. 38, no. 2,

pp. 181–184, 2007.

[BAR 10] BARSEGHIAN D., ALTINTAS I., JONES M.B., et al., “Workflows

and extensions to the Kepler scientific workflow system to support

environmental sensor data access and analysis. Barseghian, Derik and

Altintas”, Ecological Informatics, vol. 5, no. 1, pp. 42–50, 2010.

[BAT 76] BATTY M., Urban Modelling: Algorithms, Calibrations,
Predictions, MARTIN L., MARCH L., (eds.), Cambridge University

Press, 1976.

254 Agent-based Spatial Simulation with NetLogo 1

[BAU 01a] BAUER B., MÜLLER J.-P., ODELL J., “Agent UML: a

formalism for specifying multiagent software systems”, Proceedings of
the 1st International Workshop on Agent-Oriented Software Engineering
(AOSE’00), Secaucus, NJ, Springer-Verlag New York, Inc., pp. 91–103,

2001.

[BAU 01b] BAUER B., MÜLLER J.P., ODELL J., “Agent UML: a formalism

for specifying multiagent interaction”, CIANCARINI P., WOOLDRIDGE

M., (eds.), Agent-Oriented Software Engineering, Springer, pp. 91–103,

2001.

[BEC 03] BECU N., BOUSQUET F., BARRETEAU O., et al., “A methodology

for eliciting and modeling stakeholders’ representations with agent based

modelling”, HALES D., EDMONDS B., NORLING E., et al., (eds.),

Proceedings of Multi-Agent-Based Simulation III, Springer, Heidelberg,

pp. 131–148, 2003.

[BEC 08] BECU N., NEEF A., SCHREINEMACHERS P., et al., “Participatory

computer simulation to support collective decision-making: potential and

limits of stakeholder involvement”, Land Use Policy, vol. 25, no. 4,

pp. 498–509, 2008.

[BEC 10] BECU N., BOMMEL P., BOTTA A., et al., “Technologies

mobilisées pour l’accompagnement”, ETIENNE M., La modélisation
d’accompagnement: une démarche participative en appui au
développement durable, Quae Editions, Versailles, France, pp. 183–

201, 2010.

[BER 05] BERNON C., COSSENTINO M., PAVON J., “An overview of current

trends in European AOSE research”, Informatica, vol. 29, pp. 379–390,

2005.

[BLI 05] BLIKSTEIN P., ABRAHAMSON D., WILENSKY U., “Netlogo:

where we are, where we’re going”, EISENBERG M., EISENBERG A.,

(eds.), Proceedings of the Annual Meeting of Interaction Design and
Children,, Boulder, CO, 2005.

[BOM 09] BOMMEL P., Définition d’un cadre méthodologique pour

la conception de modèles multi-agents adaptée á la gestion des

ressources renouvelables, PhD Thesis, Université Montpellier II-Sciences

et Techniques du Languedoc, Montpellier, France, 2009.

[BOM 14] BOMMEL P., DIEGUEZ F., BARTABURU D., et al., “A further

step towards participatory modeling. Fostering stakeholder involvement

in designing models by using executable UML”, Journal of Artificial
Societies and Social Simulation, vol. 17, no. 6, 2014, available at

http://jasss.soc.surrey.ac.uk/17/1/6.html.

Bibliography 255

[BON 03] BON G.L., Psychologie des Foules, Presses Universitaires de

France, December 2003.

[BOO 91] BOOCH G., Object Oriented Design with Application, Benjamin

Cummings, 1991.

[BOU 98] BOUSQUET F., BAKAM I., PROTON H., et al., “Cormas: common-

pool resources and multi-agent systems”, Tasks and Methods in Applied
Artificial Intelligence, Springer, Berlin, Heidelberg, pp. 826–837, 1998.

[BRA 10] BRAX N., AMBLARD F., BECU N., et al., “When predictive

modelling meet participatory simulation: a feedback on potential and issues

of a combined approach”, ULM E., (ed.), Proceedings of the MAPS2:
Teaching of/with Agent-Based Models in the Social Sciences, Paris, France,

2010.

[BRE 04] BRESCIANI P., PERINI A., GIORGINI P., et al., “TROPOS:

an agent-oriented software development methodology”, Journal of
Autonomous Agents and Multi-Agents Systems, vol. 8, no. 3, pp. 203–236,

2004.

[BRI 00] BRIASSOULIS H., Analysis of Land Use Change: Theoretical
and Modeling Approaches, Regional Research Institute, West Virginia

University, 2000.

[CAI 13] CAILLAULT S., DELMOTTE S., KDOWIDÉ C., et al., “Assessing

the influence of social and economical networks on land use and land cover

changes: a neutral model based approach”, Environmental Modelling and
Software, vol. 45, pp. 64–73, 2013.

[CER 07] CERVENKA R., TRENCANSKY I., The Agent Modeling Language
– AML: A Comprehensive Approach to Modeling Multi-Agent Systems,

Whitestein Series in Software Agent Technologies and Autonomic

Computing, Birkhuser, Basel, 2007.

[CHA 09] CHARLES M., MACAL M.J.N., “Agent-based modeling and

simulation”, Proceedings of the Winter Simulation Conference, pp. 86–98,

2009.

[CHA 13] CHASSET P., RK4: Runge-Kutta 4th order method for the

simulation software NetLogo, 2013. Available at http://flow.chasset.

net/netlogo-rk4/.

[CHI 13] CHIPEAUX S., Génération automatique de Systèmes Multi-Agents à

partir de modèles pour la simulation à large échelle de systèmes complexes

de grande taille, PhD Thesis, University of Franche-Comté, December

2013.

256 Agent-based Spatial Simulation with NetLogo 1

[COA 97] COAD P., NORTH D., MAYFIELD M., Object Models: Strategies,
Patterns, and Applications, Yourdon Press, 1997.

[COM 05] COMMOD C., “La modélisation comme outil

d’accompagnement”, Natures Sciences Sociétés, vol. 13, pp. 165–168,

2005.

[COQ 96] COQUILLARD P., HILL D.R.C., FRONTIER S., Modélisation et
simulation d’écosystemes des modèles déterministes aux simulations à
évènements discrets, Masson, Paris; Milan; Barcelona, 1996.

[DAM 94] DAMASIO A.R., Descartes’ Error: Emotion, Reason, and the
Human Brain, G.P. Putnam, 1994.

[DAR 03] DARÉ W., BARRETEAU O., “A role-playing game in irrigated

system negotiation: between play and reality”, Journal of Artificial
Societies and Social Simulation, vol. 6, no. 3, 2003, available at

http://jasss.soc.surrey.ac.uk/6/3/6.html.

[DEM 95] DEMAZEAU Y., “From interactions to collective behaviour in

agent-based systems”, Proceedings of the 1st European Conference on
Cognitive Science, Saint-Malo, pp. 117–132, 1995.

[DEM 97] DEMAZEAU Y., “Steps toward multi-agent oriented

programming”, Proceedings of the 1st International Workshop on
Multi-Agent Systems (IWMAS ’97), 1997.

[DEM 03] DEMAZEAU Y., “Créativité Emergente Centrée Utilisateur”,

11èmes Journées Francophones sur les Systèmes Multi-Agents, Hermès,

Hammamet, pp. 31–36, 2003.

[DRO 13] DROGOUL A., AMOUROUX E., CAILLOU P., et al., “GAMA:

multi-level and complex environment for agent-based models and

simulations”, GINI M.L., SHEHORY O., ITO T., et al., (eds.), Proceedings
of AAMAS, IFAAMAS, pp. 1361–1362, 2013.

[EDM 04] EDMONDS B., MOSS S., “From KISS to KIDS – an ‘anti-

simplistic’ modeling approach”, DAVIDSSON P., LOGAN B., TAKADAMA

K., (eds.), Proceedings of MABS, vol. 3415 of Lecture Notes in Computer

Science, Springer, pp. 130–144, 2004.

[ETI 10] ETIENNE M., La modélisation d’accompagnement: une démarche
participative en appui au développement durable, Quae Editions, 2010.

Bibliography 257

[ETI 11] ETIENNE M., “Pédagogie active et enseignement de la biodiversité

par la modélisation d’accompagnement”, Actes du Colloque: Education
au développement durable et à la biodiversité: concepts, questions
vives, outils et pratiques, publication électronique, Réseau francophone

international de recherche en Education à l’environnement, Université du

Québec à Montréal, available at http://www.refere.uqam.ca/, Digne-les-

Bains, France, 2011.

[FAI 13] FAIVRE R., IOOSS B., MAHÉVAS S., et al., Analyse de sensibilité
et exploration de modèles: Application aux sciences de la nature et de
l’environnement, Collection Savoir-faire, Quae Editions, 2013.

[FAP 00] FAP, FIPA KIF Content Language Specification, Report,

Foundation for Intelligent Physical Agents, Switzerland, 2000.

[FER 95] FERBER J., Les systèmes multi-agents: vers une intelligence
collective, Informatique, Intelligence Artificielle, Interéditions, 1995.

[FER 98] FERBER J., GUTKNECHT O., “Aalaadin: a meta-model for the

analysis and design of organizations in multi-agent systems”, DEMAZEAU

Y., (ed.), Proceedings of International Conference on Multi-Agent Systems
(ICMAS ’98), IEEE Press, pp. 128–135, July 1998.

[FER 03] FERBER J., GUTKNECHT O., MICHEL F., “From agents to

organizations: an organizational view of multi-agent systems”, GIORGINI

P., MÜLLER J., ODELL J., (eds.), Proceedings of Agent-Oriented Software
Engineering IV 4th International Workshop, Melbourne, Australia,

pp. 214–230, July 2003.

[FER 04] FERBER J., MICHEL F., BARRANCO J., “AGRE: integrating

environments with organizations”, Proceedings of the 1st International
Workshop on Environments for Multi-Agent Systems, Springer, pp. 48–56,

2004.

[FIN 94] FININ T., FRITZSON R., MCKAY D., et al., “KQML as an

agent communication language”, Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM ’94), New

York, ACM, pp. 456–463, 1994.

[FOR 61] FORRESTER J.W., Industrial Dynamics, student ed. edition,

Productivity Pr, 1961.

[FOR 68] FORRESTER J.W., Principles of Systems, Pegasus

Communications, 1968.

[FOR 69] FORRESTER J.W., Urban Dynamics, MIT Press, February 1969.

258 Agent-based Spatial Simulation with NetLogo 1

[FOU 05] FOURNIER S., Intégration de la dimension spatiale au sein d’un

modèle multi-agents à base de rôles pour la simulation: application à la

navigation maritime, PhD Thesis, University of Rennes, France, 2005.

[FOU 97] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS, FIPA ’97

Specification Part 2: Agent Communication Language, 1997. Available at

http://www.fipa.org.

[FOU 02] FOUNDATION FOR INTELLIGENT PHYSICAL AGENTS, Geneva,

Switzerland, FIPA Communicative Act Library Specification, 2002.

[FRI 86] FRIJDA N.H., The Emotions, Cambridge University Press, 1986.

[GAU 11] GAUDOU B., MARILLEAU N., HO T.V., “Toward a methodology

of collaborative modeling and simulation of complex systems”, Intelligent
Networking, Collaborative Systems and Applications, Springer, pp. 27–53,

2011.

[GLO 04] GLOOR C., STUCKI P., NAGEL K., “Hybrid techniques for

pedestrian simulations.”, SLOOT P.M.A., CHOPARD B., HOEKSTRA

A.G., (eds.), Proceedings of the 6th International Conference on Cellular
Automata for Research and Industry, vol. 3305 of Lecture Notes in

Computer Science, Amsterdam, Netherlands, Springer, pp. 581–590, 2004.

[GRI 99] GRIMM V., “Ten years of individual-based modeling in ecology:

what have we learned and what could we learn in the future?”, Ecological
Modeling, vol. 115, nos. 2–3, pp. 129–148, 1999.

[GRI 06] GRIMM V., BERGER U., BASTIANSEN F., et al., “A standard

protocol for describing individual-based and agent-based models”,

Ecological Modeling, vol. 198, nos. 1–2, pp. 115–126, 2006.

[GRI 10] GRIMM V., BERGER U., DEANGELIS D., et al., “The ODD

protocol: a review and first update”, Ecological Modeling, vol. 221,

pp. 2760–2768, 2010.

[GRI 13] GRIGNARD A., TAILLANDIER P., GAUDOU B., et al., “GAMA

1.6: advancing the art of complex agent-based modeling and simulation”,

Proceedings of the Principles and Practice of Multi-Agent Systems
(PRIMA’13), vol. 8291 of Lecture Notes in Computer Science, Springer,

pp. 117–131, 2013.

[GRI 14] GRIMM V., AUGUSIAK J., FOCKS A., et al., “Towards better

modelling and decision support: documenting model development, testing,

and analysis using {TRACE}”, Ecological Modelling, vol. 280, pp. 129–

139, 2014.

[HAG 73] HAGGETT P., Analyse spatiale en géographie humaine, Armand

Colin, Paris, 1973.

Bibliography 259

[HAY 84] HAYNES K., FOTHERINGHAM A., Gravity and Spatial Interaction
Models, Sage Publications, 1984.

[IRW 02] IRWIN E.G., BOCKSTAEL N.E., “Interacting agents, spatial

externalities and the evolution of residential land use patterns”, Journal
of Economic Geography, vol. 2, no. 1, pp. 31–54, 2002.

[JAG 10] JAGERS H., “Linking data, models and tools: an overview”,

International Congress on Environmental Modeling and Software, Ottawa,

Canada, 2010.

[JEA 97] JEAN M.R., PESTY S., “Emergence et SMA”, Intelligence
Artificielle et Système Multi-agents (JFIADSMA ’97), La Colle-sur-Loup,

Hermès, France, pp. 323–342, 1997.

[JEN 00] JENNINGS N., “On agent-based software engineering”, Artificial
Intelligence, vol. 177, no. 2, pp. 277–296, 2000.

[JUD 88] JUDGE G., Introduction to the Theory and Practice of
Econometrics, Wiley, 1988.

[KER 39] KERMACK W.O., MCKENDRICK A.G., “Contributions to the

mathematical theory of epidemics”, The Journal of Hygiene, vol. 39, no. 3,

pp. 271–288, 1939.

[KER 91] KERMACK W.O., MCKENDRIC A.G., “Contributions to the

mathematical theory of epidemics III. further studies of the problem of

endemicity”, Bulletin of Mathematical Biology, vol. 53, no. 1–2, pp. 89–

118, March 1991.

[KLE 07] KLEINBAUM D.G., Applied Regression Analysis and Multivariable
Methods, CengageBrain.com, 2007.

[KOR 08] KORICHI A., BELATTAR B., “Towards a Web based simulation

groupware: experiment with BSCW”, Information Technology Journal,
vol. 7, no. 2, pp. 332–337, 2008.

[LAN 89] LANGTON C., Artificial Life 1, Addison-Wesley, 1989.

[LAN 13] LANGLOIS P., BLANPAIN B., DAUDÉ E., “MAGéo, une

plateforme de simulation multi-agents pour tous”, Proceedings of
SimTools, 2013.

[LE 90] LE MOIGNE J.-L., La modélisation des systèmes complexes, Bordas,

1990.

[LE 05] LE PAGE C., BOMMEL P., A Methodology for Building Agent-Based
Simulations of Common-Pool Resources Management: From a Conceptual
Model Designed with UML to Its Implementation in CORMAS, IRRI Press,

2005.

260 Agent-based Spatial Simulation with NetLogo 1

[LE 14] LE PAGE C., ABRAMI G., BARRETEAU O., et al., “Models for

sharing representations”, Companion Modeling, Springer, pp. 69–101,

2014.

[LEG 97] LEGAY J.-M., L’expérience et le modèle. Un discours sur la
méthode, Collection Sciences en questions, INRA Editions, Paris, 1997.

[LEP 12] LE PAGE C., BECU N., BOMMEL P., et al., “Participatory agent-

based simulation for renewable resource management: the role of the

cormas simulation platform to nurture a community of practice”, Journal
of Artificial Societies and Social Simulation, vol. 15, no. 1(10), 2012.

[LUK 04] LUKE S., CIOFFI-REVILLA C., PANAIT L., et al., “Mason: a new

multi-agent simulation toolkit”, Proceedings of the SwarmFest Workshop,

vol. 8, 2004.

[LUM 04] LUMINET O., VERMEULEN N., “Personalité et psychopathologie

cognitive”, Traité de psychopathologie cognitive, VAN DER LINDEN M.,

CESCHI G., (eds.), Marseille: Solal, 2004.

[MAR 08] MARILLEAU N., CAMBIER C., DROGOUL A., et al., “Multiscale

MAS modelling to simulate the soil environment: application to soil

ecology”, Simulation Modelling Practice and Theory, vol. 16, no. 7,

pp. 736–745, 2008.

[MAS 07] MASSE D., CAMBIER C., BRAUMAN A., et al., “MIOR: an

individual-based model for simulating the spatial patterns of soil organic

matter microbial decomposition”, European Journal of Soil Science,

vol. 58, pp. 1127–1135, 2007.

[MIN 96] MINAR N., Burkhart R., Langton C., The Swarm Simulation
System: A Toolkit for Building Multi-Agent Simulations, Report, Santa Fe

Institute, 1996.

[NAI 10] NAIVINIT W., LE PAGE C., TRÉBUIL G., et al., “Participatory

agent-based modeling and simulation of rice production and labor

migrations in Northeast Thailand”, Environmental Modelling & Software,

vol. 25, no. 11, pp. 1345–1358, 2010.

[NGU 09] NGUYEN K.T., BENOIT G., VINH H.T., et al., “Application

of PAMS collaboration platform to simulation-based researches in

soil science: the case of the Micro-Organism Project”, Proceedings
of the IEEE-RIVF International Conference on Computing and
Telecommunication Technologies, IEEE-RIVF, 2009.

Bibliography 261

[NOR 13] NORTH M., COLLIER N., OZIK J., et al., “Complex adaptive

systems modeling with Repast Simphony”, Complex Adaptive Systems
Modeling, vol. 1, no. 1, p. 3, Springer, 2013.

[OCC 01] OCCELLO M., KONING J.-L., BAEIJIS C., “Conception des

Système Multi-Agent: quelques éléments de réflexion méthodologique”,

Technique et science informatique, vol. 20, no. 2, pp. 233–263, 2001.

[ODE 00] ODELL J., PARUNAK H., BAUER B., “Extending UML for

agents”, WAGNER, G., LESPERANCE E.Y., (eds.), Proceedings of the
Agent-Oriented Information Systems Workshop at the 17th National
Conference on Artificial Intelligence., pp. 3–17, 2000.

[ODE 01] ODELL J., PARUNAK H.V.D., BAUER B., “Representing agent

interaction protocols in UML”, Agent-Oriented Software Engineering, First
International Workshop, Lecture Notes in Computer Science, Springer,

vol. 57, pp. 121–140, 2001.

[OMG 03] OMG, Unified Modeling Language: Superstructure version 2.0,

2003.

[OMG 05] OMG, UML 2.0 Superstructure Specification, Report, Object

Management Group, August 2005.

[OST 94] OSTROM E., GARDNER R., WALKER J., Rules, Games, and
Common-Pool Resources, University of Michigan Press, 1994.

[PAD 02] PADGHAM L., WINIKOFF M., “Prometheus: a methodology for

developing intelligent agents”, GIUNCHIGLIA F., ODELL J., WEISS G.,

(eds.), Agent-Oriented Software Engineering III, vol. 2585 of LNCS,

Springer-Verlag, pp. 174–185, 2002.

[POL 08] POLHILL J.G., PARKER D., BROWN D., et al., “Using the ODD

protocol for describing three agent-based social simulation models of land-

use change”, Journal of Artificial Societies and Social Simulation, vol. 11,

no. 2(3), 2008.

[POL 10] POLHILL J.G., “ODD updated”, Journal of Artificial Societies and
Social Simulation, vol. 13, no. 4(9), 2010.

[PRO 05] PROVITOLO D., “Un exemple d’effet de dominos: la panique dans

les catastrophes urbaines”, Cybergeo: Revues européenne de géographie,

vol. 328, 2005.

[PRO 07] PROVITOLO D., “A proposition for a classification of the

catastrophe systems based on complexity criteria”, Proceedings of
Emergent Properties in Natural and Artificial Complex Systems (EPNACS
’07), 4–5 October 2007.

262 Agent-based Spatial Simulation with NetLogo 1

[PRU 02] PRUNEAU D., LAPOINTE C., “Un, deux, trois, nous irons au bois.

L’apprentissage expérientiel et ses applications en éducation relative à

l’environnement”, Éducation et francophonie, vol. 30, no. 2, pp. 241–256,

2002.

[QUE 09] QUESNEL G., DUBOZ R., RAMAT E., “The Virtual Laboratory

Environment – an operational framework for multi-modelling, simulation

and analysis of complex dynamical systems”, Simulation Modelling
Practice and Theory, vol. 17, pp. 641–653, April 2009.

[RAI 11] RAILSBACK S.F., GRIMM V., Agent-Based and Individual-Based
Modeling: A Practical Introduction, Princeton University Press, 2011.

[RAO 91] RAO A.S., GEORGEFF M.P., “Modeling rational agents within

a BDI-architecture”, Proceedings of Knowledge Representation and
Reasoning, Morgan Kaufmann Publishers, 1991.

[REN 02] RENNARD J.-P., Vie Artificielle. où la biologie rencontre
l’informatique, Vuibert, 2002.

[RES 96] RESNICK M., “StarLogo: an environment for decentralized

modeling and decentralized thinking”, Proceedings of Conference
Companion on Human Factors in Computing Systems, pp. 11–12, 1996.

[RES 97] RESNICK M., Turtles, Termites and Traffic Jams Explorations in
Massively Parallel Microworlds, MIT Press, Cambridge, 1997.

[REU 13] REUILLON R., LECLAIRE M., REY-COYREHOURCQ S.,

“OpenMOLE, a workflow engine specifically tailored for the distributed

exploration of simulation models”, Future Generation Computer Systems,

vol. 29, no. 8, pp. 1981–1990, 2013.

[RYK 96] RYKIEL E., “Testing ecological models: the meaning of

validation”, Ecological Modelling, vol. 90, pp. 229–244, 1996.

[SAL 09] SALTELLI A., CHAN K., SCOTT E., Sensitivity Analysis, vol. 2008,

Wiley, 2009.

[SAN 05] SANDERS L., “Simulation des systèmes urbains”, Ecole
thématique CNRS: modélisation et simulation multi-agent de systèmes
complexe pour les SHS, Poquerolles, 2005.

[SCH 65] SCHLAGER K.J., “A land use plan design model”, Journal of the
American Institute of Planners, vol. 31, no. 2, pp. 103–111, 1965.

[SCH 99a] SCHERER K.R., “Appraisal theory”, DALGLEISH T., POWER M.,

(eds.), Handbook of Cognition and Emotion, pp. 637–663, 1999.

Bibliography 263

[SCH 99b] SCHERER K.R., “On the sequential nature of appraisal processes:

indirect evidence from a recognition task”, DALGLEISH T., POWER M.,

(eds.), Cognition and Emotion, vol. 13, no. 6, pp. 763–793, 1999.

[SCH 02] SCHWEITZER F., “Brownian agent models for swarm and

chemotactic interaction. Abstracting and synthesizing the principles of

living systems”, Proceedings of the 5th German Workshop on Artificial
Life, Nerlin, Germany, pp. 181–190, 2002.

[SCH 03] SCHWEITZER F., FARMER J.D., Brownian Agents and Active
Particles: Collective Dynamics in the Natural and Social Sciences,

Springer, 2003.

[SIL 03] SILVA V., GARCIA A., BRANDÃO A., et al., “Taming agents

and objects in software engineering”, Software Engineering for Large-
Scale Multi-Agent Systems: Research Issues and Practical Applications,

Springer-Verlag, LNCS, vol. 2603, pp. 1–25, 2003.

[SIN 00] SINCLAIR T., SELIGMAN N., “Criteria for publishing papers on

crop modeling”, Field Crops Research, vol. 68, no. 3, pp. 165–172, 2000.

[STU 03] STURM A., DORI D., SHEHORY O., “Single-model method for

specifying multi-agent systems”, Proceedings of the 2nd International
Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
’03), New York, NY, ACM, pp. 121–128, 2003.

[TAY 07] TAYLOR I.J., DEELMAN E., GANNON D.B., et al., Workflows for
e-Science: Scientific Workflows for Grids, Springer, 2007.

[TIS 04] TISUE S., WILENSKY U., “NetLogo: a simple environment for

modeling complexity”, Proceedings of the International Conference on
Complex Systems, pp. 16–21, 2004.

[TRE 05] TRENCANSKY I., CERVENKA R., “Agent modeling language

(AML): a comprehensive approach to modeling MAS”, Informatica,

vol. 29, pp. 391–400, 2005.

[US 83a] US LIBRARY OF CONGRESS, Fatal Panic on the

Bridge, Twelve persons killed and many injured, http://

chroniclingamerica.loc.gov/lccn/sn83030214/1883-05-31/ed-1/seq-1/,

31 May 1883.

[US 83b] US LIBRARY OF CONGRESS, Terrible Disaster, http://

chroniclingamerica.loc.gov/lccn/sn82014381/1883-05-31/ed-1/seq-1/,

31 May 1883.

264 Agent-based Spatial Simulation with NetLogo 1

[VAR 13] VARENNE F., SILBERSTEIN M., Modéliser & simuler.
Epistémologies et pratiques de la modélisation et de la simulation,
tome 1, Editions Matériologiques, 2013.

[VIA 11] VIAL G., Le système proie-prédateur de Volterra-Lotka, website of

l’Ecole Centrale de Lyon, 2011.

[VIN 99] VINCK D., “Les objets intermédiaires dans les réseaux de

coopération scientifique”, Revue Française de Sociologie, vol. 40, no. 2,

pp. 385–414, 1999.

[VOI 10] VOINOV A., BOUSQUET F., “Modeling with stakeholders”,

Environmental Modelling & Software, Faculty of Geo-Information Science

and Earth Observation (ITC), University of Twente and Cirad, UPR Green,

vol. 25, no. 1, 2010.

[WAL 77] WALLISER B., Systèmes et modèles. Introduction critique à
l’analyse des systèmes, Editions du Seuil, 1977.

[WAN 09] WANG L., JIE W., CHEN J., Grid Computing: Infrastructure,
Service, and Applications, CRC Press, 2009.

[WAT 92] WATSON D., CLARK L.A., “On traits and temperament: general

and specific factors of emotional experience and their relation to the five-

factor model”, Journal of Personality, vol. 60, no. 2, pp. 441–476, June

1992.

[WIL 74] WILSON A., Urban and Regional Models in Geography and
Planning, Wiley, 1974.

[WOO 97] WOOLDRIDGE M., “Agent based software engineering”, Software
Engineering, vol. 144, pp. 26–37, 1997.

[ZAM 03] ZAMBONELLI F., JENNINGS N., WOOLDRIDGE M., “Developing

multiagent systems: the Gaia methodology”, ACM Transactions on
Software Engineering and Methodology, vol. 12, no. 3, pp. 317–370, 2003.

List of Authors

Frédéric AMBLARD
IRIT
University Toulouse 1 Capitole
France

Arnaud BANOS
Géographie-cités
Panthéon Sorbonne University
Paris
France

Nicolas BECU
LIENSs
University of La Rochelle
France

Fabrice BOUQUET
FEMTO-ST
University of Franche-Comté
Besançon
France

Nicolas BRAX
IRIT
University Toulouse 1 Capitole
France

Philippe CAILLOU
LRI/INRIA TAO
University Paris Sud
Orsay
France

Sébastien CHIPEAUX
FEMTO-ST
University of Franche-Comté
Besançon
France

Nathalie CORSON
LMAH
University of Le Havre
France

Eric DAUDÉ
IDEES
University of Rouen
France

Benoît GAUDOU
IRIT
University Toulouse 1 Capitole
France

266 Agent-based Spatial Simulation with NetLogo 1

Arnaud GRIGNARD
UMMISCO/IRD
UPMC
Bondy
France

Guillaume HUTZLER
Laboratoire IBISC
University of Evry-Val d’Essonne
France

Christophe LANG
FEMTO-ST
University of Franche-Comté
Besançon
France

Nicolas MARILLEAU
UMMISCO/IRD
UPMC
Bondy
France

Claude MONTEIL
DYNAFOR
INP-ENSAT
Toulouse
France

Jean-Marc NICOD
FEMTO-ST
ENSMM
Besançon
France

Damien OLIVIER
LITIS
University of Le Havre
France

David SHEEREN
DYNAFOR
INP-ENSAT
Toulouse
France

Patrick TAILLANDIER
IDEES
University of Rouen
France

Index

A, B, C

adjacency, 113

agentset, 78

aggregate model, 184

agent

group role (AGR), 42

modeling language (AML), 41

Behavior space, 114

breed, 78, 91

companion modeling, 233

compartment, 187

create agents, 94

D, E

documentation, 56, 71

dynamic system, 115

environment, 48

definition, 86

initialization, 90

toroidal, 80

visualization, 105

equilibrium points, 212

extension, 86, 118

F, G, H, I, L

formalization, 32, 72

Forrester Diagram, 189

GIS data, 118

graphs, 119

HubNet, 114, 230

individual-based model, 184

interaction, 49, 69, 108

social network, 112

link, 82, 112

primitives, 82

variables predefined, 82

M

meta-knowledge, 59

meta-model, 37

multiagent model, 224, 250

model, 56

models

recurrent example, 30

SimPAGE, 237

GaMiroD, 248

SM2A2, 249

SMArtAccess, 249

modeling, 56

myself, 109

268 Agent-based Spatial Simulation with NetLogo 1

N, O

Netlogo

dictionary, 122

history, 75

interface, 83

introduction, 75

meta-model, 78

Netlogo3D, 116

numerical methods

Euler, 201

observer, 83

ODD, 57, 72

ordinary differential equations

(ODE), 189, 197, 206

P, R

patch, 78

predefined variables, 80

primitives, 80

procedure, 89

setup, 89

recurrent example, 30, 36, 48, 66

replication, 59

role, 233

role-based participatory

simulation, 232

S, T

self, 109

simulation

collaborative, 227

participative, 250

participatory, 225

turtle, 81

predefined variables, 81

primitives, 81

U

UML, 32, 72

activity diagram, 38

class diagram, 34

object diagram, 36

sequence diagram, 39

state-transition diagram, 38

V

visualization, 60

3D, 116

world, 105

graphical, 106

monitor, 106

pen, 106

plot, 106

simulation, 105

