
User Manual

Release 1.1

S. Turek, Chr. Becker

University of Heidelberg, Institute for Applied Mathematics

Im Neuenheimer Feld 294, D{69120 Heidelberg, Germany

Heidelberg, 02/01/1998



Contents

Short description 2

1 Mathematical Background 5

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Discretization and solution techniques in featflow . . . . . . . . . . . . . 6

1.2.1 Discretization schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.2 Nonlinear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 Linear solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.4 Discrete projection method . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 The Navier{Stokes solver packages in featflow . . . . . . . . . . . . . . . 14

2 Structure of featflow 15

2.1 The programming structure of featflow . . . . . . . . . . . . . . . . . . . 15

2.2 The input data of featflow . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 General comments for user{input . . . . . . . . . . . . . . . . . . . . 18

2.2.2 indat2d.f/indat3d.f/parq2d.f/parq3d.f { data �les for user . . 19

2.2.3 trigen2d.dat { parameter �le for trigen2d . . . . . . . . . . . . . 29

2.2.4 tr2to3.dat { parameter �le for tr2to3 . . . . . . . . . . . . . . . . 32

2.2.5 trigen3d.dat { parameter �le for trigen3d . . . . . . . . . . . . . 33

2.2.6 pp2d.dat/pp3d.dat { parameter �les for pp2d and pp3d . . . . . . 34

2.2.7 cc2d.dat/cc3d.dat { parameter �les for cc2d and cc3d . . . . . . 39

2.3 The �le structure of featflow . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Subdirectory source { source code for featflow . . . . . . . . . . 43

2.3.2 Subdirectory manual { manuals for featflow . . . . . . . . . . . . 43

2.3.3 Subdirectory object { system software for featflow . . . . . . . . 43

2.3.4 Subdirectory application { applications under featflow . . . . . 44

2.3.5 Subdirectory graphic { graphic tools for featflow . . . . . . . . . 45

2.3.6 Subdirectory utility { utilities for featflow . . . . . . . . . . . . 45

2.4 Installation of featflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Examples for the use of featflow 48

3.1 The installation example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 The 2D example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 The 3D example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 67

A Appendix: Troubleshooting with featflow 69

B Appendix: The featflow group 71

C Appendix: Future projects in featflow 72

1



Short description

The progam package featflow is both a user oriented as well as a general purpose

subroutine system for the numerical solution of the incompressible Navier{Stokes equations

in two and three space dimensions. featflow is part of the feast project which has

the aim to develop software which realizes our new mathematical and algorithmic ideas

in combination with high performance computational techniques. For more information

about this project ask the authors or look at the Internet{URL:

http://www.iwr.uni-heidelberg.de/~feat
ow

which contains most of our research activities, including the `Virtual Album of Fluid

Motion'. featflow is designed for the following three classes of applications:

Education:

Students coming from Mathematics, Physics, Engineering sciences or Computer sciences

learn to handle modern numerical software. This helps for future work in industry or for

doing Diploma or Ph.D. works since the basics of today`s numerical software engineer-

ing, concerning software and hardware, are provided. Actually, we realize this education

program as `Software{Praktikum' at the University of Heidelberg.

Research:

This software (and hence the underlying Mathematics) is running at several universities in

Europe and North{America. As a basic tool it helps to verify own codes by comparisons

with reference con�gurations, and it can be used for adding new components to solve

more complex problems. For instance, in our group it is the basic solver which is used,

after slight modi�cations, for exploring new algorithms for compressible media, turbulence

modelling, multi{phase and non{newtonian 
ows or shape optimization.

Industry:

Since this software is purely based on a mathematically optimized approach it should be

able (if everything is implemented in a correct way) to be much more e�cient than most

actual software tools used by industry. Therefore, we try not only to solve "mathematical"

test problems, but realistic applications, too. We hope to demonstrate, that this approach

is not only faster and more e�cient than most other programs, but also applicable for the

same problems. Therefore, one of our main goals is to demonstrate the "practical" 
exibil-

ity of our software. A �rst "proof" for these statements could be found by performing the

DFG-benchmarks of the project "Flow Simulation with High Performance Computers".

2



CONTENTS 3

Mainly active members of the feast-project are the `numeric group' in Heidelberg around

Rannacher and Turek. A list containing (almost) all participants (helping practically and

theoretically) can be found in the Appendix.

featflow 1.1 is based on the FORTRAN77 �nite element packages feat2d and feat3d

which are not user oriented systems. They only provide subroutines for several main

steps in a �nite element program. The user should be familiar with the mathematical

formulation of the discrete problems. The data structure of feat is transparent so that

modi�cations or augmentations of the program package are very easy, for instance the

implementation of new elements or the application of error control. For details concern-

ing tools and data structures of these �nite element codes the reader is referred to the

manuals [3] and [9]. We consider to use other, more sophisticated �nite element tools in

FORTRAN90 under NETSCAPE in the future.

This manual has the following structure: Chapter 1 shows the mathematical background

and explains the temporal and spatial discretizations. Additionally, subjects like nonlinear

solution schemes, multigrid solvers for linear subproblems, discrete projection schemes for

coupled systems, adaptive time step control and other optimization tools are treated ex-

plicitly. Inbetween, there is much more literature cited which explains all pointed subjects

more in detail. We describe the discretization and solution process in form of 
ow charts

since they can be directly translated into the programming structure of featflow.

This structure of programs and subroutines is explained in Chapter 2. We divide all

software into three classes: Preprocessing, solver and postprocessing.

The preprocessing part contains the programs omega2d (description of 2D domains,

graphical generation of coarse tringulations, developed by Matthies/Schieweck in Magde-

burg, and which will be soon replaced by our own JAVA{based preprocessing tool), tri-

gen2d (adaptively re�ned meshes in 2D, output of triangulations), tr2to3 (generation of

3D meshes out of 2D meshes) and trigen3d (analogous as trigen2d but in 3D). These

programs mainly provide (coarse) triangulations for the following solution and graphical

output routines.

The solution part contains the solver packages pp2d/pp3d (as purely time dependent

projection schemes) and cc2d/cc3d (solving stationary and nonstationary problems in

a fully coupled way). The use of both solvers, two- as well as three{dimensional, is

demonstrated and their input parameters are explained. The systems cp2d/cp3d are not

�nished yet and will be added to the next release (in fact, you may �nd in the recent

version a test version of cp2d, together with some other 'new' software tools!).

The postprocessing part, �nally, contains �les and shell{scripts for supported graphi-

cal packages. These are, in this version, gnuplot (for 1D pictures) and movie.byu or

cquel.byu, resp., avs for 2D- and 3D{graphics. Moreover, it has shown to be easy to

incoorporate output �les for grape or some other appropriate graphics, and to add our

own particle tracing tool ptrac.

At the end of this chapter, we show the content of the other subdirectories of featflow

and explain the structure of featflow with its installation, backup, make�le and library

parts.



4 CONTENTS

In addition, most important for the user, sample programs for some standard applications

(installation, preprocessing and the solution of a 2D and 3D problem) are included in

Chapter 3. These can be used as starting programs which may be modi�ed for the actual

application.

There are several main levels to be explained in detail:

{ Installation of featflow, editing of make�les and other preparation for the use

{ Generation of coarse and re�ned triangulations for the solution process

{ Input data (data �les and input parameter, as for instance boundary conditions and

right hand side)

{ Code execution and explanation of output data

{ Graphical presentation of the data

At the end of this manual, the Appendix contains a discussion of the "most usual" errors

and problems with featflow and how to survive them, followed by a list with names and

contact addresses of involved persons, and a remark how to get featflow. Additionally,

there is a short section which shows projects being under development for future versions

of featflow

We hope that you enjoy this software and are very grateful for every comment concerning

bugs and critical aspects or subjects to be added.

In fact, this version featflow 1.1 contains only slight modi�cations compared to the

`original' version featflow 1.0! However, we may announce still for 1998 the new ver-

sion featflow 2.0 which will contain the essentially improved solvers cp2d and some

tools for Boussinesq and/or nonnewtonian 
ows, including also the improved pre- and

processing tools together with (freely downloadable!!!) AVS EXPRESS modules for high{

end visualization. For a mathematical description of these software releases we recommend

the papers in our paper archive (see the following URL) or our book `E�cient solvers for

incompressible 
ow problems: An algorithmic approach in view of computational aspects'

which will appear by Springer Verlag. Further, we hope to present a �rst version of our

new feast package.

For more information about these project, take a look at the Internet{URL:

http://www.iwr.uni-heidelberg.de/~feat
ow

which contains most of our research activities, including the `Virtual Album of Fluid

Motion'.

Heidelberg, August 1998



1. Mathematical Background

1.1. Introduction

The following mathematical description for the implemented software is part of our paper

archive (see the given URL) or of our book:

`E�cient solvers for incompressible 
ow problems: An algorithmic approach in view of

computational aspects'

which will appear by Springer Verlag. There, the reader will �nd much more details.

We consider numerical solution techniques for the nonstationary (or stationary, without

the term u

t

) incompressible Navier{Stokes equations,

u

t

� ��u+ u � ru+rp = f ; r�u = 0 ; in 
� (0; T ] ; (1.1)

for a given force f and viscosity �, with any prescribed boundary values on the boundary

@
 (of Dirichlet- or Neumann{type, see [10]) and an initial condition at t = 0. Solving

this problem numerically still seems to be a considerable task in the case of long time

calculations and higher Reynolds numbers, particularly in 3D.

The corresponding discretized nonlinear systems of equations may be treated by a coupled

approach in u and p (see [23]) which promises the best stability behaviour, but also

entails the largest numerical e�ort. Another variant, known as projection method (see [7]),

decouples pressure and velocity, which reduces the problem to the solution of a sequence

of "simple" (scalar) problems. However, at the same time, it leads to smaller time steps

due to the inherently more explicit character and often su�ers from spurious pressure

boundary layers.

These di�erent approaches lead to a large variety of schemes all of which are occuring

in practice since years (see [22] and [21]). Theoretical considerations could provide some

ideas, concerning stability of these schemes, convergence rates for subproblems, necessary

time step sizes, or qualitative behaviour for large Reynolds numbers, but a complete

analysis or quantitative prediction is not possible even today. Therefore, the only way to

make a judgement was to perform numerical tests, at least for some classes of problems

which seem to be representative. This was done in [21].

5



6 Mathematical Background

What we reached is a (�nite element) discretization and a solution procedure such that:

1) The �nite element spaces for u and p are stable, i.e., satisfy the LBB{condition ([8]).

2) A robust and e�cient coupled solver is available.

3) A robust and e�cient solver of projection type is available.

4) An e�cient nonlinear solution strategy is available.

5) An e�cient time step control is available.

The method which seems to satisfy all these requirements consists of discrete projection

schemes with nonconforming linear or rotated multilinear �nite elements for u and piece-

wise constant approximations for p (see [15],[22],[21]). With this approach, we can develop

very e�cient solution schemes of both coupled and projection type, with a special non-

linear or linearized treatment of the advection. The resulting solutions are coincident (as

soon as the time steps are small enough), and no spurious pressure oscillations occur. This

approach is the basis of our following theoretical and numerical investigations.

1.2. Discretization and solution techniques in featflow

We �rst discretize the time derivative in the Navier{Stokes equations (1.1) by one of the

usual time{stepping schemes, with prescribed boundary values for every time step.

Given u

n

and the time step k = t

n+1

� t

n

, then solve for u = u

n+1

and p = p

n+1

u� u

n

k

+ �[���u+ u � ru] +rp = g

n+1

; r�u = 0 ; in 
 ; (1.2)

with right hand side

g

n+1

:= �f

n+1

+ (1� �)f

n

� (1� �)[���u

n

+ u

n

� ru

n

] : (1.3)

In the past, explicit time{stepping schemes have been commonly used in nonstationary


ow calculations, but because of the severe stability problems inherent in this approach,

the required small time steps prohibited the long time solution of really time{dependent


ows. Due to the high sti�ness, one seems to be limited to implicit schemes in the choice

of time{stepping methods for solving this problem. Since implicit methods have become

feasible, thanks to more e�cient linear solvers, the schemes most frequently used are either

the simple �rst{order Backward Euler{scheme (BE), with � = 1, or the second{order

Crank{Nicolson{scheme (CN), with � = 1=2. These two methods belong to the group of

one{step{�{schemes. The CN{scheme occasionally su�ers from unexpected instabilities

because of its only weak damping property (not strongly A{stable), while the BE{scheme

is of �rst order accuracy only. Another method which seems to have the potential to excel

in this competition is the Fractional{step{�{scheme (FS). It uses three di�erent values for

� and for the time step k at each time level. For a realistic comparison we de�ne a macro

time step with K = t

n+1

� t

n

as a sequence of 3 time steps of possibly (variable) size k.

Then, in the case of the Backward Euler- or the Crank{Nicolson{scheme, we perform 3

substeps with the same � as above and time step k = K=3.



1.2 Discretization and solution techniques in featflow 7

For the Fractional{step{�{scheme we proceed as follows. Choosing � = 1�

p

2

2

; �

0

= 1�2�,

and � =

1�2�

1��

; � = 1 � �, the macro time step t

n

! t

n+1

= t

n

+ K is split into three

consecutive substeps (with

~

� := ��K = ��

0

K):

[I +

~

�N(u

n+�

)]u

n+�

+ �Krp

n+�

= [I � ��KN(u

n

)]u

n

+ �Kf

n

r�u

n+�

= 0 ;

[I +

~

�N(u

n+1��

)]u

n+1��

+ �

0

Krp

n+1��

= [I � ��

0

KN(u

n+�

)]u

n+�

+ �

0

Kf

n+1��

r�u

n+1��

= 0 ;

[I +

~

�N(u

n+1

)]u

n+1

+ �Krp

n+1

= [I � ��KN(u

n+1��

)]u

n+1��

+ �Kf

n+1��

r�u

n+1

= 0 :

Here and in the following, we use the more compact form for the di�usive and advective

part

N(u)u := ���u+ u � ru : (1.4)

Being a strongly A{stable scheme, the FS{method possesses the full smoothing property

which is important in the case of rough initial or boundary values. Further, it contains

only very little numerical dissipation which is crucial in the computation of non{enforced

temporal oscillations in the 
ow. A rigorous theoretical analysis of the FS{scheme (see

[11],[12]) applied to the Navier{Stokes problem establishes second order accuracy for this

special choice of �. Corresponding numerical tests are performed in [21]. Therefore, this

scheme can combine the advantages of both the classical CN{scheme (2nd order accuracy)

and the BE{scheme (strongly A{stable), but with the same numerical e�ort.

So, in each time step we have to solve nonlinear problems of the following type:

Given u

n

, parameters k = k(t

n+1

) ; � = �(t

n+1

) and �

i

= �

i

(t

n+1

); i = 1; : : : ; 3, then solve

for u = u

n+1

and p = p

n+1

[I + �kN(u)]u+ krp = [I � �

1

kN(u

n

)]u

n

+ �

2

kf

n+1

+ �

3

kf

n

; r�u = 0 : (1.5)

For spatial discretization, we choose a �nite element approach. In setting up a �nite

element model of the Navier{Stokes equations, one starts with a variational formulation.

On the �nite mesh T

h

(triangles, quadrilaterals or their analogues in 3D) covering the

domain 
 with local element width h, one de�nes polynomial trial functions for velocity

and pressure. These spaces H

h

and L

h

should lead to numerically stable approximations,

as h! 0, i.e., they should satisfy the Babuska{Brezzi condition with a mesh{independent

constant 
 (see [8]),

min

p

h

2L

h

max

v

h

2H

h

(p

h

;r�v

h

)

kp

h

k

0

krv

h

k

0

� 
 > 0 : (1.6)

Many stable pairs of �nite element spaces have been proposed in the literature. Our

favorite candidate is a quadrilateral element which, in 2D, uses piecewise rotated bilin-

ear shape functions for the velocities, spanned by hx

2

� y

2

; x; y; 1i, resp., rotated trilinear

shape functions in 3D, spanned by hx

2

� y

2

; x

2

� z

2

; x; y; z; 1i, and piecewise constant

pressure approximations (see Figure 1.1). The nodal values are the mean values of the



8 Mathematical Background

p

u,v

u,v

u,v

u,v

Figure 1.1: Nodal points of the nonconforming �nite element pair in 2D

velocity vector over the element edges / faces (element type 30) or in the corresponding

midpoints (element type 31), and the mean values of the pressure over the elements ren-

dering this approach "nonconforming". This element is the natural quadrilateral analogue

of the well{known triangular Stokes element of Crouzeix{Raviart (see [5]). A convergence

analysis of both the parametric (elements E030/E031) and the nonparametric versions

(elements EM30/EM31), which are preferrable on non{tensor product grids or meshes with

large aspect ratios, is given in [15] and very promising computational results are reported

in [19],[23],[21].

This element pair has several important features. It admits, beside the typical Galerkin{

streamline di�usion technique, simple upwind strategies which lead to matrices with cer-

tain M{matrix properties. Further, e�cient multigrid solvers are available which work

satisfactorily over the whole range of relevant Reynolds numbers, 1 � Re � 10

5

, and also

on nonuniform meshes. In [22], we have even shown by a complexity analysis that this

pair of elements is most e�cient compared to other �nite element pairs, especially in the

case of highly nonstationary 
ows. In combination with the discrete projection methods,

see [22], it works very robust and e�cient in a multigrid code also on highly stretched and

anisotropic grids.

Using the same symbols u and p also for the coe�cient vectors in the nodal representation

for the functions u and p, the discrete version of problem (1.5) may be written as a

(nonlinear) algebraic system of the form:

Given u

n

, a right hand side g and a time step k, then solve for u = u

n+1

and p = p

n+1

Su+ kBp = g ; B

T

u = 0 ; (1.7)

with matrix S and right hand side g such that

Su = [M + �kN(u)]u ; g = [M � �

1

kN(u

n

)]u

n

+ �

2

kf

n+1

+ �

3

kf

n

: (1.8)

Here, M is the mass matrix and N(:) the advection matrix containing the di�usive and

convective parts corresponding to the nonlinear form in (1.4). For dominant transport

the advection part may include some stabilization, for instance, some upwind mechanism

(see [23]) or the streamline di�usion method ([26]). B is the gradient matrix, and �B

T



1.2 Discretization and solution techniques in featflow 9

the transposed divergence matrix. With M

l

we denote the lumped mass matrix which is

diagonal.

Two possible approaches for solving these discrete nonlinear problems are:

1) We �rst treat the nonlinearity by an outer nonlinear iteration of �xed point- or quasi{

Newton type or by a linearization technique through extrapolation in time, and we obtain

linear inde�nite subproblems of Oseen type which can be solved by a coupled (versions

cc2d/ cc3d) or a splitting approach (versions cp2d/ cp3d).

2) We �rst split the coupled problem and obtain de�nite problems in u (Burgers{equations)

as well as in p (linear pressure{Poisson-, resp., quasi{Poisson problems). Then we treat

the nonlinear problems in u by an appropriate nonlinear iteration or a linearization tech-

nique (versions pp2d/ pp3d).

In our applications the nonlinear problems are solved by the adaptive �xed point defect

correction method (see [23]), while for the solution of the coupled problems, resp., for their

decoupling, the discrete projection method formalism is used (see [22]). To understand

completely the algorithm, we will shortly present other important tools of the solver,

namely the multilevel solvers for the corresponding linear subproblems (Oseen problems,

(convection{di�usion problems for u, quasi{Poisson problems for p), the adaptive time

step control and defect optimization procedures. In compact form the components of the

solvers are explained in the following subsections.

    FEATFLOW
N a v i e r - S t o k e s  t r e e

Linear solvers

Discrete Proj. Scheme Nonlinear solvers

Discretization schemes

Figure 1.2: The solver structure of featflow



10 Mathematical Background

1.2.1. Discretization schemes

Spatial discretization

{ nonconforming nonparametric rotated bi/ trilinear �nite elements

with edge oriented d.o.f.'s for velocity

{ piecewise constant �nite elements for pressure

{ a{priori adapted coarse meshes with exact boundary adaptation

during successive re�nements

{ adaptive re�nement leading to conforming triangulations possible

{ adaptive FE-upwinding for convective terms (Samarskij upwind-

ing)

{ adaptive streamline{di�usion for convective terms

{ natural do nothing b.c.'s

{ 
ux- and pressure drop b.c.'s

Temporal discretization

{ One{step{�{scheme (Implicit Euler, Crank{Nicolson scheme)

{ Fractional{step{�{scheme as strongly A{stable implicit time step-

ping scheme of 2nd order

{ adaptive time stepping by estimating the local discretization error

(3 substeps with �t and 1 substep with 3�t)

{ extrapolation of partial solutions for higher accuracy



1.2 Discretization and solution techniques in featflow 11

1.2.2. Nonlinear solvers

Nonlinear iteration

{ for stationary and nonstationary problems of Navier{Stokes- or

Burgers type

{ �xed point iteration (quasi{Newton) with adaptive step length con-

trol by nonlinear defect minimization

{ additional defect correction possible

Linearization

{ for nonstationary problems only

{ semi{implicit treatment of nonlinear convective terms by linear

extrapolation (in time of 2nd order)

1.2.3. Linear solvers

Multigrid for velocity and pressure simultanously (Oseen):

{ nonconforming mesh adapted makro-elementwise interpolation for

grid{transfer

{ adaptive step length control for correction step (with F{cycle)

{ Vanca{like block{Gau�-Seidel scheme as smoother and solver

Multigrid for velocity (Burgers) and pressure (quasi{Poisson):

{ nonconforming mesh adapted makro-elementwise interpolation for

grid{transfer

{ adaptive step length control for correction step (with F{cycle)

{ ILU/SOR{scheme as smoother with special renumbering strategies



12 Mathematical Background

1.2.4. Discrete projection method

For linear (or nonlinear) coupled problems:

Su+ kBp = g ; B

T

u = 0

Given p

0

, solve for l = 1; : : : ; L:

p

l

= p

l�1

� �

l

[B

T

C

�1

B]

�1

(B

T

S

�1

Bp

l�1

�

1

k

B

T

S

�1

g)

Set p := p

L

, and determine u through () B

T

u = 0)

Su = g � kBp+

k

�

l

[�

l

I � SC

�1

]B(p

L

� p

L�1

)

Classical Richardson{scheme for Schur{complement formulation with

preconditioner P

�1

= [B

T

C

�1

B]

�1

C = S ; L = 1 for cc2d/ cc3d

C =M

l

; L � 1 for pp2d/ pp3d

If C =M

l

) P corresponds to discrete Laplacian with minimal matrix

stencil (5 in 2D/7 in 3D) independent of the mesh

Further improvements:

{ Additional preconditioner possible (of di�usive type)

{ Elimination of pressure boundary layers

{ Multilevel Discrete Projection scheme (cp2d/ cp3d)

�! "fastest" solver/discretization for fully nonstationary problems

�! "robust" solver/discretization for quasi{stationary problems

All proposed discretization and solution steps can be represented by the following 
ow

chart ("the Navier-Stokes tree"), leading to the methods mentioned above. It is remarkable

that most of all existing Navier-Stokes solvers can be interpreted by this tree structure.

This is a very powerfull tool for the understanding and, then, optimization of existing

algorithms and software.



1.2 Discretization and solution techniques in featflow 13

NSE:  ut  + N(u)u + ∇p = f ,  ∇⋅ u = 0  in 2D/3D + B.C .

[ Ι +  θkN(u)]u + k∇p = g , ∇⋅ u = 0

[M +  θkN(uh)]uh + kΒph = gh ,  ΒTu = 0 S(uh)uh + kΒph = gh

             ΒTuh = 0

Outer: N nonlinear steps
Inner: L DPM steps (Oseen)

Outer: L DPM steps (C=Ml )
Inner: N nonlinear steps (Burgers)

C=Ml

 L>=1
C=S
 L=1

CP2D/CP3D

"Galerkin schemes"

CC2D/CC3D PP2D/PP3D

"Projection schemes"

Chorin (p0=0)

Van Kan (p0= p old)

 L=1  L>1

BE, CN, FR

FEM, FV, FD

 N=1  N>1

Struc ture  o f  (a lmost )  a l l  so lvers

Figure 1.3: The Navier-Stokes tree



14 Mathematical Background

1.3. The Navier{Stokes solver packages in featflow

The di�erent solution schemes for the Navier{Stokes equations we can apply are the fol-

lowing ones:

Coupled solver cc2d/ cc3d:

We use the adaptive �xed point defect correction method as outer iteration, while for the

linear coupled subproblems we choose C = S and � = 1. Hence, the linear equations in

the nonlinear process are solved in "one iteration step", meaning that L = 1. This solver

is a multilevel based approach (see [19]) with a block Gau�-Seidel{scheme as smoothing

operation (Vanca{smoother). There may be problems on very anisotropic meshes, and

there is no gain in e�ciency for fully nonstationary problems if �t ! 0. This solver is,

actually, preferrable for the case of low Reynolds numbers (stationary or quasi{stationary

problems).

Mixed solver cp2d/ cp3d:

We use again the adaptive �xed point defect correction method as outer iteration and

select the preconditioner C = M

l

. We will obtain the same solutions as by cc2d/ cc3d,

however in a more robust way. First tests show that this solver works in a very e�cient

way, independent of the mesh and Re number, being very e�cient for fully nonstationary

problems. The essential tool is a so called "multilevel discrete projection" algorithm for the

linear coupled subproblems. This solver will be added to featflow in the next release.

Projection solver pp2d/ pp3d:

First, we apply a decoupling step for u and p as outer iteration ("nonlinear discrete

projection scheme"). We choose again C = M

l

, but perform only L = 1 iteration in each

time step. In the fully nonlinear case, we use the same �xed point iteration, as explained

above, for the transport{di�usion{step with nonlinear operator S ("Burgers equations").

In an analogous way, we treat (by extrapolation) the linearized schemes.

All versions of cc2d/ cc3d and cp2d/ cp3d (and even pp2d/ pp3d for L large enough)

lead to the "same" solutions if the numbers of nonlinear steps N and discrete projection

steps L are large enough. The complexity analysis in [22] shows that in 2D one single

iteration of the coupled scheme (C = S) can be expected to cost at least 10 (2D) until

20 (3D) times more than one iteration of the operator splitting method (C = M

l

). At

the same time, we have to use more nonlinear sweeps or smaller time steps for C = M

l

,

due to the more explicit character of the scheme. However, extensive numerical tests in

[21] show that the projection solvers are superior in most cases compared to cc2d/ cc3d,

especially for highly nonstationary 
ows.

In the next chapter one will see that featflow follows exactly this 
ow chart ("the

Navier-Stokes tree") and that the programming structure is a direct translation of this

tree structure.



2. Structure of featflow

2.1. The programming structure of featflow

As pointed in the last section, the programming structure of featflow follows directly

the tree structure in diagram 1.3.

The corresponding programs cc2d/ cc3d and pp2d/ pp3d (cp2d/ cp3d are not yet

�nished) are the main programs which form the body of the code. Their task is to

initialize all data, to build triangulations, linear matrices, pointer structures and right

hand sides on all grid levels (all in the �le init1.f) and to generate all vectors needed

(also in init1.f). After selecting all parameters for the chosen time stepping scheme

and corresponding adaptive time step size, the discretization process is �nished and the

time stepping loop may begin. That means, everything is prepared for solving the pointed

nonlinear coupled generalized stationary Navier{Stokes problems corresponding to each

time level. After doing this in the subroutine prostp.f, resp., mgstp.f, the main program

cc2d.f (or cc3d.f, pp2d.f, pp3d.f) continues with the time step control, selecting a

new time step size for the next (macro) step or repeating the last one if necessary, then

evaluates the actual solution vector with some extrapolation in time if needed, and enters

the output{subroutines fpost.f or error.f. These main programs provide most of the

output for monitoring all actions and give the needed workspace and computer times for

the performed application.

The subroutine on the next level is prostp.f, resp., mgstp.f, solving (or approximating

only in the case of the pure projection schemes pp2d/ pp3d) a number of generalized

stationary Navier{Stokes equations corresponding to the actual macro time level. The

number of these problems and their parameters depend on the scheme and the time step

control chosen. Furthermore, the corresponding boundary conditions are set in this �le

(by bndry.f).

As shown in the previous tree diagram, at this point there are the di�erences between

the codes pp2d/ pp3d and cc2d/ cc3d. While the fully coupled versions cc2d/ cc3d

perform an outer linearization by applying �rst the adaptive �xed point control as non-

linear solver, pp2d/ pp3d �rst decouple velocity and pressure, and then solve a nonlinear

Burgers{equation and a linear quasi{Poisson problem.

In detail, pp2d/ pp3d do the following for "solving" one nonlinear coupled equation: With

given pressure as right hand side, a nonlinear Burgers{equation is solved in nsdef.f, with

adaptive defect optimization (optcnl.f) and multigrid solvers for the linear convection{-

di�usion problems (m011.f). With the divergence of this intermediate velocity as right

hand side a corresponding update problem of quasi{Poisson type for the pressure is solved,

15



16 Structure of featflow

by a multigrid scheme (again m011.f), and the auxiliary solution is added to the old

pressure to obtain the new one. Finally, the di�usive preconditioner may be additionally

obtained to improve the new pressure. This approach corresponds to the special version

L = 1 of the nonlinear discrete projection scheme. We perform this decoupling process

only once, and, hence, we obtain an approximate solution in each time step only. However,

that is very similar to the idea of the (classical) projection schemes (of Van Kan [27], resp.,

Chorin [4]).

In contrast, cc2d/ cc3d (the upcoming cp2d/ cp3d analogously) perform one nonlinear

coupled solution step in a di�erent way: The �le nsdef.f handles the solution process

being a solver of the nonlinear coupled equation, with performing Oseen equations (lin-

earized Navier{Stokes equations) as preconditioner in each nonlinear step (m011.f, with

a special block Gauss-Seidel smoother), and following defect minimization (optcnl.f).

The versions cp2d/ cp3d will di�er in solving the linearized coupled equations by a spe-

cial multilevel scheme involving the linear discrete projection method ("multilevel discrete

projection method").

This approach guarantees the fully coupled solution and, hence, a larger stability and im-

proved accuracy compared to pp2d/ pp3d. However, the numerical e�ort increases and,

in this actual release, cc2d/ cc3d is preferrable in the case of low Reynolds numbers and

on moderate meshes only.

Following these remarks the programming structure of cc2d/ cc3d and pp2d/ pp3d can

be represented by the following diagrams.

c c 2 d . f / c c 3 d . f

nsdef.f

dfk t . f
gupwd.f
supwg.f
bndry.f

optcnl.fm011.f

vanca.f
mgrout. f

fpost . fin i t1 . f

e r r o r . f

gdat.f
xmrout. f
bbuild.f

mgstp. f

Figure 2.1: The cc2d/ cc3d structure



2.1 The programming structure of featflow 17

p p 2 d . f / p p 3 d . f

nsdef.f

dfk t . f
gupwd.f
supwg.f
bndry.f
m011.f
optcnl.f

fpost . fin i t1 . f

e r r o r . f

gdat.f
xmrout. f
bbuild.f
projma.f

prostp . f

m011 . f
d f k t . f

mgrout. f

mgrout. f

Figure 2.2: The pp2d/ pp3d structure

Beside the explained solver tools there are some other programs belonging to featflow

which are essential for the preprocessing (description of domain 
, coarsest triangula-

tion, pre{adapted meshes, output for graphics) and for the preparation of an application

(generation and interpolation of a start solution). These are in detail:

omega2d:

omega2d is a graphical preprocessor which provides tools for describing and de�ning the

boundary components of a 2D domain 
 and for generating a �rst (and very coarse) tri-

angulation of this domain. This process is fully interactive and mouse{oriented, however,

actually, running under DOS and WINDOWS 3.1 only. It has been created by Matthies/

Schieweck in Magdeburg, and further development is under progress. In the next chapter

we demonstrate how to use it, and the complete manual of Version 1.6 can be found in

the manual directory of featflow.

trigen2d:

trigen2d is a preprocessing tool for designing "better" 2D coarse triangulations and

to write the corresponding data in some special formats onto hard disc. It reads in a

parametrization (in standard feat- or in omega2d{format) and a corresponding mesh

(in feat{format), and re�nes it locally in a successive manner. The user has di�erent

possibilities for mesh re�nement, and in this release the elements to be re�ned have to

be given in a list. We hope to provide a graphical interface for this marking process in

the next version, and, additionally, to use this tool in a fully adaptive mesh re�nement



18 Structure of featflow

process. Furthermore, a boundary check on consistency for complex domains is included.

The formats for data{output are: formatted or unformatted feat{style, byu{style and

avs-ucd{format.

tr2to3:

tr2to3 is a tool providing 3D mesh generation from 2D meshes, all in feat{format.

This tool is designed for applications when the 3D mesh is simply constructed by popping

2D mesh layers in a sandwich{like technique. For instance, problems in ducts around

cylinders or other "prism"-like bodies are belonging to this class (see the example in the

next chapter).

trigen3d:

trigen3d is doing the same job as trigen2d, but in 3 dimensions. However, up to now,

only feat{format is supported (that means, the boundary of 
 must be de�ned by the

standard feat parametrization �le). We hope to add some appropriate CAD{tools in

future, for being able to model much more complex domains. Additionally, the adaptive

grid re�nement procedure is not �nished yet, and will be part of the next version. However,

at least the data{output is performing analogously as in 2D.

intpol2d and intpol3d:

These programs will be tools for interpolating a given solution vector on a given mesh to

an arbitrary di�erent triangulation, in 2D as well as in 3D. Both data and grid have to be

given in feat{format. These tools will be available in the next release.

2.2. The input data of featflow

In this section, we explain all input data which are needed to start an application with

featflow. Let's start with the preprocessing tools, and with some general comments. In

the next chapter, we demonstrate explicitely the meaning of all input data.

2.2.1. General comments for user{input

First of all, �les containing pure input parameter for user applications have to be in the

directory #data. The �le name is the name of the corresponding program, ended with

.dat, for instance #data/pp2d.dat. These �les will be explained in detail in the following

subsections. Examples for di�erent "styles" of parameter parameter �les, concerning ro-

bustness, e�ciency and small stoarge amount, can be found in the directory application

/data example.

Furthermore, the only source{�les which have to be modi�ed (by editing or copying) are

the parametrization �les parq2d.f, resp., parq3d.f, and the data �les indat2d.f, resp.,



2.2 The input data of featflow 19

indat3d.f. They contain all information about boundary values, right hand sides, ex-

act solutions and their derivatives and output constants like lift and drag or integral or

pointwise values in some special coordinates. The last �le which has to be edited is a

corresponding .inc{�le, for instance pp2d.inc, containing the needed storage size for the

applied program (for instance, NNWORK=1.000.000 means 1 million double precision ele-

ments needed, or, resp., a storage amount of 8 Mbyte). These �les are usually located in the

directory input files. The best way is to collect all data �les together in a subdirectory,

corresponding to the actual application. This is usually done by featflow, for instance

in the directories application/user start, application/example and application/

comp. Furthermore, the corresponding make�les are also located in input files, such

that all data �les are concentrated at one place.

2.2.2. indat2d.f/indat3d.f/parq2d.f/parq3d.f { data �les for user

indat2d.f:

************************************************************************

DOUBLE PRECISION FUNCTION FDATIN(ITYP,IBLOC,X,Y,TIMENS,RE)

*

* Prescribed data for files coeff.f and bndry.f

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

PARAMETER (PI=3.1415926535897931D0)

C

FDATIN=0D0

C

C=======================================================================

C *** Case 1: Velocity boundary values and/or exact solution

C=======================================================================

C

IF (ITYP.EQ.1) THEN

C

IF (IBLOC.EQ.1) THEN

IF (X.EQ.0D0) FDATIN=4D0*0.3D0/0.1681D0*Y*(0.41D0-Y)

* *SIN(0.5D0*PI*MIN(TIMENS,1D0)/1D0)

ENDIF

C

IF (IBLOC.EQ.2) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 2: Velocity x-derivative of exact solution

C=======================================================================

C

IF (ITYP.EQ.2) THEN

C

IF (IBLOC.EQ.1) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 3: Velocity y-derivative of exact solution



20 Structure of featflow

C=======================================================================

C

IF (ITYP.EQ.3) THEN

C

IF (IBLOC.EQ.1) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 4: Exact pressure solution

C=======================================================================

C

IF (ITYP.EQ.4) THEN

C

FDATIN=0D0

C

ENDIF

C

C=======================================================================

C *** Case 5: Right hand side for momentum equation

C=======================================================================

C

IF (ITYP.EQ.5) THEN

C

IF (IBLOC.EQ.1) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 6: Right hand side for continuity equation

C=======================================================================

C

IF (ITYP.EQ.6) THEN

C

FDATIN=0D0

C

ENDIF

C

C=======================================================================

C *** Case 7: Mean pressure values

C=======================================================================

C

IF (ITYP.EQ.7) THEN

DPAR=X

INPR=IBLOC

C

IF ((DPAR.GT.1D0).AND.(DPAR.LT.2D0).AND.(INPR.EQ.1)) THEN

FDATIN=0D0

ENDIF

C

IF ((DPAR.GT.3D0).AND.(DPAR.LT.4D0).AND.(INPR.EQ.1)) THEN

FDATIN=0D0

ENDIF

C

ENDIF

C

99999 END

C



2.2 The input data of featflow 21

************************************************************************

SUBROUTINE NEUDAT(INPART,INPRN,DPARN1,DPARN2,TIMENS)

*

* Neumann-boundary part

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

C

C=======================================================================

C *** Case 0: Set number of Neumann-boundary parts

C=======================================================================

C

IF (INPART.EQ.0) THEN

INPART=1

ENDIF

C

C=======================================================================

C *** Case <>0: Specify Neumann-boundary parts

C=======================================================================

C

IF (INPART.GT.0) THEN

C

IF (INPART.EQ.1) THEN

DPARN1=1D0

DPARN2=2D0

INPRN =1

ENDIF

C

ENDIF

C

99999 END

C

************************************************************************

SUBROUTINE PTSDAT(TIMENS,DNU)

*

* Data for Point-output (for fpost and bdpres and bdforc)

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

COMMON /NSPTS/ KPU(2),KPP(4),KPX(4),KPI(2),DPI(2,2),DPF(2)

SAVE

C

EXTERNAL UE

C

C=======================================================================

C *** Points for velocity, pressure and flux-tracing

C=======================================================================

C

KPU(1)=22

KPU(2)=2

C

KPP(1)=42

KPP(2)=46

KPP(3)=2

KPP(4)=22

C

KPX(1)=41

KPX(2)=10

C

C=======================================================================

C *** Parameters for 2 integral pressures in bdpres.f

C=======================================================================

C

KPI(1) =2

DPI(1,1)=0D0

DPI(2,1)=1D0

C

KPI(2) =2

DPI(1,2)=0.00D0

DPI(2,2)=0.25D0

C

C=======================================================================



22 Structure of featflow

C *** Parameters for lift (DFW) and drag (DAW) in bdforc.f (INPR=2)

C ***

C *** dfw=2 int_s [dpf(1) dut/dn n_y - p n_x] ds / dpf(2)

C *** daw=2 int_s [dpf(1) dut/dn n_x + p n_y] ds / dpf(2)

C ***

C=======================================================================

C

RHO =1.0D0

DIST =0.1D0

UMEAN=0.2D0

C

DPF(1)=RHO*DNU

DPF(2)=RHO*DIST*UMEAN**2

C

99999 END

Most command lines have not to be explained more in detail (even being written in

FORTRAN77 they explain themselves); only a few comments are necessary:

In the case IF (ITYP.EQ.7) THEN ... in FDATIN the mean pressure values on boundary

parts corresponding to natural b.c.'s can be described. This is done by prescribing the

starting parameter value (DPAR1) and the ending parameter value (DPAR2) corresponding to

the parametrization which is used for describing the geometrical boundary. Additionally,

the number of the boundary component has to be de�ned (INPR).

In NEUDAT the boundary parts containing natural boundary conditions are de�ned. This is

done by prescribing the number of such boundary parts (by setting INPART), and then again

by setting the starting parameter value (DPARN1), the ending parameter value (DPARN2)

and the corresponding boundary component (INPRN).

In PTSDAT certain mesh points are de�ned in which some velocity components (KPU(1),

KPU(2)), some pressure values (KPP(1),KPP(2),KPP(3),KPP(4)) and a 
ux value (de�ned

as di�erence of streamfunction values KPX(1) and KPX(2)) are printed for the runtime

protocol. Furthermore, 2 integral pressure values on some �xed boundary parts (parameter

values DPI(1,1),DPI(2,1) and boundary component KPI(1), resp., DPI(1,2),DPI(2,2)

and KPI(2)) are de�ned appropriately. And �nally, some constants for the calculation of

lift and drag on boundary component 2 (!) are prescribed. If not desired, set DPF(1),

DPF(2) to 0, or KPI(1), KPI(2) to 0.



2.2 The input data of featflow 23

indat3d.f:

************************************************************************

DOUBLE PRECISION FUNCTION FDATIN(ITYP,IBLOC,X,Y,Z,TIMENS,RE)

*

* Prescribed data for files coeff.f and bndry.f

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

PARAMETER (PI=3.1415926535897931D0)

C

FDATIN=0D0

C

C=======================================================================

C *** Case 1: Velocity boundary values and/or exact solution

C=======================================================================

C

IF (ITYP.EQ.1) THEN

C

IF (IBLOC.EQ.1) THEN

IF (X.EQ.0D0)

* FDATIN=16D0*0.45D0/(0.41D0**4)*Y*(0.41D0-Y)*Z*(0.41D0-Z)

ENDIF

C

IF (IBLOC.EQ.2) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.3) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 2: Velocity x-derivative of exact solution

C=======================================================================

C

IF (ITYP.EQ.2) THEN

C

IF (IBLOC.EQ.1) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.3) THEN

IF (X.EQ.0.0D0) FDATIN=0D0

ENDIF

ENDIF

C

C=======================================================================

C *** Case 3: Velocity y-derivative of exact solution

C=======================================================================

C

IF (ITYP.EQ.3) THEN

C

IF (IBLOC.EQ.1) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.3) THEN

FDATIN=0D0

ENDIF



24 Structure of featflow

C

ENDIF

C

C=======================================================================

C *** Case 4: Velocity z-derivative of exact solution

C=======================================================================

C

IF (ITYP.EQ.4) THEN

C

IF (IBLOC.EQ.1) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.3) THEN

FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 5: Exact pressure solution

C=======================================================================

C

IF (ITYP.EQ.5) THEN

C

FDATIN=0D0

C

ENDIF

C

C=======================================================================

C *** Case 6: Right hand side for momentum equation

C=======================================================================

C

IF (ITYP.EQ.6) THEN

C

IF (IBLOC.EQ.1) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.2) THEN

FDATIN=0D0

ENDIF

C

IF (IBLOC.EQ.3) THEN

FDATIN=0D0

ENDIF

C

ENDIF

C

C=======================================================================

C *** Case 7: Right hand side for continuity equation

C=======================================================================

C

IF (ITYP.EQ.7) THEN

C

FDATIN=0D0

C

ENDIF

C

C=======================================================================

C *** Case 8: Mean pressure values

C=======================================================================

C

IF (ITYP.EQ.8) THEN

C

FDATIN=0D0



2.2 The input data of featflow 25

C

ENDIF

C

99999 END

C

************************************************************************

SUBROUTINE NEUDAT(IEL,INPR,PX,PY,PZ,TIMENS,IFLAG)

*

* Neumann-boundary part

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

C

C=======================================================================

C *** Set Neumann-boundary parts

C=======================================================================

C

IF (PX.EQ.2.5D0) THEN

IFLAG=1

ENDIF

C

99999 END

C

************************************************************************

SUBROUTINE BDPDAT(IEL,INPR,PX,PY,PZ,TIMENS,IFLAG1,IFLAG2)

*

* Pressure integral boundary part

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

C

C=======================================================================

C *** Set pressure integral boundary parts

C=======================================================================

C

IF (((PZ.GT.0.00D0).AND.(PZ.LT.0.41D0)).AND.

* ((PX.GE.0.45D0).AND.(PX.LE.0.55D0)).AND.

* ((PY.GE.0.15D0).AND.(PY.LE.0.25D0))) THEN

IFLAG1=1

ENDIF

C

IF (((PZ.GT.0.00D0).AND.(PZ.LT.0.41D0)).AND.

* (PX.EQ.0.45D0) .AND.

* ((PY.GE.0.15D0).AND.(PY.LE.0.25D0))) THEN

IFLAG2=1

ENDIF

C

99999 END

C

************************************************************************

SUBROUTINE BDFDAT(IEL,INPR,PX,PY,PZ,TIMENS,DNU,IFLAG,DPF1,DPF2)

*

* lift and drag data

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

C

C=======================================================================

C *** Parameters for lift (DFW) and drag (DAW) in bdforc.f (INPR=2)

C ***

C *** dfw=2 int_s [dpf(1) dut/dn n_y - p n_x] ds / dpf(2)

C *** daw=2 int_s [dpf(1) dut/dn n_x + p n_y] ds / dpf(2)

C ***

C=======================================================================

C

RHO =1.0D0

DIST =0.041D0

UMEAN=0.2D0

C

DPF1=RHO*DNU

DPF2=RHO*DIST*UMEAN**2

C

C=======================================================================



26 Structure of featflow

C

IF (((PZ.GT.0.00D0).AND.(PZ.LT.0.41D0)).AND.

* ((PX.GE.0.45D0).AND.(PX.LE.0.55D0)).AND.

* ((PY.GE.0.15D0).AND.(PY.LE.0.25D0))) THEN

IFLAG=1

ENDIF

C

99999 END

C

************************************************************************

SUBROUTINE PTSDAT(TIMENS,DNU)

*

* Data for Point-output (for fpost)

************************************************************************

IMPLICIT DOUBLE PRECISION(A,C-H,O-U,W-Z),LOGICAL(B)

COMMON /NSPTS/ KPU(2),KPP(4)

SAVE

C

C=======================================================================

C *** Points for velocity and pressure

C=======================================================================

C

KPU(1)=7263

KPU(2)=3444

C

KPP(1)=3491

KPP(2)=3557

KPP(3)=3575

KPP(4)=3444

C

99999 END

In NEUDAT the boundary parts containing natural boundary conditions are de�ned. This is

done by prescribing the cartesian coordinates for this manifold. Analogously, in BDPDAT the

coordinates for the pressure integral boundary parts are set, and in BDFDAT the coordinates

for calculating lift and drag. If not desired, set the corresponding IFLAG parameters to 0.

Again, in PTSDAT certain mesh points are de�ned in which some velocity components

(KPU(1), KPU(2)) and some pressure values (KPP(1),KPP(2),KPP(3),KPP(4)) are printed

for the runtime protocol.



2.2 The input data of featflow 27

parq2d.f:

This �le is either a standard feat parametrization �le which is created by your own (see

the feat2d manual) or the special omega2d parametrization �le. In this case, the �le

parpre.f has to be copied onto parq2d.f.

parq3d.f:

************************************************************************

DOUBLE PRECISION FUNCTION PARX(T1,T2,T3,IBCT)

IMPLICIT REAL*8 (A-H,O-Z)

PARX=T1

99999 END

C

DOUBLE PRECISION FUNCTION PARY(T1,T2,T3,IBCT)

IMPLICIT REAL*8 (A-H,O-Z)

PARY=T2

99999 END

C

DOUBLE PRECISION FUNCTION PARZ(T1,T2,T3,IBCT)

IMPLICIT REAL*8 (A-H,O-Z)

PARZ=T3

GOTO 99999

99999 END

C

************************************************************************

SUBROUTINE TRPARV (DCORVG,KNPR,KVEL,NVT,NVEL)

IMPLICIT DOUBLE PRECISION (A,C-H,O-U,W-Z),LOGICAL(B)

DIMENSION DCORVG(3,*),KNPR(*),KVEL(NVEL,*)

C

C-----------------------------------------------------------------------

C

DO 10 IVT=1,NVT

INPR=KNPR(IVT)

IF (INPR.EQ.0) GOTO 10

C

IEL=KVEL(4,IVT)

PX=DCORVG(1,IVT)

PY=DCORVG(2,IVT)

PZ=DCORVG(3,IVT)

C

IF ((ABS(PZ-0.0D0).GT.1D-8).AND.(ABS(PZ-0.41D0).GT.1D-8).AND.

* (ABS(PX-0.0D0).GT.1D-8).AND.(ABS(PX-2.50D0).GT.1D-8).AND.

* (ABS(PY-0.0D0).GT.1D-8).AND.(ABS(PY-0.41D0).GT.1D-8)) THEN

PXM=0.50D0

PYM=0.20D0

RAD=0.05D0

DL=SQRT((PX-PXM)**2+(PY-PYM)**2)

DCORVG(1,IVT)=PXM+RAD/DL*(PX-PXM)

DCORVG(2,IVT)=PYM+RAD/DL*(PY-PYM)

GOTO 10

ENDIF

C

C

IF ((ABS(PZ-0.0D0).LE.1D-8).OR.(ABS(PZ-0.41D0).LE.1D-8)) THEN

PXM=0.50D0

PYM=0.20D0

RAD=0.05D0

RADH=0.05D0+1D-8

IF ((ABS(PX-PXM).LE.RADH).AND.(ABS(PY-PYM).LE.RADH).AND.

* (IEL.EQ.0)) THEN

DL=SQRT((PX-PXM)**2+(PY-PYM)**2)

DCORVG(1,IVT)=PXM+RAD/DL*(PX-PXM)

DCORVG(2,IVT)=PYM+RAD/DL*(PY-PYM)

GOTO 10

ENDIF

ENDIF



28 Structure of featflow

C

10 CONTINUE

C

END

The functions parx, pary, parz simply prescribe the cartesian coordinates, while the

subroutine trparv provides transformations to more complex domains. In this case, a

channel with an innner cylinder around (0:5; 0:2) and radius r = 0:05 is prescribed. This

�le corresponds to the example in chapter 3.



2.2 The input data of featflow 29

2.2.3. trigen2d.dat { parameter �le for trigen2d

M feat parameter for output

= 0: no output

> 0: output, see feat2d manual

MT feat parameter for terminal output

= 0: no output

> 0: output, see feat2d manual

ICHECK feat parameter for subroutine tracing

= 0: no tracing

> 0: tracing, see feat2d manual

IMESH parameter for type of parametrization

= 0: feat parametrization

= 1: omega2d parametrization

CPARM name of omega2d parametrization �le

IBDCHK parameter for boundary checking for further re�nements

= 0: no checking

> 0: = number of �ner boundary points for check of boundary consistency for further re�nement

IBYU level for byu output

IAVS level for avs output

NLEV number of re�ned levels-1

IFMT parameter for level of output

= i: formatted output of mesh data until level i

= �i: unformatted output of mesh data until level i

CFILEI name of input coarse mesh

CFILEO name of created output coarse mesh

ITYPEL parameter for type of element re�nement

= 0: no adaptive re�nement strategy

= 1: element is partitioned into 9 �ner elements

for: all elements allowed

DELMA: distance of element boundary to �rst re�nement line (in percentage)

DELMB: = no use

usual: DELMA = 0.3333333 � equidistant

= 2: element is partitioned (tangential to domain boundary) into 3 �ner stripes

for: only elements belonging to 1 (!) boundary component allowed

DELMA: distance of domain boundary to �rst re�nement line (in percentage)

DELMB: distance of domain boundary to second re�nement line (in percentage)

usual: DELMA = 0.3333333, DELMA = 0.6666667 � equidistant

= 3: element is partitioned (tangential to domain boundary) into 2 �ner stripes

for: only elements belonging to 1 (!) boundary component allowed

DELMA: distance of domain boundary to �rst re�nement line (in percentage)

DELMB: no use

usual: DELMA = 0.5 � equidistant

= 4: element is partitioned (normal to domain boundary) into 3 �ner stripes

for: only elements belonging to 1 (!) boundary component allowed

DELMA: distance of element boundary to �rst re�nement line (in percentage)

DELMB: no use

usual: DELMA = 0.3333333 � equidistant

= 5: element is partitioned into 5 �ner elements

for: all elements allowed

DELMA: distance of element boundary to �rst re�nement line (in percentage)

DELMB: no use

usual: DELMA = 0.3333333 � equidistant

= 6: element is partitioned into 3 �ner elements

for: only elements belonging to 2 (!) boundary component allowed



30 Structure of featflow

for: "corner element"

DELMA: distance of element boundary to new inner vertex (in percentage)

DELMB: no use

usual: DELMA = 0.5 � equidistant

NELMOD name of elements to be adaptively re�ned

list of elements to be re�ned follows after DELMB

one element per line, separated by "return"

DELMA parameter for distance in re�nement process

= 0: no adaptive re�nement strategy

= �i: unformatted output of mesh data until level i

DELMB parameter for distance in re�nement process

= 0: no adaptive re�nement strategy

= �i: unformatted output of mesh data until level i

}DELMA

Figure 2.3: ITYPEL = 1: Re�nement into 9 �ner elements

}DELMA}DELMB

BOUNDARY

INTERIOR

INT. INT.

Figure 2.4: ITYPEL = 2: Re�nement into 3 �ner elements

}DELMA

BOUNDARY

INTERIOR

INT. INT.

B.

B.

N o t  a l l o w e d  ! ! !

Figure 2.5: ITYPEL = 3: Re�nement into 2 �ner elements



2.2 The input data of featflow 31

DELMA

}

BOUNDARY

INTERIOR

INT. INT.

N o t  a l l o w e d  ! ! !

B.

B.

DELMA

}

Figure 2.6: ITYPEL = 4: Re�nement into 3 �ner elements

DELMA

}

Figure 2.7: ITYPEL = 5: Re�nement into 5 �ner elements

BOUNDARY

INTERIOR

INT.

DELMA

}

B.

N o t  a l l o w e d  ! ! !

BOUNDARY

B.

B.B.

Figure 2.8: ITYPEL = 6: Re�nement into 3 �ner elements



32 Structure of featflow

2.2.4. tr2to3.dat { parameter �le for tr2to3

M feat parameter for output

= 0: no output

> 0: output, see feat2d manual

MT feat parameter for terminal output

= 0: no output

> 0: output, see feat2d manual

ICHECK feat parameter for subroutine tracing

= 0: no tracing

> 0: tracing, see feat2d manual

IMESH parameter for type of parametrization

= 0: feat parametrization

= 1: omega2d parametrization

CPARM name of omega2d parametrization �le

IBDCHK parameter for boundary checking for further re�nements

= 0: no checking

> 0: = number of �ner boundary points for check of boundary consistency for further re�nement

IBYU level for byu output

IAVS level for avs output

CFILEI name of input coarse mesh

CFILEO name of created output coarse mesh

NPZ parameter for number of z-slides

list of interior z-coordinates follows after PZMAX

one element per line, separated by "return"

PZMIN parameter for minimum z-coordinate

PZMAX parameter for maximum z-coordinate



2.2 The input data of featflow 33

2.2.5. trigen3d.dat { parameter �le for trigen3d

M feat parameter for output

= 0: no output

> 0: output, see feat2d manual

MT feat parameter for terminal output

= 0: no output

> 0: output, see feat2d manual

ICHECK feat parameter for subroutine tracing

= 0: no tracing

> 0: tracing, see feat2d manual

IBYU level for byu output

IAVS level for avs output

NLEV number of re�ned levels-1

IFMT parameter for level of output

= i: formatted output of mesh data until level i

= �i: unformatted output of mesh data until level i

CFILEI name of input coarse mesh

CFILEO name of created output coarse mesh



34 Structure of featflow

2.2.6. pp2d.dat/pp3d.dat { parameter �les for pp2d and pp3d

The input parameter for the 2D- and the 3D version are almost identical. The parameter

�les pp2d.dat/pp3d.dat and cc2d.dat/cc3d.dat di�er with respect to a few parameters

only.

Specials in pp2d.dat/pp3d.dat:

IMASSL, ICUBML, ISORTU, ICYCU, ILMINU, ILMAXU, IINTU, ISMU, ISLU, NSMU,

NSLU, NSMUFA, ISORTP, ICYCP, ILMINP, ILMAXP, IINTP, ISMP, ISLP, NSMP,

NSLP, NSMPFA, EPSUR, EPSUD, DMPUD, DMPUMG, DMPUSL, RLXSMU, RLXSLU, AMINU,

AMAXU, EPSP, DMPPMG, DMPPSL, RLXSMP, AMINP, AMAXP, IPROJ, PRDIF1, PRDIF2

IMESH parameter for type of parametrization

= 0: feat parametrization

= 1: omega2d parametrization (active only in pp2d!!!)

IRMESH input of mesh data

= 0: create mesh

> 0: read mesh (created by trigen2d)

> 1: formatted mesh data (= 1 unformatted)

CPARM name of omega2d parametrization �le

CMESH name of coarse mesh (not longer than 15 characters)

CFILE name of protocol �le

ISTART input of start vector

= 0: start with homogeneous vector (only b.c.'s)

= 1: read (unformatted) start vector from same level (= �1: formatted)

= 2: read (unformatted) start vector from level-1 (= �2: formatted)

CSTART name of start vector �le (not longer than 15 characters)

ISOL output of solution vector

= 0: no output

= 1: unformatted output on �nest level

> 1: formatted output on �nest level

CSOL name of solution vector �le (not longer than 15 characters)

M feat parameter for output

= 0: no output

> 0: output, see feat2d manual

MT feat parameter for terminal output

= 0: no output

> 0: output, see feat2d manual

ICHECK feat parameter for subroutine tracing

= 0: no tracing

> 0: tracing, see feat2d manual

MSHOW parameter for protocol

= 0: reduced protocol in �le CFILE

= 1: expanded protocol in �le CFILE

= 2: expanded protocol in �le CFILE and terminal

= 3: full protocol in �le CFILE

= 4: full protocol in �le CFILE and terminal

NLMIN parameter for smallest level number

NLMAX parameter for highest level number

IELT parameter for element type



2.2 The input data of featflow 35

= 0: E031 parametric

= 1: E030 parametric

= 2: E031 nonparametric

= 3: E030 nonparametric

ISTOK parameter for Stokes calculation

= 1: Stokes calculation

<> 1: Navier{Stokes calculation

IRHS parameter for right hand side

= 0: homogeneous r.h.s

= 1: steady inhomogeneous r.h.s

= 2: nonsteady inhomogeneous r.h.s

IBDR parameter for boundary

= 0: Dirichlet + Neumann boundary values

= 1: Dirichlet + Neumann + pressure drop boundary values

= 2: = 1 + time dependent Dirichlet/Neumann conditions

IERANA parameter for error analysis

= 0: no error analysis

> 0: error analysis with quadrature formula IERANA

IMASS parameter for mass matrix type

= 0: lumped mass matrix

= 1: real mass matrix

IMASSL parameter for element type of lumped mass matrix

= 0: E031 parametric

= 1: E030 parametric

= 2: E031 nonparametric

= 3: E030 nonparametric

IUPW parameter for convective terms

= 0: streamline di�usion

= 1: upwinding

IPRECA parameter for di�usive and reactive matrices

= 0: single precision in RAM

= 1: double precision in RAM

= 2: single precision from hard disc

= 3: double precision from hard disc

= 4: double precision built up every time

IPRECB parameter for gradient and divergence matrices

= 0: single precision with usual quadrature, matrix in RAM

= 1: double precision with usual quadrature, matrix in RAM

= 2: double precision, exact matrix entries, elementwise application

= 3: single precision with exact evaluation, matrix in RAM

= 4: double precision with exact evaluation, matrix in RAM

ICUBML quadrature formula for lumped mass matrix

> 0: usual lumping

< 0: diagonal lumping

ICUBM quadrature formula for real mass matrix

ICUBA quadrature formula for Laplacian matrix

ICUBN quadrature formula for convective matrix

ICUBB quadrature formula for gradient matrix

ICUBF quadrature formula for right hand side

INLMIN parameter for smallest number of nonlinear steps matrix

= 1: linear extrapolation in time (if INLMAX=1)

= �1: constant extrapolation in time (if INLMAX=-1)

INLMAX parameter for largest number of nonlinear steps matrix

= 1: linear extrapolation in time (if INLMIN=1)

= �1: constant extrapolation in time (if INLMIN=-1)



36 Structure of featflow

ISORTU parameter for renumbering of edges

= 1: with respect to x{coordinate

= 2: with respect to y{coordinate

= 3: with Cuthill-McKee algorithm

ICYCU parameter for mg-cycle for velocity

= 0: F{cycle

= 1: V{cycle

= 2: W{cycle

ILMINU parameter for smallest number of mg-steps for velocity

ILMAXU parameter for largest number of mg-steps for velocity

IINTU parameter for mg-interpolation for velocity

= 1: E031 (parametric or nonparametric)

= 2: E030 (parametric or nonparametric)

ISMU parameter for mg-smoother for velocity

= 1: Jacobi

= 2: SOR

= 3: SSOR

= 4: ILU

ISLU parameter for mg-solver for velocity

= 1: SOR

= 2: BiCGSTAB

= 3: ILU

= 4: BiCGSTAB + ILU

NSMU parameter for number of mg-smoothing steps for velocity

NSLU parameter for number of mg-solving steps for velocity

NSMUFA parameter for change of number of mg-smoothing steps on coarser levels for velocity

= n: NSMU � n

NLMAX�ILEV

smoothing steps if on level ILEV

ISORTP parameter for renumbering of elements

= 1: with respect to x{coordinate

= 2: with respect to y{coordinate

= 3: with Cuthill-McKee algorithm

ICYCP parameter for mg-cycle for pressure

= 0: F{cycle

= 1: V{cycle

= 2: W{cycle

ILMINP parameter for smallest number of mg-steps for pressure

ILMAXP parameter for largest number of mg-steps for pressure

IINTP parameter for mg-interpolation for pressure

= 1: constant interpolation

= 2: rotated trilinear interpolation

= 3: trilinear interpolation

= 3: modi�ed + optimized rotated trilinear interpolation

ISMP parameter for mg-smoother for pressure

= 1: Jacobi

= 2: SOR

= 3: SSOR

= 4: ILU

ISLP parameter for mg-solver for pressure

= 1: SOR

= 2: CG

= 3: ILU

= 4: CG + ILU

NSMP parameter for number of mg-smoothing steps for pressure

NSLP parameter for number of mg-solving steps for pressure



2.2 The input data of featflow 37

NSMPFA parameter for change of number of mg-smoothing steps on coarser levels for pressure

= n: NSMP � n

NLMAX�ILEV

smoothing steps if on level ILEV

RE parameter for viscosity 1/NU

UPSAM parameter for convectice discretization

> 0: upwind: parameter for Samarskij upwinding (usual: UPSAM=1)

> 0: SD: leading coe�cient with spatial adaptivity (usual: UPSAM=1)

< 0: upwind: simple �rst order upwinding

< 0: SD: leading coe�cient without spatial adaptivity (usual: UPSAM=-1)

OMGMIN parameter for lower limit for optimal relaxation in nonlinear iteration

> 0: relative changes are calculated

< 0: no relative changes are calculated (if OMGMIN = OMGMAX)

OMGMAX parameter for upper limit for optimal relaxation in nonlinear iteration

> 0: relative changes are calculated

< 0: no relative changes are calculated (if OMGMIN = OMGMAX)

OMGINI parameter for start value for calculation of optimal relaxation in nonlinear iteration

EPSUR stopping criterion for relative changes in velocity in nonlinear iteration

EPSUD stopping criterion for defect in velocity in nonlinear iteration

DMPUD stopping criterion for defect improvement in velocity in nonlinear iteration

DMPUMG stopping criterion for defect improvement in velocity in linear mg-iteration

DMPUSL stopping criterion for defect improvement for solver in velocity in linear mg-iteration

RLXSMU relaxation parameter for mg-smoother in velocity

RLXSLU relaxation parameter for mg-solver in velocity

AMINU lower limit for optimal correction for mg-solver in velocity

AMAXU upper limit for optimal correction for mg-solver in velocity

EPSP stopping criterion for divergence of velocity in pressure equation

DMPPMG stopping criterion for defect improvement in pressure in linear mg-iteration

DMPPSL stopping criterion for defect improvement for solver in pressure in linear mg-iteration

RLXSMP relaxation parameter for mg-smoother in pressure

RLXSLP relaxation parameter for mg-solver in pressure

AMINP lower limit for optimal correction for mg-solver in pressure

AMAXP upper limit for optimal correction for mg-solver in pressure

IPROJ parameter for type of projection scheme

= 0: �rst order (Chorin)

> 0: second order (Van Kan)

< 0: ABS(IPROJ) steps of �rst order, then second order

NITNS maximum number of macro time steps

EPSNS stopping criterion for time derivative

TIMENS parameter for absolute start time

THETA parameter for time stepping value

= 1: Implicit Euler (�rst order), if IFRSTP=0

= 0:5: Crank{Nicolson (second order), if IFRSTP=0

TSTEP starting time step

IFRSTP parameter for time stepping scheme

= 0: one step schemes

= 1: fractional step scheme (second order)

INSAV parameter for unformatted saving of solution vector

= 0: no saving

> 0: macro step size for saving procedure (in #ns)

INSAVN modulo number of �les for unformatted saving of solution vector (maximum = 10)

DTFILM time di�erence for unformatted �lm output

DTAVS time di�erence for avs output

DTBYU time di�erence for byu output

IFUSAV level for unformatted velocity �lm output



38 Structure of featflow

IFPSAV level for unformatted pressure �lm output

IFXSAV level for unformatted streamline �lm output

active only in pp2d!!!

IAVS level for avs output

IBYU level for byu output

IFINIT start �le number for �lm output

IADTIM parameter for adaptive time step control

= 0: no control, �xed time step TSTEP is used

= 1: prediction without repetition

= 2: prediction with repetition, if nonlinear stopping criteria too large

= 3: prediction with repetition, if time error or nonlinear stopping criteria too large

< 0: the same as ABS(IADTIM), but with extrapolation in time

TIMEMX maximum absolute time for stopping

DTMIN parameter for smallest time step during adaptive control

DTMAX parameter for largest time step during adaptive control

DTFAC factor for largest possible time step changes

TIMEIN absolute time for start procedure

EPSADI parameter for time error limit in start phase

EPSADL parameter for time error limit after start phase

EPSADU upper limit for acceptance for ABS(IADTIM)=3

IEPSAD parameter for type of error control

= 1: control of u(L2)

= 2: control of u(MAX)

= 3: control of p(L2)

= 4: control of p(MAX)

= 5: control of MAX(u(L2),p(L2))

= 6: control of MAX(u(MAX),p(MAX))

= 7: control of MAX(u(L2),p(L2),u(MAX),p(MAX))

= 8: control of MIN(u(L2),p(L2),u(MAX),p(MAX))

IADIN parameter for error control in start phase

= 0: EPSADL=EPSADI for T < TIMEIN

= 1: EPSADL=linear combination(EPSADI,EPSADL) for T < TIMEIN

= 2: EPSADL=logarithmic combination(EPSADI,EPSADL) for T < TIMEIN

IREPIT maximim number of repetitions for ABS(IADTIM)=3

PRDIF1 parameter for reactive preconditioner (usual: PRDIF1=1)

PRDIF2 parameter for di�usive preconditioner (usual: PRDIF2=0 or 1)



2.2 The input data of featflow 39

2.2.7. cc2d.dat/cc3d.dat { parameter �les for cc2d and cc3d

The input parameter for the 2D- and the 3D version are almost identical. The parameter

�les cc2d.dat/cc3d.dat and pp2d.dat/pp3d.dat di�er with respect to a few parameters

only.

Specials in cc2d.dat/cc3d.dat:

IMASSL, ICYCLE, ILMIN, ILMAX, IINT, ISM, ISL, NSM, NSL, NSMFAC,

EPSD, EPSDIV, EPSUR, EPSPR, DMPD, DMPMG, EPSMG, DMPSL, EPSSL,

RLXSM, RLXSL, AMINMG, AMAXMG, ISTAT

IMESH parameter for type of parametrization

= 0: feat parametrization

= 1: omega2d parametrization (active only in cc2d!!!)

IRMESH input of mesh data

= 0: create mesh

> 0: read mesh (created by trigen2d)

> 1: formatted mesh data (= 1 unformatted)

CPARM name of omega2d parametrization �le

CMESH name of coarse mesh (not longer than 15 characters)

CFILE name of protocol �le

ISTART input of start vector

= 0: start with homogeneous vector (only b.c.'s)

= 1: read (unformatted) start vector from same level (= �1: formatted)

= 2: read (unformatted) start vector from level-1 (= �2: formatted)

CSTART name of start vector �le (not longer than 15 characters)

ISOL output of solution vector

= 0: no output

= 1: unformatted output on �nest level

> 1: formatted output on �nest level

CSOL name of solution vector �le (not longer than 15 characters)

M feat parameter for output

= 0: no output

> 0: output, see feat2d manual

MT feat parameter for terminal output

= 0: no output

> 0: output, see feat2d manual

ICHECK feat parameter for subroutine tracing

= 0: no tracing

> 0: tracing, see feat2d manual

MSHOW parameter for protocol

= 0: reduced protocol in �le CFILE

= 1: expanded protocol in �le CFILE

= 2: expanded protocol in �le CFILE and terminal

= 3: full protocol in �le CFILE

= 4: full protocol in �le CFILE and terminal

NLMIN parameter for smallest level number

NLMAX parameter for highest level number

IELT parameter for element type

= 0: E031 parametric

= 1: E030 parametric



40 Structure of featflow

= 2: E031 nonparametric

= 3: E030 nonparametric

ISTOK parameter for Stokes calculation

= 1: Stokes calculation

<> 1: Navier{Stokes calculation

IRHS parameter for right hand side

= 0: homogeneous r.h.s

= 1: steady inhomogeneous r.h.s

= 2: nonsteady inhomogeneous r.h.s

IBDR parameter for boundary

= 0: Dirichlet + Neumann boundary values

= 1: Dirichlet + Neumann + pressure drop boundary values

= 2: = 1 + time dependent Dirichlet/Neumann conditions

IERANA parameter for error analysis

= 0: no error analysis

> 0: error analysis with quadrature formula IERANA

IMASS parameter for mass matrix type

= 0: lumped mass matrix

= 1: real mass matrix

IMASSL parameter for mass matrix lumping

= 0: usual lumping

= 10: diagonal lumping

IUPW parameter for convective terms

= 0: streamline di�usion

= 1: upwinding

IPRECA parameter for di�usive and reactive matrices

= 0: single precision in RAM

= 1: double precision in RAM

= 2: single precision from hard disc

= 3: double precision from hard disc (not yet)

= 4: double precision built up every time

IPRECB parameter for gradient and divergence matrices

= 0: single precision with usual quadrature, matrix in RAM

= 1: double precision with usual quadrature, matrix in RAM (not yet)

= 2: double precision, exact matrix entries, elementwise application (not yet)

= 3: single precision with exact evaluation, matrix in RAM

= 4: double precision with exact evaluation, matrix in RAM (not yet)

ICUBM quadrature formula for real mass matrix

ICUBA quadrature formula for Laplacian matrix

ICUBN quadrature formula for convective matrix

ICUBB quadrature formula for gradient matrix

ICUBF quadrature formula for right hand side

INLMIN parameter for smallest number of nonlinear steps matrix

= 1: linear extrapolation in time (if INLMAX=1)

= �1: constant extrapolation in time (if INLMAX=-1)

INLMAX parameter for largest number of nonlinear steps matrix

= 1: linear extrapolation in time (if INLMIN=1)

= �1: constant extrapolation in time (if INLMIN=-1)

ICYCLE parameter for mg-cycle

= 0: F{cycle

= 1: V{cycle

= 2: W{cycle

ILMIN parameter for smallest number of mg-steps

ILMAX parameter for largest number of mg-steps

IINT parameter for mg-interpolation



2.2 The input data of featflow 41

= 1: rotated trilinear for velocity + constant for pressure

= 2: rotated trilinear for velocity + pressure

ISM parameter for mg-smoother

= 1: Vanca

ISL parameter for mg-solver

= 1: Vanca

NSM parameter for number of mg-smoothing steps

NSL parameter for number of mg-solving steps

NSMFAC parameter for change of number of mg-smoothing steps on coarser levels

= n: NSM � n

NLMAX�ILEV

smoothing steps if on level ILEV

RE parameter for viscosity 1/NU

UPSAM parameter for convectice discretization

> 0: upwind: parameter for Samarskij upwinding (usual: UPSAM=1)

> 0: SD: leading coe�cient with spatial adaptivity (usual: UPSAM=1)

< 0: upwind: simple �rst order upwinding

< 0: SD: leading coe�cient without spatial adaptivity (usual: UPSAM=-1)

OMGMIN parameter for lower limit for optimal relaxation in nonlinear iteration

> 0: relative changes are calculated

< 0: no relative changes are calculated (if OMGMIN = OMGMAX)

OMGMAX parameter for upper limit for optimal relaxation in nonlinear iteration

> 0: relative changes are calculated

< 0: no relative changes are calculated (if OMGMIN = OMGMAX)

OMGINI parameter for start value for calculation of optimal relaxation in nonlinear iteration

EPSD stopping criterion for defect in velocity in nonlinear iteration

EPSDIV stopping criterion for defect in divergence in nonlinear iteration

EPSUR stopping criterion for relative changes in velocity in nonlinear iteration

EPSPR stopping criterion for relative changes in pressure in nonlinear iteration

DMPD stopping criterion for defect improvement in nonlinear iteration

DMPMG stopping criterion for defect improvement in linear mg-iteration

EPSMG stopping criterion for defect limit in linear mg-iteration

DMPSL stopping criterion for defect improvement for solver in linear mg-iteration

EPSSL stopping criterion for defect limit for solver in linear mg-iteration

RLXSM relaxation parameter for mg-smoother

RLXSL relaxation parameter for mg-solver

AMINMG lower limit for optimal correction for mg-solver

AMAXMG upper limit for optimal correction for mg-solver

ISTAT parameter for type of problem

= 0: steady Navier-Stokes problem

= 1: nonsteady Navier-Stokes problem

NITNS maximum number of macro time steps

EPSNS stopping criterion for time derivative

TIMENS parameter for absolute start time

THETA parameter for time stepping value

= 1: Implicit Euler (�rst order), if IFRSTP=0

= 0:5: Crank{Nicolson (second order), if IFRSTP=0

TSTEP starting time step

IFRSTP parameter for time stepping scheme

= 0: one step schemes

= 1: fractional step scheme (second order)

INSAV parameter for unformatted saving of solution vector

= 0: no saving

> 0: macro step size for saving procedure (in #ns)

INSAVN modulo number of �les for unformatted saving of solution vector (maximum = 10)



42 Structure of featflow

DTFILM time di�erence for unformatted �lm output

DTAVS time di�erence for avs output

DTBYU time di�erence for byu output

IFUSAV level for unformatted velocity �lm output

IFPSAV level for unformatted pressure �lm output

IFXSAV level for unformatted streamline �lm output

active only in pp2d!!!

IAVS level for avs output

IBYU level for byu output

IFINIT start �le number for �lm output

IADTIM parameter for adaptive time step control

= 0: no control, �xed time step TSTEP is used

= 1: prediction without repetition

= 2: prediction with repetition, if nonlinear stopping criteria too large

= 3: prediction with repetition, if time error or nonlinear stopping criteria too large

< 0: the same as ABS(IADTIM), but with extrapolation in time

TIMEMX maximum absolute time for stopping

DTMIN parameter for smallest time step during adaptive control

DTMAX parameter for largest time step during adaptive control

DTFAC factor for largest possible time step changes

TIMEIN absolute time for start procedure

EPSADI parameter for time error limit in start phase

EPSADL parameter for time error limit after start phase

EPSADU upper limit for acceptance for ABS(IADTIM)=3

IEPSAD parameter for type of error control

= 1: control of u(L2)

= 2: control of u(MAX)

= 3: control of p(L2)

= 4: control of p(MAX)

= 5: control of MAX(u(L2),p(L2))

= 6: control of MAX(u(MAX),p(MAX))

= 7: control of MAX(u(L2),p(L2),u(MAX),p(MAX))

= 8: control of MIN(u(L2),p(L2),u(MAX),p(MAX))

IADIN parameter for error control in start phase

= 0: EPSADL=EPSADI for T < TIMEIN

= 1: EPSADL=linear combination(EPSADI,EPSADL) for T < TIMEIN

= 2: EPSADL=logarithmic combination(EPSADI,EPSADL) for T < TIMEIN

IREPIT maximim number of repetitions for ABS(IADTIM)=3



2.3 The �le structure of featflow 43

2.3. The �le structure of featflow

In reversed order we arrive at the point to explain the internal structure of featflow.

featflow consists of 6 directories: application, graphic, manual, object, source and

utility. We want to explain their tasks in detail, not following the literal order.

2.3.1. Subdirectory source { source code for featflow

The directory source contains (almost) all source code for the preprocessing and solver

tools. These are omega2d, trigen2d, trigen3d, tr2to3, intpol2d, intpol3d, cc2d,

cc3d, pp2d and pp3d. Each of them is split into two, resp., three directories, namely src

and dev, resp., mg.

The idea is that src contains all information to build up the corresponding system libraries

(see object and the instructions for installation). These are needed for running an user{

application. mg is similar and is needed for building the corresponding libraries containing

the multigrid components for solving (if necessary). They are only needed by the solvers

cc2d, cc3d, pp2d and pp3d.

The directory dev is a corresponding directory containing all source- and make�les, and

it is thought to be a "developer directory" which is needed by the experienced user to

modify the featflow software.

Furthermore, the source directory contains the code for blas, feat2d, feat3d and

omega2d. In an analogous way, src contains all �les to build up the corresponding system

libraries during installation. Additionally, there are two testdir directories containing a

small test program to get familiar with feat. Additionally, we think about adding the

GNU FORTRAN77 compiler to provide a FORTRAN compiler for everybody.

2.3.2. Subdirectory manual { manuals for featflow

The directory manual contains (almost) all LATEX{source �les (in src) and postscript{

�les (in ps) for needed manuals. These are omega2d, feat2d, feat3d and this feat-

flow manual.

2.3.3. Subdirectory object { system software for featflow

The directory object contains the system software of featflow which is needed for

installation, for user{applications, and for generating a (compressed) binary data{�le con-

taining the featflow code. There are three subdirectories, extract, makefiles and

libraries.

extract is a directory having shell scripts for generating a (compressed) tar�le containing

the featflow package. There are several levels of featflow data �les:



44 Structure of featflow

Level 00 complete featflow (even with all libraries)

Level 01 complete featflow sources (but without compiled libraries)

Level 02 partial featflow sources (without dev directories)

Level 10 partial featflow sources + libraries (without multigrid sources)

Level 20 featflow libraries (without any sources)

The subdirectory makefiles contains all make�les for building up the system libraries and

for user{applications. They are available for a class of machines (see the �le MACHINES) and

have to be modi�ed for computers or compilers not belonging to this list. Each of these

machine{dependent directories contains some shell scripts, beginning with make , which

have to be executed for installation (see the section on installation). In the next versions,

there will be some more computers added to our list, containing optimized machine{

dependent compiler options.

Finally, the directory libraries contains the compiled system libraries which have to be

linked to each user{application. The actual featflow libraries created by the installa-

tion (depending on the make�le used) is in the subdirectory libgen, while in libspec

machine- and compiler{dependent system libraries are o�ered in correspondance to the

special make�les (see above).

2.3.4. Subdirectory application { applications under featflow

application is a directory thought to be the place for user{applications. The idea is to

use a separate subdirectory for each application. New subdirectories should be generated

by linking or copying, at least the input files and the #data directory.

featflow is installed with 5 subdirectories: user start, comp, dat example, example

and workspace.

user start is a typical working directory for the user, containing all needed input pa-

rameter �les in #data and a special subdirectory input files. In this directory, the user

can �nd all make�les, copied during installation and adapted to the machine used, and

the input �les parq2d.f, parq3d.f indat2d.f and indat3d.f (see above). These �les

have to be edited and modi�ed according to the actual application, and the corresponding

make�le has to be executed. Additionally, before compiling, the corresponding storage has

to be de�ned, by de�ning the corresponding .inc �le (see above and the later subsection

on the workspace subdirectory).

After compiling the tool (by executing the make�le) the compiled program should be

copied or moved to the parent directory (= user start), and the application may be

started there, after editing the corresponding parameter �le in #data. All other applica-

tions should follow these instructions to make life easier.

In a similar way, comp is a pre{installed application directory, performing test calculcations

(similar to the DFG{benchmark con�guration of 1995, see [16]). These applications are

thought to provide reference results and CPU times for verifying the installed featflow

version and to obtain benchmark results for di�erent computer types for comparisons.

These results can be found in results.



2.4 Installation of featflow 45

example is a pre{installed application directory, containing the example programs of Chap-

ter 3.

Finally, there is the directory workspace containing some shell scripts. Their only use is to

select the corresponding include{�les containing the size of storage amount. For instance, if

the directory user start is in progress, a link has to be set to the corresponding .inc �les

in the directory user start. This is done by executing the appropriate links.user start

�le (or other �les analogously). This process has to be done before compiling.

2.3.5. Subdirectory graphic { graphic tools for featflow

This directory provides graphic features which are helpful for featflow. In the present

version there are the subdirectories avs, byu and gnuplot. These features will be massively

expanded in future versions.

avs contains a .avsrc �le (as link to avsrc) and a directory appl containing special

applications. This .avsrc �le has to be edited and adapted to the existing con�guration.

Up to now, avs has to be executed over network (if available), and the manual has to be

taken from there, too.

The subdirectories byu and gnuplot contain some helpful �les for handling the packages

movie.byu or cquel.byu (over network, if available) and for working with gnuplot,

which may be used for 1D graphics.

2.3.6. Subdirectory utility { utilities for featflow

This directory contains software which can be helpful for the use of featflow. In the

present version there are only programs which provide an a priori{estimate for the needed

storage amount. They simply have to be compiled (f77 file.f -o file) and to be

moved to the directory used for the application, for instance to application/user start.

Then, it reads the corresponding parameter �le and gives an estimate for the NNWORK value

needed.

2.4. Installation of featflow

The usual installation process is the following:

Step 1: Unzip and tar

Create a directory called featflow or similar, which will contain all featflow data.

Usually, the user has obtained a binary �le featflow.tar.gz or levi file.tar.gz ("i"

stands for level, see above). This has to be moved to the created directory in which the

featflow tree structure will be installed. It has to be decompressed

gunzip featflow.tar.gz



46 Structure of featflow

and then, a tar has to be started

tar -xvf featflow.tar.

This generates the complete featflow tree structure, and the �le featflow.tar may be

removed.

In most cases, all make�les are already prepared if you work on a `normal' platform (SUN,

IBM, SGI, DEC,, PC+LINUX, etc.) such that the following installation step is very easy:

Step 2a: Automatic installation

Read the README �le and execute the installation script:

install feat

After selecting the supported platform, the installation procedure starts! You may con-

tinue with Step 3

If you work on a `nonstandard' platform (whatsoever), you must manually perform the

following two steps:

Step 2b: Editing of make�les and installation scripts

In the next step go to featflow/object/makefiles. There are di�erent subdirectories

corresponding to various computer types and compiler options. If not, copy one to create

your owen, or modify the make�les in example. Let us assume you are in the directory

featflow/object/makefiles/example. There wait two tasks for you:

1) Edit the shell scripts make copy and make lib, and change the shell variable FEATFLOW,

containing the right location of featflow, and the variable MAKEFILES where you are.

2) Edit the make�les and modify, if necessary, the compiler options. These are the

lines beginning with COMOPT =. This can be done by hand, or by using the shell script

make change. Analogously, the shell variable FEATFLOW has to be de�ned correctly as

above, using make change.

Step 2c: Installation

Assuming that you are in featflow/object/makefiles/examples (or any other directory

containing your edited make�les and shell scripts of step 2). Then, you have to do the

following:

0.1) Be sure that you use a C-shell /bin/csh.

0.2) Be sure that featflow/object/libraries/libgen exists.

0.3) Be sure that the correct ztime.f �le in featflow/source/feat2d/src is taken.

1.0) Execute the shell script make copy.

2.0) Execute the shell script make lib.



2.4 Installation of featflow 47

This last step takes between 10 and 60 minutes. All libraries will be generated, and

all make�les needed for applications are copied to featflow/application/user start,

featflow/application/example and featflow/application/comp.

Step 3: Test and application

As described in subsection 2.3.4 go to featflow/application/user start, to featflow

/application/example or to featflow/application/comp, and start an application, or

create a new directory for your application as described above.



3. Examples for the use of featflow

This chapter demonstrates explicitely the use of featflow, performing �rst the installa-

tion, and then applying featflow for solving a 2D and 3D problem which represents the

typical application of a 
ow in a channel around a cylinder. The values to be computed are

lift and drag and pressure di�erences on the cylinder surface, in a stationary as well as non-

stationary con�guration. These examples are almost identical with the DFG{benchmark

1995, see [16]), only the 2D case is a little bit di�erent (longer channel!!!).

We show (in short form) how featflow is manually installed, followed by designing a

�rst coarse mesh with omega2d. This triangulation is re�ned in a pre{adaptive way by

trigen2d, generating the full sequence of nested meshes which are neccessary for the

multigrid solvers. We perform a stationary (by cc2d) and a nonstationary calculation

(by pp2d), and demonstrate how to interpret the data output and how to use avs for

visualization.

These 2D calculations are followed by a 3D application. We �rst use tr2to3 to construct

an adequate 3D coarse mesh for this channel con�guration. We demonstrate the use

of trigen3d to generate the 3D multigrid structure and, �nally, we perform the same

calculations with cc3d and pp3d as in the 2D case.

3.1. The installation example

We assume that you got the binary �le featflow.tar.gz and that you created the direc-

tory /home/people/example/featflow in which you should move this binary �le. Being

there, you have to perform the following commands:

gunzip featflow.tar.gz

tar -xvf featflow.tar

rm featflow.tar.

Now, the complete source code of featflow is installed.

In most cases, all make�les are already prepared if you work on a `normal' platform (SUN,

IBM, SGI, DEC, HP, PC+LINUX, etc.) such that the following installation step is very

easy:

Read the README �le and execute the installation script:

install feat

48



3.1 The installation example 49

After selecting the supported platform, the installation procedure starts! You may con-

tinue with the 2D and 3D examples!

If you work on a `nonstandard' platform (whatsoever), you must manually perform the

following two steps:

For the following, we assume you have a SUN Sparc 10 (or compatible) with the SUN

FORTRAN77 compiler, version 2.0. Next you go to /home/people/example/featflow/

object/makefiles, and do the following copy:

cp -rp sun sparc10 2.0 my compiler

cd my compiler.

Edit, for instance, the �le pp2d.m to �gure out how the shell{variables FEATFLOW and

COMOPT are de�ned. FEATFLOW should be set to:

FEATFLOW=/home/people/example/featflow,

while COMOPT has to be modi�ed for other machines or compilers only. These changes

could be done by hand, or by using the shell{script make change which performs (after

appropriate replacements) an sed command on all �les. It is necessary that you use

a C-shell /bin/csh. Additionally, the variable MAKEFILES in make lib should be set

appropriate. From now on, we use FEATFLOW as abbreviation for /home/people/example

/featflow.

Before we continue be sure that FEATFLOW/object/libraries/libgen exists (if not, cre-

ate them by the mkdir command), and that the "right" subroutine for time measurements

are taken. That means, for SUN SPARC 10 (and many others),

cd FEATFLOW/source/feat2d/src

cp ztime.sun sparc ztime.f

cd FEATFLOW/object/makefiles/my compiler.

Now, do the following:

Execute the shell script make copy by typing: make copy.

Execute the shell script make lib by typing: time make lib.

This last step takes between 10 and 60 minutes (the time command is not necessary).

All featflow libraries will be generated, and all make�les needed for applications are

copied to FEATFLOW/application/example (and to FEATFLOW/application/user start

and FEATFLOW/application/comp).

Next, go to FEATFLOW/application/workspace and run the shell script links.example

which activates the applications in FEATFLOW/application/example (more precise: the

.inc �les in FEATFLOW/application/example/input files will be used for de�ning the

storage amount).

Now, we are ready to start the 2D and 3D examples.



50 Examples for the use of featflow

3.2. The 2D example

We start with describing our 2D domain which shall look like:

0.1m

0.16m

0.45m

0.15m

2.5m

U=V=0

U=V=0

U=V=0

outlet

inlet

(0,0)

(0,H)

x

y

Figure 3.1: 2D domain: channel with cylinder

This can be easily done with omega2d, requiring a computer with PC emulation (at least

an AT 286 or higher) and WINDOWS 3.1 (or higher).

We start in omega2d with describing the two boundary components: �rst, we prescribe

the outer rectangle, by setting the �rst point at the origin, and then proceeding in counter-

clockwise sense, until this boundary "curve" is closed. Second, we draw a circle, with start-

ing point at (0:45; 0:20) and center point (0:50; 0:20). The end point is again at (0:45; 0:20),

and it is very important to perform a "negative" circle, that means the parametrization

is proceeding in a clockwise sense. For more details, look at the omega2d manual.

Next we de�ne mesh points at the boundary components and in the interior. It is re-

markable that boundary points cannot be set arbitrarily, but next to another (existing)

boundary point, and then they can be moved along the boundary curve. Furthermore,

you are always able to "undo" your last actions or to remove points (and even makros and

boundary components when needed).

In parallel to de�ning mesh points, "makros" (that means quadrilateral elements) can be

de�ned, by clicking at four mesh points to form an element. Finally, this session has to be

saved (let us assume as c2d.geb, c2d.prm and c2d.tri), and the �les c2d.geb, c2d.prm

and c2d.tri have to be transferred (by ftp or whatever) to the subdirectory FEATFLOW/

application/example/#pre, and additionally the coarse mesh c2d.tri as c2d0.tri to

FEATFLOW/application/example/#adc. Now, we are ready to proceed with featflow

on our UNIX workstation.

Next, we want to "improve" our coarse mesh c2d0.tri to obtain a "better" triangulation.

Therefore, we go toFEATFLOW/application/example/input files, execute the make-

�les (ending with .m) and move the compiled objects to the parent directory, namely to

FEATFLOW/application/example. More in detail, for performing the 2D example:



3.2 The 2D example 51

Figure 3.2: Coarsest mesh c2d0.tri: 30 elements

cd FEATFLOW/application/example/input files

make -f trigen2d.m ; mv trigen2d ..

cd FEATFLOW/application/example.

Next, we want to re�ne our mesh c2d0.tri around and before and behind the circle. This

is done by trigen2d. If we perform

cp #data/trigen2d.dat 0 #data/trigen2d.dat

time trigen2d

we obtain, in #adc, a new coarse mesh c2d1.tri which is re�ned in an appropriate way

(with ITYPEL=1, that means the marked elements are re�ned into 9 elements). The next

steps generate the "�nal" coarse mesh c2d2.tri which is additionally re�ned around the

circle only (with ITYPEL=3).

cp #data/trigen2d.dat 1 #data/trigen2d.dat

time trigen2d.

Figure 3.3: Re�ned coarse mesh c2d1.tri: 130 elements

Figure 3.4: Further re�ned coarse mesh c2d2.tri: 148 elements



52 Examples for the use of featflow

Now, we are ready to start a Navier{Stokes calculation. Let us begin with a station-

ary example, for Reynolds number 20. Doing that, we use the data �le input files/

indat2d.f stat, and the following procedure has to be performed

cd FEATFLOW/application/example/input files

cp indat2d.f stat indat2d.f ; make -f cc2d.m ; mv cc2d ..

cd FEATFLOW/application/example.

This data �le input files/indat2d.f stat contains the following de�nitions:

{ The in
ow velocity pro�le at x = 0:0 is parabolic, with a maximum value u

max

= 0:3.

{ There is one boundary part containing natural boundary conditions (out
ow !). This

is the boundary segment with x = 2:5, and the corresponding parameter values range

from DPARN1=1D0 until DPARN1=2D0.

{ We show the velocity values at the mesh points KPU(1)=264 (corresponds to the

coordinates (0:65; 0:20)) and KPU(2)=17 (= (0:85; 0:20)), the pressure values at

KPP(1)=27 (= (0:45; 0:20)), KPP(2)=30 (= (0:55; 0:20)), KPP(3)=316 (= (0:50; 0:25))

and KPP(4)=17 (= (0:85; 0:20)), and the 
ux between the mesh points KPX(1)=31 and

KPX(2)=6 (under the circle). The di�erence of the pressure values for KPP(1)=27 and

KPP(2)=30 determines a typical pressure di�erence. Additionally, our runtime pro-

tocol will give us the mean pressure over the whole circle (by setting DPI(1,1)=0D0

and DPI(2,1)=0D0), and over half of the circle (by DPI(2,2)=0.5D0). Finally, we de-

�ne parameters for the calculation of drag and lift, where RHO is a density parameter,

DIST a typical length scale, and UMEAN is a "mean velocity".

Now, we can execute cc2d with given parameter �le #data/cc2d.dat. A solution is cal-

culated on level NLMAX=4, and the corresponding solution vector is saved as (unformatted)

�le #data/#DX4 stat. The chosen discretization scheme for the convective parts is the

streamline{di�usion ansatz, and the stopping criterions are 10

�3

for the maximum of rel-

ative changes. As result we obtain the protocol �le #data/cc2d.stat which has to be

explained in more detail.

Protocol �le #data/cc2d.stat:

--------------------------------------------------------------------------------

INPUT DATA

--------------------------------------------------------------------------------

Parametrization file =

#pre/c2d.prm

Coarse grid file =

#adc/c2d2.tri

Integer parameters of /IPARM/,etc. :

--------------------------------------------------------------------------------

minimum mg-level: NLMIN = 1

maximum mg-level: NLMAX = 4

element type = 3

Stokes calculation: ISTOK = 0

RHS generation = 0

Boundary generation = 0

Error evaluation = 0

mass evaluation = 0



3.2 The 2D example 53

lumped mass eval. = 0

convective part = 0

Accuracy for ST = 4

Accuracy for B = 3

ICUB mass matrix = 3

ICUB diff. matrix = 4

ICUB conv. matrix = 4

ICUB matrices B1,B2 = 8

ICUB right hand side = 1

minimum of nonlinear iterations: INLMIN = 1

maximum of nonlinear iterations: INLMAX = 10

type of mg-cycle: ICYCLE = 0

minimum of linear mg steps : ILMIN = 1

maximum of linear mg steps : ILMAX = 5

type of interpolation: IINT = 2

type of smoother : ISM = 1

type of solver : ISL = 1

number of smoothing steps : NSM = 4

number of solver steps : NSL = 100

factor sm. steps on coarser lev.:NSMFAC= 2

KPRSM,KPOSM ON LEVEL: 1 32 32

KPRSM,KPOSM ON LEVEL: 2 16 16

KPRSM,KPOSM ON LEVEL: 3 8 8

KPRSM,KPOSM ON LEVEL: 4 4 4

KPRSM,KPOSM ON LEVEL: 5 4 4

KPRSM,KPOSM ON LEVEL: 6 4 4

KPRSM,KPOSM ON LEVEL: 7 4 4

KPRSM,KPOSM ON LEVEL: 8 4 4

KPRSM,KPOSM ON LEVEL: 9 4 4

Real parameters of /RPARM/,etc. :

--------------------------------------------------------------------------------

Viscosity parameter: 1/NU = 1000.00000000000

parameter for Samarskij-upwind: UPSAM = 0.50000000000000

lower limit for optimal OMEGA: OMGMIN = 0.

upper limit for optimal OMEGA: OMGMAX = 2.0000000000000

start value for optimal OMEGA: OMGINI = 1.0000000000000

limit for U-defects : EPSD = 1.0000000000000D-05

limit for DIV-defects : EPSDIV = 1.0000000000000D-08

limit for U-changes : EPSUR = 1.0000000000000D-03

limit for P-changes : EPSPR = 1.0000000000000D-03

defect improvement : DMPD = 1.0000000000000D-01

damping of MG residuals : DMPMG = 1.0000000000000D-01

limit for MG residuals : EPSMG = 1.0000000000000D-01

damping of residuals for solving: DMPSL = 1.0000000000000D-01

limit of changes for solving: EPSSL = 1.0000000000000D-01

relaxation for the U-smoother: RLXSM = 1.0000000000000

relaxation for the U-solver : RLXSL = 1.0000000000000

lower limit optimal MG-ALPHA: AMINMG = -10.0000000000000

upper limit optimal MG-ALPHA: AMAXMG = 10.0000000000000

Parameters of /NS.../ :

--------------------------------------------------------------------------------

Time dependency : ISTAT = 0

Number of time steps : NITNS = 9

limit for time derivative: EPSNS = 1.0000000000000D-05

Total time : TIMENS = 0.

Theta : THETA = 1.0000000000000

Time step : TSTEP = 1.0000000000000D-02

Fractional step : IFRSTP = 1

Stepsize for nonsteady savings: INSAV = 0

Number of files : INSAVN = 0

Time step for Film : DTFILM = 0.

Time step for AVS : DTAVS = 1.0000000000000

Time step for BYU : DTBYU = 1.0000000000000

Level for velocity : IFUSAV = 0

Level for pressure : IFPSAV = 0

Level for streamlines : IFXSAV = 0

Level for AVS : IAVS = 4

Level for BYU : IBYU = 4

Start file : IFINIT = 1

Type of adaptivity : IADTIM = -3



54 Examples for the use of featflow

Max. Time : TIMEMX = 100.000000000000

Min. Timestep : DTMIN = 1.0000000000000D-06

Max. Timestep : DTMAX = 1.0000000010000

Max. Timestep change : DTFACT = 9.0000000010000

Time for start procedure : TIMEIN = 0.50000000000000

EPS for start procedure : EPSADI = 0.12500000000000

EPS for acceptance : EPSADL = 1.2500000000000D-03

EPS for not acceptance : EPSADU = 0.50000000000000

Acceptance criterion : IEPSAD = 1

Start procedure : IADIN = 2

Max.numbers of repetitions : IREPIT = 3

--------------------------------------------------------------------------------

ILEV,NVT,NMT,NEL,NVBD: 1 165 313 148 34

ILEV,NVT,NMT,NEL,NVBD: 2 626 1218 592 68

ILEV,NVT,NMT,NEL,NVBD: 3 2436 4804 2368 136

ILEV,NVT,NMT,NEL,NVBD: 4 9608 19080 9472 272

time for grid generation : 3.6833333298564

ILEV,NU,NA,NB: 1 313 2089 592

ILEV,NU,NA,NB: 2 1218 8322 2368

ILEV,NU,NA,NB: 3 4804 33220 9472

ILEV,NU,NA,NB: 4 19080 132744 37888

time for initialization of linear operators : 2.3499999046326

--------------------------------------------------------------------------------

IT RELU RELP DEF-U DEF-DIV DEF-TOT RHONL OMEGNL RHOMG

--------------------------------------------------------------------------------

0 0.58D-02 0.26D-01 0.26D-01

--------------------------------------------------------------------------------

1 0.10D+01 0.10D+01 0.34D-02 0.34D-04 0.34D-02 0.13D+00 0.99D+00 0.20D+00

2 0.41D+00 0.49D+00 0.25D-03 0.85D-05 0.25D-03 0.98D-01 0.10D+01 0.87D-01

3 0.21D+00 0.14D+00 0.87D-04 0.82D-06 0.87D-04 0.15D+00 0.11D+01 0.24D+00

4 0.64D-01 0.52D-01 0.20D-04 0.27D-06 0.20D-04 0.17D+00 0.11D+01 0.31D+00

5 0.13D-01 0.45D-02 0.58D-05 0.44D-07 0.58D-05 0.19D+00 0.11D+01 0.33D+00

6 0.33D-02 0.19D-02 0.14D-05 0.16D-07 0.14D-05 0.19D+00 0.11D+01 0.29D+00

7 0.62D-03 0.39D-03 0.33D-06 0.38D-08 0.33D-06 0.20D+00 0.11D+01 0.31D+00

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# 1( 1) TIME= 0.000D+00 NORM(U)= 0.2092401D+00 NORM(P)= 0.4859169D-01

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

P(VELO) 0.20913D-01 0.14274D-02 0.16732D+00 0.14309D-02

P(PRES) 0.12008D+00 0.14282D-01-0.81432D-02 0.28207D-01

I(PRES) 0.47304D-01 0.29039D-01

I(FORCE) 0.53363D+01 0.66688D-02

P(FLUX) 0.39419D-01

STATISTICS :

NWORK : 1000000

IWORKG: 116168

IWMAXG: 119323

IWORKI: 685234

IWMAXI: 685234

IWORK : 685234

IWMAX : 704450

--------------------------------------------------------------------------------

total time : 212.94999999553

appr. time : 212.83334153146

grid time : 3.6833333298564

post time : 7.5666656494141

lin. time : 49.299993515015

-> mavec time : 6.1333212852478

-> konv. time : 39.716608047485

-> bdry time : 4.9992084503174D-02

-> LC time : 3.4000720977783

mg time : 152.28334903717

#substeps : 1



3.2 The 2D example 55

#nonlinear : 7

#mg : 14

--------------------------------------------------------------------------------

MULTIGRID COMPONENTS [in percent]:

smoothing : 74.324147510282

solver : 6.0085270812218

defect calc. : 8.7993897069504

prolongation : 9.7515820090053

restriction : 1.0944625011425

--------------------------------------------------------------------------------

Most statement have not to be explained, only a few ones:

{ ILEV,NVT,NMT,NEL,NVBD means number of vertices/midpoints/elements/boundary

points on level ILEV

{ ILEV,NU,NA,NB means number of midpoints and nonzero matrix entries for the

Laplacian/gradient matrix on level ILEV

{ RHONL convergence rate of nonlinear iteration

{ OMEGNL optimally chosen relaxation parameter for nonlinear iteration

{ RHOMG multigrid convergence rate for Oseen equation

{ P(VELO) contains the u- and v{velocity for both grid points de�ned in input files

/indat2d.f.

{ P(PRES) contains the 4 pressure values for the grid points de�ned before.

{ I(PRES) contains the 2 integral mean pressure values de�ned before.

{ I(FORCE) contains the drag and lift values de�ned before.

{ P(FLUX) contains the 
ux value de�ned before.

{ IWMAX contains the value for NNWORK needed. NWORK shows the actually de�ned

parameter.

Additionally, we obtain �les for graphical output, namely in #avs the �le u1.inp, and in

#byu the byu �les u1.vec (velocity), p1.scl (pressure) and x1.vec (streamfunction). A

typical example for a avs isoline plot of the pressure can be found in the following picture.

Figure 3.5: Pressure isolines for the stationary 2D calculation



56 Examples for the use of featflow

Next, we perform a nonstationary calculation, for Reynolds number about 100. We use the

data �le input files/indat2d.f non, and the following procedure has to be performed

cd FEATFLOW/application/example/input files

cp indat2d.f non indat2d.f ; make -f pp2d.m ; mv pp2d ..

cd FEATFLOW/application/example.

This data �le input files/indat2d.f non is almost identical to the preceeding one:

{ The in
ow velocity pro�le at x = 0:0 is again parabolic, but with a maximum value

u

max

= 1:5.

{ UMEAN is changed for de�ning drag and lift.

Now, we can execute pp2d with given parameter �le #data/pp2d.dat. A solution is

calculated on level NLMAX=4, with (stationary) start solution �le #data/#DX4 stat. Now,

the chosen discretization scheme for the convective parts is the upwinding ansatz, and

we perform our time stepping with the fractional step scheme and fully adaptive time

step control until TIMEMX=4D0. Files for graphical output, namely for #avs and #byu, are

written out all 1 "second". As result we obtain the protocol �le #data/pp2d.non which is

very similar to #data/cc2d.stat, but containing information for all time steps performed.

We explain this protocol �le for only one macro time step.

Protocol �le #data/pp2d.non:

.

.

.

ILEV,NVT,NMT,NEL,NVBD: 1 165 313 148 34

ILEV,NVT,NMT,NEL,NVBD: 2 626 1218 592 68

ILEV,NVT,NMT,NEL,NVBD: 3 2436 4804 2368 136

ILEV,NVT,NMT,NEL,NVBD: 4 9608 19080 9472 272

time for grid generation : 3.6333331540227

ILEV,NU,NA,NB: 1 313 2089 592

ILEV,NU,NA,NB: 2 1218 8322 2368

ILEV,NU,NA,NB: 3 4804 33220 9472

ILEV,NU,NA,NB: 4 19080 132744 37888

ILEV,NP,NC: 1 148 706

ILEV,NP,NC: 2 592 2892

ILEV,NP,NC: 3 2368 11704

ILEV,NP,NC: 4 9472 47088

.

.

.

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

MACRO STEP 68 AT TIME = 0.294D+01 WITH 1 STEP : DT1 = 0.288D-01

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

--------------------------------------------------------------------------------

IT REL-U1 REL-U2 DEF-U1 DEF-U2 RHONL OMEGNL RHOMG1 RHOMG2



3.2 The 2D example 57

--------------------------------------------------------------------------------

0 0.17D-03 0.23D-03

--------------------------------------------------------------------------------

1 0.20D+00 0.26D+00 0.14D-04 0.77D-05 0.62D-01 0.10D+01 0.18D-01 0.13D-01

2 0.45D-01 0.28D-01 0.11D-05 0.14D-05 0.78D-01 0.10D+01 0.37D-01 0.57D-01

--------------------------------------------------------------------------------

IT DIV-L2 RHOMGP

--------------------------------------------------------------------------------

6 0.11D-12 0.37D-01

--------------------------------------------------------------------------------

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# 1( 68) TIME= 0.297D+01 REL2(P)= 0.705D+00 RELM(P)= 0.221D+01

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

MACRO STEP 68 AT TIME = 0.294D+01 WITH 3 STEPS: DT3 = 0.960D-02

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

--------------------------------------------------------------------------------

IT REL-U1 REL-U2 DEF-U1 DEF-U2 RHONL OMEGNL RHOMG1 RHOMG2

--------------------------------------------------------------------------------

0 0.49D-04 0.67D-04

--------------------------------------------------------------------------------

1 0.67D-01 0.78D-01 0.15D-05 0.73D-06 0.23D-01 0.10D+01 0.51D-02 0.40D-02

--------------------------------------------------------------------------------

IT DIV-L2 RHOMGP

--------------------------------------------------------------------------------

5 0.39D-12 0.35D-01

--------------------------------------------------------------------------------

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# 1( 68) TIME= 0.295D+01 REL2(P)= 0.151D+01 RELM(P)= 0.581D+01

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

--------------------------------------------------------------------------------

IT REL-U1 REL-U2 DEF-U1 DEF-U2 RHONL OMEGNL RHOMG1 RHOMG2

--------------------------------------------------------------------------------

0 0.69D-04 0.94D-04

--------------------------------------------------------------------------------

1 0.93D-01 0.12D+00 0.21D-05 0.10D-05 0.23D-01 0.10D+01 0.52D-02 0.41D-02

2 0.72D-02 0.62D-02 0.66D-07 0.80D-07 0.29D-01 0.10D+01 0.13D-01 0.26D-01

--------------------------------------------------------------------------------

IT DIV-L2 RHOMGP

--------------------------------------------------------------------------------

5 0.31D-12 0.33D-01

--------------------------------------------------------------------------------

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# 2( 68) TIME= 0.296D+01 REL2(P)= 0.153D+01 RELM(P)= 0.537D+01

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

--------------------------------------------------------------------------------

IT REL-U1 REL-U2 DEF-U1 DEF-U2 RHONL OMEGNL RHOMG1 RHOMG2

--------------------------------------------------------------------------------

0 0.50D-04 0.66D-04

--------------------------------------------------------------------------------

1 0.68D-01 0.83D-01 0.15D-05 0.68D-06 0.22D-01 0.10D+01 0.58D-02 0.45D-02

--------------------------------------------------------------------------------

IT DIV-L2 RHOMGP

--------------------------------------------------------------------------------

5 0.31D-12 0.35D-01

--------------------------------------------------------------------------------

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# 3( 68) TIME= 0.297D+01 REL2(P)= 0.279D+01 RELM(P)= 0.961D+01

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

OLD DT= 0.96D-02 U(L2)= 0.13D-02 U(MX)= 0.51D-02 P(L2)= 0.45D-02 P(MX)= 0.95D-02

CHOICE 0( 68) ---- NEW DT = 0.954D-02 -- OLD DT = 0.960D-02

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

P(VELO) -0.12490D-01 0.45097D+00 0.10542D+01-0.67446D+00

P(PRES) 0.17141D+01-0.41863D+00-0.64658D+00 0.17289D+00



58 Examples for the use of featflow

I(PRES) 0.30836D+00-0.41448D-02

I(FORCE) 0.29159D+01-0.54744D+00

P(FLUX) 0.20401D+00

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

# 68 ( 272) TIME= 0.297D+01 RELU(L2)= 0.25D+01 RELP(L2)= 0.20D+01 REL= 0.25D+01

$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

total time : 3364.2498697899

mavec time : 309.36813378334

konv. time : 406.31425285339

bdry time : 2.0668334960938

LC time : 87.866734504700

ILU time : 323.13556003571

U-mg time : 1063.4651870728

P-mg time : 1141.2314567566

.

.

.

STATISTICS :

NWORK : 1300000

IWORKG: 116168

IWMAXG: 119323

IWORKI: 967903

IWMAXI: 967903

IWORK : 1039351

IWMAX : 1203452

--------------------------------------------------------------------------------

total time : 5327.6336588524

appr. time : 5320.4342214540

grid time : 3.6333331540227

post time : 38.716011047363

lin. time : 1797.2014658451

-> mavec time : 487.26168847084

-> konv. time : 647.08451652527

-> bdry time : 3.0346069335938

-> LC time : 139.76541614532

-> ILU time : 520.05523777008

U-mg time : 1709.3506851196

P-mg time : 1771.5327262878

#substeps : 428

#mg P : 2326

#nonlinear : 604

#mg U : 1220

--------------------------------------------------------------------------------

U-MULTIGRID COMPONENTS [in percent]:

smoothing : 42.218687909096

solver : 2.2564278443300

defect calc. : 32.417565448349

prolongation : 20.300764952555

restriction : 2.6163307795102

P-MULTIGRID COMPONENTS [in percent]:

smoothing : 50.378172496605

solver : 4.9000111811739

defect calc. : 16.941610100891

prolongation : 19.692759428133

restriction : 7.8014891041156

--------------------------------------------------------------------------------



3.2 The 2D example 59

Some explanations:

{ ILEV,NVT,NMT,NEL,NVBD, ILEV,NU,NA,NB as before

{ ILEV,NP,NC means number of pressure unknowns and nonzero matrix entries for

pressure matrix

{ We perform macro time step 68, at absolute time T = 2:94s, and the actually chosen

time step is t = 0:0096. As predictor step we perform a calculation with a three

times larger time step DT1=0.288D-01, and then three substeps with the actual

time step size, DT3=0.960D-02. Anyway, we perform �rst the nonlinear iteration for

the Burgers{step, which multigrid convergence rates RHOMG1 and RHOMG2 for each

convection{di�usion equation. Then, the corresponding pressure equation is solved,

with multigrid convergence rate RHOMGP.

{ The estimated time error in di�erent norms (L

2

and L

1

for velocity and pressure)

are written out, followed by the new adaptively chosen time step value.

{ RELU(L2)=0.25D+01 and RELP(L2)=0.20D+01 are measures for the time derivative

of the velocity, resp., the pressure.

Additionally, the point values for P(VELO), : : :, P(FLUX) are printed separately into cor-

responding �les in the subdirectory #points and can be visualized by GNUPLOT, for

instance. Furthermore, we obtain other �les for graphical output, namely in #avs and in

#byu, written with a "1 second" delay. In the following picture, the corresponding pressure

plot for T = 4 (�le #avs/u91.inp) is shown.

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2 2.5 3 3.5 4

ca
-v

al
ue

time

Figure 3.6: Lift values for the nonstationary 2D calculation

Figure 3.7: Pressure isolines for the nonstationary 2D calculation for T = 4



60 Examples for the use of featflow

3.3. The 3D example

In this example we want to perform similar calculations in the following 3D domain:

0.16m
1.95m

2.5m

0.1m

0.15m
0.45m0.41m

0.41m

(0,0,H)(0,0,0)

(0,H,0)

Inflow plane

Outflow plane

z

U=V=W=0

U=V=W=0

U=V=W=0

0.1m y

x

Figure 3.8: 3D domain: channel with cylinder

A corresponding coarse mesh, which is simply a 3D extension of our c2d2.tri grid, can

be obtained by using tr2to3. First of all, do the following:

cd FEATFLOW/application/example/input files

make -f tr2to3.m ; mv tr2to3 ..

make -f trigen3d.m ; mv trigen3d ..

cd FEATFLOW/application/example.

Next, the corresponding 3D coarse mesh #adc/c3d2.tri (see #data/tr2to3.dat) is gen-

erated by executing tr2to3. Here, in z{direction, 8 non{equidistant layers are de�ned.

The following avs picture can be generated by performing trigen3d.

Now, we are ready to start our 3D Navier{Stokes calculation. Again, let us begin with the

stationary example, for Reynolds number 20. In this case, we use the data �le input files

/indat3d.f stat, and the following, already well known procedure has to be performed

cd FEATFLOW/application/example/input files

cp indat3d.f stat indat3d.f ; make -f cc3d.m ; mv cc3d ..

cd FEATFLOW/application/example.



3.3 The 3D example 61

Figure 3.9: Coarse mesh c3d2.tri

This data �le input files/indat3d.f stat contains the following de�nitions:

{ The in
ow velocity pro�le at x = 0:0 is parabolic, with a maximum value u

max

=

0:45, but leading to the same mean velocity as in the 2D case.

{ There is one boundary part containing natural boundary conditions (out
ow !). This

is the boundary segment with x = 2:5, where the corresponding parameter IFLAG is

activated in subroutine NEUDAT.

{ The integral mean pressure is calculated over the full and half of the circular cylinder.

{ We de�ne similar parameters for the calculation of drag and lift as in 2D, now over

the full cylinder surface. RHO is a density parameter, DIST a typical length scale,

and UMEAN is a "mean velocity".

{ We show the velocity values at the mesh points KPU(1)=3421 (corresponds to the

coordinates (0:65; 0:20; 0:205)) and KPU(2)=677 (= (0:85; 0:20; 0:205)), and the pres-

sure values at KPP(1)=687 (= (0:45; 0:20; 0:205)), KPP(2)=690 (= (0:55; 0:20; 0:205)),

KPP(3)=3498 (= (0:50; 0:25; 0:205)) and KPP(4)=677 (= (0:85; 0:20; 0:205)). The dif-

ference of the pressure values for KPP(1)=687 and KPP(2)=690 can be used again for

determing a typical pressure di�erence on the cylinder.

Now, we can execute cc3d with given parameter �le #data/cc3d.dat. A solution is

calculated on level NLMAX=3, and the corresponding solution vector is saved as (unfor-

matted) �le #data/#DX3 stat. The chosen discretization scheme for the convective parts

is the streamline{di�usion ansatz, and the stopping criterions are 1 � 10

�2

for the maxi-

mum of relative changes. It is remarkable, that the number of smoothing steps NSM=64 is

surprisingly large, due to the chosen anisotropic mesh in combination with the streamline{

di�usion method. As result of cc3d we obtain the protocol �le #data/cc3d.stat which

is almost identical to the 2D{version #data/cc2d.stat.



62 Examples for the use of featflow

Protocol �le #data/cc3d.stat:

--------------------------------------------------------------------------------

INPUT DATA

--------------------------------------------------------------------------------

Parametrization file =

#pre/c3d.prm

Coarse grid file =

#adc/c3d2.tri

Integer parameters of /IPARM/,etc. :

--------------------------------------------------------------------------------

minimum mg-level: NLMIN = 1

maximum mg-level: NLMAX = 3

element type = 3

Stokes calculation: ISTOK = 0

RHS generation = 0

Boundary generation = 0

Error evaluation = 0

mass evaluation = 0

lumped mass eval. = 0

convective part = 0

Accuracy for ST = 4

Accuracy for B = 3

ICUB mass matrix = 7

ICUB diff. matrix = 7

ICUB conv. matrix = 7

ICUB matrices B1,B2 = 7

ICUB right hand side = 1

minimum of nonlinear iterations: INLMIN = 1

maximum of nonlinear iterations: INLMAX = 20

type of mg-cycle: ICYCLE = 0

minimum of linear mg steps : ILMIN = 1

maximum of linear mg steps : ILMAX = 5

type of interpolation: IINT = 2

type of smoother : ISM = 1

type of solver : ISL = 1

number of smoothing steps : NSM = 64

number of solver steps : NSL = 500

factor sm. steps on coarser lev.:NSMFAC= 8

KPRSM,KPOSM ON LEVEL: 1 4096 4096

KPRSM,KPOSM ON LEVEL: 2 512 512

KPRSM,KPOSM ON LEVEL: 3 64 64

KPRSM,KPOSM ON LEVEL: 4 64 64

KPRSM,KPOSM ON LEVEL: 5 64 64

KPRSM,KPOSM ON LEVEL: 6 64 64

KPRSM,KPOSM ON LEVEL: 7 64 64

KPRSM,KPOSM ON LEVEL: 8 64 64

KPRSM,KPOSM ON LEVEL: 9 64 64

Real parameters of /RPARM/,etc. :

--------------------------------------------------------------------------------

Viscosity parameter: 1/NU = 1000.00000000000

parameter for Samarskij-upwind: UPSAM = 1.0000000000000

lower limit for optimal OMEGA: OMGMIN = 0.

upper limit for optimal OMEGA: OMGMAX = 1.0000000000000

start value for optimal OMEGA: OMGINI = 1.0000000000000

limit for U-defects : EPSD = 1.0000000000000D-05

limit for DIV-defects : EPSDIV = 1.0000000000000D-05

limit for U-changes : EPSUR = 5.0000000000000D-02

limit for P-changes : EPSPR = 5.0000000000000D-02

defect improvement : DMPD = 1.0000000000000D-01

damping of MG residuals : DMPMG = 0.50000000000000

limit for MG residuals : EPSMG = 0.50000000000000

damping of residuals for solving: DMPSL = 1.0000000000000D-01

limit of changes for solving: EPSSL = 1.0000000000000D-01

relaxation for the U-smoother: RLXSM = 1.0000000000000

relaxation for the U-solver : RLXSL = 0.80000000000000

lower limit optimal MG-ALPHA: AMINMG = -10.0000000000000

upper limit optimal MG-ALPHA: AMAXMG = 10.0000000000000

Parameters of /NS.../ :



3.3 The 3D example 63

--------------------------------------------------------------------------------

Time dependency : ISTAT = 0

Number of time steps : NITNS = 50

limit for time derivative: EPSNS = 1.0000000000000D-05

Total time : TIMENS = 0.

Theta : THETA = 1.0000000000000

Time step : TSTEP = 1.0000000000000D-02

Fractional step : IFRSTP = 1

Stepsize for nonsteady savings: INSAV = 0

Number of files : INSAVN = 0

Time step for Film : DTFILM = 0.

Time step for AVS : DTAVS = 1.0000000000000

Time step for BYU : DTBYU = 1.0000000000000

Level for velocity : IFUSAV = 0

Level for pressure : IFPSAV = 0

Level for streamlines : IFXSAV = 0

Level for AVS : IAVS = 3

Level for BYU : IBYU = 2

Start file : IFINIT = 1

Type of adaptivity : IADTIM = -1

Max. Time : TIMEMX = 5.0000000000000

Min. Timestep : DTMIN = 1.0000000000000D-06

Max. Timestep : DTMAX = 9.0000000010000

Max. Timestep change : DTFACT = 9.0000000010000

Time for start procedure : TIMEIN = 1.0000000000000

EPS for start procedure : EPSADI = 0.12500000000000

EPS for acceptance : EPSADL = 1.2500000000000D-03

EPS for not acceptance : EPSADU = 0.50000000000000

Acceptance criterion : IEPSAD = 3

Start procedure : IADIN = 2

Max.numbers of repetitions : IREPIT = 1

--------------------------------------------------------------------------------

ILEV,NVT,NAT,NEL,NEL0,NEL1,NEL2: 1 1485 3836 1184 1120 0 64

ILEV,NVT,NAT,NEL,NEL0,NEL1,NEL2: 2 10642 29552 9472 8864 96 512

ILEV,NVT,NAT,NEL,NEL0,NEL1,NEL2: 3 80388 231872 75776 70512 1168 4096

time for grid initialization : 36.883334092796

ILEV,NU,NA,NB: 1 3836 39356 7104

ILEV,NU,NA,NB: 2 29552 313712 56832

ILEV,NU,NA,NB: 3 231872 2505152 454656

time for initialization of linear operators : 62.316661834717

--------------------------------------------------------------------------------

IT RELU RELP DEF-U DEF-DIV DEF-TOT RHONL OMEGNL RHOMG

--------------------------------------------------------------------------------

0 0.26D-03 0.68D-03 0.72D-03

--------------------------------------------------------------------------------

1 0.10D+01 0.10D+01 0.93D-04 0.48D-05 0.93D-04 0.13D+00 0.10D+01 0.12D+00

2 0.51D+00 0.42D+00 0.14D-03 0.84D-06 0.14D-03 0.43D+00 0.10D+01 0.18D+00

3 0.26D+00 0.26D+00 0.28D-04 0.11D-06 0.28D-04 0.34D+00 0.10D+01 0.77D-01

4 0.10D+00 0.39D-01 0.34D-05 0.20D-06 0.34D-05 0.26D+00 0.99D+00 0.22D+00

5 0.40D-01 0.31D-01 0.29D-05 0.79D-07 0.29D-05 0.33D+00 0.99D+00 0.69D+00

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# 1( 1) TIME= 0.000D+00 NORM(U)= 0.2160847D+00 NORM(P)= 0.7659621D-01

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

P(VELO) 0.32444D-01 0.12893D-02 0.21419D-04 0.20393D+00 0.16592D-02-0.28822D-04

P(PRES) 0.19791D+00 0.36067D-01 0.19174D-02 0.45314D-01

I(PRES) 0.61808D-01 0.95865D-01

I(FORCE) 0.63585D+01 0.38097D-02

STATISTICS :

NWORK : 10000000

IWORKG: 1339516

IWMAXG: 3450964

IWORKI: 9732825



64 Examples for the use of featflow

IWMAXI: 9732825

IWORK : 9732825

IWMAX : 9893601

--------------------------------------------------------------------------------

total time : 21627.316276040

appr. time : 21626.999564104

grid time : 36.883334092796

post time : 51.515625000000

lin. time : 1290.7828254700

-> mavec time : 109.70226669312

-> konv. time : 1106.0506057739

-> bdry time : 0.75054168701172

-> LC time : 74.279411315918

mg time : 20247.817779541

#substeps : 1

#nonlinear : 5

#mg : 6

--------------------------------------------------------------------------------

MULTIGRID COMPONENTS [in percent]:

smoothing : 98.178536576809

solver : 0.46786725951263

defect calc. : 0.70117728389642

prolongation : 0.59852068627434

restriction : 5.3898193507251D-02

--------------------------------------------------------------------------------

Only a few di�erences with respect to the 2D example have to be explained:

{ ILEV,NEL0,NEL1,NEL2 appears in combination with streamline{di�usion only. It

presents the number of element requiring fully trilinear/linear/axiparallel transforma-

tions on the reference element.

{ P(VELO), : : :, I(IFORCE) are analogously de�ned as in the 2D case.

As before, we obtain �les for graphical output, namely in #avs the �le u1.inp, and in

#byu the byu �les u1.vec (velocity) and p1.scl (pressure). A typical example for a avs

velocity plot in the midplane is shown in the following picture.

Figure 3.10: Velocity plot in the midplane z = 0:205 for the stationary 3D calculation



3.3 The 3D example 65

Next, we perform a nonstationary calculation, again for Reynolds number 100. We use

the data �le input files/indat3d.f non, and the same "well known" procedure has to

be performed:

cd FEATFLOW/application/example/input files

cp indat3d.f non indat3d.f ; make -f pp3d.m ; mv pp3d ..

cd FEATFLOW/application/example.

This data �le input files/indat3d.f non is almost identical to the stationary one:

{ The in
ow velocity pro�le at x = 0:0 is again parabolic, but with a maximum value

u

max

= 2:25.

{ UMEAN is changed for de�ning drag and lift.

Now, we can execute pp3d with given parameter �le #data/pp3d.dat. A solution is cal-

culated on level NLMAX=3, with (stationary) start solution �le #data/#DX3 stat. Now, the

chosen discretization scheme for the convective parts is done by upwinding, and we per-

form our time stepping with the fractional step scheme and fully adaptive time step control

until TIMEMX=9D0. Files for graphical output, namely for #avs and #byu, are written out

all 1 "second". We obtain the protocol �le #data/pp3d.non which is almost identical to

the preceeding protocol �les. Therefore, we renounce a more precise explanation.

Again, the point values for P(VELO), : : :, I(FORCE) are printed separately into correspond-

ing �les in the subdirectory #points and be visualized by GNUPLOT, for instance (see

Figure 3.6). Furthermore, we obtain other �les for graphical output, namely in #avs and

in #byu, written with a "1 second" delay. In the following Figure 3.12, the corresponding

velocity plot for T = 9 (�le #avs/u110.inp) is shown.

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 1 2 3 4 5 6 7 8 9

ca
-v

al
ue

time

Figure 3.11: Lift values for the nonstationary 3D calculation

We hope, that the presented examples are helpful in understanding the features of feat-

flow, and give a �rst feeling how to use it. For more questions, the author is hopefully

prepared to your problems.



66 Examples for the use of featflow

Figure 3.12: Velocity plot in the midplane z = 0:205 for T = 9



Bibliography

[1] Axelsson, O., Barker, V.A.: Finite Element Solution of Boundary Value Problems,

Academic Press, 1984

[2] Becker, R., Rannacher, R.: Finite element discretization of the Stokes and Navier{

Stokes equations on anisotropic grids, Proc. 10th GAMM-Seminar, Kiel, January

14{16, 1994 (G. Wittum, W. Hackbusch, eds.), Vieweg

[3] Blum, H., Harig, J., M�uller, S., Turek, S.: FEAT2D . Finite element analysis

tools. User Manual. Release 1.3, Technical report, University Heidelberg, 1992

[4] Chorin, A.J.: Numerical solution of the Navier{Stokes equations, Math. Comp.,

22, 745{762 (1968)

[5] Crouzeix, M., Raviart, P.A.: Conforming and non{conforming �nite element meth-

ods for solving the stationary Stokes equations, R.A.I.R.O. R{3, 77{104 (1973)

[6] Cuvelier, C., Segal, A., Steenhoven, A.: Finite element methods and Navier Stokes

equations, D. Reidel Publishing Company, Dordrecht 1986

[7] Gresho, P.M.: On the theory of semi{implicit projection methods for viscous in-

compressible 
ow and its implementation via a �nite element method that also

introduces a nearly consistent mass matrix, Part 1: Theory, Int. J. Numer. Meth.

Fluids, 11, 587{620 (1990). Part 2: Implementation, Int. J. Numer. Meth. Fluids,

11, 621{659 (1990)

[8] Girault, V., Raviart, P.A.: Finite Element Methods for Navier{Stokes Equations,

Springer, Berlin{Heidelberg 1986

[9] Harig, J., Schreiber, P., Turek, S.: FEAT3D. Finite element analysis tools in 3

dimensions. User Manual. Release 1.1, Technical report, University Heidelberg,

1993

[10] Heywood, J., Rannacher, R., Turek, S.: Arti�cial boundaries and 
ux and pressure

conditions for the incompressible Navier{Stokes equations, to appear in: Int. J.

Numer. Meth. Fluids

[11] Kloucek, P., Rys, F.S.: On the stability of the fractional step{�{scheme for the

Navier{Stokes equations, SIAM J. Numer. Anal., 31, 1312{1335 (1994)

[12] M�uller, S., Prohl, A., Rannacher, R., Turek, S.: Implicit time{discretization of

the nonstationary incompressible Navier{Stokes equations, Proc. 10th GAMM-

Seminar, Kiel, January 14{16, 1994 (G. Wittum, W. Hackbusch, eds.), Vieweg

67



68 BIBLIOGRAPHY

[13] Rannacher, R.: Numerical analysis of the Navier{Stokes equations, Appl. Math.,

38, 361{380 (1993)

[14] Rannacher, R.: On Chorin's projection method for the incompressible Navier{

Stokes equations, in "Navier{Stokes Equations: Theory and Numerical Meth-

ods" (R. Rautmann, et al., eds.), Proc. Oberwolfach Conf., August 19{23, 1991,

Springer, 1992

[15] Rannacher, R., Turek, S.: A simple nonconforming quadrilateral Stokes element,

Numer. Meth. Part. Di�. Equ., 8, 97{111 (1992)

[16] Sch�afer, M., Turek, S. (with support by F. Durst, E. Krause, R. Rannacher):

Benchmark computations of laminar 
ow around cylinder, in E.H. Hirschel (edi-

tor), Flow Simulation with High-Performance Computers II, Volume 52 of Notes

on Numerical Fluid Mechanics, 547{566, Vieweg, 1996.

[17] Schieweck, F.: A parallel multigrid algorithm for solving the Navier{Stokes equa-

tion, Impact Comp. Sci. Engnrg., 5, 345{378 (1993)

[18] Schreiber, P.: A new �nite element solver for the nonstationary incompressible

Navier{Stokes equations in three dimensions, Thesis, University of Heidelberg,

1995

[19] Schreiber, P., Turek, S.: An e�cient �nite element solver for the nonstationary

incompressible Navier{Stokes equations in two and three dimensions, Proc. Work-

shop "Numerical Methods for the Navier{Stokes Equations", Heidelberg, Oct. 25{

28, 1993, Vieweg

[20] Thomasset, F.: Implementation of Finite Element Methods for Navier{Stokes

Equations, Springer, New York 1981

[21] Turek, S.: A comparative study of time stepping techniques for the incompressible

Navier{Stokes equations: From fully implicit nonlinear schemes to semi{implicit

projection methods, Int. J. Numer. Meth. Fluids, 22, 987 { 1011 (1996)

[22] Turek, S.: On discrete projection methods for the incompressible Navier{Stokes

equations: An algorithmical approach, Comput. Methods Appl. Mech. Engrg., 143,

271 { 288 (1997)

[23] Turek, S.: Tools for simulating nonstationary incompressible 
ow via discretely

divergence{free �nite element models, Int. J. Numer. Meth. Fluids, 18, 71{105

(1994)

[24] Turek, S.: Multilevel Pressure Schur Complement techniques for the numerical

solution of the incompressible Navier{Stokes equations, Habilitation Thesis, Uni-

versity of Heidelberg, 1997

[25] Turek, S.: Multigrid techniques for a divergence{free�nite element discretization,

East-West J. Numer. Math., Vol. 2, No. 3, 229{255 (1994)

[26] Turek, S.: E�cient solvers for incompressible 
ow problems: An algorithmic ap-

proach in view of computational aspects, Springer, 1998

[27] Van Kan, J.: A second{order accurate pressure{correction scheme for viscous in-

compressible 
ow, SIAM J. Sci. Stat. Comp., 7, 870{891 (1986)



A. Appendix: Troubleshooting with featflow

In the following we list some problems which may apparently occur (as far as the author

knows) during the installation and execution of featflow. The following list cannot con-

tain everything, and the author will be very grateful for showing him even more problems

(but, hopefully, with solution strategies).

1) Known problems and errors during installation:

Q.: I have no gunzip to decompress my featflow binary �le?

A.: The author may tell you how to get gzip/gunzip or can send you the featflow

data in another format!

Q.: I have no FORTRAN77 compiler?

A.: The author may tell you how to get an "older", but "free" FORTRAN77 or the

GNU FORTRAN77 compiler!

Q.: I get a tar error after decompression?

A.: Your gzip/gunzip command may not work well, or you did forget to activate the

binary{mode during ftp transfer!

Q.: I have problems with the execution of the make shell scripts while installing the

system libraries?

A.: Be sure that you start the installation in a /bin/csh C{shell!

Q.: The installation stops directly after calling make lib?

A.: Be sure that you the directories FEATFLOW/object/libraries/libgen exist!

Q.: I get errors during the compilation process with make lib?

A.: Check your compiler options used, perhaps together with your system administrator!

Q.: My application stops with an error immediately after starting?

A.: Check your ztime.f subroutine in FEATFLOW/source/feat2d/src!

Q.: If I start the make�les for cc2d or cc3d in my application, I get the error message

that the VANCA routines are not linked?

A.: This happens on some computers. Copy the �le FEATFLOW/source/cc2d/src/

vanca.f to FEATFLOW/source/cc2d/mg. Then, start there again the shell{script

cc2d mg.m. Do the analogous procedure for the 3D case!

69



70 Appendix: Troubleshooting with featflow

2) Known problems and errors during preprocessing:

Q.: I have problems with omega2d?

A.: Check your PC{emulation and that you have (at least) WINDOWS 3.1. If so, ask

the author for more advice!

Q.: I have problems with the german manual of omega2d?

A.: Sorry, but in summer 1998 our �rst version of the DEVISOR will be �nished...

Q.: I have problems with trigen2d?

A.: Check in your manual of the actual release, that you marked an admissible set of

elements for your desired adaptive re�nement strategy!

3) Known problems and errors during solution process:

Q.: I have problems while seemingly the triangulations on every level are created?

A.: The most usual error is that your parametrization or coarse mesh is wrong. For

instance, both parametrization curves follow the same direction (error!!!), or the

starting point of your parametrization is not captured by a mesh point. Additionally,

be sure that all mesh points, which were created while using omega2d, do really

belong to an element. In most cases, one of these errors causes your trouble! Another

reason might be, if you have more than 1 boundary component, that you must have

positioned at least 3 mesh points on every boundary component.

Q.: I have problems with reading an unformatted solution �le?

A.: This happens on some computers. Use formatted output!

Q.: The code starts correctly, but before �nishing the �rst iteration step, it stops with

an error?

A.: Be sure that the corresponding provided memory size NNWORK is large enough!

Q.: The code starts correctly, but the multigrid rates become (almost) identical 1?

A.: Perhaps your mesh is so bad! But in most cases, you prescribed an in
ow pro�le

only, and your de�nition of the boundary part containing natural b.c.'s is wrong

(so, your 
ow cannot get incompressible!!!). Check this in the data �le indat2d.f

(analogously in 3D)!

Q.: My solution schemes (linear muligrid, nonlinear schemes, time stepping schemes)

are crashing?

A.: Perhaps your problem is so bad! If you perform a stationary calculation, try the

same with the nonstationary code (with adaptively chosen time step size). If you still

have problems, then your mesh might be too hard (too large aspect ratios!!!). Check

your triangulation. Take the parameter �les belonging to the most robust version.

However, in most cases it is su�cient to check again the data and the parameter �le!

4) Known problems and errors during postprocessing:

Q.: I have none of the proposed graphic tools?

A.: That's a really hard problem! Try to �nd another one which has similar features, or

ask your local computer center, or ask the author : : : for the (hopefully soon) freely

available AVS EXPRESS modules!



B. Appendix: The featflow group

We are indebted to the following persons who were involved, with theoretical and practical

help or suggestions, to develop featflow. We hope they won't be too angry about arising

questions because of some misleading comments in this manual. However, this is still the

�rst version, and source code and man pages of featflow will grow hopefully.

Whoever is interested in getting featflow, or whoever has questions or trouble, please,

send an email to S.Turek/Chr.Becker or to

feat
ow@gaia.iwr.uni-heidelberg.de

List of involved persons:

Christian Becker University of Heidelberg cbecker@gaia.iwr.uni-heidelberg.de

Roland Becker University of Heidelberg roland@gaia.iwr.uni-heidelberg.de

Heribert Blum University of Dortmund blum@math.uni-dortmund.de

Phil Gresho LLNL Livermore

Joachim Harig University of Heidelberg joachim@gaia.iwr.uni-heidelberg.de

Jaroslav Hron Charles University of Prague hron@karlin.m�.cuni.cz

John Heywood UBC Vancouver heywood@math.ubc.ca

Susanne Kilian University of Heidelberg susanne@gaia.iwr.uni-heidelberg.de

Ste�en M�uller{Urbaniak FORD K�oln

Hubertus Oswald University of Heidelberg oswald@gaia.iwr.uni-heidelberg.de

Rolf Rannacher University of Heidelberg rannacher@gaia.iwr.uni-heidelberg.de

Ludmilla Rivkind University of Heidelberg rivkind@gaia.iwr.uni-heidelberg.de

Friedhelm Schieweck University of Magdeburg Friedhelm.Schieweck@Mathematik.

Uni-Magdeburg.de

Rainer Schmachtel University of Heidelberg rainer@gaia.iwr.uni-heidelberg.de

Peter Schreiber University of Heidelberg schreib@gaia.iwr.uni-heidelberg.de

Stefan Turek University of Heidelberg ture@gaia.iwr.uni-heidelberg.de

John Wallis University of Heidelberg wallis@gaia.iwr.uni-heidelberg.de

Owen Walsh UBC Vancouver owen@math.ubc.ca

71



C. Appendix: Future projects in featflow

In the following we list the current projects which are under development, and which shall

be added to one of the next releases of featflow.

Concerning the improvement of the discretization and solution schemes we are just (or

will soon begin with) developing software containing:

{ The "mixed coupled" solvers cp2d and cp3d

{ Periodic and moving boundaries

{ A Galerkin method with adaptive error control in space

{ A space{time Galerkin method with adaptive error control

{ A parallel version of all codes (for shared and distributed memory machines)

{ An improved feat version (feast !)

Software for a improved preprocessing:

{ omega2d as CAD{tool under JAVA (see the DEVISOR !)

{ omega3d as CAD{tool under JAVA (see the DEVISOR !)

{ trigen2d with mixing of re�nement types

{ trigen3d with adaptive re�nement strategies

{ intpol2d and intpol3d for interpolation between arbitrary meshes

Software for a improved postprocessing:

{ "Free" modules of AVS EXPRESS

{ Cooperation with other graphic packages

72



Appendix: Future projects in featflow 73

Software for more complex models:

{ Adding and testing of Boussinesq- and more complex turbulence models

{ Weakly compressible 
ows

{ Non{newtonian and multiphase 
ows

{ Shape optimization (with respect to lift and drag, for instance)

And �nally, for the "users":

{ Other FORTRAN compilers (GNU, for instance)

{ A FORTRAN90 version (see feast !)

{ A C or C++ version (?)

{ Industrial and commercial applications !!!

If you have more suggestions, please, let them be known the authors.


