
Probabilistic Programming Concepts

Luc De Raedt Angelika Kimmig

Department of Computer Science, KU Leuven

Celestijnenlaan 200a – box 2402, 3001 Heverlee, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract

Amultitude of different probabilistic programming languages exists to-

day, all extending a traditional programming language with primitives to

support modeling of complex, structured probability distributions. Each

of these languages employs its own probabilistic primitives, and comes

with a particular syntax, semantics and inference procedure. This makes

it hard to understand the underlying programming concepts and appreci-

ate the differences between the different languages.

To obtain a better understanding of probabilistic programming, we

identify a number of core programming concepts underlying the primitives

used by various probabilistic languages, discuss the execution mechanisms

that they require and use these to position state-of-the-art probabilistic

languages and their implementation.

While doing so, we focus on probabilistic extensions of logic program-

ming languages such as Prolog, which have been developed since more

than 20 years.

1 Introduction

The vast interest in statistical relational learning [Getoor and Taskar, 2007],
probabilistic (inductive) logic programming [De Raedt et al., 2008] and proba-
bilistic programming languages [Roy et al., 2008] has resulted in a wide variety
of different formalisms, models and languages. The multitude of probabilistic
languages that exists today provides evidence for the richness and maturity of
the field, but on the other hand, makes it hard to get an appreciation and un-
derstanding of the relationships and differences between the different languages.
Furthermore, most arguments in the literature about the relationship amongst
these languages are about the expressiveness of these languages, that is, they
state (often in an informal way) that one language is more expressive than an-
other one (implying that the former could be used to emulate the latter). By
now, it is commonly accepted that the more interesting question is concerned
with the underlying concepts that these languages employ and their effect on the
inference mechanisms, as their expressive power is often very similar. However,
a multitude of different probabilistic primitives exists, which makes it hard to
appreciate their relationships.1

1Throughout the paper we use the term primitive to denote a particular syntactic and
semantic construct that is available in a particular probabilistic programming language, and

1

ar
X

iv
:1

31
2.

43
28

v1
 [

cs
.P

L
]

 1
6

D
ec

 2
01

3

To alleviate these difficulties and obtain a better understanding of the field
we identify a number of core probabilistic programming concepts and relate
them to one another. We cover the basic concepts representing different types
of random variables, but also general modeling concepts such as negation or
time and dynamics, and programming constructs such as meta-calls and ways
to handle sets. While doing so, we focus on probabilistic extensions of logic pro-
gramming languages because this is (arguably) the first and best studied prob-
abilistic programming paradigm. It has been studied for over 20 years starting
with the seminal work of David Poole [1992] and Taisuke Sato [1995], and now
includes languages such as CLP(BN) [Santos Costa et al., 2008], BLPs [Kerst-
ing and De Raedt, 2008], ICL [Poole, 2008], PRISM [Sato and Kameya, 2001],
ProbLog [De Raedt et al., 2007], LPADs [Vennekens et al., 2004], CP-logic
[Vennekens et al., 2009], SLPs [Muggleton, 1996], PROPPR [Wang et al., 2013],
P-log [Baral et al., 2009] and Dyna [Eisner et al., 2005]. Another reason for
focussing on probabilistic extensions of logic programming languages is that the
concepts are all embedded within the same host language, so we can focus on
semantics rather than syntax. At the same time, we also relate the concepts
to alternative probabilistic programming languages such as Church [Goodman
et al., 2008], IBAL [Pfeffer, 2001], Figaro [Pfeffer, 2009] and BLOG [Milch et al.,
2005] and to some extent also to statistical relational learning models such as
RBNs [Jaeger, 2008], Markov logic [Richardson and Domingos, 2006], and PRMs
[Getoor et al., 2007]. Most statistical relational learning approaches employ a
knowledge-based model construction approach, in which the logic is used as a
template for constructing a graphical model. Typical probabilistic programming
languages, on the other hand, employ a variant of Sato’s distribution seman-
tics [Sato, 1995], in which random variables directly correspond to ground facts
and a traditional program specifies how to deduce further knowledge from these
facts. This difference explains why we introduce the concepts in the context of
the distribution semantics, and discuss approaches to knowledge-based model
construction separately.

Inference is a key challenge in probabilistic programming and statistical re-
lational learning. Furthermore, the choice of inference approach often influences
which probabilistic primitives can be supported. Enormous progress has been
made in the past few years w.r.t. probabilistic inference and numerous inference
procedures have been contributed. Therefore, we also identify some core classes
of inference mechanisms for probabilistic programming and discuss which ones
to use for which probabilistic concept. Inference in probabilistic languages also
is an important building block of approaches that learn the structure and/or
parameters of such models from data. Given the variety of approaches that
exist today, a discussion of learning is beyond the scope of this paper.

To summarize, the key contributions of this paper are (1) the identification
of a number of core concepts that are used by various probabilistic languages,
(2) a discussion of the execution mechanisms that they require, and (3) a po-
sitioning of state-of-the-art probabilistic languages and implementations w.r.t.
these concepts. Although many of the concepts we discuss are well-described in
the literature, some even in survey papers [De Raedt and Kersting, 2003, Poole,
2008], we believe a new and up-to-date survey is warranted due to the rapid

the term concept to denote the underlying notion. Different primitives may hence realize the
same concept.

2

developments of the field which rapidly renders existing surveys incomplete and
even outdated. To the best of our knowledge, this is also the first time that
such a wide variety of probabilistic programming concepts and languages, also
in connection to inference, is discussed in a single paper.

We expect the reader to be familiar with basic language concepts and terms
of Prolog [Lloyd, 1989, Flach, 1994]; a quick summary can be found in Ap-
pendix A.

This paper is organized as follows. We first discuss the distribution seman-
tics (Section 2) and classify corresponding inference approaches according to
their logical and probabilistic components (Section 3). Section 4 identifies the
probabilistic programming concepts. In Section 5, we discuss the relation with
statistical relational modeling approaches rooted in graphical models. Section 6
relates the different inference approaches to the probabilistic programming con-
cepts.

2 Distribution Semantics

Sato’s distribution semantics [Sato, 1995] is a well-known semantics for proba-
bilistic logics that has been used many times in the literature, cf. [Dantsin, 1991,
Poole, 1993, Fuhr, 2000, Poole, 2000, Sato and Kameya, 2001, Dalvi and Suciu,
2004, De Raedt et al., 2007]. Prominent examples of Prolog-based languages
using this semantics include ICL [Poole, 2008], PRISM [Sato and Kameya, 2001]
and ProbLog [De Raedt et al., 2007, Kimmig et al., 2011a], even though there
exist subtle differences between these languages as we will illustrate later. Sato
has defined the distribution semantics for a countably infinite set of random
variables and a general class of distributions. We focus on the finite case here,
discussing the two most popular instances of the semantics, based on a set of in-
dependent random variables and independent probabilistic choices, respectively,
and refer to [Sato, 1995] for details on the general case.

2.1 Probabilistic Facts

The arguably most basic instance of the distribution semantics uses a finite set
of Boolean random variables that are all pairwise independent. Throughout the
paper, we use the following running example inspired by the well-known alarm
Bayesian network:

0.1 :: burglary. 0.7 :: hears alarm(mary).

0.2 :: earthquake. 0.4 :: hears alarm(john).

alarm :− earthquake. (1)

alarm :− burglary.

calls(X) :− alarm, hears alarm(X).

call :− calls(X).

The program consists of a set R of definite clauses or rules, and a set F of
ground facts f , each of them labeled with a probability p, written as p :: f . We
call such labeled facts probabilistic facts. Each probabilistic fact corresponds to

3

a Boolean random variable that is true with probability p and false with proba-
bility 1−p. We use b, e, hm and hj to denote the random variables correspond-
ing to burglary, earthquake, hears_alarm(mary) and hears_alarm(john),
respectively. Assuming that all these random variables are independent, we ob-
tain the following probability distribution PF over truth value assignments to
these random variables and their corresponding sets of ground facts F ′ ⊆ F :

PF (F
′) =

∏

fi∈F ′

pi ·
∏

fi∈F\F ′

(1− pi) (2)

For instance, the truth value assignment burglary = true, earthquake = false,
hears alarm(mary) = true, hears alarm(john) = false, which we will ab-
breviate as b ∧ ¬e ∧ hm ∧ ¬hj, corresponds to the set of facts {burglary,
hears_alarm(mary)}, and has probability 0.1 · (1−0.2) ·0.7 · (1−0.6) = 0.0336.
The corresponding logic program obtained by adding the set of rules R to the
set of facts, also called a possible world, is

burglary.

hears alarm(mary).

alarm :− earthquake. (3)

alarm :− burglary.

calls(X) :− alarm, hears alarm(X).

call :− calls(X).

As each logic program obtained by fixing the truth values of all probabilistic
facts has a unique least Herbrand model, PF can be used to define the success
probability of a query q, that is, the probability that q is true in a randomly
chosen such program, as the sum over all programs that entail q:

Ps(q) :=
∑

F ′⊆F

∃θF ′∪R|=qθ

PF (F
′) (4)

=
∑

F ′⊆F

∃θF ′∪R|=qθ

∏

fi∈F ′

pi ·
∏

fi∈F\F ′

(1− pi) . (5)

Naively, the success probability can thus be computed by enumerating all sets
F ′ ⊆ F , for each of them checking whether the corresponding possible world
entails the query, and summing the probabilities of those that do. As fixing the
set of facts yields an ordinary logic program, the entailment check can use any
reasoning technique for such programs.

For instance, forward reasoning, also known as applying the TP operator,
starts from the set of facts and repeatedly uses rules to derive additional facts
until no more facts can be derived. In our example possible world (3), we
thus start from {burglary, hears_alarm(mary)}, and first add alarm due to
the second rule based on burglary. This in turn makes it possible to add
calls(mary) using the third rule and substitution X=mary, and finally, call
is added using the last rule, resulting in the least Herbrand model {burglary,
hears_alarm(mary), alarm, calls(mary), call}. This possible world thus
contributes to the success probabilities of alarm, calls(mary) and call, but
not to the one of calls(john).

4

world calls(john) probability
b ∧ ¬e ∧ hm ∧ ¬hj false 0.1 · (1− 0.2) · 0.7 · (1− 0.4) = 0.0336
b ∧ ¬e ∧ hm ∧ hj true 0.1 · (1− 0.2) · 0.7 · 0.4 = 0.0224
b ∧ e ∧ hm ∧ ¬hj false 0.1 · 0.2 · 0.7 · (1− 0.4) = 0.0084
b ∧ e ∧ hm ∧ hj true 0.1 · 0.2 · 0.7 · 0.4 = 0.0056
¬b ∧ e ∧ hm ∧ ¬hj false (1− 0.1) · 0.2 · 0.7 · (1− 0.4) = 0.0756
¬b ∧ e ∧ hm ∧ hj true (1− 0.1) · 0.2 · 0.7 · 0.4 = 0.0504

Table 1: The possible worlds of program (1) where calls(mary) is true.

An alternative to forward reasoning is backward reasoning, also known as
SLD-resolution or proving, which we again illustrate for our example possible
world (3). It starts from a given query, e.g., call, and uses the rules in the
opposite direction: in order to prove a fact appearing in the head of a clause,
we have to prove all literals in the clause’s body. For instance, based on the
last rule, to prove call, we need to prove calls(X) for some instantiation of
X. Using the third rule, this means proving alarm, hears_alarm(X). To prove
alarm, we could use the first rule and prove earthquake, but this fails for our
choice of facts, as there is no rule (or fact) for the latter. We thus backtrack
to the second rule for alarm, which requires proving burglary, which is proven
by the corresponding fact. Finally, we prove hears_alarm(X) using the fact
hears_alarm(mary), substituting mary for X, which completes the proof for
call.

Going over all possible worlds in this way, we obtain the success probability
of calls(mary), Ps(calls(mary)) = 0.196, as the sum of the probabilities of
six possible worlds (listed in Table 1).

Clearly, enumerating all possible worlds is infeasible for larger programs; we
will discuss alternative inference techniques from the literature in Section 3.

For ease of modeling (and to allow for countably infinite sets of probabilistic
facts), probabilistic languages such as ICL and ProbLog use non-ground prob-
abilistic facts to define sets of random variables. All ground instances of such
a fact are mutually independent and share the same probability value. As an
example, consider a simple coin game which can be won either by throwing two
times heads or by cheating. This game can be modeled by the program be-
low. The probability to win the game is then defined by the success probability
Ps(win).

0.5 :: heads(X). 0.2 :: cheat successfully.
win :− cheat successfully.
win :− heads(1), heads(2).

Legal groundings of such facts can also be restricted by providing a domain, as
in the following variant of our alarm example where all persons have the same

5

probability of independently hearing the alarm:

0.1 :: burglary. 0.2 :: earthquake

0.7 :: hears alarm(X) :− person(X).

person(mary). person(john). person(bob). person(ann).

alarm :− earthquake.

alarm :− burglary.

calls(X) :− alarm, hears alarm(X).

call :− calls(X).

If such domains are defined purely logically, without using probabilistic facts,
the basic distribution is still well defined.

It is often assumed that probabilistic facts do not unify with other proba-
bilistic facts or heads of rules.

2.2 Probabilistic Choices

As already noted by Sato [1995], probabilistic facts (or binary switches) are
expressive enough to represent a wide range of models, including Bayesian net-
works, Markov chains and hidden Markov models. However, for ease of model-
ing, it is often more convenient to use multi-valued random variables instead of
binary ones. The concept commonly used to realize such variables in the distri-
bution semantics is a probabilistic choice, that is, a finite set of ground atoms
exactly one of which is true in any possible world. Examples of such choices
are the probabilistic alternatives of the Independent Choice Logic (ICL) [Poole,
2000] and probabilistic Horn abduction (PHA) [Poole, 1993], the multi-ary ran-
dom switches of PRISM [Sato and Kameya, 2001], the probabilistic clauses of
stochastic logic programs (SLPs) [Muggleton, 1996], and the annotated disjunc-
tions of logic programs with annotated disjunctions (LPADs) [Vennekens et al.,
2004], or the CP-events of CP-logic [Vennekens, 2007]. These are all closely
related, e.g., the probabilistic clauses of SLPs map onto the switches of PRISM
[Cussens, 2005], and the probabilistic alternatives of ICL onto annotated dis-
junctions (and vice versa) [Vennekens et al., 2004]. We therefore restrict the
following discussion to annotated disjunctions [Vennekens et al., 2004], using
the notation introduced below.

An annotated disjunction (AD) is an expression of the form

p1 :: h1; . . . ; pN :: hN :− b1, . . . , bM.

where b1, . . . , bM is a possibly empty conjunction of literals, the pi are probabil-
ities and

∑N

i=1 pi ≤ 1. Considered in isolation, an annotated disjunction states
that if the body b1, . . . , bM is true at most one of the hi is true as well, where
the choice is governed by the probabilities (see below for interactions between
multiple ADs with unifying atoms in the head). If the pi in an annotated dis-
junction do not sum to 1, there is also the case that nothing is chosen. The
probability of this event is 1 −

∑n

i=1 pi. A probabilistic fact is thus a special
case of an AD with a single head atom and empty body.

6

For instance, consider the following program:

0.4 :: draw.

1

3
:: color(green);

1

3
:: color(red);

1

3
:: color(blue) :− draw.

The probabilistic fact states that we draw a ball from an urn with probability
0.4, and the annotated disjunction states that if we draw a ball, the color is
picked uniformly among green, red and blue. As for probabilistic facts, a non-
ground AD denotes the set of all its groundings, and for each such grounding,
choosing one of its head atoms to be true is seen as an independent random
event. That is, the annotated disjunction

1

3
:: color(B, green);

1

3
:: color(B, red);

1

3
:: color(B, blue) :− ball(B).

defines an independent probabilistic choice of color for each ball B.
As noted already by Vennekens et al. [2004], the probabilistic choice over

head atoms in an annotated disjunction can equivalently be expressed using a
set of logical clauses, one for each head, and a probabilistic choice over facts
added to the bodies of these clauses, e.g.

color(B, green) :− ball(B), choice(B, green).

color(B, red) :− ball(B), choice(B, red).

color(B, blue) :− ball(B), choice(B, blue).

1

3
:: choice(B, green);

1

3
:: choice(B, red);

1

3
:: choice(B, blue).

This example illustrates that annotated disjunctions define a distribution PF

over basic facts as required in the distribution semantics, but can simplify mod-
eling by directly expressing probabilistic consequences.

As mentioned above, a probabilistic fact directly corresponds to an anno-
tated disjunction with a single atom in the head and an empty body. Con-
versely, each annotated disjunction can – for the purpose of calculating success
probabilities – be equivalently represented using a set of probabilistic facts and
deterministic clauses, which together simulate a sequential choice mechanism;
we refer to Appendix B for details.

Independent Causes Some languages, e.g. ICL [Poole, 2008], assume that
head atoms in the same or different annotated disjunctions cannot unify with
one another, while others, e.g., LPADs [Vennekens et al., 2004], do not make this
restriction, but instead view each annotated disjunction as an independent cause
for the conclusions to hold. In that case, the structure of the program defines
the combined effect of these causes, similarly to how the two clauses for alarm
in our earlier example (1) combine the two causes burglary and earthquake.
We illustrate this on the Russian roulette example by Vennekens et al. [2009],
which involves two guns.

1
6 :: death:− pull trigger(left gun).
1
6 :: death:− pull trigger(right gun).

Each gun is an independent cause for death. Pulling both triggers will result in
death being true with a probability of 1− (1− 1

6)
2, which exactly corresponds

7

to the probability of death being proven via the first or via the second anno-
tated disjunction (or both). Assuming independent causes closely corresponds
to the noisy-or combining rule that is often employed in the Bayesian network
literature, cf. Section 5.

2.3 Inference Tasks

In probabilistic programming and statistical relational learning, the following
inference tasks have been considered:

• In the SUCC(q) task, a ground query q is given, and the task is to compute

SUCC(q) = Ps(q),

the success probability of the query as specified in Equation (4).2

• In the MARG(Q | e) task, a set Q of ground atoms of interest, the query
atoms, and a ground query e, the evidence, are given. The task is to
compute the marginal probability distribution of each atom q ∈ Q given
the evidence,

Ps(q|e) =
Ps(q ∧ e)

Ps(e)
.

The SUCC(q) task corresponds to the special case of the MARG(Q | e)
task with Q = {q} and e = true (and thus Ps(e) = 1).

• The MAP (Q | e) task is to find the most likely truth-assignment q to the
atoms in Q given the evidence e, that is, to compute

MAP (Q | e) = argmax
q

Ps(Q = q|e)

• The MPE(U | e) task is to find the most likely world where the given
evidence query e holds. Let U be the set of all atoms in the Herbrand
base that do not occur in e. Then, the task is to compute the most likely
truth-assignment u to the atoms in U ,

MPE(e) = MAP (U | e).

• In the V IT (q) task, a query q is given, and the task is to find a Viterbi
proof of q. Let E(q) be the set of all explanations or proofs of q, that
is, of all sets F ′ of ground probabilistic atoms for which q is true in the
corresponding possible world. Then, the task is to compute

V IT (q) = arg max
X∈E(q)

Ps(
∧

f∈X

f).

To illustrate, consider our initial alarm example (1) with e = calls(mary) and
Q = {burglary, calls(john)}. The worlds where the evidence holds are listed
in Table 1, together with their probabilities. The answer to the MARG task is
Ps(burglary|calls(mary)) = 0.07/0.196 = 0.357 and Ps(calls(john)|calls(mary)) =

2Non-ground queries have been considered as well, in which case the success probability
corresponds to the probability that qθ is true for some grounding substitution θ.

8

0.0784/0.196 = 0.4. The answer to the MAP task is burglary=false, calls(john)=false,
as its probability 0.0756/0.196 is higher than 0.028/0.196 (for true, true), 0.042/0.196
(for true, false) and 0.0504/0.196 (for false, true). The world returned by MPE is
the one corresponding to the set of facts {earthquake, hears_alarm(mary)}.
Finally, the Viterbi proof of query calls(mary) is e∧hm, as 0.2 · 0.7 > 0.1 · 0.7
(for b ∧ hm).

3 Inference

We now provide an overview of existing inference approaches in probabilistic
(logic) programming. As most existing work adresses the SUCC task of com-
puting success probabilities, cf. Equation (4), we focus on this task here, and
mention other tasks in passing where appropriate. For simplicity, we assume
probabilistic facts as basic building blocks. Computing marginals under the
distribution semantics has to take into account both probabilistic and logical
aspects. We therefore distinguish between exact inference and approximation
using either bounds or sampling on the probabilistic side, and between methods
based on forward and backward reasoning and grounding to CNF on the logical
side. Systems implementing (some of) these approaches include the ICL sys-
tem AILog23, the PRISM system4, the ProbLog implementations ProbLog15

and ProbLog26, and the LPAD implementations cplint7 and PITA8. General
statements about systems in the following refer to these six systems.

3.1 Exact Inference

As most methods for exact inference can be viewed as operating (implicitly
or explicitly) on a propositional logic representation of all possible worlds that
entail the query q of interest, we first note that this set of possible worlds is
given by the following formula in disjunctive normal form (DNF)

DNF (q) =
∨

F ′⊆F

∃θF ′∪R|=qθ

∧

fi∈F ′

fi ∧
∧

fi∈F\F ′

¬fi

 (6)

and that the structure of this formula exactly mirrors that of Equation (5) defin-
ing the success probability in the case of probabilistic facts, where we replace
summation by disjunction, multiplication by conjunction, and probabilities by
truth values of random variables (or facts).

In our initial alarm example (1), the DNF corresponding to calls(mary)

contains the worlds shown in Table 1, and thus is

(b ∧ e ∧ hm ∧ hj) ∨ (b ∧ e ∧ hm ∧ ¬hj) ∨ (b ∧ ¬e ∧ hm ∧ hj) (7)

∨ (b ∧ ¬e ∧ hm ∧ ¬hj) ∨ (¬b ∧ e ∧ hm ∧ hj) ∨ (¬b ∧ e ∧ hm ∧ ¬hj).

3http://artint.info/code/ailog/ailog2.html
4http://sato-www.cs.titech.ac.jp/prism/
5included in YAP Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/
6http://dtai.cs.kuleuven.be/problog/
7included in YAP Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/
8included in XSB Prolog, http://xsb.sourceforge.net/

9

http://artint.info/code/ailog/ailog2.html
http://sato-www.cs.titech.ac.jp/prism/
http://www.dcc.fc.up.pt/~vsc/Yap/
http://dtai.cs.kuleuven.be/problog/
http://www.dcc.fc.up.pt/~vsc/Yap/
http://xsb.sourceforge.net/

{draw}

 {}

{not(draw)}

{draw,red}{draw,green} {draw,blue}

0.4 0.6

0.2 0.7 0.1

0.08 0.28 0.04

0.6

Figure 1: Forward reasoning example.

Forward Reasoning: Following the definition of the semantics of CP-logic
[Vennekens et al., 2009], forward reasoning can be used to build a tree whose
leaves correspond to possible worlds, on which success probabilities can be cal-
culated. Specifically, the root of the tree is the empty set, and in each node,
one step of forward reasoning is executed, creating a child for each possible out-
come in the case of probabilistic facts or annotated disjunctions. For instance,
consider the program

0.4 :: draw.

0.2 :: green; 0.7 :: red; 0.1 :: blue :− draw.

As illustrated in Figure 1, the first step using the probabilistic fact draw adds
two children to the root, one containing draw, and one containing not(draw).
In the latter case, the body of the AD is false and thus no further reasoning
steps are possible. For the world where draw is true, the AD introduces three
children, adding green, red and blue, respectively, and no further reasoning
steps are possible in the resulting worlds. Thus, each path from the root to a
leaf constructs one possible world, whose probability is the product of assign-
ments made along the path. Domains for non-ground facts have to be explicitly
provided to ensure termination. While this approach clearly illustrates the se-
mantics, even in the finite case, it suffers from having to enumerate all possible
worlds, and is therefore not used in practice.

Backward Reasoning: Probably the most common inference strategy in
probabilistic logic programming is to collect all possible proofs or explanations
of a given query using backward reasoning, represent them in a suitable data
structure, and compute the probability on that structure. As discussed in Sec-
tion 2.3, an explanation is a partial truth value assignment to probabilistic facts
that is sufficient to prove the query via SLD-resolution. For instance, b∧ hm is
the explanation for calls(mary) given by the derivation discussed in Section 2.1
(page 5), as it depends on burglary and hears_alarm(mary) being true, but
not on any particular truth values of earthquake and hears_alarm(john).
This query has a second proof, e ∧ hm, obtained by using the first clause
for alarm during backward reasoning. We can describe the set of possible
worlds where calls(mary) is true by the disjunction of all proofs of the query,

10

(b ∧ hm) ∨ (e ∧ hm), which is more compact than the disjunction (7) explicitly
listing the six possible worlds. We cannot, however, calculate the probability
of this more compact DNF by simply replacing conjunction by multiplication
and disjunction by addition as we did for the longer DNF above. The reason is
that the two proofs are not mutually exclusive, that is, they can be true in the
same possible world. Specifically, in our example this holds for the two worlds
b ∧ e ∧ hm ∧ hj and b ∧ e ∧ hm ∧ ¬hj, and the probability of these worlds,
0.1 ·0.2 ·0.7 ·0.4+0.1 ·0.2 ·0.7 · (1−0.4) = 0.014 is exactly the difference between
0.21 as obtained by the direct sum of products 0.1 · 0.7 + 0.2 · 0.7 and the true
probability 0.196. This is also known as the disjoint-sum-problem, which is #P-
complete [Valiant, 1979]. Existing languages and systems approach the problem
from different angles. PHA [Poole, 1992] and PRISM [Sato and Kameya, 2001]
rely on the exclusive explanation assumption, that is, they assume that the
structure of the program guarantees mutual exclusiveness of all conjunctions in
the DNF, which allows one to evaluate it as a direct sum of products (as done
in the PRISM system). This assumption allows for natural modeling of many
models, including e.g., probabilistic grammars and Bayesian networks, but pre-
vents direct modeling of e.g., connection problems over uncertain graphs where
each edge independently exists with a certain probability, or simple variations
of Bayesian network models such as our running example. ICL [Poole, 2000]
is closely related to PHA, but does not assume exclusive explanations. Poole
instead suggests symbolic disjoining techniques to split explanations into mutu-
ally exclusive ones (implemented in AILog2). The ProbLog1 implementation of
ProbLog [De Raedt et al., 2007, Kimmig et al., 2011a] has been the first prob-
abilistic programming system representing DNFs as Binary Decision Diagrams
(BDDs), an advanced data structure that disjoins explanations. This technique
has subsequently also been adopted for ICL and LPADs in the cplint and PITA
systems [Riguzzi, 2009, Riguzzi and Swift, 2011]. AILog2 and cplint also sup-
port computing conditional probabilities. Riguzzi [2013c] has introduced an
approach called PITA(OPT) that automatically recognizes certain independen-
cies that allow one to avoid the use of disjoining techniques when computing
marginal probabilities. Given its focus on proofs, backward reasoning can easily
be adapted to solve the VIT task of finding most likely proofs, as done in the
PRISM, ProbLog1 and PITA systems.

Reduction to Weighted Model Counting: A third way to approach the
logic side of inference in probabilistic logic programming has been suggested by
Fierens et al. [2011, 2014], who use the propositional logic semantics of logic
programming to reduce MARG inference to weighted model counting (WMC)
and MPE inference to weighted MAX-SAT. The first step again builds a Boolean
formula representing all models where the query is true, but this time, using
conjunctive normal form (CNF), and associating a weight with every literal in
the formula. More specifically, it grounds the parts of the logic program relevant
to the query (that is, the rule groundings contributing to a proof of the query, as
determined using backward reasoning), similar to what happens in answer set
programming, transforms this ground program into an equivalent CNF based
on the semantics of logic programming, and defines the weight function for
the second step using the given probabilities. The second step can then use
any existing approach to WMC or weighted MAX-SAT, such as representing

11

the CNF as an sd-DNNF, a data structure on which WMC can be performed
efficiently.

For instance, the relevant ground program for calls(mary) in our initial
alarm example (1) is

0.1 :: burglary. 0.7 :: hears alarm(mary).

0.2 :: earthquake.

alarm :− earthquake.

alarm :− burglary.

calls(mary) :− alarm, hears alarm(mary).

Next, the rules in the ground program are translated to equivalent formulas in
propositional logic, taking into account that their head atoms can only be true
if a corresponding body is true:

alarm ↔ earthquake ∨ burglary

calls(mary) ↔ alarm ∧ hears alarm(mary)

The conjunction of these formulas is then transformed into CNF as usual in
propositional logic. The weight function assigns the corresponding probabilities
to literals of probabilistic facts, e.g., w(burglary) = 0.1, w(¬burglary) = 0.9,
and 1.0 to all other literals, e.g., w(calls(mary)) = w(¬calls(mary)) = 1.0.
The weight of a model is the product of all literal weights, and the WMC of
a formula the sum of weights of all its models, which exactly corresponds to
the success probability. Evidence can directly be incorporated by conjoining it
with the CNF. Exact MARG inference using this approach is implemented in
ProbLog2.

Lifted Inference is the topic of a lot of research in statistical relational learn-
ing today [Kersting, 2012, Poole, 2003]. Lifted inference wants to realize proba-
bilistic logic inference at the lifted, that is, non-grounded level in the same way
that resolution realizes this for logical inference. The problem of lifted inference
can be illustrated on the following example (cf. also Poole [2008]):

p :: famous(Y).

popular(X) :− friends(X, Y), famous(Y).

In this case Ps(popular(john)) = 1 − (1 − p)m where m is the number of
friends of john, that is, to determine the probability that john is popular, it
suffices to know how many friends john has. We do not need to know the
identities of these friends, and hence, need not ground the clauses.

Various techniques for lifted inference have been obtained over the past
decade. For instance, Poole [2003] shows how variable elimination, a standard
approach to probabilistic inference in graphical models, can be lifted and Van
den Broeck et al. [2011] studied weighted model counting for first order prob-
abilistic logic using a generalization of d-DNNFs for first order logic. Lifted
inference techniques are – to the best of our knowledge – not yet supported by

12

current probabilistic logic programming language implementations, which ex-
plains why we do not provide more details in this paper. It remains a challenge
for further work. A recent survey on lifted inference is provided by Kersting
[2012].

3.2 Approximate Inference using Bounds

As the probability of a set of possible worlds monotonically increases if more
models are added, hard lower and upper bounds on the success probability can
be obtained by considering a subset or a superset of all possible worlds where a
query is true. For instance, let W be the set of possible worlds where a query
q holds. The success probability of q thus is the sum of the probabilities of
all worlds in W . If we restrict this sum to a subset of W , we obtain a lower
bound, and an upper bound if we sum over a superset of W . In our example,
as calls(mary) is true in b∧ e∧hm∧hj, but false in b∧ e∧¬hm∧hj, we have
0.1 · 0.2 · 0.7 · 0.4 ≤ Ps(calls(mary)) ≤ 1− (0.1 · 0.2 · (1− 0.7) · 0.4).

In practice, this approach is typically used with the DNF obtained by back-
ward reasoning, that is, the set of proofs of the query, rather than with the
possible worlds directly. This has initially been suggested for PHA by Poole
[1992], and later also been adapted for ProbLog [De Raedt et al., 2007, Kimmig
et al., 2008] and LPADs [Bragaglia and Riguzzi, 2011]. The idea is to maintain
a set of partial derivations during backward reasoning, which allows one to, at
any point, obtain a lower bound based on all complete explanations or proofs
found so far, and an upper bound based on those together with all partial ones
(based on the assumption that those will become proofs with probability one).
For instance, (e∧ hm)∨ b provides an upper bound of 0.226 for the probability
of calls(mary) based on the proof e ∧ hm (which provides the corresponding
lower bound 0.14) and the partial derivation b (which still requires to prove
hears_alarm(mary)). Different search strategies are possible here, including
e.g., iterative deepening or best first search. Lower bounds based on a fixed
number of proofs have been proposed as well, either using the k explanations
with highest individual probabilities [Kimmig et al., 2011a], or the k explana-
tions chosen by a greedy procedure that maximizes the probability an expla-
nation adds to the one of the current set [Renkens et al., 2012]. Approximate
inference using bounds is available in ProbLog1, cplint, and ProbLog2.

3.3 Approximate Inference by Sampling

While probabilistic logic programming often focuses on exact inference, approx-
imate inference by sampling is probably the most popular approach to inference
in many other probabilistic languages. Sampling uses a large number of random
executions or randomly generated possible worlds, from which the probability
of a query is estimated as the fraction of samples where the query holds. For
instance, samples can be generated by randomly choosing truth values of prob-
abilistic facts as needed during backward reasoning, until either a proof is found
or all options are exhausted [Kimmig et al., 2008, Bragaglia and Riguzzi, 2011,
Riguzzi, 2013b]. Fierens et al. [2014] have used MC-SAT [Poon and Domin-
gos, 2006] to perform approximate WMC on the CNF representing all models.
Systems for languages that specify generative models, such as BLOG [Milch

13

et al., 2005] and distributional clauses [Gutmann et al., 2011], cf. Sec. 4.2, of-
ten use forward reasoning to generate samples. A popular approach to sampling
are MCMC algorithms, which, rather than generating each sample from scratch,
generate a sequence of samples by making random modifications to the previous
sample based on a so-called proposal distribution. This approach has been used
e.g., for the probabilistic functional programming language Church [Goodman
et al., 2008], for BLOG [Arora et al., 2010], and for the probabilistic logic pro-
gramming languages PRISM [Sato, 2011] and ProbLog [Moldovan et al., 2013].
ProbLog1 and cplint provide inference techniques based on backward sampling,
and the PRISM system includes MCMC inference.

4 Probabilistic Programming Concepts

While probabilistic programming languages based on the distribution semantics
as discussed so far are expressive enough for a wide range of models, an impor-
tant part of their power is their support for additional programming concepts.
Based on primitives used in a variety of probabilistic languages, we discuss a
range of such concepts next, also touching upon their implications for inference.

4.1 Flexible Probabilities

A probabilistic fact with flexible probability is of the form P :: atom where atom
contains the logical variable P that has to be instantiated to a probability when
using the fact. The following example models drawing a red ball from an urn
with R red and G green balls, where each ball is drawn with uniform probability
from the urn:

Prob :: red(Prob).
draw red(R, G):− Prob is R/(R+ G),

red(Prob).

The combination of flexible probabilities and Prolog code offers a powerful tool
to compute probabilities on-the-fly, cf. e.g., [Poole, 2008]. Flexible probabilities
have also been used in extended SLPs [Angelopoulos and Cussens, 2004], and are
supported by the probabilistic logic programming systems AILog2, ProbLog1,
cplint and ProbLog2. Indeed, probabilistic facts with flexible probabilities are
easily supported by backward inference as long as these facts are ground on
calling, but cannot directly be used with exact forward inference, as they ab-
breviate an infinite set of ground facts and thus would create an infinite tree of
possible worlds.9

4.2 Distributional Clauses

Annotated disjunctions – as specified in Section 2.2 – are of limited expressiv-
ity, as they can only define distributions over a fixed, finite number of head
elements. While more flexible discrete distributions can be expressed using a
combination of flexible probabilities and Prolog code, this may require signifi-
cant programming effort. Gutmann et al. [2010] introduce Hybrid ProbLog, an

9If only finitely many different instances of such a fact are relevant for any possible world
of a given program, a mechanism similarly to the magic set transformation [Bancilhon et al.,
1986] may circumvent this problem.

14

extension of ProbLog to continuous distributions, but their inference approach
based on exact backward reasoning and discretization severely limits the use
of such distributions. To alleviate these problems, distributional clauses were
introduced by Gutmann et al. [2011], whom we closely follow.

A distributional clause is a clause of the form

h ∼ D :- b1, . . . , bn.

where ∼ is a binary predicate used in infix notation. Similarly to annotated dis-
junctions, the head (h ∼ D)θ of a distributional clause is defined for a grounding
substitution θ whenever (b1, . . . , bn)θ is true in the semantics of the logic pro-
gram. Then the distributional clause defines the random variable hθ as being
distributed according to the associated distribution Dθ. Possible distributions
include finite discrete distributions such as a uniform distribution, discrete dis-
tributions over infinitely many values, such as a Poisson distribution, and con-
tinuous distributions such as Gaussian or Gamma distributions. The outcome
of a random variable h is represented by the term ≃(h). Both random variables
h and their outcome ≃(h) can be used as other terms in the program. However,
the typical use of terms ≃(h) is inside comparison predicates such as equal/2 or
lessthan/2. In this case these predicates act in the same way as probabilistic
facts in Sato’s distribution semantics. Indeed, depending on the value of ≃(h)
(which is determined probabilistically) they will be true or false.

Consider the following distributional clause program.

color(B) ∼ discrete((0.7 : green), (0.3 : blue)) :- ball(B).

diameter(B, MD) ∼ gamma(MD1, 20) :- mean diameter(≃(color(B)), MD),

MD1 is MD/20.

mean diameter(green, 15).

mean diameter(blue, 25).

ball(1). ball(2). . . . ball(k).

The first clause states that for every ball B, there is a random variable color(B)
whose value is either green (with probability 0.7) or blue (with probability 0.3).
This discrete distribution directly corresponds to the one given by the annotated
disjunction 0.7 :: color(B, green); 0.3 :: color(B, blue) :- ball(B). The second
distributional clause in the example defines a random variable diameter(B,MD)
for each ball B. This random variable follows a Gamma distribution with pa-
rameters MD/20 and 20, where the mean diameter MD depends on the color of
the ball.

Distributional clauses are the logic programming equivalent of the mecha-
nisms employed in statistical relational languages such as Bayesian Logic (BLOG)
[Milch et al., 2005], Church [Goodman et al., 2008] and IBAL [Pfeffer, 2001],
which also use programming constructs to define generative process that can
define new variables in terms of existing one.

As we have seen in the example, annotated disjunctions can easily be rep-
resented as distributional clauses with finite, discrete distributions. However,
distributional clauses are more expressive than annotated disjunctions (and the
standard distribution semantics) as they can also represent continuous distribu-
tions.

15

Performing inference with distributional clauses raises some extra difficul-
ties (see [Gutmann et al., 2011] for more details). The reason for this is that
continuous distributions (such as a Gaussian or a Gamma-distribution) have
uncountable domains. Typical inference with constructs such as distributional
clauses will therefore resort to sampling approaches in order to avoid the need
for evaluating complex integrals. It is quite natural to combine sampling for
distributional clauses with forward reasoning10, realizing a kind of generative
process, though more complex strategies are also possible, cf. [Gutmann et al.,
2011].

4.3 Unknown Objects

One of the key contributions of Bayesian Logic (BLOG) [Milch et al., 2005] is
that it allows one to drop two common assumptions, namely the closed world
assumption (all objects in the world are known in advance) and the unique
names assumption (different terms denote different objects), which makes it
possible to define probability distributions over outcomes with varying sets of
objects. This is achieved by defining generative processes that construct possible
worlds, where the existence and the properties of objects can depend on objects
created earlier in the process.

As already shown by Poole [2008], such generative processes with an un-
known number of objects can often be modeled using flexible probabilities and
Prolog code to specify a distribution over the number of objects as done in
BLOG. Distributional clauses simplify this modeling task, as they make intro-
ducing a random variable corresponding to this number straightforward. We
can then use the between/3 predicate to enumerate the objects in definitions
of predicates that refer to them, cf. also [Poole, 2008]. Below, the random vari-
able nballs stands for the number of balls, which is Poisson distributed with
λ = 6. For each possible value ≃(nballs), the corresponding number of balls
are generated which are identified by the numbers 1, 2, . . . ,≃(nballs).

nballs ∼ poisson(6).

ball(N) : −between(1,≃(nballs), N).

4.4 Stochastic Memoization

A key concept in the probabilistic functional programming language Church
[Goodman et al., 2008] is stochastic memoization. If a random variable in
Church is memoized, subsequent calls to it simply look up the result of the first
call, similarly to tabling in logic programming. On the other hand, for random
variables that are not memoized, each reference to the variable corresponds to
an independent draw of an outcome. In contrast to Church, probabilistic logic
programming languages and their implementations typically do not leave this
choice to the user. In ICL, ProbLog, LPADs and the basic distribution se-
mantics as introduced in [Sato, 1995], each ground probabilistic fact directly
corresponds to a random variable, i.e., within a possible world, each occurrence
of such a fact has the same truth value, and the fact is thus memoized. Further-
more, the probability of the fact is taken into account once when calculating

10Valid distributional clause programs are required to have finite support, which ensures
termination.

16

the probability of a proof, independently of the number of times it occurs in
that proof. While early versions of PRISM [Sato, 1995, Sato and Kameya, 1997]
used binary or n-ary probabilistic choices with an argument that explicitly dis-
tinguished between different calls, this argument has been made implicit later
on [Sato and Kameya, 2001], meaning that the PRISM implementation never
memoizes the outcome of a random variable.

The difference between the two approaches can be explained using the follow-
ing example. For the AD (13 :: color(green); 1

3 :: color(red); 1
3 :: color(blue)),

there are three answers to the goal (color(X),color(Y)), one answer X = Y = c

for each color c with probability 1
3 , as exactly one of the facts color(c) is true

in each possible world when memoizing color (as in ProbLog and ICL). Ask-
ing the same question when color is not memoized (as in PRISM) results in 9
possible answers with probability 1

9 each. The query then – implicitly – corre-
sponds to an ICL or ProbLog query (color(X,id1), color(Y,id2)), where
the original AD is replaced by a non-ground variant (13 :: color(green, ID); 1

3 ::
color(red, ID); 1

3 :: color(blue, ID)) and id1 and id2 are trial identifiers that
are unique to the call.

Avoiding the memoization of probabilistic facts is necessary in order to model
stochastic automata, probabilistic grammars, or stochastic logic programs [Mug-
gleton, 1996] under the distribution semantics. There, a new rule is chosen
randomly for each occurrence of the same nonterminal state/symbol/predicate
within a derivation, and each such choice contributes to the probability of the
derivation. The rules for a nonterminal thus form a family of independent iden-
tically distributed random variables, and each choice is automatically associated
with one variable from this family.

Consider the following stochastic logic program. It is in fact a fragment of a
stochastic definite clause grammar; the rules essentially encode the probabilistic
context free grammar rules defining 0.3 : vp → verb, 0.5 : vp → verb, np and
0.2 : vp → verb, pp. There are three rules for the non-terminal vp and each
of them is chosen with an associated probability. Furthermore, the sum of the
probabilities for these rules equals 1.

0.3 : vp(H, T) :− verb(H, T).

0.5 : vp(H, T) :− verb(H, H1), np(H1, T).

0.2 : vp(H, T) :− verb(H, H1), pp(H1, T).

This type of stochastic grammar can easily be simulated in the distribution
semantics using one dememoized AD (or switch) for each non-terminal, a rule
calling the AD to make the selection, and a set of rules linking the selection to

17

the SLP rules:11

dememoize 0.3 :: vp sel(rule1); 0.5 :: vp sel(rule2); 0.2 :: vp sel(rule3).

vp(H, T) :− vp sel(Rule), vp rule(Rule, H, T).

vp rule(rule1, H, T) :− verb(H, T).

vp rule(rule2, H, T) :− verb(H, H1), np(H1, T).

vp rule(rule3, H, T) :− verb(H, H1), pp(H1, T).

All inference approaches discussed here naturally support stochastic mem-
oization; this includes the ones implemented in AILog2, ProbLog1, ProbLog2,
cplint and PITA. The PRISM system uses exact inference based on backward
reasoning in the setting without stochastic memoization. In principle, stochas-
tic memoization can be disabled in backward reasoning by automatically adding
a unique identifier to each occurrence of the same random variable. However,
for techniques that build propositional representations different from mutually
exclusive DNFs (such as the DNFs of BDD-based methods and the CNFs when
reducing to WMC), care is needed to ensure that these identifiers are correctly
shared among different explanations when manipulating these formulas. Back-
ward sampling can easily deal with both memoized and dememoized random
variables. As only one possible world is considered at any point, each repeated
occurrence of the same dememoized variable is simply sampled independently,
whereas the first result sampled within the current world is reused for memo-
ized ones. Forward sampling cannot be used without stochastic memoization,
as it is unclear up front how many instances are needed. MCMC methods have
been developed both for ProbLog (with memoization) and PRISM (without
memoization).

4.5 Constraints

In knowledge representation, answer set programming and databases, it is com-
mon to allow the user to specify constraints on the possible models of a theory.
In knowledge representation, one sometimes distinguishes inductive definitions
(such as the definite clauses used in logic programming) from constraints. The
former are used to define predicates, the latter impose constraints on possible
worlds. While the use of constraints is still uncommon in probabilistic logic
programming12 it is conceptually easy to accommodate this when working with
the distribution semantics, cf. Fierens et al. [2012]. While such constraints can
in principle be any first-order logic formula, we will employ clausal constraints
here.

A clausal constraint is an expression of the form

h1; . . . ; hN :− b1, . . . , bM.

where the hi and bj are literals. The constraint specifies that whenever (b1 . . . bM)θ
is true for a substitution θ grounding the clause at least one of the hiθ must also

11The dememoize keyword is used for clarity here; it is not supported by existing systems.
12Hard and soft constraints are used in Markov Logic [Richardson and Domingos, 2006],

but Markov Logic does not support inductive definitions as this requires a least Herbrand
semantics, cf. Fierens et al. [2012].

18

be true. All worlds in which a constraint is violated become impossible, that is,
their probability becomes 0. Constraints are very useful for specifying complex
properties that possible worlds must satisfy.

To illustrate constraints, reconsider the alarm example and assume that
it models a situation in the 1930s where there is only one phone available in
the neighborhood implying that at most one person can call. This could be
represented by the constraint

X = Y :− calls(X), calls(Y).

Imposing this constraint would exclude all worlds in which both Mary and
John hear the alarm and call. The total probability mass for such worlds is
0.4 ·0.8 = 0.32. By excluding these worlds, one looses probability mass and thus
has to normalize the probabilities of the remaining possible worlds. For instance,
the possible world corresponding to the truth value assignment burglary=true,
earthquake=false, hears_alarm(mary)=true, hears_alarm(john)=false yielded
a probability mass of 0.1 · (1− 0.2) · 0.7 · (1− 0.6) = 0.0336 without constraints.
Now, when enforcing the constraint, one obtains 0.0336/(1−0.32). Thus the se-
mantics of constraints correspond to computing conditional probabilities where
one conditions on the constraints being satisfied.

Handling constraints during inference has not been a focus of inference in
probabilistic logic programming, and – to the best of our knowledge – no current
system provides explicit support for constraints.

4.6 Negation as Failure

So far, we have only considered probabilistic programs using definite clauses,
that is, programs that only use positive literals in clause bodies, as those are
guaranteed to have a unique model for any truth value assignment to basic
probabilistic events. It is however possible to adopt Prolog’s negation as failure
on ground literals under the distribution semantics, as long as all truth values
of derived atoms are still uniquely determined by those of the basic facts, cf.,
e.g., [Poole, 2000, Sato et al., 2005, Kimmig et al., 2009, Riguzzi, 2009, Fierens
et al., 2014]. Then, in each possible world, any ground query q either succeeds
or fails, and its negation not(q) succeeds in exactly those worlds where q fails.
Thus, the probability of a ground query not(q) is the sum of the probabilities
of all possible worlds that do not entail q. Consider the following variant of our
alarm example, where people also call if there is no alarm, but they have gossip
to share:

0.1 :: burglary. 0.7 :: hears alarm(mary).

0.2 :: earthquake. 0.4 :: hears alarm(john).

0.3 :: has gossip(mary). 0.6 :: has gossip(john).

alarm :− earthquake.

alarm :− burglary.

calls(X) :− alarm, hears alarm(X).

calls(X) :− not(alarm), has gossip(X).

call :− calls(X).

19

The new rule for calls(X) can only possibly apply in worlds where not(alarm)
succeeds, that is, alarm fails, which are exactly those containing neither burglary
nor earthquake. Using gm as shorthand for has_gossip(mary)= true, we ob-
tain the additional explanation ¬e ∧ ¬b ∧ gm for calls(mary). Thus, in the
presence of negation, explanations no longer correspond to sets of probabilistic
facts as in the case of definite clause programs, but to sets of positive and neg-
ative literals for probabilistic facts. While not(alarm) has a single explanation
in this simple example, in general, explanations for negative literals can be much
more complex, as they have to falsify every possible explanation of the corre-
sponding positive literal by flipping the truth value of at least one probabilistic
fact included in the explanation.

Negation as failure can be handled in forward and backward reasoning both
for exact inference and for sampling, though forward reasoning has to ensure
to proceed in the right order. Exact inference with backward reasoning often
benefits from tabling. Negation as failure complicates approximate inference
using bounds, as explanations for failing goals have to be considered. AILog2,
ProbLog1, ProbLog2, cplint and PITA all support negation as failure in their
exact and sampling based approaches. The PRISM system follows the approach
proposed by Sato et al. [2005] and compiles negation into a definite clause pro-
gram with unification constraints. Current MCMC approaches in probabilistic
logic programming do not support negation beyond that of probabilistic facts.

4.7 Second Order Predicates

When modeling relational domains, it is often convenient to reason over sets of
objects that fullfil certain conditions, for instance, to aggregate certain values
over them. In logic programming, this is supported by second order predicates
such as findall/3, which collects all answer substitutions for a given query in a
list. In the following example, the query sum(S) will first collect all arguments
of f/1 into a list and then sum the values using predicate sum_list/2, thus
returning S=3.

f(1).

f(2).

sum(Sum) :− findall(X, f(X), L), sum list(L, Sum).

Note that in Prolog, the list returned by findall/3 is unique. Under the
distribution semantics, however, this list will be different depending on which
possible world is considered. To illustrate this, we replace the definition of f/1
in our example with probabilistic facts:

0.1 :: f(1).

0.2 :: f(2).

sum(Sum) :− findall(X, f(X), L), sum list(L, Sum).

We now have four sets of facts – {f(1),f(2)}, {f(1)}, {f(2)}, and {} – leading
to the four possible worlds {f(1),f(2),sum(3)}, {f(1),sum(1)}, {f(2),sum(2)},
and {sum(0)}, as the answer list L is different in each case.

This behavior of second order predicates in the probabilistic setting can pose
a challenge to inference. In principle, all inference approaches could deal with

20

second order predicates. However, exact approaches would suffer from a blow-
up, as they have to consider all possible lists of elements – and thus all possible
worlds – explicitly, whereas in sampling, each sample only considers one such
list. As far as we know, the only system with some support for second order
predicates is cplint, which allows bagof and setof with one of its backward
reasoning modules [Riguzzi, 2013a].

4.8 Meta-Calls

One of the distinct features of programming languages such as Prolog and Lisp
is the possibility to use programs as objects within programs, which enables
meta-level programming. For their probabilistic extensions, this means reason-
ing about the probabilities of queries within a probabilistic program, a concept
that is central to the probabilistic programming language Church, which builds
upon a Lisp dialect [Goodman et al., 2008], and has also been considered with
ProbLog [Mantadelis and Janssens, 2011]. Possible uses of such a feature in-
clude filtering of proofs based on the probability of subqueries, or the dynamic
definition of probabilities using queries, e.g., to implement simple forms of com-
bining rules as in the following example, where max_true(G1,G2) succeeds with
the success probability of the more likely argument.

P :: p(P).

max true(G1, G2) :− prob(G1, P1), prob(G2, P2), max(P1, P2, P), p(P).

% rest of program (omitted)

In this section, we will use prob(Goal,Prob) to refer to an atom returning the
success probability Prob of goal Goal, that is, implementing Equation (4). Note
that such atoms are independent queries, that is, they do not share truth values
of probabilistic facts with other atoms occurring in a derivation they are part
of. Finally, if the second argument is a free variable upon calling, the success
probability of prob(goal,Prob) is 1. For the sake of simplicity, we will assume
here that the second argument will always be free upon calling.13

We extend the example above with the following program.

0.5 :: a. 0.7 :: b. 0.2 :: c.

d :− a, not(b).

e :− b, c.

Querying for max_true(d,e) using backward reasoning will execute two calls to
prob/2 in sequence: prob(d,P1) and prob(e,P2). Note that if multiple calls
to prob/2 atoms occur in a proof, they are independent, i.e., even if they use
the same probabilistic facts, those will (implicitly) correspond to different copies
of the corresponding random variables local to that specific prob/2 call. Put
differently, prob/2 encapsulates part of our possible worlds. In the example,
b is thus a different random variable in prob(d,P1) and prob(e,P2). The
reason for this encapsulation is twofold: first, the probability of a goal is not
influenced by calculating the probability of another (or even the same) event
before, and second, as prob/2 summarizes a set of possible worlds, the value of

13This is not a restriction, as prob(Goal,c) is equivalent to prob(Goal,P),P=c.

21

a random variable cannot be made visible to the outside world, as it may be
different in different internal worlds. Indeed, in our example, b needs to be false
to prove d, but true to prove e, so using the same random variable would force
the top level query to be unprovable. We thus obtain a kind of hierarchically
organized world: some probabilistic facts are used in the top level query, others
are encapsulated in prob/2 atoms, whose queries might in turn rely on both
directly called probabilistic facts and further calls to prob/2. In our example,
prob(d,P1) uses random variables corresponding to probabilistic facts a and
b, returning P1 = 0.5 · (1 − 0.7) = 0.15, prob(e,P2) uses random variables
corresponding to probabilistic facts b and c, returning P2 = 0.7 · 0.2 = 0.14,
and the top level query max_true(d,e) uses probabilistic fact p(0.15) and has
probability P (more likely is true(d, e)) = 0.15.

The probability of a derivation is determined by the probabilities of the
probabilistic facts it uses outside all prob/2 calls. Those facts define the possible
worlds from the point of view of the top level query. In those worlds, the random
variables of the encapsulated parts are hidden, as they have been aggregated by
prob/2. Returning to our example and abstracting from the concrete remainder
of the program, we observe that for any given pair of goals g1,g2 and suitable
program defining those goals, max_true(g1,g2) has exactly one proof: the first
two body atoms always succeed and return the probabilities of the goals, the
third atom deterministically finds the maximum m of the two probabilities, and
the proof finally uses a single random variable p(m) with probability m. Thus,
the query indeed succeeds with the probability of the more likely goal.

Another example for the use of prob/2 is filtering goals based on their prob-
ability:

almost always false(G) :− prob(G, P), P < 0.00001.

% rest of program (omitted)

Note that in contrast to the previous example, this is a purely logical decision,
that is, the success probability will be either 0 or 1 depending on the goal G.

To summarize, using meta-calls to turn probabilities into usable objects in
probabilistic logic programming is slightly different from the other probabilistic
programming concepts considered in this paper: it requires a notion of encap-
sulation or hierarchical world structure and cannot be interpreted directly on
the level of individual possible worlds for the entire program.

Mantadelis and Janssens [2011] introduce MetaProbLog14, a prototype im-
plementation for ProbLog supporting nested meta-calls based on exact back-
ward inference. As they discuss, meta-calls can be supported by any inference
mechanism that can be suspended to perform inference for the query inside the
meta-call. Such suspending is natural in backward reasoning, where the proof
of a subgoal becomes a call to inference rather than a continuation of backward
reasoning. With forward reasoning, such non-ground prob(goal,P) goals raise
the same issues as other non-ground facts. Meta-calls of the form prob(goal,P)

compute the grounding of P as the goal’s probability, and using approximate in-
ference to compute the latter will thus influence the grounding of such a fact,
and therefore potentially also the consequences of this fact. This may affect

14http://people.cs.kuleuven.be/~theofrastos.mantadelis/tools/metaproblog.tar.gz,
also supports flexible probabilities, stochastic memoization, and negation as failure

22

http://people.cs.kuleuven.be/~theofrastos.mantadelis/tools/metaproblog.tar.gz

s0 s1
a : 0.2

b : 0.8

a : 0.9

b : 0.1

0.7 0.6

0.3

0.5 0.5

0.4

Figure 2: Example HMM

the result of inference in unexpected ways, and it is thus unclear in how far ap-
proximation approaches are suitable for meta-calls. Goodman et al. [2008] state
that supporting meta-calls (or nested queries) in MCMC inference in Church is
expected to be straightforward, but do not provide details. Meta-calls are not
supported in AILog2, PRISM, ProbLog1, ProbLog2, cplint and PITA.

4.9 Time and Dynamics

Among the most popular probabilistic models are those that deal with dynamics
and time such as Hidden Markov Models (HMMs) and Dynamic Bayesian Net-
works. Dynamic models have received quite some attention within probabilistic
logic programming. They can naturally be represented using logic programs
through the addition of an extra ”time” argument to each of the predicates. We
illustrate this by giving two encodings of the Hidden Markov Model shown in
Figure 2, where we restrict sequences to a given length (10 in the example). Fol-
lowing Vennekens et al. [2004], this model can be written as a set of annotated
disjunctions:

length(10).

0.5 :: state(s0, 0); 0.5 :: state(s1, 0).

0.7 :: state(s0, T1); 0.3 :: state(s1, T1):−state(s0, T), length(L), T < L, T1 is T+ 1.

0.4 :: state(s0, T1); 0.6 :: state(s1, T1):−state(s1, T), length(L), T < L, T1 is T+ 1.

0.2 :: out(a, T); 0.8 :: out(b, T):−state(s0, T).

0.9 :: out(a, T); 0.1 :: out(b, T):−state(s1, T).

Alternatively, following Sato and Kameya [1997], but writing PRISM’s multi-
valued switches as unconditional annotated disjunctions15, the model can be

15In this example, the program structure causes the time argument to act as a unique
identifier for different calls to the same AD, thus making memoized ADs and dememoized
switches equivalent.

23

a

b

c

d

T T

T

T T

a

b

c

d

7

5

4

13

9

Figure 3: Example graph illustrating generalized labels: Boolean case (left),
shortest path (right).

written as follows:

0.2 :: output(s0, a, T) ; 0.8 :: output(s0, b, T).

0.9 :: output(s1, a, T) ; 0.1 :: output(s1, b, T).

0.5 :: init(s0) ; 0.5 :: init(s1).

0.7 :: trans(s0, s0, T) ; 0.3 :: trans(s0, s1, T).

0.4 :: trans(s1, s0, T) ; 0.6 :: trans(s1, s1, T).

length(10).

hmm(List) :− init(S), hmm(1, S, List).

% last time T :

hmm(T, S, [Obs]) :− length(T), output(S, Obs, T).

% earlier time T : output Obs in state S, transit from S to Next

hmm(T, S, [Obs|R]) :− length(L), T < L,

output(S, Obs, T), trans(S, Next, T),

T1 is T+ 1, hmm(T1, Next, R).

Forward and backward sampling naturally deal with a time argument (pro-
vided time is bounded in the case of forward reasoning). Naively using such a
time argument with exact inference results in exponential running times (in the
number of time steps), though this can often be avoided using dynamic pro-
gramming approaches and principles, as shown by the PRISM system, which
achieves the same time complexity for HMMs as corresponding special-purpose
algorithms [Sato and Kameya, 2001].

Other approaches that have devoted special attention to modeling and infer-
ence for dynamics include Logical HMMs [Kersting et al., 2006], a language for
modeling HMMs with structured states, CPT-L [Thon et al., 2011], a dynamic
version of CP-logic, and the work on a particle filter for dynamic distributional
clauses [Nitti et al., 2013].

4.10 Generalized Labels

As we have seen in Section 3, computing success probabilities in probabilistic
logic programming is closely related to evaluating the truth value of a logical
formula. Weighted logic programming languages such as Dyna [Eisner et al.,

24

2005]16 and aProbLog [Kimmig et al., 2011b] take this observation a step further
and replace probabilities (or Boolean truth values) by elements from an arbitrary
semiring and corresponding combination operators.17

More specifically, Dyna assigns labels to ground facts in a logic program and
computes weights of atoms in the heads of clauses as follows: conjunction (,)
in clause bodies is replaced by semiring multiplication ⊗, that is, the weight
of a body is the ⊗-product of the weights of its atoms, and if multiple clauses
share the same head atom, this atom’s weight is the ⊕-sum of the corresponding
bodies, that is, :− is replaced by semiring addition ⊕. We illustrate the idea
with a logic program defining reachability in a directed graph adapted from
Cohen et al. [2008]:

reachable(S) :− initial(S).

reachable(S) :− reachable(R), edge(R, S).

which in Dyna is interpreted as a system of (recursive) semiring equations

reachable(S) ⊕ = initial(S).

reachable(S) ⊕ = reachable(R)⊗ edge(R,S).

To get the usual logic programming semantics, we can combine this program
with facts labeled with values from the Boolean semiring (with ⊗ = ∧ and
⊕ = ∨):

initial(a) = T

edge(a, b) = T edge(a, d) = T edge(b, c) = T edge(d, b) = T edge(d, c) = T

which means that the weights of reachable atoms are computed as follows:

reachable(a) = initial(a) = T

reachable(d) = reachable(a) ∧ edge(a, d) = T

reachable(b) = reachable(a) ∧ edge(a, b) ∨ reachable(d) ∧ edge(d, b) = T

reachable(c) = reachable(b) ∧ edge(b, c) ∨ reachable(d) ∧ edge(d, c) = T

Alternatively, one can label facts with non-negative numbers denoting costs and
use ⊗ = + and ⊕ = min to describe single-source shortest paths:

initial(a) = 0

edge(a, b) = 7 edge(a, d) = 5 edge(b, c) = 13 edge(d, b) = 4 edge(d, c) = 9

resulting in evaluation

reachable(a) = initial(a) = 0

reachable(d) = reachable(a) + edge(a, d) = 5

reachable(b) = min(reachable(a) + edge(a, b), reachable(d) + edge(d, b)) = 7

reachable(c) = min(reachable(b) + edge(b, c), reachable(d) + edge(d, c)) = 14

16Dyna is currently being extended into a more general language [Eisner and Filardo, 2011],
but we consider the initial version here, as that one is more closely related to the probabilistic
programming languages we discuss.

17A semiring is a structure (A,⊕,⊗, e⊕, e⊗), where addition ⊕ is an associative and com-
mutative binary operation over the set A, multiplication ⊗ is an associative binary operation
over the set A, ⊗ distributes over ⊕, e⊕ ∈ A is the neutral element of ⊕, i.e., for all a ∈ A,
a ⊕ e⊕ = a, e⊗ ∈ A is the neutral element of ⊗, i.e., for all a ∈ A, a ⊗ e⊗ = a, and for all
a ∈ A, e⊕ ⊗ a = a⊗ e⊕ = e⊕. In a commutative semiring, ⊗ is commutative as well.

25

That is, the values of reachable atoms now correspond to the length of the
shortest path rather than the existence of a path.

Given its origins in natural language processing, Dyna is closely related to
PRISM in two aspects. First, it does not memoize labeled facts, but takes into
account their weights each time they appear in a derivation, generalizing how
each use of a rule in a probabilistic grammar contributes to a derivation. Second,
again as in probabilistic grammars, it sums the weights of all derivations, but in
contrast to PRISM or grammars does not require them to be mutually exclusive
to do so.

The inference algorithm of basic Dyna as given by Eisner et al. [2005]18 com-
putes weights by forward reasoning, keeping intermediate results in an agenda
and updating them until a fixpoint is reached, though other execution strategies
could be used as well, cf. [Eisner and Filardo, 2011].

As Dyna, aProbLog [Kimmig et al., 2011b] replaces probabilistic facts by
semiring-labeled facts, with the key difference that it bases the labels of derived
facts on the labels of their models rather than those of their derivations, which
requires semirings to be commutative. It thus directly generalizes the success
probability (5) and the possible world DNF (6). ProbLog inference algorithms
based on BDDs or sd-DNNFs can be directly adapted to aProbLog.19

Rather than replacing probabilities with semiring labels, one can also com-
bine them with utilities or costs, and use the resulting language for decision
making under uncertainty, as done in DTProbLog [Van den Broeck et al.,
2010].20

5 Knowledge-Based Model Construction

So far, we have focused on probabilistic logic languages with strong roots in
logic, where the key concepts of logic and probability are unified, that is, a
random variable corresponds to a ground fact (or sometimes a ground term,
as in distributional clauses), and standard logic programs are used to specify
knowledge that can be derived from these facts. In this section, we discuss a
second important group of probabilistic logic languages with strong roots in
probabilistic graphical models, such as Bayesian or Markov networks. These
formalisms typically use logic as a templating language for graphical models in
relational domains, and thus take a quite different approach to combine logic
and probabilities, also known as knowledge-based model construction (KBMC).
Important representatives of this stream of research include PLPs [Haddawy,
1994], PRMs [Getoor et al., 2007], BLPs [Kersting and De Raedt, 2008], LBNs
[Fierens et al., 2005], RBNs [Jaeger, 1997], CLP(BN) [Santos Costa et al., 2008],
chain logic [Hommersom et al., 2009], Markov Logic [Richardson and Domingos,
2006], and PSL [Broecheler et al., 2010].

In the following, we relate the key concepts underlying the knowledge-based
model construction approach to those discussed in the rest of this paper. We
again focus on languages based on logic programming, such as PLPs, BLPs,
LBNs, chain logic, and CLP(BN), but mostly abstract from the specific lan-

18Implementation available at http://dyna.org/
19A prototype implementation of aProbLog is included in ProbLog1, cf. Footnote 5.
20An implementation of DTProbLog is included in ProbLog1 and ProbLog2, cf. Footnotes 5

and 6.

26

http://dyna.org/

guage. These representation languages are typically designed so that implication
in logic (”:−”) corresponds to the direct influence relation in Bayesian networks.
The logical knowledge base is then used to construct a Bayesian network. So
inference proceeds in two steps: the logical step, in which one constructs the net-
work, and the probabilistic step, in which one performs probabilistic inference
on the resulting network. We first discuss modeling Bayesian networks and their
relational counterpart in the context of the distribution semantics, and then fo-
cus on CLP(BN) as an example of a KBMC approach whose primitives clearly
expose the separation between model construction via logic programming and
probabilistic inference on the propositional model.

5.1 Bayesian Networks and Conditional Probability Ta-
bles

A Bayesian network (BN) defines a joint probability distribution over a set of
random variables V = {V1, . . . , Vm} by factoring it into a product of conditional
probability distributions, one for each variable Vi given its parents par(Vi) ⊆ V.
The parent relation is given by an acyclic directed graph (cf. Figure 4), where
the random variables are the nodes and an edge Vi → Vj indicates that Vi is a
parent of Vj . The conditional probability distributions are typically specified as
conditional probability tables (CPTs), which form the key probabilistic concept
of BNs. For instance, the CPT on the left of Figure 4 specifies that the random
variable sprinkler takes value true with probability 0.1 (and false with 0.9) if
its parent cloudy is true, and with probability 0.5 if cloudy is false. Formally,
a CPT contains a row for each possible assignment x1, . . . , xn to the parent
variables X1, . . . , Xn specifying the distribution P (X|x1, . . . , xn). As has been
shown earlier, e.g., by Poole [1993] and Vennekens et al. [2004], any Bayesian
network can be modeled in languages based on the distribution semantics by
representing every row in a CPT as an annotated disjunction

p1 :: X(w1); · · · ; pk :: X(wk) :− X1(v1), · · · , Xn(vn)

where X(v) is true when v is the value of X. The body of this AD is true if the
parent nodes have the values specified in the corresponding row of the CPT,
in which case the AD chooses a value for the child from the corresponding
distribution. As an example, consider the sprinkler network shown in Figure 4.
The CPT for the root node cloudy corresponds to an AD with empty body

0.5 :: cloudy(t); 0.5 :: cloudy(f).

whereas the CPTs for sprinkler and rain require the state of their parent
node cloudy to be present in the body of the ADs

0.1 :: sprinkler(t); 0.9 :: sprinkler(f) :− cloudy(t).

0.5 :: sprinkler(t); 0.5 :: sprinkler(f) :− cloudy(f).

0.8 :: rain(t); 0.2 :: rain(f) :− cloudy(t).

0.2 :: rain(t); 0.8 :: rain(f) :− cloudy(f).

The translation for the CPT of grass wet is analogous.

27

C P(s)
t 0.10
f 0.50

grass_wet

cloudy

sprinkler rain

P(c)=0.50

C P(r)
t 0.80
f 0.20

S R P(g w)
t t 0.99
t f 0.90
f t 0.90
f f 0.00

Figure 4: The sprinkler network is a Bayesian network modeling an environment
where both the sprinkler and the rain can cause the grass getting wet [Russell
and Norvig, 2003].

5.2 Relational Dependencies

Statistical relational learning formalisms such as BLPs, PLPs, LBNs and CLP(BN)
essentially replace the specific random variables in the CPTs of Bayesian net-
works by logically defined random variable templates, commonly referred to as
parameterized random variables or par-RVs for short [Poole, 2003], though the
actual syntax amongst these systems differs significantly. We here use anno-
tated disjunctions to illustrate the key idea. For instance, in a propositional
setting, the following annotated disjunctions express that a specific student’s
grade in a specific course probabilistically depends on whether he has read the
corresponding textbook or not:

0.6 :: grade(high); 0.4 :: grade(low) :− reads(true).

0.1 :: grade(high); 0.9 :: grade(low) :− reads(false).

Using logical variables, this dependency can directly be expressed for many
students, courses, and books:

0.6 :: grade(S, C, high); 0.4 :: grade(S, C, low) :− book(C, B), reads(S, B).

0.1 :: grade(S, C, high); 0.9 :: grade(S, C, low) :− book(C, B), not(reads(S, B)).

More concretely, the annotated disjunctions express that P (grade(S,C) =
high) = 0.6 if the student has read the book of the course and P (grade(S,C) =
high) = 0.1 otherwise. Thus the predicate grade depends on book/2 and
reads/2. The dependency holds for all instantiations of the rule, that is, it
acts as a template for all persons, courses, and books. This is what knowledge-
based model construction approaches all share: the logic acts as a template to
generate dependencies (here CPTs) in the graphical model. This also introduces
a complication that is not encountered in propositional Bayesian networks or
their translation to annotated disjunctions. To illustrate this, let us assume the
predicate book/2 is deterministic and known. Then the propositional case arises
when for each course there is exactly one book. The annotated disjunctions then
effectively encode the conditional probability table P (Grade|Reads). However,

28

if there are multiple books, say two, for one course, then the above template
would specify two CPTs: one for the first book, P (Grade|Reads1), and one for
the second, P (Grade|Reads2). In Bayesian networks, these CPTs need to be
combined and there are essentially two ways for realizing this.

The first is to use a so-called combining rule, that is, a function that maps
these CPTs into a single CPT of the form P (Grade|Reads1, Reads2). The most
popular combining rule is noisy-or, for which P (Grade = high|Reads1, ..., Readsn) =
1−

∏n

i=1(1−P (Grade = high|Readsi = true)) where n is the number of books
for the course. Using annotated disjunctions, this combining rule is obtained
automatically, cf. Section 2.2. In the statistical relational learning literature,
this approach is followed for instance in RBNs and BLPs, and several other
combining rules exist, cf., e.g., [Jaeger, 1997, Kersting and De Raedt, 2008,
Natarajan et al., 2005]. While combining rules are an important concept in
KBMC, using them in their general form under the distribution semantics re-
quires one to change the underlying logic, which is non-trivial. Hommersom and
Lucas [2011] introduce an approach that models these interactions by combin-
ing the distribution semantics with default logic. Alternatively, one could use
meta-calls, cf. Section 4.8.

The second way of dealing with the two distributions uses aggregation. In
this way, the random variable upon which one conditions grade is the number
of books the person read, rather than the reading of the individual books. This
approach is taken for instance in PRMs and CLP(BN). In the context of the
distribution semantics, aggregation can be realized within the logic program
using second order predicates, cf. Section 4.7. For instance, the following pro-
gram makes a distinction between reading more than two, two, one, or none of
the books:

0.9 :: grade(S, C, high); 0.1 :: grade(S, C, low) :− nofbooksread(S, C, N), N > 2.

0.8 :: grade(S, C, high); 0.2 :: grade(S, C, low) :− nofbooksread(S, C, 2).

0.6 :: grade(S, C, high); 0.4 :: grade(S, C, low) :− nofbooksread(S, C, 1).

0.1 :: grade(S, C, high); 0.9 :: grade(S, C, low) :− nofbooksread(S, C, 0).

nofbooksread(S, C, N) :− findall(B, (book(C, B), reads(S, B)), List), length(List, N).

5.3 Example: CLP(BN)

We now discuss CLP(BN) [Santos Costa et al., 2008] in more detail, as it clearly
exposes the separation between model construction via logic programming and
probabilistic inference on the propositional model in KBMC. CLP(BN) is em-
bedded in Prolog21 and uses constraint programming principles to construct a
Bayesian network via logical inference. Syntactically, CLP(BN) extends logic
programming with constraint atoms that (a) define random variables together
with their CPTs and (b) establish constraints linking these random variables to
logical variables used in the logic program. The answer to a query in CLP(BN)
is the marginal distribution of the query variables, conditioned on evidence if
available. The first phase of inference in CLP(BN) uses backward reasoning in
the logic program to collect all relevant constraints in a constraint store, the

21implementation included in YAP Prolog, http://www.dcc.fc.up.pt/~vsc/Yap/

29

http://www.dcc.fc.up.pt/~vsc/Yap/

second phase computes the marginals in the Bayesian network defined by these
constraints. Conditioning on evidence is straightforward, as it only requires to
add the corresponding constraints to the store.22

Specifically, a CLP(BN) clause (in canonical form) is either a standard Pro-
log clause, or has the following structure:

h(A1, . . . , An, V) :− body, {V = sk(C1, . . . , Ct) with CPT}.

Here, body is a possibly empty conjunction of logical atoms, and the part in
curly braces is a constraint atom. sk(C1, . . . , Ct) is a Skolem term not oc-
curring in any other clause of the program (whose arguments Ci are given
via the input variables Aj and the logical body), and CPT is a term of the
form p(Values, Table, Parents), where Values is a list of possible values for
sk(C1, . . . , Ct), Parents is a list of logical variables specifying the parent nodes,
and Table the probability table given as a list of probabilities, where the order
of entries corresponds to the valuations obtained by backtracking over the par-
ents’ values in the order given in the corresponding definitions. This CPT term
can be given either directly or via the use of logical variables and unification.

We first illustrate this for the propositional case, using the following model23

of the sprinkler Bayesian network as given in Figure 4:24

cloudy(C) :-

{ C = cloudy with p([f,t],[0.5,0.5],[]) }.

sprinkler(S) :-

cloudy(C), % C = f , t

{ S = sprinkler with p([f,t], [0.5,0.9, % S = f

0.5,0.1], % S = t

[C])

}.

rain(R) :-

cloudy(C), % C = f , t

{ R = rain with p([f,t], [0.8,0.2, % R = f

0.2,0.8], % R = t

[C])

}.

wet_grass(W) :-

sprinkler(S),

rain(R),

{ W = wet with p([f,t],

/* S/R = f/f, f/t, t/f, t/t */

[1.0, 0.1, 0.1, 0.01, % W = f

0.0, 0.9, 0.9, 0.99], % W = t

[S,R])

}.

22The implementation adds evidence declared in the input program to the store at compile
time.

23taken from the examples in the CLP(BN) system
24We include comments for better readability, as CLP(BN) swaps rows and columns of

CPTs compared to the notation in Figure 4.

30

In the clause for the top node cloudy, the body consists of a single constraint
atom that constrains the logical variable C to the value of the random variable
cloudy. This random variable takes values f or t with probability 0.5 each, and
has an empty parent list. Note that within constraint atoms, the = sign does not
denote Prolog unification, but an equality constraint between a logical variable
and the value of a random variable. The clause for sprinkler calls cloudy(C),
thus setting up a constraint between C and the cloudy random variable, and then
uses C as the only parent of the random variable sprinkler it defines. The first
column of the CPT corresponds to the first parent value, the first row to the first
child value, and so on, i.e., in case of cloudy=f, the probability of sprinkler=f
is 0.5, whereas for cloudy=t, it is 0.9. The other two random variables are
defined analogously, with their clauses again first calling the predicates for the
parent variables to include the corresponding constraints. To answer the query
sprinkler(S), which asks for the marginal of the random variable sprinkler,
CLP(BN) performs backward reasoning to find all constraints in the proof of
the query, and thus the part of the Bayesian network relevant to compute the
marginal. This first calls cloudy(C), adding the constraint C=cloudy to the
store (and thus the cloudy node to the BN), and then adds the constraint
S=sprinkler to the store, and the sprinkler node with parent cloudy to the
BN.

When defining relational models, random variables can be parameterized by
logical variables as in the following clause from the school example included in
the implementation:

registration_grade(R, Grade) :-

registration(R, C, S),

course_difficulty(C, Dif),

student_intelligence(S, Int),

grade_table(Int, Dif, Table),

{ Grade = grade(R) with Table }.

grade_table(I, D,

p([a,b,c,d],

/* I,D = h h h m h l m h m m m l l h l m l l */

[0.2, 0.7, 0.85, 0.1, 0.2, 0.5, 0.01, 0.05,0.1 , %a

0.6, 0.25, 0.12, 0.3, 0.6,0.35,0.04, 0.15, 0.4 , %b

0.15,0.04, 0.02, 0.4,0.15,0.12, 0.5, 0.6, 0.4, %c

0.05,0.01, 0.01, 0.2,0.05,0.03, 0.45, 0.2, 0.1],%d

[I,D])).

Here, registration/3 is a purely logical predicate linking a registration R to a
course C and a student S. The predicates course difficulty and student intelligence

define distributions over possible values h(igh), m(edium), and l(ow) for the
difficulty Dif of course C and the intelligence Int of student S, respectively. For
each grounding r of the variable R in the database of registrations, this clause
defines a random variable grade(r) with values a, b, c and d that depends on
the difficulty of the corresponding course and the intelligence of the correspond-
ing student. In this case, the CPT itself is not defined within the constraint
atom, but provided by a Prolog predicate binding it to a logical variable.

Defining aggregation using second order predicates is straightforward in
CLP(BN), as random variables and constraints are part of the object level

31

vocabulary. For instance, the following clause defines the performance level of
a student based on the average of his grades:

student_level(S,L) :-

findall(G,(registration(R,_,S),registration_grade(R,G)),Grades),

avg_grade(Grades,Avg),

level_table(T),

{ L = level(S) with p([h,m,l],T,[Avg])}.

Here, avg_grade/2 sets up a new random variable whose value is the suitably
defined average of the grade list Grades (and which thus has a deterministic
CPT) and constrains Avg to that random variable, and level_table provides
the list of CPT entries specifying how the level depends on this average. We
refer to Santos Costa et al. [2008] for a discussion of the inference challenges
aggregates raise.

Despite the differences in syntax, probabilistic primitives, and inference be-
tween CLP(BN) and probabilistic extensions of Prolog following the distribu-
tion semantics, there are also many commonalities between those. As we dis-
cussed above, conditional probability tables can be represented using annotated
disjunctions, and it is thus possible to transform CLP(BN) clauses into Pro-
log programs using annotated disjunctions. On the other hand, Santos Costa
and Paes [2009] discuss the relation between PRISM and CLP(BN) based on a
number of PRISM programs that they map into CLP(BN) programs.

6 Probabilistic Programming Concepts and In-
ference

We round off this survey by summarizing the relations between the dimensions
of SUCC inference as discussed in Section 3 and the probabilistic programming
concepts identified in Section 4. On the probabilistic side, we focus on exact
inference versus sampling, as conclusions for exact inference carry over to ap-
proximate inference with bounds in most cases. On the logical side, we focus on
forward versus backward reasoning, as conclusions for backward reasoning carry
over to the approach using weighted model counting. We provide an overview
in Table 2, where we omit the concepts unknown objects, as those are typically
simulated via flexible probabilities and/or continuous distributions, and con-
straints, as those have not yet been considered during inference. For generalized
labels, we focus on aProbLog, as it is closer to the distribution semantics than
Dyna, due to its semantics based on worlds rather than derivations. We do
not include MCMC here, as existing MCMC approaches in the context of the
distribution semantics are limited to the basic case of definite clause programs
without additional concepts.

Dimensions of inference: The main difference between exact inference and
sampling is that the former has to consider all possible worlds or all proofs of
the query, whereas the latter always considers one possible world or proof in
isolation. As second order predicates and time and dynamics can increase the
number of proofs exponentially (in the length of the answer list or the number of
time steps), they are more easily handled by sampling based approaches, though

32

Fle
xib

le
Pr
ob
ab
ilit

ies

Co
nti

nu
ou
s D

ist
rib

uti
on
s

Sto
cha

sti
c M

em
oiz

ati
on

Ne
gat

ion
as

Fa
ilu
re

2n
d Or

der
Pr
edi

cat
es

Meta
-C
all
s

Tim
e a

nd
Dy

na
mi
cs

Ge
ner

ali
zed

La
be
ls
(aP

rob
Lo
g)

forward
exact

no no with yes yes∗ no yes∗ yes

backward
exact

yes limitedwith
or
with-
out

yes yes∗ yes yes∗ yes

forward
sam-
pling

no yes with yes yes no yes n.a.

backward
sam-
pling

yes yes with
or
with-
out

yes yes yes yes n.a.

Table 2: Relation between key probabilistic programming concepts and main
dimensions of inference; see Section 6 for details. (∗ number of proofs/worlds
exponential in length of answer list or time sequence)

tabling can significantly improve performance of exact inference in dynamic
domains. Sampling based approaches do not directly apply for generalized labels,
as sampling exploits the probabilistic semantics of fact labels.

The main difference between forward and backward reasoning is that the
former generates all consequences of the probabilistic logic program, whereas
the latter is query-driven and only considers relevant consequences, which can
drastically improve efficiency. This difference is well-known in logic program-
ming, and becomes even more important in the probabilistic setting, where we
are interested in not just a single world or proof, but in all possible worlds or all
proofs. The fact that backward reasoning is query-driven makes it well-suited
for flexible probabilities and meta-calls, which cannot directly be handled in
forward reasoning. The reason is that the corresponding subgoals have an in-
finite number of groundings, among which backward reasoning easily picks the
relevant ones, which forward reasoning cannot do. The same effect makes it
necessary to use stochastic memoization in forward reasoning, while backward
reasoning can support dememoization (as in PRISM) as well as memoization
(as in the various ICL, ProbLog and LPAD systems).

The roots of the distribution semantics in logic programming become appar-
ent when considering inference for the two remaining key concepts, negation as
failure and continuous distributions as provided by distributional clauses. While
the logic concept of negation as failure is naturally supported in all combina-
tions of exact inference or sampling and forward or backward reasoning, the
probabilistic concept of continuous distributions is much more challenging, and
only practical in sampling-based approaches.

33

Inference approaches: More specifically, exact inference using forward rea-
soning in the form discussed in Section 3.1 can be used for all programs with
finitely many finite worlds, which (a) excludes the use of non-ground facts with-
out explicitly given domains, flexible probabilities, meta-calls and continuous
probabilities, and (b) requires stochastic memoization. As this approach addi-
tionally suffers from having to enumerate all possible worlds, it is not used in
practice.25

Exact inference using backward reasoning is the most widely supported infer-
ence technique in probabilistic logic programming, provided by AILog2, PRISM,
ProbLog1, cplint, PITA and MetaProbLog. PRISM never uses stochastic mem-
oization, whereas the other systems always use it. Only very limited forms
of continuous distributions can be supported, cf. the work on Hybrid ProbLog
[Gutmann et al., 2010]. All other concepts can be supported, but implemen-
tations differ in the ones they cover. Negation as failure is supported in all
implementations. In addition, AILog2 and cplint support flexible probabili-
ties, MetaProbLog supports flexible probabilities and meta-calls, and ProbLog1
supports flexible probabilities, limited use of continuous distributions (Hybrid
ProbLog) and generalized labels (aProbLog). Approximate inference with bounds
using backward reasoning is available in ProbLog1 and cplint, but restricted to
definite clause programs, as the use of negation as failure complicates proof
finding (as discussed in Section 4.6). As the WMC approach as implemented
in ProbLog2 uses backward inference to determine the relevant grounding, that
is, the groundings of clauses that appear in some proof of a query, the same ob-
servations as for exact backward inference apply in this case as well. ProbLog2
supports flexible probabilities and negation as failure.

Forward sampling in its simplest form as discussed in Section 3.1 can be used
with programs whose worlds are all finite, which excludes the use of non-ground
facts without explicitly given domains, flexible probabilities, and meta-calls, and
requires stochastic memoization. In contrast to exact forward inference, forward
sampling does support continuous distributions, as only one value is considered
at a time. None of the probabilistic logic programming systems discussed here
implement forward sampling.

Backward sampling is the most flexible approach and can in principle deal
with all concepts except generalized labels. Backward sampling approaches are
provided by ProbLog1 and cplint, which both support flexible probabilities and
negation as failure. PRISM has a builtin for sampling the outcome of a query
using backward reasoning, but does not use it for probability estimation.

7 Conclusions

Probabilistic programming is a rapidly developing field of research as witnessed
by the many probabilistic programming languages and primitives that have been
introduced over the past few years. In this paper, we have attempted to provide
a gentle introduction to this field by focussing on probabilistic logic program-
ming languages and identifying the underlying probabilistic concepts that these
languages support. The same concept (e.g., probabilistic choice) can be real-
ized using different syntactic primitives (e.g., switches, annotated disjunctions,

25Dyna’s exact inference is based on forward reasoning, but uses a different type of algorithm
that propagates value updates using forward reasoning based on an agenda of pending updates.

34

etc.) leading to differences in the probabilistic programming languages. Prob-
abilistic programming implementations not only differ in the primitives they
provide but also in the way they perform probabilistic inference. Inference is
a central concern in these languages, as probabilistic inference is computation-
ally expensive. We have therefore also presented various probabilistic inference
mechanisms and discussed their suitability for supporting the probabilistic pro-
gramming concepts. This in turn allowed us to position different languages and
implementations, leading to a broad survey of the state-of-the-art in probabilis-
tic logic programming.

Acknowledgements

The authors are indebted to Bernd Gutmann and Ingo Thon for participating
in many discussions, and contributing several ideas during the early stages of
the research that finally led to this paper. Angelika Kimmig is supported by
the Flemish Research Foundation (FWO-Vlaanderen).

References

Nicos Angelopoulos and James Cussens. On the implementation of MCMC
proposals over stochastic logic programs. In Proceedings of the Colloquium on
Implementation of Constraint and Logic Programming Systems (CICLOPS-
04), 2004.

Nimar S. Arora, Rodrigo de Salvo Braz, Erik B. Sudderth, and Stuart J. Russell.
Gibbs sampling in open-universe stochastic languages. In Proceedings of the
26th Conference on Uncertainty in Artificial Intelligence (UAI-10), 2010.

Francois Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
sets and other strange ways to implement logic programs (extended abstract).
In Proceedings of the 5th ACM SIGACT-SIGMOD symposium on Principles
of Database Systems (PODS-86), 1986.

Chitta Baral, Michael Gelfond, and Nelson Rushton. Probabilistic reasoning
with answer sets. Theory and Practice of Logic Programming (TPLP), 9(1):
57–144, 2009.

Stefano Bragaglia and Fabrizio Riguzzi. Approximate inference for logic pro-
grams with annotated disjunctions. In Revised papers of the 20th International
Conference on Inductive Logic Programming (ILP-10), 2011.

Matthias Broecheler, Lilyana Mihalkova, and Lise Getoor. Probabilistic similar-
ity logic. In Proceedings of the 26th Conference on Uncertainty in Artificial
Intelligence (UAI-10), 2010.

Shay B. Cohen, Robert J. Simmons, and Noah A. Smith. Dynamic programming
algorithms as products of weighted logic programs. In Proceedings of the 24th
International Conference on Logic Programming (ICLP-08), 2008.

J. Cussens. Integrating by separating: Combining probability and logic with
ICL, PRISM and SLPs. APRIL II project report, 2005.

35

N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic databases.
In Proceedings of the 30th International Conference on Very Large Databases
(VLDB-04), 2004.

Evgeny Dantsin. Probabilistic logic programs and their semantics. In Proceed-
ings of the First Russian Conference on Logic Programming, 1991.

L. De Raedt, A. Kimmig, and H. Toivonen. ProbLog: A probabilistic Prolog
and its application in link discovery. In Proceedings of the 20th International
Joint Conference on Artificial Intelligence (IJCAI-07), 2007.

L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton, editors. Probabilistic
Inductive Logic Programming — Theory and Applications, volume 4911 of
Lecture Notes in Artificial Intelligence. Springer, 2008.

Luc De Raedt and Kristian Kersting. Probabilistic logic learning. SIGKDD
Explorations, 5(1):31–48, 2003.

J. Eisner, E. Goldlust, and N. Smith. Compiling Comp Ling: Weighted dy-
namic programming and the Dyna language. In Proceedings of the Human
Language Technology Conference and Conference on Empirical Methods in
Natural Language Processing (HLT/EMNLP-05), 2005.

Jason Eisner and Nathaniel W. Filardo. Dyna: Extending Datalog for modern
AI. In Oege de Moor, Georg Gottlob, Tim Furche, and Andrew Sellers,
editors, Datalog Reloaded, volume 6702 of Lecture Notes in Computer Science,
pages 181–220. Springer, 2011.

Daan Fierens, Hendrik Blockeel, Maurice Bruynooghe, and Jan Ramon. Logical
Bayesian networks and their relation to other probabilistic logical models. In
Proceedings of the 15th International Conference on Inductive Logic Program-
ming (ILP-05), 2005.

Daan Fierens, Guy Van den Broeck, Ingo Thon, Bernd Gutmann, and Luc
De Raedt. Inference in probabilistic logic programs using weighted CNF’s. In
Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence
(UAI-11), 2011.

Daan Fierens, Guy Van den Broeck, Maurice Bruynooghe, and Luc De Raedt.
Constraints for probabilistic logic programming. In Proceedings of the NIPS
Probabilistic Programming Workshop, 2012.

Daan Fierens, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd
Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt. Inference and
learning in probabilistic logic programs using weighted Boolean formulas.
Theory and Practice of Logic Programming (TPLP), 2014. (Accepted).

Peter A. Flach. Simply Logical: Intelligent Reasoning by Example. John Wiley,
1994.

N. Fuhr. Probabilistic Datalog: Implementing logical information retrieval for
advanced applications. JASIS, 51(2):95–110, 2000.

L. Getoor and B. Taskar, editors. An Introduction to Statistical Relational
Learning. MIT Press, 2007.

36

L. Getoor, N. Friedman, D. Koller, A. Pfeffer, and B. Taskar. Probabilistic
relational models. In Getoor and Taskar [2007], pages 129–174.

N. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B. Tenen-
baum. Church: a language for generative models. In Proceedings of the 24th
Conference on Uncertainty in Artificial Intelligence (UAI-08), 2008.

Bernd Gutmann, Manfred Jaeger, and Luc De Raedt. Extending ProbLog with
continuous distributions. In Proccedings of the 20th International Conference
on Inductive Logic Programming (ILP-10), 2010.

Bernd Gutmann, Ingo Thon, Angelika Kimmig, Maurice Bruynooghe, and Luc
De Raedt. The magic of logical inference in probabilistic programming. The-
ory and Practice of Logic Programming (TPLP), 11((4–5)):663–680, July
2011.

P. Haddawy. Generating Bayesian networks from probabilistic logic knowledge
bases. In Proceedings of the 10th Annual Conference on Uncertainty in Arti-
ficial Intelligence (UAI-94), 1994.

Arjen Hommersom and Peter J. F. Lucas. Generalising the interaction rules in
probabilistic logic. In Proceedings of the 22nd International Joint Conference
on Artificial Intelligence (IJCAI-11), 2011.

Arjen Hommersom, Nivea de Carvalho Ferreira, and Peter J. F. Lucas. Inte-
grating logical reasoning and probabilistic chain graphs. In Proceedings of
the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML/PKDD-09), 2009.

Manfred Jaeger. Relational Bayesian networks. In Proceedings of the 13th
Conference on Uncertainty in Artificial Intelligence (UAI-97), 1997.

Manfred Jaeger. Model-theoretic expressivity analysis. In De Raedt et al. [2008],
pages 325–339.

Kristian Kersting. Lifted probabilistic inference. In Proceedings of the 20th
European Conference on Artificial Intelligence (ECAI-12), 2012.

Kristian Kersting and Luc De Raedt. Basic principles of learning Bayesian logic
programs. In De Raedt et al. [2008], pages 189–221.

Kristian Kersting, Luc De Raedt, and Tapani Raiko. Logical hidden Markov
models. J. Artif. Intell. Res. (JAIR), 25:425–456, 2006.

A. Kimmig, V. Santos Costa, R. Rocha, B. Demoen, and L. De Raedt. On the
efficient execution of ProbLog programs. In Proceedings of the 24th Interna-
tional Conference on Logic Programming (ICLP-08), 2008.

Angelika Kimmig, Bernd Gutmann, and Vı̀tor Santos Costa. Trading memory
for answers: Towards tabling ProbLog. In Proceedings of the International
Workshop on Statistical Relational Learning (SRL-2009), 2009.

Angelika Kimmig, Bart Demoen, Luc De Raedt, Vı́tor Santos Costa, and Ri-
cardo Rocha. On the implementation of the probabilistic logic programming
language ProbLog. Theory and Practice of Logic Programming (TPLP), 11:
235–262, 2011a.

37

Angelika Kimmig, Guy Van den Broeck, and Luc De Raedt. An algebraic
Prolog for reasoning about possible worlds. In Proceedings of the 25th AAAI
Conference on Artificial Intelligence (AAAI-11), 2011b.

J. W. Lloyd. Foundations of Logic Programming. Springer, 2. edition, 1989.

Theofrastos Mantadelis and Gerda Janssens. Nesting probabilistic inference.
In Proceedings of the Colloquium on Implementation of Constraint and Logic
Programming Systems (CICLOPS-11), 2011.

B. Milch, B. Marthi, S. J. Russell, D. Sontag, D. L. Ong, and A. Kolobov.
Blog: Probabilistic models with unknown objects. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence (IJCAI-05), 2005.

Bogdan Moldovan, Ingo Thon, Jesse Davis, and Luc De Raedt. MCMC estima-
tion of conditional probabilities in probabilistic programming languages. In
Proceedings of the 12th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU-13), 2013.

S. H Muggleton. Stochastic logic programs. In L. De Raedt, editor, Advances
in Inductive Logic Programming, pages 254–264. IOS Press, 1996.

Sriraam Natarajan, Prasad Tadepalli, Eric Altendorf, Thomas G. Dietterich,
Alan Fern, and Angelo C. Restificar. Learning first-order probabilistic models
with combining rules. In Proceedings of the 22nd International Conference
on Machine Learning (ICML-05), 2005.

Davide Nitti, Tinne De Laet, and Luc De Raedt. A particle filter for hybrid
relational domains. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS-13), 2013.

A. Pfeffer. IBAL: A probabilistic rational programming language. In Proceedings
of the 17th International Joint Conference on Artificial Intelligence (IJCAI-
01), 2001.

Avi Pfeffer. Figaro: An object-oriented probabilistic programming language.
Technical report, Charles River Analytics, 2009.

D. Poole. Logic programming, abduction and probability. In Fifth Generation
Computing Systems, pages 530–538, 1992.

D. Poole. The independent choice logic and beyond. In De Raedt et al. [2008],
pages 222–243.

David Poole. Probabilistic Horn abduction and Bayesian networks. Artificial
Intelligence, 64:81–129, 1993.

David Poole. Abducing through negation as failure: stable models within the
independent choice logic. Journal of Logic Programming, 44(1-3):5–35, 2000.

David Poole. First-order probabilistic inference. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence (IJCAI-03), 2003.

38

David Poole. Probabilistic programming languages: Independent choices and
deterministic systems. In H. Geffner R. Dechter and J.Y. Halpern, editors,
Heuristics, Probability and Causality: A Tribute to Judea Pearl, pages 253–
269. College Publications, 2010.

Hoifung Poon and Pedro Domingos. Sound and efficient inference with proba-
bilistic and deterministic dependencies. In Proceedings of the 21st National
Conference on Artificial Intelligence (AAAI-06), 2006.

Joris Renkens, Guy Van den Broeck, and Siegfried Nijssen. k-optimal: A novel
approximate inference algorithm for ProbLog. Machine Learning, 89(3):215–
231, July 2012.

M. Richardson and P. Domingos. Markov logic networks. Machine Learning,
62(1-2):107–136, 2006.

Fabrizio Riguzzi. Extended semantics and inference for the Independent Choice
Logic. Logic Journal of the IGPL, 17(6):589–629, 2009.

Fabrizio Riguzzi. cplint Manual, 2013a. https://sites.google.com/a/unife.
it/ml/cplint/cplint-manual.

Fabrizio Riguzzi. Mcintyre: A monte carlo system for probabilistic logic pro-
gramming. Fundam. Inform., 124(4):521–541, 2013b.

Fabrizio Riguzzi. Speeding up inference for probabilistic logic programs. The
Computer Journal, 2013c. (Online first).

Fabrizio Riguzzi and Terrance Swift. The PITA system: Tabling and answer
subsumption for reasoning under uncertainty. Theory and Practice of Logic
Programming (TPLP), 11(4-5):433–449, 2011.

D. Roy, V. Mansinghka, J. Winn, D. McAllester, and D. Tenenbaum, editors.
Probabilistic Programming, 2008. NIPS Workshop.

S. J. Russell and Norvig. Artificial Intelligence: A Modern Approach (Second
Edition). Prentice Hall, 2003.

V. Santos Costa, D. Page, and J. Cussens. CLP(BN): Constraint logic program-
ming for probabilistic knowledge. In De Raedt et al. [2008], pages 156–188.

Vı̀tor Santos Costa and Aline Paes. On the relationship between PRISM and
CLP(BN). In Proceedings of the International Workshop on Statistical Rela-
tional Learning (SRL-2009), 2009.

T. Sato. A statistical learning method for logic programs with distribution
semantics. In Proceedings of the 12th International Conference on Logic Pro-
gramming (ICLP-95), 1995.

T. Sato and Y. Kameya. Parameter learning of logic programs for symbolic-
statistical modeling. J. Artif. Intell. Res. (JAIR), 15:391–454, 2001.

Taisuke Sato. A general MCMC method for bayesian inference in logic-based
probabilistic modeling. In Proceedings of the 22nd International Joint Con-
ference on Artificial Intelligence (IJCAI-11), 2011.

39

https://sites.google.com/a/unife.it/ml/cplint/cplint-manual
https://sites.google.com/a/unife.it/ml/cplint/cplint-manual

Taisuke Sato and Yoshitaka Kameya. PRISM: A language for symbolic-
statistical modeling. In Proceedings of the 15th International Joint Conference
on Artificial Intelligence (IJCAI-97), 1997.

Taisuke Sato, Yoshitaka Kameya, and Neng-Fa Zhou. Generative modeling with
failure in prism. In Leslie Pack Kaelbling and Alessandro Saffiotti, editors,
IJCAI, pages 847–852. Professional Book Center, 2005. ISBN 0938075934.

Ingo Thon, Niels Landwehr, and Luc De Raedt. Stochastic relational processes:
Efficient inference and applications. Machine Learning, 82(2):239–272, 2011.

Leslie G. Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

Guy Van den Broeck, Ingo Thon, Martijn van Otterlo, and Luc De Raedt.
DTProbLog: A decision-theoretic probabilistic Prolog. In Proceedings of the
24th AAAI Conference on Artificial Intelligence (AAAI-10), 2010.

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis, and Luc
De Raedt. Lifted probabilistic inference by first-order knowledge compila-
tion. In Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI-11), 2011.

J. Vennekens. Algebraic and logical study of constructive processes in knowledge
representation. PhD thesis, K.U. Leuven, 2007.

Joost Vennekens, Sofie Verbaeten, and Maurice Bruynooghe. Logic programs
with annotated disjunctions. In Proceedings of the 20th International Con-
ference on Logic Programming (ICLP-04), 2004.

Joost Vennekens, Marc Denecker, and Maurice Bruynooghe. CP-logic: A lan-
guage of causal probabilistic events and its relation to logic programming.
Theory and Practice of Logic Programming (TPLP), 9(3):245–308, 2009.

William Yang Wang, Kathryn Mazaitis, and William W. Cohen. Program-
ming with personalized pagerank: a locally groundable first-order probabilis-
tic logic. In Proceedings of the 22nd ACM International Conference on Infor-
mation and Knowledge Management (CIKM-13), 2013.

A Logic Programming Basics

The basic building blocks of logic programs are variables (denoted by strings
starting with upper case letters), constants, functors and predicates (all denoted
by strings starting with lower case letters). A term is a variable, a constant,
or a functor f of arity n followed by n terms ti, i.e., f(t1, ..., tn). An atom is
a predicate p of arity n followed by n terms ti, i.e., p(t1, ..., tn). A predicate
p of arity n is also written as p/n. A literal is an atom or a negated atom
not(p(t1, ..., tn)). A definite clause is a universally quantified expression of the
form h :− b1, ..., bn where h and the bi are atoms. h is called the head of the
clause, and b1, ..., bn its body. Informally, the meaning of such a clause is that
if all the bi are true, h has to be true as well. A normal clause is a universally

40

quantified expression of the form h :− b1, ..., bn where h is an atom and the bi are
literals. If n = 0, a clause is called fact and simply written as h. A definite clause
program or logic program for short is a finite set of definite clauses. A normal
logic program is a finite set of normal clauses. A substitution θ is an expression
of the form {V1/t1, ..., Vm/tm} where the Vi are different variables and the ti are
terms. Applying a substitution θ to an expression e (term or clause) yields the
instantiated expression eθ where all variables Vi in e have been simultaneously
replaced by their corresponding terms ti in θ. If an expression does not contain
variables it is ground. Two expressions e1 and e2 can be unified if and only if
there are substitutions θ1 and θ2 such that e1θ1 = e2θ2. In Prolog, unification
is written using = as an infix predicate.

The Herbrand base of a logic program is the set of ground atoms that can
be constructed using the predicates, functors and constants occurring in the
program26. Subsets of the Herbrand base are called Herbrand interpretations.
A Herbrand interpretation is a model of a clause h : − b1, . . . , bn. if for every
substitution θ such that all biθ are in the interpretation, hθ is in the interpreta-
tion as well. It is a model of a logic program if it is a model of all clauses in the
program. The model-theoretic semantics of a definite clause program is given
by its smallest Herbrand model with respect to set inclusion, the so-called least
Herbrand model (which is unique). We say that a logic program P entails an
atom a, denoted P |= a, if and only if a is true in the least Herbrand model of
P .

The main inference task of a logic programming system is to determine
whether a given atom, also called query (or goal), is true in the least Herbrand
model of a logic program. If the answer is yes (or no), we also say that the query
succeeds (or fails). If such a query is not ground, inference asks for the existence
of an answer substitution, that is, a substitution that grounds the query into an
atom that is part of the least Herbrand model.

Normal logic programs use the notion of negation as failure, that is, for a
ground atom a, not(a) is true exactly if a cannot be proven in the program.
They are not guaranteed to have a unique minimal Herbrand model. Various
ways to define the canonical model of such programs have been studied; see,
e.g., [Lloyd, 1989, Chapter 3] for an overview.

B Annotated Disjunctions and Probabilistic Facts

As mentioned in Section 2.2, each annotated disjunction can be equivalently
represented using a set of probabilistic facts and deterministic clauses. Using
probabilistic facts is not sufficient, as those correspond to independent random
variables. For instance, using probabilistic facts

1
3 :: color(green). 1

3 :: color(red). 1
3 :: color(blue).

the probability of color(green), color(red) and color(blue) all being true
is 1/27, whereas it is 0 for the annotated disjunction 1

3 :: color(green); 1
3 ::

color(red); 1
3 :: color(blue). On the other hand, we can exploit the fact that

negation of probabilistic facts is easily handled under the distribution seman-

26If the program does not contain constants, one arbitrary constant is added.

41

tics27 to encode an AD by simulating a sequential choice mechanism28. With
this encoding, the three possible outcomes are mutually exclusive as in the AD
and exactly one will be true in any possible world:

1
3 :: sw 1(color(green)). 1

2 :: sw 1(color(red)). 1 :: sw 1(color(blue)).

color(green) :− sw 1(color(green)).
color(red) :− not(sw 1(color(green))), sw 1(color(red)).
color(blue) :− not(sw 1(color(green))), not(sw 1(color(red))), sw 1(color(blue)).

Note that the probabilities have been adapted to reproduce the probabilities
of the different head atoms; we discuss the details of this adaptation below.29

This mapping follows the general idea of representing a probabilistic model in an
augmented space where random variables can be assumed independent, while
capturing the dependencies in the deterministic part of the program [Poole,
2010].

For non-ground ADs, all logical variables have to be included in the prob-
abilistic facts to ensure that all groundings correspond to independent ran-
dom events. For instance, the AD (12 :: color(green); 1

2 :: color(red)) :−
ball(Ball) would be represented as

1
2 :: sw 1(color(green), Ball). 1 :: sw 1(color(red), Ball).

color(green) :− ball(Ball), sw 1(color(green), Ball).
color(red) :− ball(Ball), not(sw 1(color(green), Ball)), sw 1(color(red), Ball).

As this example suggests, annotated disjunctions can be expressed using
probabilistic facts by representing each annotated disjunction using the set of
probabilistic facts p̃i :: sw id(hi, v1, . . . , vf) and the following clauses

hi :− b1, · · · , bm,not(sw id(h1, v1, . . . , vf)), ..., not(sw id(hi−1, v1, . . . , vf)),

sw id(hi, v1, . . . , vf) (8)

where id is a unique identifier for a particular AD and v1, . . . , vf are the free
variables in the body of the AD. The probability p̃1 is defined as p1 and for
i > 1 it is

p̃i :=

pi ·
(

1−
∑i−1

j=1 pj

)−1

if pi > 0

0 if pi = 0
. (9)

One can recover the original probabilities from p̃ by setting p1 := p̃1 and itera-
tively applying the following transformation for i = 2, 3, . . . , n

pi := p̃i ·

1−
i−1
∑

j=1

pj

 . (10)

Equation (9) and (10) together define a bijection between p and p̃ which allows
one to use parameter learning in either representation and map learned proba-
bilities onto the other representation. If the pi sum to 1, it is possible to drop
the last probabilistic fact sw id(hn) since its probability p̃n is 1.

27For a probabilistic fact p::f, not(f) succeeds in a possible world exactly if f is not among
the probabilistic facts included in that world; cf. Section 4.6 for a more general discussion of
negation.

28used, e.g., by Sato and Kameya [1997] with parameters learned from data
29This transformation is correct for computing success probabilities, but care has to be

taken to accomodate for the additional random variables in MPE inference.

42

	1 Introduction
	2 Distribution Semantics
	2.1 Probabilistic Facts
	2.2 Probabilistic Choices
	2.3 Inference Tasks

	3 Inference
	3.1 Exact Inference
	3.2 Approximate Inference using Bounds
	3.3 Approximate Inference by Sampling

	4 Probabilistic Programming Concepts
	4.1 Flexible Probabilities
	4.2 Distributional Clauses
	4.3 Unknown Objects
	4.4 Stochastic Memoization
	4.5 Constraints
	4.6 Negation as Failure
	4.7 Second Order Predicates
	4.8 Meta-Calls
	4.9 Time and Dynamics
	4.10 Generalized Labels

	5 Knowledge-Based Model Construction
	5.1 Bayesian Networks and Conditional Probability Tables
	5.2 Relational Dependencies
	5.3 Example: CLP(BN)

	6 Probabilistic Programming Concepts and Inference
	7 Conclusions
	A Logic Programming Basics
	B Annotated Disjunctions and Probabilistic Facts

