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Introduction
Welcome to R For Dummies, the book that takes the steepness out of the

learning curve for using R.
 

We can’t guarantee that you’ll be a guru if you read this book, but you should
be able to do the following:

 
 Perform data analysis by using a variety of powerful tools

 
 Use the power of R to do statistical analysis and other data-processing tasks

 
 Appreciate the beauty of using vector-based operations rather than loops to do
speedy calculations

 
 Appreciate the meaning of the following line of code:

 
knowledge <- apply(theory, 1, sum)

 
 Know how to find, download, and use code that has been contributed to R by its
very active community of developers

 
 Know where to find extra help and resources to take your R coding skills to the
next level

 
 Create beautiful graphs and visualizations of your data

 

About This Book
R For Dummies is an introduction to the statistical programming language

known as R. We start by introducing the interface and work our way from the very
basic concepts of the language through more sophisticated data manipulation and
analysis.

 
We illustrate every step with easy-to-follow examples. This book contains

numerous code snippets, several write-it-yourself functions you can use later on,
and complete analysis scripts. All these are for you to try out yourself.

 
We don’t attempt to give a technical description of how R is programmed

internally, but we do focus as much on the why as on the how. R doesn’t function



as your average scripting language, and it has plenty of unique features that may
seem surprising at first. Instead of just telling you how you have to talk to R, we
believe it’s important for us to explain how the R engine reads what you tell it to
do. After reading this book, you should be able to manipulate your data in the form
you want and understand how to use functions we didn’t cover in the book (as well
as the ones we do cover).

 
R and RStudio

R For Dummies can be used with any operating system that R runs on.
Whether you use Mac, Linux, or Windows, this book will get you on your way
with R.
R is more a programming language than an application. When you download
R, you automatically download a console application that’s suitable for your
operating system. However, this application has only basic functionality, and
it differs to some extent from one operating system to the next.
RStudio is a cross-platform application with some very neat features to
support R. In this book, we don’t assume you use any specific console
application. But because RStudio provides a common user interface across
the major operating systems, we think that you’ll understand how to run it
quite quickly. For this reason, we use RStudio to demonstrate some of the
concepts rather than operating-system-specific editor.

 This book is a reference. You don’t have to read it from beginning to end.
Instead, you can use the table of contents and index to find the information you
need. In each chapter, we cross-reference other chapters where you can find more
information.

 

Conventions Used in This Book
Code snippets appear like this example, where we simulate 1 million throws of

two six-sided dice:
 

> set.seed(42)
> throws <- 1e6
> dice <- sapply(1:2,
+     function(x)sample(1:6, throws, replace=TRUE)
+ )
> table(rowSums(dice))
     2      3      4      5      6      7      8
28007  55443  83382 110359 138801 167130 138808
     9     10     11     12
110920  83389  55816  27945

 
Each line of R code in this example is preceded by one of two symbols:



 
>: The prompt symbol, >, is not part of your code, and you should not type this
when you try the code yourself.

 
+: The continuation symbol, +, indicates that this line of code still belongs to the
previous line of code. In fact, you don’t have to break a line of code into two, but
we do this frequently, because it improves the readability of code and helps it fit
into the pages of a book.

 
The lines that don’t start with either the prompt symbol or the continuation

symbol are the output produced by R. In this case, you get the total number of
throws where the dice added up to the numbers 2 through 12. For example, out of
1 million throws of the dice, on 28,007 occasions, the numbers on the dice added
to 2.

 
You can copy these code snippets and run them in R, but you have to type

them exactly as shown. There are only three exceptions:
 

 Don’t type the prompt symbol, >.
 

 Don’t type the continuation symbol, +.
 

 Where you put spaces or tabs isn’t critical, as long as it isn’t in the middle of a
keyword. Pay attention to new lines, though.

 
You get to write some R code in every chapter of the book. Because much of

your interaction with the R interpreter is most likely going to be in interactive
mode, you need a way of distinguishing between your code and the results of your
code. When there is an instruction to type some text into the R console, you’ll see a
little > symbol to the left of the text, like this:

 
> print(“Hello world!”)

 
If you type this into a console and press Enter, R responds with the following:

 
[1] “Hello world!”

 
For convenience, we collapse these two events into a single block, like this:

 
> print(“Hello world!”)
[1] “Hello world!”



 
This indicates that you type some code (print(“Hello world!”)) into the

console and R responds with [1] “Hello world!”.
 

Finally, many R words are directly derived from English words. To avoid
confusion in the text of this book, R functions, arguments, and keywords appear in
monofont. For example, to create a plot, you use the plot() function in R. When
talking about functions, the function name will always be followed by open and
closed parentheses — for example, plot(). We refrain from adding arguments to
the function names mentioned in the text, unless it’s really important.

 
On some occasions we talk about menu commands, such as File䳑Save. This

just means that you open the File menu and choose the Save option.
 

What You’re Not to Read
You can use this book however works best for you, but if you’re pressed for

time (or just not interested in the nitty-gritty details), you can safely skip anything
marked with a Technical Stuff icon. You also can skip sidebars (text in gray boxes);
they contain interesting information, but nothing critical to your understanding of
the subject at hand.

 

Foolish Assumptions
This book makes the following assumptions about you and your computer:

 
You know your way around a computer. You know how to download and
install software. You know how to find information on the Internet and you have
Internet access.

 
You’re not necessarily a programmer. If you are a programmer, and you’re
used to coding in other languages, you may want to read the notes marked by
the Technical Stuff icon — there, we fill you in on how R is similar to, or different
from, other common languages.

 
You’re not a statistician, but you understand the very basics of
statistics. R For Dummies isn’t a statistics book, although we do show you how
to do some basic statistics using R. If you want to understand the statistical stuff
in more depth, we recommend Statistics For Dummies, 2nd Edition, by Deborah
J. Rumsey, PhD (Wiley).



 
You want to explore new stuff. You like to solve problems and aren’t afraid
of trying things out in the R console.

 

How This Book Is Organized
The book is organized in six parts. Here’s what each of the six parts covers.

 

Part I: R You Ready?
 

In this part, we introduce you to R and show you how to write your first script.
You get to use the very powerful concept of vectors to make simultaneous
calculations on many variables at once. You get to work with the R workspace (in
other words, how to create, modify, or remove variables). You find out how save
your work and retrieve and modify script files that you wrote in previous sessions.
We also introduce some fundamentals of R (for example, how to extend
functionality by installing packages).

 

Part II: Getting Down to Work in R
 

In this part, we fill you in on the three R’s: reading, ’riting, and ’rithmetic — in
other words, working with text and number (and dates for good measure). You also
get to use the very important data structures of lists and data frames.

 

Part III: Coding in R
 

R is a programming language, so you need to know how to write and
understand functions. In this part, we show you how to do this, as well as how to
control the logic flow of your scripts by making choices using if statements, as well
as looping through your code to perform repetitive actions. We explain how to
make sense of and deal with warnings and errors that you may experience in your
code. Finally, we show you some tools to debug any issues that you may
experience.

 

Part IV: Making the Data Talk



 
In this part, we introduce the different data structures that you can use in R,

such as lists and data frames. You find out how to get your data in and out of R (for
example, by reading data from files or the Clipboard). You also see how to interact
with other applications, such as Microsoft Excel.

 
Then you discover how easy it is to do some advanced data reshaping and

manipulation in R. We show you how to select a subset of your data and how to
sort and order it. We explain how to merge different datasets based on columns
they may have in common. Finally, we show you a very powerful generic strategy
of splitting and combining data and applying functions over subsets of your data.
When you understand this strategy, you can use it over and over again to do
sophisticated data analyses in only a few small steps.

 
We’re just itching to show you how to do some statistical analysis using R.

This is the heritage of R, after all. But we promise to keep it simple. After reading
this part, you’ll know how to describe and summarize your variables and data using
R. You’ll be able to do some classical tests (for example, calculating a t-test). And
you’ll know how to use random numbers to simulate some distributions.

 
Finally, we show you some of the basics of using linear models (for example,

linear regression and analysis of variance). We also show you how to use R to
predict the values of new data using some models that you’ve fitted to your data.

 

Part V: Working with Graphics
 

They say that a picture is worth a thousand words. This is certainly the case
when you want to share your results with other people. In this part, you discover
how to create basic and more sophisticated plots to visualize your data. We move
on from bar charts and line charts, and show you how to present cuts of your data
using facets.

 

Part VI: The Part of Tens
 

In this part, we show you how to do ten things in R that you probably use
Microsoft Excel for at the moment (for example, how to do the equivalent of pivot
tables and lookup tables). We also give you ten tips for working with packages that
are not part of base R.



 

Icons Used in This Book
As you read this book, you’ll find little pictures in the margins. These pictures,

or icons, mark certain types of text:
 

 When you see the Tip icon, you can be sure to find a way to do something
more easily or quickly.

 

 You don’t have to memorize this book, but the Remember icon points out
some useful things that you really should remember. Usually this indicates a
design pattern or idiom that you’ll encounter in more than one chapter.

 

 When you see the Warning icon, listen up. It points out something you
definitely don’t want to do. Although it’s really unlikely that using R will cause
something disastrous to happen, we use the Warning icon to alert you if
something is bound to lead to confusion.

 

 The Technical Stuff icon indicates technical information you can merrily skip
over. We do our best to make this information as interesting and relevant as
possible, but if you’re short on time or you just want the information you
absolutely need to know, you can move on by.

 

Where to Go from Here
There’s only one way to learn R: Use it! In this book, we try to make you

familiar with the usage of R, but you’ll have to sit down at your PC and start playing
around with it yourself. Crack the book open so the pages don’t flip by themselves,
and start hitting the keyboard!

 
 



Part I
R You Ready?

In this part . . .
From financial headquarters to the dark cellars of small universities, people

use R for data manipulation and statistical analysis. With R, you can extract stock
prices and predict profits, discover beginning diseases in small blood samples,
analyze the behavior of customers, or describe how the gray wolf recolonized
European forests.

In this part, you discover the power hidden behind the 18th letter of the
alphabet.



Chapter 1
 

Introducing R: The Big Picture

In This Chapter
 Discovering the benefits of R

 Identifying some programming concepts that make R special
 

With an estimated worldwide user base of more than 2 million people, the R
language has rapidly grown and extended since its origin as an academic
demonstration language in the 1990s.

 
Some people would argue — and we think they’re right — that R is much more

than a statistical programming language. It’s also:
 

 A very powerful tool for all kinds of data processing and manipulation
 

 A community of programmers, users, academics, and practitioners
 

 A tool that makes all kinds of publication-quality graphics and data visualizations
 

 A collection of freely distributed add-on packages
 

 A toolbox with tremendous versatility
 

In this chapter, we fill you in on the benefits of R, as well as its unique
features and quirks.

 

 You can download R at www.r-project.org. This website also provides more
information on R and links to the online manuals, mailing lists, conferences
and publications.

 

Tracing the history of R
Ross Ihaka and Robert Gentleman developed R as a free software

http://www.r-project.org


environment for their teaching classes when they were colleagues at the
University of Auckland in New Zealand. Because they were both familiar with
S, a commercial programming language for statistics, it seemed natural to
use similar syntax in their own work. After Ihaka and Gentleman announced
their software on the S-news mailing list, several people became interested
and started to collaborate with them, notably Martin Mächler.
Currently, a group of 18 people has rights to modify the central archive of
source code. This group is referred to as the R Development Core Team. In
addition, many other people have contributed new code and bug fixes to the
project.
Here are some milestone dates in the development of R:

Early 1990s: The development of R began.
August 1993: The software was announced on the S-news mailing list.

Since then, a set of active R mailing lists has been created. The web page at
www.r-project.org/mail.html provides descriptions of these lists and
instructions for subscribing. (For more information, turn to “It provides an
engaged community,” later in this chapter.)

June 1995: After some persuasive arguments by Martin Mächler
(among others) to make the code available as “free software,” the code was
made available under the Free Software Foundation’s GNU General Public
License (GPL), Version 2.

Mid-1997: The initial R Development Core Team was formed
(although, at the time, it was simply known as the core group).

February 2000: The first version of R, version 1.0.0, was released.
Ross Ihaka wrote a comprehensive overview of the development of R. The
web page http://cran.r-project.org/doc/html/interface98-
paper/paper.html provides a fascinating history.

 

Recognizing the Benefits of Using R
Of the many attractive benefits of R, a few stand out: It’s actively maintained,

it has good connectivity to various types of data and other systems, and it’s
versatile enough to solve problems in many domains. Possibly best of all, it’s
available for free, in more than one sense of the word.

 

It comes as free, open-source code
 

R is available under an open-source license, which means that anyone can
download and modify the code. This freedom is often referred to as “free as in
speech.” R is also available free of charge — a second kind of freedom, sometimes

http://www.r-project.org/mail.html
http://cran.r-project.org/doc/html/interface98-paper/paper.html


referred to as “free as in beer.” In practical terms, this means that you can
download and use R free of charge.

 
Another benefit, albeit slightly more indirect, is that anybody can access the

source code, modify it, and improve it. As a result, many excellent programmers
have contributed improvements and fixes to the R code. For this reason, R is very
stable and reliable.

 

 Any freedom also has associated obligations. In the case of R, these
obligations are described in the conditions of the license under which it is
released: GNU General Public License (GPL), Version 2. The full text of the
license is available at www.r-project.org/COPYING. It’s important to stress that
the GPL does not pertain to your usage of R. There are no obligations for using
the software — the obligations just apply to redistribution. In short, if you
change or redistribute the R source code, you have to make those changes
available for anybody else to use.

 

It runs anywhere
 

The R Development Core Team has put a lot of effort into making R available
for different types of hardware and software. This means that R is available for
Windows, Unix systems (such as Linux), and the Mac.

 

It supports extensions
 

R itself is a powerful language that performs a wide variety of functions, such
as data manipulation, statistical modeling, and graphics. One really big advantage
of R, however, is its extensibility. Developers can easily write their own software
and distribute it in the form of add-on packages. Because of the relative ease of
creating these packages, literally thousands of them exist. In fact, many new (and
not-so-new) statistical methods are published with an R package attached.

 

It provides an engaged community
 

The R user base keeps growing. Many people who use R eventually start

http://www.r-project.org/COPYING


helping new users and advocating the use of R in their workplaces and professional
circles. Sometimes they also become active on the R mailing lists (www.r-
project.org/mail.html) or question-and-answer (Q&A) websites such as Stack
Overflow, a programming Q&A website
(www.stackoverflow.com/questions/tagged/r) and CrossValidated, a statistics Q&A
website (http://stats.stackexchange.com/questions/tagged/r). In addition to
these mailing lists and Q&A websites, R users participate in social networks such as
Twitter (www.twitter.com/search/rstats) and regional R conferences. (See
Chapter 11 for more information on R communities.)

 

It connects with other languages
 

As more and more people moved to R for their analyses, they started trying to
combine R with their previous workflows, which led to a whole set of packages for
linking R to file systems, databases, and other applications. Many of these
packages have since been incorporated into the base installation of R.

 
For example, the R package foreign (http://cran.r-

project.org/web/packages/foreign/index.html) is part of the standard R
distribution and enables you to read data from the statistical packages SPSS, SAS,
Stata, and others (see Chapter 12).

 
Several add-on packages exist to connect R to database systems, such as the

RODBC package, to read from databases using the Open Database Connectivity
protocol (ODBC) (http://cran.r-project.org/web/packages/RODBC/index.html),
and the ROracle package, to read Oracle data bases (http://cran.r-
project.org/web/packages/ROracle/index.html).

 

 Initially, most of R was based on Fortran and C. Code from these two
languages easily could be called from within R. As the community grew, C++,
Java, Python, and other popular programming languages got more and more
connected with R.

 
Because many statisticians also worked with commercial programs, the R

Development Core Team (and others) wrote tools to read data from those
programs, including SAS Institute’s SAS and IBM’s SPSS. By now, many of the big
commercial packages have add-ons to connect with R. Notably, SPSS has
incorporated a link to R for its users, and SAS has numerous protocols that show

http://www.r-project.org/mail.html
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you how to move data and graphics between the two packages.
 

Looking At Some of the Unique Features of R
R is more than just a domain-specific programming language aimed at

statisticians. It has some unique features that make it very powerful, including the
notion of vectors, which means that you can make calculations on many values at
the same time.

 

Performing multiple calculations with vectors
 

R is a vector-based language. You can think of a vector as a row or column of
numbers or text. The list of numbers {1,2,3,4,5}, for example, could be a vector.
Unlike most other programming languages, R allows you to apply functions to the
whole vector in a single operation without the need for an explicit loop.

 
We’ll illustrate with some real R code. First, we’ll assign the values 1:5 to a

vector that we’ll call x:
 

> x <- 1:5
> x
[1] 1 2 3 4 5

 
Next, we’ll add the value 2 to each element in the vector x and print the

result:
 

> x + 2
[1] 3 4 5 6 7

 
You can also add one vector to another. To add the values 6:10 element-wise

to x, you do the following:
 

> x + 6:10
[1]  7  9 11 13 15

 
To do this in most other programming language would require an explicit loop

to run through each value of x.
 

This feature of R is extremely powerful because it lets you perform many
operations in a single step. In programming languages that aren’t vectorized, you’d



have to program a loop to achieve the same result.
 

We introduce the concept of vectors in Chapter 2 and expand on vectors and
vectorization in much more depth in Chapter 4.

 

Processing more than just statistics
 

R was developed by statisticians to make statistical processing easier. This
heritage continues, making R a very powerful tool for performing virtually any
statistical computation.

 
As R started to expand away from its origins in statistics, many people who

would describe themselves as programmers rather than statisticians have become
involved with R. The result is that R is now eminently suitable for a wide variety of
nonstatistical tasks, including data processing, graphic visualization, and analysis of
all sorts. R is being used in the fields of finance, natural language processing,
genetics, biology, and market research, to name just a few.

 

 R is Turing complete, which means that you can use R alone to program
anything you want. (Not every task is easy to program in R, though.)

 
In this book, we assume that you want to find out about R programming, not

statistics, although we provide an introduction to statistics in R in Part IV.
 

Running code without a compiler
 

R is an interpreted language, which means that — contrary to compiled
languages like C and Java — you don’t need a compiler to first create a program
from your code before you can use it. R interprets the code you provide directly and
converts it into lower-level calls to pre-compiled code/functions.

 
In practice, it means that you simply write your code and send it to R, and the

code runs, which makes the development cycle easy. This ease of development
comes at the cost of speed of code execution, however. The downside of an
interpreted language is that the code usually runs slower than compiled code runs.

 



 If you have experience in other languages, be aware that R is not C or Java.
Although you can use R as a procedural language such as C or an object-
oriented language such as Java, R is mostly based on the paradigm of
functional programming. As we discuss later in this book, especially in Part III,
this characteristic requires a bit of a different mindset. Forget what you know
about other languages, and prepare for something completely different.

 
 



Chapter 2
 

Exploring R

In This Chapter
 Looking at your R editing options
 Starting R
 Writing your first R script

 Finding your way around the R workspace
 

In order to start working in R, you need to use an editing tool. Which editing
tool you use depends to some extent on your operating system, because R doesn’t
provide a single graphical editor for all operating systems. The basic R install gives
you the following:

 
Windows: A basic editor called RGui.

 
Mac OS X: A basic R editor called R.app.

 
Linux: There is no specific R editor on Linux, but you can use any editor (like
Vim or Emacs) to edit your R code.

 
At a practical level, this difference between operating systems doesn’t matter

very much because R is a programming language, and you can be sure that R
interprets your code identically across operating systems.

 
Still, we want to show you how to use an R code editor, so in this chapter we

briefly illustrate how to use R with the Windows RGui. Our advice also works on
R.app. And if you work in Linux, you can simply type the code into your preferred
editor.

 
Fortunately, there is an alternative called RStudio, third-party software that

provides a consistent user interface regardless of operating system. In addition to
demonstrating how to work with the Windows RGui, we also illustrate how to use
RStudio.

 
After you’ve opened a console, we get you exercising your R muscles and

writing some scripts. You do some calculations, create some numeric and text



variables, get to look at the built-in help, and save your work.
 

Working with a Code Editor
R is many things: a programming language, a statistical processing

environment, a way to solve problems, and a collection of helpful tools to make
your life easier. The one thing that R is not is an application, which means that you
have the freedom of selecting your own editing tools to interact with R.

 
In this section we discuss the Windows R editor, RGui (short for R graphical

user interface). Since the standard, basic R editors are so, well, basic, we also
introduce you to RStudio. RStudio offers a richer editing environment than RGui and
makes some common tasks easier and more fun.

 

Exploring RGui
 

As part of the process of downloading and installing R, you get the standard
graphical user interface (GUI), called RGui. RGui gives you some tools to manage
your R environment — most important, a console window. The console is where
you type instructions, or scripts, and generally get R to do useful things for you.

 

Alternatives to the standard R editors
Among the many freedoms that R offers you is the freedom to choose your
own code editor and development environment, so you don’t have to use the
standard R editors or RStudio. Here are a few other options:

Eclipse StatET (www.walware.de/goto/statet): Eclipse, another
powerful integrated development environment, has a R add-in called StatET.
If you’ve done software development on large projects, you may find Eclipse
useful. Eclipse requires you to install Java on your computer.

Emacs Speaks Statistics (http://ess.r-project.org): Emacs, a
powerful text and code editor, is widely used in the Linux world and also is
available for Windows. It has a statistics add-in called Emacs Speaks
Statistics (ESS), which is famous for having keyboard shortcuts for just about
everything you could possibly do and for its very loyal fan base. If you’re a
programmer coming from the Linux world, this editor may be a good choice
for you.

Tinn-R (www.sciviews.org/Tinn-R): This editor, developed specifically
for working with R, is available only for Windows. It has some nice features

http://www.walware.de/goto/statet
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for setting up collections of R scripts in projects. Tinn-R is easier to install
and use than either Eclipse or Emacs, but it isn’t as fully featured.

 

Seeing the naked R console
 

The standard installation process creates useful menu shortcuts (although this
may not be true if you use Linux, because there is no standard RGui editor for
Linux). In the menu system, look for a folder called R, and then find an icon called
R followed by a version number (for example, R 2.13.2, as shown in Figure 2-1).

 
When you open RGui for the first time, you see the R Console screen (shown in

Figure 2-2), which lists some basic information such as your version of R and the
licensing conditions.

 
Figure 2-1: The shortcut icon for RGui is labeled with R followed by the version number.

Figure 2-2: A brand-new session in RGui.



Below all this information is the R prompt, denoted by a > symbol. The prompt
indicates where you type your commands to R; you see a blinking cursor to the
right of the prompt.

 
We explore the R console in more depth in “Discovering the Workspace,” later

in this chapter.
 

Issuing a simple command
 

Use the console to issue a very simple command to R. Type the following to
calculate the sum of some numbers:

 
> 24+7+11

 
R responds immediately to your command, calculates the total, and displays it

in the console:
 

> 24+7+11
[1] 42

 
The answer is 42. R gives you one other piece of information: The [1]

preceding 42 indicates that the value 42 is the first element in your answer. It is, in
fact, the only element in your answer! One of the clever things about R is that it
can deal with calculating many values at the same time, which is called vector
operations. We talk about vectors later in this chapter — for now, all you need to
know is that R can handle more than one value at a time.

 



Closing the console
 

To quit your R session, type the following code in the console, after the
command prompt (>):

 
> q()

 
R asks you a question to make sure that you meant to quit, as shown in Figure

2-3. Click No, because you have nothing to save. This action closes your R session
(as well as RGui, if you’ve been using RGui as your code editor).

 
Figure 2-3: R asks you a simple question.

Dressing up with RStudio
 

RStudio is a code editor and development environment with some very nice
features that make code development in R easy and fun:

 
 Code highlighting that gives different colors to keywords and variables, making
it easier to read

 
 Automatic bracket matching

 
 Code completion, so you don’t have to type out all commands in full

 
 Easy access to R Help, with some nice features for exploring functions and
parameters of functions

 
 Easy exploration of variables and values

 
Because RStudio is available free of charge for Linux, Windows, and Apple iOS

devices, we think it’s a good option to use with R. In fact, we like RStudio so much



that we use it to illustrate the examples in this book. Throughout the book, you
find some tips and tricks on how things can be done in RStudio. If you decide to use
a different code editor, you can still use all the code examples and you’ll get
identical results.

 
To open RStudio, click the RStudio icon in your menu system or on your

desktop, as shown in Figure 2-4. (You can find installation instructions in this book’s
appendix.)

 
Figure 2-4: Opening RStudio.

Once RStudio started, choose File䳑New䳑R Script.
 

Your screen should look like Figure 2-5. You have four work areas:
 

Source: The top-left corner of the screen contains a text editor that lets you
work with source script files. Here, you can enter multiple lines of code, save
your script file to disk, and perform other tasks on your script. This code editor
works a bit like every other text editor you’ve ever seen, but it’s smart. It
recognizes and highlights various elements of your code, for example (using
different colors for different elements), and it also helps you find matching
brackets in your scripts.



 
Console: In the bottom-left corner, you find the console. The console in RStudio
is identical to the console in RGui (refer to “Seeing the naked R console,” earlier
in this chapter). This is where you do all the interactive work with R.

 
Workspace and history: The top-right corner is a handy overview of your
workspace, where you can inspect the variables you created in your session, as
well as their values. (We discuss the workspace in more detail later in this
chapter.) This is also the area where you can see a history of the commands
you’ve issued in R.

 
Files, plots, package, and help: In the bottom-right corner, you have access
to several tools:

 
• Files: This is where you can browse the folders and files on your computer.

 
• Plots: This is where R displays your plots (charts or graphs). We discuss plots in

Part V.
 

• Packages: This is where you can view a list of all the installed packages. A
package is self-contained set of code that adds functionality to R, similar to the
way that an add-in adds functionality to Microsoft Excel.

 
• Help: This is where you can browse the built-in Help system of R.

 
Figure 2-5: RStudio’s four work areas.



Starting Your First R Session
If you’re anything like the two of us, you’re probably just itching to get hold of

some real code. In this section, you get to do exactly that. Get ready to get your
hands dirty!

 

Saying hello to the world
 

Programming books typically start with a very simple program. Often, the
objective of this first program is to create the message “Hello world!” In R, this
program consists of one line of code.

 
Start a new R session, type the following in your console, and press Enter:

 
> print(“Hello world!”)

 
R responds immediately with this output:

 
[1] “Hello world!”

 
Congratulations! You’ve just completed your first R script.

 

 As we explain in the introduction to this book, we collapse these two things
into a single block of code, like this:

 
> print(“Hello world!”)
[1] “Hello world!”

 

Doing simple math
 

Type the following in your console to calculate the sum of five numbers:
 

> 1+2+3+4+5
[1] 15

 
The answer is 15, which you can easily verify for yourself. You may think that

there’s an easier way to calculate this value, though — and you’d be right. We
explain how in the following section.



 

Using vectors
 

A vector is the simplest type of data structure in R. The R manual defines a
vector as “a single entity consisting of a collection of things.” A collection of
numbers, for example, is a numeric vector — the first five integer numbers form a
numeric vector of length 5.

 
To construct a vector, type the following in the console:

 
> c(1,2,3,4,5)
[1] 1 2 3 4 5

 
In constructing your vector, you have successfully used a function in R. In

programming language, a function is a piece of code that takes some inputs and
does something specific with them. In constructing a vector, you tell the c()
function to construct a vector with the first five integers. The entries inside the
parentheses are referred to as arguments.

 
You also can construct a vector by using operators. An operator is a symbol

you stick between two values to make a calculation. The symbols +, -, *, and / are
all operators, and they have the same meaning they do in mathematics. Thus, 1+2
in R returns the value 3, just as you’d expect.

 
One very handy operator is called sequence, and it looks like a colon (:). Type

the following in your console:
 

> 1:5
[1] 1 2 3 4 5

 
That’s more like it. With three keystrokes, you’ve generated a vector with the

values 1 through 5. Type the following in your console to calculate the sum of this
vector:

 
> sum(1:5)
[1] 15

 

Storing and calculating values
 



Using R as a calculator is very interesting but perhaps not all that useful. A
much more useful capability is storing values and then doing calculations on these
stored values.

 
Try the following:

 
> x <- 1:5
> x
[1] 1 2 3 4 5

 
In these two lines of code, you first assign the sequence 1:5 to a variable

called x. Then you ask R to print the value of x by typing x in the console and
pressing Enter.

 

 In R, the assignment operator is <-, which you type in the console by using
two keystrokes: the less-than symbol (<) followed by a hyphen (-). The
combination of these two symbols represents assignment.

 
In addition to retrieving the value of a variable, you can do calculations on

that value. Create a second variable called y, and assign it the value 10. Then add
the values of x and y, as follows:

 
> y <- 10
> x + y
[1] 11 12 13 14 15

 
The values of the two variables themselves don’t change unless you assign a

new value. You can check this by typing the following:
 

> x
[1] 1 2 3 4 5
> y
[1] 10

 
Now create a new variable z, assign it the value of x+y, and print its value:

 
> z <- x + y
> z
[1] 11 12 13 14 15

 
Variables also can take on text values. You can assign the value “Hello” to a

variable called h, for example, by presenting the text to R inside quotation marks,



like this:
 

> h <- “Hello”
> h
[1] “Hello”

 

 You must present text or character values to R inside quotation marks —
either single or double. R accepts both. So both h <- “Hello” and h <-
‘Hello’ are examples of valid R syntax.

 
In “Using vectors,” earlier in this chapter, you use the c() function to combine

numeric values into vectors. This technique also works for text. Try it:
 

> hw <- c(“Hello”, “world!”)
> hw
[1] “Hello” “world!”

 
You can use the paste() function to concatenate multiple text elements. By

default, paste() puts a space between the different elements, like this:
 

> paste(“Hello”, “world!”)
[1] “Hello world!”

 

Talking back to the user
 

You can write R scripts that have some interaction with a user. To ask the user
questions, you can use the readline() function. In the following code snippet, you
read a value from the keyboard and assign it to the variable yourname:

 
> h <- “Hello”
> yourname <- readline(“What is your name?”)
What is your name?Andrie
> paste(h, yourname)
[1] “Hello Andrie”

 
This code seems to be a bit cumbersome, however. Clearly, it would be much

better to send these three lines of code simultaneously to R and get them
evaluated in one go. In the next section, we show you how.

 



Sourcing a Script
Until now, you’ve worked directly in the R console and issued individual

commands in an interactive style of coding. In other words, you issue a command,
R responds, you issue the next command, R responds, and so on.

 
In this section, you kick it up a notch and tell R to perform several commands

one after the other without waiting for additional instructions. Because the R
function to run an entire script is source(), R users refer to this process as sourcing
a script.

 
To prepare your script to be sourced, you first write the entire script in an

editor window. In RStudio, for example, the editor window is in the top-left corner
of the screen (refer to Figure 2-5). Whenever you press Enter in the editor window,
the cursor moves to the next line, as in any text editor.

 
Type the following lines of code in the editor window. (Remember that in

RStudio the source editor is in the top-left corner, by default.) Notice that the last
line contains a small addition to the code you saw earlier: the print() function.

 
h <- “Hello”
yourname <- readline(“What is your name?”)
print(paste(h, yourname))

 

 Remember to type the print() function as part of your script. Sourced
scripts behave differently from interactive code in printing results. In
interactive mode, a result is printed even without a print() function. But when
you source a script, output is printed only if you have an explicit print()
function.

 
You can type multiple lines of code into the source editor without having each

line evaluated by R. Then, when you’re ready, you can send the instructions to R —
in other words, source the script.

 
When you use RGui or RStudio, you can do this in one of three ways:

 
Send an individual line of code from the editor to the console. Click the
line of code you want to run, and then press Ctrl+R in RGui. In RStudio, you can
press Ctrl+Enter or click the Run button.

 



Send a block of highlighted code to the console. Select the block of code
you want to run, and then press Ctrl+R (in RGui) or Ctrl+Enter (in RStudio).

 
Send the entire script to the console (which is called sourcing a script).
In RGui, click anywhere in your script window, and then choose Edit䳑Run all. In
RStudio, click anywhere in the source editor, and press Ctrl+Shift+Enter or click
the Source button.

 

 These keyboard shortcuts are defined only in RStudio. If you use a different
source editor, you may not have the same options.

 
Now you can send the entire script to the R console. To do this, click the

Source button in the top-right corner of the editor window or choose Edit䳑Source.
The script starts, reaches the point where it asks for input, and then waits for you
to enter your name in the console window. Your screen should now look like Figure
2-6. Notice that the Workspace window now lists the two objects you created: h
and yourname.

 
Figure 2-6: Sending a script to the console in RStudio.

 When you click the Source button, source(‘~/.active-rstudio- document’)
appears in the console. What RStudio actually does here is save your script in
a temporary file and then use the R function source() to call that script in the
console. Remember this function; you’ll meet it again.

 



Finding help on functions
We discuss R’s built-in help system in Chapter 11, but for now, to get help on
any function, type ? in the console. To get help with the save() function, for
example, type the following:

> ?paste
 

This code opens a Help window. In RStudio, this Help window is in the
bottom-right corner of your screen by default. In other editors, the Help
window sometimes appears as a local web page in your default web
browser.
You also can type help, but remember to use parentheses around your
search term, like so:

> help(paste)
 

 

Navigating the Workspace
So far in this chapter, you’ve created several variables. These form part of

what R calls the workspace, which we explore in this section. The workspace refers
to all the variables and functions (collectively called objects) that you create during
the session, as well as any packages that are loaded.

 
Often, you want to remind yourself of all the variables you’ve created in the

workspace. To do this, use the ls() function to list the objects in the workspace. In
the console, type the following:

 
> ls()
[1] “h”        “hw”       “x”        “y”        “yourname” “z”

 
R tells you the names of all the variables that you created.

 

 One very nice feature of RStudio lets you examine the contents of the
workspace at any time without typing any R commands. By default, the top-
right window in RStudio has two tabs: Workspace and History. Click the
Workspace tab to see the variables in your workspace, as well as their values.
(refer to Figure 2-5).

 



Manipulating the content of the workspace
 

If you decide that you don’t need some variables anymore, you can remove
them. Suppose that the object z is simply the sum of two other variables and no
longer needed. To remove it permanently, use the rm() function and then use the
ls() function to display the contents of the workspace, as follows:

 
> rm(z)
> ls()
[1] “h”        “hw”       “x”        “y”        “yourname”

 
Notice that the object z is no longer there.

 

Saving your work
 

You have several options for saving your work:
 

 You can save individual variables with the save() function.
 

 You can save the entire workspace with the save.image() function.
 

 You can save your R script file, using the appropriate save menu command in
your code editor.

 
Suppose you want to save the value of yourname. To do that, follow these

steps:
 

1. Find out which working directory R will use to save your file by
typing the following:

 > getwd()
[1] “c:/users/andrie”

 
The default working directory should be your user folder. The exact name and

path of this folder depend on your operating system. (In Chapter 12, you get more
familiar with the working directory.)

 
 If you use the Windows operating system, the path is displayed with

slashes instead of backslashes. In R, similar to many other programming



languages, the backslash character has a special meaning. The backslash indicates
an escape sequence, indicating that the character following the backslash means
something special. For example, \t indicates a tab, rather than the letter t. (You
can read more about escape sequences in Chapter 12.) Rest assured that, although
the working directory is displayed differently from what you’re used to, R is smart
enough to translate it when you save or load files. Conversely, when you type a file
path, you have to use slashes, not backslashes.

 2. Type the following code in your console, using a filename like
yourname.rda, and then press Enter.

 > save(yourname, file=”yourname.rda”)
 

R silently saves the file in the working directory. If the operation is successful,
you don’t get any confirmation message.

 3. To make sure that the operation was successful, use your file
browser to navigate to the working directory, and see whether the new
file is there.

 
Retrieving your work

 
To retrieve saved data, you use the load() function. Say you want to retrieve

the value of yourname that you saved previously.
 

First, remove the variable yourname, so you can see the effect of the load
process:

 
> rm(yourname)

 
If you’re using RStudio, you may notice that yourname is no longer displayed in

the Workspace.
 

Next, use load to retrieve your variable. Type load followed by the filename
you used to save the value earlier:

 
> load(“yourname.rda”)

 
Notice that yourname reappears in the Workspace window of RStudio.

 
 



Chapter 3
 

The Fundamentals of R

In This Chapter
 Using functions and arguments
 Making code clear and legible

 Extending R with user packages
 

Before you start discovering the different ways you can use R on your data,
you need to know a few more fundamental things about R.

 
In Chapter 2, we show you how to use the command line and work with the

workspace, so if you’ve read that chapter, you can write a simple script and use the
print(), paste(), and readline() functions — at least in the most basic way. But
functions in R are more complex than that, so in this chapter we tell you how to get
the most out of your functions.

 
As you add more arguments to your functions and more functions to your

scripts, those scripts can become pretty complex. To keep your code clear — and
yourself sane — you can follow the basic organizational principles we cover in this
chapter.

 
Finally, much of R allows you to use other people’s code very easily. You can

extend R with packages that have been contributed to the R community by
hundreds of developers. In this chapter, we tell you where you can find these
packages and how you can use them in R.

 

Using the Full Power of Functions
For every action you want to take in R, you use a function. In this section, we

show you how you can use them the smart way. We start by telling how to use
them in a vectorized way (basically, allow your functions to work on a whole vector
of values at the same time, instead of just a single value). Then we tell you how
you can reach a whole set of functionalities in R functions with arguments. Finally,
we tell you how you can save the history of all the commands you’ve used in a
session with — you guessed it! — a function.



 

Vectorizing your functions
 

Vectorized functions are a very useful feature of R, but programmers who are
used to other languages often have trouble with this concept at first. A vectorized
function works not just on a single value, but on a whole vector of values at the
same time. Your natural reflex as a programmer may be to loop over all values of
the vector and apply the function, but vectorization makes that unnecessary. Trust
us: When you start using vectorization in R, it’ll help simplify your code.

 
To try vectorized functions, you have to make a vector. You do this by using

the c() function, which stands for concatenate. The actual values are separated by
commas.

 
Here’s an example: Suppose that Granny plays basketball with her friend

Geraldine, and you keep a score of Granny’s number of baskets in each game. After
six games, you want to know how many baskets Granny has made so far this
season. You can put these numbers in a vector, like this:

 
> baskets.of.Granny <- c(12,4,4,6,9,3)
> baskets.of.Granny
[1] 12  4  4  6  9  3

 
To find the total number of baskets Granny made, you just type the following:

 
> sum(baskets.of.Granny)
[1] 38

 
You could get the same result by going over the vector number by number,

adding each new number to the sum of the previous numbers, but that method
would require you to write more code and it would take longer to calculate. You
won’t notice it on just six numbers, but the difference will be obvious when you
have to sum a few thousand of them.

 
In this example of vectorization, a function uses the complete vector to give

you one result. Granted, this example is trivial (you may have guessed that sum()
would accomplish the same goal), but for other functions in R, the vectorization
may be less obvious.

 
A less obvious example of a vectorized function is the paste() function. If you

make a vector with the first names of the members of your family, paste() can add



the last name to all of them with one command, as in the following example:
 

> firstnames <- c(“Joris”, “Carolien”, “Koen”)
> lastname <- “Meys”
> paste(firstnames,lastname)
[1] “Joris Meys”    “Carolien Meys” “Koen Meys”

 
R takes the vector firstnames and then pastes the lastname into each value.

How cool is that? Actually, R combines two vectors. The second vector — in this
case, lastname — is only one value long. That value gets recycled by the paste()
function as long as necessary (for more on recycling, turn to Chapter 4).

 
You also can give R two longer vectors, and R will combine them element by

element, like this:
 

> authors <- c(“Andrie”,”Joris”)
> lastnames <- c(“de Vries”,”Meys”)
> paste(authors,lastnames)
[1] “Andrie de Vries” “Joris Meys”

 
No complicated code is needed. All you have to do is make the vectors and put

them in the function. In Chapter 5, we give you more information on the power of
paste().

 

Putting the argument in a function
 

Most functions in R have arguments that give them more information about
exactly what you want them to do. If you use print(“Hello world!”), you give the
argument x of the print() function a value: “Hello world!”. Indeed, the first
default argument of the print() function is called x. You can check this yourself by
looking at the Help file of print().

 
In R, you have two general types of arguments:

 
 Arguments with default values

 
 Arguments without default values

 
If an argument has no default value, the value may be optional or required. In

general, the first argument is almost always required. Try entering the following:
 



> print()
 

R tells you that it needs the argument x specified:
 

Error in .Internal(print.default(x, digits, quote, na.print, print.gap,  :
‘x’ is missing

 
You can specify an argument like this:

 
> print(x = “Isn’t this fun?”)

 
Sure it is. But wait — when you entered the print(“Hello world!”) command

in Chapter 2, you didn’t add the name of the argument, and the function worked.
That’s because R knows the names of the arguments and just assumes that you
give them in exactly the same order as they’re shown in the usage line of the Help
page for that function. (For more information on reading the Help pages, turn to
Chapter 11.)

 

 If you type the values for the arguments in Help-page order, you don’t have
to specify the argument names. You can list the arguments in any order you
want, as long as you specify their names.

 
Try entering the following example:

 
> print(digits=4, x = 11/7)
[1] 1.571

 
You may wonder where the digits argument comes from, because it’s not

explained in the Help page for print(). That’s because it isn’t an argument of the
print() function itself, but of the function print.default(). Take a look again at
the error you got if you typed print(). R mentions the print.default() function
instead of the print() function.

 

 In fact, print() is called a generic function. It determines the type of the
object that’s given as an argument and then looks for a function that can deal
with this type of object. That function is called the method for the specific
object type. In case there is no specific function, R will call the default method.
This is the function that works on all object types that have no specific
method. In this case, that’s the print.default() function. Keep in mind that a



default method doesn’t always exist. We explain this in more detail in Chapter
8. For now, just remember that arguments for a function can be shown on the
Help pages of different methods.

 

 If you forgot which arguments you can use, you can find that information in
the Help files. Don’t forget to look at the arguments of specific methods as
well. You often find a link to those specific methods at the bottom of the Help
page.

 

Making history
 

By default, R keeps track of all the commands you use in a session. This
tracking can come in handy if you need to reuse a command you used earlier or
want to keep track of the work you did before. These previously used commands
are kept in the history.

 
You can browse the history from the command line by pressing the up-arrow

and down-arrow keys. When you press the up-arrow key, you get the commands
you typed earlier at the command line. You can press Enter at any time to run the
command that is currently displayed.

 
Saving the history is done using the savehistory() function. By default, R

saves the history in a file called .Rhistory in your current working directory. This
file is automatically loaded again the next time you start R, so you have the history
of your previous session available.

 
If you want to use another filename, use the argument file like this:

 
> savehistory(file = “Chapter3.Rhistory”)

 

 Be sure to add the quotation marks around the filename.
 

You can open an Explorer window and take a look at the history by opening
the file in a normal text editor, like Notepad.

 
You don’t need to use the file extension .Rhistory — R doesn’t care about



extensions that much. But using .Rhistory as a file extension will make it easier to
recognize as a history file.

 
If you want to load a history file you saved earlier, you can use the

loadhistory() function. This will replace the history with the one saved in the
.Rhistory file in the current working directory. If you want to load the history from
a specific file, you use the file argument again, like this:

 
> loadhistory(“Chapter3.Rhistory”)

 

Keeping Your Code Readable
You may wonder why you should bother about reading code. You wrote the

code yourself, so you should know what it does, right? You do now, but will you be
able to remember what you did if you have to redo that analysis six months from
now on new data? Besides, you may have to share your scripts with other people,
and what seems obvious to you may be far less obvious for them.

 
Some of the rules you’re about to see aren’t that strict. In fact, you can get

away with almost anything in R, but that doesn’t mean it’s a good idea. In this
section, we explain why you should avoid some constructs even though they aren’t
strictly wrong.

 

Following naming conventions
 

R is very liberal when it comes to names for objects and functions. This
freedom is a great blessing and a great burden at the same time. Nobody is
obliged to follow strict rules, so everybody who programs something in R can
basically do as he or she pleases.

 

Choosing a correct name
 

Although almost anything is allowed when giving names to objects, there are
still a few rules in R that you can’t ignore:

 
Names must start with a letter or a dot. If you start a name with a dot, the
second character can’t be a digit.



 
Names should contain only letters, numbers, underscore characters (_),
and dots (.). Although you can force R to accept other characters in names, you
shouldn’t, because these characters often have a special meaning in R.

 
You can’t use the following special keywords as names:

 
• break

 
• else

 
• FALSE

 
• for

 
• function

 
• if

 
• Inf

 
• NA

 
• NaN

 
• next

 
• repeat

 
• return

 
• TRUE

 
• while

 

 R is case sensitive, which means that, for R, lastname and Lastname are two
different objects. If R tells you it can’t find an object or function and you’re sure
it should be there, check to make sure you used the right case.



 

Choosing a clear name
 

When Joris was young, his parents bought a cute little lamb that needed a
name. After much contemplation, he decided to call it Blacky. Never mind that the
lamb was actually white and its name made everybody else believe that it was a
dog; Joris thought it was a perfect name.

 
Likewise, calling the result of a long script Blacky may be a bit confusing for

the person who has to read your code later on, even if it makes all kinds of sense
to you. Remember: You could be the one who, in three months, is trying to figure
out exactly what you were trying to achieve. Using descriptive names will allow you
to keep your code readable.

 
Although you can name an object whatever you want, some names will cause

less trouble than others. You may have noticed that none of the functions we’ve
used until now are mentioned as being off-limits (see the preceding section). That’s
right: If you want to call an object paste, you’re free to do so:

 
> paste <- paste(“This gets”,”confusing”)
> paste
[1] “This gets confusing”
> paste(“Don’t”,”you”,”think?”)
[1] “Don’t you think?”

 
R will always know perfectly well when you want the vector paste and when

you need the function paste(). That doesn’t mean it’s a good idea to use the same
name for both items, though. If you can avoid giving the name of a function to an
object, you should.

 

 One situation in which you can really get into trouble is when you use
capital F or T as an object name. You can do it, but you’re likely to break code
at some point. Although it’s a very bad idea, T and F are too often used as
abbreviations for TRUE and FALSE, respectively. But T and F are not reserved
keywords. So, if you change them, R will first look for the object T and only
then try to replace T with TRUE. And any code that still expects T to mean TRUE
will fail from this point on. Never use F or T, not as an object name and not as
an abbreviation.

 



Choosing a naming style
 

If you have experience in programming, you’ve probably heard of camel case,
before. It’s a way of giving longer names to objects and functions. You capitalize
every first letter of a word that is part of the name to improve the readability. So,
you can have a veryLongVariableName and still be able to read it.

 
Contrary to many other languages, R doesn’t use the dot (.) as an operator,

so the dot can be used in names for objects as well. This style is called dotted
style, where you write everything in lowercase and separate words or terms in a
name with a dot. In fact, in R, many function names use dotted style. You’ve met a
function like this earlier in the chapter: print.default(). Some package authors
also use an underscore instead of a dot.

 

print.default() is the default method for the print() function. Information
on the arguments is given on the Help page for print.default().

 

Consistent inconsistency
You would expect the function to be called save.history(), but it’s called
savehistory() without the dot. Likewise, you would expect a function
R.version(), but instead it’s R.Version(). R.Version() will give you all the
information on the version of R you’re running, including the platform you’re
running it on. Sometimes, the people writing R use camel case: If you want
to get only the version number of R, you have to use the function
getRversion(). Some package authors choose to use underscores (_) instead
of dots for separation of the words; this style is used often within some
packages we discuss later in this book (for example, the ggplot2 package in
Chapter 18).

 
You’re not obligated to use dotted style; you can use whatever style you want.

We use dotted style throughout this book for objects and camel case for functions.
R uses dotted style for many base functions and objects, but because some parts of
the internal mechanisms of R rely on that dot, you’re safer to use camel case for
functions. Whenever you see a dot, though, you don’t have to wonder what it does
— it’s just part of the name.

 
The whole naming issue reveals one of the downsides of using open-source

software: It’s written by very intelligent and unselfish people with very strong



opinions, so the naming of functions in R is far from standardized.
 

Structuring your code
 

Names aren’t the only things that can influence the readability of your code.
When you start nesting functions or perform complex calculations, your code can
turn into a big mess of text and symbols rather quickly. Luckily, you have some
tricks to clear up your code so you can still decipher what you did three months
down the road.

 
Nesting functions and doing complex calculations can lead to very long lines of

code. If you want to make a vector with the names of your three most beloved
song titles, for example, you’re already in for trouble. Luckily, R lets you break a
line of code over multiple lines in your script, so you don’t have to scroll to the right
the whole time.

 
You don’t even have to use a special notation or character. R will know that

the line isn’t finished as long as you give it some hint. Generally speaking, you have
to make sure the command is undoubtedly incomplete. There are several ways to
do that:

 
You can use a quotation mark to start a string. R will take all the following
input — including the line breaks — as part of the string, until it meets the
matching second quotation mark.

 
You can end the incomplete line with an operator (like +, /, <-, and so
on). R will know that something else must follow. This lets you create structure
in longer calculations.

 
You can open a parenthesis for a function. R will read all the input it gets
as one line until it meets the matching parenthesis. This allows you to line up
arguments below a function, for example.

 
The following little script shows all these techniques:

 
baskets.of.Geraldine <-
          c(5,3,2,2,12,9)
Intro <- “It is amazing! The All Star Grannies scored
a total of”
Outro <- “baskets in the last six games!”
Total.baskets <- baskets.of.Granny +



               baskets.of.Geraldine
Text <- paste(Intro,
              sum(Total.baskets),
              Outro)
cat(Text)

 
You can copy this code into a script file and run it in the console. If you run

this little snippet of code, you see the following output in the console:
 

It is amazing! The All Star Grannies scored
a total of 71 baskets in the last six games!

 
This immediately shows what the cat() function does. It prints whatever you

give it as an argument directly to the console. It also interprets special characters
like line breaks and tabs. If you look at the vector Text, you would see this:

 
> Text
[1] “It is amazing! The All Star Grannies scored \na total of 71 baskets
in the last six games!”

 
The \n represents the line break. Even though it’s pasted to the a, R will

recognize \n as a separate character. (You can find more information on special
characters in Chapter 12.)

 

 All this also works at the command line. If you type an unfinished
command, R will change the prompt to a + sign, indicating that you can
continue to type your command:

 
> cat(‘If you doubt whether it works,
+ just try it out.’)
If you doubt whether it works,
just try it out.

 

 RStudio automatically adds a line break at the end of a cat() statement if
there is none, but R doesn’t do that. So, if you don’t use RStudio, remember to
add a line break (or the symbol \n) at the end of your string.

 

Adding comments
 



Often, you want to add a bit of extra information to a script file. You may want
to tell who wrote it and when. You may want to explain what the code does and
what all the variable names mean.

 
You can do this by typing that information after the hash (#). R ignores

everything that appears after the hash. You can use the hash at the beginning of a
line or somewhere in the middle. Run the following script, and see what happens:

 
# The All Star Grannies do it again!
baskets.of.Granny <- c(12,4,4,6,9,3) # Granny rules
sum(baskets.of.Granny) # total number of points

 

 R has no specific construct to spread a comment over multiple lines. You’ll
have to precede every line of the comment block with a hash symbol (#). In
RStudio, you can easily comment or uncomment several lines together by
selecting them and pressing Ctrl+/. Other editors have similar shortcuts.

 

Getting from Base R to More
Until now, you’ve used only functions that are available in the basic installation

of R. But the real power of R lies in the fact that everyone can write his or her own
functions and share them with other R users in an organized manner. Many
knowledgeable people have written convenient functions with R, and often a new
statistical method is published together with R code. Most of these authors
distribute their code as R packages (collections of R code, Help files, datasets, and
so on, that can be incorporated easily into R itself). In this section, we tell you how
to find and add packages to your R installation.

 

Finding packages
 

Several websites, called repositories, offer a collection of R packages. The
most important repository is the Comprehensive R Archive Network (CRAN;
http://cran.r-project.org), which you can access easily from within R.

 
In addition to housing the installation files for R itself (see the appendix of this

book) and a set of manuals for R, CRAN contains a collection of package files and
the reference manuals for all packages. For some packages, a vignette (which
gives you a short introduction to the use of the functions in the package) is also

http://cran.r-project.org


available. Finally, CRAN lets you check whether a package is still maintained and
see an overview of the changes made in the package. CRAN is definitely worth
checking out!

 

Installing packages
 

You install a package in R with the function — wait for it —
install.packages(). Who could’ve guessed? So, to install the fortunes package,
for example, you simply give the name of the package as a string to the
install.packages() function.

 
The fortunes package contains a whole set of humorous and thought-

provoking quotes from mailing lists and help sites. You install the package like this:
 

> install.packages(‘fortunes’)
 

 R may ask you to specify a CRAN mirror. Because everyone in the whole
world has to access the same servers, CRAN is mirrored on more than 80
registered servers, often located at universities. Pick one that’s close to your
location, and R will connect to that server to download the package files. In
RStudio, you can set the mirror by choosing Tools䳑Options.

 
Next, R gives you some information on the installation of the package:

 
Installing package(s) into ‘D:/R/library’(as ‘lib’ is unspecified)
....
opened URL
downloaded 165 Kb
package ‘fortunes’ successfully unpacked and MD5 sums checked
....

 
It tells you which directory (called a library) the package files are installed in,

and it tells you whether the package was installed successfully. Granted, it does so
in a rather technical way, but the word successfully tells you everything is okay.

 

Loading and unloading packages
 

After a while, you can end up with a collection of many packages. If R loaded



all of them at the beginning of each session, that would take a lot of memory and
time. So, before you can use a package, you have to load it into R by using the
library() function.

 
You load the fortunes package like this:

 
> library(fortunes)

 

 You don’t have to put single quotation marks around the package name
when using library(), but it may be wise to do so.

 
Now you can use the functions from this package at the command line, like

this:
 

> fortune(“This is R”)
 

 The library is the directory where the packages are installed. Never, ever
call a package a library. That’s a mortal sin in the R community. Take a look at
the following, and never forget it again:

 
> fortune(161)

 

 You can use the fortune() function without arguments to get a random
selection of the fortunes available in the package. It’s a nice read.

 
If you want to unload a package, you’ll have to use some R magic. The

detach() function will let you do this, but you have to specify that it’s a package
you’re detaching, like this:

 
> detach(package:fortunes)

 

A package is as good as its author
Many people contribute in one way or another to R. As in any open-source
community, there are people with very strong coding skills and people with
especially heartwarming enthusiasm. R itself is tested thoroughly, and



packages available on CRAN are checked for safety and functionality. This
means that you can safely download and use those packages without fear of
breaking your R installation or — even worse — your computer.
It doesn’t mean, however, that the packages always do what they claim to
do. After all, even programmers are human, and they make mistakes. Before
you use a new package, you may want to test it out using an example where
you know what the outcome should be.
But the fact that many people use R is an advantage. Whereas reporting
errors to a huge company can be a proverbial pain in the lower regions, you
can reach the authors of packages by e-mail. Users report bugs and errors all
the time, and package authors continue to update and improve their
packages. Overall, the quality of the packages is at least as good as, if not
better than, the quality of commercial applications. After all, the source code
of every package is readily available for anyone to check and correct if he or
she feels like. Both R and the packages used in R are improved with
contributions from users as well.
So, in fact, we could have titled this sidebar “A package is as good as the
community that uses it.” The R community is simply fantastic — and you
should know. By buying this book, you officially became a member.

 



Part II
Getting Down to Work in R

In this part . . .
Here you find out what R can do for you — or, better yet, what you can do

with R. But before you can start performing miracles, you need to know the
building blocks of this magic wand called R.

In this part, you discover how you can represent your data in R and get
familiar with the most important operators on that data.



Chapter 4
 

Getting Started with Arithmetic

In This Chapter
 Using R as a fancy calculator
 Constructing and working with vectors

 Vectorizing your calculations
 

Statistics isn’t called applied mathematics just for the fun of it. Every statistical
analysis involves a lot of calculations, and calculation is what R is designed for —
the work that it does best.

 
R goes far beyond employing the classic arithmetic operators. It also contains

sets of operators and functions that work on complete vectors at the same time. If
you’ve read Chapter 3, you’ve gotten a first glimpse into the power of vectorized
functions. In this chapter, you discover the full power of vectorization, using it to
speed up calculations and perform complex tasks with very little code.

 

 We can’t possibly cover all of R’s mathematical functions in one chapter —
or even in one book — so we encourage you to browse the Help files and other
sources when you’re done with this chapter. You can find search tips and a list
of interesting sources in Chapter 11.

 

Working with Numbers, Infinity, and Missing Values
In many low-level computer languages, numerical operators are limited to

performing standard arithmetic operations and some convenient functions like
sum() and sqrt(). For R, the story is a bit different. R has four different groups of
mathematical operators and functions:

 
Basic arithmetic operators: These operators are used in just about every
programming language. We discuss some of them in Chapter 2.

 
Mathematical functions: You can find these advanced functions on a technical



calculator.
 

Vector operations: Vector operations are functions that make calculations on a
complete vector, like sum(). Each result depends on more than one value of the
vector.

 
Matrix operations: These functions are used for operations and calculations.

 
In the following sections, you get familiar with basic arithmetic operators,

mathematical functions, and vector operations. We cover matrix operations in
Chapter 7.

 

Doing basic arithmetic
 

R has a rather complete set of arithmetic operators, so you can use R as a
fancy calculator, as you see in this section.

 

Using arithmetic operators
 

Table 4-1 lists some basic arithmetic operators. Most of them are very familiar
to programmers (and anybody else who studied math in school).

 

Table 4-1 Basic Arithmetic Operators
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

 

Operator

 

Description

 

Example

 
x + y

 
y added to x

 
2 + 3 = 5

 
x – y

 
y subtracted from x

 
8 – 2 = 6

 
x * y

 
x multiplied by y

 
3 * 2 = 6

 
x / y

 
x divided by y

 
10 / 5 = 2

 
x ^ y (or x ** y)

 
x raised to the power y

 
2 ^ 5 = 32

 
x %% y

 
remainder of x divided by y (x mod y)

 
7 %% 3 = 1

 
x %/% y

 
x divided by y but rounded down (integer divide)

 
7 %/% 3 = 2

 
All these operators are vectorized. Chapter 3 shows the use of a vectorized

function with the paste() function, and the process works exactly the same way
with operators. By using vectorized operators, you can carry out complex
calculations with minimal code.

 
To see how this works, consider these two vectors, which we first discuss in

the All-Star Grannies example in Chapter 3. One vector represents the number of
baskets Granny made during the six games of the basketball season, and the other
one represents the number of baskets her friend Geraldine made:

 
> baskets.of.Granny <- c(12,4,4,6,9,3)
> baskets.of.Geraldine <- c(5,3,2,2,12,9)



 
Suppose that Granny and Geraldine decide to raise money for the Make-A-

Wish Foundation and asked people to make a donation for every basket they
made. Granny requested $120 per basket, and Geraldine asked for $145 per
basket. How do you calculate the total donations that they collected for each
game?

 
R makes the calculation easy. First, calculate how much each lady earned per

game, as follows:
 

> Granny.money <- baskets.of.Granny * 120
> Geraldine.money <- baskets.of.Geraldine * 145

 
In this example, every value in the vector is multiplied by the amount of

money. Check for yourself by taking a look at the values in Granny.money and
Geraldine.money.

 
To get the total money these ladies earned in each game, you simply do this:

 
> Granny.money + Geraldine.money
[1] 2165  915  770 1010 2820 1665

 
You also could do this in one line, as follows:

 
> baskets.of.Granny * 120 + baskets.of.Geraldine * 145
[1] 2165  915  770 1010 2820 1665

 

Controlling the order of the operations
 

In the previous example, you used both a multiplication and an addition
operator. As you see from the result, R correctly multiplies all numbers before
adding them together. For all arithmetic operators, the classic rules for the order of
operations apply. Calculations are carried out in the following order:

 
1. Exponentiation

 2. Multiplication and division in the order in which the operators are
presented

 3. Addition and subtraction in the order in which the operators are
presented

 The mod operator (%%) and the integer division operator (%/%) have the same



priority as the normal division operator (/) in calculations.
 

You can change the order of the operations by using parentheses, like this:
 

> 4 + 2 * 3
[1] 10
> (4 + 2)* 3
[1] 18

 
Everything that’s put between parentheses is carried out first.

 

 You also can use basic operators on complex numbers. The complex()
function, for example, allows you to construct a whole set of complex numbers
based on a vector with real parts and a vector with imaginary parts. For more
information, see the Help page for ?complex.

 

Using mathematical functions
 

In R, of course, you want to use more than just basic operators. R comes with
a whole set of mathematical functions that unleash fantastic numerical beasts.
Table 4-2 lists the ones that we think you’ll use most often, but feel free to go on a
voyage of discovery for others.

 
R naturally contains a whole set of functions that you’d find on a technical

calculator as well. All these functions are vectorized, so you can use them on
complete vectors.

 

Table 4-2 Useful Mathematical Functions in R
 
 
 
 
 
 
 
 



 
 
 
 
 

 

Function

 

What It Does

 
abs(x)

 
Takes the absolute value of x

 
log(x,base=y)

 
Takes the logarithm of x with base y; if base is not specified, returns the natural logarithm

 
exp(x)

 
Returns the exponential of x

 
sqrt(x)

 
Returns the square root of x

 
factorial(x)

 
Returns the factorial of x (x!)

 

choose(x,y)
 

Returns the number of possible combinations when drawing y elements at a time from x
possibilities

 
The possibilities of R go far beyond this small list of functions, however. We

cover some of the special cases in the following sections.
 

Calculating logarithms and exponentials
 

In R, you can take the logarithm of the numbers from 1 to 3 like this:
 

> log(1:3)
[1] 0.0000000 0.6931472 1.0986123

 
Whenever you use one of these functions, R calculates the natural logarithm if

you don’t specify any base.
 

You calculate the logarithm of these numbers with base 6 like this:
 

> log(1:3,base=6)
[1] 0.0000000 0.3868528 0.6131472

 



 For the logarithms with bases 2 and 10, you can use the convenience
functions log2() and log10().

 
You carry out the inverse operation of log() by using exp(). This last function

raises e to the power mentioned between brackets, like this:
 

> x <- log(1:3)
> exp(x)

 
Again, you can add a vector as an argument, because the exp() function is

also vectorized. In fact, in the preceding code, you constructed the vector within
the call to exp(). This code is yet another example of nesting functions in R.

 

Putting the science in scientific notation
 

The outcome of the last example may look a bit weird if you aren’t familiar
with the scientific notation of numbers. Scientific notation allows you to represent a
very large or very small number in a convenient way. The number is presented as a
decimal and an exponent, separated by e. You get the number by multiplying the
decimal by 10 to the power of the exponent. The number 13,300, for example, also
can be written as 1.33 × 10^4, which is 1.33e4 in R:

 
> 1.33e4
[1] 13300

 
Likewise, 0.0412 can be written as 4.12 × 10^–2 , which is 4.12e-2 in R:

 
> 4.12e-2
[1] 0.0412

 
R doesn’t use scientific notation just to represent very large or very small

numbers; it also understands scientific notation when you write it. You can use
numbers written in scientific notation as though they were regular numbers, like
so:

 
> 1.2e6 / 2e3
[1] 600

 
R automatically decides whether to print a number in scientific notation. Its



decision to use scientific notation doesn’t change the number or the accuracy of the
calculation; it just saves some space.

 

Rounding numbers
 

Although R can calculate accurately to up to 16 digits, you don’t always want
to use that many digits. In this case, you can use a couple functions in R to round
numbers. To round a number to two digits after the decimal point, for example, use
the round() function as follows:

 
> round(123.456,digits=2)
[1] 123.46

 
You also can use the round() function to round numbers to multiples of 10,

100, and so on. For that, you just add a negative number as the digits argument:
 

> round(-123.456,digits=-2)
[1] -100

 
If you want to specify the number of significant digits to be retained,

regardless of the size of the number, you use the signif() function instead:
 

> signif(-123.456,digits=4)
[1] -123.5

 
Both round() and signif() round numbers to the nearest possibility. So, if the

first digit that’s dropped is smaller than 5, the number is rounded down. If it’s
bigger than 5, the number is rounded up.

 
If the first digit that is dropped is exactly 5, R uses a rule that’s common in

programming languages: Always round to the nearest even number. round(1.5)
and round(2.5) both return 2, for example, and round (-4.5) returns -4.

 
Contrary to round(), three other functions always round in the same direction:

 
floor(x) rounds to the nearest integer that’s smaller than x. So floor(123.45)
becomes 123 and floor(-123.45) becomes –124.

 
ceiling(x) rounds to the nearest integer that’s larger than x. This means
ceiling (123.45) becomes 124 and ceiling(123.45) becomes –123.



 
trunc(x) rounds to the nearest integer in the direction of 0. So trunc(123.65)
becomes 123 and trunc(-123.65) becomes –123.

 

Using trigonometric functions
 

All trigonometric functions are available in R: the sine, cosine, and tangent
functions and their inverse functions. You can find them on the Help page you
reach by typing ?Trig.

 
So, you may want to try to calculate the cosine of an angle of 180 degrees like

this:
 

> cos(120)
[1] 0.814181

 

 This code doesn’t give you the correct result, however, because R always
works with angles in radians, not in degrees. Pay attention to this fact; if you
forget, the resulting bugs may bite you hard in the, er, leg.

 
Instead, use a special variable called pi. This variable contains the value of —

you guessed it — Ⱥ (3.141592653589 . . .).
 

The correct way to calculate the cosine of an angle of 120 degrees, then, is
this:

 
> cos(120*pi/180)
[1] -0.5

 

Calculating whole vectors
 

Sometimes the result of a calculation is dependent on multiple values in a
vector. One example is the sum of a vector; when any value changes in the vector,
the outcome is different. We call this complete set of functions and operators the
vector operations. In “Powering Up Your Math with Vector Functions,” later in this
chapter, you calculate cumulative sums and calculate differences between adjacent
values in a vector with arithmetic vector functions. We discuss other vector



operations in Chapter 7.
 

 Actually, operators are also functions. But it’s useful to draw a distinction
between functions and operators, because operators are used differently from
other functions. It helps to know, though, that operators can, in many cases,
be treated just like any other function if you put the operator between
backticks and add the arguments between parentheses, like this:

 
> `+`(2,3)
[1] 5

 
This may be useful later on when you want to apply a function over rows,

columns, or subsets of your data, as discussed in Chapters 9 and 13.
 

To infinity and beyond
 

In some cases, you don’t have real values to calculate with. In most real-life
data sets, in fact, at least a few values are missing. Also, some calculations have
infinity as a result (such as dividing by zero) or can’t be carried out at all (such as
taking the logarithm of a negative value). Luckily, R can deal with all these
situations.

 

Using infinity
 

To start exploring infinity in R, see what happens when you try to divide by
zero:

 
> 2/0
[1] Inf

 
R correctly tells you the result is Inf, or infinity. Negative infinity is shown as -

Inf. You can use Inf just as you use a real number in calculations:
 

> 4 - Inf
[1] -Inf

 
To check whether a value is finite, use the functions is.finite() and



is.infinite(). The first function returns TRUE if the number is finite; the second
one returns TRUE if the number is infinite. (We discuss the logical values TRUE and
FALSE in the next section.)

 

 R considers everything larger than the largest number a computer can hold
to be infinity — on most machines, that’s approximately 1.8 × 10308. This
definition of infinity can lead to unexpected results, as shown in the following
example:

 
> is.finite(10^(305:310))
[1]  TRUE  TRUE  TRUE  TRUE FALSE FALSE

 
What does this line of code mean now? See whether you understand the

nesting and vectorization in this example. If you break up the line starting from the
inner parentheses, it becomes comprehensible:

 
 You know already that 305:310 gives you a vector, containing the integers from
305 to 310.

 
 All operators are vectorized, so 10^(305:310) gives you a vector with the results
of 10 to the power of 305, 306, 307, 308, 309, and 310.

 
 That vector is given as an argument to is.finite(). That function tells you that
the two last results — 10^308 and 10^309 — are infinite for R.

 

Dealing with undefined outcomes
 

Your math teacher probably explained that if you divide any real number by
infinity, you get zero. But what if you divide infinity by infinity?

 
> Inf / Inf
[1] NaN

 
Well, R tells you that the outcome is NaN. That result simply means Not a

Number. This is R’s way of telling you that the outcome of that calculation is not
defined.

 
The funny thing is that R actually considers NaN to be numeric, so you can use



NaN in calculations. The outcome of those calculations is always NaN, though, as you
see here:

 
> NaN + 4
[1] NaN

 
You can test whether a calculation results in NaN by using the is.nan()

function. Note that both is.finite() and is.infinite() return FALSE when you’re
testing on a NaN value.

 

Dealing with missing values
 

As we mention earlier in this chapter, one of the most common problems in
statistics is incomplete data sets. To deal with missing values, R uses the reserved
keyword NA, which stands for Not Available. You can use NA as a valid value, so you
can assign it as a value as well:

 
> x <- NA

 
You have to take into account, however, that calculations with a value of NA

also generally return NA as a result:
 

> x + 4
[1] NA
> log(x)
[1] NA

 
If you want to test whether a value is NA, you can use the is.na() function, as

follows:
 

> is.na(x)
[1] TRUE

 
Note that the is.na() function also returns TRUE if the value is NaN. The

functions is.finite(), is.infinite(), and is.nan() return FALSE for NA values.
 

Calculating infinite, undefined, and missing values
 

Table 4-3 provides an overview of results from the functions described in the



preceding sections.
 

Organizing Data in Vectors
Vectors are the most powerful features of R, and in this section, you see why

and how you use them.
 

 A vector is a one-dimensional set of values, all the same type. It’s the
smallest unit you can work with in R. A single value is technically a vector as
well — a vector with only one element. In mathematics vectors are almost
always used with numerical values, but in R they also can include other types
of data, like character strings (see Chapter 5).

 

Discovering the properties of vectors
 

Vectors have a structure and a type, and R is a bit sensitive about both.
Feeding R the wrong type of vector is like trying to make your cat eat dog food:
Something will happen, and chances are that it won’t be what you hoped for. So,
you’d better know what vector you have.

 

Looking at the structure of a vector
 

R gives you an easy way to look at the structure of any object. This method
comes in handy whenever you doubt the form of the result of a function or a script
you wrote. To take a peek inside R objects, use the str() function.

 

 The str() function gives you the type and structure of the object.
 



Take a look at the vector baskets.of.Granny:
 

> str(baskets.of.Granny)
num [1:6] 12 4 5 6 9 3

 
R tells you a few things here:

 
 First, it tells you that this is a num (numeric) type of vector.

 
 Next to the vector type, R gives you the dimensions of the vector. This example
has only one dimension, and that dimension has indices ranging from 1 to 6.

 
 Finally, R gives you the first few values of the vector. In this example, the vector
has only six values, so you see all of them.

 
If you want to know only how long a vector is, you can simply use the

length() function, as follows:
 

> length(baskets.of.Granny)
[1] 6

 
Vectors in R can have other types as well. If you look at the vector authors, for

example (refer to Chapter 3), you see a small difference:
 

> authors <- c(“Andrie”, “Joris”)
> str(authors)
chr [1:2] “Andrie” “Joris”

 
Again, you get the dimensions, the range of the indices, and the values. But

this time, R tells you the type of vector is chr, or character.
 

 In this book, we discuss the following types of vectors:
 

Numeric vectors, containing all kind of numbers.
 

Integer vectors, containing integer values. (An integer vector is a special kind
of numeric vector.)

 
Logical vectors, containing logical values (TRUE and/or FALSE)

 



Character vectors, containing text
 

Datetime vectors, containing dates and times in different formats
 

Factors, a special type of vector to work with categories.
 

We discuss the first three types in this chapter and character vectors in
Chapter 5.

 

 R makes clear distinctions among these types of vectors, partly for reasons
of logic. Multiplying two words, for example, doesn’t make sense.

 

Testing vector types
 

Apart from the str() function, R contains a set of functions that allow you to
test for the type of a vector. All these functions have the same syntax: is, a dot,
and then the name of the type.

 

 You can test whether a vector is of type foo by using the is.foo() function.
This test works for every type of vector; just replace foo with the type you
want to check.

 
To test whether baskets.of.Granny is a numeric vector, for example, use the

following code:
 

> is.numeric(baskets.of.Granny)
[1] TRUE

 
You may think that baskets.of.Granny is a vector of integers, so check it, as

follows:
 

> is.integer(baskets.of.Granny)
[1] FALSE

 
R disagrees with the math teacher here. Integer has a different meaning for R

than it has for us. The result of is.integer() isn’t about the value but about the



way the value is stored in memory.
 

 R has two main modes for storing numbers. The standard mode is double.
In this mode, every number uses 64 bits of memory. The number also is stored
in three parts. One bit indicates the sign of the number, 52 bits represent the
decimal part of the number, and the remaining bits represent the exponent.
This way, you can store numbers as big as 1.8 × 10308 in only 64 bits. The
integer mode takes only 32 bits of memory, and the numbers are represented
as binary integers in the memory. So, the largest integer is about 2.1 billion,
or, more exactly, 231 – 1. That’s 31 bits to represent the number itself, 1 bit to
represent the sign of the number, and –1 because you start at 0.

 

 You should use integers if you want to do exact integer calculations on
small integers or if you want to save memory. Otherwise, the mode double
works just fine.

 
You force R to store a number as an integer by adding L after it, as in the

following example:
 

> x <- c(4L,6L)
> is.integer(x)
[1] TRUE

 

 Whatever mode is used to store the value, is.numeric() returns TRUE in
both cases.

 

Creating vectors
 

To create a vector from a simple sequence of integers, for example, you use
the colon operator (:). The code 3:7 gives you a vector with the numbers 3 to 7,
and 4:-3 creates a vector with the numbers 4 to –3, both in steps of 1. To make
bigger or smaller steps in a sequence, use the seq() function. This function’s by
argument allows you to specify the amount by which the numbers should increase
or decrease. For a vector with the numbers 4.5 to 2.5 in steps of 0.5, for example,
you can use the following code:



 
> seq(from = 4.5, to = 2.5, by = -0.5)
[1] 4.5 4.0 3.5 3.0 2.5

 
Alternatively, you can specify the length of the sequence by using the

argument length.out. R calculates the step size itself. You can make a vector of
nine values going from –2.7 to 1.3 like this:

 
> seq(from = -2.7, to = 1.3, length.out = 9)
[1] -2.7 -2.2 -1.7 -1.2 -0.7 -0.2  0.3  0.8  1.3

 

 You don’t have to write out the argument names if you give the values for
the arguments in the correct order. The code seq(4.5, 2.5, - 0.5) does
exactly the same things as seq(from = 4.5, to = 2.5, by = -0.5). If you use
the argument length.out, you always have to be spell it out though.

 
To get back to our All-Star Grannies example (refer to “Using arithmetic

operators,” earlier in this chapter), you have two vectors containing the number of
baskets that Granny and her friend Geraldine scored in the six games of this
basketball season:

 
> baskets.of.Granny <- c(12,4,4,6,9,3)
> baskets.of.Geraldine <- c(5,3,2,2,12,9)

 
Now, what is this c() function doing? To find out, read on.

 

Combining vectors
 

 The c() function stands for concatenate. It doesn’t create vectors — it just
combines them.

 
In the preceding examples, you give six values as arguments to the c()

function and get one combined vector in return. As you know, each value is a
vector with one element for R. You also can use the c() function to combine
vectors with more than one value, as in the following example:

 
> all.baskets <-c(baskets.of.Granny, baskets.of.Geraldine)
> all.baskets



[1] 12  4  4  6  9  3  5  3  2  2 12  9
 

The result of this code is a vector with all 12 values.
 

 In this code, the c() function maintains the order of the numbers. This
example illustrates a second important feature of vectors: Vectors have an
order. This order turns out to be very useful when you need to manipulate the
individual values in the vector, as you do in “Getting Values in and out of
Vectors,” later in this chapter.

 

Repeating vectors
 

You can combine a vector with itself if you want to repeat it, but if you want to
repeat the values in a vector many times, using the c() function becomes a bit
impractical. R makes life easier by offering you a function for repeating a vector:
rep().

 
You can use the rep() function in several ways. If you want to repeat the

complete vector, for example, you specify the argument times. To repeat the
vector c(0, 0, 7) three times, use this code:

 
> rep(c(0, 0, 7), times = 3)
[1] 0 0 7 0 0 7 0 0 7

 
You also can repeat every value by specifying the argument each, like this:

 
> rep(c(2, 4, 2), each = 3)
[1] 2 2 2 4 4 4 2 2 2

 
R has a little trick up its sleeve. You can tell R for each value how often it has

to be repeated. To take advantage of that magic, tell R how often to repeat each
value in a vector by using the times argument:

 
> rep(c(0, 7), times = c(4,2))
[1] 0 0 0 0 7 7

 
And you can, like in seq, use the argument length.out to tell R how long you

want it to be. R will repeat the vector until it reaches that length, even if the last
repetition is incomplete, like so:



 
> rep(1:3,length.out=7)
[1] 1 2 3 1 2 3 1

 

Getting Values in and out of Vectors
Vectors would be pretty impractical if you couldn’t look up and manipulate

individual values. You can perform these tasks easily by using R’s advanced,
powerful indexing system.

 

Understanding indexing in R
 

Every time R shows you a vector, it displays a number such as [1] in front of
the output. In this example, [1] tells you where the first position in your vector is.
This number is called the index of that value. If you make a longer vector — say,
with the numbers from 1 to 30 — you see more indices. Consider this example:

 
> numbers <- 30:1
> numbers
[1] 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
[18] 13 12 11 10  9  8  7  6  5  4  3  2  1

 
Here, you see that R counts 13 as the 18th value in the vector. At the

beginning of every line, R tells you the index of the first value in that line.
 

 If you try this example on your computer, you may see a different index at
the beginning of the line, depending on the width of your console.

 

Extracting values from a vector
 

Those brackets ([]) illustrate another strong point of R. They represent a
function that you can use to extract a value from that vector. You can get the fifth
value of the preceding number vector like this:

 
> numbers[5]
[1] 26

 



Okay, this example isn’t too impressive, but the bracket function takes vectors
as arguments. If you want to select more than one number, you can simply provide
a vector of indices as an argument inside the brackets, like so:

 
> numbers[c(5,11,3)]
[1] 26 20 28

 
R returns a vector with the numbers in the order you asked for. So, you can

use the indices to order the values the way you want.
 

 You also can store the indices you want to retrieve in another vector and
give that vector as an argument, as in the following example:

 
> indices <- c(5,11,3)
> numbers[indices]
[1] 26 20 28

 
You can use indices to drop values from a vector as well. If you want all the

numbers except for the third value, you can do that with the following code:
 

> numbers[-3]
[1] 30 29 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13
[18] 12 11 10  9  8  7  6  5  4  3  2  1

 
Here, too, you can use a complete vector of indices. If you want to expel the

first 20 numbers, use this code:
 

> numbers[-(1:20)]
[1] 10  9  8  7  6  5  4  3  2  1

 

 Be careful to add parentheses around the sequence. If you don’t, R will
interpret that as meaning the sequence from –1 to 20, which isn’t what you
want here. If you try that code, you get the following error message:

 
> numbers[-1:20]
Error in numbers[-1:20] : only 0’s may be mixed with negative subscripts

 
This message makes you wonder what the index 0 is. Well, it’s literally

nothing. If it’s the only value in the index vector, you get an empty, or zero-length,
vector back, whatever sign you give it; otherwise, it won’t have any effect.



 

 You can’t mix positive and negative index values, so either select a number
of values or drop them.

 
You can do a lot more with indices — they help you write concise and fast

code, as we show you in the following sections and chapters.
 

Changing values in a vector
 

Let’s get back to the All-Star Grannies. In the previous sections, you created
two vectors containing the number of baskets that Granny and Geraldine made in
six basketball games.

 
But suppose that Granny tells you that you made a mistake: In the third game,

she made five baskets, not four. You can easily correct this mistake by using
indices, as follows:

 
> baskets.of.Granny[3] <- 5
> baskets.of.Granny
[1] 12  4  5  6  9  3

 

 The assignment to a specific index is actually a function as well. It’s
different, however, from the brackets function (refer to “Extracting values from
a vector,” earlier in this chapter), because you also give the replacement
values as an argument. Boring technical stuff, you say? Not if you realize that
because the index assignment is a vectorized function, you can use recycling!

 
Imagine that you made two mistakes in the number of baskets that Granny’s

friend Geraldine scored: She actually scored four times in the second and fourth
games. To correct the baskets for Geraldine, you can use the following code:

 
> baskets.of.Geraldine[c(2,4)] <- 4
> baskets.of.Geraldine
[1]  5  4  2  4 12  9

 
How cool is that? You have to be careful, though. R doesn’t tell you when it’s

recycling values, so a typo may give you unexpected results. Later in this chapter,
you find out more about how recycling actually works.



 

 R doesn’t have an Undo button, so when you change a vector, there’s no
going back. You can prevent disasters by first making a copy of your object
and then changing the values in the copy, as shown in the following example.
First, make a copy by assigning the vector baskets.of.Granny to the object
Granny.copy:

 
> Granny.copy <- baskets.of.Granny

 
You can check what’s in both objects by typing the name on the command line

and pressing Enter. Now you can change the vector baskets.of.Granny:
 

> baskets.of.Granny[4] <- 11
> baskets.of.Granny
[1] 12  4  5 11  9  3

 
If you make a mistake, simply assign the vector Granny.copy back to the

object baskets.of.Granny, like this:
 

> baskets.of.Granny <- Granny.copy
> baskets.of.Granny
[1] 12  4  5  6  9  3

 

Working with Logical Vectors
Up to now, we haven’t really discussed the values TRUE and FALSE. For some

reason, the developers of R decided to call these values logical values. In other
programming languages, TRUE and FALSE are known as Boolean values. As
Shakespeare would ask, what’s in a name? Whatever name they go by, these
values come in handy when you start controlling the flow of your scripts, as we
discuss in Chapter 9.

 
You can do a lot more with these values, however, because you can construct

vectors that contain only logical values — the logical vectors that we mention in
“Looking at the structure of a vector,” earlier in this chapter. You can use these
vectors as an argument for the index functions, which makes for a powerful tool.

 

Comparing values



 
To build logical vectors, you’d better know how to compare values, and R

contains a set of operators that you can use for this purpose (see Table 4-4).
 

Table 4-4 Comparing Values in R
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Operator

 

Result

 
x == y

 
Returns TRUE if x exactly equals y

 
x != y

 
Returns TRUE if x differs from y

 
x > y

 
Returns TRUE if x is larger than y

 
x >= y

 
Returns TRUE if x is larger than or exactly equal to y

 



x < y
 

Returns TRUE if x is smaller than y
 

x <= y
 

Returns TRUE if x is smaller than or exactly equal to y
 

x & y
 

Returns the result of x and y
 

x | y
 

Returns the result of x or y
 

! x
 

Returns not x
 

xor( x, y )
 

Returns the result of x xor y (x or y but not x and y)
 

All these operators are, again, vectorized. You can compare a whole vector
with a value. In the continuing All-Star Grannies example, to find out which games
Granny scored more than five baskets in, you can simply use this code:

 
> baskets.of.Granny > 5
[1]  TRUE FALSE FALSE  TRUE  TRUE FALSE

 
You can see that the result is the first, fourth, and fifth games. This example

works well for small vectors like this one, but if you have a very long vector,
counting the number of games would be a hassle. For that purpose, R offers the
delightful which() function. To find out which games Granny scored more than five
baskets in, you can use the following code:

 
> which(baskets.of.Granny > 5)
[1] 1 4 5

 
With this one line of code, you actually do two different things: First, you make

a logical vector by checking every value in the vector to see whether it’s greater
than five. Then you pass that vector to the which() function, which returns the
indices in which the value is TRUE.

 

 The which() function takes a logical vector as argument. Hence, you can
save the outcome of a logical vector in an object and pass that to the which()
function, as in the next example. You also can use all these operators to
compare vectors value by value. You can easily find out the games in which
Geraldine scored fewer baskets than Granny like this:

 
> the.best <- baskets.of.Geraldine < baskets.of.Granny
> which(the.best)
[1] 1 3 4

 



 Always put spaces around the less than (<) and greater than (>) operators.
Otherwise, R may mistake x < -3 for the assignment x <- 3. The difference
may seem small, but it has a huge effect on the result. Technically, you also
can use the equal sign (=) as an assignment to prevent this problem, but =
also is used to assign values to arguments in functions. In general, <- is the
preferred way to assign a value to an object, but quite a few coders disagree.
So, it’s up to you. We use <- in this book.

 

Using logical vectors as indices
 

The index function doesn’t take only numerical vectors as arguments; it also
works with logical vectors. You can use these logical vectors very efficiently to
select some values from a vector. If you use a logical vector to index, R returns a
vector with only the values for which the logical vector is TRUE.

 
In the preceding section, a logical vector, the.best, tells you the games in

which Granny scored more than Geraldine did. If you want to know how many
baskets Granny scored in those games, you can use this code:

 
> baskets.of.Granny[the.best]
[1] 12  5  6

 
This construct is often used to keep only values that fulfill a certain

requirement. If you want to keep only the values larger than 2 in the vector x, you
could do that with the following code:

 
> x <- c(3, 6, 1, NA, 2)
> x[x > 2]
[1]  3  6 NA

 
Wait — what is that NA value doing there? Take a step back, and look at the

result of x > 2:
 

> x > 2
[1]  TRUE  TRUE FALSE    NA FALSE

 

 If you have a missing value in your vector, any comparison returns NA for



that value (refer to “Dealing with missing values,” earlier in this chapter).
 

It may seem that this NA is translated into TRUE, but that isn’t the case. If you
give NA as a value for the index, R puts NA in that place as well. So, in this case, R
keeps the first and second values of x, drops the third, adds one missing value, and
drops the last value of x as well.

 

Combining logical statements
 

Life would be boring if you couldn’t combine logical statements. If you want to
test whether a number lies within a certain interval, for example, you want to
check whether it’s greater than the lowest value and less than the top value.
Maybe you want to know the games in which Granny scored the fewest or the most
baskets. For that purpose, R has a set of logical operators that — you guessed it —
are nicely vectorized (refer to Table 4-4).

 
To illustrate, using the knowledge you have now, try to find out the games in

which Granny scored the fewest baskets and the games in which she scored the
most baskets:

 
1. Create two logical vectors, as follows:

 > min.baskets <- baskets.of.Granny == min(baskets.of.Granny)
> max.baskets <- baskets.of.Granny == max(baskets.of.Granny)

 
min.baskets tells you whether the value is equal to the minimum, and

max.baskets tells you whether the value is equal to the maximum.
 2. Combine both vectors with the OR operator (|), as follows:
 > min.baskets | max.baskets

[1]  TRUE FALSE FALSE FALSE FALSE  TRUE
 

This method actually isn’t the most efficient way to find those values. You see
how to do things like this more efficiently with the match() function in Chapter 13.
But this example clearly shows you how vectorization works for logical operators.

 

 The NOT operator (!) is another example of the great power of
vectorization. The NA values in the vector x have caused some trouble already,
so you’d probably like to get rid of them. You know from “Dealing with



undefined outcomes,” earlier in this chapter, that you have to check whether a
value is missing by using the is.na() function. But you need the values that
are not missing values, so invert the logical vector by preceding it with the !
operator. To drop the missing values in the vector x, for example, use the
following code:

 
> x[!is.na(x)]
[1] 3 6 2 1

 

 When you’re using R, there’s no way to get around vectorization. After you
understand how vectorization works, however, you’ll save considerable
calculation time and lines of code.

 

Summarizing logical vectors
 

You also can use logical values in arithmetic operations as well. In that case, R
sees TRUE as 1 and FALSE as 0. This allows for some pretty interesting constructs.

 
Suppose that you’re not really interested in finding out the games in which

Granny scored more than Geraldine did, but you want to know how often that
happened. You can use the numerical translation of a logical vector for that
purpose in the sum() function, as follows:

 
> sum(the.best)
[1] 3

 
So, three times, Granny was better than Geraldine. Granny rocks!

 
In addition, you have an easy way to figure out whether any value in a logical

vector is TRUE. Very conveniently, the function that performs that task is called
any(). To ask R whether Granny was better than Geraldine in any game, use this
code:

 
> any(the.best)
[1] TRUE

 
We told you that Granny rocks! Well, okay, this result is a bit unfair for

Geraldine, so you should check whether Granny was better than Geraldine in all the
games. The R function you use for this purpose is called — surprise, surprise —



all(). To find out whether Granny was always better than Geraldine, use the
following code:

 
> all(the.best)
[1] FALSE

 
Still, Granny rocks a bit.

 

 You can use the argument na.rm=TRUE in the functions all() and any() as
well. By default, both functions return NA if any value in the vector argument is
missing (see “Dealing with missing values,” earlier in this chapter).

 

Powering Up Your Math with Vector Functions
As we suggest throughout this chapter, vectorization is the Holy Grail for every

R programmer. Most beginners struggle a bit with that concept because
vectorization isn’t one little trick, but a way of coding. Using the indices and
vectorized operators, however, can save you a lot of coding and calculation time —
and then you can call a gang of power functions to work on your data, as we show
you in this section.

 
Why are power functions so helpful? Maybe you’re like us: We’re lazy and

impatient enough to try to translate our code into “something with vectors” as
often as possible. We don’t like to type too much, and we definitely don’t like to
wait for the results. If you can relate, read on.

 

Using arithmetic vector operations
 

A third set of arithmetic functions consists of functions in which the outcome is
dependent on more than one value in the vector. Summing a vector with the sum()
function is such an operation. You find an overview of the most important functions
in Table 4-5.

 

Table 4-5 Vector Operations
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Function

 

What It Does

 
sum(x)

 
Calculates the sum of all values in x

 
prod(x)

 
Calculates the product of all values in x

 
min(x)

 
Gives the minimum of all values in x

 
max(x)

 
Gives the maximum of all values in x

 
cumsum(x)

 
Gives the cumulative sum of all values in x

 
cumprod(x)

 
Gives the cumulative product of all values in x

 

cummin(x)
 

Gives the minimum for all values in x from the start of the vector until the position of that
value

 

cummax(x)
 

Gives the maximum for all values in x from the start of the vector until the position of that
value

 
diff(x)

 
Gives for every value the difference between that value and the next value in the vector

 



Summarizing a vector
 

You can tell quite a few things about a set of values with one number. If you
want to know the minimum and maximum number of baskets Granny made, for
example, you use the functions min() and max():

 
> min(baskets.of.Granny)
[1] 3
> max(baskets.of.Granny)
[1] 12

 
To calculate the sum and the product of all values in the vector, use the

functions sum() and prod(), respectively.
 

These functions also can take a list of vectors as an argument. If you want to
calculate the sum of all the baskets made by Granny and Geraldine, you can use
the following code:

 
> sum(baskets.of.Granny,baskets.of.Geraldine)
[1] 75

 
The same works for the other vector operations in this section.

 
As we discuss in “Dealing with missing values,” earlier in this chapter, missing

values always return NA as a result. The same is true for vector operations as well.
R, however, gives you a way to simply discard the missing values by setting the
argument na.rm to TRUE. Take a look at the following example:

 
> x <- c(3,6,2,NA,1)
> sum(x)
[1] NA
> sum(x,na.rm=TRUE)
[1] 12

 
This argument works in sum(), prod(), min(), and max().

 

 If you have a vector that contains only missing values and you set the
argument na.rm to TRUE, the outcome of these functions is set in such a way
that it doesn’t have any effect on further calculations. The sum of missing
values is 0, the product is 1, the minimum is Inf, and the maximum is -Inf. R
won’t always generate a warning in such a case, though. Only in the case of



min() and max() does R tell you that there were no non-missing arguments.
 

Cumulating operations
 

Suppose that after every game, you want to update the total number of
baskets that Granny made during the season. After the second game, that’s the
total of the first two games; after the third game, it’s the total of the first three
games; and so on. You can make this calculation easily by using the cumulative
sum function, cumsum(), as in the following example:

 
> cumsum(baskets.of.Granny)
[1] 12 16 21 27 36 39

 
In a similar way, cumprod() gives you the cumulative product. You also can get

the cumulative minimum and maximum with the related functions cummin() and
cummax(). To find the maximum number of baskets Geraldine scored up to any
given game, you can use the following code:

 
> cummax(baskets.of.Geraldine)
[1]  5  5  5  5 12 12

 

 These functions don’t have an extra argument to remove missing values.
Missing values are propagated through the vector, as shown in the following
example:

 
> cummin(x)
[1]  3  3  2 NA NA

 

Calculating differences
 

The last function we’ll discuss in this section calculates differences between
adjacent values in a vector. You can calculate the difference in the number of
baskets between every two games Granny played by using the following code:

 
> diff(baskets.of.Granny)
[1] -8  1  1  3 -6

 
You get five numbers back. The first one is the difference between the first



and the second game, the second is the difference between the second and the
third game, and so on.

 

 The vector returned by diff() is always one element shorter than the
original vector you gave as an argument.

 
The rule about missing values applies here, too. When your vector contains a

missing value, the result from that calculation will be NA. So, if you calculate the
difference with the vector x, you get the following result:

 
> diff(x)
[1]  3 -4 NA NA

 
Because the fourth element of x is NA, the difference between the third and

fourth element and between the fourth and fifth element will be NA as well. Just
like the cumulative functions, the diff() function doesn’t have an argument to
eliminate the missing values.

 

Recycling arguments
 

In Chapter 3 and earlier in this chapter, we mention recycling arguments. Take
a look again at how you calculate the total amount of money Granny and Geraldine
raised (see “Using arithmetic operators,” earlier in this chapter) or how you
combine the first names and last names of three siblings (see Chapter 3). Each
time, you combine a vector with multiple values and one with a single value in a
function. R applies the function, using that single value for every value in the
vector. But recycling goes far beyond these examples.

 

 Any time you give two vectors with unequal lengths to a recycling function,
R repeats the shortest vector as often as necessary to carry out the task you
asked it to perform. In the earlier examples, the shortest vector is only one
value long.

 
Suppose you split up the number of baskets Granny made into two-pointers

and three-pointers:
 

> Granny.pointers <- c(10,2,4,0,4,1,4,2,7,2,1,2)



 
You arrange the numbers in such a way that for every game, first the number

of two-pointers is given, followed by the number of three-pointers.
 

Now Granny wants to know how many points she’s actually scored this season.
You can calculate that easily with the help of recycling:

 
> points <- Granny.pointers * c(2,3)
> points
[1] 20  6  8  0  8  3  8  6 14  6  2  6
> sum(points)
[1] 87

 
Now, what did you do here?

 
1. You made a vector with the number of points for each basket:

 c(2,3)
 

2. You told R to multiply that vector by the vector Granny.pointers.
 R multiplied the first number in Granny.pointers by 2, the second by 3, the

third by 2 again, and so on.
 3. You put the result in the variable points.
 4. You summed all the numbers in points to get the total number of

points scored.
 In fact, you can just leave out Step 3. The nesting of functions allows you to

do this in one line of code:
 

> sum(Granny.pointers * c(2,3))
 

 Recycling can be a bit tricky. If the length of the longer vector isn’t exactly a
multiple of the length of the shorter vector, you can get unexpected results.

 
Now Granny wants to know how much she improved every game. Being lazy,

you have a cunning plan. With diff(), you calculate how many more or fewer
baskets Granny made than she made in the game before. Then you use the
vectorized division to divide these differences by the number of baskets in the
game. To top it off, you multiply by 100 and round the whole vector. All these
calculations take one line of code:

 
> round(diff(baskets.of.Granny) / baskets.of.Granny * 100 )



1st  2nd  3rd  4th  5th  6th
-67   25   20   50  -67 -267

 
That last value doesn’t look right, because it’s impossible to score more than

100 percent fewer baskets. R doesn’t just give you that weird result; it also warns
you that the length of diff(baskets.of.Granny) doesn’t fit the length of
baskets.of.Granny:

 
Warning message:
In diff(baskets.of.Granny)/baskets.of.Granny :
  longer object length is not a multiple of shorter object length

 
The vector baskets.of.Granny is six values long, but the outcome of

diff(baskets.of.Granny) is only five values long. So the decrease of 267 percent
is, in fact, the last value of baskets.of.Granny divided by the first value of
diff(baskets.of.Granny). In this example, the shortest vector,
diff(baskets.of.Granny), gets recycled by the division operator.

 
That result wasn’t what you intended. To prevent that outcome, you should

use only the first five values of baskets.of.Granny, so the length of both vectors
match:

 
> round(diff(baskets.of.Granny) / baskets.of.Granny[1:5] * 100)
2nd 3rd 4th 5th 6th
-67  25  20  50 -67

 
And all that is vectorization.

 
 



Chapter 5
 

Getting Started with Reading and Writing

In This Chapter
 Representing textual data with character vectors
 Working with text

 Creating, converting, and working with factors
 

It’s not for no reason that reading and writing are considered to be two of the
three Rs in elementary education (reading, ’riting, and ’rithmetic). In this chapter,
you get to work with words in R.

 
You assign text to variables. You manipulate these variables in many different

ways, including finding text within text and concatenating different pieces of text
into a single vector. You also use R functions to sort text and to find words in text
with some powerful pattern search functions, called regular expressions. Finally,
you work with factors, the R way of representing categories (or categorical data, as
statisticians call it).

 

Using Character Vectors for Text Data
Text in R is represented by character vectors. A character vector is — you

guessed it! — a vector consisting of characters. In Figure 5-1, you can see that
each element of a character vector is a bit of text.

 

 In the world of computer programming, text often is referred to as a string.
In this chapter, we use the word text to refer to a single element of a vector,
but you should be aware that the R Help files sometimes refer to strings and
sometimes to text. They mean the same thing.

 
Figure 5-1: Each element of a character vector is a bit of text, also known as a string.



In this section, you take a look at how R uses character vectors to represent
text. You assign some text to a character vector and get it to extract subsets of
that data. You also get familiar with the very powerful concept of named vectors,
vectors in which each element has a name. This is useful because you can then
refer to the elements by name as well as position.

 

Assigning a value to a character vector
 

You assign a value to a character vector by using the assignment operator
(<-), the same way you do for all other variables. You test whether a variable is of
class character, for example, by using the is.character() function as follows:

 
> x <- “Hello world!”
> is.character(x)
TRUE

 
Notice that x is a character vector of length 1. To find out how many

characters are in the text, use nchar:
 

> length(x)
[1] 1
> nchar(x)
[1] 12

 
This function tells you that x has length 1 and that the single element in x has

12 characters.
 

Creating a character vector with more than one element
 

 To create a character vector with more than one element, use the combine
function, c():

 
x <- c(“Hello”, “world!”)
> length(x)



[1] 2
> nchar(x)
[1] 5 6

 
Notice that this time, R tells you that your vector has length 2 and that the

first element has five characters and the second element has six characters.
 

Extracting a subset of a vector
 

 You use the same indexing rules for character vectors that you use for
numeric vectors (or for vectors of any type). The process of referring to a
subset of a vector through indexing its elements is also called subsetting. In
other words, subsetting is the process of extracting a subset of a vector.

 
To illustrate how to work with vectors, and specifically how to create subsets,

we use the built-in datasets letters and LETTERS. Both are character vectors
consisting of the letters of the alphabet, in lowercase (letters) and uppercase
(LETTERS). Try it:

 
> letters
[1] “a” “b” “c” “d” “e” “f” “g” “h” “i” “j” “k”
[12] “l” “m” “n” “o” “p” “q” “r” “s” “t” “u” “v”
[23] “w” “x” “y” “z”
> LETTERS
[1] “A” “B” “C” “D” “E” “F” “G” “H” “I” “J” “K”
[12] “L” “M” “N” “O” “P” “Q” “R” “S” “T” “U” “V”
[23] “W” “X” “Y” “Z”

 

 Aside from being useful to illustrate the use of subsets in this chapter, you
can use these built-in vectors whenever you need to make lists of things.

 
Let’s return to the topic of creating subsets. To extract a specific element from

a vector, use square brackets. To get the tenth element of letters, for example,
use the following:

 
> letters[10]
[1] “j”

 
To get the last three elements of LETTERS, use the following:



 
> LETTERS[24:26]
[1] “X” “Y” “Z”

 

 The colon operator (:) in R is a handy way of creating sequences, so 24:26
results in 25, 25, 26. When this appears inside the square brackets, R returns
elements 24 through 26.

 

 In our last example, it was easy to extract the last three letters of LETTERS,
because you know that the alphabet contains 26 letters. Quite often, you don’t
know the length of a vector. You can use the tail() function to display the
trailing elements of a vector. To get the last five elements of LETTERS, try the
following:

 
> tail(LETTERS, 5)
[1] “V” “W” “X” “Y” “Z”

 
Similarly, you can use the head() function to get the first element of a

variable. By default, both head() and tail() returns six elements, but you can tell
it to return any specific number of elements in the second argument. Try extracting
the first ten letters:

 
> head(letters, 10)
[1] “a” “b” “c” “d” “e” “f” “g” “h” “i” “j”

 

Naming the values in your vectors
 

Until this point in the book, we’ve referred to the elements of vectors by their
positions — that is, x[5] refers to the fifth element in vector x. One very powerful
feature in R, however, gives names to the elements of a vector, which allows you
to refer to the elements by name.

 

 You can use these named vectors in R to associate text values (names)
with any other type of value. Then you can refer to these values by name in
addition to position in the list. This format has a wide range of applications —
for example, named vectors make it easy to create lookup tables.



 

Looking at how named vectors work
 

To illustrate named vectors, take a look at the built-in dataset islands, a
named vector that contains the surface area of the world’s 48 largest land masses
(continents and large islands). You can investigate its structure with str(), as
follows:

 
> str(islands)
Named num [1:48] 11506 5500 16988 2968 16 ...
- attr(*, “names”)= chr [1:48] “Africa” “Antarctica” “Asia” “Australia”
...

 
R reports the structure of islands as a named vector with 48 elements. In the

first line of the results of str(), you see the values of the first few elements of
islands. On the second line, R reports that the named vector has an attribute
containing names and reports that the first few elements are “Africa”,
“Antarctica”, “Asia”, and “Australia”.

 
Because each element in the vector has a value as well as a name, now you

can subset the vector by name. To retrieve the sizes of Asia, Africa, and Antarctica,
use the following:

 
> islands[c(“Asia”, “Africa”, “Antarctica”)]
      Asia     Africa Antarctica
     16988      11506       5500

 
You use the names() function to retrieve the names in a named vector:

 
> names(islands)[1:9]
[1] “Africa”       “Antarctica”   “Asia”
[4] “Australia”    “Axel Heiberg” “Baffin”
[7] “Banks”        “Borneo”       “Britain”

 
This function allows you to do all kinds of interesting things. Imagine you

wanted to know the names of the six largest islands. To do this, you would retrieve
the names of islands after sorting it in decreasing order:

 
> names(sort(islands, decreasing=TRUE)[1:6])
[1] “Asia”          “Africa”        “North America”
[4] “South America” “Antarctica”    “Europe”

 



Creating and assigning named vectors
 

 You use the assignment operator (<-) to assign names to vectors in much
the same way that you assign values to character vectors (see “Assigning a
value to a character vector,” earlier in this chapter).

 
Imagine you want to create a named vector with the number of days in each

month. First, create a numeric vector containing the number of days in each month.
Then use the built-in dataset month.name for the month names, as follows:

 
> month.days <- c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31)
> names(month.days) <- month.name
> month.days
  January  February     March     April
       31        28        31        30
      May      June      July    August
       31        30        31        31
September   October  November  December
       30        31        30        31

 
Now you can use this vector to find the names of the months with 31 days:

 
> names(month.days[month.days==31])
[1] “January”  “March”    “May”
[4] “July”     “August”   “October”
[7] “December”

 
This technique works because you subset month.days to return only those

values for which month.days equals 31, and then you retrieve the names of the
resulting vector.

 

 The double equal sign (==) indicates a test for equality (see Chapter 4).
Make sure not to use the single equal sign (=) for equality testing. Not only will
a single equal sign not work, but it can have strange side effects because R
interprets a single equal sign as an assignment. In other words, the operator =
in many cases is the same as <-.

 

Manipulating Text



When you have text, you need to be able to manipulate it, for example by
splitting or combining words. You also may want to analyze your text to find out
whether it contains certain keywords or patterns.

 
In this section, you work with the string splitting and concatenation functions

of R. Concatenating (combining) strings is something that programmers do very
frequently. For example, when you create a report of your results, it’s customary to
combine descriptive text with the actual results of your analysis so that the reader
of your results can easily digest it.

 
Finally, you start to work with finding words and patterns inside text, and you

meet regular expressions, a powerful way of doing a wildcard search of text.
 

String theory: Combining and splitting strings
 

A collection of combined letters and words is called a string. Whenever you
work with text, you need to be able to concatenate words (string them together)
and split them apart. In R, you use the paste() function to concatenate and the
strsplit() function to split. In this section, we show you how to use both
functions.

 

Splitting text
 

First, create a character vector called pangram, and assign it the value “The
quick brown fox jumps over the lazy dog”, as follows:

 
> pangram <- “The quick brown fox jumps over the lazy dog”
> pangram
[1] “The quick brown fox jumps over the lazy dog”

 
To split this text at the word boundaries (spaces), you can use strsplit() as

follows:
 

> strsplit(pangram, “ “)
[[1]]
[1] “The”   “quick” “brown” “fox”   “jumps” “over”  “the”   “lazy”  “dog”

 

 Notice that the unusual first line of strsplit()’s output consists of [[1]].



Similar to the way that R displays vectors, [[1]] means that R is showing the
first element of a list. Lists are extremely important concepts in R; they allow
you to combine all kinds of variables. You can read more about lists in Chapter
7.

 
In the preceding example, this list has only a single element. Yes, that’s right:

The list has one element, but that element is a vector.
 

To extract an element from a list, you have to use double square brackets.
Split your pangram into words, and assign the first element to a new variable called
words, using double-square-brackets ([[]]) subsetting, as follows:

 
words <- strsplit(pangram, “ “)[[1]]
> words
[1] “The”   “quick” “brown” “fox”   “jumps” “over”  “the”   “lazy”  “dog”

 

 To find the unique elements of a vector, including a vector of text, you use
the unique() function. In the variable words, “the” appears twice: once in
lowercase and once with the first letter capitalized. To get a list of the unique
words, first convert words to lowercase and then use unique:

 
> unique(tolower(words))
[1] “the”   “quick” “brown” “fox”   “jumps” “over”  “lazy”
[8] “dog”

 

Concatenating text
 

Now that you’ve split text, you can concatenate these elements so that they
again form a single text string.

 

Changing text case
To change some elements of words to uppercase, use the toupper()
function:

toupper(words[c(4, 9)])
[1] “FOX” “DOG”

 
To change text to lowercase, use tolower():

> tolower(“Some TEXT in Mixed CASE”)



[1] “some text in mixed case”
 

 
To concatenate text, you use the paste() function:

 
paste(“The”, “quick”, “brown”, “fox”)
[1] “The quick brown fox”

 
By default, paste() uses a blank space to concatenate the vectors. In other

words, you separate elements with spaces. This is because paste() takes an
argument that specifies the separator. The default for the sep argument is a space
(“ “) — it defaults to separating elements with a blank space, unless you tell it
otherwise.

 

 When you use paste(), or any function that accepts multiple arguments,
make sure that you pass arguments in the correct format. Take a look at this
example, but notice that this time there is a c() function in the code:

 
paste(c(“The”, “quick”, “brown”, “fox”))
[1] “The”   “quick” “brown” “fox”

 
What’s happening here? Why doesn’t paste() paste the words together? The

reason is that, by using c(), you passed a vector as a single argument to paste().
The c() function combines elements into a vector. By default, paste()
concatenates separate vectors — it doesn’t collapse elements of a vector.

 
For the same reason, paste(words) results in the following:

 
[1] “The”   “quick” “brown” “FOX”   “jumps” “over”  “the”   “lazy”  “DOG”

 

 The paste() function takes two optional arguments. The separator (sep)
argument controls how different vectors get concatenated, and the collapse
argument controls how a vector gets collapsed into itself, so to speak.

 
When you want to concatenate the elements of a vector by using paste(), you

use the collapse argument, as follows:
 

paste(words, collapse=” “)



[1] “The quick brown FOX jumps over the lazy DOG”
 

The collapse argument of paste can take any character value. If you want to
paste together text by using an underscore, use the following:

 
paste(words, collapse=”_”)
[1] “The_quick_brown_FOX_jumps_over_the_lazy_DOG”

 
You can use sep and collapse in the same paste call. In this case, the vectors

are first pasted with sep and then collapsed with collapse. Try this:
 

> paste(LETTERS[1:5], 1:5, sep=”_”, collapse=”---”)
[1] “A_1---B_2---C_3---D_4---E_5”

 
What happens here is that you first concatenate the elements of each vector

with an underscore (that is, A_1, B_2, and so on), and then you collapse the results
into a single string with --- between each element.

 

 The paste() function takes vectors as input and joins them together. If one
vector is shorter than the other, R recycles (repeats) the shorter vector to
match the length of the longer one — a powerful feature.

 
Suppose that you have five objects, and you want to label them “sample 1”,

“sample 2”, and so on. You can do this by passing a short vector with the value
sample and a long vector with the values 1:5 to paste(). In this example, the
shorter vector is repeated five times:

 
> paste(“Sample”, 1:5)
[1] “Sample 1” “Sample 2” “Sample 3” “Sample 4” “Sample 5”

 

Sorting text
 

What do league tables, telephone directories, dictionaries, and the index
pages of a book have in common? They present data in some sorted manner. Data
can be sorted alphabetically or numerically, in ascending or descending order. Like
any programming language, R makes it easy to compile lists of sorted and ordered
data.

 



Recycling character vectors
When you perform operations on vectors of different lengths, R automatically
adjusts the length of the shorter vector to match the longer one. This is
called recycling, since R recycles the element of the shorter vector to create
a new vector that matches the original long vector.
This feature is very powerful but can lead to confusion if you aren’t aware of
it.
The rules for recycling character vectors are exactly the same as for numeric
vectors (see Chapter 4).
Here are a few examples of vector recycling using paste:

> paste(c(“A”, “B”), c(1, 2, 3, 4), sep=”-”)
[1] “A-1” “B-2” “A-3” “B-4”

 
> paste(c(“A”), c(1, 2, 3, 4, 5), sep=”-”)
[1] “A-1” “A-2” “A-3” “A-4” “A-5”

 
See how in the first example A and B get recycled to match the vector of
length four. In the second example, the single A also gets recycled — in this
case, five times.

 
Because text in R is represented as character vectors, you can sort these

vectors using the same functions as you use with numeric data. For example, to get
R to sort the alphabet in reverse, use the sort() function:

 
> sort(letters, decreasing=TRUE)
[1] “z” “y” “x” “w” “v” “u” “t” “s” “r” “q” “p”
[12] “o” “n” “m” “l” “k” “j” “i” “h” “g” “f” “e”
[23] “d” “c” “b” “a”

 
Here you used the decreasing argument of sort().

 

 The sort() function sorts a vector. It doesn’t sort the characters of each
element of the vector. In other words, sort() doesn’t mangle the word itself.
You can still read each of the words in words.

 
Try it on your vector words that you created in the previous paragraph:

 
> sort(words)
[1] “brown” “DOG”   “FOX”   “jumps” “lazy”
[6] “over”  “quick” “the”   “The”



 

 R performs lexicographic sorting, as opposed to, for example, the C
language, which sorts in ASCII order. This means that the sort order will
depend on the locale of the machine the code runs on. In other words, the sort
order may be different if the machine running R is configured to use Danish
than it will if the machine is configured to use English. The R help file contains
this description:

 
Beware of making any assumptions about the collation order: e.g., in Estonian, Z
comes between S and T, and collation is not necessarily character-by-character —
in Danish aa sorts as a single letter, after z.

 
In most cases, lexicographic sorting simply means that the sort order is

independent of whether the string is in lowercase or uppercase. For more details,
read the help text in ?sort as well as ?Comparison.

 

 You can get help on any function by typing a question mark followed by the
function name into the console. For other ways of getting help, refer to
Chapter 11.

 

Finding text inside text
 

When you’re working with text, often you can solve problems if you’re able to
find words or patterns inside text. Imagine you have a list of the states in the
United States, and you want to find out which of these states contains the word
New. Or, say you want to find out which state names consist of two words.

 
To solve the first problem, you need to search for individual words (in this

case, the word New). And to solve the second problem, you need to search for
multiple words. We cover both problems in this section.

 

Searching for individual words
 

To investigate this problem, you can use the built-in dataset states.names,
which contains — you guessed it — the names of the states of the United States:



 
> head(state.names)
[1] “Alabama”    “Alaska”     “Arizona”
[4] “Arkansas”   “California” “Colorado”

 
Broadly speaking, you can find substrings in text in two ways:

 
By position: For example, you can tell R to get three letters starting at position
5.

 
By pattern: For example, you can tell R to get substrings that match a specific
word or pattern.

 

 A pattern is a bit like a wildcard. In some card games, you may use the
Joker card to represent any other card. Similarly, a pattern in R can contain words
or certain symbols with special meanings.

 

Searching by position
If you know the exact position of a subtext inside a text element, you use the

substr() function to return the value. To extract the subtext that starts at the third
position and stops at the sixth position of state.name, use the following:

 
> head(substr(state.name, start=3, stop=6))
[1] “abam” “aska” “izon” “kans” “lifo” “lora”

 

Searching by pattern
To find substrings, you can use the grep() function, which takes two essential

arguments:
 

pattern: The pattern you want to find.
 

x: The character vector you want to search.
 

Suppose you want to find all the states that contain the pattern New. Do it like
this:

 
> grep(“New”, state.name)
[1] 29 30 31 32



 
The result of grep() is a numeric vector with the positions of each of the

elements that contain the matching pattern. In other words, the 29th element of
state.name contains the word New.

 
> state.name[29]
New Hampshire

 
Phew, that worked! But typing in the position of each matching text is going to

be a lot of work. Fortunately, you can use the results of grep() directly to subset
the original vector:

 
> state.name[grep(“New”, state.name)]
[1] “New Hampshire” “New Jersey”
[3] “New Mexico”    “New York”

 

 The grep() function is case sensitive — it only matches text in the same
case (uppercase or lowercase) as your search pattern. If you search for the
pattern “new” in lowercase, your search results are empty:

 
> state.name[grep(“new”, state.name)]
character(0)

 

Searching for multiple words
 

So, how do you find the names of all the states with more than one word? This
is easy when you realize that you can frame the question by finding all those states
that contain a space:

 
> state.name[grep(“ “, state.name)]
[1] “New Hampshire”  “New Jersey”
[3] “New Mexico”     “New York”
[5] “North Carolina” “North Dakota”
[7] “Rhode Island”   “South Carolina”
[9] “South Dakota”   “West Virginia”

 
The results include all the states that have two-word names, such as New

Jersey, New York, North Carolina, South Dakota, and West Virginia.
 

You can see from this list that there are no state names that contain East. You



can confirm this by doing another find:
 

> state.name[grep(“East”, state.name)]
character(0)

 

 When the result of a character operation is an empty vector (that is, there
is nothing in it), R represents it as character(0). Similarly, an empty, or zero-
length, numeric vector is represented with integer(0) or numeric(0) (see
Chapter 4).

 

 R makes a distinction between NULL and an empty vector. NULL usually
means something is undefined. This is subtly different from something that is
empty. For example, a character vector that happens to have no elements is
still a character vector, represented by character(0).

 

Getting a grip on grep
The name of the grep() function originated in the Unix world. It’s an
acronym for Global Regular Expression Print. Regular expressions are a very
powerful way of expressing patterns of matching text, usually in a very
formal language. Whole books have been written about regular expressions.
We give a very short introduction in “Revving up with regular expressions,”
later in this chapter.
The function name grep() appears in many programming languages that
deal with text and reporting. Perl, for example, is famous for its extensive
grep functionality. For more information, check out Perl For Dummies, 4th
Edition, by Paul Hoffman (Wiley).

 
 

Substituting text
 

The sub() function (short for substitute) searches for a pattern in text and
replaces this pattern with replacement text. You use sub() to substitute text for
text, and you use its cousin gsub() to substitute all occurrences of a pattern. (The g
in gsub() stands for global.)



 
Suppose you have the sentence He is a wolf in cheap clothing, which is clearly

a mistake. You can fix it with a gsub() substitution. The gsub() function takes
three arguments: the pattern to find, the replacement pattern, and the text to
modify:

 
> gsub(“cheap”, “sheep’s”, “A wolf in cheap clothing”)
[1] “A wolf in sheep’s clothing”

 
Another common type of problem that can be solved with text substitution is

removing substrings. Removing substrings is the same as replacing the substring
with empty text (that is, nothing at all).

 
Imagine a situation in which you have three file names in a vector:

file_a.csv, file_b.csv, and file_c.csv. Your task is to extract the a, b, and c
from those file names. You can do this in two steps: First, replace the pattern
“file_” with nothing, and then replace the “.csv” with nothing. You’ll be left with
your desired vector:

 
> x <- c(“file_a.csv”, “file_b.csv”, “file_c.csv”)
> y <- gsub(“file_”, “”, x)
> y
[1] “a.csv” “b.csv” “c.csv”
> gsub(“.csv”, “”, y)
[1] “a” “b” “c”

 

 In “Revving up with regular expressions,” later in this chapter, you see how
to perform these two substitutions in a single expression.

 

Revving up with regular expressions
 

Until this point, you’ve worked only with fixed expressions to find or substitute
text. This is useful but also limited. R supports the concept of regular expressions,
which allows you to search for patterns inside text.

 

Extending text functionality with stringr
After this quick tour through the text manipulation functions of R, you
probably wonder why all these functions have such unmemorable names and



seemingly diverse syntax. If so, you’re not alone. In fact, Hadley Wickham
wrote a package available from CRAN that simplifies and standardizes
working with text in R. This package is called stringr, and you can install it
by using the R console or by choosing Tools䳑Install Packages in RStudio
(see Chapter 3).
Remember: Although you have to install a package only once, you have to
load it into the workspace using the library() function every time you start
a new R session and plan to use the functions in that package.

install.packages(“stringr”)
library(stringr)

 
Here are some of the advantages of using stringr rather than the standard
R functions:

Function names and arguments are consistent and more
descriptive. For example, all stringr functions have names starting with
str_ (such as str_detect() and str_replace()).

stringr has a more consistent way of dealing with cases with
missing data or empty values.

stringr has a more consistent way of ensuring that input and
output data are of the same type.
The stringr equivalent for grep() is str_detect(), and the equivalent for
gsub() is str_replace_all().
As a starting point to explore stringr, you may find some of these functions
useful:

str_detect(): Detects the presence or absence of a pattern in a string
str_extract(): Extracts the first piece of a string that matches a pattern
str_length(): Returns the length of a string (in characters)
str_locate(): Locates the position of the first occurrence of a pattern in

a string
str_match(): Extracts the first matched group from a string
str_replace(): Replaces the first occurrence of a matched pattern in a

string
str_split(): Splits up a string into a variable number of pieces
str_sub(): Extracts substrings from a character vector
str_trim(): Trims white space from the start and end of string
str_wrap(): Wraps strings into nicely formatted paragraphs

 
You may never have heard of regular expressions, but you’re probably familiar

with the broad concept. If you’ve ever used an * or a ? to indicate any letter in a
word, then you’ve used a form of wildcard search. Regular expressions support the
idea of wildcards and much more.



 
Regular expressions allow three ways of making a search pattern more

general than a single, fixed expression:
 

Alternatives: You can search for instances of one pattern or another, indicated
by the | symbol. For example beach|beech matches both beach and beech.

 

 On English and American English keyboards, you can usually find the | on
the same key as backslash (\).

 
Grouping: You group patterns together using parentheses ( ). For example you
write be(a|e)ch to find both beach and beech.

 
Quantifiers: You specify whether an element in the pattern must be repeated
or not by adding * (occurs zero or many times) or + (occurs one or many times).
For example, to find either bach or beech (zero or more of a and e but not both),
you use b(e*|a*)ch.

 
Try the following examples. First, create a new variable with five words:

 
> rwords <- c(“bach”, “back”, “beech”, “beach”, “black”)

 
Find either beach or beech using alternative matching:

 
> grep(“beach|beech”, rwords)
[1] 3 4

 
This means the search string was found in elements 3 and 4 of rwords. To

extract the actual elements, you can use subsetting with square brackets:
 

> rwords[grep(“beach|beech”, rwords)]
[1] “beech” “beach”

 
Now use the grouping rule to extract the same words:

 
> rwords[grep(“be(a|e)ch”, rwords)]
[1] “beech” “beach”

 
Lastly, use the quantifier modification to extract bach and beech but not

beach:



 
rwords[grep(“b(e*|a*)ch”, rwords)]
[1] “bach”  “beech”

 

 To find more help in R about regular expressions, look at the Help page ?
regexp. Some other great resources for learning more about regular
expressions are Wikipedia
(http://en.wikipedia.org/wiki/Regular_expression) and www.regular-
expressions.info, where you can find a quick-start guide and tutorials.

 

Factoring in Factors
In real-world problems, you often encounter data that can be described using

words rather than numerical values. For example, cars can be red, green, or blue
(or any other color); people can be left-handed or right-handed, male or female;
energy can be derived from coal, nuclear, wind, or wave power. You can use the
term categorical data to describe these examples — or anything else that can be
classified in categories.

 
R has a special data structure for categorical data, called factors. Factors are

closely related to characters because any character vector can be represented by a
factor.

 
Factors are special types of objects in R. They’re neither character vectors nor

numeric vectors, although they have some attributes of both. Factors behave a
little bit like character vectors in the sense that the unique categories often are
text. Factors also behave a little bit like integer vectors because R encodes the
levels as integers.

 

Creating a factor
 

To create a factor in R, you use the factor() function. The first three
arguments of factor() warrant some exploration:

 
x: The input vector that you want to turn into a factor.

 
levels: An optional vector of the values that x might have taken. The default is

http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info


lexicographically sorted, unique values of x.
 

labels: Another optional vector that, by default, takes the same values as
levels. You can use this argument to rename your levels, as we explain in the
next paragraph.

 

 The fact that you can supply both levels and labels to factor can lead to
confusion. Just remember that levels refers to the input values of x, while
labels refers to the output values of the new factor.

 
Consider the following example of a vector consisting of compass directions:

 
> directions <- c(“North”, “East”, “South”, “South”)

 
Notice that this vector contains the value “South” twice and lacks the value

“West”. First, convert directions to a factor:
 

> factor(directions)
[1] North East  South South
Levels: East North South

 
Notice that the levels of your new factor does not contain the value “West”,

which is as expected. In practice, however, it makes sense to have all the possible
compass directions as levels of your factor. To add the missing level, you specify
the levels arguments of factor:

 
> factor(directions, levels= c(“North”, “East”, “South”, “West”))
[1] North East  South South
Levels: North East South West

 
As you can see, the values are still the same but this time the levels also

contain “West”.
 

Now imagine that you actually prefer to have abbreviated names for the
levels. To do this, you make use of the labels argument:

 
> factor(directions, levels= c(“North”, “East”, “South”, “West”),
labels=c(“N”, “E”, “S”, “W”))

[1] N E S S
Levels: N E S W

 



Converting a factor
 

Sometimes you need to explicitly convert factors to either text or numbers. To
do this, you use the functions as.character() or as.numeric().

 
First, convert your directions vector into a factor called directions.factor

(as you saw earlier):
 

> directions <- c(“North”, “East”, “South”, “South”)
> directions.factor <- factor(directions)
> directions.factor
[1] North East  South South
Levels: East North South

 
Use as.character() to convert a factor to a character vector:

 
> as.character(directions.factor)
[1] “North” “East”  “South” “South”

 
Use as.numeric() to convert a factor to a numeric vector. Note that this will

return the numeric codes that correspond to the factor levels. For example, “East”
corresponds to 1, “North” corresponds to 2, and so forth:

 
> as.numeric(directions.factor)
[1] 2 1 3 3

 

 Be very careful when you convert factors with numeric levels to a numeric
vector. The results may not be what you expect.

 
For example, imagine you have a vector that indicates some test score results

with the values c(9, 8, 10, 8, 9), which you convert to a factor:
 

> numbers <- factor(c(9, 8, 10, 8, 9))
 

To look at the internal representation of numbers, use str():
 

> str(numbers)
Factor w/ 3 levels “8”,”9”,”10”: 2 1 3 1 2

 
This indicates that R stores the values as c(2, 1, 3, 1, 2) with associated

levels of c(“8”, “9”, “10”). Figure 5-2 gives a graphical representation of this



difference between the levels and the internal representation.
 
Figure 5-2: A visual comparison between a numeric vector and a factor.

If you want to convert numbers to a character vector, the results are pretty
much as you would expect:

 
> as.character(numbers)
[1] “9”  “8”  “10” “8”  “9”

 
However, if you simply use as. numeric(), your result is a vector of the

internal level representations of your factor and not the original values:
 

> as.numeric(numbers)
[1] 2 1 3 1 2

 

 The R help at ?factor describes a solution to this problem. The solution is
to index the levels by the factor itself, and then to convert to numeric:

 
> as.numeric(as.character(numbers))
[1]  9  8 10  8  9

 
This is an example of nested functions in R, in which you pass the results of

one function to a second function. Nested functions are a bit like the Russian
nesting dolls, where each toy is inside the next:

 
 The inner function, as.character(numbers), contains the text c(“8”, “9”,
“10”).

 
 The outer function, as.numeric(...), does the final conversion to c(9, 8, 10,
8, 9).

 

Looking at levels
 



To look a little bit under the hood of the structure of a factor, use the str()
function:

 
> str(state.region)
Factor w/ 4 levels “Northeast”,”South”,..: 2 4 4 2 4 4 1 2 2 2 ...

 
R reports the structure of state.region as a factor with four levels. You can

see that the first two levels are “Northeast” and “South”, but these levels are
represented as integers 1, 2, 3, and 4.

 
Factors are a convenient way to describe categorical data. Internally a factor is

stored as a numeric value associated with each level. This means you can set and
investigate the levels of a factor separately from the values of the factor.

 
To look at the levels of a factor, you use the levels() function. For example,

to extract the factor levels of state.region, use the following:
 

> levels(state.region)
[1] “Northeast”     “South”
[3] “North Central” “West”

 
Because the values of the factor are linked to the levels, when you change the

levels, you also indirectly change the values themselves. To make this clear,
change the levels of state.region to the values “NE”, “S”, “NC”, and “W”:

 
> levels(state.region) <- c(“NE”, “S”, “NC”, “W”)
> head(state.region)
[1] S W W S W W
Levels: NE S NC W

 
Sometimes it’s useful to know the number of levels of a factor. The

convenience function nlevels() extracts the number of levels from a factor:
 

> nlevels(state.region)
[1] 4

 
Because the levels of a factor are internally stored by R as a vector, you also

can extract the number of levels using length:
 

> length(levels(state.region))
[1] 4

 
For the very same reason, you can index the levels of a factor using standard



vector subsisting rules. For example, to extract the second and third factor levels,
use the following:

 
> levels(state.region)[2:3]
[1] “S”  “NC”

 

Distinguishing data types
 

In the field of statistics, being able to distinguish between variables of
different types is very important. The type of data very often determines the type
of analysis that can be performed. As a result, R offers the ability to explicitly
classify data as follows:

 
Nominal data: This type of data, which you represent in R using factors,
distinguishes between different categories, but there is no implied order
between categories. Examples of nominal data are colors (red, green, blue),
gender (male, female), and nationality (British, French, Japanese).

 
Ordinal data: Ordinal data is distinguished by the fact that there is some kind of
natural order between elements but no indication of the relative size difference.
Any kind of data that is possible to rank in order but not give exact values to is
ordinal. For example, low < medium < high describes data that is ordered with
three levels.

 
In market research, it’s very common to use a five-point scale to measure
perceptions: strongly disagree < disagree < neutral < agree < strongly agree. This
is also an example of ordinal data.

 
Another example is the use of the names of colors to indicate order, such as red <
amber < green to indicate project status.

 

 In R, you use ordered factors to describe ordinal data. For more on ordered
factors, see the “Working with ordered factors” section, later in this chapter.

 
Numeric data: You have numeric data when you can describe your data with
numbers (for example, length, weight, or count). Numeric data has two
subcategories.

 



• Interval scaled data: You have interval scaled data when the interval between
adjacent units of measurement is the same, but the zero point is arbitrary. An
everyday example of interval scaled data is our calendar system. Each year has
the same length, but the zero point is arbitrary. In other words, time didn’t start
in the year zero — we simply use a convenient year to start counting. This
means you can add and subtract dates (and all other types of interval scaled
data), but you can’t meaningfully divide dates. Other examples include
longitude, as well as anything else where there can be disagreement about
where the starting point is.

 
Other examples of interval scaled data can be found in social science research such

as market research.
 

In R you can use integer or numeric objects to represent interval scaled data.
 

• Ratio scaled data: This is data where all kinds of mathematical operations are
allowed, in particular the ability to multiply and divide (in other words, take
ratios). Most data in physical sciences are ratio scaled — for example, length,
mass, and speed. In R, you use numeric objects to represent ratio scaled data.

 

Working with ordered factors
 

Sometimes data has some kind of natural order in which some elements are in
some sense “better” or “worse” than other elements, but at the same time it’s
impossible to ascribe a meaningful value to these. An example is any situation
where project status is described as low, medium, or high. A similar example is a
traffic light that can be red, yellow, or green.

 

Summarizing categorical data
In most practical cases where you have categorized data, some values are
repeated. As a practical example, consider the states of the United States.
Each state is in one of four regions: Northeast, South, North Central, or West
(at least according to R). Have a look at the built-in dataset state.region:

> head(state.region)
[1] South West West South West West
Levels: Northeast South North Central West

 
You can use the handy table() function to get a tabular summary of the
values of a factor:



> table(state.region)
state.region
Northeast South North Central West
9 16 12 13

 
This tells you that the Northeast region has 9 states, the South region has 16
states, and so on.
The table() function works by counting the number of occurrences of each
factor level. You can learn more about table() in the Help page at ?table.

 
The name for this type of data, where rank ordering is important is ordinal

data. In R, there is a special data type for ordinal data. This type is called ordered
factors and is an extension of factors that you’re already familiar with.

 
To create an ordered factor in R, you have two options:

 
 Use the factor() function with the argument ordered=TRUE.

 
 Use the ordered() function.

 
Say you want to represent the status of five projects. Each project has a status

of low, medium, or high:
 

> status <- c(“Lo”, “Hi”, “Med”, “Med”, “Hi”)
 

Now create an ordered factor with this status data:
 

> ordered.status <- factor(status, levels=c(“Lo”, “Med”, “Hi”),
ordered=TRUE)

> ordered.status
[1] Lo  Hi  Med Med Hi
Levels: Lo < Med < Hi

 

 You can tell an ordered factor from an ordinary factor by the presence of
directional signs (< or >) in the levels.

 

 In R, there is a really big practical advantage to using ordered factors. A
great many R functions recognize and treat ordered factors differently by



printing results in the order that you expect. For example, compare the results
of table(status) with table(ordered.status):

 
> table(status)
status
Hi  Lo Med
  2   1   2

 
Notice that the results are ordered alphabetically. However, the results of

performing the same function on the ordered factor yields results that are easier to
interpret because they’re now sorted in the order Lo, Med, Hi:

 
> table(ordered.status)
ordered.status
Lo Med  Hi
  1   2   2

 
R preserves the ordering information inherent in ordered factors. In Part V, you

see how this becomes an essential tool to gain control over the appearance of bar
charts.

 
Also, in statistical modeling, R applies the appropriate statistical

transformation (of contrasts) when you have factors or ordered factors in your
model. In Chapter 15, you do some statistical modeling with categorical variables.

 



Chapter 6
 

Going on a Date with R

In This Chapter
 Working with dates in R
 Understanding the different ways of representing dates
 Throwing time into the mix
 Formatting dates and times for pretty printing

 Operating on dates and times
 

All kinds of real-world data are associated with a specific date or instant in
time. Companies report results each quarter. Stock markets report closing prices
daily. Network analysts measure traffic by the hour (if not by the minute). And of
course, scientists measure air temperature, sometimes by the minute, sometimes
by the day, and have done so for decades.

 
Dealing with dates accurately can be a complicated task. You have to account

for time-zone differences, leap years, and regional differences in holidays. In
addition, people report data differently in different places. For example, what an
American would write as “May 12, 2010” or “05-12-10” would be written by
someone from the United Kingdom as “12 May 2010” or “12-05-10.” Working with a
time instant on a specific day isn’t any easier. The same time may be written as
9:25 p.m., 21:25, or 21h25 — not to mention time zones!

 
In this chapter, we look at the different ways of representing dates and times

using R. You take control of the format of dates and time for pretty printing. Then
you do some math with dates — addition and subtraction. Finally, you use some
tricks to extract specific elements, such as the month, from a date.

 

Working with Dates
R has a range of functions that allow you to work with dates and times. The

easiest way of creating a date is to use the as.Date() function. For example, you
write the opening day of the 2012 London Olympic Games as:

 
> xd <- as.Date(“2012-07-27”)
> xd



[1] “2012-07-27”
> str(xd)
Date[1:1], format: “2012-07-27”

 

 This works because the default format for dates in as.Date() is YYYY-MM-DD
— four digits for year, and two digits for month and day, separated by a
hyphen. In the next section, you get to specify dates in different formats.

 
To find out what day of the week this is, use weekdays():

 
> weekdays(xd)
[1] “Friday”

 
You can add or subtract numbers from dates to create new dates. For

example, to calculate the date that is seven days in the future, use the following:
 

> xd + 7
[1] “2012-08-03”

 
In the same way as with numbers or text, you can put multiple dates into a

vector. To create a vector of seven days starting on July 27, add 0:6 to the starting
date. (Remember: The colon operator generates integer sequences.)

 
> xd + 0:6
[1] “2012-07-27” “2012-07-28” “2012-07-29” “2012-07-30”
[5] “2012-07-31” “2012-08-01” “2012-08-02”

 
Because the weekdays() function takes vector input, it returns the days of the

week for this sequence:
 

> weekdays(xd + 0:6)
[1] “Friday”    “Saturday”  “Sunday”    “Monday”
[5] “Tuesday”   “Wednesday” “Thursday”

 

 You can use the seq() function to create sequences of dates in a far more
flexible way. As with numeric vectors, you have to specify at least three of the
arguments (from, to, by, and length.out). However, in the case of Date
objects, the by argument is very flexible. You specify by as a string consisting
of a number followed by days, weeks, or months. Imagine you want to create a
sequence of every second month of 2012, starting at January 1:



 
> startDate <- as.Date(“2012-01-01”)
> xm <- seq(startDate, by=”2 months”, length.out=6)
> xm
[1] “2012-01-01” “2012-03-01” “2012-05-01” “2012-07-01”
[5] “2012-09-01” “2012-11-01”

 
In addition to weekdays(), you also can get R to report on months() and

quarters():
 

> months(xm)
[1] “January”   “March”     “May”       “July”
[5] “September” “November”

 
> quarters(xm)
[1] “Q1” “Q1” “Q2” “Q3” “Q3” “Q4”

 

 The results of many date functions, including weekdays() and months()
depends on the locale of the machine you’re working on. The locale describes
elements of international customization on a specific installation of R. This
includes date formats, language settings, and currency settings. To find out
some of the locale settings on your machine, use Sys.localeconv(). R sets the
value of these variables at install time by interrogating the operating system
for details. You can change these settings at runtime or during the session
with Sys.setlocale().

 
To view the locale settings on your machine, try the following:

 
> Sys.localeconv()

 
Table 6-1 summarizes some useful functions for working with dates.

 

Table 6-1 Useful Functions with Dates
 
 
 
 
 
 



 
 
 
 
 

 

Function

 

Description

 
as.Date()

 
Converts character string to Date

 
weekdays()

 
Full weekday name in the current locale (for example, Sunday, Monday, Tuesday)

 
months()

 
Full month name in the current locale (for example, January, February, March)

 
quarters()

 
Quarter numbers (Q1, Q2, Q3, or Q4)

 
seq()

 
Generates dates sequences if you pass it a Date object as its first argument

 

Presenting Dates in Different Formats
You’ve probably noticed that as.Date() is fairly prescriptive in its defaults: It

expects the date to be formatted in the order of year, month, and day. Fortunately,
R allows you flexibility in specifying the date format.

 

 By using the format argument of as.Date(), you can convert any date
format into a Date object. For example, to convert “27 July 2012” into a date,
use the following:

 
> as.Date(“27 July 2012”, format=”%d %B %Y”)
[1] “2012-07-27”

 
This rather cryptic line of code indicates that the date format consists of the

day (%d), full month name (%B), and the year with century (%Y), with spaces
between each element.

 
Table 6-2 lists some of the many date formatting elements that you can use to

specify dates. You can access the full list by typing ?strptime in your R console.
 



Table 6-2 Some Format Codes for Dates (For Use
with as.Date, POSXct, POSIXlt, and strptime)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Format

 

Description

 
%Y

 
Year with century.

 

%y
 

Year without century (00–99). Values 00 to 68 are prefixed by 20, and values 69 to 99 are
prefixed by 19.

 
%m

 
Month as decimal number (01–12).

 
%B

 
Full month name in the current locale. (Also matches abbreviated name on input.)

 
%b

 
Abbreviated month name in the current locale. (Also matches full name on input.)

 

%d
 

Day of the month as a decimal number (01–31). You don’t need to add the leading zero when
converting text to Date, but when you format a Date as text, R adds the leading zero.

 
%A

 
Full weekday name in the current locale. (Also matches abbreviated name on input.)

 



%a
 

Abbreviated weekday name in the current locale. (Also matches full name on input.)
 

%w
 

Weekday as decimal number (0–6, with Sunday being 0).
 

Try the formatting codes with another common date format, “27/7/2012” (that
is, day, month, and year separated by a slash):

 
> as.Date(“27/7/12”, format=”%d/%m/%y”)
[1] “2012-07-27”

 

Adding Time Information to Dates
Often, referring only to dates isn’t enough. You also need to indicate a specific

time in hours and minutes.
 

 To specify time information in addition to dates, you can choose between
two functions in R: as.POSIXct() and as.POSIXlt(). These two datetime
functions differ in the way that they store date information internally, as well
as in the way that you can extract date and time elements. (For more on these
two functions, see the nearby sidebar, “The two datetime functions.”)

 

 POSIX is the name of a set of standards that refers to the UNIX operating
system. POSIXct refers to a time that is internally stored as the number of
seconds since the start of 1970, by default. (You can modify the origin year by
setting the origin argument to POSIXct().) POSIXlt refers to a date stored as
a names list of vectors for the year, month, day, hours, and minutes.

 
According to Wikipedia, the time of the Apollo 11 moon landing was July 20,

1969, at 20:17:39 UTC. (UTC is the acronym for Coordinated Universal Time. It’s
how the world’s clocks are regulated.) To express this date and time in R, try the
following:

 
> apollo <- “July 20, 1969, 20:17:39”
> apollo.fmt <- “%B %d, %Y, %H:%M:%S”
> xct <- as.POSIXct(apollo, format=apollo.fmt, tz=”UTC”)
> xct
[1] “1969-07-20 20:17:39 UTC”

 



 As you can see, as.POSIXct() takes similar arguments to as.Date(), but
you need to specify the date format as well as the time zone.

 
Table 6-3 lists additional formatting codes that are useful when working with

time information in dates.
 

Table 6-3 Formatting Codes for the Time Element of
POSIXct and POSIXlt Datetimes

 
 
 
 
 
 
 
 
 
 
 

 

Format

 

Description

 
%H

 
Hours as a decimal number (00–23)

 
%I

 
Hours as a decimal number (01–12)

 
%M

 
Minutes as a decimal number (00–59)

 
%S

 
Seconds as a decimal number (00–61)

 
%p

 
AM/PM indicator

 

The two datetime functions
In most computer languages and systems, dates are represented by numeric



values that indicate the number of seconds since a specific instant in time
(known as the epoch).
In R, you can use two functions to work with datetime objects: POSIXct()
and POSIXlt(). These functions create objects of class POSIXct and POSIXlt,
respectively:

POSIXct objects represents the (signed) number of seconds since the
beginning of 1970 (in the UTC time zone) as a numeric vector.

POSIXlt objects are named lists of vectors representing nine elements of
a datetime (sec, min, hour, and so on).
Because POSIXct are numbers, and POSIXlt objects are lists, POSIXct objects
requires less memory.
The following table summarizes the main differences between the different
datetime classes in R.

 
 
 
 
 
 
 
 
 
 

 

 

Class

 

Description

 

Useful
Functions

 
Date

 
Calendar date

 
as.Date()

 

POSIXct
 

The number of seconds since the beginning of 1970 (in the
UTC time zone) as a numeric vector

 

as.POSIXct()
 

POSIXlt
 

A named list of vectors representing nine elements (sec, min,
hour, and so on)

 

as.POSIXlt()
 

 



Formatting Dates and Times
To format a date for pretty printing, you use format(), which takes a POSIXct

or POSIXlt datetime as input, together with a formatting string. You already have
encountered a formatting string when creating a date.

 
Continuing with the example where the object xct is the day and time of the

Apollo landing, you can format this date and time in many different ways. For
examples, to format it as DD/MM/YY, try:

 
> format(xct, “%d/%m/%y”)
[1] “20/07/69”

 

 In addition to the formatting codes, you can use any other character. If you
want to format the xct datetime as a sentence, try the following:

 
> format(xct, “%S minutes past %I %p, on %d %B %Y”)
[1] “39 minutes past 08 PM, on 20 July 1969”

 

 You can find the formatting codes in Table 6-2 and Table 6-3, as well as at
the Help page ?strptime.

 

Performing Operations on Dates and Times
Because R stores datetime objects as numbers, you can do various operations

on dates, including addition, subtraction, comparison, and extraction.
 

Addition and subtraction
 

Because R stores objects of class POSIXct as the number of seconds since the
epoch (usually the start of 1970), you can do addition and subtraction by adding or
subtracting seconds. It’s more common to add or subtract days from dates, so it’s
useful to know that each day has 86,400 seconds.

 
> 24*60*60
[1] 86400

 



So, to add seven days to the Apollo moon landing date, use addition, just
remember to multiply the number of days by the number of seconds per day:

 
> xct + 7*86400
[1] “1969-07-27 20:17:39 UTC”

 
After you know that you can convert any duration to seconds, you can add or

subtract any value to a datetime object. For example, add three hours to the time
of the Apollo moon landing:

 
> xct + 3*60*60
[1] “1969-07-20 23:17:39 UTC”

 
Similarly, to get a date seven days earlier, use subtraction:

 
> xct - 7*86400
[1] “1969-07-13 20:17:39 UTC”

 

 There is an important difference between Date objects and POSIXct or
POSIXlt objects. If you use a Date object, you add and subtract days; with
POSIXct and POSIXlt, the operations add or subtract only seconds.

 
Try that yourself, first converting xct to a Date object, then subtracting 7:

 
> as.Date(xct) - 7
[1] “1969-07-13”

 

Comparison of dates
 

Similar to the way that you can add or subtract states you can also compare
dates with the comparison operators, such as less than (<) or greater than (>),
covered in Chapter 5.

 
Say you want to compare the current time with any fixed time. In R, you use

the Sys.time() function to get the current system time:
 

> Sys.time()
[1] “2012-03-24 10:12:52 GMT”

 



Now you know the exact time when we wrote this sentence. Clearly when you
try the same command you will get a different result!

 
Now you can compare your current system time with the time of the Apollo

landing:
 

> Sys.time() < xct
[1] FALSE

 
If your system clock is accurate, then obviously you would expect the result to

be false, because the moon landing happened more than 40 years ago.
 

As we cover in Chapter 5, the comparison operators are vectorized, so you can
compare an entire vector of dates with the moon landing date. Try to use all your
knowledge of dates, sequences of dates, and comparison operators to compare the
start of several decades to the moon landing date.

 
Start by creating a POSIXct object containing the first day of 1950. Then use

seq() to create a sequence with intervals of ten years:
 

> dec.start <- as.POSIXct(“1950-01-01”)
> dec <- seq(dec.start, by=”10 years”, length.out=4)
> dec
[1] “1950-01-01 GMT” “1960-01-01 GMT” “1970-01-01 GMT”
[4] “1980-01-01 GMT”

 
Finally, you can compare your new vector dec with the moon landing date:

 
> dec > xct
[1] FALSE FALSE  TRUE  TRUE

 
As you can see, the first two results (comparing to 1950 and 1960) are FALSE,

and the last two values (comparing to 1970 and 1980) are TRUE.
 

Extraction
 

Another thing you may want to do is to extract specific elements of the date,
such as the day, month, or year. For example, scientists may want to compare the
weather in a specific month (say, January) for many different years. To do this,
they first have to determine the month, by extracting the months from the
datetime object.



 
An easy way to achieve this is to work with dates in the POSIXlt class,

because this type of data is stored internally as a named list, which enables you to
extract elements by name. To do this, first convert the Date class:

 
> xlt <- as.POSIXlt(xct)
> xlt
[1] “1969-07-20 20:17:39 UTC”

 
Next, use the $ operator to extract the different elements. For example, to get

the year, use the following:
 

> xlt$year
[1] 69

 
And to get the month, use the following:

 
> xlt$mon
[1] 6

 

 You can use the unclass() function to expose the internal structure of
POSIXlt objects.

 
> unclass(xlt)

 
If you run this line of code, you’ll see that POSIXlt objects are really just

named lists. You get to work with lists in much more detail in Chapter 7.
 

More date and time fun(ctionality)
In this chapter, we barely scratch the surface on how to handle dates and
times in R. You may want to explore additional functionality available in R
and add-on packages by looking at the following:

chron: In addition to all the data classes that we cover in this chapter, R
has a chron class for datetime objects that don’t have a time zone. To
investigate this class, first load the chron package with library(chron) and
then read the Help file ?chron.

lubridate: You can download the add-on package lubridate from
CRAN. This package provides many functions to make it easier to work with
dates. You can download and find more information at http://cran.r-

http://cran.r-project.org/web/packages/lubridate/index.html


project.org/web/packages/lubridate/index.html.
R also has very good support for objects that represent time series data.
Time series data usually refers to information that was recorded at fixed
intervals, such as days, months, or years:

ts: In R, you use the ts() function to create time series objects. These
are vector or matrix objects that contain information about the observations,
together with information about the start, frequency, and end of each
observation period. With ts class data you can use powerful R functions to do
modeling and forecasting — for example, arima() is a general model for time
series data.

zoo and xts: The add-on package zoo extends time series objects by
allowing observations that don’t have such strictly fixed intervals. You can
download it from CRAN at http://cran.r-
project.org/web/packages/zoo/index.html. The add-on package xts
provides additional extensions to time series data and builds on the
functionality of ts as well as zoo objects. You can download xts at CRAN:
http://cran.r-project.org/web/packages/xts/index.html.
Now you have all the information to go on a date with R and enjoy the
experience!

 
 

http://cran.r-project.org/web/packages/zoo/index.html
http://cran.r-project.org/web/packages/xts/index.html


Chapter 7
 

Working in More Dimensions

In This Chapter
 Creating matrices
 Getting values in and out of a matrix
 Using row and column names in a matrix
 Performing matrix calculations
 Working with multidimensional arrays
 Putting your data in a data frame
 Getting data in and out of a data frame

 Working with lists
 

In the previous chapters, you worked with one-dimensional vectors. The data
could be represented by a single row or column in a Microsoft Excel spreadsheet.
But often you need more than one dimension. Many calculations in statistics are
based on matrices, so you need to be able to represent them and perform matrix
calculations. Many datasets contain values of different types for multiple variables
and observations, so you need a two-dimensional table to represent this data. In
Excel, you would do that in a spreadsheet; in R, you use a specific object called a
data frame for the task.

 

Adding a Second Dimension
In the previous chapters, you constructed vectors to hold series of data in a

one-dimensional structure. In addition to vectors, R can represent matrices as an
object you work and calculate with. In fact, R really shines when it comes to matrix
calculations and operations. In this section, we take a closer look at the magic you
can do with them.

 

Discovering a new dimension
 

Vectors are closely related to a bigger class of objects, arrays. Arrays have two
very important features:

 



 They contain only a single type of value.
 

 They have dimensions.
 

The dimensions of an array determine the type of the array. You know already
that a vector has only one dimension. An array with two dimensions is a matrix.
Anything with more than two dimensions is simply called an array. You find a
graphical representation of this in Figure 7-1.

 

Technically, a vector has no dimensions at all in R. If you use the functions
dim(), nrow(), or ncol(), mentioned in the “Looking at the properties” section,
later in this chapter, with a vector as argument, R returns NULL as a result.

 
Figure 7-1: A vector, a matrix, and an array.

Creating your first matrix
 

Creating a matrix is almost as easy as writing the word: You simply use the
matrix() function. You do have to give R a little bit more information, though. R
needs to know which values you want to put in the matrix and how you want to put
them in. The matrix() function has a couple arguments to control this:

 
data is a vector of values you want in the matrix.

 
ncol takes a single number that tells R how many columns you want.

 
nrow takes a single number that tells R how many rows you want.

 



byrow takes a logical value that tells R whether you want to fill the matrix row-
wise (TRUE) or column-wise (FALSE). Column-wise is the default.

 
So, the following code results in a matrix with the numbers 1 through 12, in

four columns and three rows.
 

> first.matrix <- matrix(1:12, ncol=4)
> first.matrix
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

 

 You don’t have to specify both ncol and nrow. If you specify one, R will
know automatically what the other needs to be.

 
Alternatively, if you want to fill the matrix row by row, you can do so:

 
> matrix(1:12, ncol=4, byrow=TRUE)
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12

 

Looking at the properties
 

 You can look at the structure of an object using the str() function. If you
do that for your first matrix, you get the following result:

 
> str(first.matrix)
int [1:3, 1:4] 1 2 3 4 5 6 7 8 9 10 ...

 
This looks remarkably similar to the output for a vector, with the difference

that R gives you both the indices for the rows and for the columns. If you want the
number of rows and columns without looking at the structure, you can use the
dim() function.

 
> dim(first.matrix)
[1] 3 4



 

 To get only the number of rows, you use the nrow() function. The ncol()
function gives you the number of columns of a matrix.

 
You can find the total number of values in a matrix exactly the same way as

you do with a vector, using the length() function:
 

> length(first.matrix)
[1] 12

 

 Actually, if you look at the output of the str() function, that matrix looks
very much like a vector. That’s because, internally, it’s a vector with a small
extra piece of information that tells R the dimensions (see the nearby sidebar,
“Playing with attributes”). You can use this property of matrices in calculations,
as you’ll see further in this chapter.

 

Playing with attributes
Both the names and the dimensions of matrices and arrays are stored in R as
attributes of the object. These attributes can be seen as labeled values you
can attach to any object. They form one of the mechanisms R uses to define
specific object types like dates, time series, and so on. They can include any
kind of information, and you can use them yourself to add information to any
object.
To see all the attributes of an object, you can use the attributes() function.
You can see all the attributes of my.array like this:

> attributes(my.array)
$dim
[1] 3 4 2

 
This function returns a named list, where each item in the list is an attribute.
Each attribute can, on itself, be a list again. For example, the attribute
dimnames is actually a list containing the row and column names of a matrix.
You can check that for yourself by checking the output of
attributes(baskets.team). You can set all attributes as a named list as well.
You find examples of that in the Help file ?attributes.
To get or set a single attribute, you can use the attr() function. This
function takes two important arguments. The first argument is the object you



want to examine, and the second argument is the name of the attribute you
want to see or change. If the attribute you ask for doesn’t exist, R simply
returns NULL.
Imagine you want to add which season Granny and Geraldine scored the
baskets mentioned in baskets.team. You can do this with the following code:

> attr(baskets.team,’season’) <- ‘2010-2011’
 

To get the value of this attribute returned, you can then use following code:
> attr(baskets.team,’season’)
[1] “2010-2011”

 
You can delete attributes again by setting their value to NULL, like this:

> attr(baskets.team,’season’) <- NULL
 

 

Combining vectors into a matrix
 

In Chapter 4, you created two vectors that contain the number of baskets
Granny and Geraldine made in the six games of this basketball season. It would be
nicer, though, if the number of baskets for the whole team were contained in one
object. With matrices, this becomes possible. You can combine both vectors as two
rows of a matrix with the rbind() function, like this:

 
> baskets.of.Granny <- c(12,4,5,6,9,3)
> baskets.of.Geraldine <- c(5,4,2,4,12,9)
> baskets.team <- rbind(baskets.of.Granny, baskets.of.Geraldine)

 
If you look at the object baskets.team, you get a nice matrix. As an extra, the

rows take the names of the original vectors. You work with these names in the
next section.

 
> baskets.team
                     [,1] [,2] [,3] [,4] [,5] [,6]
baskets.of.Granny      12    4    5    6    9    3
baskets.of.Geraldine    5    4    2    4   12    9

 
The cbind() function does something similar. It binds the vectors as columns

of a matrix, as in the following example.
 

> cbind(1:3, 4:6, matrix(7:12, ncol=2))
     [,1] [,2] [,3] [,4]



[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12

 
Here you bind together three different nameless objects:

 
 A vector with the values 1 to 3 (1:3)

 
 A vector with the values 4 to 6 (4:6)

 
 A matrix with two columns and three rows, filled column-wise with the values 7
through 12 (matrix(7:12, ncol=2))

 
This example shows some other properties of cbind() and rbind() that can be

very useful:
 

 The functions work with both vectors and matrices. They also work on other
objects, as shown in the “Manipulating Values in a Data Frame” section, later in
this chapter.

 
 You can give more than two arguments to either function. The vectors and
matrices are combined in the order they’re given.

 
 You can combine different types of objects, as long as the dimensions fit. Here
you combine vectors and matrices in one function call.

 

Using the Indices
If you look at the output of the code in the previous section, you’ll probably

notice the brackets you used in the previous chapters for accessing values in
vectors through the indices. But this time, these indices look a bit different. Where
a vector has only one dimension that can be indexed, a matrix has two. The indices
for both dimensions are separated by a comma. The index for the row is given
before the comma; the index for the column, after it.

 

Extracting values from a matrix
 

You can use these indices the same way you use vectors in Chapter 4. You can
assign and extract values, use numerical or logical indices, drop values by using a



minus sign, and so forth.
 

Using numeric indices
 

For example, you can extract the values in the first two rows and the last two
columns with the following code:

 
> first.matrix[1:2, 2:3]
     [,1] [,2]
[1,]    4    7
[2,]    5    8

 
R returns you a matrix again. Pay attention to the indices of this new matrix —

they’re not the indices of the original matrix anymore.
 

R gives you an easy way to extract complete rows and columns from a matrix.
You simply don’t specify the other dimension. So, you get the second and third row
from your first matrix like this:

 
> first.matrix[2:3,]
     [,1] [,2] [,3] [,4]
[1,]    2    5    8   11
[2,]    3    6    9   12

 

Dropping values using negative indices
 

In Chapter 4, you drop values in a vector by using a negative value for the
index. This little trick works perfectly well with matrices, too. So, you can get all
the values except the second row and third column of first.matrix like this:

 
> first.matrix[-2,-3]
     [,1] [,2] [,3]
[1,]    1    4   10
[2,]    3    6   12

 
With matrices, a negative index always means: “Drop the complete row or

column.” If you want to drop only the element at the second row and the third
column, you have to treat the matrix like a vector. So, in this case, you drop the
second element in the third column like this:

 
> nr <- nrow(first.matrix)



> id <- nr*2+2
> first.matrix[-id]
[1]  1  2  3  4  5  6  7  9 10 11 12

 
This returns a vector, because the 11 remaining elements don’t fit into a

matrix anymore. Now what happened here exactly? Remember that matrices are
read column-wise. To get the second element in the third column, you need to do
the following:

 
1. Count the number of rows, using nrow(), and store that in a

variable — for example nr.
 You don’t have to do this, but it makes the code easier to read.
 2. Count two columns and then add 2 to get the second element in

the third column.
 Again store this result in a variable (for example, id).
 3. Use the one-dimensional vector extraction [] to drop this value, as

shown in Chapter 4.
 You can do this in one line, like this:
 

> first.matrix[-(2 * nrow(first.matrix) + 2)]
[1]  1  2  3  4  5  6  7  9 10 11 12

 
This is just one example of how you can work with indices while treating a

matrix like a vector. It requires a bit of thinking at first, but tricks like these can
offer very neat solutions to more complex problems as well, especially if you need
your code to run as fast as possible.

 

Juggling dimensions
 

As with vectors, you can combine multiple numbers in the indices. If you want
to drop the first and third rows of the matrix, you can do so like this:

 
> first.matrix[-c(1, 3), ]
[1]  2  5  8 11

 
Wait a minute. . . . There’s only one index. R doesn’t return a matrix here — it

returns a vector!
 



 By default, R always tries to simplify the objects to the smallest number of
dimensions possible when you use the brackets to extract values from an
array. So, if you ask for only one column or row, R will make that a vector by
dropping a dimension.

 
You can force R to keep all dimensions by using the extra argument drop from

the indexing function. To get the second row returned as a matrix, you do the
following:

 
> first.matrix[2, , drop=FALSE]
     [,1] [,2] [,3] [,4]
[1,]    2    5    8   11

 
This seems like utter magic, but it’s not that difficult. You have three positions

now between the brackets, all separated by commas. The first position is the row
index. The second position is the column index. But then what?

 
Actually, the square brackets work like a function, and the row index and

column index are arguments for the square brackets. Now you add an extra
argument drop with the value FALSE. As you do with any other function, you
separate the arguments by commas. Put all this together, and you have the code
shown here.

 

 The default dropping of dimensions of R can be handy, but it’s famous for
being overlooked as well. It can cause serious mishap if you aren’t aware of it.
Particularly in code where you take a subset of a matrix, you can easily forget
about the case where only one row or column is selected.

 

Replacing values in a matrix
 

Replacing values in a matrix is done in a very similar way to replacing values
in a vector. To replace the value in the second row and third column of
first.matrix with 4, you use the following code.

 
> first.matrix[3, 2] <- 4
> first.matrix
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10



[2,]    2    5    8   11
[3,]    3    4    9   12

 
You also can change an entire row or column of values by not specifying the

other dimension. Note that values are recycled, so to change the second row to the
sequence 1, 3, 1, 3, you can simply do the following:

 
> first.matrix[2, ] <- c(1,3)
> first.matrix
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    1    3    1    3
[3,]    3    4    9   12

 
You also can replace a subset of values within the matrix by another matrix.

You don’t even have to specify the values as a matrix — a vector will do. Take a
look at the result of the following code:

 
> first.matrix[1:2, 3:4] <- c(8,4,2,1)
> first.matrix
     [,1] [,2] [,3] [,4]
[1,]    1    4    8    2
[2,]    1    3    4    1
[3,]    3    4    9   12

 
Here you change the values in the first two rows and the last two columns to

the numbers 8, 4, 2, and 1.
 

 R reads and writes matrices column-wise by default. So, if you put a vector
in a matrix or a subset of a matrix, it will be put in column-wise regardless of
the method. If you want to do this row-wise, you first have to construct a
matrix with the values using the argument byrow=TRUE. Then you use this
matrix instead of the original vector to insert the values.

 

Naming Matrix Rows and Columns
The rbind() function conveniently added the names of the vectors

baskets.of.Granny and baskets.of.Geraldine to the rows of the matrix
baskets.team in the previous section. You name the values in a vector inChapter 5,
and you can do something very similar with rows and columns in a matrix.

 
For that, you have the functions rownames() and colnames(). Guess which one



does what? Both functions work much like the names() function you use when
naming vector values. So, let’s check what you can do with these functions.

 

Changing the row and column names
 

The matrix baskets.team from the previous section already has some row
names. It would be better if the names of the rows would just read ‘Granny’ and
‘Geraldine’. You can easily change these row names like this:

 
> rownames(baskets.team) <- c(‘Granny’,’Geraldine’)

 
You can look at the matrix to check if this did what it’s supposed to do, or you

can take a look at the row names itself like this:
 

> rownames(baskets.team)
[1] “Granny”    “Geraldine”

 
The colnames() function works exactly the same. You can, for example, add

the number of the game as a column name using the following code:
 

> colnames(baskets.team) <- c(‘1st’,’2nd’,’3th’,’4th’,’5th’,’6th’)
 

This gives you the following matrix:
 

> baskets.team
          1st 2nd 3th 4th 5th 6th
Granny     12   4    5   6   9   3
Geraldine   5   4    2   4  12   9

 
This is almost like you want it, but the third column name contains an

annoying writing mistake. No problem there, R allows you to easily correct that
mistake. Just as the with names() function, you can use indices to extract or to
change a specific row or column name. You can correct the mistake in the column
names like this:

 
> colnames(baskets.team)[3] <- ‘3rd’

 

 If you want to get rid of either column names or row names, the only thing
you need to do is set their value to NULL. This also works for vector names, by



the way. You can try that out yourself on a copy of the matrix baskets.team
like this:

 
> baskets.copy <- baskets.team
> colnames(baskets.copy) <- NULL
> baskets.copy
          [,1] [,2] [,3] [,4] [,5] [,6]
Granny      12    4    5    6    9    3
Geraldine    5    4    2    4   12    9

 

 The row and column names are stored in an attribute called dimnames. To
get to the value of that attribute, you can use the dimnames() function to
extract or set those values. (See the “Playing with attributes” sidebar, earlier
in this chapter, for more information.)

 

Using names as indices
 

This naming thing looks remarkably similar to what you can read about
naming vectors in Chapter 5. You can use names instead of the index number to
select values from a vector. This works for matrices as well, using the row and
column names.

 
Say you want to select the second and the fifth game for both ladies. You can

do so using the following code:
 

> baskets.team[, c(“2nd”,”5th”)]
          2nd 5th
Granny      4   9
Geraldine   4  12

 
Exactly as before, you get all rows if you don’t specify which ones you want.

Alternatively, you can extract all the results for Granny like this:
 

> baskets.team[“Granny”,]
1st 2nd 3rd 4th 5th 6th
12   4   5   6   9   3

 
That’s the result, indeed, but the row name is gone now. As explained in the

“Juggling dimensions” section, earlier in this chapter, R tries to simplify the matrix
to a vector, if that’s possible. In this case, a single row is returned so, by default,
this is transformed to a vector.



 

 If a one-row matrix is simplified to a vector, the column names are used as
names for the values. If a one-column matrix is simplified to a vector, the row
names are used as names for the vector.

 

Calculating with Matrices
Probably the strongest feature of R is its capability to deal with complex matrix

operations in an easy and optimized way. Because much of statistics boils down to
matrix operations, it’s only natural that R loves to crunch those numbers.

 

Using standard operations with matrices
 

When talking about operations on matrices, you can treat either the elements
of the matrix or the whole matrix as the value you operate on. That difference is
pretty clear when you compare, for example, transposing a matrix and adding a
single number (or scalar) to a matrix. When transposing, you work with the whole
matrix. When adding a scalar to a matrix, you add that scalar to every element of
the matrix.

 
You add a scalar to a matrix simply by using the addition operator, +, like this:

 
> first.matrix + 4
     [,1] [,2] [,3] [,4]
[1,]    5    8   11   14
[2,]    6    9   12   15
[3,]    7   10   13   16

 
You can use all other arithmetic operators in exactly the same way to perform

an operation on all elements of a matrix.
 

The difference between operations on matrices and elements becomes less
clear if you talk about adding matrices together. In fact, the addition of two
matrices is the addition of the responding elements. So, you need to make sure
both matrices have the same dimensions.

 
Let’s look at another example: Say you want to add 1 to the first row, 2 to the

second row, and 3 to the third row of the matrix first.matrix. You can do this by



constructing a matrix second.matrix that has four columns and three rows and that
has 1, 2, and 3 as values in the first, second, and third rows, respectively. The
following command does so using the recycling of the first argument by the matrix
function (see Chapter 4):

 
> second.matrix <- matrix(1:3, nrow=3, ncol=4)

 
With the addition operator, you can add both matrices together, like this:

 
> first.matrix + second.matrix
     [,1] [,2] [,3] [,4]
[1,]    2    5    8   11
[2,]    4    7   10   13
[3,]    6    9   12   15

 
This is the solution your math teacher would approve of if she asked you to do

the matrix addition of the first and second matrix. And even more, if the
dimensions of both matrices are not the same, R will complain and refuse to carry
out the operation, as shown in the following example:

 
> first.matrix + second.matrix[,1:3]
Error in first.matrix + second.matrix[, 1:3] : non-conformable arrays

 
But what would happen if instead of adding a matrix, we added a vector? Take

a look at the outcome of the following code:
 

> first.matrix + 1:3
     [,1] [,2] [,3] [,4]
[1,]    2    5    8   11
[2,]    4    7   10   13
[3,]    6    9   12   15

 
Not only does R not complain about the dimensions, but it recycles the vector

over the values of the matrices. In fact, R treats the matrix as a vector in this case
by simply ignoring the dimensions. So, in this case, you don’t use matrix addition
but simple (vectorized) addition (see Chapter 4).

 

 By default, R fills matrices column-wise. Whenever R reads a matrix, it also
reads it column-wise. This has important implications for the work with
matrices. If you don’t stay aware of this, R can bite you in the leg nastily.

 



Calculating row and column summaries
 

In Chapter 4, you summarize vectors using functions like sum() and prod(). All
these functions work on matrices as well, because a matrix is simply a vector with
dimensions attached to it. You also can summarize the rows or columns of a matrix
using some specialized functions.

 
In the previous section, you created a matrix baskets.team with the number of

baskets that both Granny and Geraldine made in the previous basketball season.
To get the total number each woman made during the last six games, you can use
the function rowSums() like this:

 
> rowSums(baskets.team)
   Granny Geraldine
       39        36

 
The rowSums() function returns a named vector with the sums of each row.

 

 You can get the means of each row with rowMeans(), and the respective
sums and means of each columns with colSums() and colMeans().

 

Doing matrix arithmetic
 

Apart from the classical arithmetic operators, R contains a large set of
operators and functions to perform a wide set of matrix operations. Many of these
operations are used in advanced mathematics, so you may never need them. Some
of them can come in pretty handy, though, if you need to flip around data or you
want to calculate some statistics yourself.

 

Transposing a matrix
 

Flipping around a matrix so the rows become columns and vice versa is very
easy in R. The t() function (which stands for transpose) does all the work for you:

 
> t(first.matrix)
     [,1] [,2] [,3]
[1,]    1    2    3



[2,]    4    5    6
[3,]    7    8    9
[4,]   10   11   12

 
You can try this with a vector, too. As matrices are read and filled column-

wise, it shouldn’t come as a surprise that the t() function sees a vector as a one-
column matrix. The transpose of a vector is, thus, a one-row matrix:

 
> t(1:10)
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10

 
You can tell this is a matrix by the dimensions. This information seems trivial

by the way, but imagine you’re selecting only one row from a matrix and
transposing it. Unlike what you would expect, you get a row instead of a column:

 
> t(first.matrix[2,])
     [,1] [,2] [,3] [,4]
[1,]    2    5    8   11

 

Inverting a matrix
 

Contrary to your intuition, inverting a matrix is not done by raising it to the
power of –1. As explained in Chapter 6, R normally applies the arithmetic operators
element-wise on the matrix. So, the command first.matrix^(-1) doesn’t give you
the inverse of the matrix; instead, it gives you the inverse of the elements. To
invert a matrix, you use the solve() function, like this:

 
> square.matrix <- matrix(c(1,0,3,2,2,4,3,2,1),ncol=3)
> solve(square.matrix)
     [,1]       [,2]       [,3]
[1,]  0.5 -0.8333333  0.1666667
[2,] -0.5  0.6666667  0.1666667
[3,]  0.5 -0.1666667 -0.1666667

 

 Be careful inverting a matrix like this because of the risk of round-off errors.
R computes most statistics based on decompositions like the QR
decomposition, single-value decomposition, and Cholesky decomposition. You
can do that yourself using the functions qr(), svd(), and chol(), respectively.
Check the respective Help pages for more information.

 



Multiplying two matrices
 

The multiplication operator (*) works element-wise on matrices. To calculate
the inner product of two matrices, you use the special operator %*%, like this:

 
> first.matrix %*% t(second.matrix)
     [,1] [,2] [,3]
[1,]   22   44   66
[2,]   26   52   78
[3,]   30   60   90

 
You have to transpose the second.matrix first; otherwise, both matrices have

non-conformable dimensions. Multiplying a matrix with a vector is a bit of a special
case; as long as the dimensions fit, R will automatically convert the vector to either
a row or a column matrix, whatever is applicable in that case. You can check for
yourself in the following example:

 
> first.matrix %*% 1:4
     [,1]
[1,]   70
[2,]   80
[3,]   90
> 1:3 %*% first.matrix
     [,1] [,2] [,3] [,4]
[1,]   14   32   50   68

 

Adding More Dimensions
Both vectors and matrices are special cases of a more general type of object,

arrays. All arrays can be seen as a vector with an extra dimension attribute, and
the number of dimensions is completely arbitrary. Although arrays with more than
two dimensions are not often used in R, it’s good to know of their existence. They
can be useful in certain cases, like when you want to represent two-dimensional
data in a time series or store multi-way tables in R.

 

Creating an array
 

You have two different options for constructing matrices or arrays. Either you
use the creator functions matrix() and array(), or you simply change the
dimensions using the dim() function.

 



Using the creator functions
 

You can create an array easily with the array() function, where you give the
data as the first argument and a vector with the sizes of the dimensions as the
second argument. The number of dimension sizes in that argument gives you the
number of dimensions. For example, you make an array with four columns, three
rows, and two “tables” like this:

 
> my.array <- array(1:24, dim=c(3,4,2))
> my.array
, , 1
     [,1] [,2] [,3] [,4]
[1,]    1    4    7   10
[2,]    2    5    8   11
[3,]    3    6    9   12
, , 2
     [,1] [,2] [,3] [,4]
[1,]   13   16   19   22
[2,]   14   17   20   23
[3,]   15   18   21   24

 
This array has three dimensions. Notice that, although the rows are given as

the first dimension, the tables are filled column-wise. So, for arrays, R fills the
columns, then the rows, and then the rest.

 

Changing the dimensions of a vector
 

Alternatively, you could just add the dimensions using the dim() function. This
is a little hack that goes a bit faster than using the array() function; it’s especially
useful if you have your data already in a vector. (This little trick also works for
creating matrices, by the way, because a matrix is nothing more than an array with
only two dimensions.)

 
Say you already have a vector with the numbers 1 through 24, like this:

 
> my.vector <- 1:24

 
You can easily convert that vector to an array exactly like my.array simply by

assigning the dimensions, like this:
 

> dim(my.vector) <- c(3,4,2)
 



If you check how my.vector looks like now, you see there is no difference from
the array my.array that you created before.

 

You can check whether two objects are identical by using the identical()
function. To check, for example, whether my.vector and my.array are
identical, you simply do the following:

 
> identical(my.array, my.vector)
[1] TRUE

 

Using dimensions to extract values
 

Extracting values from an array with any number of dimensions is completely
equivalent to extracting values from a matrix. You separate the dimension indices
you want to retrieve with commas, and if necessary you can use the drop argument
exactly as you do with matrices. For example, to get the value from the second row
and third column of the first table of my.array, you simply do the following:

 
> my.array[2,3,1]
[1] 8

 
If you want the third column of the second table as an array, you use the

following code:
 

> my.array[, 3, 2, drop=FALSE]
, , 1
     [,1]
[1,]   19
[2,]   20
[3,]   21

 

 If you don’t specify the drop=FALSE argument, R will try to simplify the
object as much as possible. This also means that if the result has only two
dimensions, R will make it a matrix. The following code returns a matrix that
consists of the second row of each table:

 
> my.array[2, , ]
     [,1] [,2]
[1,]    2   14



[2,]    5   17
[3,]    8   20
[4,]   11   23

 

 This reduction doesn’t mean, however, that rows stay rows. In this case, R
made the rows columns. This is due to the fact that R first selects the values,
and then adds the dimensions necessary to represent the data correctly. In
this case R needs two dimensions with four indices (the number of columns)
and two indices (the number of tables), respectively. As R fills a matrix
column-wise, the original rows now turned into columns.

 

Combining Different Types of Values in a Data Frame
Prior to this point in the book, you combine values of the same type into either

a vector or a matrix. But datasets are, in general, built up from different data
types. You can have, for example, the names of your employees, their salaries, and
the date they started at your company all in the same dataset. But you can’t
combine all this data in one matrix without converting the data to a character data.
So, you need a new data structure to keep all this information together in R. That
data structure is a data frame.

 

Creating a data frame from a matrix
 

Let’s take a look again at the number of baskets scored by Granny and her
friend Geraldine. In the “Adding a second dimension” section, earlier in this
chapter, you created a matrix baskets.team with the number of baskets for both
ladies. It makes sense to make this matrix a data frame with two variables: one
containing Granny’s baskets and one containing Geraldine’s baskets.

 

Using the function as.data.frame
 

To convert the matrix baskets.team into a data frame, you use the function
as.data.frame(), like this:

 
> baskets.df <- as.data.frame(t(baskets.team))

 
You don’t have to use the transpose function, t(), to create a data frame, but



in our example we want each player to be a separate variable. With data frames,
each variable is a column, but in the original matrix, the rows represent the
baskets for a single player. So, in order to get the desired result, you first have to
transpose the matrix with t() before converting the matrix to a data frame with
as.data.frame().

 

Looking at the structure of a data frame
 

If you take a look at the object, it looks exactly the same as the transposed
matrix t(baskets.team), as shown in the following output:

 
> baskets.df
    Granny Geraldine
1st     12         5
2nd      4         4
3rd      5         2
4th      6         4
5th      9        12
6th      3         9

 
But there is a very important difference between the two: baskets.df is a data

frame. This becomes clear if you take a look at the internal structure of the object,
using the str() function:

 
> str(baskets.df)
‘data.frame’: 6 obs. of  2 variables:
$ Granny   : num  12 4 5 6 9 3
$ Geraldine: num  5 4 2 4 12 9

 
Now this starts looking more like a real dataset. You can see in the output that

you have six observations and two variables. The variables are called Granny and
Geraldine. It’s important to realize that each variable in itself is a vector; hence, it
has one of the types you learn about in Chapters 4, 5, and 6. In this case, the
output tells you that both variables are numeric.

 

Counting values and variables
 

To know how many observations a data frame has, you can use the nrow()
function as you would with a matrix, like this:

 
> nrow(baskets.df)



[1] 6
 

Likewise, the ncol() function gives you the number of variables. But you can
also use the length() function to get the number of variables for a data frame, like
this:

 
> length(baskets.df)
[1] 2

 

Creating a data frame from scratch
 

The conversion from a matrix to a data frame can’t be used to construct a data
frame with different types of values. If you combine both numeric and character
data in a matrix for example, everything will be converted to character. You can
construct a data frame from scratch, though, using the data.frame() function.

 

Making a data frame from vectors
 

So, let’s make a little data frame with the names, salaries, and starting dates
of a few imaginary co-workers. First, you create three vectors that contain the
necessary information like this:

 
> employee <- c(‘John Doe’,’Peter Gynn’,’Jolie Hope’)
> salary <- c(21000, 23400, 26800)
> startdate <- as.Date(c(‘2010-11-1’,’2008-3-25’,’2007-3-14’))

 
Now you have three different vectors in your workspace:

 
 A character vector called employee, containing the names

 
 A numeric vector called salary, containing the yearly salaries

 
 A date vector called startdate, containing the dates on which the contracts
started

 
Next, you combine the three vectors into a data frame using the following

code:
 

> employ.data <- data.frame(employee, salary, startdate)



 
The result of this is a data frame, employ.data, with the following structure:

 
> str(employ.data)
‘data.frame’: 3 obs. of  3 variables:
$ employee : Factor w/ 3 levels “John Doe”,”Jolie Hope”,..: 1 3 2
$ salary   : num  21000 23400 26800
$ startdate: Date, format: “2010-11-01” “2008-03-25” ...

 

 To combine a number of vectors into a data frame, you simple add all
vectors as arguments to the data.frame() function, separated by commas. R
will create a data frame with the variables that are named the same as the
vectors used.

 

Keeping characters as characters
 

You may have noticed something odd when looking at the structure of
employ.data. Whereas the vector employee is a character vector, R made the
variable employee in the data frame a factor.

 
R does this by default, but you have an extra argument to the data.frame()

function that can avoid this — namely, the argument stringsAsFactors. In the
employ.data example, you can prevent the transformation to a factor of the
employee variable by using the following code:

 
> employ.data <- data.frame(employee, salary, startdate,
stringsAsFactors=FALSE)

 
If you look at the structure of the data frame now, you see that the variable

employee is a character vector, as shown in the following output:
 

> str(employ.data)
‘data.frame’: 3 obs. of  3 variables:
$ employee : chr  “John Doe” “Peter Gynn” “Jolie Hope”
$ salary   : num  21000 23400 26800
$ startdate: Date, format: “2010-11-01” “2008-03-25” ...

 

 By default, R always transforms character vectors to factors when creating a



data frame with character vectors or converting a character matrix to a data
frame. This can be a nasty cause of errors in your code if you’re not aware of
it. If you make it a habit to always specify the stringsAsFactors argument,
you can avoid a lot of frustration.

 

Naming variables and observations
 

In the previous section, you select data based on the name of the variables
and the observations. These names are similar to the column and row names of a
matrix, but there are a few differences as well. We discuss these in the next
section.

 

Working with variable names
 

Variables in a data frame always need to have a name. To access the variable
names, you can again treat a data frame like a matrix and use the function
colnames() like this:

 
> colnames(employ.data)
[1] “employee”  “salary”    “startdate”

 
But, in fact, this is taking the long way around. In case of a data frame, the

colnames() function lets the hard work be done internally by another function, the
names() function. So, to get the variable names, you can just use that function
directly like this:

 
> names(employ.data)
[1] “employee”  “salary”    “startdate”

 
Similar to how you do it with matrices, you can use that same function to

assign new names to the variables as well. For example, to rename the variable
startdate to firstday, you can use the following code:

 
> names(employ.data)[3] <- ‘firstday’
> names(employ.data)
[1] “employee” “salary”   “firstday”

 

Naming observations



 
One important difference between a matrix and a data frame is that data

frames always have named observations. Whereas the rownames() function returns
NULL if you didn’t specify the row names of a matrix, it will always give a result in
the case of a data frame.

 
Check the outcome of the following code:

 
> rownames(employ.data)
[1] “1” “2” “3”

 
By default, the row names — or observation names — of a data frame are

simply the row numbers in character format. You can’t get rid of them, even if you
try to delete them by assigning the NULL value as you can do with matrices.

 

 You shouldn’t try to get rid of them either, because your data frame won’t
be displayed correctly any more if you do.

 
You can, however, change the row names exactly as you do with matrices,

simply by assigning the values via the rownames() function, like this:
 

> rownames(employ.data) <- c(‘Chef’,’BigChef’,’BiggerChef’)
> employ.data
              employee salary   firstday
Chef          John Doe  21000 2010-11-01
BigChef     Peter Gynn  23400 2008-03-25
BiggerChef  Jolie Hope  26800 2007-03-14

 
Don’t be fooled, though: Row names can look like another variable, but you

can’t access them the way you access the other variables.
 

Manipulating Values in a Data Frame
Creating a data frame is nice, but data frames would be pretty useless if you

couldn’t change the values or add data to them. Luckily, data frames have a very
nice feature: When it comes to manipulating the values, almost all tricks you use
on matrices can be used on data frames as well. Next to that, you can also use
some methods that are designed specifically for data frames. In this next section,
we explain these methods for manipulating data frames. For that, we use the data
frame baskets.df that you created in the “Creating a data frame from a matrix”



section, earlier in this chapter.
 

Extracting variables, observations, and values
 

In many cases, you can extract values from a data frame by pretending that
it’s a matrix and using the techniques you used in the previous sections as well. But
unlike matrices and arrays, data frames are not vectors but lists of vectors. You
start with lists in the “Combining different objects in a list” section, later in this
chapter. For now, just remember that, although they may look like matrices, data
frames are definitely not.

 

Pretending it’s a matrix
 

If you want to extract values from a data frame, you can just pretend it’s a
matrix and start from there. Both the index numbers and the index names can be
used. For example, you can get the number of baskets scored by Geraldine in the
third game like this:

 
> baskets.df[‘3rd’, ‘Geraldine’]
[1] 2

 
Likewise, you can get all the baskets that Granny scored using the column

index, like this:
 

> baskets.df[, 1]
[1] 12  4  5  6  9  3

 
Or, if you want this to be a data frame, you can use the argument drop=FALSE

exactly as you do with matrices:
 

> str(baskets.df[, 1, drop=FALSE])
‘data.frame’: 6 obs. of  1 variable:
$ Granny: num  12 4 5 6 9 3

 
Note that, unlike with matrices, the row names are dropped if you don’t

specify the drop=FALSE argument.
 

Putting your dollar where your data is



 
As a careful reader, you noticed already that every variable is preceded by a

dollar sign ($). R isn’t necessarily pimping your data here — the dollar sign is
simply a specific way for accessing variables. To access the variable Granny, you
can use the dollar sign like this:

 
> baskets.df$Granny
[1] 12  4  5  6  9  3

 
R will return a vector with all the values contained in that variable. Note again

that the row names are dropped here.
 

 With this dollar-sign method, you can access only one variable at a time. If
you want to access multiple variables at once using their names, you need to
use the square brackets, as in the preceding section.

 

Adding observations to a data frame
 

As time goes by, new data may appear and needs to be added to the dataset.
Just like matrices, data frames can be appended using the rbind() function.

 

Adding a single observation
 

Say that Granny and Geraldine played another game with their team, and you
want to add the number of baskets they made. The rbind() function lets you do
that easily:

 
> result <- rbind(baskets.df, c(7,4))
> result
    Granny Geraldine
1st     12         5
2nd      4         4
3rd      5         2
4th      6         4
5th      9        12
6th      3         9
7        7         4

 
The data frame result now has an extra observation compared to baskets.df.



As explained in the “Combining vectors into a matrix” section, rbind() can take
multiple arguments, as long as they’re compatible. In this case, you bind a vector
c(7,4) at the bottom of the data frame.

 

 Note that R, by default, sets the row number as the row name for the added
rows. You can use the rownames() function to adjust this, or you can do that
immediately by specifying the row name between quotes in the rbind()
function like this:

 
> baskets.df <- rbind(baskets.df,’7th’ = c(7,4))

 
If you check the object baskets.df now, you see the extra observation at the

bottom with the correct row name:
 

> baskets.df
    Granny Geraldine
1st     12         5
2nd      4         4
3rd      5         2
4th      6         4
5th      9        12
6th      3         9
7th      7         4

 
Alternatively, you can use indexing as well, to add an extra observation. You

see how in the next section.
 

Adding a series of new observations using rbind
 

If you need to add multiple new observations to a data frame, doing it one-by-
one is not entirely practical. Luckily, you also can use rbind() to attach a matrix or
a data frame with new observations to the original data frame. The matching of
the columns is done by name, so you need to make sure that the columns in the
matrix or the variables in the data frame with new observations match the variable
names in the original data frame.

 
Let’s add another two game results to the data frame baskets.df. First, you

construct a new data frame with the number of baskets Granny and Geraldine
scored, like this:

 



> new.baskets <- data.frame(Granny=c(3,8),Geraldine=c(9,4))
 

 If you use the data.frame() function to construct a new data frame, you
can immediately set the variable names by specifying them in the function call,
as in the preceding example. That code creates a data frame with the
variables Granny and Geraldine where each variable contains the vector given
after the equal sign.

 
To be able to bind the data frame new.baskets to the original baskets.df, you

have to make sure that the variable names match exactly, including the case.
 

Next, you add the optional row names and the necessary column names with
the following code:

 
> rownames(new.baskets) <- c(‘8th’,’9th’)

 
You also can define the column names yourself as the vector

c(‘Granny’,’Geraldine’), but using names(baskets.df) you make sure that the
names match perfectly between the data frame baskets.df and the matrix
new.baskets.

 
To add the matrix to the data frame, you simply do the following:

 
> baskets.df <- rbind(baskets.df, new.baskets)

 
You can try yourself to do the same thing using a data frame instead of a

matrix. In Chapter 13, you use more advanced techniques for combining data from
different data frames.

 

Adding a series of values using indices
 

You also can use the indices to add a set of new observations at one time. You
get exactly the same result if you change all the previous code by this simple line:

 
> baskets.df[c(‘8th’,’9th’), ] <- matrix(c(3,8,9,4), ncol=2)

 
With this code, you do the following:

 



 Create a matrix with two columns.
 

 Create a vector with the row names 8th and 9th.
 

 Use this vector as row indices for the data frame baskets.df.
 

 Assign the values in the matrix to the rows with names 8th and 9th. Because
these rows don’t exist yet, R will create them automatically.

 

 Actually, you don’t need to construct the matrix first; you can just use a
vector instead. Exactly as with matrices, data frames are filled column wise.
So, the following code gives you exactly the same result:

 
> baskets.df[c(‘8th’,’9th’), ] <- c(3,8,9,4)

 
This process works only for data frames, though. If you try to do the same

thing with matrices, you get an error. In the case of matrices, you can only use
indices that exist already in the original object.

 

 You have multiple equally valid options for adding observations to a data
frame. Which option you choose depends on your personal choice and the
situation. If you have a matrix or data frame with extra observations, you can
use rbind(). If you have a vector with row names and a set of values, using
the indices may be easier.

 

Adding variables to a data frame
 

A data frame also can be extended with new variables. You may, for example,
get data from another player on Granny’s team. Or you may want to calculate a
new variable from the other variables in the dataset, like the total sum of baskets
made in each game (see also Chapter 13).

 

Adding a single variable
 



There are three main ways of adding a variable. Similar to the case of adding
observations, you can use either the cbind() function or the indices. We illustrate
both methods later in this section.

 
You also can use the dollar sign to add an extra variable. Imagine that Granny

asked you to add the number of baskets of her friend Gabrielle to the data frame.
First, you would create a vector with that data like this:

 
> baskets.of.Gabrielle <- c(11,5,6,7,3,12,4,5,9)

 
To create an extra variable named Gabrielle with that data, you simply do

the following:
 

> baskets.df$Gabrielle <- baskets.of.Gabrielle
 

 If you wanted to check whether this worked, but you didn’t want to display
the complete data frame, you could use the head() function. This function
takes two arguments: the object you want to display and the number of rows
you want to see. To see the first four rows of the new data frame, baskets.df,
use the following code:

 
> head(baskets.df, 4)
    Granny Geraldine Gabrielle
1st     12         5        11
2nd      4         4         5
3rd      5         2         6
4th      6         4         7

 

Adding multiple variables using cbind
 

As we mention earlier, you can pretend your data frame is a matrix and use
the cbind() function to do this. Contrary to when you use rbind() on data frames,
you don’t even need to worry about the row or column names. Let’s create a new
data frame with the goals for Gertrude and Guinevere. You can combine both into a
data frame by typing the following code in the editor and running it in the console:

 
> new.df <- data.frame(
+   Gertrude  =  c(3,5,2,1,NA,3,1,1,4),
+   Guinevere =  c(6,9,7,3,3,6,2,10,6)
+ )



 
Although the row names of the data frames new.df and baskets.df differ, R

will ignore this and just use the row names of the first data frame in the cbind()
function, as you can see from the output of the following code:

 
> head(cbind(baskets.df, new.df), 4)
    Granny Geraldine Gabrielle Gertrude Guinevere
1st     12         5        11        3         6
2nd      4         4         5        5         9
3rd      5         2         6        2         7
4th      6         4         7        1         3

 
When using a data frame or a matrix with column names, R will use those as

the names of the variables. If you use cbind() to add a vector to a data frame, R
will use the vector’s name as a variable name unless you specify one yourself, as
you did with rbind().

 
If you bind a matrix without column names to the data frame, R will

automatically use the column numbers as names. That will cause a bit of trouble
though, because plain numbers are invalid object names and, hence, more difficult
to use as variable names. In this case, you’d better use the indices.

 

 Whenever you want to use a data frame and don’t want to continuously
have to type its name followed by $, you can use the functions with() and
within(), as explained in Chapter 13. With the within() function, you also can
easily add variables to a data frame.

 

Combining Different Objects in a List
In the previous sections, you discover how much data frames and matrices are

treated alike by many R functions. But contrary to what you would expect, data
frames are not a special case of matrices but a special case of lists. A list is a very
general and flexible type of object in R. Many statistical functions you use in
Chapters 14 and 15 give a list as output. Lists also can be very helpful to group
different types of objects, or to carry out operations on a complete set of different
objects. You do the latter in Chapter 9.

 

Creating a list



 
It shouldn’t come as a surprise that you create a list with the list() function.

You can use list() function in two ways: to create an unnamed list or to create a
named list. The difference is small; in both cases, think of a list as a big box filled
with a set of bags containing all kinds of different stuff. If these bags are labeled
instead of numbered, you have a named list.

 

Creating an unnamed list
 

Creating an unnamed list is as easy as using the list() function and putting
all the objects you want in that list between the (). In the previous sections, you
worked with the matrix baskets.team, containing the number of baskets Granny
and Geraldine scored this basketball season. If you want to combine this matrix
with a character vector indicating which season we’re talking about here, you
simply do the following:

 
> baskets.list <- list(baskets.team, ‘2010-2011’)

 
If you look now at the object baskets.list, you see the following output:

 
> baskets.list
[[1]]
          1st 2nd 3rd 4th 5th 6th
Granny     12   4   5   6   9   3
Geraldine   5   4   2   4  12   9
[[2]]
[1] “2010-2011”

 
The object baskets.list contains two elements: the matrix and the season.

The numbers between the [[]] indicate the “bag number” of each element.
 

Creating a named list
 

In order to create a labeled, or named, list, you simply add the labels before
the values between the () of the list() function, like this:

 
> baskets.nlist <- list(scores=baskets.team, season=’2010-2011’)

 
This is exactly the same thing you do with data frames in the “Manipulating

Values in a Data Frame” section, earlier in this chapter. And that shouldn’t surprise



you, because data frames are, in fact, a special kind of named lists.
 

If you look at the named list baskets.nlist, you see the following output:
 

> baskets.nlist
$scores
          1st 2nd 3rd 4th 5th 6th
Granny     12   4   5   6   9   3
Geraldine   5   4   2   4  12   9
$season
[1] “2010-2011”

 
Now the [[]] moved out and made a place for the $ followed by the name of

the element. In fact, this begins to look a bit like a data frame.
 

 Data frames are nothing but a special type of named lists, so all the tricks
in the following sections can be applied to data frames as well. We repeat: All
the tricks in the following sections — really, all of them — can be used on data
frames as well.

 

Playing with the names of elements
 

Just as with data frames, the names of a list are accessed using the names()
function, like this:

 
> names(baskets.nlist)
[1] “scores” “season”

 
This means that you also can use the names() function to add names to the

elements or change the names of the elements in the list in much the same way
you do with data frames.

 

Getting the number of elements
 

Data frames are lists, so it’s pretty obvious that the number of elements in a
list is considered the length of that list. So, to know how many elements you have
in baskets.list, you simply do the following:

 



> length(baskets.list)
[1] 2

 

Extracting elements from lists
 

The display of both the unnamed list baskets.list and the named list
baskets.nlist show already that the way to access elements in a list differs from
the methods you’ve used until now.

 
That’s not completely true, though. In the case of a named list, you can access

the elements using the $, as you do with data frames. For both named and
unnamed lists, you can use two other methods to access elements in a list:

 
 Using [[]] gives you the element itself.

 
 Using [] gives you a list with the selected elements.

 

Using [[]]
 

If you need only a single element and you want the element itself, you can
use [[]], like this:

 
> baskets.list[[1]]
          1st 2nd 3rd 4th 5th 6th
Granny     12   4   5   6   9   3
Geraldine   5   4   2   4  12   9

 
If you have a named list, you also can use the name of the element as an

index, like this:
 

> baskets.nlist[[‘scores’]]
          1st 2nd 3rd 4th 5th 6th
Granny     12   4   5   6   9   3
Geraldine   5   4   2   4  12   9

 
In each case, you get the element itself returned. Both methods give you the

original matrix baskets.team.
 



 You can’t use logical vectors or negative numbers as indices when using
[[]]. You can use only a single value — either a (positive) number or an
element name.

 

Using []
 

You can use [] to extract either a single element or multiple elements from a
list, but in this case the outcome is always a list. [] are more flexible than [[]],
because you can use all the tricks you also use with vector and matrix indices. []
can work with logical vectors and negative indices as well.

 
So, if you want all elements of the list baskets.list except for the first one,

you can use the following code:
 

> baskets.list[-1]
[[1]]
[1] “season 2010-2011”

 
Or if you want all elements of baskets.nlist where the name equals

‘season’, you can use the following code:
 

> baskets.nlist[names(baskets.nlist)==’season’]
$season
[1] “2010-2011”

 
Note that, in both cases, the returned value is a list, even if it contains only

one element. R simplifies arrays by default, but the same doesn’t count for lists.
 

Changing the elements in lists
 

Much like all other objects we cover up to this point, lists aren’t static objects.
You can change elements, add elements, and remove elements from them in a
pretty straightforward matter.

 

Changing the value of elements
 



Assigning a new value to an element in a list is pretty straightforward. You use
either the $ or the [[]] to access that element, and simply assign a new value. If
you want to replace the scores in the list baskets.nlist with the data frame
baskets.df, for example, you can use any of the following options:

 
> baskets.nlist[[1]] <- baskets.df
> baskets.nlist[[‘scores’]] <- baskets.df
> baskets.nlist$scores <- baskets.df

 
If you use [], the story is a bit different. You can change elements using [] as

well, but you have to assign a list of elements. So, to do the same as the preceding
options using [], you need to use following code:

 
> baskets.nlist[1] <- list(baskets.df)

 
All these options have exactly the same result, so you may wonder why you

would ever use the last option. Simple: Using [] allows you to change more than
one element at once. You can change both the season and the scores in
baskets.list with the following line of code:

 
> baskets.list[1:2] <- list(baskets.df, ‘2009-2010’)

 
This line replaces the first element in baskets.list with the value of

baskets.df, and the second element of baskets.list with the character value
‘2009-2010’.

 

Removing elements
 

Removing elements is even simpler: Just assign the NULL value to the element.
In most cases, the element is simply removed. To remove the first element from
baskets.nlist, you can use any of these (and more) options:

 
> baskets.nlist[[1]] <- NULL
> baskets.nlist$scores <- NULL
> baskets.nlist[‘scores’] <- NULL

 
Using single brackets, you again have the possibility of deleting more than one

element at once. Note that, in this case, you don’t have to create a list with the
value NULL first. To the contrary, if you were to do so, you would give the element
the value NULL instead of removing it, as shown in the following example:

 



> baskets.nlist <- list(scores=baskets.df, season=’2010-2011’)
> baskets.nlist[‘scores’] <- list(NULL)
> baskets.nlist
$scores
NULL
$season
[1] “2010-2011”

 

Adding extra elements using indices
 

In the section “Adding variables to a data frame,” earlier in this chapter, you
use either the $ or indices to add extra variables. Lists work the same way; to add
an element called players to the list baskets.nlist, you can use any of the
following options:

 
> baskets.nlist$players <- c(‘Granny’,’Geraldine’)
> baskets.nlist[[‘players’]] <- c(‘Granny’,’Geraldine’)
> baskets.nlist[‘players’] <- list(c(‘Granny’,’Geraldine’))

 
Likewise, to add the same information as a third element to the list

baskets.list, you can use any of the following options:
 

> baskets.list[[3]] <- c(‘Granny’,’Geraldine’)
> baskets.list[3] <- list(c(‘Granny’,’Geraldine’))

 
These last options require you to know exactly how many elements a list has

before adding an extra element. If baskets.list contained three elements already,
you would overwrite that one instead of adding a new one.

 

Combining lists
 

If you wanted to add elements to a list, it would be nice if you could do so
without having to worry about the indices at all. For that, the only thing you need is
a function you use extensively in all the previous chapters, the c() function.

 
That’s right, the c() function — which is short for concatenate — does a lot

more than just creating vectors from a set of values. The c() function can combine
different types of objects and, thus, can be used to combine lists into a new list as
well.

 



In order to be able to add the information about the players, you have to
create a list first. To make sure you have the same output, you have to rebuild the
original baskets.list as well. You can do both using the following code:

 
> baskets.list <- list(baskets.team,’2010-2011’)
> players <- list(rownames(baskets.team))

 
Then you can combine this players list with the list goal.list like this:

 
> c(baskets.list, players)
[[1]]
          1st 2nd 3rd 4th 5th 6th
Granny     12   4   5   6   9   3
Geraldine   5   4   2   4  12   9
[[2]]
[1] “2010-2011”
[[3]]
[1] “Granny”    “Geraldine”

 
If any of the lists contains names, these names are preserved in the new

object as well.
 

Reading the output of str() for lists
 

Many people who start with R get confused by lists in the beginning. There’s
really no need for that — there are only two important parts in a list: the elements
and the names. And in the case of unnamed lists, you don’t even have to worry
about the latter. But if you look at the structure of baskets.list in the following
output, you can see why people often shy away from lists.

 
> str(baskets.list)
List of 2
$ : num [1:2, 1:6] 12 5 4 4 5 2 6 4 9 12 ...
  ..- attr(*, “dimnames”)=List of 2
  .. ..$ : chr [1:2] “Granny” “Geraldine”
  .. ..$ : chr [1:6] “1st” “2nd” “3rd” “4th” ...
$ : chr “2010-2011”

 
This really looks like some obscure code used by the secret intelligence

services during World War II. Still, when you know how to read it, it’s pretty easy to
read. So let’s split up the output to see what’s going on here:

 
 The first line simply tells you that baskets.list is a list with two elements.



 
 The second line contains a $, which indicates the start of the first element. The
rest of that line you should be able to read now: It tells you that this first
element is a numeric matrix with two rows and six columns (see the previous
sections on matrices).

 
 The third line is preceded by .., indicating that this line also belongs to the first
element. If you look at the output of str(baskets.team) you see this line and
the following two as well. R keeps the row and column names of a matrix in an
attribute called dimnames. In the sidebar “Playing with attributes,” earlier in this
chapter, you manipulate those yourself. For now, you have to remember only
that an attribute is an extra bit of information that can be attached to almost
any object in R.

 
The dimnames attribute is by itself again a list.

 
 The fourth and fifth lines tell you that this list contains two elements: a
character vector of length 2 and one of length 6. R uses the .. only as a
placeholder, so you can read from the indentation which lines belong to which
element.

 
 Finally, the sixth line starts again with a $ and gives you the structure of the
second element — in this case, a character vector with only one value.

 
If you look at the output of the str(baskets.nlist), you get essentially the

same thing. The only difference is that R now puts the name of each element right
after the $.

 

 In many cases, looking at the structure of the output from a function can
give you a lot of insight into which information is contained in that object.
Often, these objects are lists, and the piece of information you’re looking for is
buried somewhere in that list.

 

Seeing the forest through the trees
 

Working with lists in R is not difficult when you’re used to it, and lists offer
many advantages. You can keep related data neatly together, avoiding an overload
of different objects in your workspace. You have access to powerful functions to



apply a certain algorithm on a whole set of objects at once. Above all, lists allow
you to write flexible and efficient code in R.

 
Yet, many beginning programmers shy away from lists because they’re

overwhelmed by the possibilities. R allows you to manipulate lists in many different
ways, but often it isn’t clear what the best way to perform a certain task is.

 

 Very likely, you’ll get into trouble at some point by missing important
details, but don’t let that scare you. There are a few simple rules that can
prevent much of the pain:

 
If you can name the elements in a list, do so. Working with names always
makes life easier, because you don’t have to remember the order of the
elements in the list.

 
If you need to work on a single element, always use either [[]] or $.

 
If you need to select different elements in a list, always use []. Having
named elements can definitely help in this case.

 
If you need a list as a result of a command, always use [].

 
If the elements in your list have names, use them!

 
If in doubt, consult the Help files.

 
 



Part III
Coding in R

In this part . . .
It’s one thing to do your work at the command line, but you can do more with

R. Or, more precisely, you can do more with less effort if you wrap repeating tasks
into functions.

This part introduces you to the way functions work in R and gives you all the
building blocks you need to do a maximum amount of work with a minimum
amount of code.



Chapter 8
 

Putting the Fun in Functions

In This Chapter
 Automating your work with functions
 Playing with arguments
 Finding objects within the functions

 Working with methods
 

Automating your work is probably the number-one reason why you use a
programming language. For that, you can get pretty far with the built-in functions
of R in combination with scripts, but scripts aren’t very flexible when dealing with
variable input. Luckily, R allows you to write your own custom functions (for
example, to automate the cleaning of your data, to apply a series of analyses with
one command, or to construct custom plots). In this chapter, you discover how to
write and work with functions in R.

 

Moving from Scripts to Functions
Going from a script to a function doesn’t take much effort at all. A function is

essentially a piece of code that is executed consecutively and without interruption.
In that way, a function doesn’t differ that much from a script run using the source()
function, as we explain in Chapter 2.

 
But a function has two very nice advantages over scripts:

 
 It can work with variable input, so you use it with different data.

 
 It returns the output as an object, so you can work with the result of that
function.

 
The best way to learn to swim is by jumping in the deep end, so let’s just

write a function to show you how easy that is in R.
 



Making the script
 

Suppose you want to present fractional numbers as percentages, nicely
rounded to one decimal digit. Here’s how to achieve that:

 
1. Multiply the fractional numbers by 100.

 2. Round the result to one decimal place.
 You can use the round() function to do this (see Chapter 4).
 3. Paste a percentage sign after the rounded number.
 The paste() function is at your service to fulfill this task (see Chapter 5).
 4. Print the result.
 The print() function will do this.
 You can easily translate these steps into a little script for R. So, open a new

script file in your editor and type the following code:
 

x <- c(0.458, 1.6653, 0.83112)
percent <- round(x * 100, digits = 1)
result <- paste(percent, “%”, sep = “”)
print(result)

 
If you save this script as a script file — for example, pastePercent.R — you

can now call this script in the console (as shown in Chapter 2) with the following
command:

 
> source(‘pastePercent.R’)
[1] “45.8%”  “166.5%” “83.1%”

 
That works splendidly, as long as you want to see the same three numbers

every time you call the script. But using the script for other data would be mildly
inconvenient, because you would have to change the script every time.

 

 In most editors, you also can source a script (send a complete script file to
the R console) with one simple click. In RStudio, this is done by clicking the
Source button or by pressing Ctrl+Shift+Enter.

 

Transforming the script
 



To make this script into a function, you need to do a few things. Look at the
script as a little factory that takes the raw numeric material and polishes it up to
shiny percentages every mathematician will crave.

 
First, you have to construct the factory building, preferably with an address so

people would know where to send their numbers. Then you have to install a front
gate so you can get the raw numbers in. Next, you create the production line to
transform those numbers. Finally, you have to install a back gate so you can send
your shiny percentages into the world.

 
To build your factory, change the script to the following code:

 
addPercent <- function(x){
  percent <- round(x * 100, digits = 1)
  result <- paste(percent, “%”, sep = “”)
  return(result)
}

 
Let’s take a closer look at the different parts that make up this little factory.

The function is created from the following elements:
 

 The keyword function always must be followed by parentheses. It tells R that
what comes next is a function.

 
 The parentheses after function form the front gate, or argument list, of your
function. Between the parentheses, the arguments to the function are given. In
this case, there’s only one argument, named x.

 
 The braces, {}, can be seen as the walls of your function. Everything between
the braces is part of the assembly line, or the body of your function.

 
 The return() statement is the back gate of your function. The object you put
between the parentheses is returned from inside the function to your workspace.
You can put only one object between the parentheses.

 
If you put all this together, you get a complete function, but R doesn’t know

where to find it yet. So, you use the assignment operator <- to put this complete
function into an object named addPercent. This is the address R can send numbers
to for transformation. Now the function has a nice name and is ready to use.

 



 There’s no way you can define in the argument list that x should be a
numeric vector. For example, if you try to use a character vector as a value for
x, the multiplication inside the body will throw an error because you can’t
multiply characters by a number. If you want to control which type of object is
given as an argument, you have to do so manually, in the body of the function.
(We give examples of that in Chapters 9 and 10.)

 

Using the function
 

Save the script again, and load it into the console using the source()
command displayed earlier. Now you see . . . nothing. R doesn’t let you know by
itself that it loaded the function, but it’s there in the workspace, as you can check
by using ls():

 
> ls()
[1] “addPercent” “percent”       “result”        “x”

 

 If you create a function and load it in the workspace by sourcing the script
containing the function, this function becomes an object in the workspace and
can, thus, be found using ls() and — if necessary — removed using rm().

 

Formatting the numbers
 

The output of ls() tells you the function is there, so you should be able to use
it. You can now create the most astonishing percentages by using the
addPercent() function like this:

 
> new.numbers <- c(0.8223, 0.02487, 1.62, 0.4)
> addPercent(new.numbers)
[1] “82.2%” “2.5%”  “162%”  “40%”

 

 Actually, you could use the code sprintf(“%1.1f%%”,100*x) instead of the
addPercent() function for a very similar result. C coders will recognize
sprintf() immediately and agree that it’s both incredibly versatile and



complex. The function comes with a very long Help page that’s definitely worth
reading if you need to format values often. If not, save yourself the headache.

 

Playing with function objects
 

Because a function in R is just another object, you can manipulate it much the
same way as you manipulate other objects. You can assign the function to a new
object and effectively copy it like this:

 
> ppaste <- addPercent

 
Now ppaste is a function as well that does exactly the same as addPercent.

Note that you don’t add parentheses after addPercent in this case.
 

 If you add the parentheses, you call the function and put the result of that
call in ppaste. If you don’t add the parentheses, you refer to the function
object itself without calling it. This difference is important when you use
functions as arguments (see the “Using functions as arguments” section, later
in this chapter).

 
You can print the content of a function by simply typing its name at the

prompt, like this:
 

> ppaste
function(x){
  percent <- round(x * 100, digits = 1)
  result <- paste(percent, “%”, sep = “”)
  return(result)
}

 
So, the assignment to ppaste actually copied the function code of addPercent

into a new object.
 

 That’s all cool, but it also means that you can effectively erase a function if
you accidentally use the same name for another object. Or you could lose data
if you accidentally gave the same name as your data object to a function.
There’s no undo button in R, so pay attention to the names you choose.



 
Luckily, this problem doesn’t occur with the base R functions and functions

contained in packages. Although it’s not a good idea, you could, for example, name
a vector sum and still be able to use the sum() function afterward. When you use
sum() as a function, R only searches for functions with that name and disregards all
other objects with the same name.

 

Reducing the number of lines
 

Not all elements mentioned in the “Transforming the script” section, earlier in
this chapter, are required. In fact, the return() statement is optional, because, by
default, R will always return the value of the last line of code in the function body.

 

Returning values by default
 

Suppose you forgot to add return(result) in the addPercent() function. What
would happen then? You can find out if you delete the last line of the addPercent()
function, save the file, and source it again to load it into the workspace.

 

 Any change you make to a function will take effect only after you send the
adapted code to the console. This will effectively overwrite the old function
object by a new one.

 
If you try addPercent(new.numbers) again, you see . . . nothing. Apparently,

the function doesn’t do anything anymore — but this is an illusion, as you can see
with the following code:

 
> print( addPercent(new.numbers) )
[1] “82.2%” “2.5%”  “162%”  “40%”

 
In this case, the last line of the function returns the value of result invisibly,

which is why you see it only if you specifically ask to print it. The value is returned
invisibly due to the assignment in the last line. Because this isn’t really practical,
you can drop the assignment in the last line and change the function code to the
following:

 
addPercent <- function(x){



  percent <- round(x * 100, digits = 1)
  paste(percent, “%”, sep = “”)
}

 
This function works again as before. It may look like return() is utterly

useless, but you really need it if you want to exit the function before the end of the
code in the body. For example, you could add a line to the addPercent function that
checks whether x is numeric, and if not, returns NULL, like this:

 
addPercent <- function(x){
  if( !is.numeric(x) ) return(NULL)
  percent <- round(x * 100, digits = 1)
  paste(percent, “%”, sep = “”)
}

 
In Chapter 9, we explain how to use if() conditions. In Chapter 10, you meet

the functions you need to throw your own warnings and errors.
 

Breaking the walls
 

The braces, {}, form the proverbial wall around the function, but in some
cases you can drop them as well. Suppose you want to calculate the odds from a
proportion. The odds of something happening is no more than the chance it
happens divided by the chance it doesn’t happen. So, to calculate the odds, you
can write a function like this:

 
> odds <- function(x) x / (1-x)

 
Even without the braces or return() statement, this works perfectly fine, as

you can see in the following example:
 

> odds(0.8)
[1] 4

 

 If a function consists of only one line of code, you can just add that line
after the argument list without enclosing it in braces. R will see the code after
the argument list as the body of the function.

 
You could do the same with the addPercent() function by nesting everything

like this:



 
> addPercent <- function(x) paste(round(x * 100, digits = 1), “%”, sep =
“”)

 
That’s a cunning plan to give the next person reading that code a major

headache. It’s a bit less of a cunning plan if that next person is you, though, and
chances are, it will be.

 

 Saving space in a function body is far less important than keeping the code
readable, because saving space gains you nothing. Constructs like the odds
function are useful only in very specific cases. You find examples of this in the
“Using anonymous functions” section, later in this chapter, as well as in
Chapter 13.

 

Using Arguments the Smart Way
In Chapter 3, we explain how you can specify arguments in a function call. To

summarize:
 

 Arguments are always named when you define the function. But when you call
the function, you don’t have to specify the name of the argument if you give
them in the order in which they appear in the argument list of a function.

 
 Arguments can be optional, in which case you don’t have to specify a value for
them.

 
 Arguments can have a default value, which is used if you didn’t specify a value
for that argument yourself.

 
Not only can you use as many arguments as you like — or as is feasible, at

least — but you can very easily pass arguments on to functions inside the body of
your own function with the simply genius dots argument. Fasten your seat belts —
we’re off to make some sweet R magic.

 

Adding more arguments
 

The argument list of the addPercent() function doesn’t really look much like a



list yet. Actually, the only thing you can do for now is tell the function which
number you want to see converted. It serves perfectly well for this little function,
but you can do a lot more with arguments than this.

 
The addPercent() function automatically multiplies the numbers by 100. This

is fine if you want to convert fractions to percentages, but if the calculated numbers
are percentages already, you would have to divide these numbers first by 100 to
get the correct result, like this:

 
> percentages <- c(58.23, 120.4, 33)
> addPercent(percentages/100)
[1] “58.2%”  “120.4%” “33%”

 
That’s quite a way around, but you can avoid this by adding another argument

to the function that controls the multiplication factor.
 

Adding the mult argument
 

You add extra arguments by including them between the parentheses after
the function keyword. All arguments are separated by commas. To add an
argument mult that controls the multiplication factor in your code, you change the
function like this:

 
addPercent <- function(x, mult){
  percent <- round(x * mult, digits = 1)
  paste(percent, “%”, sep = “”)
}

 
Now you can specify the mult argument in the call to addPercent(). If you

want to use the percentages vector from the previous section, you use the
addPercent() function, like this:

 
> addPercent(percentages, mult = 1)
[1] “58.2%”  “120.4%” “33%”

 

Adding a default value
 

Adding an extra argument gives you more control over what the function does,
but it also introduces a new problem. If you don’t specify the mult argument in the
addPercent() function, you get the following result:



 
> addPercent(new.numbers)
Error in x * mult : ‘mult’ is missing

 
Because you didn’t specify the mult argument, R has no way of knowing which

number you want to multiply x by, so it stops and tells you it needs more
information. That’s pretty annoying, because it also means you would have to
specify mult=100 every time you used the function with fractions. Specifying a
default value for the argument mult takes care of this.

 

 You specify default values for any argument in the argument list by adding
the = sign and the default value after the respective argument.

 
To get the wanted default behavior, you adapt addPercent() like this:

 
addPercent <- function(x, mult = 100){
  percent <- round(x * mult, digits = 1)
  paste(percent, “%”, sep = “”)
}

 
Now the argument works exactly the same as arguments with a default value

from base R functions. If you don’t specify the argument, the default value of 100 is
used. If you do specify a value for that argument, that value is used instead. So, in
the case of addPercent(), you can now use it as shown in the following example:

 
> addPercent(new.numbers)
[1] “82.2%” “2.5%”  “162%”  “40%”
> addPercent(percentages, 1)
[1] “58.2%”  “120.4%” “33%”

 

 You don’t have to specify the names of the arguments if you give them in
the same order as they’re given in the argument list. This works for all
functions in R, including those you create yourself.

 

Conjuring tricks with dots
 

The addPercent() function rounds every percentage to one decimal place, but
you can add another argument to specify the number of digits the round() function



should use in the same way you did for the mult argument in the previous section.
However, if you have a lot of arguments you pass on to other functions inside the
body, you’ll end up with quite a long list of arguments.

 
R has a genius solution for this: the dots (...) argument. You can see the dots

argument as an extra gate in your little function. Through that gate, you drop
additional resources (arguments) immediately at the right spot in the production
line (the body) without the hassle of having to check everything at the main gate.

 

 You normally use the dots argument by adding it at the end of the
argument list of your own function and at the end of the arguments for the
function you want to pass arguments to.

 
To pass any argument to the round() function inside the body of addPercent,

you adapt the code of the latter as follows:
 

addPercent <- function(x, mult = 100, ...){
  percent <- round(x * mult, ...)
  paste(percent, “%”, sep = “”)
}

 
Now you can specify the digits argument for the round() function in the

addPercent() call like this:
 

> addPercent(new.numbers, digits = 2)
[1] “82.23%” “2.49%”  “162%”   “40%”

 
You don’t have to specify any argument if the function you pass the arguments

to doesn’t require it. You can use the addPercent() function as before:
 

> addPercent(new.numbers)
[1] “82%”  “2%”   “162%” “40%”

 
Notice that the outcome isn’t the same as it used to be. The numbers are

rounded to integers and not to the first decimal.
 

 If you don’t specify an argument in lieu of the dots, the function where the
arguments are passed to uses its own default values. If you want to specify
different default values, you’ll have to add a specific argument to the argument



list instead of using the dots.
 

So, to get addPercent() to use a default rounding to one decimal, you have to
use the following code:

 
addPercent <- function(x, mult = 100, digits = 1){
  percent <- round(x * mult, digits = digits)
  paste(percent, “%”, sep = “”)
}

 
You don’t have to give the argument in the argument list the same name as

the argument used by round(). You can use whatever name you want, as long as
you place it in the right position within the body. However, if you can use names
for arguments that also are used by native functions within R, it’ll be easier for
people to understand what the argument does without having to look at the source
code.

 

 R won’t complain if you use the dots argument in more than one function
within the body, but before passing arguments to more than one function in
the body, you have to be sure this won’t cause any trouble. R passes all extra
arguments to every function, and — if you’re lucky — complains about the
resulting mess afterward.

 

Using functions as arguments
 

You read that correctly. In R, you can pass a function itself as an argument. In
the “Playing with function objects” section, earlier in this chapter, you saw that you
can easily assign the complete code of a function to a new object. In much the
same way, you also can assign the function code to an argument. This opens up a
complete new world of possibilities. We show you only a small piece of that world
in this section.

 

Applying different ways of rounding
 

In Chapter 4, we show you different options for rounding numbers. The
addPercent() function uses round() for that, but you may want to use one of the
other options — for example, signif(). The signif() function doesn’t round to a
specific number of decimals; instead, it rounds to a specific number of digits (see



Chapter 4). You can’t use it before you call addPercent(), because the round()
function in that body will mess everything up again.

 
Of course, you could write a second function specifically for that, but there’s no

need to do so. Instead, you can just adapt addPercent() in such a way that you
simply give the function you want to use as an argument, like this:

 
addPercent <- function(x, mult = 100, FUN = round, ...){
  percent <- FUN(x * mult, ...)
  paste(percent, “%”, sep = “”)
}

 
This really couldn’t be easier: You add an argument to the list — in this case,

FUN — and then you can use the name of that argument as a function. Also,
specifying a default value works exactly the same as with other arguments; just
specify the default value — in this case, round — after an = sign.

 
If you want to use signif() now for rounding the numbers to three digits, you

can easily do that using the following call to addPercent():
 

> addPercent(new.numbers, FUN = signif, digits = 3)
[1] “82.2%” “2.49%” “162%”  “40%”

 
What happens here?

 
1. As before, R takes the vector new.numbers and multiplies it by 100, because

that’s the default value for mult.
 2. R assigns the function code of signif to FUN, so now FUN() is a perfect copy

of signif() and works exactly the same way.
 3. R takes the argument digits and passes it on to FUN().
 Note the absence of parentheses in the argument assignment. If you added

the parentheses there, you would assign the result of a call to signif() instead of
the function itself. R would interpret signif(), in that case, as a nested function,
and that’s not what you want. Plus, R would throw an error because, in that case,
you call signif() without arguments, and R doesn’t like that.

 

Using anonymous functions
 

You can, of course, use any function you want for the FUN argument. In fact,
that function doesn’t even need to have a name, because you effectively copy the



code. So, instead of giving a function name, you can just add the code as an
argument as a nameless or anonymous function. An anonymous function is a
function without a name.

 
Suppose you have the quarterly profits of your company in a vector like this:

 
> profits <- c(2100, 1430, 3580, 5230)

 
Your boss asks you to report how much profit was made in each quarter

relative to the total for the year, and, of course, you want to use your new
addPercent() function. To calculate the relative profits in percent, you could write a
rel.profit() function like this:

 
> rel.profit <- function(x) round(x / sum(x) * 100)

 
But you don’t have to. Instead, you can just use the function body itself as an

argument, as in the following example:
 

> addPercent(profits,
                FUN = function(x) round(x / sum(x) * 100) )
[1] “17%” “12%” “29%” “42%”

 
Of course, this isn’t the optimal way of doing this specific task. You could

easily have gotten the same result with the following code:
 

> addPercent(profits / sum(profits))
[1] “17%” “12%” “29%” “42%”

 
But in some cases, this construct with anonymous functions is really a treat,

especially when you want to use functions that can be written in only a little code
and aren’t used anywhere else in your script. (You find more — and better —
examples of anonymous functions in Chapter 13.)

 

Coping with Scoping
In the previous chapters, you work solely in the workspace. Every object you

create ends up in this environment, which is called the global environment. The
workspace — or global environment — is the universe of the R user where
everything happens.

 



 R gurus will tell you that this “universe” is actually contained in another
“universe” and that one in yet another, and so on — but that “outer space” is a
hostile environment suited only to daring coders without fear of breaking
things. So, there’s no need to go there now.

 

Crossing the borders
 

In the functions in the previous sections, you worked with some objects that
you didn’t first create in the workspace. You use the arguments x, mult, and FUN as
if they’re objects, and you create an object percent within the function that you
can’t find back in the workspace after using the function. So, what’s going on?

 

Creating a test case
 

Let’s find out through a small example. First, create an object x and a small
test() function like this:

 
x <- 1:5
test <- function(x){
  cat(“This is x:”, x, “\n”)
  rm(x)
  cat(“This is x after removing it:”,x,”\n”)
}

 

Matching functions
In the examples in the “Using functions as arguments” section, you
effectively pass the code of a function as an argument. This also means that
if you have an object with the same name as the function you want to use,
this whole construct won’t work. Suppose you had the not-so-smart idea of
creating a vector with the relative gain of a couple rounds of poker like this:

> round <- c(0.48,-0.52,1.88)
 

If you tried to call addPercent() with the FUN argument on this vector, you’d
get the following error:

> addPercent(round,FUN=round)
Error in addPercent(round, FUN = round) :
could not find function “FUN”



 
Instead of passing the code of the round function, R passes the vector round
as the FUN argument. To avoid these kind of problems, you can use a special
function, match.fun(), in the body of addPercent(), like this:

addPercent <- function(x, mult = 100, FUN, ...){
FUN <- match.fun(FUN)
percent <- FUN(x * mult, ...)
paste(percent, “%”, sep = “”)
}

 
This function will look for a function that matches the name round and copy
that code into the FUN argument instead of the vector round. As an added
bonus, match.fun() also allows you to use a character object as the
argument, so specifying FUN = ‘round’ now works as well. All native R
functions use match.fun() for this purpose, and we can only advise you to do
the same if you write code that will be used by other people. But passing
functions works fine without using match.fun() as well, as long as you use
sensible names for the other objects in your workspace.

 
 

The test() function doesn’t do much. It takes an argument x, prints it to the
console, removes it, and tries to print it again. You may think this function will fail,
because x disappears after the line rm(x). But no, if you try this function it works
just fine, as shown in the following example:

 
> test(5:1)
This is x: 5 4 3 2 1
This is x after removing it: 1 2 3 4 5

 
Even after removing x, R still can find another x that it can print. If you look a

bit more closely, you see that the x printed in the second line is actually not the
one you gave as an argument, but the x you created before in the workspace. How
come?

 

Searching the path
 

If you use a function, the function first creates a temporary local environment.
This local environment is nested within the global environment, which means that,
from that local environment, you also can access any object from the global
environment. As soon as the function ends, the local environment is destroyed



together with all objects in it.
 

 To be completely correct, a function always creates an environment within
the environment it’s called from, called the parent environment. If you call a
function from the workspace through a script or using the command line, this
parent environment happens to be the global environment.

 
You can see a schematic illustration of how the test() function works in Figure

8-1. The big rectangle represents the global environment, and the small rectangle
represents the local environment of the test function. In the global environment,
you assign the value 1:5 to the object x. In the function call, however, you assign
the value 5:1 to the argument x. This argument becomes an object x in the local
environment.

 
Figure 8-1: How R looks through global and local environments.

If R sees any object name — in this case, x — mentioned in any code in the
function, it first searches the local environment. Because it finds an object x there,
it uses that one for the first cat() statement. In the next line, R removes that
object x. So, when R reaches the third line, it can’t find an object x in the local
environment anymore. No problem. R moves up the stack of environments and
checks to see if it finds anything looking like an x in the global environment.
Because it can find an x there, it uses that one in the second cat() statement.

 

 If you use rm() inside a function, rm() will, by default, delete only objects
within that function. This way, you can avoid running out of memory when you
write functions that have to work on huge datasets. You can immediately
remove big temporary objects instead of waiting for the function to do so at
the end.

 



Using internal functions
 

Writing your functions in such a way that they need objects in the global
environment doesn’t really make sense, because you use functions to avoid
dependency on objects in the global environment in the first place.

 
In fact, the whole concept behind R strongly opposes using global variables

used in different functions. As a functional programming language, one of the main
ideas of R is that the outcome of a function should not be dependent on anything
but the values for the arguments of that function. If you give the arguments the
same values, you always get the same result. If you come from other programming
languages like Java, this characteristic may strike you as odd, but it has its merits.
Sometimes you need to repeat some calculations a few times within a function, but
these calculations only make sense inside that function.

 
Suppose you want to compare the light production of some lamps at half

power and full power. The towels you put in front of the window to block the sun
out aren’t really up to the job, so you also measure how much light is still coming
through. You want to subtract the mean of this value from the results in order to
correct your measurements.

 
To calculate the efficiency at 50 percent power, you can use the following

function:
 

calculate.eff <- function(x, y, control){
  min.base <- function(z) z - mean(control)
  min.base(x) / min.base(y)
}

 
Inside the calculate.eff() function, you see another function definition for a

min.base() function. Exactly as in the case of other objects, this function is created
in the local environment of calculate.eff() and destroyed again when the
function is done. You won’t find min.base() back in the workspace.

 
You can use the function as follows:

 
> half <- c(2.23, 3.23, 1.48)
> full <- c(4.85, 4.95, 4.12)
> nothing <- c(0.14, 0.18, 0.56, 0.23)
> calculate.eff(half, full, nothing)
[1] 0.4270093 0.6318887 0.3129473

 
If you look a bit more closely at the function definition of min.base(), you



notice that it uses an object control but doesn’t have an argument with that name.
How does this work then? When you call the function, the following happens (see
Figure 8-2):

 
1. The function calculate.eff() creates a new local environment that

contains the objects x (with the value of fifty), y (with the value of hundred),
control (with the value of nothing), as well as the function min.base().

 2. The function min.base() creates a new local environment within the one of
calculate.eff() containing only one object z with the value of x.

 3. min.base() looks for the object control in the environment of
calculate.eff() and subtracts the mean of this vector from every number of z.
This value is then returned.

 4. The same thing happens again, but this time z gets the value of y.
 5. Both results are divided by another, and the result is passed on to the

global environment again.
 

 The local environment is embedded in the environment where the function
is defined, not where it’s called. Suppose you use addPercent() inside
calculate.eff() to format the numbers. The local environment created by
addPercent() is not embedded in the one of calculate.eff() but in the global
environment, where addPercent() is defined.

 
Figure 8-2: The relations between the environments of the functions calculate.eff and
min.base.

Dispatching to a Method
We want to cover one more thing about functions, because you need it to

understand how one function can give a different result based on the type of value
you give the arguments. R has a genius system, called the generic function system,
that allows you to call different functions using the same name. If you think this is



weird, think again about data frames and lists (see Chapter 7). If you print a list in
the console, you get the output arranged in rows. On the other hand, a data frame
is printed to the console arranged in columns. So, the print() function treats lists
and data frames differently, but both times you used the same function. Or did you
really?

 

Finding the methods behind the function
 

It’s easy to find out if you used the same function both times — you can just
peek inside the function code of print() by typing its name at the command line,
like this:

 
> print
function (x, ...)
UseMethod(“print”)
<bytecode: 0x0464f9e4>
<environment: namespace:base>

 
You can safely ignore the two last lines, because they refer to complicated

stuff in the “outer space” of R and are used only by R developers. But take a look at
the function body — it’s only one line!

 

 Functions that don’t do much other than passing on objects to the right
function are called generic functions. In this example, print() is a generic
function. The functions that do the actual work are called methods. So, every
method is a function, but not every function is a method.

 

Using methods with UseMethod
 

How on earth can that one line of code in the print() function do so many
complex things like printing vectors, data frames, and lists all in a different way?
The answer is contained in the UseMethod() function, which is the central function
in the generic function system of R. All UseMethod() does is tell R to move along
and look for a function that can deal with the type of object that is given as the
argument x.

 
R does that by looking through the complete set of functions in search of

another function that starts with print followed by a dot and then the name of the



object type.
 

 You can do that yourself by using the command apropos(‘print\\.’).
Between the quotation marks, you can put a regular expression much like in
the grep() function we discuss in Chapter 5. In order to tell R that the dot
really means a dot, you have to precede it with two backslashes. Don’t be
surprised when you get over 40 different print() functions for all kinds of
objects.

 
Suppose you have a data frame you want to print. R will look up the function

print.data.frame() and use that function to print the object you passed as an
argument. You also can call that function yourself like this:

 
> small.one <- data.frame(a = 1:2, b = 2:1)
> print.data.frame(small.one)
  a b
1 1 2
2 2 1

 
The effect of that function differs in no way from what you would get if you

used the generic print(small.one) function instead. That’s because print() will
give the small.one to the print.data.frame() function to take care of it.

 

Using default methods
 

In the case of a list, you may be tempted to look for a print.list() function.
But it won’t work, because the print.list() function doesn’t exist. Still that isn’t a
problem for R — R will ignore the type of the object in that case and just look for a
default method, print.default().

 

 For many generic functions, there is a default method that’s used if no
specific method can be found. If there is one, you can recognize the default
method by the word default after the dot in the function name.

 
So, if you want to print the data frame as a list, you can use the default

method like this:
 



> print.default(small.one)
$a
[1] 1 2
$b
[1] 2 1
attr(,”class”)
[1] “data.frame”

 

Doing it yourself
 

All that method dispatching sounds nice, but it may seem mostly like internal
affairs of R and not that interesting to know as a user . . . unless you could use that
system yourself, of course — and you can!

 

Adapting the addPercent function
 

Suppose you want to be able to paste the percent sign to character vectors
with the addPercent function. As the function is written in the previous sections,
you can’t. A character vector will give an error the moment you try to multiply it, so
you need another function for that, like the following:

 
addPercent.character <- function(x){
  paste(x,”%”,sep=””)
}

 
Note that the type of the object is not vector but character. In the same way,

you also have to rename the original addPercent function to addPercent.numeric in
your script.

 

 If you use the system of method dispatching, you can keep all functions in
one script file if they aren’t too big. That way, you have to source only one
script file in order to have the whole generic system working.

 

Object-oriented programming (OOP) in R
The system of method dispatching described in this chapter is called S3, and
it’s only one of the ways you can work object oriented in R. If you’ve



programmed in an object-oriented language like Java or C++ before, be sure
to check out the options for OOP in R. The method dispatching here is only
the very start; the S4 methods and reference classes are far more powerful
and include many of the necessary principles of OOP, including constructors,
inheritance, and the like. But that’s a subject so complex that it could fill a
whole book.
Quite a big part of OOP in R is covered in R Programming for Bioinformatics,
by Robert Gentleman (Chapman and Hall/CRC), which we highly recommend.

 
All you need now is a generic addPercent() function like this:

 
addPercent <- function(x,...){
  UseMethod(“addPercent”)
}

 
You use only two arguments here: x and the dots (...). The use of the dots

argument assures you can still use all the arguments from the
addPercent.numeric() function in your call to addPercent(). The extra arguments
are simply passed on to the appropriate method via the dots argument, as
explained in the “Using Arguments the Smart Way” section, earlier in this chapter.

 
After sending the complete script file to the console, you can send both

character vectors and numeric vectors to addPercent(), like this:
 

> addPercent(new.numbers, FUN = floor)
[1] “82%”  “2%”   “162%” “40%”
> addPercent(letters[1:6])
[1] “a%” “b%” “c%” “d%” “e%” “f%”

 

Adding a default function
 

If you try to use the small data frame you made in the previous section, you
would get the following error:

 
> addPercent(small.one)
Error in UseMethod(“addPercent”) :
  no applicable method for ‘addPercent’ applied to an object of class
“data.frame”

 
That’s a rather complicated way of telling you that there’s no method for a

data frame. There’s no need for a data frame method either, but it may be nice to
point out to the users of your code that they should use a vector instead. So, you



can easily add a default method exactly like R does:
 

addPercent.default <- function(x){
  cat(‘You should try a numeric or character vector.\n’)
}

 
This default method doesn’t do much apart from printing a message, but at

least that message is a bit easier to understand than the one R spits out.
Sometimes it’s apparent that the error messages of R aren’t always written with a
normal end-user in mind.

 
 



Chapter 9
 

Controlling the Logical Flow

In This Chapter
 Making choices based on conditions
 Looping over different values
 Applying functions row-wise and column-wise

 Applying functions over values, variables, and list elements
 

A function can be nothing more than a simple sequence of actions, but these
kinds of functions are highly inflexible. Often, you want to make choices and take
action dependent on a certain value.

 
Choices aren’t the only things that can be useful in functions. Loops can

prevent you from having to rewrite the same code over and over again. If you want
to calculate the summary statistics on different datasets, for example, you can
write the code to calculate those statistics and then tell R to carry out that code for
all the datasets you had in mind.

 
R has a very specific mechanism for looping over values that not only is

incredibly powerful, but also poses less trouble when you get the hang of it.
Instead of using a classic loop structure, you use a function to apply another
function on any of the objects discussed in the previous chapters. This way of
looping over values is one of the features that distinguishes R from many other
programming languages.

 
In this chapter, we cover the R tools to create loops and make decisions.

 
Note: If a piece of code is not preceded by a prompt (>), it represents an

example function that you can copy to your editor and then send to the console (as
explained in Chapter 2). All code you normally type directly at the command line is
preceded by a prompt.

 

Making Choices with if Statements
Defining a choice in your code is pretty simple: If this condition is true, then



carry out a certain task. Many programming languages let you do that with exactly
those words: if . . . then. R makes it even easier: You can drop the word then and
specify your choice in an if statement.

 

 An if statement in R consists of three elements:
 

 The keyword if
 

 A single logical value between parentheses (or an expression that leads to a
single logical value)

 
 A block of code between braces that has to be executed when the logical value
is TRUE

 
To show you how easy this is, let’s write a very small function,

priceCalculator(), that calculates the price you charge to a customer based on
the hours of work you did for that customer. The function should take the number
of hours (hours) and the price per hour (pph) as input. The priceCalculator()
function could be something like this:

 
priceCalculator <- function(hours, pph=40){
    net.price <- hours * pph
    round(net.price)
}

 
Here’s what this code does:

 
 With the function keyword, you define the function.

 
 Everything between the braces is the body of the function (see Chapter 8).

 
 Between the parentheses, you specify the arguments hours (without a default
value) and pph (with a default value of $40 per hour).

 
 You calculate the net price by multiplying hours by pph.

 
 The outcome of the last statement in the body of your function is the returned
value. In this case, this is the total price rounded to the dollar.

 



 You could drop the argument pph and just multiply hours by 40. But that
would mean that if, for example, your colleague uses a different hourly rate,
he would have to change the value in the body of the function in order to be
able to use it. It’s good coding practice to use arguments with default values
for any value that can change. Doing so makes a function more flexible and
usable.

 
Now imagine you have some big clients that give you a lot of work. To keep

them happy, you decide to give them a reduction of 10 percent on the price per
hour for orders that involve more than 100 hours of work. So, if the number of
hours worked is larger than 100, you calculate the new price by multiplying the
price by 0.9. You can write that almost literally in your code like this:

 
priceCalculator <- function(hours, pph=40){
    net.price <- hours * pph
    if(hours > 100) {
      net.price <- net.price * 0.9
    }
    round(net.price)
}

 
Copy this code in a script file, and send it to the console to make it available

for use. If you try out this function, you can see that the reduction is given only
when the number of hours is larger than 100:

 
> priceCalculator(hours = 55)
[1] 2200
> priceCalculator(hours = 110)
[1] 3960

 

 An if statement in R consists of three elements: the keyword if, a single
logical value between parentheses, and a block of code between braces that
has to be executed when the logical value is TRUE. If you look at the if
statement in the previous function, you find these three elements. Between
the parentheses, you find an expression (hours > 100) that evaluates to a
single logical value. Between the braces stands one line of code that reduces
the net price by 10 percent when the line is carried out.

 

 This construct is the most general way you can specify an if statement. But



if you have only one short line of code in the code block, you don’t have to put
braces around it. You can change the complete if statement in the function
with the following line:

 
if(hours > 100) net.price <- net.price * 0.9

 

 The usual way of getting help on a function named, for example, fun.name
(?fun.name) does not work for if. To access the built-in help for if, you have
to quote the function name. You can use single quotes, double quotes, or
backticks. Each of the following statements takes you to the Help page for if:

 
?’if’
?”if”
?`if`

 

Doing Something Else with an if...else Statement
In some cases, you need your function to do something if a condition is true

and something else if it is not. You could do this with two if statements, but
there’s an easier way in R: an if...else statement. An if…else statement contains
the same elements as an if statement (see the preceding section), and then some
extra:

 
 The keyword else, placed after the first code block

 
 A second block of code, contained within braces, that has to be carried out if and
only if the result of the condition in the if() statement is FALSE

 
In some countries, the amount of value added tax (VAT) that has to be paid

on certain services depends on whether the client is a public or private
organization. Imagine that public organizations have to pay only 6 percent VAT and
private organizations have to pay 12 percent VAT. You can add an extra argument
public to the priceCalculator() function and adopt it as follows to add the correct
amount of VAT:

 
priceCalculator <- function(hours, pph=40, public=TRUE){
    net.price <- hours * pph
    if(hours > 100) net.price <- net.price * 0.9
    if(public) {
      tot.price <- net.price * 1.06
    } else {



      tot.price <- net.price * 1.12
    }
    round(tot.price)
}

 
If you send this code to the console, you can test the function. For example, if

you worked for 25 hours, the following code gives you the different amounts you
charge for public and private organizations, respectively:

 
> priceCalculator(25,public=TRUE)
[1] 1060
> priceCalculator(25,public=FALSE)
[1] 1120

 
This works well, but how does it work?

 
If you look at the if...else statement in the previous function, you find these

elements. If the value of the argument public is TRUE, the total price is calculated
as 1.06 times the net price. Otherwise, the total price is 1.12 times the net price.

 

 The if statement needs a logical value between the parentheses. Any
expression you put between the parentheses is evaluated before it’s passed on
to the if statement. So, if you work with a logical value directly, you don’t
have to specify an expression at all. Using, for example, if(public == TRUE) is
about as redundant as asking if white snow is white. It would work, but it’s bad
coding practice.

 
Also, in the case of an if...else statement you can drop the braces if both

code blocks exist of only a single line of code. So, you could just forget about the
braces and squeeze the whole if...else statement on a single line. Or you could
even write it like this:

 
if(public) tot.price <- net.price * 1.06 else
           tot.price <- net.price * 1.12

 

 Putting the else statement at the end of a line and not the beginning of the
next one is a good idea. In general, R reads multiple lines as a single line as
long as it’s absolutely clear that the command isn’t finished yet (see Chapter
3). If you put else at the beginning of the second line, R considers the first line
finished and complains. You can put else at the beginning of a next line only if



you do so within a function and you source the complete file at once to R.
 

But you can still make this shorter. The if statement works like a function
and, hence, it also returns a value. As a result, you can assign that value to an
object or use it in calculations. So, instead of recalculating net.price and assigning
the result to tot.price within the code blocks, you can use the if...else
statement like this:

 
tot.price <- net.price * if(public) 1.06 else 1.12

 
R will first evaluate the if...else statement, and multiply the outcome by

net.price. The result of this is then assigned to tot.price. This differs not one iota
from the result of the five lines of code we used for the original if...else
statement. R allows programmers to be incredibly lazy, er, economical here.

 

Vectorizing Choices
As we discuss in Chapter 4, vectorization is one of the defining attributes of

the R language. R wouldn’t be R if it didn’t have some kind of vectorized version of
an if...else statement. If you wonder why on earth you would need such a thing,
take a look at the problem discussed in this section.

 

Looking at the problem
 

The priceCalculator() function still isn’t very economical to use. If you have
100 clients, you’ll have to calculate the price for every client separately. Check for
yourself what happens if you add, for example, three different amounts of hours as
an argument:

 
> priceCalculator(c(25,110))
[1] 1060 4664
Warning message:
In if (hours > 100) net.price <- net.price * 0.9 :
  the condition has length > 1 and only the first element will be used

 
Not only does R warn you that something fishy is going on, but the result you

get is plain wrong. Instead of $4,664, the second client should be charged only
$4,198:

 
> priceCalculator(110)
[1] 4198



 
What happened? The warning message should give you a fair idea about what

went on. An if statement can deal only with a single value, but the expression
hours > 100 returns two values, as shown by the following code:

 
>  c(25, 110) > 100
[1] FALSE  TRUE

 

Choosing based on a logical vector
 

The solution you’re looking for is the ifelse() function, which is a vectorized
way of choosing values from two vectors. This remarkable function takes three
arguments:

 
 A test vector with logical values

 
 A vector with values that should be returned if the corresponding value in the
test vector is TRUE

 
 A vector with values that should be returned if the corresponding value in the
test vector is FALSE

 

Understanding how it works
 

Take a look at the following trivial example:
 

> ifelse(c(1,3) < 2.5 , 1:2 , 3:4)
[1] 1 4

 
To understand how it works, run over the steps the function takes:

 
1. The conditional expression c(1,3) < 2.5 is evaluated to a logical

vector.
 2. The first value of this vector is TRUE, because 1 is smaller than 2.5.

So, the first value of the result is the first value of the second argument,
which is 1.

 3. The next value is FALSE, because 3 is larger than 2.5. Hence,
ifelse() takes the second value of the third argument (which is 4) as the



second value of the result.
 4. A vector with the selected values is returned as the result.
 

Trying it out
 

To see how this works in the example of the priceCalculator() function, try
the function out at the command line in the console. Say you have two clients and
you worked 25 and 110 hours for them, respectively. You can calculate the net
price with the following code:

 
> my.hours <- c(25,110)
> my.hours * 40 * ifelse(my.hours > 100, 0.9, 1)
[1] 1000 3960

 
Didn’t you just read that the second and third arguments should be a vector?

Yes, but the ifelse() function can recycle its arguments. And that’s exactly what it
does here. In the preceding ifelse() function call, you translate the logical vector
created by the expression my.hours > 100 into a vector containing the numbers 0.9
and 1 in lieu of TRUE and FALSE, respectively.

 

Adapting the function
 

Of course, you need to adapt the priceCalculator() function in such a way
that you also can input a vector with values for the argument public. Otherwise,
you wouldn’t be able to calculate the prices for a mixture of public and private
clients. The final function looks like this:

 
priceCalculator <- function(hours,pph=40,public){
    net.price <- hours * pph
    net.price <- net.price * ifelse(hours > 100 , 0.9, 1)
    tot.price <- net.price * ifelse(public, 1.06, 1.12)
    round(price)
}

 
Next, create a little data frame to test the function. For example:

 
> clients <- data.frame(
+  hours = c(25, 110, 125, 40),
+  public = c(TRUE,TRUE,FALSE,FALSE)
+)

 



You can use this data frame now as arguments for the priceCalculator()
function, like this:

 
> with(clients, priceCalculator(hours, public = public))
[1] 1060 4198 5040 1792

 
There you go. Problem solved!

 

Making Multiple Choices
The if and if...else statements you use in the previous section leave you

with exactly two options, but life is seldom as simple as that. Imagine you have
some clients abroad.

 
Let’s assume that any client abroad doesn’t need to pay VAT for the sake of

the example. This leaves you now with three different VAT rates: 12 percent for
private clients, 6 percent for public clients, and none for foreign clients.

 

Chaining if...else statements
 

The most intuitive way to solve this problem is just to chain the choices. If a
client is living abroad, don’t charge any VAT. Otherwise, check whether the client is
public or private and apply the relevant VAT rate.

 
If you define an argument client for your function that can take the values

‘abroad’, ‘public’, and ‘private’, you could code the previous algorithm like this:
 

if(client==’private’){
  tot.price <- net.price * 1.12      # 12% VAT
} else {
  if(client==’public’){
    tot.price <- net.price * 1.06    # 6% VAT
  } else {
    tot.price <- net.price * 1    # 0% VAT
  }
}

 
With this code, you nest the second if...else statement in the first if...else

statement. That’s perfectly acceptable and it will work, but imagine what you
would have to do if you had four or even more possibilities. Nesting a statement in
a statement in a statement in a statement quickly creates one huge curly mess.



 
Luckily, R allows you to write all that code a bit more clearly. You can chain

the if...else statements as follows:
 

if(client==’private’){
    tot.price <- net.price * 1.12
} else if(client==’public’){
    tot.price <- net.price * 1.06
} else {
    tot.price <- net.price
}

 
In this example, the chaining makes a difference of only two braces, but when

you have more possibilities, it really makes the difference between readable code
and sleepless nights. Note, also, that you don’t have to test whether the argument
client is equal to ‘abroad’ (although it wouldn’t be wrong to do that). You just
assume that if client doesn’t have any of the two other values, it has to be
‘abroad’.

 

 Chained if...else statements work on a single value at a time. You can’t
use these chained if...else statements in a vectorized way. For that, you can
nest multiple ifelse statements, like this:

 
VAT <- ifelse(client==’private’, 1.12,
          ifelse(client == ‘public’, 1.06, 1)
       )
tot.price <- net.price * VAT

 
This piece of code can become quite confusing if you have more than three

choices, though. The solution to this is to switch.
 

Switching between possibilities
 

The nested if...else statement is especially useful if you have complete code
blocks that have to be carried out when a condition is met. But if you need to
select values based only on a condition, there’s a better option: Use the switch()
function.

 

Making choices with switch



 
In the previous example, you wanted to adjust the VAT rate depending on

whether the client is a public one, is a private one, or lives abroad. You have a list
of three possible choices, and for each choice you have a specific VAT rate. You can
use the switch() function like this:

 
VAT <- switch(client, private=1.12, public=1.06, abroad=1)

 
You construct a switch() call as follows:

 
1. Give a single value as the first argument (in this case, the value of

client).
 Note that switch() isn’t vectorized, so it can’t deal with vectors as a first

argument.
 2. After the first argument, you give a list of choices with the

respected values.
 Note that you don’t have to put quotation marks around the choices.
 

 Remember that switch() doesn’t work in a vectorized way. You can
distinguish the choices more easily, however, so the code becomes more
readable.

 

 In fact, the first argument doesn’t have to be a value; it can be some
expression that evaluates to either a character vector or a number. In case you
work with numbers, you don’t even have to use choice=value in the function
call. If you have integers, switch() will return the option in that position. In
the statement switch(2,’some value’, ‘something else’, ‘some more’), the
result is ‘something else’. You can find more information and examples on
the Help page ?switch.

 

Using default values in switch
 

You don’t have to specify all options in a switch() call. If you want to have a
certain result in case the matched value is not among the specified options, put
that result as the last option, without any choice before it. So, the following line of
code does exactly the same thing as the nested ifelse call from “Chaining if...else
statements” section, earlier in this chapter:



 
VAT <- switch(client, private=1.12, public=1.06, 1)

 

 You can easily test this out in the console by creating an object called
client with a certain value and then running the switch() call, as in the
following example:

 
> client <- ‘other’
> switch(client, private=1.12, public=1.06, 1)
[1] 1

 
You can give client different values to see how switch() works.

 

Looping Through Values
In the previous section, you use a couple different methods to make choices.

Many of these methods aren’t vectorized, so you can use only a single value to
base your choice on. You could, of course, apply that code on each value you have
by hand, but it makes far more sense to automate this task.

 

Constructing a for loop
 

As in many other programming languages, you repeat an action for every
value in a vector by using a for loop. You construct a for loop in R as follows:

 
for(i in values){
  ... do something ...
}

 
This for loop consists of the following parts:

 
 The keyword for, followed by parentheses.

 
 An identifier between the parentheses. In this example, we use i, but that can
be any object name you like.

 
 The keyword in, which follows the identifier.

 



 A vector with values to loop over. In this example code, we use the object
values, but that again can be any vector you have available.

 
 A code block between braces that has to be carried out for every value in the
object values.

 
In the code block, you can use the identifier. Each time R loops through the

code, R assigns the next value in the vector with values to the identifier.
 

Calculating values in a for loop
 

Let’s take another look at the priceCalculator() function (refer to the
“Making Multiple Choices” section, earlier in this chapter). Earlier, we show you a
few possibilities to adapt this function so you can apply a different VAT rate for
public, private, and foreign clients. You can’t use any of these options in a
vectorized way, but you can use a for loop so the function can calculate the price
for multiple clients at once.

 

Using the values of the vector
 

Adapt the priceCalculator() function as follows:
 

priceCalculator <- function(hours, pph=40, client){
    net.price <- hours * pph *
                   ifelse(hours > 100, 0.9, 1)
    VAT <- numeric(0)
    for(i in client){
      VAT <- c(VAT,switch(i, private=1.12, public=1.06, 1))
    }
    tot.price <- net.price * VAT
    round(tot.price)
}

 
The first and the last part of the function haven’t changed, but in the middle

section, you do the following:
 

1. Create a numeric vector with length 0 and call it VAT.
 2. For every value in the vector client, apply switch() to select the

correct amount of VAT to be paid.



 3. In each round through the loop, add the outcome of switch() at the
end of the vector VAT.

 The result is a vector VAT that contains, for each client, the correct VAT that
needs to be applied. You can test this by adding, for example, a variable type to
the data frame clients you created in the previous section like this:

 
> clients$type <- c(‘public’,’abroad’,’private’,’abroad’)
> priceCalculator(clients$hours, client=clients$type)
[1] 1060 3960 5040 1600

 

Using loops and indices
 

The function from the previous section works, but you can write more efficient
code if you loop not over the values but over the indices. To do so, you replace the
middle section in the function with the following code:

 
nclient <- length(client)
VAT <- numeric(nclient)
for(i in seq_along(client)){
  VAT[i] <- switch(client[i], private=1.12, public=1.06, 1))
}

 
This code acts very similar to the previous one, but there are a few

differences:
 

 You assign the length of the vector client to the variable nclient.
 

 Then you make a numeric vector VAT that is exactly as long as the vector
client. This is called pre-allocation of a vector.

 
 Then you loop over indices of client instead of the vector itself by using the
function seq_along(). In the first pass through the loop, the first value in VAT is
set to be the result of switch() applied to the first value in client. In the
second pass, the second value of VAT is the result of switch() applied to the
second value in client and so on.

 

 You may be tempted to replace seq_along(client) with the vector
1:nclient, but that would be a bad idea. If the vector client has a length of
0, seq_along(client) creates an empty vector and the code in the loop never



executes. If you use 1:nclient, R creates a vector c(1,0) and loop over those
two values, giving you a completely wrong result.

 

Doing more with loops — and when not to do so
R contains some of the mechanisms used in other programming languages to
manipulate loops:

 The keyword next, to skip to the next iteration of a loop without
running the remaining code in the code block

 The keyword break, to break out of a loop at any given point
 The keyword while, to construct a loop that continues as long as a

certain condition is TRUE.
You find more information on the use of these keywords on the Help page ?
Control.
Although you can technically use all three options, they’re not often used.
Many programmers consider the use of break and next to be bad coding
practice in any language.
For while, the situation is a bit more complex. A while loop is useful only in
very specific cases, like when you generate artificial data that has to meet
certain conditions or when you write your own optimization algorithms. But
in many cases the built-in optimization functions like optim(), optimize(),
and nlm() work faster than a while loop — and often more stable. These
functions require a bit of study before you can apply them, but studying the
Help pages ?optim, ?optimize, and ?nlm, as well as related pages, can really
pay off.

 

 Every time you lengthen an object in R, R has to copy the whole object and
move it to a new place in the memory. This has two effects: First, it slows
down your code, because all the copying takes time. Second, as R continuously
moves things around in memory, this memory gets split up in a lot of small
spaces. This is called fragmentation, and it makes the communication between
R and the memory less smooth. You can avoid this fragmentation by pre-
allocating memory as in the previous example.

 

Looping without Loops: Meeting the Apply Family
Using for loops has some important side effects that some people would call

serious drawbacks. For one, the objects you create in the for loop stay in the
workspace afterward. Objects you change in the for loop are changed in the



workspace. This may be exactly what you’re trying to do, but more often than not,
this is an unwanted side effect of the way for loops are implemented in R.

 
Take a look at the following trivial example:

 
> songline <- ‘Get out of my dreams...’
> for(songline in 1:5) print(‘...Get into my car!’)

 
Contrary to what you may expect, after running this code, the value of

songline is not the string ‘Get out of my dreams...’, but the number 5, as shown
in the output below:

 
> songline
[1] 5

 
Although you never explicitly changed the value of songline anywhere in the

code, R does so implicitly when carrying out the for loop. Every iteration, R
reassigns the next value from the vector to songline . . . in the workspace! By
choosing the names of the variables and the identifier wisely, you can avoid
running into this kind of trouble. But when writing large scripts, you need to do
some serious bookkeeping for the names, and making mistakes becomes all too
easy.

 

 To be completely correct, using a for loop has an effect on the environment
you work in at that moment. If you just use the for loop in scripts that you run
in the console, the effects will take place in the workspace. If you use a for
loop in the body of the function, the effects will take place within the
environment of that function. For more information, see Chapter 8.

 
Here’s the good news: R has another looping system that’s very powerful,

that’s at least as fast as for loops (and sometimes much faster), and — most
important of all — that doesn’t have the side effects of a for loop. Actually, this
system consists of a complete family of related functions, known as the apply
family. This family contains seven functions, all ending with apply.

 

Looking at the family features
 

Before you start using any of the functions in the apply family, here are the
most important properties of these functions:



 
 Every one of the apply functions takes at least two arguments: an object and
another function. You pass the function as an argument (see Chapter 8).

 
 None of these apply functions has side effects. This is the main reason to use
them, so we can’t stress it enough: If you can use any apply function instead of
a for loop, use the apply solution. Be aware, though, that possible side effects
of the applied function are not taken care of by the apply family.

 
 Every apply function can pass on arguments to the function that is given as an
argument. It does that using the dots argument (see Chapter 8).

 
 Every function of the apply family always returns a result. Using the apply family
makes sense only if you need that result. If you want to print messages to the
console with print() or cat() for example, there’s no point in using the apply
family for that.

 

Meeting three of the members
 

Say hello to apply(), sapply(), and lapply(), the most used members of the
apply family. Every one of these functions applies another function to all elements
in an object. What those elements are depends on the object and the function.
Table 9-1 provides an overview of the objects that each of these three functions
works on, what each function sees as an element, and which objects each function
can return. We explain how to use these functions in the remainder of this chapter.

 



Applying functions on rows and columns
 

In Chapter 7, you calculate the sum of a matrix with the rowSums() function.
You can do the same for means with the rowMeans() function, and you have the
related functions colSums() and colMeans() to calculate the sum and the mean for
each column. But R doesn’t have similar functions for every operation you want to
carry out. Luckily, you can use the apply() function to apply a function over every
row or column of a matrix or data frame.

 

Counting birds
 

Imagine you counted the birds in your backyard on three different days and
stored the counts in a matrix like this:

 
> counts <- matrix(c(3,2,4,6,5,1,8,6,1), ncol=3)
> colnames(counts) <- c(‘sparrow’,’dove’,’crow’)
> counts
     sparrow dove crow
[1,]       3    6    8
[2,]       2    5    6
[3,]       4    1    1

 
Each column represents a different species, and each row represents a

different day. Now you want to know the maximum count per species on any given
day. You could construct a for loop to do so, but using apply(), you do this in only
one line of code:

 
> apply(counts, 2, max)
sparrow    dove    crow
      4       6       8

 
The apply() function returns a vector with the maximum for each column and

conveniently uses the column names as names for this vector as well. If R doesn’t
find names for the dimension over which apply() runs, it returns an unnamed
object instead.

 
Let’s take a look at how this apply() function works. In the previous lines of

code, you used three arguments:
 

The object on which the function has to be applied: In this case, it’s the
matrix counts.



 
The dimension or index over which the function has to be applied: The
number 1 means row-wise, and the number 2 means column-wise. Here, we
apply the function over the columns. In the case of more-dimensional arrays,
this index can be larger than 2.

 
The name of the function that has to be applied: You can use quotation
marks around the function name, but you don’t have to. Here, we apply the
function max. Note that there are no parentheses needed after the function
name.

 

 The apply() function splits up the matrix (or data frame) in rows (or
columns). Remember that if you select a single row or column, R will, by
default, simplify that to a vector. The apply() function then uses these vectors
one by one as an argument to the function you specified. So, the applied
function needs to be able to deal with vectors.

 

Adding extra arguments
 

Let’s go back to our example from the preceding section: Imagine you didn’t
look for doves the second day. This means that, for that day, you don’t have any
data, so you have to set that value to NA like this:

 
> counts[2, 2] <- NA

 
If you apply the max function on the columns of this matrix, you get the

following result:
 

> apply(counts,2,max)
sparrow    dove    crow
      4      NA       8

 
That’s not what you want. In order to deal with the missing values, you need

to pass the argument na.rm to the max function in the apply() call (see Chapter 4).
Luckily, this is easily done in R. You just have to add all extra arguments to the
function as extra arguments of the apply() call, like this:

 
> apply(counts, 2, max, na.rm=TRUE)
sparrow    dove    crow



      4       6       8
 

 You can pass any arguments you want to the function in the apply() call by
just adding them between the parentheses after the first three arguments.

 

Applying functions to listlike objects
 

The apply() function works on anything that has dimensions, but what if you
don’t have dimensions (for example, when you have a list or a vector)? For that,
you have two related functions from the apply family at your disposal: sapply()
and lapply(). The l in lapply stands for list, and the s in sapply stands for simplify.
The two functions work basically the same — the only difference is that lapply()
always returns a list with the result, whereas sapply() tries to simplify the final
object if possible.

 

Applying a function to a vector
 

As you can see in Table 9-1, both sapply() and lapply() consider every value
in the vector to be an element on which they can apply a function. Many functions
in R work in a vectorized way, so there’s often no need to use this.

 

Using switch on vectors
The switch() function, however, doesn’t work in a vectorized way. Consider

the following basic example:
 

> sapply(c(‘a’,’b’), switch, a=’Hello’, b=’Goodbye’)
        a         b
  “Hello” “Goodbye”

 
The sapply() call works very similar to the apply() call from the previous

section, although you don’t have an argument that specifies the index. Here’s a
recap:

 
 The first argument is the vector on which values you want to apply the function
— in this case, the vector c(‘a’, ‘b’).

 



 The second argument is the name of the function — in this case, switch.
 

 All other arguments are simply the arguments you pass to the switch function.
 

The sapply() function now takes first the value ‘a’ and then the value ‘b’ as
the first argument to switch(), using the arguments a=’Hello’ and b=’Goodbye’
each time as the other arguments. It combines both results into a vector and uses
the values of c(‘a’, ‘b’) as names for the resulting vector.

 

 The sapply() function has an argument USE.NAMES that you can set to FALSE
if you don’t want sapply() to use character values as names for the result. For
details about this argument, see the Help page ?sapply.

 

Replacing a complete for loop with a single statement
In the “Calculating values in a for loop” section, earlier in this chapter, you use

a for loop to apply the switch() function on all values passed through the
argument client. Although that trick works nicely, you can replace the pre-
allocation and the loop with one simple statement, like this:

 
priceCalculator <- function(hours, pph=40, client){
  net.price <- hours * pph * ifelse(hours > 100, 0.9, 1)
  VAT <- sapply(client, switch, private=1.12, public=1.06, 1)
  tot.price <- net.price * VAT
  round(tot.price)
}

 

Applying a function to a data frame
 

You also can use sapply() on lists and data frames. In this case, sapply()
applies the specified function on every element in that list. Because data frames
are lists as well, everything in this section applies to both lists and data frames.

 
Imagine that you want to know which type of variables you have in your data

frame clients. For a vector, you can use the class() function to find out the type.
In order to know this for all variables of the data frame at once, you simply apply
the class() function to every variable by using sapply() like this:

 
> sapply(clients,class)



      hours      public        type
  “numeric”   “logical” “character”

 
R returns a named vector that gives you the types of every variable, and it

uses the names of the variables as names for the vector. In case you use a named
list, R uses the names of the list elements as names for the vector.

 

Simplifying results (or not) with sapply
 

The sapply() function doesn’t always return a vector. In fact, the standard
output of sapply is a list, but that list gets simplified to either a matrix or a vector if
possible.

 
 If the result of the applied function on every element of the list or vector is a
single number, sapply() simplifies the result to a vector.

 
 If the result of the applied function on every element of the list or vector is a
vector with exactly the same length, sapply() simplifies the result to a matrix.

 
 In all other cases, sapply() returns a (named) list with the results.

 
Say you want to know the unique values of every variable in the data frame

clients. To get all unique values in a vector, you use the unique() function. You
can get the result you want by applying that function to the data frame clients
like this:

 
> sapply(clients, unique)
$hours
[1]  25 110 125  40
$public
[1]  TRUE FALSE
$type
[1] “public”  “abroad”  “private”

 
In the variable hours, you find four unique values; in the variable public, only

two; and in the variable type, three. Because the lengths of the result differ for
every variable, sapply() can’t simplify the result, so it returns a named list.

 

Getting lists using lapply



 

 The lapply() function works exactly the same as the sapply() function,
with one important difference: It always returns a list. This trait can be
beneficial if you’re not sure what the outcome of sapply() will be.

 
Say you want to know the unique values of only a subset of the data frame

clients. You can get the unique values in the first and third rows of the data frame
like this:

 
> sapply(clients[c(1,3), ], unique)
     hours public  type
[1,] “25”  “TRUE”  “public”
[2,] “125” “FALSE” “private”

 
But because every variable now has two unique values, sapply() simplifies the

result to a matrix. If you counted on the result to be a list in the following code,
you would get errors. If you used lapply(), on the other hand, you would also get
a list in this case, as shown in the following output:

 
> lapply(clients[c(1,3), ], unique)
$hours
[1]  25 125
$public
[1]  TRUE FALSE
$type
[1] “public”  “private”

 

 Actually, the sapply() function has an extra argument, simplify, that you
can set to FALSE if you don’t want a simplified list. If you set both the
arguments simplify and USE.NAMES to FALSE, sapply() and lapply() return
exactly the same result. For details on the difference between the two
functions, look at the Help file ?sapply.

 
 



Chapter 10
 

Debugging Your Code

In This Chapter
 Discovering what warnings tell you
 Reading errors correctly
 Finding the bugs in your code

 Optimizing your debugging strategies
 

To err is human, and programmers fall into that “human” category as well
(even though we like to believe otherwise!). Nobody manages to write code
without errors, so instead of wondering if you have errors in your code, you should
ask yourself where you have errors in your code. In this chapter, you discover some
general strategies and specific tools to find that out.

 

Knowing What to Look For
A bug is simply another word for some kind of error in your program. So,

debugging doesn’t involve insecticides — it just means getting rid of all type of
semantic and/or logical errors in your functions.

 
Before you start hunting down bugs, you have to know what you’re looking for.

In general, you can divide errors in your code into three different categories:
 

Syntax errors: If you write code that R can’t understand, you have syntax
errors. Syntax errors always result in an error message and often are caused by
misspelling a function or forgetting a bracket.

 
Semantic errors: If you write correct code that doesn’t do what you think it
does, you have a semantic error. The code itself is correct, but the outcome of
that line of code is not. It may, for example, return another type of object than
you expect. If you use that object further on, it won’t be the type you think it is
and your code will fail there.

 
Logic errors: Probably the hardest-to-find are errors in the logic of your code.
Your code works, it doesn’t generate any error or warning, but it still doesn’t



return the result you expect. The mistake is not in the code itself, but in the
logic it executes.

 
This may seem like a small detail, but finding different types of bugs requires

different strategies. Often, you can easily locate a syntax error by simply reading
the error messages, but semantic errors pose a whole different challenge and logic
errors can hide in your code without your being aware they exist.

 

Reading Errors and Warnings
If something goes wrong with your code, R tells you. That can happen in two

ways:
 

 The code keeps on running until the end, and when the code is finished, R prints
out a warning message.

 
 The code stops immediately because R can’t carry it out, and R prints out an
error message.

 
We have to admit it: These error messages can range from mildly confusing to

completely incomprehensible if you’re not used to them. But it doesn’t have to stay
that way. When you get familiar with the error and warning messages from R, you
can quickly tell what’s wrong.

 

Reading error messages
 

Let’s take a look at such an error message. If you try the following code, you
get this more or less clear error message:

 
> “a” + 1
Error in “a” + 1 : non-numeric argument to binary operator

 
You get two bits of information in this error message. First, the line “a” + 1

tells you in which line of code you have an error. Then it tells you what the error is.
In this case, you used a non-numeric argument (the character ‘a’): In combination
with a binary operator (the + sign).

 



 R always tells you in which code the error occurs, so you know in many
cases where you have to start looking.

 
Error messages aren’t always that clear. Take a look at the following example:

 
> data.frame(1:10,10:1,)
Error in data.frame(1:10, 10:1, ) : argument is missing, with no default

 
To what argument does this error refer? Actually, it refers to an empty

argument you provided for the function. After the second vector, there’s a comma
that shouldn’t be there. A small typing error, but R expects another argument after
that comma and doesn’t find one.

 

 If you don’t immediately understand an error message, take a closer look at
the things the error message is talking about. Chances are, you just typed
something wrong there.

 

Caring about warnings (or not)
 

You can’t get around errors, because they just stop your code. Warnings on
the other hand are a whole different beast. Even if R throws a warning, it continues
to execute the code regardless. So, you can ignore warnings, but in general that’s a
pretty bad idea. Warnings often are the only sign you have that your code has
some semantic or logic error.

 
For example, you could’ve forgotten about the ifelse() function discussed in

Chapter 9 and tried something like the following example:
 

> x <- 1:10
> y <- if (x < 5 ) 0 else 1
Warning message:
In if (x < 5) 0 else 1 :
  the condition has length > 1 and only the first element will be used

 
This warning points at a semantic error: if expects a single TRUE or FALSE

value, but you provided a whole vector. Note that, just like errors, warnings tell you
in general which code has generated the warning.



 
Here is another warning that pops up regularly and may point to a semantic or

logic error in your code:
 

> x <- 4
> sqrt(x - 5)
[1] NaN
Warning message:
In sqrt(x - 5) : NaNs produced

 
Because x - 5 is negative when x is 4, R cannot calculate the square root and

warns you that the square root of a negative number is not a number (NaN).
 

 If you’re a mathematician, you may point out that the square root of –1 is 0
- 1i. R can, in fact, do calculations on complex numbers, but then you have to
define your variables as complex numbers. You can check, for example, the
Help file ?complex for more information.

 
Although most warnings result from either semantic or logic errors in your

code, even a simple syntax error can generate a warning instead of an error. If you
want to plot some points in R, you use the plot() function, as shown in Chapter
16. It takes an argument col to specify the color of the points, but you could
mistakenly try to color the points using the following:

 
> plot(1:10, 10:1, color=’green’)

 
If you try this, you get six warning messages at once, all telling you that color

is probably not the argument name you were looking for:
 

Warning messages:
1: In plot.window(...) : “color” is not a graphical parameter
2: In plot.xy(xy, type, ...) : “color” is not a graphical parameter
....

 
Notice that the warning messages don’t point toward the code you typed at

the command line; instead, they point to functions you never used before, like
plot.window() and plot.xy(). Remember: You can pass arguments from one
function to another using the dots argument (see Chapter 8). That’s exactly what
plot() does here. So, plot() itself doesn’t generate a warning, but every function
that plot() passes the color argument to does.

 



 If you get warning or error messages, a thorough look at the Help pages of
the function(s) that generated the error can help in determining what the
reason is for the message you got. For example, at the Help page of ?plot.xy,
you find that the correct name for the argument is col.

 
So, to summarize, most warnings point to one of the following problems:

 
 The function gave you a result, but for some reason that result may not be
correct.

 
 The function generated an atypical outcome, like NA or NaN values.

 
 The function couldn’t deal with some of the arguments and ignored them.

 
Only the last one tells you there’s a problem with your syntax. For the other

ones, you have to examine your code a bit more.
 

Going Bug Hunting
Although the error message always tells you which line of code generates the

error, it may not be the line of code where things started going wrong. This makes
bug hunting a complex business, but some simple strategies can help you track
down these pesky creatures.

 

Calculating the logit
 

To illustrate some bug-hunting strategies in R, we use a simple example. Say,
for example, your colleague wrote two functions to calculate the logit from both
proportions and percentages, but he can’t get them to work. So, he asks you to
help find the bugs. Here’s the code he sends you:

 
# checks input and does logit calculation
logit <- function(x){
  x <- ifelse(x < 0 | x > 1, “NA”, x)
  log(x / (1 - x) )
}
# transforms percentage to number and calls logit
logitpercent <- function(x){
  x <- gsub(“%”, “”, x)



  logit(as.numeric(x))
}

 
Copy and paste this code into the editor, and save the file using, for example,

logitfunc.R as its name. After that, source the file in R from the editor using either
the source() function or the source button or command from the editor of your
choice. Now the function code is loaded in R, and you’re ready to start hunting.

 

 The logit is nothing else but the logarithm of the odds, calculated as log(x
/ (1-x)) if x is the probability of some event taking place. Statisticians use
this when modeling binary data using generalized linear models. If you ever
need to calculate a logit yourself, you can use the function qlogis() for that.
To calculate probabilities from logit values, you use the plogis() function.

 

Knowing where an error comes from
 

Your colleague complained that he got an error when trying the following
code:

 
> logitpercent(‘50%’)
Error in 1 - x : non-numeric argument to binary operator

 
Sure enough, but you don’t find the code 1 - x in the body of logit

percent(). So, the error comes from somewhere else. To know from where, you
can use the traceback() function immediately after the error occurred, like this:

 
> traceback()
2: logit(as.numeric(x)) at logitfunc.R#9
1: logitpercent(“50%”)

 

 This traceback() function prints what is called the call stack that lead to
the last error. This call stack represents the sequence of function calls, but in
reverse order. The function at the top is the function in which the actual error
is generated.

 
In this example, R called the logitpercent() function, and that function, in

turn, called logit(). The traceback tells you that the error occurred inside the



logit() function. Even more, the traceback() function tells you that the error
occurred in line 9 of the logitfunc.R code file, as indicated by logitfunc.R#9 in the
traceback() output.

 

 The call stack gives you a whole lot of information — sometimes too much.
It may point to some obscure internal function as the one that threw the error.
If that function doesn’t ring a bell, check higher in the call stack for a function
you recognize and start debugging from there.

 

Looking inside a function
 

Now that you know where the error came from, you can try to find out how the
error came about. If you look at the code, you expect that the as.numeric()
function in logitpercent() sends a numeric value to the logit() function. So, you
want to check what’s going on in there.

 
In ancient times, programmers debugged a function simply by letting it print

out the value of variables they were interested in. You can do the same by
inserting a few print() statements in the logit() function. This way, you can’t
examine the object though, and you have to add and delete print statements at
every point where you want to peek inside the function. Luckily, we’ve passed the
age of the dinosaurs; R gives you better methods to check what’s going on.

 

Telling R which function to debug
 

You can step through a function after you tell R you want to debug it using the
debug() function, like this:

 
> debug(logit)

 
From now on, R will switch to the browser mode every time that function is

called from anywhere in R, until you tell R explicitly to stop debugging or until you
overwrite the function by sourcing it again. To stop debugging a function, you
simply use undebug(logit).

 



 If you want to step through a function only once, you can use the function
debugonce() instead of debug(). R will go to browser mode the next time the
function is called, and only that time — so you don’t need to use undebug() to
stop debugging.

 
If you try the function logitpercent() again after running the code

debug(logit), you see the following:
 

> logitpercent(‘50%’)
debugging in: logit(as.numeric(x))
debug at D:/RForDummies/Ch10/logitfunc.R#2: {
    x <- ifelse(x < 0 | x > 1, “NA”, x)
    log(x/(1 - x))
}
Browse[2]>

 
You see that the prompt changed. It now says Browse[2]. This prompt tells

you that you’re browsing inside a function.
 

 The number indicates at which level of the call stack you’re browsing at that
moment. Remember from the output of the traceback() function that the
logit() function occurred as the second function on the call stack. That’s the
number 2 in the output above.

 
The additional text above the changed prompt gives you the following

information:
 

 The line from where you called the function — in this case, the line
logit(as.numeric(x)) from the logitpercent() function

 
 The file or function that you debug — in this case, the file logitfunc.R, starting
at the second line

 
 Part of the code you’re about to browse through

 

Stepping through the function
 



When you’re in browser mode, you can use any R code you want in order to
check the state of different objects. You can browse through the function now with
the following commands:

 
 To run the next line of code, type n and press Enter. R enters the step-through
mode. To run the subsequent lines of code line by line, you don’t have to type n
anymore (although you still can). Just pressing Enter suffices.

 
 To run the remaining part of the code, type c and press Enter.

 
 To exit browser mode, type Q and press Enter.

 

 If you want to look at an object that’s named like any of the special browse
commands, you have to specifically print it out, using either print(n) or
str(n).

 
You can try it out yourself now. Just type n in the console, press Enter, and

you see the following:
 

Browse[2]> n
debug at D:/RForDummies/Ch10 /logitfunc.R#3: x <- ifelse(x < 0 | x > 1,
“NA”, x)

 
R now tells you what line it will run next. Because this is the first line in your

code, x still has the value that was passed by the logitpercent() function.
 

 It’s always smart to check whether that value is what you expect it to be.
The logitpercent() function should pass the value 0.50 to logit(), because
this is the translation of 50 percent into a proportion. However, if you look at
the value of x, you see the following:

 
Browse[2]> str(x)
num 50

 
Okay, it is a number, but it’s 100 times larger than it should be. So, in the

logitpercent() function, your colleague made a logical error and forgot to divide
by 100. If you correct that in the editor window and then save and source the file
again, the test command gives the correct answer:



 
> logitpercent(‘50%’)
[1] 0

 

Start browsing from within the function
 

This still doesn’t explain the error. Your colleague intended to return NA if the
number wasn’t between 0 and 1, but the function doesn’t do that. It’s the ifelse()
line in the code where the number is checked, so you know where the problem lies.

 
You can easily browse through the logit() function until you reach that point,

but when your function is larger, that task can become tedious. R allows you to
start the browser at a specific point in your code if you insert a browser()
statement at that point. For example, to start the browser mode right after the
ifelse() line, you change the body of the logit() function, as in the following
code, and source it again:

 
logit <- function(x){
  x <- ifelse(x < 0 | x > 1, “NA”, x)
  browser()
  log(x / (1 - x) )
}

 

 By sourcing the same function again, you implicitly stop debugging the
function. That’s why you don’t have to un-debug the function explicitly using
undebug(logit).

 
If you now try to run this function again, you see the following:

 
> logit(50)
Called from: logit(50)
Browse[1]>

 
You get less information than you do when you use debug(), but you can use

the browser mode in exactly the same way as with debug().
 

 You can put a browser() statement inside a loop as well. If you use the
command c to run the rest of the code, in this case, R will carry out the



function only until the next round in the loop. This way, you can step through
the loops of a function.

 
As you entered the function after the ifelse() line, R carried out that code

already, so the value of x should be changed to NA. But if you check the value of x
now, you see this:

 
Browse[2]> str(x)
chr “NA”

 
Running the next line finally gives the error. Indeed, your colleague made a

semantic error here: He wanted to return NA if the value of x wasn’t between 0 and
1, but he accidentally quoted the NA and that makes it a character vector. The code
doesn’t have any syntax error, but it’s still not correct.

 

 If you use browser() in your code, don’t forget to delete it afterward.
Otherwise, your function will continue to switch to browse mode every time
you use it. And don’t think you won’t forget — even experienced R
programmers forget this all the time!

 

Generating Your Own Messages
Generating your own messages may sound strange in a chapter about

debugging, but you can prevent bugs by actually generating your own errors.
Remember the logic error in the logitpercent() function? It would’ve been easier
to spot if the logit() function returned an error saying that you passed a number
greater than 1.

 

 Adding sensible error (or warning) messages to a function can help
debugging future functions where you call that specific function again. It
especially helps in finding semantic or logic errors that are otherwise hard to
find.

 

Creating errors
 

You can tell R to throw an error by inserting the stop() function anywhere in



the body of the function, as in the following example:
 

logit <- function(x){
  if( any(x < 0 | x > 1) ) stop(‘x not between 0 and 1’)
  log(x / (1 - x) )
}

 
With the if() statement, you test whether any value in x lies between 0 and

1. Using the any() function around the condition allows your code to work with
complete vectors at once, instead of with single values. Because the log() function
works vectorized as well, the whole function is now vectorized (see Chapter 4).

 
If you change the body of the logit() function this way and try to calculate

the logit of 50% and 150% (or 0.5 and 1.5), R throws an error like the following:
 

> logitpercent(c(‘50%’,’150%’))
Error in logit(as.numeric(x)/100) : x not between 0 and 1

 
As the name implies, the execution of the code stops anytime the stop()

function is actually carried out; hence, it doesn’t return a result.
 

Creating warnings
 

Your colleague didn’t intend for the logit() function to stop, though, when
some input values were wrong — he just wanted the function to return NA for those
values. So, you also could make the function generate a warning instead of an
error. That way you still get the same information, but the complete function is
carried out so you get a result as well.

 
To generate a warning, use the warning() function instead of the stop()

function. So, to get the result your colleague wants, you simply change the body of
the function to the following code:

 
  x <- ifelse(x < 0 | x > 1, NA, x )
  if( any(is.na(x)) ) warning(‘x not between 0 and 1’)
  log(x / (1 - x) )

 
If you try the function now, you get the desired result:

 
> logitpercent(c(‘50%’,’150%’))
[1]  0 NA
Warning message:



In logit(as.numeric(x)/100) : x not between 0 and 1
 

Not only does the function return NA when it should, but it also gives you a
warning that can help with debugging other functions that use the logit() function
somewhere in the body.

 

Recognizing the Mistakes You’re Sure to Make
Despite all the debugging tools you have at your disposal, you need some

experience to quickly find pesky bugs. But some mistakes are fairly common, and
checking whether you made any of these gives you a big chance of pinpointing the
error easily. Some of these mistakes come from default behavior of R you didn’t
take into account; others are just the result of wool gathering. But every R
programmer has made these mistakes at one point, and so will you.

 

Starting with the wrong data
 

Probably the most common mistakes in R are made while reading in data from
text files using read.table() or read.csv(), as you do in Chapter 12. Many
mistakes result in R throwing errors, but sometimes you only notice something
went wrong when you look at the structure of your data. In the latter case you
often find that some or all variables are converted to factors when they really
shouldn’t be (for example, because they should contain only numerical data).

 
When R gives errors or the structure of your data isn’t what you think it should

be, check the following:
 

Did you forget to specify the argument header=TRUE? If so, R will see the
column names as values and, as a result, convert every variable to a factor as it
always does with character data in a text file.

 
Did you have spaces in your column names or data? The read.table()
function can interpret spaces in, for example, column names or in string data as
a separator. You then get errors telling you ‘line x did not have y elements’.

 
Did you have a different decimal separator? In some countries, decimals
are separated by a comma. You have to specifically tell R that’s the case by
using the argument dec=”,” in the read.table() function.

 



Did you forget to specify stringsAsFactors = FALSE? By default, R changes
character data to factors, so you always have to add this argument if you want
your data to remain character variables.

 
Did you have another way of specifying missing values? R reads ‘NA’ in a
text file as a missing value, but the file may use a different code (for example,
‘missing’). R will see that as text and again convert that variable to a factor.
You solve this by specifying the argument na.strings in the read.table()
function.

 

 If you always check the structure of your data immediately after you read it
in, you can catch errors much earlier and avoid hours of frustration. Your best
bet is to use str() for information on the types and head() to see if the values
are what you expected.

 

Having your data in the wrong format
 

As we’ve stressed multiple times, every function in R expects your data to be
in a specific format. That doesn’t mean simply whether it’s an integer, character, or
factor, but also whether you supply a vector, a matrix, a data frame, or a list. Many
functions can deal with multiple formats, but sometimes the result isn’t what you
expect at all.

 

 In fact, functions are generic functions that dispatch to a method for the
object you supplied as an argument. (See Chapter 8 for more information on
dispatching.)

 

Dropping dimensions when you don’t expect it
 

This mistake is definitely another classic. R automatically tries to reduce the
number of dimensions when subsetting a matrix, array, or data frame (see Chapter
7). If you want to calculate the row sums of the numeric variables in a data frame
— for example, the built-in data frame sleep — you can write a little function like
this:

 



rowsum.df <- function(x){
  id <- sapply(x,is.numeric)
  rowSums(x[, id])
}

 
If you try that out on two built-in data frames, pressure and sleep, you get a

result for the first one but the following error message for the second:
 

> rowsum.df(sleep)
Error in rowSums(x[, id]) :
  ‘x’ must be an array of at least two dimensions

 
Because sleep contains only a single numeric variable, x[, id] returns a

vector instead of a data frame, and that causes the error in rowSums().
 

 You can solve this problem either by adding drop=FALSE (as shown in
Chapter 7) or by using the list subsetting method x[i] instead.

 

Messing up with lists
 

Although lists help with keeping data together and come in very handy when
you’re processing multiple datasets, they can cause some trouble as well.

 
First, you can easily forget that some function returns a list instead of a vector.

For example, many programmers forget that strsplit() returns a list instead of a
vector. So, if you want the second word from a sentence, the following code
doesn’t return an error, but it doesn’t give you the right answer either:

 
> strsplit(‘this is a sentence’,’ ‘)[2]
[[1]]
NULL

 
In this example, strsplit() returns a list with one element, the vector with

the words from the sentence:
 

> strsplit(‘this is a sentence’,’ ‘)
[[1]]
[1] “this”     “is”       “a”        “sentence”

 
To access this vector, you first have to select the wanted element from the



list. Only then can you look for the second value using the vector indices, like this:
 

> strsplit(‘this is a sentence’,’ ‘)[[1]][2]
[1] “is”

 
Even the indexing mechanism itself can cause errors of this kind. For example,

you have some names of customers and you want to add a dot between their first
and last names. So, first, you split them like this:

 
> customer <- c(‘Johan Delong’,’Marie Petit’)
> namesplit <- strsplit(customer,’ ‘)

 
You want to paste the second name together with a dot in between, so you

need to select the second element from the list. If you use single brackets, you get
the following:

 
> paste(namesplit[2],collapse=’.’)
[1] “c(\”Marie\”, \”Petit\”)”

 
That isn’t what you want at all. Remember from Chapter 7 that you can use

both single brackets and double brackets to select elements from a list, but when
you use single brackets, you always get a list returned. So, to get the correct
result, you need double brackets, like this:

 
> paste(namesplit[[2]],collapse=’.’)
[1] “Marie.Petit”

 

 Notice that R never gave a sign — not even a warning — that something
was wrong. So, if you notice lists where you wouldn’t expect them (or don’t
notice them where you do expect them), check your brackets.

 

Mixing up factors and numeric vectors
 

If you work with factors that have numeric values as levels, you have to be
extra careful when using these factors in models and other calculations. For
example, you convert the number of cylinders in the dataset mtcars to a factor like
this:

 
> cyl.factor <- as.factor(mtcars$cyl)



 
If you want to know the median number of cylinders, you may be tempted to

do the following:
 

> median(as.numeric(cyl.factor))
[1] 2

 
This result is bogus, because the minimum number of cylinders is four. R

converts the internal representation of the factor to numbers, not the labels. So,
you get numbers starting from one to the number of levels instead of the original
values.

 

 To correctly transform a factor its original numeric values, you can first
transform the factor to character and then to numeric, as shown in Chapter 5.
But on very big data, this is done faster with the following construct:

 
> as.numeric(levels(cyl.factor))[cyl.factor]

 
With this code, you create a short vector with the levels as numeric values,

and then use the internal integer representation of the factor to select the correct
value.

 

 Although R often converts a numeric vector to a factor automatically when
necessary, it doesn’t do so if both numeric vectors and factors can be used. If
you want to model, for example, the mileage of a car to the number of
cylinders, you get a different model when you use the number of cylinders as a
numeric vector or as a factor. The interpretation of both models is completely
different, and a lot depends on what exactly you want to do. But you have to
be aware of that, or you may be interpreting the wrong model.

 
 



Chapter 11
 

Getting Help

In This Chapter
 Using the built-in R help
 Finding information online
 Joining the R community

 Making a reproducible example to get help
 

Even the best R programmers occasionally get stuck on a problem. In these
situations, you need to know how to find help. Fortunately, R code is generally very
well documented and has excellent help available. You just need to know how to
access it. In this chapter, we show you how.

 
If the built-in help doesn’t solve your problem, you can search for information

on the Internet and turn to the online R community. We end this chapter by
walking you through how to create a minimal reproducible example, which you’ll
find helpful in getting help.

 

Finding Information in the R Help Files
The R documentation (in the form of R Help files) is a phenomenally rich

resource. Most of the time, if you read the Help files carefully, you’ll get a better
understanding of why a function isn’t doing what you think it should or why you’re
getting an error. Although some of the R Help files can look cryptic at first glance, if
you persevere — and know what to look for — your investment will pay off.

 

When you know exactly what you’re looking for
 

 If you know the name of the function you need help with, you can access
the R Help files in two ways:

 
 By typing help(...) with the function name inside the brackets. For example,



typing help(paste) returns help about the paste() function.
 

 By typing ? followed by the name of the function. For example, typing ?paste
returns help about the paste() function.

 
Typically, the R Help files follow a fairly standard outline. You find most of the

following sections in every R Help file:
 

Title: A one-sentence overview of the function.
 

Description: An introduction to the high-level objectives of the function,
typically about one paragraph long.

 
Usage: A description of the syntax of the function (in other words, how the
function is called). This is where you find all the arguments that you can supply
to the function, as well as any default values of these arguments.

 
Arguments: A description of each argument. Usually this includes a specification
of the class (for example, character, numeric, list, and so on). This section is
an important one to understand, because supplying an argument of the wrong
class is quite frequently a cause of errors in R.

 
Details: Extended details about how the function works, provides longer
descriptions of the various ways to call the function (if applicable), and a longer
discussion of the arguments.

 
Value: A description of the class of the value returned by the function.

 
See also: Links to other relevant functions. In most of the R editors, you can
click these links to read the Help files for these functions.

 
Examples: Worked examples of real R code that you can paste into your console
and run.

 

 One of the most powerful ways of using R Help is to carefully study the
examples in the Examples section. The documentation authors designed these
examples to be reproducible, which means that you can copy the whole example to
your R console and run it directly. Often, this can help you really understand the
nature of the input that each function needs and the output the function gives.



 

When you don’t know exactly what you’re looking for
 

Sometimes you don’t know the exact function to use. Or maybe you know the
name of the function but you can’t remember whether it’s spelled in all lowercase
letters or with some uppercase letters. In these situations, you have to search the
R Help files to find what you need.

 
You can search the R Help files by typing help.search(...) with a quoted

search term inside the brackets. This gives a list of functions that are similar to the
search term; it’s useful if you can’t remember the exact name of a function,
because help.search() makes use of fuzzy matching to return a list of matching
Help topics. For example, typing help.search(“date”) in the console returns a
long list of possible matches, including format.Date, as.POSIXlt, and
DateTimeClasses, among others.

 

 Typing two question marks followed by the search term is a shortcut for
help.search(). For example, typing ??date returns the same list of functions
as typing help.search(“date”) does.

 
When you search for R help, you get a list of topics that match the search

term. For example, you may get the following result when typing ??date:
 

ada::update.ada            Add more trees to an ada object
chron::chron               Create a Chronological Object
chron::cut.dates           Create a Factor from a Chron or Dates Object
chron::dates               Generate Dates and Times Components from Input
....
base::Date                 Date Class
base::DateTimeClasses      Date-Time Classes
base::diff                 Lagged Differences
...

 

 The left-hand column contains the functions that match your search term,
and the right-hand column contains the R Help file title for this function. Notice
that each function consists of two elements separated by two colons (for
example, ada::update.ada). This means, for example, that in the package ada,
there is a function called update.ada().



 
From the description of ada::update, it’s immediately apparent that this

function has nothing to do with dates or times. Nonetheless, it was included in the
search results because the function name contained the substring date. In this
case, if you scroll down the list, you’ll also find references to several date functions
in the base package, including Date(), DateTimeClasses(), and diff().

 
After you’ve identified a function that looks helpful, type ?functionName to

open the relevant Help page. For example, typing ?Date opens the Help page for
Date.

 

 When you use help() or ?, you also can specify a topic name, not just a
function name. Some really useful Help pages describe the effect of many
functions at once, and because they have a unique topic name, you can access
these directly. For example, try reading the Help for ?Syntax, ?Quotes, or ?
DateTimeClasses.

 

Searching the Web for Help with R
Sometimes the built-in R Help simply doesn’t give you that moment of

inspiration to solve your problem. When this happens, it’s time to tap into the
information available on the web.

 

 You can search the Internet directly from your R console, by using the
RSiteSearch() function. This function enables you to search for keywords in
the R documentation, as well as the R Help mailing list archives (for more on
the R mailing lists, see “Using the R mailing lists,” later in this chapter).
RSiteSearch() takes your search term and passes it to the search engine at
http://search.r-project.org. Then you can view the search results in your
web browser.

 
For example, to use RSiteSearch() to search for the term cluster analysis, use

the following:
 

> RSiteSearch(“cluster analysis”)
 

http://search.r-project.org


 Another way of searching the web directly from your console is to use the
add-on package called sos and the search function findFn(). This function is a
wrapper around RSiteSearch() that combines all the RSiteSearch() results
into tabular form on a single page, which may make the results easier to
digest.

 
To use findFn, you first have to install the sos package:

 
> install.packages(“sos”)

 
Then you load the package using library(sos). Finally, you use

findFn(“cluster”):
 

> library(sos)
> findFn(“cluster”)
found 2311 matches;  retrieving 20 pages, 400 matches.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 
This opens a new tab in your favorite web browser with the results in an easy-

to-read table. Each row of the table contains a function, the name of the package,
and a helpful description and link to the Help page for that function.

 

 If you’re trying to search for R topics in your favorite search engine, you
may find that the results tend to be unrelated to the programming language.
One way of improving the accuracy of your search results is to enclose the R in
square brackets. For example, to search for the topic of regression in R, use
[R] regression as your search term. This technique seems to work because the
R mailing lists tend to have [R] in the topic for each message. In addition, on
the Stack Overflow website (www.stackoverflow.com), questions that are
related to R are tagged with [r].

 
In addition to your favorite search engine, you also can use the dedicated R

search site at http://search.r-project.org to search through R functions,
vignettes, and the R Help mailing lists. Or you can use the search engine
www.rseek.org, which is dedicated to R and will search first through all R-related
websites for an answer.

 

http://www.stackoverflow.com
http://search.r-project.org
http://www.rseek.org


Getting Involved in the R Community
Sometimes, no matter how hard you search for help in the mailing list

archives, blogs, or other relevant material, you’re still stuck. If this ever happens to
you, you may want to tap into the R community. R has a very active community
made up of people who not only write and share code, but also are very willing to
help other R users with their problems.

 

Using the R mailing lists
 

The R Development Core Team actively supports four different mailing lists. At
www.r-project.org/mail.html, you can find up-to-date information about these
lists, as well as find links to subscribe or unsubscribe from the lists. When you
subscribe to a mailing list, you can choose to receive either individual e-mail
messages or a daily digest.

 
The four important mailing lists are

 
R-help: This is the main R Help mailing list. Anyone can register and post
messages on this list, and people discuss a wide variety of topics (for example,
how to install packages, how to interpret R’s output of statistical results, or what
to do in response to warnings and error messages).

 
R-announce: This list is for announcements about significant developments in
the R code base.

 
R-packages: This list is where package authors can announce news about their
packages.

 
R-devel: This is a specialist mailing list aimed at developers of functions or new
R packages — in other words, serious R developers! It’s more about
programming than about general topics.

 

 Before posting a message to any of the R mailing lists, make sure that you
read the posting guidelines, available at www.r-project.org/posting-
guide.html. In particular, make sure you include a good, small, reproducible
example (see “Making a Minimal Reproducible Example,” later in this chapter).

 

http://www.r-project.org/mail.html
http://www.r-project.org/posting-guide.html


In addition to these general mailing lists, you also can participate in about 20
special interest group mailing lists. See the sidebar “Special interest group mailing
lists” for more information.

 

Special interest group mailing lists
The R mailing list website www.r-project.org/mail.html also contains links
to more than 20 mailing lists for special interest groups. We list them here by
topic:
Operating systems:

R-SIG-Mac: Mac ports of R
R-SIG-Debian: Debian ports of R
R-SIG-Fedora: Fedora and Redhat ports of R

Advanced modeling:
R-sig-dynamic-models: Dynamic simulation models in R
R-sig-Epi: Epidemiological data analysis
R-sig-ecology: Ecological data analysis
R-sig-gR: Graphical models
R-sig-networks: Network- or graph-related software within R
R-sig-phylo: Phylogenetic and comparative methods and analyses
R-sig-Robust: Robust statistics
R-sig-mixed-models: Mixed effect models, notably lmer()-related

Fields of application for R:
R-SIG-Finance: Finance
R-sig-Geo: Geographical data and mapping

Specialist development:
R-sig-DB: Database Interfaces
R-SIG-GUI: GUI development
R-SIG-HPC: High-performance computing

Other:
R-sig-Jobs: Announcements of jobs where R is used
R-sig-mediawiki: The R extension for MediaWiki
R-sig-QA: Quality assurance and validation
R-sig-teaching: Teaching statistics (and more) using R
R-sig-Wiki: The development of an “R wiki”

 

Discussing R on Stack Overflow and Stack Exchange
 

Stack Exchange (www.stackexchange.com) is a popular website where people

http://www.r-project.org/mail.html
http://www.stackexchange.com


can ask and answer questions on a variety of topics. It’s really a network of sites.
Two of the Stack Exchange sites have substantial communities of people asking
and answering questions about R:

 
Stack Overflow (www.stackoverflow.com): Here, people discuss programming
questions in a variety of programming languages, such as C++, Java, and R.

 
CrossValidated (http://stats.stackexchange.com): Here, people discuss
topics related to statistics and data visualization. Because R really excels at
these tasks, there is a growing community of R coders on CrossValidated.

 

 Both of these sites use tags to identify topics that are discussed. Both sites
use the [r] tag to identify questions about R. To find these questions,
navigate to the Tags section on the page and type r in the search box.

 

Tweeting about R
 

If you want to join the discussion about R on Twitter (www.twitter.com), follow
and use the hashtag #rstats. This hashtag attracts discussion from a wide variety
of people, including bloggers, package authors, professional R developers, and
other interested parties.

 

Making a Minimal Reproducible Example
When you ask the R community for help, you’ll get the most useful advice if

you know how to make a minimal reproducible example. A reproducible example is
a sample of code and data that any other user can run and get the same results as
you do. A minimal reproducible example is the smallest possible example that
illustrates the problem; it consists of the following:

 
 A small set of sample data

 
 A short snippet of code that reproduces the error

 
 The necessary information on your R version, the system it’s being run on, and
the packages you’re using

 

http://www.stackoverflow.com
http://stats.stackexchange.com
http://www.twitter.com


 If you want to know what a minimal reproducible example looks like, take a
look at the examples in the R Help files. In general, all the code given in the R
Help files fulfills the requirements of a minimal reproducible example.

 

Creating sample data with random values
 

 In most cases, you can use random data to illustrate a problem. R has some
useful built-in functions to generate random numbers and other random data.
For example, to make a vector of random numbers, use rnorm() for the normal
distribution or runif() for a uniform distribution. To make a random vector
with five elements, try the following:

 
> set.seed(1)
> x <- rnorm(5)
> x
[1] -0.6264538  0.1836433 -0.8356286  1.5952808  0.3295078

 

 You can use the set.seed() function to specify a starting seed value for
generating random numbers. By setting a seed value, you guarantee that the
random numbers are the same each time you run the code. This sounds a bit
pointless, doesn’t it? It may be pointless in production code, but it’s essential
for a reproducible example. By setting a seed, you guarantee that your code
will produce the same results as another person running your code.

 

 If you want to generate random values of a predetermined set, use the
sample() function. This function is a bit like dealing from a deck of playing
cards. In a card game, you have 52 cards and you know exactly which cards
are in the deck. But each deal will be different. You can simulate dealing a
hand of seven cards using the following code:

 
> cards <- c(1:9, “J”, “Q”, “K”, “A”)
> suits <- c(“Spades”, “Diamonds”, “Hearts”, “Clubs”)
> deck <- paste(rep(suits, each=13), cards)
> set.seed(123)
> sample(deck, 7)



[1] “Diamonds 2” “Clubs 2”    “Diamonds 8” “Clubs 5”
[5] “Clubs 7”    “Spades 3”   “Diamonds K”

 
By default, sample() uses each value only once. But sometimes you want

elements of this section to appear multiple times. In this case, you can use the
argument replace=TRUE. If you want to create a sample of size 12 consisting of the
first three letters of the alphabet, you use the following:

 
> set.seed(5)
> sample(LETTERS[1:3], 12, replace=TRUE)
[1] “A” “C” “C” “A” “A” “C” “B” “C” “C” “A” “A” “B”

 

 Creating a data.frame with sample data is straightforward:
 

> set.seed(42)
> dat <- data.frame(
+     x = sample(1:5),
+     y = sample(c(“yes”, “no”), 5, replace = TRUE)
+ )
> dat
  x   y
1 5  no
2 4  no
3 1 yes
4 2  no
5 3  no

 

How to use a copy of your own data
Sometimes you have to use a small set of your real-world data in an
example. On these occasions, you can first create a subset of your data and
then use the function dput to get an ASCII representation of your data. Then
you can paste this representation in your question to the community. As an
example, take the built in dataset cars and create an ASCII representation of
the first four rows:

> dput(cars[1:4, ]) > structure(list(speed = c(4, 4,
7, 7), + dist = c(2, 10, 4, 22)), + .Names = c(“speed”,
“dist”), + row.names = c(NA, 4L), + class = “data.frame”)

 

Producing minimal code
 



The hardest part of producing a minimal reproducible example is to keep it
minimal. The challenge is to identify the smallest example (the fewest lines of
code) that reproduces the problem or error.

 

 Before you submit your code, make sure to describe clearly which packages
you use. In other words, remember to include the library() statements. Also,
test your code in a new, empty R session to make sure it runs without error.
People should be able to just copy and paste your data and your code in the
console and get exactly the same results as you get.

 

Providing the necessary information
 

Including a little bit of information about your R environment helps people
answer your questions. You should consider supplying the following:

 
 Your R version (for example, R 2.13-1)

 
 Your operating system (for example, Windows 7 64-bit)

 

 The function sessionInfo() prints information about your version of R and
some locale information, as well as attached or loaded packages. Sometimes
the output of this function can help you determine whether there are conflicts
between your loaded packages. Here’s an example of the results of
sessionInfo():

 
> sessionInfo()
R version 2.14.1 (2011-12-22)
Platform: x86_64-pc-mingw32/x64 (64-bit)
locale:
[1] LC_COLLATE=English_United Kingdom.1252
[2] LC_CTYPE=English_United Kingdom.1252
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United Kingdom.1252
attached base packages:
[1] stats     graphics  grDevices utils     datasets
[6] methods   base
other attached packages:
[1] rj_1.0.2-5     devtools_0.5.1
loaded via a namespace (and not attached):



[1] RCurl_1.6-10.1 tools_2.14.1
 

The results tell you that this session is running R version 2.14 on 64-bit
Windows, with a United Kingdom locale. You also can see that R has loaded two
packages: package rj (version 1.0.2-5) and package devtools (version 0.5.1).

 
Sometimes it’s helpful to include the results of sessionInfo() in your question,

because other R users can then tell whether there could be an issue with your R
installation.

 
 



Part IV
Making the Data Talk

In this part . . .
R has earned its status as one of the leading statistical packages for a reason.

Statisticians use it to extract meaningful relationships from sometimes gigabytes of
available data in a variety of ways. For them, R is often the right tool to convert a
bunch of numbers into an interesting story.

In this part, you meet a small selection of tools that allow you to tell the story
of your data. You get to subset, combine, and restructure your data; summarize it
in meaningful ways; and use the power of statistics to test your hypotheses on the
data at hand.

Because thousands of people continue to develop new statistical techniques
and write new R packages, this section covers only a tiny spectrum of possible
analyses. But you do get insight into how you formulate tests and what you can do
with the resulting objects.



Chapter 12
 

Getting Data into and out of R

In This Chapter
 Exploring the various ways of getting data into R
 Looking at how to save your results

 Understanding how files are organized in R
 

Every data-processing or analysis problem involves at least three broad steps:
input, process, and output. In this chapter, we cover the input and output steps.

 
In this chapter, we look at some of the options you have for importing your

data into R, including using the Clipboard, reading data from comma-separated
value (CSV) files, and interfacing with spreadsheets like Excel. We also give you
some pointers on importing data from commercial software such as SPSS. Next, we
give you some options for exporting your data from R. Finally, you get to
manipulate files and folders on your computer.

 

Getting Data into R
You have several options for importing your data into R, and we cover those

options in this section.
 

Because spreadsheets are so widely used, the bulk of this chapter looks at the
different options for importing data originating in spreadsheets. To illustrate the
techniques in this chapter, we use a small spreadsheet table with information
about the first ten elements of the periodic table, as shown in Figure 12-1.

 

Entering data in the R text editor
 

Although R is primarily a programming language, R has a very basic data
editor that allows you to enter data directly using the edit() function.

 
Figure 12-1: A spreadsheet with elements of the periodic table serves as our example



throughout this chapter.

 The edit() function is only available in some R code editors, so depending
on which software you’re using to edit your R code, this approach may not
work. As of this writing, this option is not yet supported by RStudio.

 
To use the R text editor, first you need to initiate a variable. For example, to

create a data frame and manually enter some of the periodic table data, enter the
following:

 
elements <- data.frame()
elements <- edit(elements)

 
This displays an interactive editor where you can enter data, as shown in

Figure 12-2. Notice that because the data frame is empty, you can scroll left and
right, or up and down, to extend the editing range. Notice also that the editor
doesn’t allow you to modify column or row names.

 
Figure 12-2: Editing data in the R interactive text editor.

Enter some data. Then to save your work, click the X in the top-right corner.
 

To view the details that you’ve just entered, use the print() function:
 

> print(elements)
  var1     var2 var3
1    1 Hydrogen    H
2    2   Helium   He
3    3  Lithium   Li

 



Using the Clipboard to copy and paste
 

Another way of importing data interactively into R is to use the Clipboard to
copy and paste data.

 

 If you’re used to working in spreadsheets and other interactive applications,
copying and pasting probably feels natural. If you’re a programmer or data
analyst, it’s much less intuitive. Why? Because data analysts and programmers
strive to make their results reproducible. A copy-and-paste action can’t be
reproduced easily unless you manually repeat the same action. Still,
sometimes copying and pasting is useful, so we cover it in this section.

 
To import data from the Clipboard, use the readClipboard() function. For

example, select cells B2:B4 in the periodic table spreadsheet, press Ctrl+C to copy
those cells to the Clipboard, and then use the following R code:

 
> x <- readClipboard()
> x
[1] “Hydrogen” “Helium”   “Lithium”

 
As you can see, this approach works very well for vector data (in other words,

a single column or row of data). But things get just a little bit more complicated
when you want to import tabular data to R.

 
To copy and paste tabular data from a spreadsheet, first select a range in your

sheets (for example, cells B1:D5). Then use the readClipboard() function and see
what happens:

 
> x <- readClipboard()
> x
[1] “Name\tSymbol\tGroup” “Hydrogen\tH\t1”      “Helium\tHe\t1”
[4] “Lithium\tLi\t1”      “Beryllium\tBe\t2”

 
This rather unintelligible result looks like complete gibberish. If you look a

little bit closer, though, you’ll notice that R has inserted lots of “\t” elements into
the results. The “\t” is the R way of indicating a tab character — in other words, a
tab separator between elements of data. Clearly, we need to do a bit more
processing on this to get it to work.

 



 The backslash in “\t” is called an escape sequence. See the sidebar “Using
special characters in escape sequences,” later in this chapter, for other
examples of frequently used escape sequences in R.

 
The very powerful read.table() function (which you get to explore in more

detail later in this chapter) imports tabular data into R. You can customize the
behavior of read.table() by changing its many arguments. Pay special attention to
the following arguments:

 
file: The name of the file to import. To use the Clipboard, specify file =
“clipboard”.

 
sep: The separator between data elements. In the case of Microsoft Excel
spreadsheet data copied from the Clipboard, the separator is a tab, indicated by
“\t”.

 
header: This argument indicates whether the Clipboard data includes a header in
the first row (that is, column names). Whether you specify TRUE or FALSE
depends on the range of data that you copied.

 
stringsAsFactors: If TRUE, this argument converts strings to factors. It’s FALSE by
default.

 
> x <- read.table(file = “clipboard”, sep = “\t”, header=TRUE)
> x
       Name Symbol Group
1  Hydrogen      H     1
2    Helium     He     1
3   Lithium     Li     1
4 Beryllium     Be     2

 

 Although R offers some interactive facilities to work with data and the
Clipboard, it’s almost certainly less than ideal for large amounts of data. If you
want to import large data files from spreadsheets, you’ll be better off using
CSV files (described later in this chapter).

 
Note: Unfortunately, readClipboard() is available only on Windows.

 



Using special characters in escape sequences
Certain keys on your keyboard, such as the Enter and Tab keys, produce
behavior without leaving a mark in the document. To use these keys in R,
you need to use an escape sequence (a special character preceded by a
backslash).
Here are some escape sequences you may encounter or want to use:

New line: \n
Tab stop: \t
Backslash: \\
Hexadecimal code: \xnn

The new line (\n) character comes in handy when you create reports or print
messages from your code, while the tab stop (\t) is important when you try
to read some types of delimited text file.
For more information, refer to the section of the R online manual that
describes literal constants: http://cran.r-project.org/doc/manuals/R-
lang.html#Literal- constants.

 

Reading data in CSV files
 

One of the easiest and most reliable ways of getting data into R is to use text
files, in particular CSV files. The CSV file format uses commas to separate the
different elements in a line, and each line of data is in its own line in the text file,
which makes CSV files ideal for representing tabular data. The additional benefit of
CSV files is that almost any data application supports export of data to the CSV
format. This is certainly the case for most spreadsheet applications, including
Microsoft Excel and OpenOffice Calc.

 

 Some EU countries use an alternative standard where a comma is the
decimal separator and a semicolon is the field separator.

 

 In the following examples, we assume that you have a CSV file stored in a
convenient folder in your file system. If you want to reproduce the exact
examples, create a small spreadsheet that looks like the example sheet in
Figure 12-1. To convert an Excel spreadsheet to CSV format, you need to
choose File䳑Save As, which gives you the option to save your file in a variety
of formats. Keep in mind that a CSV file can represent only a single worksheet

http://cran.r-project.org/doc/manuals/R-lang.html#Literal-constants


of a spreadsheet. Finally, be sure to use the topmost row of your worksheet
(row 1) for the column headings.

 

Using read.csv() to import data
 

In R, you use the read.csv() function to import data in CSV format. This
function has a number of arguments, but the only essential argument is file,
which specifies the location and filename. To read a file called elements.csv
located at f: use read.csv() with file.path:

 
> elements <- read.csv(file.path(“f:”, “elements.csv”))
> str(elements)
‘data.frame’: 10 obs. of  9 variables:
$ Atomic.number: int  1 2 3 4 5 6 7 8 9 10
$ Name         : Factor w/ 10 levels “Beryllium”,”Boron”,..: 6 5 7 1 2 3 9
10 4 8

$ Symbol       : Factor w/ 10 levels “B”,”Be”,”C”,”F”,..: 5 6 7 2 1 3 8 10
4 9

$ Group        : int  1 18 1 2 13 14 15 16 17 18
$ Period       : int  1 1 2 2 2 2 2 2 2 2
$ Block        : Factor w/ 2 levels “p”,”s”: 2 2 2 2 1 1 1 1 1 1
$ State.at.STP : Factor w/ 2 levels “Gas”,”Solid”: 1 1 2 2 2 2 1 1 1 1
$ Occurrence   : Factor w/ 1 level “Primordial”: 1 1 1 1 1 1 1 1 1 1
$ Description  : Factor w/ 6 levels “Alkali metal”,..: 6 5 1 2 4 6 6 6 3 5

 
R imports the data into a data frame. As you can see, this example has ten

observations of nine variables.
 

 Notice that the default option is to convert character strings into factors.
Thus, the columns Name, Block, State.At.STP, Occurrence, and Description all
have been converted to factors. Also, notice that R converts spaces in the
column names to periods (for example, in the column State.At.STP).

 
This default option of converting strings to factors when you use read.table()

can be a source of great confusion. You’re often better off importing data that
contains strings in such a way that the strings aren’t converted factors, but remain
character vectors. To import data that contains strings, use the argument
stringsAsFactors=FALSE to read.csv() or read.table():

 
> elements <- read.csv(file.path(“f:”, “elements.csv”),
stringsAsFactors=FALSE)

> str(elements)



‘data.frame’: 10 obs. of  9 variables:
$ Atomic.number: int  1 2 3 4 5 6 7 8 9 10
$ Name         : chr  “Hydrogen” “Helium” “Lithium” “Beryllium” ...
$ Symbol       : chr  “H” “He” “Li” “Be” ...
$ Group        : int  1 18 1 2 13 14 15 16 17 18
$ Period       : int  1 1 2 2 2 2 2 2 2 2
$ Block        : chr  “s” “s” “s” “s” ...
$ State.at.STP : chr  “Gas” “Gas” “Solid” “Solid” ...
$ Occurrence   : chr  “Primordial” “Primordial” “Primordial” “Primordial”
...

$ Description  : chr  “Non-metal” “Noble gas” “Alkali metal” “Alkaline
earth metal” ...

 

 If you have a file in the EU format mentioned earlier (where commas are
used as decimal separators and semicolons are used as field separators), you
need to import it to R using the read.csv2() function.

 

Using read.table() to import tabular data in text files
 

The CSV format, described in the previous section, is a special case of tabular
data in text files. In general, text files can use a multitude of options to distinguish
between data elements. For example, instead of using commas, another format is
to use tab characters as the separator between columns of data. If you have a tab-
delimited file, you can use read.delim() to read your data.

 
The functions read.csv(), read.csv2(), and read.delim() are special cases of

the multipurpose read.table() function that can deal with a wide variety of data
file formats. The read.table() function has a number of arguments that give you
fine control over the specification of the text file you want to import. Here are
some of these arguments:

 
header: If the file contains column names in the first row, specify TRUE.

 
sep: The data separator (for example, sep=”,” for CSV files or sep=”\t” for tab-
separated files).

 
quote: By default, strings are enclosed in double quotation marks (“). If the text
file uses single quotation marks, you can specify this as the argument to quote
(for example, quote=”’”, a single quote embedded between double quotes).

 



nrows: If you want to read only a certain number of rows of a file, you can specify
this by providing an integer number.

 
skip: Allows you to ignore a certain number of lines before starting to read the
rest of the file.

 
stringsAsFactors: If TRUE, it converts strings to factors. It’s FALSE by default.

 

 You can access the built-in help by typing ?read.table into your console.
 

Reading data from Excel
 

If you ask users of R what the best way is to import data directly from
Microsoft Excel, most of them will probably answer that your best option is to first
export from Excel to a CSV file and then use read.csv() to import your data to R.

 
In fact, this is still the advice in Chapter 8 of the R import and export manual,

which says, “The first piece of advice is to avoid doing so if possible!” See for
yourself at http://cran.r-project.org/doc/manuals/R-data.html#Reading-Excel-
spreadsheets. The reason is that many of the existing methods for importing data
from Excel depend on third-party software or libraries that may be difficult to
configure, not available on all operating systems, or perhaps have restrictive
licensing terms.

 

 However, since February 2011 there exists a new alternative: using the
package XLConnect, available from CRAN at http://cran.r-
project.org/web/packages/XLConnect/index.html. What makes XLConnect
different is that it uses a Java library to read and write Excel files. This has two
advantages:

 
It runs on all operating systems that support Java. XLConnect is written in
Java and runs on Window, Linux, and Mac OS.

 
There’s nothing else to load. XLConnect doesn’t require any other libraries or
software. If you have Java installed, it should work.

http://cran.r-project.org/doc/manuals/R-data.html#Reading-Excel-spreadsheets
http://cran.r-project.org/web/packages/XLConnect/index.html


 
XLConnect also can write Excel files, including changing cell formatting, in both

Excel 97–2003 and Excel 2007/10 formats.
 

To find out more about XLConnect, you can read the excellent package
vignette at http://cran.r-
project.org/web/packages/XLConnect/vignettes/XLConnect.pdf.

 
By now you’re probably itching to get started with an example. Let’s assume

you want to read an Excel spreadsheet in your user directory called Elements.xlsx.
First, install and load the package; then create an object with the filename:

 
> install.packages(“XLConnect”)
> library(“XLConnect”)
> excel.file <- file.path(“~/Elements.xlsx”)

 
Now you’re ready to read a sheet of this workbook with the

readWorksheetFromFile() function. You need to pass it at least two arguments:
 

file: A character string with a path to a valid .xls or .xlsx file
 

sheet: Either an integer indicating the position of the worksheet (for example,
sheet=1) or the name of the worksheet (for example, sheet=”Sheet2”)

 
The following two lines do exactly the same thing — they both import the data

in the first worksheet (called Sheet1):
 

> elements <- readWorksheetFromFile(excel.file, sheet=1)
> elements <- readWorksheetFromFile(excel.file, sheet=”Sheet1”)

 

Working with other data types
 

Despite the fact that CSV files are very widely used to import and export data,
they aren’t always the most appropriate format. Some data formats allow the
specification of data that isn’t tabular in nature. Other data formats allow the
description of the data using metadata (data that describes data).

 
The base distribution of R includes a package called foreign that contains

functions to import data files from a number of commercial statistical packages,
including SPSS, Stata, SAS, Octave, and Minitab. Table 12-1 lists some of the

http://cran.r-project.org/web/packages/XLConnect/vignettes/XLConnect.pdf


functions in the foreign package.
 

 To use these functions, you first have to load the foreign package:
 

> library(foreign)
> read.spss(file=”location/of/myfile”)

 

Table 12-1 Functions to Import from Commercial
Statistical Software Available in the foreign Package

 
 
 
 
 
 
 
 
 

 

System

 

Function to Import to R

 
SPSS

 
read.spss

 
SAS

 
read.xport or read.ssd

 
Stata

 
read.dta

 
Minitab

 
read.mtp

 

 Read the Help documentation on these functions carefully. Because data
frames in R may have a quite different structure than datasets in the statistical
packages, you have to pay special attention to how value and variable labels
are treated by the functions mentioned in Table 12-1. Check also the
treatment of special missing values.



 
These functions need a specific file format. The function read.xport() only

works with the XPORT format of SAS. For read.mtp(), the file must be in the
Minitab portable worksheet (.mtp) format.

 
Note that some of these functions are rather old. The newest versions of the

statistical packages mentioned here may have different specifications for the
format, so the functions aren’t always guaranteed to work.

 
Finally, note that some of these functions require the statistical package itself

to be installed on your computer. The read.ssd() function, for example, can work
only if you have SAS installed.

 

 The bottom line: If you can transfer data using CSV files, you’ll save yourself
a lot of trouble.

 
Finally, if you have a need to connect R to a database, then the odds are that

a package exists that can connect to your database of choice. See the nearby
sidebar, “Working with databases in R,” for some pointers.

 

Working with databases in R
Data analysts increasingly make use of databases to store large quantities of
data or to share data with other people. R has good support to work with a
variety of databases, but the exact details of how you do that will vary from
system to system.
If you need to connect R to your database, a really good place to start
looking for information is the Chapter 4 of the R manual “R data
import/export.” You can read this chapter at http://cran.r-
project.org/doc/manuals/R-data.html#Relational-databases.
The package RODBC allows you to connect to Open Database Connectivity
(ODBC) data sources. You can find this package on CRAN at http://cran.r-
project.org/web/packages/RODBC/index.html.
In addition, you can download and install packages to connect R to many
database systems, including the following

MySQL: The RMySql package, available at http://cran.r-
project.org/package=RMySQL

Oracle: The ROracle package, available at http://cran.r-
project.org/package=ROracle

PostgreSQL: The PostgreSQL package, available at http://cran.r-

http://cran.r-project.org/doc/manuals/R-data.html#Relational-databases
http://cran.r-project.org/web/packages/RODBC/index.html
http://cran.r-project.org/package=RMySQL
http://cran.r-project.org/package=ROracle
http://cran.r-project.org/package=RPostgreSQL


project.org/package=RPostgreSQL
SQLite: The RSQLite package, available at http://cran.r-

project.org/package=RSQLite
 

Getting Your Data out of R
For the same reason that it’s convenient to import data into R using CSV files,

it’s also convenient to export results from R to other applications in CSV format. To
create a CSV file, use the write.csv() function. In the same way that read.csv() is
a special case of read.table(), write.csv() is a special case of write.table().

 
To interactively export data from R for pasting into other applications, you can

use writeClipboard() or write.table(). The writeClipboard() function is useful
for exporting vector data. For example, to export the names of the built-in dataset
iris, try the following:

 
> writeClipboard(names(iris))

 
This function doesn’t produce any output to the R console, but you can now

paste the vector into any application. For example, if you paste this into Excel,
you’ll have a column of five entries that contains the names of the iris data, as
shown in Figure 12-3.

 
Figure 12-3: A spreadsheet after first using writeClipboard() and then pasting.

To write tabular data to the Clipboard, you need to use write.table() with
the arguments file=”clipboard”, sep=”\t”, and row.names=FALSE:

 
> write.table(head(iris), file=”clipboard”, sep=”\t”, row.names=FALSE)

 
Again, this doesn’t produce output to the R console, but you can paste the

data into a spreadsheet. The results look like Figure 12-4.
 
Figure 12-4: The first six lines of iris after pasting into a spreadsheet.

http://cran.r-project.org/package=RSQLite


Working with Files and Folders
You know how to import your data into R and export your data from R. Now all

you need is an idea of where the files are stored with R and how to manipulate
those files.

 

Understanding the working directory
 

Every R session has a default location on your operating system’s file structure
called the working directory.

 

 You need to keep track and deliberately set your working directory in each
R session. If you read or write files to disk, this takes place in the working
directory. If you don’t set the working directory to your desired location, you
could easily write files to an undesirable file location.

 
The getwd() function tells you what the current working directory is:

 
> getwd()
[1] “F:/git”

 
To change the working directory, use the setwd() function. Be sure to enter

the working directory as a character string (enclose it in quotes).
 

This example shows how to change your working directory to a folder called
F:/git/roxygen2:

 
> setwd(“F:/git/roxygen2”)
> getwd()
[1] “F:/git/roxygen2”

 



 Notice that the separator between folders is forward slash (/), as it is on
Linux and Mac systems. If you use the Windows operating system, the forward
slash will look odd, because you’re familiar with the backslash (\) of Windows
folders. When working in Windows, you need to either use the forward slash or
escape your backslashes using a double backslash (\\). Compare the following
code:

 
> setwd(“F:\\git\\stringr”)
> getwd()
[1] “F:/git/stringr”

 
R will always print the results using /, but you’re free to use either / or \\ as

you please.
 

 To avoid having to deal with escaping backslashes in file paths, you can use
the file.path() function to construct file paths that are correct, independent
of the operating system you work on. This function is a little bit similar to
paste in the sense that it will append character strings, except that the
separator is always correct, regardless of the settings in your operating
system:

 
> file.path(“f:”, “git”, “surveyor”)
[1] “f:/git/surveyor”

 
It’s often convenient to use file.path() in setting the working directory. This

allows you specify a cascade of drive letters and folder names, and file.path()
then assembles these into a proper file path, with the correct separator character:

 
> setwd(file.path(“F:”, “git”, “roxygen2”))
> getwd()
[1] “F:/git/roxygen2”

 

 You also can use file.path() to specify file paths that include the filename
at the end. Simply add the filename to the path argument. For example, here’s
the file path to the README.md file in the roxygen2 package installed in a local
folder:

 
> file.path(“F:”, “git”, “roxygen2”, “roxygen2”, “README.md” )



[1] “F:/git/roxygen2/roxygen2/README.md”
 

Manipulating files
 

Occasionally, you may want to write a script that will traverse a given folder
and perform actions on all the files or a subset of files in that folder.

 
To get a list of files in a specific folder, use list.files() or dir(). These two

functions do exactly the same thing, but for backward-compatibility reasons, the
same function has two names:

 
> list.files(file.path(“F:”, “git”, “roxygen2”))
[1] “roxygen2”            “roxygen2.Rcheck”
[3] “roxygen2_2.0.tar.gz” “roxygen2_2.1.tar.gz”

 
Table 12-2 lists some other useful functions for working with files.

 

Table 12-2 Useful Functions for Manipulating Files
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Function Description



  
Iist.files

 
Lists files in a directory.

 
list.dirs

 
Lists subdirectories of a directory.

 
file.exists

 
Tests whether a specific file exists in a location.

 
file.create

 
Creates a file.

 
file.remove

 
Deletes files (and directories in Unix operating systems).

 

tempfile
 

Returns a name for a temporary file. If you create a file — for example, with file.create() or
write.table() using this returned name — R will create a file in a temporary folder.

 
tempdir

 
Returns the file path of a temporary folder on your file system.

 
Next, you get to exercise all your knowledge about working with files. In the

next example, you first create a temporary file, then save a copy of the iris data
frame to this file. To test that the file is on disk, you then read the newly created
file to a new variable and inspect this variable. Finally, you delete the temporary
file from disk.

 
Start by using the tempfile() function to return a name to a character string

with the name of a file in a temporary folder on your system:
 

> my.file <- tempfile()
> my.file
[1] “C:\\Users\\Andrie\\AppData\\Local\\Temp\\
RtmpGYeLTj\\file14d4366b6095”

 
Notice that the result is purely a character string, not a file. This file doesn’t

yet exist anywhere. Next, you save a copy of the data frame iris to my.file using
the write.csv() function. Then use list.files() to see if R created the file:

 
> write.csv(iris, file=my.file)
> list.files(tempdir())
[1] “file14d4366b6095”

 
As you can see, R created the file. Now you can use read.csv() to import the

data to a new variable called file.iris:
 

> file.iris <- read.csv(my.file)
 

Use str() to investigate the structure of file.iris. As expected file.iris is
a data.frame of 150 observations and six variables. Six variables, you say? Yes, six,
although the original iris only has five columns. What happened here was that the
default value of the argument row.names of read.csv() is row.names=TRUE. (You



can confirm this by taking a close look at the Help for ?read.csv().) So, R saved
the original row names of iris to a new column called X:

 
> str(file.iris)
‘data.frame’:                              150 obs. of  6 variables:
$ X           : int  1 2 3 4 5 6 7 8 9 10 ...
$ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species     : Factor w/ 3 levels “setosa”,”versicolor”,..: 1 1 1 1 1 1 1
1 1 1 ...

 
To leave your file system in its original order, you can use file.remove() to

delete the temporary file:
 

> file.remove(my.file)
> list.files(tempdir())
character(0)

 
As you can see, the result of list.files() is an empty character string,

because the file no longer exists in that folder.
 
 



Chapter 13
 

Manipulating and Processing Data

In This Chapter
 Creating subsets of data
 Adding calculated fields
 Merging data from different sources
 Sorting data
 Meeting more members of the apply family

 Getting your data into shape
 

Now it’s time to put together all the tools that you encounter in earlier
chapters. You know how to get data into R, you know how to work with lists and
data frames, and you know how to write functions. Combined, these tools form the
basic toolkit to be able to do data manipulation and processing in R.

 
In this chapter, you get to use some tricks and design idioms for working with

data. This includes methods for selecting and ordering data, such as working with
lookup tables. You also get to use some techniques for reshaping data — for
example, changing the shape of data from wide format to long format.

 

Deciding on the Most Appropriate Data Structure
The first decision you have to make before analyzing your data is how to

represent that data inside R. In Chapters 4, 5, and 7, you see that the basic data
structures in R are vectors, matrices, lists, and data frames.

 
If your data has only one dimension, then you already know that vectors

represent this type of data very well. However, if your data has more than one
dimension, you have the choice of using matrices, lists, or data frames. So, the
question is: When do you use which?

 
Matrices and higher-dimensional arrays are useful when all your data are of a

single class — in other words, all your data are numeric or all your data are
characters. If you’re a mathematician or statistician, you’re familiar with matrices
and likely use this type of object very frequently.



 
But in many practical situations, you’ll have data that have many different

classes — in other words, you’ll have a mixture of numeric and character data. In
this case, you need to use either lists or data frames.

 
If you imagine your data as a single spreadsheet, a data frame is probably a

good choice. Remember that a data frame is simply a list of named vectors of the
same length, which is conceptually very similar to a spreadsheet with columns and
a column heading for each. If you’re familiar with databases, you can think of a
data frame as similar to a single table in a database. Data frames are
tremendously useful and, in many cases, will be your first choice of objects for
storing your data.

 
If your data consists of a collection of objects but you can’t represent that as

an array or a data frame, then a list is your ideal choice. Because lists can contain
all kinds of other objects, including other lists or data frames, they’re tremendously
flexible. Consequently, R has a wide variety of tools to process lists.

 
Table 13-1 contains a summary of these choices.

 

 You may find that a data frame is a very suitable choice for most analysis
and data-processing tasks. It’s a very convenient way of representing your
data, and it’s similar to working with database tables. When you read data
from a comma-separated value (CSV) file with the function read.csv() or
read.table(), R puts the results in a data frame.

 

Table 13-1 Useful Objects for Data Analysis
 
 
 
 
 
 
 
 
 
 



 
 
 

 

 

Object

 

Description

 

Comments

 

vector
 

The basic data object in R, consisting
of one or more values of a single type
(for example, character, number, or
integer).

 

Think of this as a single column or row in a
spreadsheet, or a column in a database
table.

 

matrix or
array

 

A multidimensional object of a single
type (known as atomic). A matrix is an
array of two dimensions.

 

When you have to store numbers in many
dimensions, use arrays.

 

list
 

Lists can contain objects of any type.
 

Lists are very useful for storing collections
of data that belong together. Because lists
can contain lists, this type of object is very
useful.

 

data.frame
 

Data frames are a special kind of
named list where all the elements have
the same length.

 

Data frames are similar to a single
spreadsheet or to a table in a database.

 

Creating Subsets of Your Data
Often the first task in data processing is to create subsets of your data for

further analysis. In Chapters 3 and 4, we show you ways of subsetting vectors. In
Chapter 7, we outline methods for creating subsets of arrays, data frames, and
lists.

 
Because this is such a fundamental task in data analysis, we review and

summarize the different methods for creating subsets of data.
 

Understanding the three subset operators
 

 You’re already familiar with the three subset operators:



 
$: The dollar-sign operator selects a single element of your data (and drops the
dimensions of the returned object). When you use this operator with a data
frame, the result is always a vector; when you use it with a named list, you get
that element.

 
[[: The double-square-brackets operator also returns a single element, but it
offers you the flexibility of referring to the elements by position, rather than by
name. You use it for data frames and lists.

 
[: The single-square-brackets operator can return multiple elements of your
data.

 
This summary is simplified. Next, we look at how to use these operators to get

exactly the elements from your data that you want.
 

Understanding the five ways of specifying the subset
 

When you use the single-square-brackets operator, you return multiple
elements of your data. This means that you need a way of specifying exactly which
elements you need.

 
In this paragraph, you can try subsetting with the built-in dataset islands, a

named numeric vector with 48 elements.
 

> str(islands)
Named num [1:48] 11506 5500 16988 2968 16 ...
- attr(*, “names”)= chr [1:48] “Africa” “Antarctica” “Asia” “Australia”
...

 
Table 13-2 illustrates the five ways of specifying which elements you want to

include in or exclude from your data.
 

Table 13-2 Specifying the Subset Elements
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 

 

 

Subset

 

Effect

 

Example

 
Blank

 
Returns all your data

 
islands[]

 
Positive
numerical values

 

Extracts the elements at these locations
 

islands[c(8, 1, 1,
42)]

 
Negative
numerical values

 

Extract all but these elements; in other words,
excludes these elements

 

islands[-(3:46)]
 

Logical values
 

A logical value of TRUE includes element; FALSE
excludes element

 

islands[islands < 20]
 

Text strings
 

Includes elements where the names match
 

islands[c
(“Madagascar”,
“Cuba”)]

 

Subsetting data frames
 

Now that you’ve reviewed the rules for creating subsets, you can try it with
some data frames. You just have to remember that a data frame is a two-
dimensional object and contains rows as well as columns. This means that you
need to specify the subset for rows and columns independently. To do so, you
combine the operators.

 



To illustrate subsetting of data frames, have a look at the built-in dataset
iris, a data frame of five columns and 150 rows with data about iris flowers.

 
> str(iris)
‘data.frame’: 150 obs. of  5 variables:
$ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species     : Factor w/ 3 levels “setosa”,”versicolor”,..: 1 1 1 1 1 1 1
1 1 1 ...

 

 When you subset objects with more than one dimension, you specify the
subset argument for each dimension — you separate the subset arguments
with commas.

 
For example, to get the first five rows of iris and all the columns, try the

following:
 

> iris[1:5, ]
 

To get all the rows but only two of the columns, try the following:
 

> iris[, c(“Sepal.Length”, “Sepal.Width”)]
 

You need to take special care when subsetting in a single column of a data
frame. Try the following:

 
iris[, ‘Sepal.Length’]

 
You’ll see that the result is a vector, not a data frame as you would expect.

 

 When your subset operation returns a single column, the default behavior is
to return a simplified version. The way this works, is that R inspects the
lengths of the returned elements. If all these elements have the same length,
then R simplifies the result to a vector, matrix, or array. In our example, R
simplifies the result to a vector. To override this behavior, you need to specify
the argument drop=FALSE in your subset operation:

 
> iris[, ‘Sepal.Length’, drop=FALSE]



 
Alternatively, you can subset the data frame like a list, as shown in Chapter 7.

The following code returns you a data frame with only one column as well:
 

> iris[‘Sepal.Length’]
 

Finally, to get a subset of only some columns and some rows:
 

> iris[1:5, c(“Sepal.Length”, “Sepal.Width”)]
  Sepal.Length Sepal.Width
1          5.1         3.5
2          4.9         3.0
3          4.7         3.2
4          4.6         3.1
5          5.0         3.6

 

Taking samples from data
 

Statisticians often have to take samples of data and then calculate statistics.
Because a sample is really nothing more than a subset of data, taking a sample is
easy with R. To do so, you make use of sample(), which takes a vector as input;
then you tell it how many samples to draw from that list.

 
Say you wanted to simulate rolls of a die, and you want to get ten results.

Because the outcome of a single roll of a die is a number between one and six,
your code looks like this:

 
> sample(1:6, 10, replace=TRUE)
[1] 2 2 5 3 5 3 5 6 3 5

 
You tell sample() to return ten values, each in the range 1:6. Because every

roll of the die is independent from every other roll of the die, you’re sampling with
replacement. This means that you take one sample from the list and reset the list
to its original state (in other words, you put the element you’ve just drawn back
into the list). To do this, you add the argument replace=TRUE, as in the example.

 
Because the return value of the sample() function is a randomly determined

number, if you try this function repeatedly, you’ll get different results every time.
This is the correct behavior in most cases, but sometimes you may want to get
repeatable results every time you run the function. Usually, this will occur only
when you develop and test your code, or if you want to be certain that someone
else can test your code and get the same values you did. In this case, it’s



customary to specify a so-called seed value.
 

 If you provide a seed value, the random-number sequence will be reset to a
known state. This is because R doesn’t create truly random numbers, but only
pseudo-random numbers. A pseudo-random sequence is a set of numbers that,
for all practical purposes, seem to be random but were generated by an
algorithm. When you set a starting seed for a pseudo-random process, R
always returns the same pseudo-random sequence. But if you don’t set the
seed, R draws from the current state of the random number generator (RNG).
On startup R may set a random seed to initialize the RNG, but each time you
call it, R starts from the next value in the RNG stream. You can read the Help
for ?RNG to get more detail.

 
In R, you use the set.seed() function to specify your seed starting value. The

argument to set.seed() is any integer value.
 

> set.seed(1)
> sample(1:6, 10, replace=TRUE)
[1] 2 3 4 6 2 6 6 4 4 1

 
If you draw another sample, without setting a seed, you get a different set of

results, as you would expect:
 

> sample(1:6, 10, replace=TRUE)
[1] 2 2 5 3 5 3 5 6 3 5

 
Now, to demonstrate that set.seed() actually does reset the RNG, try it again.

But this time, set the seed once more:
 

> set.seed(1)
> sample(1:6, 10, replace=TRUE)
[1] 2 3 4 6 2 6 6 4 4 1

 
You get exactly the same results as the first time you used set.seed(1).

 
You can use sample() to take samples from the data frame iris. In this case,

you may want to use the argument replace=FALSE. Because this is the default
value of the replace argument, you don’t need to write it explicitly:

 
> set.seed(123)
> index <- sample(1:nrow(iris), 5)
> index



[1]  44 119  62 133 142
> iris[index, ]
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
44           5.0         3.5          1.6         0.6     setosa
119          7.7         2.6          6.9         2.3  virginica
62           5.9         3.0          4.2         1.5 versicolor
133          6.4         2.8          5.6         2.2  virginica
142          6.9         3.1          5.1         2.3  virginica

 

Removing duplicate data
 

A very useful application of subsetting data is to find and remove duplicate
values.

 
R has a useful function, duplicated(), that finds duplicate values and returns a

logical vector that tells you whether the specific value is a duplicate of a previous
value. This means that for duplicated values, duplicated() returns FALSE for the
first occurrence and TRUE for every following occurrence of that value, as in the
following example:

 
> duplicated(c(1,2,1,3,1,4))
[1] FALSE FALSE  TRUE FALSE  TRUE FALSE

 
If you try this on a data frame, R automatically checks the observations

(meaning, it treats every row as a value). So, for example, with the data frame
iris:

 
> duplicated(iris)
  [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[10] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
....
[136] FALSE FALSE FALSE FALSE FALSE FALSE FALSE  TRUE FALSE
[145] FALSE FALSE FALSE FALSE FALSE FALSE

 
If you look carefully, you notice that row 143 is a duplicate (because the 143rd

element of your result has the value TRUE). You also can tell this by using the
which() function:

 
> which(duplicated(iris))
[1] 143

 
Now, to remove the duplicate from iris, you need to exclude this row from

your data. Remember that there are two ways to exclude data using subsetting:



 
Specify a logical vector, where FALSE means that the element will be
excluded. The ! (exclamation point) operator is a logical negation. This means
that it converts TRUE into FALSE and vice versa. So, to remove the duplicates
from iris, you do the following:

 
> iris[!duplicated(iris), ]

Specify negative values. In other words:
 

> index <- which(duplicated(iris))
> iris[-index, ]

 
In both cases, you’ll notice that your instruction has removed row 143.

 

Removing rows with missing data
 

Another useful application of subsetting data frames is to find and remove
rows with missing data. The R function to check for this is complete.cases(). You
can try this on the built-in dataset airquality, a data frame with a fair amount of
missing data:

 
> str(airquality)
> complete.cases(airquality)

 
The results of complete.cases() is a logical vector with the value TRUE for

rows that are complete, and FALSE for rows that have some NA values. To remove
the rows with missing data from airquality, try the following:

 
> x <- airquality[complete.cases(airquality), ]
> str(x)

 
Your result should be a data frame with 111 rows, rather than the 153 rows of

the original airquality data frame.
 

As always with R, there is more than one way of achieving your goal. In this
case, you can make use of na.omit() to omit all rows that contain NA values:

 
> x <- na.omit(airquality)

 
When you’re certain that your data is clean, you can start to analyze it by



adding calculated fields.
 

 If you use any of these methods to subset your data or clean out missing
values, remember to store the result in a new object. R doesn’t change
anything in the original data frame unless you explicitly overwrite it. That’s a
good thing, because you can’t accidently mess up your data.

 

Adding Calculated Fields to Data
After you’ve created the appropriate subset of your data, the next step in your

analysis is likely to be to perform some calculations.
 

Doing arithmetic on columns of a data frame
 

R makes it very easy to perform calculations on columns of a data frame
because each column is itself a vector. This means that you can use all the tools
that you encountered in Chapters 4, 5, and 6.

 
Sticking to the iris data frame, try to do a few calculations on the columns.

For example, calculate the ratio between the lengths and width of the sepals:
 

> x <- iris$Sepal.Length / iris$Sepal.Width
 

Now you can use all the R tools to examine your result. For example, inspect
the first five elements of your results with the head() function:

 
> head(x)
[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615

 
As you can see, performing calculations on columns of a data frame is

straightforward. Just keep in mind that each column is really a vector, so you
simply have to remember how to perform operations on vectors (see Chapter 5).

 

Using with and within to improve code readability
 



 After a short while of writing subset statements in R, you’ll get tired of
typing the dollar sign to extract columns of a data frame. Fortunately, there is
a way to reduce the amount of typing and to make your code much more
readable at the same time. The trick is to use the with() function. Try this:

 
> y <- with(iris, Sepal.Length / Sepal.Width)

 
The with() function allows you to refer to columns inside a data frame without

explicitly using the dollar sign or even the name of the data frame itself. So, in our
example, because you use with(iris, ...) R knows to evaluate both
Sepal.Length and Sepal.Width in the context of iris.

 
Hopefully, you agree that this is much easier to read and understand. By

printing the values of your new variable y, you can confirm that it’s identical to x in
the previous example.

 
> head(y)
[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615

 
You also can use the identical() function to get R to tell you whether these

values are, in fact, the same:
 

> identical(x, y)
[1] TRUE

 

 In addition to with(), the helpful within() function allows you to assign
values to columns in your data very easily. Say you want to add your
calculated ratio of sepal length to width to the original data frame. You’re
already familiar with writing it like this:

 
> iris$ratio <- iris$Sepal.Length / iris$Sepal.Width

 
Now, using within() it turns into the following:

 
> iris <- within(iris, ratio <- Sepal.Length / Sepal.Width)

 
This works in a very similar way to with(), except that you can use the assign

operator (<-) inside your function. If you now look at the structure of iris, you’ll
notice that ratio is a column:



 
> head(iris$ratio)
[1] 1.457143 1.633333 1.468750 1.483871 1.388889 1.384615

 
Next, we take a look at how to cut your data into subgroups.

 

Creating subgroups or bins of data
 

One of the first tasks statisticians often use to investigate their data is to draw
histograms. (You get to plot histograms in Chapter 15). A histogram is a plot of the
number of occurrences of data in specific bins or subgroups. Because this type of
calculation is fairly common when you do statistics, R has some functions to do
exactly that.

 

 The cut() function creates bins of equal size (by default) in your data and
then classifies each element into its appropriate bin.

 
If this sounds like a mouthful, don’t worry. A few examples should make this

come to life.
 

Using cut to create a fixed number of subgroups
 

To illustrate the use of cut(), have a look at the built-in dataset state.x77, an
array with several columns and one row for each state in the United States:

 
> head(state.x77)
           Population Income Illiteracy Life Exp Murder HS Grad
Frost   Area

Alabama          3615   3624        2.1    69.05   15.1    41.3    20  50708
Alaska            365   6315        1.5    69.31   11.3    66.7   152
566432

Arizona          2212   4530        1.8    70.55    7.8    58.1    15
113417

Arkansas         2110   3378        1.9    70.66   10.1    39.9    65  51945
California      21198   5114        1.1    71.71   10.3    62.6    20
156361

Colorado         2541   4884        0.7    72.06    6.8    63.9   166
103766

 
We want to work with the column called Frost. To extract this column, try the



following:
 

> frost <- state.x77[, “Frost”]
> head(frost, 5)
   Alabama     Alaska    Arizona   Arkansas California
        20        152         15         65         20

 
You now have a new object, frost, a named numeric vector. Now use cut() to

create three bins in your data:
 

> cut(frost, 3, include.lowest=TRUE)
[1] [-0.188,62.6] (125,188]     [-0.188,62.6] (62.6,125]
[5] [-0.188,62.6] (125,188]     (125,188]     (62.6,125]
....
[45] (125,188]     (62.6,125]    [-0.188,62.6] (62.6,125]
[49] (125,188]     (125,188]
Levels: [-0.188,62.6] (62.6,125] (125,188]

 
The result is a factor with three levels. The names of the levels seem a bit

complicated, but they tell you in mathematical set notation what the boundaries of
your bins are. For example, the first bin contains those states that have frost
between –0.188 and 62.8 days. In reality, of course, none of the states will have
frost on negative days — R is being mathematically conservative and adds a bit of
padding.

 

 Note the argument include.lowest=TRUE to cut(). The default value for this
argument is include.lowest=FALSE, which can sometimes cause R to ignore
the lowest value in your data.

 

Adding labels to cut
 

The level names aren’t very user friendly, so specify some better names with
the labels argument:

 
> cut(frost, 3, include.lowest=TRUE, labels=c(“Low”, “Med”, “High”))
[1] Low  High Low  Med  Low  High High Med  Low  Low  Low
....
[45] High Med  Low  Med  High High
Levels: Low Med High

 
Now you have a factor that classifies states into low, medium, and high,



depending on the number of days of frost they get.
 

Using table to count the number of observations
 

One interesting piece of analysis is to count how many states are in each
bracket. You can do this with the table() function, which simply counts the number
of observations in each level of your factor.

 
> x <- cut(frost, 3, include.lowest=TRUE, labels=c(“Low”, “Med”, “High”))
> table(x)
x
Low  Med High
  11   19   20

 
You encounter the table() function again in Chapter 15.

 

Combining and Merging Data Sets
Now you have a grasp of how to subset your data and how to perform

calculations on it. The next thing you may want to do is combine data from
different sources. Generally speaking, you can combine different sets of data in
three ways:

 
By adding columns: If the two sets of data have an equal set of rows, and the
order of the rows is identical, then adding columns makes sense. Your options
for doing this are data.frame or cbind() (see Chapter 7).

 
By adding rows: If both sets of data have the same columns and you want to
add rows to the bottom, use rbind() (see Chapter 7).

 
By combining data with different shapes: The merge() function combines
data based on common columns, as well as common rows. In databases
language, this is usually called joining data.

 
Figure 13-1 shows these three options schematically.

 
In this section, we look at some of the possibilities of combining data with

merge(). More specifically, you use merge() to find the intersection, as well as the
union, of different data sets. You also look at other ways of working with lookup
tables, using the functions match() and %in%.



 
Figure 13-1: Different ways of combining data.

Sometimes you want to combine data where it isn’t as straightforward to
simply add columns or rows. It could be that you want to combine data based on
the values of preexisting keys in the data. This is where the merge() function is
useful. You can use merge() to combine data only when certain matching
conditions are satisfied.

 
Say, for example, you have information about states in a country. If one

dataset contains information about population and another contains information
about regions, and both have information about the state name, you can use
merge() to combine your results.

 

Creating sample data to illustrate merging
 

To illustrate the different ways of using merge, have a look at the built-in
dataset state.x77. This is an array, so start by converting it into a data frame.
Then add a new column with the names of the states. Finally, remove the old row
names. (Because you explicitly add a column with the names of each state, you
don’t need to have that information duplicated in the row names.)

 
> all.states <- as.data.frame(state.x77)
> all.states$Name <- rownames(state.x77)
> rownames(all.states) <- NULL

 
Now you should have a data frame all.states with 50 observations of nine

variables:
 

> str(all.states)
‘data.frame’:  50 obs. of  9 variables:
$ Population: num  3615 365 2212 2110 21198 ...
$ Income    : num  3624 6315 4530 3378 5114 ...



$ Illiteracy: num  2.1 1.5 1.8 1.9 1.1 0.7 1.1 0.9 1.3 2 ...
$ Life Exp  : num  69 69.3 70.5 70.7 71.7 ...
$ Murder    : num  15.1 11.3 7.8 10.1 10.3 6.8 3.1 6.2 10.7 13.9 ...
$ HS Grad   : num  41.3 66.7 58.1 39.9 62.6 63.9 56 54.6 52.6 40.6 ...
$ Frost     : num  20 152 15 65 20 166 139 103 11 60 ...
$ Area      : num  50708 566432 113417 51945 156361 ...
$ Name      : chr  “Alabama” “Alaska” “Arizona” “Arkansas” ...

 

Creating a subset of cold states
 

Next, create a subset called cold.states consisting of those states with more
than 150 days of frost each year, keeping the columns Name and Frost:

 
> cold.states <- all.states[all.states$Frost>150, c(“Name”, “Frost”)]
> cold.states
            Name Frost
2         Alaska   152
6       Colorado   166
....
45       Vermont   168
50       Wyoming   173

 

Creating a subset of large states
 

Finally, create a subset called large.states consisting of those states with a
land area of more than 100,000 square miles, keeping the columns Name and Area:

 
> large.states <- all.states[all.states$Area>=100000, c(“Name”, “Area”)]
> large.states
         Name   Area
2      Alaska 566432
3     Arizona 113417
....
31 New Mexico 121412
43      Texas 262134

 
Now you’re ready to explore the different types of merge.

 

Using the merge() function
 

In R you use the merge() function to combine data frames. This powerful



function tries to identify columns or rows that are common between the two
different data frames.

 

Using merge to find the intersection of data
 

The simplest form of merge() finds the intersection between two different sets
of data. In other words, to create a data frame that consists of those states that
are cold as well as large, use the default version of merge():

 
> merge(cold.states, large.states)
      Name Frost   Area
1   Alaska   152 566432
2 Colorado   166 103766
3  Montana   155 145587
4   Nevada   188 109889

 

 If you’re familiar with a database language such as SQL, you may have
guessed that merge() is very similar to a database join. This is, indeed, the
case and the different arguments to merge() allow you to perform natural
joins, as well as left, right, and full outer joins.

 
The merge() function takes quite a large number of arguments. These

arguments can look quite intimidating until you realize that they form a smaller
number of related arguments:

 
x: A data frame.

 
y: A data frame.

 
by, by.x, by.y: The names of the columns that are common to both x and y. The
default is to use the columns with common names between the two data
frames.

 
all, all.x, all.y: Logical values that specify the type of merge. The default
value is all=FALSE (meaning that only the matching rows are returned).

 
That last group of arguments — all, all.x and all.y — deserves some

explanation. These arguments determine the type of merge that will happen (see
the next section).



 

Understanding the different types of merge
 

The merge() function allows four ways of combining data:
 

Natural join: To keep only rows that match from the data frames, specify the
argument all=FALSE.

 
Full outer join: To keep all rows from both data frames, specify all=TRUE.

 
Left outer join: To include all the rows of your data frame x and only those
from y that match, specify all.x=TRUE.

 
Right outer join: To include all the rows of your data frame y and only those
from x that match, specify all.y=TRUE.

 
You can see a visual depiction of all these different options in Figure 13-2.

 
Figure 13-2: Different types of merge() and their database join equivalents.

Finding the union (full outer join)
 

Returning to the examples of U.S. states, to perform a complete merge of cold
and large states, use merge and specify all=TRUE:

 
> merge(cold.states, large.states, all=TRUE)
            Name Frost   Area
1         Alaska   152 566432
2        Arizona    NA 113417
3     California    NA 156361
....
13         Texas    NA 262134
14       Vermont   168     NA
15       Wyoming   173     NA

 



Both data frames have a variable Name, so R matches the cases based on the
names of the states. The variable Frost comes from the data frame cold.states,
and the variable Area comes from the data frame large.states.

 
Note that this performs the complete merge and fills the columns with NA

values where there is no matching data.
 

Working with lookup tables
 

Sometimes doing a full merge of the data isn’t exactly what you want. In these
cases, it may be more appropriate to match values in a lookup table. To do this,
you can use the match() or %in% function.

 

Finding a match
 

 The match() function returns the matching positions of two vectors or, more
specifically, the positions of first matches of one vector in the second vector.
For example, to find which large states also occur in the data frame
cold.states, you can do the following:

 
> index <- match(cold.states$Name, large.states$Name)
> index
[1]  1  4 NA NA  5  6 NA NA NA NA NA

 
As you see, the result is a vector that indicates matches were found at

positions one, four, five, and six. You can use this result as an index to find all the
large states that are also cold states.

 
Keep in mind that you need to remove the NA values first, using na.omit():

 
> large.states[na.omit(index), ]
       Name   Area
2    Alaska 566432
6  Colorado 103766
26  Montana 145587
28   Nevada 109889

 



Making sense of %in%
 

A very convenient alternative to match() is the function %in%, which returns a
logical vector indicating whether there is a match.

 

 The %in% function is a special type of function called a binary operator. This
means you use it by placing it between two vectors, unlike most other
functions where the arguments are in parentheses:

 
> index <- cold.states$Name %in% large.states$Name
> index
[1]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE

 
If you compare this to the result of match(), you see that you have a TRUE

value for every non-missing value in the result of match(). Or, to put it in R code,
the operator %in% does the same as the following code:

 
> !is.na(match(cold.states$Name,large.states$Name))
[1]  TRUE  TRUE FALSE FALSE  TRUE  TRUE FALSE FALSE FALSE FALSE FALSE

 

 The match() function returns the indices of the matches in the second
argument for the values in the first argument. On the other hand, %in% returns
TRUE for every value in the first argument that matches a value in the second
argument. The order of the arguments is important here.

 
Because %in% returns a logical vector, you can use it directly to index values in

a vector.
 

> cold.states[index, ]
       Name Frost
2    Alaska   152
6  Colorado   166
26  Montana   155
28   Nevada   188

 

 As we mention earlier, the %in% function is an example of a binary operator
in R. This means that the function is used by putting it between two values, as
you would for other operators, such as + (plus) and - (minus). At the same



time, %in% is in infix operator. An infix operator in R is identifiable by the
percent signs around the function name. If you want to know how %in% is
defined, look at the details section of its Help page. But note that you have to
place quotation marks around the function name to get the Help page, like
this: ?”%in%”.

 

Sorting and Ordering Data
One very common task in data analysis and reporting is sorting information.

You can answer many everyday questions with league tables — sorted tables of
data that tell you the best or worst of specific things. For example, parents want to
know which school in their area is the best, and businesses need to know the most
productive factories or the most lucrative sales areas. When you have the data, you
can answer all these questions simply by sorting it.

 
As an example, look again at the built-in data about the states in the U.S.

First, create a data frame called some.states that contains information contained in
the built-in variables state.region and state.x77:

 
> some.states <- data.frame(
+     Region = state.region,
+     state.x77)

 
To keep the example manageable, create a subset of only the first ten rows

and the first three columns:
 

> some.states <- some.states[1:10, 1:3]
> some.states
               Region Population Income
Alabama         South       3615   3624
Alaska           West        365   6315
Arizona          West       2212   4530
....
Delaware        South        579   4809
Florida         South       8277   4815
Georgia         South       4931   4091

 
You now have a variable called some.states that is a data frame consisting of

ten rows and three columns (Region, Population, and Income).
 

Sorting vectors
 



R makes it easy to sort vectors in either ascending or descending order.
Because each column of a data frame is a vector, you may find that you perform
this operation quite frequently.

 

Sorting a vector in ascending order
 

To sort a vector, you use the sort() function. For example, to sort Population
in ascending order, try this:

 
> sort(some.states$Population)
[1]   365   579  2110  2212  2541  3100  3615  4931  8277
[10] 21198

 

Sorting a vector in decreasing order
 

You also can tell sort() to go about its business in decreasing order. To do
this, specify the argument decreasing=TRUE:

 
> sort(some.states$Population, decreasing=TRUE)
[1] 21198  8277  4931  3615  3100  2541  2212  2110   579
[10]   365

 

 You can access the Help documentation for the sort() function by typing ?
sort into the R console.

 

Sorting data frames
 

Another way of sorting data is to determine the order that elements should be
in, if you were to sort. This sounds long winded, but as you’ll see, having this
flexibility means you can write statements that are very natural.

 

Getting the order
 

First, determine the element order to sort state.info$Population in ascending



order. Do this using the order() function:
 

> order.pop <- order(some.states$Population)
> order.pop
[1]  2  8  4  3  6  7  1 10  9  5

 
This means to sort the elements in ascending order, you first take the second

element, then the eighth element, then the fourth element, and so on. Try it:
 

> some.states$Population[order.pop]
[1]   365   579  2110  2212  2541  3100  3615  4931  8277
[10] 21198

 
Yes, this is rather long winded. But next we look at how you can use order()

in a very powerful way to sort a data frame.
 

Sorting a data frame in ascending order
 

In the preceding section, you calculated the order in which the elements of
Population should be in order for it to be sorted in ascending order, and you stored
that result in order.pop. Now, use order.pop to sort the data frame some.states in
ascending order of population:

 
> some.states[order.pop, ]
               Region Population Income
Alaska           West        365   6315
Delaware        South        579   4809
Arkansas        South       2110   3378
....
Georgia         South       4931   4091
Florida         South       8277   4815
California       West      21198   5114

 

Sorting in decreasing order
 

Just like sort(), the order() function also takes an argument called
decreasing. For example, to sort some.states in decreasing order of population:

 
> order(some.states$Population)
[1]  2  8  4  3  6  7  1 10  9  5
> order(some.states$Population, decreasing=TRUE)
[1]  5  9 10  1  7  6  3  4  8  2



 
Just as before, you can sort the data frame some.states in decreasing order of

population. Try it, but this time don’t assign the order to a temporary variable:
 

> some.states[order(some.states$Population, decreasing=TRUE), ]
               Region Population Income
California       West      21198   5114
Florida         South       8277   4815
Georgia         South       4931   4091
....
Arkansas        South       2110   3378
Delaware        South        579   4809
Alaska           West        365   6315

 

Sorting on more than one column
 

You probably think that sorting is very straightforward, and you’re correct.
Sorting on more than one column is almost as easy.

 

 You can pass more than one vector as an argument to the order() function.
If you do so, the result will be the equivalent of adding a secondary sorting
key. In other words, the order will be determined by the first vector and any
ties will then sort according to the second vector.

 
Next, you get to sort some.states on more than one column — in this case,

Region and Population. If this sounds confusing, don’t worry — it really isn’t. Try it
yourself. First, calculate the order to sort some.states in the order of region as well
at population:

 
> index <- with(some.states, order(Region, Population))
> some.states[index, ]
               Region Population Income
Connecticut Northeast       3100   5348
Delaware        South        579   4809
Arkansas        South       2110   3378
Alabama         South       3615   3624
Georgia         South       4931   4091
Florida         South       8277   4815
Alaska           West        365   6315
Arizona          West       2212   4530
Colorado         West       2541   4884
California       West      21198   5114

 



Sorting multiple columns in mixed order
You may start to wonder how to calculate the order when some of the
columns need to be in increasing order and others need to be in decreasing
order.
To do this, you need to make use of a helper function called xtfrm(). This
function transforms a vector into a numeric vector that sorts in the same
order. After you’ve transformed a vector, you can take the negative to
indicate decreasing order.
To sort some.states into decreasing order of region and increasing order of
population, try the following:

> index <- order(-xtfrm(some.states$Region),
+ some.states$Population)
> some.states[index, ]
Region Population Income
Alaska West 365 6315
Arizona West 2212 4530
Colorado West 2541 4884
California West 21198 5114
Delaware South 579 4809
Arkansas South 2110 3378
Alabama South 3615 3624
Georgia South 4931 4091
Florida South 8277 4815
Connecticut Northeast 3100 5348

 

Traversing Your Data with the Apply Functions
R has a powerful suite of functions that allows you to apply a function

repeatedly over the elements of a list. The interesting and crucial thing about this
is that it happens without an explicit loop. In Chapter 9, you see how to use loops
appropriately and get a brief introduction to the apply family.

 
Because this is such a useful concept, you’ll come across quite a few different

flavors of functions in the apply family of functions. The specific flavor of apply()
depends on the structure of data that you want to traverse:

 
Array or matrix: Use the apply() function. This traverses either the rows or
columns of a matrix, applies a function to each resulting vector, and returns a
vector of summarized results.

 



List: Use the lapply() function to traverse a list, apply a function to each
element, and return a list of the results. Sometimes it’s possible to simplify the
resulting list into a matrix or vector. This is what the sapply() function does.

 
Figure 13-3 demonstrates the appropriate function, depending on whether

your data is in the form of an array or a list.
 
Figure 13-3: Use apply on arrays and matrices; use lapply or sapply on lists.

 The ability to apply a function over the elements of a list is one of the
distinguishing features of the functional programming style as opposed to an
imperative programming style. In the imperative style, you use loops, but in
the functional programming style you apply functions. R has a variety of apply-
type functions, including apply(), lapply(), and sapply().

 

Using the apply() function to summarize arrays
 

If you have data in the form of an array or matrix and you want to summarize
this data, the apply() function is really useful. The apply() function traverses an
array or matrix by column or row and applies a summarizing function.

 
The apply() function takes four arguments:

 
X: This is your data — an array (or matrix).

 
MARGIN: A numeric vector indicating the dimension over which to traverse; 1
means rows and 2 means columns.



 
FUN: The function to apply (for example, sum or mean).

 
... (dots): If your FUN function requires any additional arguments, you can add
them here.

 
To illustrate this, look at the built-in dataset Titanic. This is a four-

dimensional table with passenger data of the ship Titanic, describing their cabin
class, gender, age, and whether they survived.

 
> str(Titanic)
table [1:4, 1:2, 1:2, 1:2] 0 0 35 0 0 0 17 0 118 154 ...
- attr(*, “dimnames”)=List of 4
  ..$ Class   : chr [1:4] “1st” “2nd” “3rd” “Crew”
  ..$ Sex     : chr [1:2] “Male” “Female”
  ..$ Age     : chr [1:2] “Child” “Adult”
  ..$ Survived: chr [1:2] “No” “Yes”

 
In Chapter 14, you find some more examples of working with tables, including

information about how tables differ from arrays.
 

To find out how many passengers were in each of their cabin classes, you
need to summarize Titanic over its first dimension, Class:

 
> apply(Titanic, 1, sum)
1st  2nd  3rd Crew
325  285  706  885

 
Similarly, to calculate the number of passengers in the different age groups,

you need to apply the sum() function over the third dimension:
 

> apply(Titanic, 3, sum)
Child Adult
  109  2092

 
You also can apply a function over two dimensions at the same time. To do

this, you need to combine the desired dimensions with the c() function. For
example, to get a summary of how many people in each age group survived, you
do the following:

 
> apply(Titanic, c(3, 4), sum)
       Survived
Age       No Yes
  Child   52  57
  Adult 1438 654



 

Using lapply() and sapply() to traverse a list or data frame
 

In Chapter 9 we show you how to use the lapply() and sapply() functions. In
this section, we briefly review these functions.

 
When your data is in the form of a list, and you want to perform calculations

on each element of that list, the appropriate apply function is lapply(). For
example, to get the class of each element of iris, do the following:

 
> lapply(iris, class)

 
As you know, when you use sapply(), R attempts to simplify the results to a

matrix or vector:
 

> sapply(iris, class)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species
   “numeric”    “numeric”    “numeric”    “numeric”     “factor”

 
Say you want to calculate the mean of each column of iris:

 
> sapply(iris, mean)
Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species
    5.843333     3.057333     3.758000     1.199333           NA
Warning message:
In mean.default(X[[5L]], ...) :
  argument is not numeric or logical: returning NA

 
There is a problem with this line of code. It throws a warning message

because species is not a numeric column. So, you may want to write a small
function inside apply() that tests whether the argument is numeric. If it is, then
calculate the mean score; otherwise, simply return NA.

 

 In Chapter 8, you create your own functions. The FUN argument of the
apply() functions can be any function, including your own custom functions. In
fact, you can go one step further. It’s actually possible to define a function
inside the FUN argument call to any apply() function:

 
> sapply(iris, function(x) ifelse(is.numeric(x), mean(x), NA))
Sepal.Length  Sepal.Width Petal.Length  Petal.Width      Species



    5.843333     3.057333     3.758000     1.199333           NA
 

What’s happening here? You defined a function that takes a single argument x.
If x is numeric, it returns mean(x); otherwise, it returns NA. Because sapply()
traverses your list, each column, in turn, is passed to your function and evaluated.

 

 When you define a nameless function like this inside another function, it’s
called an anonymous function. Anonymous functions are useful when you want
to calculate something fairly simple, but you don’t necessarily want to
permanently store that function in your workspace.

 

Using tapply() to create tabular summaries
 

So far, you’ve used three members of the apply family of functions: apply(),
lapply(), and sapply(). It’s time to meet the fourth member of the family. You use
tapply() to create tabular summaries of data. This function takes three
arguments:

 
X: A vector

 
INDEX: A factor or list of factors

 
FUN: A function

 
With tapply(), you can easily create summaries of subgroups in data. For

example, calculate the mean sepal length in the dataset iris:
 

> tapply(iris$Sepal.Length, iris$Species, mean)
    setosa versicolor  virginica
     5.006      5.936      6.588

 
With this short line of code, you do some powerful stuff. You tell R to take the

Sepal.Length column, split it according to Species, and then calculate the mean for
each group.

 

 This is an important idiom for writing code in R, and it usually goes by the



name Split, Apply, and Combine (SAC). In this case, you split a vector into
groups, apply a function to each group, and then combine the result into a
vector.

 
Of course, using the with() function, you can write your line of code in a

slightly more readable way:
 

> with(iris, tapply(Sepal.Length, Species, mean))
    setosa versicolor  virginica
     5.006      5.936      6.588

 
Using tapply(), you also can create more complex tables to summarize your

data. You do this by using a list as your INDEX argument.
 

Using tapply() to create higher-dimensional tables
 

For example, try to summarize the data frame mtcars, a built-in data frame
with data about motor-car engines and performance. As with any object, you can
use str() to inspect its structure:

 
> str(mtcars)

 
The variable am is a numeric vector that indicates whether the engine has an

automatic (0) or manual (1) gearbox. Because this isn’t very descriptive, start by
creating a new object, cars, that is a copy of mtcars, and change the column am to
be a factor:

 
> cars <- within(mtcars,
+     am <- factor(am, levels=0:1, labels=c(“Automatic”, “Manual”))
+ )

 
Now use tapply() to find the mean miles per gallon (mpg) for each type of

gearbox:
 

> with(cars, tapply(mpg, am, mean))
Automatic    Manual
17.14737  24.39231

 
Yes, you’re correct. This is still only a one-dimensional table. Now, try to make

a two-dimensional table with the type of gearbox (am) and number of gears (gear):
 



> with(cars, tapply(mpg, list(gear, am), mean))
  Automatic Manual
3  16.10667     NA
4  21.05000 26.275
5        NA 21.380

 

 You use tapply() to create tabular summaries of data. This is a little bit
similar to the table() function. However, table() can create only contingency
tables (that is, tables of counts), whereas with tapply() you can specify any
function as the aggregation function. In other words, with tapply(), you can
calculate counts, means, or any other value.

 
If you want to summarize statistics on a single vector, tapply() is very useful

and quick to use.
 

Using aggregate()
 

Another R function that does something very similar is aggregate():
 

> with(cars, aggregate(mpg, list(gear=gear, am=am), mean))
  gear        am        x
1    3 Automatic 16.10667
2    4 Automatic 21.05000
3    4    Manual 26.27500
4    5    Manual 21.38000

 
Next, you take aggregate() to new heights using the formula interface.

 

Getting to Know the Formula Interface
Now it’s time to get familiar with another very important idea in R: the formula

interface. The formula interface allows you to concisely specify which columns to
use when fitting a model, as well as the behavior of the model.

 
It’s important to keep in mind that the formula notation refers to statistical

formulae, as opposed to mathematical formulae. So, for example, the formula
operator + means to include a column, not to mathematically add two columns
together. Table 13-3 contains some formula operators, as well as examples and
their meanings. You need these operators when you start building models.



 

 We won’t go deeper into this subject in this book, but now you know what
to look for in the Help pages of different modeling functions. Be aware of the
fact that the interpretation of the signs can differ depending on the modeling
function you use.

 

Table 13-3 Some Formula Operators and Their
Meanings

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Operator

 

Example

 

Meaning

 
~ y ~ x Model y as a function of x



   
+

 
y ~ a + b

 
Include columns a as well as b

 
-

 
y ~ a - b

 
Include a but exclude b

 
:

 
y ~ a : b

 
Estimate the interaction of a and b

 
*

 
y ~ a * b

 
Include columns as well as their interaction (that is, y ~ a + b + a:b)

 
|

 
y ~ a | b

 
Estimate y as a function of a conditional on b

 
Many R functions allow you to use the formula interface, often in addition to

other ways of working with that function. For example, the aggregate() function
also allows you to use formulae:

 
> aggregate(mpg ~ gear + am, data=cars, mean)
  gear        am      mpg
1    3 Automatic 16.10667
2    4 Automatic 21.05000
3    4    Manual 26.27500
4    5    Manual 21.38000

 
Notice that the first argument is a formula and the second argument is the

source data frame. In this case, you tell aggregate to model mpg as a function of
gear as well as am and to calculate the mean. This is the same example as in the
previous paragraph, but by using the formula interface your function becomes very
easy to read.

 

 When you look at the Help file for a function, it’ll always be clear whether
you can use a formula with that function. For example, take a look at the Help
for ?aggregate. In the usage section of this page, you find the following text:

 
## S3 method for class ‘data.frame’
aggregate(x, by, FUN, ..., simplify = TRUE)
## S3 method for class ‘formula’
aggregate(formula, data, FUN, ...,
          subset, na.action = na.omit)

 
This page lists a method for class data.frame, as well as a method for class

formula. This indicates that you can use either formulation.
 

You can find more (technical) information about formula on its own Help page,
?formula.

 
In the next section, we offer yet another example of using the formula



interface for reshaping data.
 

Whipping Your Data into Shape
Often, a data analysis task boils down to creating tables with summary

information, such as aggregated totals, counts, or averages. Say, for example, you
have information about four games of Granny, Geraldine, and Gertrude:

 
Game  Venue Granny Geraldine Gertrude
1   1st Bruges     12         5       11
2   2nd  Ghent      4         4        5
3   3rd  Ghent      5         2        6
4   4th Bruges      6         4        7

 

Some more uses of formula
In Chapter 15, you get to do some statistical modeling using R. In particular,
you use aov() to do an analysis of variance (ANOVA).
To do an ANOVA using the same data, try the following:

> aov(mpg ~ gear + am, data=cars)
 

To find out how to interpret the results of ANOVA, turn to Chapter 15.
You can use formulae to specify your model in just about every R statistical
modeling function, such as ANOVA and linear regression.
Another use of the formulae interface is in graphics, especially in the
package lattice that you get to use in Chapter 19. To plot the data in our
example, try this:

> library(lattice)
> xyplot(mpg ~ gear + am, data=cars)

 
 

You now want to analyze the data and get a summary of the total scores for
each player in each venue:

 
   variable Bruges Ghent
1    Granny     18     9
2 Geraldine      9     6
3  Gertrude     18    11

 
If you use spreadsheets, you may be familiar with the term pivot table. The

functionality in pivot tables is essentially the ability to group and aggregate data
and to perform calculations.



 
In the world of R, people usually refer to this as the process of reshaping data.

In base R, there is a function, reshape(), that does this, but we discuss how to use
the add-on package reshape2, which you can find on CRAN.

 

Understanding data in long and wide format
 

When talking about reshaping data, it’s important to recognize data in long
and wide formats. These visual metaphors describe two ways of representing the
same information.

 
You can recognize data in wide format by the fact that columns generally

represent groups. So, our example of basketball games is in wide format, because
there is a column for the baskets made by each of the participants

 
Game  Venue Granny Geraldine Gertrude
1   1st Bruges     12         5       11
2   2nd  Ghent      4         4        5
3   3rd  Ghent      5         2        6
4   4th Bruges      6         4        7

 
In contrast, have a look at the long format of exactly the same data:

 
   Game  Venue  variable value
1    1st Bruges    Granny    12
2    2nd  Ghent    Granny     4
3    3rd  Ghent    Granny     5
4    4th Bruges    Granny     6
5    1st Bruges Geraldine     5
6    2nd  Ghent Geraldine     4
7    3rd  Ghent Geraldine     2
8    4th Bruges Geraldine     4
9    1st Bruges  Gertrude    11
10   2nd  Ghent  Gertrude     5
11   3rd  Ghent  Gertrude     6
12   4th Bruges  Gertrude     7

 
Notice how, in the long format, the three columns for Granny, Geraldine, and

Gertrude have disappeared. In their place, you now have a column called value
that contains the actual score and a column called variable that links the score to
either of the three ladies.

 



 When converting data between long and wide formats, it’s important to be
able to distinguish identifier variables from measured variables:

 
Identifier variables: Identifier, or ID, variables identify the observations. Think
of these as the key that identifies your observations. (In database design, these
are called primary or secondary keys.)

 
Measured variables: This represents the measurements you observed.

 
In our example, the identifier variables are Game and Venue, while the

measured variables are the goals (that is, the columns Granny, Geraldine, and
Gertrude).

 

Getting started with the reshape2 package
 

Base R has a function, reshape(), that works fine for data reshaping. However,
the original author of this function had in mind a specific use case for reshaping:
so-called longitudinal data.

 

 Longitudinal research takes repeated observations of a research subject
over a period of time. For this reason, longitudinal data typically has the
variables associated with time.

 
The problem of data reshaping is far more generic than simply dealing with

longitudinal data. For this reason, Hadley Wickham wrote and released the
package reshape2 that contains several functions to convert data between long and
wide format.

 
To download and install reshape2, use install.packages():

 
> install.packages(“reshape2”)

 
At the start of each new R session that uses reshape2, you need to load the

package into memory using library():
 

> library(“reshape2”)



 
Now you can start. First, create some data:

 
>     goals <- data.frame(
+         Game = c(“1st”, “2nd”, “3rd”, “4th”),
+         Venue = c(“Bruges”, “Ghent”, “Ghent”, “Bruges”),
+         Granny = c(12, 4, 5, 6),
+         Geraldine = c(5, 4, 2, 4),
+     Gertrude = c(11, 5, 6, 7)
+ )

 
This constructs a wide data frame with five columns and four rows with the

scores of Granny, Geraldine, and Gertrude.
 

Melting data to long format
 

You’ve already seen the words wide and long as visual metaphors for the
shape of your data. In other words, wide data tends to have more columns and
fewer rows compared to long data. The reshape package extends this metaphor by
using the terminology of melt and cast:

 
 To convert wide data to long, you melt it with the melt() function.

 
 To convert long data to wide, you cast it with the dcast() function for data
frames or the acast() function for arrays.

 
Try converting your wide data frame goals to a long data frame using melt():

 
> mgoals <- melt(goals)
Using Game, Venue as id variables

 
The melt() function tries to guess your identifier variables (if you don’t provide

them explicitly) and tells you which ones it used. By default, it considers all
categorical variables (that is, factors) as identifier variables. This is often a good
guess, and it’s exactly what we want in our example.

 

 Specifying your identifier variables explicitly is a good idea. You do this by
adding an argument id.vars, where you specify the column names of the
identifiers:



 
> mgoals <- melt(goals, id.vars=c(“Game”, “Venue”))

 
The new object, mgoals, now contains your data in long format:

 
> mgoals
    Game  Venue  variable value
1    1st Bruges    Granny    12
2    2nd  Ghent    Granny     4
3    3rd  Ghent    Granny     5
...
10   2nd  Ghent  Gertrude     5
11   3rd  Ghent  Gertrude     6
12   4th Bruges  Gertrude     7

 

Casting data to wide format
 

Now that you have a molten dataset (a dataset in long format), you’re ready
to reshape it. To illustrate that the process of reshaping keeps all your data intact,
try to reconstruct the original:

 
> dcast(mgoals,  Venue + Game ~ variable, sum)
  Game  Venue Granny Geraldine Gertrude
1  1st Bruges     12         5       11
2  2nd  Ghent      4         4        5
3  3rd  Ghent      5         2        6
4  4th Bruges      6         4        7

 
Can you see how dcast() takes a formula as its second argument? More about

that in a minute, but first inspect your results. It should match the original data
frame.

 
Next, you may want to do something more interesting — for example, create a

summary by venue and player.
 

 You use the dcast() function to cast a molten data frame. To be clear, you
use this to convert from a long format to a wide format, but you also can use
this to aggregate into intermediate formats, similar to the way a pivot table
works.

 
The dcast() function takes three arguments:



 
data: A molten data frame.

 
formula: A formula that specifies how you want to cast the data. This formula
takes the form x_variable ~ y_variable. But we simplified it to make a point.
You can use multiple x-variables, multiple y-variables and even z-variables. We
say more about that in a few paragraphs.

 
fun.aggregate: A function to use if the casting formula results in data
aggregation (for example, length(), sum(), or mean()).

 
So, to get that summary of venue versus player, you need to use dcast() with

a casting formula variable ~ Venue. Note that the casting formula refers to
columns in your molten data frame:

 
> dcast(mgoals, variable ~ Venue , sum)
   variable Bruges Ghent
1    Granny     18     9
2 Geraldine      9     6
3  Gertrude     18    11

 
If you want to get a table with the venue running down the rows and the

player across the columns, your casting formula should be Venue ~ variable:
 

> dcast(mgoals,  Venue ~ variable , sum)
   Venue Granny Geraldine Gertrude
1 Bruges     18         9       18
2  Ghent      9         6       11

 
It’s actually possible to have more complicated casting formulae. According to

the Help page for dcast(), the casting formula takes this format:
 

x_variable + x_2 ~ y_variable + y_2 ~ z_variable ~ ...
 

Notice that you can combine several variables in each dimension with the plus
sign (+), and you separate each dimension with a tilde (~). Also, if you have two or
more tildes in the formula (that is, you include a z-variable), your result will be a
multidimensional array.

 
So, to get a summary of goals by Venue, player (variable), and Game, you do

the following:
 

> dcast(mgoals,  Venue + variable ~ Game , sum)



   Venue  variable 1st 2nd 3rd 4th
1 Bruges    Granny  12   0   0   6
2 Bruges Geraldine   5   0   0   4
3 Bruges  Gertrude  11   0   0   7
4  Ghent    Granny   0   4   5   0
5  Ghent Geraldine   0   4   2   0
6  Ghent  Gertrude   0   5   6   0

 
One of the reasons you should understand data in long format is that both of

the graphics packages lattice and ggplot2 make extensive use of long format
data. The benefit is that you can easily create plots of your data that compares
different subgroups. For example, the following code generates Figure 13-4:

 
> library(ggplot2)
> ggplot(mgoals, aes(x=variable, y=value, fill=Game)) + geom_bar()

 
Figure 13-4: Data in long (molten) format makes it easy to work with ggplot graphics.

 



Chapter 14
 

Summarizing Data

In This Chapter
 Using statistical measures to describe your variables
 Using convenience functions to summarize variables and data frames

 Comparing two groups
 

It’s time to get down to the core business of R: statistics! Because R is
designed to do just that, you can apply most common statistical techniques with a
single command. Moreover, in general, these commands are very well documented
both in the Help files and on the web. If you need more advanced methods or to
implement cutting-edge research, very often there’s already a package for that,
and many of these packages come with a book filled with examples.

 
It may seem rather odd that it takes us 14 chapters to come to the core

business of R. Well, it isn’t. The difficult part is very often getting the data in the
right format. After you’ve done that, R allows you to carry out the planned analyses
rather easily. To see just how easy it is, read on.

 

 R allows you to do just about anything you want; also, the analysis you
carry out doesn’t make sense at all. R gives you the correct calculation, but
that’s not necessarily the right answer to your question. In fact, R is like a
professional workbench available for everybody. If you don’t know what you’re
doing, chances are, things will get bloody at some point. So, make sure you
know the background of the tests you apply on your data, or look for guidance
by a professional. All techniques you use in this chapter are explained in the
book Statistics For Dummies, 2nd Edition, by Deborah J. Rumsey, PhD (Wiley).

 

Starting with the Right Data
Before you attempt to describe your data, you have to make sure your data is

in the right format. This means
 

 Making sure all your data is contained in a data frame (or in a vector if it’s a



single variable)
 

 Ensuring that all the variables are of the correct type
 

 Checking that the values are all processed correctly
 

 The previous chapters give you a whole set of tools for doing exactly these
things. We can’t stress enough how important this is. Many of the mistakes in
data analysis originate from wrongly formatted data.

 

Using factors or numeric data
 

Some data can have only a limited number of different values. For example,
people can be either male or female, and you can describe most hair types with
only a few colors. Sometimes more values are theoretically possible but not
realistic. For example, cars can have more than 16 cylinders in their engines, but
you won’t find many of them. In one way or another, all this data can be seen as
categorical. By this definition, categorical data also includes ordinal data (see
Chapter 5).

 
On the other hand, you have data that can have an unlimited amount of

possible values. This doesn’t necessarily mean that the values can be any value
you like. For example, the mileage of a car is expressed in miles per gallon, often
rounded to the whole mile. Yet, the real value will be slightly different for every
car. The only thing that defines how many possible values you allow is the
precision with which you express the data. Data that can be expressed with any
chosen level of precision is continuous. Both the interval-scaled data and the ratio-
scaled data described in Chapter 5 are usually continuous data.

 
The distinction between categorical and continuous data isn’t always clear

though. Age is, in essence, a continuous variable, but it’s often expressed in the
number of years since birth. You still have a lot of possible values if you do that,
but what happens if you look at the age of the kids at your local high school?
Suddenly you have only five, maybe six, different values in your data. At that point,
you may get more out of your analysis if you treat that data as categorical.

 

 When describing your data, you need to make the distinction between data



that benefits from being converted to a factor and data that needs to stay
numeric. If you can view your data as categorical, converting it to a factor
helps with analyzing it.

 

Counting unique values
 

Let’s take another look at the dataset mtcars. This built-in dataset describes
fuel consumption and ten different design points from 32 cars from the 1970s. It
contains, in total, 11 variables, but all of them are numeric. Although you can work
with the data frame as is, some variables could be converted to a factor because
they have a limited amount of values.

 
If you don’t know how many different values a variable has, you can get this

information in two simple steps:
 

1. Get the unique values of the variable using unique().
 2. Get the length of the resulting vector using length().
 Using the sapply() function from Chapter 9, you can do this for the whole data

frame at once. You apply an anonymous function combining both mentioned steps
on the whole data frame, like this:

 
> sapply(mtcars, function(x) length(unique(x)))
mpg  cyl disp   hp drat   wt qsec   vs   am gear carb
  25    3   27   22   22   29   30    2    2    3    6

 
So, it looks like the variables cyl, vs, am, gear, and carb can benefit from a

conversion to factor. Remember: You have 32 different observations in that
dataset, so none of the variables has unique values only.

 

 When to treat a variable like a factor depends a bit on the situation, but, as
a general rule, avoid more than ten different levels in a factor and try to have
at least five values per level.

 

Preparing the data
 

In many real-life cases, you get heaps of data in a big file, and preferably in a
format you can’t use at all. That must be the golden rule of data gathering: Make



sure your statistician sweats his pants off just by looking at the data. But no
worries! With R at your fingertips, you can quickly shape your data exactly as you
want it. Selecting only the variables you need and transforming them to the right
format becomes pretty easy with the tricks you see in the previous chapters.

 
Let’s prepare the data frame mtcars a bit using some simple tricks. First,

create a data frame cars like this:
 

> cars <- mtcars[c(1,2,9,10)]
> cars$gear <- ordered(cars$gear)
> cars$am <- factor(cars$am, labels=c(‘auto’, ‘manual’))

 
With this code, you do the following:

 
Select four variables from the data frame mtcars and save them in a
data frame called cars. Note that you use the index system for lists to select
the variables (see Chapter 7).

 
Make the variable gear in this data frame an ordered factor.

 
Give the variable am the value ‘auto’ if its original value is 1, and
‘manual’ if its original value is 0.

 
Transform the new variable am to a factor.

 

 In the conversion of cars$am, you notice that the first argument of the
ifelse() statement isn’t a logical expression. The original variable has 0 and 1
as values, and R reads a 0 as FALSE and everything else as TRUE. You can use
this property in your own code, as shown earlier.

 
After running this code, you should have a dataset cars in your workspace

with the following structure:
 

> str(cars)
‘data.frame’:  32 obs. of  4 variables:
$ mpg : num  21 21 22.8 21.4 18.7 ...
$ cyl : num  6 6 4 6 8 ...
$ am  : Factor w/ 2 levels “auto”,”manual”: 1 1 1 2 2 ...
$ gear: Ord.factor w/ 3 levels “3”<”4”<”5”: 2 2 2 1 1 ...

 



With this dataset in your workspace you’re ready to tackle the rest of this
chapter.

 

 In order to avoid too much clutter on the screen, we set the argument
vec.len to 2 in the str() function when creating the output. This argument
defines the default number of values that are displayed for each variable. If
you use str(cars), your output may look a bit different from the one shown
here. See the Help page ?str for more information. Or just forget about it —
you’ll never use it unless you start writing a book about R.

 

Describing Continuous Variables
You have the dataset and you’ve formatted it to fit your needs, so now you’re

ready for the real work. Analyzing your data always starts with describing it. This
way you can detect errors in the data, and you can decide which models are
appropriate to get the information you need from the data you have. Which
descriptive statistics you use depends on the nature of your data, of course. Let’s
first take a look at some things you want to do with continuous data.

 

Talking about the center of your data
 

Sometimes you’re more interested in the general picture of your data than you
are in the individual values. You may be interested not in the mileage of every car,
but in the average mileage of all cars from that dataset. For this, you calculate the
mean using the mean() function, like this:

 
> mean(cars$mpg)
[1] 20.09062

 
You also could calculate the average number of cylinders those cars have, but

this doesn’t really make sense. The average would be 6.1875 cylinders, and we
have yet to see a car driving with an incomplete cylinder. In this case, the median
— the most central value in your data — makes more sense. You get the median
from using the function median(), like this:

 
> median(cars$cyl)
[1] 6

 



 There are numerous other reasons for calculating the median instead of the
mean, or even both together. Both statistics describe a different property of
your data, and even the combination can tell you something. If you don’t know
how to interpret these statistics, Statistics For Dummies, 2nd Edition, by
Deborah J. Rumsey, PhD (Wiley) is a great resource.

 

Describing the variation
 

A single number doesn’t tell you that much about your data. Often it’s at least
as important to have an idea about the spread of your data. You can look at this
spread using a number of different approaches.

 
First, you can calculate either the variance or the standard deviation to

summarize the spread in a single number. For that, you have the convenient
functions var() for the variance and sd() for the standard deviation. For example,
you calculate the standard deviation of the variable mpg in the data frame cars like
this:

 
> sd(cars$mpg)
[1] 6.026948

 

Checking the quantiles
 

Next to the mean and variation, you also can take a look at the quantiles. A
quantile, or percentile, tells you how much of your data lies below a certain value.
The 50 percent quantile, for example, is nothing but the median. Again, R has
some convenient functions to help you with looking at the quantiles.

 

Calculating the range
 

The most-used quantiles are actually the 0 percent and 100 percent quantiles.
You could just as easily call them the minimum and maximum, because that’s what
they are. We introduce the min() and max() functions in Chapter 4. You can get
both together using the range() function. This function conveniently gives you the
range of the data. So, to know between which two values all the mileages are
situated, you simply do the following:



 
> range(cars$mpg)
[1] 10.4 33.9

 

Calculating the quartiles
 

The range still gives you only limited information. Often statisticians report the
first and the third quartile next to the range and the median. These quartiles are,
respectively, the 25 percent and 75 percent quantiles, which are the numbers for
which one-fourth and three-fourths of the data is smaller. You get these numbers
using the quantile() function, like this:

 
> quantile(cars$mpg)
    0%    25%    50%    75%   100%
10.400 15.425 19.200 22.800 33.900

 

 The quartiles are not the same as the lower and upper hinge calculated in
the five-number summary. The latter two are, respectively, the median of the
lower and upper half of your data, and they differ slightly from the first and
third quartiles. To get the five number statistics, you use the fivenum()
function.

 

Getting on speed with the quantile function
 

The quantile() function can give you any quantile you want. For that, you use
the probs argument. You give the probs (or probabilities) as a fractional number.
For the 20 percent quantile, for example, you use 0.20 as an argument for the
value. This argument also takes a vector as a value, so you can, for example, get
the 5 percent and 95 percent quantiles like this:

 
> quantile(cars$mpg, probs=c(0.05, 0.95))
    5%    95%
11.995 31.300

 
The default value for the probs argument is a vector representing the

minimum (0), the first quartile (0.25), the median (0.5), the third quartile (0.75),
and the maximum (1).

 



 All functions from the previous sections have an argument na.rm that allows
you to remove all NA values before calculating the respective statistic. If you
don’t do this, any vector containing NA will have NA as a result. This works
identically to the na.rm argument of the sum() function (see Chapter 4).

 

Describing Categories
A first step in every analysis consists of calculating the descriptive statistics for

your dataset. You have to get to know the data you received before you can
accurately decide what models you try out on them. You need to know something
about the range of the values in your data, how these values are distributed in the
range, and how values in different variables relate to each other. Much of what you
do and how you do it depends on the type of data.

 

Counting appearances
 

Whenever you have a limited number of different values, you can get a quick
summary of the data by calculating a frequency table. A frequency table is a table
that represents the number of occurrences of every unique value in the variable. In
R, you use the table() function for that.

 

Creating a table
 

You can tabulate, for example, the amount of cars with a manual and an
automatic gearbox using the following command:

 
> amtable <- table(cars$am)
> amtable
  auto manual
    13     19

 
This outcome tells you that, in your data, there are 13 cars with an automatic

gearbox and 19 with a manual gearbox.
 

Working with tables



 
As with most functions, you can save the output of table() in a new object (in

this case, called amtable). At first sight, the output of table() looks like a named
vector, but is it?

 
> class(amtable)
[1] “table”

 

 The table() function generates an object of the class table. These objects
have the same structure as an array. Arrays can have an arbitrary number of
dimensions and dimension names (see Chapter 7). Tables can be treated as
arrays to select values or dimension names.

 
In the “Describing Multiple Variables” section, later in this chapter, you use

multidimensional tables and calculate margins and proportions based on those
tables.

 

Calculating proportions
 

After you have the table with the counts, you can easily calculate the
proportion of each count to the total simply by dividing the table by the total
counts. To calculate the proportion of manual and automatic gearboxes in the
dataset cars, you can use the following code:

 
> amtable/sum(amtable)
   auto  manual
0.40625 0.59375

 
Yet, R also provides the prop.table() function to do the same. You can get

the exact same result as the previous line of code by doing the following:
 

> prop.table(amtable)
 

You may wonder why you would use an extra function for something that’s as
easy as dividing by the sum. The prop.table() function also can calculate marginal
proportions (see the “Describing Multiple Variables” section, later in this chapter).

 



Finding the center
 

In statistics, the mode of a categorical variable is the value that occurs most
frequently. It isn’t exactly the center of your data, but if there’s no order in your
data — if you look at a nominal variable — you can’t really talk about a center
either.

 
Although there isn’t a specific function to calculate the mode, you can get it by

combining a few tricks:
 

1. To get the counts for each value, use table().
 2. To find the location of the maximum number of counts, use max().
 3. To find the mode of your variable, select the name corresponding

with the location in Step 2 from the table in Step 1.
 So, to find the mode for the variable am in the dataset cars, you can use the

following code:
 

> id <- amtable == max(amtable)
> names(amtable)[id]
[1] “manual”

 
The variable id contains a logical vector that has the value TRUE for every

value in the table amtable that is equal to the maximum in that table. You select
the name from the values in amtable using this logical vector as an index.

 

 You also can use the which.max() function to find the location of the
maximum in a vector. This function has one important disadvantage, though:
If you have multiple maximums, which.max() will return the position of the
first maximum only. If you’re interested in all maximums, you should use the
construct in the previous example.

 

Describing Distributions
Sometimes the information about the center of the data just isn’t enough. You

get some information about your data from the variance or the quantiles, but still
you may miss important features of your data. Instead of calculating yet more
numbers, R offers you some graphical tools to inspect your data further. And in the
meantime, you can impress people with some fancy plots.



 

Plotting histograms
 

To get a clearer idea about how your data is distributed within the range, you
can plot a histogram. In Chapter 16, you fancy up your plots, but for now let’s just
check the most-used tool for describing your data graphically.

 

Making the plot
 

To make a histogram for the mileage data, you simply use the hist()
function, like this:

 
> hist(cars$mpg, col=’grey’)

 
The result of this function is shown on the left of Figure 14-1. There you see

that the hist() function first cuts the range of the data in a number of even
intervals, and then counts the number of observations in each interval. The bars
height is proportional to those frequencies. On the y-axis, you find the counts.

 

 With the argument col, you give the bars in the histogram a bit of color. In
Chapter 16, we give you some more tricks for customizing the histogram (for
example, by adding a title).

 

Playing with breaks
 

R chooses the number of intervals it considers most useful to represent the
data, but you can disagree with what R does and choose the breaks yourself. For
this, you use the breaks argument of the hist() function.

 
Figure 14-1: Creating a histogram for your data.



You can specify the breaks in a couple different ways:
 

You can tell R the number of bars you want in the histogram by giving
a single number as the argument. Just keep in mind that R will still decide
whether that’s actually reasonable, and it tries to cut up the range using nice
rounded numbers.

 
You can tell R exactly where to put the breaks by giving a vector with
the break points as a value to the breaks argument.

 
So, if you don’t agree with R and you want to have bars representing the

intervals 5 to 15, 15 to 25, and 25 to 35, you can do this with the following code:
 

> hist(cars$mpg, breaks=c(5,15,25,35))
 

The resulting plot is on the right side of Figure 14-1.
 

 You also can give the name of the algorithm R has to use to determine the
number of breaks as the value for the breaks argument. You can find more
information on those algorithms on the Help page ?hist. Try to experiment
with those algorithms a bit to check which one works the best.

 

Using frequencies or densities
 

By breaking up your data in intervals, you still lose some information, albeit a
lot less than when just looking at the descriptives you calculate in the previous
sections. Still, the most complete way of describing your data is by estimating the
probability density function (PDF) or density of your variable.



 
If this concept is unfamiliar to you, don’t worry. Just remember that the

density is proportional to the chance that any value in your data is approximately
equal to that value. In fact, for a histogram, the density is calculated from the
counts, so the only difference between a histogram with frequencies and one with
densities, is the scale of the y-axis. For the rest, they look exactly the same.

 

Creating a density plot
 

You can estimate the density function of a variable using the density()
function. The output of this function itself doesn’t tell you that much, but you can
easily use it in a plot. For example, you can get the density of the mileage variable
mpg like this:

 
> mpgdens <- density(cars$mpg)

 
The object you get this way is a list containing a lot of information you don’t

really need to look at. But that list makes plotting the density as easy as saying
“plot the density”:

 
> plot(mpgdens)

 
You see the result of this command on the left side of Figure 14-2. The plot

looks a bit rough on the edges, but you can polish it with the tricks shown in
Chapter 16. The important thing is to see how your data comes out. The density
object is plotted as a line, with the actual values of your data on the x-axis and the
density on the y-axis.

 
Figure 14-2: Plotting density lines and combining them with a histogram.



 The mpgdens list object contains — among other things — an element called
x and one called y. These represent the x- and y-coordinates for plotting the
density. When R calculates the density, the density() function splits up your
data in a large number of small intervals and calculates the density for the
midpoint of each interval. Those midpoints are the values for x, and the
calculated densities are the values for y.

 

Plotting densities in a histogram
 

Remember that the hist() function returns the counts for each interval. Now
the chance that a value lies within a certain interval is directly proportional to the
counts. The more values you have within a certain interval, the greater the chance
that any value you picked is lying in that interval.

 
So, instead of plotting the counts in the histogram, you could just as well plot

the densities. R does all the calculations for you — the only thing you need to do is
set the freq argument of hist() to FALSE, like this:

 
> hist(cars$mpg, col=’grey’, freq=FALSE)

 
Now the plot will look exactly the same as before; only the values on the y-

axis are different. The scale on the y-axis is set in such a way that you can add the
density plot over the histogram. For that, you use the lines() function with the
density object as the argument. So, you can, for example, fancy up the previous
histogram a bit further by adding the estimated density using the following code
immediately after the previous command:

 
> lines(mpgdens)

 
You see the result of these two commands on the right side of Figure 14-2.

You get more information on how the lines() function works in Chapter 16. For
now, just remember that lines() uses the x and y elements from the density
object mpgdens to plot the line.

 

Describing Multiple Variables
Until now, you looked at a single variable from your dataset each time. All

these statistics and plots tell part of the story, but when you have a dataset with



multiple variables, there’s a lot more of the story to be told. Taking a quick look at
the summary of the complete dataset can warn you already if something went
wrong with the data gathering and manipulation. But what statisticians really go
after is the story told by the relation between the variables. And that story begins
with describing these relations.

 

Summarizing a complete dataset
 

If you need a quick overview of your dataset, you can, of course, always use
str() and look at the structure. But this tells you something only about the classes
of your variables and the number of observations. Also, the function head() gives
you, at best, an idea of the way the data is stored in the dataset.

 

Getting the output
 

To get a better idea of the distribution of your variables in the dataset, you
can use the summary() function like this:

 
> summary(cars)
      mpg             cyl             am     gear
Min.   :10.40   Min.   :4.000   auto  :13   3:15
1st Qu.:15.43   1st Qu.:4.000   manual:19   4:12
Median :19.20   Median :6.000               5: 5
Mean   :20.09   Mean   :6.188
3rd Qu.:22.80   3rd Qu.:8.000
Max.   :33.90   Max.   :8.000

 

 The summary() function works best if you just use R interactively at the
command line for scanning your dataset quickly. You shouldn’t try to use it
within a custom function you wrote yourself. In that case, you’d better use the
functions from the first part of this chapter to get the desired statistics.

 
The output of the summary() function shows you for every variable a set of

descriptive statistics, depending on the type of the variable:
 

Numerical variables: summary() gives you the range, quartiles, median, and
mean.

 



Factor variables: summary() gives you a table with frequencies.
 

Numerical and factor variables: summary() gives you the number of missing
values, if there are any.

 
Character variables: summary() doesn’t give you any information at all apart
from the length and the class (which is ‘character’).

 

Fixing a problem
 

Did you see the weird values for the variable cyl? A quick look at the summary
can tell you there’s something fishy going on, as, for example, the minimum and
the first quartile have exactly the same value. In fact, the variable cyl has only
three values and would be better off as a factor. So, let’s put that variable out of its
misery:

 
> cars$cyl <- as.factor(cars$cyl)

 
Now you can use it correctly in the remainder of this chapter.

 

Plotting quantiles for subgroups
 

Often you want to split up this analysis for different subgroups in order to
compare them. You need to do this if you want to know how the average lip size
compares between male and female kissing gouramis (great fish by the way!) or,
in the case of our example, you want to know whether the number of cylinders in a
car influences the mileage.

 
Of course you can use tapply() to calculate any of the descriptives for

subgroups defined by a factor variable. In Chapter 13, you do exactly that. But in R
you find some more tools for summarizing descriptives for different subgroups.

 
One way to quickly compare groups is to construct a box-and-whisker plot

from the data. You could construct this plot by calculating the range, the quartiles,
and the median for each group, but luckily you can just tell R to do all that for you.
For example, if you want to know how the mileage compares between cars with a
different number of cylinders, you simply use the boxplot() function to get the
result shown in Figure 14-3:



 
> boxplot(mpg ~ cyl, data=cars)

 
Figure 14-3: Use the boxplot() function to get this result.

You supply a simple formula as the first argument to boxplot(). This formula
reads as “plot boxes for the variable mpg for the groups defined by the variable
cyl.” You find more information on the formula interface for functions in Chapter
13.

 
This plot uses quantiles to give you an idea of how the data is spread within

each subgroup. The line in the middle of each box represents the median, and the
edges of the box represent the first and the third quartiles. The whiskers extend to
either the minimum and the maximum of the data or 1.5 times the distance
between the first and the third quartiles, whichever is smaller.

 

 To be completely correct, the edges of the box represent the lower and
upper hinges from the five-number summary, calculated using the fivenum()
function. They’re equal to the quartiles only if you have an odd number of
observations in your data. Otherwise, the results of fivenum() and quantile()
may differ a bit due to differences in the details of the calculation.

 



 You can let the whiskers always extend to the minimum and the maximum
by setting the range argument of the boxplot() function to 0.

 

Extracting the data from the plots
The hist() and boxplot() functions have another incredibly nice feature:
You can get access to all the information R uses to plot the histogram or box
plot and use it in further calculations. Getting that information is as easy as
assigning the output of the function to an object. For example, you get the
information on the breaks, counts, and density in a histogram like this:

> mpghist <- hist(cars$mpg)
 

Your histogram is still plotted, but on top of that you now create an object
that contains a list with — among other things — the elements breaks,
counts, and density. For a box plot, you can do exactly the same and get an
object that contains a list with — among other things — the elements stats
and n, representing the used statistics and the number of cases in each
category. On the Help pages for hist() and boxplot(), you find more
information on the list elements in the “Value” sections.
All that information you could, of course, also get using other functions in R.
It can help, though, to quickly add some extra information to a plot. For
example, you can add the number of cases for each box to a box plot like
this:

> mpgbox <- boxplot(mpg ~ cyl, data=cars)
> n <- nlevels(as.factor(cars$cyl))
> text(1:n, mpgbox$stats[1,], + paste(‘n =’,

mpgbox$n), + pos=1)
 

With this code, you add a text value under the lower whisker. The x-
coordinates 1 through n coincide with the middle of each box. You get the y-
coordinates from the stats element in the mpgbox object, which tells you
where the lower whisker is. The argument pos=1 in the text function places
the text under the coordinates. You can try playing around with it yourself.
While you’re at it, check Chapter 16 for some more tips on manipulating
plots.

 

Tracking correlations
 



Statisticians love it when they can link one variable to another. Sunlight, for
example, is detrimental to skirts: The longer the sun shines, the shorter skirts
become. We say that the number of hours of sunshine correlates with skirt length.
Obviously, there isn’t really a direct causal relationship here — you won’t find short
skirts during the summer in polar regions. But, in many cases, the search for causal
relationships starts with looking at correlations.

 
To illustrate this, let’s take a look at the famous iris dataset in R. One of the

greatest statisticians of all time, Sir Ronald Fisher, used this dataset to illustrate
how multiple measurements can be used to discriminate between different species.
This dataset contains five variables, as you can see by using the names() function:

 
> names(iris)
[1] “Sepal.Length” “Sepal.Width”  “Petal.Length”
[4] “Petal.Width”  “Species”

 
It contains measurements of flower characteristics for three species of iris and

from 50 flowers for each species. Two variables describe the sepals (Sepal.Length
and Sepal.Width), two other variables describe the petals (Petal.Length and
Petal.Width), and the last variable (Species) is a factor indicating from which
species the flower comes.

 

Looking at relations
 

Although looks can be deceiving, you want to eyeball your data before digging
deeper into it. In Chapter 16, you create scatterplots for two variables. To plot a
grid of scatterplots for all combinations of two variables in your dataset, you can
simply use the plot() function on your data frame, like this:

 
> plot(iris[-5])

 

 Because scatterplots are useful only for continuous variables, you can drop
all variables that are not continuous. Too many variables in the plot matrix
makes the plots difficult to see. In the previous code, you drop the variable
Species, because that’s a factor.

 
You can see the result of this simple line of code in Figure 14-4. The variable

names appear in the squares on the diagonal, indicating which variables are
plotted along the x-axis and the y-axis. For example, the second plot on the third



row has Sepal.Width on the x-axis and Petal.Length on the y-axis.
 

 When the plot() function notices that you pass a data frame as an
argument, it calls the pairs() function to create the plot matrix. This function
offers you a lot more flexibility. For example, on the Help page ?pairs, you
find some code that adds a histogram on the diagonal plots. Check out the
examples on the Help page for some more tricks.

 
Figure 14-4: Plotting the relations for all variables in a dataset.

Getting the numbers
 

The amount in which two variables vary together can be described by the
correlation coefficient. You get the correlations between a set of variables in R very
easily by using the cor() function. You simply add the two variables you want to
examine as the arguments. For example, if you want to check how much the petal
width correlates with the petal length, you simply do the following:

 
> with(iris, cor(Petal.Width, Petal.Length))
[1] 0.9628654

 
This tells you that the relation between the petal width and the petal length is

almost a perfect line, as you also can see in the fourth plot of the third row in
Figure 14-4.

 

Calculating correlations for multiple variables



 
You also can calculate the correlation among multiple variables at once, much

in the same way as you can plot the relations among multiple variables. So, for
example, you can calculate the correlations that correspond with the plot in Figure
14-4 with the following line:

 
> iris.cor <- cor(iris[-5])

 
As always, you can save the outcome of this function in an object. This lets

you examine the structure of the function output so you can figure out how you can
use it in the rest of your code. Here’s a look at the structure of the object iris.cor:

 
> str(iris.cor)
num [1:4, 1:4] 1 -0.118 0.872 0.818 -0.118 ...
- attr(*, “dimnames”)=List of 2
  ..$ : chr [1:4] “Sepal.Length” “Sepal.Width” “Petal.Length”
“Petal.Width”

  ..$ : chr [1:4] “Sepal.Length” “Sepal.Width” “Petal.Length”
“Petal.Width”

 
This output tells you that iris.cor is a matrix with the names of the variables

as both row names and column names. To find the correlation of two variables in
that matrix, you can use the names as indices — for example:

 
> iris.cor[‘Petal.Width’, ‘Petal.Length’]
[1] 0.9628654

 

Dealing with missing values
 

The cor() function can deal with missing values in multiple ways. For that, you
set the argument use to one of the possible text values. The value for the use
argument is especially important if you calculate the correlations of the variables in
a data frame. By setting this argument to different values, you can

 
Use all observations by setting use=’everything’. This means that if there’s
any NA value in one of the variables, the resulting correlation is NA as well. This
is the default.

 
Exclude all observations that have NA for at least one variable. For this,
you set use=’complete.obs’. Note that this may leave you with only a few
observations if missing values are spread through the complete dataset.



 
Exclude observations with NA values for every pair of variables you
examine. For that, you set the argument use=’pairwise’. This ensures that you
can calculate the correlation for every pair of variables without losing
information because of missing values in the other variables.

 

 In fact, you can calculate different measures of correlation. By default, R
calculates the standard Pearson correlation coefficient. For data that is not
normally distributed, you can use the cor() function to calculate the Spearman
rank correlation, or Kendall’s tau. For this, you have to set the method
argument to the appropriate value. You can find more information about
calculating the different correlation statistics on the Help page ?cor. For more
formal testing of correlations, look at the cor.test() function and the related
Help page.

 

Working with Tables
In the “Describing Categories” section, earlier in this chapter, you use tables to

summarize one categorical variable. But tables can easily describe more variables
at once. You may want to know how many men and women teach in each
department of your university (although that’s not the most traditional criterion for
choosing your major).

 

Creating a two-way table
 

A two-way table is a table that describes two categorical variables together. It
contains the number of cases for each combination of the categories in both
variables. The analysis of categorical data always starts with tables, and R gives
you a whole toolset to work with them. But first, you have to create the tables.

 

Creating a table from two variables
 

For example, you want to know how many cars have three, four, or five gears,
but split up for cars with automatic gearboxes and cars with manual gearboxes.
You can do this again with using the table() function with two arguments, like
this:



 
> with(cars, table(am, gear))
          3  4  5
  auto    0  8  5
  manual 15  4  0

 

 The levels of the variable you give as the first argument are the row names,
and the levels of the variable you give as the second argument are the column
names. In the table, you get the counts for every combination. For example,
you can count 15 cars with manual gearboxes and three gears.

 

Creating tables from a matrix
 

Researchers also use tables for more serious business, like for finding out
whether a certain behavior (like smoking) has an impact on the risk of getting an
illness (for example, lung cancer). This way you have four possible cases: risk
behavior and sick, risk behavior and healthy, no risk behavior and healthy, or no
risk behavior and sick.

 
Often the result of such a study consists of the counts for every combination. If

you have the counts for every case, you can very easily create the table yourself,
like this:

 
> trial <- matrix(c(34,11,9,32), ncol=2)
> colnames(trial) <- c(‘sick’, ‘healthy’)
> rownames(trial) <- c(‘risk’, ‘no_risk’)
> trial.table <- as.table(trial)

 
With this code, you do the following:

 
1. Create a matrix with the number of cases for every combination of

sick/healthy and risk/no risk behavior.
 2. Add column names to point out which category the counts are for.
 3. Convert that matrix to a table.
 The result looks like this:
 

> trial.table
        sick healthy
risk      34       9
no_risk   11      32



 
A table like trial.table can be seen as a summary of two variables. One

variable indicates if the person is sick or healthy, and the other variable indicates
whether the person shows risky behavior.

 

Extracting the numbers
 

Although tables and matrices are two different beasts, you can treat a two-
way table like a matrix in most situations. This becomes handy if you want to
extract values from the table. If you want to know how many people were sick and
showed risk behavior, you simply do the following:

 
> trial.table[‘risk’, ‘sick’]
[1] 34

 

 All the tricks with indices that we cover in Chapters 4 and 7 work on tables,
too. A table of a single variable reacts the same as a vector, and a two-way
table reacts the same as a matrix.

 

Converting tables to a data frame
 

The resulting object trial.table looks exactly the same as the matrix trial,
but it really isn’t. The difference becomes clear when you transform these objects
to a data frame. Take a look at the outcome of the following code:

 
> trial.df <- as.data.frame(trial)
> str(trial.df)
‘data.frame’: 2 obs. of  2 variables:
$ sick   : num  34 11
$ healthy: num  9 32

 
Here you get a data frame with two variables (sick and healthy) with each

two observations. On the other hand, if you convert the table to a data frame, you
get the following result:

 
> trial.table.df <- as.data.frame(trial.table)
> str(trial.table.df)
‘data.frame’: 4 obs. of  3 variables:
$ Var1: Factor w/ 2 levels “risk”,”no_risk”: 1 2 1 2



$ Var2: Factor w/ 2 levels “sick”,”healthy”: 1 1 2 2
$ Freq: num  34 11 9 32

 

 The as.data.frame() function converts a table to a data frame in a format
that you need for regression analysis on count data. If you need to summarize
the counts first, you use table() to create the desired table.

 
Now you get a data frame with three variables. The first two — Var1 and Var2

— are factor variables for which the levels are the values of the rows and the
columns of the table, respectively. The third variable — Freq — contains the
frequencies for every combination of the levels in the first two variables.

 

 In fact, you also can create tables in more than two dimensions by adding
more variables as arguments, or by transforming a multidimensional array to a
table using as.table(). You can access the numbers the same way you do for
multidimensional arrays, and the as.data.frame() function creates as many
factor variables as there are dimensions.

 

Looking at margins and proportions
 

In categorical data analysis, many techniques use the marginal totals of the
table in the calculations. The marginal totals are the total counts of the cases over
the categories of interest. For example, the marginal totals for behavior would be
the sum over the rows of the table trial.table.

 

Adding margins to the table
 

R allows you to extend a table with the marginal totals of the rows and
columns in one simple command. For that, you use the addmargins() function, like
this:

 
> addmargins(trial.table)
        sick healthy Sum
risk      34       9  43
no_risk   11      32  43
Sum       45      41  86



 
You also can add the margins for only one dimension by specifying the margin

argument for the addmargins() function. For example, to get only the marginal
counts for the behavior, you do the following:

 
> addmargins(trial.table,margin=2)
        sick healthy Sum
risk      34       9  43
no_risk   11      32  43

 

 The margin argument takes a number or a vector of numbers, but it can be
a bit confusing. The margins are numbered the same way as in the apply()
function. So 1 stands for rows and 2 for columns. To add the column margin,
you need to set margin to 2, but this column margin contains the row totals.

 

Calculating proportions
 

You can convert a table with counts to a table with proportions very easily
using the prop.table() function. This also works for multiway tables. If you want
to know the proportions of observations in every cell of the table to the total
number of cases, you simply do the following:

 
> prop.table(trial.table)
             sick   healthy
risk    0.3953488 0.1046512
no_risk 0.1279070 0.3720930

 
This tells you that, for example, 10.4 percent of the people in the study were

healthy, even when they showed risk behavior.
 

Calculating proportions over columns and rows
 

But what if you want to know which fraction of people with risk behavior got
sick? Then you don’t have to calculate the proportions by dividing the counts by the
total number of cases for the whole dataset; instead, you divide the counts by the
marginal totals.

 
R lets you do this very easily using, again, the prop.table() function, but this



time specifying the margin argument.
 

Take a look at the table again. You want to calculate the proportions over
each row, because each row represents one category of behavior. So, to get the
correct proportions, you specify margin=1 like this:

 
> prop.table(trial.table, margin=1)
             sick   healthy
risk    0.7906977 0.2093023
no_risk 0.2558140 0.7441860

 
In every row, the proportions sum up to 1. Now you can see that 79 percent of

the people showing risk behavior got sick. Well, it isn’t big news that risky behavior
can cause diseases, and the proportions shown in the last result point in that
direction. Yet, scientists believe you only if you can back it up in a more objective
way. That’s the point at which you should consider doing some statistical testing.
We show you how that’s done in the next chapter.

 
 



Chapter 15
 

Testing Differences and Relations

In This Chapter
 Evaluating distributions
 Comparing two samples
 Comparing more than two samples
 Testing relations between categorical variables

 Working with models
 

It’s one thing to describe your data and plot a few graphs, but if you want to
draw conclusions from these graphs, people expect a bit more proof. This is where
the data analysts chime in and start pouring p-values generously over reports and
papers. These p-values summarize the conclusions of statistical tests, basically
indicating how likely it is that the result you see is purely due to chance. The story
is a bit more complex — but for that you need to take a look at a statistics
handbook like Statistics For Dummies, 2nd Edition, by Deborah J. Rumsey, PhD
(Wiley).

 
R really shines when you need some serious statistical number crunching.

Statistics is the alpha and omega of this language, but why have we waited until
Chapter 15 to cover some of that? There are two very good reasons why we wait to
talk about statistics until now:

 
 You can start with the statistics only after you’ve your data in the right format,
so you need to get that down first.

 
 R contains an overwhelming amount of advanced statistical techniques, many of
which come with their own books and manuals.

 
Luckily, many packages follow the same principles regarding the user

interface. So, instead of trying to cover all of what’s possible, in this chapter we
introduce you to some basic statistical tests and explain the interfaces in more
detail so you get familiar with that.

 



Taking a Closer Look at Distributions
The normal distribution (also known as the Gaussian distribution or bell curve)

is a key concept in statistics. Much statistical inference is based on the assumption
that, at some point in your calculations, you have values that are distributed
normally. Testing whether the distribution of your data follows this bell curve
closely enough is often one of the first things you do before you choose a test to
test your hypothesis.

 

 If you’re not familiar with the normal distribution, check out Statistics For
Dummies, 2nd Edition, by Deborah J. Rumsey, PhD (Wiley), which devotes a
whole chapter to this concept.

 

Observing beavers
 

Let’s take a look at an example. The biologist and statistician Penny Reynolds
observed some beavers for a complete day and measured their body temperature
every ten minutes. She also wrote down whether the beavers were active at that
moment. You find the measurements for one of these animals in the dataset
beavers, which consists of two data frames; for the examples, we use the second
one, which contains only four variables, as you can see in the following:

 
> str(beaver2)
‘data.frame’: 100 obs. of  4 variables:
$ day  : num  307 307 307 307 307 ...
$ time : num  930 940 950 1000 1010 ...
$ temp : num  36.6 36.7 ...
$ activ: num  0 0 0 0 0 ...

 
If you want to know whether there’s a difference between the average body

temperature during periods of activity and periods without, you first have to choose
a test. To know which test is appropriate, you need to find out if the temperature is
distributed normally during both periods. So, let’s take a closer look at the
distributions.

 

Testing normality graphically
 

You could, of course, plot a histogram for every sample you want to look at.
You can use the histogram() function pretty easily to plot histograms for different



groups. (This function is part of the lattice package you use in Chapter 17.)
 

Using the formula interface, you can plot two histograms in Figure 15-1 at
once using the following code:

 
> library(lattice)
> histogram(~temp | factor(activ), data=beaver2)

 
Figure 15-1: Plotting histograms for different groups.

You find more information about the formula interface in Chapter 13, but let’s
go over this formula once more. The histogram() function uses a one-sided
formula, so you don’t specify anything at the left side of the tilde (~). On the right
side, you specify the following:

 
Which variable the histogram should be created for: In this case, that’s
the variable temp, containing the body temperature.

 
After the vertical line (|),the factor by which the data should be split: In
this case, that’s the variable activ that has a value 1 if the beaver was active
and 0 if it was not. To convert this numeric variable to a factor, you use the
factor() function.

 

 The vertical line (|) in the formula interface can be read as “conditional on.”
It’s used in that context in the formula interfaces of more advanced statistical
functions as well.

 

Using quantile plots



 
Still, histograms leave much to the interpretation of the viewer. A better

graphical way to tell whether your data is distributed normally is to look at a so-
called quantile-quantile (QQ) plot.

 
With this technique, you plot quantiles against each other. If you compare two

samples, for example, you simply compare the quantiles of both samples. Or, to
put it a bit differently, R does the following to construct a QQ plot:

 
 It sorts the data of both samples.

 
 It plots these sorted values against each other.

 

 If both samples don’t contain the same number of values, R calculates extra
values by interpolation for the smallest sample to create two samples of the
same size.

 

Comparing two samples
 

Of course, you don’t have to do that all by yourself, you can simply use the
qqplot() function for that. So, to check whether the temperatures during activity
and during rest are distributed equally, you simply do the following:

 
> qqplot(beaver2$temp[beaver2$activ==1],
+        beaver2$temp[beaver2$activ==0])

 
This creates a plot where the ordered values are plotted against each other,

as shown in Figure 15-2. You can use all the tricks from Chapter 16 to change axis
titles, color and appearance of the points, and so on.

 
Figure 15-2: Plotting a QQ plot of two different samples.



 Between the square brackets, you can use a logical vector to select the
cases you want. Here you select all cases where the variable activ equals 1
for the first sample, and all cases where that variable equals 0 for the second
sample.

 

Using a QQ plot to check for normality
 

In most cases, you don’t want to compare two samples with each other, but
compare a sample with a theoretical sample that comes from a certain distribution
(for example, the normal distribution).

 
To make a QQ plot this way, R has the special qqnorm() function. As the name

implies, this function plots your sample against a normal distribution. You simply
give the sample you want to plot as a first argument and add any of the graphical
parameters from Chapter 16 you like. R then creates a sample with values coming
from the standard normal distribution, or a normal distribution with a mean of zero
and a standard deviation of one. With this second sample, R creates the QQ plot as
explained before.

 

 R also has a qqline() function, which adds a line to your normal QQ plot.
This line makes it a lot easier to evaluate whether you see a clear deviation
from normality. The closer all points lie to the line, the closer the distribution
of your sample comes to the normal distribution. The qqline() function also
takes the sample as an argument.

 



Now you want to do this for the temperatures during both the active and the
inactive period of the beaver. You can use the qqnorm() function twice to create
both plots. For the inactive periods, you can use the following code:

 
> qqnorm( beaver2$temp[beaver2$activ==0], main=’Inactive’)
> qqline( beaver2$temp[beaver2$activ==0] )

 
You can do the same for the active period by changing the value 0 to 1. The

resulting plots you see in Figure 15-3.
 
Figure 15-3: Comparing samples to the normal distribution with QQ plots.

Testing normality in a formal way
 

All these graphical methods for checking normality still leave much to your
own interpretation. There’s much discussion in the statistical world about the
meaning of these plots and what can be seen as normal. If you show any of these
plots to ten different statisticians, you can get ten different answers. That’s quite
an achievement when you expect a simple yes or no, but statisticians don’t do
simple answers.

 
On the contrary, everything in statistics revolves around measuring

uncertainty. This uncertainty is summarized in a probability — often called a p-
value — and to calculate this probability, you need a formal test.

 
Probably the most widely used test for normality is the Shapiro-Wilks test. The

function to perform this test, conveniently called shapiro.test(), couldn’t be easier
to use. You give the sample as the one and only argument, as in the following
example:



 
> shapiro.test(beaver2$temp)
Shapiro-Wilks normality test
data:  beaver2$temp
W = 0.9334, p-value = 7.764e-05

 

 This function returns a list object, and the p-value is contained in a element
called p.value. So, for example, you can extract the p-value simply by using
the following code:

 
> result <- shapiro.test(beaver2$temp)
> result$p.value
[1] 7.763782e-05

 
This p-value tells you what the chances are that the sample comes from a

normal distribution. The lower this value, the smaller the chance. Statisticians
typically use a value of 0.05 as a cutoff, so when the p-value is lower than 0.05,
you can conclude that the sample deviates from normality. In the preceding
example, the p-value is clearly lower than 0.05 — and that shouldn’t come as a
surprise; the distribution of the temperature shows two separate peaks (refer to
Figure 15-1). This is nothing like the bell curve of a normal distribution.

 

 When you choose a test, you may be more interested in the normality in
each sample. You can test both samples in one line using the tapply()
function, like this:

 
> with(beaver2, tapply(temp, activ, shapiro.test))

 
This code returns the results of a Shapiro-Wilks test on the temperature for

every group specified by the variable activ.
 

 People often refer to the Kolmogorov-Smirnov test for testing normality.
You carry out the test by using the ks.test() function in base R. But this R
function is not suited to test deviation from normality; you can use it only to
compare different distributions.

 



Comparing Two Samples
Comparing groups is one of the most basic problems in statistics. If you want

to know if extra vitamins in the diet of cows is increasing their milk production, you
give the normal diet to a control group and extra vitamins to a test group, and then
you compare the milk production in two groups. By comparing the mileage
between cars with automatic gearboxes and those with manual gearboxes, you can
find out which one is the more economical option.

 

Testing differences
 

R gives you two standard tests for comparing two groups with numerical data:
the t-test with the t.test() function, and the Wilcoxon test with the wilcox.test()
function. If you want to use the t.test() function, you first have to check, among
other things, whether both samples are normally distributed using any of the
methods from the previous section. For the Wilcoxon test, this isn’t necessary.

 

Carrying out a t-test
 

Let’s take another look at the data of that beaver. If you want to know if the
average temperature differs between the periods the beaver is active and inactive,
you can do so with a simple command:

 
> t.test(temp ~ activ, data=beaver2)
               Welch Two-Sample t-test
data:  temp by activ
t = -18.5479, df = 80.852, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.8927106 -0.7197342
sample estimates:
mean in group 0 mean in group 1
       37.09684        37.90306

 

 Normally, you can only carry out a t-test on samples for which the variances
are approximately equal. R uses Welch’s variation on the t-test, which corrects
for unequal variances.

 
You get a whole lot of information here:



 
 The second line gives you the test statistic (t for this test), the degrees of
freedom (df), and the according p-value. The very small p-value indicates that
the means of both samples differ significantly.

 
 The alternative hypothesis tells you what you can conclude if the p-value is
lower than the limit for significance. Generally, scientists consider the alternative
hypothesis to be true if the p-value is lower than 0.05.

 
 The 95 percent confidence interval is the interval that contains the difference
between the means with 95 percent probability, so in this case the difference
between the means lies probably between 0.72 and 0.89.

 
 The last line gives you the means of both samples.

 

 You read the formula temp ~ activ as “evaluate temp within groups
determined by activ.” Alternatively, you can use two separate vectors for the
samples you want to compare and pass both to the function, as in the
following example:

 
> activetemp <- beaver2$temp[beaver2$activ==1]
> inactivetemp <- beaver2$temp[beaver2$activ==0]
> t.test(activetemp, inactivetemp)

 

Dropping assumptions
 

In some cases, your data deviates significantly from normality and you can’t
use the t.test() function. For those cases, you have the wilcox.test() function,
which you use in exactly the same way, as shown in the following example:

 
> wilcox.test(temp ~ activ, data=beaver2)

 
This give you the following output:

 
  Wilcoxon rank-sum test with continuity correction
data:  temp by activ
W = 15, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

 



Again, you get the value for the test statistic (W in this test) and a p-value.
Under that information, you read the alternative hypothesis, and that differs a bit
from the alternative hypothesis of a t-test. The Wilcoxon test looks at whether the
center of your data (the location) differs between both samples.

 

 With this code, you perform the Wilcoxon rank-sum test or Mann-Whitney U
test. Both tests are completely equivalent, so R doesn’t contain a separate
function for Mann-Whitney’s U test.

 

Testing direction
 

In both previous examples, you test whether the samples differ without
specifying in which way. Statisticians call this a two-sided test. Imagine you don’t
want to know whether body temperature differs between active and inactive
periods, but whether body temperature is lower during inactive periods.

 
To do this, you have to specify the argument alternative in either the t.test()

or wilcox.test() function. This argument can take three values:
 

 By default, it has the value ‘two.sided’, which means you want the standard
two-sided test.

 
 If you want to test whether the mean (or location) of the first group is lower,
you give it the value ‘less’.

 
 If you want to test whether that mean is bigger, you specify the value
‘greater’.

 

 If you use the formula interface for these tests, the groups are ordered in
the same order as the levels of the factor you use. You have to take that into
account to know which group is seen as the first group. If you give the data for
both groups as separate vectors, the first vector is the first group.

 

Comparing paired data



 
When testing differences between two groups, you can have either paired or

unpaired data. Paired data comes from experiments where two different
treatments were given to the same subjects.

 
For example, researchers gave ten people two variants of a sleep medicine.

Each time the researchers recorded the difference in hours of sleep with and
without the drugs. Because each person received both variants, the data is paired.
You find the data of this experiment in the dataset sleep, which has three
variables:

 
 A numeric variable extra, which give the extra hours of sleep after the
medication is taken

 
 A factor variable group that tells which variant the person took

 
 A factor variable id that indicates the ten different test persons

 
Now they want to know whether both variants have a different effect on the

length of the sleep. Both the t.test() and the wilcox.test() functions have an
argument paired that you can set to TRUE in order to carry out a test on paired
data. You can test differences between both variances using the following code:

 
> t.test(extra ~ group, data=sleep, paired=TRUE)

 
This gives you the following output:

 
  Paired t-test
data:  extra by group
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-2.4598858 -0.7001142
sample estimates:
mean of the differences
                  -1.58

 
Unlike the unpaired test, you don’t get the means of both groups; instead, you

get a single mean of the differences.
 

Testing Counts and Proportions



Many research questions revolve around counts instead of continuous
numerical measurements. Counts can be summarized in tables and subsequently
analyzed. In the following section, you use some of the basic tests for counts and
proportions contained in R. Be aware, though, that this is just the tip of the
iceberg; R has a staggering amount of statistical procedures for categorical data
available.

 

 If you need more background on the statistics, check the book Categorical
Data Analysis, 2nd Edition, by Alan Agresti (Wiley-Interscience). In addition,
Jana Thompson wrote a manual with R code to illustrate all the examples in
Agresti’s book; you can download it on her website at https://home.
comcast.net/~lthompson221/Splusdiscrete2.pdf.

 

Checking out proportions
 

Let’s look at an example to illustrate the basic tests for proportions.
 

 The following example is based on real research, published by Robert
Rutledge, MD, and his colleagues in the Annals of Surgery (1993).

 
In a hospital in North Carolina, the doctors registered the patients who were

involved in a car accident and whether they used seat belts. The following matrix
represents the number of survivors and deceased patients in each group:

 
> survivors <- matrix(c(1781,1443,135,47), ncol=2)
> colnames(survivors) <- c(‘survived’,’died’)
> rownames(survivors) <- c(‘no seat belt’,’seat belt’)
> survivors
            survived died
no seat belt     1781  135
seat belt        1443   47

 
To know whether seat belts made a difference in the chances of surviving, you

can carry out a proportion test. This test tells how probable it is that both
proportions are the same. A low p-value tells you that both proportions probably
differ from each other. To test this in R, you can use the prop.test() function on
the preceding matrix:

 

https://home.comcast.net/~lthompson221/Splusdiscrete2.pdf


> result.prop <- prop.test(survivors)
 

 You also can use the prop.test() function on tables or vectors. If you use it
with vectors, remember that the first vector has to be the number of
successes, and the second number has to be the total number of cases.

 
The prop.test() function then gives you the following output:

 
> result.prop
  2-sample test for equality of proportions with continuity correction
data:  survivors
X-squared = 24.3328, df = 1, p-value = 8.105e-07
alternative hypothesis: two.sided
95 percent confidence interval:
-0.05400606 -0.02382527
sample estimates:
   prop 1    prop 2
0.9295407 0.9684564

 
This test report is almost identical to the one from t.test() and contains

essentially the same information. At the bottom, R prints for you the proportion of
people who died in each group. The p-value tells you how likely it is that both the
proportions are equal. So, you see that the chance of dying in a hospital after a
crash is lower if you’re wearing a seat belt at the time of the crash. R also reports
the confidence interval of the difference between the proportions.

 

Analyzing tables
 

You can use the prop.test() function for matrices and tables. For
prop.test(), these tables need to have two columns with the number of counts for
the two possible outcomes like the matrix survivors from the previous section.

 

Testing contingency of tables
 

Alternatively, you can use the chisq.test() function to analyze tables with a
chi-squared (ǒ2) contingency test. To do this on the matrix with the seat-belt data,
you simply do the following:

 
> chisq.test(survivors)



 
This returns the following output:

 
  Pearson’s Chi-squared test with Yates’ continuity correction
data:  survivors
X-squared = 24.3328, df = 1, p-value = 8.105e-07

 
The values for the statistic (X-squared), the degrees of freedom, and the p-

value are exactly the same as with the prop.test() function. That’s to be
expected, because — in this case, at least — both tests are equivalent.

 

Testing tables with more than two columns
 

Unlike the prop.test() function, the chisq.test() function can deal with
tables with more than two columns and even with more than two dimensions. To
illustrate this, let’s take a look at the table HairEyeColor. You can see its structure
with the following code:

 
> str(HairEyeColor)
table [1:4, 1:4, 1:2] 32 53 10 3 11 50 10 30 10 25 ...
- attr(*, “dimnames”)=List of 3
  ..$ Hair: chr [1:4] “Black” “Brown” “Red” “Blond”
  ..$ Eye : chr [1:4] “Brown” “Blue” “Hazel” “Green”
  ..$ Sex : chr [1:2] “Male” “Female”

 
So, the table HairEyeColor has three dimensions: one for hair color, one for

eye color, and one for sex. The table represents the distribution of these three
features among 592 students.

 

 The dimension names of a table are stored in an attribute called dimnames.
As you can see from the output of the str() function, this is actually a list with
the names for the rows/columns in each dimension. If this list is a named list,
the names are used to label the dimensions. You can use the dimnames()
function to extract or change the dimension names. (Go to the Help page ?
dimnames for more examples.)

 
To check whether hair color and eye color are related, you can collapse the

table over the first two dimensions using the margin.table() function to
summarize hair and eye color for both genders. This function sums the values in
some dimensions to give you a summary table with fewer dimensions. For that, you



have to specify which margins you want to keep.
 

So, to get the table of hair and eye color, you use the following:
 

> HairEyeMargin <- margin.table(HairEyeColor, margin=c(1,2))
> HairEyeMargin
       Eye
Hair    Brown Blue Hazel Green
  Black    68   20    15     5
  Brown   119   84    54    29
  Red      26   17    14    14
  Blond     7   94    10    16

 
Now you can simply check whether hair and eye color are related by testing it

on this table:
 

> chisq.test(HairEyeMargin)
              Pearson’s Chi-squared test
data:  HairEyeMargin
X-squared = 138.2898, df = 9, p-value < 2.2e-16

 
As expected, the output of this test tells you that some combinations of hair

and eye color are more common than others. Not a big surprise, but you can use
these techniques on other, more interesting research questions.

 

Extracting test results
 

Many tests in this chapter return a htest object. That type of object is
basically a list with all the information about the test that has been carried out. All
these htest objects contain at least an element statistic with the value of the
statistic and an element p.value with the value of the p-value. You can see this
easily if you look at the structure of the returned object. The object returned by
shapiro.test() in the previous section looks like this:

 
> str(result)
List of 4
$ statistic: Named num 0.933
  ..- attr(*, “names”)= chr “W”
$ p.value  : num 7.76e-05
$ method   : chr “Shapiro-Wilk normality test”
$ data.name: chr “beaver2$temp”
- attr(*, “class”)= chr “htest”

 
Because this htest objects are lists, you can use any of the list subsetting



methods to extract the information. The following code, for example, extracts the
p-value from the t-test on the beaver data:

 
> t.test(temp ~ activ, data=beaver2)$p.value
[1] 7.269112e-31

 

 The extraction of information from the htest object also works with the
results of the other .test functions in this chapter and many more. You can
check what kind of object a test returns by looking at the Help page for the
test you want to use.

 

Working with Models
The tests we describe in the previous sections are all basic statistical tests.

However, these days, much of statistics involves working with complex models.
Base R already contains an extensive set of modeling tools, allowing you to do
anything from simple linear models and analysis of variance to mixed models and
time-series analysis. The nice thing about modeling functions in R is that they often
work in a similar way.

 

 Because this isn’t a statistics book, we can’t cover the details about
assumption testing and model evaluation. If you aren’t familiar with these
concepts or the applied models, be sure to consult a decent source of
information, or you’ll run the risk of basing important decisions on inadequate
models. The book Applied Linear Statistical Models, 5th Edition, by Michael
Kutner et al (McGraw-Hill/Irwin), is very extensive but gives a good and
thorough theoretical introduction on assumption testing and model evaluation.

 
In this section, we cover some basic models, and show you how to extract

useful information from the resulting model objects.
 

Analyzing variances
 

An analysis of variance (ANOVA) is a very common technique used to compare
the means between different groups. To illustrate this, take a look at the dataset
InsectSpray:



 
> str(InsectSprays)
‘data.frame’: 72 obs. of  2 variables:
$ count: num  10 7 20 14 14 12 10 23 17 20 ...
$ spray: Factor w/ 6 levels “A”,”B”,”C”,”D”,..: 1 1 1 1 1 1 1 1 1 1 ...

 
This dataset contains the results of an agricultural experiment. Six insecticides

were tested on 12 fields each, and the researchers counted the number of pesky
bugs that remained on each field. Now the farmers need to know if the insecticides
make any difference, and if so, which one they best use. You answer this question
by using the aov() function to perform an ANOVA.

 

Building the model
 

For this simple example, building the model is a piece of cake. You essentially
want to model the means for the variable count as a function of the variable spray.
You translate that to R like this:

 
> AOVModel <- aov(count ~ spray, data=InsectSprays)

 
You pass two arguments to the aov() function in this line of code:

 
 The formula count ~ spray, which reads as “count as a function of spray”

 
 The argument data, where you specify the data frame in which the variables in
the formula can be found

 

 Every modeling function returns a model object with a lot of information
about the fitted model. Always put this model object in a variable. This way
you don’t have to refit the model when you need to perform extra calculations.

 

Looking at the object
 

As with every object, you can look at a model object just by typing its name in
the console. If you do that for the object Model that you created in the preceding
section, you see the following output:

 



> AOVModel
Call:
   aov(formula = count ~ spray, data=InsectSprays)
Terms:
                   spray Residuals
Sum of Squares  2668.833  1015.167
Deg. of Freedom        5        66
Residual standard error: 3.921902
Estimated effects may be unbalanced

 
This doesn’t tell you that much, apart from the command (or the call) you

used to build the model and some basic information on the fitting result.
 

In the output, you also read that the estimated effects may be unbalanced.
This isn’t a warning as described in Chapter 10 — it’s a message that’s built in by
the author of the aov() function. This one can pop up in two situations:

 
 You don’t have the same number of cases in every group.

 
 You didn’t set orthogonal contrasts.

 
In this case, it’s the second reason. You can continue with this model as we do

now (that’s also how those models are fitted in SPSS and SAS by default) or you
can read the nearby sidebar, “Setting the contrasts,” and use contrasts as the
statistical experts who wrote R think you should.

 

Evaluating the differences
 

To check the model, you can use the summary() function on the model object
like this:

 
> summary(AOVModel)
            Df Sum Sq Mean Sq F value Pr(>F)
spray        5   2669   533.8    34.7 <2e-16 ***
Residuals   66   1015    15.4
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

 
R prints you the analysis of variance table that, in essence, tells you whether

the different terms can explain a significant portion of the variance in your data.
This table tells you only something about the term, but nothing about the
differences between the different sprays. For that, you need to dig a bit deeper into
the model.



 

Checking the model tables
 

With the model.tables() function, you can take a look at the results for the
individual levels of the factors. The function allows you to create two different
tables; either you look at the estimated mean result for each group, or you look at
the difference with the overall mean.

 
To know how much effect every spray had, you use the following code:

 
> model.tables(AOVModel, type=’effects’)
Tables of effects
spray
spray
     A      B      C      D      E      F
5.000  5.833 -7.417 -4.583 -6.000  7.167

 
Here you see that, for example, spray E resulted, on average, in six bugs

fewer than the average over all fields. On the other hand, on fields where spray A
was used, the farmers found, on average, five bugs more compared to the overall
mean.

 

 To get the modeled means per group and the overall mean, just use the
argument value type=’means’ instead of type=’effects’.

 

Setting the contrasts
Before you can use the aov() function, you’d better set the contrasts you’re
going to use. Contrasts are very often forgotten about when doing ANOVA,
but they generally help with interpreting the model and increase the
accuracy of aov() and the helper functions.
What are those contrasts then? Factors are translated to a set of variables,
one less than the number of levels of the factor. Say you have a factor with
three levels. R creates two variables, and each level of the factor is
represented by a combination of values. These values define how the
coefficients of the model have to be interpreted. By default, R uses
treatment contrasts, as you can see when you check the relevant option like
this:

> options(‘contrasts’)



$contrasts
unordered ordered
“contr.treatment” “contr.poly”

 
Here you see that R uses different contrasts for unordered and ordered
factors. These contrasts are actually contrast functions. They return a matrix
with the contrast values for each level of the factor. The default contrasts for
a factor with three levels look like this:

> X <- factor(c(‘A’,’B’,’C’))
> contr.treatment(X)
B C
A 0 0
B 1 0
C 0 1

 
The two variables B and C are called that way because the variable B has a
value of 1 if the factor level is B; otherwise, it has a value of 0. The same
goes for C. Level A is represented by two zeros and called the reference
level. In a one-factor model, the intercept is the mean of A.
You can change these contrasts using the same options() function, like this:

> options(contrasts=c(‘contr.um’,’contr. poly’))
 

The contrast function, contr.sum(), gives orthogonal contrasts where you
compare every level to the overall mean. You can get more information
about these contrasts on the Help page ?contr.sum.

 

Looking at the individual differences
 

A farmer probably wouldn’t consider buying spray A, but what about spray D?
Although sprays E and C seem to be better, they also can be a lot more expensive.
To test whether the pairwise differences between the sprays are significant, you
use Tukey’s Honest Significant Difference (HSD) test. The TukeyHSD() function
allows you to do that very easily, like this:

 
> Comparisons <- TukeyHSD(AOVModel)

 
The Comparisons object now contains a list where every element is named

after one factor in the model. In the example, you have only one element, called
spray. This element contains, for every combination of sprays, the following:

 



 The difference between the means.
 

 The lower and upper level of the 95 percent confidence interval around that
mean difference.

 
 The p-value that tells you whether this difference is significantly different from
zero. This p-value is adjusted using the method of Tukey (hence, the column
name p adj).

 
You can extract all that information using the classical methods for extraction.

For example, you get the information about the difference between D and C like
this:

 
> Comparisons$spray[‘D-C’,]
      diff        lwr        upr      p adj
2.8333333 -1.8660752  7.5327418  0.4920707

 
That difference doesn’t look impressive, if you ask Tukey.

 

Plotting the differences
 

The TukeyHSD object has another nice feature: It can be plotted. Don’t bother
looking for a Help page of the plot function — all you find is one sentence: “There
is a plot method.” But it definitely works! Try it out like this:

 
> plot(Comparisons, las=1)

 
You see the output of this simple line in Figure 15-4. Each line represents the

mean difference between both groups with the according confidence interval.
Whenever the confidence interval doesn’t include zero (the vertical line), the
difference between both groups is significant.

 

 You can use some of the graphical parameters to make the plot more
readable. Specifically, the las parameter is useful here. By setting it to 1, you
make sure all axis labels are printed horizontally so you can actually read
them. You can find out more about graphical parameters in Chapter 16.

 



Modeling linear relations
 

An analysis of variance also can be written as a linear model, where you use a
factor as a predictor variable to model a response variable. In the previous section,
you predict the mean bug count by looking at the insecticide that was applied.

 
Of course, predictor variables also can be continuous variables. For example,

the weight of a car obviously has an influence on the mileage. But it would be nice
to have an idea about the magnitude of that influence. Essentially, you want to find
the equation that represents the trend line in Figure 15-5. You find the data you
need for checking this in the dataset mtcars.

 
Figure 15-4: Plotting the results of Tukey’s HSD test.

Figure 15-5: Plotting a trend line through the data.

Building a linear model



 
The lm() function allows you to specify anything from the most simple linear

model to complex interaction models. In this section, you build only a simple model
to learn how to work with model objects.

 
To model the mileage in function of the weight of a car, you use the lm()

function, like this:
 

> Model <- lm(mpg ~ wt, data=mtcars)
 

You supply two arguments:
 

A formula that describes the model: Here, you model the variable mpg as a
function of the variable wt.

 
A data frame that contains the variables in the formula: Here, you use the
data frame mtcars.

 

 You can specify many complex models with the formula interface when you
know your way around. The “Details” section of the Help page ?formula
provides all the information you need in great detail.

 
The resulting object is a list with a very complex structure, but in most cases

you don’t need to worry about that. The model object contains a lot of information
that’s needed for the calculations of diagnostics and new predictions.

 

Extracting information from the model
 

Instead of diving into the model object itself and finding the information
somewhere in the list object, you can use some functions that help you to get the
necessary information from the model. For example, you can extract a named
vector with the coefficients from the model using the coef() function, like this:

 
> coef.Model <- coef(Model)
> coef.Model
(Intercept)          wt
  37.285126   -5.344472

 



These coefficients represent the intercept and the slope of the trend line in
Figure 15-5. You can use this to plot the trend line on a scatterplot of the data. You
do this in two steps:

 
1. You plot the scatterplot with the data.

 You use the plot() function for that. You discover more about this function in
Chapter 16.

 2. You use the abline() function to draw the trend line based on the
coefficients.

 The following code gives you the plot in Figure 15-5:
 

> plot(mpg ~ wt, data = mtcars)
> abline(a=coef.Model[1], b=coef.Model[2])

 
The abline() argument a represents the intercept, and b represents the slope

of the trend line you want to plot. You plot a vertical line by setting the argument v
to the intercept with the x-axis instead. Horizontal lines are plotted by setting the
argument v to the intercept with the y-axis.

 
In Table 15-1, you find an overview of functions to extract information from

the model object itself. These functions work with different model objects,
including those built by aov() and lm().

 

 Many package authors also provide the same functions for the models built
by the functions in their package. So, you can always try to use these
extraction functions in combination with other model functions as well.

 

Table 15-1 Extracting Information from Model
Objects

 
 
 
 
 
 
 



 
 
 
 

 

Function

 

What It Does

 
coef()

 
Returns a vector with the coefficients from the model

 

confint()
 

Returns a matrix with the upper and lower limit of the confidence interval for each coefficient
of the model

 
fitted()

 
Returns a vector with the fitted values for every observation

 
residuals()

 
Returns a vector with the residuals for every observation

 
vcov()

 
Returns the variance-covariance matrix for the coefficient

 

Evaluating linear models
 

Naturally, R provides a whole set of different tests and measures to not only
look at the model assumptions but also evaluate how well your model fits your
data. Again, the overview presented here is far from complete, but it gives you an
idea of what’s possible and a starting point to look deeper into the issue.

 

Summarizing the model
 

The summary() function immediately returns you the F test for models
constructed with aov(). For lm() models, this is slightly different. Take a look at
the output:

 
> Model.summary <- summary(Model)
> Model.summary
Call:
lm(formula = mpg ~ wt, data = mtcars)
Residuals:
    Min      1Q  Median      3Q     Max
-4.5432 -2.3647 -0.1252  1.4096  6.8727
Coefficients:
            Estimate Std. Error t value Pr(>|t|)



(Intercept)  37.2851     1.8776  19.858  < 2e-16 ***
wt           -5.3445     0.5591  -9.559 1.29e-10 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1
Residual standard error: 3.046 on 30 degrees of freedom
Multiple R-squared: 0.7528,                           Adjusted R-squared:
0.7446

F-statistic: 91.38 on 1 and 30 DF,  p-value: 1.294e-10
 

That’s a whole lot of useful information. Here you see the following:
 

 The distribution of the residuals, which gives you a first idea about how well the
assumptions of a linear model hold

 
 The coefficients accompanied by a t-test, telling you in how far every coefficient
differs significantly from zero

 
 The goodness-of-fit measures R2 and the adjusted R2

 
 The F-test that gives you an idea about whether your model explains a
significant portion of the variance in your data

 
You can use the coef() function to extract a matrix with the estimates,

standard errors, and t-value and p-value for the coefficients from the summary
object like this:

 
> coef(Model.summary)
             Estimate Std. Error   t value     Pr(>|t|)
(Intercept) 37.285126   1.877627 19.857575 8.241799e-19
wt          -5.344472   0.559101 -9.559044 1.293959e-10

 
If these terms don’t tell you anything, look them up in a good source about

modeling. For an extensive introduction to applying and interpreting linear models
correctly, check out Applied Linear Statistical Models, 5th Edition, by Michael Kutner
et al (McGraw-Hill/Irwin).

 

Testing the impact of model terms
 

To get an analysis of variance table — like the summary() function makes for
an ANOVA model — you simply use the anova() function and pass it the lm() model
object as an argument, like this:



 
> Model.anova <- anova(Model)
> Model.anova
Analysis of Variance Table
Response: mpg
          Df Sum Sq Mean Sq F value    Pr(>F)
wt         1 847.73  847.73  91.375 1.294e-10 ***
Residuals 30 278.32    9.28
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ‘ 1

 
Here, the resulting object is a data frame that allows you to extract any value

from that table using the subsetting and indexing tools from Chapter 7. For
example, to get the p-value, you can do the following:

 
> Model.anova[‘wt’,’Pr(>F)’]
[1] 1.293959e-10

 
You can interpret this value as the probability that adding the variable wt to

the model doesn’t make a difference. The low p-value here indicates that the
weight of a car (wt) explains a significant portion of the difference in mileage (mpg)
between cars. This shouldn’t come as a surprise; a heavier car does, indeed, need
more power to drag its own weight around.

 

 The tests done by the anova() function use Type I (sequential) Sum of
Squares, which is different from both SAS and SPSS. This also means that the
order in which the terms are added to the model has an impact on the test
values and the significance.

 

 You can use the anova() function to compare different models as well, and
many modeling packages provide that functionality. You find examples of this
on most of the related Help pages like ?anova.lm and ?anova.glm.

 

Predicting new values
 

Apart from describing relations, models also can be used to predict values for
new data. For that, many model systems in R use the same function, conveniently
called predict(). Every modeling paradigm in R has a predict function with its own
flavor, but in general the basic functionality is the same for all of them.



 

Getting the values
 

For example, a car manufacturer has three designs for a new car and wants to
know what the predicted mileage is based on the weight of each new design. In
order to do this, you first create a data frame with the new values — for example,
like this:

 
> new.cars <- data.frame(wt=c(1.7, 2.4, 3.6))

 
Always make sure the variable names you use are the same as used in the

model. When you do that, you simply call the predict() function with the suited
arguments, like this:

 
> predict(Model, newdata=new.cars)
       1        2        3
28.19952 24.45839 18.04503

 
So, the lightest car has a predicted mileage of 28.2 miles per gallon and the

heaviest car has a predicted mileage of 18 miles per gallon, according to this
model. Of course, if you use an inadequate model, your predictions can be pretty
much off as well.

 

Having confidence in your predictions
 

In order to have an idea about the accuracy of the predictions, you can ask for
intervals around your prediction. To get a matrix with the prediction and a 95
percent confidence interval around the mean prediction, you set the argument
interval to ‘confidence’ like this:

 
> predict(Model, newdata=new.cars, interval=’confidence’)
       fit      lwr      upr
1 28.19952 26.14755 30.25150
2 24.45839 23.01617 25.90062
3 18.04503 16.86172 19.22834

 
Now you know that — according to your model — a car with a weight of 2.4

tons has, on average, a mileage between 23 and 25.9 miles per gallon. In the
same way, you can ask for a 95 percent prediction interval by setting the argument
interval to ‘prediction’:



 
> predict(Model,newdata=new.cars, interval=’prediction’)
       fit      lwr      upr
1 28.19952 21.64930 34.74975
2 24.45839 18.07287 30.84392
3 18.04503 11.71296 24.37710

 
This information tells you that 95 percent of the cars with a weight of 2.4 tons

have a mileage somewhere between 18.1 and 30.8 miles per gallon — assuming
your model is correct, of course.

 

 If you’d rather construct your own confidence interval, you can get the
standard errors on your predictions as well by setting the argument se.fit to
TRUE. You don’t get a vector or a matrix; instead, you get a list with an
element fit that contains the predictions and an element se.fit that contains
the standard errors.

 
 



Part V
Working with Graphics

In this part . . .
A good plot tells more about your data than a thousand words, but creating a

clear and professional-looking plot often is seen as a difficult job. Not so with R,
where you have three different graphical systems that allow you to create anything
from nicely formatted standard plots to completely customized graphical displays.

This section introduces you to the basic operation of all three graphical
systems and shows you how to create clear and elegant plots that tell a good
story.



Chapter 16
 

Using Base Graphics

In This Chapter
 Creating a basic plot in R
 Changing the appearance of your plot

 Saving your plot as a picture
 

In statistics and other sciences, being able to plot your results in the form of a
graphic is often useful. An effective and accurate visualization can make your data
come to life and convey your message in a powerful way.

 
R has very powerful graphics capabilities that can help you visualize your data.

In this chapter, we give you a look at base graphics. It’s called base graphics,
because it’s built into the standard distribution of R.

 

Creating Different Types of Plots
The base graphics function to create a plot in R is simply called plot(). This

powerful function has many options and arguments to control all kinds of things,
such as the plot type, line colors, labels, and titles.

 

 The plot() function is a generic function (see Chapter 8), and R dispatches
the call to the appropriate method. For example, if you make a scatterplot, R
dispatches the call to plot.default(). The plot.default() function itself is
reasonably simple and affects only the major look of the plot region and the
type of plotting. All the other arguments that you pass to plot(), like colors,
are used in internal functions that plot.default() simply happens to call.

 

Getting an overview of plot
 

To get started with plot, you need a set of data to work with. One of the built-
in datasets is islands, which contains data about the surface area of the continents



and some large islands on Earth.
 

First, create a subset of the ten largest islands in this dataset. There are many
ways of doing this, but the following line of code sorts islands in decreasing order
and then uses the head() function to retrieve only the first ten elements:

 
> large.islands <- head(sort(islands, decreasing=TRUE), 10)

 
It is easy to create a plot with informative labels and titles. Try the following:

 
> plot(large.islands, main=”Land area of continents and islands”,
+     ylab=”Land area in square miles”)
> text(large.islands, labels=names(large.islands), adj=c(0.5, 1))

 
You can see the results in Figure 16-1. How does this work? The first line

creates the basic plot with plot() and adds a main title and y-axis label. The
second line adds text labels with the text() function. In the next section, you get
to know each of these functions in more detail.

 
Figure 16-1: A plot with labels, main title, and text.

Adding points and lines to a plot
 

To illustrate some different plot options and types, we use the built-in dataset
faithful. This is a data frame with observations of the eruptions of the Old Faithful
geyser in Yellowstone National Park in the United States.

 



 The built-in R datasets are documented in the same way as functions. So,
you can get extra information on them by typing, for example, ?faithful.

 
You’ve already seen that plot() creates a basic graphic. Try it with faithful:

 
> plot(faithful)

 
Figure 16-2 shows the resulting plot. Because faithful is a data frame with

two columns, the plot is a scatterplot with the first column (eruptions) on the x-axis
and the second column (waiting) on the y-axis.

 
Eruptions indicate the time in minutes for each eruption of the geyser, while

waiting indicates the elapsed time between eruptions (also measured in minutes).
As you can see from the general upward slope of the points, there tends to be a
longer waiting period following longer eruptions.

 
Figure 16-2: Creating a scatterplot.

Adding points
 

You add points to a plot with the points() function. You may have noticed on
the plot of faithful there seems to be two clusters in the data. One cluster has
shorter eruptions and waiting times — tending to last less than three minutes.

 
Create a subset of faithful containing eruptions shorter than three minutes:

 
> short.eruptions <- with(faithful, faithful[eruptions < 3, ])



 
Now use the points() function to add these points in red to your plot:

 
> plot(faithful)
> points(short.eruptions, col=”red”, pch=19)

 

 You use the argument col to change the color of the points and the
argument pch to change the plotting character. The value pch=19 indicates a
solid circle. To see all the arguments you can use with points, refer to ?
points.

 
Your resulting graphic should look like Figure 16-3, with the shorter eruption

times indicated as solid red circles.
 
Figure 16-3: Adding points in a different color to a plot.

Changing the shape of points
 

You’ve already seen that you can use the argument pch to change the plotting
character when using points. This is described in more detail in the Help page for
points, ?points. For example, the Help page lists a variety of symbols, such as the
following:

 
pch=19: Solid circle

 
pch=20: Bullet (smaller solid circle, two-thirds the size of 19)



 
pch=21: Filled circle

 
pch=22: Filled square

 
pch=23: Filled diamond

 
pch=24: Filled triangle, point up

 
pch=25: Filled triangle, point down

 

Changing the color
 

You can change the foreground and background color of symbols as well as
lines. You’ve already seen how to set the foreground color using the argument
col=”red”. Some plotting symbols also use a background color, and you can use
the argument bg to set the background color (for example, bg=”green”). In fact, R
has a number of predefined colors that you can use in graphics.

 

 To get a list of available names for colors, you use the colors() function
(or, if you prefer, colours()). The result is a vector of 657 elements with valid
color names. Here are the first ten elements of this list:

 
> head(colors(), 10)
[1] “white”         “aliceblue”     “antiquewhite”  “antiquewhite1”
[5] “antiquewhite2” “antiquewhite3” “antiquewhite4” “aquamarine”
[9] “aquamarine1”   “aquamarine2”

 

Adding lines to a plot
 

You add lines to a plot in a very similar way to adding points, except that you
use the lines() function to achieve this.

 
But first, use a bit of R magic to create a trend line through the data, called a

regression model (see Chapter 15). You use the lm() function to estimate a linear
regression model:



 
fit <- lm(waiting~eruptions, data=faithful)

 
The result is an object of class lm. You use the function fitted() to extract the

fitted values from a regression model (see Chapter 15). This is useful, because you
can then plot the fitted values on a plot. You do this next.

 
To add this regression line to the existing plot, you simply use the function

lines(). You also can specify the line color with the col argument:
 

> plot(faithful)
> lines(faithful$eruptions, fitted(fit), col=”blue”)

 
Another useful function is abline(). This allows you to draw horizontal,

vertical, or sloped lines. To draw a vertical line at position eruptions==3 in the
color purple, use the following:

 
> abline(v=3, col=”purple”)

 
Your resulting graphic should look like Figure 16-4, with a vertical purple line

at eruptions==3 and a blue regression line.
 

To create a horizontal line, you also use abline(), but this time you specify
the h argument. For example, create a horizontal line at the mean waiting time:

 
> abline(h=mean(faithful$waiting))

 
Figure 16-4: Adding lines to a plot.



 You also can use the function abline() to create a sloped line through your
plot. In fact, by specifying the arguments a and b, you can draw a line that fits
the mathematical equation y = a + b*x. In other words, if you specify the
coefficients of your regression model as the arguments a and b, you get a line
through the data that is identical to your prediction line:

 
> abline(a=coef(fit)[1], b=coef(fit)[2])

 
Even better, you can simply pass the lm object to abline() to draw the line

directly. (This works because there is a method abline.lm().) This makes your
code very easy:

 
> abline(fit, col = “red”)

 

Different plot types
 

The plot function has a type argument that controls the type of plot that gets
drawn. For example, to create a plot with lines between data points, use type=”l”;
to plot only the points, use type=”p”; and to draw both lines and points, use
type=”b”:

 
> plot(LakeHuron, type=”l”, main=’type=”l”’)
> plot(LakeHuron, type=”p”, main=’type=p”’)
> plot(LakeHuron, type=”b”, main=’type=”b”’)

 
Your resulting graphics should look similar to the three plots in Figure 16-5.

The plot with lines only is on the left, the plot with points is in the middle, and the
plot with both lines and points is on the right.

 

Using R functions to create more types of plot
Aside from plot(), which gives you tremendous flexibility in creating your
own plots, R also provides a variety of functions to make specific types of
plots. (You use some of these in Chapters 14 and 15). Here are a few to
explore:

Scatterplot: If you pass two numeric vectors as arguments to plot(),
the result is a scatterplot. Try:

> with(mtcars, plot(mpg, disp))



 
Box-and-whisker plot: Use the boxplot() function:
> with(mtcars, boxplot(disp, mpg))

 
Histogram: A histogram plots the frequency of observations. Use the

hist() function:
> with(mtcars, hist(mpg))

 
Matrix of scatterplots: The pairs() function is useful in data

exploration, because it plots a matrix of scatterplots. Each variable gets
plotted against another, as you saw in Chapter 14:

> pairs(iris)
 

 
Figure 16-5: Specifying the plot type argument.

The Help page for plot() has a list of all the different types that you can use
with the type argument:

 
“p”: Points

 
“l”: Lines

 
“b”: Both

 
“c”: The lines part alone of “b”

 
“o”: Both “overplotted”

 
“h”: Histogram like (or high-density) vertical lines

 
“n”: No plotting



 

 It seems odd to use a plot function and then tell R not to plot it. But this
can be very useful when you need to create just the titles and axes, and plot
the data later using points(), lines(), or any of the other graphical functions.

 
This flexibility may be useful if you want to build a plot step by step (for

example, for presentations or documents). Here’s an example:
 

> x <- seq(0.5, 1.5, 0.25)
> y <- rep(1, length(x))
> plot(x, y, type=”n”)
> points(x, y)

 
In the next section, you take full control over the plot options and arguments,

such as adding titles and labels or changing the font type of your plot.
 

Controlling Plot Options and Arguments
To really convey the message of your graphic, you may want to add titles and

labels. You also can modify other elements of the graphic (for example, the type of
box around the plot area or the font size of axis labels).

 
Base graphics allows you to take fine control over many plot options.

 

Adding titles and axis labels
 

You add the main title and axis labels with arguments to the plot() function:
 

main: Main plot title
 

xlab: x-axis label
 

ylab: y-axis label
 

To add a title and axis labels to your plot of faithful, try the following:
 

> plot(faithful,
+     main = “Eruptions of Old Faithful”,



+     xlab = “Eruption time (min)”,
+     ylab = “Waiting time to next eruption (min)”)

 
Your graphic should look like Figure 16-6.

 

Changing plot options
 

You can change the look and feel of plots with a large number of options.
 

 You can find all the documentation for changing the look and feel of base
graphics in the Help page ?par(). This function allows you to set (or query)
the graphical parameters or options.

 
Notice that par() takes an extensive list of arguments. In this section, we

describe a few of the most commonly used options.
 

The axes label style
 

To change the axes label style, use the graphics option las (label style). This
changes the orientation angle of the labels:

 
0: The default, parallel to the axis

 
1: Always horizontal

 
2: Perpendicular to the axis

 
3: Always vertical

 
For example, to change the axis style to have all the axes text horizontal, use

las=1 as an argument to plot:
 

> plot(faithful, las=1)
 

You can see what this looks like in Figure 16-7.



 
Figure 16-6: Adding main title, x-axis label, and y-axis label.

Working with axes and legends
R allows you to also take control of other elements of a plot, such as axes,
legends, and text:

Axes: If you need to take full control of plot axes, use axis(). This
function allows you to specify tickmark positions, labels, fonts, line types,
and a variety of other options.

Legends: You can use the legend() function to add legends, or keys, to
plots.

Text: In addition to legends, you can use the text() function to add
text elements at any position on the plot.
The Help pages of the respective functions give you more information, and
the examples contained in the Help pages show you how much you can do
with these functions.

 
Figure 16-7: Changing the label style.



The box type
 

To change the type of box round the plot area, use the option bty (box type):
 

“o”: The default value draws a complete rectangle around the plot.
 

“n”: Draws nothing around the plot.
 

“l”, “7”, “c”, “u”, or “]”: Draws a shape around the plot area that resembles
the uppercase letter of the option. So, the option bty=”l” draws a line to the left
and bottom of the plot.

 
To make a plot with no box around the plot area, use bty=”n” as an argument

to plot:
 

> plot(faithful, bty=”n”)



 
Your graphic should look like Figure 16-8.

 
Figure 16-8: Changing the box type.

More than one option
 

To change more than one graphics option in a single plot, simply add an
additional argument for each plot option you want to set. For example, to change
the label style, the box type, the color, and the plot character, try the following:

 
> plot(faithful, las=1, bty=”l”, col=”red”, pch=19)

 
The resulting plot is the plot in Figure 16-9.

 

Font size of text and axes



 
To change the font size of text elements, use cex (short for character

expansion ratio). The default value is 1. To reduce the text size, use a cex value of
less than 1; to increase the text size, use a cex value greater than 1.

 
> x <- seq(0.5, 1.5, 0.25)
> y <- rep(1, length(x))
> plot(x, y, main=”Effect of cex on text size”)
> text(x, y+0.1, labels=x, cex=x)

 
Your plot should look like Figure 16-10 (left).

 
To change the size of other plot parameters, use the following:

 
cex.main: Size of main title

 
cex.lab: Size of axis labels (the text describing the axis)

 
cex.axis: Size of axis text (the values that indicate the axis tick labels)

 
> plot(x, y, main=”Effect of cex.main, cex.lab and cex.axis”,
+    cex.main=1.25, cex.lab=1.5, cex.axis=0.75)

 
Your results should look like Figure 16-10 (right). Carefully compare the font

size of the main title and the axes labels with the left side of Figure 16-10, and
note how the main title font is larger while the axes fonts are smaller.

 

Putting multiple plots on a single page
 

To put multiple plots on the same graphics pages, you can use the graphics
parameter mfrow or mfcol. To use this parameter, you need to supply a vector
argument with two elements: the number of rows and the number of columns.

 
For example, to create two side-by-side plots, use mfrow=c(1, 2):

 
> old.par <- par(mfrow=c(1, 2))
> plot(faithful, main=”Faithful eruptions”)
> plot(large.islands, main=”Islands”, ylab=”Area”)
> par(old.par)

 



 When your plot is complete, you need to reset your par options. Otherwise,
all your subsequent plots will appear side by side (until you close the active
graphics device, or window, and start plotting in a new graphics device). We
use a neat little trick to do this: When you make a call to par(), R sets your
new options, but the return value from par() contains your old options. In the
previous example, we save the old options to an object called old.par, and
then reset the options after plotting using par(old.par).

 
Figure 16-9: Changing the label style, box type, color, and plot character.

Figure 16-10: Changing the font size of labels (left) and title and axis labels (right).



Your result should look like Figure 16-11.
 
Figure 16-11: Creating side-by-side plots.

 Use mfrow to fill the plot grid by rows, and mfcol to fill the plot grid by
columns. The Help page ?par, explains these option in detail, and also points
you alternative layout mechanisms (like layout() or split.screen()).

 

Saving Graphics to Image Files
Much of the time, you may simply use R graphics in an interactive way to

explore your data. But if you want to publish your results, you have to save your
plot to a file and then import this graphics file into another document.

 
To save a plot to an image file, you have to do three things in sequence:

 
1. Open a graphics device.

 The default graphics device in R is your computer screen. To save a plot to an
image file, you need to tell R to open a new type of device — in this case, a
graphics file of a specific type, such as PNG, PDF, or JPG.

 The R function to create a PNG device is png(). Similarly, you create a PDF
device with pdf() and a JPG device with jpg().

 2. Create the plot.
 3. Close the graphics device.
 You do this with the dev.off() function.
 Put this in action by saving a plot of faithful to the home folder on your

computer. First set your working directory to your home folder (or to any other
folder you prefer). If you use Linux, you’ll be familiar with using “~/” as the shortcut
to your home folder, but this also works on Windows and Mac:

 
> setwd(“~/”)



> getwd()
[1] “C:/Users/Andrie”

 
Next, write the three lines of code to save a plot to file:

 
> png(filename=”faithful.png”)
> plot(faithful)
> dev.off()

 
Now you can check your file system to see whether the file faithful.png

exists. (It should!) The result is a graphics file of type PNG that you can insert into
a presentation, document, or website.

 



Chapter 17
 

Creating Faceted Graphics with Lattice

In This Chapter
 Getting to know the benefits of faceted graphics
 Using the lattice package to create faceted plots
 Changing the colors and other parameters of lattice plots

 Understanding the differences between base graphics and lattice graphics
 

Creating subsets of data and plotting each subset allows you to see whether
there are patterns between different subsets of the data. For example, a sales
manager may want to see a sales report for different regions in the form of a
graphic. A biologist may want to investigate different species of butterflies and
compare the differences on a plot.

 
A single graphic that provides this kind of simultaneous view of different slices

through the data is called a faceted graphic. Figure 17-1 shows a faceted plot of
fuel economy and performance of motor cars. The important thing to notice is that
the plot contains three panels, one each for cars with four, six, and eight cylinders.

 
R has a special package that allows you to easily create this kind of graphic.

The package is called lattice and in this chapter you get to draw lattice charts.
Later in this chapter, you create a lattice plot that should be identical to Figure
17-1.

 

 In this chapter, we give the briefest of introductions to the extensive
functionality in lattice. An entire book could be written about lattice
graphics — and, in fact, such a book already exists. The author of the lattice
package, Deepayan Sarkar, also wrote a book called Lattice: Multivariate Data
Visualization with R (Springer). You can find the figures and code from that
book at http://lmdvr.r-forge.r-project.org/figures/figures.html.

 
Figure 17-1: Faceted graphics, like this one, provide simultaneous views of different
slices of data.

http://lmdvr.r-forge.r-project.org/figures/figures.html


Creating a Lattice Plot
To explore lattice graphics, first take a look at the built-in dataset mtcars.

This dataset contains 32 observations of motor cars and information about the
engine, such as number of cylinders, automatic versus manual gearbox, and engine
power.

 

 All the built-in datasets of R also have good help information that you can
access through the Help mechanism — for example, by typing ?mtcars into
the R console.

 
> str(mtcars)
‘data.frame’: 32 obs. of  11 variables:
$ mpg : num  21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
$ cyl : num  6 6 4 6 8 6 8 4 4 6 ...
$ disp: num  160 160 108 258 360 ...
$ hp  : num  110 110 93 110 175 105 245 62 95 123 ...
$ drat: num  3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
$ wt  : num  2.62 2.88 2.32 3.21 3.44 ...
$ qsec: num  16.5 17 18.6 19.4 17 ...
$ vs  : num  0 0 1 1 0 1 0 1 1 1 ...
$ am  : num  1 1 1 0 0 0 0 0 0 0 ...
$ gear: num  4 4 4 3 3 3 3 4 4 4 ...
$ carb: num  4 4 1 1 2 1 4 2 2 4 ..

 
Say you want to explore the relationship between fuel economy and engine

power. The mtcars dataset has two elements with this information:
 

mpg: Fuel economy measured in miles per gallon (mpg)
 

hp: Engine power measured in horsepower (hp)
 

In this section, you create different plots of mpg against hp.



 

Loading the lattice package
 

 Although the lattice package forms part of the R distribution, you have to
tell R that you plan to use the code in this package. You do this with the
library() function. Remember that you need to do this at the start of each
clean R session in which you want to use lattice:

 
> library(“lattice”)

 

Making a lattice scatterplot
 

The lattice package has a number of different functions to create different
types of plot. For example, to create a scatterplot, use the xyplot() function.
Notice that this is different from base graphics, where the plot() function creates a
variety of different plot types (because of the method dispatch mechanism).
Besides xyplot(), we briefly discuss the other lattice functions later in this
chapter.

 
To make a lattice plot, you need to specify at least two arguments:

 
formula: This is a formula typically of the form y ~ x | z. It means to create a
plot of y against x, conditional on z. In other words, create a plot for every
unique value of z. Each of the variables in the formula has to be a column in the
data frame that you specify in the data argument.

 
data: A data frame that contains all the columns that you specify in the formula
argument.

 
This example should make it clear:

 
> xyplot(mpg ~ hp | factor(cyl), data=mtcars)

 
You can see that:

 
 The variables mpg, hp, and cyl are columns in the data frame mtcars.



 
 Although cyl is a numeric vector, the number of cylinders in a car can be only
whole numbers (or discrete variables, in statistical jargon). By using
factor(cyl) in your code, you tell R that cyl is, in fact, a discrete variable. If
you forget to do this, R will still create a graphic, but the labels of the strips at
the top of each panel will be displayed differently.

 
Your code should produce a graphic that looks like Figure 17-2. Because each

of the cars in the data frame has four, six, or eight cylinders, the chart has three
panes. You can see that the cars with larger engines tend to have more power (hp)
and poorer fuel consumption (mpg).

 
Figure 17-2: A lattice scatterplot of the data in mtcars.

Adding trend lines
 

In Chapter 15, we show you how to create trend lines, or regression lines
through data.

 
When you tell lattice to calculate a line of best fit, it does so for each panel

in the plot. This is straightforward using xyplot(), because it’s as simple as adding
a type argument. In particular, you want to specify that the type is both points
(type=”p”) and regression (type=”r”). You can combine different types with the
c() function, like this:

 
> xyplot(mpg ~ hp | factor(cyl), data=mtcars,
+     type=c(“p”, “r”))

 
Your graphic should look like Figure 17-3.

 
Figure 17-3: Lattice xyplot with regression lines added.



Base, grid, and lattice graphics
Perhaps confusingly, the standard distribution of R actually contains three
different graphics packages:

Base graphics is the graphics system that was originally developed for
R. The workhorse function of base graphics is a plot() (see Chapter 16). The
code for base graphics is in the graphics package, which is loaded by default
when you start R.

Grid graphics is an alternative graphics system that was later added to
R. The big difference between grid and the original base graphics system is
that grid allows for the creation of multiple regions, called viewports, on a
single graphics page. Grid is a framework of code and doesn’t, by itself,
create complete charts. The author of grid, Paul Murrell, describes some of
the ideas behind grid graphics on his website at
www.stat.auckland.ac.nz/~paul/grid/doc/grid.pdf. Note: The grid
package needs to be loaded before you can use it.

Lattice is a graphics system that specifically implements the idea of
Trellis graphics (or faceted graphics), which was originally developed for the
languages S and S-Plus at Bell Labs. Lattice graphics in R make use of grid
graphics. This means that the functions for creating graphics and changing
options in base and lattice are mostly incompatible with one another. The
lattice package needs to be loaded before use.

 

 Strictly speaking, type is not an argument to xyplot(), but an argument to
panel.xyplot(). You can control the panels of lattice graphics with a panel
function. The function xyplot() calls this panel function internally, using the
type argument you specified. The default panel function for xyplot() is
panel.xyplot(). Similarly, the panel function for barchart() — which we cover
later in this chapter — is panel.barchart(). The panel function allows you to
take fine control over many aspects of your chart. You can find out more in the
excellent Help for these functions — for example, by typing ?panel.xyplot

http://www.stat.auckland.ac.nz/~paul/grid/doc/grid.pdf


into your R console.
 

Changing Plot Options
R has a very good reputation for being able to create publication-quality

graphics. If you want to use your lattice graphics in reports or documents, you’ll
probably want to change the plot options.

 

 The lattice package makes use of the grid graphics engine, which is
completely different from the base graphics in Chapter 16. Because of this,
none of the mechanisms for changing plot options covered in Chapter 16 are
applicable to lattice graphics.

 

Adding titles and labels
 

To add a main title and axis labels to a lattice plot, you can specify the
following arguments:

 
main: Main title

 
xlab: x-axis label

 
ylab: y-axis label

 
> xyplot(mpg ~ hp | factor(cyl), data=mtcars,
+     type=c(“p”, “r”),
+     main=”Fuel economy vs. Performance”,
+     xlab=”Performance (horse power)”,
+     ylab=”Fuel economy (miles per gallon)”,
+ )

 
Your output should now be similar to Figure 17-4.

 
Figure 17-4: A lattice graphic with titles.



Changing the font size of titles and labels
 

You probably think that the title and label text in Figure 17-4 are
disproportionately large compared to the rest of the graphic.

 

 To change the size of your labels, you need to modify your arguments to be
lists. Similar to base graphics, you specify a cex argument in lattice graphics
to modify the character expansion ratio. For example, to reduce the main title
and axis label text to 75 percent of standard size, specify cex=0.75 as an
element in the list argument to main, xlab, and ylab.

 
 

To keep it simple, build up the formatting of your plot step by step. Start by
changing the size of your main title to cex=0.75:

 
> xyplot(mpg ~ hp | factor(cyl), data=mtcars,
+     type=c(“p”, “r”),
+     main=list(
+         label=”Fuel economy vs. Performance given Number of Cylinders”,
+         cex=0.75)
+ )

 
Do you see what happened? Your argument to main now contains a list with

two elements: label and cex.
 

You construct the arguments for xlab and ylab in exactly the same way. Each
argument is a list that contains the label and any other formatting options you
want to set. Expand your code to modify the axis labels:



 
> xyplot(mpg ~ hp | factor(cyl), data=mtcars,
+     type=c(“p”, “r”),
+     main=list(
+         label=”Fuel economy vs. Performance given Number of Cylinders”,
+         cex=0.75),
+     xlab=list(
+         label=”Performance (horse power)”,
+         cex=0.75),
+     ylab=list(
+         label=”Fuel economy (miles per gallon)”,
+         cex=0.75),
+     scales=list(cex=0.5)
+ )

 
If you look carefully, you’ll see that the code includes an argument to modify

the size of the scales text to 50 percent of standard (scales=list(cex=0.5)). Your
results should look like Figure 17-5.

 
Figure 17-5: Changing the font size of lattice graphics labels and text.

Using themes to modify plot options
 

One neat feature of lattice graphics is that you can create themes to change
the plot options of your charts. To do this, you need to use the par.settings
argument. In Chapter 16, you use the par() function to update graphics
parameters of base graphics. The par.settings argument in lattice is similar.

 
The easiest way to use the par.settings argument is to use it in conjunction

with the simpleTheme() function. With simpleTheme(), you can specify the
arguments for the following:

 
col, col.points, col.line: Control the colors of symbols, points, lines, and other
graphics elements such as polygons



 
cex, pch, font: Control the character expansion ratio (cex), plot character (pch),
and font type

 
lty, lwd: Control the line type and line width

 
For example, to modify your plot to have red points and a blue regression line,

use the following:
 

> xyplot(mpg ~ hp | factor(cyl), data=mtcars,
+     type=c(“p”, “r”),
+     par.settings=simpleTheme(col=”red”, col.line=”blue”)
+ )

 
You can see the result in Figure 17-6.

 
Figure 17-6: Using a theme to change the color of the points and lines.

Plotting Different Types
With lattice graphics, you can create many different types of plots, such as

scatterplots and bar charts. Here are just a few of the different types of plots you
can create:

 
Scatterplot: xyplot()

 
Bar chart: barchart()

 
Box-and-whisker plot: bwplot()

 
One-dimensional strip plot: stripplot()

 



Three-dimensional scatterplots: cloud()
 

Three-dimensional surface plots: wireframe()
 

 For a complete list of the different types of lattice plots, see the Help at ?
lattice.

 
Because making bar charts and making box-and-whisker plots are such

common activities, we discuss these functions in the following sections.
 

Making a bar chart
 

To make a bar chart, use the lattice function barchart(). Say you want to
create a bar chart of fuel economy for each different type of car. To do this, you
first have to add the names of the cars to the data itself. Because the names are
contained in the row names, this means assigning a new column in your data frame
with the name cars, containing rownames(mtcars):

 
> mtcars$cars <- rownames(mtcars)

 
Now you can create your bar chart using similar syntax to the scatterplot you

made earlier:
 

> barchart(cars ~ mpg | factor(cyl), data=mtcars,
+     main=”barchart”,
+     scales=list(cex=0.5),
+     layout=c(3, 1)
+ )

 
Once again (because you have eagle eyes), you’ve noticed the additional

argument layout in this code. Lattice plots adapt to the size of the active graphics
window on your screen. They do this by changing the configuration of the panels of
your plot. For example, if your graphics window is too narrow to contain the panels
side by side, then lattice will start to stack your panels.

 

 You control the layout of your panels with the argument layout, consisting
of two numbers indicating the number of columns and number of rows in your



plot. In our example, we want to ensure that the three panels are side by side,
so we specify layout=c(3, 1).

 
Your plot should look like Figure 17-7.

 
Figure 17-7: Making a lattice bar chart.

Making a box-and-whisker plot
 

A box-and-whisker plot is useful when you want to visually summarize the
uncertainty of a variable. The plot consists of a dark circle at the mean; a box
around the upper and lower hinges (the hinges are at approximately the 25th and
75th percentiles); and a dotted line, or whisker, at 1.5 times the box length (see
Chapter 14).

 
The lattice function to create a box and whisker plot is bwplot(), and you

can see the result in Figure 17-8.
 
Figure 17-8: Making a lattice box-and-whisker plot.



Notice that the function formula doesn’t have a left-hand side to the equation.
Because you’re creating a one-dimensional plot of horsepower conditional on
cylinders, the formula simplifies to ~ hp | cyl. In other words, the formula starts
with the tilde symbol:

 
> bwplot(~ hp | factor(cyl), data=mtcars, main=”bwplot”)

 

Plotting Data in Groups
Often, you want to create plots where you compare different groups in your

data. In this section, you first take a look at data in tall format as opposed to data
in wide format. When you have data in tall format, you can easily use lattice
graphics to visualize subgroups in your data. Then you create some charts with
contained subgroups. Finally, you add a key, or legend, to your plot to indicate the
different subgroups.

 

Using data in tall format
 

So far, you’ve graphed only one variable against another in your lattice plots.
In most of the examples, you plotted mpg against hp for each unique value of cyl.
But what happens when you want to analyze more than one variable
simultaneously?

 
Consider the built-in dataset longley, containing data about employment,

unemployment, and other population indicators:
 

> str(longley)
‘data.frame’: 16 obs. of  7 variables:
$ GNP.deflator: num  83 88.5 88.2 89.5 96.2 ...
$ GNP         : num  234 259 258 285 329 ...
$ Unemployed  : num  236 232 368 335 210 ...
$ Armed.Forces: num  159 146 162 165 310 ...
$ Population  : num  108 109 110 111 112 ...
$ Year        : int  1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...



$ Employed    : num  60.3 61.1 60.2 61.2 63.2 ...
 

One way to easily analyze the different variables of a data frame is to first
reshape the data frame from wide format to tall format.

 

 A wide data frame contains a column for each variable (see Chapter 13). A
tall data frame contains all the same information, but the data is organized in
such a way that one column is reserved for identifying the name of the
variable and a second column contains the actual data.

 
An easy way to reshape a data frame from wide format to tall format is to use

the melt() function in the reshape2 package. Remember: reshape2 is not part of
base R — it’s an add-on package that is available on CRAN. You can install it with
the install.packages(“reshape2”) function.

 
> library(“reshape2”)
> mlongley <- melt(longley, id.vars=”Year”)
> str(mlongley)
‘data.frame’: 96 obs. of  3 variables:
$ Year    : int  1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 ...
$ variable: Factor w/ 6 levels “GNP.deflator”,..: 1 1 1 1 1 1 1 1 1 1 ...
$ value   : num  83 88.5 88.2 89.5 96.2 ...

 
Now you can plot the tall data frame mlongley and use the new columns value

and variable in the formula value~Year | variable.
 

> xyplot(value ~ Year | variable, data=mlongley,
+     layout=c(6, 1),
+     par.strip.text=list(cex=0.7),
+     scales=list(cex=0.7)
+ )

 
The additional arguments par.strip.text and scales control the font size

(character expansion ratio) of the strip at the top of the chart, as well as the scale,
as you can see in Figure 17-9.

 

 When you create plots with multiple groups, make sure that the resulting
plot is meaningful. For example, Figure 17-9 correctly plots the longley data,
but it can be very misleading because the units of measurement are very
different. For example, the unit of GNP (short for Gross National Product) is
probably billions of dollars. In contrast the unit of population is probably



millions of people. (The documentation of the longley dataset is not clear on
this topic.) Be very careful when you present plots like this — you don’t want
to be accused of creating chart junk (misleading graphics).

 
Figure 17-9: Using data in tall format to put different variables in each panel.

Creating a chart with groups
 

Many graphics types — but bar charts in particular — tend to display multiple
groups of data at the same time. Usually, you can distinguish different groups by
their color or sometimes their shading.

 

 If you ever want to add different colors to your plot to distinguish between
different data, you need to define groups in your lattice plot.

 
Say you want to create a bar chart that differentiates whether a car has an

automatic or manual gearbox. The mtcars dataset has a column with this data,
called am — this is a numeric vector with the value 0 for automatic and 1 for
manual. You can use the ifelse() function to convert from numeric values to a
character values “Automatic” and “Manual”:

 
> mtcars$cars <- rownames(mtcars)
> mtcars$am <- with(mtcars, ifelse(am==0, “Automatic”, “Manual”))

 
Now you plot your data using the same formula as before, but you need to add

an argument defining the group, group=am.
 

> barchart(cars ~ mpg | factor(cyl), data=mtcars,
+     group=am,
+     scales=list(cex=0.5),
+     layout=c(3, 1),
+ )



 
When you run this code, you’ll get your desired bar chart. However, the first

thing you’ll notice is that the colors look a bit washed out and you don’t have a key
to distinguish between automatic and manual cars.

 

Adding a key
 

It is easy to add a key to a graphic that already contains a group argument.
Usually, it’s as simple as adding another argument, auto.key=TRUE, which
automatically creates a key that matches the groups:

 
> barchart(cars ~ mpg | factor(cyl), data=mtcars,
+     main=”barchart with groups”,
+     group=am,
+     auto.key=TRUE,
+     par.settings = simpleTheme(col=c(“grey80”, “grey20”)),
+     scales=list(cex=0.5),
+     layout=c(3, 1)
+ )

 
One more thing to notice about this specific example is the arguments for

par.settings to control the color of the bars. In this case, the colors are shades of
gray. You can see the effect in Figure 17-10.

 
Figure 17-10: A lattice bar chart with groups and a key.



Printing and Saving a Lattice Plot
You need to know three other essential things about lattice plots: how to

assign a lattice plot to an object, how to print a lattice plot in a script, and how
to save a lattice plot to file. That’s what we cover in this section.

 

Assigning a lattice plot to an object
 

Lattice plots are objects; therefore you can assign them to variables, just like
any other object. This is very convenient when you want to reuse a plot object in
your downstream code — for example, to print it later.

 
The assignment to a variable works just like any variable assignment in R:

 
> my.plot <- xyplot(mpg ~ hp | cyl, data=mtcars)
> class(my.plot)
[1] “trellis”

 

Printing a lattice plot in a script
 

When you run code interactively — by typing commands into the R console —
simply typing the name of a variable prints that variable. However, you need to
explicitly print an object when running a script. You do this with the print()
function.

 

 Because a lattice plot is an object, you need to explicitly use the print()
function in your scripts. This is a frequently asked question in the R
documentation, and it can easily lead to confusion if you forget.

 
To be clear, the following line of code will do nothing if you put it in a script

and source the script. (To be technically correct: the code will still run, but the
resulting object will never get printed — it simply gets discarded.)

 
> xyplot(mpg ~ hp | cyl, data=mtcars)

 
To get the desired effect of printing the plot, you must use print():

 
> my.plot <- xyplot(mpg ~ hp | cyl, data=mtcars)



> print(my.plot)
 

Saving a lattice plot to file
 

To save a lattice plot to an image file, you use a slightly modified version of
the sequence of functions that you came across in base graphics (see Chapter 16).

 

 Here’s a short reminder of the sequence:
 

1. Open a graphics device using, for example, png().
 Tip: The lattice package provides the trellis.device() function that

effectively does the same thing, but it’s optimized for lattice plots, because it
uses appropriate graphical parameters.

 2. Print the plot.
 Remember: You must use the print() function explicitly!
 3. Close the graphics device.
 Put this into action using trellis.device() to open a file called xyplot.png,

print your plot, and then close the device. (You can use the setwd(“~/”) to set your
working directory to your home folder; see Chapter 16.)

 
> setwd(“~/”)
> trellis.device(device=”png”, filename=”xyplot.png”)
> print(my.plot)
> dev.off()

 
You should now be able to find the file xyplot.png in your home folder.

 
 



Chapter 18
 

Looking At ggplot2 Graphics

In This Chapter
 Installing and loading the ggplot2 package
 Understanding how to use build a plot using layers
 Creating charts with suitable geoms and stats

 Adding facets to your plot
 

One of the strengths of R is that it’s more than just a programming language
— it also has thousands of packages written and contributed by independent
developers. One of these packages, ggplot2, is tremendously popular and offers a
new way of creating insightful graphics using R.

 

 Much of the ggplot2 philosophy is based on the so-called “grammar of
graphics,” a theoretically sound way of describing all the components that go
into a graphical plot. You don’t need to know anything about the grammar of
graphics to use ggplot2 effectively, but now you know where its name comes
from.

 
In this chapter, you first install and load the ggplot2 package and then take a

first look at layers, the building blocks of the ggplot2 graphics. Next, you define the
data, geoms, and stats that make up a layer, and use these to create some plots.
Finally you take full control over your graphics by adding facets and scales as well
as controlling other plot options, such as adding labels and titles.

 

Installing and Loading ggplot2
Because ggplot2 isn’t part of the standard distribution of R, you have to

download the package from CRAN and install it.
 

In Chapter 3, you see that the Comprehensive R Archive Network (CRAN) is a
network of servers around the world that contain the source code, documentation,
and add-on packages for R. Its homepage is at http://cran.r-project.org.

http://cran.r-project.org


 
Each submitted package on CRAN also has a page that describes what the

package is about. You can view the ggplot2 page at http://cran.r-
project.org/web/packages/ggplot2/index.html.

 

 Although it’s fairly common practice to simply refer to the package as
ggplot, it is, in fact, the second implementation of the grammar of graphics for
R; hence, the package is ggplot2. As of this writing, the current version of the
package is version 0.9.0.

 
Perhaps somewhat confusingly, the most important function in this package is

ggplot(). Notice that the function doesn’t have a 2 in its name. So, be careful to
include the 2 when you install.packages() or library() the package in your R
code, but the function ggplot() itself does not contain a 2.

 
In Chapter 3, you also see how to install a package for the first time with the

install.packages() function and to load the package at the start of each R session
with the library() function.

 
To install the ggplot2 package, use the following:

 
> install.packages(“ggplot2”)

 
And then to load it, use the following:

 
> library(“ggplot2”)

 

Looking At Layers
The basic concept of a ggplot2 graphic is that you combine different elements

into layers. Each layer of a ggplot2 graphic contains information about the
following:

 
The data that you want to plot: For ggplot(), this must be a data frame.

 
A mapping from the data to your plot: This usually is as simple as telling
ggplot() what goes on the x-axis and what goes on the y-axis. (In the “Mapping
data to plot aesthetics” section, later in this chapter, we explain how to use the

http://cran.r-project.org/web/packages/ggplot2/index.html


aes() function to set up the mapping.)
 

A geometric object, or geom in ggplot terminology: The geom defines the
overall look of the layer (for example, whether the plot is made up of bars,
points, or lines).

 
A statistical summary, called a stat in ggplot: This describes how you want
the data to be summarized (for example, binning for histograms, or smoothing
to draw regression lines).

 
That was a mouthful. In practice, you describe all this in a short line of code.

For example, here is the ggplot2 code to plot the faithful data using two layers.
(Because you plot faithful in Chapter 17, we won’t bore you by describing it
here.) The first layer is a geom that draws the points of a scatterplot; the second
layer is a stat that draws a smooth line through the points.

 
> ggplot(faithful, aes(x=eruptions, y=waiting)) + geom_point() +
stat_smooth()

 
This single line of code creates the graphic in Figure 18-1.

 
Figure 18-1: A ggplot2 graphic of the faithful dataset.

Using Geoms and Stats
To create a ggplot2 graphic, you have to explicitly tell the function what’s in

each of the components of the layer. In other words, you have to tell the ggplot()
function your data, the mapping between your data and the geom, and then either
a geom or a stat.

 



In this section, we discuss geoms and then stats.
 

Defining what data to use
 

 The first element of a ggplot2 layer is the data. There is only one rule for
supplying data to ggplot(): Your data must be in the form of a data frame.
This is different from base graphics, which allow plotting of data in vectors,
matrices, and other structures.

 
In the remainder of this chapter we use the built-in dataset quakes. As you see

in Chapters 13 and 17, quakes is a data frame with information about earthquakes
near Fiji.

 
You tell ggplot() what data to use and how to map your data to your geom in

the ggplot() function. The ggplot() function takes two arguments:
 

data: a data frame with your data (for example, data=quakes).
 

...: The dots argument indicates that any other argument you specified here
gets passed on to downstream functions (that is, other functions that ggplot()
happens to call). In the case of ggplot(), this means that anything you specify
in this argument is available to your geoms and stats that you define later.

 

 Because the dots argument is available to any geom or stat in your plot, it’s
a convenient place to define the mapping between your data and the visual
elements of your plot.

 
This is where you typically specify a mapping between your data and your

geom.
 

Mapping data to plot aesthetics
 

After you’ve told ggplot() what data to use, the next step is to tell it how your
data corresponds to visual elements of your plot. This mapping between data and



visual elements is the second element of a ggplot2 layer.
 

The visual elements of a plot, or aesthetics, include lines, points, symbols,
colors, position . . . anything that you can see. For example, you can map a column
of your data to the x-axis of your plot, or you can map a column of your data to
correspond to the y-axis of your plot. You also can map data to groups, colors or
the size of points in scatterplots — in fact, you can map your data to anything that
your geom supports.

 
You use the special function aes() to set up a mapping between data and

aesthetics. Each argument to aes() maps a column in your data to a specific
element in your geom.

 
Take another look at the code used to create Figure 18-1:

 
> ggplot(faithful, aes(x=eruptions, y=waiting)) + geom_point() +
stat_smooth()

 
You can see that this code tells ggplot() to use the data frame faithful as

the data source. And now you understand that aes() creates a mapping between
the x-axis and faithful$eruptions, as well as between the y-axis and
faithful$waiting.

 
The next thing you notice about this line are the plus signs. In ggplot2, you

use the + operator to combine the different layers of the plot.
 

In summary, you use the aes() function to define the mapping between your
data and your plot. This is simple enough, but it leaves one question: How do you
know which aesthetics are available in different geoms?

 

Getting geoms
 

A ggplot2 geom tells the plot how you want to display your data. For example,
you use geom_bar() to make a bar chart. In ggplot2, you can use a variety of
predefined geoms to make standard types of plot.

 
A geom defines the layout of a ggplot2 layer. For example, there are geoms to

create bar charts, scatterplots, and line diagrams (as well as a variety of other
plots), as you can see in Table 18-1.



 
Each geom has a default stat, and each stat has a default geom. In practice,

you have to specify only one of these.
 

Table 18-1 A Selection of Geoms and Associated
Default Stats

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Geom

 

Description

 

Default Stat

 
geom_bar() Bar chart stat_bin()



   
geom_point()

 
Scatterplot

 
stat_identity()

 
geom_line()

 
Line diagram, connecting observations in ordered by x-value

 
stat_identity()

 
geom_boxplot

 
Box-and-whisker plot

 
stat_boxplot()

 
geom_path

 
Line diagram, connecting observations in original order

 
stat_identity()

 
geom_smooth

 
Add a smoothed conditioned mean

 
stat_smooth()

 
geom_histogram

 
An alias for geom_bar() and stat_bin()

 
stat_bin()

 

Creating a bar chart
 

To make a bar chart you use the geom_bar() function. However, note that the
default stat is stat_bin(), which is used to cut your data into bins. Thus, the
default behavior of geom_bar() is to create a histogram.

 
For example, to create a histogram of the depth of earthquakes in the quakes

dataset, you do the following:
 

> ggplot(quakes, aes(x=depth)) + geom_bar()
> ggplot(quakes, aes(x=depth)) + geom_bar(binwidth=50)

 
Notice that your mapping defines only the x-axis variable (in this case,

quakes$depth). A useful argument to geom_bar() is binwidth, which controls the
size of the bins that your data is cut into. This creates the plot of Figure 18-2.

 

 So, if geom_bar() makes a histogram by default, how do you make a bar
chart? The answer is that you first have to aggregate your data, and then
specify the argument stat=”identity” in your call to geom_bar().

 
In the next example, you use aggregate() (see Chapter 13) to calculate the

number of quakes at different depth strata:
 

> quakes.agg <- aggregate(mag ~ round(depth, -1), data=quakes,
+                 FUN=length)
> names(quakes.agg) <- c(“depth”, “mag”)

 
Now you can plot the object quakes.agg with geom_bar(stat=”identity”):

 



> ggplot(quakes.agg, aes(x=depth, y=mag)) +
+     geom_bar(stat=”identity”)

 
Your results should be very similar to Figure 18-2.

 
In summary, you can use geom_bar() to create a histogram and let ggplot2

summarize your data, or you can presummarize your data and then use
stat=”identity” to plot a bar chart.

 

Making a scatterplot
 

To create a scatterplot, you use the geom_point() function. A scatterplot
creates points (or sometimes bubbles or other symbols) on your chart. Each point
corresponds to an observation in your data.

 
You’ve probably seen or created this type of graphic a million times, so you

already know that scatterplots use the Cartesian coordinate system, where one
variable is mapped to the x-axis and a second variable is mapped to the y-axis.

 
In exactly the same way, in ggplot2 you create a mapping between x-axis and

y-axis variables. So, to create a plot of the quakes data, you map quakes$long to
the x-axis and quakes$lat to the y-axis:

 
> ggplot(quakes, aes(x=long, y=lat)) + geom_point()

 
This creates Figure 18-3.

 
Figure 18-2: Making a histogram with geom_bar().

Figure 18-3: Making a scatterplot with geom_point().



Creating line charts
 

To create a line chart, you use the geom_line() function. You use this function
in a very similar way to geom_point(), with the difference that geom_line() draws a
line between consecutive points in your data.

 
This type of chart is useful for time series data in data frames, such as the

population data in the built-in dataset longley (see Chapter 17). To create a line
chart of unemployment figures, you use the following:

 
> ggplot(longley, aes(x=Year, y=Unemployed)) + geom_line()

 
This creates Figure 18-4.

 
Figure 18-4: Drawing a line chart with geom_line().

 You can use either geom_line() or geom_path() to create a line drawing in
ggplot2. The difference is that geom_line() first orders the observations



according to x-value, whereas geom_path() draws the observations in the order
found in the data.

 

Sussing Stats
After data, mapping, and geoms, the fourth element of a ggplot2 layer

describes how the data should be summarized. In ggplot2, you refer to this
statistical summary as a stat.

 
One very convenient feature of ggplot2 is its range of functions to summarize

your data in the plot. This means that you often don’t have to pre-summarize your
data. For example, the height of bars in a histogram indicates how many
observations of something you have in your data. The statistical summary for this
is to count the observations. Statisticians refer to this process as binning, and the
default stat for geom_bar() is stat_bin().

 
Analogous to the way that each geom has an associated default stat, each stat

also has a default geom. Table 18-2 shows some useful stats functions, their effect,
and their default geoms.

 
So, this begs the question: How do you decide whether to use a geom or a

stat? In theory it doesn’t matter whether you choose the geom or the stat first. In
practice, however, it often is intuitive to start with a type of plot first — in other
words, specify a geom. If you then want to add another layer of statistical
summary, use a stat.

 
Figure 18-2, earlier in this chapter, is an example of this. In this plot, you used

the same data to first create a scatterplot with geom_point() and then you added a
smooth line with stat_smooth().

 
Next, we take a look at some practical examples of using stat functions.

 

Table 18-2 Some Useful Stats and Default Geoms
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 

 

 

Stat

 

Description

 

Default Geom

 
stat_bin()

 
Counts the number of observations in bins.

 
geom_bar()

 
stat_smooth()

 
Creates a smooth line.

 
geom_line()

 
stat_sum()

 
Adds values.

 
geom_point()

 
stat_identity()

 
No summary. Plots data as is.

 
geom_point()

 
stat_boxplot()

 
Summarizes data for a box-and-whisker plot.

 
geom_boxplot()

 

Binning data
 

You’ve already seen how to use stat_bin() to summarize your data into bins,
because this is the default stat of geom_bar(). This means that the following two
lines of code produce identical plots:

 
> ggplot(quakes, aes(x=depth)) + geom_bar(binwidth=50)
> ggplot(quakes, aes(x=depth)) + stat_bin(binwidth=50)

 
Your plot should be identical to Figure 18-2.

 



Smoothing data
 

The ggplot2 package also makes it very easy to create regression lines
through your data. You use the stat_smooth() function to create this type of line.

 
The interesting thing about stat_smooth() is that it makes use of local

regression by default. R has several functions that can do this, but ggplot2 uses the
loess() function for local regression. This means that if you want to create a linear
regression model (as in Chapter 15), you have to tell stat_smooth() to use a
different smoother function. You do this with the method argument.

 
To illustrate the use of a smoother, start by creating a scatterplot of

unemployment in the longley dataset:
 

> ggplot(longley, aes(x=Year, y=Employed)) + geom_point()
 

Next, add a smoother. This is as simple as adding stat_smooth() to your line
of code.

 
> ggplot(longley, aes(x=Year, y=Employed)) +
+     geom_point() + stat_smooth()

 
Your graphic should look like the plot to the left of Figure 18-5. Finally, tell

stat_smooth to use a linear regression model. You do this by adding the argument
method=”lm”.

 
> ggplot(longley, aes(x=Year, y=Employed)) +
+     geom_point() + stat_smooth(method=”lm”)

 
Your graphic should now look like the plot to the right in Figure 18-5.

 
Figure 18-5: Adding regression lines with stat_smooth().



Doing nothing with identity
 

Sometimes you don’t want ggplot2 to summarize your data in the plot. This
usually happens when your data is already pre-summarized or when each line of
your data frame has to be plotted separately. In these cases, you want to tell
ggplot2 to do nothing at all, and the stat to do this is stat_identity(). You
probably noticed in Table 18-1 that stat_identity is the default statistic for points
and lines.

 

Adding Facets, Scales, and Options
In addition to data, geoms, and stats, the full specification of a ggplot2

includes facets and scales. You’ve encountered facets in Chapter 17 — these allow
you to visualize different subsets of your data in a single plot. Scales include not
only the x-axis and y-axis, but also any additional keys that explain your data (for
example, when different subgroups have different colors in your plot).

 

Adding facets
 

To illustrate the use of facets, you may want to replicate some of the faceted
plots of the dataset mtcars that you encountered in Chapter 17.

 
To make the basic scatterplot of fuel consumption against performance, use

the following:
 

> ggplot(mtcars, aes(x=hp, y=mpg)) + geom_point()
 

Then, to add facets, use the function facet_grid(). This function allows you to
create a two-dimensional grid that defines the facet variables. You write the
argument to facet_grid() as a formula of the form rows ~ columns. In other
words, a tilde (~) separates the row variable from the column variable.

 
To illustrate, add facets with the number of cylinders as the columns. This

means your formula is ~cyl. Notice that because there are no rows as facets, there
is nothing before the tilde character:

 
> ggplot(mtcars, aes(x=hp, y=mpg)) + geom_point() +
+     stat_smooth(method=”lm”) + facet_grid(~cyl)

 



Your graphic should look like Figure 18-6.
 

 Similar to facet_grid(), you also can use the facet_wrap() function to
wrap one dimension of facets to fill the plot grid.

 
Figure 18-6: Adding facets with facet_grid().

Changing options
 

In ggplot2, you also can take full control of your titles, labels, and all other
plot parameters.

 
To add x-axis and y-axis labels, you use the functions xlab() and ylab().

 
To add a main title, you have to specify the title argument to the function

opts():
 

> ggplot(mtcars, aes(x=hp, y=mpg)) + geom_point(color=”red”) +
+     xlab(“Performance (horse power”) +
+     ylab(“Fuel consumption (mpg)”) +
+     opts(title = “Motor car comparison”)

 
Your graphic should look like Figure 18-7.

 
Figure 18-7: Changing ggplot2 options.



Working with scales
In ggplot2, scales control the way your data gets mapped to your geom. In
this way, your data is mapped to something you can see (for example, lines,
points, colors, position, or shapes).
The ggplot2 package is extremely good at selecting sensible default values
for your scales. In most cases, you don’t have to do much to customize your
scales. However, ggplot2 has a wide range of very sophisticated functions
and settings to give you fine-grained control over your scale behavior and
appearance.
In the following example, you map the column mtcars$cyl to both the shape
and color of the points. This creates two separate, but overlapping, scales:
One scale controls shape, while the second scale controls the color of the
points:

> ggplot(mtcars, aes(x=hp, y=mpg)) +
+ geom_point(aes(shape=factor(cyl),

colour=factor(cyl)))
 

The name of a scale defaults to the name of the variable that gets mapped
to it. In this case, you map factor(cyl) to the scale. To change the
appearance of a scale, you need to add a scale function to your plot. The
specific scale function you use is dependent on the type of scale, but in this
case, you have a shape scale with discrete values, so you use the
scale_shape_ discrete() function. You also have a color scale with discrete
value, so you can control that with scale_colour_discrete(). To change the
name that appears in the legend of the plot, you need to specify the
argument name to these scales. For example, change the name of the legend
to “Cylinders” by setting the argument name=”Cylinders”:

> ggplot(mtcars, aes(x=hp, y=mpg)) +
+ geom_point(aes(shape=factor(cyl),

colour=factor(cyl))) +
+ scale_shape_discrete(name=”Cylinders”) +
+ scale_colour_discrete(name=”Cylinders”)



+ scale_colour_discrete(name=”Cylinders”)
 

Similarly, to change the x-axis scale, you would use scale_x_continuous().

 

Getting More Information

 In this chapter, we give you only a glimpse of the incredible power and
variety at your fingertips when you use ggplot2. No doubt you’re itching to do
more. Here are a few resources that you may find helpful:

 
 The ggplot2 website (http://had.co.nz/ggplot2) contains help and code
examples for all the geoms, stats, facets, and scales. This site is an excellent
resource. Because it also contains images of each plot, it’s even easier to use
than the built-in R Help.

 
 Hadley Wickham, the author of ggplot2, also wrote an excellent book that
describes how to use ggplot2 in a very easy and helpful way. The book is called
ggplot2: Elegant Graphics for Data Analysis, and you can find its website at
http://had.co.nz/ggplot2/book. At this website, you also can find some sample
chapters that you can read free of charge.

 
 At https://github.com/hadley/ggplot2/wiki, you can find the ggplot2 wiki,
which is actively maintained and contains links to all kinds of useful information.

 
 

http://had.co.nz/ggplot2
http://had.co.nz/ggplot2/book
https://github.com/hadley/ggplot2/wiki


Part VI
The Part of Tens

In this part . . .
Every For Dummies book gives you a Part of Tens, and this one is no different.

In Chapter 19, we cover ten things you might otherwise do with Microsoft Excel but
can do in R instead. Most of these methods appear in one way or another
somewhere else in this book, and this chapter pulls them all together.

Chapter 20 lists ten things you really need to know about working with
packages. And because we can’t possibly cover all of R in one book, we added a
few useful sources to find extra information on both R and its packages. So, you
can use this chapter as a road map to find out where to go from here.



Chapter 19
 
Ten Things You Can Do in R That You Would’ve

Done in Microsoft Excel

In This Chapter
 Performing calculations and other operations on data

 Going beyond what you can do in a spreadsheet
 

The spreadsheet is probably one of the most widely used PC applications —
and for good reason: Spreadsheets make it very easy to perform calculations and
other operations on tabular data. But spreadsheets pose some risks as well:
They’re easy to corrupt and very difficult to debug.

 
The good news is, you can use R to do many of the same things you used to

do in spreadsheets. In R, you use data frames to represent tabular data. R has
many functions, operators, and methods that allow you to manipulate and calculate
on data frames. This means that you can do just about anything (and more) in R
that you would’ve done in Microsoft Excel, LibreOffice Calc, or your favorite
spreadsheet application.

 
In this chapter, we offer some pointers on functions that you can explore in R,

most of which are covered earlier in this book. In most cases, we provide some
sample code but not the results. Try these examples yourself, and remember to
use the R Help documentation to find out more about these functions.

 

Adding Row and Column Totals
One task that you may frequently do in a spreadsheet is calculating row or

column totals. The easiest way to do this is to use the functions rowSums() and
colSums(). Similarly, use the functions rowMeans() and colMeans() to calculate
means.

 
Try it on the built-in dataset iris. First, remove the fifth column, because it

contains text that describes the species of iris:
 

> iris.num <- iris[, -5]



 
Then calculate the sum and mean for each column:

 
> colSums(iris.num)
> colMeans(iris.num)

 
These two functions are very convenient, but you may want to calculate some

other statistic for each column or row. There’s an easy way of traversing rows or
columns of an array or data frame: the apply() function (see Chapter 13). For
example, getting the minimum of a column is the same as applying a min()
function to the second dimension of your data:

 
> apply(iris.num, 2, min)
> apply(iris.num, 2, max)

 

 The apply() function is ideal when your data is in an array and will apply
happily over both rows and columns. For the special case where your data is in
a data frame and you want to get column summaries, you’re better off using
sapply() rather than apply(). So, to get your iris column summaries, try this
instead:

 
> sapply(iris.num, min)
> sapply(iris.num, max)

 

Formatting Numbers
When you produce reports, you want your numbers to appear all nicely

formatted. For example, you may want to align numbers on the decimal points or
specify the width of the column. Or you may want to print your number with a
currency symbol ($100.00) or append a percentage sign to it (35.7%).

 
You can use format() to turn your numbers into pretty text, ready for printing.

This function takes a number of arguments to control the format of your result.
Here are a few:

 
trim: A logical value. If FALSE, it adds spaces to right-justify the result. If TRUE, it
suppresses the leading spaces.

 
digits: How many significant digits of numeric values to show.



 
nsmall: The minimum number of digits after the decimal point.

 
In addition, you can control the format of the decimal point with decimal.mark,

the mark between intervals before the decimal point with big.mark, as well as the
mark between intervals after the decimal point with small.mark.

 
For example, you can print the number 12345.6789 with a comma as decimal

point, spaces as the big mark, and dots as the small mark:
 

> format(12345.6789, digits=9, decimal.mark=”,”,
+     big.mark=” “,small.mark=”.”, , small.interval=3)
[1] “12 345,678.9”

 
As a more practical example, to calculate the means of some columns in

mtcars and then print the results with two digits after the decimal point, use the
following:

 
> x <- colMeans(mtcars[, 1:4])
> format(x, digits=2, nsmall=2)
     mpg      cyl     disp       hp
“ 20.09” “  6.19” “230.72” “146.69”

 
Notice that the result is no longer a number but a text string. So, be careful

when you use number formatting — this should be the last step in your reporting
workflow.

 
If you’re familiar with programming in languages similar to C or C++, then you

also may find the sprintf() function useful, because sprintf() is a wrapper
around the C printf() function. This wrapper allows you to paste your formatted
number directly into a string.

 
Here’s an example of converting numbers into percentages:

 
> x <- seq(0.5, 0.55, 0.01)
> sprintf(“%.1f %%”, 100*x)
[1] “50.0 %” “51.0 %” “52.0 %” “53.0 %” “54.0 %” “55.0 %”

 
This bit of magic should be familiar to C programmers, but for the rest of us,

this is what it does: The first argument to sprintf() indicates the format — in this
case, “%.1f %%”. The format argument uses special literals that indicate that the
function should replace this literal with a variable and apply some formatting. The
literals always start with the % symbol. So, in this case, %.1f means to format the



first supplied value as a fixed point value with one digit after the decimal point, and
%% is a literal that means print a %.

 
To format some numbers as currency — in this case, U.S. dollars — use the

following:
 

> set.seed(1)
> x <- 1000*runif(5)
> sprintf(“$ %3.2f”, x)
[1] “$ 265.51” “$ 372.12” “$ 572.85” “$ 908.21” “$ 201.68”

 
As you saw earlier, the literal %3.2f means to format the value as a fixed point

value with three digits before the decimal and two digits after the decimal.
 

The sprintf() function is a lot more powerful than that: It gives you an
alternative way of pasting the value of any variable into a string:

 
> stuff <- c(“bread”, “cookies”)
> price <- c(2.1, 4)
> sprintf(“%s costed $ %3.2f “, stuff, price)
[1] “bread costed $ 2.10 “   “cookies costed $ 4.00 “

 
What happens here is that, because you supplied two vectors (each with two

elements) to sprintf(), your result is a vector with two elements. R cycles through
the elements and places them into the sprintf() literals. Thus, %s (indicating
format the value as a string) gets the value “bread” the first time and “cookies”
the second time.

 
You can do everything with paste() and format() that you can do with

sprintf(), so you don’t really ever need to use it. But when you do, it can simplify
your code.

 

Sorting Data
To sort data in R, you use the sort() or order() functions (see Chapter 13).

 
To sort the data frame mtcars in increasing or decreasing order of the column

hp, use the following:
 

> with(mtcars, mtcars[order(hp), ])
> with(mtcars, mtcars[order(hp, decreasing=TRUE), ])

 



Making Choices with If
Spreadsheets give you the ability to perform all kinds of “What if?” analyses.

One way of doing this is to use the if() function in a spreadsheet.
 

R also has the if() function, but it’s mostly used for flow control in your
scripts. Because you typically want to perform a calculation on an entire vector in
R, it’s usually more appropriate to use the ifelse() function (see Chapters 9 and
13).

 
Here’s an example of using ifelse() to identify cars with high fuel efficiency in

the dataset mtcars:
 

> mtcars <- within(mtcars,
+     mpgClass <- ifelse(mpg < mean(mpg), “Low”, “High”))
> mtcars[mtcars$mpgClass == “High”, ]

 

Calculating Conditional Totals
Something else that you probably did a lot in Excel is calculating conditional

sums and counts with the functions sumif() and countif().
 

You can do the same thing in one of two ways in R:
 

 Use ifelse() (see the preceding section).
 

 Simply calculate a summary statistics on a subset of your data.
 

Say you want to calculate a conditional mean of fuel efficiency in mtcars. You
do this with the mean() function. Now, to get the fuel efficiency for cars either side
of a threshold of 150 horsepower, try the following:

 
> with(mtcars, mean(mpg))
[1] 20.09062
> with(mtcars, mean(mpg[hp < 150]))
[1] 24.22353
> with(mtcars, mean(mpg[hp >= 150]))
[1] 15.40667

 
Counting the number of elements in a vector is identical to it asking about its

length. This means that the Excel function countif() has an R equivalent in
length():



 
> with(mtcars, length(mpg[hp > 150]))
[1] 13

 

Transposing Columns or Rows
Sometimes you need to transpose your data from rows to columns or vice

versa. In R, the function to transpose a matrix is t():
 

> x <- matrix(1:12, ncol=3)
> x
     [,1] [,2] [,3]
[1,]    1    5    9
[2,]    2    6   10
[3,]    3    7   11
[4,]    4    8   12

 
To get the transpose of a matrix, use t():

 
> t(x)
     [,1] [,2] [,3] [,4]
[1,]    1    2    3    4
[2,]    5    6    7    8
[3,]    9   10   11   12

 

 You also can use t() to transpose data frames, but be careful when you do
this. The result of a transposition is always a matrix (or array). Because arrays
always have only one type of variable, such as numeric or character, the
variable types of your results may not be what you expect.

 
See how the transposition of cars is a character array:

 
> t(mtcars[1:4, ])
         Mazda RX4 Mazda RX4 Wag Datsun 710 Hornet 4 Drive
mpg      “21.0”    “21.0”        “22.8”     “21.4”
cyl      “6”       “6”           “4”        “6”
disp     “160”     “160”         “108”      “258”
hp       “110”     “110”         “ 93”      “110”
drat     “3.90”    “3.90”        “3.85”     “3.08”
wt       “2.620”   “2.875”       “2.320”    “3.215”
qsec     “16.46”   “17.02”       “18.61”    “19.44”
vs       “0”       “0”           “1”        “1”
am       “1”       “1”           “1”        “0”
gear     “4”       “4”           “4”        “3”
carb     “4”       “4”           “1”        “1”



mpgClass “High”    “High”        “High”     “High”
 

Finding Unique or Duplicated Values
To identify all the unique values in your data, use the unique() function. Try

finding the unique values of number of cylinders in mtcars:
 

> unique(mtcars$cyl)
[1] 6 4 8

 
Sometimes you want to know which values of your data are duplicates.

Depending on your situation, those duplicates will be valid, but sometimes
duplicate entries may indicate data-entry problems.

 
The function to identify duplicate entries is duplicated(). In the built in

dataset iris, there is a duplicated row in line 143. Try it yourself:
 

> dupes <- duplicated(iris)
> head(dupes)
[1] FALSE FALSE FALSE FALSE FALSE FALSE
> which(dupes)
[1] 143
> iris[dupes, ]
    Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
143          5.8         2.7          5.1         1.9 virginica

 
Because the result of duplicated() is a logical vector, you can use it as an

index to remove rows from your data. To do this, use the negation operator — the
exclamation point (as in !dupes):

 
> iris[!dupes, ]
> nrow(iris[!dupes, ])
[1] 149

 

Working with Lookup Tables
In a spreadsheet application like Excel, you can create lookup tables with the

functions vlookup or a combination of index and match.
 

In R, it may be convenient to use merge() (see Chapter 13) or match(). The
match() function returns a vector with the positions of elements that match your
lookup value.



 
For example, to find the location of the element “Toyota Corolla” in the row

names of mtcars, try the following:
 

> index <- match(“Toyota Corolla”, rownames(mtcars))
> index
[1] 20
> mtcars[index, 1:4]
                mpg cyl disp hp
Toyota Corolla 33.9   4 71.1 65

 
You can see that the index position is 20, and that the 20th row is indeed the

row you’re looking for.
 

Working with Pivot Tables
In Excel, pivot tables are a useful tool for manipulating and analyzing data.

 
For simple tables in R, you can use the tapply() function to achieve similar

results. Here’s an example of using tapply() to calculate mean hp for cars with
different numbers of cylinders and gears:

 
> with(mtcars, tapply(hp, list(cyl, gear), mean))
         3     4     5
4  97.0000  76.0 102.0
6 107.5000 116.5 175.0
8 194.1667    NA 299.5

 
For slightly more complex tables — that is, tables with more than two cross-

classifying factors — use the aggregate() function:
 

> aggregate(hp~cyl+gear+am, mtcars, mean)
   cyl gear am        hp
1    4    3  0  97.00000
2    6    3  0 107.50000
3    8    3  0 194.16667
4    4    4  0  78.50000
5    6    4  0 123.00000
6    4    4  1  75.16667
7    6    4  1 110.00000
8    4    5  1 102.00000
9    6    5  1 175.00000
10   8    5  1 299.50000

 



 If you frequently work with tables in Excel, you should definitely explore the
packages plyr and reshape2 that are available on CRAN at http://cran.r-
project.org/web/packages/plyr/ and http://cran.r-
project.org/web/packages/reshape2/, respectively. These packages provide a
number of functions for common data manipulation problems.

 

Using the Goal Seek and Solver
One very powerful feature of Excel is that it has a very easy-to-use solver that

allows you to find minimum or maximum values for functions given some
constraints.

 
A very large body of mathematics aims to solve optimization problems of all

kinds. In R, the optimize() function provides one fairly simple mechanism for
optimizing functions.

 
Imagine you’re the sales director of a company and you need to set the best

price for your product. In other words, find the price of a product that maximizes
revenue.

 
In economics, a simple model of pricing states that people buy less of a given

product when the price increases. Here’s a very simple function that has this
behavior:

 
> sales <- function(price) { 100 - 0.5 * price }

 
Expected revenue is then simply the product of price and expected sales:

 
> revenue <- function(price) { price * sales(price) }

 
You can use the curve() function to plot continuous functions. This takes a

function as input and produces a plot. Try to plot the behavior of sales and revenue
using the curve() function, varying price from $50 to $150:

 
> par(mfrow=c(1, 2))
> curve(sales, from=50, to=150, xname=”price”, ylab=”Sales”, main=”Sales”)
> curve(revenue, from=50, to=150, xname=”price”, ylab=”Revenue”,
main=”Revenue”)

> par(mfrow=c(1, 1))
 

http://cran.r-project.org/web/packages/plyr/
http://cran.r-project.org/web/packages/reshape2/


Your results should look similar to Figure 19-1.
 
Figure 19-1: A model of expected sales and revenue.

You have a working model of sales and revenue. From the figure, you can see
immediately that there is a point of maximum revenue. Next, use the R function
optimize() to find the value of that maximum. To use optimize(), you need to tell
it which function to use (in this case, revenue()), as well as the interval (in this
case, prices between 50 and 150). By default, optimize() searches for a minimum
value, so in this case you have to tell it to search for maximum value:

 
> optimize(revenue, interval=c(50, 150), maximum=TRUE)
$maximum
[1] 100
$objective
[1] 5000

 
And there you go. Charge a price of $100, and expect to get $5,000 in

revenue.
 

 The Excel Solver uses the Generalized Reduced Gradient Algorithm for
optimizing nonlinear problems (http://support.microsoft.com/kb/214115).
The R function optimize() uses a combination of golden section search and
successive parabolic interpolation, which clearly is not the same thing as the
Excel Solver. Fortunately, a large number of packages provide various different
algorithms for solving optimization problems. In fact, there is a special task
view on CRAN for optimization and mathematical programming. Go to
http://cran.r-project.org/web/views/Optimization.html to find out more
than you ever thought you wanted to know!

 
 

http://support.microsoft.com/kb/214115
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Chapter 20
 

Ten Tips on Working with Packages

In This Chapter
 Finding packages
 Installing and updating packages

 Loading and unloading packages
 

One of the very attractive features of R is that it contains a large collection of
third-party packages (collections of functions in a well-defined format). To get the
most out of R, you need to understand where to find additional packages, how to
download and install them, and how to use them.

 
In this chapter, we consolidate some of the things we cover earlier in the book

and give you ten tips on working with packages.
 

 Many other software languages have concepts that are similar to R
packages. Sometimes these are referred to as “libraries.” However, in R, a
library is the folder on your hard disk (or USB stick, network, DVD, or whatever
you use for permanent storage) where your packages are stored.

 

Poking Around the Nooks and Crannies of CRAN
The Comprehensive R Archive Network (CRAN; http://cran.r-project.org) is

a network of web servers around the world where you can find the R source code, R
manuals and documentation, and contributed packages.

 
CRAN isn’t a single website; it’s a collection of web servers, each with an

identical copy of all the information on CRAN. Thus, each web server is called a
mirror. The idea is that you choose the mirror that is located nearest to where you
are, which reduces international or long-distance Internet traffic. You can find a list
of CRAN mirrors at http://cran.r-project.org/mirrors.html.

 

http://cran.r-project.org/
http://cran.r-project.org/mirrors.html


 RGui and RStudio allow you to set the location of your nearest CRAN mirror
directly in the application. For example, in the Windows RGui, you can find this
option by choosing Packages䳑Set CRAN mirror. In RStudio, you can find this
option by choosing Tools䳑Options䳑R䳑CRAN mirror.

 

 Regardless of which R editor you use, you can permanently save your
preferred CRAN mirror (and other settings) in special file called .RProfile,
located in the user’s home directory or the R startup directory. For example, to
set the Imperial College, UK mirror as your default CRAN mirror, include this
line in your .RProfile:

 
options(“repos” = c(CRAN = “http://cran.ma.imperial.ac.uk/”))

 
For more information, see the appendix of this book.

 

Finding Interesting Packages
As of this writing, there are more than 3,000 packages on CRAN. So, finding a

package that does something that you want to do may seem difficult.
 

Fortunately, a handful of volunteer experts have collated some of the most
widely used packages into curated lists. These lists are called CRAN task views, and
you can view them at http://cran.r-project.org/web/views/. You’ll notice that
there are task views for topics such as empirical finance, statistical genetics,
machine learning, statistical learning, and many other fascinating topics.

 
Each package has its own web page on CRAN. Say, for example, you want to

find a package to do high-quality graphics. If you followed the link to the graphics
task view, http://cran.r-project.org/web/views/Graphics.html, you may notice
a link to the ggplot2 package, http://cran.r-
project.org/web/packages/ggplot2/index.html. On the web page for a package,
you’ll find a brief summary, information about the packages that are used, a link to
the package website (if such a site exists), and other useful information.

 

Installing Packages
To install a package use the install.packages() function. This simple

http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/Graphics.html
http://cran.r-project.org/web/packages/ggplot2/index.html


command downloads the package from a specified repository (by default, CRAN)
and installs it on your machine:

 
> install.packages(“fortunes”)

 
Note that the argument to install.packages() is a character string. In other

words, remember the quotes around the package name!
 

 In RGui, as well as in RStudio, you find a menu command to do the same
thing:

 
 In RGui, choose Packages䳑Install package(s).

 
 In RStudio, choose Tools䳑Install packages.

 

Loading Packages
To load a package, you use the library() or require() function. These

functions are identical in their effect, but they differ in the return value:
 

library(): Invisibly returns a list of packages that are attached, or returns FALSE
if the package is not on your machine.

 
require(): Returns TRUE if the package was successfully attached and FALSE if
not.

 
The R documentation suggests that library() is the preferred way of loading

packages in scripts, while require() is preferred inside functions and packages.
 

So, after you’ve installed the package fortunes you load it like this:
 

> library(“fortunes”)
 

Note that you don’t need to quote the name of the package in the argument of
library(), but it’s good practice to quote it anyway.

 



Reading the Package Manual and Vignette
After you’ve installed and loaded a new package, a good starting point is to

read the package manual. The package manual is a collection of all function and
other package documentation. You can access the manual in two ways. The first
way is to use the help argument to the library() function:

 
> library(help=fortunes)

 
The second way is to find the manual on the package website. If you point

your browser window to the CRAN page for the fortunes package (http://cran.r-
project.org/web/packages/fortunes/), you’ll notice a link to the manual toward
the bottom of the page (http://cran. r-
project.org/web/packages/fortunes/fortunes.pdf).

 
Whichever approach you choose, the result is a PDF document containing the

package manual.
 

Some package authors also write a vignette, a document that illustrates how
to use the package. A vignette typically shows some examples of how to use the
functions and how to get started. The key thing is that a vignette illustrates how to
use the package with R code and output, just like this book.

 
To read the vignette for the fortunes package, try the following:

 
> vignette(“fortunes”)

 

Updating Packages
Most package authors release improvements to their packages from time to

time. To ensure you have the latest version, use update.packages():
 

> update.packages()
 

This function connects to CRAN (by default) and checks whether there are
updates for all the packages that you’ve installed on your machine. If there are, it
asks you whether you want to update each package and then downloads the code
and installs the new version.

 

 If you add update.packages(ask = FALSE), R updates all out-of-date

http://cran.r-project.org/web/packages/fortunes/
http://cran.r-project.org/web/packages/fortunes/fortunes.pdf


packages in the current applicable library locations, without prompting you.
Also, you can tell update.packages() to look at a repository other than CRAN
by changing the repos argument. If the repos argument points to a file on your
machine (or network), R installs the package from this file.

 
Both RGui and RStudio have menu options that allow you to update the

packages:
 

 In RGui, choose Packages䳑Update package(s).
 

 In RStudio, choose Tools䳑Check for Package Updates.
 

Both applications allow you to graphically select packages to update.
 

Unloading Packages
By loading a package, R first loads the package and then attaches the package

and to your search path, which you can see as an internal database that tells R
where to find functions and objects. Whenever R evaluates a variable (or function),
it tries to find that variable (or function) in the search path. To list the packages
that are loaded in the search path, use the search() function:

 
> search()

 
To unload a package from the search path, use detach(). The argument to

detach() is the name of the package, preceded by package:, like this:
 

> detach(package:fortunes, unload=TRUE)
 

Note that you need to specify the argument unload=TRUE; otherwise, R
removes the package from the search path but doesn’t unload it.

 

 When you specify the argument unload=TRUE, R attempts to unload the
package from memory. This is only an attempt — unloading can fail for many
reasons, for example if you’ve loaded additional packages with dependencies,
this unload will fail. If you really want to be sure that a package is no longer
loaded, your best option is to simply start a new R session.

 



 Because the authors of R packages work independently, it’s entirely possible
for different authors to use the same function names and packages. If this
happens, the package that was loaded last masks functions with the same
name in packages that were loaded first. R gives you a message saying which
objects were masked from other packages the moment this happens.

 

Forging Ahead with R-Forge
Although not universally true, packages on CRAN tend to have some minimum

level of maturity. For example, to be accepted by CRAN, a package needs to pass a
basic minimum set of requirements.

 
So, where do packages live that are in the development cycle? Quite often,

they live at R-Forge (http://r-forge.r-project.org/). R-Forge gives developers a
platform to develop and test their R packages. For example, R-Forge offers

 
 A build and check system on the three main operating systems (Windows, Linux,
and Mac)

 
 Version control

 
 Bug-report systems

 
 Backup and administration

 
To install a project from R-Forge, you also use the install.packages()

function, but you have to specify the repos argument. For example, to install the
development version of the package data.table, try the following:

 
> install.packages(“data.table”, repos=”http://R-Forge.R-project.org”)

 
R-Forge is not the only development repository. Other repositories include

 
rforge.net: Available at www.rforge.net, this is not related (other than in spirit)
to R-Forge.

 
omegahat: Available at www.omegahat.org.

 

http://r-forge.r-project.org/
http://www.rforge.net/
http://www.omegahat.org/


Conducting Installations from BioConductor
BioConductor is a repository of R packages and software, a collection of tools

that specializes in analysis of genomic and related data.
 

BioConductor has its own sets of rules for developers. For example, to install a
package from BioConcuctor you have to source a script from its server:

 
> source(“http://bioconductor.org/biocLite.R”)

 
Then you can use the biocLite() function to install packages from

BioConductor. If you don’t give an argument, you just install the necessary base
packages from the BioConductor project. You can find all the information you need
at www.bioconductor.org.

 

 BioConductor extensively uses object-orientation programming with S4
classes. Object orientation and its implementation as S4 classes is an
advanced R topic — one we don’t discuss in this book.

 

Reading the R Manual
The “R Installation and Administration” manual (http://cran.r-

project.org/doc/manuals/R-admin.html) is a comprehensive guide to the
installation and administration of R. Chapter 6 of this manual contains all the
information you need about working with packages. You can find it at
http://cran.r-project.org/doc/manuals/R-admin.html#Add_002don-packages.

 
 

http://www.bioconductor.org/
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Appendix
 

Installing R and RStudio
Before you use R, of course, you first have to install R. Although you can use

the built-in code editor, you may want to install an editor with more functionality as
well. Because RStudio runs on all platforms and is integrated nicely with R, we also
discuss the installation of RStudio on your system.

 

 In this appendix, we don’t have enough space to provide installation
instructions for every possible operating system. You can find that information
on the R and RStudio websites:

 
R: www.r-project.org

 
RStudio: www.rstudio.org

 

 If you use Linux, depending on the distribution you use, you may find that R
comes with the operating system and doesn’t require a separate installation.

 

Installing and Configuring R
Installing R isn’t difficult, but tweaking it to fit your own needs requires a bit of

explanation.
 

 We can’t cover all possibilities here, so be sure to read the information on
the R website for more insight on how to install and configure the software.

 

Installing R
 

You can find the installation files and all necessary information regarding
installation on one of the mirror sites of the Comprehensive R Archive Network
(CRAN; http://cran.r-project.org). Select the link for your operating system,
which will take you to the download site for the latest distribution of R.

http://www.r-project.org
http://www.rstudio.org
http://cran.r-project.org


 
You can find detailed installation instructions in the R Installation and

Administration manual on CRAN (http://cran.r-project.org/doc/manuals/R-
admin.html). For Windows, you take the following steps:

 
1. Go to CRAN, click Download R for Windows, click Base, and

download the installer for the latest R version.
 2. Right-click the installer file and select Run as Administrator from

the pop-up menu.
 3. Select the language to be used during installation.
 This doesn’t change the language used by R; all messages and Help files

remain in English.
 4. Follow the instructions of the installer.
 You can safely use the default settings and just keep clicking Next until R

starts installing.
 

 R exists in a 32-bit and 64-bit architecture. If you have a 64-bit Windows
version, you can easily install both architectures next to each other. (The
installer will do this by default.) For other systems, you can find more
information in the R Installation and Administration manual. The 32-bit version
of R is perfectly fine — sometimes it’s even a bit faster than the 64-bit version.
You need the 64-bit version only if you require more work memory than the
32-bit version can handle. (On Windows, the maximum is about 3GB for a 32-
bit system.)

 
If you want to be able to personalize your R installation as explained here, you

should install R outside the Program Files folder (for example, in C:\R\). This way,
you avoid trouble with the default Windows folder protection.

 

 Mac OS X and Linux users especially need to read the instructions on the
CRAN site carefully. R can be installed on all systems, but depending on your
version of OS X or Linux, you may need to follow special procedures to install R
successfully. Not following these procedures could harm your system.

 

Configuring R
 

Apart from accepting the options in the installation procedure, you can change

http://cran.r-project.org/doc/manuals/R-admin.html


a number of startup options by adapting the Rprofile.site file. This file is located
inside the installation directory, in the subfolder …/R-n.n.n/etc (for example, …/R-
2.14.1/etc). The file is sourced by R at startup, so all R code in this file is carried
out. The default installation of R contains a perfectly valid Rprofile.site file, so
you have to change this only if you want to personalize your startup.

 
Rprofile.site is a normal text file, so you can edit it as you would any other

text file. The file already contains some options that are commented out, so you
get a good idea of what’s possible when you open the file in a text editor (such as
Notepad). Be sure to check the Help page ?options to get more information on all
possible options.

 
You can personalize R further by adding a code file called .Rprofile to your

personal home folder. You can find this folder from within R by setting the working
directory to “~/”, like this:

 
> setwd(“~/”)
> getwd()
[1] “C:/Users/Joris FA Meys/Documents

 
Adding an .Rprofile file isn’t necessary, but R will always look for one, either

in the folder from which you call R or in the user’s home directory. Whereas an
Rprofile.site file is linked to a specific installation of R, the .Rprofile file can
differ for every user on the same system. If you update R, you can leave the
.Rprofile file where it is and the new R version will automatically find it and apply
the options you specified there. So, after updating R to the latest version, you have
to adapt the Rprofile.site again only if you want to personalize it.

 

 Functions you define or objects you create with code in Rprofile.site won’t
be visible if you use ls(), although you can use them without trouble. This
also means you can’t delete them easily from the workspace.

 
An Rprofile.site or .Rprofile file may look like the following example:

 
# Sample profile file
# Set CRAN mirror to a default location
options(repos = “http://cran.uk.r-project.org”)
# R interactive prompt
options(prompt=”R: “)
# sets work directory back to original
go.home <- function() setwd(“D:/MyWorkspace”)



 
With this file, R will start up with a different prompt (R: instead of >) and set

the server from the UK as the default server from which to install packages. You
also define the go.home() function, which you can use at any point to set your
working directory back to your home directory (D:/MyWorkspace, in this example.

 

Installing and Configuring RStudio
RStudio is a relatively new and shiny editor for R. It’s our first choice for this

book because it’s easy to use, it has a decent Help page, it has very good support,
and it incorporates R in a practical way. Of course, you’re free to work with any text
editor you like; in Chapter 2, we discuss some alternatives.

 

Installing RStudio
 

Installing RStudio is easy. Just follow these steps:
 

1. Go to www.rstudio.org/download.
 2. Click the Download RStudio Desktop button.
 3. Select the installation file for your system.
 4. Run the installation file.
 RStudio will be installed on your system. It normally detects your latest

installed R version automatically. If you didn’t do anything funky, you should be
able to use R from within RStudio without extra configuration.

 

Configuring RStudio
 

You may want to use a different R version from the one RStudio detected. For
example, you may want to use R in a 64-bit context. Or RStudio may not have
recognized your installation of R. In that case, you can set which R version to use
by choosing Tools䳑Options to open the Options pane (see Figure A-1).

 
To change the R version, click the Change button. Then you can switch

between the default 32-bit R installation or the 64-bit R installation (if installed), or
you can choose a specific version of R. (RStudio lists all the versions it can find.)

 

http://www.rstudio.org/download


 If you click Browse, you can select the root directory for any R version you
want to use. This folder normally looks something like …/R/R-n.n.n. If you
select an R version that has both 32-bit and 64-bit builds, RStudio will ask you
which build you want to use.

 
Figure A-1: The Options pane of RStudio. RStudio may display different default values
and directories for the options.

In the Options pane (refer to Figure A-1), you also can tweak the behavior of R
in RStudio. If you click the General icon in the left column, you get all the default
options for R in RStudio:

 
Initial working directory: You can set the default working directory R will use
at startup.

 
Save workspace to .RData on exit: Your options are Ask, Never, or Always.
By default, RStudio asks you whether you want to save the workspace when you
quit.

 
Restore .RData into workspace at startup: Select this check box to let
RStudio restore the workspace automatically at startup. RStudio will look for a
saved workspace in the root folder or the default working directory.

 
Always save history (even when not saving .RData): Select this check box
to have RStudio always save the history. If you don’t select this check box,



RStudio doesn’t save the history when you exit the program.
 

Use single global history (rather than per-working directory): Select this
check box to have RStudio always save the history in a single global file.

 
Remove duplicate entries in history: If you select this check box, RStudio
removes duplicate entries from your history when the history is saved.

 
CRAN mirror: Click the Change button to set the CRAN mirror site that RStudio
uses to install new packages (see Chapter 3 for more information).

 

 These settings work for R only from within RStudio. If you use R with
another editor or by itself, the settings in RStudio will have no effect.

 
 



 

To access the cheat sheet specifically for this book, go to
www.dummies.com/cheatsheet/ruk.

 

 

Find out "HOW" at Dummies.com
 

http://www.dummies.com/cheatsheet/ruk
http://www.dummies.com
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