

Use R!

Advisors:

Robert Gentleman • Kurt Hornik • Giovanni Parmigiani

For other titles published in this series, go to

http://www.springer.com/series/6991

Hadley Wickham

ggplot2

Elegant Graphics for Data Analysis

123

Hadley Wickham
Rice University
Department of Statistics
Houston, TX
77005-1827
USA
hadley@rice.edu

Series Editors

Robert Gentleman
Program in Computational Biology
Division of Public Health Sciences
Fred Hutchinson Cancer Research Center
1100 Fairview Avenue, N. M2-B876
Seattle, Washington 98109
USA

Kurt Hornik
Department of Statistik and Mathematik
Wirtschaftsuniversität Wien Augasse 2-6
A-1090 Wien
Austria

Giovanni Parmigiani
The Sidney Kimmel Comprehensive Cancer

Center at Johns Hopkins University
550 North Broadway
Baltimore, MD 21205-2011
USA

ISBN 978-0-387-98140-6 e-ISBN 978-0-387-98141-3
DOI 10.1007/978-0-387-98141-3

Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009928510

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Introduction . 1
1.1 Welcome to ggplot2 . 1
1.2 Other resources . 2
1.3 What is the grammar of graphics? . 3
1.4 How does ggplot2 fit in with other R graphics? 4
1.5 About this book . 5
1.6 Installation . 6
1.7 Acknowledgements . 6

2 Getting started with qplot . 9
2.1 Introduction . 9
2.2 Datasets . 10
2.3 Basic use . 11
2.4 Colour, size, shape and other aesthetic attributes 12
2.5 Plot geoms . 13

2.5.1 Adding a smoother to a plot . 14
2.5.2 Boxplots and jittered points . 16
2.5.3 Histogram and density plots . 18
2.5.4 Bar charts . 20
2.5.5 Time series with line and path plots 20

2.6 Faceting . 22
2.7 Other options . 23
2.8 Differences from plot . 26

3 Mastering the grammar . 27
3.1 Introduction . 27
3.2 Fuel economy data . 28
3.3 Building a scatterplot . 29
3.4 A more complex plot . 34
3.5 Components of the layered grammar . 35

3.5.1 Layers . 37
3.5.2 Scales . 37
3.5.3 Coordinate system. 38
3.5.4 Faceting . 38

3.6 Data structures . 39

V

VI Contents

4 Build a plot layer by layer . 41
4.1 Introduction . 41
4.2 Creating a plot . 42
4.3 Layers . 42
4.4 Data . 45
4.5 Aesthetic mappings . 46

4.5.1 Plots and layers . 46
4.5.2 Setting vs. mapping . 47
4.5.3 Grouping . 49
4.5.4 Matching aesthetics to graphic objects 52

4.6 Geoms . 55
4.7 Stat . 55
4.8 Position adjustments . 59
4.9 Pulling it all together . 59

4.9.1 Combining geoms and stats . 60
4.9.2 Displaying precomputed statistics 62
4.9.3 Varying aesthetics and data . 62

5 Toolbox . 65
5.1 Introduction . 65
5.2 Overall layering strategy . 66
5.3 Basic plot types . 66
5.4 Displaying distributions . 68
5.5 Dealing with overplotting . 72
5.6 Surface plots . 77
5.7 Drawing maps . 77
5.8 Revealing uncertainty . 80
5.9 Statistical summaries . 81

5.9.1 Individual summary functions . 84
5.9.2 Single summary function . 84

5.10 Annotating a plot . 85
5.11 Weighted data . 88

6 Scales, axes and legends . 91
6.1 Introduction . 91
6.2 How scales work . 92
6.3 Usage . 93
6.4 Scale details . 96

6.4.1 Common arguments . 96
6.4.2 Position scales . 98
6.4.3 Colour . 102
6.4.4 The manual discrete scale . 107
6.4.5 The identity scale . 109

Contents VII

6.5 Legends and axes . 110
6.6 More resources . 112

7 Positioning . 115
7.1 Introduction . 115
7.2 Faceting . 115

7.2.1 Facet grid . 116
7.2.2 Facet wrap . 120
7.2.3 Controlling scales . 121
7.2.4 Missing faceting variables . 123
7.2.5 Grouping vs. faceting . 123
7.2.6 Dodging vs. faceting . 125
7.2.7 Continuous variables . 129

7.3 Coordinate systems . 129
7.3.1 Transformation . 130
7.3.2 Statistics . 133
7.3.3 Cartesian coordinate systems . 133
7.3.4 Non-Cartesian coordinate systems 136

8 Polishing your plots for publication . 139
8.1 Themes . 139

8.1.1 Built-in themes . 140
8.1.2 Theme elements and element functions 142

8.2 Customising scales and geoms . 147
8.2.1 Scales . 147
8.2.2 Geoms and stats . 148

8.3 Saving your output . 148
8.4 Multiple plots on the same page . 151

8.4.1 Subplots . 152
8.4.2 Rectangular grids . 153

9 Manipulating data . 157
9.1 An introduction to plyr . 157

9.1.1 Fitting multiple models . 161
9.2 Converting data from wide to long . 164

9.2.1 Multiple time series . 164
9.2.2 Parallel coordinates plot . 167

9.3 ggplot() methods . 169
9.3.1 Linear models . 170
9.3.2 Writing your own . 173

10 Reducing duplication . 177
10.1 Introduction . 177
10.2 Iteration . 177
10.3 Plot templates . 178
10.4 Plot functions . 181

VIII Contents

Appendices

A Translating between different syntaxes . 185
A.1 Introduction . 185
A.2 Translating between qplot and ggplot . 185

A.2.1 Aesthetics . 185
A.2.2 Layers . 186
A.2.3 Scales and axes . 186
A.2.4 Plot options . 187

A.3 Base graphics . 187
A.3.1 High-level plotting commands . 187
A.3.2 Low-level drawing . 189
A.3.3 Legends, axes and grid lines . 190
A.3.4 Colour palettes . 190
A.3.5 Graphical parameters . 190

A.4 Lattice graphics . 190
A.5 GPL . 192

B Aesthetic specifications . 195
B.1 Colour . 195
B.2 Line type . 195
B.3 Shape . 196
B.4 Size . 196
B.5 Justification . 196

C Manipulating plot rendering with grid . 199
C.1 Introduction . 199
C.2 Plot viewports . 199
C.3 Plot grobs . 201
C.4 Saving your work . 201

References . 203

Index . 207

. 211R code index

Chapter 1

Introduction

1.1 Welcome to ggplot2

ggplot2 is an R package for producing statistical, or data, graphics, but
it is unlike most other graphics packages because it has a deep underlying
grammar. This grammar, based on the Grammar of Graphics (Wilkinson,
2005), is composed of a set of independent components that can be composed
in many different ways. This makes ggplot2 very powerful, because you are
not limited to a set of pre-specified graphics, but you can create new graphics
that are precisely tailored for your problem. This may sound overwhelming,
but because there is a simple set of core principles and very few special cases,
ggplot2 is also easy to learn (although it may take a little time to forget your
preconceptions from other graphics tools).

Practically, ggplot2 provides beautiful, hassle-free plots, that take care of
fiddly details like drawing legends. The plots can be built up iteratively and
edited later. A carefully chosen set of defaults means that most of the time
you can produce a publication-quality graphic in seconds, but if you do have
special formatting requirements, a comprehensive theming system makes it
easy to do what you want. Instead of spending time making your graph look
pretty, you can focus on creating a graph that best reveals the messages in
your data.

ggplot2 is designed to work in a layered fashion, starting with a layer
showing the raw data then adding layers of annotations and statistical sum-
maries. It allows you to produce graphics using the same structured thinking
that you use to design an analysis, reducing the distance between a plot in
your head and one on the page. It is especially helpful for students who have
not yet developed the structured approach to analysis used by experts.

Learning the grammar will help you not only create graphics that you know
about now, but will also help you to think about new graphics that would be
even better. Without the grammar, there is no underlying theory and existing
graphics packages are just a big collection of special cases. For example, in
base R, if you design a new graphic, it’s composed of raw plot elements like

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 1, 1
c© Springer Science+Business Media, LLC 2009

2 1 Introduction

points and lines, and it’s hard to design new components that combine with
existing plots. In ggplot2, the expressions used to create a new graphic are
composed of higher-level elements like representations of the raw data and
statistical transformations, and can easily be combined with new datasets and
other plots.

This book provides a hands-on introduction to ggplot2 with lots of example
code and graphics. It also explains the grammar on which ggplot2 is based.
Like other formal systems, ggplot2 is useful even when you don’t understand
the underlying model. However, the more you learn about it, the more effectively
you’ll be able to use ggplot2. This book assumes some basic familiarity with R,
to the level described in the first chapter of Dalgaard’s Introductory Statistics

with R. You should know how to get your data into R and how to do basic data
manipulations. If you don’t, you might want to get a copy of Phil Spector’s
Data Manipulation with R.

This book will introduce you to ggplot2 as a novice, unfamiliar with
the grammar; teach you the basics so that you can re-create plots you are
already familiar with; show you how to use the grammar to create new types
of graphics; and even turn you into an expert who can build new components
to extend the grammar.

1.2 Other resources

This book teaches you the elements of ggplot2’s grammar and how they
fit together, but it does not document every function in complete detail.
Furthermore, ggplot2 will almost certainly continue to evolve. For these
reasons, you will need additional documentation as your use of ggplot2

becomes more complex and varied.
The best resource for low-level details will always be the built-in documen-

tation. This is accessible online, http://had.co.nz/ggplot2, and from within
R using the usual help syntax. The advantage of the online documentation
is that you can see all the example plots and navigate between topics more
easily.

The website also lists talks and papers related to ggplot2 and training
opportunities if you’d like some hands-on practice. The cran website, http:
//cran.r-project.org/web/packages/ggplot2/, is another useful resource.
This page links to what is new and different in each release. If you use
ggplot2 regularly, it’s a good idea to sign up for the ggplot2 mailing list, http:
//groups.google.com/group/ggplot2. The list has relatively low traffic and
is very friendly to new users.

Finally, the book website, http://had.co.nz/ggplot2/book, provides
updates to this book, as well as pdfs containing all graphics used in the book,
with the code and data needed to reproduce them.

1.3 What is the grammar of graphics? 3

1.3 What is the grammar of graphics?

Wilkinson (2005) created the grammar of graphics to describe the deep features
that underlie all statistical graphics. The grammar of graphics is an answer
to a question: what is a statistical graphic? The layered grammar of graphics
(Wickham, 2009) builds on Wilkinson’s grammar, focussing on the primacy
of layers and adapting it for embedding within R. In brief, the grammar tells
us that a statistical graphic is a mapping from data to aesthetic attributes
(colour, shape, size) of geometric objects (points, lines, bars). The plot may
also contain statistical transformations of the data and is drawn on a specific
coordinate system. Faceting can be used to generate the same plot for different
subsets of the dataset. It is the combination of these independent components
that make up a graphic.

As the book progresses, the formal grammar will be explained in increasing
detail. The first description of the components follows below. It introduces
some of the terminology that will be used throughout the book and outlines
the basic responsibilities of each component. Don’t worry if it doesn’t all make
sense right away: you will have many more opportunities to learn about all of
the pieces and how they fit together.

• The data that you want to visualise and a set of aesthetic mappings
describing how variables in the data are mapped to aesthetic attributes
that you can perceive.

• Geometric objects, geoms for short, represent what you actually see on
the plot: points, lines, polygons, etc.

• Statistical transformations, stats for short, summarise data in many useful
ways. For example, binning and counting observations to create a histogram,
or summarising a 2d relationship with a linear model. Stats are optional,
but very useful.

• The scales map values in the data space to values in an aesthetic space,
whether it be colour, or size, or shape. Scales draw a legend or axes, which
provide an inverse mapping to make it possible to read the original data
values from the graph.

• A coordinate system, coord for short, describes how data coordinates are
mapped to the plane of the graphic. It also provides axes and gridlines to
make it possible to read the graph. We normally use a Cartesian coordinate
system, but a number of others are available, including polar coordinates
and map projections.

• A faceting specification describes how to break up the data into subsets
and how to display those subsets as small multiples. This is also known as
conditioning or latticing/trellising.

It is also important to talk about what the grammar doesn’t do:

• It doesn’t suggest what graphics you should use to answer the questions
you are interested in. While this book endeavours to promote a sensible

4 1 Introduction

process for producing plots of data, the focus of the book is on how to
produce the plots you want, not knowing what plots to produce. For more
advice on this topic, you may want to consult Chambers et al. (1983);
Cleveland (1993a); Robbins (2004); Tukey (1977).

• Ironically, the grammar doesn’t specify what a graphic should look like.
The finer points of display, for example, font size or background colour, are
not specified by the grammar. In practice, a useful plotting system will need
to describe these, as ggplot2 does with its theming system. Similarly, the
grammar does not specify how to make an attractive graphic and while the
defaults in ggplot2 have been chosen with care, you may need to consult
other references to create an attractive plot: Tufte (1990, 1997, 2001, 2006).

• It does not describe interaction: the grammar of graphics describes only
static graphics and there is essentially no benefit to displaying on a computer
screen as opposed to on a piece of paper. ggplot2 can only create static
graphics, so for dynamic and interactive graphics you will have to look
elsewhere. Cook and Swayne (2007) provides an excellent introduction to
the interactive graphics package GGobi. GGobi can be connected to R with
the rggobi package (Wickham et al., 2008).

1.4 How does ggplot2 fit in with other R graphics?

There are a number of other graphics systems available in R: base graphics,
grid graphics and trellis/lattice graphics. How does ggplot2 differ from them?

• Base graphics were written by Ross Ihaka based on experience implementing
S graphics driver and partly looking at Chambers et al. (1983). Base
graphics has a pen on paper model: you can only draw on top of the plot,
you cannot modify or delete existing content. There is no (user accessible)
representation of the graphics, apart from their appearance on the screen.
Base graphics includes both tools for drawing primitives and entire plots.
Base graphics functions are generally fast, but have limited scope. When
you’ve created a single scatterplot, or histogram, or a set of boxplots in
the past, you’ve probably used base graphics.

• The development of grid graphics, a much richer system of graphical
primitives, started in 2000. Grid is developed by Paul Murrell, growing
out of his PhD work (Murrell, 1998). Grid grobs (graphical objects) can
be represented independently of the plot and modified later. A system of
viewports (each containing its own coordinate system) makes it easier to
lay out complex graphics. Grid provides drawing primitives, but no tools
for producing statistical graphics.

• The lattice package (Sarkar, 2008a), developed by Deepayan Sarkar, uses
grid graphics to implement the trellis graphics system of Cleveland (1993a,
1985) and is a considerable improvement over base graphics. You can easily
produce conditioned plots and some plotting details (e.g., legends) are

1.5 About this book 5

taken care of automatically. However, lattice graphics lacks a formal model,
which can make it hard to extend. Lattice graphics are explained in depth
in (Sarkar, 2008b).

• ggplot2, started in 2005, is an attempt to take the good things about base
and lattice graphics and improve on them with a strong underlying model
which supports the production of any kind of statistical graphic, based on
principles outlined above. The solid underlying model of ggplot2 makes
it easy to describe a wide range of graphics with a compact syntax and
independent components make extension easy. Like lattice, ggplot2 uses
grid to draw the graphics, which means you can exercise much low-level
control over the appearance of the plot.

Many other R packages, such as vcd (Meyer et al., 2006), plotrix (Lemon
et al., 2008) and gplots (Warnes, 2007), implement specialist graphics, but no
others provide a framework for producing statistical graphics. A comprehensive
resource listing all graphics functionality available in other contributed pack-
ages is the graphics task view at http://cran.r-project.org/web/views/
Graphics.html.

1.5 About this book

Chapter 2 describes how to quickly get started using qplot to make graphics,
just like you can using plot. This chapter introduces several important ggplot2
concepts: geoms, aesthetic mappings and faceting.

While qplot is a quick way to get started, you are not using the full power
of the grammar. Chapter 3 describes the layered grammar of graphics which
underlies ggplot2. The theory is illustrated in Chapter 4 which demonstrates
how to add additional layers to your plot, exercising full control over the geoms
and stats used within them. Chapter 5 describes how to assemble and combine
geoms and stats to solve particular plotting problems.

Understanding how scales works is crucial for fine tuning the perceptual
properties of your plot. Customising scales gives fine control over the exact
appearance of the plot and helps to support the story that you are telling. Chap-
ter 6 will show you what scales are available, how to adjust their parameters,
and how to control the appearance of axes and legends.

Coordinate systems and faceting control the position of elements of the plot.
These are described in Chapter 7. Faceting is a very powerful graphical tool
as it allows you to rapidly compare different subsets of your data. Different
coordinate systems are less commonly needed, but are very important for
certain types of data.

To fine tune your plots for publication, you will need to learn about the
tools described in Chapter 8. There you will learn about how to control the
theming system of ggplot2, how to change the defaults for geoms, stats and
scales, how to save plots to disk, and how to lay out multiple plots on a page.

6 1 Introduction

The book concludes with two chapters that discuss high-level concerns
about data structure and code duplication. Chapter 9 discusses some techniques
that will enable you to get your data into the form required for ggplot2, and
tools that enable you to perform more advanced aggregation and manipulation
than is available in the plotting code. You will also learn about the ggplot2

philosophy behind visualising other types of objects, and how you can extend
ggplot2 with your own methods.

Duplicated code is a big inhibitor of flexibility and reduces your ability to
respond to changes in requirements. Chapter 10 covers three useful techniques
for reducing duplication in your code: iteration, plot templates and plot
functions.

Three appendices provide additional useful information. Appendix B de-
scribes how colours, shapes, line types and sizes can be specified by hand.
Appendix A shows how to translate the syntax of base graphics, lattice graphics,
and Wilkinson’s gpl to ggplot2 syntax. Appendix C describes the high-level
organisation of grid objects and viewports used to draw a ggplot2 plot. This
will be useful if you are familiar with grid, and want to make changes to the
underlying objects used to draw the plots.

1.6 Installation

To use ggplot2, you must first install it. Make sure you have a recent version
of R (at least version 2.8) from http://r-project.org and then run the
following line of code to download and install the ggplot2 package.

install.packages("ggplot2")

ggplot2 isn’t perfect, so from time to time you may encounter something
that doesn’t work the way it should. If this happens, please email me at
hadley@rice.edu with a reproducible example of your problem, as well as a
description of what you think should have happened. The more information
you provide, the easier it is for me to help you. .

1.7 Acknowledgements

Many people have contributed to this book with high-level structural insights,
spelling and grammar corrections and bug reports. In particular, I would like
to thank: Leland Wilkinson, for discussions and comments that cemented
my understanding of the grammar; Gabor Grothendieck, for early helpful
comments; Heike Hofmann and Di Cook, for being great major professors;
Charlotte Wickham; the students of stat480 and stat503 at ISU, for trying it
out when it was very young; Debby Swayne, for masses of helpful feedback
and advice; Bob Muenchen, Reinhold Kliegl, Philipp Pagel, Richard Stahlhut,

1.7 Acknowledgements 7

Baptiste Auguie, Jean-Olivier Irisson, Thierry Onkelinx and the many others
who have read draft versions of the book and given me feedback; and last, but
not least, the members of R-help and the ggplot2 mailing list, for providing
the many interesting and challenging graphics problems that have helped
motivate this book.

Chapter 2

Getting started with qplot

2.1 Introduction

In this chapter, you will learn to make a wide variety of plots with your
first ggplot2 function, qplot(), short for quick plot. qplot makes it easy to
produce complex plots, often requiring several lines of code using other plotting
systems, in one line. qplot() can do this because it’s based on the grammar
of graphics, which allows you to create a simple, yet expressive, description
of the plot. In later chapters you’ll learn to use all of the expressive power of
the grammar, but here we’ll start simple so you can work your way up. You
will also start to learn some of the ggplot2 terminology that will be used
throughout the book.

qplot has been designed to be very similar to plot, which should make
it easy if you’re already familiar with plotting in R. Remember, during an R
session you can get a summary of all the arguments to qplot with R help,
?qplot.

In this chapter you’ll learn:

• The basic use of qplot—If you’re already familiar with plot, this will be
particularly easy, § 2.3.

• How to map variables to aesthetic attributes, like colour, size and shape,
§ 2.4.

• How to create many different types of plots by specifying different geoms,
and how to combine multiple types in a single plot, § 2.5.

• The use of faceting, also known as trellising or conditioning, to break apart
subsets of your data, § 2.6.

• How to tune the appearance of the plot by specifying some basic options,
§ 2.7.

• A few important differences between plot() and qplot(), § 2.8.

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 2, 9
c© Springer Science+Business Media, LLC 2009

10 2 Getting started with qplot

2.2 Datasets

In this chapter we’ll just use one data source, so you can get familiar with
the plotting details rather than having to familiarise yourself with different
datasets. The diamonds dataset consists of prices and quality information
about 54,000 diamonds, and is included in the ggplot2 package. The data
contains the four C’s of diamond quality, carat, cut, colour and clarity; and
five physical measurements, depth, table, x, y and z, as described in Figure 2.1.
The first few rows of the data are shown in Table 2.1.

carat cut color clarity depth table price x y z

0.2 Ideal E SI2 61.5 55.0 326 3.95 3.98 2.43
0.2 Premium E SI1 59.8 61.0 326 3.89 3.84 2.31
0.2 Good E VS1 56.9 65.0 327 4.05 4.07 2.31
0.3 Premium I VS2 62.4 58.0 334 4.20 4.23 2.63
0.3 Good J SI2 63.3 58.0 335 4.34 4.35 2.75
0.2 Very Good J VVS2 62.8 57.0 336 3.94 3.96 2.48

Table 2.1: diamonds dataset. The variables depth, table, x, y and z refer to the
dimensions of the diamond as shown in Figure 2.1

z

table width

x

x

y

z
depth

depth = z depth / z * 100
table = table width / x * 100

Fig. 2.1: How the variables x, y, z, table and depth are measured.

The dataset has not been well cleaned, so as well as demonstrating inter-
esting relationships about diamonds, it also demonstrates some data quality
problems. We’ll also use another dataset, dsmall, which is a random sample
of 100 diamonds. We’ll use this data for plots that are more appropriate for
smaller datasets.

> set.seed(1410) # Make the sample reproducible

2.3 Basic use 11

> dsmall <- diamonds[sample(nrow(diamonds), 100),]

2.3 Basic use

As with plot, the first two arguments to qplot() are x and y, giving the
x- and y-coordinates for the objects on the plot. There is also an optional
data argument. If this is specified, qplot() will look inside that data frame
before looking for objects in your workspace. Using the data argument is
recommended: it’s a good idea to keep related data in a single data frame. If
you don’t specify one, qplot() will try to build one up for you and may look
in the wrong place.

Here is a simple example of the use of qplot(). It produces a scatterplot
showing the relationship between the price and carats (weight) of a diamond.

> qplot(carat, price, data = diamonds)

The plot shows a strong correlation with notable outliers and some interest-
ing vertical striation. The relationship looks exponential, though, so the first
thing we’d like to do is to transform the variables. Because qplot() accepts
functions of variables as arguments, we plot log(price) vs. log(carat):

> qplot(log(carat), log(price), data = diamonds)

The relationship now looks linear. With this much overplotting, though, we
need to be cautious about drawing firm conclusions.

Arguments can also be combinations of existing variables, so, if we are curi-
ous about the relationship between the volume of the diamond (approximated
by x × y × z) and its weight, we could do the following:

12 2 Getting started with qplot

> qplot(carat, x * y * z, data = diamonds)

We would expect the density (weight/volume) of diamonds to be constant,
and so see a linear relationship between volume and weight. The majority of
diamonds do seem to fall along a line, but there are some large outliers.

2.4 Colour, size, shape and other aesthetic attributes

The first big difference when using qplot instead of plot comes when you
want to assign colours—or sizes or shapes—to the points on your plot. With
plot, it’s your responsibility to convert a categorical variable in your data
(e.g., “apples”, “bananas”, “pears”) into something that plot knows how to
use (e.g., “red”, “yellow”, “green”). qplot can do this for you automatically,
and it will automatically provide a legend that maps the displayed attributes
to the data values. This makes it easy to include additional data on the plot.

In the next example, we augment the plot of carat and price with informa-
tion about diamond colour and cut. The results are shown in Figure 2.2.

qplot(carat, price, data = dsmall, colour = color)

qplot(carat, price, data = dsmall, shape = cut)

carat

p
ri
c
e

5000

10000

15000

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

0.5 1.0 1.5 2.0 2.5

color

● D

● E

● F

● G

● H

● I

● J

carat

p
ri
c
e

5000

10000

15000

●

●

●

0.5 1.0 1.5 2.0 2.5

cut

● Fair

Good

Very Good

Premium

Ideal

Fig. 2.2: Mapping point colour to diamond colour (left), and point shape to cut
quality (right).

Colour, size and shape are all examples of aesthetic attributes, visual
properties that affect the way observations are displayed. For every aesthetic

2.5 Plot geoms 13

attribute, there is a function, called a scale, which maps data values to valid
values for that aesthetic. It is this scale that controls the appearance of the
points and associated legend. For example, in the above plots, the colour
scale maps J to purple and F to green. (Note that while I use British spelling
throughout this book, the software also accepts American spellings.)

You can also manually set the aesthetics using I(), e.g., colour = I("red")

or size = I(2). This is not the same as mapping and is explained in more
detail in Section 4.5.2. For large datasets, like the diamonds data, semi-
transparent points are often useful to alleviate some of the overplotting. To
make a semi-transparent colour you can use the alpha aesthetic, which takes
a value between 0 (completely transparent) and 1 (complete opaque). It’s
often useful to specify the transparency as a fraction, e.g., 1/10 or 1/20, as
the denominator specifies the number of points that must overplot to get a
completely opaque colour.

qplot(carat, price, data = diamonds, alpha = I(1/10))

qplot(carat, price, data = diamonds, alpha = I(1/100))

qplot(carat, price, data = diamonds, alpha = I(1/200))

Fig. 2.3: Reducing the alpha value from 1/10 (left) to 1/100 (middle) to 1/200 (right)
makes it possible to see where the bulk of the points lie.

Different types of aesthetic attributes work better with different types of
variables. For example, colour and shape work well with categorical variables,
while size works better with continuous variables. The amount of data also
makes a difference: if there is a lot of data, like in the plots above, it can
be hard to distinguish the different groups. An alternative solution is to use
faceting, which will be introduced in Section 2.6.

2.5 Plot geoms

qplot is not limited to scatterplots, but can produce almost any kind of plot
by varying the geom. Geom, short for geometric object, describes the type

14 2 Getting started with qplot

of object that is used to display the data. Some geoms have an associated
statistical transformation, for example, a histogram is a binning statistic plus
a bar geom. These different components are described in the next chapter.
Here we’ll introduce the most common and useful geoms, organised by the
dimensionality of data that they work with. The following geoms enable you
to investigate two-dimensional relationships:

• geom = "point" draws points to produce a scatterplot. This is the default
when you supply both x and y arguments to qplot().

• geom = "smooth" fits a smoother to the data and displays the smooth and
its standard error, § 2.5.1.

• geom = "boxplot" produces a box-and-whisker plot to summarise the
distribution of a set of points, § 2.5.2.

• geom = "path" and geom = "line" draw lines between the data points.
Traditionally these are used to explore relationships between time and
another variable, but lines may be used to join observations connected in
some other way. A line plot is constrained to produce lines that travel from
left to right, while paths can go in any direction, § 2.5.5.

For 1d distributions, your choice of geoms is guided by the variable type:

• For continuous variables, geom = "histogram" draws a histogram, geom =

"freqpoly" a frequency polygon, and geom = "density" creates a density
plot, § 2.5.3. The histogram geom is the default when you only supply an x

value to qplot().
• For discrete variables, geom = "bar" makes a bar chart, § 2.5.4.

2.5.1 Adding a smoother to a plot

If you have a scatterplot with many data points, it can be hard to see exactly
what trend is shown by the data. In this case you may want to add a smoothed
line to the plot. This is easily done using the smooth geom as shown in
Figure 2.4. Notice that we have combined multiple geoms by supplying a
vector of geom names created with c(). The geoms will be overlaid in the
order in which they appear.

qplot(carat, price, data = dsmall, geom = c("point", "smooth"))

qplot(carat, price, data = diamonds, geom = c("point", "smooth"))

Despite overplotting, our impression of an exponential relationship between
price and carat was correct. There are few diamonds bigger than three carats,
and our uncertainty in the form of the relationship increases as illustrated
by the point-wise confidence interval shown in grey. If you want to turn the
confidence interval off, use se = FALSE.

There are many different smoothers you can choose between by using the
method argument:

2.5 Plot geoms 15

Fig. 2.4: Smooth curves add to scatterplots of carat vs. price. The dsmall dataset
(left) and the full dataset (right).

• method = "loess", the default for small n, uses a smooth local regression.
More details about the algorithm used can be found in ?loess. The
wiggliness of the line is controlled by the span parameter, which ranges
from 0 (exceedingly wiggly) to 1 (not so wiggly), as shown in Figure 2.5.

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

span = 0.2)

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

span = 1)

Fig. 2.5: The effect of the span parameter. (Left) span = 0.2, and (right)
span = 1.

Loess does not work well for large datasets (it’s O(n2) in memory), and so
an alternative smoothing algorithm is used when n is greater than 1,000.

• You could also load the mgcv library and use method = "gam", formula

= y ∼ s(x) to fit a generalised additive model. This is similar to using a
spline with lm, but the degree of smoothness is estimated from the data.
For large data, use the formula y ~ s(x, bs = "cs"). This is used by
default when there are more than 1,000 points.

library(mgcv)

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

16 2 Getting started with qplot

method = "gam", formula = y ~ s(x))

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

method = "gam", formula = y ~ s(x, bs = "cs"))

Fig. 2.6: The effect of the formula parameter, using a generalised addi-
tive model as a smoother. (Left) formula = y ~ s(x), the default; (right)
formula = y ~ s(x, bs = "cs").

• method = "lm" fits a linear model. The default will fit a straight line to
your data, or you can specify formula = y ~ poly(x, 2) to specify a
degree 2 polynomial, or better, load the splines package and use a natural
spline: formula = y ~ ns(x, 2). The second parameter is the degrees
of freedom: a higher number will create a wigglier curve. You are free to
specify any formula involving x and y. Figure 2.7 shows two examples
created with the following code.

library(splines)

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

method = "lm")

qplot(carat, price, data = dsmall, geom = c("point", "smooth"),

method = "lm", formula = y ~ ns(x,5))

• method = "rlm" works like lm, but uses a robust fitting algorithm so that
outliers don’t affect the fit as much. It’s part of the MASS package, so
remember to load that first.

2.5.2 Boxplots and jittered points

When a set of data includes a categorical variable and one or more continuous
variables, you will probably be interested to know how the values of the
continuous variables vary with the levels of the categorical variable. Box-
plots and jittered points offer two ways to do this. Figure 2.8 explores how
the distribution of price per carat varies with the colour of the diamond
using jittering (geom = "jitter", left) and box-and-whisker plots (geom =

"boxplot", right).

2.5 Plot geoms 17

Fig. 2.7: The effect of the formula parameter, using a linear model as a smoother.
(Left) formula = y ~ x, the default; (right) formula = y ~ ns(x, 5).

Fig. 2.8: Using jittering (left) and boxplots (right) to investigate the distribution of
price per carat, conditional on colour. As the colour improves (from left to right) the
spread of values decreases, but there is little change in the centre of the distribution.

Each method has its strengths and weaknesses. Boxplots summarise the
bulk of the distribution with only five numbers, while jittered plots show every
point but can suffer from overplotting. In the example here, both plots show
the dependency of the spread of price per carat on diamond colour, but the
boxplots are more informative, indicating that there is very little change in
the median and adjacent quartiles.

The overplotting seen in the plot of jittered values can be alleviated some-
what by using semi-transparent points using the alpha argument. Figure 2.9
illustrates three different levels of transparency, which make it easier to see
where the bulk of the points lie. The plots are produced with the following
code.

qplot(color, price / carat, data = diamonds, geom = "jitter",

alpha = I(1 / 5))

qplot(color, price / carat, data = diamonds, geom = "jitter",

alpha = I(1 / 50))

qplot(color, price / carat, data = diamonds, geom = "jitter",

alpha = I(1 / 200))

18 2 Getting started with qplot

Fig. 2.9: Varying the alpha level. From left to right: 1/5, 1/50, 1/200. As the opacity
decreases we begin to see where the bulk of the data lies. However, the boxplot still
does much better.

This technique can’t show the positions of the quantiles as well as a boxplot
can, but it may reveal other features of the distribution that a boxplot cannot.

For jittered points, qplot offers the same control over aesthetics as it
does for a normal scatterplot: size, colour and shape. For boxplots you can
control the outline colour, the internal fill colour and the size of the lines.

Another way to look at conditional distributions is to use faceting to plot
a separate histogram or density plot for each value of the categorical variable.
This is demonstrated in Section 2.6.

2.5.3 Histogram and density plots

Histogram and density plots show the distribution of a single variable. They
provide more information about the distribution of a single group than boxplots
do, but it is harder to compare many groups (although we will look at one
way to do so). Figure 2.10 shows the distribution of carats with a histogram
and a density plot.

qplot(carat, data = diamonds, geom = "histogram")

qplot(carat, data = diamonds, geom = "density")

For the density plot, the adjust argument controls the degree of smooth-
ness (high values of adjust produce smoother plots). For the histogram, the
binwidth argument controls the amount of smoothing by setting the bin size.
(Break points can also be specified explicitly, using the breaks argument.)
It is very important to experiment with the level of smoothing. With a
histogram you should try many bin widths: You may find that gross features
of the data show up well at a large bin width, while finer features require a
very narrow width.

In Figure 2.11, we experiment with three values of binwidth: 1.0, 0.1 and
0.01. It is only in the plot with the smallest bin width (right) that we see the
striations we noted in an earlier scatterplot, most at “nice” numbers of carats.
The full code is:

2.5 Plot geoms 19

carat

c
o

u
n

t

0

2000

4000

6000

8000

1 2 3 4 5

carat

d
e

n
s
it
y

0.0

0.5

1.0

1.5

1 2 3 4 5

Fig. 2.10: Displaying the distribution of diamonds. (Left) geom = "histogram" and
(right) geom = "density".

qplot(carat, data = diamonds, geom = "histogram", binwidth = 1,

xlim = c(0,3))

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.1,

xlim = c(0,3))

qplot(carat, data = diamonds, geom = "histogram", binwidth = 0.01,

xlim = c(0,3))

carat

c
o

u
n

t

0

5000

10000

15000

20000

25000

30000

35000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

carat

c
o

u
n

t

0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

carat

c
o

u
n

t

0

500

1000

1500

2000

2500

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 2.11: Varying the bin width on a histogram of carat reveals interesting patterns.
Binwidths from left to right: 1, 0.1 and 0.01 carats. Only diamonds between 0 and 3
carats shown.

To compare the distributions of different subgroups, just add an aesthetic
mapping, as in the following code.

qplot(carat, data = diamonds, geom = "density", colour = color)

qplot(carat, data = diamonds, geom = "histogram", fill = color)

Mapping a categorical variable to an aesthetic will automatically split up the
geom by that variable, so these commands instruct qplot() to draw a density
plot and histogram for each level of diamond colour. The results are shown in
Figure 2.12.

20 2 Getting started with qplot

carat

d
e

n
s
it
y

0.0

0.5

1.0

1.5

2.0

1 2 3 4 5

color

D

E

F

G

H

I

J

carat

c
o

u
n

t

0

2000

4000

6000

8000

1 2 3 4 5

color

D

E

F

G

H

I

J

Fig. 2.12: Mapping a categorical variable to an aesthetic will automatically split up
the geom by that variable. (Left) Density plots are overlaid and (right) histograms
are stacked.

The density plot is more appealing at first because it seems easy to read
and compare the various curves. However, it is more difficult to understand
exactly what a density plot is showing. In addition, the density plot makes
some assumptions that may not be true for our data; i.e., that it is unbounded,
continuous and smooth.

2.5.4 Bar charts

The discrete analogue of histogram is the bar chart, geom = "bar". The bar
geom counts the number of instances of each class so that you don’t need to
tabulate your values beforehand, as with barchart in base R. If the data has
already been tabulated or if you’d like to tabulate class members in some other
way, such as by summing up a continuous variable, you can use the weight

geom. This is illustrated in Figure 2.13. The first plot is a simple bar chart of
diamond colour, and the second is a bar chart of diamond colour weighted by
carat.

qplot(color, data = diamonds, geom = "bar")

qplot(color, data = diamonds, geom = "bar", weight = carat) +

scale_y_continuous("carat")

2.5.5 Time series with line and path plots

Line and path plots are typically used for time series data. Line plots join the
points from left to right, while path plots join them in the order that they
appear in the dataset (a line plot is just a path plot of the data sorted by x
value). Line plots usually have time on the x-axis, showing how a single variable
has changed over time. Path plots show how two variables have simultaneously

2.5 Plot geoms 21

color

c
o

u
n

t

0

2000

4000

6000

8000

10000

D E F G H I J

color

c
a

ra
t

0

2000

4000

6000

8000

D E F G H I J

Fig. 2.13: Bar charts of diamond colour. The left plot shows counts and the right plot
is weighted by weight = carat to show the total weight of diamonds of each colour.

changed over time, with time encoded in the way that the points are joined
together.

Because there is no time variable in the diamonds data, we use the
economics dataset, which contains economic data on the US measured over
the last 40 years. Figure 2.14 shows two plots of unemployment over time, both
produced using geom = "line". The first shows an unemployment rate and
the second shows the median number of weeks unemployed. We can already
see some differences in these two variables, particularly in the last peak, where
the unemployment percentage is lower than it was in the preceding peaks, but
the length of unemployment is high.

qplot(date, unemploy / pop, data = economics, geom = "line")

qplot(date, uempmed, data = economics, geom = "line")

date

u
n

e
m

p
lo

y
/p

o
p

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

1967 1972 1977 1982 1987 1992 1997 2002 2007

date

u
e

m
p

m
e

d

4

6

8

10

12

1967 1972 1977 1982 1987 1992 1997 2002 2007

Fig. 2.14: Two time series measuring amount of unemployment. (Left) Percent of
population that is unemployed and (right) median number of weeks unemployed.
Plots created with geom="line".

To examine this relationship in greater detail, we would like to draw both
time series on the same plot. We could draw a scatterplot of unemployment
rate vs. length of unemployment, but then we could no longer see the evolution

22 2 Getting started with qplot

over time. The solution is to join points adjacent in time with line segments,
forming a path plot.

Below we plot unemployment rate vs. length of unemployment and join the
individual observations with a path. Because of the many line crossings, the
direction in which time flows isn’t easy to see in the first plot. In the second
plot, we apply the colour aesthetic to the line to make it easier to see the
direction of time.

year <- function(x) as.POSIXlt(x)$year + 1900

qplot(unemploy / pop, uempmed, data = economics,

geom = c("point", "path"))

qplot(unemploy / pop, uempmed, data = economics,

geom = "path", colour = year(date)) + scale_area()

unemploy/pop

u
e

m
p

m
e

d

4

6

8

10

12

●
●●

●
●●

●

●
●

●
●●●
●

●
●
●●●

●

●●
●
●●●

●
●

●
● ● ●●

●

●
●
●
●

●●
●

●
●●
●●
●

●

●
●

●

●●
●●

●●●●

●

●●
●●●

●
●

●
●

●●●
●
●

●●
●
●

●●
●
●
●

●
●

●
●
●

●

●

●

● ●

●

●

●
●

●●

●

●

●●

●

●

●●

●●
●●●

●
●

●
●●●

●

●

●●
●
●●●

●
●

●●
●

●
●●

●
●
●●
●●●

●
●●

●

●

●●
●
●

●

●
●

● ●

●

●

●
●
●

●
● ●

●●
●

●
●

●●
● ● ● ●

●
●

●
●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●●●

●
●

●●●

●

● ●
●

●
●●●

●
●●
●●
●
●

●
●
●●

●●
●●●●
●●

●
●

●●●
●
●●

●

●●●●
●
●●

●
●●

●

●●●
●

●
●●●

●
●

●● ●●●
●

●●●●●
●

●
●

●
●●

● ●
●
● ●

●●
●

●●
●

●●
●

●
●
●

●
●●●
●

● ●●
●
●

●●
●

●●●●
●
●●●●

●
●●
●

●●
●●●

●●
●

●

●
●

●●
● ●

●

●

●
●
●

●
●
●●

●

●
●●

●●●●●

●●●
●

●
●

●●
●

●
●

●●●●
●
●●

●

●
●●●

●

●
●●●●

●
●
●

●

●

●●●
●●

●●●
●●
●
●

●

●●●
●
●

●

●
●

●

● ●
● ●

●

●
●●●

●

●

●

●●

●●
●
●●●
●

●
●

●

●
●●

●●●
●

●●

●
●

●

●
●
●●
●
●●
●●

●●
●
●

●

●●
●●●

●
●●●

●

●
●

●●
●

●

●●
●
●

0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050

unemploy/pop

u
e

m
p

m
e

d

4

6

8

10

12

0.0150.0200.0250.0300.0350.0400.0450.050

year(date)

1970

1980

1990

2000

Fig. 2.15: Path plots illustrating the relationship between percent of people unem-
ployed and median length of unemployment. (Left) Scatterplot with overlaid path.
(Right) Pure path plot coloured by year.

We can see that percent unemployed and length of unemployment are
highly correlated, although in recent years the length of unemployment has
been increasing relative to the unemployment rate.

With longitudinal data, you often want to display multiple time series on
each plot, each series representing one individual. To do this with qplot(), you
need to map the group aesthetic to a variable encoding the group membership
of each observation. This is explained in more depth in Section 4.5.3.

2.6 Faceting

We have already discussed using aesthetics (colour and shape) to compare
subgroups, drawing all groups on the same plot. Faceting takes an alternative
approach: It creates tables of graphics by splitting the data into subsets and
displaying the same graph for each subset in an arrangement that facilitates
comparison. Section 7.2 discusses faceting in detail, including a discussion of

2.7 Other options 23

the advantages and disadvantages of using faceting instead of aesthetics in
Section 7.2.5.

The default faceting method in qplot() creates plots arranged on a grid
specified by a faceting formula which looks like row var ∼ col var. You can
specify as many row and column variables as you like, keeping in mind that
using more than two variables will often produce a plot so large that it is
difficult to see on screen. To facet on only one of columns or rows, use . as
a place holder. For example, row var ∼ . will create a single column with
multiple rows.

Figure 2.16 illustrates this technique with two plots, sets of histograms
showing the distribution of carat conditional on colour. The second set of his-
tograms shows proportions, making it easier to compare distributions regardless
of the relative abundance of diamonds of each colour. The ..density.. syntax
is new. The y-axis of the histogram does not come from the original data, but
from the statistical transformation that counts the number of observations in
each bin. Using ..density.. tells ggplot2 to map the density to the y-axis
instead of the default use of count.

qplot(carat, data = diamonds, facets = color ~ .,

geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

qplot(carat, ..density.., data = diamonds, facets = color ~ .,

geom = "histogram", binwidth = 0.1, xlim = c(0, 3))

2.7 Other options

These are a few other qplot options to control the graphic’s appearance. These
all have the same effect as their plot equivalents:

• xlim, ylim: set limits for the x- and y-axes, each a numeric vector of length
two, e.g., xlim=c(0, 20) or ylim=c(-0.9, -0.5).

• log: a character vector indicating which (if any) axes should be logged.
For example, log="x" will log the x-axis, log="xy" will log both.

• main: main title for the plot, centered in large text at the top of the plot.
This can be a string (e.g., main="plot title") or an expression (e.g.,
main = expression(beta[1] == 1)). See ?plotmath for more examples
of using mathematical formulae.

• xlab, ylab: labels for the x- and y-axes. As with the plot title, these can
be character strings or mathematical expressions.

24 2 Getting started with qplot

carat

c
o

u
n

t

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0

500

1000

1500

2000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
E

F
G

H
I

J

carat

d
e

n
s
it
y

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

D
E

F
G

H
I

J

Fig. 2.16: Histograms showing the distribution of carat conditional on colour. (Left)
Bars show counts and (right) bars show densities (proportions of the whole). The
density plot makes it easier to compare distributions ignoring the relative abundance
of diamonds within each colour. High-quality diamonds (colour D) are skewed towards
small sizes, and as quality declines the distribution becomes more flat.

2.7 Other options 25

The following examples show the options in action.

> qplot(

+ carat, price, data = dsmall,

+ xlab = "Price ($)", ylab = "Weight (carats)",

+ main = "Price-weight relationship"

+)

Price−weight relationship

Price ($)

W
e

ig
h

t
(c

a
ra

ts
)

5000

10000

15000

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

0.5 1.0 1.5 2.0 2.5

> qplot(

+ carat, price/carat, data = dsmall,

+ ylab = expression(frac(price,carat)),

+ xlab = "Weight (carats)",

+ main="Small diamonds",

+ xlim = c(.2,1)

+)

WARNING: Removed 35 rows containing missing values (geom_point).

Small diamonds

Weight (carats)

p
ri
c
e

c
a

ra
t

2000

4000

6000

8000

10000

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

0.2 0.4 0.6 0.8 1.0

> qplot(carat, price, data = dsmall, log = "xy")

26 2 Getting started with qplot

carat

p
ri
c
e

10
3

10
3.5

10
4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10
−0.6

10
−0.4

10
−0.2

10
0

10
0.2

2.8 Differences from plot

There are a few important differences between plot and qplot:

• qplot is not generic: you cannot pass any type of R object to qplot and
expect to get some kind of default plot. Note, however, that ggplot() is
generic, and may provide a starting point for producing visualisations of
arbitrary R objects. See Chapter 9 for more details.

• Usually you will supply a variable to the aesthetic attribute you’re interested
in. This is then scaled and displayed with a legend. If you want to set
the value, e.g., to make red points, use I(): colour = I("red"). This is
explained in more detail in Section 4.5.2.

• While you can continue to use the base R aesthetic names (col, pch, cex,
etc.), it’s a good idea to switch to the more descriptive ggplot2 aesthetic
names (colour, shape and size). They’re much easier to remember!

• To add further graphic elements to a plot produced in base graphics, you
can use points(), lines() and text(). With ggplot2, you need to add
additional layers to the existing plot, described in the next chapter.

Chapter 3

Mastering the grammar

3.1 Introduction

You can choose to use just qplot(), without any understanding of the under-
lying grammar, but if you do you will never be able to unlock the full power
of ggplot2. By learning more about the grammar and its components, you
will be able to create a wider range of plots, as well as being able to combine
multiple sources of data, and customise to your heart’s content. You may want
to skip this chapter in a first reading of the book, returning when you want a
deeper understanding of how all the pieces fit together.

This chapter describes the theoretical basis of ggplot2: the layered gram-
mar of graphics. The layered grammar is based on Wilkinson’s grammar of
graphics (Wilkinson, 2005), but adds a number of enhancements that help it to
be more expressive and fit seamlessly into the R environment. The differences
between the layered grammar and Wilkinson’s grammar are described fully in
(Wickham, 2008), and a guide for converting between gpl (the encoding of
the grammar used in spss) and ggplot2 is included in Appendix A. In this
chapter you will learn a little bit about each component of the grammar and
how they all fit together. The next chapters discuss the components in more
detail, and provide more examples of how you can use them in practice.

The grammar is useful for you both as a user and as a potential developer
of statistical graphics. As a user, it makes it easier for you to iteratively update
a plot, changing a single feature at a time. The grammar is also useful because
it suggests the high-level aspects of a plot that can be changed, giving you
a framework to think about graphics, and hopefully shortening the distance
from mind to paper. It also encourages the use of graphics customised to a
particular problem, rather than relying on generic named graphics.

As a developer, the grammar makes it much easier to add new capabilities
to ggplot2. You only need to add the one component that you need, and you
can continue to use all of the other existing components. For example, you
can add a new statistical transformation, and continue to use the existing
scales and geoms. It is also useful for discovering new types of graphics, as the
grammar effectively defines the parameter space of statistical graphics.

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 3, 27
c© Springer Science+Business Media, LLC 2009

28 3 Mastering the grammar

This chapter begins by describing in detail the process of drawing a simple
plot. Section 3.3 starts with a simple scatterplot, then Section 3.4 makes it
more complex by adding a smooth line and faceting. While working through
these examples you will be introduced to all six components of the grammar,
which are then defined more precisely in Section 3.5. The chapter concludes
with Section 3.6, which describes how the various components map to data
structures in R.

3.2 Fuel economy data

Consider the fuel economy dataset, mpg, a sample of which is illustrated in
Table 3.1. It records make, model, class, engine size, transmission and fuel
economy for a selection of US cars in 1999 and 2008. It contains the 38 models
that were updated every year, an indicator that the car was a popular model.
These models include popular cars like the Audi A4, Honda Civic, Hyundai
Sonata, Nissan Maxima, Toyota Camry and Volkswagen Jetta. This data
comes from the EPA fuel economy website, http://fueleconomy.gov.

manufacturer model disp year cyl cty hwy class

audi a4 1.8 1999 4 18 29 compact
audi a4 1.8 1999 4 21 29 compact
audi a4 2.0 2008 4 20 31 compact
audi a4 2.0 2008 4 21 30 compact
audi a4 2.8 1999 6 16 26 compact
audi a4 2.8 1999 6 18 26 compact
audi a4 3.1 2008 6 18 27 compact
audi a4 quattro 1.8 1999 4 18 26 compact
audi a4 quattro 1.8 1999 4 16 25 compact
audi a4 quattro 2.0 2008 4 20 28 compact

Table 3.1: The first 10 cars in the mpg dataset, included in the ggplot2 package. cty

and hwy record miles per gallon (mpg) for city and highway driving, respectively,
and displ is the engine displacement in litres.

This dataset suggests many interesting questions. How are engine size and
fuel economy related? Do certain manufacturers care more about economy
than others? Has fuel economy improved in the last ten years? We will try to
answer the first question and in the process learn more details about how the
scatterplot is created.

3.3 Building a scatterplot 29

3.3 Building a scatterplot

Consider Figure 3.1, one attempt to answer this question. It is a scatterplot of
two continuous variables (engine displacement and highway mpg), with points
coloured by a third variable (number of cylinders). From your experience in
the previous chapter, you should have a pretty good feel for how to create this
plot with qplot(). But what is going on underneath the surface? How does
ggplot2 draw this plot?

qplot(displ, hwy, data = mpg, colour = factor(cyl))

displ

h
w

y

15

20

25

30

35

40

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●● ●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

● ●

●●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

2 3 4 5 6 7

factor(cyl)

● 4

● 5

● 6

● 8

Fig. 3.1: A scatterplot of engine displacement in litres (displ) vs. average highway
miles per gallon (hwy). Points are coloured according to number of cylinders. This
plot summarises the most important factor governing fuel economy: engine size.

Mapping aesthetics to data

What precisely is a scatterplot? You have seen many before and have probably
even drawn some by hand. A scatterplot represents each observation as a
point (•), positioned according to the value of two variables. As well as a
horizontal and vertical position, each point also has a size, a colour and a
shape. These attributes are called aesthetics, and are the properties that can
be perceived on the graphic. Each aesthetic can be mapped to a variable, or
set to a constant value. In Figure 3.1 displ is mapped to horizontal position,
hwy to vertical position and cyl to colour. Size and shape are not mapped to
variables, but remain at their (constant) default values.

Once we have these mappings we can create a new dataset that records this
information. Table 3.2 shows the first 10 rows of the data behind Figure 3.1.

30 3 Mastering the grammar

This new dataset is a result of applying the aesthetic mappings to the original
data. We can create many different types of plots using this data. The scatter-
plot uses points, but were we instead to draw lines we would get a line plot. If
we used bars, we’d get a bar plot. Neither of those examples makes sense for
this data, but we could still draw them, as in Figure 3.2. In ggplot2 we can
produce many plots that don’t make sense, yet are grammatically valid. This
is no different than English, where we can create senseless but grammatical
sentences like the angry rock barked like a comma.

x y colour

1.8 29 4
1.8 29 4
2.0 31 4
2.0 30 4
2.8 26 6
2.8 26 6
3.1 27 6
1.8 26 4
1.8 25 4
2.0 28 4

Table 3.2: First 10 rows from mpg rearranged into the format required for a scatterplot.
This data frame contains all the data to be displayed on the plot.

displ

h
w

y

15

20

25

30

35

40

2 3 4 5 6 7

displ

h
w

y

0

10

20

30

40

2 3 4 5 6 7

Fig. 3.2: Instead of using points to represent the data, we could use other geoms like
lines (left) or bars (right). Neither of these geoms makes sense for this data, but they
are still grammatically valid.

3.3 Building a scatterplot 31

Points, lines and bars are all examples of geometric objects, or geoms.
Geoms determine the “type” of the plot. Plots that use a single geom are often
given a special name, a few of which are listed in Table 3.3. More complex
plots with combinations of multiple geoms don’t have a special name, and we
have to describe them by hand. For example, Figure 3.3 overlays a per group
regression line on the existing plot. What would you call this plot? Once you’ve
mastered the grammar, you’ll find that many of the plots that you produce
are uniquely tailored to your problems and will no longer have special names.

Named plot Geom Other features

scatterplot point
bubblechart point size mapped to a variable
barchart bar
box-and-whisker plot boxplot
line chart line

Table 3.3: A selection of named plots and the geoms that they correspond to.

displ

h
w

y

15

20

25

30

35

40

●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

● ●●

●

●

●●

●

●● ●●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●

●

●●● ●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●●

● ●

●●

●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●●● ●●●●●●●●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●

●●●●●●●●

●●

●●●● ●●●●●●●●

●● ●●

●

●

●

●●●●●●●●

●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

●●●●●●●

●

●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●

●

●●

●

●●

●●

●●●

● ●

●●●●

●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●

2 3 4 5 6 7

factor(cyl)

●●● 4

●●● 5

●●● 6

●●● 8

Fig. 3.3: More complicated plots don’t have their own names. This plot takes Figure 3.1
and adds a regression line to each group. What would you call this plot?

Scaling

The values in Table 3.2 have no meaning to the computer. We need to convert
them from data units (e.g., litres, miles per gallon and number of cylinders)

32 3 Mastering the grammar

to physical units (e.g., pixels and colours) that the computer can display. This
conversion process is called scaling and performed by scales. Now that these
values are meaningful to the computer, they may not be meaningful to us:
colours are represented by a six-letter hexadecimal string, sizes by a number
and shapes by an integer. These aesthetic specifications that are meaningful
to R are described in Appendix B.

In this example, we have three aesthetics that need to be scaled: horizontal
position (x), vertical position (y) and colour. Scaling position is easy in this
example because we are using the default linear scales. We need only a linear
mapping from the range of the data to [0, 1]. We use [0, 1] instead of exact
pixels because the drawing system that ggplot2 uses, grid, takes care of that
final conversion for us. A final step determines how the two positions (x and
y) are combined to form the final location on the plot. This is done by the
coordinate system, or coord. In most cases this will be Cartesian coordinates,
but it might be polar coordinates, or a spherical projection used for a map.

The process for mapping the colour is a little more complicated, as we have
a non-numeric result: colours. However, colours can be thought of as having
three components, corresponding to the three types of colour-detecting cells in
the human eye. These three cell types give rise to a three-dimensional colour
space. Scaling then involves mapping the data values to points in this space.
There are many ways to do this, but here since cyl is a categorical variable we
map values to evenly spaced hues on the colour wheel, as shown in Figure 3.4.
A different mapping is used when the variable is continuous.

The result of these conversions is Table 3.4, which contains values that
have meaning to the computer. As well as aesthetics that have been mapped
to variable, we also include aesthetics that are constant. We need these so that
the aesthetics for each point are completely specified and R can draw the plot.

x y colour size shape

0.037 0.531 #FF6C91 1 19
0.037 0.531 #FF6C91 1 19
0.074 0.594 #FF6C91 1 19
0.074 0.562 #FF6C91 1 19
0.222 0.438 #00C1A9 1 19
0.222 0.438 #00C1A9 1 19
0.278 0.469 #00C1A9 1 19
0.037 0.438 #FF6C91 1 19
0.037 0.406 #FF6C91 1 19
0.074 0.500 #FF6C91 1 19

Table 3.4: Simple dataset with variables mapped into aesthetic space. The description
of colours is intimidating, but this is the form that R uses internally. Default values
for other aesthetics are filled in: the points will be filled circles (shape 19 in R) with
a 1-mm diameter.

3.3 Building a scatterplot 33

Fig. 3.4: A colour wheel illustrating the choice of five equally spaced colours. This is
the default scale for discrete variables.

Finally, we need to render this data to create the graphical objects that
are displayed on the screen. To create a complete plot we need to combine
graphical objects from three sources: the data, represented by the point geom;
the scales and coordinate system, which generate axes and legends so that we
can read values from the graph; and plot annotations, such as the background
and plot title. Figure 3.5 separates the contribution of the data from the
contributions of the scales and plot annotations.

h
w

y

15

20

25

30

35

40

displ
2 3 4 5 6 7

factor(cyl)

● 8

● 6

● 5

● 4

Fig. 3.5: Contributions from the scales, the axes and legend and grid lines, and the
plot background. Contributions from the data, the point geom, have been removed.

34 3 Mastering the grammar

3.4 A more complex plot

With a simple example under our belts, let’s now turn to look at the slightly
more complicated plot in Figure 3.6. This plot adds three new components to
the mix: facets, multiple layers and statistics. The facets and layers expand
the data structure described above: each facet panel in each layer has its own
dataset. You can think of this as a 3d array: the panels of the facets form a
2d grid, and the layers extend upwards in the 3rd dimension. In this case the
data in the layers is the same, but in general we can plot different datasets on
different layers. Table 3.5 shows the first few rows of the data in each facet.

qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth()

displ

h
w

y

15

20

25

30

35

40

1999

●●

●●●

● ●●

●

●

●

●

●

●

●

●

● ●

●● ●

●

●● ●

●

●

●

●●

●

●

● ●●

●

● ●●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●

● ●

●

●

●

●● ●●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●●●

●

●

●●

●●

●●

●

●

●●

●●●●

●

●●

●●

●●

●

●●●●

●

●●●●●

● ●●

●

●●●●

●●●●

●●●

●●●●●●●●●●●●●●

●●

●●

●●

●

●

●●●●

●●●●●●●●●●●●●●●

2 3 4 5 6 7

2008

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●

●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●● ●●

●

●

●

●

●

●●

●●●

●●●●●●●●

●●●●

● ●

●● ●

●

●

● ●●

●●

●●●

●

●●●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●●

●●

●●

2 3 4 5 6 7

Fig. 3.6: A more complex plot with facets and multiple layers.

The smooth layer is different to the point layer because it doesn’t display
the raw data, but instead displays a statistical transformation of the data.
Specifically, the smooth layer fits a smooth line through the middle of the data.
This requires an additional step in the process described above: after mapping
the data to aesthetics, the data is passed to a statistical transformation, or
stat, which manipulates the data in some useful way. In this example, the stat
fits the data to a loess smoother, and then returns predictions from evenly
spaced points within the range of the data. Other useful stats include 1 and
2d binning, group means, quantile regression and contouring.

As well as adding an additional step to summarise the data, we also need
some extra steps when we get to the scales. This is because we now have
multiple datasets (for the different facets and layers) and we need to make
sure that the scales are the same across all of them. Scaling actually occurs
in three parts: transforming, training and mapping. We haven’t mentioned

3.5 Components of the layered grammar 35

x y colour x y colour

1.8 29 4 2.0 31 4
1.8 29 4 2.0 30 4
2.8 26 6 3.1 27 6
2.8 26 6 2.0 28 4
1.8 26 4 2.0 27 4
1.8 25 4 3.1 25 6
2.8 25 6 3.1 25 6
2.8 25 6 3.1 25 6
2.8 24 6 4.2 23 8
5.7 17 8 5.3 20 8

Table 3.5: A 1× 2 grid of data frames used for faceting. In general, this structure
also has a third dimension for layers, but in this example the data for each layer is
the same.

transformation before, but you have probably seen it before in log-log plots.
In a log-log plot, the data values are not linearly mapped to position on the
plot, but are first log-transformed.

• Scale transformation occurs before statistical transformation so that statis-
tics are computed on the scale-transformed data. This ensures that a plot
of log(x) vs. log(y) on linear scales looks the same as x vs. y on log scales.
There are many different transformations that can be used, including taking
square roots, logarithms and reciprocals. See Section 6.4.2 for more details.

• After the statistics are computed, each scale is trained on every dataset
from all the layers and facets. The training operation combines the ranges
of the individual datasets to get the range of the complete data. Without
this step, scales could only make sense locally and we wouldn’t be able to
overlay different layers because their positions wouldn’t line up. Sometimes
we do want to vary position scales across facets (but never across layers),
and this is described more fully in Section 7.2.3.

• Finally the scales map the data values into aesthetic values. This is a
local operation: the variables in each dataset are mapped to their aesthetic
values producing a new dataset that can then be rendered by the geoms.

Figure 3.7 illustrates the complete process schematically.

3.5 Components of the layered grammar

In the examples above, we have seen some of the components that make up
a plot, data and aesthetic mappings, geometric objects (geoms), statistical
transformations (stats), scales and faceting. We have also touched on the
coordinate system. One thing we didn’t mention is the position adjustment,

36 3 Mastering the grammar

Map variables to aesthetics

Facet datasets

Transform scales

Train scales

Map scales

Render geoms

Compute aesthetics

Fig. 3.7: Schematic description of the plot generation process. Each square represents
a layer, and this schematic represents a plot with three layers and three panels. All
steps work by transforming individual data frames, except for training scales which
doesn’t affect the data frame and operates across all datasets simultaneously.

3.5 Components of the layered grammar 37

which deals with overlapping graphic objects. Together, the data, mappings,
stat, geom and position adjustment form a layer. A plot may have multiple
layers, as in the example where we overlaid a smoothed line on a scatterplot.
All together, the layered grammar defines a plot as the combination of:

• A default dataset and set of mappings from variables to aesthetics.
• One or more layers, each composed of a geometric object, a statistical

transformation, and a position adjustment, and optionally, a dataset and
aesthetic mappings.

• One scale for each aesthetic mapping.
• A coordinate system.
• The faceting specification.

The following sections describe each of the higher level components more
precisely, and point you to the parts of the book where they are documented.

3.5.1 Layers

Layers are responsible for creating the objects that we perceive on the plot.
A layer is composed of four parts:

• data and aesthetic mapping,
• a statistical transformation (stat),
• a geometric object (geom)
• and a position adjustment.

The properties of a layer are described in Chapter 4 and how they can be used
to visualise data in Chapter 5.

3.5.2 Scales

A scale controls the mapping from data to aesthetic attributes, and we need
a scale for every aesthetic used on a plot. Each scale operates across all the
data in the plot, ensuring a consistent mapping from data to aesthetics. Some
scales are illustrated in Figure 3.8.

A scale is a function, and its inverse, along with a set of parameters. For
example, the colour gradient scale maps a segment of the real line to a path
through a colour space. The parameters of the function define whether the
path is linear or curved, which colour space to use (e.g., LUV or RGB), and
the colours at the start and end.

The inverse function is used to draw a guide so that you can read values
from the graph. Guides are either axes (for position scales) or legends (for
everything else). Most mappings have a unique inverse (i.e., the mapping
function is one-to-one), but many do not. A unique inverse makes it possible
to recover the original data, but this is not always desirable if we want to focus
attention on a single aspect.

Chapter 6 describes scales in detail.

38 3 Mastering the grammar

x

● 2

● 4

● 6

● 8

● 10

x

● 2

● 4

● 6

● 8

● 10

y

● a

b

c

d

e

y

● a

● b

● c

● d

● e

Fig. 3.8: Examples of legends from four different scales. From left to right: continuous
variable mapped to size, and to colour, discrete variable mapped to shape, and to
colour. The ordering of scales seems upside-down, but this matches the labelling of
the y-axis: small values occur at the bottom.

3.5.3 Coordinate system

A coordinate system, or coord for short, maps the position of objects onto
the plane of the plot. Position is often specified by two coordinates (x, y), but
potential could be three or more (although this is not yet implemented in
ggplot2). The Cartesian coordinate system is the most common coordinate
system for two dimensions, while polar coordinates and various map projections
are used less frequently.

Coordinate systems affect all position variables simultaneously and differ
from scales in that they also change the appearance of the geometric objects.
For example, in polar coordinates, bar geoms look like segments of a circle.
Additionally, scaling is performed before statistical transformation, while
coordinate transformations occur afterward. The consequences of this are
shown in Section 7.3.1.

Coordinate systems control how the axes and grid lines are drawn. Figure 3.9
illustrates three different types of coordinate systems. Very little advice is
available for drawing these for non-Cartesian coordinate systems, so a lot of
work needs to be done to produce polished output. Coordinate systems are
described in Section 7.3.

3.5.4 Faceting

There is also another thing that turns out to be sufficiently useful that we
should include it in our general framework: faceting, a general case of the
conditioned or trellised plots. This makes it easy to create small multiples
each showing a different subset of the whole dataset. This is a powerful tool
when investigating whether patterns hold across all conditions. The faceting

3.6 Data structures 39

1

2

3

4

5

2 4 6 8 10

1

2

3

4

5

2 4 6 8 10

1

2

3

4

5

2

4

6

8

10

Fig. 3.9: Examples of axes and grid lines for three coordinate systems: Cartesian,
semi-log and polar. The polar coordinate system illustrates the difficulties associated
with non-Cartesian coordinates: it is hard to draw the axes well.

specification describes which variables should be used to split up the data, and
whether position scales should be free or constrained. Faceting is described in
Chapter 7.

3.6 Data structures

This grammar is encoded into R data structures in a fairly straightforward way.
A plot object is a list with components data, mapping (the default aesthetic
mappings), layers, scales, coordinates and facet. The plot object has one
other component we haven’t discussed yet: options. This is used to store the
plot-specific theme options described in Chapter 8.

Plots can be created in two ways: all at once with qplot(), as shown in
the previous chapter, or piece-by-piece with ggplot() and layer functions, as
described in the next chapter. Once you have a plot object, there are a few
things you can do with it:

• Render it on screen, with print(). This happens automatically when
running interactively, but inside a loop or function, you’ll need to print()

it yourself.
• Render it to disk, with ggsave(), described in Section 8.3.
• Briefly describe its structure with summary().
• Save a cached copy of it to disk, with save(). This saves a complete copy

of the plot object, so you can easily re-create that exact plot with load().
Note that data is stored inside the plot, so that if you change the data
outside of the plot, and then redraw a saved plot, it will not be updated.

The following code illustrates some of these tools.

> p <- qplot(displ, hwy, data = mpg, colour = factor(cyl))

> summary(p)

40 3 Mastering the grammar

data: manufacturer, model, displ, year, cyl, trans,

drv, cty, hwy, fl, class [234x11]

mapping: colour = factor(cyl), x = displ, y = hwy

scales: colour, x, y

faceting: facet_grid(. ~ ., FALSE)

geom_point:

stat_identity:

position_identity: (width = NULL, height = NULL)

> # Save plot object to disk

> save(p, file = "plot.rdata")

> # Load from disk

> load("plot.rdata")

> # Save png to disk

> ggsave("plot.png", width = 5, height = 5)

Chapter 4

Build a plot layer by layer

4.1 Introduction

Layering is the mechanism by which additional data elements are added to
a plot. Each layer can come from a different dataset and have a different
aesthetic mapping, allowing us to create plots that could not be generated
using qplot(), which permits only a single dataset and a single set of aesthetic
mappings.

This chapter is mainly a technical description of how layers, geoms, statistics
and position adjustments work: how you call and customise them. The next
chapter, the “toolbox”, describes how you can use different geoms and stats
to solve particular visualisation problems. These two chapters are companions,
with this chapter explaining the theory and the next chapter explaining the
practical aspects of using layers to achieve your graphical goals.

Section 4.2 will teach you how to initialise a plot object by hand, a task that
qplot() performs for us. The plot is not ready to be displayed until at least
one layer is added, as described in Section 4.3. This section first describes the
complete layer specification, which helps you see exactly how the components
of the grammar are realised in R code, and then shows you the shortcuts that
will save you a lot of time. As you have learned in the previous chapter, there
are five components of a layer:

• The data, § 4.4, which must be an R data frame, and can be changed after
the plot is created.

• A set of aesthetic mappings, § 4.5, which describe how variables in the data
are mapped to aesthetic properties of the layer. This section includes a
description of how layer settings override the plot defaults, the difference
between setting and mapping, and the important group aesthetic.

• The geom, § 4.6, which describes the geometric used to draw the layer. The
geom defines the set of available aesthetic properties.

• The stat, § 4.7, which takes the raw data and transforms it in some useful
way. The stat returns a data frame with new variables that can also be
mapped to aesthetics with a special syntax.

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 4, 41
c© Springer Science+Business Media, LLC 2009

42 4 Build a plot layer by layer

• The position adjustment, § 4.8, which adjusts elements to avoid overplotting.

To conclude, Section 4.9 shows you some plotting techniques that pull to-
gether everything you have learned in this chapter to create novel visualisations
and to visualise model information along with your data.

4.2 Creating a plot

When we used qplot(), it did a lot of things for us: it created a plot object,
added layers, and displayed the result, using many default values along the way.
To create the plot object ourselves, we use ggplot(). This has two arguments:
data and aesthetic mapping. These arguments set up defaults for the plot
and can be omitted if you specify data and aesthetics when adding each
layer. The data argument needs little explanation: It’s the data frame that
you want to visualise. You are already familiar with aesthetic mappings from
qplot(), and the syntax here is quite similar, although you need to wrap the
pairs of aesthetic attribute and variable name in the aes() function. aes()
is described more fully in Section 4.5, but it’s not very tricky. The following
example specifies a default mapping of x to carat, y to price and colour to cut.

p <- ggplot(diamonds, aes(carat, price, colour = cut))

This plot object cannot be displayed until we add a layer: there is nothing
to see!

4.3 Layers

A minimal layer may do nothing more than specify a geom, a way of visually
representing the data. If we add a point geom to the plot we just created, we
create a scatterplot, which can then be rendered.

p <- p + layer(geom = "point")

Note how we use + to add the layer to the plot. This layer uses the plot
defaults for data and aesthetic mapping and it uses default values for two
optional arguments: the statistical transformation (the stat) and the position
adjustment. A more fully specified layer can take any or all of these arguments:

layer(geom, geom_params, stat, stat_params, data, mapping,

position)

Here is what a more complicated call looks like. It produces a histogram (a
combination of bars and binning) coloured “steelblue” with a bin width of 2:

4.3 Layers 43

p <- ggplot(diamonds, aes(x = carat))

p <- p + layer(

geom = "bar",

geom_params = list(fill = "steelblue"),

stat = "bin",

stat_params = list(binwidth = 2)

)

p

This layer specification is precise but verbose. We can simplify it by using
shortcuts that rely on the fact that every geom is associated with a default
statistic and position, and every statistic with a default geom. This means
that you only need to specify one of stat or geom to get a completely specified
layer, with parameters passed on to the geom or stat as appropriate. This
expression generates the same layer as the full layer command above:

geom_histogram(binwidth = 2, fill = "steelblue")

All the shortcut functions have the same basic form, beginning with geom_ or
stat_:

geom_XXX(mapping, data, ..., geom, position)

stat_XXX(mapping, data, ..., stat, position)

Their common parameters define the components of the layer:

• mapping (optional): A set of aesthetic mappings, specified using the aes()
function and combined with the plot defaults as described in Section 4.5.

• data (optional): A dataset which overrides the default plot dataset. It is
most commonly omitted, in which case the layer will use the default plot
data. See Section 4.4.

• ...: Parameters for the geom or stat, such as bin width in the histogram or
bandwidth for a loess smoother. You can also use aesthetic properties as
parameters. When you do this you set the property to a fixed value, not
map it to a variable in the dataset. The example above showed setting
the fill colour of the histogram to “steelblue”. See Section 4.5.2 for more
examples.

• geom or stat (optional): You can override the default stat for a geom, or
the default geom for a stat. This is a text string containing the name of
the geom to use. Using the default will give you a standard plot; overriding
the default allows you to achieve something more exotic, as shown in
Section 4.9.1.

• position (optional): Choose a method for adjusting overlapping objects,
as described in Section 4.8.

Note that the order of data and mapping arguments is switched between
ggplot() and the layer functions. This is because you almost always specify

44 4 Build a plot layer by layer

data for the plot, and almost always specify aesthetics—but not data—for the
layers. We suggest explicitly naming all other arguments rather than relying
on positional matching. This makes the code more readable and is the style
followed in this book.

Layers can be added to plots created with ggplot() or qplot(). Remember,
behind the scenes, qplot() is doing exactly the same thing: it creates a plot
object and then adds layers. The following example shows the equivalence
between these two ways of making plots.

ggplot(msleep, aes(sleep_rem / sleep_total, awake)) +

geom_point()

which is equivalent to

qplot(sleep_rem / sleep_total, awake, data = msleep)

You can add layers to qplot too:

qplot(sleep_rem / sleep_total, awake, data = msleep) +

geom_smooth()

This is equivalent to

qplot(sleep_rem / sleep_total, awake, data = msleep,

geom = c("point", "smooth"))

or

ggplot(msleep, aes(sleep_rem / sleep_total, awake)) +

geom_point() + geom_smooth()

You’ve seen that plot objects can be stored as variables. The summary
function can be helpful for inspecting the structure of a plot without plotting
it, as seen in the following example. The summary shows information about
the plot defaults, and then each layer. You will learn about scales and faceting
in Chapters 6 and 7.

> p <- ggplot(msleep, aes(sleep_rem / sleep_total, awake))

> summary(p)

data: name, genus, vore, order, conservation,

sleep_total, sleep_rem, sleep_cycle, awake,

brainwt, bodywt [83x11]

mapping: x = sleep_rem/sleep_total, y = awake

scales: x, y

faceting: facet_grid(. ~ ., FALSE)

>

> p <- p + geom_point()

> summary(p)

data: name, genus, vore, order, conservation,

sleep_total, sleep_rem, sleep_cycle, awake,

brainwt, bodywt [83x11]

mapping: x = sleep_rem/sleep_total, y = awake

scales: x, y

4.4 Data 45

faceting: facet_grid(. ~ ., FALSE)

geom_point: na.rm = FALSE

stat_identity:

position_identity: (width = NULL, height = NULL)

Layers are regular R objects and so can be stored as variables, making it
easy to write clean code that reduces duplication. For example, a set of plots
can be initialised using different data then enhanced with the same layer. If
you later decide to change that layer, you only need to do so in one place.
The following shows a simple example, where we create a layer that displays a
translucent thick blue line of best fit.

bestfit <- geom_smooth(method = "lm", se = F,

colour = alpha("steelblue", 0.5), size = 2)

qplot(sleep_rem, sleep_total, data = msleep) + bestfit

qplot(awake, brainwt, data = msleep, log = "y") + bestfit

qplot(bodywt, brainwt, data = msleep, log = "xy") + bestfit

The following sections describe data and mappings in more detail, then go
on to describe the available geoms, stats and position adjustments.

4.4 Data

The restriction on the data is simple: it must be a data frame. This is restrictive,
and unlike other graphics packages in R. Lattice functions can take an optional
data frame or use vectors directly from the global environment. Base methods
often work with vectors, data frames or other R objects. However, there are
good reasons for this restriction. Your data is very important, and it’s better
to be explicit about exactly what is done with it. It also allows a cleaner
separation of concerns so that ggplot2 deals only with plotting data, not
wrangling it into different forms, for which you might find the plyr or reshape
packages helpful. A single data frame is also easier to save than a multitude of
vectors, which means it’s easier to reproduce your results or send your data to
someone else.

This restriction also makes it very easy to produce the same plot for different
data: you just change the data frame. You can replace the old dataset with
%+%, as shown in the following example. (You might expect that this would
use + like all the other components, but unfortunately due to a restriction in
R this is not possible.) Swapping out the data makes it easy to experiment
with imputation schemes or model fits, as shown in Section 4.9.3.

p <- ggplot(mtcars, aes(mpg, wt, colour = cyl)) + geom_point()

p

46 4 Build a plot layer by layer

mtcars <- transform(mtcars, mpg = mpg ^ 2)

p %+% mtcars

Any change of values or dimensions is legitimate. However, if a variable changes
from discrete to continuous (or vice versa), you will need to change the default
scales, as described in Section 6.3.

It is not necessary to specify a default dataset except when using faceting;
faceting is a global operation (i.e., it works on all layers) and it needs to have
a base dataset which defines the set of facets for all datasets. See Section 7.2.4
for more details. If the default dataset is omitted, every layer must supply its
own data.

The data is stored in the plot object as a copy, not a reference. This has two
important consequences: if your data changes, the plot will not; and ggplot2

objects are entirely self-contained so that they can be save()d to disk and
later load()ed and plotted without needing anything else from that session.

4.5 Aesthetic mappings

To describe the way that variables in the data are mapped to things that we
can perceive on the plot (the “aesthetics”), we use the aes function. The aes

function takes a list of aesthetic-variable pairs like these:

aes(x = weight, y = height, colour = age)

Here we are mapping x-position to weight, y-position to height and colour
to age. The first two arguments can be left without names, in which case they
correspond to the x and y variables. This matches the way that qplot() is
normally used. You should never refer to variables outside of the dataset (e.g.,
with diamonds$carat), as this makes it impossible to encapsulate all of the
data needed for plotting in a single object.

aes(weight, height, colour = sqrt(age))

Note that functions of variables can be used.
Any variable in an aes() specification must be contained inside the plot or

layer data. This is one of the ways in which ggplot2 objects are guaranteed
to be entirely self-contained, so that they can be stored and re-used.

4.5.1 Plots and layers

The default aesthetic mappings can be set when the plot is initialised or
modified later using +, as in this example:

> p <- ggplot(mtcars)

> summary(p)

data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am,

4.5 Aesthetic mappings 47

gear, carb [32x11]

faceting: facet_grid(. ~ ., FALSE)

>

> p <- p + aes(wt, hp)

> summary(p)

data: mpg, cyl, disp, hp, drat, wt, qsec, vs, am,

gear, carb [32x11]

mapping: x = wt, y = hp

scales: list(), list()

faceting: facet_grid(. ~ ., FALSE)

One reason you might want to do this is shown in Section 4.9.3. We have
seen several examples of using the default mapping when adding a layer to a
plot:

> p <- ggplot(mtcars, aes(x = mpg, y = wt))

> p + geom_point()

mpg

w
t

2

3

4

5

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

15 20 25 30

The default mappings in the plot p can be extended or overridden in the
layers, as with the following code. The results are shown in Figure 4.1.

p + geom_point(aes(colour = factor(cyl)))

p + geom_point(aes(y = disp))

The rules are summarised in Table 4.1. Aesthetic mappings specified in a layer
affect only that layer. For that reason, unless you modify the default scales,
axis labels and legend titles will be based on the plot defaults. The way to
change these is described in Section 6.5.

4.5.2 Setting vs. mapping

Instead of mapping an aesthetic property to a variable, you can set it to
a single value by specifying it in the layer parameters. Aesthetics can vary

48 4 Build a plot layer by layer

mpg

w
t

2

3

4

5

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

15 20 25 30

factor(cyl)

● 4

● 6

● 8

mpg

w
t

100

200

300

400

●●

●

●

●

●

●

●
●

●●

● ●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

15 20 25 30

Fig. 4.1: Overriding aesthetics. (Left) Overriding colour with factor(cyl) and (right)
overriding y-position with disp

Operation Layer aesthetics Result

Add aes(colour = cyl) aes(mpg, wt, colour = cyl)

Override aes(y = disp) aes(mpg, disp)

Remove aes(y = NULL) aes(mpg)

Table 4.1: Rules for combining layer mappings with the default mapping of
aes(mpg, wt). Layer aesthetics can add to, override, and remove the default map-
pings.

for each observation being plotted, while parameters do not. We map an
aesthetic to a variable (e.g., (aes(colour = cut))) or set it to a constant (e.g.,
colour = "red"). For example, the following layer sets the colour of the
points, using the colour parameter of the layer:

p <- ggplot(mtcars, aes(mpg, wt))

p + geom_point(colour = "darkblue")

This sets the point colour to be dark blue instead of black. This is quite
different than

p + geom_point(aes(colour = "darkblue"))

This maps (not sets) the colour to the value “darkblue”. This effectively
creates a new variable containing only the value “darkblue” and then maps
colour to that new variable. Because this value is discrete, the default colour
scale uses evenly spaced colours on the colour wheel, and since there is only
one value this colour is pinkish. The difference between setting and mapping
is illustrated in Figure 4.2.

4.5 Aesthetic mappings 49

With qplot(), you can do the same thing by putting the value inside of
I(), e.g., colour = I("darkblue"). Chapter B describes how values should
be specified for the various aesthetics.

mpg

w
t

2

3

4

5

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

15 20 25 30

mpg

w
t

2

3

4

5

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

15 20 25 30

"darkblue"

● darkblue

Fig. 4.2: The difference between (left) setting colour to "darkblue" and (right)
mapping colour to "darkblue". When "darkblue" is mapped to colour, it is treated
as a regular value and scaled with the default colour scale. This results in pinkish
points and a legend.

4.5.3 Grouping

In ggplot2, geoms can be roughly divided into individual and collective geoms.
An individual geom has a distinctive graphical object for each row in the data
frame. For example, the point geom has a single point for each observation.
On the other hand, collective geoms represent multiple observations. This may
be a result of a statistical summary, or may be fundamental to the display
of the geom, as with polygons. Lines and paths fall somewhere in between:
each overall line is composed of a set of straight segments, but each segment
represents two points. How do we control which observations go in which
individual graphical element? This is the job of the group aesthetic.

By default, the group is set to the interaction of all discrete variables in the
plot. This often partitions the data correctly, but when it does not, or when
no discrete variable is used in the plot, you will need to explicitly define the
grouping structure, by mapping group to a variable that has a different value
for each group. The interaction() function is useful if a single pre-existing
variable doesn’t cleanly separate groups, but a combination does.

There are three common cases where the default is not enough, and we
will consider each one below. In the following examples, we will use a simple

50 4 Build a plot layer by layer

longitudinal dataset, Oxboys, from the nlme package. It records the heights
(height) and centered ages (age) of 26 boys (Subject), measured on nine
occasions (Occasion).

Multiple groups, one aesthetic.

In many situations, you want to separate your data into groups, but render
them in the same way. When looking at the data in aggregate you want
to be able to distinguish individual subjects, but not identify them. This is
common in longitudinal studies with many subjects, where the plots are often
descriptively called spaghetti plots.

The first plot in Figure 4.3 shows a set of time series plots, one for each
boy. You can see the separate growth trajectories for each boy, but there is
no way to see which boy belongs to which trajectory. This plot was generated
with:

p <- ggplot(Oxboys, aes(age, height, group = Subject)) +

geom_line()

We specified the Subject as the grouping variable to get a line for each boy.
The second plot in the figure shows the result of leaving this out: we get a
single line which passes through every point. This is not very useful! Line
plots with an incorrect grouping specification typically have this characteristic
appearance.

age

h
e
ig

h
t

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

age

h
e
ig

h
t

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

Fig. 4.3: (Left) Correctly specifying group = Subject produces one line per subject.
(Right) A single line connects all observations. This pattern is characteristic of an
incorrect grouping aesthetic, and is what we see if the group aesthetic is omitted,
which in this case is equivalent to group = 1.

4.5 Aesthetic mappings 51

Different groups on different layers.

Sometimes we want to plot summaries based on different levels of aggregation.
Different layers might have different group aesthetics, so that some display
individual level data while others display summaries of larger groups.

Building on the previous example, suppose we want to add a single smooth
line to the plot just created, based on the ages and heights of all the boys. If
we use the same grouping for the smooth that we used for the line, we get the
first plot in Figure 4.4.

p + geom_smooth(aes(group = Subject), method="lm", se = F)

This is not what we wanted; we have inadvertently added a smoothed line
for each boy. This new layer needs a different group aesthetic, group = 1, so
that the new line will be based on all the data, as shown in the second plot in
the figure. The modified layer looks like this:

p + geom_smooth(aes(group = 1), method="lm", size = 2, se = F)

age

h
e
ig

h
t

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

age

h
e
ig

h
t

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

Fig. 4.4: Adding smooths to the Oxboys data. (Left) Using the same grouping as the
lines results in a line of best fit for each boy. (Right) Using aes(group = 1) in the
smooth layer fits a single line of best fit across all boys.

Note how we stored the first plot in the variable p, so we could experiment
with the code to generate the second layer without having to re-enter any
of the code for the first layer. This is a useful time-saving technique, and is
expanded upon in Chapter 10.

52 4 Build a plot layer by layer

Overriding the default grouping.

The plot has a discrete scale but you want to draw lines that connect across

groups. This is the strategy used in interaction plots, profile plots, and parallel
coordinate plots, among others. For example, we draw boxplots of height at
each measurement occasion, as shown in the first figure in Figure 4.5:

boysbox <- ggplot(Oxboys, aes(Occasion, height)) + geom_boxplot()

There is no need to specify the group aesthetic here; the default grouping
works because occasion is a discrete variable. To overlay individual trajectories
we again need to override the default grouping for that layer with aes(group

= Subject), as shown in the second plot in the figure.

boysbox + geom_line(aes(group = Subject), colour = "#3366FF")

We change the line colour in the second layer to make them distinct from
the boxes. This is another example of setting an aesthetic to a fixed value.
The colour is a rendering attribute, which has no corresponding variable in
the data.

Occasion

h
e
ig

h
t

130

140

150

160

170

●
● ●

●

●

●
●

●

1 2 3 4 5 6 7 8 9

Occasion

h
e
ig

h
t

130

140

150

160

170

●
● ●

●

●

●
●

●

1 2 3 4 5 6 7 8 9

Fig. 4.5: (Left) If boxplots are used to look at the distribution of heights at each
occasion (a discrete variable), the default grouping works correctly. (Right) If trajec-
tories of individual boys are overlaid with geom line(), then aes(group = Subject)

is needed for the new layer.

4.5.4 Matching aesthetics to graphic objects

Another important issue with collective geom is how the aesthetics of the
individual observations are mapped to the aesthetics of the complete entity. For

4.5 Aesthetic mappings 53

individual geoms, this isn’t a problem, because each observation is represented
by a single graphical element. However, high data densities can make it difficult
(or impossible) to distinguish between individual points and in some sense the
point geom becomes a collective geom, a single blob of points.

Lines and paths operate on an off-by-one principle: there is one more
observation than line segment, and so the aesthetic for the first observation is
used for the first segment, the second observation for the second segment and
so on. This means that the aesthetic for the last observation is not used, as
shown in Figure 4.6. An additional limitation for paths and lines is that that
line type must be constant over each individual line, in R there is no way to
draw a joined up line which has varying line type.

x

y

1.0

1.5

2.0

2.5

3.0

●

●

●

1.0 1.5 2.0 2.5 3.0

factor(colour)

● 1

● 3

● 5

x

y

1.0

1.5

2.0

2.5

3.0

●

●

●

1.0 1.5 2.0 2.5 3.0

colour

● 1

● 2

● 3

● 4

● 5

Fig. 4.6: For lines and paths, the aesthetics of the line segment are determined by
the aesthetic of the beginning observation. If colour is categorical (left) there is
no meaningful way to interpolate between adjacent colours. If colour is continuous
(right), there is, but this is not done by default.

You could imagine a more complicated system where segments smoothly
blend from one aesthetic to another. This would work for continuous variables
like size or colour, but not for line type, and is not used in ggplot2. If this is
the behaviour you want, you can perform the linear interpolation yourself, as
shown below.

> xgrid <- with(df, seq(min(x), max(x), length = 50))

> interp <- data.frame(

+ x = xgrid,

+ y = approx(dfx, dfy, xout = xgrid)$y,

+ colour = approx(dfx, dfcolour, xout = xgrid)$y

+)

> qplot(x, y, data = df, colour = colour, size = I(5)) +

+ geom_line(data = interp, size = 2)

54 4 Build a plot layer by layer

x

y

1.0

1.5

2.0

2.5

3.0

●

●

●

1.0 1.5 2.0 2.5 3.0

colour

● 1

● 2

● 3

● 4

● 5

For all other collective geoms, like polygons, the aesthetics from the indi-
vidual components are only used if they are all the same, otherwise the default
value is used. This makes sense for fill as it is a property of the entire object: it
doesn’t make sense to think about having a different fill colour for each point
on the border of the polygon.

These issues are most relevant when mapping aesthetics to continuous
variable, because, as described above, when you introduce a mapping to a
discrete variable, it will by default split apart collective geoms into smaller
pieces. This works particularly well for bar and area plots, because stacking
the individual pieces produces the same shape as the original ungrouped data.
This is illustrated in Figure 4.7.

color

c
o

u
n
t

0

2000

4000

6000

8000

10000

D E F G H I J

color

c
o

u
n
t

0

2000

4000

6000

8000

10000

D E F G H I J

cut

Fair

Good

Very Good

Premium

Ideal

Fig. 4.7: Splitting apart a bar chart (left) produces a plot (right) that has the same
outline as the original.

4.7 Stat 55

4.6 Geoms

Geometric objects, or geoms for short, perform the actual rendering of the
layer, control the type of plot that you create. For example, using a point
geom will create a scatterplot, while using a line geom will create a line plot.
Table 4.2 lists all of the geoms available in ggplot2.

Each geom has a set of aesthetics that it understands, and a set that are
required for drawing. For example, a point requires x and y position, and
understands colour, size and shape aesthetics. A bar requires height (ymax),
and understands width, border colour and fill colour. These are listed for all
geoms in Table 4.3.

Some geoms differ primarily in the way that they are parameterised. For
example, the tile geom is specified in terms of the location of its centre and
its height and width, while the rect geom is parameterised in terms of its top
(ymax), bottom (ymin), left (xmin) and right (right) positions. Internally, the
rect geom is described as a polygon, and it is parameters are the locations of
the four corners. This is useful for non-Cartesian coordinate systems, as you
will learn in Chapter 7.

Every geom has a default statistic, and every statistic a default geom.
For example, the bin statistic defaults to using the bar geom to produce a
histogram. These defaults are listed in Table 4.3. Overriding these defaults
will still produce valid plots, but they may violate graphical conventions. See
examples in Section 4.9.1.

4.7 Stat

A statistical transformation, or stat, transforms the data, typically by sum-
marising it in some manner. For example, a useful stat is the smoother,
which calculates the mean of y, conditional on x, subject to some restriction
that ensures smoothness. All currently available stats are listed in Table 4.4.
To make sense in a graphic context a stat must be location-scale invariant:
f(x + a) = f(x) + a and f(b · x) = b · f(x). This ensures that the transformation
stays the same when you change the scales of the plot.

A stat takes a dataset as input and returns a dataset as output, and so
a stat can add new variables to the original dataset. It is possible to map
aesthetics to these new variables. For example, stat_bin, the statistic used to
make histograms, produces the following variables:

• count, the number of observations in each bin
• density, the density of observations in each bin (percentage of total / bar

width)
• x, the centre of the bin

These generated variables can be used instead of the variables present in
the original dataset. For example, the default histogram geom assigns the

56 4 Build a plot layer by layer

Name Description

abline Line, specified by slope and intercept
area Area plots
bar Bars, rectangles with bases on y-axis
blank Blank, draws nothing
boxplot Box-and-whisker plot
contour Display contours of a 3d surface in 2d
crossbar Hollow bar with middle indicated by horizontal line
density Display a smooth density estimate
density 2d Contours from a 2d density estimate
errorbar Error bars
histogram Histogram
hline Line, horizontal
interval Base for all interval (range) geoms
jitter Points, jittered to reduce overplotting
line Connect observations, in order of x value
linerange An interval represented by a vertical line
path Connect observations, in original order
point Points, as for a scatterplot
pointrange An interval represented by a vertical line, with a point

in the middle
polygon Polygon, a filled path
quantile Add quantile lines from a quantile regression
ribbon Ribbons, y range with continuous x values
rug Marginal rug plots
segment Single line segments
smooth Add a smoothed condition mean
step Connect observations by stairs
text Textual annotations
tile Tile plot as densely as possible, assuming that every

tile is the same size
vline Line, vertical

Table 4.2: Geoms in ggplot2

4.7 Stat 57

Name Default stat Aesthetics

abline abline colour, linetype, size
area identity colour, fill, linetype, size, x, y

bar bin colour, fill, linetype, size, weight, x

bin2d bin2d colour, fill, linetype, size, weight, xmax, xmin, ymax,
ymin

blank identity
boxplot boxplot colour, fill, lower, middle, size, upper, weight, x,

ymax, ymin

contour contour colour, linetype, size, weight, x, y

crossbar identity colour, fill, linetype, size, x, y, ymax, ymin

density density colour, fill, linetype, size, weight, x, y

density2d density2d colour, linetype, size, weight, x, y

errorbar identity colour, linetype, size, width, x, ymax, ymin

freqpoly bin colour, linetype, size
hex binhex colour, fill, size, x, y

histogram bin colour, fill, linetype, size, weight, x

hline hline colour, linetype, size
jitter identity colour, fill, shape, size, x, y

line identity colour, linetype, size, x, y

linerange identity colour, linetype, size, x, ymax, ymin

path identity colour, linetype, size, x, y

point identity colour, fill, shape, size, x, y

pointrange identity colour, fill, linetype, shape, size, x, y, ymax, ymin

polygon identity colour, fill, linetype, size, x, y

quantile quantile colour, linetype, size, weight, x, y

rect identity colour, fill, linetype, size, xmax, xmin, ymax, ymin

ribbon identity colour, fill, linetype, size, x, ymax, ymin

rug identity colour, linetype, size
segment identity colour, linetype, size, x, xend, y, yend

smooth smooth alpha, colour, fill, linetype, size, weight, x, y

step identity colour, linetype, size, x, y

text identity angle, colour, hjust, label, size, vjust, x, y

tile identity colour, fill, linetype, size, x, y

vline vline colour, linetype, size

Table 4.3: Default statistics and aesthetics. Emboldened aesthetics are required.

58 4 Build a plot layer by layer

Name Description

bin Bin data
boxplot Calculate components of box-and-whisker plot
contour Contours of 3d data
density Density estimation, 1d
density 2d Density estimation, 2d
function Superimpose a function
identity Don’t transform data
qq Calculation for quantile-quantile plot
quantile Continuous quantiles
smooth Add a smoother
spoke Convert angle and radius to xend and yend
step Create stair steps
sum Sum unique values. Useful for overplotting on scatter-

plots
summary Summarise y values at every unique x
unique Remove duplicates

Table 4.4: Stats in ggplot2

height of the bars to the number of observations (count), but if you’d prefer a
more traditional histogram, you can use the density (density). The following
example shows a density histogram of carat from the diamonds dataset.

> ggplot(diamonds, aes(carat)) +

+ geom_histogram(aes(y = ..density..), binwidth = 0.1)

carat

d
e

n
s
it
y

0.0

0.5

1.0

1.5

1 2 3 4 5

The names of generated variables must be surrounded with .. when used.
This prevents confusion in case the original dataset includes a variable with
the same name as a generated variable, and it makes it clear to any later

4.9 Pulling it all together 59

reader of the code that this variable was generated by a stat. Each statistic
lists the variables that it creates in its documentation.

The syntax to produce this plot with qplot() is very similar:

qplot(carat, ..density.., data = diamonds, geom="histogram",

binwidth = 0.1)

4.8 Position adjustments

Position adjustments apply minor tweaks to the position of elements within a
layer. Table 4.5 lists all of the position adjustments available within ggplot2.
Position adjustments are normally used with discrete data. Continuous data
typically doesn’t overlap exactly, and when it does (because of high data
density) minor adjustments, like jittering, are usually insufficient to fix the
problem.

Adjustment Description

dodge Adjust position by dodging overlaps to the side
fill Stack overlapping objects and standardise have equal height
identity Don’t adjust position
jitter Jitter points to avoid overplotting
stack Stack overlapping objects on top of one another

Table 4.5: The five position adjustments.

The different types of adjustment are best illustrated with a bar chart.
Figure 4.8 shows stacking, filling and dodging. Stacking puts bars on the same
x on top of one another; filling does the same, but normalises height to 1; and
dodging places the bars side-by-side. Dodging is rather similar to faceting, and
the advantages and disadvantages of each method are described in Section 7.2.6.
For these operations to work, each bar must have the same width and not
overlap with any others. The identity adjustment (i.e., do nothing) doesn’t
make much sense for bars, but is shown in Figure 4.9 along with a line plot of
the same data for reference.

4.9 Pulling it all together

Once you have become comfortable with combining layers, you will be able
to create graphics that are both intricate and useful. The following examples
demonstrate some of the ways to use the capabilities of layers that have been
introduced in this chapter. These are just to get you started. You are limited
only by your imagination!

60 4 Build a plot layer by layer

clarity

c
o

u
n
t

0

2000

4000

6000

8000

10000

12000

I1 SI2SI1VS2VS1VVS2VVS1IF

cut

Fair

Good

Very Good

Premium

Ideal

clarity

c
o

u
n
t

0.0

0.2

0.4

0.6

0.8

1.0

I1 SI2SI1VS2VS1VVS2VVS1IF

cut

Fair

Good

Very Good

Premium

Ideal

clarity

c
o

u
n
t

0

1000

2000

3000

4000

5000

I1 SI2SI1VS2VS1VVS2VVS1IF

cut

Fair

Good

Very Good

Premium

Ideal

Fig. 4.8: Three position adjustments applied to a bar chart. From left to right,
stacking, filling and dodging.

clarity

c
o

u
n
t

0

1000

2000

3000

4000

5000

I1 SI2SI1VS2VS1VVS2VVS1IF

cut

Fair

Good

Very Good

Premium

Ideal

clarity

c
o

u
n
t

1000

2000

3000

4000

5000

I1 SI2SI1VS2VS1VVS2VVS1IF

cut

Fair

Good

Very Good

Premium

Ideal

Fig. 4.9: The identity positon adjustment is not useful for bars, (left) because each
bar obscures the bars behind. (Right) It is useful for lines, however, because lines do
not have the same problem.

4.9.1 Combining geoms and stats

By connecting geoms with different statistics, you can easily create new
graphics. Figure 4.10 shows three variations on a histogram. They all use the
same statistical transformation underlying a histogram (the bin stat), but use
different geoms to display the results: the area geom, the point geom and the
tile geom.

d <- ggplot(diamonds, aes(carat)) + xlim(0, 3)

d + stat_bin(aes(ymax = ..count..), binwidth = 0.1, geom = "area")

d + stat_bin(

aes(size = ..density..), binwidth = 0.1,

geom = "point", position="identity"

4.9 Pulling it all together 61

)

d + stat_bin(

aes(y = 1, fill = ..count..), binwidth = 0.1,

geom = "tile", position="identity"

)

(The use of xlim() will be discussed in Section 6.4.2, in the presentation
of the use of scales and axes, but you can already guess that it is used here to
set the limits of the horizontal axis.)

carat

c
o

u
n
t

0

2000

4000

6000

8000

10000

0.0 0.5 1.0 1.5 2.0 2.5 3.0

carat

c
o

u
n
t

0

2000

4000

6000

8000

10000

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

● ● ● ● ● ● ●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

density

● 0.0

● 0.5

● 1.0

● 1.5

carat

0.6

0.8

1.0

1.2

1.4

0.0 0.5 1.0 1.5 2.0 2.5 3.0

count

0

2000

4000

6000

8000

10000

Fig. 4.10: Three variations on the histogram. (Left) A frequency polygon; (middle)
a scatterplot with both size and height mapped to frequency; (right) a heatmap
representing frequency with colour.

A number of the geoms available in ggplot2 were derived from other geoms
in a process like the one just described, starting with an existing geom and
making a few changes in the default aesthetics or stat. For example, the jitter
geom is simply the point geom with the default position adjustment set to
jitter. Once it becomes clear that a particular variant is going to be used a
lot or used in a very different context, it makes sense to create a new geom.
Table 4.6 lists these “aliased” geoms.

Aliased geom Base geom Changes in default

area ribbon aes(min = 0, max = y), position = "stack"

density area stat = "density"

freqpoly line stat = "bin"

histogram bar stat = "bin"

jitter point position = "jitter"

quantile line stat = "quantile"

smooth ribbon stat = "smooth"

Table 4.6: Geoms that were created by modifying the defaults of another geom.

62 4 Build a plot layer by layer

4.9.2 Displaying precomputed statistics

If you have data which has already been summarised, and you just want to
use it, you’ll need to use stat_identity(), which leaves the data unchanged,
and then map the appropriate variables to the appropriate aesthetics.

4.9.3 Varying aesthetics and data

One of the more powerful capabilities of ggplot2 is the ability to plot different
datasets on different layers. This may seem strange: Why would you want to
plot different data on the same plot? In practice, you often have related datasets
that should be shown together. A very common example is supplementing
the data with predictions from a model. While the smooth geom can add a
wide range of different smooths to your plot, it is no substitute for an external
quantitative model that summarises your understanding of the data.

Let’s look again at the Oxboys dataset which was used in Section 4.5.3.
In Figure 4.4, we showed linear fits for individual boys (left) and for the
whole group (right). Neither model is particularly appropriate: The group
model ignores the within-subject correlation and the individual model doesn’t
use information about the typical growth pattern to more accurately predict
individuals. In practice we might use a mixed model to do better. This section
explores how we can combine the output from this more sophisticated model
with the original data to gain more insight into both the data and the model.

First we’ll load the nlme package, and fit a model with varying intercepts
and slopes. (Exploring the fit of individual models shows that this is a reason-
able first pass.) We’ll also create a plot to use as a template. This regenerates
the first plot in Figure 4.3, but we’re not going to render it until we’ve added
data from the model.

> require(nlme, quiet = TRUE, warn.conflicts = FALSE)

> model <- lme(height ~ age, data = Oxboys,

+ random = ~ 1 + age | Subject)

> oplot <- ggplot(Oxboys, aes(age, height, group = Subject)) +

+ geom_line()

Next we’ll compare the predicted trajectories to the actual trajectories.
We do this by building up a grid that contains all combinations of ages and
subjects. This is overkill for this simple linear case, where we only need two
values of age to draw the predicted straight line, but we show it here because
it is necessary when the model is more complex. Next we add the predictions
from the model back into this dataset, as a variable called height.

> age_grid <- seq(-1, 1, length = 10)

> subjects <- unique(Oxboys$Subject)

>

> preds <- expand.grid(age = age_grid, Subject = subjects)

> preds$height <- predict(model, preds)

4.9 Pulling it all together 63

Once we have the predictions we can display them along with the original
data. Because we have used the same variable names as the original Oxboys
dataset, and we want the same group aesthetic, we don’t need to specify
any aesthetics; we only need to override the default dataset. We also set two
aesthetic parameters to make it a bit easier to compare the predictions to the
actual values.

> oplot + geom_line(data = preds, colour = "#3366FF", size= 0.4)

age

h
e
ig

h
t

130

140

150

160

170

−1.0 −0.5 0.0 0.5 1.0

It seems that the model does a good job of capturing the high-level structure
of the data, but it’s hard to see the details: plots of longitudinal data are often
called spaghetti plots, and with good reason. Another way to compare the
model to the data is to look at residuals, so let’s do that. We add the predictions
from the model to the original data (fitted), calculate residuals (resid), and add
the residuals as well. The next plot is a little more complicated: We update
the plot dataset (recall the use of %+% to update the default data), change the
default y aesthetic to resid, and add a smooth line for all observations.

> Oxboys$fitted <- predict(model)

> Oxboys$resid <- with(Oxboys, fitted - height)

>

> oplot %+% Oxboys + aes(y = resid) + geom_smooth(aes(group=1))

64 4 Build a plot layer by layer

age

re
s
id

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

−1.0 −0.5 0.0 0.5 1.0

The smooth line makes it evident that the residuals are not random, showing
a deficiency in the model. We add a quadratic term, refit the model, recalculate
predictions and residuals, and replot. There is now less evidence of model
inadequacy.

> model2 <- update(model, height ~ age + I(age ^ 2))

> Oxboys$fitted2 <- predict(model2)

> Oxboys$resid2 <- with(Oxboys, fitted2 - height)

>

> oplot %+% Oxboys + aes(y = resid2) + geom_smooth(aes(group=1))

age

re
s
id

2

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0

Notice how easily we were able to modify the plot object. We updated
the data and replotted twice without needing to reinitialise oplot. Layering
in ggplot2 is designed to work well with the iterative process of fitting and
evaluating models.

Chapter 5

Toolbox

5.1 Introduction

The layered structure of ggplot2 encourages you to design and construct
graphics in a structured manner. You have learned what a layer is and how to
add one to your graphic, but not what geoms and statistics are available to
help you build revealing plots. This chapter lists some of the many geoms and
stats included in ggplot2, broken down by their purpose. This chapter will
provide a good overview of the available options, but it does not describe each
geom and stat in detail. For more information about individual geoms, along
with many more examples illustrating their use, see the online and electronic
documentation. You may also want to consult the documentation to learn
more about the datasets used in this chapter.

This chapter is broken up into the following sections, each of which deals
with a particular graphical challenge. This is not an exhaustive or exclusive
categorisation, and there are many other possible ways to break up graphics
into different categories. Each geom can be used for many different purposes,
especially if you are creative. However, this breakdown should cover many
common tasks and help you learn about some of the possibilities.

• Basic plot types, § 5.3, to produce common, “named” graphics like scatter-
plots and line charts

• Displaying distributions, § 5.4, continuous and discrete, 1d and 2d, joint
and conditional

• Dealing with overplotting in scatterplots, § 5.5, a challenge with large
datasets

• Surface plots, § 5.6, display 3d surfaces in 2d.
• Statistical summaries, § 5.9, display informative data summaries
• Drawing maps, § 5.7
• Revealing uncertainty and error, § 5.8, with various 1d and 2d intervals
• Annotating a plot, § 5.10, to label, describe and explain with supplemental

information
• Weighted data, § 5.11

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 5, 65
c© Springer Science+Business Media, LLC 2009

66 5 Toolbox

The examples in this section use a mixture of ggplot() and qplot() calls,
reflecting real-life use. If you need a reminder on how to translate between
the two, see Appendix A.2. The examples do not go into much depth, but
hopefully if you flick through this chapter, you’ll be able to see a plot that
looks like the one you’re trying to create.

5.2 Overall layering strategy

It is useful to think about the purpose of each layer before it is added. In
general, there are three purposes for a layer:

• To display the data. We plot the raw data for many reasons, relying on
our skills at pattern detection to spot gross structure, local structure, and
outliers. This layer appears on virtually every graphic. In the earliest stages
of data exploration, it is often the only layer.

• To display a statistical summary of the data. As we develop and explore
models of the data, it is useful to display model predictions in the context
of the data. We learn from the data summaries and we evaluate the model.
Showing the data helps us improve the model, and showing the model helps
reveal subtleties of the data that we might otherwise miss. Summaries are
usually drawn on top of the data.
If you review the examples in the preceding chapter, you’ll see many
examples of plots of data with an added layer displaying a statistical
summary.

• To add additional metadata, context and annotations. A metadata layer
displays background context or annotations that help to give meaning to
the raw data. Metadata can be useful in the background and foreground.
A map is often used as a background layer with spatial data. Background
metadata should be rendered so that it doesn’t interfere with your percep-
tion of the data, so is usually displayed underneath the data and formatted
so that it is minimally perceptible. That is, if you concentrate on it, you
can see it with ease, but it doesn’t jump out at you when you are casually
browsing the plot.
Other metadata is used to highlight important features of the data. If you
have added explanatory labels to a couple of inflection points or outliers,
then you want to render them so that they pop out at the viewer. In that
case, you want this to be the very last layer drawn.

5.3 Basic plot types

These geoms are the fundamental building blocks of ggplot2. They are useful
in their own right, but also to construct more complex geoms. Most of these

5.3 Basic plot types 67

geoms are associated with a named plot: when that geom is used by itself in a
plot, that plot has a special name.

Each of these geoms is two dimensional and requires both x and y aesthetics.
All understand colour and size aesthetics, and the filled geoms (bar, tile
and polygon) also understand fill. The point geom uses shape and line and
path geoms understand linetype. The geoms are used for displaying data,
summaries computed elsewhere, and metadata.

• geom_area() draws an area plot, which is a line plot filled to the y-axis
(filled lines). Multiple groups will be stacked on top of each other.

• geom_bar(stat = "identity")() makes a barchart. We need stat =

"identity" because the default stat automatically counts values (so is
essentially a 1d geom, see § 5.4). The identity stat leaves the data unchanged.

By default, multiple bars in the same location will be stacked on top of
one another.

• geom_line() makes a line plot. The group aesthetic determines which
observations are connected; see Section 4.5.3 for more details. geom_path
is similar to a geom_line, but lines are connected in the order they appear
in the data, not from left to right.

• geom_point() produces a scatterplot.
• geom_polygon() draws polygons, which are filled paths. Each vertex of

the polygon requires a separate row in the data. It is often useful to merge
a data frame of polygon coordinates with the data just prior to plotting.
Section 5.7 illustrates this concept in more detail for map data.

• geom_text() adds labels at the specified points. This is the only geom
in this group that requires another aesthetic: label. It also has optional
aesthetics hjust and vjust that control the horizontal and vertical posi-
tion of the text; and angle which controls the rotation of the text. See
Appendex B for more details.

• geom_tile() makes a image plot or level plot. The tiles form a regular
tessellation of the plane and typically have the fill aesthetic mapped to
another variable.

Each of these geoms is illustrated in Figure 5.1, created with the code below.

df <- data.frame(

x = c(3, 1, 5),

y = c(2, 4, 6),

label = c("a","b","c")

)

p <- ggplot(df, aes(x, y, label = label)) +

xlab(NULL) + ylab(NULL)

p + geom_point() + opts(title = "geom_point")

p + geom_bar(stat="identity") +

opts(title = "geom_bar(stat=\"identity\")")

68 5 Toolbox

p + geom_line() + opts(title = "geom_line")

p + geom_area() + opts(title = "geom_area")

p + geom_path() + opts(title = "geom_path")

p + geom_text() + opts(title = "geom_text")

p + geom_tile() + opts(title = "geom_tile")

p + geom_polygon() + opts(title = "geom_polygon")

geom_point

2

3

4

5

6

●

●

●

1 2 3 4 5

geom_bar(stat="identity")

0

1

2

3

4

5

6

1 2 3 4 5

geom_line

2

3

4

5

6

1 2 3 4 5

geom_area

0

1

2

3

4

5

6

1 2 3 4 5

geom_path

2

3

4

5

6

1 2 3 4 5

geom_text

2

3

4

5

6

a

b

c

1 2 3 4 5

geom_tile

1

2

3

4

5

6

7

0 1 2 3 4 5 6

geom_polygon

2

3

4

5

6

1 2 3 4 5

Fig. 5.1: The basic geoms applied to the same data. Many give rise to to named plots
(from top left to bottom right): scatterplot, bar chart, line chart, area chart, path
plot, labelled scatterplot, image/level plot and polygon plot. Observe the different
axis ranges for the bar, area and tile plots: these geoms take up space outside the
range of the data, and so push the axes out.

5.4 Displaying distributions

There are a number of geoms that can be used to display distributions,
depending on the dimensionality of the distribution, whether it is continuous
or discrete, and whether you are interested in conditional or joint distribution.

For 1d continuous distributions the most important geom is the histogram.
Figure 5.2 uses the histogram to display the distribution of diamond depth. It
is important to experiment with bin placement to find a revealing view. You
can change the binwidth, or specify the exact location of the breaks.

If you want to compare the distribution between groups, you have a few
options: create small multiples of the histogram, facets = . ~ var; use a
frequency polygon, geom = "freqpoly"; or create a conditional density plot,

5.4 Displaying distributions 69

depth

c
o

u
n
t

0

5000

10000

15000

20000

45 50 55 60 65 70 75

depth

c
o

u
n
t

0

500

1000

1500

2000

56 58 60 62 64 66 68 70

Fig. 5.2: (Left) Never rely on the default parameters to get a revealing view of the
distribution. (Right) Zooming in on the x axis, xlim = c(55, 70), and selecting
a smaller bin width, binwidth = 0.1, reveals far more detail. We can see that
the distribution is slightly skew-right. Don’t forget to include information about
important parameters (like bin width) in the caption.

position = "fill". These options are illustrated in Figure 5.3, created with
the code below.

depth_dist <- ggplot(diamonds, aes(depth)) + xlim(58, 68)

depth_dist +

geom_histogram(aes(y = ..density..), binwidth = 0.1) +

facet_grid(cut ~ .)

depth_dist + geom_histogram(aes(fill = cut), binwidth = 0.1,

position = "fill")

depth_dist + geom_freqpoly(aes(y = ..density.., colour = cut),

binwidth = 0.1)

Both the histogram and frequency polygon geom use stat_bin. This statistic
produces two output variables count and density. The count is the default as
it is most interpretable. The density is basically the count divided by the total
count, and is useful when you want to compare the shape of the distributions,
not the overall size. You will often prefer this when comparing the distribution
of subsets that have different sizes.

Many of the distribution-related geoms come in geom/stat pairs. Most of
these geoms are aliases: a basic geom is combined with a stat to produce the
desired plot. The boxplot may appear to be an exception to this rule, but
behind the scenes geom_boxplot uses a combination of the basic bars, lines
and points.

70 5 Toolbox

depth

d
e

n
s
it
y

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

0.0
0.2
0.4
0.6
0.8

58 60 62 64 66 68

F
a
ir

G
o

o
d

V
e

ry
 G

o
o
d

P
re

m
iu

m
Id
e
a
l

depth

c
o

u
n
t

0.0

0.2

0.4

0.6

0.8

1.0

58 60 62 64 66 68

cut

Fair

Good

Very Good

Premium

Ideal

depth

d
e

n
s
it
y

0.0

0.2

0.4

0.6

0.8

58 60 62 64 66 68

..density..

Fair

Good

Very Good

Premium

Ideal

Fig. 5.3: Three views of the distribution of depth and cut. From top to bottom:
faceted histogram, a conditional density plot, and frequency polygons. All show
an interesting pattern: as quality increases, the distribution shifts to the left and
becomes more symmetric.

5.4 Displaying distributions 71

• geom_boxplot = stat_boxplot + geom_boxplot: box-and-whisker plot,
for a continuous variable conditioned by a categorical variable. This is
a useful display when the categorical variable has many distinct values.
When there are few values, the techniques described above give a better
view of the shape of the distribution. This technique can also be used
for continuous variables, if they are first finely binned. Figure 5.4 shows
boxplots conditioned on both categorical and continuous variables.

qplot(cut, depth, data=diamonds, geom="boxplot")

qplot(carat, depth, data=diamonds, geom="boxplot",

group = round_any(carat, 0.1, floor), xlim = c(0, 3))

cut

d
e
p
th

45

50

55

60

65

70

75

●●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●●

●

●
●
●●
●●●●●●

●

●

●
●●
●

●●●
●●●
●●

●

●●●●●●●
●●●
●
●
●
●
●
●

●●●●
●●
●●
●

●
●●●●
●

●
●
●
●●●●
●

●●

●

●●●
●
●●●
●
●●
●●
●

●

●
●
●●
●
●
●●●
●
●●●●●
●
●
●
●●
●
●●
●
●●
●●

●
●
●
●
●

●

●

●

●

●

●
●

●
●●●●●●

●●

●●
●
●●

●
●●
●

●●●●●

●

●

●
●
●

●
●
●●●
●
●
●

●●
●
●

●●

●
●
●

●●●●●

●

●●●●●●●
●●
●
●
●
●● ●●●●●

●●●

●

●

●
●
●●●●
●
●●

●

●●
●

●●

●

●●●●

●
●●
●
●

●

●●
●
●●
●●

●

●
●●●●
●●
●

●

●●

●●●

●
●

●

●●●●
●
●
●●●
●●●
●●
●●

●

●

●

●●
●●●●●
●●●●●
●●
●
●
●●●
●●

●

●

●

●
●
●

●

●

●

●

●

●●●●●
●
●●●
●

●●

●

●

●●●
●

●●

●

●
●
●

●

●

●

●●●●●
●

●
●

●

●●●●●●
●
●●
●●
●

●●●
●

●

●●●●●
●
●
●●

●
●●
●●

●

●
●
●
●

●

●●

●

●●●

●
●

●

●

●
●●

●

●
●●●

●

●
●●●
●●
●●●
●●●●●
●●●●
●
●
●●●

●

●●

●
●●●●●
●

●

●

●●

●
●
●●●●●●●●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●
●●

●

●

●●
●

●

●

●

●

●
●

●●●●
●●●
●
●●

●
●
●●
●
●
●

●
●●
●●

●
●
●
●●●●
●
●●●

●

●
●●
●
●●●
●

●●
●●●
●●
●●
●
●●

●
●
●
●
●●●●
●
●

●

●
●
●●●
●

●

●●

●●●
●
●●●
●
●
●

●●
●●●●
●

●

●

●●
●
●

●●

●
●●
●

●●●●●

●●
●
●●●●●●
●●●
●
●●●●
●●●
●
●

●

●

●
●

●●

●

●
●●

●●●●●

●

●●●●●●
●

●
●
●
●●●●
●
●
●

●

●

●
●●

●

●

●

●

●
●

●
●

●

●●●
●●●●●

Fair Good Very GoodPremium Ideal

carat

d
e
p
th

45

50

55

60

65

70

75

●

●

●

●

●

●

●

●●●●●●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●●
●

●

●●

●

●

●●

●●●
●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●●●●

●

●

●
●
●
●
●

●

●

●●●●●
●

●

●●●
●
●●
●●●●

●

●

●
●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●●●
●
● ●

●

●
●●
●●

●
●

●●●●

●

●●
●
●
●
●

●

●●

●

●
●

●

●

●

●

●

●
●
●●
●

●

●

●

●●●
●

●

●

●

●●

●

●●

●
●●●

●
●
●●●●●
●
●
●

●●●●●

●
●

●

●●
●

●

●●●●●

●

●

●

●●

●●

●

●●●●●●●●
●

●
●

●●

●
●●●
●
●●

●●

●

●●●

●

●
●●

●●
●

●
●●
●

●

●

●●

●
●●
●

●

●
●●
●
●
●
●

●

●

●
●●●●
●●

●

●●
●

●

●

●

●

●

●

●●
●
●
●

●●●●
●
●
●
●

●

●●

●

●●●●
●
●

●
●●●

●

●

●

●
●

●

●

●

●●
●
●
●

●

●

●
●

●

●

●

●●●●

●

●●●

●

●●

●

●●
●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●
●
●
●

●

●

●●

●

●

●

●

●

●
●
●●

●
●●●
●

●

●

●

●

●●

●

●

●

●●●●●

●●

●

●
●●●

●

●

●

●

●●
●

●

●●●

●

●●●●●

●
●●●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●
●
●
●

●
●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●●●

●

●
●
●
●
●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●●

●●

●

●●

●

●

●

●
●

●●
●

●

●
●

●●●●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●●●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●●●●
●

●

●

●

●

●

●

●●●●
●
●●

●

●
●

●

●

●
●
●
●

●

●

●●
●
●●

●

●●

●

●

●●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●

●
●
●
●●
●
●

●
●

●

●

●
●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●
●
●
●
●

●
●

●

●
●●

●

●

●
●

●
●

●

●●

●

●●

●

●

●

●●
●
●●
●
●
●

●●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●

●

●●

●

●●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●● ●●●
●●●
●

●

●

●

●

●
●●

●

●

●

●●

●

●●

●

●

●

●

●
●●
●●
●
●●
●

●●
●
●
●

●●
●
●

●

●

●

●

●

●

●●
●
●

●

●
●

●

●

●●

●

●

●

●

●●●●●●
●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●●
●
●

●

●
●●

●

●
●

●
●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●●

●

●

●●
●
●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

●●●

●

●●

●

●

●

●
●
●

●

●

●●

●
●

●

●

●

●

●
●

●

●●
●
●
●●●●

●

●
●
●

●●

●●
●
●
●●

●

●●

●
●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●
●

●
●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●●●
●
●●●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●
●

●●●

●

●

●

●

●

●

●●●

●

●

●●

●

●
●

●

●

●
●●

●

●
●
●
●
●●
●

●

●

●●

●

●

●●

●

●

●

●

●

●
●
●
●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●●●●

●

●
●
●
●●

●

●
●

●●

●

●
●

●

●
●

●

●
●●
●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●
●

●●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●●
●

●

●●●
●●
●
●

●

●●
●
●
●
●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●●
●●
●

●●

●
●●
●
●
●●

●

●
●

●

●

●

●

●
●
●

●

●
●●●●●
●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●
●
●

●

●
●
●●
●

●●

● ●

●

●●

●

●

●

●●

●

●

●
●●

●●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●

●

●
●

●

●

●

●●

●

●

●●

●

●●●●
●
●

●●●

●

●

●

●
●

●

●

●
●●●

●

●●

●
●

●●

●
●

●●●

●

●

●●

●

●
●●

●
●
●

●

●
●
●

●●
●

●

●
●●●
●
●
●
●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●
●●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fig. 5.4: The boxplot geom can be use to see the distribution of a continuous
variable conditional on a discrete varable like cut (left), or continuous variable
like carat (right). For continuous variables, the group aesthetic must be set to
get multiple boxplots. Here group = round any(carat, 0.1, floor) is used to
get a boxplot for each 0.1 carat bin.

• geom_jitter = position_jitter + geom_point: a crude way of looking
at discrete distributions by adding random noise to the discrete values so
that they don’t overplot. An example is shown in Figure 5.5 created with
the code below.

qplot(class, cty, data=mpg, geom="jitter")

qplot(class, drv, data=mpg, geom="jitter")

• geom_density = stat_density + geom_area: a smoothed version of the
frequency polygon based on kernel smoothers. Also described in Sec-
tion 2.5.3. Use a density plot when you know that the underlying density is
smooth, continuous and unbounded. You can use the adjust parameter to

72 5 Toolbox

class

c
ty

10

15

20

25

30

35

●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●●●

●

●● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●●

●●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●

● ●
●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

● ●

● ●

●

●
●

●● ●

●

●
●

●

●

●
●

●

●

● ●

●

●

●
●

●
●●

●

●

●

●
●

●
●●

●

●
●

●

●

● ●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
● ●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●

●
●

● ●●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

2seater compact midsize minivan pickup subcompact suv

class

d
rv

4

f

r

●

●
●

●

●
●

●

● ●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

● ● ●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

2seater compact midsize minivan pickup subcompact suv

Fig. 5.5: The jitter geom can be used to give a crude visualisation of 2d distribu-
tions with a discrete component. Generally this works better for smaller datasets.
Car class vs. continuous variable city mpg (top) and discrete variable drive train
(bottom).

make the density more or less smooth. An example is shown in Figure 5.6
created with the code below.

qplot(depth, data=diamonds, geom="density", xlim = c(54, 70))

qplot(depth, data=diamonds, geom="density", xlim = c(54, 70),

fill = cut, alpha = I(0.2))

Visualising a joint 2d continuous distribution is described in the next
section.

5.5 Dealing with overplotting

The scatterplot is a very important tool for assessing the relationship between
two continuous variables. However, when the data is large, often points will
be plotted on top of each other, obscuring the true relationship. In extreme
cases, you will only be able to see the extent of the data, and any conclusions

5.5 Dealing with overplotting 73

depth

d
e

n
s
it
y

0.0

0.1

0.2

0.3

55 60 65 70

depth

d
e

n
s
it
y

0.0

0.1

0.2

0.3

0.4

0.5

0.6

55 60 65 70

cut

Fair

Good

Very Good

Premium

Ideal

Fig. 5.6: The density plot is a smoothed version of the histogram. It has desirable
theoretical properties, but is more difficult to relate back to the data. A density
plot of depth (left), coloured by cut (right).

drawn from the graphic will be suspect. This problem is called overplotting
and there are a number of ways to deal with it:

• Small amounts of overplotting can sometimes be alleviated by making the
points smaller, or using hollow glyphs, as shown in Figure 5.7. The data is
2000 points sampled from two independent normal distributions, and the
code to produce the graphic is shown below.

df <- data.frame(x = rnorm(2000), y = rnorm(2000))

norm <- ggplot(df, aes(x, y))

norm + geom_point()

norm + geom_point(shape = 1)

norm + geom_point(shape = ".") # Pixel sized

• For larger datasets with more overplotting, you can use alpha blending
(transparency) to make the points transparent. If you specify alpha as a
ratio, the denominator gives the number of points that must be overplotted
to give a solid colour. In R, the lowest amount of transparency you can
use is 1/256, so it will not be effective for heavy overplotting. Figure 5.8
demonstrates some of these options with the following code.

norm + geom_point(colour = alpha("black", 1/3))

norm + geom_point(colour = alpha("black", 1/5))

norm + geom_point(colour = alpha("black", 1/10))

• If there is some discreteness in the data, you can randomly jitter the
points to alleviate some overlaps. This is particularly useful in conjunction

74 5 Toolbox

Fig. 5.7: Modifying the glyph used can help with mild to moderate overplotting.
From left to right: the default shape, shape = 1 (hollow points), and shape= "."

(pixel points).

Fig. 5.8: Using alpha blending to alleviate overplotting in sample data from a
bivariate normal. Alpha values from left to right: 1/3, 1/5, 1/10.

with transparency. By default, the amount of jitter added is 40% of the
resolution of the data, which leaves a small gap between adjacent regions.
In Figure 5.9, table is recorded to the nearest integers, so we set a jitter
width of half of that. The complete code is shown below.

td <- ggplot(diamonds, aes(table, depth)) +

xlim(50, 70) + ylim(50, 70)

td + geom_point()

td + geom_jitter()

jit <- position_jitter(width = 0.5)

td + geom_jitter(position = jit)

td + geom_jitter(position = jit, colour = alpha("black", 1/10))

td + geom_jitter(position = jit, colour = alpha("black", 1/50))

td + geom_jitter(position = jit, colour = alpha("black", 1/200))

Alternatively, we can think of overplotting as a 2d density estimation
problem, which gives rise to two more approaches:

5.5 Dealing with overplotting 75

Fig. 5.9: A plot of table vs. depth from the diamonds data, showing the use of
jitter and alpha blending to alleviate overplotting in discrete data. From left to
right: geom point, geom jitter with default jitter, geom jitter with horizontal
jitter of 0.5 (half the gap between bands), alpha of 1/10, alpha of 1/50, alpha of
1/200.

• Bin the points and count the number in each bin, then visualise that count
in some way (the 2d generalisation of the histogram). Breaking the plot
into many small squares can produce distracting visual artefacts. Carr
et al. (1987) suggests using hexagons instead, and this is implemented with
geom_hexagon, using the capabilities of the hexbin package (Carr et al.,
2008). Figure 5.10 compares square and hexagonal bins, using parameters
bins and binwidth to control the number and size of the bins. The complete
code is shown below.

d <- ggplot(diamonds, aes(carat, price)) + xlim(1,3) +

opts(legend.position = "none")

d + stat_bin2d()

d + stat_bin2d(bins = 10)

d + stat_bin2d(binwidth=c(0.02, 200))

d + stat_binhex()

d + stat_binhex(bins = 10)

d + stat_binhex(binwidth=c(0.02, 200))

• Estimate the 2d density with stat_density2d, and overlay contours from
this distribution on the scatterplot, or display the density by itself as

76 5 Toolbox

Fig. 5.10: Binning with, top row, square bins, and bottom row, hexagonal bins.
Left column uses default parameters, middle column bins = 10, and right column
binwidth = c(0.02, 200). Legends have been omitted to save space.

coloured tiles, or points with size proportional to density. Figure 5.11 shows
a few of these options with the code below.

d <- ggplot(diamonds, aes(carat, price)) + xlim(1,3) +

opts(legend.position = "none")

d + geom_point() + geom_density2d()

d + stat_density2d(geom = "point", aes(size = ..density..),

contour = F) + scale_area(to = c(0.2, 1.5))

d + stat_density2d(geom = "tile", aes(fill = ..density..),

contour = F)

last_plot() + scale_fill_gradient(limits = c(1e-5,8e-4))

• If you are interested in the conditional distribution of y given x, then the
techniques of Section 2.5.3 will also be useful.

Another approach to dealing with overplotting is to add data summaries
to help guide the eye to the true shape of the pattern within the data. For
example, you could add a smooth line showing the centre of the data with
geom_smooth. Section 5.9 has more ideas.

5.7 Drawing maps 77

Fig. 5.11: Using density estimation to model and visualise point densities. (Top)
Image displays of the density; (bottom) point and contour based displays.

5.6 Surface plots

ggplot2 currently does not support true 3d surfaces. However, it does support
the common tools for representing 3d surfaces in 2d: contours, coloured tiles
and bubble plots. These were used to illustrated the 2d density surfaces
in the previous section. You may also want to look at RGL, http://rgl.
neoscientists.org/about.shtml, for interactive 3d plots, including true 3d
surfaces.

5.7 Drawing maps

ggplot2 provides some tools to make it easy to combine maps from the maps

package with other ggplot2 graphics. Table 5.1 lists the available maps, which
are unfortunately rather US centric. There are two basic reasons you might
want to use map data: to add reference outlines to a plot of spatial data, or to
construct a choropleth map by filling regions with colour.

Adding map border is performed by the borders() function. The first
two arguments select the map and region within the map to display. The

78 5 Toolbox

Country Map name

France france
Italy italy
New Zealand nz
USA at county level county
USA at state level state
USA borders usa
Entire world world

Table 5.1: Maps available in the maps package

remaining arguments control the appearance of the borders: their colour and
size. If you’d prefer filled polygons instead of just borders, you can set the
fill colour. The following code uses borders() to display the spatial data
shown in Figure 5.12.

library(maps)

data(us.cities)

big_cities <- subset(us.cities, pop > 500000)

qplot(long, lat, data = big_cities) + borders("state", size = 0.5)

tx_cities <- subset(us.cities, country.etc == "TX")

ggplot(tx_cities, aes(long, lat)) +

borders("county", "texas", colour = "grey70") +

geom_point(colour = alpha("black", 0.5))

Choropleth maps are a little trickier and a lot less automated because it is
challenging to match the identifiers in your data to the identifiers in the map
data. The following example shows how to use map_data() to convert a map
into a data frame, which can then be merge()d with your data to produce a
choropleth map. The results are shown in Figure 5.13. The details for your
data will probably be different, but the key is to have a column in your data
and a column in the map data that can be matched.

library(maps)

states <- map_data("state")

arrests <- USArrests

names(arrests) <- tolower(names(arrests))

arrests$region <- tolower(rownames(USArrests))

choro <- merge(states, arrests, by = "region")

Reorder the rows because order matters when drawing polygons

and merge destroys the original ordering

choro <- choro[order(choro$order),]

qplot(long, lat, data = choro, group = group,

5.7 Drawing maps 79

long

la
t

30

35

40

45

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−120 −110 −100 −90 −80 −70

long

la
t

26

28

30

32

34

36

−106 −104 −102 −100 −98 −96 −94

Fig. 5.12: Example using the borders function. (Left) All cities with population (as
of January 2006) of greater than half a million, (right) cities in Texas.

fill = assault, geom = "polygon")

qplot(long, lat, data = choro, group = group,

fill = assault / murder, geom = "polygon")

long

la
t

30

35

40

45

−120 −110 −100 −90 −80 −70

assault

50

100

150

200

250

300

long

la
t

30

35

40

45

−120−110−100 −90 −80 −70

assault/murder

20

30

40

50

Fig. 5.13: Two choropleth maps showing number of assaults (left) and the ratio of
assaults to murders (right).

The map_data() function is also useful if you’d like to process the map
data in some way. In the following example we compute the (approximate)
centre of each county in Iowa and then use those centres to label the map.

80 5 Toolbox

> ia <- map_data("county", "iowa")

> mid_range <- function(x) mean(range(x, na.rm = TRUE))

> centres <- ddply(ia, .(subregion),

+ colwise(mid_range, .(lat, long)))

> ggplot(ia, aes(long, lat)) +

+ geom_polygon(aes(group = group),

+ fill = NA, colour = "grey60") +

+ geom_text(aes(label = subregion), data = centres,

+ size = 2, angle = 45)

long

la
t

40.5

41.0

41.5

42.0

42.5

43.0

43.5

ad
ai
r

ad
am

s

al
la
m
ak
ee

ap
pa

no
os
e

au
du
bo

n

be
nt

on

bl
ac

k
ha

w
k

bo
on
e

br
em
er

bu
ch
an
anbu

en
a
vi
st
a

bu
tle

r

ca
lh
ou

n

ca
rro
ll

ca
ss

ce
da

r

ce
rro

 g
or
do

ch
er

ok
ee

ch
ic
ka

sa
w

cl
ar

ke

cl
ay

cl
ay
to

n

cl
in
to

ncr
aw
fo

rd

da
lla

s

da
vi
s

de
ca
tu

r

de
la
w
ar
e

de
s
m

oi
ne

s

di
ck
in
so

n

du
bu

qu
e

em
m
et

fa
ye
tte

flo
yd

fra
nk
lin

fre
m

on
t

gr
ee

ne

gr
un
dy

gu
th

rie

ha
m
ilt
on

ha
nc

oc
k

ha
rd
in

ha
rri

so
n

he
nr

y

ho
w
ar
d

hu
m
bo
ld
t

id
a

io
w
a

ja
ck

so
n

ja
sp
er

je
ffe

rs
on

jo
hn

so
n

jo
ne

s

ke
ok

uk

ko
ss

ut
h

le
e

lin
n

lo
ui
sa

lu
ca

s

ly
on

m
ad
is
on

m
ah
as

ka

m
ar
io
n

m
ar

sh
al
l

m
ills

m
itc

he
ll

m
on

on
a

m
on

ro
e

m
on
tg

om
er

y

m
us

ca
tin
e

ob
rie

n

os
ce

ol
a

pa
ge

pa
lo
 a
lto

pl
ym

ou
th

po
ca

ho
nt
as

po
lk

po
tta

w
at
ta

m
ie

po
w
es

hi
ek

rin
gg

ol
d

sa
c

sc
ot
t

sh
el
by

si
ou
x

st
or

y
ta

m
a

ta
yl
or

un
io
n

va
n
bu

re
n

w
ap
el
lo

w
ar

re
n

w
as

hi
ng
to

n

w
ay

ne

w
eb

st
er

w
in
ne
ba

go

w
in
ne

sh
ie
k

w
oo
db

ur
y

w
or
th

w
rig

ht

−96 −95 −94 −93 −92 −91

5.8 Revealing uncertainty

If you have information about the uncertainty present in your data, whether it
be from a model or from distributional assumptions, it is often important to
display it. There are four basic families of geoms that can be used for this job,
depending on whether the x values are discrete or continuous, and whether or
not you want to display the middle of the interval, or just the extent. These
geoms are listed in Table 5.2. These geoms assume that you are interested in
the distribution of y conditional on x and use the aesthetics ymin and ymax to
determine the range of the y values. If you want the opposite, see coord_flip,
Section 7.3.3.

X variable Range Range plus centre

Continuous geom_ribbon geom_smooth(stat="identity")

Discrete geom_errorbar

geom_linerange

geom_crossbar

geom_pointrange

Table 5.2: Geoms that display intervals, useful for visualising uncertainty.

5.9 Statistical summaries 81

Because there are so many different ways to calculate standard errors, the
calculation is up to you. For very simple cases, ggplot2 provides some tools
in the form of summary functions described in Section 5.9, otherwise you will
have to do it yourself. The effects package (Fox, 2008) is particularly useful
for extracting these values from linear models. The following example fits a two-
way model with interaction, and shows how to extract and visualise marginal
and conditional effects. Figure 5.15 focusses on the categorical variable colour,
and Figure 5.16 focusses on the continuous variable carat.

> d <- subset(diamonds, carat < 2.5 &

+ rbinom(nrow(diamonds), 1, 0.2) == 1)

> d$lcarat <- log10(d$carat)

> d$lprice <- log10(d$price)

>

> # Remove overall linear trend

> detrend <- lm(lprice ~ lcarat, data = d)

> d$lprice2 <- resid(detrend)

>

> mod <- lm(lprice2 ~ lcarat * color, data = d)

>

> library(effects)

> effectdf <- function(...) {

+ suppressWarnings(as.data.frame(effect(...)))

+ }

> color <- effectdf("color", mod)

> both1 <- effectdf("lcarat:color", mod)

>

> carat <- effectdf("lcarat", mod, default.levels = 50)

> both2 <- effectdf("lcarat:color", mod, default.levels = 3)

Note, when captioning such figures, you need to carefully describe the
nature of the confidence intervals, and whether or not it is meaningful to
look at the overlap. That is, are the standard errors for the means or for the
differences between means? The packages multcomp and multcompView are
useful calculating and displaying these errors while correctly adjusting for
multiple comparisons.

5.9 Statistical summaries

It’s often useful to be able to summarise the y values for each unique x value.
In ggplot2, this role is played by stat_summary(), which provides a flexible
way of summarising the conditional distribution of y with the aesthetics ymin,
y and ymax. Figure 5.17 shows some of the variety of summaries that can be
achieved with this tool.

82 5 Toolbox

Fig. 5.14: Data transformed to remove most obvious effects. (Left) Both x and y
axes are log10 transformed to remove non-linearity. (Right) The major linear trend
is removed.

color

−0.20

−0.15

−0.10

−0.05

0.00

0.05
●

●
●

●

●

●

●

D E F G H I J

color

−0.20

−0.15

−0.10

−0.05

0.00

0.05

D E F G H I J

−0.6

−0.4

−0.2

0

0.2

Fig. 5.15: Displaying uncertainty in model estimates for colour. (Left) Marginal effect
of colour. (Right) conditional effects of colour for different levels of carat. Error bars
show 95% pointwise confidence intervals.

5.9 Statistical summaries 83

lcarat

−0.20

−0.15

−0.10

−0.05

0.00

0.05

−0.6 −0.4 −0.2 0.0 0.2

lcarat + 0.02

−0.20

−0.15

−0.10

−0.05

0.00

0.05

D

E
FG

HI

J

−0.6 −0.4 −0.2 0.0 0.2 0.4

Fig. 5.16: Displaying uncertainty in model estimates for carat. (Left) marginal effect
of carat. (Right) conditional effects of carat for different levels of colour. Bands show
95% point-wise confidence intervals.

When using stat_summary() you can either supply these the summary
functions individually or altogether. These alternatives are described below.

year

ra
ti
n
g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

year

ra
ti
n
g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

year

ra
ti
n
g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

year

ra
ti
n
g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

round(rating)

lo
g
1
0
(v

o
te

s
)

1

2

3

4

5

●
●

●
● ●

●
●

●
●

●

2 4 6 8 10

round(rating)

lo
g
1
0
(v

o
te

s
)

1

2

3

4

5

2 4 6 8 10

round(rating)

lo
g
1
0
(v

o
te

s
)

1

2

3

4

5

●
●

●

● ● ●
●

●

●

●

2 4 6 8 10

round(rating)

lo
g
1
0
(v

o
te

s
)

1

2

3

4

5

2 4 6 8 10

Fig. 5.17: Examples of stat_summary in use. (Top) Continuous x with, from
left to right, median and line, median_hilow() and smooth, mean and line, and
mean_cl_boot() and smooth. (Bottom) Discrete x with, from left to right, mean()
and point, mean_cl_normal() and error bar, median_hilow() and point range, and
median_hilow() and crossbar. Note that ggplot2 displays the full range of the data,
not just the range of the summary statistics.

84 5 Toolbox

5.9.1 Individual summary functions

The arguments fun.y, fun.ymin and fun.ymax accept simple numeric sum-
mary functions. You can use any summary function that takes a vector of
numbers and returns a single numeric value: mean(), median(), min(), max().

> midm <- function(x) mean(x, trim = 0.5)

> m2 +

+ stat_summary(aes(colour = "trimmed"), fun.y = midm,

+ geom = "point") +

+ stat_summary(aes(colour = "raw"), fun.y = mean,

+ geom = "point") +

+ scale_colour_hue("Mean")

round(rating)

lo
g

1
0

(v
o
te

s
)

1

2

3

4

5

●
●

●

● ● ●
●

●

●

●
●

●

●
● ●

●
●

●
●

●

2 4 6 8 10

Mean

●● trimmed

●● raw

5.9.2 Single summary function

fun.data can be used with more complex summary functions such as one
of the summary functions from the Hmisc package (Harrell, 2008) described
in Table 5.3. You can also write your own summary function. This summary
function should return a named vector as output, as shown in the following
example.

> iqr <- function(x, ...) {

+ qs <- quantile(as.numeric(x), c(0.25, 0.75), na.rm = T)

+ names(qs) <- c("ymin", "ymax")

+ qs

+ }

> m + stat_summary(fun.data = "iqr", geom="ribbon")

5.10 Annotating a plot 85

year

ra
ti
n

g

2

4

6

8

10

1900 1920 1940 1960 1980 2000

Function Hmisc original Middle Range

mean_cl_normal() smean.cl.boot() Mean Standard error from normal approxi-
mation

mean_cl_boot() smean.cl.boot() Mean Standard error from bootstrap
mean_sdl() smean.sdl() Mean Multiple of standard deviation
median_hilow() smedian.hilow() Median Outer quantiles with equal tail areas

Table 5.3: Summary functions from the Hmisc package that have special wrappers to
make them easy to use with stat_summary().

5.10 Annotating a plot

When annotating your plot with additional labels, the important thing to
remember is that these annotations are just extra data. There are two basic
ways to add annotations: one at a time, or many at once.

Adding one at a time works best for small numbers of annotations with
varying aesthetics. You just set all the values to give the desired properties.
If you have multiple annotations with similar properties, it may make sense
to put them all in a data frame and add them at once. The example below
demonstrates both approaches by adding information about presidents to
economic data.

> (unemp <- qplot(date, unemploy, data=economics, geom="line",

+ xlab = "", ylab = "No. unemployed (1000s)"))

86 5 Toolbox

N
o

.
u

n
e

m
p
lo

y
e
d

 (
1
0
0
0

s
)

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

>

> presidential <- presidential[-(1:3),]

>

> yrng <- range(economics$unemploy)

> xrng <- range(economics$date)

> unemp + geom_vline(aes(xintercept = start), data = presidential)

N
o

.
u

n
e

m
p
lo

y
e
d

 (
1
0
0
0

s
)

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

> unemp + geom_rect(aes(NULL, NULL, xmin = start, xmax = end,

+ fill = party), ymin = yrng[1], ymax = yrng[2],

+ data = presidential) + scale_fill_manual(values =

+ alpha(c("blue", "red"), 0.2))

N
o

.
u

n
e

m
p
lo

y
e
d

 (
1
0
0
0

s
)

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

party

Democratic

Republican

> last_plot() + geom_text(aes(x = start, y = yrng[1], label = name),

+ data = presidential, size = 3, hjust = 0, vjust = 0)

5.10 Annotating a plot 87

N
o

.
u

n
e

m
p
lo

y
e
d

 (
1
0
0
0

s
)

4000

6000

8000

10000

12000

Nixon Ford Carter Reagan Bush Clinton Bush

1967 1972 1977 1982 1987 1992 1997 2002 2007

party

Democratic

Republican

> caption <- paste(strwrap("Unemployment rates in the US have

+ varied a lot over the years", 40), collapse="\n")

> unemp + geom_text(aes(x, y, label = caption),

+ data = data.frame(x = xrng[2], y = yrng[2]),

+ hjust = 1, vjust = 1, size = 4)

N
o

.
u

n
e

m
p
lo

y
e
d

 (
1
0
0
0

s
)

4000

6000

8000

10000

12000 Unemployment rates in the US have

varied a lot over the years

1967 1972 1977 1982 1987 1992 1997 2002 2007

>

> highest <- subset(economics, unemploy == max(unemploy))

> unemp + geom_point(data = highest,

+ size = 3, colour = alpha("red", 0.5))

N
o

.
u

n
e

m
p
lo

y
e
d

 (
1
0
0
0

s
)

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

• geom_text for adding text descriptions or labelling points. Most plots
will not benefit from adding text to every single observation on the plot.

88 5 Toolbox

However, pulling out just a few observations (using subset) can be very
useful. Typically you will want to label outliers or other important points.

• geom_vline, geom_hline: add vertical or horizontal lines to a plot.
• geom_abline: add lines with arbitrary slope and intercept to a plot.
• geom_rect for highlighting interesting rectangular regions of the plot.

geom_rect has aesthetics xmin, xmax, ymin and ymax.
• geom_line, geom_path and geom_segment for adding lines. All these geoms

have an arrow parameter, which allows you to place an arrowhead on
the line. You create arrowheads with the arrow() function, which has
arguments angle, length, ends and type.

5.11 Weighted data

When you have aggregated data where each row in the dataset represents
multiple observations, you need some way to take into account the weighting
variable. We will use some data collected on Midwest states in the 2000 US
census. The data consists mainly of percentages (e.g., percent white, percent
below poverty line, percent with college degree) and some information for each
county (area, total population, population density).

There are a few different things we might want to weight by:

• nothing, to look at numbers of counties
• total population, to work with absolute numbers
• area, to investigate geographic effects

The choice of a weighting variable profoundly affects what we are looking at
in the plot and the conclusions that we will draw. There are two aesthetic
attributes that can be used to adjust for weights. Firstly, for simple geoms
like lines and points, you can make the size of the grob proportional to the
number of points, using the size aesthetic, as with the following code, whose
results are shown in Figure 5.18.

qplot(percwhite, percbelowpoverty, data = midwest)

qplot(percwhite, percbelowpoverty, data = midwest,

size = poptotal / 1e6) + scale_area("Population\n(millions)",

breaks = c(0.5, 1, 2, 4))

qplot(percwhite, percbelowpoverty, data = midwest, size = area) +

scale_area()

For more complicated grobs which involve some statistical transformation,
we specify weights with the weight aesthetic. These weights will be passed
on to the statistical summary function. Weights are supported for every case
where it makes sense: smoothers, quantile regressions, boxplots, histograms,
and density plots. You can’t see this weighting variable directly, and it doesn’t
produce a legend, but it will change the results of the statistical summary.

5.11 Weighted data 89

Fig. 5.18: Using size to display weights. No weighting (left), weighting by population
(centre) and by area (right).

Figure 5.19 shows how weighting by population density affects the relationship

between percent white and percent below the poverty line.

lm_smooth <- geom_smooth(method = lm, size = 1)

qplot(percwhite, percbelowpoverty, data = midwest) + lm_smooth

qplot(percwhite, percbelowpoverty, data = midwest,

weight = popdensity, size = popdensity) + lm_smooth

Fig. 5.19: An unweighted line of best fit (left) and weighted by population size (right).

When we weight a histogram or density plot by total population, we change

from looking at the distribution of the number of counties, to the distribution

of the number of people. Figure 5.20 shows the difference this makes for a

histogram of the percentage below the poverty line.

qplot(percbelowpoverty, data = midwest, binwidth = 1)

90 5 Toolbox

qplot(percbelowpoverty, data = midwest, weight = poptotal,

binwidth = 1) + ylab("population")

Fig. 5.20: The difference between an unweighted (left) and weighted (right) histogram.
The unweighted histogram shows number of counties, while the weighted histogram

shows population. The weighting considerably changes the interpretation!

Chapter 6

Scales, axes and legends

6.1 Introduction

Scales control the mapping from data to aesthetics. They take your data and
turn it into something that you can perceive visually: e.g., size, colour, position
or shape. Scales also provide the tools you use to read the plot: the axes and
legends (collectively known as guides). Formally, each scale is a function from
a region in data space (the domain of the scale) to a region in aesthetic space
(the range of the range). The domain of each scale corresponds to the range of
the variable supplied to the scale, and can be continuous or discrete, ordered or
unordered. The range consists of the concrete aesthetics that you can perceive
and that R can understand: position, colour, shape, size and line type. If you
blinked when you read that scales map data both to position and colour, you
are not alone. The notion that the same kind of object is used to map data to
positions and symbols strikes some people as unintuitive. However, you will
see the logic and power of this notion as you read further in the chapter.

The process of scaling takes place in three steps, transformation, training
and mapping, and is described in Section 6.2. Without a scale, there is no way
to go from the data to aesthetics, so a scale is required for every aesthetic used
on the plot. It would be tedious to manually add a scale every time you used a
new aesthetic, so whenever a scale is needed ggplot2 will add a default. You
can generate many plots without knowing how scales work, but understanding
scales and learning how to manipulate them will give you much more control.
Default scales and how to override them are described in Section 6.3.

Scales can be roughly divided into four categories: position scales, colour
scales, the manual discrete scale and the identity scale. The common options
and most important uses are described in Section 6.4. The section focusses on
giving you a high-level overview of the options available, rather than expanding
on every detail in depth. Details about individual parameters are included in
the online documentation.

The other important role of each scale is to produce a guide that allows
the viewer to perform the inverse mapping, from aesthetic space to data space,

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 6, 91
c© Springer Science+Business Media, LLC 2009

92 6 Scales, axes and legends

and read values off the plot. For position aesthetics, the axes are the guides;
for all other aesthetics, legends do the job. Unlike other plotting systems, you
have little direct control over the axis or legend: there is no gglegend() or
ggaxis() to call to modify legends or axes. Instead, all aspects of the guides
are controlled by parameters of the scale. Axes and legends are discussed in
Section 6.5.

Section 6.6 concludes the chapter with pointers to other academic work
that discusses some of the things you need to keep in mind when assigning
variables to aesthetics.

6.2 How scales work

To describe how scales work, we will first describe the domain (the data space)
and the range (the aesthetic space), and then outline the process by which
one is mapped to the other.

Since an input variable is either discrete or continuous, the domain is
either a set of values (stored as a factor, character vector or logical vector)
or an interval on the real line (stored as a numeric vector of length 2). For
example, in the mammals sleep dataset (msleep), the domain of the discrete
variable vore is {carni, herbi, omni}, and the domain of the continuous variable
bodywt is [0.005, 6654]. We often think of these as data ranges, but here we are
focussing on their nature as input to the scale, i.e., as a domain of a function.

The range can also be discrete or continuous. For discrete scales, it is a
vector of aesthetic values corresponding to the input values. For continuous
scales, it is a 1d path through some more complicated space. For example, a
colour gradient interpolates linearly from one colour to another. The range is
either specified by the user when the scale is created, or by the scale itself.

The process of mapping the domain to the range includes the following
stages:

• transformation: (for continuous domain only). It is often useful to dis-
play a transformation of the data, such as a logarithm or square root.
Transformations are described in more depth in Section 6.4.2.
After any transformations have been applied, the statistical summaries for
each layer are computed based on the transformed data. This ensures that
a plot of log(x) vs. log(y) on linear scales looks the same as x vs. y on log
scales.

• training: During this key stage, the domain of the scale is learned. Some-
times learning the domain of a scale is extremely straightforward: In a plot
with only one layer, representing only raw data, it consists of determining
the minimum and maximum values of a continuous variable (after trans-
formation), or listing the unique levels of a categorical variable. However,
often the domain must reflect multiple layers across multiple datasets in
multiple panels. For example, imagine a scale that will be used to create an

6.3 Usage 93

axis; the minimum and maximum values of the raw data in the first layer
and the statistical summary in the second layer are likely to be different,
but they must all eventually be drawn on the same plot.
The domain can also be specified directly, overriding the training process,
by manually setting the domain of the scale with the limits argument, as
described in Section 6.3. Any values outside of the domain of the scale will
be mapped to NA.

• mapping: We now know the domain and we already knew the range
before we started this process, so the last thing to do is to apply the scaling
function that maps data values to aesthetic values.

We have left a few stages out of this description of the process for simplicity.
For example, we haven’t discussed the role faceting plays in training, and
we have also ignored position adjustments. Nevertheless this description is
accurate, and you should come back to it if you are confused about what scales
are doing in your plot.

6.3 Usage

Every aesthetic has a default scale that is added to the plot whenever you
use that aesthetic. These are listed in Table 6.1. The scale depends on the
variable type: continuous (numeric) or discrete (factor, logical, character). If
you want to change the default scales see set_default_scale(), described in
Section 8.2.1.

Default scales are added when you initialise the plot and when you add
new layers. This means it is possible to get a mismatch between the variable
type and the scale type if you later modify the underlying data or aesthetic
mappings. When this happens you need to add the correct scale yourself. The
following example illustrates the problem and solution.

plot <- qplot(cty, hwy, data = mpg)

plot

This doesn’t work because there is a mismatch between the

variable type and the default scale

plot + aes(x = drv)

Correcting the default manually resolves the problem.

plot + aes(x = drv) + scale_x_discrete()

To add a different scale or to modify some features of the default scale,
you must construct a new scale and then add it to the plot using +. All
scale constructors have a common naming scheme. They start with scale_,
followed by the name of the aesthetic (e.g., colour_, shape_ or x_), and finally
by the name of the scale (e.g., gradient, hue or manual). For example, the

94 6 Scales, axes and legends

name of the default scale for the colour aesthetic based on discrete data is
scale colour hue(), and the name of the Brewer colour scale for fill colour
is scale fill brewer().

Aesthetic Discrete Continuous

Colour and fill brewer
grey
hue

identity
manual

gradient

gradient2
gradientn

Position (x, y) discrete continuous

date

Shape shape

identity
manual

Line type linetype

identity
manual

Size identity
manual

size

Table 6.1: Scales, by aesthetic and variable type. Default scales are emboldened.
The default scale varies depending on whether the variable is continuous or discrete.
Shape and line type do not have a default continuous scale; size does not have a
default discrete scale.

The following code illustrates this process. We start with a plot that uses the
default colour scale, and then modify it to adjust the appearance of the legend,
and then use a different colour scale. The results are shown in Figure 6.1.

p <- qplot(sleep_total, sleep_cycle, data = msleep, colour = vore)

p

Explicitly add the default scale

p + scale_colour_hue()

Adjust parameters of the default, here changing the appearance

of the legend

p + scale_colour_hue("What does\nit eat?",

breaks = c("herbi", "carni", "omni", NA),

labels = c("plants", "meat", "both", "don’t know"))

Use a different scale

p + scale_colour_brewer(pal = "Set1")

6.3 Usage 95

sleep_total

s
le

e
p

_
c
y
c
le

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

5 10 15

vore

● carni

● herbi

● insecti

● omni

● NA

sleep_total

s
le

e
p

_
c
y
c
le

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

5 10 15

vore

● carni

● herbi

● insecti

● omni

● NA

sleep_total

s
le

e
p

_
c
y
c
le

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

5 10 15

What does

it eat?

● plants

● meat

● both

● don't know

sleep_total

s
le

e
p

_
c
y
c
le

0.2

0.4

0.6

0.8

1.0

1.2

1.4

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

5 10 15

vore

● carni

● herbi

● insecti

● omni

● NA

Fig. 6.1: Adjusting the default parameters of a scale. (Top left) The plot with default
scale. (Top right) Adding the default scale by hand doesn’t change the appearance
of the plot. (Bottom left) Adjusting the parameters of the scale to tweak the legend.
(Bottom right) Using a different colour scale: Set1 from the ColorBrewer colours.

96 6 Scales, axes and legends

6.4 Scale details

Scales can be divided roughly into four separate groups:

• Position scales, used to map continuous, discrete and date-time variables
onto the plotting region and to construct the corresponding axes.

• Colour scales, used to map continuous and discrete variables to colours.
• Manual scales, used to map discrete variables to your choice of symbol size,

line type, shape or colour, and to create the corresponding legend.
• The identity scale, used to plot variable values directly to the aesthetic

rather than mapping them. For example, if the variable you want to map
to symbol colour is itself a vector of colours, you want to render those
values directly rather than mapping them to some other colours.

This section describes each group in more detail. Precise details about individ-
ual scales can be found in the documentation, within R (e.g., ?scale brewer),
or online at http://had.co.nz/ggplot2.

6.4.1 Common arguments

The following arguments are common to all scales.

• name: sets the label which will appear on the axis or legend. You can supply
text strings (using \n for line breaks) or mathematical expressions (as
described by ?plotmath). Because tweaking these labels is such a common
task, there are three helper functions to save you some typing: xlab(),
ylab() and labs(). Their use is demonstrated in the code below and
results are shown in Figure 6.2.

p <- qplot(cty, hwy, data = mpg, colour = displ)

p

p + scale_x_continuous("City mpg")

p + xlab("City mpg")

p + ylab("Highway mpg")

p + labs(x = "City mpg", y = "Highway", colour = "Displacement")

p + xlab(expression(frac(miles, gallon)))

• limits: fixes the domain of the scale. Continuous scales take a numeric
vector of length two; discrete scales take a character vector. If limits are set,
no training of the data will be performed. See Section 6.4.2 for shortcuts.
Limits are useful for removing data you don’t want displayed in a plot
(i.e., setting limits that are smaller than the full range of data), and for
ensuring that limits are consistent across multiple plots intended to be
compared (i.e., setting limits that are larger or smaller than some of the
default ranges).
Any value not in the domain of the scale is discarded: for an observation
to be included in the plot, each aesthetic must be in the domain of each
scale. This discarding occurs before statistics are calculated.

6.4 Scale details 97

cty

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

City mpg

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

City mpg

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

cty

H
ig

h
w

a
y
 m

p
g

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

City mpg

H
ig

h
w

a
y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

Displacement

● 2

● 3

● 4

● 5

● 6

● 7

miles

gallon

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

Fig. 6.2: A demonstration of the different forms legend title can take.

• breaks and labels: breaks controls which values appear on the axis or
legend, i.e., what values tick marks should appear on an axis or how a
continuous scale is segmented in a legend. labels specifies the labels that
should appear at the breakpoints. If labels is set, you must also specify
breaks, so that the two can be matched up correctly.
To distinguish breaks from limits, remember that breaks affect what appears
on the axes and legends, while limits affect what appears on the plot. See
Figure 6.3 for an illustration. The first column uses the default settings for
both breaks and limits, which are limits = c(4, 8) and breaks = 4:8.
In the middle column, the breaks have been reset: the plotted region is the
same, but the tick positions and labels have shifted. In the right column,
it is the limits which have been redefined, so much of the data now falls
outside the plotting region.

p <- qplot(cyl, wt, data = mtcars)

p

p + scale_x_continuous(breaks = c(5.5, 6.5))

p + scale_x_continuous(limits = c(5.5, 6.5))

p <- qplot(wt, cyl, data = mtcars, colour = cyl)

p

p + scale_colour_gradient(breaks = c(5.5, 6.5))

p + scale_colour_gradient(limits = c(5.5, 6.5))

98 6 Scales, axes and legends

cyl

w
t

2

3

4

5

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

4 5 6 7 8

cyl

w
t

2

3

4

5

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

5.5 6.5

cyl

w
t

2

3

4

5

●

●

●

●●●

●

5.6 5.8 6.0 6.2 6.4

wt

c
y
l

4

5

6

7

8

● ●

●

●

●

●

●

●●

●●

●●● ● ●●

●● ● ●

●● ●●

● ●●

●

●

●

●

2 3 4 5

cyl

● 4

● 5

● 6

● 7

● 8

wt

c
y
l

4

5

6

7

8

● ●

●

●

●

●

●

●●

●●

●●● ● ●●

●● ● ●

●● ●●

● ●●

●

●

●

●

2 3 4 5

cyl

● 5.5

● 6.5

wt

c
y
l

4

5

6

7

8

● ● ● ●●●●

2 3 4 5

cyl

● 5.6

● 5.8

● 6

● 6.2

● 6.4

Fig. 6.3: The difference between breaks and limits. (Left) default plot with limits

= c(4, 8), breaks = 4:8, (middle) breaks = c(5.5,6.5) and (right) limits

= c(5.5,6.5). The effect on the x axis (top) and colour legend (bottom)

• formatter: if no labels are specified the formatter will be called on
each break to produce the label. Useful formatters for continuous scales
are comma, percent, dollar and scientific, and for discrete scales is
abbreviate.

6.4.2 Position scales

Every plot must have two position scales, one for the horizontal position (the
x scale) and one for the vertical position (the y scale). ggplot2 comes with
continuous, discrete (for factor, character and logical vectors) and date scales.
Each of these transform the data in a slightly different way, and generate a
slightly different type of axis. The following sections describe each type in
more detail.

A common task for all position axes is changing the axis limits. Because
this is such a common task, ggplot2 provides a couple of helper functions to
save you some typing: xlim() and ylim(). These functions inspect their input
and then create the appropriate scale, as follows:

• xlim(10, 20): a continuous scale from 10 to 20
• ylim(20, 10): a reversed continuous scale from 20 to 10
• xlim("a", "b", "c"): a discrete scale

6.4 Scale details 99

• xlim(as.Date(c("2008-05-01", "2008-08-01"))): a date scale from
May 1 to August 1 2008.

These limits do not work in the same way as xlim and ylim in base or lattice
graphics. In ggplot2, to be consistent with the other scales, any data outside
the limits is not plotted and not included in the statistical transformation.
This means that setting the limits is not the same as visually zooming in to a
region of the plot. To do that, you need to use the xlim and ylim arguments to
coord_cartesian(), described in Section 7.3.3. This performs purely visual
zooming and does not affect the underlying data.

By default, the limits of position scales extend a little past the range of the
data. This ensures that the data does not overlap the axes. You can control
the amount of expansion with the expand argument. This parameter should
be a numeric vector of length two. The first element gives the multiplicative
expansion, and the second the additive expansion. If you don’t want any extra
space, use expand = c(0, 0).

Continuous

The most common continuous position scales are scale x continuous and
scale y continuous, which map data to the x and y axis. The most interesting
variations are produced using transformations. Every continuous scale takes a
trans argument, allowing the specification of a variety of transformations, both
linear and non-linear. The transformation is carried out by a “transformer,”
which describes the transformation, its inverse, and how to draw the labels.
Table 6.2 lists some of the more common transformers.

Name Function f(x) Inverse f−1(y)

asn tanh−1(x) tanh(y)
exp ex log(y)
identity x y
log log(x) ey

log10 log10(x) 10y

log2 log2(x) 2y

logit log(x
1−x

) 1
1+e(y)

pow10 10x log10(y)
probit Φ(x) Φ−1(y)
recip x−1 y−1

reverse −x −y

sqrt x1/2 y2

Table 6.2: List of built-in transformers.

Transformations are most often used to modify position scales, so there
are shortcuts for x, y and z scales: scale_x_log10() is equivalent to

100 6 Scales, axes and legends

scale_x_continuous(trans = "log10"). The trans argument works for any
continuous scale, including the colour gradients described below, but the short-
cuts only exist for position scales.

Of course, you can also perform the transformation yourself. For example,
instead of using scale_x_log(), you could plot log10(x). That produces an
identical result inside the plotting region, but the the axis and tick labels
won’t be the same. If you use a transformed scale, the axes will be labelled in
the original data space. In both cases, the transformation occurs before the
statistical summary. Figure 6.4 illustrates this difference with the following
code.

qplot(log10(carat), log10(price), data = diamonds)

qplot(carat, price, data = diamonds) +

scale_x_log10() + scale_y_log10()

Fig. 6.4: A scatterplot of diamond price vs. carat illustrating the difference between
log transforming the scale (left) and log transforming the data (right). The plots are
identical, but the axis labels are different.

Transformers are also used in coord_trans(), where the transformation
occurs after the statistic has been calculated, and affects the shape of the
graphical object drawn on the plot. coord_trans() is described in more detail
in Section7.3.3.

Date and time

Dates and times are basically continuous values, but with special ways of
labelling the axes. Currently, only dates of class date and times of class
POSIXct are supported. If your dates are in a different format you will need
to convert them with as.Date() or as.POSIXct().

There are three arguments that control the appearance and location of
the ticks for date axes: major, minor and format. Generally, the scale does a
pretty good job of choosing the defaults, but if you need to tweak them the
details are as follows:

6.4 Scale details 101

• The major and minor arguments specify the position of major and minor
breaks in terms of date units, years, months, weeks, days, hours, min-
utes and seconds, and can be combined with a multiplier. For example,
major = "2 weeks" will place a major tick mark every two weeks. If not
specified, the date scale has some reasonable default for choosing them
automatically.

• The format argument specifies how the tick labels should be formatted.
Table 6.3 lists the special characters used to display components of a date.
For example, if you wanted to display dates of the form 14/10/1979, you
would use the string "%d/%m/%y".

Code Meaning

%S second (00-59)
%M minute (00-59)
%l hour, in 12-hour clock (1-12)
%I hour, in 12-hour clock (01-12)
%H hour, in 24-hour clock (00-23)
%a day of the week, abbreviated (Mon-Sun)
%A day of the week, full (Monday-Sunday)
%e day of the month (1-31)
%d day of the month (01-31)
%m month, numeric (01-12)
%b month, abbreviated (Jan-Dec)
%B month, full (January-December)
%y year, without century (00-99)
%Y year, with century (0000-9999)

Table 6.3: Common data formatting codes, adapted from the documentation of
strptime. Listed from shortest to longest duration.

The code below generates the plots in Figure 6.5, illustrating some of these
parameters.

plot <- qplot(date, psavert, data = economics, geom = "line") +

ylab("Personal savings rate") +

geom_hline(xintercept = 0, colour = "grey50")

plot

plot + scale_x_date(major = "10 years")

plot + scale_x_date(

limits = as.Date(c("2004-01-01", "2005-01-01")),

format = "%Y-%m-%d"

)

102 6 Scales, axes and legends

date

P
e

rs
o

n
a

l
s
a

v
in

g
s
 r

a
te

0

5

10

1967 1972 1977 1982 1987 1992 1997 2002 2007

date

P
e

rs
o

n
a

l
s
a

v
in

g
s
 r

a
te

0

5

10

1967 1977 1987 1997 2007

date

P
e

rs
o

n
a

l
s
a

v
in

g
s
 r

a
te

0

5

10

2004−01−012004−04−012004−07−012004−10−012005−01−01

Fig. 6.5: A time series of personal savings rate. (Left) The default appearance,
(middle) breaks every 10 years, and (right) scale restricted to 2004, with YMD date
format. Measurements are recorded at the end of each month.

Discrete

Discrete position scales map the unique values of their input to integers. The
order of the result can be controlled by the breaks argument, and levels can be
dropped with the limits argument (or by using xlim() or ylim()). Because it
is often useful to place labels and other annotations on intermediate positions
on the plot, discrete position scales also accept continuous values. If you have
not adjusted the breaks or limits, the numerical position of a factor level can
be calculated with as.numeric(): the values are placed on integers starting
at 1.

6.4.3 Colour

After position, probably the most commonly used aesthetic is colour. There are
quite a few different ways of mapping values to colours: three different gradient
based methods for continuous values, and two methods for mapping discrete
values. But before we look at the details of the different methods, it’s useful
to learn a little bit of colour theory. Colour theory is complex because the
underlying biology of the eye and brain is complex, and this introduction will
only touch on some of the more important issues. An excellent more detailed
exposition is available online at http://tinyurl.com/clrdtls.

At the physical level, colour is produced by a mixture of wavelengths of
lights. To know a colour completely we need to know the complete mixture
of wavelengths, but fortunately for us the human eye only has three different
colour receptors, and so we can summarise any colour with just three numbers.
You may be familiar with the rgb encoding of colour space, which defines a
colour by the intensities of red, green and blue light needed to produce it. One
problem with this space is that it is not perceptually uniform: the two colours
that are one unit apart may look similar or very different depending on where
in the colour space they. This makes it difficult to create a mapping from a
continuous variable to a set of colours. There have been many attempts to

6.4 Scale details 103

come up with colours spaces that are more perceptually uniform. We’ll use a
modern attempt called the hcl colour space, which has three components of
hue, chroma and luminance:

• Hue is a number between 0 and 360 (an angle) which gives the “colour” of
the colour: like blue, red, orange, etc.

• Luminance is the lightness of the colour. A luminance of 0 produces black,
and a luminance of 1 produces white.

• Chroma is the purity of a colour. A chroma of 0 is grey, and the maximum
value of chroma varies with luminance.

The combination of these three components does not produce a simple
geometric shape. Figure 6.6 attempts to show the 3d shape of the space. Each
slice is a constant luminance (brightness) with hue mapped to angle and
chroma to radius. You can see the centre of each slice is grey and the colours
get more intense as they get closer to the edge.

Fig. 6.6: The shape of the hcl colour space. Hue is mapped to angle, chroma to
radius and each slice shows a different luminance. The hcl space is a pretty odd
shape, but you can see that colours near the centre of each slice are grey, and as you
move towards the edges they become more intense. Slices for luminance 0 and 100
are omitted because they would, respectively, be a single black point and a single
white point.

104 6 Scales, axes and legends

An additional complication is that many people (∼10% of men) do not
possess the normal complement of colour receptors and so can distinguish
fewer colours than usual. In brief, it’s best to avoid red-green contrasts, and
to check your plots with systems that simulate colour blindness. Visicheck is
one online solution. Another alternative is the dichromat package (Lumley,
2007) which provides tools for simulating colour blindness, and a set of colour
schemes known to work well for colour-blind people. You can also help people
with colour blindness in the same way that you can help people with black-
and-white printers: by providing redundant mappings to other aesthetics like
size, line type or shape.

All of the scales discussed in the following sections work with border
(colour) and fill (fill) colour aesthetics.

Continuous

There are three types of continuous colour gradients, based on the number of
colours in the gradient:

• scale_colour_gradient() and scale_fill_gradient(): a two-colour
gradient, low-high. Arguments low and high control the colours at either
end of the gradient.

• scale_colour_gradient2() and scale_fill_gradient2(): a three-colour
gradient, low-med-high. As well as low and high colours, these scales also
have a mid colour for the colour of the midpoint. The midpoint defaults
to 0, but can be set to any value with the midpoint argument. This is
particularly useful for creating diverging colour schemes.

• scale_colour_gradientn() and scale_fill_gradientn(): a custom n-
colour gradient. This scale requires a vector of colours in the colours

argument. Without further arguments these colours will be evenly spaced
along the range of the data. If you want the values to be unequally spaced,
use the values argument, which should be between 0 and 1 if rescale is
true (the default), or within the range of the data is rescale is false.

Colour gradients are often used to show the height of a 2d surface. In
the following example we’ll use the surface of a 2d density estimate of the
faithful dataset (Azzalini and Bowman, 1990), which records the waiting
time between eruptions and during each eruption for the Old Faithful geyser
in Yellowstone Park. Figure 6.7 shows three gradients applied to this data,
created with the following code. Note the use of limits: this parameter is
common to all scales.

f2d <- with(faithful, MASS::kde2d(eruptions, waiting,

h = c(1, 10), n = 50))

df <- with(f2d, cbind(expand.grid(x, y), as.vector(z)))

names(df) <- c("eruptions", "waiting", "density")

erupt <- ggplot(df, aes(waiting, eruptions, fill = density)) +

6.4 Scale details 105

geom_tile() +

scale_x_continuous(expand = c(0, 0)) +

scale_y_continuous(expand = c(0, 0))

erupt + scale_fill_gradient(limits = c(0, 0.04))

erupt + scale_fill_gradient(limits = c(0, 0.04),

low = "white", high = "black")

erupt + scale_fill_gradient2(limits = c(-0.04, 0.04),

midpoint = mean(df$density))

Fig. 6.7: Density of eruptions with three colour schemes. (Left) Default gradient
colour scheme, (middle) customised gradient from white to black and (right) 3 point
gradient with midpoint set to the mean density.

To create your own custom gradient, use scale_colour_gradientn().
This is useful if you have colours that are meaningful for your data (e.g.,
black body colours or standard terrain colours), or you’d like to use a palette
produced by another package. The following code and Figure 6.8 shows palettes
generated from routines in the vcd package. Zeileis et al. (2008) describes the
philosophy behind these palettes and provides a good introduction to some of
the complexities of creating good colour scales.

library(vcd)

fill_gradn <- function(pal) {

scale_fill_gradientn(colours = pal(7), limits = c(0, 0.04))

}

erupt + fill_gradn(rainbow_hcl)

erupt + fill_gradn(diverge_hcl)

erupt + fill_gradn(heat_hcl)

Discrete

There are two colour scales for discrete data, one which chooses colours in an
automated way, and another which makes it easy to select from hand-picked
sets.

106 6 Scales, axes and legends

Fig. 6.8: Gradient colour scales using perceptually well-formed palettes produced by
the vcd package. From left to right: sequential, diverging and heat hcl palettes. Each
scale is produced with scale_fill_gradientn with colours set to rainbow_hcl(7),
diverge_hcl(7) and heat_hcl(7).

The default colour scheme, scale_colour_hue(), picks evenly spaced hues
around the hcl colour wheel. This works well for up to about eight colours,
but after that it becomes hard to tell the different colours apart. Another
disadvantage of the default colour scheme is that because the colours all have
the same luminance and chroma, when you print them in black and white,
they all appear as an identical shade of grey.

An alternative to this algorithmic scheme is to use the ColorBrewer
colours, http://colorbrewer.org. These colours have been hand picked to
work well in a wide variety of situations, although the focus is on maps
and so the colours tend to work better when displayed in large areas.
For categorical data, the palettes most of interest are “Set1” and “Dark2”
for points and “Set2”, “Pastel1”, “Pastel2” and “Accent” for areas. Use
RColorBrewer::display.brewer.all to list all palettes. Figure 6.9 shows
three of these palettes applied to points and bars, created with the following
code.

point <- qplot(brainwt, bodywt, data = msleep, log = "xy",

colour = vore)

area <- qplot(log10(brainwt), data = msleep, fill = vore,

binwidth = 1)

point + scale_colour_brewer(pal = "Set1")

point + scale_colour_brewer(pal = "Set2")

point + scale_colour_brewer(pal = "Pastel1")

area + scale_fill_brewer(pal = "Set1")

area + scale_fill_brewer(pal = "Set2")

area + scale_fill_brewer(pal = "Pastel1")

If you have your own discrete colour scale, you can use scale_colour_manual(),
as described below.

6.4 Scale details 107

brainwt

b
o

d
y
w

t

10
−2

10
−1

10
0

10
1

10
2

10
3

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10
−3

10
−2

10
−1

10
0

vore

● carni

● herbi

● insecti

● omni

● NA

brainwt

b
o

d
y
w

t

10
−2

10
−1

10
0

10
1

10
2

10
3

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10
−3

10
−2

10
−1

10
0

vore

● carni

● herbi

● insecti

● omni

● NA

brainwt

b
o

d
y
w

t

10
−2

10
−1

10
0

10
1

10
2

10
3

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10
−3

10
−2

10
−1

10
0

vore

● carni

● herbi

● insecti

● omni

● NA

log10(brainwt)

c
o

u
n

t

0

5

10

15

−4 −3 −2 −1 0 1

vore

carni

herbi

insecti

omni

NA

log10(brainwt)

c
o

u
n

t

0

5

10

15

−4 −3 −2 −1 0 1

vore

carni

herbi

insecti

omni

NA

log10(brainwt)

c
o

u
n

t

0

5

10

15

−4 −3 −2 −1 0 1

vore

carni

herbi

insecti

omni

NA

Fig. 6.9: Three ColorBrewer palettes, Set1 (left), Set2 (middle) and Pastel1 (right),
applied to points (top) and bars (bottom). Bright colours work well for points, but
are overwhelming on bars. Subtle colours work well for bars, but are hard to see on
points.

6.4.4 The manual discrete scale

The discrete scales, scale_linetype(), scale_shape() and scale size-

discrete basically have no options (although for the shape scale you can
choose whether points should be filled or solid). These scales are just a list of
valid values that are mapped to each factor level in turn.

If you want to customise these scales, you need to create your own new scale
with the manual scale: scale_shape_manual(), scale_linetype_manual(),
scale_colour_manual(), etc. The manual scale has one important argument,
values, where you specify the values that the scale should produce. If this
vector is named, it will match the values of the output to the values of the
input, otherwise it will match in order of the levels of the discrete variable. You
will need some knowledge of the valid aesthetic values, which are described
in Appendix B. The following code demonstrates the use of scale_manual(),
with results shown in Figure 6.10

plot <- qplot(brainwt, bodywt, data = msleep, log = "xy")

plot + aes(colour = vore) +

scale_colour_manual(value = c("red", "orange", "yellow",

"green", "blue"))

colours <- c(carni = "red", "NA" = "orange", insecti = "yellow",

108 6 Scales, axes and legends

herbi = "green", omni = "blue")

plot + aes(colour = vore) + scale_colour_manual(value = colours)

plot + aes(shape = vore) +

scale_shape_manual(value = c(1, 2, 6, 0, 23))

brainwt

b
o

d
y
w

t

10
−2

10
−1

10
0

10
1

10
2

10
3

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10
−3

10
−2

10
−1

10
0

● carni

● herbi

● insecti

● omni

● NA

brainwt

b
o

d
y
w

t

10
−2

10
−1

10
0

10
1

10
2

10
3

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10
−3

10
−2

10
−1

10
0

● carni

● herbi

● insecti

● omni

● NA

brainwt

b
o

d
y
w

t

10
−2

10
−1

10
0

10
1

10
2

10
3

●

● ●

●

●

●

●

●
●

10
−3

10
−2

10
−1

10
0

● carni

herbi

insecti

omni

NA

Fig. 6.10: Scale manual used to create custom colour (left and middle) and shape
(right) scales.

The following example shows a creative use scale_colour_manual(), when
you want to display multiple variables on the same plot, and show a useful
legend. In most other plotting systems, you’d just colour the lines as below, and
then add a legend that describes which colour corresponds to which variable.
That doesn’t work in ggplot2 because it’s the scales that are responsible for
drawing legends, and the scale doesn’t know how the lines should be labelled.

> huron <- data.frame(year = 1875:1972, level = LakeHuron)

> ggplot(huron, aes(year)) +

+ geom_line(aes(y = level - 5), colour = "blue") +

+ geom_line(aes(y = level + 5), colour = "red")

year

le
v
e
l
−

 5

575

580

585

1880 1900 1920 1940 1960

6.4 Scale details 109

What you need to do is tell the colour scale about the two different lines by
creating a mapping from the data to the colour aesthetic. There’s no variable
present in the data, so you’ll have to create one:

> ggplot(huron, aes(year)) +

+ geom_line(aes(y = level - 5, colour = "below")) +

+ geom_line(aes(y = level + 5, colour = "above"))

year

le
v
e
l
−

 5

575

580

585

1880 1900 1920 1940 1960

level − 5

below

above

This gets us basically what we want, but the legend isn’t labelled correctly,
and has the wrong colours. That can be fixed with scale_colour_manual:

> ggplot(huron, aes(year)) +

+ geom_line(aes(y = level - 5, colour = "below")) +

+ geom_line(aes(y = level + 5, colour = "above")) +

+ scale_colour_manual("Direction",

+ c("below" = "blue", "above" = "red"))

year

le
v
e
l
−

 5

575

580

585

1880 1900 1920 1940 1960

Direction

below

above

See Section 9.2.1 for an alternative approach to the problem.

6.4.5 The identity scale

The identity scale is used when your data is already in a form that the plotting
functions in R understand, i.e., when the data and aesthetic spaces are the

110 6 Scales, axes and legends

same. This means there is no way to derive a meaningful legend from the data
alone, and by default a legend is not drawn. If you want one, you can still use
the breaks and labels arguments to set it up yourself.

Figure 6.11 shows one sort of data where scale_identity is useful. Here
the data themselves are colours, and there’s no way we could make a meaningful
legend. The identity scale can also be useful in the case where you have manually
scaled the data to aesthetic values. In that situation, you will have to figure
out what breaks and labels make sense for your data.

u

v

−15000

−10000

−5000

0

5000

10000

●

●●●●●
●●●●

●

●●●●●

●
●●●●

●

●

●

●●
●

●

●

●

●
●●●

●

●●●●
●

●
●●●

●

●●
●
●

●

●
●●

●

●
●

●●●
●

●

●●●●●

●●●● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●

●

●
●

●

●

●
●●

●●●
●

●

●
●●●●●

●

●

●●●●●

●●●
●

●

●●

●●
●

●

●

●
●●●

●

●

●

●
●

●●●
●

●

●
●●

●

●

●●

●●
●

●

●

●

●●
●●●●●

●●
●●●

●
●●●

●●●●●●

●
●●
●

●

●

●●●●●

●

●●●●
●

●●●●
●

●

●●●●●

●●●
●

●
●

●

●

● ●●●●●

●●●●
●

●

●

●●
●
●

●

●●
●●●●
●

●●●●
●

●

●

●●
●

●

●

●

●●●
●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

● ●●●●●

●●●●●
●

●●

●

●

●
●
●

●
●●●

●

● ●●●●
●

●
●●

●

●

●

●●●
●

●

●●●●● ●●●●●

●
●●●●

●

●

●●●●●

●●●
●

●

●

●
●
●

●

●

●●●●
●

●●●●●

●

●
●

●

●

●
●

●●●
●

●

●

●●
●

●

●●●●●

●

●●
●

●

●

●●
●

●

●

●
●

●

●

●
●●●
●●

●●●●●

●●●
●

●

●

●●
●

●

●

●●
●

●

●●●●
●

●●●●
●

●

●●●
●

●

●

●●●●

●●●●
●

●●

●●
●
●

●

●

−5000 0 5000 10000 15000

Fig. 6.11: A plot of R colours in Luv space. A legend is unnecessary, because the
colour of the points represents itself: the data and aesthetic spaces are the same.

6.5 Legends and axes

Collectively, axes and legends are called guides, and they are the inverse of the
scale: they allow you to read observations from the plot and map them back
to their original values. Figure 6.12 labels the guides and their components.
There are natural equivalents between the legend and the axis: the legend title
and axis label are equivalent and determined by the scale name; the legend
keys and tick labels are both determined by the scale breaks.

In ggplot2, legends and axes are produced automatically based on the
scales and geoms that you used in the plot. This is different than how legends
work in most other plotting systems, where you are responsible for adding
them. In ggplot2, there is little you can do to directly control the legend. This
seems like a big restriction at first, but as you get more comfortable with this
approach, you will discover that it saves you a lot of time, and there is little
you cannot do with it.

6.5 Legends and axes 111

Fig. 6.12: The components of the axes and legend.

To draw the legend, the plot must collect information about how each
aesthetic is used: for what data and what geoms. The scale breaks are used
to determine the values of the legend keys and a list of the geoms that use
the aesthetic is used to determine how to draw the keys. For example, if you
use the point geom, then you will get points in the legend; if you use the lines
geom, you will get lines. If both point and line geoms are used, then both
points and lines will be drawn in the legend. This is illustrated in Figure 6.13.

Fig. 6.13: Legends produced by geom: point, line, point and line, and bar.

ggplot2 tries to use the smallest possible number of legends that accurately
conveys the aesthetics used in the plot. It does this by combining legends if a
variable is used with more than one aesthetic. Figure 6.14 shows an example
of this for the points geom: if both colour and shape are mapped to the same
variable, then only a single legend is necessary. In order for legends to be
merged, they must have the same name (the same legend title). For this reason,
if you change the name of one of the merged legends, you’ll need to change it
for all of them.

mpg

w
t

2

3

4

5

15 20 25 30

�

��

�

�

�

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�
�

�

�
�

�
�

� �

�

�

Cylinders

� 8

� 6

� 4

Axis label

Legend

Key

Tick mark
and label

Legend title
Axis

Key label

cut

● Fair

● Good

● Very Good

● Premium

● Ideal

cut

Fair

Good

Very Good

Premium

Ideal

cut

● Fair

● Good

● Very Good

● Premium

● Ideal

cut

Fair

Good

Very Good

Premium

Ideal

112 6 Scales, axes and legends

cut

● Fair

● Good

● Very Good

● Premium

● Ideal

cut

● Fair

Good

Very Good

Premium

Ideal

cut

● Fair

Good

Very Good

Premium

Ideal

Fig. 6.14: Colour legend, shape legend, colour + shape legend.

The contents of the legend and axes are controlled by the scale, and the
details of the rendering are controlled by the theming system. The following
list includes the most commonly tweaked settings.

• The scale name controls the axis label and the legend title. This can be a
string, or a mathematical expression, as described in ?plotmath.

• The breaks and labels arguments to the scale function, introduced earlier
in this chapter, are particularly important because they control what tick
marks appear on the axis and what keys appear on the legend. If the breaks
chosen by default are not appropriate (or you want to use more informative
labels), setting these arguments will adjust the appearance of the legend
keys and axis ticks.

• The theme settings axis.* and legend.* control the visual appearance of
axes and legends. To learn how to manipulate these settings, see Section 8.1.

• The internal grid lines are controlled by the breaks and minor breaks
arguments. By default minor grid lines are spaced evenly in the original
data space: this gives the common behaviour of log-log plots where major
grid lines are multiplicative and minor grid lines are additive. You can
override the minor grid lines with the minor breaks argument. Grid line
appearance is controlled by the panel.grid.major and panel.grid.minor

theme settings.
• The position and justification of legends are controlled by the theme setting

legend.position, and the value can be right, left, top, bottom, none (no
legend), or a numeric position. The numeric position gives (in values between
0 and 1) the position of the corner given by legend.justification, a
numeric vector of length two. Top right = c(1, 1), bottom left = c(0, 0).

6.6 More resources

As you experiment with different aesthetic choices and new scales, it’s important
to keep in mind how the plot will be perceived. Some particularly good
references to consult are:

6.6 More resources 113

• Cleveland (1993a, 1985); Cleveland and McGill (1987) for research on how
plots are perceived and the best ways to encode data.

• Tufte (1990, 1997, 2001, 2006) for how to make beautiful, data-rich, graph-
ics.

• Brewer (1994a,b) for how to choose colours that work well in a wide variety
of situations, particularly for area plots.

• Carr (1994, 2002); Carr and Sun (1999) for the use of colour in general.

Chapter 7

Positioning

7.1 Introduction

This chapter discusses position, particularly how facets are laid out on a page,
and how coordinate systems within a panel work. There are four components
that control position. You have already learned about two of them that work
within a facet:

• Position adjustments adjust the position of overlapping objects within
a layer, and were described in Section 4.8. These are most useful for bar
and other interval geoms, but can be useful in other situations.

• Position scales, previously described in Section 6.4.2, control how the
values in the data are mapped to positions on the plot. Common transfor-
mations are linear and log, but any other invertible function can also be
used.

This chapter will describe the other two components and show you how all
four components can be used together:

• Faceting, described in Section 7.2, is a mechanism for automatically laying
out multiple plots on a page. It splits the data into subsets, and then plots
each subset into a different panel on the page. Such plots are often called
small multiples.

• Coordinate systems, described in Section 7.3, control how the two
independent position scales are combined to create a 2d coordinate system.
The most common coordinate system is Cartesian, but other coordinate
systems can be useful in special circumstances.

7.2 Faceting

You first encountered faceting in the introduction to qplot(), Section 2.6, and
you may already have been using it in your plots. Faceting generates small

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 7, 115
c© Springer Science+Business Media, LLC 2009

116 7 Positioning

multiples each showing a different subset of the data. Small multiples are a
powerful tool for exploratory data analysis: you can rapidly compare patterns
in different parts of the data and see whether they are the same or different.
This section will discuss how you can fine-tune facets, particularly the way in
which they interact with position scales.

There are two types of faceting provided by ggplot2: facet_grid and
facet_wrap. Facet grid produces a 2d grid of panels defined by variables which
form the rows and columns, while facet wrap produces a 1d ribbon of panels
that is wrapped into 2d. The grid layout is similar to the layout of coplot in
base graphics, and the wrapped layout is similar to the layout of panels in
lattice. These differences are illustrated in Figure 7.1.

1 2 3

4 5 6

7 8 9

1

2

3

A B C

A1 B1 C1

A2 B2 C2

A3 B3 C3

facet_grid facet_wrap

Fig. 7.1: A sketch illustrating the difference between the two faceting systems.
facet_grid() (left) is fundamentally 2d, being made up of two independent compo-
nents. facet_wrap() (right) is 1d, but wrapped into 2d to save space.

There are two basic arguments to the faceting systems: the variables to
facet by, and whether position scales should be global or local to the facet.
The way these options are specified is a little different for the two systems, so
they are described separately below.

You can access either faceting system from qplot(). A 2d faceting specifi-
cation (e.g., x ~ y) will use facet_grid, while a 1d specification (e.g., ~ x)
will use facet_wrap.

Faceted plots have the capability to fill up a lot of space, so for this chapter
we will use a subset of the mpg dataset that has a manageable number of
levels: three cylinders (4, 6, 8) and two types of drive train (4 and f). This
removes 29 vehicles from the original dataset.

> mpg2 <- subset(mpg, cyl != 5 & drv %in% c("4", "f"))

7.2.1 Facet grid

The grid faceter lays out plots in a 2d grid. When specifying a faceting formula,
you specify which variables should appear in the columns and which should
appear in the rows, as follows:

7.2 Faceting 117

• . ~ . The default. Neither rows nor columns are faceted, so you get a
single panel.

> qplot(cty, hwy, data = mpg2) + facet_grid(. ~ .)

cty

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

● ●●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●●

10 15 20 25 30 35

• . ~ a A single row with multiple columns. This is normally the most useful
direction because computer screens are usually wider than they are long.
This direction of faceting facilitates comparisons of y position, because the
vertical scales are aligned.

> qplot(cty, hwy, data = mpg2) + facet_grid(. ~ cyl)

cty

h
w

y

15

20

25

30

35

40

4

● ●

●
●

●
●

●
●●

●

●

●
● ●

●

●

●

●●

●

●
●

●
●

●

●
●
●

●

●

●
●

●
●

●

●
●

●

●●●●
●

●

●

●

● ●

●

●

●●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●
●

●

10 15 20 25 30 35

6

● ●
●

● ●●●
●

●
●

●

●

●

●●

●●

●

●
●

●●

●
●

● ●● ●

●

●

●

●●

●●

●

●● ●

●

●
●

●

●

●
●●
●●

● ●

●

●●
●

●

●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

● ●●

10 15 20 25 30 35

8

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●●
●

●

●
●

●

●

●

●
●●
●

●

● ●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●

10 15 20 25 30 35

• b ~ . A single column with multiple rows. This direction facilitates com-
parison of x position, because the horizontal scales are aligned, and so is
particularly useful for comparing distributions. Figure 2.16 on page 24 is a
good example of this use.

> qplot(cty, data = mpg2, geom="histogram", binwidth = 2) +

+ facet_grid(cyl ~ .)

118 7 Positioning

cty

c
o

u
n

t

0
5

10
15
20
25

0
5

10
15
20
25

0
5

10
15
20
25

10 15 20 25 30 35

4
6

8

• a ~ b: Multiple rows and columns. You’ll usually want to put the variable
with the greatest number of levels in the columns, to take advantage of the
aspect ratio of your screen.

> qplot(cty, hwy, data = mpg2) + facet_grid(drv ~ cyl)

cty

h
w

y 15
20
25
30
35
40

15
20
25
30
35
40

4

●●

●●
●●

●
● ●

●

●●●● ●
●

●
●

● ●● ●
●

● ●
● ●

●

●

●

●● ●

●

●
●

●●

●

●●

●●

●

● ●●
●

●

●●

●
●

●●

●
●
● ● ●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●● ● ●

10 15 20 25 30 35

6

● ●●●● ●

●●● ●● ●
●

●
●

●●

●

●●

●
●

● ●

● ●
●

●

●
●●

●

● ●●●

●

●
●

●●
●●

●

●●
●●

●●
●

●● ●

●●● ●●●● ● ●
●●

●
●●●

●● ●
● ●●

10 15 20 25 30 35

8

●

●

●●
●
●●

●

●
●

●

●

●●
●

● ●

●

●●●

●

●●
●

●

●
●●●●●
● ●

●

●●

●●

●●

●

●
●● ●

●

●

●

10 15 20 25 30 35

4
f

• . ~ a + b or a + b ~ . Multiple variables in the rows or columns (or
both). This is unlikely to be useful unless the number of factor levels is
small, you have a very wide screens or you want to produce a long, skinny
poster.

Variables appearing together on the rows or columns are nested in the
sense that only combinations that appear in the data will appear in the
plot. Variables that are specified on rows and columns will be crossed: all
combinations will be shown, including those that didn’t appear in the original
dataset: this may result in empty panels.

Margins

Faceting a plot is like creating a contingency table. In contingency tables it is
often useful to display marginal totals (totals over a row or column) as well as

7.2 Faceting 119

the individual cells. It is also useful to be able to do this with graphics, and
you can do so with the margins argument. This allows you to compare the
conditional patterns with the marginal patterns.

You can either specify that all margins should be displayed, using margins

= TRUE, or by listing the names of the variables that you want margins for,
margins = c("sex", "age"). You can also use "grand_row" or "grand_col"
to produce grand row and grand column margins, respectively.

Figure 7.2 shows what margins look like. The first plot shows what the
data looks like without margins, and the second shows all margins. The margin
column shows all drive trains, the margin row shows all cylinders and the
bottom right plot (the grand total) shows the full dataset. For this data we can
see that as the number of cylinders increases, engine displacement increases
and fuel economy decreases, and compared to front-wheel-drive vehicles, as
a group four-wheel-drive vehicles have about the same displacement, but are
less fuel efficient. The figure was produced with the following code:

p <- qplot(displ, hwy, data = mpg2) +

geom_smooth(method = "lm", se = F)

p + facet_grid(cyl ~ drv)

p + facet_grid(cyl ~ drv, margins = T)

Fig. 7.2: Graphical margins work like margins of a contingency table to give uncon-
ditioned views of the data. A plot faceted by number of cylinders and drive train
(left) is supplemented with margins (right).

Groups in the margins are controlled in the same way as groups in all other
panels, defaulting to the interaction of all categorical variables present in the
layer. (See Section 4.5.3 for a reminder.) The following example shows what
happens when we add a coloured smooth for each drive train.

120 7 Positioning

> qplot(displ, hwy, data = mpg2) +

+ geom_smooth(aes(colour = drv), method = "lm", se = F) +

+ facet_grid(cyl ~ drv, margins = T)

Plots with many facets and margins may be more appropriate for printing
than on screen display, as the higher resolution of print (600 dpi vs. 72 dpi)
allows you to compare many more subsets.

7.2.2 Facet wrap

An alternative to the grid is a wrapped ribbon of plots. Instead of having a
2d grid generated by the combination of two (or more) variables, facet_wrap
makes a long ribbon of panels (generated by any number of variables) and
wraps it into 2d. This is useful if you have a single variable with many levels
and want to arrange the plots in a more space efficient manner. This is what
trellising in lattice does.

Figure 7.3 shows the distribution of average movie ratings by decade. The
main difference over time seems to be the increasing spread of ratings. This
is probably an artefact of the number of votes: newer movies get more votes
and so the average ratings are likely to be less extreme. The disadvantage of
this style of faceting is that it is harder to compare some subsets that should
be close together, as in this example where the plots for the 50’s and 60’s are
particularly far apart because of the way the ribbon has been wrapped around.
The figure was produced with the following code:

movies$decade <- round_any(movies$year, 10, floor)

qplot(rating, ..density.., data=subset(movies, decade > 1890),

geom="histogram", binwidth = 0.5) +

facet_wrap(~ decade, ncol = 6)

The specification of faceting variables is of the form ~ a + b + c. By
default, facet_wrap will try and lay out the panels as close to a square as

7.2 Faceting 121

rating

d
e
n
s
it
y 0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

1900

1960

2 4 6 8 10

1910

1970

2 4 6 8 10

1920

1980

2 4 6 8 10

1930

1990

2 4 6 8 10

1940

2000

2 4 6 8 10

1950

2 4 6 8 10

Fig. 7.3: Movie rating distribution by decade.

possible, with a slight bias towards wider rather than taller rectangles. You
can override the default by setting ncol, nrow or both. See the documentation
for more examples.

7.2.3 Controlling scales

For both types of faceting you can control whether the position scales are the
same in all panels (fixed) or allowed to vary between panels (free). This is
controlled by the scales parameter:

• scales = "fixed": x and y scales are fixed across all panels.
• scales = "free": x and y scales vary across panels.
• scales = "free_x": the x scale is free, and the y scale is fixed.
• scales = "free_y": the y scale is free, and the x scale is fixed.

Figure 7.4 illustrates the difference between the two extremes of fixed and free.

p <- qplot(cty, hwy, data = mpg)

p + facet_wrap(~ cyl)

p + facet_wrap(~ cyl, scales = "free")

Fixed scales allow us to compare subsets on an equal basis, seeing where
each fits into the overall pattern. Free scales zoom in on the region that each
subset occupies, allowing you to see more details. Free scales are particularly
useful when we want to display multiple times series that were measured on
different scales. To do this, we first need to change from “wide” to “long” data,
stacking the separate variables into a single column. An example of this is
shown in Figure 7.5, and the topic is discussed in more detail in Section 9.2.

em <- melt(economics, id = "date")

qplot(date, value, data = em, geom = "line", group = variable) +

facet_grid(variable ~ ., scale = "free_y")

122 7 Positioning

cty

h
w

y

15

20

25

30

35

40

15

20

25

30

35

40

4

● ●

●
●

●

●●●
●

●
●

●

●

●●

●●
●
●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

6

●

●

●

●●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●●

●●

●

●

●●

●
●

●

●

●
●

●

●

●

10 15 20 25 30 35

5

●●●
●

8

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●
●●●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

10 15 20 25 30 35

cty

h
w

y

20

25

30

35

40

18

20

22

24

26

28

4

● ●

●
●

●

●●●
●

●
●

●

●

●●

●●
●
●

●
●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

15 20 25 30 35

6

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

12 14 16 18

28.0

28.2

28.4

28.6

28.8

29.0

12
14
16
18
20
22
24
26

5
● ●●

●

0.020.220.420.620.821.

8

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

9 10111213141516

Fig. 7.4: Fixed scales (left) have the same scale for each facet, while free scales (right)
have a different scale for each facet.

date

v
a
lu

e

2000
4000
6000
8000

200000
220000
240000
260000
280000
300000

0
5

10

4
6
8

10
12

4000
6000
8000

10000
12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

p
c
e

p
o
p

p
s
a
v
e
rt

u
e
m

p
m

e
d

u
n
e
m

p
lo

y

Fig. 7.5: Free scales are particularly useful when displaying multiple time series
measured on different scales.

7.2 Faceting 123

There is an additional constraint on the scales of facet_grid: all panels
in a column must have the same x scale, and all panels in a row must have
the same y scale. This is because each column shares an x axis, and each row
shares a y axis.

For facet_grid there is an additional parameter called space, which takes
values "free" or "fixed". When the space can vary freely, each column (or
row) will have width (or height) proportional to the range of the scale for that
column (or row). This makes the scaling equal across the whole plot: 1 cm
on each panel maps to the same range of data. (This is somewhat analogous
to the “sliced” axis limits of lattice.) For example, if panel a had range 2
and panel b had range 4, one-third of the space would be given to a, and
two-thirds to b. This is most useful for categorical scales, where we can assign
space proportionally based on the number of levels in each facet, as illustrated
by Figure 7.6. The code to create this plot is shown below: note the use of
reorder() to arrange the models and manufacturers in order of city fuel usage.

mpg3 <- within(mpg2, {

model <- reorder(model, cty)

manufacturer <- reorder(manufacturer, -cty)

})

models <- qplot(cty, model, data = mpg3)

models

models + facet_grid(manufacturer ~ ., scales = "free",

space = "free") + opts(strip.text.y = theme_text())

7.2.4 Missing faceting variables

If you using faceting on a plot with multiple datasets, what happens when one
of those datasets is missing the faceting variables? This situation commonly
arises when you are adding contextual information that should be the same in
all panels. For example, imagine you have spatial display of disease faceted
by gender. What happens when you add a map layer that does not contain
the gender variable? Here ggplot2 will do what you expect: it will display the
map in every facet: missing faceting variables are treated like they have all
values.

7.2.5 Grouping vs. faceting

Faceting is an alternative to using aesthetics (like colour, shape or size) to
differentiate groups. Both techniques have strengths and weaknesses, based
around the relative positions of the subsets.

With faceting, each group is quite far apart in its own panel, and there
is no overlap between the groups. This is good if the groups overlap a lot,

124 7 Positioning

cty

m
o

d
e

l

ram 1500 pickup 4wd

range rover

durango 4wd

land cruiser wagon 4wd

k1500 tahoe 4wd

dakota pickup 4wd

f150 pickup 4wd

mountaineer 4wd

grand cherokee 4wd

explorer 4wd

pathfinder 4wd

4runner 4wd

toyota tacoma 4wd

caravan 2wd

a6 quattro

grand prix

a4 quattro

tiburon

passat

maxima

malibu

forester awd

a4

sonata

impreza awd

camry

camry solara

gti

altima

jetta

civic

corolla

new beetle

●● ●●●● ●● ●●

●●●●

●●● ●● ●●

● ●

●●● ●

●●●●●●● ●●

●●●●●● ●

●●●●

●●●●● ●●●

●●●●●●

●●●●

●●●●●●

●●●●●●●

●●●●●●● ●●●●

● ●●

●●●●●

●● ●●● ●●●

●●●●●●●

●●● ●● ●●

●●●

● ●●●●

●● ●●●●

● ●●●● ●●

●● ●●●●●

●●●●●●●●

●●●●●●●

●●●●●●●

●● ●●●

●● ●●●●

●●● ●●●●

●●●●● ●●●●

●● ● ●●

●●●●

10 15 20 25 30 35

cty

m
o

d
e

l

civic

passat

gti

jetta

new beetle

forester awd

impreza awd

tiburon

sonata

land cruiser wagon 4wd

4runner 4wd

toyota tacoma 4wd

camry

camry solara

corolla

pathfinder 4wd

maxima

altima

a6 quattro

a4 quattro

a4

grand prix

k1500 tahoe 4wd

malibu

grand cherokee 4wd

f150 pickup 4wd

explorer 4wd

mountaineer 4wd

ram 1500 pickup 4wd

durango 4wd

dakota pickup 4wd

caravan 2wd

range rover

●●●●●●●●●

●●●●●●●

●●●●●

●●● ●●●●

●●●●

●●●●●●

●●●●●●●●

●●●●●●●

●● ●●●●●

●●

●●●●●●

●●●●●●●

●●●●●●●

●●●●●●●

●●●●●

●●●●

●●●

●● ●●●●

●●●

●● ●●●●●●

● ●●●●●●

●●●●●

●●● ●

● ●●●●

●●●●● ●●●

●●●●●●●

●●●●●●

●●●●

●● ●●●●●●●●

●●● ●●●●

●●●●●●●●●

●●●●●●● ●●●●

●●●●

10 15 20 25 30 35

honda

volkswagen

subaru

hyundai

toyota

nissan

audi

pontiac

chevrolet

jeep

ford

mercury

dodge

land rover

Fig. 7.6: A dotplot showing the range of city gas mileage for each model of car.
(Left) Models ordered by average mpg, and (right) faceted by manufacturer with
scales="free_y" and space = "free". The strip.text.y theme setting has been
used to rotate the facet labels.

7.2 Faceting 125

but it does make small differences harder to see. When using aesthetics to
differentiate groups, the groups are close together and may overlap, but small
differences are easier to see. Figure 7.7 illustrates these trade-offs. With the
scatterplots, it is possible to not realise the groups are overlapping when just
colour is used to separate them, but with the regression lines they are too far
apart to see that D, E and G are grouped together and J is farther away. The
code to produce these figures is shown below.

xmaj <- c(0.3, 0.5, 1,3, 5)

xmin <- as.vector(outer(1:10, 10^c(-1, 0)))

ymaj <- c(500, 1000, 5000, 10000)

ymin <- as.vector(outer(1:10, 10^c(2,3,4)))

dplot <- ggplot(subset(diamonds, color %in% c("D","E","G","J")),

aes(carat, price, colour = color)) +

scale_x_log10(breaks = xmaj, labels = xmaj, minor = xmin) +

scale_y_log10(breaks = ymaj, labels = ymaj, minor = ymin) +

scale_colour_hue(limits = levels(diamonds$color)) +

opts(legend.position = "none")

dplot + geom_point()

dplot + geom_point() + facet_grid(. ~ color)

dplot + geom_smooth(method = lm, se = F, fullrange = T)

dplot + geom_smooth(method = lm, se = F, fullrange = T) +

facet_grid(. ~ color)

Faceting will also work with much larger number of groups, and because
you can split in two dimensions, you can compare two variables simultaneously
more easily than using two different aesthetics. The other advantage of faceting
is that the scales can vary across panels, which is useful if the subsets occupy
very different ranges.

7.2.6 Dodging vs. faceting

Faceting can achieve similar effects to dodging. Figure 7.8 shows how dodging
and faceting can create plots that look remarkably similar. The main difference
is the labelling: the faceted plot has colour labelled above and cut below; and
the dodged plot has colour below and cut is not explicitly labelled. In this
example, the labels in the faceted plot need some adjustment to display in a
readable way, see the code below for details.

qplot(color, data=diamonds, geom = "bar", fill = cut,

position="dodge")

qplot(cut, data = diamonds, geom = "bar", fill = cut) +

facet_grid(. ~ color) +

opts(axis.text.x = theme_text(angle = 90, hjust = 1, size = 8,

colour = "grey50"))

126 7 Positioning

Fig. 7.7: The differences between faceting vs. grouping, illustrated with a log-log plot
of carat vs. price with four selected colours.

Apart from labelling, the main difference between dodging and faceting
occurs when the two variables are nearly completely crossed, but there are some
combinations that do not occur. In this case, dodging becomes less useful be-
cause it only splits up the bars locally, and there are no labels. Faceting is more
useful as we can control whether the splitting is local (scales = "free_x",
space = "free") or global (scales = "fixed"). Figure 7.9 compares faceting
and dodging for two nested variables from the mpg dataset, model and manu-
facturer, with the code shown below.

mpg4 <- subset(mpg, manufacturer %in%

c("audi", "volkswagen", "jeep"))

mpg4$manufacturer <- as.character(mpg4$manufacturer)

mpg4$model <- as.character(mpg4$model)

7.2 Faceting 127

color

c
o
u
n
t

0

1000

2000

3000

4000

D E F G H I J

cut

Fair

Good

Very Good

Premium

Ideal

cut

c
o
u
n
t

0

1000

2000

3000

4000

D

F
a

ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

E

F
a

ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

F
F

a
ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

G

F
a

ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

H

F
a

ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

I

F
a

ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

J

F
a

ir

G
o

o
d

V
e

ry
 G

o
o

d

P
re

m
iu

m

Id
e

a
l

cut

Fair

Good

Very Good

Premium

Ideal

Fig. 7.8: Dodging (top) vs. faceting (bottom) for a completely crossed pair of variables.

base <- ggplot(mpg4, aes(fill = model)) +

geom_bar(position = "dodge") +

opts(legend.position = "none")

base + aes(x = model) +

facet_grid(. ~ manufacturer)

last_plot() +

facet_grid(. ~ manufacturer, scales = "free_x", space = "free")

base + aes(x = manufacturer)

In summary, the choice between faceting and dodging depends on the
relationship between the two variables:

• Completely crossed: faceting and dodging are basically equivalent.
• Almost crossed: faceting with shared scales ensures that all combinations

are visible, even if empty. This is particularly useful if missing combinations
are non-structural missings.

• Nested: faceting with free scales and space allocates just enough space for
each higher level group, and labels each item individually.

128 7 Positioning

model

c
o
u
n
t

0

2

4

6

8

audi

a4a4 quattroa6 quattrogrand cherokee 4wdgti jettanew beetlepassat

jeep

a4a4 quattroa6 quattrogrand cherokee 4wdgti jettanew beetlepassat

volkswagen

a4a4 quattroa6 quattrogrand cherokee 4wdgti jettanew beetlepassat

model

c
o
u
n
t

0

2

4

6

8

audi

a4 a4 quattro a6 quattro

jeep

grand cherokee 4wd

volkswagen

gti jetta new beetle passat

manufacturer

c
o
u
n
t

0

2

4

6

8

audi jeep volkswagen

Fig. 7.9: For nested data, there is a clear advantage to faceting (top and middle)
compared to dodging (bottom), because it is possible to carefully control and label the
facets. For this example, the top plot is not useful, but it will be useful in situations
where the data is almost crossed, i.e. where a single combination is missing.

7.3 Coordinate systems 129

7.2.7 Continuous variables

You can facet by continuous variables, but you will need to convert them into
discrete categories first. There are three ways to do this:

• Divide the data into n bins each of the same length: cut_interval(x, n = 10)

to specify the number of bins, or cut_interval(x, length = 1) to spec-
ify the length of each interval. Specifying the number of bins is easy, but
may produce ranges that are not “nice” numbers.

• Divide the data into n bins each containing (approximately) the same num-
ber of points: cut_number(x, n = 10). This makes it easier to compare
facets (they will all have the same number of points), but you need to note
that the range of each bin is different.

The following code demonstrates each of the three possibilities, with the results
shown in Figure 7.10.

mpg2$disp_ww <- cut_interval(mpg2$displ, length = 1)

mpg2$disp_wn <- cut_interval(mpg2$displ, n = 6)

mpg2$disp_nn <- cut_number(mpg2$displ, n = 6)

plot <- qplot(cty, hwy, data = mpg2) + labs(x = NULL, y = NULL)

plot + facet_wrap(~ disp_ww, nrow = 1)

plot + facet_wrap(~ disp_wn, nrow = 1)

plot + facet_wrap(~ disp_nn, nrow = 1)

Note that the faceting formula only works with variables in the dataset
(not functions of the variables), so you will also need to create a new variable
containing the discretised data.

7.3 Coordinate systems

Coordinate systems tie together the two position scales to produce a 2d
location. Currently, ggplot2 comes with six different coordinate systems,
listed in Table 7.1. All these coordinate systems are two dimensional, although
one day I hope to add 3d graphics too. As with the other components in
ggplot2, you generate the R name by joining coord_ and the name of the
coordinate system. Most plots use the default Cartesian coordinate system,
coord_cartesian(), where the 2d position of an element is given by the
combination of the x and y positions.

Coordinate systems have two main jobs:

• Combine the two position aesthetics to produce a 2d position on the plot.
The position aesthetics are called x and y, but they might be better called
position 1 and 2 because their meaning depends on the coordinate system
used. For example, with the polar coordinate system they become angle

130 7 Positioning

15
20
25
30
35
40

[1,2]

● ●
●
●

●

●
●

●
●

●
●

●
●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

10 15 20 25 30 35

(2,3]

●
●

●

●
●
●
●

●
●

●
●●
● ●
●
●

●

●

●
●

●

● ●
●
●

●

●

●

●

●
●
●●
●

●
●

●

●
●●

●
●

●

●
●

●
●

●
●

●●

●●

●

●

● ●
● ●

●

●

10 15 20 25 30 35

(3,4]

●
●●

●

●
●

●

●
●

●

●
●

●
●

●
●

●
●

●
●

●●●

●

●
●●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

10 15 20 25 30 35

(4,5]

●●

●

●●●
●

●

●●
●

●●
●

●

●
●

●

●

●

●●●
●

●

●

●
●

●

●

10 15 20 25 30 35

(5,6]

●●●
●
●
●
●

●
●

●

● ●
●

●

●

●

●
●

10 15 20 25 30 35

(6,7]

●

●

10 15 20 25 30 35

15
20
25
30
35
40

[1.6,2.42]

● ●
●
●

●

●

●●
●

●
●

●
●

●

●
●
●

●●
●

●●
●

●

●●

●
●

●

●

●

●
●

●

●● ●

●●

●
●●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

10 15 20 25 30 35

(2.42,3.23]

●
●
●

●
●

●
●

●●
●

●
●
●

●
●

●
●●
●

●
●

●
●

●
●

●

●

●●

●

●

●

●●●
●

●

●
●

●

●
●

●

●
●

●

●

●

10 15 20 25 30 35

(3.23,4.05]

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●
●

●

●
●
●
●●

●

●
●

●
●

●

●

●

●

●
●

●
●
●●

●
●

●
●

●

●

●

10 15 20 25 30 35

(4.05,4.87]

●
●

●

●●

●
●●●

●●
●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

10 15 20 25 30 35

(4.87,5.68]

●
●
●

●

●
●

●●
●

●
●

●●

10 15 20 25 30 35

(5.68,6.5]

●
●●

●●●

●

●

●

10 15 20 25 30 35

15
20
25
30
35
40

[1.6,2]

● ●
●
●

●

●
●

●
●

●
●

●
●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●

●
●

10 15 20 25 30 35

(2,2.5]

●

●●
●
●

●

●

●
●●
●
●●●
●
●

●●
●

●
●
●

●

●

●
●

●● ●
●

●●
●
●●

10 15 20 25 30 35

(2.5,3]

●
●

●

●
●
●
●
●

●●
●●●

●
●

●●
● ● ●

●

●

●

●

●

●

10 15 20 25 30 35

(3,3.8]

●

●

●

●

●
●
●

●
●

●

●

●●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

10 15 20 25 30 35

(3.8,4.7]

●

●●
●

●
●●

●●

●

●

●
●

●
●●

●

●

●

●

●
●

●●
●●

●

●

●

●●

●

●
●

●

●

●
●●
●●

●

●
●

10 15 20 25 30 35

(4.7,6.5]

●
●●

●
●
●
●

●

●
●●

●

●

●
●
●

●
●

●
●

●
●

10 15 20 25 30 35

Fig. 7.10: Three ways of breaking a continuous variable into discrete bins. From top
to bottom: bins of length one, six bins of equal length, six bins containing equal
numbers of points.

and radius (or radius and angle), and with maps they become latitude and
longitude.

• In coordination with the faceter, coordinate systems draw axes and panel
backgrounds. While the scales control the values that appear on the axes,
and how they map from data to position, it is the coordinate system which
actually draws them. This is because their appearance depends on the
coordinate system: an angle axis looks quite different than an x axis.

7.3.1 Transformation

Unlike transforming the data or transforming the scales, transformations
carried out by the coordinate system change the appearance of the geoms:
in polar coordinates a rectangle becomes a slice of a doughnut; in a map
projection, the shortest path between two points will no longer be a straight
line. Figure 7.11 illustrates what happens to a line and a rectangle in a few
different coordinate systems.

This transformation takes part in two steps. Firstly, the parameterisation
of each geom is changed to be purely location-based, rather than location and
dimension based. For example, a bar can be represented as an x position (a
location), a height and a width (two dimensions). But how do we interpret

7.3 Coordinate systems 131

Name Description

cartesian Cartesian coordinates
equal Equal scale Cartesian coordinates
flip Flipped Cartesian coordinates
trans Transformed Cartesian coordinate system

map Map projections
polar Polar coordinates

Table 7.1: Coordinate systems available in ggplot. coord_equal, coord_flip and
coord_trans are all basically Cartesian in nature (i.e., the dimensions combine
orthogonally), while coord_map and coord_polar are more complex.

x

y

20

40

60

80

100

50 100 150 200

x

y

20

40

60

80

100

50

100

150

200

x

y

50

100

150

200

20

4060

80

100

y

x

50

100

150

200

20 40 60 80 100

x

y

20

40

60
80

100

50 100 150 200

x

y

−50

0

50

100

150

0 50 100 150 200

Fig. 7.11: A set of examples illustrating what a line and rectangle look like when
displayed in a variety of coordinate systems. From top left to bottom right: Cartesian,
polar with x position mapped to angle, polar with y position mapped to angle,
flipped, transformed with log in y direction, and equal scales.

132 7 Positioning

height and width in a non-Cartesian coordinate system, where a rectangle may
not have constant height and width? We solve the problem by using a purely
location-based representation, the location of the four corners of the rectangle,
and then transforming these locations: we have converted a rectangle to a
polygon. By doing this, we effectively convert all geoms to a combination of
points, lines and polygons.

With all geoms in this consistent, location-based, representation, the next
step is to transform each location into the new coordinate system. It is easy
to transform points, because a point is still a point no matter what coordinate
system you are in, but lines and polygons are harder, because a straight line
may no longer be straight in the new coordinate system. To make the problem
tractable we assume that all coordinate transformations are smooth, in the
sense that all very short lines will still be very short straight lines in the new
coordinate system. With this assumption in hand, we can transform lines and
polygons by breaking them up into many small line segments and transforming
each segment. This process is called munching. Figure 7.12 illustrates this
procedure. We start with a line parameterised by its two endpoints, then break
it into multiple line segments, each with two endpoints. Those points are then
translated into the new coordinate system, and connected. In the example, the
number of line segments is too small, so you can see more easily how it works.
For practical use, we use many more segments so that the result looks smooth.

r

θθ

0

1

2

3

4

●

●

0.0 0.2 0.4 0.6 0.8 1.0

r

θθ

0

1

2

3

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

r

θθ

0

1

2

3

4

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

x == rsin((θθ))

x
==

rc
o
s
((θθ

))

−0.6

−0.4

−0.2

0.0 ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

x == rsin((θθ))

x
==

rc
o
s
((θθ

))

−0.6

−0.4

−0.2

0.0 ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

x == rsin((θθ))

x
==

rc
o
s
((θθ

))

−0.6

−0.4

−0.2

0.0 ●●

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2

Fig. 7.12: How coordinate transformations work: converting a line in Cartesian
coordinates to a line in polar coordinates. The original x position is converted to
radius, and the y position to angle.

7.3 Coordinate systems 133

7.3.2 Statistics

To be technically correct, the actual statistical method used by a stat should
depend on the coordinate system. For example, a smoother in polar coordinates
should use circular regression, and in 3d should return a 2d surface rather
than a 1d curve. However, many statistical operations have not been derived
for non-Cartesian coordinates and ggplot2 falls back to Cartesian coordinates
for calculation, which, while not strictly correct, will normally be a fairly close
approximation.

7.3.3 Cartesian coordinate systems

The four Cartesian-based coordinate systems, coord_cartesian, coord_equal,
coord_flip and coord_trans, share a number of common features. They are
still essentially Cartesian because the x and y positions map orthogonally to x
and y positions on the plot.

Setting limits.

coord_cartesian has arguments xlim and ylim. If you think back to the
scales chapter, you might wonder why we need these. Doesn’t the limits
argument of the scales already allow use to control what appears on the plot?
The key difference is how the limits work: when setting scale limits, any data
outside the limits is thrown away; but when setting coordinate system limits
we still use all the data, but we only display a small region of the plot. Setting
coordinate system limits is like looking at the plot under a magnifying glass.
Figures 7.13 and 7.14 show an example of this.

(p <- qplot(disp, wt, data=mtcars) + geom_smooth())

p + scale_x_continuous(limits = c(325, 500))

p + coord_cartesian(xlim = c(325, 500))

(d <- ggplot(diamonds, aes(carat, price)) +

stat_bin2d(bins = 25, colour="grey70") +

opts(legend.position = "none"))

d + scale_x_continuous(limits = c(0, 2))

d + coord_cartesian(xlim = c(0, 2))

Flipping the axes.

Most statistics and geoms assume you are interested in y values conditional on
x values (e.g., smooth, summary, boxplot, line): in most statistical models, the
x values are assumed to be measured without error. If you are interested in x
conditional on y (or you just want to rotate the plot 90 degrees), you can use
coord_flip to exchange the x and y axes. Compare this with just exchanging
the variables mapped to x and y, as shown in Figure 7.15.

134 7 Positioning

disp

w
t

2

3

4

5

●

●

●

●

●●
●

●●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●●
●

●●

●

●
●
●●

●

●

●

●

●●

●●
●●

●●

●

●

●●

●

100 200 300 400

disp

w
t

2

3

4

5

●

●

●

●
●

● ●

●

●

●

●

●
●

●● ●●

●●

350 400 450 500

disp

w
t

2

3

4

5

●

●

●

●
●

● ●

●

●

●

●

●●

400

Fig. 7.13: Setting limits on the coordinate system, vs setting limits on the scales.
(Left) Entire dataset; (middle) x scale limits set to (325, 500); (right) coordinate
system x limits set to (325, 500). Scaling the coordinate limits performs a visual
zoom, while setting the scale limits subsets the data and refits the smooth.

carat

p
ri
c
e

0

5000

10000

15000

1 2 3 4 5

carat

p
ri
c
e

0

5000

10000

15000

0.0 0.5 1.0 1.5 2.0

carat

p
ri
c
e

0

5000

10000

15000

1 2

Fig. 7.14: Setting limits on the coordinate system, vs. setting limits on the scales.
(Left) Entire dataset; (middle) x scale limits set to (0, 2); (right) coordinate x limits
set to (0, 2). Compare the size of the bins: when you set the scale limits, there are
the same number of bins but they each cover a smaller region of the data; when you
set the coordinate limits, there are fewer bins and they cover the same amount of
data as the original.

qplot(displ, cty, data = mpg) + geom_smooth()

qplot(cty, displ, data = mpg) + geom_smooth()

qplot(cty, displ, data = mpg) + geom_smooth() + coord_flip()

Transformations.

Like limits, we can also transform the data in two places: at the scale level
or at the coordinate system level. coord_trans has arguments x and y which
should be strings naming the transformer (Table 6.2) to use for that axis.
Transforming at the scale level occurs before statistics are computed and does
not change the shape of the geom. Transforming at the coordinate system level
occurs after the statistics have been computed, and does affect the shape of the
geom. Using both together allows us to model the data on a transformed scale

7.3 Coordinate systems 135

displ

c
ty

10

15

20

25

30

35

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●●

●●●

●●

●●

●●

●●●●

●●●●●●●

●

●●

●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●

●●● ●●●●

●●●●●●●●●●●●●●●

●

●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●

●●●●

●●●●

●●

●●

2 3 4 5 6 7

cty

d
is

p
l

2

3

4

5

6

7

● ●

● ●

● ●

●

●●

●●

● ●

●●

●

●

●

●● ●

●

●

●●

●●

●

●●

●

●

● ●

●

●
●

●

●

●● ●●●

●● ●

●

●●

● ●

●●●

●●

●

●● ●

●

●

●

●● ●●●●

●●

●

●

●

● ●

● ●●●

●

●

●●

●●●

● ●

●●

●●

●●●●

●

●● ●● ●

●●●

●

●● ●●
●●

●

●● ●●

●● ●

●

●

●

●● ●

●

●

●

●

●

●

●● ●

●●

●

●

●●
●●

●●

● ●

●

● ●

●

●

●

● ● ●

●

●● ●● ●●

●●

●● ●●● ●

● ●

●●

●

●

●●

●●

●●

●

●●

● ●

●●

●

●● ● ●●

●

●

● ● ●

●●

● ●

●● ● ●

●

●
●● ●●

●●

● ●

●●
●●

●●

●●

● ●

● ●

●

●●

●●

● ●●

●●

●●●●●●●

●●●●●●●●●●●●●●●
●●

●●

●●●●●

●●

●●●●
●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●

●●●●

●●

●●●●

●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●● ●●●●●

●●●●●●●●●●●●

●
●●●●

●●●

●●

●●

●●

10 15 20 25 30 35

displ

c
ty

10

15

20

25

30

35

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●●

●

●●

●●

●●●●●●●

●●●

●●

●

●●

●●

●●

●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●● ●●●●

●●

●●●●

●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●●●●

●

●●●●

●●●●●●●●●●●●●●●●●●●●

●

●●●●

●●

●

●●

●●

●●

2 3 4 5 6 7

Fig. 7.15: (Left) A scatterplot and smoother with engine displacement on x axis and
city mpg on y axis. (Middle) Exchanging cty and displ rotates the plot 90 degrees, but
the smooth is fit to the rotated data. (Right) using coord_flip fits the smooth to
the original data, and then rotates the output, this is a smooth curve of x conditional
on y.

and then backtransform it for interpretation: a common pattern in analysis.
An example of this is shown in Figure 7.16.

qplot(carat, price, data = diamonds, log = "xy") +

geom_smooth(method = "lm")

last_plot() + coord_trans(x = "pow10", y = "pow10")

Fig. 7.16: (Left) A scatterplot of carat vs. price on log base 10 transformed scales. A
linear regression summarises the trend: log(y) = a + b ∗ log(x). (Right) The previous
plot backtransformed (with coord trans(x = "pow10", y = "pow10")) onto the
original scales. The linear trend line now becomes geometric, y = k ∗ cx, and
highlights the lack of expensive diamonds for larger carats.

136 7 Positioning

Equal scales.

coord_equal ensures that the x and y axes have equal scales: i.e., 1 cm along
the x axis represents the same range of data as 1 cm along the y axis. By
default it will assume that you want a one-to-one ratio, but you can change
this with the ratio parameter. The aspect ratio will also be set to ensure that
the mapping is maintained regardless of the shape of the output device. See
the documentation of coord_equal() for more details.

7.3.4 Non-Cartesian coordinate systems

There are two non-Cartesian coordinate systems: polar coordinates and map
projections. These coordinate systems are still somewhat experimental, and
there are fewer standards for the layout of axes, so you may need to tweak
them to meet your needs using the tools in Chapter C.

Polar coordinates.

Using polar coordinates gives rise to pie charts and wind roses (from bar
geoms), and radar charts (from line geoms). Polar coordinates are often used
for circular data, particularly time or direction, but the perceptual properties
are not good because the angle is harder to perceive for small radii than it
is for large radii. The theta argument determines which position variable is
mapped to angle (by default, x) and which to radius. Figure 7.17 shows how
by changing the coordinate system we can turn a bar chart into a pie chart or
a bullseye chart. The documentation includes other examples of polar charts.

Stacked barchart

(pie <- ggplot(mtcars, aes(x = factor(1), fill = factor(cyl))) +

geom_bar(width = 1))

Pie chart

pie + coord_polar(theta = "y")

The bullseye chart

pie + coord_polar()

Map projections.

These are still rather experimental, and rely on the mapproj package (McIlroy,
2005). coord_map() takes the same arguments as mapproj() for controlling
the projection. See the documentation of coord_map() for more examples, and
consult a cartographer for the most appropriate projection for your data.

7.3 Coordinate systems 137

factor(1)

c
o

u
n

t

0

5

10

15

20

25

30

1

factor(cyl)

4

6

8

factor(1)

c
o

u
n

t

1

0

5

10

15

20

25

30

factor(cyl)

4

6

8

factor(1)

c
o

u
n

t

0
5

10
15
20
25
30

factor(cyl)

4

6

8

Fig. 7.17: (Left) A stacked bar chart. (Middle) The stacked bar chart in polar
coordinates, with x position mapped to radius and y position mapped to an-
gle, coord_polar(theta = "y")). This is more commonly known as a pie chart.
(Right) The stacked bar chart in polar coordinates with the opposite mapping,
coord_polar(theta = "x"). This is sometimes called a bullseye chart.

Chapter 8

Polishing your plots for publication

In this chapter you will learn how to prepare polished plots for publication.
Most of this chapter focusses on the theming capability of ggplot2 which
allows you to control many non-data aspects of plot appearance, but you will
also learn how to adjust geom, stat and scale defaults, and the best way to
save plots for inclusion into other software packages. Together with the next
chapter, manipulating plot rendering with grid, you will learn how to control
every visual aspect of the plot to get exactly the appearance that you want.

The visual appearance of the plot is determined by both data and non-data
related components. Section 8.1 introduces the theme system which controls all
aspects of non-data display. By now you should be familiar with the many ways
that you can alter the data-related components of the plot—layers and scales—
to visualise your data and change the appearance of the plot. In Section 8.2
you will learn how you can change the defaults for these, so that you do not
need to repeat the same parameters again and again.

Section 8.3 discusses the chapter with a discussion about how to get
your graphics out of R and into LATEX, Word or other presentation or word-
processing software. Section 8.4 concludes with a discussion of how to lay out
multiple plots on a single page.

8.1 Themes

The appearance of non-data elements of the plot is controlled by the theme
system. The theme system does not affect how the data is rendered by geoms, or
how it is transformed by scales. Themes don’t change the perceptual properties
of the plot, but they do help you make the plot aesthetically pleasing or match
existing style guides. Themes give you control over things like the fonts in all
parts of the plot: the title, axis labels, axis tick labels, strips, legend labels and
legend key labels; and the colour of ticks, grid lines and backgrounds (panel,
plot, strip and legend).

This separation of control into data and non-data parts is quite different
than base and lattice graphics. In base and lattice graphics, most functions take

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 8, 139
c© Springer Science+Business Media, LLC 2009

140 8 Polishing your plots for publication

a large number of arguments that specify both data and non-data appearance,
which makes the functions complicated and hard to learn. ggplot2 takes a
different approach: when creating the plot you determine how the data is
displayed, then after it has been created you can edit every detail of the
rendering, using the theming system. Some of the effects of changing the theme
of a plot are shown in Figure 8.1. The two plots show the two themes included
by default in ggplot2.

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10
rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

Fig. 8.1: The effect of changing themes. (Left) The default grey theme with grey
background and white gridlines. (Right) the alternative black and white theme with
white background and grey gridlines. Notice how the bars, data elements, are identical
in both plots.

Like many other areas of ggplot2, themes can be controlled on multiple
levels from the coarse to fine. You can:

• Use a built-in theme, as described in Section 8.1.1. This affects every
element of the plot in a visually consistent manner. The default theme uses
a grey panel background with white gridlines, while the alternative theme
uses a white background with grey gridlines.

• Modify a single element of a built-in theme, as described in Section 8.1.2.
Each theme is made up of multiple elements. The theme system comes
with a number of built-in element rendering functions with a limited set of
parameters. By adjusting these parameters you can control things like text
size and colour, background and grid line colours and text orientation. By
combining multiple elements you can create your own theme.

Generally each of these theme settings can be applied globally, to all plots, or
locally to a single plot. How to do this is described in each section.

8.1.1 Built-in themes

There are two built-in themes. The default, theme_gray(), uses a very light
grey background with white gridlines. This follows from the advice of Tufte

8.1 Themes 141

(1990, 1997, 2001, 2006) and Brewer (1994a); Carr (1994, 2002); Carr and
Sun (1999). We can still see the gridlines to aid in the judgement of position
(Cleveland, 1993b), but they have little visual impact and we can easily
“tune” them out. The grey background gives the plot a similar colour (in a
typographical sense) to the remainder of the text, ensuring that the graphics fit
in with the flow of a text without jumping out with a bright white background.
Finally, the grey background creates a continuous field of colour which ensures
that the plot is perceived as a single visual entity.

The other built-in theme, theme_bw(), has a more traditional white back-
ground with dark grey gridlines. Figure 8.1 shows some of the difference
between these themes.

Both themes have a single parameter, base_size, which controls the base
font size. The base font size is the size that the axis titles use: the plot title
is 20% bigger, and the tick and strip labels are 20% smaller. If you want to
control these sizes separately, you’ll need to modify the individual elements as
described in the following section.

You can apply themes in two ways:

• Globally, affecting all plots when they are drawn: theme_set(theme_grey())
or theme_set(theme_bw()). theme_set() returns the previous theme so
that you can restore it later if you want.

• Locally, for an individual plot: qplot(...) + theme_grey(). A locally
applied theme will override the global default.

The following example shows a few of these combinations:

> hgram <- qplot(rating, data = movies, binwidth = 1)

>

> # Themes affect the plot when they are drawn,

> # not when they are created

> hgram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

> previous_theme <- theme_set(theme_bw())

> hgram

142 8 Polishing your plots for publication

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

>

> # You can override the theme for a single plot by adding

> # the theme to the plot. Here we apply the original theme

> hgram + previous_theme

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

>

> # Permanently restore the original theme

> theme_set(previous_theme)

8.1.2 Theme elements and element functions

A theme is made up of multiple elements which control the appearance of a
single item on the plot, as listed in Table 8.1. There are three elements that
have individual x and y settings: axis.text, axis.title and strip.text.
Having a different setting for the horizontal and vertical elements allows you
to control how text should appear in different orientations. The appearance of
each element is controlled by an element function.

There are four basic types of built-in element functions: text, lines and
segments, rectangles and blank. Each element function has a set of parameters
that control the appearance as described below:

• theme_text() draws labels and headings. You can control the font family,
face, colour, size, hjust, vjust, angle and lineheight.
The following code shows the effect of changing these parameters on the plot
title. The results are shown in Figure 8.2. Changing the angle is probably
more useful for tick labels. When changing the angle you will probably also
need to change hjust to 0 or 1.

8.1 Themes 143

Theme element Type Description

axis.line segment line along axis
axis.text.x text x axis label
axis.text.y text y axis label
axis.ticks segment axis tick marks
axis.title.x text horizontal tick labels
axis.title.y text vertical tick labels

legend.background rect background of legend
legend.key rect background underneath legend keys
legend.text text legend labels
legend.title text legend name

panel.background rect background of panel
panel.border rect border around panel
panel.grid.major line major grid lines
panel.grid.minor line minor grid lines
plot.background rect background of the entire plot
plot.title text plot title

strip.background rect background of facet labels
strip.text.x text text for horizontal strips
strip.text.y text text for vertical strips

Table 8.1: Theme elements

hgramt <- hgram +

opts(title = "This is a histogram")

hgramt

hgramt + opts(plot.title = theme_text(size = 20))

hgramt + opts(plot.title = theme_text(size = 20,

colour = "red"))

hgramt + opts(plot.title = theme_text(size = 20,

hjust = 0))

hgramt + opts(plot.title = theme_text(size = 20,

face = "bold"))

hgramt + opts(plot.title = theme_text(size = 20,

angle = 180))

• theme_line() and theme_segment() draw lines and segments with the
same options but in a slightly different way. Make sure you match the
appropriate type or you will get strange grid errors. For these element
functions you can control the colour, size and linetype. These options
are illustrated with the code and the results are shown in Figure 8.3.

hgram + opts(panel.grid.major = theme_line(colour = "red"))

144 8 Polishing your plots for publication

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

Fig. 8.2: Changing the appearance of the plot title.

hgram + opts(panel.grid.major = theme_line(size = 2))

hgram + opts(panel.grid.major = theme_line(linetype = "dotted"))

hgram + opts(axis.line = theme_segment())

hgram + opts(axis.line = theme_segment(colour = "red"))

hgram + opts(axis.line = theme_segment(size = 0.5,

linetype = "dashed"))

• theme_rect() draws rectangles, mostly used for backgrounds, you can
control the fill colour and border colour, size and linetype. Examples
shown in Figure 8.4 are created with the code below:

hgram + opts(plot.background = theme_rect(fill = "grey80",

colour = NA))

hgram + opts(plot.background = theme_rect(size = 2))

hgram + opts(plot.background = theme_rect(colour = "red"))

hgram + opts(panel.background = theme_rect())

hgram + opts(panel.background = theme_rect(colour = NA))

hgram + opts(panel.background =

theme_rect(linetype = "dotted"))

• theme_blank() draws nothing. Use this element type if you don’t want
anything drawn, and no space allocated for that element. The following
example uses theme_blank() to progressively suppress the appearance of
elements we’re not interested in. The results are shown in Figure 8.5. Notice

8.1 Themes 145

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

Fig. 8.3: Changing the appearance of lines and segments in the plot.

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

Fig. 8.4: Changing the appearance of the plot and panel background

146 8 Polishing your plots for publication

how the plot automatically reclaims the space previously used by these
elements: if you don’t want this to happen (perhaps because they need to
line up with other plots on the page), use colour = NA, fill = NA as
parameter to create invisible elements that still take up space.

hgramt

last_plot() + opts(panel.grid.minor = theme_blank())

last_plot() + opts(panel.grid.major = theme_blank())

last_plot() + opts(panel.background = theme_blank())

last_plot() +

opts(axis.title.x = theme_blank(),

axis.title.y = theme_blank())

last_plot() + opts(axis.line = theme_segment())

This is a histogram

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

rating

c
o

u
n

t

0

5000

10000

15000

2 4 6 8 10

0

5000

10000

15000

2 4 6 8 10

0

5000

10000

15000

2 4 6 8 10

Fig. 8.5: Progressively removing non-data elements from a plot with
theme_blank().

You can see the settings for the current theme with theme_get(). The
output isn’t included here because it takes up several pages. You can modify
the elements locally for a single plot with opts() (as seen above), or globally
for all future plots with theme_update(). Figure 8.6 shows the results of
pulling together multiple theme settings with the following code.

old_theme <- theme_update(

plot.background = theme_rect(fill = "#3366FF"),

8.2 Customising scales and geoms 147

panel.background = theme_rect(fill = "#003DF5"),

axis.text.x = theme_text(colour = "#CCFF33"),

axis.text.y = theme_text(colour = "#CCFF33", hjust = 1),

axis.title.x = theme_text(colour = "#CCFF33", face = "bold"),

axis.title.y = theme_text(colour = "#CCFF33", face = "bold",

angle = 90)

)

qplot(cut, data = diamonds, geom="bar")

qplot(cty, hwy, data = mpg)

theme_set(old_theme)

cut

c
o

u
n

t

0

5000

10000

15000

20000

Fair Good Very GoodPremium Ideal

cty

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

Fig. 8.6: A bar chart and scatterplot created after a new visually consistent (if ugly!)
theme has been applied.

There is some duplication in this example because we have to specify the x
and y elements separately. This is a necessary evil so that you can have total
control over the appearance of the elements. If you are writing your own theme,
you would probably want to write a function to minimise this repetition.

8.2 Customising scales and geoms

When producing a consistent theme, you may also want to tune some of the
scale and geom defaults. Rather than having to manually specify the changes
every time you add the scale or geom, you can use the following functions to
alter the default settings for scales and geoms.

8.2.1 Scales

To change the default scale associated with an aesthetic, use set_default_scale().
(See Table 6.1 for the defaults.) This function takes three arguments: the name
of the aesthetic, the type of variable (discrete or continuous) and the name
of the scale to use as the default. Further arguments override the default

148 8 Polishing your plots for publication

parameters of the scale. The following example sets up colour and fill scales
for black-and-white printing:

set_default_scale("colour", "discrete", "grey")

set_default_scale("fill", "discrete", "grey")

set_default_scale("colour", "continuous", "gradient",

low = "white", high = "black")

set_default_scale("fill", "continuous", "gradient",

low = "white", high = "black")

8.2.2 Geoms and stats

You can customise geoms and stats in a similar way with update_geom_defaults()

and update_stat_defaults(). Unlike the other theme settings these will only
affect plots created after the setting has been changed, not all plots drawn after
the setting has been changed. The following example demonstrates changing
the default point colour and changing the default histogram to a density
(“true”) histogram.

update_geom_defaults("point", aes(colour = "darkblue"))

qplot(mpg, wt, data=mtcars)

update_stat_defaults("bin", aes(y = ..density..))

qplot(rating, data = movies, geom = "histogram", binwidth = 1)

Table 8.2 lists all of the common aesthetic defaults. If you change the
defaults for one geom, it’s a good idea to change all the defaults for all the
other geoms that you commonly use so that your plots look consistent. If
you are unsure on what makes for a valid colour, line type, shape or size,
Appendix B gives the details.

8.3 Saving your output

You have two basic choices of output: raster or vector. Vector graphics are
procedural. This means that they are essentially “infinitely” zoomable; there
is no loss of detail. Raster graphics are stored as an array of pixels and have a
fixed optimal viewing size. Figure 8.7 illustrates the basic differences for a basic
circle. A good description is available at http://tinyurl.com/rstrvctr.

Generally, vector output is more desirable, but for complex graphics con-
taining thousands of graphical objects it can be slow to render. In this case, it
may be better to switch to raster output. For printed use, a high-resolution
(e.g., 600 dpi) graphic may be an acceptable compromise, but may be large.

To save your output, you can use the typical R way with disk-based graphics
devices, which works for all packages, or a special function from ggplot2 that
saves the current plot: ggsave(). ggsave() is optimised for interactive use
and has the following important arguments:

8.3 Saving your output 149

Aesthetic Default value Geoms

colour #3366FF contour, density2d, quantile, smooth
colour NA area, bar, histogram, polygon, rect, tile
colour black abline, crossbar, density, errorbar, hline, line,

linerange, path, pointrange, rug, segment, step,
text, vline

colour darkblue jitter, point
colour grey60 boxplot, ribbon
fill NA crossbar, density, jitter, point, pointrange
fill grey20 area, bar, histogram, polygon, rect, ribbon, tile
linetype 1 abline, area, bar, contour, crossbar, density,

density2d, errorbar, histogram, hline, line,
linerange, path, pointrange, polygon, quantile,
rect, ribbon, rug, segment, smooth, step, tile,
vline

shape 19 jitter, point, pointrange
size 0.5 abline, area, bar, boxplot, contour, crossbar,

density, density2d, errorbar, histogram, hline,
line, linerange, path, pointrange, polygon,
quantile, rect, ribbon, rug, segment, smooth, step,
vline

size 2 jitter, point
weight 1 bar, boxplot, contour, density, density2d,

histogram, quantile, smooth

Table 8.2: Default aesthetic values for geoms. See Appendix B for how the values are
interpreted by R.

Fig. 8.7: The schematic difference between raster (left) and vector (right) graphics.

150 8 Polishing your plots for publication

• The path specifies the path where the image should be saved. The file
extension will be used to automatically select the correct graphics device.

• Three arguments control output size. If left blank, the size of the current
on-screen graphics device will be used. width and height can be used to
specify the absolute size, or scale to specify the size of the plot relative to
the on-screen display. When creating the final versions of graphics it’s a
good idea to set width and height so you know exactly what size output
you’re going to get.

• For raster graphics, the dpi argument controls the resolution of the plot. It
defaults to 300, which is appropriate for most printers, but you may want
to use 600 for particularly high-resolution output, or 72 for on-screen (e.g.,
web) display.

The following code shows these two methods. If you want to save multiple
plots to a single file, you will need to explicitly open a disk-based graphics
device (like png() or pdf()), print the plots and then close it with dev.off().

qplot(mpg, wt, data = mtcars)

ggsave(file = "output.pdf")

pdf(file = "output.pdf", width = 6, height = 6)

If inside a script, you will need to explicitly print() plots

qplot(mpg, wt, data = mtcars)

qplot(wt, mpg, data = mtcars)

dev.off()

Table 8.3 lists recommended graphic formats for various tasks. R output
generally works best as part of a linux development tool chain: using png or
pdf output in LATEX documents. With Microsoft Office it is easiest to use a
high-resolution (dpi = 600) png file. You can use vector output, but neither
Windows meta files nor postscript supports transparency, and while postscript
prints fine, it is only shown on screen if you add a preview in another software
package. Transparency is used to show confidence intervals with the points
showing through. If you copy and paste a graph into Word, and see that the
confidence interval bands have vanished, that is the cause. The same advice
holds for OpenOffice.

If you are using LATEX, I recommend including \DeclareGraphicsExtensions
{.png,.pdf} in the preamble. Then you don’t need to specify the file extension
in includegraphics commands, but LATEX will pick png files in preference
to pdf. I choose this order because you can produce all your files in pdf, and
then go back and re-render any big ones as png. Another useful command
is \graphicspath{{include/}} which specifies a path in which to look for
graphics, allowing you to keep graphics in a separate directory to the text.

8.4 Multiple plots on the same page 151

Software Recommended graphics device

Illustrator svg
latex ps
MS Office png (600 dpi)
Open Office png (600 dpi)
pdflatex pdf, png (600 dpi)
web png (72 dpi)

Table 8.3: Recommended graphic output for different purposes.

8.4 Multiple plots on the same page

If you want to arrange multiple plots on a single page, you’ll need to learn a
little bit of grid, the underlying graphics system used by ggplot2. The key
concept you’ll need to learn about is a viewport: a rectangular subregion of
the display. The default viewport takes up the entire plotting region, and by
customising the viewport you can arrange a set of plots in just about any way
you can imagine.

To begin, let’s create three plots that we can experiment with. When
arranging multiple plots on a page, it will usually be easiest to create them,
assign them to variables and then plot them. This makes it easier to experiment
with plot placement independent of content. The plots created by the code
below are shown in Figure 8.8.

(a <- qplot(date, unemploy, data = economics, geom = "line"))

(b <- qplot(uempmed, unemploy, data = economics) +

geom_smooth(se = F))

(c <- qplot(uempmed, unemploy, data = economics, geom="path"))

date

u
n

e
m

p
lo

y

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

uempmed

u
n

e
m

p
lo

y

4000

6000

8000

10000

12000

●●●
●●●

●
●

●
●●

●●
● ●●●●● ●●●●

●●●
●●
●●

●

●
●

●
●

●
● ●
●
●

●
● ●●●●●● ●

●● ●
●●

● ●
●●●● ●●●●

● ●
●

● ●●
●●●● ●

●

●●
●●●●●

●
●●

●●

●

●

● ●

●
●

●
●●

●●●
●●

●
● ●
●

●

●
●●
●●

●●

●
●
●

●
●

●

●●●●●

●
●

●●
●●

●

●
●●
●

●
●

●●●●
●
● ●

●
●
●● ●

● ●●

●

●
●

● ●

●●●

●

●●●
●

●●
●
●

●

●

●
●

●

●
●

● ●
●

●●

●

●

●
●

●●
●

●
●●

●●

●

●

●
●

●
●●●

●
●

●●
●●

●
●●

●●●●
● ●

●●●
●●

●

●●●●
●

●
●

●●●

●●●●

●●
●
●●

●
●

●
●●●●

●
●

● ●
●

●●●●
●

●
●

●●
●●●●

●●●
●

●●
● ●

●

●

●
●●

●
●
●

●

●
●

● ●
● ●●

● ●

● ●
●●●

●

●
●●●

●
● ●

●
●
●●●●

●
●●●
●●

● ●
●

●

●●●●
●

●

●
●

●
●●

●
●●

●●●
●

● ●●
● ●

●●

●

●

●
●●

●●● ●
●

●
●
●

●● ●
●

●
●

●●
●

●
●

●●●
●●

●●●
●

●
●

●
●●

●●
●●●●
●

●

●

●
● ●

●
● ●

●●

● ● ●
● ●

●
●

●
●

●

●

●●●
●

●
● ●●● ●●

●
●
●

●●

●
●

●
●

●●
●

●

●●
●

●

● ● ●●
● ●

●
●●

●
●

●●●
●●
●

●
●

●
●

●
●

●●●●

●
●

●
●

●●
●
●

●●

4 6 8 10 12

uempmed

u
n

e
m

p
lo

y

4000

6000

8000

10000

12000

4 6 8 10 12

Fig. 8.8: Three simple graphics we’ll use to experiment with sophisticated plot
layouts.

152 8 Polishing your plots for publication

8.4.1 Subplots

One common layout is to have a small subplot embedded drawn on top of the
main plot. To achieve this effect, we first plot the main plot, and then draw
the subplot in a smaller viewport. Viewports are created with (surprise!) the
viewport() function, with parameters x, y, width and height to control the
size and position of the viewport. By default, the measurements are given in
“npc” units, which range from 0 to 1. The location (0, 0) is the bottom left, (1,
1) the top right and (0.5, 0.5) the centre of viewport. If these relative units
don’t work for your needs, you can also use absolute units, like unit(2, "cm")

or unit(1, "inch").

A viewport that takes up the entire plot device

vp1 <- viewport(width = 1, height = 1, x = 0.5, y = 0.5)

vp1 <- viewport()

A viewport that takes up half the width and half the height,

located in the middle of the plot.

vp2 <- viewport(width = 0.5, height = 0.5, x = 0.5, y = 0.5)

vp2 <- viewport(width = 0.5, height = 0.5)

A viewport that is 2cm x 3cm located in the center

vp3 <- viewport(width = unit(2, "cm"), height = unit(3, "cm"))

By default, the x and y parameters control the location of the centre of the
viewport. When positioning the plot in other locations, you may need to use
the just parameter to control which corner of the plot you are positioning.
The following code gives some examples.

A viewport in the top right

vp4 <- viewport(x = 1, y = 1, just = c("top", "right"))

Bottom left

vp5 <- viewport(x = 0, y = 0, just = c("bottom", "right"))

To draw the plot in our new viewport, we use the vp argument of the ggplot
print() method. This method is normally called automatically whenever you
evaluate something on the command line, but because we want to customise
the viewport, we need to call it ourselves. The result of this is shown in
Figure 8.9(a).

pdf("polishing-subplot-1.pdf", width = 4, height = 4)

subvp <- viewport(width = 0.4, height = 0.4, x = 0.75, y = 0.35)

b

print(c, vp = subvp)

dev.off()

8.4 Multiple plots on the same page 153

This gives us what we want, but we need to make a few tweaks to the
appearance: the text should be smaller, we want to remove the axis labels and
shrink the plot margins. The result is shown in Figure 8.9(b).

csmall <- c +

theme_gray(9) +

labs(x = NULL, y = NULL) +

opts(plot.margin = unit(rep(0, 4), "lines"))

pdf("polishing-subplot-2.pdf", width = 4, height = 4)

b

print(csmall, vp = subvp)

dev.off()

uempmed

u
n

e
m

p
lo

y

●●●
●●●

●
●

●
●●

●●
● ●●●●● ●●●●

●●●
●●
●●

●

●
●

●
●

●
● ●
●
●

●
● ●●●●●● ●●● ●

●●
● ●

●●●● ●●●●

● ●
●

● ●●
●●●● ●

●

●●
●●●●●

●
●●

●●

●

●

● ●

●
●

●
●●

●●●
●●

●
● ●
●

●

●
●●
●●

●●

●
●
●
●

●
●

●●●●●

●
●

●●
●● ●

●
●●
●

●
●

●●●●
●
● ●

●
●
●● ●

● ●●

●

●
●

● ●

●●●

●

●●●
●

●●
●
●

●

●

●
●

●

●
●

● ●
●

●●

●

●

●
●

●●
●

●
●●

●●

●

●

●
●

●
●●●

●
●

●●
●●

●
●●

●●●●
● ●

●●●
●●

●

●●●●
●

●
●

●●●

●●●●

●●
●
●●

●
●

●●●●●

●
●

● ●
●

●●●●
●

●
●

●●
●●●●

●●●
●

●●
● ●

●

●

●
●●

●
●
●

●

●
●

● ●
● ●●

● ●

● ●
●●●

●

●
●●●

●
● ●

●
●
●●●●

●
●●●
●●

● ●
●

●

●●●●
●

●

●
●

●
●●

●
●●

●●●
●● ●●

● ● ●●

●
●

●●
●

●●● ●
●

●
●
●

●● ●
●

●
●

●●
●

●
●

●●●
●●

●●●
●

●
●

●
●●

●●
●●●●
●

●

●

●
● ●

●
● ●

●●

● ● ●
● ●

● ●

●
●

●

●

●●●
●

●
● ●●● ●●

●
●
●●●

●
●

●
●

●●
●

●

●●
●

●

● ● ●●
● ●●●●
●

●

●●●
●●
●

●
●

●
●

●
●

●●●●
●

●
●

●
●●

●
●

●●

4000

6000

8000

10000

12000

4 6 8 10 12

uempmed

u
n

e
m

p
lo

y

4000
6000
8000

10000
12000

4 6 8 1012

(a) Figure with subplot.

uempmed

u
n

e
m

p
lo

y

●●●
●●●

●
●

●
●●

●●
● ●●●●● ●●●●

●●●
●●
●●

●

●
●

●
●

●
● ●
●
●

●
● ●●●●●● ●●● ●

●●
● ●

●●●● ●●●●

● ●
●

● ●●
●●●● ●

●

●●
●●●●●

●
●●

●●

●

●

● ●

●
●

●
●●

●●●
●●

●
● ●
●

●

●
●●
●●

●●

●
●
●
●

●
●

●●●●●

●
●

●●
●● ●

●
●●
●

●
●

●●●●
●
● ●

●
●
●● ●

● ●●

●

●
●

● ●

●●●

●

●●●
●

●●
●
●

●

●

●
●

●

●
●

● ●
●

●●

●

●

●
●

●●
●

●
●●

●●

●

●

●
●

●
●●●

●
●

●●
●●

●
●●

●●●●
● ●

●●●
●●

●

●●●●
●

●
●

●●●

●●●●

●●
●
●●

●
●

●●●●●

●
●

● ●
●

●●●●
●

●
●

●●
●●●●

●●●
●

●●
● ●

●

●

●
●●

●
●
●

●

●
●

● ●
● ●●

● ●

● ●
●●●

●

●
●●●

●
● ●

●
●
●●●●

●
●●●
●●

● ●
●

●

●●●●
●

●

●
●

●
●●

●
●●

●●●
●● ●●

● ● ●●

●
●

●●
●

●●● ●
●

●
●
●

●● ●
●

●
●

●●
●

●
●

●●●
●●

●●●
●

●
●

●
●●

●●
●●●●
●

●

●

●
● ●

●
● ●

●●

● ● ●
● ●

● ●

●
●

●

●

●●●
●

●
● ●●● ●●

●
●
●●●

●
●

●
●

●●
●

●

●●
●

●

● ● ●●
● ●●●●
●

●

●●●
●●
●

●
●

●
●

●
●

●●●●
●

●
●

●
●●

●
●

●●

4000

6000

8000

10000

12000

4 6 8 10 12

4000

6000

8000

10000

12000

4 6 8 10 12

(b) Subplot tweaked for better display.

Fig. 8.9: Two examples of a figure with subplot. It will usually be necessary to tweak
the theme settings of the subplot for optimum display.

Note we need to use pdf() (or png() etc.) to save the plots to disk because
ggsave() only saves a single plot.

8.4.2 Rectangular grids

A more complicated scenario is when you want to arrange a number of plots
in a rectangular grid. Of course you could create a series of viewports and
use what you’ve learned above, but doing all the calculations by hand is
cumbersome. A better approach is to use grid.layout(), which sets up a
regular grid of viewports with arbitrary heights and widths. You still need to

154 8 Polishing your plots for publication

create each viewport, but instead of explicitly specifying the position and size,
you can specify the row and column of the layout.

The following example shows how this work. We first create the layout,
here a 2× 2 grid, then assign it to a viewport and push that viewport on to
the plotting device. Now we are ready to draw each plot into its own position
on the grid. We create a small function to save some typing, and then draw
each plot in the desired place on the grid. You can supply a vector of rows or
columns to span a plot over multiple cells. The results are shown in Figure 8.10.

pdf("polishing-layout.pdf", width = 8, height = 6)

grid.newpage()

pushViewport(viewport(layout = grid.layout(2, 2)))

vplayout <- function(x, y)

viewport(layout.pos.row = x, layout.pos.col = y)

print(a, vp = vplayout(1, 1:2))

print(b, vp = vplayout(2, 1))

print(c, vp = vplayout(2, 2))

dev.off()

date

u
n

e
m

p
lo

y

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

uempmed

u
n

e
m

p
lo

y

●●●
●●● ●●●

●●
●●● ●●●●● ●●●●●●●

●●
●●

●
●
●

● ●
●● ●

●●
●

● ●●●●●● ●●● ●
●●● ●●●●● ●●●●

● ●
●● ●●●●●● ●

●
●●

●●●●●
● ●●

●●

●

●

● ●

●
●

●
●●

●●● ●●
●

● ●●
●

●
●●●●

●●
●

●●
●

●
●

●●●●●

●●
●●

●● ●
●
●●
●●

● ●●●●
●●

●
● ●●● ●

● ●●

●

● ●
● ●

●●●
●

●●● ●
●●

●
●

●

●

●
●●

●
●

● ●
●

●●
●

●

●●

●● ● ● ●●

●●
●

●

●
●

●
●●●

●
●
●●
●●

●
●● ●●●●

● ●
●●●

●●
●

●●●●●
●

●
●●●

●●●●
●●

●●●
● ●

●●●●●
●
●

● ●
●

●●●●
●

●
●
●●
●●●●●

●●●●●
● ●

●
●
●

●●
●●●

●
●

●
● ●● ●● ● ●

● ●
●●●

●
●

●●●

●
● ●

●●●●●●
●
●●●
●●

● ●●●

●●●●
● ●

●
●

●
●●

●
●● ●●●

●● ●●● ● ●●
●
●

●●
●

●●● ●● ●
●● ●● ●

●
●

●●●●

●●
●●●●●

●●●●
●

●
●

●●
●●●●●●

●●
●

●● ● ●
● ●●●

● ● ●● ●
● ●

● ●

●
●

●●●●
●

● ●●● ●●
● ●●●●

●●
●

●●●
●●
●●

●
●

● ● ●●
● ●●●●
●

●
●●●
●●●

●
●●

●
● ●
●●●●

●●
●

●●●
●
● ●●

4000

6000

8000

10000

12000

4 6 8 10 12

uempmed

u
n

e
m

p
lo

y

4000

6000

8000

10000

12000

4 6 8 10 12

Fig. 8.10: Three plots laid out in a grid using grid.layout().

8.4 Multiple plots on the same page 155

By default grid.layout() makes each cell the same size, but you can
use the widths and heights arguments to make them different sizes. See the
documentation for grid.layout() for more examples.

Chapter 9

Manipulating data

So far this book has assumed you have your data in a nicely structured data
frame ready to feed to ggplot() or qplot(). If this is not the case, then you’ll
need to do some transformation.

In Section 9.1, you will learn how to use the plyr package to reproduce the
statistical transformations performed by the layers, and then in Section 9.2
you will learn a little about “molten” (or long) data, which is useful for time
series and parallel coordinates plots, among others. Section 9.3 shows you
how to write methods that let you plot objects other than data frames, and
demonstrates how ggplot2 can be used to re-create a more flexible version of
the built in linear-model diagnostics.

Data cleaning, manipulation and transformation is a big topic and this
chapter only scratches the surface of topics closely related to ggplot2. I
recommend the following references which go into considerably more depth on
this topic:

• Data Manipulation with R, by Phil Spector. Published by Springer, 2008.
• “plyr: divide and conquer for data analysis”, Hadley Wickham. Available

from http://had.co.nz/plyr. This is a full description of the package
used in Section 9.1.

• “Reshaping data with the reshape package”, Hadley Wickham. Journal of

Statistical Software, 21(12), 2007. http://www.jstatsoft.org/v21/i12/.
This describes the complement of the melt function used in Section 9.2,
which can be used like pivot tables to create a wide range of data summaries
and rearrangements.

9.1 An introduction to plyr

With faceting, ggplot2 makes it very easy to create identical plots for different
subsets of your data. This section introduces ddply() from the plyr package,
a function that makes it easy to do the same thing for numerical summaries.
plyr provides a comprehensive suite of tools for breaking up complicated

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 9, 157
c© Springer Science+Business Media, LLC 2009

158 9 Manipulating data

data structures into pieces, processing each piece and then joining the results
back together. The plyr package as a whole provides tools for breaking and
combining lists, arrays and data frames. Here we will focus on the ddply()

function which breaks up a data frame into subsets based on row values, applies
a function to each subset and then joins the results back into a data frame.
The basic syntax is ddply(.data, .variables, .fun, ...), where

• .data is the dataset to break up (e.g., the data that you are plotting).
• .variables is a description of the grouping variables used to break up the

dataset. This is written like .(var1, var2), and to match the plot should
contain all the grouping and faceting variables that you’ve used in the plot.

• .fun is the summary function you want to use. The function can return
a vector or data frame. The result does not need to contain the grouping
variables: these will be added on automatically if they’re needed. The result
can be a much reduced aggregated dataset (maybe even one number), or
the original data modified or expanded in some way.

More information and examples are available in the documentation, ?ddply,
and on the package website, http://had.co.nz/plyr. The following examples
show a few useful summary functions that solve common data manipulation
problems.

• Using subset() allows you to select the top (or bottom) n (or x%) of
observations in each group, or observations above (or below) some group-
specific threshold:

Select the smallest diamond in each colour

ddply(diamonds, .(color), subset, carat == min(carat))

Select the two smallest diamonds

ddply(diamonds, .(color), subset, order(carat) <= 2)

Select the 1% largest diamonds in each group

ddply(diamonds, .(color), subset, carat >

quantile(carat, 0.99))

Select all diamonds bigger than the group average

ddply(diamonds, .(color), subset, price > mean(price))

• Using transform() allows you to perform group-wise transformations with
very little work. This is particularly useful if you want to add new variables
that are calculated on a per-group level, such as a per-group standardisation.
Section 9.2.1 shows another use of this technique for standardising time
series to a common scale.

Within each colour, scale price to mean 0 and variance 1

ddply(diamonds, .(color), transform, price = scale(price))

9.1 An introduction to plyr 159

Subtract off group mean

ddply(diamonds, .(color), transform,

price = price - mean(price))

• If you want to apply a function to every column in the data frame, you
might find the colwise() function handy. This function converts a function
that operates on vectors to a function that operates column-wise on data
frames. This is rather different than most functions: instead of returning
a vector of numbers, colwise() returns a new function. The following
example creates a function to count the number of missing values in a
vector and then shows how we can use colwise() to apply it to every
column in a data frame.

> nmissing <- function(x) sum(is.na(x))

> nmissing(msleep$name)

[1] 0

> nmissing(msleep$brainwt)

[1] 27

>

> nmissing_df <- colwise(nmissing)

> nmissing_df(msleep)

name genus vore order conservation sleep_total sleep_rem

1 0 0 7 0 29 0 22

sleep_cycle awake brainwt bodywt

1 51 0 27 0

> # This is shorthand for the previous two steps

> colwise(nmissing)(msleep)

name genus vore order conservation sleep_total sleep_rem

1 0 0 7 0 29 0 22

sleep_cycle awake brainwt bodywt

1 51 0 27 0

The specialised version numcolwise() does the same thing, but works only
with numeric columns. For example, numcolwise(median) will calculate a
median for every numeric column, or numcolwise(quantile) will calculate
quantiles for every numeric column. Similarly, catcolwise() only works
with categorical columns.

> msleep2 <- msleep[, -6] # Remove a column to save space

> numcolwise(median)(msleep2, na.rm = T)

sleep_rem sleep_cycle awake brainwt bodywt

1 1.5 0.33 14 0.012 1.7

> numcolwise(quantile)(msleep2, na.rm = T)

sleep_rem sleep_cycle awake brainwt bodywt

0% 0.1 0.12 4.1 0.00014 5.0e-03

160 9 Manipulating data

25% 0.9 0.18 10.2 0.00290 1.7e-01

50% 1.5 0.33 13.9 0.01240 1.7e+00

75% 2.4 0.58 16.1 0.12550 4.2e+01

100% 6.6 1.50 22.1 5.71200 6.7e+03

> numcolwise(quantile)(msleep2, probs = c(0.25, 0.75),

+ na.rm = T)

sleep_rem sleep_cycle awake brainwt bodywt

25% 0.9 0.18 10 0.0029 0.17

75% 2.4 0.58 16 0.1255 41.75

Combined with ddply, this makes it easy to produce per-group summaries:

> ddply(msleep2, .(vore), numcolwise(median), na.rm = T)

vore sleep_rem sleep_cycle awake brainwt bodywt

1 carni 1.95 0.38 13.6 0.0445 20.490

2 herbi 0.95 0.22 13.7 0.0123 1.225

3 insecti 3.00 0.17 5.9 0.0012 0.075

4 omni 1.85 0.50 14.1 0.0066 0.950

5 <NA> 2.00 0.18 13.4 0.0030 0.122

> ddply(msleep2, .(vore), numcolwise(mean), na.rm = T)

vore sleep_rem sleep_cycle awake brainwt bodywt

1 carni 2.3 0.37 14 0.0793 90.75

2 herbi 1.4 0.42 14 0.6216 366.88

3 insecti 3.5 0.16 9 0.0215 12.92

4 omni 2.0 0.59 13 0.1457 12.72

5 <NA> 1.9 0.18 14 0.0076 0.86

• If none of the previous shortcuts is appropriate, make your own summary
function which takes a data frame as input and returns an appropriately
summarised data frame as output. The following function calculates the
rank correlation of price and carat and compares it to the regular correlation
of the logged values.

> my_summary <- function(df) {

+ with(df, data.frame(

+ pc_cor = cor(price, carat, method = "spearman"),

+ lpc_cor = cor(log(price), log(carat))

+))

+ }

> ddply(diamonds, .(cut), my_summary)

cut pc_cor lpc_cor

1 Fair 0.91 0.91

2 Good 0.96 0.97

3 Very Good 0.97 0.97

4 Premium 0.96 0.97

9.1 An introduction to plyr 161

5 Ideal 0.95 0.97

> ddply(diamonds, .(color), my_summary)

color pc_cor lpc_cor

1 D 0.96 0.96

2 E 0.96 0.96

3 F 0.96 0.96

4 G 0.96 0.97

5 H 0.97 0.98

6 I 0.98 0.99

7 J 0.98 0.99

Note how our summary function did not need to output the group variables.
This makes it much easier to aggregate over different groups.

The common pattern of all these problems is that they are easy to solve
if we have the right subset. Often the solution for a single case might be a
single line of code. The difficulty comes when we want to apply the function
to multiple subsets and then correctly join back up the results. This may take
a lot of code, especially if you want to preserve group labels. ddply() takes
care of all this for you.

The following case study shows how you can use plyr to reproduce the
statistical summaries produced by ggplot2. This is useful if you want to save
them to disk or apply them to other datasets. It’s also useful to be able to
check that ggplot2 is doing exactly what you think!

9.1.1 Fitting multiple models

In this section, we’ll work through the process of generating the smoothed
data produced by stat_smooth. This process will be the same for any other
statistic, and should allow you to produce more complex summaries that
ggplot2 can’t produce by itself. Figure 9.1 shows the group-wise smoothes
produced by the following code.

qplot(carat, price, data = diamonds, geom = "smooth",

colour = color)

dense <- subset(diamonds, carat < 2)

qplot(carat, price, data = dense, geom = "smooth",

colour = color, fullrange = TRUE)

How can we re-create this by hand? First we read the stat_smooth()

documentation to determine what the model is: for large data it’s gam(y ~

s(x, bs = "cs")). To get the same output as stat_smooth(), we need to
fit the model, then predict it on an evenly spaced grid of points. This task
is performed by the smooth() function in the following code. Once we have
written this function it is straightforward to apply it to each diamond colour
using ddply().

162 9 Manipulating data

carat

p
ri
c
e

0

5000

10000

15000

1 2 3 4 5

color

D

E

F

G

H

I

J

carat

p
ri
c
e

0

5000

10000

15000

0.5 1.0 1.5

color

D

E

F

G

H

I

J

Fig. 9.1: A plot showing the smoothed trends for price vs. carat for each colour
of diamonds. With the full range of carats (left), the standard errors balloon after
around two carats because there are relatively few diamonds of that size. Restricting
attention to diamonds of less than two carats (right) focuses on the region where we
have plenty of data.

Figure 9.2 shows the results of this work, which are identical to what we
got with ggplot2 doing all the work.

library(mgcv)

smooth <- function(df) {

mod <- gam(price ~ s(carat, bs = "cs"), data = df)

grid <- data.frame(carat = seq(0.2, 2, length = 50))

pred <- predict(mod, grid, se = T)

grid$price <- pred$fit

grid$se <- pred$se.fit

grid

}

smoothes <- ddply(dense, .(color), smooth)

qplot(carat, price, data = smoothes, colour = color,

geom = "line")

qplot(carat, price, data = smoothes, colour = color,

geom = "smooth", ymax = price + 2 * se, ymin = price - 2 * se)

Doing the summary by hand gives you much more flexibility to fit models
where the grouping factor is explicitly included as a covariate. For example, the
following model models price as a non-linear function of carat, plus a constant
term for each colour. It’s not a very good model as it predicts negative prices
for small, poor-quality diamonds, but it’s a starting point for a better model.

9.1 An introduction to plyr 163

carat

p
ri
c
e

2000

4000

6000

8000

10000

12000

14000

0.5 1.0 1.5 2.0

color

D

E

F

G

H

I

J

carat

p
ri
c
e

0

5000

10000

15000

0.5 1.0 1.5 2.0

color

D

E

F

G

H

I

J

Fig. 9.2: Figure 9.1 with all statistical calculations performed by hand. The predicted
values (left), and with standard errors (right).

> mod <- gam(price ~ s(carat, bs = "cs") + color, data = dense)

> grid <- with(diamonds, expand.grid(

+ carat = seq(0.2, 2, length = 50),

+ color = levels(color)

+))

> grid$pred <- predict(mod, grid)

> qplot(carat, pred, data = grid, colour = color, geom = "line")

carat

p
re

d

0

5000

10000

0.5 1.0 1.5 2.0

color

D

E

F

G

H

I

J

See also Sections 4.9.3 and 5.8 for other ways of combining models and
data.

164 9 Manipulating data

9.2 Converting data from wide to long

In ggplot2 graphics, groups are defined by rows, not by columns. This makes
it easy to draw a line for each group defined by the value of a variable (or
set of variables) but difficult to draw a separate line for each variable. In this
section you will learn how to transform your data to a form in which you can
draw a line for each variable. This transformation converts from “wide” data
to “long” data, where each variable now occupies its own set of rows.

To perform this transformation we will use the melt() function from the
reshape package (Wickham, 2007). Reshape also provides the cast() function
to flexibly reshape and aggregate data, which you may want to read about
yourself. Table 9.1 gives an example. The melt() function has three arguments:

• data: the data frame you want to convert to long form.
• id.vars: Identifier (id) variables identify the unit that measurements take

place on. Id variables are usually discrete, and are typically fixed by design.
In anova notation (Yijk), id variables are the indices on the variables
(i, j, k); in database notation, id variables are a composite primary key.

• measure.vars: Measured variables represent what is measured on that unit
(Y). These will be the variables that you want to display simultaneously
on the plot.

If you’re familiar with Wilkinson’s grammar of graphics, you might wonder
why there is no equivalent to the algebra. There is no equivalent to the algebra
within ggplot2 itself because there are many other facilities for transforming
data in R, and it is in line with the ggplot2 philosophy of keeping data
transformation and visualisation as separate as possible.

The following sections explore two important uses of molten data in more
detail: plotting multiple time series and creating parallel coordinate plots. You
will also see how to use ddply() to rescale the variables, and learn about the
features of ggplot2 that are most useful in conjunction with this sort of data.

9.2.1 Multiple time series

Take the economics dataset. It contains information about monthly economic
data like the number of people unemployed (unemploy) and the median length
of unemployment (uempmed). We might expect these two variables to be related.
Each of these variables is stored in a column, which makes it easy to compare
them with a scatterplot, and draw individual time series, as shown in Figure 9.3.
But what if we want to see the time series simultaneously?

One way is to build up the plot with a different layer for each variable,
as you saw in Section 6.4.4. However, this quickly becomes tedious when you
have many variables, and a better alternative is to melt the data into a long
format and then visualise that. In the molten data the time series have their

9.2 Converting data from wide to long 165

date pce pop

1967-06-30 508 198,712
1967-07-31 511 198,911
1967-08-31 517 199,113
1967-09-30 513 199,311
1967-10-31 518 199,498
1967-11-30 526 199,657

date variable value

1967-06-30 pce 508
1967-07-31 pce 511
1967-08-31 pce 517
1967-09-30 pce 513
1967-10-31 pce 518
1967-11-30 pce 526
1967-06-30 pop 198,712
1967-07-31 pop 198,911
1967-08-31 pop 199,113
1967-09-30 pop 199,311
1967-10-31 pop 199,498
1967-11-30 pop 199,657

Table 9.1: Economics data in wide, left, and long, right, formats. The data stored in
each table is equivalent, just the arrangement is different. It it easy to use the wider
format with ggplot2 to produce a line for each variable.

date

u
e

m
p

m
e

d

4

6

8

10

12

1967 1972 1977 1982 1987 1992 1997 2002 2007

date

u
n

e
m

p
lo

y

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

unemploy

u
e

m
p

m
e

d

4

6

8

10

12

●
●
●

●
●
●

●

●

●

●
●●
●

●

●
●

●●●

●

●●
●
●●●

●
●

●
● ●

●
●

●

●
●
●

●
●●

●

●

●
●
●
●
●

●

●
●

●

●
●
●●

●●
●
●

●

●
●

●
●●

●

●

●

●

●
●
●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●

●

●

●●

●

●

●
●

●
●
●

●
●

●

●

●

●●
●

●

●

●
●

●
●
●

●

●
●

●
●

●

●
●●

●

●

●
●

●●●

●
●●

●

●

●●
●

●

●

●
●

●
●

●

●

●
●
●
●

●
●

●●

●

●

●

●
●

● ●
●●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●●
●

●

● ●
●

●

●●
●

●

●●
●●

●

●
●
●
●

●
●

●
●
●
●
●
●

●
●

●

●
●●

●

●●

●

●
●●

●

●

●
●

●
●
●
●

●●
●

●
●

●
●
●
●

●
●● ●
●

●
●

●
●●
●
●
●

●
●

●

●●
● ●

●
●

●
●
●

●

●
●

●

●
●

●

●

●

●

●

●
●
●
●

●
●

●
●
●

●●

●

●
●●
●

●
●

●●
●

●

●●

●

●
●

●
●
●

●
●

●

●

●

●

●
●
● ●

●

●

●
●

●

●
●

●●

●

●

●●

●●
●
●
●

●
●●

●
●

●

●●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●
●
●
●●

●

●
●

●

●

●
●
●

●●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●
●
●
●

●

●

●

●
●

●
●

●

●●
●
●

●

●

●

●
●
●

●
●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●
●
●
●

●
●

●

●
●
●

●●

●

●●●

●

●
●

●
●
●

●

●●

●
●

●
●

●●●
●●●●●●●

●●●●●●●
●●
●●●●

●
●●

●
●●●

●●

●
●
●●
●●
●●●●

●●●●
●●

●●●●

●

●
●

●●

● ●
●

●●●
●●

●
●●

●

●●

●

●●●
●

●

●
●●

●●●
●●●

●●●

●
●●
●●●

●●
●●●●
●
●●●●●●●●
●
●●

●
●●
●●
●●

●

●●●●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●●●●

●
●●

●
●
●●
●●

●
●●
●●●●●●●

●●

●
●●

●●
●

●●●●●●●

●●

●
●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●
●●

●
●●
●●
●●●●

●●
●●
●●

●●●●
●
●●
●●
●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●
●● ●

●
●●

●
●●
●

●
●●●

●●
●●

●●●
●●
●●●●●●●●●●●●●●●

●●●●●●

●

●●●
●

●●●●
●

●●
●●●●●●

●●●●●●●

●●●
●●

●
●●●●
●●●●●●●●

●●●●●●●●●●●●●
●

●●
●●

●
●●●●

●●●●●
●●●●●●●●
●●

●●●●●●●●●●
●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●
●●●●

●●●●
●●●●●●●●●●
●●●

●●●

●
●●

●●●●●●●●●●●●●●●●●●●
●●
●●●●●●

●
●●

●●●●●●
●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●

●●●●
●●●●●

●
●●

●
●●
●●

●
●

●●

●
●
●●

●●●
●●●●

●●●●

●

4000 6000 8000 10000 12000

Fig. 9.3: When the economics dataset is stored in wide format, it is easy to create
separate time series plots for each variable (left and centre), and easy to create
scatterplots comparing them (right).

value stored in the value variable and we can distinguish between them with
the variable variable. The code below shows these two alternatives. The plots
they produce are very similar, and are shown in Figure 9.4.

ggplot(economics, aes(date)) +

geom_line(aes(y = unemploy, colour = "unemploy")) +

geom_line(aes(y = uempmed, colour = "uempmed")) +

scale_colour_hue("variable")

emp <- melt(economics, id = "date",

measure = c("unemploy", "uempmed"))

qplot(date, value, data = emp, geom = "line", colour = variable)

166 9 Manipulating data

date

u
n

e
m

p
lo

y

2000

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

variable

unemploy

uempmed

date

v
a

lu
e

2000

4000

6000

8000

10000

12000

1967 1972 1977 1982 1987 1992 1997 2002 2007

variable

unemploy

uempmed

Fig. 9.4: The two methods of displaying both series on a single plot produce identical
plots, but using long data is much easier when you have many variables. The series
have radically different scales, so we only see the pattern in the unemploy variable.
You might not even notice uempmed unless you’re paying close attention: it’s the line
at the bottom of the plot.

There is a problem with these plots: the two variables have radically
different scales, and so the series for uempmed appears as a flat line at the
bottom of the plot. There is no way to produce a plot with two axes in ggplot2

because this type of plot is fundamentally misleading. Instead there are two
perceptually well-founded alternatives: rescale the variables to have a common
range, or use faceting with free scales. These alternatives are created with the
code below and are shown in Figure 9.5.

range01 <- function(x) {

rng <- range(x, na.rm = TRUE)

(x - rng[1]) / diff(rng)

}

emp2 <- ddply(emp, .(variable), transform, value = range01(value))

qplot(date, value, data = emp2, geom = "line",

colour = variable, linetype = variable)

qplot(date, value, data = emp, geom = "line") +

facet_grid(variable ~ ., scales = "free_y")

date

v
a

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000 10000 12000

variable

unemploy

uempmed

date

v
a

lu
e

4000

6000

8000

10000

12000

4

6

8

10

12

1967 1972 1977 1982 1987 1992 1997 2002 2007

u
n

e
m

p
lo

y
u

e
m

p
m

e
d

Fig. 9.5: When the series have very different scales we have two alternatives: left,
rescale the variables to a common scale, or right, display the variables on separate
facets and using free scales.

9.2 Converting data from wide to long 167

9.2.2 Parallel coordinates plot

In a similar manner, we can use molten data to create a parallel coordinates
plot (Inselberg, 1985; Wegman, 1990), which has the “variable” variable on
the x axis and value on the y axis. We need a new variable to record the row
that each observation came from, which is used as a grouping variable for
the lines (so we get one line per observation). The easiest value to use for
this is the data frame rownames, and we give it an unusual name .row, so we
don’t squash any of the existing variables. Once we have the data in this form,
creating a parallel coordinates plot is easy.

The following code does exactly that for the ratings of 840 movies with over
10,000 votes. This dataset has a moderate number of variables (10) and many
cases, and will allow us to experiment with a common technique for dealing
with large data in parallel coordinates plots: transparency and clustering. Each
variable gives the proportion of votes given to each rating between 0 (very bad)
and 10 (very good). Since this data is already on a common scale we don’t
need to rescale it, but in general, we would need to use the technique from the
previous section to ensure the variables are comparable. This is particularly
important if we are going to use other multidimensional techniques to analyse
the data.

popular <- subset(movies, votes > 1e4)

ratings <- popular[, 7:16]

ratings$.row <- rownames(ratings)

molten <- melt(ratings, id = ".row")

Once the data is in this form, creating a parallel coordinates plot is easy.
All we need is a line plot with variable on the x axis, value on the y axis
and the lines grouped by .row. This data needs a few tweaks to the default
because the values are highly discrete. In the following code, we experiment
with jittering and alpha blending to better display where the bulk of the movies
lie. The results are shown in Figure 9.6. Most are rated as sevens or eights
by around 25% of voters, with a few exceptional movies getting 35% of more
perfect 10s. However, the large number of lines makes it difficult to distinguish
individual movies and it’s hard to draw firm conclusions.

pcp <- ggplot(molten, aes(variable, value, group = .row))

pcp + geom_line()

pcp + geom_line(colour = alpha("black", 1 / 20))

jit <- position_jitter(width = 0.25, height = 2.5)

pcp + geom_line(position = jit)

pcp + geom_line(colour = alpha("black", 1 / 20), position = jit)

To make the patterns more clear we will cluster the movies into groups of
similar rating patterns. The following code uses kmeans clustering (Hartigan
and Wong, 1979) to produce six groups of similar movies. To make the clusters

168 9 Manipulating data

Fig. 9.6: Variants on the parallel coordinates plot to better display the patterns in
this highly discrete data. To improve the default pcp (top left) we experiment with
alpha blending (top right), jittering (bottom left) and then both together (bottom
right).

a little more interpretable, they are relabelled so that cluster 1 has the lowest
average rating and cluster six the highest.

cl <- kmeans(ratings[1:10], 6)

ratings$cluster <- reorder(factor(cl$cluster), popular$rating)

levels(ratings$cluster) <- seq_along(levels(ratings$cluster))

molten <- melt(ratings, id = c(".row", "cluster"))

There are many different ways that we can visualise the result of this
clustering. One popular method is shown in Figure 9.7 where line colour is
mapped to group membership. This plot is supplemented with a plot that just
shows averages for each group. These plots are both straightforward to create,
as shown in the following code.

pcp_cl <- ggplot(molten,

aes(variable, value, group = .row, colour = cluster))

pcp_cl + geom_line(position = jit, alpha = 1/5)

pcp_cl + stat_summary(aes(group = cluster), fun.y = mean,

geom = "line")

These plots are good for showing the differences between groups, but they
don’t tell us a lot about whether we’ve done a good job clustering the data.

9.3 ggplot() methods 169

Fig. 9.7: Displaying cluster membership on a parallel coordinates plot. (Left) Indi-
vidual movies coloured by group membership and (right) group means.

Figure 9.8 uses faceting to display each group in its own panel. This plot
highlights the variation within many of the groups, suggesting that perhaps
more clusters would be appropriate.

pcp_cl + geom_line(position = jit, colour = alpha("black", 1/5)) +

facet_wrap(~ cluster)

9.3 ggplot() methods

ggplot() is a generic function, with different methods for different types of
data. The most common input, and what we have used until now, is a data
frame. As with base and lattice graphics, it is possible to extend ggplot()

to work with other types of data. However, the way this works with ggplot2

is fundamentally different: ggplot2 will not give you a complete plot, but
instead will give you the tools you need to make any plot you desire.

This process is mediated by the fortify() method, which takes an object,
and optional data frame, and creates a version of the object in a form suitable
for plotting with ggplot2, i.e., as a data frame. The name fortify comes from
thinking about combining a model with its data: the model fortifies the data,
and the data fortifies the model, and the result can be used to simultaneously
visualise the model and the data. An example will make this concrete, as you
will see when we describe the fortify method for linear models.

This section describes how the fortify() method works, and how you can
create new methods that are aligned with the ggplot2 philosophy. The most
important philosophical consideration is that data transformation and display
should be kept as separate as possible. This maximises reusability, as you are
no longer trapped into the single display that the author envisaged.

These different types of input also work with qplot(): remember that
qplot() is just a thin wrapper around ggplot().

170 9 Manipulating data

Fig. 9.8: Faceting allows us to display each group in its own panel, highlighting the
fact that there seems to be considerable variation within each group, and suggesting
that we need more groups in our clustering.

9.3.1 Linear models

Currently, ggplot2 provides only one fortify method, for linear models. Here
we’ll show how this method works, and how you can use it to create tailored
plots for better understanding your data and models. Figure 9.9 shows the
output of plot.lm() for a simple model. The graphics are a set of pre-chosen
model summary plots. These are useful for particular problems, but are
completely inflexible: there is no way to modify them apart from opening up
the source code for plot.lm() and modifying it. This is hard because the
data transformation and display are inextricably entangled, making the code
difficult to understand.

The ggplot2 approach completely separates data transformation and
display. The fortify() method does the transformation, and then we use
ggplot2 as usual to create the display that we want. Currently fortify()

adds the variables listed in Table 9.2 to the original dataset. These are basically
all the variables that plot.lm() creates in order to produce its summary plots.
The variables have a leading . (full stop) in their names, so there is little risk
that they will clobber variables already in the dataset.

To demonstrate these techniques, we’re going to fit the very simple model
with code below, which also creates the plot in Figure 9.10. This model clearly
doesn’t fit the data well, so we should be able to use model diagnostics to

9.3 ggplot() methods 171

8 10 12 14 16 18 20 22

−
5

0
5

1
0

1
5

Fitted values

R
e
s
id

u
a
ls

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●
●●

●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●

●●
●

●

●●
●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Residuals vs Fitted

222

213

223

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●

●●
●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

0
2

4
6

Theoretical Quantiles

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

Normal Q−Q

222

213

223

8 10 12 14 16 18 20 22

0
.0

0
.5

1
.0

1
.5

2
.0

Fitted values

S
ta

n
d
a
rd

iz
e
d

re
s
id

u
a
ls

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●●●
● ●●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●●
●●
●
●

●

●

●●

●
●

●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

Scale−Location
222

213

223

0.00 0.01 0.02 0.03

−
2

0
2

4
6

Leverage

S
ta

n
d
a
rd

iz
e
d
 r

e
s
id

u
a
ls

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●●

●

●●

●
●

●

●
●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●● ●●● ●

●
●●
●

●
●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●
●●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●
●●

●●

●

●

●

●

●●

● ●
●●

●●

●●

●

●●
●

●

●●
●

●●

●

●

●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Cook's distance

0.5

Residuals vs Leverage

28

222

213

Fig. 9.9: The output from plot.lm() for a simple model.

Variable Description

.cooksd Cook’s distances

.fitted Fitted values

.hat Diagonal of the hat matrix

.resid Residuals

.sigma Estimate of residual standard deviation when
corresponding observation is dropped from
model

.stdresid Standardised residuals

Table 9.2: The diagnostic variables that fortify.lm() assembles and adds to the
model data.

172 9 Manipulating data

figure out how to improve it. A sample of the output from fortifying this model
is shown in Table 9.3. Because we didn’t supply the original data frame, it
contains the two variables used in the model as well as the six diagnostic
variables. It’s easy to see exactly what data our plot will be working with and
we could easily add more variables if we wanted.

qplot(displ, cty, data = mpg) + geom_smooth(method = "lm")

mpgmod <- lm(cty ~ displ, data = mpg)

displ

c
ty

10

15

20

25

30

35

●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●●●●●●●

●●

●●●●●●●●●●●●●●

●●●●●●●●

●●

●●●●

●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●● ●

●●●●●●●●●●●●

●●●●●●●●●●●●●●

●●

●● ●●

●●

●●

2 3 4 5 6 7

Fig. 9.10: A simple linear model that doesn’t fit the data very well.

cty displ .hat .sigma .cooksd .fitted .resid .stdresid

18 1.80 0.01 2.56 0.01 21.26 -3.26 -1.28
21 1.80 0.01 2.57 0.00 21.26 -0.26 -0.10
20 2.00 0.01 2.57 0.00 20.73 -0.73 -0.29
21 2.00 0.01 2.57 0.00 20.73 0.27 0.11
16 2.80 0.01 2.57 0.00 18.63 -2.63 -1.03
18 2.80 0.01 2.57 0.00 18.63 -0.63 -0.24

Table 9.3: The output of fortify(mpgmod) contains the two variables used in the
model (cty and displ), and the six diagnostic variables described above.

With a fortified dataset in hand we can easily re-create the plots produced
by plot.lm(), and even better, we can adapt them to our needs. The example
below shows how we can re-create and then extend the first plot produced
by plot.lm(). Once we have the basic plot we can easily enhance it: use

9.3 ggplot() methods 173

standardised residuals instead of raw residuals, or make size proportional to
Cook’s distance. The results are shown in Figure 9.11.

mod <- lm(cty ~ displ, data = mpg)

basic <- ggplot(mod, aes(.fitted, .resid)) +

geom_hline(yintercept = 0, colour = "grey50", size = 0.5) +

geom_point() +

geom_smooth(size = 0.5, se = F)

basic

basic + aes(y = .stdresid)

basic + aes(size = .cooksd) + scale_area("Cook’s distance")

.fitted

.r
e

s
id

−5

0

5

10

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

8 10 12 14 16 18 20

.fitted

.s
td

re
s
id

−2

0

2

4

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●
●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

8 10 12 14 16 18 20

.fitted

.r
e

s
id

−5

0

5

10

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●●
●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●
●

●●

●●

●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

8 10 12 14 16 18 20

Cook's distance

● 0.0025

● 0.0100

● 0.0225

Fig. 9.11: (Left) Basic fitted values-residual plot. (Middle) With standardised residuals.
(Right) With size proportional to Cook’s distance. It is easy to modify the basic
plots when we have access to all of the data.

Additionally, we can fortify the whole dataset and add to the plot variables
that are in the original data but not in the model. This helps us to understand
what variables are useful to improve the model. Figure 9.12 colours the residuals
by the number of cylinders, and suggests that this variable would be good to
add to the model: within each cylinder group, the pattern is close to linear.

full <- basic %+% fortify(mod, mpg)

full + aes(colour = factor(cyl))

full + aes(displ, colour = factor(cyl))

9.3.2 Writing your own

To write your own fortify() method, you will need to think about what
variables are most useful for model diagnosis, and how they should be returned
to the user. The method for linear models adds them on to the original data
frame, but this might not be the best approach in other circumstances, and

174 9 Manipulating data

.fitted

.r
e

s
id

−5

0

5

10

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●●●

● ●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

8 10 12 14 16 18 20

factor(cyl)

●● 4

●● 5

●● 6

●● 8

displ

.r
e

s
id

−5

0

5

10

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●

●

●

●●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●

●●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●● ●

●●●●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

2 3 4 5 6 7

factor(cyl)

●● 4

●● 5

●● 6

●● 8

Fig. 9.12: Adding variables from the original data can be enlightening. Here when we
add the number of cylinders we see that instead of a curvi-linear relationship between
displacement and city mpg, it is essentially linear, conditional on the number of
cylinders.

you may instead want to return a list of data frames giving information at
different levels of aggregation.

You can also use fortify() with non-model functions. The following
example shows how we could write a fortify() method to make it easier to
add images to your plots. The EBImage from bioconductor is used to get the
image into R, and then the fortify method converts it into a form (a data
frame) that ggplot2 can render. Should you even need a picture of me on
your plot, the following code will allow you to do so.

fortify.Image <- function(model, data, ...) {

colours <- channel(model, "x11")[,,]

colours <- colours[, rev(seq_len(ncol(colours)))]

melt(colours, c("x", "y"))

}

library(EBImage)

img <- readImage("http://had.co.nz/me.jpg", TrueColor)

qplot(x, y, data = img, fill = value, geom="tile") +

scale_fill_identity() + coord_equal()

This approach cleanly separates the display of the data from its production,
and dramatically improves reuse. However, it does not provide any conveniently
pre-packaged functions. If you want to create a diagnostic plot for a linear
model you have to assemble all the pieces yourself. Once you have the basic
structure in place, so that people can always dig back down and alter the

9.3 ggplot() methods 175

individual pieces, you can write a function that joins all the components
together in a useful way. See Section 10.4 for some pointers on how to do this.

Chapter 10

Reducing duplication

10.1 Introduction

A major requirement of a good data analysis is flexibility. If the data changes,
or you discover something that makes you rethink your basic assumptions, you
need to be able to easily change many plots at once. The main inhibitor of
flexibility is duplication. If you have the same plotting statement repeated over
and over again, you have to make the same change in many different places.
Often just the thought of making all those changes is exhausting!

This chapter describes three ways of reducing duplication. In Section 10.2,
you will learn how to iteratively modify the previous plot, allowing you to
build on top of your previous work without having to retype a lot of code.
Section 10.3 will show you how to produce plot “templates” that encapsulate
repeated components that are defined once and used in many different places.
Finally, 10.4 talks about how to create functions that create or modify plots.

10.2 Iteration

Whenever you create or modify a plot, ggplot2 saves a copy of the result so you
can refer to it in later expressions. You can access this plot with last_plot().
This is useful in interactive work as you can start with a basic plot and then
iteratively add layers and tweak the scales until you get to the final result. The
following code demonstrates iteratively zooming in on a plot to find a region
of interest, and then adding a layer which highlights something interesting
that we have found: very few diamonds have equal x and y dimensions. The
plots are shown in Figure 10.1.

qplot(x, y, data = diamonds, na.rm = TRUE)

last_plot() + xlim(3, 11) + ylim(3, 11)

last_plot() + xlim(4, 10) + ylim(4, 10)

last_plot() + xlim(4, 5) + ylim(4, 5)

last_plot() + xlim(4, 4.5) + ylim(4, 4.5)

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 10, 177
c© Springer Science+Business Media, LLC 2009

178 10 Reducing duplication

last_plot() + geom_abline(colour = "red")

Fig. 10.1: When “zooming” in on the plot, it’s useful to use last_plot() iteratively
to quickly find the best view. The final plot adds a line with slope 1 and intercept 0,
confirming it is the square diamonds that are missing.

Once you have tweaked the plot to your liking, it’s a good idea to go back
and create a single expression that generates your final plot. This is important
as when you come back to the plot, you’ll be able to re-create the plot quickly,
without having to step through your original process. You many want to add a
comment to your code to indicate exactly why you chose that final plot. This
is good practice in general for R code: after experimenting interactively, you
always want to create a source file that re-creates your analysis. The following
code shows the final plot after our interactive modifications above.

qplot(x, y, data = diamonds, na.rm = T) +

geom_abline(colour = "red") +

xlim(4, 4.5) + ylim(4, 4.5)

10.3 Plot templates

Each component of a ggplot2 plot is its own object and can be created, stored
and applied independently to a plot. This makes it possible to create reusable

10.3 Plot templates 179

components that can automate common tasks and helps to offset the cost of
typing the long function names. The following example creates some colour
scales and then applies them to plots. The results are shown in Figure 10.2.

gradient_rb <- scale_colour_gradient(low = "red", high = "blue")

qplot(cty, hwy, data = mpg, colour = displ) + gradient_rb

qplot(bodywt, brainwt, data = msleep, colour = awake, log="xy") +

gradient_rb

cty

h
w

y

15

20

25

30

35

40

● ●

●

●

● ●

●

●

●

●

●

● ●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

● ●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●●●●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●●

●

●

●

●

●

●

●

● ●●

●

●

● ●●

10 15 20 25 30 35

displ

● 2

● 3

● 4

● 5

● 6

● 7

bodywt

b
ra

in
w

t

10
−3

10
−2

10
−1

10
0

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

10
−2

10
−1

10
0

10
1

10
2

10
3

awake

● 5

● 10

● 15

● 20

Fig. 10.2: Saving a scale to a variable makes it easy to apply exactly the same scale
to multiple plots. You can do the same thing with layers and facets too.

As well as saving single objects, you can also save vectors of ggplot2

components. Adding a vector of components to a plot is equivalent to adding
each component of the vector in turn. The following example creates two
continuous scales that can be used to turn off the display of axis labels and
ticks. You only need to create these objects once and you can apply them to
many different plots, as shown in the code below and Figure 10.3.

xquiet <- scale_x_continuous("", breaks = NA)

yquiet <- scale_y_continuous("", breaks = NA)

quiet <- c(xquiet, yquiet)

qplot(mpg, wt, data = mtcars) + quiet

qplot(displ, cty, data = mpg) + quiet

Similarly, it’s easy to write simple functions that change the defaults of
a layer. For example, if you wanted to create a function that added linear
models to a plot, you could create a function like the one below. The results
are shown in Figure 10.4.

180 10 Reducing duplication

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●●

●●

●

●●

● ●

●

●

●

● ●●

●

●●

● ●

●

●

●

●

●

●

●

●●

●

●

●●

●

●● ●

●

●

●

●

● ● ●

●●

●●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●●●

●●

●

●

● ●

● ●

●

●

●

●

●●

● ●

● ●●

●

●

● ● ●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●●

●

●

●

●

●●

●

●

●● ●●

●●

●

●● ●

●

●● ●

●●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

Fig. 10.3: Using “quiet” x and y scales removes the labels and hides ticks and
gridlines.

geom_lm <- function(formula = y ~ x) {

geom_smooth(formula = formula, se = FALSE, method = "lm")

}

qplot(mpg, wt, data = mtcars) + geom_lm()

library(splines)

qplot(mpg, wt, data = mtcars) + geom_lm(y ~ ns(x, 3))

mpg

w
t

2

3

4

5

●

●

●

●

●●

●

●●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

15 20 25 30

mpg

w
t

2

3

4

5

●

●

●

●

●●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

15 20 25 30

Fig. 10.4: Creating a custom geom function saves typing when creating plots with
similar (but not the same) components.

10.4 Plot functions 181

Depending on how complicated your function is, it might even return
multiple components in a vector. You can build up arbitrarily complex plots
this way, reducing duplication wherever you find it. If you want to create a plot
that combines together many different components in a pre-specified way, you
might need to write a function that produces the entire plot. This is described
in the next section.

10.4 Plot functions

If you are using the same basic plot again and again with different datasets or
different parameters, it may be worthwhile to wrap up all the different options
into a single function. Maybe you need to perform some data restructuring or
transformation, or need to combine the data with a predefined model. In that
case you will need to write a function that produces ggplot2 plots. It’s hard
to give advice on how to go about this because there are so many different
possible scenarios, but this section aims to point out some important things
to think about.

• Since you’re creating the plot within the environment of a function, you
need to be extra careful about supplying the data to ggplot() as a data
frame, and you need to double check that you haven’t accidentally referred
to any function local variables in your aesthetic mappings.

• If you want to allow the user to provide their own variables for aes-
thetic mappings, I’d suggest using aes_string(). This function works
just like aes(), but uses strings rather than unevaluated expressions.
aes_string("cty", colour = "hwy") is equivalent to aes(cty, colour

= hwy). Strings are much easier to work with than expressions.
• As mentioned in Chapter 9, you want to separate your plotting code into

a function that does any data transformations and manipulations and a
function that creates the plot. Generally, your plotting function should do
no data manipulation, just create a plot. The following example shows one
way to create parallel coordinate plot function, wrapping up the code used
in Section 9.2.2.

> pcp_data <- function(df) {

+ numeric <- laply(df, is.numeric)

+ # Rescale numeric columns

+ df[numeric] <- colwise(range01)(df[numeric])

+ # Add row identified

+ df$.row <- rownames(df)

+ # Melt, using non-numeric variables as id vars

+ dfm <- melt(df, id = c(".row", names(df)[!numeric]))

+ # Add pcp to class of the data frame

+ class(dfm) <- c("pcp", class(dfm))

+ dfm

182 10 Reducing duplication

+ }

> pcp <- function(df, ...) {

+ df <- pcp_data(df)

+ ggplot(df, aes(variable, value)) + geom_line(aes(group =

.row))

+ }

> pcp(mpg)

variable

v
a

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

displ year cyl cty hwy

> pcp(mpg) + aes(colour = drv)

variable

v
a

lu
e

0.0

0.2

0.4

0.6

0.8

1.0

displ year cyl cty hwy

drv

4

f

r

The best example of this technique is qplot(), and if you’re interesting
in writing your own functions I strongly recommend you have a look at the
source code for this function and step through it line by line to see how it
works. If you’ve made your way this far through the book you should have a
pretty good grasp of all the ggplot2 related code: most of the complexity is
R tricks to correctly interpret all of the possible plot types.

Appendices

183

Appendix A

Translating between different syntaxes

A.1 Introduction

ggplot2 does not exist in isolation, but is part of a long history of graphical
tools in R and elsewhere. This chapter describes how to convert between
ggplot2 commands and other plotting systems:

• Within ggplot2, between the qplot() and ggplot() syntaxes, §A.2
• From base graphics, §A.3.
• From lattice graphics, §A.4.
• From gpl, §A.5.

Each section gives a general outline on how to convert between the difference
types, followed by a number of examples.

A.2 Translating between qplot and ggplot

Within ggplot2, there are two basic methods to create plots, with qplot()

and ggplot(). qplot() is designed primarily for interactive use: it makes
a number of assumptions that speed most cases, but when designing multi-
layered plots with different data sources it can get in the way. This section
describes what those defaults are, and how they map to the fuller ggplot()
syntax.

By default, qplot() assumes that you want a scatterplot, i.e., you want to
use geom_point().

qplot(x, y, data = data)

ggplot(data, aes(x, y)) + geom_point()

A.2.1 Aesthetics

If you map additional aesthetics, these will be added to the defaults. With
qplot() there is no way to use different aesthetic mappings (or data) in
different layers.

H. Wickham, ggplot2, Use R, DOI 10.1007/978-0-387-98141-3 BM2, 185
c© Springer Science+Business Media, LLC 2009

186 A Translating between different syntaxes

qplot(x, y, data = data, shape = shape, colour = colour)

ggplot(data, aes(x, y, shape = shape, colour = colour)) +

geom_point()

Aesthetic parameters in qplot() always try to map the aesthetic to a
variable. If the argument is not a variable but a value, effectively a new column
is added to the original dataset with that value. To set an aesthetic to a
value and override the default appearance, you surround the value with I() in
qplot(), or pass it as a parameter to the layer. Section 4.5.2 expands on the
differences between setting and mapping.

qplot(x, y, data = data, colour = I("red"))

ggplot(data, aes(x, y)) + geom_point(colour = "red")

A.2.2 Layers

Changing the geom parameter changes the geom added to the plot:

qplot(x, y, data = data, geom = "line")

ggplot(data, aes(x, y)) + geom_line()

If a vector of multiple geom names is supplied to the geom argument, each
geom will be added in turn:

qplot(x, y, data = data, geom = c("point", "smooth"))

ggplot(data, aes(x, y)) + geom_point() + geom_smooth()

Unlike the rest of ggplot2, stats and geoms are independent:

qplot(x, y, data = data, stat = "bin")

ggplot(data, aes(x, y)) + geom_point(stat = "bin")

Any layer parameters will be passed on to all layers. Most layers will ignore
parameters that they don’t need.

qplot(x, y, data = data, geom = c("point", "smooth"),

method = "lm")

ggplot(data, aes(x, y)) +

geom_point(method = "lm") + geom_smooth(method = "lm")

A.2.3 Scales and axes

You can control basic properties of the x and y scales with the xlim, ylim,
xlab and ylab arguments:

A.3 Base graphics 187

qplot(x, y, data = data, xlim = c(1, 5), xlab = "my label")

ggplot(data, aes(x, y)) + geom_point() +

scale_x_continuous("my label", limits = c(1, 5))

qplot(x, y, data = data, xlim = c(1, 5), ylim = c(10, 20))

ggplot(data, aes(x, y)) + geom_point() +

scale_x_continuous(limits = c(1, 5))

scale_y_continuous(limits = c(10, 20))

Like plot(), qplot() has a convenient way of log transforming the axes.
There are many other possible transformations that are not accessible from
within qplot() see Section 6.4.2 for more details.

qplot(x, y, data = data, log="xy")

ggplot(data, aes(x, y)) + geom_point() +

scale_x_log10() + scale_y_log10()

A.2.4 Plot options

qplot() recognises the same options as plot does, and converts them to their
ggplot2 equivalents. Section 8.1.2 lists all possible plot options and their
effects.

qplot(x, y, data = data, main="title", asp = 1)

ggplot(data, aes(x, y)) + geom_point() +

opts(title = "title", aspect.ratio = 1)

A.3 Base graphics

There are two types of graphics functions in base graphics, those that draw
complete graphics and those that add to existing graphics.

A.3.1 High-level plotting commands

qplot() has been designed to mimic plot(), and can do the job of all other
high-level plotting commands. There are only two graph types from base
graphics that cannot be replicated with ggplot2: filled.contour() and
persp()

plot(x, y); dotchart(x, y); stripchart(x, y)

qplot(x, y)

plot(x, y, type = "l")

qplot(x, y, geom = "line")

188 A Translating between different syntaxes

plot(x, y, type = "s")

qplot(x, y, geom = "step")

plot(x, y, type = "b")

qplot(x, y, geom = c("point", "line"))

boxplot(x, y)

qplot(x, y, geom = "boxplot")

hist(x)

qplot(x, geom = "histogram")

cdplot(x, y)

qplot(x, fill = y, geom = "density", position = "fill")

coplot(y ~ x | a + b)

qplot(x, y, facets = a ~ b)

Many of the geoms are parameterised differently than base graphics. For
example, hist() is parameterised in terms of the number of bins, while
geom_histogram() is parameterised in terms of the width of each bin.

hist(x, bins = 100)

qplot(x, geom = "histogram", binwidth = 1)

qplot() often requires data in a slightly different format to the base
graphics functions. For example, the bar geom works with untabulated data,
not tabulated data like barplot(); the tile and contour geoms expect data in
a data frame, not a matrix like image() and contour().

barplot(table(x))

qplot(x, geom = "bar")

barplot(x)

qplot(names(x), x, geom = "bar", stat = "identity")

image(x)

qplot(X1, X2, data = melt(x), geom = "tile", fill = value)

contour(x)

qplot(X1, X2, data = melt(x), geom = "contour", fill = value)

Generally, the base graphics functions work with individual vectors, not
data frames like ggplot2. qplot() will try to construct a data frame if one is
not specified, but it is not always possible. If you get strange errors, you may
need to create the data frame yourself.

A.3 Base graphics 189

with(df, plot(x, y))

qplot(x, y, data = df)

By default, qplot() maps values to aesthetics with a scale. To override
this behaviour and set aesthetics, overriding the defaults, you need to use I().

plot(x, y, col = "red", cex = 1)

qplot(x, y, colour = I("red"), size = I(1))

A.3.2 Low-level drawing

The low-level drawing functions which add to an existing plot are equivalent
to adding a new layer in ggplot2, described in Table A.1.

Base function ggplot2 layer

curve() geom_curve()

hline() geom_hline()

lines() geom_line()

points() geom_point()

polygon() geom_polygon()

rect() geom_rect()

rug() geom_rug()

segments() geom_segment()

text() geom_text()

vline() geom_vline()

abline(lm(y ~ x)) geom_smooth(method = "lm")

lines(density(x)) geom_density()

lines(loess(x, y)) geom_smooth()

Table A.1: Equivalence between base graphics methods that add on to an existing
plot, and layers in ggplot2.

plot(x, y)

lines(x, y)

qplot(x, y) + geom_line()

Or, building up piece-meal

qplot(x, y)

last_plot() + geom_line()

190 A Translating between different syntaxes

A.3.3 Legends, axes and grid lines

In ggplot2, the appearance of legends and axes is controlled by the scales.
Axes are produced by the x and y scales, while all other scales produce legends.
See plot themes, Section 8.1, to change the appearance of axes and legends,
and, scales, Section 6.5, to change their contents. The appearance of grid lines
is controlled by the grid.major and grid.minor theme options, and their
position by the breaks of the x and y scales.

A.3.4 Colour palettes

Instead of global colour palettes, ggplot2 has scales for individual plots. Much
of the time you can rely on the default colour scale (which has somewhat better
perceptual properties), but if you want to reuse an existing colour palette, you
can use scale_colour_manual(). You will need to make sure that the colour
is a factor for this to work.

palette(rainbow(5))

plot(1:5, 1:5, col = 1:5, pch = 19, cex = 4)

qplot(1:5, 1:5, col = factor(1:5), size = I(4))

last_plot() + scale_colour_manual(values = rainbow(5))

In ggplot2, you can also use palettes with continuous values, with inter-
mediate values being linearly interpolated.

qplot(0:100, 0:100, col = 0:100, size = I(4)) +

scale_colour_gradientn(colours = rainbow(7))

last_plot() +

scale_colour_gradientn(colours = terrain.colors(7))

A.3.5 Graphical parameters

The majority of par settings have some analogue within the theme system, or
in the defaults of the geoms and scales. The appearance plot border drawn
by box() can be controlled in a similar way by the panel.background and
plot.background theme elements. Instead of using title(), the plot title is
set with the title option.

A.4 Lattice graphics

The major difference between lattice and ggplot2 is that lattice uses a formula-
based interface. ggplot2 does not because the formula does not generalise well
to more complicated situations.

A.4 Lattice graphics 191

xyplot(rating ~ year, data=movies)

qplot(year, rating, data=movies)

xyplot(rating ~ year | Comedy + Action, data = movies)

qplot(year, rating, data = movies, facets = ~ Comedy + Action)

Or maybe

qplot(year, rating, data = movies, facets = Comedy ~ Action)

While lattice has many different functions to produce different types of
graphics (which are all basically equivalent to setting the panel argument),
ggplot2 has qplot().

stripplot(~ rating, data = movies, jitter.data = TRUE)

qplot(rating, 1, data = movies, geom = "jitter")

histogram(~ rating, data = movies)

qplot(rating, data = movies, geom = "histogram")

bwplot(Comedy ~ rating ,data = movies)

qplot(factor(Comedy), rating, data = movies, type = "boxplot")

xyplot(wt ~ mpg, mtcars, type = c("p","smooth"))

qplot(mpg, wt, data = mtcars, geom = c("point","smooth"))

xyplot(wt ~ mpg, mtcars, type = c("p","r"))

qplot(mpg, wt, data = mtcars, geom = c("point","smooth"),

method = "lm")

The capabilities for scale manipulations are similar in both ggplot2 and
lattice, although the syntax is a little different.

xyplot(wt ~ mpg | cyl, mtcars, scales = list(y = list(relation

= "free")))

qplot(mpg, wt, data = mtcars) + facet_wrap(~ cyl, scales = "free")

xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 10))

qplot(mpg, wt, data = mtcars, log = "xy")

xyplot(wt ~ mpg | cyl, mtcars, scales = list(log = 2))

qplot(mpg, wt, data = mtcars) +

scale_x_log2() + scale_y_log2()

xyplot(wt ~ mpg, mtcars, group = cyl, auto.key = TRUE)

Map directly to an aesthetic like colour, size, or shape.

qplot(mpg, wt, data = mtcars, colour = cyl)

192 A Translating between different syntaxes

xyplot(wt ~ mpg, mtcars, xlim = c(20,30))

Works like lattice, except you can’t specify a different limit

for each panel/facet

qplot(mpg, wt, data = mtcars, xlim = c(20,30))

Both lattice and ggplot2 have similar options for controlling labels on the
plot.

xyplot(wt ~ mpg, mtcars,

xlab = "Miles per gallon", ylab = "Weight",

main = "Weight-efficiency tradeoff")

qplot(mpg, wt, data = mtcars,

xlab = "Miles per gallon", ylab = "Weight",

main = "Weight-efficiency tradeoff")

xyplot(wt ~ mpg, mtcars, aspect = 1)

qplot(mpg, wt, data = mtcars, asp = 1)

par.settings() is equivalent to + opts() and trellis.options.set()

and trellis.par.get() to theme_set() and theme_get().
More complicated lattice formulas are equivalent to rearranging the data

before using ggplot2.

A.5 GPL

The Grammar of Graphics uses two specifications. A concise format is used to
caption figures, and a more detailed xml format stored on disk. The following
example of the concise format is adapted from Wilkinson (2005, Figure 1.5,
page 13).

DATA: source("demographics")

DATA: longitude, latitude = map(source("World"))

TRANS: bd = max(birth - death, 0)

COORD: project.mercator()

ELEMENT: point(position(lon * lat), size(bd), color(color.red))

ELEMENT: polygon(position(longitude * latitude))

This is relatively simple to adapt to the syntax of ggplot2:

• ggplot() is used to specify the default data and default aesthetic mappings.
• Data is provided as standard R data.frames existing in the global envi-

ronment; it does not need to be explicitly loaded. We also use a slightly
different world dataset, with columns lat and long. This lets us use the
same aesthetic mappings for both datasets. Layers can override the default
data and aesthetic mappings provided by the plot.

• We replace TRANS with an explicit transformation by R code.

A.5 GPL 193

• ELEMENTs are replaced with layers, which explicitly specify the data
source. Each geom has a default statistic which is used to transform the
data prior to plotting. For the geoms in this example, the default statistic
is the identity function. Fixed aesthetics (the colour red in this example)
are supplied as additional arguments to the layer, rather than as special
constants.

• The SCALE component has been omitted from this example (so that the
defaults are used). In both the ggplot2 and GoG examples, scales are
defined by default. In ggplot you can override the defaults by adding a
scale object, e.g., scale colour or scale size.

• COORD uses a slightly different format. In general, most of the components
specifications in ggplot are slightly different to those in GoG, in order to
be more familiar to R users.

• Each component is added together with + to create the final plot.

All up the equivalent ggplot2 code is:

demographics <- transform(demographics,

bd = pmax(birth - death, 0))

ggplot(demographic, aes(lon, lat)) +

geom_polyogon(data = world) +

geom_point(aes(size = bd), colour = "red") +

coord_map(projection = "mercator")

Appendix B

Aesthetic specifications

This appendix summarises the various formats that grid drawing functions
take. Most of this information is available scattered throughout the R docu-
mentation. This appendix brings it all together in one place.

B.1 Colour

Colours can be specified with:

• A name, e.g., "red". The colours are displayed in Figure B.1(a), and can be
listed in more detail with colours(). The Stowers Institute provides a nice
printable pdf that lists all colours: http://research.stowers-institute.
org/efg/R/Color/Chart/.

• An rgb specification, with a string of the form "#RRGGBB" where each
of the pairs RR, GG, BB consists of two hexadecimal digits giving a value in
the range 00 to FF. Partially transparent can be made with alpha(), e.g.,
alpha("red", 0.5).

• An NA, for a completely transparent colour.

The functions rgb(), hsv(), hcl() can be used to create colours specified
in different colour spaces.

B.2 Line type

Line types can be specified with:

• An integer or name: 0=blank, 1=solid, 2=dashed, 3=dotted, 4=dotdash,
5=longdash, 6=twodash), illustrated in Figure B.1(b).

• The lengths of on/off stretches of line. This is done with a string of an
even number (up to eight) of hexadecimal digits which give the lengths in
consecutive positions in the string. For example, the string "33" specifies

195

196 B Aesthetic specifications

three units on followed by three off and "3313" specifies three units on
followed by three off followed by one on and finally three off.
The five standard dash-dot line types described above correspond to 44,
13, 134, 73 and 2262.

Note that NA is not a valid value for lty.

B.3 Shape

Shapes take four types of values:

• An integer in [0, 25], illustrated in Figure B.1(c).
• A single character, to use that character as a plotting symbol.
• A . to draw the smallest rectangle that is visible (i.e., about one pixel).
• An NA, to draw nothing.

While all symbols have a foreground colour, symbols 19–25 also take a
background colour (fill).

B.4 Size

Throughout ggplot2, for text height, point size and line width, size is specified
in millimetres.

B.5 Justification

Justification of a string (or legend) defines the location within the string that
is placed at the given position. There are two values for horizontal and vertical
justification. The values can be:

• A string: "left", "right", "centre", "center", "bottom", and "top".
• A number between 0 and 1, giving the position within the string (from

bottom-left corner). These values are demonstrated in Figure B.1(d).

B.5 Justification 197

(a) All named colours in Luv space

blank

dashed

dotdash

dotted

longdash

solid

twodash

(b) Built-in line types

●

●

●

●

●●

●●

●●

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

22

21

24

23

20

(c) R plotting symbols. Colour is black,
and fill is blue. Symbol 25 (not shown)
is symbol 24 rotated 180 degrees.

ABCD
c(0, 0)

ABCD
c(0.5, 0)

ABCD
c(1, 0)

ABCD

c(0, 0.5)

ABCD

c(0.5, 0.5)

ABCD

c(1, 0.5)

ABCD

c(0, 1)

ABCD

c(0.5, 1)

ABCD

c(1, 1)

(d) Horizontal and vertical justification
settings.

Fig. B.1: Examples illustrating different aesthetic settings.

Appendix C

Manipulating plot rendering with grid

C.1 Introduction

Sometimes you may need to go beyond the theming system and directly modify
the underlying grid graphics output. To do this, you will need a good under-
standing of grid, as described in “R Graphics” (Murrell, 2005). If you can’t get
the book, at least read Chapter 5, “The grid graphics model”, which is avail-
able online for free at http://www.stat.auckland.ac.nz/~paul/RGraphics/
chapter5.pdf. This appendix outlines the more important viewports and grobs
used by ggplot2 and should be helpful if you need to interact with the grobs
produced by ggplot2.

C.2 Plot viewports

Viewports define the basic regions of the plot. The structure will vary slightly
from plot to plot, depending on the type of faceting used, but the basics will
remain the same.

The panels viewport contains the meat of the plot: strip labels, axes and
faceted panels. The viewports are named according to both their job and
their position on the plot. A prefix (listed below) describes the contents of the
viewport, and is followed by integer x and y position (counting from bottom
left) separated by “ ”. Figure C.1 illustrates this naming scheme for a 2×2
plot.

• strip h: horizontal strip labels
• strip v: vertical strip labels
• axis h: horizontal axes
• axis v: vertical axes
• panel: faceting panels

The panels viewport is contained inside the background viewport which
also contains the following viewports:

199

200 C Manipulating plot rendering with grid

Fig. C.1: Naming scheming of the panel viewports.

• title, xlabel and ylabel: for the plot title, and x and y axis labels
• legend_box: for all of the legends for the plot

Figure C.2 labels a plot with a representative sample of these viewports. To
get a list of all viewports on the current plot, run current.vpTree(all=TRUE)

or grid.ls(grobs = FALSE, viewports = TRUE).

Fig. C.2: Diagram showing the structure and names of viewports.

panel_1_1 panel_2_1

panel_2_2panel_2_1

strip_h_1_1 strip_h_2_1

axis_h_1_1 axis_h_2_1

strip_h_1_1

s
trip

_
v
_

1
_

1
s
trip

_
v
_

1
_

2
a

x
is

_
v
_

2
_

1
a

x
is

_
v
_

1
_

1

mpg

w
t

2

3

4

5

15 20 25 30

�

��

�

�

�

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�
�

�

�
�

�
�

� �

�

�

Cylinders

� 8

� 6

� 4

legends

ylabel

background

C.4 Saving your work 201

C.3 Plot grobs

Grob names have three components: the name of the grob, the class of the
grob and a unique numeric suffix. The three components are joined together
with “.” to give a name like title.text.435 or ticks.segments.15. These
three components ensure that all grob names are unique, and allow you to
select multiple grobs with the same name at the same time. Figure C.3 labels
some of these grobs. The grobs are arranged hierarchically, but it’s hard to
capture this in a diagram. You can see a list of all the grobs in the current
plot with grid.ls().

Fig. C.3: A selection of the most important grobs.

C.4 Saving your work

Using grid.gedit(), and similar functions, works fine if you are editing the
plot on screen, but if you want to save it to disk you need to take some extra
steps, or you will end up with multiple pages of output, each showing one
change. The key is not to modify the plot on screen, but to modify the plot
grob, and then draw it once you have made all the changes.

p <- qplot(wt, mpg, data=mtcars, colour=cyl)

Get the plot grob

grob <- ggplotGrob(p)

Modify in place

mpg

w
t

2

3

4

5

15 20 25 30

�

��

�

�

�

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�
�

�

�
�

�
�

� �

�

�

Cylinders

� 8

� 6

� 4

axis.title

legend

legend.key

axis.ticks

legend.title

axis_h

legend.text

axis.text

panel.backgroundpanel.grid.major.ygeom_point

202 C Manipulating plot rendering with grid

grob <- geditGrob(grob, gPath("strip","label"), gp=gpar(fontface

="bold"))

Draw it

grid.newpage()

grid.draw(grob)

An alternative is make all of the changes on screen, and then use
dev.copy2pdf() to copy the final version to disk.

References

A. Azzalini and A. W. Bowman. A look at some data on the Old Faithful
geyser. Applied Statistics, 39:357–365, 1990.

Cynthia A. Brewer. Color use guidelines for mapping and visualization. In
A.M. MacEachren and D.R.F. Taylor, editors, Visualization in Modern
Cartography, pages 123–147. Elsevier Science, 1994a.

Cynthia A. Brewer. Guidelines for use of the perceptual dimensions of color
for mapping and visualization. In Color Hard Copy and Graphic Arts III,

Proceedings of the International Society for Optical Engineering (SPIE),
San Jose, volume 2171, pages 54–63, 1994b.

D. B. Carr, R. J. Littlefield, W. L. Nicholson, and J. S. Littlefield. Scatter-
plot matrix techniques for large N. Journal of the American Statistical
Association, 82(398):424–436, 1987.

Dan Carr. Using gray in plots. ASA Statistical Computing and Graphics
Newsletter, 2(5):11–14, 1994. URL http://www.galaxy.gmu.edu/~dcarr/

lib/v5n2.pdf.
Dan Carr. Graphical displays. In Abdel H. El-Shaarawi and Walter W.

Piegorsch, editors, Encyclopedia of Environmetrics, volume 2, pages 933–960.
John Wiley & Sons, 2002. URL http://www.galaxy.gmu.edu/~dcarr/

lib/EnvironmentalGraphics.pdf.
Dan Carr and Ru Sun. Using layering and perceptual grouping in statistical

graphics. ASA Statistical Computing and Graphics Newsletter, 10(1):25–31,
1999.

Dan Carr, Nicholas Lewin-Koh, and Martin Maechler. hexbin: Hexagonal
Binning Routines, 2008. R package version 1.14.0.

John Chambers, William Cleveland, Beat Kleiner, and Paul Tukey. Graphical

methods for Data Analysis. Wadsworth, 1983.
William Cleveland. Visualizing Data. Hobart Press, 1993a.
William Cleveland. A model for studying display methods of statistical graphics.

Journal of Computational and Graphical Statistics, 2:323–364, 1993b. URL
http://stat.bell-labs.com/doc/93.4.ps.

William Cleveland. The Elements of Graphing Data. Hobart Press, 1985.
William S Cleveland and Robert McGill. Graphical perception: The visual

decoding of quantitative information on graphical displays of data. Journal

of the Royal Statistical Society. Series A (General), 150(3):192–229, 1987.

203

204 References

Dianne Cook and Deborah F. Swayne. Interactive and Dynamic Graphics for

Data Analysis: With Examples Using R and GGobi. Springer, 2007.
John Fox. effects: Effect Displays for Linear and Generalized Linear Mod-

els, 2008. URL http://socserv.socsci.mcmaster.ca/jfox/. R package
version 1.0-12.

Jr Harrell, Frank E. Hmisc: Harrell Miscellaneous, 2008. URL http://

biostat.mc.vanderbilt.edu/s/Hmisc. R package version 3.5-2. With
contributions from many others.

J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. Applied
Statistics, 28:100–108, 1979.

A. Inselberg. The plane with parallel coordinates. The Visual Computer, 1:
69–91, 1985.

Jim Lemon, Ben Bolker, Sander Oom, Eduardo Klein, Barry Rowlingson,
Hadley Wickham, Anupam Tyagi, Olivier Eterradossi, Gabor Grothendieck,
Michael Toews, and John Kane. plotrix: Various plotting functions, 2008. R
package version 2.4-3.

Thomas Lumley. dichromat: Color schemes for dichromats, 2007. R package
version 1.2-2.

Doug McIlroy. mapproj: Map Projections, 2005. R package version 1.1-7.1.
Packaged for R by Ray Brownrigg and Thomas P Minka.

David Meyer, Achim Zeileis, and Kurt Hornik. The strucplot framework:
Visualizing multi-way contingency tables with vcd. Journal of Statistical
Software, 17(3):1–48, 2006. URL http://www.jstatsoft.org/v17/i03/.

Paul Murrell. Investigations in Graphical Statistics. PhD thesis, The University
of Auckland, 1998.

Paul Murrell. R Graphics. Chapman & Hall/CRC, 2005.
Naomi Robbins. Creating More Effective Graphs. Wiley-Interscience, 2004.
Deepayan Sarkar. lattice: Lattice Graphics, 2008a. R package version 0.17-6.
Deepayan Sarkar. Lattice: Multivariate Data Visualization with R. Springer,

2008b.
Edward R. Tufte. Envisioning Information. Graphics Press, 1990.
Edward R. Tufte. Visual Explanations. Graphics Press, 1997.
Edward R. Tufte. The Visual Display of Quantitative Information. Graphics

Press, 2001.
Edward R. Tufte. Beautiful Evidence. Graphics Press, 2006.
John W. Tukey. Exploratory Data Analysis. Addison–Wesley, 1977.
Gregory Warnes. gplots: Various R programming tools for plotting data, 2007.

R package version 2.6.0. Includes R source code and/or documentation
contributed by Ben Bolker and Thomas Lumley.

Edward J. Wegman. Hyperdimensional data analysis using parallel coordinates.
Journal of the American Statistical Association, 85(411):664–675, 1990.

Hadley Wickham. Reshaping data with the reshape package. Journal of
Statistical Software, 21(12), 2007. URL http://www.jstatsoft.org/v21/

i12/paper.

References 205

Hadley Wickham. A layered grammar of graphics. Journal of Computational

and Graphical Statistics, 2009. In press.
Hadley Wickham. Practical tools for exploring data and models. PhD thesis,

Iowa State University, 2008. URL http://had.co.nz/thesis.
Hadley Wickham, Michael Lawrence, Duncan Temple Lang, and Deborah F

Swayne. An introduction to rggobi. R-news, 8(2):3–7, October 2008. URL
http://CRAN.R-project.org/doc/Rnews/Rnews_2008-2.pdf.

Leland Wilkinson. The Grammar of Graphics. Statistics and Computing.
Springer, 2nd edition, 2005.

Achim Zeileis, Kurt Hornik, and Paul Murrell. Escaping RGBland: Select-
ing colors for statistical graphics. Computational Statistics & Data Anal-
ysis, 2008. URL http://statmath.wu-wien.ac.at/~zeileis/papers/

Zeileis+Hornik+Murrell-2008.pdf. Forthcoming.

Index

3d graphics, 77

Adjustments
position, 59

Aesthetics, 13
defaults, 148
mappings, see Mappings
matching to geoms, 53
setting, 13, 48, 52
specifications, 195
translating from qplot, 185

Annotation, 85
Appendices, 185
Area plot, 67
Aspect ratio, 136
Axis

breaks, 97
expansion, 99
formatting, 98
labels, 23, 96, 97
limits, 23, 96, 98, 133
multiple, 166

Background, 144
Barchart, 20, 67
Base graphics, 4

translating from, 187
Bibliography, 203
Binning

1d, see Histogram
2d, 75

Boxplot, 16, 71
Bugs, 6

Clustering, 168
Colour, 102

blindness, 104
Brewer, 106
discrete scale, 106
gradients, 104
palettes, 105, 190
spaces, 103
specifying, 195
transparency, 73
wheel, 32

Conditional
density plot, 69

Converting data
from wide to long, 164

Coordinate systems, 129
Cartesian, 133
Equal scales, 136
flipping the axes, 133
interaction with scales, 133
introduction, 38
map projections, 136
non-Cartesian, 136
polar, 136
transformation, 132, 135

Data, 45
diamonds, 10
longitudinal, 22, 50
mpg, 28
msleep, 92
replacing, 45
wide-to-long, 164

207

208 INDEX

Date, 100
Density

2d, 76
plot, 18, 72

Distributions, 68
Dodging, 59

vs. faceting, 125
Duplication

functions, 181
iteration, 177
reducing, 177
templates, 179

Error band, 80
Error bar, 80
Exporting, 148

to Latex, 150
to Powerpoint, 150
to Word, 150

Faceting, 23, 116
by continuous variables, 129
controlling scales, 121
grid, 116
interaction with scales, 121
margins, 119
missing data, 123
panel size, 123
vs. dodging, 125
vs. grouping, 123
wrapped, 120

Fortify, 169
Frequency polygon, 69
Functions that create plots, 181

Geoms
aliases, 61
combining with stats, 60
customising defaults, 148
defaults, 55
parameterisation, 55, 132

ggplot
data structures, 39
methods, 169
translating from qplot(), 185

GPL
translating from, 192

Grammar
components, 37
introduction, 3

Grid, 4, 112, 199
grobs, 201
viewports, 199

Grouping, 49
vs. faceting, 123

Guides, 110

Histogram, 18
choosing bins, 68
weighted, 89

Image plot, 67
Installation, 6
Interactive graphics, 4
Iteration, 177

Jittering, 16, 71, 74

Labels, 67, 88
Lattice graphics, 5

translating from, 190
Layers

adding, 42
components, 37
reusing, 179
saving as variables, 45
strategy, 66

Layout, 151
Legend, 110

keys, 97, 112
position, 112
title, 96

Level plot, 67
Limits, see Axis, limits
Line plot, 67
Line type

scale, 107
specifying, 195

Linear models, 170
Log transform, 23, 100
Longitudinal data, see Time series

INDEX 209

Mailing list, 2
Mappings, 29, 46

creating programmatically, 181
defaults, 46
overriding, 47

Maps
borders, 78
choropleth, 78
drawing, 77
projections, 136

Model
diagnostics, 62, 170
fitting multiple models, 161
generalised additive, 15
linear, 16, 170
loess, 15
robust, 16

Munching, 132

Named plots, 31

Overplotting, 73

Package
effects, 81
grid, 199
MASS, 16
mgcv, 15, 161
multcomp, 81
multcompView, 81
nlme, 50
plyr, 157
reshape, 164

Parallel coordinates plot, 167, 181
Polar coordinates, 136
Position adjustments, 59
Positioning, 115

coordinate systems, 129
faceting, 116
position adjustments, 59
scales, 98

Publication
multiple plots on the same page,

151
polishing plots for, 139

saving output, 148
themes, 139

qplot
differences from plot(), 26
getting started, 11
other options, 23
translating to ggplot(), 185

Reducing duplication, 177
Rescaling, 167
Rotating, 133

Saving, 148
grid graphics, 201

Scales
adding, 94
colour, 102

gradient, 104
continuous, 99
customising defaults, 148
date-time, 100
defaults, 93
discrete, 102
identity, 110
interaction with coordinate

system, 133
interaction with

facetting, 121
introduction, 32
limits, 96, 98
mapping, 93
names, 96
position, 98

continuous, 99
discrete, 102

training, 93
transformation, 92

Scatterplot, 11
principles of, 29

Shape
scale, 107
specifying, 196

Side-by-side, see Dodging

210 INDEX

Size
scale, 107
specifying, 196

Smoothing, 14
Stacking, 59
Standard errors, 81
Stats

combining with geoms, 60
creating new variables, 55
precomputed, 62
summary, 81

Sub-figures, 152
Subplots, 152
Summary

group-wise, 160
of plot object, 44
statistical, 81

Surface plots, 77

Templates, 179
Text justification, 196
Themes, 139

background, 144
built-in, 140
elements, 142
labels, 142
updating, 146
white background, 141

Time, 100
Time series, 50

bivariate, 21
date formatting, 101
multivariate, 164

Title, 23
Transformation

column-wise, 159
coordinate system, 130, 135
data, 100
group-wise, 158
scales, 99

Translating
from base graphics, 187
from GPL, 192
from lattice, 190
from qplot, 185

Transparency, 73

Uncertainty
visualising, 80

Viewports, 199

Website, 2
Weighting, 88
White background, 141

Zooming, 99, 133

R code index

+, 42, 46, 93
.., 59
%+%, 45

aes(), 46
aes_string(), 181
alpha, 73

catcolwise(), 159
colwise(), 159
coord_cartesian(), 132
coord_equal(), 135
coord_flip(), 134
coord_map(), 137
coord_polar(), 136
coord_trans(), 135
cut_interval(), 129
cut_number(), 129

data.frame, 45
ddply(), 158
Discrete variables(), 92

facet_grid(), 23, 116
facet_wrap(), 120
fortify(), 169
fortify.Image(), 174
fortify.lm(), 170

geom_abline(), 88
geom_area(), 67, 72
geom_bar(), 20, 55, 59, 67, 125
geom_boxplot(), 17, 52, 71

geom_crossbar(), 80
geom_density(), 18, 69, 72
geom_density2d(), 76
geom_errorbar(), 80
geom_freqpoly(), 69
geom_hexagon(), 75
geom_histogram(), 18, 68
geom_hline(), 88
geom_jitter(), 17, 71, 74
geom_line(), 21, 50, 53, 62, 67, 88,

164, 167
geom_linerange(), 80
geom_path(), 21, 53, 67
geom_point(), 67, 73
geom_pointrange(), 80
geom_polygon(), 54, 67, 78
geom_rect(), 55, 88
geom_ribbon(), 80
geom_smooth(), 14, 50, 63, 80
geom_text(), 67
geom_tile(), 67
geom_vline(), 88
ggplot(), 42
ggsave(), 150

hjust, 196

I(), 13, 49

last_plot(), 177
layer(), 42
load(), 40

melt(), 164

211

212 R CODE INDEX

numcolwise(), 159

opts(), 146

plot(), 26
position_dodge(), 59
position_fill(), 59
position_jitter(), 71, 74
position_stack(), 59
print(), 39

qplot(), 11, 185

save(), 40
scale_colour_brewer(), 106
scale_colour_gradient(), 104
scale_colour_gradient2(), 104
scale_colour_gradientn(), 105
scale_colour_hue(), 106
scale_colour_manual(), 107
scale_fill_gradient(), 104
scale_fill_gradient2(), 104
scale_fill_gradientn(), 105
scale_identity(), 110
scale_linetype_manual(), 107
scale_shape_manual(), 107
scale_x_continuous(), 99
scale_x_datetime(), 100
scale_x_discrete(), 102
scale_x_log10(), 100
scale_y_continuous(), 99
scale_y_discrete(), 102

scale_y_log10(), 100
set_default_scale(), 148
stat_bin(), 55, 69
stat_bin2d(), 75
stat_binhex(), 75
stat_boxplot(), 71
stat_density(), 72
stat_density2d(), 76
stat_identity(), 62
stat_smooth(), 161
stat_summary(), 83
subset(), 158
summary(), 39

theme_blank(), 146
theme_bw(), 141
theme_get(), 146
theme_grey(), 141
theme_line(), 143
theme_rect(), 144
theme_segment(), 143
theme_set(), 141
theme_text(), 142
transform(), 158

update_geom_defaults(), 148

vjust, 196

xlim(), 98

ylim(), 98

