

Use R!

Series Editors:

Robert Gentleman Kurt Hornik Giovanni Parmigiani

Albert: Bayesian Computation with R

Paradis: Analysis of Phylogenetics and Evolution with R

Hahne/Huber/Gentleman/Falcon: Bioconductor Case Studies

Sarkar: Lattice: Multivariate Data Visualization with R

Pfaff: Analysis of Integrated and Cointegrated Time Series with R

Spector: Data Manipulation with R

Use R!

Cook/Swayne:Interactive and Dynamic Graphics for Data Analysis: With R

and GGobi

Data Manipulation with R

Phil Spector

123

Giovanni Parmigiani
The Sidney Kimmel Comprehensive Cancer
Center at Johns Hopkins University
550 North Broadway

USA

Printed on acid-free paper.

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

9 8 7 6 5 4 3 2 1

springer.com

Baltimore, MD 21205-2011

© 2008 Springer Science+Business Media, LLC

Series Editors:
Robert Gentleman Kurt Hornik
Program in Computational Biology
Division of Public Health Sciences Wirtschaftsuniversität Wien Augasse 2-6
Fred Hutchinson Cancer Research Center A-1090 Wien

Austria

USA

7

Seattle, Washington 98109-1024
1100 Fairview Avenue, N, M2-B876

Department of Statistik and Mathematik

e-ISBN 978-0-387-74731-6
DOI: 10.1663/978-0-387- 4731-6

Phil Spector
Statistical Computing Facility
Department of Statistics
University of Califonia, Berkeley

ISBN 978-0-387-74730-9

Berkeley, California 94720

Library of Congress Control Number: 2008921862

spector@stat.berkeley.edu

Preface

The R language provides a rich environment for working with data, especially
data to be used for statistical modeling or graphics. Coupled with the large
variety of easily available packages, it allows access to both well-established
and experimental statistical techniques. However techniques that might make
sense in other languages are often very inefficient in R, but, due to R’s flex-
ibility, it is often possible to implement these techniques in R. Generally,
the problem with such techniques is that they do not scale properly; that is,
as the problem size grows, the methods slow down at a rate that might be
unexpected. The goal of this book is to present a wide variety of data ma-
nipulation techniques implemented in R to take advantage of the way that R
works, rather than directly resembling methods used in other languages. Since
this requires a basic notion of how R stores data, the first chapter of the book
is devoted to the fundamentals of data in R. The material in this chapter is a
prerequisite for understanding the ideas introduced in later chapters.

Since one of the first tasks in any project involving data and R is getting
the data into R in a way that it will be usable, Chapter 2 covers reading data
from a variety of sources (text files, spreadsheets, files from other programs,
etc.), as well as saving R objects both in native form and in formats that
other programs will be able to work with. Chapter 3 addresses the issue of
relational databases, since large datasets are often stored in such databases.
Some guidance in setting up and using databases to work with large datasets
is also included in this chapter.

Chapter 4 covers the topic of dates and times in R. While some work can
be done using a simple character representation of this type of data, a wider
range of operations are available when dates and times are converted to an
internal form that allows for comparisons and other manipulations. There are
a variety of mechanisms for storing dates and times in R, and this chapter is
presented to encourage users of such data to convert them to the appropriate
type as early as possible.

VI Preface

While factors are undeniably valuable in data modeling and graphics, they
often “get in the way” when performing more basic operations on data. Chap-
ter 5 addresses how to convert objects to and from factors, along with guide-
lines on how to avoid factor conversions when necessary.

Chapter 6 explores the many ways that subscripting in R can be used to
access and modify data. Subscripts (especially logical subscripts), are one of
the most powerful tools in R. Many operations that normally require loops or
complex programs can be solved elegantly and efficiently in R by using the
power of subscripting.

Although R is usually thought of as a language for working with numbers,
more and more data is appearing in the form of character strings instead of
numbers. Along with basic functions for breaking apart and putting together
character strings, R provides a complete implementation of regular expres-
sions; coupled with vectorization, most character data problems can be solved
simply and efficiently. Chapter 7 addresses those areas of R focused on char-
acter data.

Since most analyses, both model-based and graphical, operate on data
frames, the final two chapters of the book directly address working with data
frames. Chapter 8 discusses aggregation techniques, where the contents of a
data frame are summarized, often broken down by groups. Chapter 9 covers
the somewhat related issue of transforming and reshaping data frames. Em-
phasis is on methods that take advantage of R’s power, and which will scale
up appropriately as the size of data they operate on increases.

One aspect of this book that may seem unfamiliar is the use of the equal
sign (=) as an assignment operator rather than the more traditional “gets”
operator (<-). I find using the equal sign more natural than the other nota-
tion, so I’ve used it in all the examples. The one situation where this causes
problems (assigning a value to a variable as part of a function call) is discussed
in Section 8.7.

While the focus of the book is using the functions and methods that are
built in to base R, a number of packages from CRAN (the Comprehensive
R Archive Network) are introduced in the text. These are packages that I’ve
personally found useful in my own work, and omission of other packages is
by no means meant to imply that those packages aren’t useful. In fact, with
the wide variety of new packages contributed by the R community, and se-
rious R programmer would be well advised to visit the R project homepage
(http://r-project.org or preferably an appropriate mirror site) to check
for new packages. Another valuable resource on this page is the R Newsletter,
which often provides in-depth information on using some of the new packages.

I’d like to express my most sincere gratitude to both the original developers
of the S language, the R Core development team, and the entire R community
for creating such a wonderful language and inspiring its users to come up with
new and exciting ways of using it.

Contents

Preface . V

1 Data in R . 1
1.1 Modes and Classes . 1
1.2 Data Storage in R . 2
1.3 Testing for Modes and Classes . 7
1.4 Structure of R Objects . 7
1.5 Conversion of Objects . 8
1.6 Missing Values . 10
1.7 Working with Missing Values . 10

2 Reading and Writing Data . 13
2.1 Reading Vectors and Matrices . 13
2.2 Data Frames: read.table . 15
2.3 Comma- and Tab-Delimited Input Files . 17
2.4 Fixed-Width Input Files . 17
2.5 Extracting Data from R Objects . 18
2.6 Connections . 23
2.7 Reading Large Data Files . 25
2.8 Generating Data . 27

2.8.1 Sequences . 27
2.8.2 Random Numbers . 29

2.9 Permutations . 30
2.9.1 Random Permutations . 30
2.9.2 Enumerating All Permutations . 30

2.10 Working with Sequences . 31
2.11 Spreadsheets . 33

2.11.1 The RODBC Package on Windows . 33
2.11.2 The gdata Package (All Platforms) 34

2.12 Saving and Loading R Data Objects . 35
2.13 Working with Binary Files . 36

VIII Contents

2.14 Writing R Objects to Files in ASCII Format 38
2.14.1 The write Function . 38
2.14.2 The write.table function . 39

2.15 Reading Data from Other Programs . 39

3 R and Databases . 43
3.1 A Brief Guide to SQL . 43

3.1.1 Navigation Commands . 43
3.1.2 Basics of SQL . 44
3.1.3 Aggregation . 45
3.1.4 Joining Two Databases . 46
3.1.5 Subqueries . 47
3.1.6 Modifying Database Records . 48

3.2 ODBC . 49
3.3 Using the RODBC Package . 50
3.4 The DBI Package . 51
3.5 Accessing a MySQL Database . 51
3.6 Performing Queries . 52
3.7 Normalized Tables . 52
3.8 Getting Data into MySQL . 53
3.9 More Complex Aggregations . 55

4 Dates . 57
4.1 as.Date . 57
4.2 The chron Package . 59
4.3 POSIX Classes . 60
4.4 Working with Dates . 63
4.5 Time Intervals . 64
4.6 Time Sequences . 65

5 Factors . 67
5.1 Using Factors . 67
5.2 Numeric Factors . 70
5.3 Manipulating Factors . 70
5.4 Creating Factors from Continuous Variables 72
5.5 Factors Based on Dates and Times . 73
5.6 Interactions . 74

6 Subscripting . 75
6.1 Basics of Subscripting . 75
6.2 Numeric Subscripts . 75
6.3 Character Subscripts . 75
6.4 Logical Subscripts . 76
6.5 Subscripting Matrices and Arrays . 77
6.6 Specialized Functions for Matrices . 81

Contents IX

6.7 Lists . 82
6.8 Subscripting Data Frames . 83

7 Character Manipulation . 87
7.1 Basics of Character Data . 87
7.2 Displaying and Concatenating Character Strings 87
7.3 Working with Parts of Character Values . 89
7.4 Regular Expressions in R . 90
7.5 Basics of Regular Expressions . 91
7.6 Breaking Apart Character Values . 93
7.7 Using Regular Expressions in R . 94
7.8 Substitutions and Tagging . 98

8 Data Aggregation . 101
8.1 table . 101
8.2 Road Map for Aggregation . 106
8.3 Mapping a Function to a Vector or List . 107
8.4 Mapping a function to a matrix or array 110
8.5 Mapping a Function Based on Groups . 113
8.6 The reshape Package . 120
8.7 Loops in R . 126

9 Reshaping Data . 131
9.1 Modifying Data Frame Variables . 131
9.2 Recoding Variables . 132
9.3 The recode Function . 134
9.4 Reshaping Data Frames . 135
9.5 The reshape Package . 140
9.6 Combining Data Frames . 142
9.7 Under the Hood of merge . 146

Index . 149

1

Data in R

1.1 Modes and Classes

Every object in R contains a number of attributes to describe the nature of
the information in that object. Two of the most important attributes of data
in R are the mode and the class. When managing data, it is important to
understand the differences among the different types of data that R supports,
and when problems arise with data, the problem is often that the data is the
incorrect mode or class for a particular operation.

The mode function returns the mode of any object in R, and the class

function returns the class. When working with data, the most commonly en-
countered modes of individual objects are numeric, character, and logical.
However, since data in R usually revolves around a collection of data (for
example, a matrix or dataset), other modes will often be encountered. When
deciding on how data should be stored in R, one important consideration has
to do with the mode of the data being studied. Some objects (like matrices
or other arrays) demand that all the data contained in them be of the same
mode; others (like lists and data frames) allow for multiple modes within a
single object.

In addition to the mode and class function, the typeof function can some-
times provide additional information about the type of an object, although it
is not generally as useful as that returned by mode or class.

One other consideration when planning how data should be entered into
R has to do with categorical data. R provides the factor class to store this
type of data, and factors are automatically treated specially in statistical
models and plotting functions. Values stored as factors require less storage
than regular values, because R need only store each unique level once. If you
examine the mode of a factor object, you’ll notice that it is always numeric,
even though it may display as character data, so special care is needed when
working with factors. The class function, or one of the predicate functions
described in Section 1.3 can be used to recognize factors once they are stored
in R. Further information about factors can be found in Chapter 5.

2 1 Data in R

Another important data type concerns dates and times. While this sort of
information can be stored as a simple character representation, it is difficult to
manipulate in this form. R provides several mechanisms for storing dates, in-
cluding the built-in Date, POSIXlt, and POSIXct classes, and the contributed
chron package. The differences among these different representations as well
as information on manipulating dates and times are provided in Chapter 4.

Finally, one of the most often encountered modes of data is the list. Lists
are the most flexible way of storing data in R, since they can accommodate
objects of different modes and lengths. Many functions in R use lists to hold
their results, and lists provide a very attractive way of accumulating informa-
tion incrementally. When you’ve got a list and need to find the modes of the
components of the list, the sapply function (discussed in detail in Section 8.3)
can be used as shown in the following example:

> mylist = list(a=c(1,2,3),b=c("cat","dog","duck"),

+ d=factor("a","b","a"))

> sapply(mylist,mode)

a b d

"numeric" "character" "numeric"

> sapply(mylist,class)

a b d

"numeric" "character" "factor"

1.2 Data Storage in R

It’s very rare that single values (scalars) will be the center of an R session, so
one of the first questions encountered when working with data in R is what
sort of object should be used to hold collections of data. The vector is the
simplest way to store more than one value in R. The c function (mnemonic
for catenate or combine) allows you to quickly enter data into R:

> x = c(1,2,5,10)

> x

[1] 1 2 5 10

> mode(x)

[1] "numeric"

> y = c(1,2,"cat",3)

> y

[1] "1" "2" "cat" "3"

> mode(y)

[1] "character"

> z = c(5,TRUE,3,7)

> z

[1] 5 1 3 7

> mode(z)

[1] "numeric"

1.2 Data Storage in R 3

Notice that when elements of different modes are combined with c, the mode
of the resultant vector is different than that of its parts. In particular, if any of
the elements are character, the other elements will be converted to characters;
logical elements combined with numeric elements will be converted to numeric
equivalents with TRUE becoming 1 and FALSE becoming 0. The c function can
also be used to combine vectors:

> all = c(x,y,z)

> all

[1] "1" "2" "5" "10" "1" "2" "cat" "3" "5"

[10] "1" "3" "7"

Once again, since some of the elements of the combined vector have mode of
character, the entire vector is converted to character.

The elements of the vector can be assigned names, which will be used
when the object is displayed, and which can also be used to access elements
of the vector through subscripts (Section 6.1). Names can be given when the
vector is first created, or they can be added or changed after the fact using
the names assignment function:

> x = c(one=1,two=2,three=3)

> x

one two three

1 2 3

> x = c(1,2,3)

> x

[1] 1 2 3

> names(x) = c(’one’,’two’,’three’)

> x

one two three

1 2 3

A further feature of the names assignment function is that it can be indexed
to modify only selected elements of the names:

> names(x)[1:2] = c(’uno’,’dos’)

> x

uno dos three

1 2 3

One surprising fact about vectors in R is that, in many cases if two vec-
tors involved in an operation are not of the same length, R will recycle the
values of the shorter vector in order to make the lengths compatible. This is
a generalization of the fact that when a vector and a scalar are involved in an
operation, R will silently repeat the scalar value to correspond to each value
of the vector. So to add one to each element of a vector, a scalar value of 1
can be used:

4 1 Data in R

> nums = 1:10

> nums + 1

[1] 2 3 4 5 6 7 8 9 10 11

The same sort of thing will happen if the one operand is a vector of a different
length than the other:

> nums = 1:10

> nums + c(1,2)

[1] 2 4 4 6 6 8 8 10 10 12

Note how the values 1 and 2 are repeated in order to allow the operation to
succeed. R will be silent about these kind of operations, unless the length of
the longer object is not an even multiple of the length of the shorter object:

> nums = 1:10

> nums + c(1,2,3)

[1] 2 4 6 5 7 9 8 10 12 11

Warning message:

longer object length

is not a multiple of shorter object length in:

nums + c(1, 2, 3)

Notice that this is just a warning; the operation is still carried out.
Arrays are a multidimensional extension of vectors, and, like vectors, all of

the objects of an array must be of the same mode. The most commonly used
array in R is the matrix, a 2-dimensional array. Matrices are stored internally
as vectors, with the columns of the matrix “stacked” on top of each other.
The matrix function converts a vector to a matrix. The nrow= and ncol=

arguments to matrix specify the number of rows and columns, respectively.
If only one of these arguments is given, the other will be calculated based on
the length of the input data.

Since matrices are internally stored by columns, matrix assumes that the
input vector will be converted to a matrix by columns; the byrow=TRUE argu-
ment can be used to override this in the more common case where the matrix
needs to be read in by rows. The mode of a matrix is simply the mode of
its constituent elements; the class of a matrix will be reported as matrix. In
addition, matrices have an attribute called dim which is a vector of length two
containing the number of rows and columns. The dim function returns this
vector; alternatively, individual elements can be accessed using the nrow or
ncol functions.

Names can be assigned to the rows and/or columns of matrices, through
the dimnames= argument of the matrix function, or after the fact through the
dimnames or row.names assignment function. Since the number of rows and
columns of a matrix need not be the same, the value of dimnames must be a
list; the first element is a vector of names for the rows, and the second is a
vector of names for the columns. Like vectors, these names are used for display,
and can be used to access elements of the matrix through subscripting. To

1.2 Data Storage in R 5

provide names for just one dimension of a matrix, use a value of NULL for the
dimension for which you don’t wish to provide names. For example, to create
a 5×3 matrix of random numbers (See Section 2.2), and to name the columns
A, B, and C, we could use statements like

> rmat = matrix(rnorm(15),5,3,

+ dimnames=list(NULL,c(’A’,’B’,’C’)))

> rmat

A B C

[1,] -1.15822190 -1.1431019 0.464873841

[2,] -0.04083058 0.3705789 0.320723479

[3,] -0.25480412 -0.5972248 -0.004061773

[4,] 0.48423349 -0.8727114 -0.663439822

[5,] 1.93566841 -0.2338928 -0.605026563

Similarly, we could first create the matrix, then provide the dimnames sepa-
rately:

dimnames(rmat) = list(NULL,c(’A’,’B’,’C’))

Lists provide a way to store a variety of objects of possibly varying modes
in a single R object. Note that when forming a list, the mode of each object
in the list is retained:

> mylist = list(c(1,4,6),"dog",3,"cat",TRUE,c(9,10,11))

> mylist

[[1]]

[1] 1 4 6

[[2]]

[1] "dog"

[[3]]

[1] 3

[[4]]

[1] "cat"

[[5]]

[1] TRUE

[[6]]

[1] 9 10 11

> sapply(mylist,mode)

[1] "numeric" "character" "numeric" "character"

[5] "logical" "numeric"

6 1 Data in R

The important thing to notice about lists is that the elements of the list need
not be of the same mode; the simple example provided also shows that the
length of the elements need not be the same.

Like other objects in R, list elements can be named, either when the list
is being created, or by using the names assignment function if the list already
exists. The list function takes no keyword arguments, so list elements can
be named when they are passed to the function:

> mylist = list(first=c(1,3,5),second=c(’one’,’three’,’five’),

+ third=’end’)

> mylist

$first

[1] 1 3 5

$second

[1] "one" "three" "five"

$third

[1] "end"

The same result can be achieved using the names function after creating the
(unnamed) list:

> mylist = list(c(1,3,5),c(’one’,’three’,’five’),’end’)

> names(mylist) = c(’first’,’second’,’third’)

Many data analyses revolve around the idea of a dataset, a collection
of related values which can be treated as a single unit. For example, you
might collect information about different companies; for each company you
would have a name, an industry type, the number of employees, type of health
care plans offered, etc. For each of the companies you study you would have
values for each of these variables. If we store the data in a matrix, with rows
representing observations and columns representing variables, it would be easy
to access the data, but since the modes of the variables in a dataset will often
not be the same, a matrix would force, say, numeric variables to be stored as
character variables. To allow the ease of indexing that a matrix would provide
while accommodating different modes, R provides the data frame. A data
frame is a list with the restriction that each element of the list (the variables)
must be of the same length as every other element of the list. Thus, the mode
of a data frame is list, and its class is data.frame. While there is some
overhead for storing data in a data frame as opposed to a matrix, data frames
are the preferred method for working with “observations and variables”-style
datasets.

1.4 Structure of R Objects 7

1.3 Testing for Modes and Classes

While the mode or class of an object can easily be examined through the
mode and class functions, in many cases R provides a simpler way to verify
whether an object has a particular mode, or is a member of a particular
class. A large number of functions in R, beginning with the string “is.”,
can be used to test if an object is of a particular type. Among the many
such predicate functions available in R are is.list, is.factor, is.numeric,
is.data.frame, and is.character. These functions can be used to make
sure that the data you’re working with will behave the way that you expect,
or that functions that you write will work properly with a variety of data.

Although R is not a true object-oriented language, many functions in R,
collectively known as generic functions, will behave differently depending on
the class of their arguments. For a given class, you can find out which func-
tions will treat the class specially through the methods function. For more
information about the object-oriented models in R, see Section 2.5.

1.4 Structure of R Objects

For simple cases such as vectors, matrices, and data frames, it’s usually
straightforward to determine what an object in R contains; examining the
class and mode of the object, along with its length or dim attribute, should
be sufficient to allow you to work effectively with the object. This process can
conveniently be carried out for all the objects in a workspace with the ls.str
function. However, in some cases, especially with nested lists, it can be diffi-
cult to understand how information is arranged in the object, and displaying
the object in its entirety rarely elucidates the structure in these cases. The fol-
lowing examples are artificial, and have been kept small to reduce space, but
they illustrate some strategies for getting an understanding of the structure
of data in R.

Returning to an earlier example, suppose we have the following list:

> mylist = list(a=c(1,2,3),b=c("cat","dog","duck"),

+ d=factor("a","b","a"))

The summary function will provide the names, lengths, classes, and modes of
the elements of the list:

> summary(mylist)

Length Class Mode

a 3 -none- numeric

b 3 -none- character

d 1 factor numeric

This provides useful information, but only looks at top-level elements of the
list. If we have a list whose elements are lists, summary will not examine the
structure of those interior lists:

8 1 Data in R

> nestlist = list(a=list(matrix(rnorm(10),5,2),val=3),

+ b=list(sample(letters,10),values=runif(5)),

+ c=list(list(1:10,1:20),list(1:5,1:10)))

> summary(nestlist)

Length Class Mode

a 2 -none- list

b 2 -none- list

c 2 -none- list

In situations where direct examination provides too much detail, and
summary or similar functions provide too little detail, the str function tries
to provide a workable compromise. With the current example, it can be seen
that str provides details about the nature of all the components of the object,
presented in a display whose indentation provides visual cues to the structure
of the object:

> str(nestlist)

List of 3

$ a:List of 2

..$: num [1:5, 1:2] 0.302 -1.534 1.133 -2.304 0.305

... ..$ val: num 3

$ b:List of 2

..$: chr [1:10] "v" "i" "e" "z" ...

..$ values: num [1:5] 0.438 0.696 0.722 0.164 0.435

$ c:List of 2

..$:List of 2

.. ..$: int [1:10] 1 2 3 4 5 6 7 8 9 10

.. ..$: int [1:20] 1 2 3 4 5 6 7 8 9 10 ...

..$:List of 2

.. ..$: int [1:5] 1 2 3 4 5

.. ..$: int [1:10] 1 2 3 4 5 6 7 8 9 10

The number of elements displayed for each component is controlled by the
vec.len= argument, and can be set to 0 to suppress any values being printed;
the depth of levels displayed for each object is controlled by the max.level=

argument, which defaults to NA, meaning to display whatever depth of levels
is actually encountered in the object.

1.5 Conversion of Objects

To temporarily change the way an object in R behaves, a variety of conversion
routines, each beginning with the string “as.”, are provided. If it makes sense,
these functions can be used to create an object equivalent to the one that
you’re working with, but which has a different mode or class. A simple example
involves numbers which are stored as characters. This may occur when data
is first entered into R, or it may arise as a side effect of some other operation.

1.5 Conversion of Objects 9

Consider the table function, discussed in detail in Section 8.1. This func-
tion will return a vector of integer counts representing how many times each
unique value in an object appears. The vector it returns is named, based on
the unique values encountered. Suppose we use the table function on a vector
of numbers, and then try to use this tabled version of the data to calculate a
sum of all the values:

> nums = c(12,10,8,12,10,12,8,10,12,8)

> tt = table(nums)

> tt

nums

8 10 12

3 3 4

> names(tt)

[1] "8" "10" "12"

> sum(names(tt) * tt)

Error in names(tt) * tt : non-numeric argument

to binary operator

Since the error message suggests that sum was expecting a numeric vector, we
can create a numeric version of names(tt) (without modifying the original
version) using as.numeric:

> sum(as.numeric(names(tt)) * tt)

[1] 102

Of course, not all possible conversions make sense. If an inappropriate
conversion is attempted, R will produce an error or warning message, and
may generate missing values. (See Section 1.6.)

Note that the as. forms for many types of objects behave very differ-
ently than the function which bears the type’s name. For example, notice the
difference between the list function and the as.list function:

> x = c(1,2,3,4,5)

> list(x)

[[1]]

[1] 1 2 3 4 5

> as.list(x)

[[1]]

[1] 1

[[2]]

[1] 2

[[3]]

[1] 3

10 1 Data in R

[[4]]

[1] 4

[[5]]

[1] 5

The list function creates a list (of length one) containing the argument it
was passed while as.list converts the vector into a list of the same length
as the vector.

One useful conversion that will take place automatically concerns logical
variables. When a logical variable is used in a numeric context, each occurrence
of TRUE will be treated as 1, while values of FALSE will be treated as 0. Coupled
with the vectorization of most functions, this allows many counting operations
to be performed easily. For example, to find all the values in a vector, x, that
are greater than 0, the expression sum(x > 0) could be used; the number of
unequal elements in two matrices a and b could be calculated as sum(a !=

b).

1.6 Missing Values

Missing values arise in data for a variety of reasons. The missing values may
be part of the original data, or they may arise as part of a computation or
conversion that takes place after you’ve read your data into R. In all cases,
missing values are treated consistently, and will propagate across any com-
putation that involves them, so it’s important to recognize missing values as
early as possible when you’re working with data.

The value NA, without quotes, represents a missing value. You can assign
a variable a value of NA, but to test for a missing value you must use the
is.na function. This function will return TRUE if a value is missing and FALSE

otherwise.
If a missing value occurs as the result of certain computations (for example,

division by zero or taking the logarithm of a negative number), it may display
as Inf or NaN. While the is.na function will recognize these values as missing,
the is.nan function can be used to distinguish this type of missing value from
the ordinary NA value.

1.7 Working with Missing Values

Many of the functions provided with R have arguments that are useful when
your data contain missing values. Most of the statistical summary functions
(mean, var, sum, min, max, etc.) accept an argument called na.rm=, which can
be set to TRUE if you want missing values to be removed before the summary
is calculated. For functions that don’t provide such an argument, the negation

1.7 Working with Missing Values 11

operator (!) can be used in an expression like x[!is.na(x)] to create a vector
which contains only the nonmissing values in x.

The statistical modeling functions (lm, glm, gam, etc.) all have an argu-
ment called na.action=, which allows you to specify a function that will be
applied to the data frame specified by the data= argument before the mod-
eling function processes the data. One very useful choice for this argument is
na.omit, which will return a data frame with any row containing one or more
missing values eliminated. Don’t overlook the fact that na.omit can be called
directly to create such a data frame independent of the modeling functions.
The complete.cases function may also be useful to achieve the same task.

Normally, missing values are not included when a variable is made into a
factor; if you want the missing values to be considered a valid factor level, use
the exclude=NULL argument to factor when the factor is first created. (See
Chapter 5 for more details.)

When importing data from outside sources, missing values may be repre-
sented by some string other than NA. In those cases, the na.strings= argu-
ment of read.table (Section 2.2) can be passed a vector of character values
that should be treated as missing values. Since the na.strings= argument
cannot be set selectively for different columns, it may sometimes be prudent
to read the missing values into R in whatever form they occur, and convert
them later.

2

Reading and Writing Data

2.1 Reading Vectors and Matrices

The c function has already been introduced as a way to input small amounts
of data into R. When the amount of data is large, and especially when typing
the data into the console is inappropriate, the scan function can be used.
scan is most appropriate when all the data to be read is of the same mode,
so that it can be accommodated by a vector or matrix. For reading data with
variables of mixed modes, see Section 2.2.

The first argument to scan can be a quoted string or character variable
containing the name of a file or a URL, or it can be any of a number of
connections (Section 2.1) to allow other input sources. If no first argument is
given, scan will read from the console, stopping when a completely blank line
is entered.

By default, scan expects all of its input to be numeric data; this can be
overridden with the what= argument, which specifies the type of data that
scan will see. For example, to read a vector of character values with scan,
you can specify what="":

> names = scan(what="")

1: joe fred bob john

5: sam sue robin

8:

Read 7 items

> names

[1] "joe" "fred" "bob" "john" "sam" "sue" "robin"

When reading from the console, R will prompt you with the index of the next
item to be entered, and report on the number of elements read when it’s done.

If the what= argument to scan is a list containing examples of the expected
data types, scan will output a list with as many elements as there are data
types provided. To specify numeric values, you can pass a value of 0:

14 2 Reading and Writing Data

> names = scan(what=list(a=0,b="",c=0))

1: 1 dog 3

2: 2 cat 5

3: 3 duck 7

4:

Read 3 records

> names

$a

[1] 1 2 3

$b

[1] "dog" "cat" "duck"

$c

[1] 3 5 7

Note that, by naming the elements in the list passed through the what= argu-
ment, the output list elements are appropriately named. When the argument
to what= is a list, the multi.line= option can be set to FALSE to prevent
scan from trying to use multiple lines to read the records for an observation.

One of the most common uses for scan is to read in data matrices. Since
scan returns a vector, a call to scan can be embedded inside a call to the
matrix function:

> mymat = matrix(scan(),ncol=3,byrow=TRUE)

1: 19 17 12

4: 15 18 9

7: 9 10 14

10: 7 12 15

13:

Read 12 items

> mymat

[,1] [,2] [,3]

[1,] 19 17 12

[2,] 15 18 9

[3,] 9 10 14

[4,] 7 12 15

Notice the use of the byrow=TRUE argument. This allows the vector to be
converted to a matrix in the way that such data is usually presented.

In order to skip fields while reading in data with scan , a type of NULL can
be used in the list passed to the what= argument. Suppose we have a large
data file with ten numeric fields on each line, but we only need to read the
contents of the first, third, and tenth fields. We could use a call to scan as
follows:

> values = scan(filename,

+ what=c(f1=0,NULL,f3=0,rep(list(NULL),6),f10=0))

2.2 Data Frames: read.table 15

Since a value of NULL will not be replicated by rep, multiple NULL values are
added as lists, and the c function properly integrates them into the list passed
to scan. Once the file is read in this way, a matrix with the extracted fields
could be constructed with the cbind function:

result = cbind(values$f1,values$f3,values$f10)

2.2 Data Frames: read.table

The read.table function is used to read data into R in the form of a data
frame. read.table always returns a data frame, which means that it is ide-
ally suited to read data with mixed modes. (For data of a single mode, like
numeric matrices, it is more efficient to use scan.) read.table expects each
field (variable) in the input source to be separated by one or more separa-
tors, by default any of spaces, tabs, newlines or carriage returns. The sep=

argument can be used to specify an alternative separator. (See Section 2.3 for
convenience functions designed for comma- or tab-separated data.) If there
are no consistent separators in the input data, but each variable occupies
the same columns for every observation, the read.fwf function, described in
Section 2.4, can be used.

If the first line in your input data consists of variable names separated by
the same separator as the data, the header=TRUE argument can be passed to
read.table to use these names to identify the columns of the output data
frame. Alternatively, the col.names= argument to read.table can specify
a character vector containing the variable names. Without other guidance,
read.table will name the variables using a V followed by the column number.

The only required argument to read.table is a file name, URL, or connec-
tion object (See Section 2.1). Under Windows, make sure that double back-
slashes are used in pathnames, since a single backslash in a character string in
R indicates that the next character should be treated specially. If your data is
in the standard format as described above, that should be all that read.table
needs, with the possible addition of header=TRUE. However, read.table is
very flexible, and you may sometimes need to make adjustments using the
features described below.

Because it offers increased efficiency in storage, read.table automatically
converts character variables to factors. This may cause some problems when
trying to use the variables as simple character strings. While this can usu-
ally be resolved using the methods discussed in Chapter 5, you can prevent
conversion to factors by using the stringsAsFactors= argument. Passing the
value FALSE through this argument will prevent any factor conversion. To in-
sure that character variables are never converted to factors, the system option
stringsAsFactors can be set to FALSE using

> options(stringsAsFactors=FALSE)

16 2 Reading and Writing Data

The as.is= argument can be used to suppress factor conversion for a subset
of the variables in your data, by supplying a vector of indices specifying the
columns not to be converted, or a logical vector with length equal to the
number of columns to be read and TRUE wherever factor conversion is to be
suppressed. You may notice a speedup in reading your data if you suppress
some or all of the factor conversion, at the cost of increased storage space.

The row.names= argument can be used to pass a vector of character val-
ues to be used as row names to identify the output and which can be used
instead of numeric subscripts when indexing the data frame. (See Section 6.1.)
An argument of row.names=NULL will use a character representation of the
observation number for the row names.

read.table will automatically treat the symbol NA as representing a miss-
ing value for any data type, and NaN, Inf and -Inf as missing for numeric
data. To modify this behavior, the na.strings argument can be passed a
vector of character values that should be interpreted as representing missing
values.

By default, read.table will treat any text after a pound sign (#) as a com-
ment. You can change the character used as a comment character through the
comment.char= argument. If your input source doesn’t contain any comments,
setting comment.char=’’ may speed up reading your data.

For locales which use a character other than the period (.) as a deci-
mal point, the dec= argument can be used to specify an alternative. The
encoding= argument can be used to interpret non-ASCII characters in your
input data.

You can control which lines are read from your input source using the
skip= argument that specifies a number of lines to skip at the beginning of
your file, and the nrows= argument which specifies the maximum number of
rows to read. For very large inputs, specifying a value for nrows= which is close
to but greater than the number of rows to be read may provide an increase
in speed.

read.table expects the same number of fields on each line, and will re-
port an error if it detects otherwise. If the unequal numbers of fields are due
to the fact that some observations naturally have more variables than oth-
ers, the fill=TRUE argument can be used to fill in observations with fewer
variables using blanks or NAs. If read.table reports that there are unequal
numbers of fields on some of the lines, the count.fields function can often
help determine where the problem is.

read.table accepts a colClasses= argument, similar to the what= ar-
gument of scan, to specify the modes of the columns to be read. Since
read.table will automatically recognize character and numeric data, this
argument is most useful when you want to perform more complex conversions
as the data is being read, or if you need to skip some of the fields in your
input connection. Explicitly declaring the types of the columns may also im-
prove the efficiency of reading data. To specify the column classes, provide
a vector of character values representing the data types; any type for which

2.4 Fixed-Width Input Files 17

there is an “as.” method (See Section 1.3) can be used. A value of "NULL"

instructs read.table to skip that column, and a value of NA (unquoted) lets
read.table decide the format to use when reading that column.

2.3 Comma- and Tab-Delimited Input Files

For the common cases of reading in data whose fields are separated by commas
or tabs, R provides three convenience functions, read.csv, read.csv2, and
read.delim. These functions are wrappers for read.table, with appropri-
ate arguments set for comma-, semicolon-, or tab-delimited data, respectively.
Since these functions will accept any of the optional arguments to read.table,
they are often more convenient than using read.table and setting the ap-
propriate arguments manually.

2.4 Fixed-Width Input Files

Although not as common as white-space-, tab-, or comma-separated data,
sometimes input data is stored with no delimiters between the values, but
with each variable occupying the same columns on each line of input. In cases
like this, the read.fwf function can be used. The widths= argument can be a
vector containing the widths of the fields to be read, using negative numbers
to indicate columns to be skipped. If the data for each observation occupies
more than one line, widths= can be a list of as many vectors as there are
lines per observation. The header=, row.names=, and col.names= arguments
behave similarly to those in read.table.

To illustrate the use of read.fwf, consider the following lines, showing the
10 counties of the United States with the highest population density (measured
in population per square mile):

New York, NY 66,834.6

Kings, NY 34,722.9

Bronx, NY 31,729.8

Queens, NY 20,453.0

San Francisco, CA 16,526.2

Hudson, NJ 12,956.9

Suffolk, MA 11,691.6

Philadelphia, PA 11,241.1

Washington, DC 9,378.0

Alexandria IC, VA 8,552.2

Since the county names contain blanks and are not surrounded by quotes,
read.table will have difficulty reading the data. However, since the names
are always in the same columns, we can use read.fwf. The commas in the
population values will force read.fwf to treat them as character values, and,

18 2 Reading and Writing Data

like read.table, it will convert them to factors, which may prove inconvenient
later. If we wanted to extract the state values from the county names, we might
want to suppress factor conversion for these values as well, and as.is=TRUE

will be used. Assuming that the data is stored in a file named city.txt, the
values could be read as follows:

> city = read.fwf("city.txt",widths=c(18,-19,8),as.is=TRUE)

> city

V1 V2

1 New York, NY 66,834.6

2 Kings, NY 34,722.9

3 Bronx, NY 31,729.8

4 Queens, NY 20,453.0

5 San Francisco, CA 16,526.2

6 Hudson, NJ 12,956.9

7 Suffolk, MA 11,691.6

8 Philadelphia, PA 11,241.1

9 Washington, DC 9,378.0

10 Alexandria IC, VA 8,552.2

Before using V2 as a numeric variable, the commas would need to be removed
using gsub (see Section 7.8):

> city$V2 = as.numeric(gsub(’,’,’’,city$V2))

2.5 Extracting Data from R Objects

While previous sections have discussed working with data stored in built-in
classes, R provides two mechanisms for developers to define their own classes,
so it’s important to understand how data is stored in such objects. The class
mechanisms in R provide some of the features of object-oriented program-
ming, namely, method dispatch and inheritance. Method dispatch allows R
to examine the class of the arguments to a function, and to invoke a special
version of the function designed for that class of object. Not all functions in
R provide method dispatch; the ones that do are known as generic functions.
Inheritance allows developers to create new classes that are similar to other
classes; only methods that differ from the original class need to be provided.
When an object in R inherits the properties of an already defined object,
its class attribute will be a vector containing the object’s class (in the first
position), along with the classes from which it inherits.

In the first mechanism for object orientation in R, known as S3 or “old-
style” classes, method dispatch is implemented for generic functions by the
existence of a function whose name is of the form function.class. If no such
function is found in the search path, a function whose name is of the form
function.default will be invoked, and default functions exist for all the S3

2.5 Extracting Data from R Objects 19

generics. S3 generic functions can be recognized because their body consists
of a call to the UseMethod function, which actually performs the dispatch. It’s
important to recognize when generic functions are being called, because help
pages for specific method/object combinations may be available through their
“full” names. For example, the help page for the summary function doesn’t
discuss any properties of the method that will be invoked when summary is
passed an lm object; the help page for summary.lm would have to be accessed
directly. Even though you may refer to these specific methods to view their
help pages, it’s rarely if ever necessary to call them directly—they should
always be called through the generic function.

As an example, consider the lm function, which performs linear model
calculations. A object returned by this function will have class of lm; when
the object is printed or displayed, R will look for a function called print.lm,
which will display appropriate information about the linear model which was
fit. For example, the following code produces an lm object, and then displays
it through the print function:

> slm = lm(stack.loss ~ Air.Flow + Water.Temp,data=stackloss)

> class(slm)

[1] "lm"

> slm

Call:

lm(formula = stack.loss ~ Air.Flow + Water.Temp,

data = stackloss)

Coefficients:

(Intercept) Air.Flow Water.Temp

-50.3588 0.6712 1.2954

When a class is created, a set of functions to extract data from objects of
that class is usually also provided. These so-called accessor functions are the
recommended way to extract information from objects in R, since they will
provide a stable interface even if the internal structure of the object changes.
Because of the naming convention used in S3 method dispatch, the apropos

function can be used to find all the available methods for a given class:

> apropos(’.*\\.lm$’)

[1] "anovalist.lm" "anova.lm" "hatvalues.lm"

[4] "model.frame.lm" "model.matrix.lm" "plot.lm"

[7] "predict.lm" "print.lm" "residuals.lm"

[10] "rstandard.lm" "rstudent.lm" "summary.lm"

[13] "kappa.lm"

(If any functions are marked nonvisible, the getAnywhere function can be
used to see them.) Thus, to get the predicted values from an lm object, the
predict function will dispatch to predict.lm. It’s worth repeating that you
should avoid calling a function like predict.lm directly in favor of relying on

20 2 Reading and Writing Data

the generic function (in this case, predict). Also note that if an object has
multiple classes, you should look for relevant functions designed for any of the
classes from which the object inherits.

Most S3 objects are stored as lists, so if an appropriate accessor function
is not available, data can be extracted directly from the object by treating it
as a list. The first step in these cases is to use the names function to find the
available elements:

> names(slm)

[1] "coefficients" "residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df.residual" "xlevels"

[10] "call" "terms" "model"

Now, for example, we could find the residual degrees of freedom for the model
by extracting it directly:

> slm$df.residual

[1] 18

or

> slm[’df.residual’]

[1] 18

Since the method dispatch provided by the old-style classes is limited to
using only the first argument to the function, and since the naming con-
ventions can sometimes lead to confusion, a more formal method of defining
classes (known as “new-style” or S4 classes) has also been developed. This is
the preferred way to implement new classes in R, and will become much more
prevalent over time. Some of the functions required to work with new-style
classes are found in the methods package, so if they are not available, they
can be loaded using

> library(methods)

With S4 classes, generic functions can be identified by the presence of a
call to the standardGeneric function inside the generic function’s definition.

As an example of an S4 class, consider the mle function, used for maximum
likelihood estimation, and found in the stats4 package. We’ll simulate data
from a gamma distribution, and then use mle to estimate the parameters for
that distribution:

> library(stats4)

> set.seed(19)

> gamdata = rgamma(100,shape=1.5,rate=5)

> loglik = function(shape=1.5,rate=5)

+ -sum(dgamma(gamdata,shape=shape,rate=rate,log=TRUE))

> mgam = mle(loglik)

2.5 Extracting Data from R Objects 21

The isS4 function can be used to determine whether or not an object is using
the old-style or new-style classes:

> class(mgam)

[1] "mle"

attr(,"package")

[1] "stats4"

> isS4(mgam)

[1] TRUE

As with old-style methods the first choice for accessing information from an
S4 class should always be using the accessor functions provided along with the
function that created the object. For S4 classes, it’s easy to find the available
methods using the showMethods function (from the methods package):

> showMethods(class=’mle’)

Function: coef (package stats)

object="mle"

Function: confint (package stats)

object="mle"

Function: initialize (package methods)

.Object="mle"

(inherited from: .Object="ANY")

Function: logLik (package stats)

object="mle"

Function: profile (package stats)

fitted="mle"

Function: show (package methods)

object="mle"

Function: summary (package base)

object="mle"

Function: update (package stats)

object="mle"

Function: vcov (package stats)

object="mle"

Thus, for example, the variance–covariance matrix of the estimators is
available by using the vcov function:

22 2 Reading and Writing Data

> vcov(mgam)

shape rate

shape 0.05464054 0.1724472

rate 0.17244719 0.7228044

Naturally, the help page for the function that produced the object, as well as
additional help pages describing the class (if available), can be consulted for
additional information.

Although there is no generic print function for S4 classes, the generic
show function takes its place for printing or displaying S4 classes.

The actual entities that compose an S4 object are stored in so-called slots.
To see the available slots in an object, the showClass function can be used. If
it becomes necessary to access the slots directly, the @ operator can be used
in a fashion similar to the $ operator. Following the mle example, suppose
we wanted to retrieve the function that was used to calculate the likelihood
which was stored in mgam:

> getClass(class(mgam))

Slots:

Name: call coef fullcoef vcov min

Class: language numeric numeric matrix numeric

Name: details minuslogl method

Class: list function character

> mgam@minuslogl

function(shape=1.5,rate=5)

-sum(dgamma(gamdata,shape=shape,rate=rate,log=TRUE))

The slot function can be used if the name of the desired slot is stored in
a character variable:

> want = ’minuslogl’

> slot(mgam,want)

function(shape=1.5,rate=5)

-sum(dgamma(gamdata,shape=shape,rate=rate,log=TRUE))

For both styles of classes, some of the methods provided may create objects
containing additional information about the objects they operate on. This is
especially true for the summary method for many objects. Returning to the
lm example, we can examine what’s available through the summary method
by creating a summary object from the lm object, and examining its names:

> sslm = summary(slm)

> class(sslm)

[1] "summary.lm"

2.6 Connections 23

> names(sslm)

[1] "call" "terms" "residuals"

[4] "coefficients" "aliased" "sigma"

[7] "df" "r.squared" "adj.r.squared"

[10] "fstatistic" "cov.unscaled"

As can be seen, a number of useful quantities have been calculated through
the summary method, and are available through their named components in
the resulting summary.lm object.

2.6 Connections

Connections provide a flexible way for R to read data from a variety of sources,
providing more complete control over the nature of the connection than sim-
ply specifying a file name as input to functions like read.table and scan.
Table 2.1 lists some of the functions in R which can create a connection.

Function Data source

file Files on the local file system
pipe Output from a command
textConnection Treats text as a file
gzfile Local gzipped file
unz Local zip archive (with single file;read-only)
bzfile Local bzipped file
url Remote file read via http
socketConnection socket for client/server programs

Table 2.1. Connections

When you create a connection object, it simply defines the object; it does
not automatically open the object. If a function which accepts connections
receives a connection which has not been opened, it will always open it, then
close it at the end of the function invocation. Thus, in the usual case, you can
simply pass the connection to the function that will operate on it, without
worrying about when the connection will be opened or closed. If a connection
doesn’t behave the way you expect, or if you’re not sure if you’ve already
closed it, the isOpen function can be used to test if a connection is open; an
optional second argument, set equal to "read" or "write" can test the mode
with which it was opened.

One exception to this scheme is the case where a file is read in pieces,
for example through the readLines function. If an (unopened) connection is
passed to this function inside a loop, it will repeatedly open and close the
file each time it’s called, reading the same data over and over. To take more
control over the connection, it can either be passed to the open function, or

24 2 Reading and Writing Data

an optional mode can be provided as the second argument to the function
that created the connection. Note that in this case, the connection will not
be automatically closed; you must explicitly pass the connection to the close
function.

As an illustration of this technique, consider the R project homepage,
http://www.r-project.org/main.shtml. The latest version number of R
is displayed on that page, followed by the phrase “has been released”. The
following program opens the connection to this URL by passing a mode of
“r” for read, then reads each line until it finds the one with the latest version
number:

> rpage = url(’http://www.r-project.org/main.shtml’,’r’)

> while(1){

+ l = readLines(rpage,1)

+ if(length(l) == 0)break;

+ if(regexpr(’has been released’,l) > -1){

+ ver = sub(’</a.*$’,’’,l)

+ print(gsub(’^ *’,’’,ver))

+ break

+ }

+ }

[1] "R version 2.2.1"

> close(rpage)

The second argument to readLines specifies the number of lines to read,
where a value of -1 means to read everything that the connection provides.
Although it may seem inefficient to read only one line at a time, the actual
reads are being performed by the operating system and are buffered in mem-
ory, so that you can choose whatever number of lines is most convenient. By
using this technique, we only need to process as much of the connection as
necessary.

Note that connections can be used anywhere a file name could be passed
to functions like scan, read.table, write.table, and cat. So to write a
gzipped, comma-separated version of a data frame, we could use:

gfile = gzfile(’mydata.gz’)

write.table(mydata,sep=’,’,file=gfile)

The write.table function takes care of opening and closing the gzipped file,
since it was not explicitly opened.

A textConnection can often be useful when you need to test a function
that only operates on files. For example, in Section 2.2, the colClasses argu-
ment was introduced as a way to automatically convert data into appropriate
R objects. Suppose we want to test conversion to Date objects (Section 4.1)
using this argument. First, we create a textConnection with the kind of data
we’ll be using:

2.7 Reading Large Data Files 25

> sample = textConnection(’2000-2-29 1 0

+ 2002-4-29 1 5

+ 2004-10-4 2 0’)

Now we can use sample in place of a file name in any function that’s expecting
a file name:

> read.table(sample,colClasses=c(’Date’,NA,NA))

V1 V2 V3

1 2000-02-29 1 0

2 2002-04-29 1 5

3 2004-10-04 2 0

The unz function allows read-only access to zipfiles. Since a zipfile is an
archive, potentially containing many files, an additional argument to unz is
required to specify which file you wish to extract. For example, suppose we
have a zip file called data.zip containing several files, and we wish to create
a connection to read the file called mydata.txt into a vector with the scan

function. The following code could be used:

mydata = scan(unz(’data.zip’,’mydata.txt’))

Only one file can be extracted at a time with unz.
When you need to explicitly open a connection (either by passing a mode

to the function that creates the connection, or calling open directly), you
can specify any of the following modes: "w" for write, "r" for read, or "a"

for append. You can append a t to the end of any of these modes to spec-
ify a text connection, or a b to specify a binary connection. While there is
no distinction between text and binary on UNIX systems, on Windows it is
required to include a b anytime you want to operate on a file that has any
nonprintable characters. In addition, specifying a binary file for writing on
Windows will cause R to use UNIX-style line endings (a single newline) in-
stead of Windows-style line endings (newline plus carriage return, sometimes
displayed as control-M on UNIX systems). For more complex situations, such
as opening a file for both reading and writing, consult the help file for open.

2.7 Reading Large Data Files

Since readLines and scan don’t need to read an entire file into memory,
there are situations where very large files can be processed by R in pieces.
For example, suppose we have a large file containing numeric variables, and
we wish to read a random sample of that file into R. Of course, if we could
accommodate the entire dataset in memory, a call to sample (Section 2.9.1)
could extract such a sample, but we’ll assume that the file in question is
too large to read into R in its entirety. The strategy is to select a random
sample of rows before reading the data, and then extracting the selected rows

26 2 Reading and Writing Data

as the dataset is being read in pieces. To avoid memory allocation problems,
the entire matrix is preallocated before the reading begins. These ideas are
implemented in the following function:

readbig = function(file,samplesz,chunksz,nrec=0){

if(nrec <= 0)nrec = length(count.fields(file))

f = file(file,’r’)

on.exit(close(f))

use = sort(sample(nrec,samplesz))

now = readLines(f,1)

k = length(strsplit(now,’ +’)[[1]])

seek(f,0)

result = matrix(0,samplesz,k)

read = 0

left = nrec

got = 1

while(left > 0){

now = matrix(scan(f,n=chunksz*k),ncol=k,byrow=TRUE)

begin = read + 1

end = read + chunksz

want = (begin:end)[begin:end %in% use] - read

if(length(want) > 0){

nowdat = now[want,]

newgot = got + length(want) - 1

result[got:newgot,] = nowdat

got = newgot + 1

}

read = read + chunksz

left = left - chunksz

}

return(result)

}

If the number of records in the file, nrec, is specified as zero or a negative
number, the function calculates the number of lines in the file through a call
to count.fields; your operating system may provide a more efficient way of
achieving this, such as the wc -l command on Linux or Mac OS X, or the
find /c command on Windows, searching for the separator character which
will be present on each line. Suppose we have a comma-separated file called
comma.txt in the current directory. Under Windows, we could calculate the
number of lines in the file using

> nrec = as.numeric(shell(’type "comma.txt" | find /c ","’,

+ intern=TRUE))

2.8 Generating Data 27

while under UNIX-like systems, the command would be

> nrec = as.numeric(system(’cat comma.txt | wc -l’,

+ intern=TRUE))

To calculate the number of columns in the file, a single line is read using
readLines, and the strsplit function is called with an appropriate separator,
in this case one or more blanks. Then the file is repositioned to its origin with
the seek command, to prepare to actually read the data.

For optimum results, the chunksz argument can be adjusted for a given
situation, but most reasonable values will result in acceptable performance.

2.8 Generating Data

Even though one of the main motivations in learning or working with R is to
analyze existing data, sometimes it may be advantageous to create a data set
from within R. This would be necessary, for example, to carry out a simulation,
but may also be useful if you want to test a new technique or determine
if a program may be appropriate for a very large dataset. In the following
subsections, we’ll look at a number of ways in R to generate vectors of data
which can be used for simulations or testing programs when “real” data isn’t
available.

2.8.1 Sequences

To generate a sequence of integers between two values, the colon operator (:)
can be used. For example, to create a vector of the integers from 1 to 10, we
can use

> 1:10

[1] 1 2 3 4 5 6 7 8 9 10

To get more control over the sequence, the seq function can be used. This
function allows an optional increment through the by= argument, as well as
more options for determining the length of the output sequence. In its simplest
form, it behaves like the colon operator:

> seq(1,10)

[1] 1 2 3 4 5 6 7 8 9 10

To create a vector of values from 10 to 100, each element separated by 5, we
could use:

> seq(10,100,5)

[1] 10 15 20 25 30 35 40 45 50 55 60 65 70 75

[15] 80 85 90 95 100

28 2 Reading and Writing Data

Alternatively, we can specify the length of the generated sequence instead of
providing the end point:

> seq(10,by=5,length=10)

[1] 10 15 20 25 30 35 40 45 50 55

One common use of sequences is to generate factors corresponding to the
levels of a designed experiment. Suppose we wish to simulate the levels for
an experiment with three groups and five subgroups, with two observations
in each subgroup, for a total of 30 observations. The gl function (mnemonic
for “generate levels”) has two required arguments. The first is the number of
different levels desired, and the second is the number of times each level needs
to be repeated. An optional third argument specifies the length of the output
vector. To generate a data frame composed of vectors representing the three
groups, five subgroups, and two observations, we could use gl as follows:

> thelevels = data.frame(group=gl(3,10,length=30),

+ subgroup=gl(5,2,length=30),

+ obs=gl(2,1,length=30))

> head(thelevels)

group subgroup obs

1 1 1 1

2 1 1 2

3 1 2 1

4 1 2 2

5 1 3 1

6 1 3 2

Further control over the output of gl can be obtained with the optional
labels= argument. gl also accepts an ordered=TRUE argument to produce
ordered factors.

To create a data frame with the unique combinations defined by a col-
lection of sequences, the expand.grid function can be used. This function
accepts any number of sequences, and returns a data frame with one row for
each unique combination of the values passed as input. Alternatively, all of
the vectors can be passed to expand.grid as a single list. Suppose we wanted
to create a data frame with one observation for each combination of odd and
even integers between 1 and 5. We could use expand.grid as follows:

> oe = expand.grid(odd=seq(1,5,by=2),even=seq(2,5,by=2))

> oe

odd even

1 1 2

2 3 2

3 5 2

4 1 4

5 3 4

6 5 4

2.8 Generating Data 29

Note that the column generated from the first argument varies the most
quickly, and that the sequences passed to expand.grid need not be of the
same length. The number of rows in the output data frame will always be
equal to the product of the length of all the sequences passed to expand.grid.

One important use of data frames produced by expand.grid is to evaluate
a function over a range of parameter values. The apply function, discussed in
Section 8.4, is the most effective tool for this purpose. For example, suppose
we wanted to evaluate the function x

2 + y
2 for various values of x and y in

the range of 0 to 10. First, we can generate a matrix of input values using
expand.grid:

> input = expand.grid(x=0:10,y=0:10)

Now we can use apply to calculate the function for each row of the data frame
returned by expand.grid, and use cbind (Section 9.6) to combine it to the
input data:

> res = apply(input,1,function(row)row[1]^2 + row[2]^2)

> head(cbind(input,res))

x y res

1 0 0 0

2 1 0 1

3 2 0 4

4 3 0 9

5 4 0 16

6 5 0 25

2.8.2 Random Numbers

Function Distribution Function Distribution

rbeta Beta rlogis Logistic
rbinom Binomial rmultinom Multinomial
rcauchy Cauchy rnbinom Negative Binomial
rchisq Chi-square rnorm Normal
rexp Exponential rpois Poisson
rf F rsignrank Signed Rank
rgamma Gamma rt Student’s t
rgeom Geometric runif Uniform
rhyper Hypergeometric rweibull Weibull
rlnorm Log Normal rwilcox Wilcoxon Rank Sum

Table 2.2. Random number generators

If you are creating a dataset for a simulation, or to test a function in
R for which there is no real data available, R provides a large number of

30 2 Reading and Writing Data

random number generators, listed in Table 2.2. The first argument to all of
the random number generation functions is the number of random numbers
desired; additional arguments allow specification of the parameters of the
underlying distribution, and will vary depending on which distribution you
are working with. Consult the help file for the function for further details.

The state of the random number generator that underlies all of the func-
tions in Table 2.2 is stored in an object called .Random.seed. To create a
reproducible sequence, an integer can be passed to the set.seed function in-
suring that an identical stream of random numbers will be generated whenever
set.seed is set to the same value.

2.9 Permutations

2.9.1 Random Permutations

The sample function conveniently provides random permutations of either
a vector of values (if the first argument is a vector), or of indices starting
from one (if the first argument is a single number). With only one argument,
sample returns a vector of length equal to the number of elements (if the
argument is a vector) or the value of the argument if it is a number, sampling
without replacement, so that each element of the input will appear exactly
once in the output. Two optional arguments can override these defaults; the
size= argument will return a vector of the designated size, and the replace=
argument, if set to TRUE, will allow the possibility of elements of the input to
appear more than once in a given sample. If the size of the desired sample
is greater than the number of elements implied by the first argument, the
replace= must be set to TRUE. Finally, if some elements of the input should
be sampled at a higher probability than others, the optional prob= argument
can provide a vector of sampling probabilities.

2.9.2 Enumerating All Permutations

Since the sample function provides a random permutation of its input, it will
not be very effective in generating all possible permutations for a sequence,
since it is possible that some permutations will appear more often than others.
In cases like this, the permn function of the combinat package (available from
CRAN) can be used. Like sample, the first argument to permn is either a
vector or a single number. Called with a single argument, it returns a list
containing each possible permutation of the input sequence. The optional
fun= argument can be used to specify a function which will be applied to
each permutation in the output list. Since the number of permutations of n

elements is n! (n factorial), the size of the output from permn can be very large,
even for moderate values of n. The factorial function (or the fact function

2.10 Working with Sequences 31

of the combinat package) can be used to calculate how many permutations
exist.

If the number of permutations generated is too large to be accommodated
in memory, the numperm function of the sna package(available from CRAN)
can be used. This function accepts two arguments: the first represents the
length of the sequence, and the second represents the specific permutation de-
sired. Thus, if the entire set of permutations is too large to be held in memory,
the numperm function can be used inside a loop which successively increments
an index (the second argument to numperm) from 1 to factorial(n), where
n is the length of the sequence.

2.10 Working with Sequences

R provides several functions which are useful when working with sequences
of numbers. The table function, introduced in Section 8.1, can tabulate the
number of occurrences of each value in a sequence. To get just the unique
values in a sequence, the unique function can be used. Alternatively, the
duplicated function can be used to return a vector of logical values indicating
whether each value in the sequence is duplicated; !duplicated(x) will return
a logical vector which will be true for the unique values. In both cases, the
results will be in the order that the values are encountered in the vector being
studied.

The rle (run-length encoding) function can be used to solve a variety of
problems regarding consecutive identical values in a sequence. The returned
value from rle is a list with two components: values, a vector which contains
the repeated values that were found, and lengths, a vector of the same length
as values which tells how many consecutive values were observed. If there
are no repeated values, all of the elements of lengths will be 1:

> sequence = sample(1:10)

> rle(sequence)

Run Length Encoding

lengths: int [1:10] 1 1 1 1 1 1 1 1 1 1

values : int [1:10] 10 5 2 8 3 1 7 4 6 9

As an example of the use of rle, suppose we have a sequence of integers,
and we wish to know if there are 3 or more consecutive appearances of the
value 2. Considering the return value of rle, this will mean that 2 will appear
in the values component returned by rle with a corresponding entry in the
lengths component with a value of three or more:

> seq1 = c(1,3,5,2,4,2,2,2,7,6)

> rle.seq1 = rle(seq1)

> any(rle.seq1$values == 2 & rle.seq1$lengths >= 3)

[1] TRUE

32 2 Reading and Writing Data

> seq2 = c(7,5,3,2,1,2,2,3,5,8)

> rle.seq2 = rle(seq2)

> any(rle.seq2$values == 2 & rle.seq2$lengths >= 3)

[1] FALSE

To find the location within a sequence where a particular combination of
values and lengths occurs, the cumsum function can be applied to the
lengths component of the returned value of rle. The returned value from
cumsum will provide the index where each set of repeated values terminates;
thus by using the which function as an index into this vector, we can find the
end points of any desired run of values.

Continuing with the previous example, we can find the index into seq1

where a sequence of more than three values of 2 terminates:

> seq1 = c(1,3,5,2,4,2,2,2,7,6)

> rle.seq1 = rle(seq1)

> index = which(rle.seq1$values == 2 & rle.seq1$lengths >= 3)

> cumsum(rle.seq1$lengths)[index]

[1] 8

This indicates that the run of three or more values of 2 ended at position
8. To find the index where a run began, we can adjust the subscript used to
cumsum, taking special care to properly handle runs at the beginning of a
sequence:

> index = which(rle.seq1$values == 2 & rle.seq1$lengths >= 3)

> newindex = ifelse(index > 1,index - 1,0)

> starts = cumsum(rle.seq1$lengths)[newindex] + 1

> if(0 %in% newindex)starts = c(1,starts)

> starts

Due to the vectorization of these operators, multiple runs can be accommo-
dated by the same strategy:

> seq3 = c(2,2,2,2,3,5,2,7,8,2,2,2,4,5,9,2,2,2)

> rle.seq3 = rle(seq3)

> cumsum.seq3 = cumsum(rle.seq3$lengths)

> myruns = which(rle.seq3$values == 2 &

+ rle.seq3$lengths >= 3)

> ends = cumsum.seq3[myruns]

> newindex = ifelse(myruns > 1,myruns - 1,0)

> starts = cumsum.seq3[newindex] + 1

> if(0 %in% newindex)starts = c(1,starts)

> starts

[1] 1 10 16

> ends

[1] 4 12 18

2.11 Spreadsheets 33

For more complex situations, a logical expression can often be used as an
argument to rle. For example, to find the location of five or more successive
values greater than zero in a sequence of random numbers, we can use the
following approach:

> set.seed(19)

> randvals = rnorm(100)

> rle.randvals = rle(randvals > 0)

> myruns = which(rle.randvals$values == TRUE &

+ rle.randvals$lengths >= 5)

> any(myruns)

[1] TRUE

> cumsum.randvals = cumsum(rle.randvals$lengths)

> ends = cumsum.randvals[myruns]

> newindex = ifelse(myruns > 1,myruns - 1,0)

> starts = cumsum.randvals[newindex] + 1

> if(0 %in% newindex)starts = c(1,starts)

> starts

[1] 47

> ends

[1] 51

> randvals[starts:ends]

[1] 0.5783932 0.8276480 1.3111752 0.1783597 1.7036697

2.11 Spreadsheets

Spreadsheets, especially Microsoft Excel spreadsheets, are one of the most
common methods of distributing data, and R provides several ways to access
them. The simplest method, which may also be the most flexible, is to use
a spreadsheet program to write the data to a comma- or tab-separated file,
and then use the methods described in Section 2.2. This method is especially
useful when there is additional nondata material (like headings and notes) in
the spreadsheet, since such material can be removed by editing the file derived
from the spreadsheet.

There are some situations, however, where this may not be feasible. An
updated spreadsheet may need to be accessed every day, or an analysis may
require data that comes from several spreadsheets, or from several sheets
within a single spreadsheet. The next sections will look at ways of accessing
spreadsheets through R functions, without the need to dump them to files.

2.11.1 The RODBC Package on Windows

On the Windows platform, spreadsheets can be read directly using the
ODBConnectExcel function from the RODBC package, available from CRAN.

34 2 Reading and Writing Data

(For information about using RODBC to read databases, see Chapter 3.)
This function provides an interface to Excel spreadsheets using the SQL lan-
guage familiar to databases, and does not require Excel itself to be installed
on your computer.

The RODBC interface treats the various sheets stored in a spreadsheet file
as database tables. To use the interface, a connection object is obtained by
providing the pathname of the Excel spreadsheet file to odbcConnectExcel.
For example, suppose a spreadsheet is stored in the file
c:\Documents and Settings\user\My Documents\sheet.xls. To get a con-
nection object, we could use the following call:

> library(RODBC)

> sheet = ’c:\\Documents and Settings\\user\\My Documents

\\sheet.xls’

> con = odbcConnectExcel(sheet)

Note the use of double slashes in the file name; this is used because the
backslash has special meaning in R character strings, namely to inform R
that certain characters need to be treated specially. Often the first step in
working with spreadsheets in this way is to look at the names of the available
sheets. This can be done with the sqlTables command. Continuing with the
current example, we could find the names of the sheets in the sheet.xls

spreadsheet by issuing the command

> tbls = sqlTables(con)

and then examining tbls$TABLE NAME, the column of the returned data frame
that contains the sheet names. From this point on, each of the sheets can be
treated like a separate database table. Thus, to extract the contents of the
first sheet of the database to a data frame called data1, we could use the
following commands:

> qry = paste("SELECT * FROM",tbls$TABLE_NAME[1],sep=’ ’)

> result = sqlQuery(con,qry)

If the table name contains special characters, like spaces, brackets, or dollar
signs, then it needs to be surrounded by backquotes (‘). As a precautionary
measure, it may be advisable to include the backquotes in all queries:

> qry = paste("SELECT * FROM ‘",tbls$TABLE_NAME[1],"‘",sep="")

> result = sqlQuery(con,qry)

Most SQL queries will work using this method.

2.11.2 The gdata Package (All Platforms)

An alternative to using the RODBC package is the read.xls function of the
gdata package, available from CRAN. This function uses a module developed
for the scripting language perl (http://perl.org), and thus requires perl to
be installed on your computer. This will be the case for virtually all Mac OS

2.12 Saving and Loading R Data Objects 35

X, Unix, and Linux computers, but on Windows an installation of perl will
be necessary. (The perl installer and instructions can be found on the above-
referenced web site.) read.xls translates a specified sheet of a spreadsheet
to a comma-separated file, and then calls read.csv (see Section 2.3). Thus,
any option accepted by read.csv can be used with read.xls. The skip= and
header= arguments are especially useful to avoid misinterpreting headers and
notes as data, and the as.is=TRUE argument can be used to suppress factor
conversion.

2.12 Saving and Loading R Data Objects

In situations where a good deal of processing must be used on a raw dataset
in order to prepare it for analysis, it may be prudent to save the R objects
you create in their internal binary form. One attractive feature of this scheme
is that the objects created can be read by R programs running on different
computer architectures than the one on which they were created, making it
very easy to move your data between different computers. Each time an R
session is completed, you are prompted to save the workspace image, which is
a binary file called .RData in the working directory. Whenever R encounters
such a file in the working directory at the beginning of a session, it automat-
ically loads it making all your saved objects available again. So one method
for saving your work is to always save your workspace image at the end of
an R session. If you’d like to save your workspace image at some other time
during your R session, you can use the save.image function, which, when
called with no arguments, will also save the current workspace to a file called
.RData in the working directory.

Sometimes it is desirable to save a subset of your workspace instead of the
entire workspace. One option is to use the rm function to remove unwanted
objects right before exiting your R session; another possibility is to use the
save function. The save function accepts multiple arguments to specify the
objects you wish to save, or, alternatively, a character vector with the names
of the objects can be passed to save through the list= argument. Once the
objects to be saved are specified, the only other required option is the file=

option, specifying the destination of the saved R object. Although there is no
requirement to do so, it is common to use a suffix of .rda or .RData for saved
R workspace files.

For example, to save the R objects x, y, and z to a file called mydata.rda,
the following statements could be used:

> save(x,y,z,file=’mydata.rda’)

If the names of the objects to be saved are stored as character vectors (for
example, from the output of the objects function), the list= argument can
be used:

> save(list=c(’x’,’y’,’z’),file=’mydata.rda’)

36 2 Reading and Writing Data

Once the data is saved, it can be reloaded into a running R session with
the load command, whose only required argument is the name of the file to
be loaded. For example, to load the objects contained in the mydata.rda file,
we can use the following command:

> load(’mydata.rda’)

The load command can also be used to load workspaces stored in .RData files
in other directories by specifying their complete file path.

2.13 Working with Binary Files

While the natural way to store R objects is through the save command, other
programs may also produce binary files which, not surprisingly, use their own
format and are not readable by load. The readBin and writeBin functions
provide a flexible way to read and write such files. It should be noted that a
fairly complete knowledge of the format of a non-R binary file is required be-
fore readBin will be able to read it. However, for well-documented file formats,
readBin should be able to access the full information contained in the file.
Each call to readBin will read as many values as required, but a single call can
only read one type of data. The types of data that readBin can understand
include double precision numeric data, integers, character strings (although
the readChar and writeChar functions provide additional flexibility), com-
plex numbers, and raw data. Since multiple calls to readBin will have to be
used if there is a mixture of data types in the file, it is usually necessary to
pass a connection object to readBin, so that it will not automatically re-open
the file each time it is called.

As an example of the use of readBin, consider a binary file called
data.bin, which consists of 20 records, each containing one integer followed
by five double-precision values. Such a file could be produced, for example,
using the low-level write function in a C program. The first step is opening
a file connection:

> bincon = file(’data.bin’,’rb’)

Note that R will not allow access to files through readBin or writeBin unless
the file is opened in binary mode; thus the value of ’rb’ is passed to file to
specify the mode. (The “r” stands for read, and the “b” stands for binary.)

For efficiency’s sake, it’s a good idea to preallocate memory for the vector
or matrix which will hold the output from readBin. In this case, we can use a
20×6 matrix, and store the integer and five doubles in the rows of the matrix:

2.13 Working with Binary Files 37

> result = matrix(0,20,6)

> for(i in 1:20){

+ theint = readBin(bincon,integer(),1)

+ thedoubles = readBin(bincon,double(),5)

+ result[i,] = c(theint,thedoubles)

+ }

> close(bincon)

As always when opening a connection inside of R, it’s a good idea to close the
file when you’re done.

While no problems should be encountered if the data to be read was written
on a computer with the same architecture as the one on which it is to be
read, problems will sometimes occur if binary data from other architectures
is used. There are two ways of storing data on a computer, depending on
the order in which the bits of a binary value are stored; these two types
are known as “little-endian” and “big-endian”. Among some of the common
architectures, x86 and its derivatives are little-endian, while the PowerPC
and SPARC platforms are big-endian. readBin and writeBin each accept an
endian= argument, which take values of "big", "little", or "swap". (Note
that endianness is not an issue when using the save and load commands since
R uses the same format on all architectures for its saved objects.)

Writing binary files is essentially the reverse of reading them. writeBin
can only write vectors of character, numeric, logical, or complex values; in
particular lists or factors will need to be converted before writing.

As an example of using writeBin, consider a data frame constructed from
the state.x77 matrix:

> mystates = data.frame(name=row.names(state.x77),state.x77,

+ row.names=NULL,stringsAsFactors=FALSE)

Note that the stringsAsFactors=FALSE argument was used to avoid fac-
tor conversion which could cause writeBin to fail. For existing datasets, the
as.character function could be used to convert factors to character variables.

Suppose we wish to write a binary version of each row of the mystate

data frame to a file. When writeBin converts a character variable, it uses the
C programming language convention of terminating the string with a binary
zero. If the program to be reading the data requires fixed-width fields, the
sprintf function can be used to convert variable-length character values to
fixed length. For example, to make all the elements in mystate$name the same
length we can use the sprintf function as follows:

> maxl = max(nchar(mystates$name))

> mystates$newname = sprintf(paste(’%-’,maxl,’s’,sep=’’),

+ mystates$name)

Omitting the minus sign (-) would pad the strings at the beginning, instead
of the end.

38 2 Reading and Writing Data

Since R knows the size and types of its own objects, there is no need to
explicitly provide this information to writeBin, but if you want writeBin to
use a nonnative size for any of its output, the size= argument is available.
Note that using nonnative sizes may make it difficult or impossible to read a
binary file on other architectures.

We can now loop over the rows of mystates, first writing the character
value, then the numeric ones:

f = file(’states.bin’,’wb’)

for(i in 1:nrow(mystates)){

writeBin(mystates$newname[i],f)

writeBin(unlist(mystates[i,2:9]),f)

}

Note the use of unlist to convert a row of the data frame to a vector suitable
for writeBin.

2.14 Writing R Objects to Files in ASCII Format

While the binary format that R uses to store data (Section 2.12) is the natural
choice for saving data that will be used by R, there are several other ways
that the contents of R objects can be written to files. The idea of a human-
readable (nonbinary) file with data is very attractive, since most programs can
read files of this type, and, in the worst possible case, you can see what the
file contains by using an ordinary editor. R provides two functions for writing
objects to files in ASCII format; write, which is suitable for the same kinds of
data as scan (Section 2.1), and write.table, which is suitable for the types
of data which would normally be read using read.table (Section 2.2).

2.14.1 The write Function

The write function accepts an R object and the name of a file or connection
object, and writes an ASCII representation of the object to the appropriate
destination. The ncolumns= argument can be used to specify the number of
values to write on each line; it defaults to five for numeric variables, and one for
character variables. To build up an output file incrementally, the append=TRUE
argument can be used.

Note that matrices are internally stored by columns, and will be written to
any output connection in that order. To write a matrix in row-wise order, use
its transpose and adjust the ncolumn= argument appropriately. For example,
to write the values in the state.x77 matrix to file in row-wise order, the
following statement could be used:

> write(t(state.x77),file=’state.txt’,ncolumns=ncol(state.x77))

2.15 Reading Data from Other Programs 39

2.14.2 The write.table function

For mixed-mode data, like data frames, the basic tool to produce ASCII files
is write.table. The only required argument to write.table is the name of
a dataset or matrix; with just a single argument, the output will be printed
on the console, making it easy to test that the file you’ll be creating is in the
correct format. Usually, the second argument, file= will be used to specify
the destination as either a character string to represent a file, or a connection
(Section 2.1).

By default, character strings are surrounded by quotes by write.table;
use the quote=FALSE argument to suppress this feature. To suppress row
names or column names from being written to the file, use the row.names=

FALSE or col.names=FALSE arguments, respectively. Note that col.names=

TRUE (the default) produces the same sort of headers that are read using the
header=TRUE argument of read.table. Finally, the sep= argument can be
used to specify a separator other than a blank space. Using sep=’,’ (comma-
separated) or sep=’\t’ (tab-separated) are two common choices.

For example, to write the CO2 data frame as a comma-separated file with-
out row names, but with column headers and quotes surrounding character
strings, we could use

> write.table(CO2,file=’co2.txt’,row.names=FALSE,sep=’,’)

Similarly to read.csv and read.csv2, the functions write.csv and
write.csv2 are provided as wrappers to read.table, with appropriate op-
tions set to produce comma- or semicolon-separated files. In addition, the
write.fwf function in the gdata package, available from CRAN, provides a
similar functionality for writing R objects to a file using fixed-width fields.

2.15 Reading Data from Other Programs

It sometimes becomes necessary to access data which was created by a pro-
gram other than R, or to create data in a form that will be easily accessible
by some other program. When collaborating with others, they may have al-
ready created a saved object using some other program, or may want a dataset
you’re working with in a format that their favorite program can understand.
You may also encounter situations where some other program is more suit-
able for a particular task, and, once you’ve created a saved object with that
program, you’ll want to bring the results into R. In many cases, the most expe-
dient solution is to rely on human-readable comma-separated files to provide
access to data, since almost every program can read such files. If this is not
an option, or if there are a large number of datasets that need to be processed
or created, it may make sense to try to read data directly into R from the file
created by the other program, or to write data from R into a format more
suitable to some other program.

40 2 Reading and Writing Data

Function(s) Purpose

data.restore read data.dump output
read.S or saved objects from S version 3

may work with older Splus objects

read.dbf read or write saved objects
from DBF files (FoxPro, dBase, etc.)

read.dta read saved objects from Stata (versions 5-9)
write.dta create a Stata saved object

read.epinfo read saved objects from epinfo

read.spss read saved objects from SPSS
written using the save or export command

read.mtp read Minitab Portable Worksheet files

read.octave read saved objects from GNU octave

read.xport read saved objects in SAS export format

read.systat read saved objects from systat
rectangular (mtype=1) data only

Table 2.3. Functions in the foreign package

The foreign package, available from CRAN, provides programs to read
and write data in formats supported by a variety of different programs, sum-
marized in Table 2.3. None of the programs in the table require that the
foreign program be available on your computer; for example, you can read
and write Stata files (using read.dta and write.dta) even though you may
not have a copy of Stata on your computer. The functions that read files all
require a filename argument; those that write files require the data frame to be
written as the first argument and a destination filename as the second. Some
of the functions listed have additional options to control factor conversion and
variable name conventions; full details can be found in their respective help
files.

For getting data into other programs, the package also provides the
write.foreign program, which will generate two files: one containing the
data in a form that the foreign program can read, and the second containing
instructions that will allow the foreign program to read the data. This pro-
vides an alternative means of making data available to someone who wishes
to use a program other than R. Currently, write.foreign supports SPSS,
Stata, and SAS. The help page for write.foreign explains how to extend it
to support other programs.

To use write.foreign, provide the name of a data frame, along with
a filename where the data will be written (datafile=), and a second file-
name where the foreign program will be written (codefile=), along with the
package= argument indicating the target program. For example, to create
data and programs to read an R data frame called mydata into Stata, the
following call to write.foreign could be used:

2.15 Reading Data from Other Programs 41

> write.foreign(mydata,’mydata.txt’,’mydata.stata’,

+ package=’Stata’)

If mydata.stata is provided as input to Stata, with mydata.txt in the current
directory, it will load the data from mydata into Stata.

In the case of SAS, the read.ssd function in the foreign package will
create an R data frame from any SAS dataset (not just those in export format),
by writing and executing a SAS program to write the data in export format
and then calling read.xport. Thus, to use the program, SAS must be available
on your computer. If this is the case, the Hmisc package, available from CRAN,
also provides a number of programs useful for working with SAS datasets by
using SAS to process the data.

3

R and Databases

While many tasks that used to be performed using relational databases can be
easily implemented in R, there are some situations where using the power of
a relational database nicely complements the capabilities of R. One obvious
example are situations where the data to be used is stored in a relational
database. Relational databases can also be used to make working with very
large datasets easier.

The topic of administration of a database is beyond the scope of this book,
and the assumption will always be made that you have access to a running
database, and that enough permissions have been granted to perform the
necessary database operations.

There are two principal ways to connect with databases in R. The first uses
the ODBC (Open DataBase Connectivity) facility available on many comput-
ers. The second uses the DBI package of R along with a specialized package
for the particular database needed to be accessed. If there is a specialized
package available for your database, you may find that the corresponding
DBI-based package may give better performance than the ODBC approach. On
the other hand, if you are using a database for which a specialized package is
not available, using ODBC may be your only option.

3.1 A Brief Guide to SQL

3.1.1 Navigation Commands

Since a single server may hold more than one database, each with potentially
many tables, and since each table can contain many columns (variables), it
may be useful to examine exactly what’s available in a database before starting
to work with it. Often there are graphical clients available to communicate
with databases that will present this information in a convenient form, but
R can also be used to create data frames containing this information. The
table below shows some common tasks and the SQL statements to execute

44 3 R and Databases

them; when used with dbGetQuery they will each return a data frame with the
requested information. In the table below, keywords are shown in uppercase;
the terms in lowercase would be replaced by those specific to your task. When

Task SQL query

Find names of available databases SHOW DATABASES

Find names of tables in a database SHOW TABLES IN database

Find names of columns in a table SHOW COLUMNS IN table

Find the types of columns in a table DESCRIBE table

Change the default database USE database

Table 3.1. Basic SQL commands

using command-line clients, each SQL statement must end in a semicolon,
but the semicolon is not required when using the RMySQL interface. Keywords
will always be recognized regardless of case, but depending on the version of
MySQL that the server is using, database, table, and column names may or
may not be case-sensitive.

3.1.2 Basics of SQL

The first step to understanding SQL is to realize that, unlike R, it is not a pro-
gramming language; operations in SQL are performed using individual queries
without loops or control statements. The most important SQL command is
SELECT. Since queries are performed using single statements, the syntax of
the SELECT command can be quite daunting:

SELECT columns or computations

FROM table

WHERE condition

GROUP BY columns

HAVING condition

ORDER BY column [ASC | DESC]

LIMIT offset,count;

Fortunately, most of the clauses in the SELECT statement are optional. In fact,
many queries will simply retrieve all of the data in a particular table through
the following command:

SELECT * FROM tablename;

The asterisk (*) means “all the columns in the table”. Alternatively, a comma-
separated list of variables or expressions can be supplied:

SELECT var1,var2,var2/var1 from tablename;

3.1 A Brief Guide to SQL 45

will return three columns corresponding to var1, var2, and the computed
value of their ratio. A useful operator in SQL is the AS operator, which can
be used to change the name of a column in the result set. In the previous
example, if we wanted the name of the third column to be “ratio” we could
use the AS command:

SELECT var1,var2,var2/var1 AS ratio FROM tablename;

In fact, the use of the word AS is optional; the new column name can simply
follow the old one. In these examples, I will include the AS keyword, as it
makes the query more readable. This same technique can be used to refer to
tables through alternative names as well.

To limit the rows which are returned, the WHERE clause can be used. Most
common operators can be used to define expressions for the WHERE clause,
along with the keywords AND and OR. For example, to extract all columns for
the rows of a table where var1 is greater than 10 and var2 is less than var1,
we could use

SELECT * FROM tablename WHERE var1 > 10 AND var2 < var1;

One limitation of the WHERE clause is that it cannot access variables that were
created in the SELECT statement; the HAVING clause must be used in those
cases. So to find cases where the computed ratio is greater than 10, we could
use a statement like this:

SELECT var1,var2,var2/var1 AS ratio

FROM tablename HAVING ratio > 10;

Notice the similarity between these simple queries and the subset function
(Section 6.8).

Two operators in SQL are especially useful for character variables. The
LIKE operator allows the use of “%” to represent zero or more of any character,
and “_” to represent exactly one character. The RLIKE operator allows the use
of regular expressions for character comparisons (see Section 7.4).

3.1.3 Aggregation

The GROUP BY clause, in conjunction with some SQL-provided aggregation
functions, can be useful if you wish to produce a table of counts or a data
summary from a database, without bringing all of the data into R. Some of the
common aggregation functions available in SQL are summarized in Table 3.2.
For example, suppose we wanted to create a table of means for a variable x,
from a database table named table, broken down by a categorical variable
called type. We could create a table with the value of type and mean with
the following statement:

SELECT type,AVG(x) AS mean FROM table GROUP BY type;

46 3 R and Databases

Task SQL aggregation function

Count numbers of occurrences COUNT()
Find the mean AVG()

Find minimum MIN()

Find maximum MAX()

Find variance VAR SAMP()

Find standard deviation STDDEV SAMP()

Table 3.2. Basic SQL aggregation commands

Remember to include the grouping variable in the list of selected variables,
as SQL will not do this automatically. Since mean is a calculated variable in
this example, you would need to use a HAVING clause to limit the observations
that were returned based on the value of mean.

Since the number of observations for any column in a particular table
will always be the same, it is common practice to use an asterisk (*) as an
argument to the COUNT aggregation function. To create a table of counts by
type in the previous example, we could use

SELECT type,COUNT(*) FROM table GROUP BY type;

To group by more than one variable, use a comma-separated list as an argu-
ment to the GROUP BY clause.

Multiple aggregated statistics can easily be output in a single query. Sup-
pose we wanted to count the number of observations for each type, along with
the mean and standard deviation of the x column. The following command
could be used:

SELECT type,COUNT(*),AVG(x) AS mean,STDDEV_SAMP(x) AS std

FROM accounts GROUP BY type;

3.1.4 Joining Two Databases

One of the strengths of database servers is that they can effectively join to-
gether multiple database tables, based on common values of columns within
the tables. Of course, the same capability is available within R through the
merge function (see Section 9.6), but it may be more efficient to use the data-
base server for merging.

The most common way of joining two tables is through an inner join; only
those observations that have common values of the variable used for the merge
will be retained in the output table. (This is also the default behavior of the
merge function.) For example, suppose we have a table called children with
columns id, family id, and height and weight, and a second table called
mothers, with columns id, family id, and income. We would like a table
with the height and weight of the children, along with the income of the
mothers. The following SQL statement will return the table:

3.1 A Brief Guide to SQL 47

SELECT height,weight,income FROM children

INNER JOIN mothers USING(family_id);

The variable in the USING expression (family id in this example) is known as
a key or sometimes a foreign key. If the two tables being joined have only one
variable in common, the INNER JOIN can be replaced with a NATURAL JOIN,
and the USING expression can be omitted.

Now suppose we wish to produce a table with both the children’s id and
the mother’s id. Since there are variables called id in both data tables, we
need to distinguish between them by preceding the column name with the
table name and a period. In this example, we could use a query like this:

SELECT children.id,mothers.id,height,weight,income

FROM children INNER JOIN mothers USING(family_id);

The AS operator can be used to make it easier to refer to multiple tables, as
well as renaming the columns:

SELECT c.id as kidid,m.id as momid,height,weight,income

FROM children AS c

INNER JOIN mothers AS m USING(family_id);

3.1.5 Subqueries

Continuing with the current example, consider the task of tabulating the
family size (i.e. the number of children with the same family id) for all the
families in the database. It’s easy to create a table that has the counts for
each value of family id:

SELECT family_id,COUNT(*) AS ct FROM children

GROUP BY family_id;

How can we then count how many of each family size was found? One way
would be to create a temporary table containing the ids and sizes, and query-
ing that table, but often the permission to create new tables on a server is
not available. The alternative is to use subqueries. In SQL, a subquery is a
query surrounded by parentheses, which can be treated just like any other
table. One restriction of subqueries is that all subquery tables must be given
an alias (through the AS operator), even if you won’t be directly referring to
the table. We can produce the table of family sizes with the following query:

SELECT ct,COUNT(*) as n

FROM (SELECT COUNT(*) AS ct FROM children

GROUP BY family_id) AS x

GROUP BY ct;

Subqueries are also useful when the timing of database operations makes a
query impossible for the database to understand. Let’s say we wanted all the
available information about the tallest child in the database. One obvious
possibility is to perform the following query:

48 3 R and Databases

SELECT * FROM children WHERE height = MAX(height);

Depending on the database you use, you might get an empty set, or a syn-
tax error. To get around the problem, we can create a table with only the
maximum height, and then use it in a subquery:

SELECT * FROM children

WHERE height = (SELECT MAX(height) as height from children);

3.1.6 Modifying Database Records

To change the values of selected records in a database, the UPDATE command
can be used. The format of the UPDATE statement is

UPDATE table SET var=value

WHERE condition

LIMIT n;

To change more than one variable’s value, the var=value specification can be
replaced with a comma-separated list of variable/value pairs. The WHERE and
LIMIT specifications are optional. If a LIMIT specification is provided, only
that many records will be considered for updating, even if some of the chosen
records will not actually be modified. For example, to change the height and
weight for a subject with a particular id, we could use a statement like

UPDATE children SET weight=100,height=55

WHERE id = 12345;

To completely remove a record, the DELETE statement can be used. The
basic syntax is as follows:

DELETE FROM table

WHERE condition

LIMIT n;

Without a WHERE clause, all of the records of the database table will be re-
moved, so this statement should be used with caution. If a LIMIT specification
is provided, it will be based on observations matching the condition of the
WHERE clause, if one is specified.

Finally, to completely remove an entire table or database, the DROP state-
ment can be used, for example

DROP TABLE tablename;

or

DROP DATABASE dbname;

When using the DROP command, an error will be reported if the table or
database to be dropped does not exist. To avoid this, the IF EXISTS clause
can be added to the DROP statement, as in

3.2 ODBC 49

DROP DATABASE IF EXISTS dbname;

Notice that these commands take effect on the database as soon as they
are issued, so it’s a good idea to have a backup of the data in the database
before using these commands.

3.2 ODBC

The ODBC (Open DataBase Connectivity) facility allows access to a variety
of databases through a common interface. In R, the RODBC package, available
from CRAN, is used to access this capability. ODBC was originally developed
on Windows, and the widest variety of ODBC connectors will be available on
that platform. However, both Linux and Mac OS X also provide database
connectivity through ODBC. If you need to use a database in R that is not
directly supported, RODBC will probably be your best choice, as many database
manufacturers provide ODBC connectors for their products.

The first step in using RODBC is to set up a DSN or data source name. In
order to do this, you need to know the name that your computer uses for a
particular data source. On Windows, the ODBC Source Administrator (accessed
through Control Panel → Administrative Tools → Data Sources(ODBC)) is
used to establish DSNs. Under the “Drivers” tab, you can see what connectors
are available on your computer, and the name that is used to access them.
If you install additional connectors, you should see them listed here. You can
use this name, providing additional connection details each time you create a
connection, or you can create a new DSN to automate the process. To create
a new DSN, click on the “Add” button under the User DSN tab, choose an
appropriate driver from the pop-up window, and click “Finish”. At this point
a dialog specific to the database you’re using will appear, and you can fill in
the required information to create the DSN. Make sure to note the name that
you use for the data source name, since that is how the ODBC connection is
specified.

Under Mac OS X, the ODBC Administrator (which can be found in the
/Applications/Utilities folder) performs a similar function. You can view
available drivers in the “Drivers” tab, or choose the User DSN tab, and click
“Add” to create a new DSN; after choosing a driver, you can configure it using
keyword/value pairs appropriate for the particular database you are using.

To use the RODBC package on a Linux system, the unixodbc libraries must
first be installed. Most linux distributions will make this very easy. The config-
uration of UNIXODBC is controlled by two files: odbcinst.ini and odbc.ini.
The first file contains the available ODBC drivers, and the second file is used to
define additional DSNs, if desired. For example, the following is an odbc.ini

file which defines a DSN called myodbc using the MySQL ODBC driver:

50 3 R and Databases

[myodbc]

Driver = MySQL

Description = MySQL ODBC 2.50 Driver DSN

Server = localhost

Port = 3306

User = user

Password = password

Database = test

The name in square brackets (myodbc in this case) is the DSN that is being
defined; multiple DSNs can be defined in a single file by starting a new section
with the DSN in brackets. In order to use a driver, it must be defined in the
odbcinst.ini file. The specific keywords in the file will depend on the specific
connector being used.

By default on most systems, the two configuration files for UNIXODBC are
in the /etc directory. To specify a different location for odbc.ini, set the
environmental variable ODBCINI to the fully-qualified filename of the file; to
specify a different location for odbcinst.ini, set the environmental variable
ODBCSYSINI to the directory in which odbcinst.ini can be found.

3.3 Using the RODBC Package

After loading the RODBC package, if you’ve configured a DSN that provides all
the necessary information to connect and access your database, you can create
a connection by simply passing the DSN to the odbcConnect function. Suppose
we have a DSN named myodbc to connect to a MySQL database, and we have
provided the server, username, password, and database in the DSN definition.
Then we can create a connection through RODBC as follows:

> library(RODBC)

> con = odbcConnect(’myodbc’)

Additional keywords defining the connection can be provided in the DSN ar-
gument by separating keyword=value pairs with semicolons. For example, if
a DSN was created without specifying a required password, the database could
be accessed as follows:

> con = odbcConnect(’myodbc;password=xxxxx’)

Other possible keywords depend on the particular data source. For MySQL

these keywords include server, user, password, port, and database; for
PostgreSQL, substitute username for user.

Once you’ve got a connection to the ODBC source, the sqlQuery function
allows any valid SQL query to be sent to the connection. This will be the case
even if SQL is not the native language of the underlying database. Passed only
a connection and a query, sqlQuery will return a data frame containing the

3.5 Accessing a MySQL Database 51

entire result of the query. The max= argument to sqlQuery will limit the num-
ber of rows returned, and can be followed by repeated calls to sqlGetResults

(also using appropriate max= arguments) to process a query in smaller pieces.
To prevent unnecessary resource use, the odbcClose function should be

passed any ODBC connection objects when they are no longer needed.

3.4 The DBI Package

One of the most popular databases used with R is MySQL (http://mysql.
com). This freely available database runs on a variety of platforms and is
relatively easy to configure and operate.

In the following sections, we’ll look at the RMySQL package as an example
of using the DBI package.

3.5 Accessing a MySQL Database

The first step in accessing a MySQL database is loading the MySQL package.
This package will automatically load the required DBI package, which provides
a common interface across different databases. Next, the MySQL driver is
loaded via the dbDriver function, so that the DBI interface will know what
type of database it’s communicating with:

> library(RMySQL)

> drv = dbDriver("MySQL")

Now, the specifics of the database connection can be provided through the
dbConnect function. These include the database name, the database username
and password, and the host on which the database is running. If the database
is running on the same machine as your R session, the hostname can be
omitted. For example, to access a database called “test”, via a user name of
“sqluser” and password of “secret” on the host “sql.company.com”, the
following call to dbConnect could be used:

> con = dbConnect(drv,dbname=’test’,user=’sqluser’,

+ password=’secret’,host=’sql.company.com’)

The calls to dbDriver and dbConnect need only be made once for an entire
session. Note that the dbname passed to dbConnect might represent a col-
lection of many tables; the specific table to be used will be specified in the
queries that are sent to the database.

You can close an unused DBI connection by passing the connection object
to dbDisconnect.

52 3 R and Databases

3.6 Performing Queries

SQL queries make requests for some or all of the variables in one or more
database tables, so a natural way to package these results within R is in a data
frame. In most cases, a single call to dbGetQuery can be used to send a query
to the database, and have the resulting table returned as a data frame. For
example, suppose that we have connected to the database “test” as described
in the previous section, and we wish to extract all of the observations in a table
called “mydata”. After the appropriate calls to dbDriver and dbConnect, we
could retrieve the data with the following command:

> mydata = dbGetQuery(con,’select * from mydata’)

Any valid SQL query can be passed to a database by this method.
In the case where data needs to be processed in pieces, the dbSendQuery

function can be used to initiate the query, and the fetch function can be
passed the result from dbSendQuery to sequentially access the results of the
query. Once all the required data is extracted using fetch, the result from
dbSendQuery should be passed to the dbClearResult function to insure that
the next query will be properly processed. (When using dbGetQuery there is
no need to call an additional function at the end of the query.) Note that
by default, the fetch function will return 500 records at a time; this can be
overwritten with the n= argument, using a value of -1 to indicate all of the
available records, or an integer to specify the number of records desired.

3.7 Normalized Tables

The principle of normalization is central to database design. The goal of nor-
malization is to eliminate redundancy in the information stored in the data-
base tables. To achieve this goal, what might be a single data frame in R
might be broken into several tables in a database. For example, suppose we
are working with a database containing information about the parts required
to produce a product. If we stored the part name, supplier’s name, and the
price of the part all in one database, we would have many records with iden-
tical information about suppliers. In a properly normalized database, there
would be two tables; one with part names and prices and an id representing
the supplier of the part. This id, known as a key or foreign key, would also be
found exactly once in a second table containing supplier information. Suppose
the first table is called parts with columns name, price, and supplierid, and
the second table is called suppliers, with columns supplierid and name. Our
goal is to create a data frame with the part name and price along with the
name of the supplier. An appropriate query to retrieve the table we want into
a data frame could be written as

3.8 Getting Data into MySQL 53

> result = dbGetQuery(con,’SELECT parts.name,parts.description,

+ supplier.name AS supplier

+ FROM parts INNER JOIN

+ suppliers USING(supplierid)’)

Using the database to merge the tables makes sense if you’re familiar with
SQL, and especially if the tables you’re working with are very large. However,
the tables could also be retrieved in their entirety, and the merging performed
in R:

> parts = dbGetQuery(con,’SELECT * FROM parts’)

> suppliers = dbGetQuery(con,’SELECT * FROM suppliers’)

> result = merge(parts,suppliers,by=’supplierid’)

This simplistic solution, while workable, ignores the motivation behind the
initial normalization of the database tables, namely, to avoid redundancy.
The supplier name variable is being stored as a character variable, whose
value is repeated in the result data frame for each observation from the
same supplier. A more efficient solution is to note the similarity between the
suppliers table and the idea of a factor in R. The supplierids represent
the levels of a factor, and the names represent the labels. Thus, we can create
a data frame storing the suppliers as a factor with code like this:

> parts = dbGetQuery(con,’SELECT * FROM parts’)

> suppliers = dbGetQuery(con,’SELECT * FROM suppliers’)

> result = data.frame(name=parts$name,price=parts$price,

+ supplier=factor(parts$supplierid,

+ levels=suppliers$supplierid,

+ labels=suppliers$name))

Since the data.frame function automatically converts character variables to
factors, both name and supplier will be stored as factors.

3.8 Getting Data into MySQL

If your data is already in an R object, it can be easily transfered to a data-
base using the dbWriteTable function, which accepts the same sort of con-
nection object that dbGetQuery uses. By using the append=TRUE argument to
dbWriteTable, a large database table can be built using smaller pieces.

If it is desired to create a table directly from raw data, it is first necessary
to describe the nature of each column in the table with the CREATE TABLE

statement. For example, one way of creating a table called mydata to hold
columns name (a character variable) and number (a floating point value) would
be to issue a statement like:

CREATE TABLE mydata (name text, number double);

54 3 R and Databases

This statement could be submitted to MySQL by, for example, passing it
to dbGetQuery (although it will not return any value). To make generating
statements like this easier, the dbBuildTableDefinition function can be
used; it will generate appropriate statements to create a database suitable to
hold an R data frame. Following the current example, we could generate the
CREATE TABLE statements in R as follows:

> x = data.frame(name=’’,number=0.)

> cat(dbBuildTableDefinition(dbDriver(’MySQL’),

+ ’mydata’,x),"\n")

CREATE TABLE mydata

(row_names text,

name text,

number double

)

To suppress the row names column, the row.names=FALSE argument can be
used. The output from dbBuildTableDefinition can be passed directly to
dbGetQuery to create the table in the database. If you wish to create a table
with identical specifications to an existing table, the LIKE clause can be used
in the CREATE TABLE statement, as in

CREATE TABLE newtable LIKE oldtable;

To get an understanding of how existing tables are stored in the database, the
DESCRIBE table statement can be used.

Once the table has been created, the actual data needs to be entered. The
SQL INSERT command can be used to add one or more observations to a
database table. When the columns defined by the CREATE TABLE command
are being entered in the order they are stored in the database table, all that
is required is the VALUES keyword:

INSERT INTO mydata VALUES(’fred’,7);

If the values are to be entered in an order different from how they are stored in
the database table, a parenthetical comma-separated list describing the order
that will be used needs to be provided before the VALUES keyword. So to add
an observation only specifying the number value before the name value, we
could use the following SQL command:

INSERT INTO mydata (number,name) values(7,’fred’);

To add additional observations, additional parenthesized comma-separated
lists, themselves separated by commas, can be added at the end of the INSERT
command. The following command adds two new observations to the mydata

table:

INSERT INTO mydata VALUES(’tim’,12),(’sue’,9);

3.9 More Complex Aggregations 55

Generally, however, it will be advantageous to insert all of the data into
the database in a single database call, either through an external program
or through the LOAD DATA command. With MySQL, the mysqlimport shell
command can be used to read whole files of data into a database table.
Among its arguments are --local, which specifies that the data is local,
and not on the server, --delete, which insures that the contents of any
current table with the same name are removed before creating the new ta-
ble, and --fields-terminated-by= and --lines-terminated-by= to pro-
vide the field and line terminators, respectively. In addition to these optional
arguments, the -u username option, to provide the MySQL username, the -h
hostname option to provide the name of the machine on which the MySQL
server is running, and the -p option, to tell the server to prompt for a pass-
word, may be required to establish a database connection. In addition, since
the MySQL server won’t read header lines, the --ignore-lines=1 argument
can be used to skip a header line.

For example, to read a comma-separated text file called mydata.txt into
a mysql database called test, the following shell command could be entered
in a terminal window:

mysqlimport -u sqluser -p --delete --local \

--fields-terminated-by=’,’ test mydata.txt

Notice that mysqlimport determines the table name by removing any suffix
from the name of the file containing the data (mydata.txt in this example).
As with the LOAD DATA command, the table to hold the data must be created
before mysqlimport can be used.

The same operation can be performed by sending MySQL statements to
the server. Assuming an appropriate connection object has been obtained, we
could load data from the mydata.txt file into the database with the following
call to dbGetQuery:

> dbGetQuery(con,"LOAD DATA INFILE ’mydata.txt’\

+ INTO TABLE mydata\ FIELDS TERMINATED BY ’,’")

Once the data is loaded into the database, the SELECT statement can be
used to create subsets of the data which will be manageable inside of R.

3.9 More Complex Aggregations

The dbApply function can be used to apply a user-specified R function to
groups of data extracted from a database. To use dbApply, first create a result
set object through a call to dbSendQuery, using the ORDER BY clause to insure
that the data will be brought into R in the appropriate order. The result set
object can then be passed to dbApply, along with an INDEX= argument to
specify the grouping variable, and a FUN= argument, to specify the function to
be applied to each group. This function must accept two arguments: the first

56 3 R and Databases

is the data frame consisting of the requested data for a given group, and the
second is the value of the grouping variable. For example, suppose we have a
database table called cordata with columns group, x, and y, and we wish to
find the correlation between x and y, broken down by groups. First, we use
dbSendQuery to create the result set object:

> res1 = dbSendQuery(con,

+ ’SELECT group,x,y FROM cordata ORDER BY group’)

Now we can pass this result set object to dbApply to obtain the result:

> correlations = dbApply(res1,INDEX=’group’,

+ FUN=function(df,group)cor(dfx,dfy))

The return value from dbApply, correlations, will be a list of correlations
whose names represent the levels of the group variable.

If the dbApply function is not available for a particular database, or if
more control is required over the aggregation, the following function shows an
alternative means of applying a function to subsets of the data:

mydbapply = function(con,table,groupv,otherv,fun){

query = paste(’select ’,groupv,’ from ’,table,

’ group by ’,groupv,sep=’’)

queryresult = dbGetQuery(con,query)

answer = list()

k = 1

varlist = paste(c(groupv,otherv),collapse=’,’)

for(gg in queryresult[[groupv]]){

qry = paste(’select ’,varlist,’ from ’,table,’

where ’, groupv,’ = "’,gg,’"’,sep=’’)

qryresult = dbGetQuery(con,qry)

answer[[k]] = fun(qryresult)

names(answer)[k] = as.character(gg)

k = k + 1

}

return(answer)

}

The arguments to mydbapply are con, an active database connection object,
groupv, a character string representing the database column to be used for
grouping, otherv, a character vector containing the names of other database
columns that need to be extracted from the database, and fun, the function
that will operate on the data frame containing the grouping and other vari-
ables. The example of the previous section could be executed using mydbapply

as

> correlations = mydbapply(con,’cordata’,’group’,c(’x’,’y’),

function(df)cor(dfx,dfy))

4

Dates

R provides several options for dealing with date and date/time data. The built-
in as.Date function handles dates (without times); the contributed package
chron handles dates and times, but does not control for time zones; and the
POSIXct and POSIXlt classes allow for dates and times with control for time
zones. The general rule for date/time data in R is to use the simplest technique
possible. Thus, for date only data, as.Date will usually be the best choice.
If you need to handle dates and times, without time-zone information, the
chron package is a good choice; the POSIX classes are especially useful when
time-zone manipulation is important. Also, don’t overlook the various “as.”
functions (like as.Date and as.POSIXlt) for converting among the different
date types when necessary.

Except for the POSIXlt class, dates are stored internally as the number of
days or seconds from some reference date. Thus, dates in R will generally have
a numeric mode, and the class function can be used to find the way they are
actually being stored. The POSIXlt class stores date/time values as a list of
components (hour, min, sec, mon, etc.) making it easy to extract these parts.

To get the current date, the Sys.Date function will return a Date object
which can be converted to a different class if necessary.

The following sections will describe the different types of date values in
more detail.

4.1 as.Date

The as.Date function allows a variety of input formats through the format=

argument. The default format is a four-digit year, followed by a month, then
a day, separated by either dashes or slashes. Some examples of dates which
as.Date will accept by default are as follows:

> as.Date(’1915-6-16’)

[1] "1915-06-16"

58 4 Dates

> as.Date(’1990/02/17’)

[1] "1990-02-17"

Code Value

%d Day of the month (decimal number)
%m Month (decimal number)
%b Month (abbreviated)
%B Month (full name)
%y Year (2 digit)
%Y Year (4 digit)

Table 4.1. Format codes for dates

If your input dates are not in the standard format, a format string can be
composed using the elements shown in Table 4.1. The following examples
show some ways that this can be used:

> as.Date(’1/15/2001’,format=’%m/%d/%Y’)

[1] "2001-01-15"

> as.Date(’April 26, 2001’,format=’%B %d, %Y’)

[1] "2001-04-26"

> as.Date(’22JUN01’,format=’%d%b%y’)

[1] "2001-06-22"

Internally, Date objects are stored as the number of days since January 1,
1970, using negative numbers for earlier dates. The as.numeric function can
be used to convert a Date object to its internal form. To convert this form
back to a Date object, it can be assigned a class of Date directly:

> thedate = as.Date(’1/15/2001’,format=’%m/%d/%Y’)

> ndate = as.numeric(thedate)

> ndate

[1] 11337

> class(ndate) = ’Date’

> ndate

[1] "2001-01-15"

To extract the components of the dates, the weekdays, months, days, or
quarters functions can be used. For example, to see if the R developers favor
a particular day of the week for their releases, we can first extract the release
dates from the CRAN website with a program like this:

4.2 The chron Package 59

f = url(’http://cran.cnr.berkeley.edu/src/base/R-2’,’r’)

rdates = data.frame()

while(1){

l = readLines(f,1)

if(length(l) == 0)break

if(regexpr(’href="R-’,l) > -1){

parts = strsplit(l,’ ’)[[1]]

rver = sub(’^.*>(R-.*).tar.gz.*’,’\\1’,l)

date = parts[18]

rdates = rbind(rdates,data.frame(ver=rver,Date=date))

}

}

rdates$Date = as.Date(rdates$Date,’%d-%B-%Y’)

Then, the days of the week can be tabulated after using the weekdays function
as follows:

> table(weekdays(rdates$Date))

Monday Thursday Tuesday

5 3 4

Monday, Thursday, and Tuesday seem to be the favorite days for releases.
For an alternative way of extracting pieces of a date, and for information

on possible output formats for Date objects, see Section 4.3.

4.2 The chron Package

The chron function converts dates and times to chron objects. The dates
and times are provided to the chron function as separate values, so some
preprocessing may be necessary to prepare input date/times for the chron

function. When using character values, the default format for dates is the
decimal month value followed by the decimal day value followed by the year,
using the slash as a separator. Alternative formats can be provided by using
the codes shown in Table 4.2.

Alternatively, dates can be specified by a numeric value, representing the
number of days since January 1, 1970. To input dates stored as the day of the
year, the origin= argument can be used to interpret numeric dates relative
to a different date.

The default format for times consists of the hour, minutes, and seconds,
separated by colons. Alternative formats can use the codes in Table 4.2.

Often the first task when using the chron package is to break apart the
date and times if they are stored together. In the following example, the
strsplit function is used to break apart the string.

60 4 Dates

Format codes for dates

Code Value

m Month (decimal number)
d Day of the month (decimal number)
y Year (4 digit)
mon Month (abbreviated)
month Month (full name)

Format codes for times

Code Value

h Hour
m Minute
s Second

Table 4.2. Format codes for chron objects

> library(chron)

> dtimes = c("2002-06-09 12:45:40","2003-01-29 09:30:40",

+ "2002-09-04 16:45:40","2002-11-13 20:00:40",

+ "2002-07-07 17:30:40")

> dtparts = t(as.data.frame(strsplit(dtimes,’ ’)))

> row.names(dtparts) = NULL

> thetimes = chron(dates=dtparts[,1],times=dtparts[,2],

+ format=c(’y-m-d’,’h:m:s’))

> thetimes

[1] (02-06-09 12:45:40) (03-01-29 09:30:40) (02-09-04 16:45:40)

[4] (02-11-13 20:00:40) (02-07-07 17:30:40)

Chron values are stored internally as the fractional number of days from Jan-
uary 1, 1970. The as.numeric function can be used to access the internal
values.

If times are stored as the number of seconds since midnight, they can be
accommodated by the POSIX classes (see Section 4.3).

For information on formatting chron objects for output, see Section 4.3.

4.3 POSIX Classes

POSIX represents a portable operating system interface, primarily for UNIX
systems, but available on other operating systems as well. Dates stored in the
POSIX format are date/time values (like dates with the chron package), but
also allow modification of time zones. Unlike the chron package, which stores
times as fractions of days, the POSIX date classes store times to the nearest
second, so they provide a more accurate representation of times.

There are two POSIX date/time classes, which differ in the way that the
values are stored internally. The POSIXct class stores date/time values as the

4.3 POSIX Classes 61

number of seconds since January 1, 1970, while the POSIXlt class stores them
as a list with elements for second, minute, hour, day, month, and year, among
others. Unless you need the list nature of the POSIXlt class, the POSIXct class
is the usual choice for storing dates in R.

The default input format for POSIX dates consists of the year, followed
by the month and day, separated by slashes or dashes; for date/time val-
ues, the date may be followed by white space and a time in the form
hour:minutes:seconds or hour:minutes; thus, the following are examples of
valid POSIX date or date/time inputs:

1915/6/16

2005-06-24 11:25

1990/2/17 12:20:05

If the input times correspond to one of these formats, as.POSIXct can be
called directly:

> dts = c("2005-10-21 18:47:22","2005-12-24 16:39:58",

+ "2005-10-28 07:30:05 PDT")

> as.POSIXlt(dts)

[1] "2005-10-21 18:47:22" "2005-12-24 16:39:58"

[3] "2005-10-28 07:30:05"

If your input date/times are stored as the number of seconds from January
1, 1970, you can create POSIX date values by assigning the appropriate class
directly to those values. Since many date manipulation functions refer to the
POSIXt pseudo-class, be sure to include it in the class attribute of the values.

> dts = c(1127056501,1104295502,1129233601,1113547501,

+ 1119826801,1132519502,1125298801,1113289201)

> mydates = dts

> class(mydates) = c(’POSIXt’,’POSIXct’)

> mydates

[1] "2005-09-18 08:15:01 PDT" "2004-12-28 20:45:02 PST"

[3] "2005-10-13 13:00:01 PDT" "2005-04-14 23:45:01 PDT"

[5] "2005-06-26 16:00:01 PDT" "2005-11-20 12:45:02 PST"

[7] "2005-08-29 00:00:01 PDT" "2005-04-12 00:00:01 PDT"

Conversions like this can be done more succinctly using the structure func-
tion:

> mydates = structure(dts,class=c(’POSIXt’,’POSIXct’))

The POSIX date/time classes take advantage of the POSIX date/time
implementation of your operating system, allowing dates and times in R to
be manipulated in the same way they would be in, for example, a C program.
The two most important functions in this regard are strptime, for inputting
dates, and strftime, for formatting dates for output. Both of these functions
use a variety of formatting codes, some of which are listed in Table 4.3, to

62 4 Dates

Code Meaning Code Meaning

%a Abbreviated weekday %A Full weekday
%b Abbreviated month %B Full month
%c Locale-specific date and time %d Decimal date
%H Decimal hours (24 hour) %I Decimal hours (12 hour)
%j Decimal day of the year %m Decimal month
%M Decimal minute %p Locale-specific AM/PM
%S Decimal second %U Decimal week of the year (starting

on Sunday)
%w Decimal weekday (0=Sunday) %W Decimal week of the year (starting

on Monday)
%x Locale-specific date %X Locale-specific time
%y 2-digit year %Y 4-digit year
%z Offset from GMT %Z Time zone (character)

Table 4.3. Format codes for strftime and strptime

specify the way dates are read or printed. For example, dates in many logfiles
are printed in a format like “16/Oct/2005:07:51:00”. To create a POSIXct

date from a date in this format, the following call to strptime could be used:

> mydate = strptime(’16/Oct/2005:07:51:00’,

+ format=’%d/%b/%Y:%H:%M:%S’)

[1] "2005-10-16 07:51:00"

Note that nonformat characters (like the slashes) are interpreted literally.
When using strptime, an optional time zone can be specified with the

tz= option.
Since POSIX date/time values are stored internally as the number of sec-

onds since January 1, 1970, they can easily use times that are not represented
by a formatted version of the hour, minute, and second. For example, suppose
we have a vector of date/time values stored as a date followed by the number
of seconds since midnight:

> mydates = c(’20060515 112504.5’,’20060518 101000.3’,

+ ’20060520 20035.1’)

The first step is to split the dates and times, and then use strptime to convert
the date to a POSIXct value. Then, the times can simply be added to this
value:

> dtparts = t(as.data.frame(strsplit(mydates,’ ’)))

> dtimes = strptime(dtparts[,1],format=’%Y%m%d’) +

+ as.numeric(dtparts[,2])

> dtimes

[1] "2006-05-16 07:15:04 PDT" "2006-05-19 04:03:20 PDT"

[3] "2006-05-20 05:33:55 PDT"

Another way to create POSIX dates is to pass the individual components
of the time to the ISOdate function. Thus, the first date/time value in the
previous example could also be created with a call to ISOdate:

4.4 Working with Dates 63

> ISOdate(2006,5,16,7,15,04,tz="PDT")

[1] "2006-05-16 07:15:04 PDT"

ISOdate will accept both numeric and character arguments.
For formatting dates for output, the format function will recognize the

type of your input date, and perform any necessary conversions before calling
strftime, so strftime rarely needs to be called directly. For example, to
print a date/time value in an extended format, we could use:

> thedate = ISOdate(2005,10,21,18,47,22,tz="PDT")

> format(thedate,’%A, %B %d, %Y %H:%M:%S’)

[1] "Friday, October 21, 2005 18:47:22"

When using POSIX dates, the optional usetz=TRUE argument to the format

function can be specified to indicate that the time zone should be displayed.
Additionally, as.POSIXlt and as.POSIXct can also accept Date or chron ob-
jects, so they can be input as described in the previous sections and converted
as needed. Conversion between the two POSIX forms is also possible.

The individual components of a POSIX date/time object can be extracted
by first converting to POSIXlt if necessary, and then accessing the components
directly:

> mydate = as.POSIXlt(’2005-4-19 7:01:00’)

> names(mydate)

[1] "sec" "min" "hour" "mday" "mon" "year"

[7] "wday" "yday" "isdst"

> mydate$mday

[1] 19

4.4 Working with Dates

Many of the statistical summary functions, like mean, min, max, etc are able
to transparently handle date objects. For example, consider the release dates
of various versions of R from 1.0 to 2.0:

> rdates = scan(what="")

1: 1.0 29Feb2000

3: 1.1 15Jun2000

5: 1.2 15Dec2000

7: 1.3 22Jun2001

9: 1.4 19Dec2001

11: 1.5 29Apr2002

13: 1.6 1Oct2002

15: 1.7 16Apr2003

17: 1.8 8Oct2003

19: 1.9 12Apr2004

21: 2.0 4Oct2004

23:

64 4 Dates

Read 22 items

> rdates = as.data.frame(matrix(rdates,ncol=2,byrow=TRUE))

> rdates[,2] = as.Date(rdates[,2],format=’%d%b%Y’)

> names(rdates) = c("Release","Date")

> rdates

Release Date

1 1.0 2000-02-29

2 1.1 2000-06-15

3 1.2 2000-12-15

4 1.3 2001-06-22

5 1.4 2001-12-19

6 1.5 2002-04-29

7 1.6 2002-10-01

8 1.7 2003-04-16

9 1.8 2003-10-08

10 1.9 2004-04-12

11 2.0 2004-10-04

Once the dates are properly read into R, a variety of calculations can be
performed:

> mean(rdates$Date)

[1] "2002-05-19"

> range(rdates$Date)

[1] "2000-02-29" "2004-10-04"

> rdates$Date[11] - rdates$Date[1]

Time difference of 1679 days

4.5 Time Intervals

If two times (using any of the date or date/time classes) are subtracted, R will
return the result in the form of a time difference, which represents a difftime

object. For example, New York City experienced a major blackout on July 13,
1977, and another on August 14, 2003. To calculate the time interval between
the two blackouts, we can simply subtract the two dates, using any of the
classes that have been introduced:

> b1 = ISOdate(1977,7,13)

> b2 = ISOdate(2003,8,14)

> b2 - b1

Time difference of 9528 days

If an alternative unit of time was desired, the difftime function could be
called, using the optional units= argument with any of the following values:
“auto”, “secs”, “mins”, “hours”, “days”, or “weeks”. So to see the difference
between blackouts in terms of weeks, we can use

4.6 Time Sequences 65

> difftime(b2,b1,units=’weeks’)

Time difference of 1361.143 weeks

Although difftime values are displayed with their units, they can be manip-
ulated like ordinary numeric variables; arithmetic performed with these values
will retain the original units.

To convert a time difference in days to one of years, a good approximation
is to divide the number of days by 365.25. However, the difftime value will
display the time units as days. To modify this, the units attribute of the
object can be modified:

> ydiff = (b2 - b1) / 365.25

> ydiff

Time difference of 26.08624 days

> attr(ydiff,’units’) = ’years’

> ydiff

Time difference of 26.08624 years

4.6 Time Sequences

The by= argument to the seq function can be specified either as a difftime

value, or in any units of time that the difftime function accepts, making it
very easy to generate sequences of dates. For example, to generate a vector of
ten dates, starting on July 4, 1976, with an interval of one day between them,
we could use

> seq(as.Date(’1976-7-4’),by=’days’,length=10)

[1] "1976-07-04" "1976-07-05" "1976-07-06"

[4] "1976-07-07" "1976-07-08" "1976-07-09"

[7] "1976-07-10" "1976-07-11" "1976-07-12"

[10] "1976-07-13"

All the date classes except for chron will accept an integer before the interval
provided as a by= argument. We could create a sequence of dates separated
by two weeks from June 1, 2000, to August 1, 2000, as follows:

> seq(as.Date(’2000-6-1’),to=as.Date(’2000-8-1’),by=’2 weeks’)

[1] "2000-06-01" "2000-06-15" "2000-06-29" "2000-07-13"

[5] "2000-07-27"

The cut function also understands units of days, weeks, months, and years,
making it very easy to create factors grouped by these units. See Section 5.5
for details.

Format codes can also be used to extract parts of dates, as an alternative
to the weekdays and other functions described in Section 4.3. We could look
at the distribution of weekdays for the R release dates as follows:

66 4 Dates

> table(format(rdates$Date,’%A’))

Monday Thursday Tuesday

5 3 4

This same technique can be used to convert dates to factors. For example, to
create a factor based on the release dates broken down by years we could use

> fdate = factor(format(rdates$Date,’%Y’))

> fdate

[1] 2004 2004 2005 2005 2005 2005 2006 2006 2006 2006

2007 2007

Levels: 2004 2005 2006 2007

5

Factors

Conceptually, factors are variables in R which take on a limited number of
different values; such variables are often referred to as categorical variables.
One of the most important uses of factors is in statistical modeling; since
categorical variables enter into statistical models differently than continuous
variables, storing data as factors insures that the modeling functions will treat
such data correctly.

5.1 Using Factors

Factors in R are stored as a vector of integer values with a corresponding set
of character values to use when the factor is displayed. The factor function
is used to create a factor. The only required argument to factor is a vector of
values which will be returned as a vector of factor values. Both numeric and
character variables can be made into factors, but a factor’s levels will always
be character values. You can see the possible levels for a factor by calling the
levels function; the nlevels function will return the number of levels of a
factor.

To change the order in which the levels will be displayed from their default
sorted order, the levels= argument can be given a vector of all the possible
values of the variable in the order you desire. If the ordering should also be
used when performing comparisons, use the optional ordered=TRUE argument.
In this case, the factor is known as an ordered factor.

The levels of a factor are used when displaying the factor’s values. You
can change these levels at the time you create a factor by passing a vector
with the new values through the labels= argument. Note that this actually
changes the internal levels of the factor, and to change the labels of a factor
after it has been created, the assignment form of the levels function is used.
To illustrate this point, consider a factor taking on integer values which we
want to display as roman numerals:

68 5 Factors

> data = c(1,2,2,3,1,2,3,3,1,2,3,3,1)

> fdata = factor(data)

> fdata

[1] 1 2 2 3 1 2 3 3 1 2 3 3 1

Levels: 1 2 3

> rdata = factor(data,labels=c("I","II","III"))

> rdata

[1] I II II III I II III III I II III III I

Levels: I II III

To convert the default factor fdata to roman numerals, we use the assignment
form of the levels function:

> levels(fdata) = c(’I’,’II’,’III’)

> fdata

[1] I II II III I II III III I II III III I

Levels: I II III

Factors represent a very efficient way to store character values, be-
cause each unique character value is stored only once, and the data itself
is stored as a vector of integers. Because of this, read.table will auto-
matically convert character variables to factors unless the as.is=TRUE or
stringsAsFactors=FALSE arguments are specified, or the stringsAsFactors
system option is set to FALSE. See Section 2.2 for details.

As an example of an ordered factor, consider data consisting of the names
of months:

> mons = c("March","April","January","November","January",

+ "September","October","September","November","August",

+ "January","November","November","February","May","August",

+ "July","December","August","August","September","November",

+ "February","April")

> mons = factor(mons)

> table(mons)

mons

April August December February January July

2 4 1 2 3 1

March May November October September

1 1 5 1 3

Although the months clearly have an ordering, this is not reflected in the out-
put of the table function. Additionally, comparison operators are not sup-
ported for unordered factors. Creating an ordered factor solves these problems:

> mons = factor(mons,levels=c("January","February","March",

+ "April","May","June","July","August","September",

+ "October","November","December"),ordered=TRUE)

> mons[1] < mons[2]

[1] TRUE

5.1 Using Factors 69

> table(mons)

mons

January February March April May June

3 2 1 2 1 0

July August September October November December

1 4 3 1 5 1

The order in which the levels are displayed is determined by the order in which
they appear in the levels= argument to factor.

In the previous example, the levels of the factors had a natural ordering.
Sometimes, a factor needs to be reordered on the basis of some property
of that factor. For example, consider the InsectSpray data frame, which
contains data on the numbers of insects seen (count) when an experimental
unit was treated with one of six sprays (spray). The spray variable is stored
as a factor with default ordering:

> levels(InsectSprays$spray)

[1] "A" "B" "C" "D" "E" "F"

Suppose we wish to reorder the factor levels of spray based on the mean
value of the count variable for each level of spray. The reorder function
takes three arguments: a factor, a vector of values on which the reordering is
based, and a function to operate on those values for each factor level. Suppose
we wish to reorder the levels of spray so that they are stored in the order of
the mean value of count for each level of spray:

> InsectSprays$spray = with(InsectSprays,

+ reorder(spray,count,mean))

> levels(InsectSprays$spray)

[1] "C" "E" "D" "A" "B" "F"

When reorder is used, it assigns an attribute called scores which contains
the value used for the reordering:

> attr(InsectSprays$spray,’scores’)

A B C D E F

14.500000 15.333333 2.083333 4.916667 3.500000 16.666667

As always, changes to system datasets are made in the local workspace; the
original dataset is unchanged.

For some statistical procedures, the interpretation of results can be sim-
plified by forcing a particular order to a factor; in particular, it may be useful
to choose a “reference” level, which should be the first level of the factor.
The relevel function allows you to choose a reference level, which will then
be treated as the first level of the factor. For example, to make level “C” of
InsectSprays$spray the first level, we could call relevel as follows:

> levels(InsectSprays$spray)

[1] "A" "B" "C" "D" "E" "F"

70 5 Factors

> InsectSprays$spray = relevel(InsectSprays$spray,’C’)

> levels(InsectSprays$spray)

[1] "C" "A" "B" "D" "E" "F"

5.2 Numeric Factors

While it may be necessary to convert a numeric variable to a factor for a
particular application, it is often very useful to convert the factor back to its
original numeric values, since even simple arithmetic operations will fail when
using factors. Since the as.numeric function will simply return the internal
integer values of the factor, the conversion must be done using the levels

attribute of the factor, or by first converting the factor to a character value
using as.character.

Suppose we are studying the effects of several levels of a fertilizer on the
growth of a plant. For some analyses, it might be useful to convert the fertilizer
levels to an ordered factor:

> fert = c(10,20,20,50,10,20,10,50,20)

> fert = factor(fert,levels=c(10,20,50),ordered=TRUE)

> fert

[1] 10 20 20 50 10 20 10 50 20

Levels: 10 < 20 < 50

If we wished to calculate the mean of the original numeric values of the fert

variable, we would have to convert the values using the levels function or
as.character:

> mean(fert)

[1] NA

Warning message:

argument is not numeric or logical:

returning NA in: mean.default(fert)

> mean(as.numeric(levels(fert)[fert]))

[1] 23.33333

> mean(as.numeric(as.character(fert)))

[1] 23.33333

Either method will achieve the desired result.

5.3 Manipulating Factors

When a factor is first created, all of its levels are stored along with the factor,
and if subsets of the factor are extracted, they will retain all of the original
levels. This can create problems when constructing model matrices and may
or may not be useful when displaying the data using, say, the table function.

5.3 Manipulating Factors 71

As an example, consider a random sample from the letters vector, which is
part of the base R distribution:

> lets = sample(letters,size=100,replace=TRUE)

> lets = factor(lets)

> table(lets[1:5])

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Even though only five of the levels were actually represented, the table func-
tion shows the frequencies for all of the levels of the original factors. To change
this, we can use the drop=TRUE argument to the subscripting operator. When
used with factors, this argument will remove the unused levels:

> table(lets[1:5,drop=TRUE])

c h j w x

1 1 1 1 1

A similar result can be achieved by creating a new factor:

> table(factor(lets[1:5]))

c h j w x

1 1 1 1 1

To exclude certain levels from appearing in a factor, the exclude= argu-
ment can be passed to factor. By default, the missing value (NA) is excluded
from factor levels; to create a factor that includes missing values from a nu-
meric variable, use exclude=NULL.

Care must be taken when combining variables which are factors, because
the c function will interpret the factors as integers. To combine factors, they
should first be converted back to their original values (through the levels

function), then catenated and converted to a new factor:

> fact1 = factor(sample(letters,size=10,replace=TRUE))

> fact2 = factor(sample(letters,size=10,replace=TRUE))

> fact1

[1] o b i v q n q w e z

Levels: b e i n o q v w z

> fact2

[1] b a s b l r g m z o

Levels: a b g l m o r s z

> fact12 = factor(c(levels(fact1)[fact1],

levels(fact2)[fact2]))

> fact12

[1] o b i v q n q w e z b a s b l r g m z o

Levels: a b e g i l m n o q r s v w z

72 5 Factors

5.4 Creating Factors from Continuous Variables

The cut function is used to convert a numeric variable into a factor. The
breaks= argument to cut is used to describe how ranges of numbers will
be converted to factor values. If a number is provided through the breaks=

argument, the resulting factor will be created by dividing the range of the
variable into that number of equal-length intervals; if a vector of values is
provided, the values in the vector are used to determine the breakpoints.
Note that if a vector of values is provided, the number of levels of the resultant
factor will be one less than the number of values in the vector.

For example, consider the women dataset, which contains height and
weights for a sample of women. If we wanted to create a factor corresponding
to weight, with three equally spaced levels, we could use the following:

> wfact = cut(women$weight,3)

> table(wfact)

wfact

(115,131] (131,148] (148,164]

6 5 4

Notice that the default label for factors produced by cut contains the actual
range of values that were used to divide the variable into factors. The pretty
function can be used to choose cut points that are round numbers, but it may
not return the number of levels that’s actually desired:

> wfact = cut(women$weight,pretty(women$weight,3))

> wfact

[1] (100,120] (100,120] (100,120] (120,140]

[5] (120,140] (120,140] (120,140] (120,140]

[9] (120,140] (140,160] (140,160] (140,160]

[13] (140,160] (140,160] (160,180]

4 Levels: (100,120] (120,140] (140,160] (160,180]

> table(wfact)

wfact

(100,120] (120,140] (140,160] (160,180]

3 6 5 1

The labels= argument to cut allows you to specify the levels of the factors:

> wfact = cut(women$weight,3,labels=c(’Low’,’Medium’,’High’))

> table(wfact)

wfact

Low Medium High

6 5 4

To produce factors based on percentiles of your data (for example, quar-
tiles or deciles), the quantile function can be used to generate the breaks=

argument, insuring nearly equal numbers of observations in each of the levels
of the factor:

5.5 Factors Based on Dates and Times 73

> wfact = cut(women$weight,quantile(women$weight,(0:4)/4))

> table(wfact)

wfact

(115,124] (124,135] (135,148] (148,164]

3 4 3 4

5.5 Factors Based on Dates and Times

As mentioned in Section 4.6, there are a number of ways to create factors
from date/time objects. If you wish to create a factor based on one of the
components of that date, you can extract it with strftime and convert it to
a factor directly. For example, we can use the seq function to create a vector
of dates representing each day of the year:

> everyday = seq(from=as.Date(’2005-1-1’),

+ to=as.Date(’2005-12-31’),by=’day’)

To create a factor based on the month of the year in which each date falls, we
can extract the month name (full or abbreviated) using format:

> cmonth = format(everyday,’%b’)

> months = factor(cmonth,levels=unique(cmonth),ordered=TRUE)

> table(months)

months

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

31 28 31 30 31 30 31 31 30 31 30 31

Since unique returns unique values in the order they are encountered, the
levels argument will provide the month abbreviations in the correct order
to produce a properly ordered factor.

For more details on formatting dates, see Section 4.3.
Sometimes more flexibility can be achieved by using the cut function,

which understands time units of months, days, weeks, and years through
the breaks= argument. (For date/time values, units of hours, minutes, and
seconds can also be used.) For example, to format the days of the year based
on the week in which they fall, we could use cut as follows:

> wks = cut(everyday,breaks=’week’)

> head(wks)

[1] 2004-12-27 2004-12-27 2005-01-03 2005-01-03

[5] 2005-01-03 2005-01-03

53 Levels: 2004-12-27 2005-01-03 ... 2005-12-26

Note that the first observation had a date earlier than any of the dates in
the everyday vector, since the first date was in middle of the week. By
default, cut starts weeks on Mondays; to use Sundays instead, pass the
start.on.monday=FALSE argument to cut.

74 5 Factors

Multiples of units can also be specified through the breaks= argument. For
example, to create a factor based on the quarter of the year an observation is
in, we could use cut as follows:

> qtrs = cut(everyday,"3 months",labels=paste(’Q’,1:4,sep=’’))

> head(qtrs)

[1] Q1 Q1 Q1 Q1 Q1 Q1

Levels: Q1 Q2 Q3 Q4

5.6 Interactions

Sometimes it is useful to treat all combinations of several factors as if they
were a single factor. In situations like these, the interaction function can be
used. This function will take two or more factors, and create a new, unordered
factor whose levels correspond to the combinations of the levels of the input
factors. For example, consider the data frame CO2, with factors Plant, Type,
and Treatment. Suppose we wish to create a new factor representing the
interaction of Plant and Type:

> data(CO2)

> newfact = interaction(CO2$Plant,CO2$Type)

> nlevels(newfact)

[1] 24

The factor Plant has 12 levels, and Type has two, resulting in 24 levels in the
new factor. However, some of these combinations never occur in the dataset.
Thus, interaction’s default behavior is to include all possible combinations
of its input factors. To retain only those combinations for which there were
observations, the drop=TRUE argument can be passed to interaction:

> newfact1 = interaction(CO2$Plant,CO2$Type,drop=TRUE)

> nlevels(newfact1)

[1] 12

By default, interaction forms levels for the new factor by joining the levels
of its component factors with a period (.). This can be overridden with the
sep= argument.

6

Subscripting

6.1 Basics of Subscripting

For objects that contain more than one element (vectors, matrices, arrays,
data frames, and lists), subscripting is used to access some or all of those
elements. Besides the usual numeric subscripts, R allows the use of character
or logical values for subscripting. Subscripting operations are very fast and
efficient, and are often the most powerful tool for accessing and manipulating
data in R. The next subsections describe the different type of subscripts sup-
ported by R, and later sections will address the issues of using subscripts for
particular data types.

6.2 Numeric Subscripts

Like most computer languages, numeric subscripts can be used to access the
elements of a vector, array, or list. The first element of an object has sub-
script 1; subscripts of 0 are silently ignored. In addition to a single number, a
vector of subscripts (or, for example, a function call that returns a vector of
subscripts) can be used to access multiple elements. The colon operator and
the seq function are especially useful here; see Section 2.8.1 for details.

Negative subscripts in R extract all of the elements of an object except the
ones specified in the negative subscript; thus, when using numeric subscripts,
subscripts must be either all positive (or zero) or all negative (or zero).

6.3 Character Subscripts

If a subscriptable object is named, a character string or vector of charac-
ter strings can be used as a subscript. Negative character subscripts are not
permitted; if you need to exclude elements based on their names, the grep

76 6 Subscripting

function (Section 7.7) can be used. Like other forms of subscripting, a call to
any function that returns a character string or vector of strings can be used
as a subscript.

6.4 Logical Subscripts

Logical values can be used to selectively access elements of a subscriptable
object, provided the size of the logical object is the same as the object (or
part of the object) that is being subscripted. Elements corresponding to TRUE

values in the logical vector will be included, and objects corresponding to
FALSE values will not. Logical subscripting provides a very powerful and simple
way to perform tasks that might otherwise require loops, while increasing the
efficiency of your program as well. The first step in understanding logical
subscripts is to examine the result of some logical expressions. Suppose we
have a vector of numbers, and we’re interested in those numbers which are
more than 10. We can see where those numbers are with a simple logical
expression.

> nums = c(12,9,8,14,7,16,3,2,9)

> nums > 10

[1] TRUE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE

Like most operations in R, logical operators are vectorized; applying a logical
subscript to a vector or an array will produce an object of the same size and
shape as the original object. In this example, we applied a logical operation
to a vector of length 10, and it returned a logical vector of length 10, with
TRUE in each position where the value in the original vector was greater than
10, and FALSE elsewhere. If we use this logical vector for subscripting, it will
extract the elements for which the logical vector is true:

> nums[nums>10]

[1] 12 14 16

For the closely related problem of finding the indices of these elements, R
provides the which function, which accepts a logical vector, and returns a
vector containing the subscripts of the elements for which the logical vector
was true:

> which(nums>10)

[1] 1 4 6

In this simple example, the operation is the equivalent of

> seq(along=nums)[nums > 10]

[1] 1 4 6

Logical subscripts allow for modification of elements that meet a particular
condition by using an appropriately subscripted object on the left-hand side

6.5 Subscripting Matrices and Arrays 77

of an assignment statement. If we wanted to change the numbers in nums that
were greater than 10 to zero, we could use

> nums[nums > 10] = 0

> nums

[1] 0 9 8 0 7 0 3 2 9

6.5 Subscripting Matrices and Arrays

Multidimensional objects like matrices introduce a new type of subscripting:
the empty subscript. For a multidimensional object, subscripts can be pro-
vided for each dimension, separated by commas. For example, we would refer
to the element of a matrix x in the fourth row and third column as x[4,3]. If
we omit, say, the second subscript and refer to x[4,], the subscripting oper-
ation will apply to the entire dimension that was omitted; in this case, all of
the columns in the fourth row of x. Thus, accessing entire rows and columns
is simple; just leave out the subscript for the dimension you’re not interested
in. The following examples show how this can be used:

> x = matrix(1:12,4,3)

> x

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

[3,] 3 7 11

[4,] 4 8 12

> x[,1]

[1] 1 2 3 4

> x[,c(3,1)]

[,1] [,2]

[1,] 9 1

[2,] 10 2

[3,] 11 3

[4,] 12 4

> x[2,]

[1] 2 6 10

> x[10]

[1] 10

Pay careful attention to the last example, where a matrix is subscripted with
a single subscript. In this case, the matrix is silently treated like a vector
composed of all the columns of the matrix. While this may be useful in cer-
tain situations, you should generally use two subscripts when working with
matrices.

78 6 Subscripting

Notice that by manipulating the order of subscripts, we can create a sub-
matrix with rows or columns in whatever order we want. This fact coupled
with the order function provides a method to sort a matrix or data frame
in the order of any of its columns. The order function returns a vector of
indices that will permute its input argument into sorted order. Perhaps the
best way to understand order is to consider that x[order(x)] will always be
identical to sort(x). Suppose we wish to sort the rows of the stack.x matrix
by increasing values of the Air.Flow variable. We can use order as follows:

> stack.x.a = stack.x[order(stack.x[,’Air.Flow’]),]

> head(stack.x.a)

Air.Flow Water.Temp Acid.Conc.

15 50 18 89

16 50 18 86

17 50 19 72

18 50 19 79

19 50 20 80

20 56 20 82

Note the comma after the call to order, indicating that we wish to rearrange
all the columns of the matrix in the order of the specified variable. To reverse
the order of the resulting sort, use the decreasing=TRUE argument to order.
Although the order function accepts multiple arguments to allow ordering
by multiple variables, it is sometimes inconvenient to have to list each such
argument in the function call. For example, we might want a function which
can accept a variable number of ordering variables, and which will then call
order properly, regardless of how many arguments are used. Problems like
this can be easily handled in R with the do.call function. The idea behind
do.call is that it takes a list of arguments and prepares a call to a function
of your choice, using the list elements as if they had been passed to the func-
tion as individual arguments. The first argument to do.call is a function or
a character variable containing the name of a function, and the only other
required argument is a list containing the arguments that should be passed
to the function. Using do.call, we can write a function to sort the rows of a
data frame by any number of its columns:

sortframe = function(df,...)df[do.call(order,list(...)),]

(When used inside a function allowing multiple unnamed arguments, the ex-
pression list(...) creates a list containing all the unnamed arguments.)
For example, to sort the rows of the iris data frame by Sepal.Length and
Sepal.Width, we could call sortframe as follows:

6.5 Subscripting Matrices and Arrays 79

> with(iris,sortframe(iris,Sepal.Length,Sepal.Width))

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

14 4.3 3.0 1.1 0.1 setosa

9 4.4 2.9 1.4 0.2 setosa

39 4.4 3.0 1.3 0.2 setosa

43 4.4 3.2 1.3 0.2 setosa

42 4.5 2.3 1.3 0.3 setosa

4 4.6 3.1 1.5 0.2 setosa

48 4.6 3.2 1.4 0.2 setosa

7 4.6 3.4 1.4 0.3 setosa

23 4.6 3.6 1.0 0.2 setosa

. . .

Another common operation, reversing the order of rows or columns of a
matrix , can be achieved through the use of a call to the rev function as either
the row or column subscript. For example, to create a version of the iris data
frame whose rows are in the reverse order of the original, we could use

> riris = iris[rev(1:nrow(iris)),]

> head(riris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

150 5.9 3.0 5.1 1.8 virginica

149 6.2 3.4 5.4 2.3 virginica

148 6.5 3.0 5.2 2.0 virginica

147 6.3 2.5 5.0 1.9 virginica

146 6.7 3.0 5.2 2.3 virginica

145 6.7 3.3 5.7 2.5 virginica

By default, subscripting operations reduce the dimensions of an array
whenever possible. The result of this is that functions will sometimes fail
when passed a single row or column from a matrix, since subscripting can
potentially return a vector, even though the subscripted object is an array.
To prevent this from happening the array nature of the extracted part can
be retained with the drop=FALSE argument, which is passed along with the
subscripts of the array. This example shows the effect of using this argument:

> x = matrix(1:12,4,3)

> x[,1]

[1] 1 2 3 4

> x[,1,drop=FALSE]

[,1]

[1,] 1

[2,] 2

[3,] 3

[4,] 4

80 6 Subscripting

Note the “extra” comma inside the subscripting brackets – drop=FALSE is
considered an argument to the subscripting operation. drop=FALSE may also
prove useful if a named column loses its name when passed to a function.

Using subscripts, it’s easy to selectively access any combination of rows
and/or columns that you need. Suppose we want to find all of the rows in x

for which the first column is less than 3. Since we want all the elements of
these rows, we will use an empty subscript for the column (second) dimension.
Once again it may be instructive to examine the subscript used for the first
dimension:

> x[,1] < 3

[1] TRUE TRUE FALSE FALSE

> x[x[,1] < 3,]

[,1] [,2] [,3]

[1,] 1 5 9

[2,] 2 6 10

The logical vector x[,1] < 3 is of length 4, the number of rows in the matrix;
thus, it can be used as a logical subscript for the first dimension to specify
the rows we’re interested in. By using the expression with an empty second
subscript, we extract all of the columns for these rows.

Matrices allow an additional special form of subscripting. If a two-column
matrix is used as a subscript for a matrix, the elements specified by the row
and column combination of each line will be accessed. This makes it easy
to create matrices from tabular values. Consider the following matrix, whose
first two columns represent a row and column number, and whose last column
represents a value:

> mat = matrix(scan(),ncol=3,byrow=TRUE)

1: 1 1 12 1 2 7 2 1 9 2 2 16 3 1 12 3 2 15

19:

Read 18 items

> mat

[,1] [,2] [,3]

[1,] 1 1 12

[2,] 1 2 7

[3,] 2 1 9

[4,] 2 2 16

[5,] 3 1 12

[6,] 3 2 15

The row and column numbers found in the first two columns describe a matrix
with three rows and two columns; we first create a matrix of missing values
to hold the result, and then use the first two columns of the matrix as the
subscript, with the third column being assigned to the new matrix:

> newmat = matrix(NA,3,2)

> newmat[mat[,1:2]] = mat[,3]

6.6 Specialized Functions for Matrices 81

> newmat

[,1] [,2]

[1,] 12 7

[2,] 9 16

[3,] 12 15

Any elements whose values were not specified will retain their original values,
in this case a value of NA. See the discussion of xtabs in Section 8.1 for an
alternative method of converting tabulated data into an R table.

6.6 Specialized Functions for Matrices

Two simple functions, while not very useful on their own, extend the power of
subscripting for matrices based on the relative positions of matrix elements.
The row function, when passed a matrix, returns a matrix of the identical
dimensions with the row numbers of each element, while col plays the same
role, but uses the column numbers. For example, consider an artificial contin-
gency table showing the results of two different classification methods for a
set of objects:

> method1 = c(1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4)

> method2 = c(1,2,2,3,2,2,1,3,3,3,2,4,1,4,4,3)

> tt = table(method1,method2)

> tt

method2

method1 1 2 3 4

1 1 2 1 0

2 1 2 1 0

3 0 1 2 1

4 1 0 1 2

Suppose we want to extract all the off-diagonal elements. One way to think
about these elements is that their row number and column numbers are dif-
ferent. Expressed using the row and col functions, this is equivalent to

> offd = row(tt) != col(tt)

> offd

[,1] [,2] [,3] [,4]

[1,] FALSE TRUE TRUE TRUE

[2,] TRUE FALSE TRUE TRUE

[3,] TRUE TRUE FALSE TRUE

[4,] TRUE TRUE TRUE FALSE

Since this matrix is the same size as tt, it can be used as a subscript to extract
the off-diagonal elements:

> tt[offd]

[1] 1 0 1 2 1 0 1 1 1 0 0 1

82 6 Subscripting

So, for example, we could calculate the sum of the off-diagonal elements as

> sum(tt[offd])

The R functions lower.tri and upper.tri use this technique to return a
logical matrix useful in extracting the lower or upper triangular elements of
a matrix. Each accepts a diag= argument; setting this argument to TRUE will
set the diagonal elements of the matrix to TRUE along with the off-diagonal
ones.

The diag function can be used to extract or set the diagonal elements of
a matrix, or to form a matrix which has specified values on the diagonals.

6.7 Lists

Lists are the most general way to store a collection of objects in R, because
there is no limitation on the mode of the objects that a list may hold. Al-
though it hasn’t been explicitly stated, one rule of subscripting in R is that
subscripting will always return an object of the same mode as the object being
subscripted. For matrices and vectors, this is completely natural, and should
never cause confusion. But for lists, there is a subtle distinction between part
of a list, and the object which that part of the list represents. As a simple
example, consider a list with some names and some numbers:

> simple = list(a=c(’fred’,’sam’,’harry’),b=c(24,17,19,22))

> mode(simple)

[1] "list"

> simple[2]

$b

[1] 24 17 19 22

> mode(simple[2])

[1] "list"

Although it looks as if simple[2] represents the vector, it’s actually a list
containing the vector; operations that would work on the vector will fail on
this list:

> mean(simple[2])

[1] NA

Warning message:

argument is not numeric or logical:

returning NA in: mean.default(simple[2])

R provides two convenient ways to resolve this issue. First, if the elements
of the list are named, the actual contents of the elements can be accessed by
separating the name of the list from the name of the element with a dollar sign
($). So we could get around the previous problem by referring to simple[2]

6.8 Subscripting Data Frames 83

as simple$b. For interactive sessions, using the dollar sign notation is the
natural way to perform operations on the elements of a list.

For those situations where the dollar sign notation would be inappropriate
(for example, accessing elements through their index or through a name stored
in a character variable), R provides the double bracket subscript operator.
Double brackets are not restricted to respect the mode of the object they are
subscripting, and will extract the actual list element from the list. So in order
to find the mean of a numeric list element we could use any of these three
forms:

> mean(simple$b)

[1] 20.5

> mean(simple[[2]])

[1] 20.5

> mean(simple[[’b’]])

[1] 20.5

The key thing to notice is that in this case, single brackets will always
return a list containing the selected element(s), while double brackets will
return the actual contents of selected list element. This difference can be
visualized by printing the two different forms:

> simple[1]

$a

[1] "fred" "sam" "harry"

> simple[[1]]

[1] "fred" "sam" "harry"

The “$a” is an indication that the object being displayed is a list, with
a single element named a, not a vector. Notice that double brackets are
not appropriate for ranges of list elements; in these cases single brackets
must be used. For example, to access both elements of the simple list, we
could use simple[c(1,2)], simple[1:2], or simple[c(’a’,’b’)], but us-
ing simple[[1:2]] would not produce the expected result.

6.8 Subscripting Data Frames

Since data frames are a cross between a list and a matrix, it’s not surprising
that both matrix and list subscripting techniques apply to data frames. One
of the few differences regards the use of a single subscript; when a single
subscript is used with a data frame, it behaves like a list rather than a vector,
and the subscripts refer to the columns of the data frame, which are its list
elements.

When using logical subscripts with data frames containing missing values,
it may be necessary to remove the missing values before the logical comparison

84 6 Subscripting

is made, or unexpected results may occur. For example, consider this small
data frame where we want to find all the rows where b is greater than 10:

> dd = data.frame(a=c(5,9,12,15,17,11),b=c(8,NA,12,10,NA,15))

> dd[dd$b > 10,]

a b

NA NA NA

3 12 12

NA.1 NA NA

6 11 15

Along with the desired results are additional rows wherever a missing value
appeared in b. The problem is easily remedied by using a more complex logical
expression that insures missing values will generate a value of FALSE instead
of NA:

> dd[!is.na(dd$b) & dd$b > 10,]

a b

3 12 12

6 11 15

This situation is so common that R provides the subset function which ac-
cepts a data frame, matrix or vector, and a logical expression as its first two
arguments, and which returns a similar object containing only those elements
that meet the condition of the logical expression. It insures that missing values
don’t get included, and, if its first argument is a data frame or matrix with
named columns, it also resolves variable names inside the logical expression
from the object passed as the first argument. So subset could be used for the
previous example as follows:

> subset(dd,b>10)

a b

3 12 12

6 11 15

Notice that it’s not necessary to use the data frame name when referring
to variables in the subsetting argument. A further convenience is offered by
the select= argument which will extract only the specified columns from
the data frame passed as the first argument. The argument to select= is a
vector of integers or variable names which correspond to the columns that are
to be extracted. Unlike most other functions in R, names passed through the
select= argument can be either quoted or unquoted. To ignore columns, their
name or index number can be preceded by a negative sign (-). For example,
consider the LifeCycleSavings data frame distributed with R. Suppose we
want to create a data frame containing the variables pop15 and pop75 for
those observations in the data frame for which sr is greater than 10. The
following expression will create the data frame:

> some = subset(LifeCycleSavings,sr>10,select=c(pop15,pop75))

6.8 Subscripting Data Frames 85

Since the select= argument works by replacing variable names with their cor-
responding column indices, ranges of columns can be specified using variable
names:

> life1 = subset(LifeCycleSavings,select=pop15:dpi)

will extract columns starting at pop15 and ending at dpi. Since these are the
first three columns of the data frame, an equivalent specification would be

> life1 = subset(LifeCycleSavings,select=1:3)

Similarly, we could create a data frame like LifeCycleSavings, but without
the pop15 and pop75 columns with expressions like the following:

> life2 = subset(LifeCycleSavings,select=c(-pop15,-pop75))

or

> life2 = subset(LifeCycleSavings,select=-c(2,3))

Remember that the subset function will always return a new data frame,
matrix or vector, so it is not suited for modifying selected parts of a data
frame. In those cases, the basic subscripting operations described above must
be used.

7

Character Manipulation

While R is usually thought of as a language designed for numerical computa-
tion, it contains a full complement of functions which can manipulate charac-
ter data. Combined with R’s powerful vectorized operations, these functions
can perform the same sorts of tasks that scripting languages like perl and
python are often used for.

7.1 Basics of Character Data

Character values in R can be stored as scalars, vectors, or matrices, or they
can be columns of a data frame or elements of a list. When applied to objects
like this, the length function will report the number of character values in
the object, not the number of characters in each string. To find the number
of characters in a character value, the nchar function can be used. Like most
functions in R, nchar is vectorized. For example, the names of the fifty states
in the United States can be found in the vector state.name which is distrib-
uted as part of R. To find the lengths of the names of the states, nchar can
be used:

> nchar(state.name)

[1] 7 6 7 8 10 8 11 8 7 7 6 5 8 7 4

[16] 6 8 9 5 8 13 8 9 11 8 7 8 6 13 10

[31] 10 8 14 12 4 8 6 12 12 14 12 9 5 4 7

[46] 8 10 13 9 7

7.2 Displaying and Concatenating Character Strings

Like other objects in R, character values will be displayed when their name is
typed at the console or when they are passed to the print function. However,
it is often more convenient to print or display these objects directly without

88 7 Character Manipulation

the subscripts that the print function provides. The cat function will com-
bine character values and print them to the screen or a file directly. The cat

function coerces its arguments to character values, then concatenates and dis-
plays them. This makes the function ideal for printing messages and warnings
from inside of functions:

> x = 7

> y = 10

> cat(’x should be greater than y, but x=’,x,’and y=’,y,’\n’)

x should be greater than y, but x= 7 and y= 10

Note the use of a newline (\n) in the argument list to insure that a complete
line is displayed. cat will always print a newline when it encounters a new-
line character. When there are multiple strings passed to cat, or when the
argument to cat is a vector of character strings, the fill= argument can be
used to automatically insert newlines into the output string. If fill= is set
to TRUE, the value of the system width option will be used to determine the
linesize; if a numeric value is used, the output will be displayed using that
width, although cat will not insert newlines into individual elements of its
input:

> cat(’Long strings can’,’be displayed over’,

+ ’several lines using’,’the fill= argument’,

+ fill=40)

Long strings can be displayed over

several lines using the fill= argument

The cat function also accepts a file= argument to specify that its out-
put should be directed to a file. When the file= argument is used, the
append=TRUE argument can also be provided to have cat append its output
to an already existing file.

For more control over the way that character values are concatenated, the
paste function can be used. In its simplest usage, this function will accept an
unlimited number of scalars, and join them together, separating each scalar
with a space by default. To use a character string other than a space as a
separator, the sep= argument can be used. If any object passed to paste is
not of mode character, it is converted to character:

> paste(’one’,2,’three’,4,’five’)

[1] "one 2 three 4 five"

If a character vector is passed to paste, the collapse= argument can be used
to specify a character string to place between each element of the vector:

> paste(c(’one’,’two’,’three’,’four’),collapse=’ ’)

[1] "one two three four"

Note that the collapse= argument must be used in these cases, as sep= has
no effect when applied to a vector.

7.3 Working with Parts of Character Values 89

When multiple arguments are passed to paste, it will vectorize the opera-
tion, recycling shorter elements when necessary. This makes it easy to generate
variable names with a common prefix:

> paste(’X’,1:5,sep=’’)

[1] "X1" "X2" "X3" "X4" "X5"

> paste(c(’X’,’Y’),1:5,sep=’’)

[1] "X1" "Y2" "X3" "Y4" "X5"

In cases like this, the sep= argument controls what is placed between each
set of values that are combined, and the collapse= argument can be used to
specify a value to use when joining those individual values to create a single
string:

> paste(c(’X’,’Y’),1:5,sep=’_’,collapse=’|’)

[1] "X_1|Y_2|X_3|Y_4|X_5"

The same sort of operations can be applied to multiple arguments to paste:

> paste(c(’X’,’Y’),1:5,’^’,c(’a’,’b’),sep=’_’,collapse=’|’)

[1] "X_1_^_a|Y_2_^_b|X_3_^_a|Y_4_^_b|X_5_^_a"

By omitting the collapse argument, the individual pasted pieces are returned
separately instead of being joined into a single string:

> paste(c(’X’,’Y’),1:5,’^’,c(’a’,’b’),sep=’_’)

[1] "X_1_^_a" "Y_2_^_b" "X_3_^_a" "Y_4_^_b" "X_5_^_a"

7.3 Working with Parts of Character Values

Individual characters of character values are not accessible through ordinary
subscripting. Instead, the substring function can be used either to extract
parts of character strings, or to change the values of parts of character strings.
In addition to the string being operated on, substring accepts a first=

argument giving the first character of the desired substring, and a last=

argument giving the last character. If not specified, last= defaults to a large
number, so that specifying just a start= value will operate from that character
to the end of the string. Like most functions in R, substring is vectorized,
operating on multiple strings at once:

> substring(state.name,2,6)

[1] "labam" "laska" "rizon" "rkans" "alifo" "olora" "onnec"

[8] "elawa" "lorid" "eorgi" "awaii" "daho" "llino" "ndian"

[15] "owa" "ansas" "entuc" "ouisi" "aine" "aryla" "assac"

[22] "ichig" "innes" "issis" "issou" "ontan" "ebras" "evada"

[29] "ew Ha" "ew Je" "ew Me" "ew Yo" "orth " "orth " "hio"

[36] "klaho" "regon" "ennsy" "hode " "outh " "outh " "ennes"

[43] "exas" "tah" "ermon" "irgin" "ashin" "est V" "iscon"

[50] "yomin"

90 7 Character Manipulation

Notice that in the case of strings that have fewer characters than specified
in the last= argument (like Ohio or Texas in this example), substring re-
turns as many characters as it finds with no padding provided. (The sprintf
function can be used to pad a series of character values to a common size; see
Section 2.13.)

Vectorization takes place for the first= and last= arguments as well as
for character vectors passed to subscript. Although the strsplit function
described in Section 7.6 can perform the operation automatically, a vector of
character values can be created from a single string by substring as follows:

> mystring = ’dog cat duck’

> substring(mystring,c(1,5,9),c(3,7,12))

[1] "dog" "cat" "duck"

For finding locations of particular characters within a character string, the
string first needs to be converted to a character vector containing individual
characters. This can be done by passing a vector consisting of all the characters
to be processed as both the first= and last= arguments, and then applying
which to the result:

> state = ’Mississippi’

> ll = nchar(state)

> ltrs = substring(state,1:ll,1:ll)

> ltrs

[1] "M" "i" "s" "s" "i" "s" "s" "i" "p" "p" "i"

> which(ltrs == ’s’)

[1] 3 4 6 7

The assignment form of substring allows replacement of selected portions
of character strings, but substring will only replace parts of the string with
values that have the same number of characters; if a string that’s shorter
than the implied substring is provided, none of the original string will be
overwritten:

> mystring = ’dog cat duck’

> substring(mystring,5,7) = ’feline’

> mystring

[1] "dog fel duck"

> mystring = ’dog cat duck’

> substring(mystring,5,7) = ’a’

> mystring

[1] "dog aat duck"

7.4 Regular Expressions in R

Regular expressions are a method of expressing patterns in character values
which can then be used to extract parts of strings or to modify those strings

7.5 Basics of Regular Expressions 91

in some way. Regular expressions are supported in the R functions strsplit,
grep, sub, and gsub, as well as in the regexpr and gregexpr functions which
are the main tools for working with regular expressions in R.

Regular expression syntax varies depending on the particular implemen-
tation a program uses. R tries to provide a great deal of flexibility regard-
ing the regular expressions it understands. By default, R uses a basic set of
regular expressions similar to those used by UNIX utilities like grep. The
extended=TRUE argument to R functions that support regular expressions ex-
tend the set of regular expressions to include those supported by the POSIX
1003.2 standard. To use regular expressions like those supported by scripting
languages such as perl and python, the perl=TRUE argument can be used.
Thus, if you’re already familiar with a particular type of regular expressions,
you can probably find an option that will make R work the way you expect
it to.

The backslash character (\) is used in regular expressions to signal that cer-
tain characters with special meaning in regular expressions should be treated
as normal characters. In R, this means that two backslash characters need to
be entered into an input string anywhere that special characters need to be es-
caped. Although the double backslash will display when the string is printed,
nchar or cat can verify that only a single backslash is actually included in the
string. For example, in regular expressions, a period (.) is ordinarily matched
by any single character. To create a regular expression that would match file
names with an extension of “.txt”, we could use a regular expression like

> expr = ’.*\\.txt’

> nchar(expr)

[1] 7

> cat(expr,’\n’)

.*\.txt

Single backslashes, like those which are part of a newline character (\n), will
be interpreted correctly inside of regular expressions. One way to avoid the
need for quotes or double backslashes is to use the readline function to enter
your regular expressions into R. For example, we could use readline in the
previous example as follows:

> expr = readline()

.*\.txt

> nchar(expr)

[1] 7

7.5 Basics of Regular Expressions

Regular expressions are composed of three components: literal characters,
which are matched by a single character; character classes, which can be

92 7 Character Manipulation

matched by any of a number of characters, and modifiers, which operate on
literal characters or character classes. Since many punctuation marks are reg-
ular expression modifiers, the following characters must always be preceded
by a backslash to retain their literal meaning:

. ^ $ + ? * () [] { } | \

To form a character class, use square brackets ([]) surrounding the charac-
ters that you would like to match. For example, to create a character class that
will be matched by either a, b, or 3, use [ab3]. Dashes can be used inside
of character classes to represent a range of values such as [a-z] or [5-9].
Because of this, if a dash is to be literally included in a character class, it
should either be the first character in the class or it should be preceded by
a backslash. Other special characters (except square brackets) do not need a
backslash when used in a character class.

Using characters and character classes as basic building blocks, we can now
construct regular expressions by understanding the modifiers that are part of
the regular expression language. These operators are listed in Table 7.1.

Modifier Meaning

^ anchors expression to beginning of target
$ anchors expression to end of target
. matches any single character except newline
| separates alternative patterns
() groups patterns together
* matches 0 or more occurrences of preceding entity
? matches 0 or 1 occurrences of preceding entity
+ matches 1 or more occurrences of preceding entity

{n} matches exactly n occurrences of preceding entity
{n,} matches at least n occurrences of preceding entity
{n,m} matches between n and m occurrences

Table 7.1. Modifiers for regular expressions

The modifiers operate on whatever entity they follow, using parentheses
for grouping if necessary. As some simple examples, a string with two digits
followed by one or more letters could be matched by the regular expression
“[0-9][0-9][a-zA-Z]+”; three consecutive occurrences of the string “abc”
could be matched by “(abc){3}”; a filename consisting of all letters, and
ending in “.jpg” could be matched by “^[a-zA-Z]+\\.jpg$”. (In the pre-
vious example, the double backslashes would be required if you entered the
regular expression as a quoted string in R; if you used readline to enter the
expression, you would use just a single backslash.)

Remember that regular expressions are simply character strings in R, so
they can be manipulated like any other character strings. For example, the

7.6 Breaking Apart Character Values 93

vertical bar (|) is used in regular expressions to express alternation. To create
a regular expression that would be matched by several different strings, we
can combine the strings using the bar as a separator:

> strs = c(’chicken’,’dog’,’cat’)

> expr = paste(strs,collapse=’|’)

> expr

[1] "chicken|dog|cat"

The variable expr could now be used as a regular expression to match any of
the words in the original vector.

7.6 Breaking Apart Character Values

The strsplit function can use a character string or regular expression to di-
vide up a character string into smaller pieces. The first argument to strsplit

is the character string to break up, and the second argument is the character
value or regular expression which should be used to break up the string into
parts.

Like other functions that can return different numbers of elements from
their inputs, strsplit returns its results as a list, even when its input is a
single character string. For example, suppose we want to break up a simple
sentence into individual words, by splitting the string wherever a blank occurs:

> sentence =

+ ’R is a free software environment for statistical computing’

> parts = strsplit(sentence,’ ’)

> parts

[[1]]

[1] "R" "is" "a" "free"

[5] "software" "environment" "for" "statistical"

[9] "computing"

To access the results, the first element of the list must be used:

> length(parts)

[1] 1

> length(parts[[1]])

[1] 9

When the input to strsplit is a vector of character strings, sapply can be
used to process the output to return results for each of the strings:

> more = c(’R is a free software environment for statistical

+ computing’, ’It compiles and runs on a wide

variety of UNIX platforms’)

> result = strsplit(more,’ ’)

> sapply(result,length)

[1] 9 11

94 7 Character Manipulation

Alternatively, if the structure of the output is not important, all of the split
parts can be combined using unlist:

> allparts = unlist(result)

> allparts

[1] "R" "is" "a" "free"

[5] "software" "environment" "for" "statistical"

[9] "computing" "It" "compiles" "and"

[13] "runs" "on" "a" "wide"

[17] "variety" "of" "UNIX" "platforms"

Because strsplit can accept regular expressions to decide where to split
a character string, a wide variety of situations can be easily handled. For
example, if there are multiple spaces in a string, and a space is used as the
splitting character, extra empty strings may be returned:

> str = ’one two three four’

> strsplit(str,’ ’)

[[1]]

[1] "one" "" "two" "" "" "three" "four"

By using a regular expression representing one or more blanks (using the +

modifier), we can extract only nonempty strings:

> strsplit(str,’ +’)

[[1]]

[1] "one" "two" "three" "four"

Using an empty string as the splitting character, strsplit can return a
list of individual characters from a vector of character strings:

> words = c(’one two’,’three four’)

> strsplit(words,’’)

[[1]]

[1] "o" "n" "e" " " "t" "w" "o"

[[2]]

[1] "t" "h" "r" "e" "e" " " "f" "o" "u" "r"

7.7 Using Regular Expressions in R

The grep function accepts a regular expression and a character string or vector
of character strings, and returns the indices of those elements of the strings
which are matched by the regular expression. If the value=TRUE argument is
passed to grep, it will return the actual strings which matched the expression
instead of the indices.

If the string to be matched should be interpreted literally (i.e., not as a
regular expression), the fixed=TRUE argument should be used.

7.7 Using Regular Expressions in R 95

One important use of grep is to extract a set of variables from a data
frame based on their names. For example, the LifeCycleSavings data frame
contains two variables with information about the percentage of population
less than 15 years old (pop15) or greater than 75 years old (pop75). Since
both of these variables begin with the string “pop”, we can find their indices
or values using grep:

> grep(’^pop’,names(LifeCycleSavings))

[1] 2 3

> grep(’^pop’,names(LifeCycleSavings),value=TRUE)

[1] "pop15" "pop75"

To create a data frame with just these variables, we can use the output of
grep as a subscript:

> head(LifeCycleSavings[,grep(’^pop’,names(LifeCycleSavings))])

pop15 pop75

Australia 29.35 2.87

Austria 23.32 4.41

Belgium 23.80 4.43

Bolivia 41.89 1.67

Brazil 42.19 0.83

Canada 31.72 2.85

To find regular expressions without regard to the case (upper or lower)
of the input, the ignore.case=TRUE argument can be used. To search for
the string “dog” appearing as a word and ignoring case, we could use the
following:

> inp = c(’run dog run’,’work doggedly’,’CAT AND DOG’)

> grep(’\\<dog\\>’,inp,ignore.case=TRUE)

[1] 1 3

Surrounding a string with escaped angle brackets (\\< and \\>) restricts
matches to the case where the string is surrounded by either white space,
punctuation, or a line ending or beginning.

If the regular expression passed to grep is not matched in any of its inputs,
grep returns an empty numeric vector. Thus, the any function can be used
to test if a regular expression occurs anywhere in a vector of strings:

> str1 = c(’The R Foundation’,’is a not for profit

+ organization’,’working in the public interest’)

> str2 = c(’ It was founded by the members’,

+ ’of the R Core Team in order’,

+ ’to provide support for the R project’)

> any(grep(’profit’,str1))

[1] TRUE

> any(grep(’profit’,str2))

[1] FALSE

96 7 Character Manipulation

While the grep function can be used to test for the presence of a regular
expression, sometimes more details regarding the matches that are found are
needed. In R, the regexpr and gregexpr functions can be used to pinpoint
and possibly extract those parts of a string that were matched by a regular
expression. The output from these functions is a vector of starting positions
of the regular expressions which were found; if no match occurred, a value of
-1 is returned. In addition, an attribute called match.length is associated
with the vector of starting positions to provide information about exactly
which characters were involved in the match. The regexpr function will only
provide information about the first match in its input string(s), while the
gregexpr function returns information about all matches found. The input
arguments to regexpr and gregexpr are similar to those of grep; however,
the ignore.case=TRUE argument is not available in versions of R earlier than
version 2.6.

Since regexpr only reports the first match it finds, it will always return
a vector, with -1 in those positions where no match was found. To extract
the strings that actually matched, substr can be used, after calculating the
ending position from the regexpr output and the match.length attribute:

> tst = c(’one x7 two b1’,’three c5 four b9’,

+ ’five six seven’,’a8 eight nine’)

> wh = regexpr(’[a-z][0-9]’,tst)

> wh

[1] 5 7 -1 1

attr(,"match.length")

[1] 2 2 -1 2

> res = substring(tst,wh,wh + attr(wh,’match.length’) - 1)

> res

[1] "x7" "c5" "" "a8"

In the case of the third string, which did not contain the regular expression,
an empty string is returned, preserving the structure of the output relative to
the input. If empty strings are not desired, they can be easily removed:

> res[res != ’’]

[1] "x7" "c5" "a8"

The output from gregexpr is similar to that of regexpr, but, like
strsplit, gregexpr always returns its result in the form of a list. Continuing
the previous example, but looking for all matches, we can call gregexpr as
follows:

> wh1 = gregexpr(’[a-z][0-9]’,tst)

> wh1

[[1]]

[1] 5 12

attr(,"match.length")

[1] 2 2

7.7 Using Regular Expressions in R 97

[[2]]

[1] 7 15

attr(,"match.length")

[1] 2 2

[[3]]

[1] -1

attr(,"match.length")

[1] -1

[[4]]

[1] 1

attr(,"match.length")

[1] 2

To further process the results from gregexpr, we need to call the substring

function for each element of the output list. One way to do it is with a loop:

> res1 = list()

> for(i in 1:length(wh1))

+ res1[[i]] = substring(tst[i],wh1[[i]],

+ wh1[[i]] +

+ attr(wh1[[i]],’match.length’) -1)

> res1

[[1]]

[1] "x7" "b1"

[[2]]

[1] "c5" "b9"

[[3]]

[1] ""

[[4]]

[1] "a8"

Another possibility for processing the output is to use mapply. The first
argument to mapply is a function that accepts multiple arguments; the re-
maining arguments are vectors of equal lengths (like the text input and the
output from gregexpr), whose elements will be passed to that function one at
a time. The same technique used in the previous example can be encapsulated
into a function as follows:

> getexpr = function(str,greg)substring(str,greg,

+ greg + attr(greg,’match.length’) - 1)

Now mapply can be called with the two vectors of interest:

98 7 Character Manipulation

> res2 = mapply(getexpr,tst,wh1)

> res2

$"one x7 two b1"

[1] "x7" "b1"

$"three c5 four b9"

[1] "c5" "b9"

$"five six seven"

[1] ""

$"a8 eight nine"

[1] "a8"

One advantage of this approach is that it automatically creates an appropriate
object to hold the output; in addition, mapply uses the input strings as names
in the output, which may or may not be desirable.

7.8 Substitutions and Tagging

For substituting text based on regular expressions, R provides two functions:
sub and gsub. Each of these functions accepts a regular expression, a string
containing what will be substituted for the regular expression, and the string
or strings to operate on. The sub function changes only the first occurrence
of the regular expression, while the gsub function performs the substitution
on all occurrences within the string.

One important use of these functions concerns numeric data which is read
from text sources like web pages or financial reports, and which may contain
commas or dollar signs. For example, suppose we’ve input a vector of values
from a financial report as follows:

> values = c(’$11,317.35’,’$11,234.51’,’$11,275.89’,

+ ’$11,278.93’,’$11,294.94’)

To use these values as numbers, the commas and dollar signs need to be
removed before as.numeric can be used. A regular expression to find either
commas or dollar signs can be composed using a character class, and this can
be passed to gsub with an empty substitution pattern, providing values which
can be converted to numbers:

> as.numeric(gsub(’[$,]’,’’,values))

[1] 11317.35 11234.51 11275.89 11278.93 11294.94

When using this technique, avoid using as.numeric on anything less than an
entire vector of values, since the mode of an individual element of a matrix or
a single value in a data frame cannot be changed.

7.8 Substitutions and Tagging 99

When using the substitution functions, a powerful feature known as tag-
ging of regular expressions is available. When part of a regular expression is
surrounded by (unescaped) parentheses, that part can be used in a substitu-
tion pattern by representing it as a backslash followed by a number. The first
tagged pattern is represented by \\1, the second by \\2, and so on. A com-
mon practice in financial reports is to surround values that represent negative
numbers with parentheses; these parentheses will prevent R from properly
interpreting such values as numbers. We can tag the number inside the paren-
theses using a regular expression, and substitute the value by preceding it with
a minus sign. Note the difference between the literal parentheses (preceded by
two backslashes) and the parentheses used for tagging:

> values = c(’75.99’,’(20.30)’,’55.20’)

> as.numeric(gsub(’\\(([0-9.]+)\\)’,’-\\1’,values))

[1] 75.99 -20.30 55.20

To extract just the tagged pattern from a regular expression, one possi-
bility is to use the regular expression beginning and end anchor characters
(^ and $, respectively) to account for all the nontagged characters in the
string, and specify just the tagged expression for the substitution string. For
example, suppose we are trying to extract a value preceded by the string
value= from a longer string. Simply substituting the regular expression for
the tagged part will retain all the other parts of the string:

> str = ’report: 17 value=12 time=2:00’

> sub(’value=([^]+)’,’\\1’,str)

[1] "report: 17 12 time=2:00"

(The regular expression [^]+ is interpreted as one or more occurrences of a
character that is not a blank.) By expanding the regular expression to include
all the unwanted parts, the substitution will extract just what we want:

> sub(’^.*value=([^]+).*$’,’\\1’,str)

[1] "12"

Another strategy is to use regexpr or gregexpr to find the location of the
match, and apply sub or gsub to the extracted parts:

> str = ’report: 17 value=12 time=2:00’

> greg = gregexpr(’value=[^]+’,str)[[1]]

> sub(’value=([^]+)’,’\\1’,

+ substring(str,greg,greg

+ attr(greg, ’match.length’) - 1))

[1] "12"

8

Data Aggregation

R provides a wide array of functions to aid in aggregating data. For simple
tabulation and cross-tabulation, the table function is available. For more
complex tasks, the available functions can be broken down into two groups:
those that are designed to work effectively with arrays and/or lists, like apply,
sweep, mapply, sapply, and lapply, and those that are oriented toward data
frames (like aggregate and by). There is considerable overlap between the
two tools, and the output of one can be converted to the equivalent of the
output from another, so often the choice of an appropriate function is a matter
of personal taste.

We’ll start by looking at the table function, and then study the other
functions which can be used to aggregate data from various sources.

8.1 table

The arguments to the table function can either be individual vectors repre-
senting the levels of interest, or a list or data frame composed of such vectors.
The result from table will always be an array of as many dimensions as the
number of vectors being tabulated, with dimnames extracted from the levels of
the cross-tabulated variables. By default, table will not include missing values
in its output; to override this, use the exclude=NULL argument. When passed
a single vector of values, table returns an object of class table, which can
be treated as a named vector. For simple queries regarding individual levels
of a tabulated variable, this may be the most convenient form of displaying
and storing the values:

> pets = c(’dog’,’cat’,’duck’,’chicken’,’duck’,’cat’,’dog’)

> tt = table(pets)

102 8 Data Aggregation

> tt

pets

cat chicken dog duck

2 1 2 2

> tt[’duck’]

duck

2

> tt[’dog’]

dog

2

Alternatively, the output from table can be converted to a data frame using
as.data.frame:

> as.data.frame(tt)

pets Freq

1 cat 2

2 chicken 1

3 dog 2

4 duck 2

When multiple vectors are passed to table, an array of as many dimensions
as there are vectors is returned. For this example, the state.region and
state.x77 datasets are used, creating a table that shows the number of states
whose income is above and below the median income for all states, broken
down by region:

> hiinc = state.x77[,’Income’] > median(state.x77[,’Income’])

> stateinc = table(state.region,hiinc)

> stateinc

hiinc

state.region FALSE TRUE

Northeast 4 5

South 12 4

North Central 5 7

West 4 9

This result can be converted to a data frame using as.data.frame:

> as.data.frame(stateinc)

state.region hiinc Freq

1 Northeast FALSE 4

2 South FALSE 12

3 North Central FALSE 5

4 West FALSE 4

5 Northeast TRUE 5

6 South TRUE 4

7 North Central TRUE 7

8 West TRUE 9

8.1 table 103

When passed a data frame, table treats each column as a separate vari-
able, resulting in a table that effectively counts how often each row appears
in the data frame. This can be especially useful when the result of table

is passed to as.data.frame, since its form will be similar to the input data
frame. To illustrate, consider this small example:

> x = data.frame(a=c(1,2,2,1,2,2,1),b=c(1,2,2,1,1,2,1),

+ c=c(1,1,2,1,2,2,1))

> x

a b c

1 1 1 1

2 2 2 1

3 2 2 2

4 1 1 1

5 2 1 2

6 2 2 2

7 1 1 1

> as.data.frame(table(x))

a b c Freq

1 1 1 1 3

2 2 1 1 0

3 1 2 1 0

4 2 2 1 1

5 1 1 2 0

6 2 1 2 1

7 1 2 2 0

8 2 2 2 2

Since the data frame was formed from a table, all possible combinations,
including those with no observations, are included.

Sometimes it is helpful to display the margins of a table, that is, the sum of
each row and/or column, in order to understand differences among the levels
of the variables from which the table was formed. The addmargins function
accepts a table and returns a similar table, with the requested margins added.
To specify which dimensions should have margins added, the margin= argu-
ment accepts a vector of dimensions; a value of 1 in this vector means a new
row with the margins for the columns will be added, and a value of 2 cor-
responds to a new column containing row margins. The default operation to
create the margins is to use the sum function. If some other function is desired,
it can be specified through the FUN= argument. When a margin is added, the
dimnames for the table are adjusted to include a description of the margin.
As an example of the use of addmargins, consider the infert dataset, which
contains information about the education and parity of experimental subjects.
First, we can generate a cross-tabulation in the usual way:

> tt = table(infert$education,infert$parity)

104 8 Data Aggregation

> tt

1 2 3 4 5 6

0-5yrs 3 0 0 3 0 6

6-11yrs 42 42 21 12 3 0

12+ yrs 54 39 15 3 3 2

To add a row of margins, we can use the following call to addmargins:

> tt1 = addmargins(tt,1)

> tt1

1 2 3 4 5 6

0-5yrs 3 0 0 3 0 6

6-11yrs 42 42 21 12 3 0

12+ yrs 54 39 15 3 3 2

Sum 99 81 36 18 6 8

To add margins to both rows and columns, use a margin= argument of c(1,2):

> tt12 = addmargins(tt,c(1,2))

> tt12

1 2 3 4 5 6 Sum

0-5yrs 3 0 0 3 0 6 12

6-11yrs 42 42 21 12 3 0 120

12+ yrs 54 39 15 3 3 2 116

Sum 99 81 36 18 6 8 248

> dimnames(tt12)

[[1]]

[1] "0-5yrs" "6-11yrs" "12+ yrs" "Sum"

[[2]]

[1] "1" "2" "3" "4" "5" "6" "Sum"

Notice that the dimnames for the table have been updated.
When it’s desired to have a table of proportions instead of counts, one

strategy would be to use the sweep function (Section 8.4) dividing each row
and column by its corresponding margin. The prop.table function provides a
convenient wrapper around this operation. prop.table accepts a table, and a
margin= argument, and returns a table of proportions. With no value specified
for margin=, the sum of all the cells in the table will be 1; with margin=1, each
row of the resulting table will add to 1, and with margin=2, each column will
add to 1. Continuing with the previous example, we can convert our original
table to one containing proportions, having each column add to 1, as follows:

8.1 table 105

> prop.table(tt,2)

1 2 3 4 5 6

0-5yrs 0.03030 0.00000 0.00000 0.16667 0.00000 0.75000

6-11yrs 0.42424 0.51852 0.58333 0.66667 0.50000 0.00000

12+ yrs 0.54545 0.48148 0.41667 0.16667 0.50000 0.25000

For tables with more than two dimensions, it may be useful to present the
table in a “flattened” form using the ftable function. To illustrate, consider
the UCBAdmissions dataset, which is already a table with counts for admission
to various departments based on gender. As a three-dimensional table, it would
normally be displayed as a series of two-dimensional tables. Using ftable, the
same information can be displayed in a more compact form:

> ftable(UCBAdmissions)

Dept A B C D E F

Admit Gender

Admitted Male 512 353 120 138 53 22

Female 89 17 202 131 94 24

Rejected Male 313 207 205 279 138 351

Female 19 8 391 244 299 317

The xtabs function can produce similar results to the table function, but
uses the formula language interface. For example, the state income by region
table could be reproduced using statements like these:

> xtabs(~state.region + hiinc)

hiinc

state.region FALSE TRUE

Northeast 4 5

South 12 4

North Central 5 7

West 4 9

If a variable is given on the left-hand side of the tilde (~), it is interpreted as a
vector of counts corresponding to the values of the variables on the right-hand
side, making it very easy to convert already tabulated data into R’s notion of
a table:

> x = data.frame(a=c(1,2,2,1,2,2,1),b=c(1,2,2,1,1,2,1),

+ c=c(1,1,2,1,2,2,1))

> dfx = as.data.frame(table(x))

> xtabs(Freq ~ a + b + c,data=dfx)

, , c = 1

b

a 1 2

1 3 0

2 0 1

106 8 Data Aggregation

, , c = 2

b

a 1 2

1 0 0

2 1 2

8.2 Road Map for Aggregation

When confronted with an aggregation problem, there are three main consid-
erations:

1. How are the groups that divide the data defined?
2. What is the nature of the data to be operated on?
3. What is the desired end result?

Thinking about these issues will help to point you to the most effective solution
for your needs. The following paragraphs should help you make the best choice.

Groups defined as list elements. If the groups you’re interested in are al-
ready organized as elements of a list, then sapply or lapply (Section 8.3)
are the appropriate functions; they differ in that lapply always returns a list,
while sapply may simplify its output into a vector or array if appropriate.
This is a very flexible approach, since the entire data frame for each group
is available. Sometimes, if other methods are inappropriate, you can first use
the split function to create a suitable list for use with sapply or lapply

(Section 8.5).
Groups defined by rows or columns of a matrix. When the goal is to operate

on each column or row of a matrix, the apply function (Section 8.4) is the
logical choice. apply will usually return its results as a vector or array, but
will return a list if the results of operating on the rows or columns are of
different dimensions.

Groups based on one or more grouping variables. A wide array of choices
is available for the very common task of operating on subsets of data based on
the value of a grouping variable. If the computations you desire each involve
only a single vector and produce a single scalar as a result (like calculating
a scalar-valued statistic for a variable or set of variables), the aggregate

function (Section 8.5) is the most likely choice. Since aggregate always returns
a data frame, it is especially useful if the desired result is to create a plot or
fit a statistical model to the aggregated data.

If your computations involve a single vector, but the result is a vector
(for example, a set of quantiles or a vector of different statistics), tapply

(Section 8.5) is one available option. Unlike aggregate, tapply returns its
results in a vector or array for which individual elements are easy to access,

8.3 Mapping a Function to a Vector or List 107

but may produce a difficult-to-interpret display for complex problems. An-
other approach to the problem is provided by the reshape package, available
through CRAN, and documented in Section 8.6. It uses a formula interface,
and can produce output in a variety of forms.

When the desired result requires access to more than one variable at a time
(for example, calculating a correlation matrix, or creating a scatter plot), row
indices can be passed to tapply to extract the appropriate rows corresponding
to each group. Alternatively, the by function can be used. Unlike tapply, the
special list returned by by has a print method which will always produce an
easily-readable display of the aggregation, but accessing individual elements
of the returned list may be inconvenient. Naturally, for tasks like plotting,
there is no clear reason to choose one approach over the other.

As mentioned previously, using split and sapply/lapply is a good so-
lution if you find that other methods don’t provide the flexibility you need.
Finally, if nothing else seems to work, you can write a loop to iterate over
the values returned by unique or intersection, and perform whatever op-
erations you desire. If you take this route, make sure to consider the issues
about memory management in loops found in Section 8.7.

8.3 Mapping a Function to a Vector or List

Although most functions in R will automatically operate on each element of
a vector, the same is not true for lists. Since many R functions return lists,
it’s often useful to process each list element in the same way that R naturally
does for vectors. To handle situations like this, R provides two functions:
lapply and sapply. Each of these functions takes a list or vector as its first
argument, and a function to be applied to each element as its second argument.
The difference between the two functions is that lapply will always return its
result as a list, while sapply will simplify its output to a vector or matrix if
possible. For example, suppose we have a vector of character strings, and we
want to find out how many words are in each vector. Like most functions in R,
the strsplit function will operate on each element of a vector, returning for
each element a new vector containing the individual pieces of that element:

> text = c(’R is a free environment for statistical analysis’,

+ ’It compiles and runs on a variety of platforms’,

+ ’Visit the R home page for more information’)

> result = strsplit(text,’ ’)

> result

[[1]]

[1] "R" "is" "a"

[4] "free" "environment" "for"

[7] "statistical" "analysis"

108 8 Data Aggregation

[[2]]

[1] "It" "compiles" "and"

[4] "runs" "on" "a"

[7] "variety" "of" "platforms"

[[3]]

[1] "Visit" "the" "R"

[4] "home" "page" "for"

[7] "more" "information"

Since each vector could potentially contain different numbers of words,
strsplit puts its result into a list. The length function will not automati-
cally operate on each list element; instead, it properly reports the number of
elements in the returned list:

> length(result)

[1] 3

To find the length of the individual elements, we can use either sapply or
lapply; since the length of each element will be a scalar, sapply would be
most appropriate:

> nwords = sapply(result,length)

> nwords

[1] 8 9 8

Another important use of sapply relates to data frames. When treated as
a list, each column of a data frame retains its mode and class. Suppose we’re
working with the built-in ChickWeight data frame, and we wish to learn more
about the nature of each column. Simply using the class function on the data
frame will give information about the data frame, not the individual columns:

> class(ChickWeight)

[1] "nfnGroupedData" "nfGroupedData"

[3] "groupedData" "data.frame"

To get the same information for each variable, use sapply:

> sapply(ChickWeight,class)

$weight

[1] "numeric"

$Time

[1] "numeric"

$Chick

[1] "ordered" "factor"

$Diet

[1] "factor"

8.3 Mapping a Function to a Vector or List 109

Notice that in this case, since the class for Chick was of length 2, sapply
returned its result as a list. This will always be the case when the structure
of the data would be lost if sapply tried to simplify it into a vector or array.

This same idea can be used to extract columns of a data frame that meet
a particular condition. For example, to create a data frame containing only
numeric variables, we could use

df[,sapply(df,class) == ’numeric’]

sapply or lapply can be used as an alternative to loops for performing
repetitive tasks. When you use these functions, they take care of the details
of deciding on the appropriate form of the output, and eliminate the need to
incrementally build up a vector or matrix to store the result. To illustrate,
suppose that we wish to generate matrices of random numbers and determine
the highest correlation coefficient between any of the variables in the matrix.
The first step is to create a function that will generate a single matrix and
calculate the maximum correlation coefficient:

maxcor = function(i,n=10,m=5){

mat = matrix(rnorm(n*m),n,m)

corr = cor(mat)

diag(corr) = NA

max(corr,na.rm=TRUE)

}

Since sapply will always pass an argument to the applied function, a dummy
argument (i) is added to the function. Since the diagonal of a correlation
matrix will always be 1, the diagonal elements of the correlation matrix were
masked by assigning them values of NA. Suppose we want to generate 1000
100 × 5 matrices, and find the average value of the maximum correlation:

> maxcors = sapply(1:1000,maxcor,n=100)

> mean(maxcors)

[1] 0.1548143

Notice that additional arguments to the function being applied (like n=100 in
this case) are passed to the function by including them in the argument list
after the function name or definition.

For simpler simulations of this type, the replicate function can be used.
This function takes as its first argument the number of replications desired,
and as its second argument an expression (not a function!) that calculates
the desired statistic for the simulation. For example, we can generate a sin-
gle t-statistic from two groups of normally distributed observations with the
following expression:

> t.test(rnorm(10),rnorm(10))$statistic

t

0.2946709

110 8 Data Aggregation

Using replicate, we can generate as many of these statistics as we want:

> tsim = replicate(10000,t.test(rnorm(10),rnorm(10))$statistic)

> quantile(tsim,c(0.5,0.75,0.9,0.95,0.99))

50% 75% 90% 95% 99%

0.00882914 0.69811345 1.36578668 1.74995603 2.62827515

8.4 Mapping a function to a matrix or array

When your data has the added organization of an array, R provides a con-
venient way to operate on each dimension of the data through the apply

function. This function requires three arguments: the array on which to per-
form the operation, an index telling apply which dimension to operate on,
and the function to use. Like sapply, additional arguments to the function
can be placed at the end of the argument list. For matrices, a second argument
of 1 means “operate on the rows”, and 2 means “operate on the columns”.

One common use of apply is in conjunction with functions like scale,
which require summary statistics calculated for each column of a matrix.
Without additional arguments , the scale function will subtract the mean of
each column and divide by the standard deviation, resulting in a matrix of z-
scores. To use other statistics, appropriate vectors of values can be calculated
using apply and provided to scale using the center= and scale= arguments.
For example, by providing a vector of medians for centering, and a vector of
mean average deviations for scaling, an alternative standardization to z-scores
can be performed. Using the built-in state.x77 dataset, we could perform
such a transformation as follows:

> sstate = scale(state.x77,center=apply(state.x77,2,median),

+ scale=apply(state.x77,2,mad))

Similar to sapply, apply will try to return its results in a vector or matrix
when appropriate, making it useful in cases where several quantities need to be
calculated for each row or column of a matrix. Suppose we wish to produce a
matrix containing the number of nonmissing observations, the mean and the
standard deviation for each column of a matrix. The first step is writing a
function which will return what we want for a single column:

summfn = function(x)c(n=sum(!is.na(x)),mean=mean(x),sd=sd(x))

Now we can apply the function to a data frame with all numeric columns, or
a numeric matrix like state.x77:

> x = apply(state.x77,2,sumfun)

8.4 Mapping a function to a matrix or array 111

> t(x)

n mean sd

Population 50 4246.4200 4.464491e+03

Income 50 4435.8000 6.144699e+02

Illiteracy 50 1.1700 6.095331e-01

Life Exp 50 70.8786 1.342394e+00

Murder 50 7.3780 3.691540e+00

HS Grad 50 53.1080 8.076998e+00

Frost 50 104.4600 5.198085e+01

Area 50 70735.8800 8.532730e+04

This example illustrates another advantage of using apply instead of a loop,
namely, that apply will use names that are present in the input matrix or
data frame to properly label the result that it returns.

One further use of apply is worth mentioning. If a vector needs to be
processed in non-overlapping groups, it is sometimes easiest to temporarily
treat the vector as a matrix, and use apply to operate on the groups. For
example, suppose we wish to take the sum of every three adjacent values in
a vector. By first forming a three-column matrix, we can process the groups
conveniently using apply:

> x = 1:12

> apply(matrix(x,ncol=3,byrow=TRUE),1,sum)

[1] 6 15 24 33

The apply function is very general, and for certain applications, there may
be more efficient methods available to perform the necessary computations.
For example, if the statistic to be calculated is the sum or the mean, matrix
computations will be more efficient than calling apply with the appropriate
function. In cases like this, the rowSums, colSums, rowMeans, or functions can
be used. Each of these functions accepts a matrix (or a data frame which will
be coerced to a matrix), and an optional na.rm= argument to specify the han-
dling of missing values. Since these functions will accept logical values as input
as well as numeric values, they can be very useful for counting operations.

For example, consider the dataset USJudgeRatings, which has ratings for
43 judges in twelve categories. To get the mean rating for each category, the
colMeans function could be used as follows:

> mns = colMeans(USJudgeRatings)

> mns

CONT INTG DMNR DILG CFMG

7.437209 8.020930 7.516279 7.693023 7.479070

DECI PREP FAMI ORAL WRIT

7.565116 7.467442 7.488372 7.293023 7.383721

PHYS RTEN

7.934884 7.602326

112 8 Data Aggregation

To count the number of categories for which each judge received a score of
8 or greater, the rowSums function can be used by providing the appropriate
logical matrix:

> jscore = rowSums(USJudgeRatings >= 8)

> head(jscore)

AARONSON,L.H. ALEXANDER,J.M. ARMENTANO,A.J.

1 8 1

BERDON,R.I. BRACKEN,J.J. BURNS,E.B.

11 0 10

A common situation when processing a matrix by rows or columns is that
each row or column needs to be processed differently, based on the values of
an auxiliary vector which already exists. In cases like this, the sweep function
can be used. Like apply, the first two arguments to sweep are the matrix
to be operated on and the index of the dimension to be used for repetitive
processing. In addition, sweep takes a third argument representing the vec-
tor to be used when processing each column, and finally a fourth argument
providing the function to be used. sweep operates by building matrices which
can be operated on in a single call, so, unlike apply, only functions which can
operate on arrays of values can be passed to sweep. All of the built-in binary
operators, such as addition ("+"), subtraction ("-"), multiplication ("*"), and
division ("/") can be used, but, in general, it will be necessary to make sure
an arbitrary function will work properly with sweep. For example, suppose
we have a vector representing the maximum value found in each column of a
matrix, and we wish to divide each column of the matrix by its corresponding
maximum. Using the state.x77 data frame, we could use sweep as follows:

> maxes = apply(state.x77,2,max)

> swept = sweep(state.x77,2,maxes,"/")

> head(swept)

Population Income Illiteracy Life Exp Murder

Alabama 0.17053496 0.5738717 0.7500000 0.9381793 1.0000000

Alaska 0.01721861 1.0000000 0.5357143 0.9417120 0.7483444

Arizona 0.10434947 0.7173397 0.6428571 0.9585598 0.5165563

Arkansas 0.09953769 0.5349169 0.6785714 0.9600543 0.6688742

California 1.00000000 0.8098179 0.3928571 0.9743207 0.6821192

Colorado 0.11986980 0.7733967 0.2500000 0.9790761 0.4503311

HS Grad Frost Area

Alabama 0.6136701 0.10638298 0.08952178

Alaska 0.9910847 0.80851064 1.00000000

Arizona 0.8632987 0.07978723 0.20023057

Arkansas 0.5928678 0.34574468 0.09170562

California 0.9301634 0.10638298 0.27604549

Colorado 0.9494799 0.88297872 0.18319233

8.5 Mapping a Function Based on Groups 113

Now suppose that we wish to calculate the mean value for each variable
using only those values which are greater than the median for that variable.
We can calculate the medians using apply and then write a simple function
to find the mean of the values we’re interested in.

> meds = apply(state.x77,2,median)

> meanmed = function(var,med)mean(var[var>med])

> meanmed(state.x77[,1],meds[1])

[1] 7136.16

> meanmed(state.x77[,2],meds[2])

[1] 4917.92

Although the function works properly for individual columns, it returns only
a single value when used in conjunction with sweep:

> sweep(state.x77,2,meds,meanmed)

[1] 15569.75

The source of the problem is the inequality used to subset the variable values,
since it will not properly operate on the array that sweep produces to calculate
its results. In cases like this, the mapply function can be used. By converting
the input matrix to a data frame, each variable in the input will be processed
in parallel to the vector of medians, providing the desired result:

> mapply(meanmed,as.data.frame(state.x77),meds)

[1] 7136.160 4917.920 1.660 71.950 10.544

[6] 59.524 146.840 112213.400

By default, mapply will always simplify its results, as in the previous
case where it consolidated the results in a vector. To override this behav-
ior, and return a list with the results of applying the supplied function, use
the SIMPLIFY=FALSE argument.

8.5 Mapping a Function Based on Groups

To calculate scalar data summaries of one or more columns of a data frame or
matrix, the aggregate function can be used. Although this function is lim-
ited to returning scalar values, it can operate on multiple columns of its input
argument, making it a natural choice for data summaries for multiple vari-
ables. The first argument to aggregate is a data frame or matrix containing
the variables to be summarized, the second argument is a list containing the
variables to be used for grouping, and the third argument is the function to be
used to summarize the data. For example, the iris dataset contains the values
of four variables measured on a variety of samples from three species of irises.
To find the means of all four variables broken down by species, aggregate
can be called as follows:

114 8 Data Aggregation

> aggregate(iris[-5],iris[5],mean)

Species Sepal.Length Sepal.Width Petal.Length Petal.Width

1 setosa 5.006 3.428 1.462 0.246

2 versicolor 5.936 2.770 4.260 1.326

3 virginica 6.588 2.974 5.552 2.026

Since the second argument must be a list, when a data frame is being processed
it is often convenient to refer to the grouping columns using single bracket
subscripts, since columns accessed this way will naturally be in the form of a
list. In addition, with more than one grouping variable, specifying the columns
this way will insure that the grouping variables’ names will be automatically
transfered to the output data frame. If the columns are passed as manually
constructed list, aggregate will use names like Group.1 to identify the group-
ing variables, unless names are provided for the list elements.

As an example, suppose we wish to calculate the mean weight for observa-
tions in the ChickWeight data frame, broken down by the variables Time and
Diet. Specifying the grouping variables as ChickWeight[c(’Time’,’Diet’)]
will result in the grouping columns being properly labeled:

> cweights = > aggregate(ChickWeight$weight,

+ ChickWeight[c(’Time’,’Diet’)],mean)

> head(cweights)

Time Diet x

1 0 1 41.40000

2 2 1 47.25000

3 4 1 56.47368

4 6 1 66.78947

5 8 1 79.68421

6 10 1 93.05263

Alternatively, a constructed list like

list(Time=ChickWeight$Time,Diet=ChickWeight$Diet)

could be used to achieve the same result.
To process a single vector based on the values of one or more grouping

vectors, the tapply function can also be used. The returned value from tapply

will be an array with as many dimensions as there were vectors that defined
the groups. For example, the PlantGrowth dataset contains information about
the weight of plants receiving one of three different treatments. To find the
maximum weight for plants exposed to each of the treatments, we could use
tapply as follows:

> maxweight = tapply(PlantGrowth$weight,PlantGrowth$group,max)

> maxweight

ctrl trt1 trt2

6.11 6.03 6.31

8.5 Mapping a Function Based on Groups 115

Since there was only one grouping factor, the results were returned in the form
of a named vector. To convert this vector into a data frame, it can temporarily
be converted into a table using as.table, and then passed to as.data.frame,
since there is a special method for converting tables into data frames:

> as.data.frame(as.table(maxweight))

Var1 Freq

1 ctrl 6.11

2 trt1 6.03

3 trt2 6.31

To use a name other than Freq in the data frame, as.data.frame.table can
be called directly, using the responseName= argument:

> as.data.frame.table(as.table(maxweight),

responseName=’MaxWeight’)

Var1 MaxWeight

1 ctrl 6.11

2 trt1 6.03

3 trt2 6.31

Unlike aggregate, tapply is not limited to returning scalars. For example,
if we wanted the range of weights for each group in the PlantGrowth dataset,
we could use

> ranges = tapply(PlantGrowth$weight,PlantGrowth$group,range)

> ranges

$ctrl

[1] 4.17 6.11

$trt1

[1] 3.59 6.03

$trt2

[1] 4.92 6.31

In this case. tapply returns a named array of vectors. Individual elements
can be accessed in the usual way:

> ranges[[1]]

[1] 4.17 6.11

> ranges[[’trt1’]]

[1] 3.59 6.03

To convert values like this to data frames, the dimnames of the returned
object can be combined with the values. When each element of the vector is
of the same length, this operation is fairly straightforward, but the problem
becomes difficult when the return values are of different lengths. In the current
example, we can convert the values to a numeric matrix, and then form a data
frame by combining the matrix with the dimnames:

116 8 Data Aggregation

> data.frame(group=dimnames(ranges)[[1]],

+ matrix(unlist(ranges),ncol=2,byrow=TRUE))

group X1 X2

1 ctrl 4.17 6.11

2 trt1 3.59 6.03

3 trt2 4.92 6.31

data.frame was used here instead of cbind to prevent the numeric values
from being coerced to character values when they were combined with the
levels of the grouping variable.

When more than one grouping variable is used with tapply, and the return
value from the function used is not a scalar, the returned object is somewhat
more difficult to interpret. For example, the CO2 dataset contains information
about the uptake of carbon dioxide by different types of plants exposed to
different treatments. Suppose we were interested in the range of CO2 uptake
for plants of each type and treatment. We can call tapply as follows:

> ranges1 = tapply(CO2$uptake,CO2[c(’Type’,’Treatment’)],range)

> ranges1

Treatment

Type nonchilled chilled

Quebec Numeric,2 Numeric,2

Mississippi Numeric,2 Numeric,2

The returned value is a matrix of lists, which explains the unusual form of the
output when we display the object. Individual elements can still be accessed
as expected:

> ranges[[’Quebec’,’chilled’]]

[1] 9.3 42.4

Such objects can be converted to data frames by applying expand.grid

(see Section 2.8.1) to the dimnames before combining them with the values:

> data.frame(expand.grid(dimnames(ranges1)),

+ matrix(unlist(ranges1),byrow=TRUE,ncol=2))

Type Treatment X1 X2

1 Quebec nonchilled 13.6 45.5

2 Mississippi nonchilled 10.6 35.5

3 Quebec chilled 9.3 42.4

4 Mississippi chilled 7.7 22.2

The function argument to tapply is not required; calling tapply without
a function will return a vector of indices which can be used as a subscript
to the array of values that tapply produces when a function is provided.
For example, suppose we wish to subtract the median value of the uptake
variable in the CO2 data frame, where the median is calculated separately for
each Type/Treatment combination. The first step is calculating the medians
for each group using tapply:

8.5 Mapping a Function Based on Groups 117

> meds = tapply(CO2$uptake,CO2[c(’Type’,’Treatment’)],median)

Next, the indices are calculated using an identical call to tapply without a function,
and they are used as a subscript to the median vector:

> inds = tapply(CO2$uptake,CO2[c(’Type’,’Treatment’)])

> inds

[1] 1 3 3 3 3 3 3 3 3 3

[31] 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[61] 2 2 2 4

> adj.uptake = CO2$uptake - meds[inds]

The ave function combines these two operations in a single function call:

> adj.uptake = CO2$uptake -

+ ave(CO2$uptake,CO2[c(’Type’,’Treatment’)],FUN=median)

Since ave can accept multiple grouping variables, the function to be used for
summarization must be identified using FUN=. Thus, the previous example
could have been carried out with the following statement:

> adj.uptake = CO2$uptake -

+ ave(CO2$uptake,CO2$Type,CO2$Treatment,FUN=median)

When more than a single vector needs to be processed, a variety of options
is available. To put the problem into context, consider the task of finding the
maximum eigenvalue of the correlation matrices of the four variables from the
iris dataset, broken down by the species of the plant. One solution is to use
the split function, which takes a data frame and a list of grouping variables
and returns a list containing data frames representing the observations for
each level of the grouping variables. Such a list can then be processed using
sapply or lapply to provide the final result. When working with problems
like this, the first step is usually defining a function to provide the required
result for a single data frame. In this case, an appropriate function could be
written as follows:

> maxeig = function(df)eigen(cor(df))$val[1]

Next, the numeric values in the data frame can be passed to split to provide
a list of data frames for further processing:

> frames = split(iris[-5],iris[5])

Finally, this result can be passed to sapply along with the function to do the
work:

> sapply(frames,maxeig)

setosa versicolor virginica

2.058540 2.926341 2.454737

As always, these operations can be condensed to a single expression, al-
though there is no great advantage in doing so.

118 8 Data Aggregation

> sapply(split(iris[-5],iris[5]),

+ function(df)eigen(cor(df))$val[1])

setosa versicolor virginica

2.058540 2.926341 2.454737

A less direct, but sometimes useful solution involves passing a vector of row
indices to tapply and modifying the function used to calculate the maximum
eigenvalue to operate on selected rows of the data:

> tapply(1:nrow(iris),iris[’Species’],

+ function(ind,data)eigen(cor(data[ind,-5]))$val[1],

data=iris)

Species

setosa versicolor virginica

2.058540 2.926341 2.454737

Finally, the by function can be used. This generalizes the idea of tapply
to operate on entire data frames broken down by a list of grouping variables.
Thus, the first argument to by is a data frame, and the remaining arguments
are similar to those of tapply. For the eigenvalue problem, a solution using
by is as follows:

> max.e = by(iris,iris$Species,

+ function(df)eigen(cor(df[-5]))$val[1])

> max.e

iris$Species: setosa

[1] 2.058540

--

iris$Species: versicolor

[1] 2.926341

--

iris$Species: virginica

[1] 2.454737

In this case, by returned a scalar, so the result can be converted to a data
frame by using a combination of as.table and as.data.frame:

> as.data.frame(as.table(max.e))

iris.Species Freq

1 setosa 2.058540

2 versicolor 2.926341

3 virginica 2.454737

When there are multiple variables describing the groups to be processed,
the result from by needs additional processing to get it in the form of a data
frame. Consider again the CO2 dataset. Suppose we wish to find the number
of observations, mean, and standard deviation of the variable uptake, broken
down by Type and Treatment combinations. First, a simple function to return
the required values is written. By putting together the values with data.frame

8.5 Mapping a Function Based on Groups 119

instead of c, we insure that the mode of the numeric results will be preserved
after we combine them with the level information for the grouping variables:

> sumfun = function(x)data.frame(n=length(x$uptake),

+ mean=mean(x$uptake),sd=sd(x$uptake))

> bb = by(CO2,CO2[c(’Type’,’Treatment’)],sumfun)

> bb

Type: Quebec

Treatment: nonchilled

n mean sd

1 21 35.33333 9.59637

--

Type: Mississippi

Treatment: nonchilled

n mean sd

1 21 25.95238 7.402136

--

Type: Quebec

Treatment: chilled

n mean sd

1 21 31.75238 9.644823

--

Type: Mississippi

Treatment: chilled

n mean sd

1 21 15.81429 4.058976

Each of the rows returned by the by function is in the form that we would
like for a data frame containing these results, so it would be natural to use
rbind to convert this result to a data frame; however, it is tedious to pass
each row to the rbind function individually. In cases like this, the do.call

function, first introduced in Section 6.5, can usually generalize the operation
so that it will be carried out properly regardless of how many elements need
to be processed. Recall that do.call takes a list of arguments and passes
them to a function as if they were the argument list for the function call. In
this example, the call to do.call is as follows:

> do.call(rbind,bb)

n mean sd

1 21 35.33333 9.596371

11 21 25.95238 7.402136

12 21 31.75238 9.644823

13 21 15.81429 4.058976

With two grouping variables, the names and levels of the grouping factors
are not present in the result. This can be remedied by combining a call to

120 8 Data Aggregation

expand.grid with the previous result. Since all the parts being combined are
data frames, they can be safely combined using cbind:

> cbind(expand.grid(dimnames(bb)),do.call(rbind,bb))

Type Treatment n mean sd

1 Quebec nonchilled 21 35.33333 9.596371

2 Mississippi nonchilled 21 25.95238 7.402136

3 Quebec chilled 21 31.75238 9.644823

4 Mississippi chilled 21 15.81429 4.058976

8.6 The reshape Package

An alternative approach to aggregation is provided by the reshape pack-
age, available from CRAN. The functions in this package provide a unified
approach to aggregation, based on an extended formula notation. The core
idea behind the reshape package is to create a “melted” version of a dataset
(through the melt function), which can then be “cast” (with the cast func-
tion) into an object with the desired orientation. To melt a data frame, list,
or array into the appropriate melted form, it is first necessary to divide the
variables into id variables and measure or analysis variables; this should gen-
erally be obvious from the nature of the data. By default, melt treats factor
and integer variables as id variables, and the remaining variables as analysis
variables; if your data is structured according to this convention, no addi-
tional information needs to be provided to melt. Otherwise, the id.var= or
measure.var= arguments can be used; if you specify one, it will assume all
the other variables are of the other type. Once a dataset is melted, it can be
cast into a variety of forms.

As a simple example, consider a dataset formed from the state.x77 data
frame, combined with the state.region variable:

> states = data.frame(state.x77,state=row.names(state.x77),

+ region=state.region,row.names=1:50)

The state and region variables are stored as factors, so they will be auto-
matically recognized as id variables when we melt the data:

> library(reshape)

> mstates = melt(states)

Using state, region as id variables

Notice that melt displays the names of variables that have been automatically
assigned as id variables. The basic melting operation preserves the id vari-
ables, and converts the measured variables into two columns named variable

(which identifies which variable is being measured) and value (which contains
the actual values). You can use a name other than variable by specifying a
variable name= argument to melt.

8.6 The reshape Package 121

The left-hand side of the formula passed to cast represents the vari-
able(s) which will appear in the columns of the result, and the right-hand
side describes the variables which will appear in the rows. Formulas used by
cast can include a single dot (.) to represent an overall summary, or three
dots ... to represent all variables not otherwise included in the formula. In
the simplest case, we can reproduce the original dataset with a formula like
“... ~ variable”.

When used for aggregation, an aggregation function should be supplied;
if not it defers to using length. Suppose we wish to find the mean for each
variable, broken down by region, with the regions appearing as a column in
the output data frame:

> cast(mstates,region~variable,mean)

region Population Income Illiteracy Life.Exp

1 Northeast 5495.111 4570.222 1.000000 71.26444

2 South 4208.125 4011.938 1.737500 69.70625

3 North Central 4803.000 4611.083 0.700000 71.76667

4 West 2915.308 4702.615 1.023077 71.23462

Murder HS.Grad Frost Area

1 4.722222 53.96667 132.7778 18141.00

2 10.581250 44.34375 64.6250 54605.12

3 5.275000 54.51667 138.8333 62652.00

4 7.215385 62.00000 102.1538 134463.00

If we wanted a separate row for each variable instead of each region, we
can reverse the role of those variables in the formula:

> cast(mstates,variable~region,mean)

variable Northeast South North Central

1 Population 5495.111111 4208.12500 4803.00000

2 Income 4570.222222 4011.93750 4611.08333

3 Illiteracy 1.000000 1.73750 0.70000

4 Life.Exp 71.264444 69.70625 71.76667

5 Murder 4.722222 10.58125 5.27500

6 HS.Grad 53.966667 44.34375 54.51667

7 Frost 132.777778 64.62500 138.83333

8 Area 18141.000000 54605.12500 62652.00000

West

1 2.915308e+03

2 4.702615e+03

3 1.023077e+00

4 7.123462e+01

5 7.215385e+00

6 6.200000e+01

7 1.021538e+02

8 1.344630e+05

122 8 Data Aggregation

To limit the variables that are used, we can use the subset= argument of cast.
Since this argument uses the melted data, we need to refer to the variable
named variable:

> cast(mstates,region~variable,mean,

+ subset=variable %in% c(’Population’,’Life.Exp’))

region Population Life.Exp

1 Northeast 5495.111 71.26444

2 South 4208.125 69.70625

3 North Central 4803.000 71.76667

4 West 2915.308 71.23462

Unlike the aggregate function which does not accept functions which
return vectors of values, cast allows such functions, and uses the names of
the returned vector to form new variable names in its output. Alternatively,
a list of functions can be provided. Suppose we wish to calculate the mean,
median, and standard deviations for Population and Lif.Exp in the states

data frame. Since built-in functions exist for each statistic, they can be passed
to cast as a list: First, we can calculate these quantities for the entire dataset:

> cast(mstates,.~variable,c(mean,median,sd),

+ subset=variable %in% c(’Population’,’Life.Exp’))

value Population_mean Population_median Population_sd

1 (all) 4246.42 2838.5 4464.491

Life.Exp_mean Life.Exp_median Life.Exp_sd

1 70.8786 70.675 1.342394

Since variable was specified on the right-hand side of the tilde, all of the
statistics for all of the variables are listed in a single row. A more familiar
form would have the variables listed in a column, once again achieved by
reversing the roles of the variables in the formula:

> cast(mstates,variable~.,c(mean,median,sd),

+ subset=variable %in% c(’Population’,’Life.Exp’))

variable mean median sd

1 Population 4246.4200 2838.500 4464.491433

2 Life.Exp 70.8786 70.675 1.342394

To aggregate using a grouping variable, the period in the formula can be
replaced by the grouping variable, in this case region:

> cast(mstates,region~variable,c(mean,median,sd),

+ subset=variable %in% c(’Population’,’Life.Exp’))

region Population_mean Population_median Population_sd

1 Northeast 5495.111 3100.0 6079.565

2 South 4208.125 3710.5 2779.508

3 North Central 4803.000 4255.0 3702.828

4 West 2915.308 1144.0 5578.607

Life.Exp_mean Life.Exp_median Life.Exp_sd

8.6 The reshape Package 123

1 71.26444 71.23 0.7438769

2 69.70625 70.07 1.0221994

3 71.76667 72.28 1.0367285

4 71.23462 71.71 1.3519715

If the roles of region and variable were reversed, there would be one variable
for each combination of region and mean, median, and sd, which might not
be convenient for display or further manipulation. To provide added flexibility,
the vertical bar (|) can be used to cause cast to produce a list instead of a
data frame. To create a list with a separate data summary for each region, we
can specify region after the vertical bar, and replace it with a period in the
formula:

> cast(mstates,variable~.|region,

+ c(mean,median,sd),

+ subset=variable%in%c(’Population’,’Life.Exp’))

$Northeast

variable mean median sd

1 Population 5495.11111 3100.00 6079.5651457

2 Life.Exp 71.26444 71.23 0.7438769

$South

variable mean median sd

1 Population 4208.12500 3710.50 2779.508251

2 Life.Exp 69.70625 70.07 1.022199

$‘North Central‘

variable mean median sd

1 Population 4803.00000 4255.00 3702.827593

2 Life.Exp 71.76667 72.28 1.036729

$West

variable mean median sd

1 Population 2915.30769 1144.00 5578.607015

2 Life.Exp 71.23462 71.71 1.351971

Note that this creates a separate list element for each region, and that the
contents of these elements are similar to those created with the formula
“variable ~ .” in a previous example.

The principles in the previous example extend readily to the case with more
than one id variable. Consider once again the ChickWeight data frame. The
variables in this dataset are weight, Time, Chick, and Diet. The last three
variables represent id variables, with weight being the only measure variable.
Since Time is stored as a numeric variable, it is necessary to explicitly provide
either the id or measure variables to the melt function:

> mChick = melt(ChickWeight,measure.var=’weight’)

124 8 Data Aggregation

To create a data frame with the median value of weight for each level of Diet
and Time, the following call to cast can be used:

> head(cast(mChick,Diet + Time ~ variable,median))

Diet Time weight

1 1 0 41

2 1 2 49

3 1 4 56

4 1 6 67

5 1 8 79

6 1 10 93

Notice that the variable specified last on the left-hand side (Time) is the one
that varies the fastest.

To create a separate column for the median at each time, Time can be
moved to the right-hand side of the formula:

> cast(mChick,Diet ~ Time + variable,mean)

Diet 0_weight 2_weight 4_weight 6_weight 8_weight

1 1 41.4 47.25 56.47368 66.78947 79.68421

2 2 40.7 49.40 59.80000 75.40000 91.70000

3 3 40.8 50.40 62.20000 77.90000 98.40000

4 4 41.0 51.80 64.50000 83.90000 105.60000

10_weight 12_weight 14_weight 16_weight 18_weight 20_weight

1 93.05263 108.5263 123.3889 144.6471 158.9412 170.4118

2 108.50000 131.3000 141.9000 164.7000 187.7000 205.6000

3 117.10000 144.4000 164.5000 197.4000 233.1000 258.9000

4 126.00000 151.4000 161.8000 182.0000 202.9000 233.8889

21_weight

1 177.7500

2 214.7000

3 270.3000

4 238.5556

To create a list, with one element for each Diet, and the median of weight

for each Time, use the vertical bar as follows:

> cast(mChick,Time ~ variable|Diet,mean)

$‘1‘

Time weight

1 0 41.40000

2 2 47.25000

3 4 56.47368

4 6 66.78947

5 8 79.68421

6 10 93.05263

. . .

8.6 The reshape Package 125

$‘4‘

Time weight

1 0 41.0000

2 2 51.8000

3 4 64.5000

4 6 83.9000

5 8 105.6000

6 10 126.0000

. . .

In the previous example there were valid values for each combination of
the id variables. If this is not the case, the default behavior of cast is to only
include combinations actually encountered in the data. To include all possible
combinations, use the add.missing=TRUE argument. For example, suppose we
remove one combination of Diet and Time from ChickWeight:

> xChickWeight = subset(ChickWeight,

+ !(Diet == 1 & Time == 4))

> mxChick = melt(xChickWeight,measure.var=’weight’)

> head(cast(mxChick,Diet + Time ~ variable,median))

Diet Time weight

1 1 0 41

2 1 2 49

3 1 6 67

4 1 8 79

5 1 10 93

6 1 12 106

By using add.missing=TRUE, observations for the missing combinations will
be created, with a missing value for the analysis variable:

> head(cast(mxChick,Diet + Time ~ variable,median,

+ add.missing=TRUE))

Diet Time weight

1 1 0 41

2 1 2 49

3 1 4 NA

4 1 6 67

5 1 8 79

6 1 10 93

In each of the preceding examples, the dataset was first melted, then
repeated calls to cast were carried out. If only a single call to cast is needed,
the recast function combines the melt and cast steps into a single call:

> head(recast(xChickWeight,measure.var=’weight’,

126 8 Data Aggregation

+ Diet + Time ~ variable,median,

+ add.missing=TRUE))

Diet Time weight

1 1 0 41

2 1 2 49

3 1 4 NA

4 1 6 67

5 1 8 79

6 1 10 93

8.7 Loops in R

In previous sections, the apply family of functions (and associated wrappers)
has been presented as the first choice for most repetitive tasks, such as operat-
ing on each element of a list, or performing a computation for nonoverlapping
subgroups of the data. The major factor in this decision has to do with the
simplicity of the functions, as well as their ability to properly use any names
which have been assigned to their input arguments. But this way of program-
ming may be awkward and unfamiliar, and many people would like to leverage
their knowledge of other programming languages into R by using more familiar
programming constructs like loops. An examination of some of the apply-style
functions’ source code will show that these functions internally use loops to
actually get their work done, so arguments against loops based solely on ef-
ficiency do not carry much weight. The real problem with loops is that there
are some very intuitive operations that may be implemented with loops that
turn out to be extremely inefficient in R. In this and the following sections,
we’ll access the efficiency of different approaches to common problems with
the use of the system.time function. This function accepts any valid R ex-
pression, and returns a vector of length five, containing the user CPU time,
the system CPU time, the elapsed time, and the user and system times from
any subprocesses. The first value shown, user CPU, is usually the most useful
measure of efficiency, and will vary less than the other values when the same
task is repeated several times. Since the argument handling in functions uses
equal signs to identify keywords, the one restriction when using system.time

is that assignment statements which are to be timed must use the “gets” form
of the assignment operator, namely, <- instead of the equal sign.

Before looking at the cases to avoid, let’s consider a simple example: finding
the mean of each column of a matrix. This problem is so common that the
rowMeans function is provided for an extremely efficient solution:

> dat = matrix(rnorm(1000000),10000,100)

> system.time(mns <- rowMeans(dat))

[1] 0.008 0.000 0.010 0.000 0.000

Another solution is to use apply:

8.7 Loops in R 127

> system.time(mns <- apply(dat,2,mean))

[1] 0.032 0.020 0.056 0.000 0.000

Next, we can use a loop to calculate the mean of each column separately.
Notice that in this case, we need to initialize the result vector mns to accom-
modate the answer:

> system.time({m <- ncol(dat)

+ for(i in 1:m)mns[i] <- mean(dat[,i])})

[1] 0.032 0.004 0.036 0.000 0.000

There really isn’t that much of a difference in execution time (the loop uses
slightly less system time). The main advantage of apply in this case is that it
eliminates the need to worry about the result vector, and, if the matrix were
named, those names would be passed on to the result.

Keep in mind that the previous example still took advantage of vectoriza-
tion: each column mean was calculated from a single call to mean. It is almost
always a mistake to loop over each element of a matrix. Consider the following
function, which calculates the mean of each column of the matrix by adding
together every element and then dividing by the column length:

> slowmean = function(dat){

+ n = dim(dat)[1]

+ m = dim(dat)[2]

+ mns = numeric(m)

+ for(i in 1:n){

+ sum = 0;

+ for(j in 1:m)sum = sum + dat[j]

+ mns[i] = sum / n

+ }

+ return(mns)

+}

> system.time(mns <- slowmean(dat))

[1] 2.100 0.000 2.097 0.000 0.000

Without any vectorization, the computation is much slower than the other
solutions. This illustrates that unless some kind of vectorization is used, com-
putations in R will be very slow.

Before leaving this problem, it should be mentioned that, for any given
problem, there may be unique solutions available. For example, the mean of
each column of a matrix can be calculated directly using matrix expressions
as follows:

> system.time({m = dim(dat)[1];mns = rep(1,m) %*% dat / m})

[1] 0.020 0.000 0.021 0.000 0.000

This represents an improvement over the apply and loop-based solutions, but
is still not as efficient as the colMeans solution.

128 8 Data Aggregation

This illustrates that loops, in and of themselves, are not necessarily in-
efficient in R, but they should certainly take advantage of any vectorization
possible to keep them competitive with other techniques.

To understand the kinds of loops which cause problems in R, it’s worth-
while to recall how matrices are stored in R, namely, as a one-dimensional
vector, with the columns of the matrix “stacked” on top of each other. A very
common operation is to build up a matrix iteratively, by starting with an
empty matrix, and using the rbind function to grow the matrix one row at a
time. There are two problems with this approach. First, the size of the matrix
changes at each iteration, requiring additional time to be spent in memory
allocations. More importantly, since adding a row changes the size of each
column in the matrix, all of the matrix elements need to be rearranged in
memory each time a new row is added. These repeated memory allocations
and rearrangements very quickly take their toll on the efficiency of a program.

Consider the trivial task of creating a matrix, each of whose rows represent
the numbers from 1 to 100. Because of recycling rules, this can be achieved
as follows:

> system.time(m <- matrix(1:100,10000,100,byrow=TRUE))

[1] 0.022 0.003 0.025 0.000 0.000

Performing the same operation by incrementally building the matrix is much
slower:

> buildrow = function(){

+ res = NULL

+ for(i in 1:10000)res = rbind(res,1:100)

+ res

+ }

> system.time(buildrow())

[1] 239.236 21.446 260.707 0.000 0.000

Two forces are slowing the computation: first, the size of res is changing each
time a new row is added to the matrix, causing R to reallocate memory at each
iteration. In addition, since R stores its matrices internally by columns, the
addition of a row to the matrix means that every column in the matrix needs
to be extended, resulting in large amounts of data being moved around in
memory. By this reasoning, it would be faster to build the matrix by columns
of equal size, since less rearrangement of the data will be necessary:

> buildcol = function(){

+ res = NULL

+ for(i in 1:10000)res = cbind(res,1:100)

+ t(res)

+ }

> system.time(buildcol())

[1] 142.666 20.596 163.289 0.000 0.000

8.7 Loops in R 129

While this does represent a speedup, it is still far from an optimal solution.
What makes the first technique so fast is that when the matrix function is
used, the size of the result can be determined before the data is generated.
We can provide the same advantage to a loop-based solution as follows:

> buildrow1 = function(){

+ res = matrix(0,10000,100)

+ for(i in 1:10000)res[i,] = 1:100

+ res

+ }

> system.time(buildrow1())

[1] 0.242 0.015 0.257 0.000 0.000

Even if we didn’t know how many rows the matrix would contain, it would still
be faster to allocate more rows than we need, and then truncate the matrix
at the end. For example, let’s include only 50% of the rows by checking the
value of a random number before adding that row to the output matrix. First,
we’ll start with a NULL matrix:

> somerow1 = function(){

+ res = NULL

+ for(i in 1:10000)if(runif(1) < .5)res = rbind(res,1:100)

+ res

+ }

> system.time(somerow1())

[1] 51.007 6.062 57.125 0.000 0.000

Next, we’ll allocate a matrix large enough to hold all the rows, then truncate
it at the end:

> somerow2 = function(){

+ res = matrix(0,10000,100)

+ k = 0

+ for(i in 1:10000)if(runif(1) < .5){

+ k = k + 1

+ res[k,] = 1:100

+ }

+ res[1:k,]

+ }

> system.time(somerow2())

[1] 0.376 0.027 0.404 0.000 0.000

Provided there is enough memory for the initial allocation, creating a suffi-
ciently large matrix before beginning to build it will generally be much faster
than repeatedly calling rbind.

If a situation arises where it is difficult or impossible to allocate an ap-
propriate matrix before building the rows, we can take advantage of the fact
that lists in R are stored very differently than matrices. In particular, the

130 8 Data Aggregation

memory used by list elements does not have to be contiguous, which means
that adding elements to a list doesn’t require as much manipulation of data
within memory as the corresponding operation on a matrix. The strategy is
to build a list of the rows that will eventually become the matrix, and then
use do.call to pass all of the rows to rbind in a single operation:

> somerow3 = function(){

+ res = list()

+ for(i in 1:10000)if(runif(1) < .5)res = c(res,list(1:100))

+ do.call(rbind,res)

+ }

> system.time(somerow3())

[1] 33.308 0.247 33.575 0.000 0.000

While nowhere near as fast as more optimal methods, this technique may prove
useful in those situations where the size of the final result may be difficult to
determine.

9

Reshaping Data

R is designed so that individual functions don’t have complete flexibility with
regard to their inputs. Most functions expect their input data to be arranged
in a particular way, and it’s the responsibility of the user of the function to
make sure that the input data is in an appropriate form. So even after you’ve
read in or created your data, it may be necessary to modify your data to suit
a function you need.

The focus of this chapter will be on working with data frames, since that
is the form required for the majority of the functions in R.

9.1 Modifying Data Frame Variables

Since data frames are lists, new variables can be created by simply assigning
their value to a column that doesn’t already exist in the data frame. Since
operations in R are vectorized, transformations can be carried out without
the need to use loops. For example, consider the Loblolly data frame which
has variables for height and age for a number of trees. To create a variable
called logheight representing the log of the height variable, we could use
statements like

> Loblolly$logheight = log(Loblolly$height)

or

> Loblolly[’logheight’] = log(Loblolly[’height’])

The system’s version of the Loblolly data frame will not be changed by these
statements, but your local copy of Loblolly will have the new logheight

column.
Two functions are handy to avoid the need of retyping the data frame

name in order to access columns of a data frame. The with function can be
used to evaluate any expression, first looking in a data frame of your choice to

132 9 Reshaping Data

resolve variables. For example, the logheight column in the previous example
could be created using

> with(Loblolly,log(height))

In cases where new columns are being added to an existing data frame,
the transform function can be used. The first argument to transform is a
data frame, and the remaining arguments define new columns which will be
returned along with all the columns of the original data frame. Each new
column is defined by a name=value pair. So an alternate way of creating the
logheight column in the Loblolly dataset would be

> Loblolly = transform(Loblolly,logheight = log(height))

Once again, the system version of Loblolly is unaltered, but the version in
the local workspace will have the new column.

To remove a column from a data frame, set its value to NULL. The subset

function (see Section 6.8) can also be useful in such situations. Negative sub-
scripts, which extract everything except those elements specified in the nega-
tive subscripts, can also be used to create a data frame with selected rows or
columns removed.

Often a similar operation needs to be performed on several columns of
a data frame, with the goal being to overwrite the original versions of the
variables. In cases like this, the left-hand side of the assignment statement can
consist of multiple columns, as long as the expression on the right-hand side is
the same size as implied by the target. For example, to convert the lengths of
the four numeric variables in the iris dataset to inches from centimeters, we
can use sapply to operate on all four columns at once, and assign the result
back to those same columns:

> iris[,-5] = sapply(iris[,-5],function(x)x/2.54)

9.2 Recoding Variables

Often times it is necessary to create a new variable based on values of an old
variable. For example, in contingency table analysis we may need to group
together observations with different values, and assign them all a new value.
For logistic regression, it may be necessary to change a continuous variable into
one that takes on values of either 0 or 1. For simple cases, logical variables
can be used directly to convert a continuous variable to a binary one. For
example, using the iris data frame, suppose we wanted to create a new
variable, bigsepal, which would be TRUE when Sepal.Length was greater
than 6, and FALSE otherwise. We can simply create the appropriate logical
variable:

> bigsepal = iris$Sepal.Length > 6

9.2 Recoding Variables 133

When a logical variable is used in a numeric context, it is automatically
converted to 1 if it is TRUE and 0 if it is FALSE. Thus, logical variables can
be manipulated to create categorical variables with more than two levels.
Suppose we wanted to create a categorical variable called sepalgroup, based
on Sepal.Length, which would be equal to 1 for lengths less than or equal to
5, 2 for lengths between 5 and 7, and 3 for lengths greater than or equal to 7.
We could combine logical variables as follows:

> sepalgroup = 1 + (iris$Sepal.Length >= 5)

+ + (iris$Sepal.Length >= 7)

Note that in this case the same result could be achieved using cut (see Sec-
tion 5.4):

> sepalgroup = cut(iris$Sepal.Length,c(0,5,7,10),

+ include.lowest=TRUE,right=FALSE)

For some recoding tasks, the ifelse function may be more useful than ma-
nipulating logical variables directly. Suppose we have a variable called group

that takes on values in the range of 1 to 5, and we wish to create a new
variable that will be equal to 1 if the original variable is either 1 or 5, and
equal to 2 otherwise. The ifelse statement accepts a logical vector as its
first argument, and two other arguments: the first provides a value for the
case where elements of the input logical vector are true, and the second for
the case where they are false. So in this example, we could get the desired
result using

> newgroup = ifelse(group %in% c(1,5),1,2)

The second and third arguments to ifelse will be recycled as necessary to
be conformable with the input logical vector.

Note that the object returned by ifelse will be the same shape as the
first input argument, so ifelse is effectively limited to cases where the desired
result for each element is a scalar. If either of the second or third arguments to
ifelse returns a vector, the return value of ifelse will be silently truncated
to just its first element.

Calls to ifelse can be nested. Continuing with the previous example, if
we wanted to recode values of 1 and 5 to 1, 2 and 4 to 2, and other values (in
this case 3) to 3, we could use nested calls to ifelse as follows:

> newgroup = ifelse(group %in% c(1,5),1,

+ ifelse(group %in% c(2,4),2,3))

Some words of warning about ifelse are in order. If any of the elements
of the first argument to ifelse are TRUE, then all of the values in the second
argument will need to be evaluated. Similarly, if any of the input elements
are FALSE, then each value in the third argument must be evaluated. If either
of the alternative values requires a large amount of computation, this may
make ifelse surprisingly slow. Additionally, using ifelse with a variety of

134 9 Reshaping Data

data may result in surprises. As a simple example, suppose we have a vector,
x, and we wish to take the logarithm of the values greater than 0, and the
absolute value of values less than or equal to zero. If we happen to provide a
vector with all values less than zero, there is no problem:

> x = c(-1.2,-3.5,-2.8,-1.1,-0.7)

> newx = ifelse(x > 0,log(x),abs(x))

> newx

[1] 1.2 3.5 2.8 1.1 0.7

As soon as one or more values in the vector satisfy the condition x > 0,
warnings will appear when R tries to evaluate the logarithm of the negative
numbers, even though it will never actually return them:

> x = c(-1.2,-3.5,-2.8,1.1,-0.7)

> newx = ifelse(x > 0,log(x),abs(x))

Warning message:

NaNs produced in: log(x)

> newx

[1] 1.20000000 3.50000000 2.80000000 0.09531018 0.70000000

At the expense of some additional operations, the problem can be avoided:

> newx = numeric(length(x))

> newx[x > 0] = log(x[x > 0])

> newx[x <= 0] = abs(x[x <= 0])

> newx

[1] 1.20000000 3.50000000 2.80000000 0.09531018 0.70000000

Since expressions in R return their evaluated values, yet another solution
is to use sapply with if/else expressions:

> newx = sapply(x,function(t)if(t > 0)log(t) else abs(t))

9.3 The recode Function

A very flexible approach to recoding variables is provided by the recode func-
tion of the car package, available through CRAN. Similar to facilities in other
statistical languages, the recode function accepts descriptions of ranges of val-
ues along with a new, constant value to be assigned to observations within
those ranges. These range/value pairs are passed to recode as a character
string, with equal signs (=) separating ranges and values, and semicolons (;)
separating each range/value pair.

There are four possibilities for range/value pairs:

1. single values, for example 3=’control’

2. multiple values, for example c(1,5)=5

9.4 Reshaping Data Frames 135

3. ranges of values, for example 5:7=’middle’. The special values lo and
hi can appear in a range to represent the lowest or highest value for the
variable being recoded.

4. the word else, representing values not covered by any other provided
ranges, for example else=’not found’.

So to recode values 1 and 5 to 1, 2 and 4 to 2, and other values to 3, we
could use recode as follows (after loading the car package):

> newgroup = recode(group,’c(1,5)=1;c(2,4)=2;else=3’)

9.4 Reshaping Data Frames

Often the values required for a particular operation can be found in a data
frame, but they are not organized in the appropriate way. As a simple example,
data for multiple groups are often stored in spreadsheets or data summaries
as columns, with a separate column for each group. Most of the modeling and
graphics functions in R will not be able to work with such data; they expect
the values to be in a single column with an additional column that specifies the
group from which the data arose. The stack function can reorganize datasets
to have this property. As an example, suppose that data for three groups is
stored in a data frame as follows:

> mydata = data.frame(grp1=c(12,15,19,22,25),

+ grp2=c(18,12,42,29,44),

+ grp3=c(8,17,22,19,31))

> mydata

grp1 grp2 grp3

1 12 18 8

2 15 12 17

3 19 42 22

4 22 29 19

5 25 44 31

To perform an analysis of variance or produce histograms for each group, the
data would need to rearranged using stack:

> sdata = stack(mydata)

> head(sdata)

values ind

1 12 grp1

2 15 grp1

3 19 grp1

4 22 grp1

5 25 grp1

6 18 grp2

136 9 Reshaping Data

If there were other variables in the data frame that did not need to be con-
verted to this form, the select= argument to stack allows you to specify the
variables that should be used, similar to the same argument to the subset

function.
The unstack function will reorganize stacked data back to the one column

per group form. To use unstack, a formula must be provided to explain the
roles of the variables to be unstacked. To convert the sdata data frame back
to its original form, unstack could be called as follows:

> mydata = unstack(sdata,values~ind)

> head(mydata)

grp1 grp2 grp3

1 12 18 8

2 15 12 17

3 19 42 22

4 22 29 19

5 25 44 31

For more complex reorganizations, the concept of “wide” versus “long”
datasets is often helpful. When there are multiple occurrences of values for
a single observation, a data frame is said to be long if each occurrence is a
separate row in the data frame; if all of the occurrences of values for a given
observation are in the same row, then the dataset is said to be wide. The
reshape function converts datasets between these two forms.

Perhaps the most common use of reshape involves repeated measures
analyses, where the same variable is recorded for each observation at several
different times. For some types of analysis (for example, split-plot designs),
the long form is preferred; for other analyses (for example, correlation stud-
ies), the wide form is needed. For example, consider the following artificial
dataset which contains observations at three different times for four subjects
on variables called x and y:

> set.seed(17)

> obs = data.frame(subj=rep(1:4,rep(3,4)),

+ time=rep(1:3),

+ x=rnorm(12),y=rnorm(12))

> obs

subj time x y

1 1 1 -1.01500872 1.29532187

2 1 2 -0.07963674 0.18791807

3 1 3 -0.23298702 1.59120510

. . .

9 3 3 0.25523700 0.68102765

10 4 1 0.36658112 -0.68203337

11 4 2 1.18078924 -0.72325674

12 4 3 0.64319207 1.67352596

9.4 Reshaping Data Frames 137

To use reshape to convert the dataset to wide format, we need to provide five
arguments. The first argument is the data frame to be reshaped. The next
three arguments provide the names of the columns that will be involved in
the reshaping. The idvar= argument provides the names of the variables that
define the experimental unit which was repeatedly measured. In this case, it’s
the subj variable. The v.names= argument tells reshape which variables in
the long format will be used to create the multiple variables in the wide format.
In this example, we want both x and y be to be expanded to multiple variables,
so we’d specify a vector with both those names. The timevar= variable tells
which variable identifies the sequence number that will be used to create the
multiple versions of the v.names variables; in this case it will be time. Finally,
the direction= argument accepts values of "wide" or "long", depending on
which transformation is to be performed. Putting this all together, we can
perform the conversion to wide format with the following call to reshape:

> wideobs = reshape(obs,idvar=’subj’,v.names=c(’x’,’y’),

+ timevar=’time’,direction=’wide’)

> wideobs

subj x.1 y.1 x.2 y.2

1 1 -1.0150087 1.29532187 -0.07963674 0.1879181

4 2 -0.8172679 -0.05517906 0.77209084 0.8384711

7 3 0.9728744 0.62595440 1.71653398 0.6335847

10 4 0.3665811 -0.68203337 1.18078924 -0.7232567

x.3 y.3

1 -0.2329870 1.5912051

4 -0.1656119 0.1593701

7 0.2552370 0.6810276

10 0.6431921 1.6735260

Notice that the names of the variables are passed to reshape, not the actual
values of the variables.

The names x.1, y.1, etc. were formed by joining together the variable
names of the variables specified in the v.names= argument with the values of
the timevar= variable. Any variables not specified in the v.names= argument
are assumed to be constant for all observations with the same values as the
idvar= variables, and a single copy of such variables will be included in the
output data frame. Only the variables whose names appear in the v.names=

argument will be converted into multiple variables, so if any variables that
are in the data frame but not in the v.names= argument are not constant,
reshape will print a warning message, and use the first value of such variables
when converting to wide format. To prevent variables from being transferred
to the output data frame, the drop= argument can be used to pass a vector
of variable names to be ignored in the conversion.

The information about the reshaping procedure is stored as attributes in
converted data frames, so once a data frame has been converted with reshape,
it can be changed to its previous format by passing just the data frame with

138 9 Reshaping Data

no additional arguments to reshape. Thus, we could convert the wideobs

data frame to its original long format as follows:

> obs = reshape(wideobs)

> head(obs)

subj time x y

1.1 1 1 -1.01500872 1.29532187

2.1 2 1 -0.81726793 -0.05517906

3.1 3 1 0.97287443 0.62595440

4.1 4 1 0.36658112 -0.68203337

1.2 1 2 -0.07963674 0.18791807

2.2 2 2 0.77209084 0.83847112

As an example of converting from wide to long format, consider the
USPersonalExpenditure dataset. Since it is stored as a matrix, we’ll first
convert it to a data frame, transferring the row names into a variable called
type:

> usp = data.frame(type=rownames(USPersonalExpenditure),

+ USPersonalExpenditure,row.names=NULL)

> usp

type X1940 X1945 X1950 X1955 X1960

1 Food and Tobacco 22.200 44.500 59.60 73.2 86.80

2 Household Operation 10.500 15.500 29.00 36.5 46.20

3 Medical and Health 3.530 5.760 9.71 14.0 21.10

4 Personal Care 1.040 1.980 2.45 3.4 5.40

5 Private Education 0.341 0.974 1.80 2.6 3.64

Since reshape can handle multiple sets of variables, the varying= argument
should be passed a list containing vectors with the names of the different sets
of variables that should be mapped to a single variable in the long dataset.
In the current example, there is only one set of variables to be mapped, so we
pass a list with a vector of the appropriate variable names. Along with the
direction=’long’ argument, this list will usually be enough to convert the
dataset:

> rr = reshape(usp,varying=list(names(usp)[-1]),direction=’long’)

> head(rr)

type time X1940 id

1.1 Food and Tobacco 1 22.200 1

2.1 Household Operation 1 10.500 2

3.1 Medical and Health 1 3.530 3

4.1 Personal Care 1 1.040 4

5.1 Private Education 1 0.341 5

1.2 Food and Tobacco 2 44.500 1

By providing additional information to reshape, the resulting data frame
can be modified to provide more useful information. For example, the auto-
matically generated variable id is simply a numeric index corresponding to

9.4 Reshaping Data Frames 139

the type variable; using idvar=’type’ will suppress its creation. The auto-
matically generated variable time defaults to a set of consecutive integers;
providing more meaningful values through the times= argument will label
the values properly. Finally, the name of the column representing the values
(which defaults to the first name in the varying= argument) can be set to a
more meaningful name with the v.names= argument.

> rr=reshape(usp,varying=list(names(usp)[-1]),idvar=’type’,

+ times=seq(1940,1960,by=5),v.names=’expend’,

+ direction=’long’)

> head(rr)

type time expend

Food and Tobacco.1940 Food and Tobacco 1940 22.200

Household Operation.1940 Household Operation 1940 10.500

Medical and Health.1940 Medical and Health 1940 3.530

Personal Care.1940 Personal Care 1940 1.040

Private Education.1940 Private Education 1940 0.341

Food and Tobacco.1945 Food and Tobacco 1945 44.500

In cases like this, where the desired value for time is embedded in the variable
names being converted, the split= argument can be used to automatically
determine the values for the times and names for the variables containing the
values. When you use the split= argument, the varying= argument should be
a vector, not a list, because reshape will figure out the sets of variables based
on the prefixes found by splitting the variable names. The split= argument is
passed as a list with two elements: regexp and include. The regexp argument
provides a regular expression used to split up the names provided through the
varying= argument. The first split piece will be used as a name for the variable
containing the values, and the second split piece will be used to form values for
the time variable that reshape generates. To keep the regular expression as
part of the names and values that are created, the include argument should
be set to TRUE. So an alternative way of reshaping the usp data frame, without
having to explicitly provide the values of the times, would be:

> rr1 = reshape(usp,varying=names(usp)[-1],idvar=’type’,

+ split=list(regexp=’X1’,include=TRUE),direction=’long’)

> head(rr1)

type time X

Food and Tobacco.1940 Food and Tobacco 1940 22.200

Household Operation.1940 Household Operation 1940 10.500

Medical and Health.1940 Medical and Health 1940 3.530

Personal Care.1940 Personal Care 1940 1.040

Private Education.1940 Private Education 1940 0.341

Food and Tobacco.1945 Food and Tobacco 1945 44.500

To replace the generated row names with ones of your own choosing, use the
new.row.names= argument.

140 9 Reshaping Data

9.5 The reshape Package

The reshape package, introduced in Section 8.6, uses the concept of “melting”
a dataset (through the melt function) into a data frame which contains sepa-
rate columns for each id variable, a variable column containing the name of
each measured variable, and a final column named value with the variable’s
value. It may be noticed that this melting operation is essentially a “wide-
to-long” reshaping of the data. Using the usp data frame from a previous
example, we can easily convert the melted form to the long form as follows:

> library(reshape)

> usp = data.frame(type=rownames(USPersonalExpenditure),

+ USPersonalExpenditure,row.names=NULL)

> musp = melt(usp)

> head(musp)

type variable value

1 Food and Tobacco X1940 22.200

2 Household Operation X1940 10.500

3 Medical and Health X1940 3.530

4 Personal Care X1940 1.040

5 Private Education X1940 0.341

6 Food and Tobacco X1945 44.500

To complete the conversion, we need only remove the “X” from the variable

column, rename it to time, and rename the value column to expend:

> musp$variable = as.numeric(sub(’X’,’’,musp$variable))

> names(musp)[2:3] = c(’time’,’expend’)

> head(musp)

type time expend

1 Food and Tobacco 1940 22.200

2 Household Operation 1940 10.500

3 Medical and Health 1940 3.530

4 Personal Care 1940 1.040

5 Private Education 1940 0.341

6 Food and Tobacco 1945 44.500

Keep in mind that variable is a factor, and that the sub function converts
it to a character before operating on it; if you use it directly, you may need
to pass it to as.character before processing. Since both the id variables and
measure variables appear in the columns of the “long” dataset, this transfor-
mation could also be performed using

cast(musp,variable + type ~ .)

For long-to-wide conversions, recall that variables appearing to the left
of the tilde in the formula passed to cast will appear in the columns of the
output, while those on the right will appear in the rows. Using the simulated

9.5 The reshape Package 141

data from the previous section, we put subj on the left-hand side of the
formula and variable (created by the melt function) and time on the right:

> set.seed(17)

> obs = data.frame(subj=rep(1:4,rep(3,4)),

+ time=rep(1:3),

+ x=rnorm(12),y=rnorm(12))

> mobs = melt(obs)

> cast(subj ~ variable + time,data=mobs)

subj x_1 x_2 x_3 y_1 y_2

1 1 -1.0150087 -0.07963674 -0.2329870 1.29532187 0.1879181

2 2 -0.8172679 0.77209084 -0.1656119 -0.05517906 0.8384711

3 3 0.9728744 1.71653398 0.2552370 0.62595440 0.6335847

4 4 0.3665811 1.18078924 0.6431921 -0.68203337 -0.7232567

y_3

1 1.5912051

2 0.1593701

3 0.6810276

4 1.6735260

The names of the derived columns are constructed in the order in which the
right-hand-side variables are entered in the formula.

To separate each time into a separate list element, the vertical bar (|) can
be used:

> cast(subj ~variable|time,data=mobs)

$‘1‘

subj x y

1 1 -1.0150087 1.29532187

2 2 -0.8172679 -0.05517906

3 3 0.9728744 0.62595440

4 4 0.3665811 -0.68203337

$‘2‘

subj x y

1 1 -0.07963674 0.1879181

2 2 0.77209084 0.8384711

3 3 1.71653398 0.6335847

4 4 1.18078924 -0.7232567

$‘3‘

subj x y

1 1 -0.2329870 1.5912051

2 2 -0.1656119 0.1593701

3 3 0.2552370 0.6810276

4 4 0.6431921 1.6735260

142 9 Reshaping Data

It can be noted that this performs the same operation as the split func-
tion (Section 8.5), but the redundant variable (time in this example) is not
included in the output.

Remember that the dataset that cast is operating on is the melted dataset,
not the original one. So to create a wide data frame from the simulated data,
but only including x, we could use

> cast(subj ~ variable + time,subset = variable == ’x’,data=mobs)

subj x_1 x_2 x_3

1 1 -1.0150087 -0.07963674 -0.2329870

2 2 -0.8172679 0.77209084 -0.1656119

3 3 0.9728744 1.71653398 0.2552370

4 4 0.3665811 1.18078924 0.6431921

9.6 Combining Data Frames

At the most basic level, two or more data frames can be combined by rows
using rbind, or by columns using cbind. For rbind, the data frames must
have the same number of columns; for cbind, the data frames must have the
same number of rows. Vectors or matrices passed to cbind will be converted
to data frames, so the mode of columns passed to cbind will be preserved.

While cbind will demand that data frames and matrices are conformable
(that is, they have the same number of rows), vectors passed to cbind will be
recycled if the number of rows in the data frame or matrix is an even multiple
of the length of the vector. Consider the following two data frames, one with
three rows, and one with four:

> x = data.frame(a=c(’A’,’B’,’C’),x=c(12,15,19))

> y = data.frame(a=c(’D’,’E’,’F’,’G’),x=c(19,21,14,12))

We can bind a vector with two values to the second data frame, since four is an
even multiple of two; R will recycle the vectors values to insure conformability:

> cbind(y,z=c(1,2))

a x z

1 D 19 1

2 E 21 2

3 F 14 1

4 G 12 2

When using cbind, duplicate column names will not be detected:

> cbind(x,y[1:3,])

a x a x

1 A 12 D 19

2 B 15 E 21

3 C 19 F 14

9.6 Combining Data Frames 143

It may be a good idea to use unique names when combining data frames in
this way. An easy way to test is to pass the names of the two data frames to
the intersect function:

> intersect(names(x),names(y))

[1] "a" "x"

When using rbind, the names and classes of values to be joined must
match, or a variety of errors may occur. This is especially important when
values in any of the columns involved are factors. Using the data.frame func-
tion when adding rows to a data frame can usually resolve the problem:

> z = rbind(x,c(a=’X’,x=12))

Warning message:

invalid factor level, NAs generated in:

"[<-.factor"(‘*tmp*‘, ri, value = "X")

> z = rbind(x,data.frame(a=’X’,x=12))

> levels(z$a)

[1] "A" "B" "C" "X"

Although the rbind function will demand that the names of the objects
being combined agree, cbind does not do any such checking. To combine data
frames based on the values of common variables, the merge function should
be used. This function is designed to provide the same sort of functionality
and behavior as the table joins provided by relational databases. Although
merge is limited to operating on two data frames at a time, it can be called
repeatedly to deal with more than two data frames.

The default behavior of merge is to join together rows of the data frames
based on the values of all of the variables (columns) that the data frames have
in common. (In database terminology, this is known as a natural join.) When
called without any other arguments, merge returns only those rows which had
observations in both data frames. As a simple example, consider the merge
resulting from these two data frames, each of which has rows with values of
the merging variable that are not found in the other data frame:

> x = data.frame(a=c(1,2,4,5,6),x=c(9,12,14,21,8))

> y = data.frame(a=c(1,3,4,6),y=c(8,14,19,2))

> merge(x,y)

a x y

1 1 9 8

2 4 14 19

3 6 8 2

Although there were six unique values for a between the two data frames,
only those rows with values of a in both data frames are represented in the
output. To modify this, the all=, all.x=, and all.y= arguments can be
used. Specifying all=TRUE will include all rows (full outer join, in database
terminology), all.x=TRUE will include all rows from the first data frame (left
outer join), and all.y=TRUE does the same for the second data frame (right
outer join). Each case can be illustrated with the current example:

144 9 Reshaping Data

> merge(x,y,all=TRUE)

a x y

1 1 9 8

2 2 12 NA

3 3 NA 14

4 4 14 19

5 5 21 NA

6 6 8 2

> merge(x,y,all.x=TRUE)

a x y

1 1 9 8

2 2 12 NA

3 4 14 19

4 5 21 NA

5 6 8 2

> merge(x,y,all.y=TRUE)

a x y

1 1 9 8

2 3 NA 14

3 4 14 19

4 6 8 2

Note that missing values (NA) are inserted in the places where data was missing
from one of the data frames.

To take more control over which variables are used to merge rows of the
data frame, the by= argument can be used. You provide the by= argument
with a vector of the name or names of the variables that should be used for
the merge. If the merging variables have different names in the data frames
to be merged, the by.x= and by.y= arguments can be used.

When there are multiple rows with common values of the merging vari-
able in either of the data frames being merged, each row will contribute one
observation to the output data frame. If one of the datasets has exactly one
observation for each value of the merging variable(s), the resultant merge
is sometimes known as a table lookup. As a simple example, consider two
datasets, one with city names and state abbreviations, and a second with
state abbreviations and full state names. The goal is to create a dataset with
the names of the cities along with the full state names. The following dataset
represents 10 of the most expensive cities in the United States, based on
housing and food costs:

> cities = data.frame(city=c(’New York’,’Boston’,’Juneau’,

+ ’Anchorage’,’San Diego’,

+ ’Philadelphia’,’Los Angeles’,

+ ’Fairbanks’,’Ann Arbor’,’Seattle’),

+ state.abb= c(’NY’,’MA’,’AK’,’AK’,’CA’,

+ ’PA’,’CA’,’AK’,’MI’,’WA’))

9.6 Combining Data Frames 145

> cities

city state.abb

1 New York NY

2 Boston MA

3 Juneau AK

4 Anchorage AK

5 San Diego CA

6 Philadelphia PA

7 Los Angeles CA

8 Fairbanks AK

9 Ann Arbor MI

10 Seattle WA

A corresponding data frame with state abbreviations and full names can be
formed as follows:

> states = data.frame(state.abb= c(’NY’,’MA’,’AK’,’CA’,

+ ’PA’,’MI’,’WA’),

+ state=c(’New York’,’Massachusetts’,’Alaska’,

+ ’California’,’Pennsylvania’,

+ ’Michigan’,’Washington’))

Note that there is exactly one observation for each state/abbreviation combi-
nation in the states dataset. With this restriction in place, merging the two
datasets is simple (since they have a single variable, state.abb, in common:

> merge(cities,states)

state.abb city state

1 AK Juneau Alaska

2 AK Anchorage Alaska

3 AK Fairbanks Alaska

4 CA San Diego California

5 CA Los Angeles California

6 MA Boston Massachusetts

7 MI Ann Arbor Michigan

8 NY New York New York

9 PA Philadelphia Pennsylvania

10 WA Seattle Washington

The multiple observations per state in the cities data frame cause no prob-
lem, because there was always exactly one matching observation in the states
data frame.

Now suppose we (foolishly) create a data frame with the zip codes for
various cities using only the state abbreviation as an identifier. The problem
is that there will be more than one zip code for some of the states, making
it impossible for merge to know exactly which observations should be joined
together. In cases like this, merge silently creates multiple observations so

146 9 Reshaping Data

that there will be an observation for each multiple occurrence of the merging
variables in the merged data frame.

> zips = data.frame(state.abb=c(’NY’,’MA’,’AK’,’AK’,’CA’,

+ ’PA’,’CA’,’AK’,’MI’,’WA’),

+ zip=c(’10044’,’02129’,’99801’,’99516’,’92113’,

+ ’19127’,’90012’,’99709’,’48104’,’98104’))

> merge(cities,zips)

state.abb city zip

1 AK Juneau 99801

2 AK Juneau 99516

3 AK Juneau 99709

4 AK Anchorage 99801

5 AK Anchorage 99516

6 AK Anchorage 99709

7 AK Fairbanks 99801

8 AK Fairbanks 99516

9 AK Fairbanks 99709

10 CA San Diego 92113

11 CA San Diego 90012

12 CA Los Angeles 92113

13 CA Los Angeles 90012

14 MA Boston 02129

15 MI Ann Arbor 48104

16 NY New York 10044

17 PA Philadelphia 19127

18 WA Seattle 98104

Now there are 18 observations in the output dataset instead of the expected
10. For any state for which there were multiple observations in the zips

data frame, merge has created that many observations for each observation
in the cities dataset with that value of state.abb. The moral is that you
should proceed with caution when you have multiple occurrences of values of
a merging variable in both of the datasets being merged.

9.7 Under the Hood of merge

While the merge function will perform most common tasks regarding com-
bining two data frames, it is occasionally useful to just find the indexes of
common values in two vectors, rather than actually combining them. Inter-
nally, merge uses the match function to find these indexes. This function
requires two arguments: the first is a vector of values to be matched, and the
second is the vector of values that should be searched for possible matches.
For those elements in the first vector that had matching values in the second,

9.7 Under the Hood of merge 147

match returns the index of the first such value in the second vector; for ele-
ments that didn’t match, the default behavior of match is to return a missing
value (NA). Thus, the return value from match will always be a vector of the
same length as the first argument. For example, in Section 9.6, we merged the
cities and states data frames based on common values of the state.abb

variable. To retrieve just the indexes of the matching values, we could call
match as follows:

> match(cities$state.abb,states$state.abb)

[1] 1 2 3 3 4 5 4 3 6 7

The nomatch= argument can be used to provide a different value to be
returned when a match was not found. Since subscripts of 0 are ignored, one
very useful choice for this value is nomatch=0. When this value is used, the
result from match can be used as an index to the second vector to find the
values that actually matched. Continuing with the x and y example from
Section 9.6, suppose we wanted to know which values in x$a were also present
in x$b. By calling match with nomatch=0, the resulting vector can be used as
an index into y$b to extract the actual values:

> indices = match(xa,ya,nomatch=0)

> y$a[indices]

[1] 1 4 6

It may be noted that this is equivalent to the intersect function, which
currently uses match to do its work.

Finally, for the simpler case where interest is only in whether or not ele-
ments in one vector can be found in another vector, the %in% operator can
be used. To produce a logical vector, the same length as x$a, which indicates
which values could be found in y$a, we can use %in% as follows:

> x$a %in% y$a

[1] TRUE FALSE TRUE FALSE TRUE

Like intersect, %in% is currently defined using match.

Index

.RData 35
: 27

addmargins 103
aggregate 113
aggregation

by groups 117, 122
by rows or columns 111
using vector-valued function 120

apply 110
arrays 4
as.Date 57
as.list 9
as.numeric 9
as.POSIXct 61
ave 117

backslash 91
big-endian 37
binary data 36
brackets

double 83
by 118

c 2
cast 120
cat 88
categorical data 1
categorical variables 67
cbind 142
character class 92
character data 87
character strings

concatenation 88

character values
length 87

characters
individual 90

chron function

origin= argument 59
chron Package 59
chron package 57
class 1
class 1
close 24
col 81
colMeans 111
colSums 111
combinations 28
complete.cases 11
connections 23
consecutive values 31
count.fields 16
counting 10
cross-tabulation 101
cut 65, 72

date variables 73

data
generating 27
read from console 13
reading into data frame 15
tabulated 80, 105

data frame 6
convert from tapply 115
means and sums 111
modify by groups 118

150 Index

modifying variables 131
removing variables 132
single subscript 83
sorting 78
suppress factor conversion 15

data frames
combining 142
reshaping 135
working with columns 108

database
reading data 53
table names 44

databases 43
date

current 57
dates 2, 57
days 58
dbApply 55
dbBuildTableDefinition 54
dbConnect 51
dbDisconnect 51
dbDriver 51
dbGetQuery 44
DBI 51
dbSendQuery 52
dbWriteTable 53
deciles 72
diag 82
difftime 64
dim 4
dimnames 4
do.call 78, 119

expand.grid 28

factor 1
levels argument 67
ordered 67, 68

factor 67
factors

combining 71
numeric 70

fields
counting 16

file
comma-separated 33
fixed-width 17

files
binary 36

large 25
writing 38

format
as.Date 57

ftable 105
functions

generic 19
predicate 7

gdata 34
getAnywhere 19
gl 28
gregexpr 96
grep 94
groups 114

nonoverlapping 111
gsub 98
gzip 23

ifelse 133
Inf 10
interaction 74
intersect 147
is.na 10
is.nan 10
ISOdate 62
isS4 21

lapply 107
level

reference 69
levels 67
list 2
lists 5
little-endian 37
load 36
lower.tri 82
ls.str 7

mapply 97, 113
match 146
matrix

diagonal elements 82
internal storage 4
operate on each column or row 110
read with scan 14
size of 4
sorting 78
triangular 82

Index 151

matrix 4
byrow=TRUE 14
dimnames argument 4

melt(reshape) 120
merge 143
messages

printing 88
methods 7
missing value

as factor level 71
missing values 10

removing 11
mode 1

converting 8
mode 1
months 58
multiple arguments 113

na.action= 11
na.omit 11
na.rm= 10
NA 10
names

unique 143
names

assignment function 3
NaN 10
nchar 87
ncol 4
nlevels 67
normalization 52
nrow 4
NULL 15
numeric conversions 98
numperm 31

objects
restoring 36
saving 35
structure 7

ODBC 49
ODBC

DSN 49
ODBC keywords 50
ODBConnectExcel 33
open 23
order 78

paste 88

perl 35
permutations 30
POSIXct 60
POSIXlt 61
predicate functions 7
pretty 72
prop.table 104

quantile 72
quarter 74
quarters 58
quartiles 72

random numbers 29
seed 30

rbind 142
read.csv 17
read.csv2 17
read.delim 17
read.fwf 17
read.table 15, 68
col.names argument 15
colClasses argument 16
header argument 15
skip argument 16
stringsAsFactors argument 15

read.xls 34
readBin 36
readLines 23
recode 134
recoding 132
recycling of values 3
regexpr 96
regular expressions 45, 90

tagging 99
relevel 69
reorder 69
replicate 109
reshape 136
reshape package 120
reverse order 79
RMySQL 51
RODBC 49
row.names 4
row 81
rowMeans 111
rows

repeated 103
rowSums 111

152 Index

run-length encoding 31
runs 31

sample 30
replace argument 30

sapply 2, 107
save 35
save.image 35
scale 110
scan 13

skipping fields 14
seq 27
sequences 27
showMethods 21
simulations 109
slot 22
slots 22
split 117
spreadsheets 33

read using ODBC 33
sprintf 37
SQL 43

aggregation 45
basics 44
HAVING statement 45
joins 46
LIMIT specification 48
remove table or database 48
SELECT statement 44
subqueries 47
UPDATE statement 48
WHERE clause 45

sqlGetResults 51
sqlQuery 50
stack 135
strftime 61, 73
strings

splitting 93
substituting text 98

strptime 61
strsplit 59
structure 61
sub 98
subset 84
substring 89

assignment form 90
sweep 112
Sys.Date 57

table
adding margins 103
convert to data frame 102
data frame 103
proportions 104

table 101
tabulation 101

display all combinations 103, 125
tabulations

displaying 105
tapply 114
transform 132
transformations 131
typeof 1

unixodbc 49
unixodbc 49
unlist 38
unstack 136
unz 25
upper.tri 82
URL

reading from 23

values
matching 146

variable
convert continuous to categorical 72

variables
combining 74
repeated operations 132
standardizing 110

vector 2

weekdays 58
with 131
workspace

remove objects 35
saving 35

write 38
write.csv 39
write.csv2 39
write.table 39
writeBin 36

xtabs 105

z-scores 110
zip files 23

springer.com

Interactive and Dynamic Graphics
For Data Analysis
Dianne Cook and Deborah F. Swayne

This richly illustrated book describes the use of interactive and dy-

namic graphics as part of multidimensional data analysis. Chapters

include clustering, supervised classification, and working with missing

values. A variety of plots and interaction methods are used in each

analysis, often starting with brushing linked low-dimensional views

and working up to manual manipulation of tours of several variables.

2007, Approx. 205 pp Softcover ISBN 978-0-387-71761-6

Graphics of Large Datasets
Visualizing a Million
Antony Unwin, Martin Theus, and Heike Hoffman

This book shows how to look at ways of visualizing large datasets,

whether large in numbers of cases, or large in numbers of variables,

or large in both. All ideas are illustrated with displays from analyses

of real datasets and the importance of interpreting displays effectively

is emphasized. Graphics should be drawn to convey information and

the book includes many insightful examples. The book is accessible

to readers with some experience of drawing statistical graphics.

2006, XXII 271 pp. Hardcover ISBN 978-0-387-32906-2

Bayesian Computation with R
Antony Unwin, Martin Theus, and Heike Hoffman

This book introduces Bayesian modeling by the use of computation
using the R language. Bayesian computational methods such as
Laplace's method, rejection sampling, and the SIR algorithm are
illustrated in the context of a random effects model. The construction
and implementation of Markov Chain Monte Carlo (MCMC) methods
is introduced. These simulation-based algorithms are implemented
for a variety of Bayesian applications such as normal and binary
response regression, hierarchical modeling, order-restricted infer-
ence, and robust modeling.

2007, X, 267 pp. Softcover ISBN 978-0–387-71384-7

Easy Ways to Order► Call: Toll-Free 1-800-SPRINGER ▪ E-mail: orders-ny@springer.com ▪ Write:
Springer, Dept. S8113, PO Box 2485, Secaucus, NJ 07096-2485 ▪ Visit: Your
local scientific bookstore or urge your librarian to order.

	front-matter
	fulltext
	fulltext2
	fulltext3
	fulltext4
	fulltext5
	fulltext6
	fulltext7
	fulltext8
	fulltext9
	back-matter

