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Using the SPSS file Sleep quality

Select Analyze-> Regression-» Linear. .. as shown in Figure 6.24.

1 e iy s e B U5 o e T b

Figure 6.24 Semi-partial correlation (via regression) - step 1

In new window (see Figure 6.25) transfer Mood to Dependent window = transfer Sleep
quality perceptions and Age to Independent(s) window =» click Statistics.....

S

—
-
.

-

=

L

Figure 6.25 Semi-partial correlation - step 2

In new window (see Figure 6.26), tick boxes for Estimates, Model fit, and Part and partial
correlations ~» click Continue = click OK

6.12 Nuts and bolts

Partial correlation terminology

‘The following terms to which an additional explain the original relationship:
Explanation An explanation occurs when the strength of the original relationship has been
altered by the effect of additional variables. That explanation may be ‘full or ‘partial’,
Full explanation: If factoring out variables causes the original correlation to be reduced to zero,

we can say that we have 'full explanation’. The additional variable(s) explained
all of the relationship we originally observed; there was no relationship in
the first place. This could be an example of a ‘spurious correlation’ (see next
section).
Partial explanation: If the introduction of additional variables has some effect on original correlation we
can say that we have ‘partial explanation’. This effect might be very small or it could
In some cases, ip might

Spurious correlation

If the action of a partial results i ‘full expl ! (whereby the I correl

is ‘wiped out), it begs the question of whether there was really correlation i the first place. We
might call that 'spurious’ Say we find a strong correlation between the number of driving errors
and university exam results. It seems illogical to imagine that there might be a relationship, but
a correlation analysis indicates othenwise. However, if we then controlled for alcohol intake, we
might find that the correlation disappears! The correlation was spurious because the relation-
ship between driving errors and exam scores was actually explained by the amount of alcohol
consumed

6.13 Nuts and bolts

Examples of spurious correlation

In Table 6.8 there are some examples of apparent correlations. However, all s not what it seems: the relationship s
actually due to something else altogether!

Table 6.8 When s a correlation not a correlation?

Apparent correlation

A positive correlation between the number of fire
ding a i that ensues

Actual explanation

The size of the fire is related to the amount of

suggests fire engines cause the damage'.

ge - larger fires simply nee

Ina psychology class, students with long
better exam results than those with shorter hair.
It could be concluded that longer hairis related to

he cl hair than the
boys, itis more lkely that the effect was due to
gender, not hair length

better academic performance”.

SPSS screenshots and accompanying step-by-step
instructions guide you through the processes you need
to carry out, using datasets provided on the companion
website.

Nuts and Bolts boxes help you to understand the
conceptual issues and to go beyond the basics.

7.4 Mini exercise
Between-groups or within-groups?

9.7 Take a closer look Q

Planned contrasts (a summary) \Y

If you are new to statistics, you may still be a little confused about how to determine whether a design is between-
groups or within-groups. The following exercise might help to clarify that for you. We explored some of these points
in Chapter 5, 50 you might want to read that again. Lok at the following short scenarios and decide whether they are
an example of a between-group or within-group study.

N

A group of UK students are compared with those from the USA on how many hours they watch television.

. One group of depressed patients are given two different types of drug, at different times, to assess how well their
symptoms improve.

3. Children are compared with adults i respect of how many green vegetables they eat.

4. Several questionnaires are given to one group of people to see how they differ on several outcome measures, but
in respect of their nationality, ethnicity and religious belief.

5. A group of students are given two tests: before one of these tests they are given some tips on revision skills. Their

test scores are compared,
Look at the answers below. How did you do?

Between;
Within;
Between;
4. Between;
5. Within.

W

You may have had some trouble with Question 4. It is quite common to believe that this constitutes a within-group
design (because several questionnaires were given to one group) but it is not. It would be within-groups only if the same
questionnaire was repeated. For example, we could give a stress questionnaire to a single group, then we could manipu-
late that stress (such as make them watch a scary movie), and then we would give them the same stress questionnaire
again. In short, a between-group study explores differences in the characteristics of the sample, using different groups; a
within-group study examines different conditions performed across a single group. In the case of Question 4, the inde-
pendent variables are nationality, ethnicity and religious belief, not the number of questionnaires used.

Assumptions and restrictions

There are a number of criteria that we must satisfy before we can consider using an inde-
pendent t-test to explore outcomes. The independent variable must be categorical and must be

Planned contrasts are used to confirm predictions that have been made about the relationship between three or
more groups of an independent variable about an outcome on a dependent variable. There are two types of planned
comparison - orthogonal and non-orthogonal

Orthogonal: Used where the experimental conditions are compared with a control group,
followed by a comparison between the experi groups. Adj for
multiple comparisons are not needed

Non-orthogonal: Used where there is no control group, but where all of the groups are inde-

pendent and can be compared with each other. Adjustments must be made to
account for multiple comparisons

Post hoc tests

1f no specific prediction has been made about differences between the groups, post hoc tests must
be used to determine the source of difference. We can also choose to use post hoc tests in prefer-
ence to non-orthogonal planned contrasts. However, there must be a significant ANOVA outcome
in order for post hoc tests to be employed. If we try to run these tests on a non-significant ANOVA
outcome it might be regarded as ‘fishing’ Also, we run post hoc tests only if there are three or more
groups. If there are two groups we can use the mean scores o indicate the source of difference. Post
hoc tests explore each pair of groups to assess whether there is a significant difference between them
(such as Group 1 vs. 2, Group 2 vs. 3 and Group 1 vs. 3). Most post hoc tests account for multiple
i ically (so long as the jate type of test has been selected — see later).

The mathematics behind post hoc tests is relatively complex, so we will focus on how we run
tests in SPSS. As we will see later, SPSS has something like 18 post hoc tests to choose from, but only
afew are routinely used in practice. Each test employs a different method of calculating the result,
depending on how it accounts for multiple comparisons, equality of variance and equal group
sizes. An overview of the types of test is shown in Box 9.8. Many researchers employ a Tukey anal-
ysis, since it is relatively conservative (without losing too much power). However, that test should

probably not be used when there are unequal group sizes, o if equality of variances has been
violated. We will probably know whether we have equal group sizes prior to analysis. However, we
will not know the outcome of tests for homogeneity of variance until we look at the SPSS output.
If we know that we have unequal group sizes we should request Gabriel’s or Hochberg’s GF2 post
hoc tests (instead of Tukey) when we set the parameters to run independent one-way ANOVA in

Mini exercises are practical things you can do to
improve your understanding of new concepts.

Take a closer look boxes explore particular aspects of
the topics in more detail.
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10.2 Calculating outcomes manually
Repeated-measures ANOVA calculation

To illustrate how we can calculate outcomes for repeated-measures one-way ANOVA, we will use some data that In this chapter we have explored reliability analysis. At this point, it would be good to revisit the
relate to the research question posed by CALM earlier. You will find a Microsoft Excel spreadsheet associated with learning objectives that we set at the beginning of the chapter.
these calculations on the web page for this book. VEndi I e i

o Recognise that we use reliability analysis to examine the consistency of responses to a group of
Table 10.1 Number of words recalled in each condition items or questions. It is the next logical step from factor analysis, where the validity of themes

it and sub-themes has been established.
Word condition

o Comprehend that reliability is an important factor in research. It confirms the consistency and
Participant w wp WPS Casemean  Case variance repeatability of the methods used and the data gained from that research. In establishing reli-
5 @ 7 @ i o ability, we are adding to the validity of the constructs that we seek to measure.
o Understand different types of reliability. Repeatability of measures can be examined using test-
2 63 68 68 66.33 8.33 retest reliability. Consistency of t
3 65 6 72 66.00 31.00 inter-rater reliability. Stabilty of observations from a single researcher can be investigated with
intra-rater reliabiity. The internal consistency of responses to a group of items can be examined
4 68 75 88 77.00 103.00 with split half reliability, but it is better analysed with Cronbach's alpha (and other measures
5 6 7 80 73.67 3233 associated with reliabiity analysis)
o Appreciate that there are very few assumptions and restrictions associated with reliability anal-
€ 7 7 = Uy &y ysis.Itis important that we account for reverse scoring and adjust if need be.
7 78 82 87 8233 20.33 ® Perform analyses using SPSS.
8 75 73 79 75.67 933 © Understand how to present the data and report the findings.
9 70 77 82 76.33 36.33
10 7 76 84 77.00 43.00
n 60 70 77 69.00 73.00 Research example ‘ ‘ ‘ '
Condition mean 68.36 72.82 7991 3 479.00 {
Grand mean 73.70 Grand variance 53.72 It might help you to see how principal components analysis has been applied in a research context.

You could read the following paper (an overview is provided below)

(e W ity WP e e} RS (e e L ) Sapin, C, Simeoni, M.C., El Khammar, M., Antoniotti, S. and Auduier, P. (2005). Relia-

bility and validity of the VSP-A, a health-related quality of life instrument for ill and healthy
adolescents. Journal of Adolescent Health, 36 (4): 327-336. DOI: http://dx.doi.org/10.1016/j.
jadohealth.2004.01.016
If you would like to read the entire paper you can use the DO reference provided to locate that
(see Chapter 1 for instructions)
Welast saw this paper in Chapter 20, when we explored how the authors used principal compo-

-A g
translated, the life and health perceptions of adolescents). From 37 questions, 10 factors were iden-
tified: Vitality (five items), psychological well-being (five items), relationships with friends (five
items), leisure activities (four items), relationships with parents (four items), physical well-being,
(four items), relationships with teachers (three items), school performance (two items), body
image (two items), and relationships with medical staff (three items). This paper also examines the
internal consistency of those factors

The results showed that all items possessed a minimum item-total correlation of 0.40 (so were
at least moderate). The Cronbach's  for all factors exceeded 0.74, and no factor would benefit

Calculating outcomes manually boxes show you how Research examples put the statistical tests in the context
to do the calculations by hand so that you understand of real-world research, while the chapter summaries
how they work. bring everything together and recap what you've read.

Extended learning tasks -

You will find the data sets associated with these tasks on the website that accompanies this book,
(available in SPSS and Excel format). You will also find the answers there.

ANCOVA learning task

Following what we have learned about ANCOVA, answer the following questions and conduct the
analyses in SPSS and G*Power. (If you do not have SPSS, do as much as you can with the Excel
spreadsheet) For this exercise, we will look at a fictitious example of treatment options for a group.
of patients. We will explore the effect of drug treatment, counselling or both on a measure of mood
(which is measured on a scale from O (poor) to 100 (good), and is taken before and after the inter-
vention). There are 72 participants in this study, with 24 randornly assigned to each of the treatment
groups.

Open the data set Mood and treatment

Which is the independent variable (and describe the groups)?

Whatis the dependent variable?

Whatis the covariate?

What assumptions should we test for?

Conduct the ANCOVA test.

a. Describe how you have accounted for the assumptions.

b. Describe what the SPSS output shows, including pre- and post-treatment analyses
. Describe the effect on estimated marginal means.

d. Describe whether you needed to conduct post hoc analyses.

i, Run them if they were needed

Also show the effect size and conduct a power calculation, using G*Power.
Report the outcome as you would in the results section of a report.

nawN

'MANCOVA learning task

Following what we have learned about MANCOVA, answer the following questions and conduct the
analyses in SPSS and G*Power (you will not be able to perform this test manually). For this exercise,
we will look at some data that explore the impact of two forms of treatment on anxiety and mood
outcomes, The treatments are cognitive behavioural therapy (CBT) and medication. A group of 20

dinto groups. Ratings of anxiety and depression are
made by the clinician eight weeks after treatment. Both scales are scored in the range of 0-100, with
higher scores representing poorer outcomes. To ensure that these outcomes are not related to prior
anxiety, the anxiety ratings are also taken at baseline.

Open the SPSS data CBT vs. drug

Which i the independent variable (and describe the groups)?
What are the dependent variables?

Whatis the covariate?

What assumptions should we test for?

Conduct the MANCOVA test

a. Describe how you have accounted for the assumptions.

b. Describe what the SPSS output shows, including pre- and post-treatment analyses
. Describe the effect on estimated marginal means.

oW

Extended learning tasks help you to go further, using
the datasets provided on the website to carry out extra
data analysis.

Visit www.pearsoned.co.uk/mayers for datasets to use for the exercises in the text, answers to the all learning exercises,
revision questions and much more.
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Chapter 1 Introduction

Why | wrote this book — what's in it for you?

There are a lot of statistics books around, so why choose this one? I have been teaching research
methods and statistics in psychology for many years, in several universities. When I recently set
about writing my lecture notes, I had to choose a course book to recommend. When I looked at
what was available I noticed a number of things. Some books explain when to use a statistical
test, and give a broad overview of the theory and concepts, but don't show you how to run it
using statistical analysis software. Others show you just how to run the test in that software, but
don't explain how and when to use the test, nor do they tell you very much about the theory
behind the test. There are several that are very complicated, with loads of maths and formulae —
and take themselves far too seriously. Others still are less serious in their approach. I wanted to
find something in between all of that; I hope this is it.

In this book you should find sufficient theory and rationale to tell you when you should use
a test, why you should use it and how to do so. I will also explain when it is probably not so
good to use the test, if certain assumptions are not met (and what to do instead). Then there’s
the maths thing. [ know that most people hate maths, but there is good reason for learning this.
When [ started studying psychology and statistics, computers and statistical analysis software
were all pretty new. It took so long for the valves on the computer to warm up that, by the time
it was ready, the data were too old to use. So we had to use maths. Once using a computer was
viable, statistical analysis software became the thing to use and it was all very exciting. There
seemed little need to ever go back to doing it by hand, I thought. Press a few buttons and off
you go. However, when I started teaching statistics, I had another go at doing it all manually and
was surprised how much it taught me about the rationale for the test. Therefore, I have decided
to include some sections on maths in this book. I really do recommend that you try out these
examples (I have attempted to make it all quite simple) - you may learn a lot more than you
imagined.

For many, statistics is their very idea of hell. It need not be that way. As you read this book,
you will be gently led and guided through whole series of techniques that will lay the founda-
tions for you to become a confident and competent data analyst. How can I make such a bold
claim? Well, you only need to ask my students, who have read various iterations of this book.
Their feedback has been one of the most motivating aspects of writing it. Over the past few
years, several hundred psychology students have used draft versions of this book as part of their
studies. They have frequently reported on how the book’s clarity and humour really helped
them. Many have told me that the friendly style has helped them engage with a subject that
had always troubled them before. They also like the unique features of the book that combine
theory, rationale, step-by-step guides to performing analyses, relevant real-world research exam-
ples, and useful learning exercises and revision.

Above all, I want to make this fun. There will be occasional (hopefully appropriate) moments
of humour to lighten the mood, where points may be illustrated with some fun examples. I hope
you enjoy reading this book as much as I enjoyed writing it. If you like what you see, tell your
friends; if you hate it, don't tell them anything.

Why do psychologists need to know about statistics?

Much of what we explore in psychological research involves people. That much may seem
obvious. But because we are dealing with people, our investigations are different to other scien-
tific methods. All the same, psychology remains very much a science. In physical science, ‘true
experiments’ manipulate and control variables; in psychology, we can do that only to a certain
extent. For example, we cannot induce trauma in a group of people, but we can compare people
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who have experienced trauma with those who have not. Sometimes, we can introduce an inter-
vention, perhaps a new classroom method, and explore the effect of that. All of this is still
scientific, but there will always be some doubt regarding how much trust we can put in our
observations.

A great deal of the time a psychology researcher will make predictions and then design
studies to test their theory. We may observe children in a classroom, or investigate attitudes
between two groups of people, or explore the risk factors for depression. When we design
our experiments and research studies, we will be pleased when our predicted outcomes have
been demonstrated. However, we need to be confident that what we have observed is due to
the factors that we predicted to be ‘responsible’ for that outcome (or that might illustrate a
relationship) and not because of something else. The observed outcome could just possibly
have occurred because of chance or random factors. We are dealing with people, after all.
Try as we might, we cannot control for all human factors or those simply down to chance.
That's where statistics come in.

Throughout this book you will encounter a whole series of different statistical tech-
niques. Some will be used to explore differences between groups, others examine changes
across time, while some tests may simply look at relationships between outcomes. Whatever
the focus of that investigation, we need to find some way to measure the likelihood that
what we observed did not happen by chance, thus increasing our confidence that it prob-
ably occurred because of the factors that we were examining. The statistical analyses in this
book have one thing in common: they express the likelihood that the outcome occurred by
chance. We will see how to apply that to the many contexts that we are likely to encounter
in our studies.

1.1 Take a closer look Q
Who should use this book? N\

e This book is aimed at anyone who needs some direction on how to perform statistical analyses.

o The main target audience is probably psychology students and academics, but | hope this book will be equally
useful for those working in medicine, social sciences, or even natural sciences.

o Most students are likely to be undergraduates, but this book should also be a valuable resource to postgraduates,
doctoral students, lecturers and researchers.

o You may be new to all of this statistics stuff, or an old lag in need of a refresher.

e Whatever your reason for picking up this book, you are most welcome.

How this book is laid out -what you can expect

Introductory chapters: the basics

Chapter 2 will introduce you to some of the basic functions of SPSS (a software package
designed for analysing research data). In this book, we are using SPSS version 19. You will be
shown how to create data sets, how to define the variables that measure the outcome, and how
to input those data You will learn how to understand the main functions of SPSS and to navigate
the menus. You will see how to investigate, manipulate, code and transform data The statistical
chapters will explain how to use SPSS to perform analyses and interpret the outcome.
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1.2 Nuts and bolts
| don't have SPSS! Is that a problem?

One of the central features of this book is the way in which it will guide you through using SPSS. The web page
resources for this book include SPSS data sets for all of the worked examples and learning exercises. If you are a
psychology student at university, it is quite likely that you will have access to the latest version of SPSS during the
course of your studies. The licence is renewed each year, so once you leave, the program may stop working. If that
happens, you may feel a little stuck. Alternatively, you may not have access to SPSS at all. Either way, it is extraordi-
narily expensive to buy a single-user copy of SPSS. To address that, all of the data sets are also provided in spread-
sheet format, which can be opened in more commonly available programs such as Microsoft Excel.

Chapter 3 explores the concept of normal distribution. This describes how the scores are
‘distributed” across a data set, and how that might influence the way in which you can examine
those data. We will explore why that is important, and we will learn how to measure and report
normal distribution. If the outcome data are not ‘normally distributed” we may not be able to
rely on them to represent findings. We will also see what we can do if there is a problem with
normal distribution.

Chapter 4 examines three ways in which we can measure the impact of our results: statistical
significance, effect size and power. We will not explore what those concepts mean here, as that
would involve exposing you to factors that you have not learned yet. Most importantly, we
will learn about how probability is used in statistics to express the likelihood that an observed
outcome happened due to chance factors. We will discuss effect size and power briefly a little
later in this chapter.

Chapter 5 provides an overview of experimental methods and guidance on how to choose
the correct statistical test. We will learn how to understand and interpret the key factors that
determine which procedure we can perform. Using that information, we will explore an over-

view of the statistical tests included in this book, so that we can put all of it into context.

1.3 Take a closer look Q
Icons N\

A common feature throughout the chapters in this book relates to the use of ‘boxes’. This ‘Take a closer look" box will
be employed to explore aspects of what you have just learned in a little more detail, or will summarise the main points
that have just been made.

Nuts and bolts

Within the chapter text, you should find all you need to know to perform a test. However, it is important that you also
learn about conceptual issues. You can do the tests without knowing such things, but it is recommended that you
read these ‘Nuts and bolts’ sections. The aim is to take you beyond the basic stuff and develop points a little further.

Calculating outcomes manually @

In all of the statistical chapters, you will be shown how to run a test in SPSS. For most readers, this will be sufficient.
However, some of you may want to see how the calculations are performed manually. In some cases your tutor will
expect you to be able to do this. To account for those situations, most of the statistical tests performed in SPSS will
also be run manually. These mathematical sections will be indicated by this calculator icon. While these sections
are optional, | urge you to give them a go - you can learn so much more about a test by taking it apart with maths.
Microsoft Excel spreadsheets are provided to help with this.
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Statistical chapters (6-21)

Each of the statistical chapters presents the purpose of that procedure, the theory and rationale
for the test, the assumptions made about its use, and the restrictions of using the measure. In
many cases we will explore how to calculate the test manually, using mathematical examples.
Before learning how to perform the test in SPSS, you will see how to set up the variables in
the data set and how to enter the data. You will then be guided gently through data entry and
analysis with a series of screenshots and clear instructions. You will learn about what the output
means and how to interpret the statistics (often with use of colour to highlight the important
bits). You will be shown how to report the outcome appropriately, including graphical displays
and correct presentation of statistical terminology. You will also be able to read about some
examples of how those tests have been reported in published studies, to give you a feel for their
application in the real world (and sometimes how not to do it). Finally, you have the opportu-
nity to practise running the tests for yourself with a series of extended learning exercises.

Statistical chapter features

The format of the statistical chapters has been standardised to help give you a better under-
standing of each test. Certain features will be common across the chapters.

Learning objectives

At the start of each chapter you will be given an overview of what you can expect to learn.

Research question

Throughout each chapter, a single research theme will be used to illustrate each statistical test.
This will help maintain some consistency and you will get a better feel for what that procedure
is intended to measure.

Theory and rationale

In order to use a test effectively, it is important that you understand why it is appropriate for
the given context. You will learn about the theoretical assumptions about the test and the
key factors that we need to address. Much of this will focus on the arguments we explore in
Chapter 5, relating to the nature of the variables that you are exploring. Sometimes you will
be shown how the test compares to other statistical procedures. This will help you put the
current test into context, and will give you a better understanding of what it does differently
to the others.

Assumptions and restrictions

Related to the last section, each test will come with a set of assumptions that determines when
it can be legitimately used. Often this will relate to factors that we explore in Chapters 3 and 5
regarding whether the data are normally distributed and the nature of the data being measured.
We will explore the importance of those assumptions and what to do if they are violated.

Performing manual calculations

Although a main feature of this book focuses on the use of SPSS, wherever possible there will
be instructions about how to calculate the outcomes manually. There are several reasons for
doing this. As we saw earlier, witnessing how to explore the outcome using maths and formulae
can reinforce our understanding of the analyses. Also, some of you simply may not have SPSS.
Most of these calculations are provided just prior to the SPSS instructions. However, some are
a little more complex, so they are safely tucked away at the end of the chapter to protect the
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faint-hearted, or those of a more nervous disposition. Where appropriate, those calculations
are supported by a Microsoft Excel spreadsheet that is provided on the web page for this book.
These could also be used as a template to analyse other Excel-formatted data sets (such as those
provided for the learning exercises). In some cases, those data can also be used to perform the
complete statistical test in Microsoft Excel.

Creating the SPSS data set

Many statistical books show you how to perform a test in SPSS; this book is quite unique in the
way that it shows you how to set up the data set in the first place. Data analysis can be so much
easier if we create data sets that are appropriate for the type of analysis that we need to conduct.
Using procedures that we learned in Chapter 2, we will explore the best way to create a data set,
suitable for your analysis.

Conducting tests in SPSS

Each statistical chapter includes full instructions about how to perform the test using SPSS.
These include easy-to-follow boxes that will guide you on how to undertake each stage of the
statistical analyses. An example is shown in Figure 1.1.

Open the SPSS data set Sleep 2

Select Analyze <» Compare Means =» Independent-Samples T Test... (in new window)
transfer Sleep Quality to Test Variable List =» transfer HADS cut-off depression to Grouping
Variable =» click Define Groups button =» (in the window) enter 1 in box for Group 1 =»
enter 2 in box for Group 2 =» click Continue =» click OK

Figure 1.1 An example of SPSS procedure instructions

You will also be shown screenshots of the SPSS displays that you will encounter during
the process. You can refer to these to ensure that you are using the recommended method. An
example of this is shown in Figure 1.2.

@ Sleep data entry - completed.sav [DataSet2] - IBM SPSS Statistics Data Editor
File Edit View Data Transform Analyze Graphs Ulilities Add-ons Window Help

Reports 3 i % ] :': bt (4] |
HS . o e % u Bl [
Descriptive Statistics 4 = |
| Tables 2
! idne || age Compare Means * | L Means.. var |
1 | 0001 1 General Lingar Model » | |3 one-sample T Test.
2 IUUUZ d Generalized Linear Models » -
= @ Independent-Samples T Test...
3 0003 3 Mixed Models » :
o= T = 0004 = @Pawed—Samples TTest..
e 9 Correlate P 2
i [ one-way ANOVA.
___5 | 0oos 1 Regression » = L
[ & 0006 4 Woil . 4 19

Figure 1.2 An example of SPSS screenshot

Interpretation of output

Once each test has been run, you will be taken through the SPSS output more thoroughly, so
that you understand what each table of results shows and what the implications are. In some
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cases, this output is relatively easy to follow - there may be just one line of data to read. In
other cases, there may be several lines of data, some of which are not actually that important.
Where there may be some doubt about what part of the output to read, colour and font will
be used to illustrate where you should be focusing your attention. An example of this is shown
in Figure 1.3.

Tests of between-subject effects

Dependent variable: HADS anxiety score

Type Ill sum Partial eta
Source of squares df Mean square F Sig. squared
Corrected model 1102.1072 5 220421 16.688 .000 476
Intercept 5193.219 1 5193.219 393177 .000 .810
HADSDbase 336.365 2 168.183 12.733 .000 217
hxinsom 74.793 1 74.793 5.663 .019 .058
HADSDbase * hxinsom 61.310 2 30655 2.321 .104 .048
Error 1215.169 92 13.208
Total 8799.000 98
Corrected total 2317.276 97

a. R squared = 476 (adjusted R squared = 447)

Figure 1.3

An example of annotated SPSS output

Effect size and power

In addition to reporting statistics, it is important that you state the effect size and power of the
outcome. You will learn more about what that means in Chapter 4. Briefly, effect size represents
the actual magnitude of an observed difference or relationship; power describes the probability
that we will correctly find those effects.

Writing up results

Once you have performed the statistical analyses (and examined effect size and power where
appropriate), you need to know how to write up these results. It is important that this is done in
a standardised fashion. In most cases you will be expected to follow the guidelines dictated by
the British Psychological Society (BPS) (although those rules will vary if you are presenting data
in other subject areas). These sections will show you how to report the data using tables, graphs,
statistical notation and appropriate wording.

Graphical presentation of data

You will be shown how to draw graphs using the functions available in SPSS, and you will learn
when it is appropriate to use them. Drawing graphs with SPSS is much easier than it used to be
(compared with earlier versions of the program). In many cases, you can simply drag the vari-
ables that you need to measure into a display window and manipulate the type of graph you
need. In other cases, you will need to use the menu functions to draw the graphs.

Research example

To illustrate the test you have just examined, it might help to see how this has been applied in
real-world research. At the end of each chapter you will find a summary of a recently published
research article that uses the relevant statistical tests in its analyses. The papers focus on topics
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1.4 Take a closer look

Chapter layout

that may well be related to your own research. While those overviews should be very useful
in extending your understanding, you are encouraged to read the full version of that paper.
For copyright reasons, we cannot simply give these to you. However, each paper is provided
with a link that you can enter into an internet browser. In most cases this will be the ‘DOI
code’ These initials stand for ‘Digital Object Identifier. It is an internationally recognised
unique character string that locates electronic documents. Most published articles provide the
DOI in the document description. Leading international professional bodies, such as the BPS,
dictate that the DOI should be stated in reference lists. A typical DOI might be http://dx.doi
.org/10.1080/07420520601085925 (they all start with ‘http://dx.doi.org/").

Once you enter the DOI into an internet browser, you are taken directly to the publisher’s
web page, where you will be given more details about the article, usually including the Abstract
(a summary of that paper). If you want to access the full article you will have a series of choices.
If you, or your educational institution/employer, have a subscription with that publisher you
can download a PDF copy. If not, you can opt to buy a copy. Alternatively, you can give those
details to your institutional librarian and ask them to get you a copy. Wherever possible, the
DOI will be provided alongside the citation details for the summarised paper; when that is not
available an alternative web link will be presented.

Extended learning task

To reinforce your learning, it is useful to undertake some exercises so that you can put this into
practice. You will be asked to manipulate a data set according to the instructions you would have
learned earlier in the chapter. You will find these extended learning examples at the end of each
chapter (or in some cases within the chapter when there are several statistical tests examined).
You will be able to check your answers on the web page for this book.

Each statistical chapter will follow a similar pattern, providing you with consistency throughout. This might help you
get a better feel of what to expect each time. A typical running order is shown below:

Learning objectives

Research question

Theory and rationale
Assumptions and restrictions
Performing manual calculations
Setting up the data set in SPSS
Conducting test in SPSS
Interpretation of output

Effect size and power

Writing up results

Presenting data graphically
Chapter summary

Research example

Extended learning task
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Online resources

A series of additional resources is provided on the web page for this book, which you can access
at www.pearsoned.co.uk/mayers. These resources are designed to supplement and extend your
learning. The following list provides a guide to what can expect to find there:

Data sets:

e to be used with worked examples and learning exercises

e available in SPSS and Excel formats.

Multiple-choice revision tests.

Answers to all learning exercises.

Excel spreadsheets for manual calculations of statistical analyses.
Supplementary guides to SPSS (tasks not covered in the book).
More extensive versions of distribution tables.
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Learning objectives

By the end of this chapter you should be able to:

Understand the way in which data and variables can be viewed in SPSS

Recognise how to define variables and set parameters

Enter data into SPSS and navigate menus
e How to use them to enhance, manipulate and alter data

e How to transform, recode, weight and select data

Understand basic concepts regarding syntax
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Introduction

SPSS® is one of the most powerful statistical programs available, and probably the most popular.
Originally called the ‘Statistical Package for the Social Sciences’, SPSS has evolved to be much
more than a program for social scientists, but the acronym remains. Many published studies,
in a very wide variety of research fields, include statistics produced with SPSS. To the uniniti-
ated, the program appears daunting and is associated with the horrors of maths and statistics.
However, it need not be that scary; SPSS can be easy to learn and manipulate. Most of the tasks
are available at the press of a button, and it is a far cry from the days when even the most basic
function had to be activated by using programming code. The trick is learning what button to
press. Many books report on how to use the functions, but very few provide even the most basic
understanding. Some of you may be experienced enough not to need this chapter, in which
case, you can happily pass on to the next chapter. However, even if you have been using SPSS for
several years, you may benefit from learning about some of the newer functions now available.

We will start by looking at some of the most basic functions of SPSS, such as how to set up
new data sets and how to use the main menus. To create a data set, we need to define variables -
we will learn how to set the parameters according to the type of test we need to perform. We
will see that there are two ways that we can view a data set: a ‘variable view’, where we define
those variable parameters and a ‘data view’, where we enter data and manipulate them. Once
we have created a data set, it would be useful if we learned how to use important menu func-
tions such as ‘Save’ and ‘Edit’. Then we will proceed to some slightly more advanced stuff. Now,
it's quite likely that some bits about data editing and manipulation will be beyond you at this
stage, particularly if you are new to statistics. If that happens, don’t worry. This chapter is not
designed to be read in one go; you can return to it again later when you have learned more
about statistical analyses themselves. The rationale for this approach is a simple one: it keeps
all of the instructions for performing the main functions in one place. In many cases we will
revisit the procedures in later chapters, when they become appropriate. However, it is useful to
have the most basic instructions all together. We will not explore the data analysis and graphical
functions in this chapter, as it is better that we see how to do that within the relevant statistical
chapters. But we will (briefly) consider how SPSS uses ‘syntax’ language to perform tasks. You
will rarely have to use this programming language, but it may be useful for you to see what it is
used for. Throughout this book we will be using SPSS for Windows version 19.

Viewing options in SPSS

One of the first things to note is that there are two editing screens for SPSS (called ‘Data Editors’):
‘Variable View’ and ‘Data View". Variable View is used to set up the data set parameters (such as
variable names, type, labels and constraints). Data View is used to enter and manipulate actual
data. An example of each is shown in Figure 2.1 and Figure 2.2. Before you enter any data, you
should set up the parameters and limits that define the variables (in Variable View). Once you
have those variables set up, you can proceed to enter the data; you will do that via Data View.

3 Data entry cxercise:sav [DataSetl] - IBM SPSS Statistics Data Editor

File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help

"""I—Jl@r"ﬂ Bl A B B w1 0% "

| Type Width | Decimals Label Values Missing Columns Align Measure Role
1 |¢no String 8 0 None None 4 EE Leht & Nominal  Input
2 age Numeric 8 0 Age None -1 3 3= Right & Scale v Input
28 gendes Murmneric 8 1} Gender 1, Male).. -1 L = Right @ Nominal e Input
4 nationality MHumeric 1] 0 Nationality {1. English}... None 7 = Right &> Nominal “ Input
£ qol MNumeric 8 0 Qulaity of Ife p... None -1 3 35 Right il Ordinal “ Input

Figure 2.1 SPSS Variable View
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\‘a Data entry exercise.sav [DataSet1] - IBM SPSS Statistics Data Editor
File. Edit View Data Transform Analyze Graphs Ulilities Addons Window Help

£
’ﬁHﬁ."‘" Kiiazf B 5 & (il
idno | age | gender nationality gol | deplevel | picture | nopicture| sleepqual | rested va
1 0001 18 Male Welsh 1 3 12 12 39 28
| 2 0005 25 Male English 3 7 21 20 14 14
| 3 0007 48 Male French 2 13 4 1 50 42
i 4 0010 25 Male Enalish 2 19 16 70 72

Figure 2.2 SPSS Data View

Variable View is arranged in columns that relate to the parameters that we will set for each
variable. Each row relates to a single variable in the data set.

Data View is arranged in columns that show each of the variables included in the data set
(these are the same as the rows in Variable View). Each row represents a single participant or
case. Now we should see how we define and enter the information, so that we get the informa-
tion that is displayed in Figures 2.1 and 2.2.

Defining variable parameters

It might help you understand the functions of SPSS by defining some variables and then entering
data. To help us, we are going to use a small data set that will examine participants’ age, gender,
nationality, perceived quality of life and current level of depression. We will also examine how many
words the group can recall (with or without a picture prompt). Finally, we will record the partici-
pants’ perceptions of sleep quality and how well rested they felt when they woke up that morning.

Starting up a new SPSS data file

Before we start, we need to open a new (blank) SPSS data file. When SPSS is open for the first
time, you may be presented with a range of screens. The default view (shown in Figure 2.3)
requests options of how to proceed:

Open SPSS 19 from your program menu, or click on the SPSS icon.

In this case, we do not need any of those options, so just click on Cancel; a blank window will
open (similar to Figures 2.3 or 2.4). On other occasions, you may wish to perform one of the
other functions, but we will look at that later. In Figure 2.3, you will notice that there is a tick-
box option saying ‘Don’t show this dialog in the future’. If that has previously been selected, you
will not see Figure 2.3 at all; the program will just open straight into a blank window. Once you
have opened a new data file, click on the Variable View button (at the bottom of the page). An
example of a brand new Variable View page is shown in Figure 2.4.

Defining variable parameters: rules and limits

When we open Variable View we see a range of parameter descriptions across the column head-
ings. Before we define those we should explore what each of the descriptors means:

Name: Give your variable a name that is relevant to what it measures, but try to keep it short.
The limit for SPSS 19.0 is 64 characters, but it is advisable to make it more manageable
(you can always provide a fuller description in the ‘Label’ column). The name should
start with a letter; subsequent characters can be any combination of letters, numbers
and almost any other character. There are some exceptions, and you will get an error
message should you select any of those. You cannot use blanks: ‘age of participant’ is
not acceptable, but ‘age_of_participant’ is fine. This field is not case sensitive.
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Figure 2.4 Blank Variable View

Type:

Width:

If you click on the cell for this parameter you will be presented with a row of dots
(.. .). Click on that and you will see a list of options (see Figure 2.4). The default
is ‘Numeric’, which you will use most often. The most likely alternative is ‘String’,
which you could use for participant identification. ‘Numeric' can be used even when
the variable is categorical, such as gender. This is because ‘numbers’ can be allocated
to represent the groups of the variable (see "Values').

It is unlikely that you will need to change the default on this, unless you expect
to require more digits than the default (eight characters). You may need to extend
that if you want very large numbers, or if you need to display numbers with several
decimal places (see below).
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Decimals:

Label:

Values:

Missing:

Columns:

Align:

Measure:

Setting decimals applies only when using numeric data. You can use this to deter-
mine how many decimal places you show (in the data set). The default setting is for
two decimal places. For something like age, you may want to change this to ‘0" (use
the arrows to the right of the cell to make changes). For more specific data (such as
reaction times) you may want any number of decimal places. This option has no
effect on the number of decimal places shown in the results.

This is where you can enter something more specific about the nature of the vari-
able, so you can include a longer definition (and there are no limits). For instance,
the ‘Label’ could be ‘Depression scores at baseline’, while the ‘Name’ parameter
might be ‘depbase’. Always put something here, as that label is shown in some parts
of the SPSS output.

As we will see in later chapters, a categorical variable is one that measures groups
(such as gender). So SPSS understands that we are dealing with categorical vari-
ables, we need to allocate ‘numbers’ to represent those groups. For example, we
cannot expect SPSS to differentiate between the words ‘male’ and ‘female’, but can
use the values facility to indicate that ‘1’ represents male and 2" is female. If there
are no groups, you would leave the Values cell as ‘None' (the default). If you do have
groups, you must set these values (you will see how later).

It is always worth considering how you will handle missing data. If there is a response
absent from one of your variables, SPSS will count that empty cell as ‘0" This will
provide a false outcome. For example, the mean (average) score is based on the sum of
scores divided by the number of scores. If one of those scores is incorrectly counted as 0,
the mean score will be inaccurate. You should include ‘0" only if it actually represents a
zero score. If the data are missing, you can define a specific ‘missing variable value’. This
will instruct SPSS to skip that cell (a mean score will be based on the remaining values).
The missing ‘value’ indicator must be sensible; it must not be in the range of numbers
you might be expecting (otherwise a real number might be ignored). The same applies
to numbers used to define groups. A good choice for missing values is — 1: it should
cover most scenarios. We will see how to do this later.

This facility determines the width of the column reserved for that variable in the
Data View. So long as you can see the full range of digits in the cell, it does not really
matter. Set this to be your preference.

Data can appear to the left of a cell, the middle, or to the right - the choice is yours.

You need to define what type of variable you are measuring. Click on the arrow v
in the Measure cell. The options for Numeric data are Scale, Ordinal or Nominal. For
String the options are Ordinal or Nominal. Select the appropriate one from the pull-
down list.

& Scale

The Scale measure is ruler - representing a range of scores.

The Ordinal measure is step - representing an order of groups.

d:l Ordinal The Nominal measure is distinct circles — representing categories.

&) Nominal With numeric data, ‘Scale’ refers to scores such as age, income or

Role:

numbers that represent ranges and magnitude. These numbers
are what we would normally categorise as interval or ratio data.
‘Ordinal’ data are also ‘numerical’ but only in the sense that the
number represents a range of abstract groups; you will typically find
ordinal data in attitude scale (where 1 = strongly agree, through to
5 = strongly disagree). You will learn more about interval, ratio and
ordinal data in Chapter 5, so don’t worry if that’s all a bit confusing
right now. ‘Nominal’ refers to distinct categories such as gender
(male or female).

Just use ‘Input’ for now; you can learn about the rest another time.



Creating new variable parameters

At this stage it would be useful to set up an example set of variables. You will recall that we
are creating a data set that examines the participants’ age, gender (male or female), nationality
(English, Welsh or French), perceived quality of life, current level of depression, how many
words they can recall (with and without a picture prompt), perceived sleep quality and how
rested the participants felt when they woke up. We will also have a variable called ‘participant
identifier’ (the usefulness of that will become apparent later). Table 2.1 shows the information

we are about to enter into our new SPSS data set.

Defining variable parameters

Table 2.1 Data set
SPSS variable
idno age gender | Nationality qol deplevel | picture nopicture | sleepqual | rested
0001 18 Male Welsh 1 3 12 12 39 28
0002 38 Female English 4 18 21 20 14 14
0003 30 Female French 4 ? 14 1 50 42
0004 22 Female English 5 20 19 16 70 72
0005 25 Male French 3 7 12 12 63 62
0006 40 Female Welsh 4 19 n n 39 39
0007 48 Male English 2 13 21 22 59 39
0008 35 Female Welsh 5 20 24 20 55 54
0009 45 Female Welsh 3 10 17 21 39 42
0010 25 Male English 2 6 18 12 57 60
00T 50 Male French 5 24 18 1 59 57
0012 35 Male English 2 n 18 9 74 78
0013 ? Female Welsh 4 28 14 1 17 27
0014 32 Female English 5 25 19 14 24 24
0015 40 Male Welsh 1 12 23 18 50 47
0016 53 Female Welsh 4 23 15 15 57 61
0017 35 Male French 3 16 21 12 57 46
0018 30 Male English 2 13 24 19 61 58
0019 20 Female French 4 16 17 14 31 24
8

2.1 Nuts and bolts

SPSS instruction boxes

We will be using instruction boxes throughout this book to show how we perform a function in SPSS. To maintain
consistency, fonts will be employed to indicate a specific part of the process:
Black bold: this represents a command or menu options shown within the data window.
Green bold: this indicates the item to select from a list within the menu or variable.

Blue bold: this refers to words and/or numbers that you need to type into a field.

We will now set up the parameters for the variables in this data set. Remember we need a new row for each variable.

Go to the blank Variable View window for the new data set.
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Participant identifier (Row 1):

We will start with a ‘variable’ that simply states the participant’s identification number. This can
be useful for cross-referencing manual files.

In Name type idno =» in Type click on the dots... (you will be presented with a new window
as shown in Figure 2.5) =» select String radio button =» everything else in this row can remain
as default

f @ Variable Type ﬁ1

© Numeric f
O Comma Characters: |
© Dot |
© Scientific notation |'
© Date

© Dollar

© Custom cumency

i

(Lox J | cancei][_ e |

\ J Figure 2.5 Setting type

Age (Row 2):

In Name type age =» set Type to Numeric =» ignore Width =» change Decimals to O =» in
Label type Age =» ignore Values

To set the parameter for Missing values, click on that cell and then the dots ... (you will be
presented with a new window, as shown in Figure 2.6) =¥ select Discrete missing values radio
button =» type -1in first box =» click OK =» back in original window, ignore Columns =¥ ignore
Align = click Measure =» click arrow ¥ =» select Scale

(@ Missing Values ﬂ1

@) No missing values
(D) Discrete missing values

Lok J | cancel||_teip |

\ J Figure 2.6 Missing values
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Gender (Row 3):

In Name type gender =» set Type to Numeric =» ignore Width =» change Decimals to O =» in
Label type Gender

Gender is a ‘group’ (categorical) variable, so we have to set some Values = click on that cell
and then the dots ... (you will be presented with a new window, as shown in Figure 2.7) =» in
Valuetype1=¥in Label type Male =¥ click Add = in Value type 2 =» in Label type Female =» click
Add = click OK =» back in original window, set Missing to —1 =» ignore Columns =» ignore
Align = set Measure to Nominal

r@ Value Labels - =

~Value Labels-

Label: |Female ‘
(Bemore)

1 ="Male™

oK | cancal][_Hei |

Figure 2.7 SPSS value labels

Nationality (Row 4):

In Name type nationality =» set Type to Numeric =» ignore Width =» change Decimals
to O =» in Label type Nationality =» set Values as1 = English,2 = Welsh,and3 = French
respectively (you saw how just now) =» set Missing to —1 =» ignore Columns =¥ ignore Align
=» set Measure to Nominal

Quality of life perception (Row 5):

In Name type qol =» set Type to Numeric =» ignore Width =» change Decimals to O =» in
Label type Quality of life perception =» ignore Values =» set Missing to —1 =» ignore
Columns = ignore Align =» set Measure to Ordinal

Current level of depression: (Row 6):

In Name type deplevel =» set Type to Numeric =» ignore Width = change Decimals to 0 =
in Label type Current level of depression =» ignore Values =» set Missing to —1 =» ignore
Columns = ignore Align =» set Measure to Scale
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Picture: (Row 7):

In Name type picture = set Type to Numeric = ignore Width =» change Decimals to 0 =
in Label type Words recalled with picture =» ignore Values =» set Missing to —1 = ignore
Columns =¥ ignore Align =» set Measure to Scale

No picture: (Row 8):

In Name type nopicture =» set Type to Numeric =» ignore Width =» change Decimals to O
=» in Label type Words recalled without picture =» ignore Values =» set Missing to —1 =»
ignore Columns = ignore Align =» set Measure to Scale

Sleep quality: (Row 9):

In Name type sleepqual = set Type to Numeric =» ignore Width =» change Decimals to O
=» in Label type Sleep quality =» ignore Values =» set Missing to —1 =» ignore Columns =
ignore Align =» set Measure to Scale

Rested: (Row 10):

In Name type rested =» set Type to Numeric =» ignore Width = change Decimals to O = in
Label type Rested on waking =» ignore Values =» set Missing to —1 =» ignore Columns =»
ignore Align =» set Measure to Scale

Entering data

To start entering data, click on the Data View tab and you will be presented with a window similar
to the one in Figure 2.8. Remember, each row in Data View will represent a single participant.

@ *Data entry exercise.sav [DataSet1] - IBM SPSS Statistics Data Editor _—
File Edit View Data Transform Analyze Graphs Ulilities Add-ons Window

| idno | age || gender | nationality || qol | deplevel | picture || nopicture

il

= || L

Figure 2.8 Blank Data View
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To enter the data, we will use the information from Table 2.1. To get some practice you should
enter these data, following the instructions shown below (note that there are some data ‘missing’).

Using the SPSS data set that we have just created, enter the following
information:

Row 1: In idno type 0001 = in age type 18 =» in gender type 1 =» in nationality type 2 =» in
qol typel =» in deplevel type 3 =» in picture type 12 =» in nopicture type 12 =¥ in sleepqual
type 39 =» in rested type 28

Row 2: In idno type 0002 =¥ in age type 38 =¥ in gender type 2 =¥ in nationality type 1=» in
qol type 4 =» in deplevel type 18 =» in picture type 21 = in nopicture type 20 =» in sleepqual
type 14 =¥ in rested type 14

Row 3: In idno type 0003 =» in age type 30 =» in gender type 2 =» in nationality type 3 =¥ in
qol type 4 = in deplevel type -1 (the ‘depression score’ is missing; so we enter the ‘missing
value' indicator instead) =» in picture type 14 =» in nopicture type 11 =» in sleepqual type 50
=) in rested type 42 ... and so on

Perhaps you would like to enter the remaining data (from Table 2.1); there will some further
exercises at the end of this chapter.

SPSS menus (and icons)

Now we have created our first data set, we should explore how we use the ‘menus’ (refer to Figure 2.8
to see the range of menu headings). You will need to use only some of the functions found within
these menus, so we will look at the most commonly used. In some cases, a menu function has an
icon associated with it (located at the top of the view window). You can click on an icon to save time
going through the menus; we look at the most useful of those icons (these are displayed below the
menu headings, as shown in Figure 2.9). There are actually many more icons that could be included.
You can add and remove the icons that are displayed, but we will not look at how to do that in this
section. You can see how to do this in the supplementary facilities supplied in the web features
associated with this chapter. The menu structure is the same in Data View and Variable View screens.

H *Data entry exercise.sav [DataSetl] - IBM 5PSS Statistics Data Editor
File Edit View Data Transform Analyze Graphs Ulfilities Addons Window Help

=15 e e 6L, =

Figure 2.9 SPSS menus and icons

File menu

2.2 Nuts and bolts
SPSS files

SPSS uses two main file types: one for data sets (these are illustrated by files that have the extension “.sav’) and one
for saving the output (the tables of outcome that report the result of a procedure) - these are indicated by files that
have the extension ".spv'. A file extension is the letters you see after the final dot in a filename. It determines which
program will open the file, and what type of file it is within that program. For example, word-processed files often have
the file extension ‘.doc’. There are other file types in SPSS, such as those used for the syntax programming language.
However, most of the time you will use only .sav and .spuv files.
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When the ‘File’ menu is selected, a series of options will appear (see Figure 2.10). The file
menu is pretty much the same as you will find in most popular software programs, with some
exceptions. There are several functions available here. Some of these are more advanced than we
need, so we will focus on those that you are most likely to use for now.

File Edit Yiew Data Transform Analyze

MNew b
Open 4
Open Database 3
(&) Read Text Data..
Ml Close
H cawe i+
Save As..

F=j Save All Data

;-z; Expuwillu Dalabase...

Mark File Read Only

¥ Rename Dataset...
Display Data File Information 4

B4l Cache Data...

o Ctri+Perio

gl Switch Server...
Repository 4

|4 Print Preview

(=4 Print... Ctri+P
Recently Used Data L4
Recently Used Files 3
Exit

TT

Figure 2.10 File menu options

New: Use this to start a new data file. It is most likely that this will be a new data set, in
which case you would follow the route: (click on) File =» New =» Data. However, you
might equally choose to start a new Syntax or Output file.

Open: Use this to open an existing file, perhaps one that you have worked on previously.
If you want to open a data file, perform File <» Open = Data. To open a saved
—§ output file, perform File < Open =» Output. There is an icon associated with
this function, which you can use just by clicking on it (saving a little time from
selecting the menu route):

You can also open a file by clicking on it directly from your own folders (see Figure 2.11).

Save: It is good practice to save data sets and output files frequently, not just when you
= have finished. If your computer crashes, you might lose everything. To save the file,
H select File = Save (regardless of whether you are saving a data set or an output file).

|

Alternatively, you can click on the icon shown here. If the file has not been saved
before, you will be asked to create a name and indicate where you want the file
saved. If it is an existing file, it will save any new changes.
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8

@'\_J.l' « MyWork » BU » Teaching b Statistics » SPSSdata »

Oirganize »

I Favuriles
B Uesitop
% Downlnads

2. Recent Places

w4 Libraniss
| Documents
o Musc
| Pictures

B videss

* Homegroup

1% Computer
& Lucdl Disk (C2)
(=a RECOVERY (D:)

& Open =

Shate with = F-mail

Documents library

SPSS dats

4. Output

.-j Age gender and depression
(s Agoraphabia

-jnnimalc

(il Ariely and insomnia

() Aniety

'Q Case managed depression
--_n LCBI and depreszion

(i chapterl1dataset

-Q Lomputer games

{3 Data entry everrise

'ﬂ Depression and sleep quality
(i Depression by gender

(o Emoticnal Stroop

Burn

MNew folder

Double click on the required file and it will open
in the SPSS program.

'_a Age and slee
r_\nngz

(s Alcohol and
i-j.\\n'lmalsz
(ol Ariety dysl
|_-n Body shape
(5 Cats and dos
'QLHI and per
{8 Cormmunica
'Q Correlation t
|_Q Depressed
(58 Depression ¢
{5 Depression
foal Exams and ¢

Figure 2.11 Opening a file from general folders

Save As:

Mark File Read Only:

Print Preview:

Recently Used Data:

Recently Used Files:

If you make changes to a file but want to keep the original file, use this
function to save the changed version to a different file. Select File =
Save As (regardless of whether you are saving a data set or an output
file). Do not use the ‘file save’ function: the details in the file prior to the
changes will be overwritten

You can protect your file from any further changes being made; new
changes can be made to a new file using ‘Save As’ Select File =» Mark
File Read Only (you will be reminded to save current unsaved changes).

You may want to see what a printed copy of your file will look like,
without actually printing it (for example, you may want to change
margins to make it fit better) - this saves printing costs. Select File =»
Print Preview.

If you are happy to print the file, send this to a printer of your choice by
selecting File = Print. You will be given a list of printers that this can be
sent to. If you use the ‘Print” icon the print will be automatically sent to
your default printer.

As the name implies, this closes down the file. You will be warned if data
have not been saved. You also get a warning if the file is the last SPSS
data set still open (it closes the whole program). You can also click on
the cross in the top right-hand corner to close the file. Make sure you
save before you close anything.

This provides a similar function to ‘Open’ but will locate the most
recently used data sets. This is often quicker because, using ‘Open’, you
may need to trawl through several folders before you find the file you
are after. However, this function remembers file names only. If you have
moved the file to another folder since it was last used, you will get an
error message. Select File =» Recently Used Data and choose the file you
want to open.

This is the same as ‘Recently Used Data’ but it locates all other files that
are not data sets (output files, for example).
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Edit menu

The Edit menu also shares properties with other software programs that you may be more
familiar with. When this menu is selected, a number of options are displayed (see Figure 2.12).

Edit View Data Transform A

“H Redo Ctri+Y

9 fri+ 3
_E’ £
[ Paste Crl+y

' 4

Inzert Variable
@msert Cases

i Eind.. Cirl+F
5,
& Replace. . Ctrl+H

¥ Goto Case...
&Eu to Variable...

= Got

[={ Options...

Figure 2.12 Edit menu options

We will explore some of the more common functions here. Where an icon is displayed, this can
be selected instead of using the full menu function:

Undo:
H'A

Redo:
~3

Cut:

Insert Variable:
(- -

£

Sometimes you may enter data incorrectly, or make some other error that you
want to ‘undo’. Use this function to do that by selecting Edit < Undo.

Having undone what you believed to be incorrect, you may decide it was OK
after all and want to put the information back in again. You can redo what
was undone by selecting Edit =» Redo.

If you want to move information from a current cell and put it somewhere
else, you need to use this ‘Cut’ facility. It’s rather like deleting, but the infor-
mation is saved in a memory cache until you find somewhere else to put it
(see 'Paste’). To do this, select Edit =» Cut.

If you want to copy information from the current cell (to somewhere else) but
also keep the current information where it is, you need this ‘Copy’ function. To
do this, select Edit =» Copy. You will need the ‘Paste’ function to complete the
task.

Use this to paste information that has been cut or copied from somewhere
else into a cell by selecting Edit =» Paste.

You can use this function to insert a new variable in Variable View. In many
cases, we would simply start a new row (rather like we did earlier). However,
sometimes you might decide to include a new variable but would like to



Insert Case:

For

/. .'l.

Find:

48

Replace:

Options:

A
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have it placed next to an existing one (perhaps because it measures something
similar). To do this, go to Variable View and click on the row above which
you want to insert the new variable. Then select Edit =» Insert Variable. You
would then need to set the parameters as you have been shown.

You can use this function to insert a new ‘case’ In most data sets, a case will be
a participant. It is quite likely that it will not matter what order you enter data,
but sometimes you may want to keep similar participants together (such as all
of the depressed people in one place). In that scenario, you may want to insert
a participant into a specific row of your data set. To do that, go to Data View
and click on the row above which you want to insert the new case. Then select
Edit = Insert Case. You can then enter the data for your new participant.

In larger datasets it can be time consuming to look for specific bits of data.
For example, in a data set of 1,000 people you may want to find cases where
you have (perhaps mistakenly) used ‘99’ to indicate a missing variable. You can
select Edit =» Find to locate the first example of 99 in your data set. Once you
have found the first example, you can use the ‘Next’ button to locate subsequent
examples.

Having found the items you are looking for, you may wish to replace them. For
example, you have originally chosen to use 99 as your missing value indicator
for all variables, including age. Later, you discover that one of your partici-
pants is aged 99! If you kept 99 as the missing variable it would not count
that person. So you decide to change the missing value indicator to - 1. If
there were 50 missing values in all variables across the data set, it would take
some time to change them and you might miss some. However, the ‘Replace’
function will do that for you all at once. Go to Edit =» Replace =» enter 99
in the Find box =» enter - 1 in the Replace with box =» click on Replace All.
However, do be careful that there are not other (valid) cases of 99 - you might
replace true data with an invalid missing value. If you are not sure, use the
Find Next button instead of ‘Replace All"

This function enables you to change a whole series of default options, including
the font display, how tables are presented, how output is displayed, and so on
Much of this is entirely optional and will reflect your own preferences.

View menu

The View menu offers fewer features than the others, but those that are there are very useful.

View Data Transform Analyze Grap

¥ Status Bar
Toolbars +
Menu Editar...
Fonts..

&  GridLines

¥ 1.@ Value Labels

o e

B cust

B variables Cirl+T

Figure 2.13 View menu options
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Three functions can be selected via tick boxes:

Status bar: This function confirms current functions at the foot of the display window. This
can be quite reassuring that the process is working, so it is a good idea to leave
this ticked.

Grid lines: This function allows you to show grid lines between cells, or to remove them; it

is entirely optional.

Value Labels: This is a very useful function. Earlier, we saw how to set up categorical vari-
_A_[ ables that represent groups. For example, we created a Gender variable and used
ij# codes of 1 and 2 for ‘male’ or ‘female’ respectively. When we display the data
. set, we can choose whether to show the numbers (such as 1, 2) or the value
labels (such as male, female) by ticking that box. Alternatively, you can click on
the icon in the toolbar - if you are currently showing numbers it will switch to

value labels, and vice versa.

Other functions are selected by clicking on that option and following additional menus:

Toolbars: You can use this function to choose which icons to include on the toolbar.
Select View =» Toolbars =» Customize (a new window opens) =» click Edit.
From the operations window you can select a menu and choose which icons
you can drag onto the toolbar.

Fonts: You can use this facility to change the way in which fonts are displayed in the
data set. This is entirely your choice. Select View =» Fonts if you want to change
anything.

The next three menus are used to manipulate data To fully illustrate these functions, we will
undertake some of the procedures as well as explain what the menu aims to do.

Data menu

The data menu examines and arranges the data set so that specific information can be reported
about those data. In some cases this has an impact on the way in which data are subsequently
analysed. There are many functions in this menu, so we will focus on those that are probably
most useful to you for the moment.

We can perform these functions on the data set that we created earlier. If you want to see the
completed data set, you will find it in the online resources for this book. The file is called ‘Data
entry exercise’.

Define Variable Properties: This function confirms how a variable has been set up and

' reports basic outcomes, such as the number of cases meeting a

v certain value. To perform this task, select Data =<» Define Vari-
able Properties.
Copy Data Properties: This function enables you to copy the properties of one variable

onto another by selecting Data =» Copy Data Properties.

=

Sort cases: This useful facility allows you to ‘sort’” one of the columns in
the data set in ascending or descending order. For example,

— . !
. using the data set we created, we could sort the ‘Current level
D of depression” column from lowest score to highest score. To
illustrate this important function, we will perform that task

without data:
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Using the SPSS data set Data entry exercise

Select Data =» Sort Cases (see Figure 2.14) =» (in new window) transfer Current level of
depression to the Sort by window (by clicking on the arrow, or by dragging the variable to
that window) =» select radio button by Ascending =¥ click OK (as shown in Figure 2.15).

Data Transform Analyze Graphs Utilities

[ Define Variable Properties...
24| Set Measurement Level for Unknown. .
= Copy Data Properties ...
g New Custom Altribute
& Define Dates...
Define Multiple Response Sets
Validation L4
% Identify Duplicate Cases...
F7 Identify Unusual Cases...
) Sort Cases..
Sort Variables...
&l Transpose...
Merge Files b
= Restructure...
F Aggregate...
Orthogonal Design 3
' Copy Dataset
E= SplitFile...
FH selectCases...
&fs Weight Cases...

Figure 2.14 Data menu options

Return to the data set and you will notice the column for ‘Current level of depression’ is now in order,
from the lowest to the highest.

& Words recalled w...
chnrds recalled w...
& Slaan nualite l=la

OK Pasta

f ‘Woards recalledw...
f Sleep quality [sle...

F@ Sort Cases E“ r@ Sort Cazes ﬁ1
Sort by: Sort by:
gidno | da idno < & Current level of depr...|
& Age[age] & Age[age]
&) Gender [gender] Q) Cender [gender]
&b Mationality [natio... &b Nationality [natio...
,{I Quality of life perc... |:> daualny of life perc... ~Sort Order-
y Current level of e & Words recalled w... @ Ascending

© Descending

& Rectad nnwakin__ 7

| Cancel] e |

Figure 2.15 Sort cases function

Split File: This is another extremely useful facility. It enables you to split the data set according
to one of the (categorical variable) groups. This can be used to report outcomes
E across remaining variables but separately in respect of those groups.
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We will use this function in very important analyses later in the book, notably for multi-
factorial ANOVAs (Chapters 11 and 13). However, we can illustrate this function with a
simple example now. In the data set that we created, we have two variables that measure
‘word recall’. These measure how words can be recalled by the participants when they
are given a picture prompt to aid recall (* Words recalled with picture’) and when they
are not ("Words recalled without picture’). If we examine our entire sample across those
two variables, we can compare the outcomes. We call that a within-group study (we will
encounter these often throughout the book). We might find that people recall more
when they are given the picture prompt. This is all very well, but we might also want to
know whether that outcome differs according to gender. We can do this with the split file.

Before we split the file, we should look at some basic outcome regarding the word
recall across the group.

Std. error
Mean N Std. deviation mean
Pair1  Words recalled with 17.79 19 4.008 920
picture
Words recalled without 14.74 19 4.067 933
picture

Figure 2.16 Mean number of words recalled in each condition

Figure 2.16 appears to show that more words are recalled when the group are given
the picture prompt (mean [average] words remembered = 17.79) than when no
picture is given (mean = 14.74). We should analyse that statistically, but we will
leave all of that for later chapters, when you have learned more about such things.
For now, let’s see what happens when we ‘split the file’ by gender:

Select Data =» Split File (see Figure 2.14) =» (in new window) click radio button for Compare
groups =» transfer Gender to Groups Based on: window = click OK (as shown in Figure 2.17).
Choosing the ‘Compare Groups' option here will result in output that directly compares the
groups. This is probably better than selecting the ‘Organize output by groups’ option, which
would produce separate reports for each group.

Now we can examine the difference in word recall across the picture conditions,
now according to gender. We can see some fundamental differences between the
groups on these outcomes. Figure 2.18 suggests that there is very little difference in
mean words recalled between conditions for men, but women appear to recall far
more words when prompted with the picture than with no picture.

1A Selit File =) 3 Spitt File [
@a idno O Analyze all cases, do not create groups Ja ldno () analyze all cases, 0o Nol Create groups
& Age [aue] @} Compare groups; & Age [age] @ Compare groups

&b Gender[gender

4l Quality of life percep
’ Current level of depr...

& Words recalled with.,
& Sieep quality [sleep
& Resled on waking Ir

&b Nationality [nalmn;n"‘

& Words recalled with

© Qrganize outpul by groups

(=)

@ Sortthe file by grouping variables
© File is already sorted

roups Based on
A

Current Status: Analysis Dy groups Is off.

_L]_

o

= |

&5 Nafionality [nationali

d Quality of life percep...
f Currant level of dapr...
f Words recalled with ...
J’ Words recalled with...
f Sleep quality [sleep...

Resled on waking [r...

Currenl Slalus. Analysis by groups is off,

) Organize output by griups

L)

(@ Sort e hle Dy grouping vananies
© File is already sorted

Groups Rased an®
@l Gender [gerder]

(oK )| paste J| Resel | Cancel] e |

Figure 2.17 Split File function, step 2
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Gender Std. error
Mean N Std. deviation mean

Male Pair1  Words recalled with 16.78 9 4.738 1.579
picture
Words recalled without 16.11 9 4.676 1.559
picture

Female Pair1  Words recalled with 18.70 10 3.199 1.012
picture
Words recalled without 13.50 10 3.171 1.003
picture

Figure 2.18 Mean number of words recalled in each condition (by gender)

You must remember to return the data set to a state where there is no ‘split’ - otherwise
all subsequent analyses will be affected.

Select Data =» Split File = click radio button for Analyze all cases, do not split groups =»
click OK

Select Cases: This function allows you to explore certain sections of the data. In some respects
— it is similar to what we saw for the ‘Split File facility, but there are several more
H options. For example, you can exclude a single group from the data set and
report outcomes on the remaining groups. In our data set, we could decide to
analyse only English and Welsh participants, excluding French people. In effect,

we ‘switch off” the French participants from the data. This is how we do it:

i

Select Data =» Select Cases (see Figure 2.14) =» (in new window) select If condition is satis-
fied radio button =¥ click on If ... box (as shown in Figure 2.19)

P B
B eicus —
Selact
& Age fage] ) All cases
ﬁ' .Ccr.ldcr[.guquir] = @1 If condition i salisfied i
d Quality of life percep... L_..l""_J
& Cumentlovel of depr... | | © Random sampie of cases

& ‘Words recalled with ...
‘99 Words recalled with...
& Sleep quality [slecp...

& Resled on waking |r...

(%] Based on time or caserange

) Use filter variable:
>

Culpul
@ Filler oul unseleded cases
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Figure 2.19 Select cases function, step 1
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In that new window (see Figure 2.20), transfer Nationality to blank window to the right
('Nationality’ will now appear in that window) =¥ click on ~=(this means ‘does not equal’) =
Type 3 (because ‘Nationality = 3' represents French people (who we want to deselect) =» click
Continue =¥ click OK (see Figure 2.21to see completed action)
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Figure 2.20 Select cases function, step 2
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Figure 2.21 Select cases function, step 2 (completed)
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When you return to Data View you will notice that all of the cases referring to French
people are now crossed out. You would now be able to perform your analyses just
based on English and Welsh people. Before you can use the data for other functions,
you will need to remove the selected cases and return to the full data set:

Select Data = Select Cases =» click All cases =¥ click OK

Weight cases: This facility has a couple of useful functions. First, it can be used to count the

~. number of cases that match a combination of scenarios. Or, second, we can
A
A ‘control’ a single variable in the data set so that the remaining variables are ‘equal’

in respect of that controlling variable. To illustrate how we can use this function
to count cases we need a much larger data set. In this scenario, we have a sample
of 200 people, for whom we measure two variables: gender (males/females) and
whether they watch football on TV (yes/no). Now imagine how long it would
take to enter data for 200 participants. Thankfully, there is a shortcut. We can
count the number of times we find the combination of the following: males who
watch football on TV, males who do not, females who do and females who do
not. The data set might look something like Figure 2.22.

2 Footballsav [DataSet?] - IBM SPSS Statistics Data Editor
File Edit View Data Transform Analyze Graph

SR& 0~ ~ 8

|
| gender | football || count |  w
1 Male Yes K}
(e Male No 19
3 Female Yes 12
4 Female Mo 38
5

Figure 2.22 SPSS data set: watching TV by gender

However, as it stands, the ‘count’ is simply another variable. To use it to count the
number of cases that match the scenarios in the first two columns, we need to use
the ‘weight’ function.

Open SPSS data set Football

Select Data =» Weight Cases (see Figure 2.14) =» select Weight cases by radio button =»
transfer Count to Frequency Variable window =¥ click OK (see Figure 2.23)
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N ¥ :
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Current Status: Do notweight cases

Figure 2.23 Weight Cases function

Now that the data are ‘weighted’ by count, analyses can be performed to explore
how men and women differ in watching football.

We can also use the ‘weight’ function to ‘normalise’ data In social science research
(including psychology) it is difficult to control all of the variables. Using the data set
that we created earlier, we might choose to explore ‘current level of depression’ by
gender. We might find that women score more highly (poorly) on depression scores
than men. However, what if we also notice that depression scores increase with age?
How can we be sure that the observed outcome is not the result of age rather than
gender? To be confident that we are measuring just depression scores by gender, we
need to ‘control’ for age. By using the ‘weight’ function, we can adjust the depression
scores so that everyone is equal in age. As we will see later in this book, there are
more sophisticated tests that can do this (see ANCOVA, Chapter 15). However, the
weight function provides one fairly easy way of exploring a simple outcome. This is
how we do it:

Select Data =» Weight Cases =» select Weight cases by radio button =» transfer Age to
Frequency Variable window =¥ click OK

Before you can use the data for other functions, you will need to remove the
weighting function:

Select Data =» Weight Cases =» click on Do not weight cases =» click OK

Transform menu

The transform menu undertakes a series of functions that can change the properties of variables,
or create new variables based on the manipulation of existing variables. Once again, we will
focus on the ones that you are most likely to use. To illustrate those important facilities, we will

perform the functions using example data.
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Transform Analyze Graphs Utilities Add-o

g Compute Yariable...
E CountValues within Cases...
Shift Values...
W Recode into Same Variables...
Recode into Diferent Variables...
Automatic Recode...
{b2 visual Binning..
[% Optimal Binning...
Prepare Data for Modeling 3
BH Rank Cases...
& Date and Time Wizard...
[ Create Time Series...
B Replace Missing Values...
@ Random Mumber Generators...

Figure 2.24 Transform menu options

Compute Variable: You can use this to perform calculations on your variables, perhaps to adjust
them or create new variables. For example, you might have several variables
that measure similar concepts, so you decide to create a new variable that

é is the sum of those added together. In the data set that we created earlier,
we had one variable for ‘Sleep quality’ and one for ‘Rested on waking. We
could combine those into a new variable called ‘Sleep_perceptions’ Here’s
how we do that:

Using the SPSS data set Data entry exercise

Select Transform =» Compute variable (see Figure 2.24) =» (in new window, as shown in
Figure 2.25), forTarget Variable type Sleepperceptions =» transfer Sleep quality to Numeric
Expression window = click on + (the ‘plus’ sign shown in keypad section below the Numeric
Expression window) =» transfer Rested on waking to Numeric Expression window =» click
OK (see Figure 2.26 for completed action)

Go back to the data set. You will see that a new variable (sleepperceptions) has
been included.
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Figure 2.25 Transform Compute Variable
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Figure 2.26 Transform Compute Variable (completed)

Recode into Same Variables: Sometimes you may need to recode the values of your varia-
bles. For example, when we created our data set, we input the
values for gender as 1 (male) and 2 (female). However, as we will
see in later chapters, some statistical procedures (such as linear
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regression — Chapter 16) require that categorical variables can have only two groups
and must be coded as 0 and 1 (don't worry about why for the moment). This is how
we make those changes (this procedure will overwrite the values that we set up before):

Select Transform =» Recode into Same Variables (see Figure 2.24) =» in new window (as
shown in Figure 2.27) transfer Gender to Variables window (which becomes renamed as
‘NumericVariables') = click Old and New Values ...

{32 Recode into Same Variables R Hecode into Same Vanables

Variables: Numenc vVananles:

[l& i::m[a : & ldno @ Gender [gender]
e >
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5 e Oid and New Valugs ::} ﬁ :"“’5 m:’_r:f[:]"'h' [ otdand NewValues..|
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& Sleep qualily [sleep [ & Rested on waking [r... I
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Figure 2.27 Recode into Same Variables function - step 1

In new window (as shown in Figure 2.28), under Old Value, select Value radio button =» type
1in box =» under New Value, select Value radio button =» type 0 in box =» click Add (1--> 0
appears in Old --> New box) =» for Old Value, type 2 = for New Value, type 1 =¥ click Add
(2 --> 1 appears in Old --> New box) =» click Continue =» (in original window) click OK

el

#3 Recode into Same Variables: Old and New Values

Old Value New Value

@ value: @ value: [1 [
|2 ] © System-missing

O System-missing Old— Nawe

) System- or user-missing 1 -: 0

© Range:

Change

© Range, LOWEST through value:

O Range, value through HIGHEST:

© Al othervalues

() ) G

Figure 2.28 Recode into Same Variables function - step 2
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If you look at the data set you will see that the gender data
now show ‘0 and 1’ where ‘1 and 2’ used to be. But now, the
variable is coded incorrectly. You must go to Variable View
and change the value codes to show males = 0, females = 1.

Recode in Different Variables: This is the same as what we have just seen, but a new variable

is created rather than changing the existing one (it will not
W overwrite the original variable information).

Analyze menu

This menu contains the statistical techniques that we can use to analyse and manipulate data.
We will be exploring how to analyse data in the statistical chapters later, so we do not need to
look at this in too much detail here. This menu permits a wide range of statistical analyses, each
with different rules of operation so we will leave that for now.

Direct Marketing menu

This menu is more likely to be useful for market researchers. According to SPSS, it ‘provides
a set of tools designed to improve the results of direct marketing campaigns by identifying
demographic, purchasing, and other characteristics that define various groups of consumers and
targeting specific groups to maximize positive response rates”

Graphs menu

Once you have reported your results, you may want to represent the outcome graphically. This
menu provides a wide range of graphs that can be used. However, we will explore that in more
detail when we get to the statistical chapters.

Utilities menu

We will not dwell on this menu - the facilities are more likely to be attractive to advanced users.
It offers further opportunities to view the properties of variables (how they are defined in the
program, including the programming language parameters). Perhaps the most useful facility is
one where you can change the output format so that it can be sent to another medium (such
as Word, PDF, etc.). You can append comments to SPSS files, which may be useful if you are
sharing data Other facilities are much more advanced and might be useful only to those who
understand the more technical aspects of programming (so, not me then).

Add-ons menu

This menu highlights a number of additional products that SPSS would like you to be aware of,
such as supplementary programs or books about using SPSS. There is then a link to a website
that invites you to buy these products. Enough said.

Window menu

This is simply a facility whereby you change the way in which the program windows are
presented, such as splitting the screen to show several windows at once.

Help menu

This does exactly as it says on the tin: it helps you find stuff. You can search the index for help
on a topic, access tutorials on how to run procedures, and scan contents of help files. This can
be very useful even for the most experienced user.
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Syntax is the programming language that SPSS uses (mostly in the background). For the most
part, you will not need to use this, as the functions are performed through menus and options.
However, there are times when using syntax is actually much quicker than entering all of the
required information using the main menus. We may need to run the same statistical test many
times, particularly if we are collecting data on an ongoing basis. Running tests in SPSS can be
relatively straightforward (such as an independent t-test), while others are rather more complex
(such as a mixed multi-factorial ANOVA or a multiple regression). Using syntax can save a lot of
time and energy in setting up the parameters for those tests. As you will see when you run each
statistical test, the SPSS output includes a few lines of syntax code (just before the main outcome
tables). If we want to run a subsequent test on this data set, we can cut and paste the code into
the syntax operation field. The test will run without having to redefine the test parameters. There
may also be some occasions when you will need to write some syntax to perform a task that is
not available through the normal menus (see Chapter 11 for an example).

In this chapter we have explored some of the basic functions of SPSS. At this point, it would be good
to revisit the learning objectives that we set at the beginning of the chapter.
You should now be able to:

e Recognise that SPSS presents data sets in two ‘views': the Variable View where variables are
defined and parameters are set, and the Data View where the raw data are entered.

e Understand that there are a number of limits that we must observe when setting up those
parameters.

e Appreciate the need to correctly define ‘missing variables' so that blank spaces in the data set are
not treated as '0".

e Perform basic data entry in SPSS.

e Understand the purpose of the SPSS menus, and the function of the more popular sub-menus,
including basic data manipulation and transformation.

Extended learning task —

Following what we have learned about setting up variables, data input and data manipulation,
perform the following exercises. Your task will be to create an SPSS data set that will explore outcome
regarding mood, anxiety and body shape satisfaction in respect of gender and age group. The vari-
able parameters are as follows:

Gender: male (1), female (2)
Age group: under 25 (1), 25-40 (2), 41-55 (3)

Outcome measures: anxiety, mood (measured on an interval scale), body shape satisfaction
(measured on an ordinal scale)
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We have some raw data in respect of eight participants, shown in Table 2.2.

Table 2.2 Raw data

Body shape
Gender Age group Anxiety Mood satisfaction
Male <25 87 74 N
Female 25-40 54 61 23
Female 41-55 31 38 ?
Male 25-40 43 39 34
Male <25 69 82 8
Female 41-55 18 12 51
Female 25-40 38 77 29
Male <25 74 65 16

Open a new SPSS data set.

1. Create the variables, using the parameters shown above.

2. Enter the data, using the raw data from Table 2.2.

3. Create a new variable that measures a combination of ‘Anxiety’ and ‘Mood’ scores added
together (called ‘Affect”).
a. Format the variable parameters for the new variable.

4. Recode the Gender variable (using values of O = male and 1 = female).
a. Format the variable parameters for the new variable.
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Learning objectives

By the end of this chapter you should be able to:

e Understand the importance of normal distribution
e Recognise the effects of skew and kurtosis, and what we mean by ‘outliers’

e Appreciate how to measure and interpret normal distribution graphically and
statistically

e Recognise ways in which we can deal with potential violations in normal
distribution

e Understand how to adjust outliers and transform variables

e Recognise what we mean by homogeneity and sphericity of variances
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What is normal distribution?

Normal distribution describes the way in which data are ‘spread’. Imagine that we collected
some information about the age for a group of 30 people, aged between 18 and 50. Some of
those people would be younger, some older, others somewhere in between Probability statis-
tics describe the likelihood of something happening based on what we know about previous
outcomes. In probability, we expect things to happen in a predictable, uniform way. If our group
was representative of the general population, we would expect the ages of our group to be pretty
evenly spread out. However, there may be circumstances that might cause those ages to be not
so even If this were a group of university students, we might expect most of the ages to tend
towards being younger; if the group were members of a crown green bowls club, the ages might
be somewhat older. In normal distribution, we start with the assumption that the data we collect
represent something close to the general population. In our example, we could plot the ages in
a graph: the range of ages would be placed in ascending order along the horizontal (x) axis and
we would count the number of people matching that age along the vertical (y) axis. The graph
might look something like the one shown in Figure 3.1.

The bars in Figure 3.1 represent a group of age bands, with the height of the bar showing
how many people are in that group of ages. We have added a curve that shows the trend of the
ages (we will see how to draw this graph, including adding the curve, later on). That curve is
useful in two respects: it shows how ‘evenly spread’ the ages are across the group and it provides
some information on what the average age of the group is likely to be. The peak of that curve
approximately indicates the average age (around 35 in this example). Overall, we appear to
have a gentle ‘bell-shaped’ curve where the distribution of ages is roughly equal either side of
the mean. It is this type of 'normal distribution’ that we should be aiming for. In this chapter we
will explore exactly how we quantify that.

Frequency
w
1

| \

20 30 40 50
Age

Figure 3.1 Distribution of ages (n = 50)
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What does normal distribution look like?

Looking at Figure 3.1, we have some idea of what normal distribution looks like. For data to be
‘normally distributed” we expect them to be ‘evenly’ distributed either side of the mean, illus-
trated by a smooth, bell-shaped pattern, and where the ‘peak’ of that distribution is neither ‘too
pointed’ nor ‘too flat’ Graphically, we often draw a curve through the data to indicate the trend
in those data; we call these ‘histograms’ To illustrate a good example of normal distribution,
compared with examples where normal distribution may have been compromised, we need to
look at a series of histograms. We need to compare the curves in these histograms to appreciate
how they differ. However, before we start, we need to learn some basic terms about how we
measure data (see Box 3.1).

)
3.1 Nuts and bolts
Basic units of measurement
Mean: This is the average number in a data set. We add up all of the numbers in the data set and divide the

answer by the number of cases (or people).

Median: This is the middle number in a data set, when those numbers have been ordered numerically from lowest
to highest (or vice versa).

Mode: This is the most common number in a data set.

We will start with an example of a normal distribution. Table 3.1 shows what some normally
distributed data might look like.

Table 3.1 Example data for normal distribution

Ages Mean | Median | Mode
20|23|28|28|32|32|35|35|35|38|38|42|42|47|50 35.0 35 35
Mean,
median and
mode

Figure 3.2 Normal distribution

Figure 3.2 is an example of a normal distribution. It is signified by a smooth, bell-shaped
curve. The mean and median are identical.
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Skewed data

By definition, normal distribution describes a range of data where the scores at either end of
the distribution are the same distance to the mean. In our example, the eldest person is 15
years older than the mean age; the youngest is 15 years younger than the mean age. If there are
extreme scores at one end of the distribution it is likely to ‘skew’ the mean score away from the
median We call those extreme scores ‘outliers’ If the data are skewed, this can distort the mean
score and can bias any test that depends on it (as we will see later).

Positively skewed data

When the data are positively skewed, there are extreme (outlier) scores at the higher end of the
range of data This might cause the mean score to be overstated (see Table 3.2).

Table 3.2 Example of positively skewed data

Ages Mean | Median Mode
20|23|28|28|32|32|35|35|35|38|38|42|42|55|6O 36.2 35 35

Median/mode

Mean

Figure 3.3 Positively skewed distribution

Figure 3.3 shows data that are positively skewed. One tip of the curve points towards the
right-hand side of the distribution. The mean is drawn to the right of the median and mode. The
high extreme scores may have artificially inflated the mean score.

Negatively skewed data

When the data are negatively skewed, there are extreme scores at the lower end of the range of
data This might cause the mean score to be understated (see Table 3.3).

Table 3.3 Example of negatively skewed data
Ages Mean Median Mode

9|10|28|28|32|32|35|35|35|38|38|42|42|47|50 33.4 35 35

Figure 3.4 presents an example of negative skew. One tip of the curve points towards the left-
hand side of the distribution. The mean is drawn to the left of the median and mode. The low
extreme scores may have artificially deflated the mean score.
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Median/mode

Figure 3.4 Negatively skewed distribution

Kurtosis

In addition to skew, we need to measure kurtosis. This describes the ‘peakedness’ of the curve. A
normal distribution is often referred to as being ‘mesokurtic’, which is another reference to the
‘bell shape’ that we are aiming for. However, we may encounter problems with curves that are
too ‘peaked’, or ones that are too ‘flat’

Leptokurtic distributions

A leptokurtic distribution describes a curve that is ‘peaked’, like a pointed hat (see Table 3.4).

Table 3.4 Example of leptokurtic data
Ages Mean | Median Mode
31|31|32|32|34|34|35|35|35|36|36|38|38|39|39 35 35 35

Although the mean and median are the same, there is very little variation in the data, making
analyses difficult. Graphically, the data distribution might look like Figure 3.5.

Mean,
median and
mode

Figure 3.5 Leptokurtic distribution
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Platykurtic distributions

A platykurtic distribution describes a curve that is flat (see Table 3.5).

Table 3.5 Example of platykurtic data

Ages

Mean | Median | Mode

20|22|24|26|28|30|34|35|36|40|42|44|46|48|50 35 35 None

3.2 Take a closer look
Terms used in measuring normal distribution

Once again, the mean and median are the same, but now there is too much variation in the
data to make analyses viable. Graphically, the data distribution might look like Figure 3.6.

Mean and
median

T

Figure 3.6 Platykurtic distribution

Normally distributed: data are evenly distributed either side of the mean (see Figure 3.2)

Positive skew:
Negative skew:
Kurtosis:
Mesokurtic:
Leptokurtic:
Platykurtic:

where there are outliers at the higher end of a data set (see Figure 3.3)
where there are outliers at the lower end of a data set (see Figure 3.4)
describes the peakedness of a normal distribution curve

a ‘normal’ curve, as demonstrated by the bell shape (see Figure 3.2)
very ‘peaked’ distribution, with little variation in the data (see Figure 3.5)

very ‘flat’ distribution, with data widely dispersed across the data set (see Figure 3.6)

What happens when data are not normally distributed?

As we have just seen, data may not be normally distributed if there are problems with skew and
kurtosis. Data that are positively skewed may cause the mean score to be artificially inflated. This
may have occurred because there are some extreme high scores. Without those outliers, a more
realistic mean score might have been somewhat lower. Similarly, data that are negatively skewed
might lead to an artificially deflated mean because of some extreme low scores. Either way, the
mean score in skewed data may not be reliable. We also saw that deviations in kurtosis may cause
a problem. Leptokurtic distributions may offer too little variation in the data, while platykurtic
distributions may have too much variation. But why might all of this be a problem? Many of the
statistical procedures that we will explore in this book depend on measuring differences in mean
scores. We will come to know these as parametric tests (we will explore this in more depth in
Chapter 4). Normal distribution is a major determinant in deciding whether we can classify our
data as parametric. If normal distribution has been compromised, we may no longer be able to
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trust the mean score as truly reflecting the data If we cannot trust the mean score, we may have less
confidence in the outcome produced by parametric tests. In short, if we lack normal distribution

we may need to choose alternative tests (such as those examined in Chapter 18).

Measuring normal distribution

So how can we check that our data are normally distributed? We can get SPSS to help us here.
This can be achieved through the production of graphs (such as histograms, box plots or stem-
and-leaf plots), or we can employ statistical procedures. We will look at each of these in turn.

Graphical procedures

Histograms

In Figure 3.1, we saw a graphical representation of normal distribution. This type of graph is
called a histogram. It is a bar chart, where bars represent individual cases or groups, and where
the height of the bar indicates the frequency of that outcome. We can add a curve to the display

to illustrate normal distribution. We can get SPSS to draw this histogram:

Open the SPSS file Age and sleep quality

Select Analyze =» Descriptive Statistics =» Frequencies (as shown in Figure 3.7)

l!a Age and sleep quality.sav [DataSetl] - [BM SPSS Statistics Data Editor -

File Edit View Dala Transform Analyze Graphs Ulililes Add-ons Window Help

SHEE @M e | R
S — : Descriptive Statistics
| | | || TaElES EESCTipﬁJES...
depression age Compare Means i
1 Nane 4 Ranaral | inaar Mnadal 4 Em o

Figure 3.7 Creating histograms - step 1

In new window (see Figure 3.8) transfer Age to Variable(s) window (by clicking on the arrow

to the left of that window, or by ‘dragging’ the variable there) =» click Statistics

L

ﬁ Frequencies W 'g Frequencies
Variable(s): I Variable(s):
|etll Depression level [d.. | | ol Depression level [d. & Age [age]
& Agelage] > & sieep quaiity [sq]
& Stesp quality[sq] ‘
| Display frequency tables ¥ Display frequency tables

Figure 3.8 Creating histograms - step 2
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In new window (see Figure 3.9) select Mean, Median, and Mode radio buttons =¥ click
Continue =» (in original window) click Charts

|

&8 Frequencies: Statistics [

rPercentile Val ~Central Tendency

] Quartiles o Mean

[7] Cut points for: 10 equal groups | | [ Median

[ Percentila(s): i’-?llﬁdg

[ sum
1 Values are group midpoints

rDispersion 1 Distribution

("] Std. deviation ["] Minimum | Skewness

("] variance 7] Maximum | Kurtosis

"] Range ] S.E. mean

(o) () (e )

Figure 3.9 Creating histograms - step 3

In new window (see Figure 3.10) click Histogram radio button =» tick Show normal curve on
histogram box =» click Continue =¥ (in original window) click OK

If you need further guidance on these procedures, you can visit the website for this book and
follow the video guides for SPSS

|
I
I
I
J

[ 8 Frequencies: Charts (o

Chart Type
© None
© Bar charls
© Pie charis
@ Histograms:
¥ :Show normal curve on histogrami

Chart Values

@ Frequencies @ Percentages
| (continve]|_cancel J[_Help |

Figure 3.10 Creating histograms - step 4
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Figure 3.1 Completed histogram

This appears to be a pretty good example of a normal distribution, at least according to the
curve that has been added to the graph (see Figure 3.11). However, we may feel that the bars
suggest slightly positively skewed data. To help us here, we can refer to the descriptive statistics
that we asked for (see Table 3.6).

Table 3.6 Descriptive data

Mean Median Mode

Age 29.30 27 24

Table 3.6 suggests that there are some differences in the mean, median and mode. These
differences might cause us to question whether the data are normally distributed after all. This
illustrates a drawback of graphical displays: they can be a little subjective. However, we can
supplement the graphs with formal statistics, which is something we will look at shortly. Never-
theless, these graphical displays are useful in providing some initial indications about normal
distribution, so we should look at a few more examples.

Box plots

Another graphical display that we can use is called a box plot (also known as a box and whisker
plot, for reasons that are about to become obvious). Some examples of box and whisker plots
are shown in Figure 3.12.

Box plots show how the data are spread around the median (the thick line through the box,
representing the middle point of the data). The inter-quartile ranges are represented by the
‘hinges’ at either end of the box. The bottom hinge is equivalent to the (lower) 25 per cent data
point; the higher hinge symbolises the (upper) 75% data point. The ‘whiskers’, either side of
the boxes, approximately represent the lowest and highest scores (unless there are outliers - see
later).
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Figure 3.12 Box and whisker plot

b) Negatively distributed data

Figure 3.12a shows an example of a normal distribution - data are evenly spread either side
of the median, with whiskers at equal length above and below the box. Figure 3.12b illustrates
some negatively skewed data - there is a larger shaded area below the median line than above it,
and there is a disproportionately longer whisker below the box than above it. Positively skewed
data will show the opposite of this. This is how we can request a box plot in SPSS (using the
same data as we examined with a histogram):

Select Analyze =» Descriptive Statistics =» Explore (see Figure 3.7) =» (in new window, as
shown in Figure 3.13) transfer Age to Dependent List window =» select Plots radio button =»

click Plots box

ta Explore
Dependent List
JHl Depression level [d.. &=
& Age [agel— = =
& Sleep quality [sal
Factor List,

Display

® Both © Statistics © Plots

£y
E Label Cases by:

Figure 3.13 Creating box plots - step 1
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|

In new window (as shown in Figure 3.14), click Factor levels together radio button (under
Boxplot) =» make sure that Stem-and-leaf and Histogram (under Descriptive) are unchecked

(for now) =» click Continue =» (in original window) click OK
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Figure 3.14 Creating box plots - step 2
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Given what we saw in Figure 3.12b, we might conclude that the data appear to be positively

skewed (an outcome potentially supported by the data in Table 3.6).

Stem-and-leaf plots

Stem-and-leaf plots are another way in which we can present data to visually examine normal

distribution. The style of presentation is similar to histograms but has the added advantage of

retaining the actual numbers within the graphical display. The ‘stem’ refers to a group of data

(usually tens, hundreds, thousands, etc.) and the ‘leaf refers to units within that group. An

example is shown in Figure 3.16.
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Stem Leaf

Tens Units

0 3335 The red bold number in this row represents 3
1 246 The red bold number in this row represents 16
2 0024 The red bold number in this row represents 20

Figure 3.16 Simple stem-and-leaf plot

Larger data sets are arranged in a similar fashion, but can be more easily assessed to establish
whether those data are normally distributed. A larger set of numbers is shown in Figure 3.17.

Stem Leaf

Tens Units

1,33

2,3344,.8
00,245,568
1,1,4,44,458.89
02,334,567
1,1,4,45,6

4,46

2 2 OCoONOOUDDWN-2O

0
1

Figure 3.17 Normally distributed stem-and-leaf plot

The data in Figure 3.17 appear to be normally distributed, because the numbers are evenly
spread either side of those in the 60s range. If we rotated the display 90° (anticlockwise), we
would see the bell-shaped curve typical of normal distributions presented by histograms (as
shown by Figure 3.2). However, this ‘histogram” has actual numbers in it.

Figure 3.18 presents a stem-and-leaf plot where the data may be positively skewed. If we were
to rotate this 90° (anticlockwise), we would see a distribution similar to the positively skewed
histogram we saw in Figure 3.3. The tail tends towards the higher numbers. A negatively skewed

Stem Leaf

Tens Units

0

1

2

3 1335

4 23,344,838
5 00,2456,79
6 114444588
7 023346

8 114486

9 4456

10 1,7

11 3

12 5

Figure 3.18 Positively distributed stem-and-leaf plot
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stem-and-leaf plot would show the opposite of this. We can also produce stem-and-leaf plots in
SPSS (we will use the same data again):

Select Analyze =» Descriptive Statistics =» Explore (see Figure 3.7) =» (in new window)
transfer Age to Dependent List window =» select Plots radio button =» click Plots box =¥ (in
new window) select None radio button for (under Boxplots) =» check Stem-and-Leaf box
(under Descriptive) =» click Continue =» (in original window) click OK

Frequency Stem & Leaf
1.00 1. 4
1.00 1. 8
9.00 2 . 112224444
6.00 2 . 555778
6.00 3 . 001444
3.00 3 . 779
2.00 4 ., 04
2.00 4, 79

Stem width: 10

Each leaf: 1 case(s)

Figure 3.19 Completed stem-and-leaf plot

The pattern displayed in Figure 3.19 is actually quite similar to Figure 3.3, further suggesting that
we might have positive skew. However, as we said earlier, we additionally need some formal
statistics to be more confident about the outcome.

Statistical assessment of normal distribution

Graphical information provides some very useful guidance about normal distribution, but it
might be more useful to have some formal statistics to illustrate the outcome. However, there are
different views about this. There are some statisticians who argue that graphical displays tell us
all we need to know, while others wholly advocate statistics. When we analyse normal distribu-
tion statistically, there are several methods that we can use. We will focus on the most commonly
used: the Kolmogorov-Smirnov and Shapiro-Wilk tests (we will look at these together because
they involve the same method, but different interpretation), z-score analyses tests for skew and
kurtosis, and counting outliers. Throughout this book, we will mostly focus on statistical proce-
dures to examine normal distribution rather than use graphical analyses.

Kolmogorov-Smirnov and Shapiro-Wilk tests

The Kolmogorov-Smirnov (KS) and Shapiro-Wilk (SW) tests are reported in many published
studies. These tests are obtained in the same way through SPSS. However, there is some debate
about which statistic we should report once we are given the results. Several sources suggest
that the KS test is less powerful than the SW test (Eadie et al., 1971). Others suggest that both
tests tend to falsely reject normal distribution in larger samples (www.basic.northwestern.edu/
statguidefiles/n-dist_exam_res.html) and that graphical displays are better after all. A common
suggestion is that the KS test should be used in samples greater than 50, while the SW test is
better for samples smaller than that. We will apply this criterion throughout this book.
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The method that we use to perform these tests depends on the nature of our data and the
statistical test that we are likely to use to examine the main outcome. Before we explore some
of those methods, we need to understand some basic concepts about the definition of variables
(see Box 3.3).

3.3 Nuts and bolts

Variable types and research methods

Dependent variable: The outcome measure being investigated. It is the variable that is expected to change (as
a result of factors such as groups or conditions).

Independent variable: A factor (such as groups or conditions) that is thought to be responsible for changes in an
outcome measure.

Between-group studies: Where the independent variable is measured between two or more distinct groups of
people or cases.

Within-group studies:  Where the independent variable is measured across one group, in respect of two or more
conditions.

In some cases, we need to explore normal distribution across single variables (in correlation,
for example). In between-group studies, we examine whether the dependent variable scores are
normally distributed across each independent variable group. In within-group studies, we investi-
gate whether the dependent variable scores are normally distributed at each of the conditions. As we
progress through this book, we will see that there are slight variations in the method of measuring
normal distribution for each statistical test. However, so that we can examine some basic methods,
we will now look at examples for a single variable, between-group data and within-group data.

Using KS/SW tests across single variables

When we explore normal distribution across single variables in SPSS, we use the methods shown
below. We will explore whether ‘anxiety scores’ are normally distributed in a group of 60 people
(Figure 3.20):

Open the SPSS file Mood and gender

Select Analyze =» Descriptive Statistics =» Explore =» (in new window) transfer Anxiety
scores to Dependent List window =» check Plots radio button =» click Plots box =» (in new
window) check Normality plots with tests radio button =» select None under Boxplots =»
un-tick all boxes under Descriptive =¥ click Continue =» (in original window) click OK

Kolmogorov—Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Anxiety scores 075 60 .200° 980 60 427

Figure 3.20 Kolmogorov-Smirnov and Shapiro-Wilk test for anxiety scores

This function also produces a series of graphs; ignore those and focus on the statistical
outcome. The KS and SW tests examine whether the data are significantly different to a normal
distribution. We explore statistical significance in depth in Chapter 4, so it might be better to
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leave fuller explanations about that until then. However, for now, we just need to know that if
the outcome shown in the ‘Sig.” column is less than .050, it suggests that the data are ‘significantly
different’ to a normal distribution. In other words, there is less than 5% probability that the data
are normally distributed. If that is the case, we cannot be confident that these data are normally
distributed. If the output shows that ‘Sig.” is greater than (or equal) to .050, it suggests that the
data are probably not different to a normal distribution. Therefore, we can be more confident
that the data are normally distributed. For reasons that do not matter here, KS outcomes are
reported using the letter ‘D’ and SW outcomes with the letter ‘W’. So, which test do we report?
Earlier, we proposed that we should use the KS test in samples of 50 or more and the SW test in
smaller samples. Since we have 60 participants, we should choose the former. Therefore, we can
see that anxiety scores are (probably) normally distributed, D(60) = .075, p = .200.

Using KS/SW tests in between-group studies

When we explore normal distribution for data in between-group studies, we need to follow a
similar method to that we have just seen, but we must account for how the data are distributed
across each independent variable group. We will measure whether mood scores are normally
distributed across gender.

Using the SPSS file Mood and gender

Select Analyze =» Descriptive Statistics =» Explore = (in new window) transfer Mood
scores to Dependent List window = transfer Gender to Factor List window =» select Plots
radio button =¥ click Plots box =» (in new window) click Normality plots with tests radio
button =» click Continue = (in original window) click OK

Gender Kolmogorov—Smirnov? Shapiro—Wilk
Statistic df Sig. Statistic df Sig.
Mood scores  Male 131 39 .089 940 39 .038
Female 113 21 200 982 21 950

Figure 3.21 Kolmogorov-Smirnov and Shapiro-Wilk test for mood scores by gender

Figure 3.21 indicates that there may be some inconsistency in the normal distribution of
mood scores when examined across gender groups. Since there are less than 50 people in each
group, we should report the SW outcome. Mood scores appear to be normally distributed for
women, W(21) = .982, p = .950, but may not be for men, W(39) = .940,p = .038.1s
this a problem? It depends on how severe you want to be. In most tests, we are looking for
reasonable normal distribution. The outcome for males is only just below the cut-off point for
significance. However, if you are more cautious, you might like to additionally test for z-scores
of the skew and kurtosis (we will see how to do this shortly).

Using KS/SW tests for within-group studies

When we examine normal distribution for within-group data, we explore the dependent vari-
able scores at each condition. We will use the same data set as the last two examples, but look
at some variables that are more suited to within-group analysis. This means that we explore
outcomes across a single group in respect of two or more conditions. In our data set, we have
two variables that measure fatigue: one for ‘fatigue week 1" and one for ‘fatigue week 4" These
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examine the extent of fatigue reported by the entire group at two different time points. This
is how we would check normal distribution in that scenario:

Using the SPSS file Mood and gender

Select Analyze =» Descriptive Statistics =» Explore = (in new window) transfer Fatigue
week 1and Fatigue week 4 to Dependent List window (we do NOT select anything for Factor
List) =» select Plots radio button =¥ click Plots box =» (in new window) click Normality plots
with tests radio button =» click Continue =» (in original window) click OK

Kolmogorov—Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Fatigue week 1 .089 60 .200° 953 60 022
Fatigue week 4 .095 60 200 962 60 .058

Figure 3.22 Kolmogorov-Smirnov and Shapiro-Wilk tests for fatigue reports across time

Since we have 60 participants at each time point, we can report the KS outcome. Figure 3.22
indicates that fatigue scores are normally distributed at week 1, D(60) = .089, p = .200, and
week 4, D(60) = .095, p = .200.

Z-score tests of skew and kurtosis

When we explored an example of normal distribution in a between-group study, Figure 3.21
suggested that we might have a problem with the mood scores for men Once we have employed
a KS or SW test, there are additional statistical measures that can be undertaken if there is still
any uncertainty. We can calculate something called a ‘z-score’ of the skew and kurtosis. In fact,
some statisticians prefer this method to KS and SW tests.

Skew is measured in terms of whether it is positive or negative. Data that are potentially
negatively skewed will be indicated in the SPSS output by a minus sign, so the absence of that
minus sign will suggest possible positive skew (unless the outcome is 0, which suggests no
skew). Kurtosis is also measured either side of 0 (mesokurtic — normal), with positive scores
representing leptokurtic (peaked) data and negative scores representing platykurtic (flattened)
curves. But how do we determine whether the outcome violates limits for skew and kurtosis? In
addition to the main outcome for skew and kurtosis, SPSS reports something called ‘standard
error’. We will see more about this in Chapter 4 but, in short, it is an estimate of how much the
data vary either side of the mean, relative to the sample size.

A rough guide suggests that the skew or kurtosis should not be more than two times greater
than its ‘standard error’ (Coolican, 2009). More specifically, we can convert the skew and kurtosis
scores to a z-score. This is obtained by dividing an actual value of the skew or kurtosis by its
respective standard error (we call this ‘standardisation’). Once we have done that we have a
‘standardised’ score that can be viewed within a normal distribution. In a normal distribution
the mean score is 0. Either side of 0, scores are evenly distributed as positive and negative scores;
these are known as z-scores because they lie within a ‘z-distribution’ (you don't need to know why
it's ). Because we know how these z-scores should be distributed, we know when those scores
are so high (or low) that they are beyond the bounds of normal distribution. Once again, this is
based on probability and statistical significance (we will revisit this in Chapter 4). Data are seen
to be significantly outside the bounds of normal distribution when their probability is less than
5%. Statisticians have calculated that we reach the limits of normal distribution when z-scores are
greater than *1.96 (plus or minus 1.96); this approximates to the ‘two’ times the standard error
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suggested by Coolican. A z-score greater than (+)1.96 indicates significant positive skew; a nega-
tive number greater than —1.96 suggests significant negative skew. Similar interpretations can be
made for kurtosis. These ‘limits’ can be viewed in a z-score (or normal distribution) table-see
Appendix 1.

3.4 Take a closer look Q
Guidelines for z-score cut-off points

Sample size z-score cut-off
<50 %196
51-100 #2.58
>100 £3.29

Setting the z-score limits at + 1.96 is probably good enough for smaller sample sizes, but
we can use additional cut-off points for larger samples. The initial cut-off point represents the
outermost 5% of the data (where p <.05). In larger samples we can be more lenient and set
a cut-off point of 2.58 (placing outliers in the outer 1% of our data, where p <.01). In larger
samples still, we can be even more relaxed and use a cut-off point of 3.29; outliers are now
deemed to be in the outer 0.1% of data (where p <.001). That might all seem useful, but there
are few guidelines to tell us what a larger sample is! The suggestions offered in Box 3.4 are a
basic guide only and should be used in conjunction with other considerations (such as graph-
ical displays). We should now see how to explore normal distribution, using z-scores of skew
and kurtosis (Figure 3.23), by examining those data we investigated earlier:

Using the SPSS file Mood and gender

Select Analyze =» Descriptive Statistics =» Explore =» (in new window) transfer Mood scores
to Dependent List window =¥ transfer Gender to Factor List window =» select Statistics
radio button = click OK

To examine the data for normal distribution we need to focus on the skew and kurtosis data,
along with the relevant standard error outcome. Strictly speaking, we need to do this only for the
male data because that's where our potential problem lies. If we divide the main scores (high-
lighted in blue for the male data) by the standard error (green) we get the z-scores that will help
determine whether the data are normally distributed - those calculations are shown in Table 3.7.

This shows that the z-scores for skew and kurtosis are within limits (£1.96), except for
males. There still appears to be positive skew for the men in this sample. However, all is not lost;
there are still some procedures that we could employ. Besides, some people might feel that there
is sufficient evidence for reasonable normal distribution here in any case.

Table 3.7 z-scores for skew and kurtosis, in respect of mood scores by gender

DV: Mood scores Statistic SE z-score

Male Skewness 0.909 .378 2.40
Kurtosis 0.908 741 1.23

Female  Skewness 0.016 .501 0.03
Kurtosis —0.194 972 —0.20
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Descriptives

Gender Statistic | Std. error
Mood scores  Male Mean 10.85 803
95% confidence interval Lower bound 9.22
for mean
Upper bound 12.47
5% trimmed mean 10.55
Median 10.00
Variance 25134
Std. deviation 5.013
Minimum 2
Maximum 24
Range 22
Interguartilerange 5
Skewness 909 378
Kurtosis 908 T4
Female Mean 9.85 674
95% confidence interval Lower bound 8.55
for mean
Upper bound 11.36
5% trimmed mean 9.95
Median 10.00
Variance 9.548
Std. deviation 3.090
Minimum 4
Maximum 16
Range 12
Interquartile range 5
Skewness 016 501
Kurtosis -.194 972

Figure 3.23 Example of skew and kurtosis data from SPSS

Count the number of outliers

Another way in which we can examine normal distribution involves counting the number of
outliers in a data set. An outlier is any data point that is found beyond certain limits. We express
outliers through z-scores. Just now, we said that a z-score greater than +1.96 is located within the
outer 5% of a normal distribution, 2.58 within the outer 1%, and 3.29 within the outer 0.1%.
We can use those limits to set targets for determining outliers. Table 3.8 shows the cut-off points

for a range of sample sizes.

Table 3.8 z-score outlier limits by sample size

Z-score
1.96
2.58
3.29

Limit |n=50 [n =100 | n =200 | n = 1000
5% 2-3 5 10 50
1% 0 1 2 10

0.1% 0 0 0 1
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We can use SPSS to help us count the number of outliers we have in a data set. We said that
a z-score is any number that is divided by its standard error; we call this process ‘standardisa-
tion’. We can ask SPSS to standardise a variable (we will use the same data set that we have used
throughout this section):

Using the SPSS file Mood and gender

Select Analyze =» Descriptive Statistics =» Descriptives (as shown in Figure 3.24)

@ Mood and gender.sav [DataSetl) - [BM SPS55 Statistics Data Editor

File

Edit View Data Transform Analyze Graphs Utilities Add-ons

Window Help

FEHE @ o
[ Il

| gender || ar

Male

Reports

Descriptive Statistics
Tables

Compare Means

General Linear Model

Figure 3.24 Standardising variables - step 1

In new window (see Figure 3.25), transfer Mood scores to Variable(s) window =» check

Save standardized values as variables box =¥ click OK

2 Descriptives

[

Variable(s).

& Genaer(gender]
& Anxiety scores [anxi...

& Mood scores [mood]
& Fatigue week 1 [fati...
& Fatique week 4 [fati...

)

A J

["] Save standardized values as variables

vy v v v w

Fraquencies..
Descriptives...
£, Explore...

B frnactahs

rﬁ Descriptives

@ Gender [gender]

& Anxiety scores [anxi..
& Fatigue week 1 [fati__
& Fatigue week 4 fat.

& Mood scores [mood)

&)

+ :3ave standardized values as variables

1

(Lo J paste )| Reset | cancet] | rep |

L

Figure 3.25 Standardising variables - step 2

For this test we do not need to refer to output tables. Instead, we can go back to the data set
where we will see that a new variable has been created called Zmood’ (see Figure 3.26). The
values in this new variable represent the original scores converted into z-scores. Using that new
variable, we need to count how many scores exceed the limits we have set for outliers. In our
example, we have a relatively small data set, so it is quite easy to look for these. In larger data
sets we might need to sort the variable in ascending or descending order (refer to Chapter 2 to
see how).
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l‘tﬂ *Mood and gender.sav [DataSetl] - [BM SP3S Statistics Data Editor

File Edit View Data Transform Analyze Graphs Ulilities Addons Window Help

==

=W M -

gender anxiety || mood | fatigue1 | fatigued || Zmood v
Male 10 24 222 300 304111
Male B 19 310 335 191198
Male 20 10 156 260 - 12044
Male 16 12 133 322 32
Mala 1A a IR 974 - 4RIR

Figure 3.26 Data set with standardised variables

If we look through the values in the Zmood’ variable we can count the number of z-scores
that exceed each limit. We will see that we have two scores greater than 1.96. Both of these
z-scores are 3.04, so they also exceed the 2.58 limits, but not the upper cut-off point (3.29). The
outcome for our variable is shown in Table 3.9.

Table 3.9 Outliers in ‘'mood and gender’ data set

z-score Limit % Limit n=60 Actual

1.96 5% 3 2
2.58 1% 0 2
3.29 0.1% 0 0

Table 3.9 suggests that, although we satisfied the lower cut-off point for outliers for mood
scores, we did have two cases (both men) that exceed the 2.58 z-score limit (ideally, we
should have had none). Once again, there is conflicting evidence about normal distribution.
More cautious researchers may want to account for these outliers — we will see how to do that
shortly.

| don't have normal distribution. What can | do?

You may have noticed throughout these analyses of normal distribution that we have had
some potential problem with some of the mood scores, particularly for a couple of male
participants whose scores might represent outliers. If we feel that we have violated normal
distribution, we have a number of options open to us. We could do nothing, but report the
outcomes with caution This strategy will depend on how much the data have deviated from a
normal distribution. In our example, there may be more justification for cautiously accepting
normal distribution; we are only looking for reasonable outcomes after all. In more extreme
cases, we may need to make some adjustments; we will look at some of the ways in which
we can do that in the next section. Ultimately, if none of these procedures helps and we are
left with data that are clearly not normally distributed, we will probably need to abandon
parametric tests that rely on the mean score to determine outcome. We will look at these non-
parametric tests in Chapter 18.
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Adjusting non-normal data

If our investigations suggest that normal distribution might have been violated, we could
consider a number of adjustments to those data (such as removing and adjusting outliers, and
transforming data). We will look at those options now.

Removing outliers

As we saw earlier, outliers are data points that exceed certain limits. Those outliers are often
identified through z-scores, where we express the number in relation to the standard error of
that variable. We saw that we can expect a certain number of potential outliers in any data set;
the extent of that will depend on the sample size (see Table 3.8). A data set is skewed because
of outliers; if the outliers were not there the data would not be skewed. We had two cases in
our example data set where some mood scores for men appeared to be outliers; we might be
tempted to remove these. However, there must be a really good reason for doing so. It is always
a good idea to identify where the outliers are - there may be data-entry errors. We saw a method
for identifying outliers earlier (when we standardised the data into a new variable). For example,
we could return to the raw data for the male participants that show a mood score of 24, only to
find that we should have entered a score of 20. If we examined normal distribution for the vari-
able again, we might find that it is fine now.

Adjusting outliers

In certain circumstances it might be appropriate to ‘adjust’ outliers. There are several ways that
we can do this, but perhaps the most common method is to replace the outlier with a score that
represents the ‘mean score plus two standard deviations” We already know that the mean is the
average score of all of the data points in the variable. Within that variable, all of the scores will
vary either side of the mean score; standard deviation measures average of that variation. We saw
how to obtain descriptive data earlier on (when we requested mean, median, mode outcomes).
To ask for standard deviation we simply tick that box as well (see Figure 3.9).

In our example data, we had some potential trouble with apparent mood scores for two
males. Table 3.10 presents some information on the mean score and standard deviation for the
mood variable, and shows how to adjust the outliers accordingly.

Table 3.10 Adjusting an outlier (with two standard deviations from mean)

Original score (outlier) 24

Mean score 10.53

Standard deviation 4.43

Calculation 10.53 + (2 X 4.43)
Adjusted score 19.39

We could replace the original (outlier) score of 24 with the adjusted score (19.39). However,
we would have to report the outcome with some caution. There are many statisticians who report
extreme reservations about this method of adjustment, advocating formal transformation instead.

Transforming data

Another frequently used method of adjusting skewed data is through transformation We will
explore some of the methods that can be used, but it might pay you to read more advanced
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books on this subject (such as Howell, 2010, pp. 338-342). To illustrate transformation, we will
use the example data set that we have been using throughout, focusing on the potential problem
posed by normal distribution of mood scores for men

Some of the more popular methods of transformation are discussed in Box 3.5. We will

explore how to use SPSS to perform transformation shortly.

3.5 Nuts and bolts

Common methods of transformation

Logarithmic:

Square root:

Reciprocal:

This method is particularly useful for positively skewed distribution (as it compresses higher scores).
It does not matter what logarithm base we use, but most researchers choose base 10 logs (log, ;)
or linear logs (log,). Further adjustments are needed if we have ‘0" scores in our data, as there is no
log of zero (see Box 3.6). For the purposes of this exercise you do not need to know what logarithms
are, but if you are curious, you can find out more about them in Chapter 17. We will use this type of
transformation to illustrate the methods used in performing the task in SPSS.

This method is often used when the data represent a count (rather than a continuous scale). For
example, we might count the number of hospital admissions someone has (count data); this can be
contrasted with the length of time that they may stay in hospital (continuous data). The data points
in the variable are converted into the square root of that number, thus reducing the variance (the
variance is equivalent to the standard deviation squared).

This method is helpful when there is no specific upper limit to the values in the variable. The numbers
are measured on a (potentially) infinite range (unlike questionnaires, where the limit is defined).
Reciprocal transformation might be used when the actual magnitude of difference is not important.
If we measured how long it took people to read this chapter we might expect an upper limit of 20
minutes, but find that someone took 2 hours (120 minutes). The extent to which they took longer
than 20 minutes might be irrelevant in the study that we choose to conduct. A reciprocal score
is anything where 1 is divided by ‘x". For example, T = 20 = 0.05;1 = 200 = 0.005. Further
adjustments are also needed with this method if we have ‘O scores in the data, because numbers
cannot be divided by zero (see Box 3.6).

Logarithmic transformation

Since there appears to be some positive skew in our example data, we will use logarithmic
transformation to illustrate how to perform the procedure in SPSS (the other transformation
procedures are fundamentally the same, we just change the method description). Before using
this method we must check that there are no zero scores in our data because there is no log
of ‘0" and it would mess up the calculations (see Box 3.6). In our example data we do not
have any.

Using the SPSS file Mood and gender

Select Transform =» Compute (as shown in Figure 3.27)
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Figure 3.27 Transforming data - step 1

In new window (see Figure 3.28) type moodlog in Target Variable =» click on Type & Label
button =» (in new window) type Mood scores log transformed in Label =» tick Numeric
radio button =¥ click Continue =» (back in original window) select Arithmetic from Function
group =¥ scroll and select Lg10 from Functions and Special Variables =» click on ‘up’ arrow
(" LG10(?)" will appear in Numeric Expression window) =» transfer Mood scores to Numeric
Expression window using the arrow (it should now read “LG10(mood)” =» click OK (see

Figure 3.29 for completed action)
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Figure 3.28 Transforming data - step 2
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Figure 3.29 Transforming data - completed window

This action does not produce an output, but does add a new variable (‘moodlog”) to our data
set (as shown in Figure 3.30).

3 “Mood and gender.sav [DataSet2] - IBM SPSS Statistics Data Editor
File Edit View Data Transform Analyze Graphs Utlities Add-ons Window Help

Bl 8 &N B .

mood | fatiguel | fatigued = moodiog | var |
24 222 300 1.38

2 Male 8 19 310 335 128

Figure 3.30 Data set showing transformed variable

We can now use that new variable in the methods shown earlier to examine whether the
transformed data are normally distributed (see Table 3.11).

Table 3.11 z-scores for skew/kurtosis for log-transformed mood scores by gender

DV: Mood scores Statistic SE z-score

Male Skewness —0.715 378 —1.89
Kurtosis 1.556 741 210

Female  Skewness —0.862 .501 —1.72
Kurtosis 0.746 972 0.77
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We can compare the outcome shown in Table 3.11 with what we saw in Table 3.7. The
z-score for male mood scores now appears to be normally distributed.

3.6 Nuts and bolts

Getting rid of zero scores ahead of transformation

In some forms of transformation we must not have zero scores. We can use the Data - Transform function to elimi-
nate them - we simply add ‘1" to all of the scores. If we had any zeros values in our example data, this is how we would
have adjusted that:

Using the SPSS file Mood and gender
Select Transform =» Compute =¥ (in new window) in Target Variable type moodplus1 =»
transfer Mood scores to Numeric Expression window =¥ type + 1= click OK

We could then perform transformation on the new variable ‘moodplus?’.

Homogeneity of between-group variance

When we explore specific statistical tests throughout this book, we will see that there are many
other assumptions that we need to address beyond normal distribution In between-group studies
we need to account for something called (between-group) ‘homogeneity of variance’. Variance is
the amount that scores vary around the mean score. When we are examining groups of data in
respect of an outcome, the variance should be similar between the groups - we call that homo-
geneity of variances (‘homogeneity’ means ‘sameness’). Although we might expect mean scores
to differ between the groups, we need the extent that the scores vary either side of each mean to
be similar. If they are not similar, it might affect the validity of the outcome. As we will learn as
we progress through this book, statistical significance is often based on how much the scores
vary. If we are comparing group means, we make false assumptions about differences if we do
not account for how much the scores have varied within the group. The smaller the variance,
the more likely we will have a significant outcome. This is a particular problem if the group sizes
are unequal. If larger groups have greater proportional variance than smaller groups, we run the
risk of understating significant outcomes; if larger groups have the smaller variance, we may be
overstating the likelihood of significance. This may become clearer after you have read Chapter 4.

Because there are other things we need to know about measuring between-group differences,
we will not explore how to investigate homogeneity of variance here. Instead we leave that until
we get to those chapters where we will also look at how to interpret outcome and how to deal
with violations in homogeneity.

Sphericity of within-group variance

As homogeneity of variance applies to between-group studies, sphericity is related to within-
group variances. As we saw earlier, within-group studies are used to examine outcomes across a
single group, but across several conditions. In some respects, the problem of individual differ-
ences that we encounter in between-group studies is reduced in within-group analyses. However,
when we explore three or more conditions across the group we can have a problem if variance
differs between pairs of conditions. We measure this with something called sphericity. Viola-
tions in sphericity may change the way in which we interpret the outcome. Once again, it would
make sense to explore how we measure and interpret sphericity when we get to those chapters,
later in this book.
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Chapter summary

In this chapter we have explored normal distribution. At this point, it would be good to revisit the
learning objectives that we set at the beginning of the chapter.

You should now be able to:

Understand that normal distribution is achieved when data are evenly distributed either side of
the mean score. This is illustrated graphically by a smooth, bell-shaped curve.

Appreciate that normal distribution is important because it determines how much trust we can
place in the mean score.

Recognise that skewed data might be caused by extreme scores (outliers). High outliers may
artificially inflate the mean score; low outliers may deflate it. Should that happen we may no
longer be able to use the mean score to report outcome. Kurtosis describes the peakedness of
the curve. A leptokurtic distribution is shown by an abnormally ‘peaked’curve where there is too
little variation in the data; a platykurtic distribution is short and flat, with too much variation.

Appreciate that we can measure normal distribution graphically and statistically. Graphs can
include histograms, box plots and stem-and-leaf plots. These can be used in conjunction with
statistical evidence. We can analyse normal distribution through the Kolmogorov-Smirnov and
Shapiro-Wilk tests and by examining the z-scores of the skew and kurtosis. We can also count
the number of outliers to ascertain whether we have normal distribution.

Recognise ways in which we can deal with potential violations in normal distribution. If those
violations are minor we can simply report the outcome cautiously. When deviations from normal
distributions are more serious we can make some adjustments to the outliers, or (preferably) we
can transform the variable. Where there are serious violations we may need to abandon para-
metric tests and examine outcome with procedures that do not rely on the mean score.

Understand that we could remove outliers (but only if there appear to be errors), or replace them
with a score that represents the mean score plus two standard deviations. Preferably, we can
undertake transformation. There are many methods that we can use to transform the data. The
most popular are log-transformation, square root transformation and reciprocal transformation.

Recognise some basic concepts regarding homogeneity of between-group variances and sphe-
ricity of within-group variances. We will explore these more fully in subsequent chapters.

Extended learning task -

You will find the SPSS data associated with this task on the website that accompanies this book. You
will also find the answers there.

Following what we have learned about normal distribution, answer the following questions and conduct
the analyses in SPSS. For this exercise, we examine responses from 350 participants regarding quality
of life, depression, anxiety, sleep and relationship perceptions. These are explored in respect of gender.

Open the SPSS data set QOL and Gender.

1.

Conduct tests for normal distribution, using appropriate graphical and statistical analyses for the
following variables:

a. Depression as the dependent variable, in respect of gender (the independent variable).

b. Relationship satisfaction as the dependent variable, in respect of gender (the independent variable).

. If there remains a problem with normal distribution, transform the data using an appropriate method.
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Learning objectives

By the end of this chapter you should be able to:

e Understand the principles of establishing significant differences or
relationships

e Recognise the role that probability plays in examining significance

e Understand the definitions of null and alternative hypotheses, one-tailed and
two-tailed tests, and Type | vs. Type Il errors

e Appreciate the importance of variance, standard deviation, standard error
and confidence intervals in measuring significance

e Recognise the principles of sampling distributions and central limit theorem
e Appreciate how we put all of this together to estimate statistical significance

e Understand the importance of effect size and statistical power
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Introduction

In this chapter we explore some of the most important factors in statistical analyses of research
data. We begin with the key concept of statistical significance. As we will see, this indicates the
probability that an observed outcome has occurred by chance. Alternatively, the result may be
due to fundamental differences between the groups or conditions that we are measuring (or
because of the association between variables). To fully understand the principles of significance,
we will need to explore the laws of probability. We can then use this to test hypotheses. We will
also look at effect size and statistical power. Effect size describes the strength of the relationship
in relation to sample size and average variation - it is a very useful supplement to statistical
significance. Statistical power describes the extent to which the data are robust enough to find
that effect.

Statistical significance

In statistical analyses, we should use the word ‘significance’” with caution. It is a common
error to call any ‘big’ difference ‘significant’ It may make the difference sound more
convincing, but ‘significance’ can be used only once the differences have been subjected
to rigorous statistical testing. In short, statistical significance examines the likelihood that
an outcome happened by chance. It is measured from 0% (it could not have happened
by chance) to 100% (it must have happened by chance) - the former is very unlikely in
psychology research.

In psychological studies we often aim to support a prediction about some kind of outcome —
we call this prediction a ‘hypothesis’. We will learn more about these hypotheses a little later,
but we need a brief overview now to underpin an important issue. You might be forgiven for
believing that much of psychological research is about proving hypotheses. However, statistical
analyses are actually about ‘rejecting the null hypotheses’. An ‘experimental hypothesis’ may
predict that observed differences in an outcome between groups of people was due to the factor
that we are examining (we usually call this the alternative hypothesis, for reasons that will
become clearer later). In contrast, the ‘null hypothesis’ states that there are no differences, or that
observed differences were due to chance (and not because of the factors being measured). That's
where statistical analyses and probability come in. We usually say that an outcome is ‘statisti-
cally significant’ if there is a less than 5% probability that it happened by chance or (more
precisely) that there is a less than 5% probability that the null hypothesis is true. If that chance
likelihood is less than 5%, we report that in terms of probability (p). We say that an outcome
is (statistically) significant if ‘p’ is less than 0.05 (which is 5% written as a decimal); we usually
report that p < .05 (but more of that later).

In Chapter 5 we will explore an overview of the statistical procedures that we cover in this
book. The type of statistical test we employ to investigate data will depend on a number of
factors, relating to the nature of the data and the method of collection. We will not go into
too much detail about all of that here, but we can summarise some key points. In very general
terms, statistical outcomes in psychological research will fall into one of four categories:
between-group studies, within-group studies, associations and mixed designs (which combine
any of these types). Between-group studies explore dependent variable outcomes across two
or more distinct groups (the independent variable). We introduced the terms dependent and
independent variable in Chapter 3 (see Box 3.3). For example, we might investigate how mood
scores differ between men and women. Within-group studies examine dependent variable
outcomes for a single group, but do so across a series of conditions (such as time points). For
example, we might measure stress levels in a group of people before and after they watch a
scary movie. Associations measure the relationship between variables. For example, we might
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measure the relationship between income in a group of people and the amount of money
they spend on luxury goods. In all of these examples, when we measure significance we are
exploring the probability that the observed difference or relationship occurred due to chance
factors.

Significance and probability

In probability statistics, we expect events to happen in a uniform, predictable manner. If we
toss a coin, we know that there is a one-in-two chance of getting heads. If we tossed that coin
ten times, we might be justified in believing that it would be unlikely to get heads on each
occasion. But when does something become so unlikely that it is statistically significant? Up
to which point do we remain confident that our observation happened by chance? We need
some kind of measure that provides an objective way of making that judgement. The laws
of probability play a very large part in how we determine a difference or relationship to be
‘significant.

4.1 Nuts and bolts

Probability in action

The following example demonstrates how we can use probability to predict the likelihood of getting heads when
tossing a coin:

If we toss one coin, we have a one-in-two chance that we will get ‘heads’. We can write that in fraction form as
1/2, in decimal form as 0.50, or as a percentage (50%).

If we tossed two coins in succession, the chances of both coming up heads is:

Yo x V=1, =025=25%

If we tossed three coins in succession, the chances of all of them coming up heads is:
Yo x Vo x V=Yg = 0125 =12.5%

So, the more times we toss the coin, the less likely it is that we will get heads on each occasion. Let's take that to the
extreme and measure the likelihood of getting heads every time following ten tosses:

Yox o X Yo X Vo X Voaxox XX X Y=

The example shown in Box 4.1 illustrates how we use probability in predicting outcome. Each
time we toss the coin, we might have some opinion about the likelihood of getting heads. If
we get three, four or even five heads in a row, we might think that is unusual, but perhaps not
beyond the bounds of probability. But how might we consider the likelihood of getting seven
or eight consecutive heads? Or even nine or ten? When would we start thinking that the coin
might be biased? It might be reasonable to say that we might question the bias of the coin after
six consecutive heads. But what do the laws of probability say about that?

We can illustrate how probability works by using the same coin example. Let's say we take a
coin and toss it ten times and record the number of heads we get. We then repeat that on several
more occasions, recording the number of heads we get in each batch of ten throws. If we do this
enough times, we will see a pattern emerge that reflects probability factors. On most occasions,
we might reasonably expect to get five heads in a batch of ten throws.
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Table 4.1 Probability factors for getting heads in ten tosses of a coin

No. of heads Probability
0 .001
.010
044
17
.205
.246
.205
117
.044
.010
.001

O 00 N O U1 b W N =

—
o

However, sometimes we will get four heads from ten throws, other times we might get six;
on a few occasions we might even get ten or none. The data from a block of several trials are
presented in Table 4.1 - the outcome is shown in terms of probability factors. As might be
expected, the most common outcome is five heads from ten tosses, followed by four and six,
then three and seven, and so on. The least likely outcome was ten heads and no heads. We could
also plot the outcome in a histogram, as shown in Figure 4.1.
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Figure 4.1 Distribution of probability of getting heads from ten tosses

You might have noticed that the data in Figure 4.1 look like something we saw in Chapter 3
when we explored normal distribution, especially with the curve added to show the trend of
outcome. Much of what we do in significance testing is related to looking at data within a
normal distribution. In this example, if the coin is ‘normal” and we perform enough blocks of
tosses, the laws of probability dictate that the outcome will tend towards a normal distribution.
The most likely outcome (five heads) will be the most common and will represent the mean
outcome. The outer tails of the distribution then become important in determining where we

might consider the outcome to be statistically outside the bounds of normality.
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Earlier, we said that we usually say that an outcome is statistically significant when there
is a less than 5% probability of it happening by chance. We should put this in context of
what we have just seen with the coin example. If we refer to Figure 4.1, we can see that there
is a 0.1% probability of getting ten heads in ten tosses (where p = .001). To find the prob-
ability of getting nine or more heads, we add the probability of getting nine heads and the
probability of getting ten heads (0.01 + 0.001 = 0.011). So, the probability of nine or more
heads is still comfortably beyond chance likelihood, if we use 0.05 as the cut-off point. The
probability of getting eight or more heads from ten throws is 0.055 (0.044 + 0.01 + 0.001).
This is just about at the limits of chance. This tells us a great deal about the chance likeli-
hood when we employ p = .05 is the cut-off point for significance. In our coin example,
only an outcome of getting eight or more heads from ten tosses is (almost) statistically
outside chance factors. Now imagine we observed that women scored significantly poorer
mood scores than men (p <.05). This suggests that there is a less than 5% probability the
observed difference in mood scores between men and women happened by chance. How
unlikely is that? It is about as unlikely as getting eight or more heads every time you toss
ten coins. The outcome is very likely to have occurred because there is a very real difference
between men and women in respect of mood (at least in that sample in any case).

Significance and hypotheses

As we saw briefly earlier, a key aspect of research involves making predictions about what we
expect an outcome is likely to be. We call these predictions experimental hypotheses. We specify
these hypotheses on the basis that there will either be no difference or that there will be one.
Statistical significance is used to examine those hypotheses. Throughout this book we will
encounter a series of statistical procedures that aims to test our predictions. We will explore
a summary of the most common experimental research methods in Chapter 5. However, it is
important that we understand the concept of hypothesis testing here, and how we use statistical
significance to explore that. Before we start, it might help if we define some of the key terms that
we use when testing hypotheses (see Box 4.2).

4.2 Nuts and bolts

Terminology in hypothesis testing

The following terms will be used to describe the process of hypothesis testing. It might help if we understood what

they mean:

Null hypothesis

Alternative hypothesis
One-tailed hypothesis
Two-tailed hypothesis

Type | error
Type Il error

There is no difference (or there is no relationship) between the variables. Or, the
observed difference between ‘X" and "Y' is not because of 'Z'.

There is a difference (or there is an association) between the variables. Or, the
observed difference between ‘X" and "Y' is because of 'Z'.

A specific prediction regarding the direction of an outcome, stating how the variables
will differ (e.g. that ‘A" will be higher than ‘B’).

A non-specific prediction just stating there will be a difference or relationship (e.g.
that 'A" will differ from ‘B").

Where the null hypothesis is rejected when it should have been accepted.

Where we fail to reject the null hypothesis when we should have done so.
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Null hypothesis vs. the alternative hypothesis

We can illustrate the process of hypothesis testing with an example. Let's say we collect some
data from 40 men and 40 women about their current mood. We do this by giving everyone a
questionnaire that asks all sorts of questions about happiness and satisfaction. Each question-
naire is assessed by scoring the answers, where a higher score indicates poorer mood. Based on
previous evidence, we might predict that women will report poorer mood scores than men. That
prediction would be our (alternative) hypothesis. By contrast, the null hypothesis would be that
there will be no difference in mood scores between men and women. To test our prediction, we
must investigate whether we can reject the null hypothesis (or not) before we can say anything
about the alternative hypothesis. Why? Well, it goes back to the point we were making about
probability in statistical significance. By stating that there is less than 5% probability that an
outcome occurred by chance, we are actually saying that there is a less than 5% probability that
the null hypothesis is ‘true’ (that there is no difference).

Once we have collected the data, we might observe that women have indeed reported higher
mood scores than men. Statistical analyses might show that there is a 3% probability that the
outcome occurred by chance. Because this is lower than the 5% cut-off point that we usually set
for significance, it would appear that our prediction is correct. However, this is only half of the
picture - the process of testing hypothesis testing must start with the null hypothesis. According
to our results here, we can reject the null hypothesis because there is not enough evidence to
support that it is true (because the outcome was significant at p = .03). As a result, we can say
that the null hypothesis is rejected in favour of the alternative hypothesis. Strictly speaking, we
cannot say that we have “accepted the alternative hypothesis’ (although many people do this, even
in the most prestigious journals).

Similarly, we might still find that women reported higher mood scores than men, but statis-
tical analyses suggest that there is a 6% probability that the outcome occurred by chance (where
p = .06, or p >.05). Because this is greater than the 5% cut-off point, we cannot reject the null
hypothesis. This does not mean that the null hypothesis is true, but simply that there is not
evidence that it is a false. Once again, strictly speaking, we should not say that the alternative
hypothesis is rejected (although, again, many researchers do say that), we should always phrase
the outcome in terms of the null hypothesis.

When we make predictions, we should state this in our reports in terms of what we expect to
find. However, when we report the findings we should say one of two things: ‘statistical analyses
suggest that we can reject the null hypotheses, in favour of the alternative hypotheses’ or ‘statis-
tical analyses suggest that we cannot reject the null hypothesis’.

One-tailed vs. two-tailed hypotheses

When we make predictions we could be specific and state that females will report poorer
depression scores than men, or we could be more general and say that mood reports will differ
between men and women. The first statement is an example of a one-tailed hypothesis - a
specific, directional prediction. In another research study, we might predict that patients' anxiety
scores will improve after undergoing cognitive therapy. Or we might posit that the sale of ice
creams will increase as temperature increases. All of these are examples of a one-tailed hypoth-
esis. In contrast, a two-tailed hypothesis is a general, non-directional prediction. For example,
we might speculate that anxiety scores will be different before and after cognitive therapy. Or we
could suggest that there will be a relationship between ice cream sales and temperature. The use
of one-tailed or two-tailed hypotheses has an impact on how we interpret significance. So why
we do we refer to these predictions in terms of tails?

When we first encountered normal distribution in Chapter 3, we saw that there are two
‘tails” at either end of the curve. These tails relate to portions of the distribution of scores where
values are least likely. In Figure 4.1, we saw the probability distribution of tossing a coin ten
times. The least likely outcomes were zero heads and ten heads, followed by one heads and nine
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Upper 5%

Figure 4.2 One-tailed (positive) test

heads, and so on. We said that the probability of getting eight or more heads in ten tosses of
the coin was (roughly) in the outer 5% of the distribution (so was significantly unlikely). To be
more precise, this outcome was located within the upper 2.5% of that distribution. We equally
could have said that getting two or fewer heads in ten tosses is located in the lower 2.5% of that
distribution.

Significance with one-tailed tests

When we test hypotheses we will (usually) set the significance level at 5%. If we employ a one-
tailed test, we are predicting that our ‘outcome’ will reside in the outer 5% of one end of the
sampling distribution (we will see more about sampling distributions later). If we predict that
A will be greater than B, we would expect to find the outcome in the upper 5% of the sampling
distribution (see Figure 4.2). For example, we might predict that mood scores will be higher for
women than for men. If we find that women do report higher mood scores than men and statis-
tical analyses indicate that there is a less than 5% probability that this happened by chance, we
can reject the null hypothesis (in favour of the alternative hypothesis). If men score more highly
than women (even if there is a less than 5% probability that this occurred by chance), we cannot
reject the null hypothesis (because the outcome contradicts our prediction).

However, if we predict that X will be less than Y, we would expect to find the outcome in the
lower 5% of the sampling distribution (as shown in Figure 4.3). For example, we might predict
that IQ scores of cats might be less than for dogs. If we find that cats present lower IQ scores than
dogs, and statistical analyses indicate that there is a less than 5% probability that this happened
by chance, we can reject the null hypothesis.

Lower 5%

Figure 4.3 One-tailed (negative) test
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2.5% extremes

Figure 4.4 Two-tailed test

Significance with two-tailed tests

Sometimes, we may not have enough evidence to make a specific prediction. However, we might
be able to suggest that there will be a difference, without specifying the direction of that differ-
ence. For example, we could predict that there will be a difference in the hours spent in lectures
across the student groups, but not predict which group will spend more time in lectures than the
other. In this instance, we have made a two-tailed hypothesis. In a non-directional test, we still
(usually) set the significance level at 5%, but we have to share that between the two tails of the
distribution because the difference could reside at either end. Our significance level at either end
is now 2.5%, as shown in Figure 4.4. If we find that there is a difference between the groups in
respect of hours spent in lectures, and statistical analyses indicate that there is a less than 2.5%
probability that this happened by chance, we can reject the null hypothesis.

4.3 Nuts and bolts

Don't move the goal posts!

As we saw just now, when we state a two-tailed hypothesis we must divide the significance cut-off between the tails
of the distribution. If we use the traditional cut-off point of 5% to determine significance, we must share that between
the two tails. Therefore, we can reject the null hypothesis only if the significance is less than 2.5% (where p <.025).
For example, you might predict that income will differ between doctors and nurses.

When the data are collected you find that income does indeed differ between the groups (doctors earn more
than nurses). However, statistical analyses indicate that there was a 3% probability that the difference was due to
chance (where p = .03). Because the prediction was two-tailed, the null hypothesis cannot be rejected because the
significance was greater than 2.5%. You might be annoyed that you did not demonstrate your prediction. Had you
stated a one-tailed hypothesis in the first place (that doctors will earn more than nurses), you would have been able to
reject the null hypothesis (because the significance is less than 5%). However, you cannot simply change a two-tailed
hypothesis into a one-tailed prediction just to fit the statistics.

Errors in hypothesis testing

A key factor to remember with hypothesis testing is that we are dealing with probability, not
certainty. Statistics will only tell us the likelihood that the outcome occurred by chance. We
usually reject the null hypothesis when the significance is less than 5%. Earlier, we compared the
probability of chance factors explaining significant outcomes as being as likely as getting eight
or more heads in a series of ten tosses of the coin. But no matter how compelling the evidence
might be, there is still a chance that we have made a false assumption. We might reject the null
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hypothesis when we should not have done so, or we might decide not to reject the null hypoth-
esis when we should have. We refer to the outcomes as Type I and Type II errors respectively.

Type | error

A Type | error occurs when we incorrectly reject the null hypothesis in favour of the alternative
hypothesis. We may have had good reason for rejecting the null hypothesis, the most likely
one being that we had a significant outcome (where p < .05). However, we might find other
evidence that causes us to question that initial assumption. In the example we used earlier, we
might find that there was no difference between men and women in respect of mood scores after
all (despite what the statistics tell us). There might be several reasons for this:

e We have set the significance level too high. When we use the traditional 5% cut-off point for
significance, there can be up to a 1-in-20 likelihood that the outcome happened by chance.
This means that if we were to repeat our test 20 times, we could get a significant outcome
just by probability factors alone. To try to avoid this, we could be more cautious and set
significance at p < .01; we would reject the null hypothesis only if there was less than 1%
probability that the outcome occurred by chance.

e Related to this last point, we may undertake several analyses of a single data set. The more
tests we do, the more likely it is that we will get a significant outcome. To account for this we
should adjust the significance cut-off point accordingly. For example, a Bonferroni correc-
tion divides the significance cut-off (p < .05) by the number of tests undertaken, So, if we
performed three tests on the same data, we should divide ".05" by 3; now we will have only a
significant outcome when p <.016.

e The method of data collection was biased. For example, the questions inadvertently might
have led women to report poorer mood, rather than reflect actual mood.

e We might be using inappropriate statistical analyses. For example, we might be using para-
metric statistics to analyse data that are not normally distributed.

e Sometimes, we might think that our data are measuring a concept when they are actually
measuring something else. In our example, we suggested that we were measuring mood via a
questionnaire. Women may well have reported higher scores than men, so we conclude that
women were probably reporting poorer mood. However, what if the questions were actually
asking about happiness with factors such as sleep? What if sleep was poorer in the female
group because most of them were either pregnant or new mums? Although there may have
been significant difference in the ‘scores’, it may be measuring sleep satisfaction and not
mood after all.

Type Il error

A Type Il error occurs when we do not reject the null hypothesis when we should have done
so. The most likely reason for not rejecting the null hypothesis is that the outcome was non-
significant. In our example we are suggesting that there is no difference between men and
women in respect of mood scores. However, we might subsequently find evidence that there is
a difference and we were wrong not to reject the null hypothesis. There might be several reasons
for this, but the most likely one is that our study and/or sample lacked power. We will explore
statistical power later in this chapter. We should be designing our studies in such a way that we
reduce the likelihood of making Type II errors — we may be missing important effects. Cohen
(1992) said that we should avoid getting Type II errors on more than 20% of occasions (we
should aim to find at least 80% of true effects). Here some reasons why we might lack power:

e We may not have a sufficient sample to find the true ‘effect’. When writing up research re-
ports, it is quite common for students to say that they might have achieved a significant
outcome if they had recruited more people. On its own, that statement is probably a bit lame
(and should be avoided). However, it is true to say that the study would have achieved more
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power with a more robust sample. If we know what sort of outcome we are looking for, we
can use ‘power statistics’ to estimate how many people we need to recruit to make it more
likely that we will find that effect (we will see more about power and effect size later in this
chapter).

e There are too many outliers in the sample, relative to the sample size. While an outlier may
be legitimate, it might also be an anomaly that has occurred just in this sample. Replications
of the study with new samples may reinforce that the outlier is not representative. If we
‘exclude’ the outlier we might be able to reject the null hypothesis and eliminate the Type II
e1ToTr.

e The study design might be inappropriate. It is vital that the data-collection materials are sen-
sitive enough to find the effect being sought. Vague questions and poor definitions can lead
to inconsistent responses.

Replication

The very presence of Type I and Type II errors reinforces the need for studies to be replicat-
able. If we conduct a study and reject the null hypothesis, we need to make sure that we have
not committed a Type I error. We can get other researchers to investigate the study using our
methods, but they can do that only if we provide enough information about how we did it. If
several researchers repeat our study and also get positive results, the likelihood of a Type I error
is very small indeed. Replication is also useful in the reduction of Type II errors. We may have
failed to reject the null hypothesis because of some outliers. If other researchers repeat our work
and achieve positive outcomes, it strengthens our claim that our outliers were an anomaly (and
that we would have rejected the null hypotheses had they been absent).

Measuring statistical significance

The method for calculating significance varies with each type of statistical test, so it is better
that we leave the precise techniques until we explore those tests. However, we can look at some
general matters. As a rule, significance calculations will be based on one or more of three key
determinants: variance, standard deviation and standard error (we will define these terms
shortly). Parametric tests base outcomes on mean scores; significance often focuses on how
mean scores differ between groups or across conditions. Significance in non-parametric studies
is more likely to focus on median scores and on how ranked scores differ between groups or
across conditions. We will explore the concept of parametric data in more depth throughout
Chapter 5. We defined ‘mean’ and ‘median’ scores in Chapter 3 (see Box 3.1).

To estimate significance, an outcome score is often compared to a ‘known’ distribution of
scores. The actual distribution that is used varies according to the type of statistical test being
employed (some of the most commonly used include the t-distribution, F-distribution, z-score
distribution and chi-squared distribution). In any distribution, probabilities have been calculated
for a range of scores for every possible sample size. Significance is established by whether the
observed outcome exceeds cut-off points within the known distribution. Those cut-off points vary
according to sample size, the level of significance being set (usually p = .05) and, for some tests,
whether we are employing a one-tailed or two-tailed test. We should now explore how key factors
such as variance, standard deviation and standard error play a role in determining significance.

Variance

Variance (o) is demonstrated by the extent that scores vary around the mean score. The mean
is the average score and is calculated by dividing the sum of all the scores in the data by the
number of scores. Each score in the distribution will vary from that mean: some will be less than
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the mean; others will be greater than the mean. We need to know the ‘average’ variation, as this
will tell us something about how the data are spread. However, if we used the pure data, that
average would be zero (add up the red numbers in Box 4.4), so we ‘square’ the variation to get a

whole number. You can see how to calculate variance in Box 4.4.

4.4 Calculating outcomes manually
Variance

Toillustrate how to calculate variance in a sample, we will use the data from Table 4.2, which refer to the distribution
of ‘mood scores’ across a sample of 11 people.

Table 4.2 Mood scores

Scores (x;) 9 12 14 15 15 16 18 18 19 24 30
Xj — X —-83 =53 —3.3 —2.3 —23 —-1.3 0.7 0.7 1.7 6.7 12.7
(x; — %)? 68.4 27.8 10.7 5.2 5.2 1.6 0.5 0.5 3.0 453 1620

Mood scores are represented by x;; the mean of that range is 17.3. We deduct the mean from each score to get x; — X
(shown in red font). We square that to get (x; — X)? We need to ‘sum’ all of the outcomes to obtain 3,(x; — X).
S(x — )2 330.20

The formula for variance is o> = T S(x, — X)? = 330.20and N = T1so 0?2 = o - 33.02

Standard deviation

Standard deviation (s) is the average variation in that sample. As we saw just now, all values in
a distribution will vary from the mean score, being either higher or lower. Because of that, the
pure average would be zero, so we square the differences to find the variance (¢%). To get the
standard deviation, we simply find the square root of the variance. We could use the example
data from Table 4.2 to show how we can calculate the standard deviation of a sample.

Standard deviation (s) = \/(; = V33.02 = 5.75

Confusingly, some sources allocate the symbol o to represent standard deviation. In reality that
is better used to denote standard error (see below). In this book we will use the symbol s to
represent standard deviation.

Standard error

In short, standard error (o) is an estimation of standard deviation in the entire population.
When we analyse a sample of people in respect of an outcome we know that this sample is
only a very small proportion of the population. The mood scores shown in Box 4.4 are taken
from only 11 participants. It would be unrealistic to propose that these mood scores repre-
sent everyone in the world (often referred to as the population). To get a better representation
of that population, we could collect data from many samples. This task would be onerous,
so we can use statistics to ‘model’ those theoretical samples. We call this a sampling distri-
bution. Had we actually collected all possible samples, each sample would have a different
mean and standard deviation. In a sampling distribution, we assume that the mean is the
same as it is in the entire population, so long as that population is normally distributed. In
repeated collections of samples, the mean would automatically tend to the population mean
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in such cases. However, the sampling distribution also has a standard deviation. To make
any assessment of probability regarding statistical significance, we must know the mean and
standard deviation of the sample and the sampling distribution. The standard deviation of
the sampling distribution is called the standard error of the mean (often just referred to as
standard error).

We can calculate the standard error of the mean in a sampling distribution (o%) from the
standard deviation of the population (S), the size of the population (N) and the sample
size (n):

oz =S8

Z| =

L
n

4.5 Calculating outcomes manually
Standard error of mean (when the population is known)

When we know the mean and standard deviation of the population, we can calculate the standard error based on
what we know. We can illustrate this with some data. We will stay with the mood scores example that we used earlier.
Let's say that the ‘population’ refers to all 25-year-old people in a town in the UK, representing 500 people (N). The
mean mood score is 18 and the standard deviation of the population is 2. If we collect some new data from 15 people
(n), what is the standard error of this sampling distribution?

1T 1 1 1
=S5 ——=2x . ]———=2x V00647 = 0.509
7% n N 15 500

Standard error for infinite populations

The calculations that we have just seen are all very well, so long as we know enough about the
overall population, namely the size and standard deviation. In reality we rarely know that. In
theory, the sample size is likely to be infinite. Because of that, we need to adjust the calculation
of the standard error; we make an estimate of the standard deviation of the entire population.
The formula for that is probably more familiar. We divide the sample standard deviation by the
square root of the sample size:

s L
Standard error (o) = —— where s = the sample standard deviation

Vn

So, using our data, o = =173

“n
9
~lla

Standard deviation in significance testing

When we examine probability in statistical significance we often use standard deviation or
(more likely) standard error somewhere in that process. We will begin this illustration with a
simple examination of probability of outcomes within a sample of scores. As we saw earlier,
any score that is located within the outer 5% limits of a distribution can be considered to be an
outlier (with 2.5% at either end of the distribution). We can use the mean score and standard
deviation of that sample to calculate the probability that a score is an outlier. The mathematics
involved in calculating probability within any distribution is complex, but there are several very
good probability calculators available online (e.g. http://stattrek.com/Tables/Normal.aspx) —
see Figure 4.5.
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Normal random variable (x) 19

Cumulative probability: P(X < 19)

Mean 17.3

Standard deviation 5.75 Calculate

Figure 4.5 Normal distribution calculator

We could use the data from Box 4.4 as an example. Let's see whether some of those mood
scores represent outliers in the distribution of data shown in Table 4.2. We said that outliers
occur in the outer 5% extremes of a distribution (2.5% in either tail). If the score is within the
range of normally distributed data, the probability will be between 2.5% and 97.5%.

We will start with a value of 19:  Enter 19 in Normal random variable
Enter 17.3 in Mean
Enter 5.75 in Standard deviation
Click on Calculate

The ‘answer’ will appear in Cumulative probability: P (X = 19); in this case: 0.616. It means
that there is a 61.6% probability that scores will be less than 19. This is within the range 2.5%
to 97.5% - it is probably not an outlier.

Now we will try 30 (so do the same again, but enter 30 in ‘Normal random variable’ instead
of 19, before clicking on Enter again).

This time the ‘answer’ is 0.986 - there is a 98.6% probability that scores will be less than 30.
This is outside the range 2.5% to 97.5% - it is probably an outlier.

To fully illustrate what we are trying to demonstrate, we will try a low number (5). This was not
in our original range, but it is useful for showing what happens at the other end of a distribution.

Using the procedures that we have seen before, the new answer is 0.016 - there is a 1.6%
probability that scores will be less than 5. This is outside the range 2.5% to 97.5% - it is also
probably an outlier, but at the lower end of the distribution.

Standard error in significance testing

We often use standard error to examine probability in significance testing. We can use the
standard error to create a z-score, from which we can estimate the likelihood of a significant
outcome. As we saw in Chapter 3, a z-score is a value that resides within the normally distributed
z-score distribution. In that distribution, we have a mean score of 0 and standard deviation of
1. We can obtain a z-score by dividing a value by the standard error of means for the sampling
distribution. We can use these principles in significance testing. For example, we might want to
examine whether mean scores differ significantly between groups or across conditions. We will
focus on group differences to illustrate the point.

To assess whether observed differences in scores between the groups are statistically signifi-
cant, we need to know the mean score and standard deviation of each group. From this we can
calculate variance and standard error for each group. Crucially, we can also calculate some-
thing called the standard error of differences. To demonstrate how this works, we will maintain
the focus on mood scores, but use some new data based on 32 men and 32 women. The male
group has a mean mood score of 17.34, with a standard deviation of 5.78, while the female
group mean is 20.91, with a standard deviation of 6.81.
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4.6 Mini exercise
Calculate standard error and variance

Based on what we learned earlier, calculate standard error and variance for men and women in respect of mood
scores, using the information that you have just been given about the mean score and standard deviation.

Answer: Male: mean 17.34; standard deviation (s) 5.78; n = 32:
standard error = s + \/n = 578 ~ /32 = 1.02; variance = ¢? = 5.78% = 33.46
Female: mean 20.91; standard deviation (s) 6.81; n = 32:

standard error = 6.81 =~ /32 = 1.21; variance = 6.81%> = 46.47

To estimate the probability that there is a significant difference in mood scores between men
and women (in these samples) we use the mean difference and the standard error of differences.
The mean difference is found simply by deducting one mean score from the other (male, 17.34;
female, 20.91: mean difference = 20.91 — 17.34 = 3.57). To estimate the standard error of
differences (o x), we need to refer to the variance (o2) for each group. The formula is shown below:

o () () V) (58 -

In the same way that we can divide any value by the standard error to get a z-score, we can divide
the mean difference by the standard error of differences:

3.57 + 1.58 = 2.26

We can apply this to the z-score distribution (which we know has a mean score of 0); we need
to examine how this z-score (2.26) differs from 0. We can use the normal distribution calculator
to help us here again (using a mean score of 0 and a standard deviation of 1).

Enter 2.26 in Standard score

Enter O in Mean

Enter 1in Standard deviation

Click on Calculate

You will get the ‘answer’ as 0.988. It means that there is a 98.8% probability that remaining
z-scores will be less than 2.26. This is outside the range 2.5% to 97.5%, so it is probably an outlier.
It suggests that there may be a significant difference between the mean mood scores of men and
women in this example, where p <.05.

Let's look at this in more depth. When we examined z-scores for normal distribution in
Chapter 3, we said that a z-score greater than + 1.96 indicated an outlier, where p <.05. We
should put that in context, using the normal distribution calculator.

Enter 1.96 in Standard score (keeping mean and standard deviation as O and 1). We get an answer
of .975, indicating that we are at the 97.5% limit for the upper tail of the normal distribution. Now
enter —1.96 and repeat the process. We get an answer of .025, indicating that we are at the 2.5%
limit for the lower tail of the normal distribution.

What we have just seen is a useful indication of how we might gauge significance in a two-tailed
test, where the 5% significance parameters are shared between the tails of normal distribution.
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If we are examining outcomes in a one-tailed test, we can use the 5% limits in either tail to
illustrate significance. We can see what that means for z-scores by using the normal distribution
calculator again:

Leave Standard score blank this time
Enter 0.95 in Cumulative probability (leave mean and standard deviation as O and 1)
Click on Calculate
The answer (in the Standard score box) shows 1.645
Now enter 0.05 in Cumulative probability and follow the same procedure as above
Now the outcome shows —1.645

What we have just seen provides us with some valuable information about significance and
z-scores for two-tailed and one-tailed tests. We will have a significant outcome in a two-tailed
test if the z-score is greater than * 1.96. In a one-tailed test, significant outcomes are confirmed
when z-scores exceed *1.645 (but only if the outcome is in the predicted direction - see earlier
section on one-tailed vs. two-tailed tests).

Central limit theorem and sampling distributions

In statistics, central limit theorem states that the mean of the sampling distribution equals the
mean of the population and that the standard error of the mean equals the standard deviation
of the population. Where the population is infinite, standard error is found by dividing the
sample standard deviation by the square root of the sample size. This much we have already
seen. However, the impact of central limit theorem cannot be understated. In social science
research we often use samples that are used as an approximation of what might occur in the
entire population. So long as distributions are relatively normal, we can use the principles of
central limit theorem to make inferences about probability and statistical significance with rela-
tively small samples. But how small is small? In general terms, a sample of 30 or more will
probably suffice. However, we can be more precise if we make the effort to find out more about
the distribution of our sample. According to central limit theorem, the sample is large enough
if any of the following holds true:

1. Where the sample size is 15 or less:
a. The distribution must be normally distributed,
b. have no outliers and

c. must be unimodal (have one peak in the curve).

2. Where the sample size is between 16 and 40:
a. the distribution must be no more than moderately skewed,
b. have no outliers and

c. must be unimodal.

3. Where the sample size is greater than 40:

a. the distribution must have no outliers.

Confidence intervals

Using confidence intervals we can estimate a range of values that is likely to be included
within a given proportion of a sampling distribution. We use what we know about the mean
score and standard error of the mean to calculate those values, according to the significance
limits that we have set. Usually, we describe these parameters in terms of 95% confidence
intervals, where we have set significance as p <.05. The values within this range represent
an estimation of scores within a distribution, excluding the extreme scores (as they might
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95.0%

2.5% 2.5%

Figure 4.6 Graphical representation of 95% confidence intervals

represent outliers). In the previous sections, we learned how to estimate the probability of
certain ranges of scores within a distribution. We can apply this to what we now know about
mean and standard error of the sampling distribution. As we saw earlier, the population is
potentially infinite, so we need to estimate the standard deviation of the population from
the standard error. To calculate the range of values within the 95% confidence intervals we
use the sample mean and the standard error (we will see how shortly). Confidence intervals
have an upper and lower boundary, beyond which we find the outer 5% of the distribution
(represented by lower and upper 2.5% tails). An illustration of confidence intervals is shown
in Figure 4.6.

Although it can be useful to show confidence intervals graphically, we are more likely to see
the range of values written out numerically (with respect to the lower and upper boundaries of
those values). As we saw earlier, we can express the outer 5% of a normal distribution in terms
of a z-score, representing the two tails of 2.5%, where values exceed *1.96. Based on that
information, we calculate the upper and lower boundaries for 95% confidence intervals in the
following way:

Lower boundary: Mean — (1.96 X standard error)
Upper boundary: Mean + (1.96 X standard error)

Let’s put that in context of the descriptive data we found in respect of mood scores for men
and women.

95% confidence intervals for mood scores (men)

Lower boundary: 17.34 — (1.96 X 1.02) = 15.34
Upper boundary: 17.34 + (1.96 X 1.02) = 19.34

95% confidence intervals for mood scores (women)

Lower boundary: 2091 — (1.96 X 1.21) = 18.54
Upper boundary: 20.91 + (1.96 X 1.21) = 23.28

We can now present some important descriptive data about our sample (see Table 4.3).

Table 4.3 Mean, SE and 95% CI for mood scores
Mood scores
Mean SE 95% ClI

Male (n = 32) 17.34 1.02 15.34 — 19.34
Female (n = 32) 2091 1.21 18.54 — 23.28
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Confidence intervals of difference

We can produce confidence intervals for any sampling distribution. When we compare two samples
(or two conditions from the same sample) we might like to know whether they differ from each
other. To explore that we could create a distribution of scores that represents the range of differ-
ences between them. We could estimate confidence intervals for that distribution of differences;
we call that the confidence intervals of difference. We could illustrate this with our example data
once more, but return to the scenario where the data are displayed in Table 4.3. The calculation for
confidence intervals of difference is a little more complex - you can see how this is done in Box 4.7.

4.7 Calculating outcomes manually
Estimating 95% confidence intervals of difference

The calculations for 95% confidence intervals of difference involve a little more work and require us to look up some
values in distribution tables. The formula is shown below:

95% Cl of differences = My £ t X Sygq

where My = mean difference

t = relevant score from the t-distribution, according to the sample size
Smd = estimate of standard error of differences (oX)

We will illustrate this with the example that we have been using in respect of mood scores for men and women. We
already know the mean difference (3.57) and the standard error of differences (1.58) from what we did earlier. The
‘t-score’ is something we need to look up in distribution tables.

To find the t-score, we need to consult cut-off values in something called a t-distribution (see Appendix 2).
Throughout this book we will be referring to a number of distribution tables that will guide us in determining
significance; this is just one of those. To use the t-distribution, we need to locate the cut-off point that relates to
the degrees of freedom (df) for the data. Degrees of freedom describe the sample sizes, but allow one score to
remain constant. The df in this case is calculated from the sample sizes for both groups, minus the constant: males
32 — 1(31) plus females = 32 — 1(31); df in our example is 62. We now go to the t-distribution table and look up
the cut-off value for df = 62 and where p = .05 (for two-tails, because we are looking for a difference, and not
saying which will be higher, as we saw earlier). Using those criteria, cut-off t value = 2.0.

Now we can apply that to the upper and lower boundaries for 95% Cl of differences:
Lower boundary 3.57 — (2.0 X 1.58) = 0.41
Upper boundary 3.57 + (2.0 X 1.58) = 6.73

Once we know the confidence intervals of difference we can plot them in a table of descrip-
tive data as we did before (see Table 4.4). Notice how we present the data ('95% CI of diffs')
between the rows for male and female outcomes; this is because it represents the ranges of
difference in values between the groups.

We know from our earlier exercise that there was a significant difference in the mean mood
scores between these groups. However, the 95% confidence intervals of difference provide an addi-
tional clue that would lead us to suspect that this would be the case. The range of scores does not
cross zero; all of the values in the range are positive. (It would also be OK if all of the values in the
range were negative.) It suggests that differences may be significant. However, if the 95% confidence
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Table 4.4 Mean, SE, 95% Cl and 95% Cl of differences for mood scores by gender
Mood scores

Mean SE 95% ClI SE of diffs 95% Cl of diffs

Male (n = 32) 1734 1.02 15.34-19.34
1.58 0.41-6.73
Female (n = 32) 2091 1.21 18.54-23.28

intervals of difference cross zero (there are positive and negative values in the range) there will not
be a significant difference in mean scores between the groups or conditions (see Box 4.8).

4.8 Nuts and bolts

What happens when 95% Cl of differences cross zero?

The range of values described by the 95% confidence intervals of difference is very important when estimating whether
two sets of data might differ significantly. The keyword is ‘consistency’. In our example the range was found to be 0.41
to 6.73. This suggests that, within this range of values, the largest difference was represented when female mood
scores exceed male scores by 6.73; the lowest when female scores exceed males by 0.41. These scores are consistently
positive. It would be equally consistent if all of the scores within the 95% confidence intervals of difference were nega-
tive; it would just mean that all of the scores in that range are lower than the scores from the second range.

However, if that range were to include positive and negative numbers, it would not be consistent. Let's say that the
95% confidence intervals of difference for our example was —1.06 to 7.34. This would mean that (at one extreme)
females exceed males on mood scores by 7.34; but now it would also mean that (at the other extreme) males exceed
females by 1.06. When this happens, we say that the range has ‘crossed zero' - in these cases we will not find a
significant difference.

4.9 Take a closer look
Key factors in significance testing

In the previous sections, we have been exploring a range of factors that may be involved in statistical significance
testing. Here is a summary of the key terms:

Variance: the extent that scores vary around the mean
Standard deviation: the average variation of scores, in relation to the sample mean
Standard error: the average variation of scores in a sampling distribution, or the estimated

variation in the population
Sampling distribution: a theoretical calculation of all possible samples in a population

Standard error of difference: an estimate of the standard deviation in the sampling distribution representing
differences between two samples (or two conditions of the same sample)

Confidence intervals: an estimate of the range of values likely to be included within a given
proportion of a sampling distribution

Confidence intervals of difference:  an estimate of the range of values within a given proportion that represents
differences between two samples or two conditions of the same sample
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Up until this point we have been stressing the importance of statistical significance when
examining differences and relationships. For example, we have seen that we cannot take
observed between-group differences at face value. Even if there were an apparently large
difference in mean mood scores between men and women, it is statistically significant only
if there is a less than 5% probability that the outcome happened by chance. Now, that might
tell us a great deal about how much we can trust the result, and that it is likely to happen if
we repeat the methods used. However, it does not tell us much about the actual size of the
difference, relative to the number of cases used to measure that difference. For that we need
effect size.

Effect size indicates the actual magnitude of the difference between scores, without consid-
ering how that relates to an overall population. It is based on the sample mean and sample
standard deviation; it does not account for standard error. When we find a significant difference,
we use that as evidence to reject the null hypothesis in favour of the alternative hypothesis; we
may feel pleased about that. However, significance should not be taken in isolation. Even the
smallest differences can be significant if the sample is large enough. For example, say we want
to test a new antidepressant to examine whether it provides better improvements in mood than
previous drugs. We could test the new drug in a randomly controlled trial (see Chapter 5 for
more details on experimental methods). Once we have collected the data we might find that
the new drug produces significantly better outcomes than the old one (p<.001). However,
now let's say that we conducted this trial with 2,000 patients to find that effect. On closer
inspection, we see that the improvement represents 1% change on illness rating scores. The
difference may be statistically significant, but it is hardly clinically relevant given the small
change (especially as there may be side effects). You can see an even more spectacular (real-life)
example in Box 4.11.

Effect size also allows us to compare more easily between studies carried out by different
researchers. Reporting effect size is becoming more established in published studies, so compar-
ison is often quite easy. However, even when this is not done, there should be enough informa-
tion reported from which to infer effect sizes. For example, we might find two studies that report
outcomes that appear to suggest that older people (aged 60 or above) experience fewer hours’
sleep than younger people. One study reports a non-significant result (p = .065), while the
other indicates a significant one (p = .004). It would appear that there is some inconsistency
here. However, we may notice that the first study recruited 50 participants, while the second
study observed 500 people. Once we account for actual differences, sample size and standard
deviation, we might find very similar outcomes.

Measuring effect size

There are several ways to measure effect size, but the most commonly used are Pearson’s r and
Cohen’s d. Pearson'’s effect size focuses on associations between samples and is often used in
correlation (see Chapter 6). Cohen's methods explore effect size by examining differences
relative to sample sizes and pooled standard deviation (you can see how to calculate Cohen’s
effect size in a simple two-sample between-group example in Box 4.10). Throughout this book
we will mostly use Cohen’s methods, largely because there is a very good (and utterly free)
software program available to help us perform effect size calculations for almost every statis-
tical procedure (at least the ones you are likely to use). The program is called G*Power, which
we will explore in a little more depth later on. In the meantime, since you will probably come
across both types of effect size in your reading, you can see a general overview of how to inter-
pret effect sizes in Table 4.5 (but do remember that these values can vary between statistical
tests). Note how Pearson’s r effect size ranges from 0 to 1, while Cohen’s d effect size can
exceed 1.
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Table 4.5 Effect size guidelines

Size Pearson's r Cohen'sd
Small 0.1-0.3 <0.25
Medium 0.3-0.5 0.25-0.4
Large 0.5-1.0 0.4-00

Note: e infinity

4.10 Calculating outcomes manually
Cohen's effect size calculation (for two sample means)

Formula for calculating Cohen's (d) effect size:

Meana — Meanb \/(m —DS? + (n, — DS3... +(n — DS}

B Pooled standard deviation (S,) =

n aF ny, — k
k = no. of conditions; S = variance
We can illustrate this with the mood score data that we used earlier:

Male: mean score, 17.34; variance, 33.46, n = 32; Female: mean score, 20.91; variance, 46.47, n = 32

= 6.321s0,d

(31 X 33.46) + (31 X 46.47) 17.34 — 20.91
S = = 0 27— 0564
P \/ 32+32-2 6.321

4.11 Take a closer look
Aspirin and heart attack - high statistical significance, but what about effect size?

A recent study reported important results from a large clinical trial proclaiming how aspirin might reduce heart
attacks. The findings were headline news across the world. We should explore what was found in light of what we
have been learning about significance and effect size. In this longitudinal study, the investigators demonstrated that
104 (out of 11,037) people taking aspirin subsequently had heart attacks, compared with 189 (out of 11,034) people
in the placebo group who went on to present heart attacks. This means that nearly half as many people taking aspirin
experienced heart attacks than those taking the placebo. Is this impressive? The statistics appear to say so.

The null hypothesis (that there would be no difference in heart attacks for those taking aspirin and placebo) was
rejected, where p <.00001; this means that there is a less than 1in 100,000 probability that the outcome happened
by chance. Surely this is enough evidence to suggest that we should all take aspirin to reduce the likelihood of heart
attacks?

But let's look at these findings a little more closely. Aspirin was associated with a 0.94% chance of heart attack,
while the risk with placebo was 1.71% - a difference of 0.77%. This equates to a difference of fewer than 8 people in
every 1,000. When the data are examined according to mean difference, standard deviation and sample size, calcula-
tions show the effect size to be 0.06 (very small). So, what appeared to be a really impressive outcome was actually
very small in terms of real effect. This shows why it is always good to explore significance and effect size.
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Statistical power

4.12 Take a closer look

Effect size and statistical power

Another key measurement in reporting outcomes is represented by statistical power, which
measures the probability of correctly rejecting the null hypothesis. You may have read about
research being ‘underpowered’ and wondered what that meant. You may also have asked your-
self (or more likely your statistics tutor) about how many participants will be needed in a study.
These questions can be answered using power calculations. There are four factors in a power
calculation: the effect size (which we have just seen); the probability or significance level (also
known as «, usually set at .05); the statistical power; and the number of participants that need
to be recruited to achieve that effect size and power.

Earlier we said that a Type II error occurs when we incorrectly fail to reject the null hypoth-
esis. Cohen (1992) said that we should avoid getting Type II errors too often. He said that we
should aim to correctly reject the null hypothesis on at least 80% of occasions. If we present
80% as a decimal, we get 0.80; most power calculations are based on that. To be able to achieve
a power of 0.80, we need to make sure we recruit enough participants to obtain a large enough
effect size, using an appropriate level of significance. The calculation for that is complex, so we
will not explore that here. Instead, we will be using G*Power to calculate outcomes.

These summary definitions might be useful:

Effect size:

a measure of the actual size of differences between two variables, in relation to the sample
mean and sample standard deviation. It makes no assumption about the population mean

Statistical power: the probability that a test will correctly reject the null hypothesis. We should aim to achieve

this on at least 80% of occasions (thus avoiding too many Type Il errors)

Measuring effect size and power using G*Power

G*Power is an extremely useful program that enables you to calculate outcomes in a power analysis.
Typically, we would use this software to do one of two things (although it will do other stuff, too).
We can calculate (or have G*Power calculate it) the statistical power of a completed study, since we
know the effect size, the sample size and the significance level. We can also estimate the number
of participants we need to recruit for a study, assuming that we are aiming for a power of 0.80, and
based on an estimate of the expected effect size, and the level of significance that we have decided
to set. At the time of going to press, the latest version of this program is G*Power 3.1.3 and you can
download it, free of charge, from the Internet at www.psycho.uni-duesseldorf.de/abteilungen/aap/
gpower3/. Follow the instructions for downloading the program (according to the operating system
for your PC or laptop) and then how to activate it. Once installed, you can open the program from
the Programs menu by clicking on the shortcut on your desktop (if you asked for that). When you
first open the program, you will get a screen like the one shown in Figure 4.7.

Using G*Power to examine power of a completed study

In this first example we will demonstrate how we can calculate the achieved statistical power,
based on outcomes from a completed study. We will illustrate this with the mood scores data
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Figure 4.7 G*Power opening screen

that we explored in respect of gender when we were learning about significance testing. This
is an example of a between-group analysis. Assuming that the data are appropriate, we would
probably explore these outcomes formally using an independent t-test. We will learn more
about that procedure in Chapter 7, but we can examine the statistical power and effect size of
this outcome without having to know too much about the rules of performing that t-test. The
first action we need to take is to define the type of test we have used (we said that we would
probably have examined the outcome using an independent t-test).

From Test family select t-tests

From Statistical test select Means: Difference between two independent means (two
groups)

From Type of power analysis select Post hoc: Compute achieved - given «, sample size and
effect size power

Now we enter the outcome data into the Input Parameters:
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From the Tails box, select Two (we did not predict which group would be higher)

To calculate the Effect size d, click on the Determine button (a new box appears).

In that new box, for Mean group 1 type 17.34 =» for Mean group 2 type 20.91 =» for SD o
group 1type 5.78 =» for SD o group 2 type 6.81 =» click on Calculate and transfer to main
window

Back in original display, for « err prob type 0.05 (the significance level) =» for Sample size
group 1type 32 = for Sample size group 2 type 32 =» click on Calculate

There are two outcome measures that we are interested in: Effect size (d) 0.565 (according to
the limits shown in Table 4.5 it demonstrates a medium effect, and confirms what we calcu-
lated manually earlier); and Power (1- B err prob) 0.604 (which is not so good, as it is below
the desired 0.80 level; we have achieved ‘poor power").
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Figure 4.8 G*Power outcome

Using G*Power to estimate sample size for a future study

Although the effect size in our last example was good, it could be said that the study was ‘under-
powered’ as we achieved a statistical power of only 0.604. We said that we should aim to achieve
power of at least 0.80. The low power might have been because there were not sufficient partici-
pants to find the effect that we achieved. So how many would have been enough? G*Power can
be used to calculate how many participants we should recruit to achieve a power of 0.80, where
significance is p = .05. We also need to estimate the effect size that we are trying to find. In this
next example, we will assume that we would like to repeat the effect size that we found (0.565),
but want to ensure that we recruit enough participants to achieve sufficient power. This is how
we examine that:
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From Test family select t-tests
From Statistical test select Means: Difference between two independent means (two

groups)
From Type of power analysis select A priori: Compute required sample size - given «,
power, and effect size

Now enter the Input Parameters:

For Effect size d type 0.565 =» for « err prob type 0.05; for Power (1-f err prob) type
0.80 (this is the optimal power we are seeking) =» for Allocation ratio N2/N1 type 1
(assuming we want equal group sizes) =» click on Calculate

We are interested in one outcome: Total sample size 102 (51 participants in each group)
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Figure 4.9 G*Power outcome for calculating required sample size

If you need to write a statement of power calculation (for a project proposal, for instance),

you would write something like this:

We need to recruit at least 102 participants to a medium effect of 0.565, using a significance

level of 0.05 and a power of 0.8 to detect that effect.
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413 Take a closer look Q
Calculate sample size requirements for different effect sizes A\

Power calculations are very useful. We based the last sample size estimate on a medium effect size of 0.565. However,
we might have evidence to suggest that we could expect a very strong effect size (such as 0.85). How many people
would we need to find that effect (assuming significance and power target remain constant)?

We would use the same methods as we have just seen, but enter 0.85 into Effect size d (instead of 0.565). Now
we are told that we need only 52 participants (26 in each group). The greater the differences that we believe we
are likely to find between the groups, the fewer people we need to find that effect.

But what if evidence suggests that we are likely to find only a small effect at best (such as 0.20)? How many people
do we need to find a much smaller effect?

Now we enter 0.20 into Effect size d. Now it would appear that we need 900 participants (450 in each group)! We
need an awful lot more people to find smaller differences.

In this chapter we have explored statistical significance, effect size and power. At this point it would
be good to revisit the learning objectives that we set at the beginning of the chapter.
You should now be able to:

e Understand that we use statistical significance to express the probability that observed differ-
ences or relationships occurred by chance. In most cases, we say that an outcome is ‘significant’
if the probability of chance factors is less than 5%. It suggests that there is a very strong prob-
ability that the outcome ‘supports’ the predicted event.

e Recognise the definitions in testing hypotheses for statistical significance. We begin with the
null hypothesis (which states there is no difference or relationship).This is compared with the
alternative hypothesis (which states that there is a difference or relationship). We use prob-
ability statistics to either reject the null hypothesis (in favour of the alternative hypothesis) or
accept it - we should never claim that the alternative hypothesis is ‘supported’ or ‘rejected’. One-
tailed hypotheses make specific predictions about the direction of outcome (e.g. that A will be
greater than B); two-tailed hypotheses state only that there will be a difference or relationship
(e.g. that A will differ from B). Statistical inference varies according to the nature of the tails in
those hypotheses. Type | errors occur when we incorrectly reject the null hypothesis; Type Il
errors happen if we incorrectly fail to reject the null hypothesis.

e Appreciate the importance of key measures used to estimate the probability of significance. Vari-
ance measures the extent that scores vary around the mean score. Standard deviation describes
the average variation around the mean within the sample. Standard error is an estimate of the
standard deviation within sampling distributions, or within the overall population. Sampling
distributions are a statistical model of all of the possible samples that can be drawn from a popu-
lation. Probability statistics use variance and/or standard error to explore the likelihood of signifi-
cance (in relation to known distributions). Confidence intervals describe a range of values that
is likely to be included within a given proportion of a sampling distribution. Confidence intervals
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of difference describe those values in a sampling distribution that represent differences between
two samples (or two conditions within the same sample).

Understand the importance of effect size and statistical power. Significance can be misleading
when there are large sample sizes. Even the smallest difference can look important (as the aspirin
and heart attack example demonstrated in Box 4.11). Effect size reflects actual differences in rela-
tion to sample mean and standard deviation (but not in context of the overall population). This
should always be stated alongside significance. Statistical power measures the probability of
correctly rejecting the null hypothesis. We should aim to correctly reject the null hypothesis (and
avoid Type Il errors) on at least 80% of occasions.

Extended learning task S

Following what we have learned about statistical significance, effect size and power, answer the
following questions. You will find the answers on the web page associated with this book.

1.

22
3.

0o NO WUn

Describe the null and alternative hypotheses.

How do we use probability to make decisions about those hypotheses?

What are standard deviation and standard error? Why do we need to examine them when
assessing significance?

. Briefly explain the following:

a. One-tailed vs. two-tailed hypotheses.
b. Type | and Type Il errors.

. What are confidence intervals?
. What is the implication if the 95% confidence intervals of difference cross zero?

Why is it important that we measure effect size in addition to significance?

. How do we use statistical power?
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Learning objectives

By the end of this chapter you should be able to:

e Understand the basic features of experimental methods
e Define data types and appreciate whether they are parametric
e Recognise the factors that determine which test to perform:

e Data type and parametric assumptions

e The number of variables being measured

e Measuring differences or relationships

e Examining outcome between groups or within groups
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Introduction

Before we explore the statistical tests covered in this book, it would be useful to understand
a little about experimental methods. We will examine why it is difficult to undertake more
traditional experiments in psychology, and seek to use alternative methods. We will consider
the impact of exploring differences compared with measuring relationships. We will investi-
gate how to examine cause and effect using longitudinal research. Other factors will also help
us decide which statistical tests we should employ. For example, we will look at how to define
and measure independent and dependent variables, we will compare between-group studies
and within-group designs, we will decide whether the data are parametric, and we will seek to
understand the nature of the data measured by those variables. We will discover the importance
of validity and reliability, and explore ways in which we can measure these. We will then conduct
an overview of the statistical tests that you will encounter in subsequent chapters.

Conducting ‘experiments’ in psychology

When we examine outcomes in ‘pure’ science (such as chemistry, physics and biology) experi-
mental methods are generally quite straightforward. In these experiments we speak in terms of
initial states, upon which we perform some kind of manipulation that produces an effect. For
instance, if we take a small piece of potassium (initial state) and drop it into water (manipula-
tion) it fizzes and burns furiously around the water (effect). I always remember that from my
school days, partly because it is really cool and also because my chemistry teacher was some-
what more than eccentric (we said that he was more volatile than most of his experiments). The
science example illustrates how we can measure an outcome, based on something that we did,
to change the properties of the initial state.

It's not that easy in psychology. In fact, many purists say that psychology cannot be a science
precisely because of that. There are many reasons why we cannot ‘manipulate’ a variable when
dealing with humans. For instance, we might want to examine the effect of children living in one-
parent families, compared with those in traditional families. In doing so, it would be completely
unethical to remove one of the parents from some of the families to examine the outcome. Instead,
we would need to conduct what we call a quasi-experiment. In this context, we could examine
naturally occurring differences between children who are in two-parent families compared with
those in one-parent families. However, because psychology (usually) employs the rigour of scien-
tific methods to its explorations, many feel justified in considering psychology a natural science.

Problems with psychological experimental methods

However, we may still encounter problems. In the example we saw with potassium, we are likely
to observe that outcome every time, so long as we controlled other conditions. In psychology,
controlling for ‘other factors’ can be more problematic than with traditional science. Let's say
we examine a group of students on their scores from a social psychology exam. We might aim
to investigate whether females perform better than males. We may support that prediction, but
what else should we consider? It may be that exam scores can change according to mood, 1Q,
examination anxiety, age, experience and so on The observed difference might be due to any one
(or more) of those factors in addition to, or instead of, gender. We could try to control for all
of those things by recruiting equal numbers of men and women, who are also equally matched
on mood, IQ, examination anxiety, age, experience and so on. However, the more controls we
place on recruitment, the harder it will be to find participants (which is usually the trickiest part
of conducting psychological research). One way around this is to use statistics. As we will see
later, we can use measures to control for one or more factor, while focusing on the variable we
actually want to measure. In effect, additional factors are held constant.
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Despite that, there are manipulations that we can undertake (subject to ethical approval). We
could pilot a new drug on one group of depressed patients and compare the outcome to patients
receiving a placebo (a pill that looks like the real drug but has no effect - only the patient does
not know that). In that case, we can still say that we are investigating cause and effect, so it is
very similar to pure science. We could also examine the effect of different teaching methods on
students in respect of attendance at lectures. Or we could observe naturally occurring events
to generate theory or confirm hypotheses. However, whichever method we use, how do we go
about measuring the outcome? Do we look at differences between separately recruited groups of
people? Do we examine those differences across the same group of people, but simply vary the
conditions at different time points? Or do we just look at the relationship between one event and
another? These questions and more will be addressed in the following sections.

Factors that determine the appropriate statistical test

Before we can make any decisions about which statistical test to perform, we need to know
several important aspects about the nature of our data and how they will be examined. These
relate to the type of data that we are seeking to investigate, whether those data are parametric,
whether differences are being measured or relationships explored, and whether the examina-
tion is being conducted as a between-group or within-group study. We will explore those factors
briefly here, before considering the steps we need to take to select the appropriate statistical test.

What type of data are being measured?

In simple terms, your data will be either numerical (relate to numbers and counting) or categor-
ical (relate to descriptions and groups). In reality it is a lot more complex than that. Discrete data
represent distinct units. Typically, they will be specific categories or groups, such as gender (male
and female) or nationality (British, French and American). However, discrete data can also relate
to numbers, but only if this represents a specific count (rather than a range). For example, if you
count the number of females who are depressed (this is discrete), while the depression scores
associated with a group of people is ‘continuous’ (this is not discrete). Categorical data are an
example of discrete data that relate to homogeneous groups, such as animal type (cat, dog or
hamster). To aid statistical analysis, these groups can be ‘defined’ by values when we set them
up in SPSS (such as 1 = cat, 2 = dog and 3 = hamster - we saw how to do that in Chapter 2).
No numerical weight can be inferred from those values; they are simply used to differentiate
the groups. SPSS calls these ‘nominal’ variables. If we have only two groups or categories (as we
might with gender) we call this a dichotomous (or binary) variable.

‘Numerical’ data can be further categorised into sub-types: ordinal, interval and ratio. Ordinal
data refer to those which can be ordered by rank. Final position in a race (first - second - third) is
one example. A more common example is found in Likert scales. These are used to measure atti-
tudes, opinions and satisfaction, where numbers can be allocated to those perceptions (such as
5 = 'very satisfied’, 4 = ‘satisfied’, 3 = 'neither satisfied nor dissatisfied’, 2 = ‘dissatisfied" and
1 ="very dissatisfied’). Equally, we could ask someone to rate their current satisfaction on a scale
of 1 to 10 (with 10 representing the most satisfaction). Those numbers carry more weight than those
allocated to nominal variables, but still cannot be inferred in the same way as we can do for interval
or ratio data. For example, the numbers used to define gender (1 =male, 2 = female) are arbitrary;
a score of 2 is not ‘higher’ than a score of 1 in this instance. Meanwhile, an ordinal score (such as
5 = 'very satisfied") could be considered to be ‘higher’ than another score in the scale (such as 2 =
‘dissatisfied’). However, little inference can be given about the ‘distances’ between those numbers.
As we will see shortly, interval data relate to numbers where such inference can be made. The
difference between an age of 50 and an age of 25 is objective, measurable and undeniable. Yet
one person’s satisfaction rating of 4 might be very different to the next person’s. Such numbers’
might be seen as subjective differences; in the values used in those ratings is less clear. Because
of that we often rank ordinal scores rather than treat them as a number that can be manipulated.
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5.1 Take a closer look
Glossary of data types

Interval and ratio data refer to numbers that are measurable; differences between numbers
in a range are more obvious. Some good examples are age, income and temperature. We can
compare sets of numbers using descriptive data, such as the average score (something we cannot
do with ordinal data). Although interval data are usually confined to a range of scores, they can
also include discrete data that refer to counts, such as the number of people attending lectures.
Interval data may be represented by numbers in a range where there are ‘equal distances’ - the
difference between the ages 8 and 6 is the same as the difference between 25 and 23. Those
differences are clearly objective. Another good example of interval data is temperature. There
are clear differences between 70° and 60° Fahrenheit, as there are between 20° and 10° Celsius.

Interval data may also be described as ratio data, but only when values can be compared with
each other in relative terms. Someone who is 50 years of age is twice as old as someone who is 25.
To qualify as ratio data, the range of scores must include an absolute 0 (age does). Temperature
could not be considered as ratio data (although it is interval); there is no absolute zero for Fahr-
enheit or Celsius (0° is arbitrary). We cannot say that 70° Fahrenheit is twice as hot as 35° Fahr-
enheit. Think about what happens if we convert Fahrenheit to Celsius (21.1° and 1.6° respec-
tively). While the number 70 is twice as high as 35, 21.1 is not twice as high as 1.6. Time is a
good example of ratio data - it has a zero point, so we can say that 20 minutes is twice as long
as 10 minutes. Despite those differences, interval and ratio data tend to be grouped together as
‘interval’ data (SPSS calls these data ‘scale’).

Having explored data types in the last section, you may find this summary useful:

Discrete: data that are distinct, or separate, entities. This can include groups (such as
gender) or a count of numbers (but not a range of numbers)

Categorical: discrete data that are distinct homogeneous (descriptive) entities. These can
represent distinct groups, such as gender (male vs. female), or within-group
conditions, such as time points (before test vs. after test)

Nominal: another term for categorical data

Dichotomous (binary): where there are only two categories for a descriptive variable (such as with
gender)

Continuous data: any non-discrete data (i.e. not categorical)

Ordinal: where numerical data can be ordered by rank. The numbers used to define the
ranks have more numerical meaning than nominal data, but inferences cannot
be made about the distances between numbers

Interval: where numerical data have objective differences between numbers in the scale
(unlike ordinal data, where those differences could be seen as subjective)

Ratio: where interval data can be related to each other in terms of relative amounts.

Time is a good example of ratio data; temperature is not. To fit this criterion,
there must an absolute zero within the data

Are the data parametric?

Determining whether data are parametric is pivotal to choosing the correct statistical test. Under-
standing this concept, and how to measure it, is probably one of the most important things you can
learn about in data analysis. To qualify as parametric, the dependent variable data should be (reason-
ably) normally distributed and must be interval or ratio (not ordinal, and definitely not categorical).
We explored normal distribution in Chapter 3; we examined interval and ratio data just now.
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Normal distribution is achieved when data are evenly distributed either side of the mean (average)
score. If there are extreme scores at either end of the range of numbers (outliers), this can cause the
distribution to skew. If we have high extreme scores, we can get positive skew; if the outliers are low,
we can get negative skew. We saw graphical examples of these distributions in Figures 3.2 — 3.4.
Positive skew can cause the mean score to be artificially increased; negative skew can understate
the mean score. This is important because parametric tests depend on the mean score to determine
outcome. Such methods are typically employed in t-tests, ANOVAs, Pearson’s correlation, and linear
regression. If the mean scores have been biased by outliers, we should not rely on statistical tests
that use that to examine outcome - it could produce false outcomes (see Type I and Type II errors in
Chapter 4). We should probably consider using non-parametric tests (see Chapter 18).

We have a similar problem if we fail to meet the requirements for interval or ratio data
(even if those data are normally distributed). As we saw earlier, although ordinal data have
‘some’ numerical value, it is questionable whether we can infer scores in the same way as
we can with interval or ratio data. For example, if we examine Likert scale scores (where 1 =
‘very dissatisfied’ through to 5 = ‘very satisfied’), what does a mean score of 4.35 suggest? It
is a little convoluted to say that it reflects a perception somewhere in between ‘satisfied’ and
‘very satisfied’. If we ask participants to rate their own satisfaction on a scale of (say) 1 to 10
(where 10 is the most satisfaction), we may have a little more faith in a mean score of 7.62.
Many opinion scales are rated that way. Also, one person’s satisfaction rating of 7 may be
very different to someone else’s rating of 7. How much can we trust a mean score that relates
to subjective ratings of several different people? In those circumstances, it might be more
appropriate to compare groups on how those ratings are ranked by using a non-parametric
test. That way the absolute value of the rating has less impact. Many researchers argue that
ordinal data are not suitable for tests that rely on the mean score to determine outcome.
However, as we will see throughout this book, ordinal data still tend to be used in some
parametric tests.

5.2 Take a closer look
What is a parametric test?

The following summary might be useful for determining whether data are parametric:

Parametric data: Where interval or ratio data are normally distributed. Parametric tests tend to
use the mean score to evaluate differences or relationships

Normal distribution: Where the data are evenly distributed either side of the mean, with no outliers
at either end of the distribution. We saw how to measure that in Chapter 3

Non-parametric: Where the data fail to meet one or more of the requirements for parametric

data. Differences or relationships tend to focus on the ranking of the data

How many variables are there?

Once you know what type of data are included in your variables, you will need to know how
many you will be examining. The number of variables that you measure will determine the
type of test you can use. Of those variables, you will also need to know how many of them are
dependent variables and how many are independent variables. The dependent variable (DV)
is the outcome and is often represented by a range of scores. For example, we could measure
examination marks from a group of students. Sometimes the dependent variable might be a
categorical outcome. For example, we might explore whether a person is depressed (or not).
The independent variable (IV) is the factor that we believe will have an effect on the outcome;
it is usually categorical. An IV could be represented by specific groups (such as gender: male
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or female) or it might be conditions that are examined across a single group. We might expect
scores on the dependent variable to vary between the groups or across the conditions (we will
explore the difference in those examples shortly).

5.3 Take a closer look
Dependent variable vs. independent variable

One of the first things we have to remember when learning about statistics is differentiating between the dependent
variable and the independent variable; the following summary might help.

Dependent variable: The outcome measure being investigated that is expected to change (as a result
of factors such as groups or conditions)
Independent variable: A factor (such as groups or conditions) that is thought to be responsible for

changes in an outcome measure

Differences vs. relationships

Another important factor in selecting a statistical test focuses on whether we are measuring
‘differences’ or exploring ‘relationships. When we examine differences, we will often investigate
how dependent variable scores vary across distinct groups, or over several conditions for a single
group. These groups or conditions represent the independent variable; occasionally, they may
be something that we have ‘manipulated’ For example, we could randomly split participants
into groups before exploring how they differ on a given outcome. Or we could investigate a
single group of people and measure how their mood differs on various days of the week. Both
are examples of exploring differences. Sometimes we measure cause and effect. For example, we
might measure illness severity in a group of people, according to the dose of medication that we
give them. Other times, we simply measure how outcomes differ naturally (such as mood scores
between men and women). In contrast, when we measure relationships we are not concerned
with differences. Instead, we are observing how outcomes on one variable change as outcomes
vary on another variable. For example, we could explore how the ice-cream sales vary as tempera-
ture changes - such examinations rarely focus on cause and effect.

Between-group vs. within-group

If we are exploring a difference, we need to know whether we are going to use a between-group
or within-group approach. In between-group studies, we investigate differences in dependent
variable scores in respect of distinct groups that represent the independent variable. These
groups must be wholly independent from each other — no person or case can appear in more
than one group. In within-group studies, we explore a series of conditions across a single
group. For example, let's say we want to examine the effect that a new antidepressant has on
illness scores in depressed patients (perhaps compared with an existing antidepressant). We
might predict that we expect to find a difference in illness rating scores, according to the type
of antidepressant. If we chose to examine this in a between-group study, we could divide
our depressed patients into groups, where we give one group the new antidepressant and
the other group the old one. We could then compare those groups on illness scores and see
which group shows the most improvement. Conversely, if we decided to use a within-group
approach, we would measure outcomes across a single cohort and give all of the depressed
patients the new antidepressant (and measure the illness score) and then give them the old
antidepressant (and measure the illness score again). We can measure the difference in illness
scores across those two conditions (but within a single cohort).
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5.4 Take a closer look Q
Between-group vs. within-group N

Students new to statistics often have trouble identifying when they have a between-group study and when it is a
within-group study. These (brief) definitions might help:

Between-group: Where the independent variable is measured between two or more distinct groups
of people or cases
Within-group: Where the independent variable is measured across one group, in respect of two

or more conditions

Are within-group designs better than between-group studies?

Before we explore statistical methods that investigate between-group and within-group studies,
perhaps we should pause to consider whether one method is ‘better’ than the other. No matter
how hard we try, controlling for all possible variables in a between-group study is problematic.
In within-group designs, individual differences are reduced because it is the same person in each
condition There is less likely to be unexpected variations in the outcome measure (whereas this
is more likely to happen in between-group designs, because different people are represented in
the groups; additional individual differences may explain the variation). Another big advantage
of within-group studies is that you need fewer people to conduct them with. In between-group
studies, you need to recruit participants into each of the study groups (often there will be three
or more groups); in a within-group study you need only one participant to represent all of the
conditions.

Despite these benefits, the ‘repeated-measures’ design does have its limitations. On the
downside, within-group studies are prone to something called order effects. While individual
differences are less likely to occur, those potential confounding variables are not completely
eradicated. Once participants have conducted a test once, they might be more familiar with
the procedures by the second presentation. Would that make them quicker on the second test?
Might they recall their previous answer? They may get bored having to do the same test again.
Might they pay less attention and make more errors on the second test? Furthermore, in some
within-group studies, the purpose of the study may become apparent to the participant. This
may influence them to respond in a way that might please the experimenter. The participant is
more likely to remain naive in between-group studies. These order effects can interfere with the
outcome (although they can be overcome by counterbalancing the conditions). Using counter-
balancing, the order in which conditions are presented can be shuffled between participants.
Allocation to the order of presentation can be managed using established procedures (see
Chapter 10). To overcome recall effects, we could leave a longer gap between trials. However,
this could mean that data collection takes much longer than it might have done if a between-
group study had been employed.

Another problem for within-group studies is time: by their very nature the conditions are
conducted over several time points. This is not a problem with between-group studies, where
the conditions can be examined concurrently across the groups, saving a great deal of time. Also
by default, within-group studies mean that participants must be present in every condition.
The statistics are calculated in respect of how each participant responds across the conditions.
If a participant misses a condition they must be excluded from the study. That can be tiresome,
given the difficulties of participant recruitment. In between-group studies it is preferable to have
equal numbers in each group, but statistics can adjust for missing participants. The impact of
losing a participant from a condition is less serious in this context. You can read an extension of
this debate in Chapter 8 (see Box 8.4).



96 Chapter5 Experimental methods - how to choose the correct statistical test

Exploring differences

5.5 Nuts and bolts

Cause and effect

When measuring differences we often talk in terms of cause and effect. WWe might believe that the independent vari-
able will cause a change in the dependent variable. This is more likely to occur when we explore differences than when
we look at relationships.

Research methods

There are several statistical tests that we can use to explore differences. To help us decide which
one to choose, we need to consider all those factors that we examined earlier. What sort of data
do we have? Are those data parametric? Will we be exploring those differences across several
groups? Or will we choose to explore the differences within one group over several conditions?

Once we have decided that, we need to know how we collect the data. There are several
options open to us. We might choose experimental methods (or quasi-experimental methods, if
that is not possible). We might opt for a cross-sectional approach, or decide that a longitudinal
study is better. Alternatively, we may collect our data retrospectively. We will explore what is
involved in each of these methods now.

Using a traditional experimental method, we directly manipulate the independent variable. In a
between-group study we would decide which group to allocate people to. For example, if we were
to examine the effect of a new antidepressant on a group of depressed patients, we could allocate
those patients to the ‘new antidepressant’ or the ‘placebo’ group as we chose. However, it is more
likely that we would randomly allocate group selection. Indeed, to ensure objective evaluation,
we would probably use a ‘blind” method so that we did not know which group the patient had
been allocated to (the tablets would look identical). This might remove subjectivity, but it might
not be considered as a ‘true’ experimental method. Similarly, if we want to compare outcomes on
something like gender, such groups are naturally occurring. On other occasions, ethical guidelines
will determine whether we can use group allocation to assess outcomes (such as exploring the effect
of children being in one-parent families). On those occasions we might use observational research,
where we would record what happens over time and compare outcomes between groups. Alterna-
tively, we could trawl through historical records - we call this retrospective research.

True experiments are conducted within ‘laboratory’ conditions, where variables can be
controlled more easily. When we conduct research with people, such controls are more prob-
lematic. First of all, laboratory studies might not reflect ‘real life’. It is often better to explore
outcomes in contexts that represent what the participants normally encounter. It is also very
difficult to control all variables. If we want to measure mood reports according to gender, ideally
the participants would differ on that only - age, income, education, housing and a whole load
of other individual differences should be identical (otherwise, we cannot be certain that we are
measuring only gender differences). We could ‘control’ that by matching participants on all of
those factors. However, this can make recruitment very difficult. As an alternative, we can use
statistical procedures to control such things (as we will see later).

Much of what we have just described explores outcomes ‘here and now’. These between-
group studies are usually best for cross-sectional research, but it often says very little about cause
and effect. If we want to be more confident about that, we may be better off choosing a prospec-
tive longitudinal study, conducted under within-group conditions. For example, to explore the
effect of a new antidepressant in a single group of depressed patients, we could examine illness
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We have a number
the terminology:

Experimental:

Quasi-experime

Observational:
Cross-sectional:
Longitudinal:
Retrospective:
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severity scores at a series of time points. This is actually a variation on the experimental method,
because we are still manipulating the independent variable. Only this time we are doing this
(perhaps more ethically) in the form of conditions performed on a single group.

of options open to us when we investigate differences. This summary might help you remember

Where the independent variable is directly manipulated, just as it is in traditional
science

nts: Quite often we cannot manipulate the independent variable, perhaps because
of ethical constraints. Retrospective studies and those which explore naturally
occurring events are good examples of a quasi-experiment
Where we observe events, rather than intervene
A quasi-experimental design that focuses on measuring groups
Where outcome is measured sequentially over a series of time points
Where we examine historical data to investigate outcome in respect of an inde-
pendent variable, rather than seek to manipulate it

Sampling methods

Earlier, we said that there are a number of ways in which we can allocate participants to groups in
quasi-experimental studies. When we choose some non-specific method to do this, it is often (mistak-
enly) referred to as random allocation. In student projects it is quite likely that they will approach
willing volunteers in cafes, libraries and bars. Despite claims, this is not a random form of participant
recruitment. At best it is a systematic approach. In reality it is probably an opportunity or convenience
sample. True random methods are completely impartial. They often use random number generators.
They always use methods that are blind to the researcher. To be truly random, the researcher cannot
have any influence over who is recruited, or to which experimental condition they are allocated.

A good example of randomised allocation often occurs in clinical drug trials. These studies
can explore a range of drugs and doses, many including placebo conditions. To improve objec-
tivity, the clinicians treating the patient (and rating their illness) are ‘blind’ to whether they
are taking the placebo or the real drug (and dose of that drug). Equally, to ensure that the
patient rates their response objectively, they, too, are unaware of what they have been given.
For this to work, once patients have been recruited to the study, the clinician requests a code
from the pharmaceutical company sponsoring the trial. This code, randomly generated from
their computer system, is presented to the hospital pharmacy, where the trial drugs are stored
according to those numbers. The relevant drug pack is administered to the patient. Neither the
patient nor the clinician knows what is in the tablets (all of the pills and packaging are iden-
tical). The identity of the tablet is revealed only once the trial is over. An exception would be if a
patient develops a serious problem - clinical intervention might dictate needing to know what
the patient was taking (the patient would be withdrawn from the study).

Systematic sampling occurs when participants are recruited according to a specific number
or order. For example, every tenth patient from a list of current outpatients could be invited to
take part in a study. Opportunity sampling is probably the most common form of recruitment
in student studies: this is where participants are recruited by availability through being in the
right place (such as the student bar) at the right time. We also call this convenience sampling.
Sometimes we select participants using quota sampling. This is when we recruit our groups in
proportions that reflect the ratios seen in the general population. We may know quite a lot about
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the typical profile of depressed people in the population: age, gender, income, housing, type of
job, etc. If we are recruiting a large sample of depressed patients, we might want to recruit them in
the proportions known to exist in each age group, job type, etc. A stratified sample is similar to a
quota sample, but differs in the fact that participants within each cluster are recruited at random.

5.7 Take a closer look
Summary of sampling methods

When we recruit participants to between-group studies, we can use a series of methods to allocate them to groups.
Here is a summary of the points that we have just made:

Random: Participants selected by random number generators, or some other way that is
blind to the researchers

Systematic: Participants recruited by choosing the nth person available from a specified group

Opportunity: Participants recruited on the basis of availability; also known as convenience sampling

Cluster: Participants chosen at random, but from very specific groups assumed to be
representative of the population of interest

Quota: Participants recruited into groups in proportions that reflect how they are repre-
sented in the general population

Stratified: Same as quota sampling, but the participants within the groups are randomly
selected

Measuring between-group differences

If we know that we are examining our data using between-group methods, the choice of
statistical test will then depend on three further factors: Are the data parametric? How many
dependent variables are being explored? How many independent variables are involved? We will
not explore each test in any great depth, as that analysis can be reviewed in the relevant chapters.
Many statistical books provide flow diagrams and other such charts to guide the researcher to
the most appropriate statistical test. We will not seek to reinvent the wheel by adding to those.
However, an overview of between-group statistical tests is shown in Table 5.1, indicating in
which chapter the test is explored and how the procedure matches the criteria for data type,
number of variables and whether this is a parametric or non-parametric test.

Table 5.1 Statistical tests for between-group studies

DV v
Main tests Ch Type No Type No Groups P/N
Independent t-test 7 Con 1 Cat 1 2 P
Mann Whitney U 18 Con 1 Cat 1 2 NP
Independent one-way ANOVA! 9 Con 1 Cat 1 2+ P
Kruskal Wallis 18 Con 1 Cat 1 3+ NP
Independent multi-factorial 1l Con 1 Cat 2+ 2+ P
ANOVA
MANOVA 14 Con 2 Cat 1+ 2+ P
ANCOVA? 15 Con 1 Both 1+ 2+ P

Key Con: continuous variable; Cat: categorical variable; P: parametric; NP: non-parametric
Notes " Independent one-way ANOVA can be performed with two groups, but t-test usually performed in that context;
2 ANCOVA is used to examine effect of ‘controlling’ variables.
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Measuring within-group differences

If we know that we will be exploring differences within-groups, we will then need to make
choices about which test to perform so that we can analyse the data As usual, those options
will based on the factors relating to the nature of the data and variables (what type, how many,
parametric issues, etc.). Table 5.2 provides a summary of within-group tests.

Table 5.2 Statistical tests for within-group studies (and mixed models)

DV v
Main tests Ch Type No Type No Conditions P/N
Related t-test 8 Con 1 Cat 1 2 P
Wilcoxon signed ranks 18 Con 1 Cat 1 2 NP
Repeated-measures one-way ANOVA' 10 Con 1 Cat 1 2+ P
Friedman's ANOVA 18 Con 1 Cat 1 3+ NP
Repeated-measures multi-factorial 12 Con 1 Cat 2+ 2+ p
ANOVA
Mixed models
Mixed multi-factorial ANOVA? 13 Con 1 Cat 2+ 1+ WG p

1+ BG

Repeated-measures MANOVA 14 Con 2 Cat 1+ 1+ BG P
MANCOVA 15 Con P

Key Con: continuous variable; Cat: categorical variable; P: parametric; NP: non-parametric

Notes " Repeated-measures one-way ANOVA can be performed with 2 groups, but t-test usually performed in that context;
2 Mixed multi-factorial ANOVA examines at least one within-group (WG) IV and at least one between-group (BG) IV.

Examining relationships

Sometimes, rather than explore differences, we might want to look at the relationship between
variables. We might examine how the scores on one variable change in relation to the scores
on another variable (as we do with correlation). Or we may investigate how much variance
in the scores for an outcome can be explained by variations in ‘predictor’ variables (as we do
with regression). Correlation examines the relationship between two variables and represents
the extent that one variable changes, the other variable changes accordingly. For example, we
could measure how ice-cream sales vary as temperature changes.When we conduct correlation
we are less likely to talk in terms of dependent and independent variables. Furthermore, we
cannot measure cause and effect (unlike some measures of difference). There are several types of
correlation that we can use, dependent on the nature of the data (see Table 5.3). There is little
point addressing the exact pre-requisites for these tests here, so we will leave that until we get to
Chapter 6.

Regression examines how much ‘variance’ can be ‘explained’ in an outcome, and which vari-
ables are responsible for contributing to that outcome. Linear regression focuses on numerical
dependent (outcome) variables; independent (predictor) variables are examined to see how
well they explain that outcome. Simple linear regression involves a single predictor variable;
multiple linear regression has several predictors. For example, we could explore how much
variance in mood scores can be explained by variations in sleep satisfaction, age and gender.
Logistic regression explores categorical outcome variables; predictor variables are investigated
with respect to how much they explain the ‘likelihood’ of that outcome. For example, we could
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explore how the likelihood of passing an exam is explained by variations in revision time,
lecture attendance, time of day and amount of lecturer support. The choice of test and rules of
engagement are somewhat more complex than these simplistic overviews, but we will explore
that when we get to the relevant chapters. Table 5.3 provides a summary of factors that help us
decide which test to use.

Table 5.3 Statistical tests for measuring relationships

Correlation Ch Variable type No P/N

Pearson's 6 Continuous 2 Parametric
Spearman'’s or Kendall's tau 6 Continuous 2 Non-parametric
Partial' 6 Continuous 3 Either

Biserial or point biserial? 6 Both 2 Either
Regression Ch Outcome Predictors P/N

Simple linear? 16 Continuous 1 Parametric
Multiple linear® 16 Continuous 2+ Parametric
Logistic 17 Categorical 1+ Non-parametric

Notes " Partial correlation explores relationship between two variables, controlling for a third variable;
% Biserial correlation explores relationship between one continuous variable and one categorical variable;
3 |t is preferable that linear regression examine interval outcomes

Additional tests of association

There are further tests of relationships that do not quite fit the examples that we have just seen -
see Table 5.4. These relate to cases where all of the variables are categorical, but that measure
frequency data. By definition these tests are non-parametric. Typically, we measure such outcome
using Chi-square (x?) tests and loglinear analysis (see Chapter 19 for more details).

Table 5.4 Other tests

No. variables Groups
Pearson's x? Yates' continuity correction, Fishers exact test 2 2+
Layered x?, loglinear analysis 3+ 2+

Validity and reliability

When we conduct research and collect data, we must make sure that we are actually measuring
what we claim to be, and that we are doing so in a consistent way. We examine these important
factors through validity and reliability. If we can demonstrate that we have accounted sufficiently
for these, we can have more confidence in our outcome - and others are more likely to trust our
data. For example, these outcomes are often used to describe the robustness of a questionnaire.
Good published studies will report the validity and reliability of the scales that they have used
in their study. It is these concepts that the final two chapters of this book focus on. In those
chapters we are introduced to some statistical procedures that cannot be described in terms of
the parameters we have been using so far.

Validity examines whether we are actually measuring what we think we are. For example,
we could ask someone to report their IQ. If it is high we might claim that the person is intel-
ligent. However, such an assumption might lack validity because we cannot be certain that IQ
really does measure intelligence. Related to that, we also might want to explore the component
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structure of a questionnaire, to assess what ‘factors’ are present. In Chapter 20 we will explore
a statistical procedure called factor analysis (more specifically principal components analysis)
that can help us do just that.

Reliability measures the consistency and repeatability of an outcome. Once we observe a
specific outcome, we would expect to see a similar result if we were to repeat the procedure (or
if someone else used our methods). Consistency can be examined over time, between several
researchers, for single researchers (in respect of their own consistency of ratings), and to measure
the internal consistency of concepts within a questionnaire (to ensure that they appear to be
measuring the same theme). In Chapter 21 we will focus on the last of those examples, with a
statistical test called reliability analysis. It would be pointless to go into any more detail about
these procedures at this stage, so we will leave that until we get to the relevant chapters.

We can summarise the points that we have just made:

Validity:
Reliability:

The extent that we are measuring what we claim to be.
Describes the consistency of our data, across items, over time and between
researchers.

In this chapter we have explored experimental methods and have applied this to selecting the
correct test to examine data in given contexts. At this point, it would be good to revisit the learning
objectives that we set at the beginning of the chapter.

You should now be able to:

e Understand that, due to various restrictions posed by research with people, psychological
research can rarely use true experimental methods. Laboratory conditions may not reflect real
life; it is difficult to control for all possible variables. Instead, we tend to use quasi-experimental
and correlational methods.

e Define data types: discrete data are distinct entities, represented by categorical groups or ‘counts’
of numbers; continuous data are numerical ranges (anything that is not discrete); categorical are
discrete data that are represented by groups or conditions; ordinal data are numerical data that can
be ordered by rank, but little inference can be taken in the magnitude of numbers in these ranges;
interval data are more obviously numerical, where measurement can be based on magnitude and
distance between numbers; ratio data are interval values that can be related to each other relatively.

e Appreciate that data are parametric if they are (reasonably) normally distributed and at least
interval in nature. Parametric tests rely on the mean score to determine outcome. If we cannot
trust the mean score, we should use non-parametric tests.

e Recognise the factors that determine which statistical test to perform: data types (whether the
variables are continuous or categorical); whether the data are parametric; how many variables
are being measured (including the number of dependent and independent variables, and the
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number of groups and/or conditions being measured within the independent variables); whether
differences are being examined, or relationships are being observed; and whether the data are
being measured between-groups or within-groups (or a mixed model is being used).

Recognise how to differentiate between differences and relationships.

Appreciate how to specify between-group and within-group designs (and understand the relative
benefits of each of them).

Understand different types of sampling methods and research designs.

Know how to define and measure validity and reliability.

Extended learning task —

Following what we have learned about research methods and statistical tests, answer the following
qguestions.

1.

Describe each of the following variables in respect of the characteristics of the data that they aim
to measure. Refer to terms such as discrete, categorical, dichotomous, ordinal, interval and ratio
data (some answers may include more than one term):

A diagnosis of depression (yes or no)

Anxiety groups (none, mild or moderate)

Position in a race (first, second, third... fifteenth)

Subjective rating of mood (on a Likert scale where 1= very happy through to 5= very unhappy)
Children's 1Q

Height of participants (in centimetres)

Number of goals scored by each striker in a football season

R

. Look at the following research summaries:

a. We believe that as age increases, anxiety scores increase. However, we notice that the age
variable is not normally distributed.

b. We want to see if anxiety scores increase proportionately with sleep disturbance scores; both
variables are normally distributed.

c. We want to examine if women spend more money on clothes than men; the amount spent by
both groups is not normally distributed.

d. We want to measure quality-of-life scores among some participants who have been cate-
gorised according to their depression scores: no depression, mild depression and moderate
depression. The quality-of-life scores are normally distributed.

e. We want to measure the effect of a new teaching method across a group of students, to whom
we present both techniques and measure them on satisfaction with the teacher.

For each of the examples in Question 2, answer the following questions:

i. Is this examining a relationship or exploring a difference?
ii. Describe the dependent and independent variables.
iii. Describe the levels on the independent variable (if appropriate).
iv. Indicate whether there is evidence that relevant variables are parametric.
v. Suggest a suitable statistical test to investigate the research, or describe the range of options
if some information is missing.
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Learning objectives

By the end of this chapter you should be able to:

Recognise when it is appropriate to use correlation

Appreciate the different types of correlation and the factors that determine
which type should be performed

Understand the theory, rationale and assumptions associated with each test
Calculate outcomes manually (using maths and equations)
Perform analyses using SPSS

Understand how to present the data and report the findings
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What is correlation?

The term correlation represents a series of statistical tests that measures the relationship between
two variables. Usually, both variables will be represented by ordinal or interval data As we saw in
Chapter 5, both of those data types have a numerical form in one way or another (we will have
a reminder about the distinction between them later). In these cases, correlation explores the
way in which the values in the two variables vary with each other (involving the same cases or
participants). These changes may occur in the same direction, they could operate in opposition
to each other, or there may be no relationship at all. For example, we might find that as salaries
increase, the amount spent on luxury goods also increases. Or we might observe that as unem-
ployment increases, the amount spent on luxury goods decreases. Meanwhile, there is probably
no relationship between the amount spent on luxury goods and hair colour. Less commonly,
correlation can also be conducted between one continuous variable and one categorical vari-
able. For example, we might choose to examine whether there is a relationship between gender
and the amount spent on clothes. In this chapter, we will explore a range of correlation tests.
The choice of test type will depend on several factors, such as whether the data are parametric
(see Chapter 5 for a definition of parametric data).

Research questions for correlation

To illustrate the various types of correlation, we will pose a series of research questions set by
the (fictitious) Mood, Anxiety and Sleep research group (MOANS). They decide to investigate
whether there is a relationship between sleep quality perceptions and mood. They examine
data from two questionnaires that they present to their participants. MOANS predict that as
participants’ perceptions of sleep quality worsen, their reports of mood scores will get poorer.
To extend their analyses the researchers also record the age and gender of the participants, and
whether they have a formal diagnosis of depression.

Theory and rationale

Correlation: the basics

Correlation describes the relationship between variables. We assess that relationship (or asso-
ciation) in terms of a ‘correlation coefficient’, which measures the way in which the ‘values’
in one variable change in relation to ‘values’ in a second variable. A positive correlation coef-
ficient occurs when values change in the same direction. For example, we might expect the
sale of ice creams to increase as temperature increases. A negative correlation will exist when

6.1 Take a closer look
Correlation: size and direction

Correlation is measured in terms of magnitude and direction. Here is a summary of the key factors in interpreting
correlation coefficient:

+1 Perfect positive correlation
—1 Perfect negative correlation
0 No correlation



Theory and rationale 105

values change in opposite directions. We might predict that the sale of overcoats will decrease
as temperature increases. Alternatively, there might be no correlation whatsoever, as might
happen if we measured the relationship between temperature and the sale of hamsters. The
correlation coefficient is measured on a scale of 0 (no correlation) to +1 (perfectly positive
correlation) or —1 (perfectly negative correlation). When we report correlation we do so in
terms of the letter r. For example, the correlation between ice-cream sales and temperature
might indicate r = .75, while the correlation between temperature and the sale of overcoats
might show 7= —.66. If we examined the relationships between temperature and the sale of
hamsters we might find a correlation of r = .04. We will see how to interpret the magnitude of
correlation shortly.

Conventional interpretation of the magnitude of correlation was set by Cohen (1988).
However, as is often the case in statistics, there are others who hold a slightly different view,
such as the guidelines suggested by Brace et al. (2006). There is little to choose from between
these guidelines, although Cohen's interpretation is directly related to effect size, which may be
useful (see Chapter 4). A summary of those interpretations are shown in Table 6.1.

Table 6.1 Correlation coefficients - two different interpretations

Coefficient Cohen, 1988 Brace et al., 2006
Weak 10.1 =102
Moderate 03 +03-06
Strong *+0.5 ==+0.7

Viewing correlation graphically

Correlation between two variables is often presented graphically. A data point is plotted for
each participant (or case). Each axis represents a variable; data points are placed along those
axes according to the value for each variable. For example, we could assign ‘sleep quality percep-
tions’ along the horizontal (x) axis and ‘mood scores’ along the vertical (y) axis. If a participant
reported a sleep quality perception score of 15 and a mood score of 62, a data point would
be drawn 15 units along the x axis and 62 units up the y axis. Once all of the data have been
plotted, the cluster of data points indicates the magnitude and direction of correlation. This type
of graph is called a scatterplot. We can draw a line through the cluster that illustrates the trend
of those data points, which we call a line of best fit. Some examples are shown in Figure 6.1.
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a) Positive correlation b) Negative correlation c) No correlation

Figure 6.1 Correlation scatterplots
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Figure 6.1a shows an example of positive correlation. It is represented by a line that slopes
upwards from left to right - the relationship between ice-cream sales and temperature might
be presented like this. Figure 6.1b shows an example of negative correlation. The line slopes
downwards from left to right - the relationship between temperature and overcoat sales may
look like that. Figure 6.1c shows an example of no correlation. There is no pattern to the cluster
of data (such as we might find with the relationship between temperature and the sale of
hamsters).

Correlation: common myths

There are a number of myths associated with correlation that we should dispel. To begin with,
there will rarely be perfect correlation (positive or negative), even in the most obvious relation-
ships. Other factors might interfere, such as personal preferences or individual differences. For
example, some people may buy overcoats in hot weather because they may be cheaper than
during cold spells. Another myth is that negative correlation is ‘bad’ Students often think that
they have failed if they find anything other than positive correlation. This is simply not true:
both are equally important. Often, the direction of correlation depends on how a questionnaire
is scored. For example, you may want to measure the relationship between participants’ age and
their sleep quality perception scores. You might expect that sleep quality perceptions worsen
with age. If poorer sleep quality is indicated by lower scores, then your prediction is correct if
you find a negative correlation.

Even if there is a strong relationship between variables, it can never mean that we can infer
cause and effect. There may be some cases where there may appear to be cause (perhaps in the
relationship between temperature and ice-cream sales), but correlation cannot measure that. We
can say only that there is a relationship; we will not be able to say that changes in one variable
cause variations in the other. For example, evidence suggests that there is a correlation between
inner-city dwelling and rates of schizophrenia. From that, you might argue that living in inner
cities causes schizophrenia. In reality, at best, it is only one of many risk factors. In any case, it is
also quite common for people with schizophrenia to drift towards inner cities. Therefore, there
appears to a relationship, but we cannot be clear about cause and effect.

Another common error is to put too much emphasis on the statistical significance of a rela-
tionship. We saw some guidelines for interpreting the magnitude in Table 6.1. The significance
of the relationship suggests how unlikely it is that the observed coefficient occurred by chance
factors (in that sample). More precisely, it shows the improbability that the null hypothesis is
true (that there is no relationship - see Chapter 4). For most of the other statistical proce-
dures that we encounter in this book, we will see that statistical significance is of primary
importance. For example, if we find a difference between men and women on sleep quality,
it may mean nothing if that difference is not statistically significant. With correlation, such
assumptions are rather simplistic. Earlier, we saw how we can measure the magnitude of the
correlation from effect sizes suggested by Cohen (1988). The effect size says more about the
strength of the association than the significance. In very large samples it is possible for a small
effect size (such as r = .10) to be highly significant. Equally, in small samples, it is possible
for a large effect size (such as r = .70) to be non-significant. With larger samples, we should
not make too much of the significance - we need to focus on the magnitude of the correla-
tion to illustrate whether the outcome is meaningful. In smaller samples, we must pay more
attention to the significance of the relationship, as well as to the magnitude. A summary is
provided in Box 6.2.

Applications of correlation

So far, we have seen a number of examples where we could use correlation to explore the rela-
tionship between variables. However, there are a number of other applications of correlation. In
Chapter 5 we briefly explored validity and reliability. Validity describes how well we are actually
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Here are some key factors worth remembering about correlation:

1k

You will rarely find ‘perfect correlation’. Individual differences and other factors may interfere with observed

relationships.

Negative correlation is not bad, it simply describes the direction of the relationship. It does not mean there is ‘no
relationship’ because it is ‘less than O'.

Correlation never implies cause and effect.

Don't put too much emphasis on significance in larger samples; focus on the correlation coefficient. Always report
significance with the coefficient in smaller samples.

measuring what we claim to be. For example, let’s say we have designed a new questionnaire to
measure self-esteem. We could give this to some participants and measure their responses. We
could also ask them to complete an established self-esteem questionnaire. If our new question-
naire truly measures aspects of self-esteem, the responses on that should be similar to those given
on the established scale. We can examine the strength of this validity by comparing the scores (for
each participant) across both questionnaires. A high correlation would indicate good validity.

Reliability measures the consistency of our data. For example, to assure ourselves of the reli-
ability of our new self-esteem questionnaire, we need to know that people will respond in the
same way each time that they complete the scale (all else being equal). To do this we can use
something called test-retest reliability (we will see more about this in Chapter 21). We can give
the questionnaire to a group of people on one day and record the responses. Two weeks later,
we could give the same people the same questionnaire and record those responses again. To
assess reliability we simply compare the two sets of responses using correlation - the higher the
coefficient, the higher the reliability.

Correlation also plays a large part in many other statistical tests, as we will see as we venture
through this book. It is an integral part of linear regression (Chapter 16), factor analysis
(Chapter 20) and reliability analysis (Chapter 21). Correlation is also an important considera-
tion for weighing up assumptions and restrictions of other tests, such as MANOVA (Chapter 14)
and ANCOVA (Chapter 15).

Types of correlation

We have been using the word ‘correlation’ quite liberally so far. In reality, there are several
types - the choice depends on a number of factors relating to the nature of the variables being
measured. In the subsequent sections we explore six methods of correlation: Pearson’s corre-
lation, Spearman’s correlation, Kendall’s Tau-b, partial (and semi-partial) correlation, biserial
correlation and point-biserial correlation. We will look at the theory behind each of these now,
and will explore how to perform the tests in the remaining sections.

Pearson'’s correlation is probably the most commonly used of these tests (although some
would argue that it is the most commonly misused). We should employ Pearson’s correlation
only when both variables are parametric. This is because Pearson’s correlation is based on how
case scores vary from (variable) mean scores across the respective variables. We saw how to
determine whether our data are parametric in Chapter 5. In short, the variables must be at least
interval and should be (reasonably) normally distributed (we explored normal distribution in
Chapter 3). Spearman's correlation should be used if the data for at least one of the variables is
not parametric. It might be that some data are represented by ordinal data, or that one (or both)



108 Chapter 6 Correlation

of the variables are not normally distributed. Rather than rely on mean scores, the outcome is
based on how scores are ranked across a variable. Kendall's Tau-b is very similar to Spearman’s
correlation, in that it is used for non-parametric data. However, it might be employed if there
are too many ‘ties’ in the ranked scores. In some cases we can measure correlation where one
of the variables is categorical (such as gender: male vs. female). The second variable must be
ordinal or interval. To measure correlation in this context we need to use something called
biserial correlation (or point-biserial correlation, depending on the nature of the categorical vari-
able - as we will see later).

We will also explore partial correlation and semi-partial correlation in this chapter, but it is
better that we leave the explanation of that until later - you need to understand the fundamen-
tals of correlation before we address slightly more complex issues.

6.3 Take a closer look
Basic types of correlation: a summary

We have just explored several types of correlation. Here is a summary of those points:

Pearson's correlation: Used where both variables are parametric

Spearman's correlation: Used when at least one of the variables is not parametric

Kendall's Tau-b: Used instead of Spearman'’s correlation if there are too many tied ranks
(Point) Biserial correlation: Used when one of the variables is categorical

Pearson's correlation

The magnitude of the coefficient is reported using Pearson's r (e.g. 1 = .75). As the correlation
coefficient cannot exceed 1, it is normal convention to omit the leading zero before the decimal
point. To illustrate how we can use Pearson’s correlation to examine relationships, we will return
to the research question posed by MOANS (our research group). They are seeking to explore
the relationship between sleep quality perceptions and mood. In this example, 15 participants
have been given two questionnaires: one that measures a series of factors about perceived sleep
quality (feeling refreshed, sleep satisfaction, having enough sleep, etc.) and a scale that measures
current mood. Both questionnaires are measured on a scale of 0-100. Higher values on the sleep
quality scale represent better perceptions, while higher mood scores represent poor perceptions.
MOANS predict that there will be a negative correlation between sleep quality perceptions and
mood.

6.4 Take a closer look
Hypothesis for research question

There will be a negative correlation between sleep quality perceptions and mood.

Assumptions and restrictions

Before we proceed, we should examine the assumptions and restrictions for Pearson’s correla-
tion. Generally, Pearson’s correlation is conducted between two parametric variables. The data
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should be interval (or ratio) and reasonably normally distributed (we explored normal distri-
bution in Chapter 3). Interval data are represented by meaningful, objective, numerical values.
Pearson'’s correlation outcomes are based on how case scores vary from the mean score for each
variable. If the data are not parametric, this might compromise the mean score, making it unre-
liable. We could be reporting inaccurate outcomes if we fail to recognise this; it increases the
likelihood of Type I and Type II errors (see Chapter 4).

However, in reality, things are never quite as simple as that. A great deal of psychological
research is conducted using questionnaires. As these frequently explore subjective data, such as
perceptions, we might rarely use Pearson’s correlation to examine quasi-experimental research
data (see Chapter 5 for a review of psychological research methods). A quick scan of published
studies will reveal that ordinal data are frequently examined with parametric tests. Our variables
explore subjective sleep perceptions and self-assessments of mood, using Likert scales. These
are questionnaires that elicit responses such as ‘1 = strongly agree’ through to '5 = strongly
disagree’. Some sources claim that these are the very essence of ordinal data, so should not
be measured with parametric tests (Jamieson, 2004). Others argue that a well-designed
Likert scale that has been highly validated can approximate interval scores (Reips and Funke,
2008). For the purposes of illustration, we will assume that our data come from question-
naires like that. Furthermore, it would be useful to compare outcomes from a series of correla-
tion methods - using the same data set. However, we should be careful to check that we have
(reasonable) normal distribution (which we will do shortly).

6.5 Take a closer look
Summary of assumptions and restrictions

e Both variables should be parametric
e The data (on both variables) should be at least interval
e Those data should be reasonably normally distributed

Establishing the magnitude of Pearson's correlation
coefficient

The magnitude of the coefficient for Pearson’s correlation is based on how much the data
(within each variable) vary according to their respective means, and how much those scores vary

for each participant across both variables (for non-human research, we would explore outcomes
across cases, rather than participants). You can see how this is done manually in Box 6.6.

6.6 Calculating outcomes manually
Pearson’s correlation calculation

To illustrate how to calculate Pearson's correlation manually, we will refer back to the research question set by
MOANS (the data are presented in Table 6.2). MOANS are examining the relationship between sleep quality
perceptions (SQ) and mood, using a sample of 15 participants. The outcome from both variables is scored from
0-100 - higher sleep quality scores represent ‘better’ perceptions, while higher mood scores are poorer. You will find
a Microsoft Excel spreadsheet associated with these calculations on the web page for this book.
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Table 6.2 Sleep quality perceptions and mood data

Participant SQ (x) Ax; — X) Mood (y) B(y; — y) AXB
1 48 =23467 26 =827 195.64
2 80 8.33 30 —4.27 —35.56
3 78 6.33 23 —11.27 —71.36
4 87 15.33 34 —0.27 —4.09
5 66 —5.67 40 573 —32.49
6 70 —-1.67 25 —9.27 15.44
7 67 —4.67 28 —6.27 29.24
8 62 —9.67 64 29.73 —287.42
9 85 13.33 33 —1.27 —16.89
10 43 —28.67 73 38.73 —1110.36
n 79 7.33 20 —14.27 —104.62
12 62 —9.67 37 2.73 —26.42
13 79 7.33 20 —14.27 —104.62
14 83 11.33 40 573 64.98
15 86 14.33 21 —13.27 —190.16

Mean x (X) 71.67 Meany (y) 34.27 Sum (A X B):

SD x (S,) 13.60 SDy (S,) 1554 D (x — x)y; — y) —1678.67

2 =x)(vi—v)
To find Pearson's correlation we need the following equation: r =
(N =1)S,S,
N = sample size (15); SD = standard deviation (S); we saw how to calculate SD in Chapter 4 (but also see Excel

spreadsheet).
We take each participant’s score in variable x and deduct the mean of x. We put that answer in column A:
e.g. Participant 1: x; (48) — x (71.67) = —23.67
We repeat that for each participant
Then we do the same for variable y, putting the answer to that in column B.
Then we multiply column A by column B and put the answer in column ‘A X B'.
e.g. Participant 1: —23.67 X —8.27 = 195.64 (allow for rounding)
We add all of the answers in column ‘A X B’ to get E(Xi =0 — V)

We put all of that into the Pearson'’s correlation equation:

—1678.67
14 X 13.60 X 1554 = — 567 (a strong negative correlation, using Brace, et al.'s (2006) guide)

So, r =

Correlation and significance

The calculations that we have just performed suggest a strong relationship. However, as we saw
earlier, it is important to assess the significance of the relationship in samples as small as this (in
larger samples we pay less attention to significance). In Chapter 4 we discovered that statistical
significance examines the likelihood that the null hypothesis is true (in this case, that there is
no relationship between sleep quality perceptions and mood). If that likelihood is less than
5%, we can reject the null hypothesis in favour of the alternative hypothesis (that there will be
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negative correlation between the variables). We state significance in terms of the probability (p);
a significant outcome is observed when p < .05 (although we tend to report the full value of
that significance, as we will see later).

To determine significance for Pearson’s correlation, we can refer to Pearson’s r tables (see
Appendix 3). We look up the r value in that table, according to the ‘degrees of freedom’, the target
significance level (usually p =.05), and depending on whether we have a one-tailed or two-tailed
test. In correlation, a one-tailed test represents a specific prediction (that there will be a positive
correlation between the variables or that there will be a negative correlation). A two-tailed test
relates to non-specific predictions (simply that there will a relationship between the variables). The
degrees of freedom are related to the sample size. We will encounter these throughout this book.
Degrees of freedom (often shown as df) refer to the number of values that are ‘free to vary’ in the
calculation, while everything else is held constant. Usually, df represents the number of values
being measured (N) minus the number of parameters being used to measure it. In this case we
have 15 numbers (the sample size) minus 2 variables (the parameters), so df = 15—2 = 13.

Those parameters direct us to a value in the r value that represents a cut-off point - if the
observed r value exceeds that, we can say that the relationship is significant. In our example,
we have a one-tailed test,where df = 13 and where significance is p < .05; the cut-off point for
that is r=.441. Our correlation coefficient was r= —.567, so we have a significant (negative)
relationship (we can reject the null hypothesis).

We can also use Microsoft Excel to calculate the critical value of r and to provide the actual
p value. You can see how to do that on the web page for this book. In this case we find that
p =.0138. On that spreadsheet, you will also see how to perform the entire test in Excel.

How SPSS performs Pearson's correlation

We can get SPSS to perform Pearson’s correlation. However, 1 do urge you to try those manual
calculations that we explored in Box 6.6 - you can learn so much more about statistics when
you do that. To illustrate how we perform the analysis in SPSS, we will maintain our focus on
the MOANS research example. You will recall that the research group sought to explore the rela-
tionship between sleep quality perceptions and mood, predicting that there will be a negative
correlation. You can see how to create a data set in SPSS for Pearson’s correlation in Box 6.7.

6.7 Nuts and bolts
Setting up the data set in SPSS

When we create the SPSS data set for Pearson'’s correlation, we simply need to set up columns for the two variables
that we are seeking to measure (we saw how to create data sets in Chapter 2).

13 Sleep quality & mood sav [DataSet1] - IBM SPSS Statistics Data Editor
File Edit View Dalta Transform Analyze Graphs Uliliies Add-ons Window Help

SEe M~ Hi.A i B« @

Eﬂkg';@‘ =

ype Width | Decimals Label Values Missing Columns Align Measure
[ 1 Sleepqual Numeric 8 0 Sleep quality p... None None 8 = Right & Scale
2 Mood Numeric 8 0 Mood None None 8 = Right & Scale

a

Figure 6.2 Variable View for ‘sleep quality and mood' data

Figure 6.2 shows how the SPSS Variable View should be set up. The first variable is called ‘sleepqual’, which will
be used to record sleep quality perception. The second variable is called ‘'mood’, which will be used to report mood
perceptions. Both variables are classed as ‘Scale’ in the ‘Measure’ column.
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3 Sieep quality & mood.sav [DataSet1] - BM SPSS Statistics Data Editor
File Edit View Data Transform Analyze Graphs Utililes Add-ons  Window Help

SHO M e~ Blpdl 8 55
I Slegpq_!.la] I Mood war _'5 var ] var ] var } var var | var

]I 48 26
80 30
2 T0 a3

Figure 6.3 Data View for 'sleep quality and mood' data

Figure 6.3 illustrates how this will appear in the Data View. Each row represents a participant; values represent the
scores reported for each participant.

Testing for normal distribution

Earlier, we said that we can perform Pearson’s correlation on parametric data only. Putting aside
the arguments about ordinal data for the moment, we still need to check that the data are
normally distributed for both variables. Initially, we will run the Kolmogorov-Smirnov and
Shapiro-Wilk tests to examine this (we saw the full instructions for this test in Chapter 3):

Open the SPSS file Sleep quality and mood

Select Analyze =» Descriptive Statistics =» Explore =» (in new window) transfer Sleep quality
perceptions and Mood to Dependent List window (by clicking on arrow, or by dragging the varia-
bles there) =» select Plots radio button =» click on Plots box =¥ (in new window) select None radio
button (under Boxplot) =» make sure that Stem-and-leaf and Histogram (under Descriptive)
are unchecked =» select Normality plots with tests radio button =» click Continue = click OK

Kolmogorov—Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Sleep quality perceptions 213 15 067 .899 15 .092
Mood 223 15 044 810 15 005

Figure 6.4 Kolmogorov-Smirnov/Shapiro-Wilk test for sleep quality perceptions and mood

Since we have a sample of 15 participants, we should refer to the Shapiro-Wilk test (in Chapter 3
we saw that we should use the Kolmogorov-Smirnov outcome only when we have samples greater
than 50). Figure 6.4 indicates that sleep quality perceptions appear to be OK, W(15),=.899,
p=.092 (if the significance [Sig.] is greater than .05 the data are probably normally distributed).
However, mood may not be normally distributed, W(15), =.810, p=.005. On the basis of that
outcome, perhaps we should inspect normal distribution in respect of mood scores a little further,
by examining z-scores for skew and kurtosis (Figure 6.5) (we learned about this in Chapter 3):

Select Analyze =» Descriptive Statistics =» transfer Sleep quality perceptions and Mood to
Dependent List window =» select Statistics radio button =» click OK
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Doscriptives
Statistic | Std. error
Mood Mean 34.27 4.012
95% confidence interval Lower bound 2566
for mean
Upper bound 42.87
5% timmed mean 3291
Median 30.00
Variance 241.495
Std. deviation 15.540
Minimum 20
Maximum 73
Range 53
Interquartile range 17
Skewness 1.615 .580
Kurtosis 2.220 1121

Figure 6.5 Skew and kurtosis data for mood scores

To assess normal distribution, we divide the skew and kurtosis data by the respective
standard error (see Chapter 3 for more details). This produces z-scores; these can be used to
make judgements about normal distribution (see Table 6.3). We only need to do this for the
mood scores because we know that the sleep quality perception data are probably normally
distributed.

Table 6.3 z-scores for skew and kurtosis, in respect of mood scores

Statistic SE z-score
Skewness 1.615 0.580 2.78
Kurtosis 2.220 1121 1.98

In a sample this small, we do not want z-scores to be noticeably greater than * 1.96 (see
Chapter 3). It could be argued that there is significant positive skew in the mood data, suggesting
that normal distribution has been compromised. Earlier, we said that we need ‘reasonable’
normal distribution. It could be argued that these data are not parametric. We will continue
with the Pearson’s correlation analysis for now (mostly so that you can see how to run it).
However, it is quite likely that we should employ a non-parametric test of correlation (such as
Spearman’s). We will do that later.

Running Pearson'’s correlation in SPSS

Using the SPSS file Sleep quality and mood

Select Analyze =» Correlate =» Bivariate. .. as shown in Figure 6.6
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Figure 6.6 Pearson's correlation - step 1

In new window (see Figure 6.7), transfer Sleep quality perceptions and Mood to Variables

window =» tick boxes for Pearson and One-tailed = click OK

'ﬁ Bivariate Comelations = r:ﬁ Bivariate Carrelations
& Sleep quality percep= > (g, & Sleepqualiy percep...
& Woo1 Mond] > &HMNM

() «)

rc Cueflicient | re on Coeficiant
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[ Test of Significance
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i Tastof Signi
® Twotailed © One-tailed ‘

! Flag sigrificant correlations

¥ Flag significant correlations

&] Paste MWW

Figure 6.7 Pearson's correlation - step 2

Interpretation of output

Figure 6.8 indicates that we have a ‘strong’ negative (significant) correlation between sleep
quality perceptions and mood. In our write-up, we report the correlation coefficient (stating

Sleep quality
perceptions Mood
Sleep quality perceptions  Pearson correlation 1 -567"
Sig. (1-tailed) 014
N 15 15
Mood Pearson correlation -.567" 1
Sig. (1-tailed) .014
N 15 15

Figure 6.8 Pearson'’s correlation output
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direction and ‘magnitude’ - see Box 6.2 for guidelines on interpreting coefficients). Then we
present the statistical notation; we start with r (the sign for Pearson'’s correlation), followed
by the degrees of freedom (df, which is presented within brackets; remember, df=N —2),
the correlation ‘value’, and the full significance value (unless SPSS has shown that as .000, in
which case we present that as p < .001). In our case, the full notation is r=(13)=—.567,
p=.014.

Variance

From these data, we can also report how much variance is explained by the relationship. We do
this by squaring the r value; in our example .5672 = .321. This suggests that 32.1% of variance in
mood is explained by sleep quality perceptions.

Writing up results

Throughout these chapters, we will see how to write up our results as if we were doing so for
a report. We might include a table of data (or a graph) and write something appropriate that
describes the outcome and displays the statistical notation. However, it is bad form to include
tabulated data and a graph that effectively show the same thing. Also, you should never ‘cut and
paste’ SPSS output into your results. The write-up for our current results is pretty straightforward.
We probably only need to write something like this:

There was a strong negative (Pearson’s) correlation: poorer sleep quality perceptions were
associated with poorer mood: r(13) = —.567, p=.014.

Using SPSS to draw correlation scatterplot

In Figure 6.1 we saw a range of graphical representations for correlation. We can get SPSS to
draw a graph for us, showing how the data points are ‘clustered’.

Using the SPSS file Sleep quality and mood

Select Graphs =» Chart Builder = . . . as shown in Figure 6.9

@ Sleep guality & mood.sav [DataSetl] - IBM SPSS Statistics Data Editor
File Edit View Data Transform Analyze GSraphs Utilities Add-ons  Window Help

'Cj E [‘g‘l m - E il Chiail Builder ..
|

Graphboard Template Chooser...

|

| Leogacy Dialogs [
|Sleepquaj || Mood || va [ var [ var | var

[ | 48 2

Figure 6.9 Drawing a scatterplot - step 1

In new window (see Figure 6.10), select Scatter/dot (from list under Choose from:) =» drag
Simple Scatter graphic (top left corner) into Chart Preview window
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Figure 6.10 Drawing a scatterplot - step 2

Transfer Mood to Y-Axis box (to left of new graph - see Figure 6.11) =» transfer Sleep quality
perceptions to X-Axis box (under graph) =» click OK
The action will produce a scatterplot, as shown in Figure 6.12.
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Figure 6.11 Drawing a scatterplot - step 3
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Figure 6.12 Scatterplot: sleep quality perceptions vs. mood

It is also useful to draw a line of regression through the data that describes the ‘best fit' (the
most typical trend of data) - it illustrates the ‘regression’ line (or gradient), which tells us how
values in ‘mood’ change for each unit change in ‘sleep quality perceptions’. We learn more
about the implications of that when we explore linear regression in Chapter 16.

In the SPSS output, double click on the graph (it will open in a new window, and will display
some additional options) =¥ click on the icon ‘Add Fit Line at Total’ (in the icons displayed
above the graph - see Figure 6.13) =» click on Close =» click on cross in top right hand corner
of window showing adjusted graph

B Chart Editor o | E] [

File Edit “iew Options Elements Help
oo EXYriAEg B ILEY CROL BBl I
Al Il

r Linear = 0,323

] [ - s:
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.

Figure 6.13 Adding the Fit Line
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Figure 6.14 Scatterplot: sleep quality perceptions vs. mood (with line of fit)

Figure 6.14 suggests a negative correlation between sleep quality perceptions and mood.

Spearman'’s rank correlation

Spearman'’s rank correlation is used if one (or both) of the variables are non-parametric. When
we performed Pearson’s correlation earlier, we had some doubts over normal distribution
Furthermore, the subjective ratings of sleep quality and mood were almost certainly ordinal
data. Either of these factors suggest that we ought to explore this relationship using a non-
parametric test, such as Spearman’s correlation (refer to Chapter 5 to see an extended account
of these arguments).

Assumptions and restrictions

The most notable feature of Spearman’s correlation is that there are fewer restrictions on its use.
There is no requirement for data to be parametric, but the scores must be at least ordinal (they
cannot be categorical).

Establishing the magnitude of Spearman'’s
correlation coefficient

Because the data are not parametric with Spearman’s correlation, outcomes cannot be based on
mean scores. Instead, coefficients are calculated based on how much the ranked scores within each
variable deviate from the mean rank. These rank variations are assessed for each participant (or
case) across both variables. Once this has been done, the formula for calculating correlation is the
same as it is for Pearson’s. To illustrate these procedures we focus on the same data that we used for
Pearson’s (it will serve as a useful comparison). You will recall that MOANS (our research group)
are seeking to examine the relationship between sleep quality perceptions and mood - they have
predicted a negative correlation. You can see how this is done manually in Box 6.8.
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6.8 Calculating outcomes manually
Spearman'’s correlation calculation

To illustrate how we calculate Spearman’s correlation manually, we will reanalyse the MOANS data (see Table 6.4).
The initial data are the same (outcomes in both variables are still scored from 0-100; higher sleep quality (SQ) scores
represent 'better’ perceptions, while higher mood scores are poorer. You will find a Microsoft Excel spreadsheet
associated with these calculations on the web page for this book.

Table 6.4 Sleep quality perceptions and mood data

A: B:
Rank x dev Rank y dev
Case no SQ (%) Rank x to mean Mood (y) Ranky to mean AXB
1 48 2 —-6.0 26 6 —-2.0 12.00
2 80 n 3.0 30 8 0.0 0.00
3 78 8 0.0 23 4 —4.0 0.00
4 87 15 7.0 34 10 2.0 14.00
5 66 5 =340 40 12.5 4.5 —13.50
6 70 7 -1.0 25 5 =340 3.00
7 67 6 —-2.0 28 7 -1.0 2.00
8 62 3.5 —45 64 14 6.0 —27.00
9 85 13 5.0 33 9 1.0 5.00
10 43 1 —=7.0 73 15 7.0 —49.00
n 79 9.5 1.5 20 1.5 =63 —9.75
12 62 3.5 —4.5 37 n 3.0 —13.50
13 79 9.5 1.5 20 1.5 —-6.5 —9.75
14 83 12 4.0 40 12.5 4.5 18.00
15 86 14 6.0 21 3 —5.0 —30.00
Mean rank % 8.0 y 8.0 SumAXB  —98.50
Rank sd* S, 4.46 S 4.46

y

*Rank sd = ‘rank standard deviation’, which is calculated like any other sample standard deviation (see Chapter 4)

Spearman’s correlation takes each variable (x and y) and ranks the scores within each variable, from the smallest
number (which receives rank #1) to the largest (which receives the highest rank). Tied ranks are shared (e.g. a 'sleep
quality’ score of 62 is shared between two participants; these scores occupy ranks 3 and 4; so we average that:
3+ 4 =+ 2=3.5). The ranks are shown in columns ‘Rank x" and ‘Rank y'. Once those scores are ranked, the mean rank
is calculated for each variable. Each score is then assessed with regard to how much it deviates from the mean rank -
this is shown in columns A and B. Then, for each participant, we multiply columns A and B to provide outcomes in
column ‘A X B'. This is repeated for all participants and summed (Sum A X B).

Once we have Sum A X B, we can use Pearson's equation to find Spearman’s rank correlation (r)):
S = G — P
r =
s (N = DS,S,

_SumA X B _ —98.50
S(N-DSS, 14 X 446 X 4.46

Sor = —.353 (a moderate negative correlation)
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Estimating significance

Once again, we can use Pearson’s r tables to estimate significance (Appendix 3). As we saw
earlier, we can also use Excel to calculate the critical value of r and to provide the actual p value
(see associated web page). In this case, we find that the p-value = .098. On that spreadsheet,
you will also see how to perform the entire test in Excel.

Running Spearman's correlation in SPSS

Once again, we can ask SPSS to perform Spearman’s correlation. We will keep the focus on the
MOANS data, exploring the relationship between sleep quality perceptions and mood. The data
would be created in SPSS as shown in Box 6.7. MOANS predicted that there will be a negative
correlation, so we will be performing a one-tailed test.

Using the SPSS file Sleep quality and mood

Select Analyze =» Correlate =¥ Bivariate. .. (as shownin Figure 6.6) =» transfer Sleep quality
perceptions and Mood to Variables list = tick boxes for Spearman and One-tailed =
click OK

Interpretation of output

Figure 6.15 confirms a moderately negative, but non-significant, correlation: r (13) = —.353,
p = .098. If we compare this to the outcome we found for Pearson'’s correlation, we can see that
the observed relationship is weaker using non-parametric methods. This is also a classic example
of where we must pay attention to significance - the relationship might have been moderate, but
it is not significant. We cannot reject the null hypothesis.

Sleep quality
perceptions Mood
Spearman's rho  Sleep quality perceptions  Correlation coefficient 1.000 -.353
Sig. (1-tailed) . 098
N 15 15
Mood Correlation coefficient -.353 1.000
Sig. (1-tailed) 098
N 15 15

Figure 6.15 Spearman's correlation output

Variance

As we saw earlier, variance is the square of the correlation So, —.353% = .125. This suggests that
only 12.5% of variance in mood scores is explained by sleep quality perceptions in this sample,
when we explore the outcome using non-parametric methods.

Writing up results

In our report we should write:
There was a moderate, but non-significant, correlation between sleep quality perceptions and
mood: r,(13) = —.353, p=.098.
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Kendall's Tau-b

Kendall’s Tau-b is very similar to Spearman’s rank correlation in that it is used where some data
are not parametric. However, this test is often employed in preference to Spearman’s correla-
tion when there are too many tied ranks. In Box 6.8, we saw how a data set is ranked according
to values in each variable. There were several instances where scores received tied ranks. For
example, using our data, there are two ties for sleep quality perception scores and two for mood
scores. It might be considered that this represents too many ties, so Kendall’s Tau-b may be more
appropriate.

In your reading you may also come across a test called Kendall’s Tau-a. In case you were
wondering how that test differs to what we are doing (although I suspect you were not),
Kendall's Tau-a is just another way of calculating correlation, but without adjusting for ties.

Assumptions and restrictions

There is nothing we can add here to what we have already said about the assumptions and
restrictions for Spearman’s correlation. This test is still used for cases where at least one of the
variables includes non-parametric data. The main difference is that Kendall’s Tau-b should be
used if there are too many tied ranks. How many is too many? There is no golden rule, although
some would say that you should not use Spearman’s correlation if there are any ties.

Running Kendall's Tau-b in SPSS

We will not look at how to run manual calculations for Kendall's Tau-b as these are quite
complex. Instead, we will go straight to performing the test in SPSS. We will use the same data
again, based on the MOANS research question:

Using the SPSS file Sleep quality and mood

Select Analyze =» Correlate =» Bivariate. .. (as shown in Figure 6.6) =¥ transfer Sleep quality
perceptions and Mood to Variables window =¥ tick boxes for Kendall's Tau-b and One-tailed
=» click OK

Interpretation of output

Figure 6.16 confirms that we have a moderately negative, but non-significant, correlation
between sleep quality perceptions and mood: Tau-b (13) = —.272, p =.082. This is even weaker
than the correlation that we found using Spearman’s correlation.

Sleep quality
perceptions Mood
Kendall'sTau_b Sleep quality perceptions  Correlation coefficient 1.000 —.272
Sig. (1-tailed) . .082
N 15 15
Mood Correlation coefficient -272 1.000
Sig. (1-tailed) .082
N 15 15

Figure 6.16 Kendall's Tau-b output
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Biserial (and point-biserial) correlation

6.9 Nuts and bolts

For the final examples of correlation, we look at situations where one of the variables is meas-
ured by categorical data. Any categorical variable we use must be dichotomous - it can have only
two categories (such as we find with gender, male vs. female). Ideally, when we create the data
set in SPSS, we should code categorical variables using 0 and 1 (perhaps 0 = Male, 1 = Female).
We can use biserial (or point-biserial) correlation in these situations.

Biserial vs. point-biserial correlation

There are two types of correlation that can be used when one of the variables is categorical: biserial and point-biserial.
We summarise the difference between them in Table 6.5.

Table 6.5 Definitions and examples of biserial and point-biserial correlation

Definition Examples

Biserial correlation: Where two ‘poles’ of the categorical Sleep quality perceptions (continuous variable) could
variable are considered to be on a ‘continuum’ between be compared with depression diagnosis (categorical:

O and1. depressed or not depressed).

Point-biserial correlation: Where the two categories are Mood perceptions (continuous variable) could be corre-
distinct groups, represented by value codes of O and 1. lated to gender (categorical: male or female).

Comparing biserial to point-biserial correlation

There are some subtle differences between biserial and point-biserial correlation (see Box 6.9).
The categories for gender are (arguably) quite straightforward: someone is (usually) either male
or female. It could be said that a diagnosis of depression is less clear, particularly if that diagnosis
is based on mood scale thresholds: there are degrees of depression severity. These distinctions
determine which type of ‘biserial’ correlation we can employ. Clearly, categorical data (such
as gender) are examined using point-biserial correlation. Where those boundaries are some-
what fuzzier, we use biserial correlation. We can use SPSS to perform point-biserial correlation
(although we will see how to calculate that manually in Box 6.10). Biserial correlation can only
be calculated manually - see Box 6.11.

Establishing the magnitude of point-biserial
correlation coefficient

We will see how to perform point-biserial correlation in SPSS shortly. In the meantime, we
should explore how to do this manually. We will use a new MOANS data set, where informa-
tion was collected from 98 participants regarding sleep quality perceptions, mood perceptions,
age, gender, and current diagnosis of depression. Similar to the first data set that we examined,
sleep quality and mood are measured on a scale of 0-100, with higher sleep quality scores
representing better perceptions and higher mood scores indicating poorer perceptions. Gender
(male vs. female) is the categorical variable. We have established that gender is discrete, so we
can examine the relationship with mood using point-biserial correlation. MOANS predict that
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there will be a 'relationship’ between mood and gender, but do not specify the direction (which
means that we have a two-tailed test). Before we do that, we need to report some descriptive data
about the mean scores and standard deviation for mood scores, in respect of gender. We can get
that from simple ‘descriptive’ analyses in SPSS:

Using the SPSS file Sleep quality

Select Analyze < Compare means =» Means. . . = transfer Mood to Dependent List window
=» select Gender from list =» click on arrow by Independent List =» click OK

Table 6.6 Mood scores and standard deviation (SD) by gender

Mean SD
Male (n=21) 57.05 18.36
Female (n=77) ‘ 63.92 ‘ 2125

6.10 Calculating outcomes manually
Point-biserial calculation

Point-biserial correlation is used when one of the variables is represented by distinct, dichotomous, categorical
data. Using the MOANS data we have been given (see Table 6.6), we will explore the relationship between mood
perceptions and gender. Gender is coded as: males =0, females =1.

Y7 - Yo) X Vpq

SY

The formula for point-biserial correlation (rpb) is:
Tofind Y,and Y, we need the data from Table 6.6. Y is the mean sleep quality score for women (x=1) : 63.92;
Y, is the mean for men (x=0): 57.05.
p is the proportion of the sample represented when x = 0: 21 +~ 98 = .2143
q is the proportion of the sample represented when x =1: 77 + 98 =.7857

SY represents the pooled standard deviation of Y, which we derive using the standard deviation data for men
(18.36) and women (21.25), as shown in Table 6.6, and apply that to yet another formula!

oy - \/(no —1)SZ+ (m —NSZ \/(20 X 18.362 + 76 X 21.252)
B No -+ — 2 B 20+ 77 — 2

= 20.68

_ (63.92 — 57.05) X V.2143 X .7857

50Ty, 20.68

=137, a very weak correlation

The direction of the correlation will depend on how ‘x" and’ y’ are coded, so we must
be careful when interpreting outcomes. In our analysis, the correlation was positive, where
‘women’ were coded as 1 — we could say that mood perceptions are marginally more likely
to be poorer for women. However, the effect was very small indeed. We can calculate vari-
ance in a relationship by squaring the correlation co-efficient (.1372=.019). This suggests
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that only 1.9% of all variance in mood scores is explained by gender. Using the Pearson’s
r calculator that we referred to earlier, we find that we have a non-significant relationship:
r, (96)=.137,p=.179.

Running point-biserial correlation in SPSS

We can use SPSS to perform point-biserial correlation (so long as we have indicated that one of
the variables is categorical (we set'nominal’ codes in SPSS as ‘0’ and ‘1) :

Using the SPSS file Sleep quality

Select Analyze =» Correlate =» Bivariate... =» transfer Mood and Gender to Variables
window = tick boxes for Pearson and Two-tailed =» click OK

Mood Gender

Mood Pearson correlation 1 A37

Sig. (2-tailed) 180

N 98 98

Gender  Pearson correlation A37 1
Sig. (2-tailed) 180

N 98 98

Figure 6.17 Point-biserial output

Figure 6.17 confirms what we calculated manually in Box 6.10. We have a weak, non-significant
correlation between mood and gender: 1, (96) =.137, p =.180.

Establishing the magnitude of biserial
correlation coefficient

We cannot perform biserial correlation in SPSS, but you can see how to calculate the outcome
manually in Box 6.11. As we said earlier, biserial correlation is performed when the categorical
variable is more likely to be on a continuum (such as a diagnosis of depression). To examine
this, we still use the latest MOANS data set, but will focus on two different variables: sleep
quality perceptions and depression diagnosis. Before we undertake those analyses, we need to
find the mean and standard deviation for those variables. You saw how to request descriptive
statistics in SPSS just now, so we do not need to repeat those instructions. The outcome is shown
in Table 6.7.

Table 6.7 Sleep quality scores and standard deviation (SD) by depression diagnosis

Mean SD

Depressed (n=55) 33.97 16.78
Not depressed (n=43) 44.76 17.59
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6.11 Calculating outcomes manually
Biserial calculation

We can calculate biserial correlation from the following formula (using much of what we learned in Box 6.10).
pq

Yi— Yo) X —

( 1 O) Y

The formula for biserial correlation (r,) is: Y

Using the data from Table 6.7, the values of Y, and Y are 44.76 and 33.97 respectively.
Using the rationale from Box 6.10, we can see that p= 55 + 98 = .5612, and g = 43 +~ 98 =.4388
We can also calculate (SY)based on standard deviations of 17.59 and 16.78 (see Table 6.7).

o = \/(no - 1S3+ (m -1 \/(54 X 16.782 + 42 X 17.592)
B No + ny — 2 - 55 + 43 — 2

= 1714

We know that the area under a normal distribution curve is 1 (see Chapter 3). That area can be divided into ‘larger’
and ‘smaller’ portions (but their sum will always be 1). The values of p and g represent those portions (the larger
portion is .5612; the smaller portion is .4388). Using normal distribution tables, we can estimate the height of the
normal distribution curve (Y) where that distribution of portions is observed. We need to find Y when the portions
under the curve are in the ratio of .5612 to .4388. This can be found in specially adapted normal distribution tables,
such as the one published in Field (2009, pp. 797-802). Using that table, we look for a distribution similar to our ratio.
The nearest we can find is .5596/.4404; at that point, y =.3945.
Y; — Yo X % (44.76 — 33.97) X %

So, = = — = .393, a moderate correlation

Using the Pearson's r calculator that we referred to earlier, we find that we have a signifi-
cant relationship: 7,(96) =.393, p < .001. Given that we have a positive correlation, and we
coded ‘depressed’ as 0 and ‘not depressed’ as 1 (where higher sleep quality scores are ‘better’),
we might observe that sleep quality perceptions appear to be better for non-depressed
participants (although the relationship is still only moderate, despite the highly significant
outcome).

Partial correlation

Partial correlation can be used to examine how a relationship between two variables might
be ‘explained’ by one or more additional (potentially confounding) variables. The original
relationship is compared with the new outcome to see if there are important changes in that
relationship once other variables are included. Until now in this chapter, we have been using
the MOANS data to explore the relationship between sleep quality perceptions and mood. We
have found conflicting outcomes depending on the way in which we perform the correlation
analysis. Nevertheless, in all cases, there was at least a moderate relationship. The significance
was compromised in non-parametric correlation tests, but this is probably due to the small
sample. If we used a more robust sample, we might find a s