

FM-Boslaugh.qxd 10/12/2004 5:27 PM Page i

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page ii

Copyright © 2005 by Sage Publications, Inc.

All rights reserved. No part of this book may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage and retrieval system, without permission in writing from the publisher.

For information:

Sage Publications, Inc.
2455 Teller Road
Thousand Oaks, California 91320
E-mail: order@sagepub.com

Sage Publications Ltd.
1 Oliver’s Yard
55 City Road
London EC1Y 1SP
United Kingdom

Sage Publications India Pvt. Ltd.
B-42, Panchsheel Enclave
Post Box 4109
New Delhi 110 017 India

Printed in the United States of America

Library of Congress Cataloging-in-Publication Data

Boslaugh, Sarah.
An intermediate guide to SPSS programming: Using syntax for data management /
Sarah Boslaugh.

p. cm.
Includes bibliographical references and index.
ISBN 0-7619-3185-6

1. SPSS for Windows. 2. Social sciences—Statistical
methods—Computer programs. I. Title.
HA32.B67 2005
005.5′5—dc22

2004014097

04 05 06 07 10 9 8 7 6 5 4 3 2 1

Acquisitions Editor: Lisa Cuevas Shaw
Editorial Assistant: Margo Beth Crouppen
Production Editor: Melanie Birdsall
Copy Editor: Carla Freeman
Typesetter: C&M Digitals (P) Ltd.
Proofreader: Teresa Herlinger
Cover Designer: Michelle Kenny

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page iv

Contents

Preface xi

Part I: An Introduction to SPSS

1. What Is SPSS? 3
A Brief History of SPSS 3
SPSS as a High-Level Programming

Language 3
SPSS as a Statistical Analysis Package 4

2. Interacting With SPSS 5
The SPSS Session 5
SPSS Windows 6
Basics About SPSS Commands 6
Order of Execution of SPSS Commands 7
Batch Mode and Interactive Mode 8

3. Types of Files in SPSS 9
The Command or Syntax Files 9
The Active or Working Data File 10
The Output Files 10
The Journal Files 12

4. Customizing the SPSS Environment 13
Displaying Current Settings 13
Changing Current Settings 14
Eliminating Page Breaks 14
Increasing Memory Allocation 15
Changing the Default Format for

Numeric Variables 15

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page v

Part II: An Introduction to Computer
Programming With SPSS

5. An Introduction to Computer Programming 19
Using Syntax Versus the Menu System 19
The Process of Writing and Testing Syntax 20
Typographical Conventions Used in This Book 21
How Code and Output Are Presented in This Book 21
Some Reasons to Use Syntax 22
Beginning to Learn Syntax 23
Programming Style 25

6. Programming Errors 27
Syntax Errors and Logical Errors 28
The Debugging Process 28
Common SPSS Syntax Errors 28
Finding Logical Errors 30
Changing Default Error and Warning Settings 31
Deciphering SPSS Error and Warning Messages 31

7. Documenting Syntax, Data, and Output Files 33
Using Comments in SPSS Programs 33
Using Comments to Prevent Code

From Executing 34
Documenting a Data File 34
Echoing Text in the Output File 35
Using Titles and Subtitles 36

Part III: Reading and Writing Data
Files in SPSS

8. Reading Raw Data in SPSS 39
Reading Inline Data 40
Reading External Data 41
The FIXED, FREE, and LIST Formats 42
Specifying the Delimiter Symbol 46
Reading Aggregated Data With DATA LIST 47
Reading Data With Multiple Records Per Case 48
Using FORTRAN-Like Variable Specifications 49
Two Shortcuts for Declaring Variables

With Identical Formats 50
Specifying Decimal Values in Data 52

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page vi

9. Reading SPSS System and Portable Files 55
Reading an SPSS System File 55
Reading an SPSS Portable File 56
Dropping, Reordering, and Renaming Variables 56

10. Reading Data Files Created by Other Programs 59
Reading Microsoft Excel Files 59
Reading Data From Earlier Versions of Excel 60
Reading Data From Later Versions of Excel 61
Using GET TRANSLATE to Read Other

Types of Files 62
Reading Data From Database Programs 62
Reading SAS Data Files 62

11. Reading Complex Data Files 65
Reading Mixed Data Files 65
Reading Grouped Data Files 67
Reading Nested Data Files 68
Reading Data in Matrix Format 69

12. Saving Data Files 75
Saving an SPSS System File 75
Saving an SPSS Portable Data File 76
Saving a Data File for Use by Other Programs 76
Saving Text Files 77

Part IV: File Manipulation and Management in SPSS

13. Inspecting a Data File 81
Determining the Number of Cases in a File 82
Determining What Variables Are in a File 82
Getting More Information About the Variables 83
Checking for Duplicate Cases 84
Looking at Variable Values and Distributions 86
Creating Standardized Scores 88

14. Combining Data Files 91
Adding New Variables to Existing Cases 91
Adding Summary Data to an

Individual-Level File 94
Combining Cases From Several Files 95
Updating Values in a File 97

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page vii

15. Data File Management 99
Reordering and Dropping Variables

in the Active File 99
Eliminating Duplicate Records 100
Sorting a Data Set 102
Splitting a Data Set 103
Selecting Cases 103
Filtering Cases 104
Weighting Cases 105

16. Restructuring Files 107
The Unit of Analysis 107
Changing File Structure From Univariate

to Multivariate 108
Incorporating a Test Condition

When Restructuring a Data File 112
Changing File Structure From

Multivariate to Univariate 115
Transposing the Rows and

Columns of a Data Set 116

17. Missing Data in SPSS 119
Types of Missing Data 120
System-Missing and User-Missing Data 120
Looking at Missing Data on

Individual Variables 122
Looking at the Pattern of User-Missing

Data Among Pairs of Variables 123
Looking at the Pattern of Missing Data

Across Many Variables 124
Changing the Value of Blanks in

Numeric Fields 126
Treatment of Missing Values in SPSS Commands 127
Substituting Values for Missing Data 128

18. Using Random Processes in SPSS 133
The Random-Number Seed 133
Generating Random Distributions 134
Random Selection of Cases 134
Random Group Assignment 136
Random Selection From Multiple Groups 136

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page viii

Part V: Variables and Variable Manipulations

19. Variables and Variable Formats 139
String and Numeric Variables 139
System Variables 141
Scratch Variables 141
Input and Output Formats 141
The NUMBER Format 143
The COMMA, DOT, DOLLAR, and PCT Formats 144

20. Variable and Value Labels 147
Rules About Variable Names in SPSS 147
Systems for Naming Variables 148
Adding Variable Labels 149
Adding Value Labels 149
Controlling Whether Labels Are Displayed in Tables 150
Applying the Data Dictionary From a Previous Data Set 151

21. Recoding and Creating Variables 153
The IF Statement 154
Relational Operators 154
Logical Variables 156
Logical Operators 158
Creating Dummy Variables 160
The RECODE and AUTORECODE Commands 161
Converting Variables From Numeric to String

or String to Numeric 164
Counting Occurrences of Values Across Variables 166
Counting the Occurrence of Multiple

Values in One Variable 167
Creating a Cumulative Variable 168

22. Numeric Operations and Functions 171
Arithmetic Operations 171
Mathematical and Statistical Functions 173
Missing Values in Numeric Operations and Functions 175
Domain Errors 176
A Substring-Like Technique for Numeric Variables 177

23. String Functions 179
The Substring Function 179
Concatenation 180

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page ix

Searching for Characters Within a String Variable 182
Adding or Removing Leading or Trailing Characters 183
Finding Character Strings Identified by Delimiters 186

24. Date and Time Variables 189
How Date and Time Variables Are Stored in SPSS 189
An Overview of SPSS Date Formats 190
Reading Dates With Two-Digit Years

in the Correct Century 192
Creating Date Variables With Syntax 193
Creating Date Variables From String Variables 193
Extracting Part of a Date Variable 195
Doing Arithmetic With Date Variables 196
Creating a Variable Holding Today’s Date 198
Designating Missing Values for Date Variables 199

Part VI: Other Topics

25. Automating Tasks Within Your Program 203
Vectors 203
The DO IF Command Structure 205
The DO REPEAT Command Structure 206
The LOOP Command Structure 208

26. A Brief Introduction to the SPSS Macro Language 213
The Parts of a Macro 214
Macros Without Arguments 215
Macros With Arguments 215
Specifying Arguments by Position 217
Macros Using a Flexible Number of Variables 217
Controlling the Macro Language Environment 220
Sources of Further Information About SPSS Macros 221

27. Resources for Learning More About SPSS Syntax 223
Books 223
Web Pages 224
Mailing Lists 225

References 227

Index 229

About the Author 233

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page x

Preface

This book is about using SPSS to manage data. To be more specific, it
presents a number of concepts important in data management and

demonstrates how to carry out data management tasks using SPSS syntax. It
presupposes no experience with data management, SPSS, or computer pro-
gramming, but assumes the reader has the need or the desire to learn about
those topics. It further assumes the reader has access to SPSS and to the SPSS
Syntax Reference Guide, which is included as a PDF file with the SPSS software.

Data management includes everything necessary to prepare data for
analysis, including

1. Getting the data into the computer program you will use to analyze it

2. Screening data for duplicate records, data errors, missing data, and
so on

3. Combining and restructuring data files

4. Creating and recoding variables

5. Documenting the procedures performed on the data

People who work with data recognize that they often spend more time on
data management tasks than they do performing analyses. Data manage-
ment is often neglected in courses that introduce students to data analysis,
leaving them unprepared to deal with data management issues when they
begin working with real data. This book fills that gap by discussing common
issues in data management and presenting techniques to deal with them.
These tasks are accomplished using SPSS syntax, but the general principles
can be applied using any programming language.

This book is also a basic introduction to SPSS and to SPSS syntax. This
aspect will appeal particularly to two groups of people: those who currently
use SPSS through the menu system only and those working in other pro-
gramming languages who want to learn SPSS. Many important features of
SPSS syntax are demonstrated throughout this book, and basic program-
ming concepts such as vectors and loops are also introduced as means to
accomplish data management tasks.

xi

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page xi

FM-Boslaugh.qxd 10/12/2004 12:08 PM Page xii

P a r t I

An Introduction to SPSS

01-Boslaugh.qxd 10/12/2004 12:09 PM Page 1

01-Boslaugh.qxd 10/12/2004 12:09 PM Page 2

C H A P T E R 1

What Is SPSS?

A BRIEF HISTORY OF SPSS

SPSS is a statistical analysis package produced and sold by the
multinational company SPSS Inc. SPSS was developed in the late 1960s by
Norman H. Nie, C. Hadlai Hull, and Dale H. Brent. Their purpose was to
develop “a software system based on the idea of using statistics to turn raw
data into information essential to decision-making” (SPSS Inc., n.d., About
SPSS, para. 2). Originally, the initials “SPSS” stood for “Statistical Package
for the Social Sciences,” but since the market for SPSS is much broader
today, SPSS is now simply the name used for the product and company and
not an acronym.

Because SPSS consists of a large collection of syntax written by different
people at different times, terminology is not always consistent between
procedures. Also, because new procedures have been added while older
procedures have been retained, there are often multiple ways to achieve the
same result. Neither situation is unique to SPSS, but they may be confusing
to the beginning programmer. Neither, however, should present serious
obstacles to learning SPSS syntax.

SPSS AS A HIGH-LEVEL PROGRAMMING LANGUAGE

All programming languages serve as an interface between the computer
and the human being who wishes to use the computer to do something.
Computer programmers typically speak of four levels or generations of com-
puter languages, classified by distance between the syntax written by the
programmer and the instructions executed by the computer. The first level
is machine code, which is very close to the instructions executed by the

3

01-Boslaugh.qxd 10/12/2004 12:09 PM Page 3

computer, and very difficult for humans to learn. Assembly language is the
second level, and general-purpose languages such as C are the third level.
The fourth level refers to programs developed for a specific purpose or
domain, such as SQL and SPSS (FOLDOC). The syntax of fourth-generation
languages is far removed from the instructions executed by the computer,
and they are easy to use because their syntax often resembles statements in
human languages. For instance, you don’t have to be an SPSS programmer
to guess what the following program will do:

GET FILE = ‘data.sav’.
SORT CASES by id.
FREQUENCIES VARIABLES = age sex race.

These commands will open a file called data.sav, sort it by the variable id,
and produce tables showing the frequency of different values for the vari-
ables age, sex, and race.

SPSS AS A STATISTICAL ANALYSIS PACKAGE

Some people don’t consider SPSS a programming language at all, but rather
a statistical analysis package (Stone & Fox, 1997). This distinction empha-
sizes the specialized nature of SPSS and the limited options available when
users want to go beyond the preprogrammed procedures provided. In fact,
there is no question that SPSS was developed to perform particular data
management and statistical tasks, and those origins are still evident in SPSS
today. However, for most users, it is not a critical issue whether SPSS should
be considered a programming language or a statistical analysis package.
This book emphasizes efficient and flexible use of SPSS syntax to perform
common procedures. The SPSS macro language discussed in Chapter 26
allows advanced users to go beyond the preprogrammed routines supplied
with SPSS.

4 An Introduction to SPSS

01-Boslaugh.qxd 10/12/2004 12:09 PM Page 4

C H A P T E R 2

Interacting With SPSS

This chapter discusses some basic aspects of using SPSS, including the
following topics:

❍ The SPSS session

❍ SPSS windows

❍ Basic rules about SPSS commands

❍ Order of execution for SPSS commands

❍ Interactive and batch mode

A warning: Some of this information is system-specific and will not
apply to every installation of SPSS. Programmers not using SPSS on a
Windows or Macintosh computer should seek further information from
other users at their sites or from the SPSS manuals.

THE SPSS SESSION

An SPSS session begins when you open the SPSS program, and it ends when
you shut down the program. This is an important concept because SPSS
“remembers” certain things for the course of a session, then “forgets” them
when the session ends. One example is the declaration of file locations with
the FILE HANDLE command (discussed below): An alias associated with a
location remains in force during an SPSS session but does not carry over
from one session to the next. This has two implications:

5

02-Boslaugh.qxd 10/12/2004 12:09 PM Page 5

6

1. In some versions of SPSS, it is not possible to change the location of
a file handle during a session, and in others, it is possible, but a warn-
ing message will be issued.

2. FILE HANDLE commands must be executed in each session
before the files referred to can be accessed.

SPSS WINDOWS

SPSS for Windows and Macintosh has a system of three windows that
allow the user to open data sets, issue commands, and view output. These
windows are

1. The Syntax Editor, which displays syntax files

2. The Data Editor, which displays the active data file

3. The Viewer or Draft Viewer window, which holds output produced
during the session

The Data Editor has two parts:

1. The Data View window, which displays data from the active file in
spreadsheet format

2. The Variable View window, which displays metadata or information
about the data in the active file, such as variable names and labels,
value labels, formats, and missing value indicators

When you begin an SPSS session, the Data Editor window opens
automatically. Data files may be opened through the menu or with syntax,
and you must have data in the Data Editor in order to execute most SPSS
commands. When SPSS commands are issued, either from a syntax file or
from the menu system, they are executed on the active data file (the one in
the Data Editor) and results are sent to the Viewer window.

BASICS ABOUT SPSS COMMANDS

The name of an SPSS command is also the first word or words in the syn-
tax specifying it: Examples of SPSS commands include FREQUENCIES,
COMPUTE, and GET DATA. A synonym for command is statement, so we
can refer to either a COMPUTE command or a COMPUTE statement.

An Introduction to SPSS

02-Boslaugh.qxd 10/12/2004 12:09 PM Page 6

Programmers also use the term command to mean the total set of elements
necessary for a unit of syntax to run, including subcommands and vari-
ables. Subcommands, functions, and operators are referred to as keywords
because they are a permanent part of the SPSS language, as opposed to
variable and file names, which refer to a particular data set.

Most SPSS keywords can be abbreviated to three or four letters, so the
commands FREQ VAR and FREQUENCIES VARIABLES will produce the
same results. Shortened forms of commands are used frequently in this text.
One exception is that the first word in multiword commands such as FILE
TYPE generally cannot be abbreviated. SPSS is not case-sensitive when
reading syntax, so FREQ, freq, and Freq will produce the same result.

Commands and subcommands may be included on the same line or on
separate lines, so the following two examples of code will execute identically:

FREQ VAR = ALL / FORMAT = NOTABLE.
FREQ VAR = ALL

/ FORMAT = NOTABLE.

SPSS requires a delimiter between command elements: An element is
anything other than punctuation that is required for a command, such as
keywords and variable names. Usually spaces are used as delimiters, but
commas or other symbols may be used. Multiple spaces can be used instead
of one, and, with a few exceptions, commands may be continued over mul-
tiple lines. Subcommands are introduced by a slash (/). It is optional to put
spaces before and after the slash, but they are included in this book to make
the syntax easier to read. Similarly, it is not necessary to include spaces
before and after the equals sign (=) in syntax, but they are included in this
book for the sake of readability.

ORDER OF EXECUTION OF SPSS COMMANDS

In general, SPSS executes commands in the order they appear in the syntax
file, so commands that read or create variables must precede those that
manipulate them. Commands that perform statistical procedures and com-
mands related to file management are executed as soon as they are read by
the computer. Other commands, mainly those that transform data, are read
but not executed until an EXECUTE statement or a command of the first
type is executed. A third type of command, which affects only the data
dictionary or settings, is executed immediately but will not cause data

7Interacting With SPSS

02-Boslaugh.qxd 10/12/2004 12:09 PM Page 7

8

transformation commands to be executed. Lists of the first and third type of
commands are included in the SPSS 11.0 Syntax Reference Guide (SPSS Inc.,
2001), which also gives several syntax examples demonstrating how order
of execution can trip up the unsuspecting programmer.

BATCH MODE AND INTERACTIVE MODE

There are two ways to submit syntax to a computer: batch mode and interac-
tive mode. In batch mode, you prepare a syntax file, submit it in its entirety,
and wait for the computer to return the results to you. In interactive mode,
you submit small blocks of syntax, receive the results, edit the syntax,
resubmit, and so on. Batch mode is the older way of submitting programs
and is associated with mainframe systems. Interactive processing is the
most common way to run SPSS on personal computers. SPSS can run
programs in either batch or interactive mode, but there are a few differences
in syntax rules. In batch mode programs,

1. Commands must begin in the first column, or a plus (+) or minus (–)
symbol must appear in the first column.

2. If a command is longer than one line, the first column in each sub-
sequent line must be blank.

3. Command terminators are not required.

4. Comments are indicated by an asterisk (*) in the first column.

In interactive mode programs,

1. Command terminators must be used (the default terminator is a
period).

2. Most commands can begin in any column.

3. A command line may not be more than 80 characters, although a
single command may continue over many lines.

4. Each command must start on a new line.

It is worth knowing the conventions of both modes, even if you work in
only one, because you may need to adapt a program written for the other
mode.

An Introduction to SPSS

02-Boslaugh.qxd 10/12/2004 12:09 PM Page 8

C H A P T E R 3

Types of Files in SPSS

This chapter discusses the different types of files used and created in
SPSS, including

❍ Syntax files

❍ Data files

❍ Output files

❍ The journal or log file

Some of the discussion in this chapter is necessarily system-specific:
For instance, the syntax, data, and output windows are described as they
are used in the Windows and Macintosh operating systems, as discussed
in Chapter 2. The menu commands are also those for the Windows and
Macintosh systems.

THE COMMAND OR SYNTAX FILES

A syntax file is a text document that contains SPSS commands. SPSS syntax
files are identified by the extension .sps, so a syntax file associated with the
project base1 could be saved as base1.sps. Syntax files may be typed directly
into the Syntax Editor window, also known as the syntax window, created
using a text editor and pasted into the syntax window or generated through
the menu system and pasted into the syntax window (as discussed in
Chapter 5). You can submit SPSS syntax with the RUN button on the tool-
bar (it looks like an arrowhead in the Windows and Macintosh systems) or
one of the RUN options from the menu.

9

03-Boslaugh.qxd 10/12/2004 12:10 PM Page 9

10

THE ACTIVE OR WORKING DATA FILE

You need to have a data file open to use most of the features of SPSS. This
reflects SPSS’s origins as a statistical processor of data sets. When you open
a data file in SPSS, it becomes the working data file or active file and SPSS
commands will be executed on this data. There are three ways to get data
into the Data Editor:

1. Include the data in a syntax file, in which case it is known as inline
data (discussed in Chapter 8).

2. Type the data directly into the Data Editor window.

3. Store the data in a separate file that may be opened by executing syn-
tax or through the menu system (discussed in Chapters 9, 10, and 11).

A data file consists of the data values plus metadata, which is information
about the data such as variable names, value labels, and missing-data indi-
cators. The Data Editor holds both types of data: The data values may be
viewed by clicking on the Data View tab and the metadata by clicking on the
Variable View tab.

In SPSS, you can have only one data file open at a time. When you open
a new data file, the active file is closed (if it has been saved) or deleted (if
not). When the active file is saved using a name and location already in use,
the file previously stored at that location will be replaced by the new file, a
process known as writing over a file. This is a problem if there is a mistake in
the new file, for instance, if records were deleted unintentionally through
the SELECT command, as discussed in Chapters 6 and 15. Experienced
programmers use several techniques to protect against data loss. One is to
make a copy of each data file they work with and store it separately from the
copy used in their programs. Another is to periodically save intermediate
versions of the active file with names such as temp1, temp2, and temp3,
which indicate the order in which the intermediate files were created. SPSS
system files use the extension .sav, and other types of data files use different
extensions, as discussed in Chapter 12.

THE OUTPUT FILES

The Viewer window is opened automatically as soon as output is generated.
Viewer files, often called output files because they store output from SPSS
commands, are identified by the extension .spo. You may direct output to a

An Introduction to SPSS

03-Boslaugh.qxd 10/12/2004 12:10 PM Page 10

Draft Viewer file window instead: This window is text based and uses less
sophisticated graphics. To direct output to the Draft Viewer, open a Draft
Viewer window using the menu choices File, New, Draft Output, and
output will automatically be sent there. Either the Viewer or Draft Viewer
windows may be referred to as the output window.

The output window automatically displays the results of your program
plus warning and error messages. You can also have syntax recorded in the
output window by issuing the command SET PRINTBACK = ON. This is a
good practice because it saves the commands that produce output directly
before the output itself, allowing anyone looking at the output file to see
how particular results were produced.

SPSS output files cannot be viewed by programs other than SPSS, which
is a problem if you need to send results electronically (for instance, by
e-mail) to people who do not have SPSS installed on their computers. There
are several ways around this difficulty:

1. Save output from the Viewer window in portable document file (PDF)
format.

2. Save output from the Viewer window in text format or rich text
format (RTF).

3. Save output from the Draft Viewer window in text format or rich text
format (RTF).

The principal advantage of using the first option is that everything in the
output file, including charts, will be saved in the PDF document. To save a
Viewer file as a PDF file, select File, Print, Save As PDF (Macintosh) or File,
Print, Adobe PDF (Windows). A PDF file is identified by the extension .pdf.
PDF files can be opened by Adobe Acrobat, a free software product that many
people have installed on their computers (Adobe Systems Inc., n.d.).

Text files, identified by the extension .txt, can be opened by any word
processor. The disadvantages of saving output in text format are that charts
cannot be displayed and the appearance of tables may be quite crude. To
save an output file as text, use the menu options File, Export. RTF files use
the extension .rtf and can be opened by most word-processing systems.
They cannot include charts, but their general appearance is more profes-
sional than the same output displayed as a text file. RTF format is the default
option from the Draft Viewer window, so the menu choices to save an out-
put file in this format are File, Save. To save an output file from the Viewer
window in RTF format, use the menu choices File, Export.

11Types of Files in SPSS

03-Boslaugh.qxd 10/12/2004 12:10 PM Page 11

12

THE JOURNAL FILES

The journal file, also known as the log file, records all commands and
warning messages in chronological order from an SPSS session. It is a text
file and can be opened with any text processor. Syntax can be cut and pasted
from the journal file into the syntax window, as discussed in Chapter 5. The
default name of the journal file is spss.jnl, and its default location varies by
installation. You can change this with the SET JOURNAL command, so SET
JOURNAL base1 would cause the journal file to be written to the file base1.
In some systems, you can choose whether the journal file will be appended
or overwritten. If it is appended, the journal for each SPSS session will be
collected in one large file. If the journal is overwritten, the journal for each
session will replace or overwrite the journal for the previous session.

An Introduction to SPSS

03-Boslaugh.qxd 10/12/2004 12:10 PM Page 12

C H A P T E R 4

Customizing
the SPSS Environment

This chapter discusses ways to control the SPSS environment. Topics
include

❍ Displaying and changing current settings

❍ Getting rid of page breaks

❍ Increasing memory allocation

❍ Changing the default format for numeric variables

Many settings or options are controlled through the menu system.
Unfortunately, the sequence of menu items required to perform a task often
differs from one version of SPSS to another and from one operating system
to another. For that reason, this chapter deals with settings that can be
changed through syntax. To learn more about the menu system for partic-
ular installations, consult other programmers using the same installation,
the online help system, and the manuals included with SPSS.

DISPLAYING CURRENT SETTINGS

SPSS has a number of options that can be changed through syntax,
usually by the SET command. To see all your current settings, use the
command,

SHOW ALL.

13

04-Boslaugh.qxd 10/12/2004 12:10 PM Page 13

The output from this command will be several pages long and in most
cases gives you more information than you really want. The SPSS 11.0
Syntax Reference Guide (SPSS Inc., 2001) includes a list of settings that may
be displayed and the keyword to request them, in the chapter on the SHOW
command. This list is not exhaustive, however: For instance, the keyword
LICENSE, used in the syntax below, is not included. To display a subset of
settings, specify the appropriate keyword. For instance, to see the license
number for your copy of SPSS, use the command,

SHOW LICENSE.

The output will display the license number, the components included
and their expiration dates, and the maximum number of users.

CHANGING CURRENT SETTINGS

Most settings that can be displayed with the SET command can be changed
with the SHOW command. The settings most likely to be changed by pro-
grammers are discussed below. Some settings are discussed in other chap-
ters, including SET JOURNAL in Chapter 5, SET HEADER in Chapter 7,
SET SEED in Chapter 18, and SET EPOCH in Chapter 24. In the SET com-
mand, the keywords YES and ON have equivalent meaning, as do NO and
OFF. Therefore, SET HEADER YES and SET HEADER ON will achieve the
same result, as will SET JOURNAL OFF and SET JOURNAL NO.

ELIMINATING PAGE BREAKS

The default page size in SPSS has a length of 59 lines and a width of
80 characters. You can see the current setting on your system with the
command,

SHOW LENGTH WIDTH.

These settings may be changed with the SET command: Length can
be any number from 40 to 999,999 lines, and width any number from

14 An Introduction to SPSS

04-Boslaugh.qxd 10/12/2004 12:10 PM Page 14

80 to 132 characters. If any length is specified, SPSS will insert page
ejects at what it considers to be logical points in the output. However,
some SPSS commands seem to spread output over more pages than is
necessary. You can prevent this by changing the page length to infinite
with the command,

SET LENGTH NONE.

INCREASING MEMORY ALLOCATION

Sometimes, you get an error message that an SPSS procedure could not
be completed because of insufficient memory. At this point, you need to
increase the memory allocation. Because increasing the allocation will
slow down processing speed, you should increase memory allocation
only after receiving such a warning message and restore it to the default
setting when the procedure is completed. To increase memory for proce-
dures such as CROSSTABS and FREQUENCIES, use SET WORK-
SPACE to increase the allocation above the default 512 kilobytes. For
instance,

SET WORKSPACE 800.

will increase this allocation to 800 kilobytes. If you get a warning
message about insufficient memory to create a pivot table, use the SET
MXCELLS command to increase it beyond the amount indicated in the
warning message.

CHANGING THE DEFAULT
FORMAT FOR NUMERIC VARIABLES

The default print and write format for numeric variables is F8.2 (floating-
point or numeric format, with a width of eight characters, including two
decimal places). Although you can specify formats through the DATA LIST
command and the FORMATS command, sometimes it is more convenient
to change the default format. For instance, you may have a file of responses

15Customizing the SPSS Environment

04-Boslaugh.qxd 10/12/2004 12:10 PM Page 15

16

to a questionnaire in which the only possible values are 1 through 5; it can
be irritating to see them displayed as 1.00, 2.00, and so on. The command,

SET FORMAT F1.0.

will change the default format to F1.0 (numeric format, with a width of one
character and no decimal places).

An Introduction to SPSS

04-Boslaugh.qxd 10/12/2004 12:10 PM Page 16

P a r t I I

An Introduction
to Computer

Programming With SPSS

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 17

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 18

C H A P T E R 5

An Introduction to
Computer Programming

This chapter discusses syntax and computer programming, including the
following topics:

❍ Using syntax versus the menu system

❍ The process of writing and testing syntax

❍ Typographical conventions used in this book

❍ Presentation of code and output in this book

❍ Advantages of using syntax

❍ Ways to begin learning syntax

❍ Programming style

USING SYNTAX VERSUS THE MENU SYSTEM

To use SPSS, you must have some way to communicate with the program.
In colloquial terms, you need some way to tell SPSS what to do. There
are two principal ways to communicate with SPSS: the menu system and
syntax. The menu system is a graphical interface (also know as a GUI, or
Graphical User Interface), which allows the user to make choices from a list.
Many people begin using SPSS through the menu system, and even
advanced programmers may use it from time to time. However, SPSS users
beyond the beginning level often find that the flexibility they gain from

19

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 19

20

using syntax greatly increases their productivity. Some advantages of using
syntax are discussed in more detail later in this chapter.

THE PROCESS OF WRITING AND TESTING SYNTAX

Because many SPSS users do not have a background in computer pro-
gramming, this section will introduce the vocabulary of computer pro-
gramming and the basic process of testing and writing syntax. A computer
program is a text file written in the syntax or code of a particular computer
language. For instance, SPSS is a computer language, and when you write
a program in SPSS, you use SPSS syntax. An SPSS program contains writ-
ten instructions about what you want SPSS to do. To get SPSS to carry out
your instructions, you need to submit the syntax to SPSS so it can be exe-
cuted or run. Usually, running a program produces some kind of output,
possibly with warnings or error messages if there were problems with the
data or program. The programming process typically looks something like
the following:

1. Write down what you want the program to do.

2. Write the SPSS syntax.

3. Submit the syntax.

4. Look at the output and find the errors.

5. Correct the syntax.

6. Resubmit the syntax.

7. Look at the output and find the errors.

8. Correct the syntax.

And so on! Step 1 is the most important: writing down what you want
the program to do, in a series of logical steps. An example is given below:

Check the new data file for errors. This includes the following steps:
a. See how many cases are in the file.
b. See how much missing data there is.
c. See whether the data values are within acceptable ranges.
d. See whether the expected skip patterns exist.

An Introduction to Computer Programming With SPSS

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 20

A simple outline like this can be expanded to include more detail. For
instance, it might specify the acceptable data ranges for sets of variables.
You are much more likely to write a successful computer program if you
have a clear idea what it should accomplish.

Programmers often speak of working for a “client,” who is the person
who wants the program written or the analysis performed. For instance,
if you are a contractor, the client is the person or organization who hired
you to perform a particular job. If you work in a company, the client may
be your boss. If you are a student, the client may be your professor. Often,
the client is yourself, in which case you have two tasks: Specify what the
program needs to accomplish, and write the code to accomplish it. The
process of specifying what needs to be done (“Check the new data file for
errors” in the above example), including the necessary intermediate steps
(points a–d above, the last three of which require further elaboration),
can be useful for both client and programmer. This process increases the
probability that the client will be happy with the final product and pro-
tects the programmer against the whims of clients who keep changing
their minds.

TYPOGRAPHICAL CONVENTIONS USED IN THIS BOOK

Syntax will be presented in capital letters. Blocks of syntax is presented
in shaded boxes. Syntax with the main text is presented in boldface type.
Variable names, file names, and aliases appearing in the main text (i.e., not
as part of a command) will be presented in lowercase type and italicized (e.g.,
var1 and file3). SPSS error and warning messages will also be italicized.
When incorrect syntax is presented for demonstration purposes, it will be
followed by the symbol [WRONG].

HOW CODE AND OUTPUT ARE PRESENTED IN THIS BOOK

This book emphasizes the commonalities of SPSS syntax across many
operating systems. For this reason, system-specific information is avoided as
much as possible. When system-specific information is necessary, it is iden-
tified as such and is presented as information for both the Windows and
Macintosh operating systems. Output is presented in simple tables because
the purpose is to show the logical result of syntax, not to reproduce the
appearance of the Viewer window under some particular operating system.

21An Introduction to Computer Programming

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 21

22

SOME REASONS TO USE SYNTAX

Many college courses teach SPSS exclusively through the menu system, and
this practice has created a generation of users with no experience in writ-
ing syntax. However, SPSS syntax is still widely used, and there are many
advantages to using syntax rather than relying exclusively on the menu
system. A few of the practical advantages include the following:

1. The syntax file preserves a record of the data management and
analytical tasks performed on a file. Syntax can also include informa-
tion such as when data were collected and at whose request particu-
lar procedures were performed, making the syntax file a repository of
basic information about a project.

2. Sections of syntax or entire programs can be reused or modified. For
instance, you may need to produce a standard report on a regular
basis, a task easily accomplished by running the same basic syntax
each time a report is needed. Similarly, syntax adding value labels to
one data file may be applied to another file.

3. Most syntax will run on any installation of SPSS, while the menu
system varies across versions and operating systems.

4. Syntax is an important means of communication among SPSS
users. For instance, users often exchange code written to perform a
particular procedure or solve a problem. Similarly, it is easy for one
programmer to check another’s syntax, correct the errors, and e-mail
the corrected code back to the first programmer.

5. Many common procedures, such as recoding variables and comput-
ing new variables, are accomplished more efficiently through syntax
rather than through the menu interface.

6. Some important commands, such as LIST, are available only
through syntax.

Because many SPSS users are introduced to the language while studying
at a university, it is worth noting some pedagogical advantages of using
syntax. These include the following:

1. The discipline of writing a program requires the student to think of
data management and analysis as an organized process rather than
a disconnected series of procedures.

An Introduction to Computer Programming With SPSS

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 22

2. If students produce their homework by writing syntax, the resulting
program serves as a record of how the results were produced and
makes it easier for the professor to find the cause of any errors in the
output.

3. Students often get lost when a procedure is demonstrated in class by
rapid-fire clicking through the menus, whereas if they are provided
with code, they can refer to it and modify it at their leisure.

4. Using and modifying simple syntax is an easy way to begin learning
computer programming and can be a stepping-stone to more com-
plex procedures, such as writing macros (discussed in Chapter 26).

BEGINNING TO LEARN SYNTAX

Most programmers learn to program by modifying existing code rather
than by writing entire programs from scratch. You can follow this natural
learning process by using the SPSS menu system to generate code, saving
the code in a syntax file, and modifying it. When you select and execute
commands from the SPSS menu system, SPSS generates syntax to perform
the procedures selected. You can capture this syntax in two ways: by past-
ing it into a syntax file directly from the menu system or by having it echoed
(repeated) in the journal file or Viewer (output) window and pasting it into
a syntax file. The following steps will paste syntax from the menu into a
syntax file:

1. Start SPSS and open a data file.

2. Request a procedure from the menu system.

3. Click on Paste in the dialog box.

If you have a syntax file open, the new syntax will be pasted into it; if
not, SPSS will open a new syntax file and paste the syntax into it. A syntax
file thus created can be saved through the menu system with the choices
File, Save.

Two other options for saving SPSS syntax are to have it repeated in the
output file (the file in the Viewer window) or the journal file. The former
practice is particularly recommended because it preserves a record of the
syntax immediately before the output created by it. To have syntax repeated
or echoed in the Viewer window, execute the command,

23An Introduction to Computer Programming

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 23

24

SET PRINTBACK ON.

To have syntax repeated in the journal file, execute the command,

SET JOURNAL ON.

These commands may be cancelled with the commands,

SET PRINTBACK OFF.

and

SET JOURNAL OFF.

You can see whether your system is set to echo syntax in the Viewer
window with the command,

SHOW PRINTBACK.

Oddly enough, there is no equivalent command to see whether syntax
will be echoed in the journal; the command,

SHOW JOURNAL. [WRONG]

is obsolete. The output and journal files are discussed further in Chapter 3.
Text from either file can be cut and pasted into the syntax window, using
keyboard commands or the Edit menu.

Using the menu system to generate syntax is not just for beginners.
Experienced programmers often use this system when they are using an
unfamiliar command. The syntax for statistical commands in particular
can be quite long, so generating the correct syntax through the menu
system is easier than typing it and avoids typing errors.

An Introduction to Computer Programming With SPSS

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 24

Another way to learn syntax is to copy and modify code from syntax files
written by other programmers. The complete syntax examples in this book
are intended to be used in this way: Type them into the syntax window,
run them, observe the results, then make modifications and observe the
changed results. Other sources of code include books, the SPSSX-L mailing
list, and Web sites, all of which are discussed in Chapter 27.

PROGRAMMING STYLE

Writing computer programs is a means of communication and a creative
endeavor, as well as a method to accomplish data management and analyt-
ical tasks. Therefore, programming style is partly a matter of individual
preferences. However, there are some conventions that are recommended to
the novice programmer. These include,

1. Begin each program with a few comment (nonexecuting) lines that
include the name of the program, who wrote it, when it was written
and updated, and what it does.

2. Define the primary data files immediately after these comments. Use
of the FILE HANDLE command, as discussed in Chapter 8, is a good
way to do this.

3. Write syntax in logical units, separated by blank or comment lines.

4. Use comments throughout the program to explain what the program
is doing, when and why particular decisions were made, and so on.

5. Use indentation to delineate command structure, for instance, to
clarify loops and commands that continue over several lines.

The ability to use blank lines, indentation, and so on varies from system
to system, but the basic principle of using spacing to delineate the
program’s logic can be accomplished in some manner on any system.
Documenting syntax files with comments is further discussed in Chapter 7.

25An Introduction to Computer Programming

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 25

05-Boslaugh.qxd 10/12/2004 12:15 PM Page 26

C H A P T E R 6

Programming Errors

T his chapter discusses programming errors, including the following
topics:

❍ The difference between syntax errors and logical errors

❍ The debugging process

❍ Common syntax errors

❍ Common logical errors

❍ Changing the display of error and warning messages

❍ Deciphering SPSS warning and error messages

Beginning programmers may want to read this chapter to get a basic
overview of the debugging process, even if they are not familiar with the
specific commands discussed, then return to it when they have more expe-
rience with syntax.

No one writes perfect computer programs every time, so identifying and
correcting errors is part of the programming process. Mistakes in a com-
puter program are colloquially called bugs, a usage often traced to an actual
bug (a moth) that flew into a computer relay system and caused it to fail
(FOLDOC). It is not unusual to spend more time debugging a program than
it took to write it in the first place, so the novice programmer is advised to
get used to the idea of spending a large proportion of programming time
correcting errors in existing programs.

27

06-Boslaugh.qxd 10/12/2004 12:16 PM Page 27

28

SYNTAX ERRORS AND LOGICAL ERRORS

There are two types of programming errors: syntax errors and logical errors.
Syntax errors are mistakes made in SPSS commands and are relatively easy
to find because SPSS will generate an error or warning message relating
to the error and will not execute the command. Logical errors are more
insidious because often, faulty code will execute without triggering error or
warning messages and the only sign of the error is that the output is not
what you expected. As the cliché goes, the computer does what you tell it to
do, not what you want it to do, meaning that the computer executes the
syntax you submit and unintended results are usually due to programmer
error.

THE DEBUGGING PROCESS

Writing well-organized programs makes the debugging process easier, as
will the following suggestions:

1. Be familiar with the data set before you start testing your code.

2. Look at the results of each section of code to be sure they are what
you expect: The LIST, FREQUENCIES, and CROSSTABS commands
are particularly useful in this regard. This may be facilitated by
running code on a subset of the active file, for instance, by using the
SAMPLE command (discussed in Chapter 18).

3. Test each section of code in sequence.

4. If you are really stuck, invent a small data set with values designed
to test a troublesome section of code.

COMMON SPSS SYNTAX ERRORS

A relatively small number of mistakes account for the majority of syntax
errors. Over time, programmers develop an awareness of what mistakes they
are most likely to commit. For instance, I am sure that at least half my pro-
gramming errors are due to typing mistakes. For programmers just starting
out, I offer this unscientific list of seven common SPSS syntax errors:

An Introduction to Computer Programming With SPSS

06-Boslaugh.qxd 10/12/2004 12:16 PM Page 28

1. Typing mistakes. This includes substituting capital O for the number
0, lowercase l for the numeral 1, and misspellings such as va1 for
var1 and FRQ for FREQ.

2. Unclosed comments. Comments that are opened with an asterisk (*)
must be closed with a period (.). If the period is omitted, SPSS consid-
ers everything in the syntax file from the * to the first period follow-
ing to be a comment. For instance, in the following syntax, the first
and second lines will both be read as comments, and the third line
will not run because no data file has been opened.

* Frequencies on the baseline file [WRONG]
GET FILE = baseline.
FREQ VAR = ALL.

3. Unbalanced parentheses. As a general rule, parentheses must be used
in pairs. Unbalanced or unclosed parentheses mean that half of the pair
is missing, as in the code below:

COMPUTE var5 = ((var1 + var2) / (var3
+ var4). [WRONG]

4. Unbalanced quotes. Like parentheses, apostrophes and quotation
marks (both referred to informally as “quotes”) should generally be
used in pairs. If the closing quote is omitted, SPSS does not know
when to end the quote string. For instance, SPSS will assign the
text string ‘blue 3’ as the label for value 2, because of the missing
apostrophe after blue:

VAL LABELS var1 1 ‘red’ 2 ‘blue 3 ‘yellow’.[WRONG]

5. Failing to declare a string variable before using it. String variables cannot
be created in commands such as COMPUTE. Instead, they must be
declared with the STRING command, as discussed in Chapters 19
and 21.

29Programming Errors

06-Boslaugh.qxd 10/12/2004 12:16 PM Page 29

30

6. Omitting quotation marks or apostrophes when referring to text strings.
Text strings must be enclosed in apostrophes or quotations marks or
they will not be recognized as text. If string1 is a string variable, the
first syntax below is incorrect and the second is correct:

COMPUTE string1 = May. [WRONG]
COMPUTE string1 = “May”.

7. Unintentionally deleting data with the SELECT command. By default,
the SELECT command’s effect is permanent, and cases not selected
are deleted from the active file. If permanent selection is not
intended, precede the SELECT with the TEMPORARY command.
The difference is illustrated below:

* This is a temporary selection.
TEMPORARY.
SELECT IF (gender = ‘M’).
FREQUENCIES VARIABLES = ALL.

* This is a permanent selection.
SELECT IF (gender = ‘M’).
FREQUENCIES VARIABLES = ALL.

In the first example, the complete active file will be available after the
FREQUENCIES command is executed, because the TEMPORARY com-
mand limits the effect of a selection to the first procedure executed after the
selection. In the second example, only the cases with the value ‘M’ for
gender will be available for further analysis, because cases with other
values were deleted from the active file by the SELECT command.

FINDING LOGICAL ERRORS

A logical error is a mistake made in translating your intent for the program
into the syntax you submit to the computer. Logical errors are more difficult
to identify than syntax errors because, often, syntax containing logical
errors will run and the errors become evident only when the results of that
syntax (i.e., the output) are examined. Therefore, once your syntax runs

An Introduction to Computer Programming With SPSS

06-Boslaugh.qxd 10/12/2004 12:16 PM Page 30

without generating warning or error messages, you need to examine
the output carefully to see whether it produced the results you intended.
If it didn’t, you should work through each section of syntax step by step,
checking the code and its output against your intent.

CHANGING DEFAULT
ERROR AND WARNING SETTINGS

Programmers differ in how useful they find error and warning messages,
and SPSS has several settings that control whether they are displayed. You
can find out how your SPSS system is currently set with the command,

SHOW ERRORS / MXWARNS / UNDEFINED.

The setting ERRORS == LISTING (or YES or ON) means that error
messages will be shown in the output, and ERRORS == NONE (or NO or
OFF) means that they will not. MXWARNS tells you the maximum number
of warnings and errors; the default setting is 10. UNDEFINED == WARN
means that warning messages for undefined data will be displayed, while
UNDEFINED == NOWARN means they will not.

These settings can be changed with the SET command. For instance, the
following code sets the error listing “on”, increases the maximum number
of error and warning messages displayed to 100, and turns on the display
of warning messages for undefined data:

SET ERRORS ON / MXWARNS = 100 / UNDEFINED = WARN.

DECIPHERING SPSS ERROR AND WARNING MESSAGES

The beginning programmer may be frustrated by the error and warning
messages displayed by SPSS. These messages are sometimes more useful in
helping you find the general location of an error than in identifying what is
wrong with the syntax. This can be useful information, however, because it
tells you which lines to examine. It is also helpful to scan the lines just pre-
ceding the line that was flagged by SPSS as containing an error. Often, a
mistake in a previous line will cause a subsequent line to fail to execute.

31Programming Errors

06-Boslaugh.qxd 10/12/2004 12:16 PM Page 31

06-Boslaugh.qxd 10/12/2004 12:16 PM Page 32

C H A P T E R 7

Documenting Syntax,
Data, and Output Files

This chapter discusses ways to document SPSS syntax, data, and output
files, including

❍ Using comments to document syntax

❍ Using comments to keep syntax from executing

❍ Documenting a data file

❍ Echoing text in the output file

❍ Using titles and subtitles

USING COMMENTS IN SPSS PROGRAMS

An SPSS syntax file should be planned as a document to communicate with
human beings as well as computers. One way to enhance the information
value of a program is through the liberal use of comments, or nonexecuting
lines, throughout the program. These comments can include notes about the
program itself, the data sets used, the purpose of the analysis, and what each
part of the program does. Such documentation serves at least three purposes:

1. It creates an archive of information about the project.

2. It explains the logic behind the syntax.

3. It encourages the programmer to plan the analysis as a series of
logical steps.

33

07-Boslaugh.qxd 10/12/2004 12:17 PM Page 33

34

One way to include comments in a syntax file is as separate lines
preceded by an asterisk (*) and closed by the command terminator, which is
usually a period (.). Comments may be continued over several lines. If a
period is included within a comment, for instance, when specifying a file
name, it must be enclosed in quotes so SPSS does not interpret it as a com-
mand terminator. The asterisk style of commenting is demonstrated in the
following syntax:

* This program ‘ch08.sps’ includes the syntax for
chapter 8 of the SPSS book.

* It was written by Sarah Boslaugh; begun 08-10-2003;
last updated 3-26-2004.

Comments may also be included on command lines, in which case the
comment is set between the symbols /* and */. The command terminator (.)
comes after the comment, as in the following example:

IF hsgrad = 1 AND sex = 1 fhs = 1 /*Female High
School graduates*/.

IF hsgrad = 1 AND sex = 2 mhs = 1 /*Male High School
graduates*/.

USING COMMENTS TO PREVENT CODE FROM EXECUTING

A common use of commenting is to keep one or more lines of syntax from
executing. You can temporarily “disable” syntax by putting an asterisk at
the beginning of each command, turning it into a comment. When you
want the code to run, delete the asterisks. This system of “commenting out”
lines of code allows you to preserve a record of the syntax previously used
on a data file but differentiates it from the syntax currently used.

DOCUMENTING A DATA FILE

To attach descriptive text to an SPSS system file, use the DOCUMENT
command. The document thus created becomes part of the dictionary
of the file, and new documentation can be appended at any time. The
DOCUMENT command is demonstrated below:

An Introduction to Computer Programming With SPSS

07-Boslaugh.qxd 10/12/2004 12:17 PM Page 34

DOCUMENT This file contains the data collected in the
baseline phase of the School Safety Project. Data
collection took place from Sept. 1, 2001, to May 1,
2002. Data cleaning was completed on August 30, 2002.

Periods do not operate as command terminators within the DOCU-
MENT command. Each document is saved with its date of creation, and all
documents associated with a data file may be seen, along with their dates of
creation, with the command,

DISPLAY DOCUMENTS.

The command,

DROP DOCUMENTS.

will delete all documents currently attached to the file but will not prevent
new documents from being attached to it.

ECHOING TEXT IN THE OUTPUT FILE

Normally, it is a good practice to have syntax repeated in the output file, as
discussed in Chapter 5. However, if you choose not to use this option, you
can still document your output using the ECHO command, which will
cause the text following it to appear in the output file. The text must be
enclosed in apostrophes or quotation marks, as in the following example:

ECHO “Descriptive statistics on the baseline file”.

The phrase Descriptive statistics on the baseline file will appear in
the output file. The ECHO command is not documented in the SPSS online
help systems or in the SPSS System 11.0 Syntax Reference Guide (SPSS Inc.,
2001). However, it does work on SPSS System 11.0 for Macintosh and
System 12.0 for Windows, so I recommend experimenting with it.

35Documenting Syntax, Data, and Document Files

07-Boslaugh.qxd 10/12/2004 12:17 PM Page 35

36

USING TITLES AND SUBTITLES

Using titles and subtitles is another way to document SPSS output. To
see titles and subtitles, you must have the headers turned “on” by the
command,

SET HEADER = YES.

A title may be as long as 60 characters and will appear on the first line of
each page of output, justified to the left margin. If apostrophes are used in
the title, the entire title must be enclosed in quotation marks, and if quota-
tion marks are used in the title, it must be enclosed in apostrophes. An
example of a basic TITLE command is,

TITLE Descriptive stats for the School Safety baseline
data.

Each new title command overrides the previous title. To cancel a title
(i.e., prevent a previously declared title from appearing), use the blank title
command,

TITLE.

A subtitle appears on the second line of output, justified to the left mar-
gin. The same basic rules apply as for titles. The following syntax specifies a
subtitle,

SUBTITLE For APHA presentation.

Subtitles are canceled by the blank subtitle command,

SUBTITLE.

An Introduction to Computer Programming With SPSS

07-Boslaugh.qxd 10/12/2004 12:17 PM Page 36

P a r t I I I

Reading and Writing
Data Files in SPSS

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 37

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 38

C H A P T E R 8

Reading Raw
Data in SPSS

T his chapter discusses ways to read raw data in SPSS. Topics include

❍ Reading inline and external data

❍ Reading data in the FIXED, FREE, and LIST formats

❍ Specifying the delimiter symbol

❍ Reading aggregated data

❍ Reading data with multiple lines per case

❍ Using FORTRAN-like variable specifications

❍ Using shortcuts for declaring variable formats

❍ Specifying decimal values

The most common types of data used in SPSS are raw data, SPSS system
and portable files, and data files produced by other programs, such as EXCEL
or SAS. This chapter discusses reading raw data. Reading SPSS system and
portable files is discussed in Chapter 9, and reading files produced by other
programs in Chapter 10.

The simplest way to store data electronically, particularly if they may be
shared among a number of different software packages, is as a raw data file,
also known as a text or ASCII file. The term raw data refers to the fact that
the data haven’t been formatted for use with any particular program, so
they are still in a raw or unprocessed state. The term text file refers to the fact

39

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 39

40

that such files can be created and read by text processors. ASCII is an
acronym for the American Standard Code for Information Interchange, a
standard developed in the 1960s to provide a common code to expedite file
sharing.

SPSS uses the DATA LIST command to open raw data files. This com-
mand has two main purposes: to specify the names, types, and locations of
variables within the file, also known as specifying the file layout; and if an
external file is used, to identify its location.

READING INLINE DATA

Data included in a syntax file are known as inline data. The commands
BEGIN DATA and END DATA are used to read inline data, as demonstrated
in the following example:

DATA LIST / ID 1-3 (A) Score1 5-7 Score2 9-11.
BEGIN DATA
001 100 99
002 86 88
003 93 89
END DATA.
LIST VAR = ALL.

The DATA LIST command identifies the file layout for the data that
follow, using the FIXED format (discussed below), in which variables are
identified by column location. The data are presented between the
BEGIN DATA and END DATA commands. Note that there is no period
following BEGIN DATA. Table 8.1 presents the output from the LIST
command.

Reading and Writing Data Files in SPSS

ID SCORE1 SCORE2

001 100 99

002 99 88

003 93 89

Table 8.1 Data Read With FIXED Format

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 40

READING EXTERNAL DATA

Large data sets are usually stored in separate electronic files known as
external files. An external file may be referred to by its location or pathname,
or through an alias linked to its location. The correct way to specify file loca-
tion differs according to the operating system in use and other local factors,
so the programmer is advised to ask someone at his or her worksite or
school how to do it. Examples of pathnames in this book are for the
Windows and Macintosh systems because they are used by many SPSS
programmers.

The Windows and Macintosh operating systems both use a hierarchical
file structure made up of a series of folders, which may contain other folders
or files. The pathname, also known as the absolute pathname, specifies the
complete location of a file. A Windows pathname separates elements with
the backslash (\), for instance,

C:\Documents and Settings\User 01\Desktop\Time Series\
data1.sav.

A Macintosh pathname separates elements with the colon, for instance,

Macintosh HD:Users:Desktop:Sarah:TimeSeries:data1.sav.

It is possible to refer to a file by its pathname within SPSS syntax. For
instance, the following syntax will open the data file stored at the specified
location:

GET FILE = ‘C:\Documents and Settings\Time Series\
data1.sav’.

However, it is more convenient to associate an alias or name with the file
location and use it to refer to the file. This is done with the FILE HANDLE
command, as illustrated below:

FILE HANDLE ts1 name = ‘C:\Documents and Settings\
Time Series\data1.sav’.

GET FILE = ts1.

41Reading Raw Data in SPSS

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 41

42

The FILE HANDLE command associates the alias ts1 with the data file
stored at C:\Documents and Settings\Time Series\data1.sav, and the
GET FILE command uses the alias to open that file. An alias chosen by
the programmer need be consistent only within a given program (i.e., it is
not permanently attached to any file location). The rules for SPSS variable
names (discussed in Chapter 19) apply to aliases, including the following:

1. They can be no longer than eight characters.

2. They must begin with a letter or one of the symbols $, #, or @.

3. They may contain only letters, numerals, periods, the underscore,
and the symbols $, #, and @.

4. They may not contain embedded blanks.

Using file aliases has several advantages:

1. They are shorter and easier to type, and therefore less prone to
typing errors.

2. If a file location changes or if you are adapting syntax written by
someone else, you need change the pathnames only once, in the
FILE HANDLE commands. The aliases do not need to be changed.

THE FIXED, FREE, AND LIST FORMATS

SPSS offers three ways to specify file layout in DATA LIST: FIXED, FREE,
and LIST. In the FIXED format, which is the default, each variable is iden-
tified by column location. This format conceptualizes the data file as a rec-
tangular grid, in which rows contain cases and groups of columns contain
variables. Consider the tiny rectangular data set presented in Table 8.2. This
file stores information about students and their test scores. Each row stores
the information for one case, which in this example is one student. Variables
are defined according to their column locations: The variable id appears in

Reading and Writing Data Files in SPSS

ID EXAM1 EXAM2 EXAM3

1 0 1 9 7 8 5 1 0 0

1 0 2 9 5 9 7 8 9

Table 8.2 Rectangular Data Set

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 42

ID EXAM1 EXAM2 EXAM3

101 97 85 100

102 95 97 89

Columns 1 through 4, the variable exam1 in Columns 5 through 7, the
variable exam2 in Columns 8 through 10, and the variable exam3 in
Columns 11 through 13. The first case has the id number 101 and grades
of 97, 85, and 100 on the three exams.

We could read this data into SPSS with the following syntax:

DATA LIST / id 1-4 (A) exam1 5-7 exam2 8-10 exam3 11-13.
BEGIN DATA
101 97 85 100
102 95 97 89
END DATA.
LIST VAR = ALL.

Results from the LIST command are presented in Table 8.3.

43Reading Raw Data in SPSS

There are several points to remember about the FIXED format:

1. Alignment within a field is not critical for numeric variables. For
instance, the value for exam1 for the first case above could be entered
anywhere within Columns 5 through 7 and would still be recognized
as the value 97.

2. Alignment within a field is critical for string variables. The value
for id for the first case above is entered in Columns 2 through 4,
so it is stored with one leading blank, as “101”. If it had been
entered in Columns 1 through 3, it would have been stored as
“101” with one trailing blank, and would be considered a different
value by SPSS.

3. When a format is specified, only the name of the format is used, not
the width of the variable. In this example, we identified the alpha-
numeric format for id with the keyword (A) but did not include
the length (4), because that information is supplied by the column
specification (1–4).

Table 8.3 Rectangular Data Set (Table 8.2) Read With
FIXED Format

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 43

Several important points about the FREE format:

1. Data may be entered so multiple cases appear on one line, or a case
may be spread over multiple lines.

44

4. Blank lines between the BEGIN DATA and END DATA commands
will be interpreted as a case with missing values on all variables.

5. Blank numeric fields will automatically be coded as missing.

6. Not all variables have to be defined, and they don’t have to be defined
in the order in which they appear in the file.

A second way to read raw data is with the FREE format, also known as
reading freefield data. In this format, you do not specify the column locations
of variables, but each variable must be separated by a delimiter, such as a
blank space or a comma. The syntax uses the FREE format to read the same
data set read above in the FIXED example:

DATA LIST FREE / id (A4) exam1 exam2 exam3.
BEGIN DATA
101 97 85 100
102 95 97 89
END DATA.
LIST VAR = ALL.

In the FREE format, SPSS reads the characters up to the first delimiter as
the first variable, the characters up to the second delimiter as the second
variable, and so on. This example uses blank spaces and line endings as
delimiters. If no formats are specified, SPSS assumes all variables are
numeric and assigns them the default format, in this case F8.2. This is
evident in Table 8.4, which presents the output produced by the LIST
command. It is identical to Table 8.3 except for the trailing zeros in exam1,
exam2, and exam3.

Reading and Writing Data Files in SPSS

ID EXAM1 EXAM2 EXAM3

101 97.00 85.00 100.00

102 95.00 97.00 89.00

Table 8.4 Data Read With FREE Format

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 44

2. Because the FREE format defines variables by sequence rather than
by column location, all variables must be defined in the order in
which they appear in the file.

3. If a format is specified, it must include both the format name and
variable width, as in the (A4) format for id in the above example.

4. If the blank space is used as a delimiter, it cannot also be used to iden-
tify a missing value.

5. If the blank space is used as a delimiter, it doesn’t matter how many
appear in a row. Any number of blank spaces between a pair of vari-
ables constitutes a single delimiter.

6. If a blank space or a comma is used as a delimiter, values that con-
tain either of those characters must be enclosed in quotation marks
or apostrophes.

The sixth point is illustrated below. The DATA LIST command defines a
data set with one variable, name, which is alphanumeric and has the length
20, as specified by (A20):

DATA LIST FREE / name (A20).
BEGIN DATA
“Abraham Lincoln” George Washington ‘Thomas Jefferson’
END DATA.
LIST VAR = ALL.

Output from the LIST command is presented in Table 8.5. The first and
third cases were read correctly, because they were enclosed by quotation
marks and apostrophes, respectively. The second case was read incorrectly:
SPSS interpreted the blank between “George” and “Washington” as a
delimiter, so “George” was read as the value of name for the second case and
“Washington” as the value of name for the third case.

45Reading Raw Data in SPSS

NAME

Abraham Lincoln

George

Washington

Thomas Jefferson

Table 8.5 Alphanumeric Variables With Blanks

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 45

46

The LIST format is similar to the FREE format: You do not specify
column locations for variables, and each data value must be separated by a
delimiter. However, in the LIST format, each case must begin on a new line
and may not be longer than one line. The main advantage to using the LIST
format is that it limits the damage done by data entry errors. If a data value
is omitted in FREE format, every value following the omitted value will be
read incorrectly, while in LIST format, only values following on the same
line will be read incorrectly.

SPECIFYING THE DELIMITER SYMBOL

It is possible to specify a character other than a blank or comma as a delim-
iter. The delimiter character is named after the FREE or LIST specification,
and any delimiter other than the TAB keyword must be enclosed in quota-
tion marks and parentheses. The syntax below defines the dash (-) as the
delimiter, then reads a small data set using it:

DATA LIST FREE (“-”) / v1.
BEGIN DATA
111-22-3-4444—66
END DATA.
FORMAT v1 (F4.0).
LIST VAR = ALL.

Output from the LIST command is displayed in Table 8.6. When a
character other than a blank space is used as a delimiter, two consecutive
delimiters signify a missing value. In this example, the fifth case was

Reading and Writing Data Files in SPSS

V1

111
22
3

4444
·
66

Table 8.6 Data Read With the Hyphen as the Delimiter

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 46

assigned the system-missing value for v1 because there were two consecutive
dashes between “4444” and “66.”

READING AGGREGATED DATA WITH DATA LIST

Sometimes data are available only in aggregated form. You can use data
in this form for some analyses by using the technique described below.
Suppose you have access to the data in Table 8.7, which classify people by
gender and whether or not they were referred for counseling. You can
read this data into SPSS with the following syntax and analyze them
using statistics appropriate to a 2 × 2 table. In this example, we request
the χ2 statistic:

DATA LIST FREE / row column freq.
BEGIN DATA
1 1 84 1 2 118
2 1 97 2 2 116
END DATA.
WEIGHT BY freq.
VARIABLE LABELS row ‘Referral status’

/ column ‘Gender’.
VALUE LABELS column 1 ‘Male’ 2 ‘Female’

/ row 1 ‘Referred’ 2 ‘Not referred’.
CROSSTABS row BY column / STATS = CHISQ.

47Reading Raw Data in SPSS

Male Female

Referred 84 118

Not Referred 97 116

Each cell in the table is identified by its row and column location, so the
value 84 is in Row 1, Column 1, and the value 118 is in Row 1, Column 2.
The command WEIGHT BY freq assigns the value of the freq variable
(which is the value from the table) to each cell. The VARIABLE LABELS
and VALUE LABELS commands supply labels to be used in the output, as
discussed in Chapter 20. Output from the CROSSTABS command is
presented in Tables 8.8 and 8.9:

Table 8.7 Aggregated Data

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 47

48

READING DATA WITH MULTIPLE RECORDS PER CASE

If a data file has more than one line or record per case, it must be read with
the FIXED format and the DATA LIST statement must specify the number
of records per case and which record contains each variable that is defined.
The following code specifies four records per case (RECORDS == 4) and that
the variables defined are on the second and fourth records (/ 2 and / 4).

DATA LIST RECORDS = 4
/ 2 race 12 gender 14 / 4 hsgrad 3.

BEGIN DATA

Reading and Writing Data Files in SPSS

COLUMN Gender

1.00 Male 2.00 Female Total

ROW Referral 1.00 Referred 84 118 202
Status 2.00 Not referred 97 116 213

Total 181 234 415

Table 8.8 Crosstabulation Table Created From Aggregated Data

ROW Referral Status * COLUMN Gender Cross-Tabulation

Table 8.9 Chi-Square Tests Performed on Aggregated Data

Asymp. Sig. Exact Sig. Exact Sig.
Chi-Square Tests Value df (2-sided) (2-sided) (1-sided)

Pearson Chi-Square .660 1 .417

Continuity .509 1 .476
Correction

Likelihood Ratio .660 1 .417

Fisher’s Exact Test .430 .238

Linear-by-Linear .658 1 .417
Association

N of Valid Cases 415

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 48

USING FORTRAN-LIKE VARIABLE SPECIFICATIONS

The FORTRAN language uses an efficient method of specifying variable
formats that is often used in other languages, including SPSS. Even if you
do not use this method, you need to know how to interpret it in programs
written by others. A FORTRAN-like format specification includes three
elements: the type of variable, its width, and (for numeric variables) the
number of decimal places. For instance, the format F3.1 refers to a
numeric variable of width 3, with one decimal place. Two other important
FORTRAN specifications are Tx for “tab (skip) to the xth column” and xX
for “skip x places.” For instance, T10 means “tab to the 10th column,” and
5X means “skip 5 columns from the current position.” FORTRAN-like data
specifications are demonstrated in the following syntax:

000000000
0000000000010200
00000
0010000
END DATA.
LIST VAR = ALL.

This example has been clarified by including zeros in the columns that
are not defined by the DATA LIST command: Those spaces could just as
well be occupied by other data values or blanks. It is also possible to specify
record location with slashes: Each slash not followed by variable specifica-
tions means to skip one line. This is demonstrated in the DATA LIST com-
mand below, which may be substituted into the program presented above:

DATA LIST RECORDS = 4
/ / 2 race 12 gender 14 / / 4 hsgrad 3.

Either syntax will produce the output presented in Table 8.10.

49Reading Raw Data in SPSS

Table 8.10 Single Record Created From File With Multiple Records

RACE GENDER HSGRAD

1 2 1

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 49

TWO SHORTCUTS FOR DECLARING
VARIABLES WITH IDENTICAL FORMATS

Often, a data file includes contiguous variables that have the same format.
You can use the TO keyword to refer to them in DATA LIST and other
procedures:

DATA LIST / ID 1-2 (A) resp1 TO resp6 3-8.
BEGIN DATA
01110011
02101101

50

DATA LIST / id grade1 grade2 grade3
(T2, A3,3(1X,F3.0)).
BEGIN DATA
0001 97 98 99
0002 87 88 89
END DATA.
LIST VAR = ALL.

The variables names are listed first (id grade1 grade2 grade3),
followed by the format specifications, in parentheses (T1, A3,3(1X,F3.0)).
This syntax directs the computer to do the following:

1. Tab over one column, that is, from the first to the second column (T1).

2. Read the next three columns as a string variable (A3).

3. Read three variables by skipping one column before each variable,
then read the next three columns as a numeric variable with no dec-
imals (3(1X,F3.0)).

Output from the LIST command is presented in Table 8.11.

Reading and Writing Data Files in SPSS

Table 8.11 Data Read With FORTRAN-Like Variable Specifications

ID GRADE1 GRADE2 GRADE3

001 97 98 99

002 87 88 89

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 50

A second way to declare a series of consecutive variables allows you to
specify their format. This method is demonstrated in the syntax below:

DATA LIST / a1 TO a3 (3A2) n1 n2 (2F2.1).
BEGIN DATA
aabbcc1122
ddeeff3344
END DATA.
LIST VAR = ALL.

The 3 in (3A2) and the 2 in (2F2.1) are multipliers: They instruct SPSS to
create three string variables of length 2 and two numeric variables of length 2,
with one decimal place. Output from the LIST is presented in Table 8.13.

03100110
END DATA.
LIST VAR = ALL.

SPSS will allocate the columns specified (3–8 in this case) evenly to the
number of variables specified (6, in this case), so resp1 to resp6 are read as
numeric variables of length 1. Output from the LIST command is presented
in Table 8.12.

51Reading Raw Data in SPSS

Table 8.12 Data Read Using the var1 to varx Convention

ID RESP1 RESP2 RESP3 RESP4 RESP5 RESP6

01 1 1 0 0 1 1

02 1 0 1 1 0 1

03 1 0 0 1 1 0

Table 8.13 Data Read Using Multipliers With Formats

A1 A2 A3 N1 N2

aa bb cc 1.1 2.2

dd ee ff 3.3 4.4

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 51

The variable gpa appears with trailing zeros because it was read
with the default F8.2 format. Including variable formats in the DATA
LIST command will prevent this, as is demonstrated in the following
syntax:

DATA LIST FREE / id (A3) gpa (F3.1).
BEGIN DATA
101 3.4
102 3.1
103 3.8
END DATA.
LIST VAR = ALL.

The output from the LIST command is presented in Table 8.15.

52

SPECIFYING DECIMAL VALUES IN DATA

There are several options for specifying decimal points in a data file. The
simplest is to include them in the data itself, as in the following syntax:

DATA LIST FREE / id (A3) gpa.
BEGIN DATA
101 3.4
102 3.1
103 3.8
END DATA.
LIST VAR = ALL.

Output from the LIST command is displayed in Table 8.14.

Reading and Writing Data Files in SPSS

Table 8.14 Data Read With Decimals Typed Into the Data Set

ID GPA

101 3.40

102 3.10

103 3.80

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 52

A third approach is to use the FIXED format and include the number of
decimal places in parentheses, preceded by a comma, as in the following
example:

DATA LIST / id 1-3 (A) gpa 5-6 (,1).
BEGIN DATA
101 34
102 31
103 38
END DATA.
LIST VAR = ALL.

The output from the LIST command is presented in Table 8.16.

53Reading Raw Data in SPSS

Table 8.15 Data Read With Decimals Using the F3.1 Format

ID GPA

101 3.4

102 3.1

103 3.8

Table 8.16 Data Read With Decimals Using the (,1) Specification

ID GPA

101 3.4

102 3.1

103 3.8

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 53

08-Boslaugh.qxd 10/12/2004 3:52 PM Page 54

C H A P T E R 9

Reading SPSS System
and Portable Files

This chapter discusses SPSS system and portable files, which are data files
formatted specifically for use with SPSS. Topics covered include

❍ Opening system and portable files

❍ Renaming, dropping, and reordering variables when opening a file

An SPSS system file is a binary file created by SPSS that contains data
and metadata, or information about the data. Metadata is sometimes
referred to as the data dictionary: It includes information about the vari-
ables in the file, such as their names, locations, formats, missing-value
indicators, and labels. SPSS system files are optimized for efficient process-
ing in SPSS and are the most common way to store data to be analyzed in
SPSS. System files use the .sav extension. Saving data as a system file is
discussed in Chapter 12.

Sometimes, a system file saved in SPSS running on one operating system
cannot be read by SPSS running on another operating system. SPSS
portable files are character files used to transport data in this situation.
Portable files use the .por extension and, like system files, contain both data
and metadata. Saving data as a portable file is discussed in Chapter 12.

READING AN SPSS SYSTEM FILE

The GET FILE command is used to read an SPSS system file. This is demon-
strated in the following syntax:

55

09-Boslaugh.qxd 10/12/2004 12:51 PM Page 55

56

GET FILE = ‘C:\Documents and Settings\User 01\Time
Series\data1.sav’.

or

GET FILE = data1.

In the first example, the file is identified by its complete pathname, so the
actual location where the file is stored is specified in the GET FILE com-
mand. When a pathname is specified, it must be enclosed in apostrophes or
quotation marks. The second example uses an alias, which is a name linked
to a file location through the FILE HANDLE command. Both means of
identifying file location are discussed further in Chapter 8.

READING AN SPSS PORTABLE FILE

Portable files are read with the IMPORT command, as in the following
example:

IMPORT FILE = base.

To open a portable file formatted for magnetic tape, add the TYPE ==
TAPE subcommand as follows:

IMPORT TYPE = TAPE / FILE = tapefile.

Details about transferring files through magnetic tape are discussed in
the SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001), in the chapter on
the EXPORT command.

DROPPING, REORDERING, AND RENAMING VARIABLES

By default, a GET FILE or IMPORT FILE command reads all the variables
from a system file into the active file, in the order in which they appear in

Reading and Writing Data Files in SPSS

09-Boslaugh.qxd 10/12/2004 12:51 PM Page 56

the original file and with the same names. A subset of variables may be
selected with the DROP and KEEP subcommands. In the command,

GET FILE = base1
/ DROP = var1 var2 var3.

all variables from the file base1 are read into the active file except var1, var2,
and var3. In the command,

GET FILE = base1
/ KEEP = var4 var5 var6 var7.

only the variables var4, var5, var6, and var7 are read into the active file. The
KEEP subcommand may also be used to reorder variables. For instance,
if the file data1 contained the variables v1, v2, v3, and v4, the following
syntax would read them into the active file in reverse order:

GET FILE = data1
/ KEEP = v4 v3 v2 v1.

Variables may be renamed within the GET FILE or IMPORT FILE
command: The new names will apply to the active file, while names in the
stored file will be unchanged. This is demonstrated in the syntax below:

GET FILE = base1
/ RENAME age = age1 grade = grade1.

The MAP subcommand produces a table of the variables in the active file
and the corresponding variables in the system file. This table is particularly
useful when you are renaming variables. The following syntax renames two
variables and requests a variable table:

GET FILE = base1
/ RENAME age = age1 grade = grade1
/ MAP.

57Reading SPSS System and Portable Files

09-Boslaugh.qxd 10/12/2004 12:51 PM Page 57

09-Boslaugh.qxd 10/12/2004 12:51 PM Page 58

C H A P T E R 1 0

Reading Data
Files Created
by Other Programs

This chapter discusses how to read data files in SPSS that were created by
other programs. Topics include

❍ Reading files created in Microsoft Excel

❍ Using GET TRANSLATE to read other types of files

❍ Reading data from database programs

❍ Reading SAS data files

SPSS can open data files created in many common spreadsheet, data-
base, and statistical applications. When SPSS does not have specific proce-
dures to translate a data file from a particular program, the file can be saved
as text data (discussed in Chapter 8) or as a tab-delimited file (opened with
the GET TRANSLATE command, as discussed below), both of which can
be read by SPSS.

READING MICROSOFT EXCEL FILES

Microsoft Excel organizes data in individual spreadsheets, which are called
worksheets in the Excel system. Later versions of Excel (5.0 and higher)
allow multiple worksheets to be organized into workbooks. Spreadsheets

59

10-Boslaugh.qxd 10/12/2004 12:52 PM Page 59

60

arrange data in a rectangular grid similar to that in the SPSS Data Editor,
but they differ in several ways:

1. Row and column labels in Excel are included within the spreadsheet.

2. Often, cells within a spreadsheet are used for titles or other text.

SPSS can read column labels as variable names and incorporate them
into the data dictionary. To avoid reading other nondata elements as part of
a data file, there are two solutions:

1. Delete the nondata elements from the spreadsheet before bringing it
into SPSS.

2. Specify the cells that contain data, using the RANGE subcommand,
as discussed below.

READING DATA FROM EARLIER VERSIONS OF EXCEL

Excel 4 and earlier versions saved data as individual spreadsheets. The basic
SPSS command to open an Excel spreadsheet from Version 4 or earlier is,

GET TRANSLATE FILE = exc01
/ TYPE = XLS
/ FIELDNAMES.

This syntax tells SPSS to open the Excel (TYPE == XLS) spreadsheet
exc01 (FILE == exc01) and read the first row of data as variable names
(FIELDNAMES). If you want SPSS to read only a certain range of cells on
the spreadsheet, specify this with the subcommand RANGE, for instance,

GET TRANSLATE FILE = exc01
/ TYPE = XLS
/ RANGE = F2:K25.

This RANGE command instructs SPSS to read data only in the rectan-
gular area demarcated by cells F2 and K25, using the Excel convention in
which columns are identified by letters and rows by numbers. A range of

Reading and Writing Data Files in SPSS

10-Boslaugh.qxd 10/12/2004 12:52 PM Page 60

cells is identified by the cell in the upper left of the range (F2), a colon (:),
and the cell in the lower right of the range (K25). The DROP, KEEP, and
MAP subcommands are available as with the GET FILE command, as
discussed in Chapter 9.

READING DATA FROM LATER VERSIONS OF EXCEL

SPSS uses the GET DATA command to read data from workbooks created
by Excel 5 and later versions. The procedure in this section will open a
single worksheet from a workbook. The section on reading database files
should be consulted if multiple worksheets from the same workbook will be
read. If the worksheet to be read is not the first worksheet in the workbook,
its name or position must be specified with the SHEET subcommand, as in
the following syntax:

GET DATA
/ TYPE = XLS
/ FILE = exc01
/ SHEET = 2.

This syntax will open the second worksheet in the workbook exc01.
Worksheets can also be identified by their names within the Excel work-
book, for example, SHEET == “First quarter grades.” If you want SPSS to
read only particular cells within a spreadsheet, you must specify them with
the CELLRANGE subcommand, which is analogous to the RANGES sub-
command in GET TRANSLATE. By default, the GET DATA command
reads the first line of the spreadsheet or the specified range as variable
names. To prevent this, include the subcommand READNAMES == OFF.
The following syntax reads the cells in the range F3 to P24 on the third
sheet of the workbook exc01 and does not read the first row as variable
names:

GET DATA
/ TYPE = XLS
/ FILE = exc01
/ SHEET = INDEX 3
/ CELLRANGE = RANGE ‘F3:P24’
/ READNAMES = OFF.

61Reading Data Files Created by Other Programs

10-Boslaugh.qxd 10/12/2004 12:52 PM Page 61

62

USING GET TRANSLATE TO READ OTHER TYPES OF FILES

SPSS uses GET TRANSLATE to read tab-delimited files as well as files created
in Lotus 1-2-3, dBASE, and several other programs. Details about reading
each type of data can be found in the SPSS 11.0 Syntax Reference Guide (SPSS
Inc., 2001), in the chapter on the GET TRANSLATE command. Major differ-
ences in reading files from different programs include the following:

1. The TYPE command must be changed to agree with the type of file
being opened. For instance, TYPE == DBF is used for dBASE files, and
TYPE == TAB for tab-delimited files.

2. The details of specifying cell ranges differ for each program. For
instance, Lotus 1-2-3 and Symphony files separate the outer cells of
the range by two periods, for example (B2. .G30).

3. The number of variables that can be translated into SPSS varies from
256 to 128, depending on the program that created the file (Excel,
Lotus 1-2-3, etc.).

READING DATA FROM DATABASE PROGRAMS

SPSS can read data from many database programs, using ODBC (Open
DataBase Connectivity), including Access, FoxPro, Oracle, SQL Base, and
SQL server. Either the GET DATA / TYPE == ODBC or the GET CAPTURE
commands will allow you to read data from these and other database
programs, assuming you have the appropriate drivers installed on your
computer or server. The syntax required to open database files is compli-
cated, particularly when data will be read from multiple tables. The easiest
way to acquire the correct syntax is to bring the data into SPSS using the
Database Wizard (choose File, Open Database, New Query from the
menu) and paste the generated syntax into a syntax file. Further details are
available in the SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001), in the
chapters on the GET TRANSLATE and GET CAPTURE commands.

READING SAS DATA FILES

SPSS can read files saved as SAS data sets and SAS transport files, both
referred to here as SAS files. There are two ways SAS manages files differ-
ently from SPSS:

Reading and Writing Data Files in SPSS

10-Boslaugh.qxd 10/12/2004 12:52 PM Page 62

1. SAS stores variables and value labels in separate files.

2. An SAS transport file may contain more than one data set.

The first point means that if you want to import value labels and output
formats from SAS, you must specify the location of the formats file. This is
only possible with SAS data sets; format specifications will be ignored with
SAS transport files. The second point means that you must specify which
data set in the transport file is to be opened. The basic syntax to open a SAS
file is,

GET SAS DATA = ‘sasdata’.

To open a formats file as well, use syntax similar to this:

GET SAS DATA = ‘sasdata’ / FORMATS = ‘format1’.

where format1 is the name of the file containing formats for sasdata. To
open a data set other than the first within an SAS transport file, use syntax
similar to this:

GET SAS DATA = ‘sasdata’ DSET(sas2).

where sas2 is the name of the data set to be opened from the file sasdata.
SAS variables are translated to SPSS following these rules:

1. Numeric variables are converted to the default SPSS numeric format.

2. String variables are converted to string variables of the same length.

3. Date and time variables are converted to the equivalent date and time
variables.

4. All SAS missing-value codes are converted to SPSS system-missing
values.

If SAS formats are supplied, they are converted to SPSS value labels, with
the following exceptions:

63Reading Data Files Created by Other Programs

10-Boslaugh.qxd 10/12/2004 12:52 PM Page 63

64

1. Labels over 60 characters in length are truncated.

2. Labels for string variables and noninteger numeric variables are
ignored.

3. Labels assigned to a range of values are ignored, as well as those that
use the SAS keywords LOW, HIGH, and OTHER.

Reading and Writing Data Files in SPSS

10-Boslaugh.qxd 10/12/2004 12:52 PM Page 64

C H A P T E R 1 1

Reading Complex
Data Files

This chapter discusses ways to read nonstandard or complex data files,
including the following topics:

❍ Reading mixed data files

❍ Reading grouped data files

❍ Reading nested data files

❍ Reading data in matrix format

Most data used for statistical analysis are arranged in rectangular form,
in which rows represent cases and columns represent variables. This type of
file is called a rectangular file because the data form a rectangle:

101156329123

102151683515

103273287261

This file layout is so common that other arrangements are referred to
as complex or nonstandard. This chapter explains how to read data files
arranged in several nonstandard formats.

READING MIXED DATA FILES

A mixed data file contains several types of records that include different
variables and/or different locations for the same variables. The syntax that

65

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 65

66

reads the file must identify each type of record and specify their file layouts
separately. An example is given below:

* Reading a mixed data file.
FILE TYPE MIXED RECORD = rec 1.
RECORD TYPE 1.
DATA LIST / v1 2 v2 3.
RECORD TYPE 2.
DATA LIST / v1 6 v2 7.
END FILE TYPE.
BEGIN DATA
112
2 12
112
2 12
END DATA.
LIST VAR = ALL.

The file definition statements are enclosed between the FILE TYPE and
END FILE TYPE commands. The subcommand RECORD == rec 1 on the
FILE TYPE command names the variable (rec) that will identify the record
type for each line of data and its location on each line of data (1). This vari-
able must occupy the same location on every line of data to be read and is
not named on the DATA LIST statements. Each record type is identified by
the RECORD TYPE command, followed by a DATA LIST command speci-
fying the file layout for that type of record. Output from the LIST command
is presented in Table 11.1.

Reading and Writing Data Files in SPSS

Table 11.1 Data Read From a Mixed Data File

REC V1 V2

1 1 2

2 1 2

1 1 2

2 1 2

It is necessary to specify only the record types that will be used. For instance,
if we wanted to read only records of Type 1, we could delete the lines,

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 66

RECORD TYPE 2.
DATA LIST / id 2 v1 5 v2 6.

READING GROUPED DATA FILES

In a grouped data file, data for each case are spread over multiple records or
lines of data, and some records may be missing or duplicated. SPSS builds
a single record for each case, combining all the variables from the record
types defined in the FILE TYPE GROUPED command, so variable names
should not be duplicated across different record types. Reading a grouped
file is demonstrated in the syntax below:

* Reading a grouped data file.
FILE TYPE GROUPED RECORD = rec 2 CASE = id 1.
RECORD TYPE 1.
DATA LIST / v1 3 v2 4.
RECORD TYPE 2.
DATA LIST / v3 5 v4 6.
END FILE TYPE.
BEGIN DATA
1112
12 88
12 34
2156
END DATA.
LIST VAR = id to v4.

When reading a grouped file, it is necessary to identify both case and
record type on each line of data. The subcommand RECORD == rec 2
names the variable that will identify the record type for each line of data
(rec) and its location (2). The subcommand CASE == id 1 names the
variable that will identify each case (id) and its location (1). The
RECORD TYPE and DATA LIST commands are necessary for each
record type that will be read from the file. The output from the LIST com-
mand is presented in Table 11.2. SPSS read this file correctly, despite two
irregularities:

1. The first case had three records, two of which were duplicates.

2. The second case did not have a record of Type 2.

67Reading Complex Data Files

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 67

68

A duplicate record within the grouped file type is defined as one that
has the same record and case identifiers as another record; it does not nec-
essarily have the same values for the other variables. In this file, Records 2
and 3 are duplicates. When SPSS reads a grouped filed with duplicate
records, it retains the values from the record that occurs last in the file, in
this case the values “3” and “4” for var3 and var4.

SPSS issued two warning messages after reading this data:

Warning # 517

A duplicate record has been found while building the indicated case. Each

occurrence of the record has been processed, and the last occurrence will

normally take precedence.

which pertains to the duplicate record for Case #1, and

Warning # 518

A record is missing from the indicated case. The variables defined on the

record have been set to the system-missing value.

which refers to the fact that Case #2 does not have a record of Type 2.
Neither warning will stop SPSS from processing the data, but indicates that
you should check the data carefully.

READING NESTED DATA FILES

A nested data file has a hierarchical structure. Consider a data file with one
set of records containing information about schools, a second set contain-
ing information about math classes within each school, and a third set con-
taining information about students within the math classes. In this file, the
highest-level record type is “school level” and the lowest-level record type is
“student level.” Each lower-level record can belong to only one upper-level
group: For instance, students can be in only one math class, and math

Reading and Writing Data Files in SPSS

Table 11.2 Data Read From a Grouped Data File

ID V1 V2 V3 V4

1 1 2 3 4

2 5 6 . .

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 68

classes can be in only one school. Looking down the hierarchy, the opposite
is true: Usually, a school will include multiple math classes, and math
classes will include multiple students.

When reading nested data files, SPSS creates one case for each record at
the lowest level, including information from the higher levels pertaining to
that case. The data file must be sorted so records belonging to each case are
contiguous and, within a case, are ordered from highest to lowest in the
hierarchical structure. This is demonstrated in the syntax below:

* Reading a nested file.
* Students are nested within classes.
* Classes are nested within schools.
FILE TYPE NESTED RECORD = #rec 2 CASE = id 1.
RECORD TYPE 1.
DATA LIST / name 4-25 (A).
RECORD TYPE 2.
DATA LIST / class# 4-5 grade 7-8 size 10-12.
RECORD TYPE 3.
DATA LIST / stu# 4-5 gender 7 (A) score 9-11.
END FILE TYPE.
BEGIN DATA
11 Central High
12 1 11 35
13 1 M 95
13 2 M 86
13 3 F 97
12 2 11 32
13 1 F 95
13 2 M 93
END DATA.
LIST VAR = ALL.

As with grouped data, each record in a nested file must be identified by a
record number (in this example, #rec) and a case number (in this example,
id). SPSS created five records, one for each student. Each record includes
information about the individual student, his or her class, and the school. This
is evident in the output from the LIST command, presented in Table 11.3.

READING DATA IN MATRIX FORMAT

The MATRIX DATA command reads raw matrix data and converts them to
a matrix data file that can be used as input to SPSS procedures such as
CLUSTER, FACTOR, ONEWAY, REGRESSION, and RELIABILITY. A matrix

69Reading Complex Data Files

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 69

70

data file, like a system file, includes both data and information about the data,
including variable names, variable formats, and variable and value labels.

The term matrix refers to data presented in a particular geometric for-
mat. A familiar example is that of the correlation matrix, such as that pre-
sented in Table 11.4. Each data value represents the correlation between
two variables and is positioned at the intersection of the row and column
representing those variables. The cells running diagonally from top left to
lower right are called the diagonal of the matrix (in a correlation matrix, as
in this example, cells on the diagonal will always contain the value 1.000).
The default in SPSS is to present only the lower triangle of a matrix (the
diagonal and the values below it, as in Table 11.5). Note that we have not
lost any information by presenting only the lower triangle, because the
correlations in the upper triangle duplicate those in the lower triangle.

Reading and Writing Data Files in SPSS

Table 11.3 Data Read From a Nested Data File

ID NAME CLASS# GRADE SIZE STU# GENDER SCORE

1 Central High 1 11 35 1 M 95

1 Central High 1 11 35 2 M 86

1 Central High 1 11 35 3 F 97

1 Central High 2 11 32 1 F 95

1 Central High 2 11 32 2 M 93

Table 11.5 Lower Triangle of Correlation Matrix

V1 V2 V3 V4

V1 1.000

V2 .406 1.000

V3 .476 .493 1.000

V4 .541 .317 .922 1.000

Table 11.4 Correlation Matrix

V1 V2 V3 V4

V1 1.000 .406 .476 .541

V2 .406 1.000 .493 .317

V3 .476 .493 1.000 .922

V4 .541 .317 .922 1.000

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 70

Matrix data files in SPSS can include different types of data matrices as
well as other information, such as variable means and standard deviations.
To identify the meaning of each piece of data, SPSS provides two options:

1. The variable rowtype_

2. The subcommand CONTENTS

If the first option is used, the variable rowtype_ must be included in the
data set. Rowtype_ is a string variable with an A8 format that can hold a
specified set of values that identify the type of data each record contains.
The variable rowtype_ must be named on the VARIABLES subcommand of
the MATRIX DATA command and be included in each line of data. A com-
plete list of valid values for rowtype_ is available in the MATRIX DATA
chapter of the SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001). Some of
the most common are CORR (correlation), COV (covariance), MEAN
(mean), STDEV (standard deviation), and N (count). Matrix data by default
are read in FREE format, so values should be separated by delimiters (in this
case, blanks), but column locations do not have to be specified. The follow-
ing syntax reads the mean (MEAN), standard deviation (STD), count (N),
and correlation matrix for the variables score1, score2, score3, and score4
and converts this information into a matrix data file:

* Reading a correlation matrix using rowtype_.
MATRIX DATA VARIABLES = rowtype_ score1 TO score4.
BEGIN DATA
MEAN 3.0 3.2 3.2 2.8
STD 1.3 1.6 1.3 1.2
N 50 50 50 50
CORR 1
CORR .406 1
CORR .476 .493 1
CORR .541 .317 .922 1
END DATA.
LIST VAR = ALL.

Output from the LIST is presented in Table 11.6. The first variable in
each row is rowtype_, which identifies what type of data is included on that
row. For instance, the second row contains the means for each variable, and
the last four rows contain the correlation matrix. The varname_ variable is
created by SPSS from the variable names specified with the VARIABLES
keyword of the MATRIX DATA command and is used to label the rows of

71Reading Complex Data Files

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 71

If the rowtype_ variable is not used, the CONTENTS subcommand must
be used to specify the meaning of each row of data. The keywords that may
be used with CONTENTS are the same as the values that may be used for
rowtype_. The following syntax uses the CONTENTS subcommand to read
matrix input and create a matrix data set:

* Reading a correlation matrix using / CONTENTS.
MATRIX DATA VARIABLES = score1 TO score4

/ CONTENTS = MEAN STD N CORR.
BEGIN DATA
3.0 3.2 3.2 2.8
1.3 1.6 1.3 1.2
50 50 50 50
1
.406 1
.476 .493 1
.541 .317 .922 1
END DATA.
LIST VAR = ALL.

The CONTENTS subcommand names the type of data found on each
line of the input file. CORR (meaning correlation) does not have to be
repeated four times: The fact that four variables (score1 to score4) are speci-
fied with the VARIABLES keyword tells SPSS that the correlation matrix
will have four lines. The output from the LIST command will be identical to
that presented in Table 11.6.

72

the correlation matrix. The matrix data file includes the full correlation
matrix, although only the lower triangle was supplied in the MATRIX
DATA command.

Reading and Writing Data Files in SPSS

Table 11.6 SPSS Matrix Data Set Created From Raw Matrix Data

ROWTYPE_ VARNAME_ SCORE1 SCORE2 SCORE3 SCORE4

N 50.0000 50.0000 50.0000 50.0000

MEAN 3.0000 3.2000 3.2000 2.8000

STDDEV 1.3000 1.6000 1.3000 1.2000

CORR SCORE1 1.0000 .4060 .4760 .5410

CORR SCORE2 .4060 1.0000 .4930 .3170

CORR SCORE3 .4760 .4930 1.0000 .9220

CORR SCORE4 .5410 .3170 .9220 1.0000

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 72

A matrix data file created using either method can be used as input to a
number of SPSS commands. The syntax below uses the matrix data file
created above as input to the SPSS RELIABILITY procedure:

* Computing reliability with matrix input.
RELIABILITY VARIABLES = score1 to score4

/ SCALE (scores) = score1 to score4
/ MATRIX = IN(*)
/ MODEL = ALPHA.

The subcommand / MATRIX == IN(*) tells SPSS that the data to be
analyzed are in matrix format and that they represent the current active file.
This is provided as an example of a command using matrix input. Discussion
of the RELIABILITY command is beyond the scope of this book. If you do
run this command, you will get the results presented in Table 11.7.

73Reading Complex Data Files

Table 11.7 Results of Reliability Analysis Performed With Matrix Input

RELIABILITY ANALYSIS — SCALE (SCORES)

N of Cases = 50.0

Reliability Coefficients 4 items

Alpha = .8017 Standardized item alpha = .8160

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 73

11-Boslaugh.qxd 10/12/2004 12:52 PM Page 74

C H A P T E R 1 2

Saving Data Files

This chapter discusses saving data files in different formats. Topics include

❍ Saving SPSS system and portable files

❍ Saving files for use by database or spreadsheet programs

❍ Saving text files

SPSS has the capacity to save data files (also knows as writing files) in a
number of formats. If the data will be used in SPSS, they should be saved as
a system file or portable file. If they will be used by another program, in
some cases they may be saved in a format specific to that program, and if
not, they may be saved as a text file or tab-delimited file. Information about
the different types of files is also found in Chapters 8 (text files), 9 (SPSS
system and portable files), and 10 (files created by other programs).

SAVING AN SPSS SYSTEM FILE

SPSS system files are saved with the SAVE or XSAVE commands. The SAVE
command is executed immediately, whereas XSAVE is not executed until an
EXECUTE command is reached or a subsequent command causes the data
to be read. This reduces processing time by accomplishing two tasks in one
data pass. The basic command to save a system file is,

SAVE OUTFILE = newfile.

or

XSAVE OUTFILE = newfile.

75

12-Boslaugh.qxd 10/12/2004 12:53 PM Page 75

76

Either command will save the active file, excluding scratch variables,
as a system file at the location associated with the alias newfile (aliases are
discussed in Chapter 8). The RENAME, DROP, KEEP, and MAP subcom-
mands are available with SAVE and XSAVE, as they are with the GET FILE
command discussed in Chapter 9.

SAVING AN SPSS PORTABLE DATA FILE

SPSS portable data files are used to share data among programmers using
SPSS under different operating systems when a system file cannot be shared
by the two systems. They consist of 80-character records, so longer records
must be spread over several lines. Portable data files are produced with the
EXPORT command. The subcommands DROP, KEEP, RENAME, and
MAP are available with EXPORT, as they are with the GET FILE com-
mand discussed in Chapter 9. The following command will save a portable
file named port1, which contains the variables id, var1, var2, and var3:

EXPORT OUTFILE = port1
/ KEEP = id var1 var2 var3 var3.

SAVING A DATA FILE FOR USE BY OTHER PROGRAMS

The SAVE TRANSLATE command can save the active file in formats spe-
cific to several spreadsheet and database programs, such as Microsoft Excel,
and to write data to a database through the use of ODBC (Open DataBase
Connectivity) if you have the necessary drivers. A complete list of the sup-
ported programs and the specific requirements and limitations of each can
be found in the SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001), in the
chapter on the SAVE TRANSLATE command.

The following syntax will save the active data file as an Excel spreadsheet
and translate the variable names to field names:

SAVE TRANSLATE OUTFILE = newfile
/ TYPE = XLS
/ FIELDNAMES.

The KEEP, DROP, RENAME, and MAP subcommands are available,
as they are with the GET FILE command discussed in Chapter 9. SAVE

Reading and Writing Data Files in SPSS

12-Boslaugh.qxd 10/12/2004 12:53 PM Page 76

TRANSLATE can be used to write data to a database using ODBC but
requires a detailed CONNECT subcommand. It is recommended that you
obtain the CONNECT syntax by opening the database file with the SPSS
text wizard (choose File, Open Database, New Query from the menu
system). The resulting syntax can be pasted to a syntax file and incorpo-
rated into the SAVE TRANSLATE command.

SAVE TRANSLATE can also save a data file in tab-delimited format, a
format that can be read by many other programs. The following syntax will
write a tab-delimited file with the variable names written into the first row:

SAVE TRANSLATE OUTFILE = newfile
/ TYPE = TAB
/ FIELDNAMES.

SAVING TEXT FILES

The WRITE command produces a text file that can be read by most text proces-
sors. The distinguishing characteristic of text files, also known as raw data files
or ASCII files, is that they contain only data and formats, not information such
as variable labels. The following is the basic command to write all variables in
the active file, with their current dictionary formats, to a new text file:

WRITE OUTFILE = newfile / ALL.

WRITE is a transformation command, so it will not be executed unless
followed by the EXECUTE command or another command that causes the
data file to be read. You can write a subset of variables from the active file to
the new file by naming them in place of the keyword ALL, as in the follow-
ing example:

WRITE OUTFILE = newfile / var1 var2 var3.

By default, variables are written to a text file using the write formats from
the active file and without spaces between variables, but these defaults can
be overridden by the WRITE command. The syntax below demonstrates
how to specify column locations in the new text file:

77Saving Data Files

12-Boslaugh.qxd 10/12/2004 12:53 PM Page 77

78

WRITE OUTFILE = text1 / v1 1-2 v2 4-5 v3 7-8.

Spaces can also be specified by including them as literals in the WRITE
command, as in the following example:

WRITE OUTFILE = text1 /v1 ‘ ‘ v2 ‘ ‘ v3 ‘ ‘.

The same technique can be used to write text strings into the new file:
Any text enclosed between quotation marks or apostrophes will be written
into each new record.

Formats for numeric variables can be changed in the WRITE command.
This is demonstrated in the following syntax:

WRITE OUTFILE = text1 / v1 v2 v3 (3F2.0).

The variables v1, v2, and v3 will be written to the text file text1 with the
format F2.0.

The TABLE keyword creates a table showing the names, locations, and
formats of variables in the new file. It is demonstrated in the following syntax:

WRITE OUTFILE = text TABLE / v1 v2 v3 (3F2.0).

Output from the TABLE subcommand is similar to that presented in
Table 12.1.

Reading and Writing Data Files in SPSS

Table 12.1 Variable Table Created With the WRITE OUTFILE
Command

Variable Rec Start End Format

V1 1 1 2 F2.0

V2 1 3 4 F2.0

V3 1 5 6 F2.0

12-Boslaugh.qxd 10/12/2004 12:53 PM Page 78

P a r t I V

File Manipulation and
Management in SPSS

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 79

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 80

C H A P T E R 1 3

Inspecting a Data File

This chapter discusses ways to get basic information about a data file.
Topics include

❍ Determining the number of cases in a file

❍ Determining what variables are in a file

❍ Getting information about the variables in the file

❍ Checking for duplicate cases

❍ Looking at variable values and distributions

❍ Creating standardized scores

Often, a statistician is simply presented with a data file and expected to
begin working with it. In this situation, you must familiarize yourself with
the file and its contents before beginning the analysis. You can draw on two
basic sources of information:

1. The owners of the data. This means the people in charge of the
project that produced the data and, by extension, the people who
worked on the project. They should supply you with information
such as the purpose of the project, when and how the data were
collected, and what cleaning procedures have been done on the
file. If you are fortunate, written documentation will be available,
including a codebook identifying variables and coding schemes,
and a copy of any instruments that were used to collect data.

2. The data file itself. Even if a project is copiously documented, you
have to verify that the file you received matches the documentation.
In particular, you need to check the file for obvious errors and get

81

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 81

82

a sense of the distributions of the variables and the amount and
distribution of missing data.

The processes described in Point #2 are sometimes referred to as data
screening because they represent a preliminary look at the data file. Often,
the data-screening process will discover problems such as out-of-range val-
ues or duplicate records, which will require consultation with the owners of
the data. As preparation for such discussions, it is wise to produce a basic
report on the file and its contents, including the type of information gained
from the procedures discussed in this chapter. Data screening is a complex
topic covered in greater depth in books such as Using Multivariate Statistics
(Tabachnick & Fidell, 2001).

DETERMINING THE NUMBER OF CASES IN A FILE

The command,

SHOW N.

will produce output that displays the unweighted number of cases in the
working data file, for instance, N = 1,104. This information helps to confirm
that you were given the correct file and that no cases were lost in transport.

DETERMINING WHAT VARIABLES ARE IN A FILE

You can produce a list of variable names with the DISPLAY command and
paste the output into a word-processing file. This is useful because you can
then use the Find procedure within the word-processing program to search
for variables by name. The DISPLAY command is demonstrated in the
following syntax:

* What variables are in the file?.
DATA LIST / first second third fourth fifth 1-5.
BEGIN DATA
12345
END DATA.
DISPLAY NAMES.
DISPLAY SORTED NAMES.

File Manipulation and Management in SPSS

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 82

DISPLAY NAMES lists the variable names in file order, as in Table 13.1,
and DISPLAY SORTED NAMES lists the variable names in alphabetical
order, as in Table 13.2.

GETTING MORE INFORMATION ABOUT THE VARIABLES

The command DISPLAY DICTIONARY will display the complete data dic-
tionary. By default, the dictionary for the entire active file is displayed, but
you can also request information for specific variables only. The command,

DISPLAY DICTIONARY
/ VAR = standard.

will produce output similar to that in Table 13.3. This table gives us the
following information for the hypothetical variable standard:

1. It has the variable label “Meets some exercise standard.”

2. It begins in Column 310.

3. It has a width of 2, so it occupies Columns 310 and 311.

4. It is right aligned.

5. It has two labeled values: 0 is labeled “Yes” and 1 is labeled “No.”

6. 99 is defined as a missing value.

7. It uses the print and write formats F2.0.

83Inspecting a Data File

Table 13.1 Variable Names in File Order

Currently Defined Variables

FIRST SECOND THIRD FOURTH FIFTH

Table 13.2 Variable Names in Alphabetical Order

Currently Defined Variables

FIFTH FIRST FOURTH SECOND THIRD

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 83

84

CHECKING FOR DUPLICATE CASES

In many data files, each case has a unique identifier. This is a variable or com-
bination of variables that has a unique value for each case and can be used
to identify a particular case. If a data file has a unique identifier, you need to
confirm that it is in fact unique, in other words, that there are no duplicate
values on that variable. The easiest way to do this is to produce a frequency
table for the identifier, sorted on descending frequency (specified with the
keyword DFREQ) so the most frequent case appears first in the table. The
syntax below will produce such a table for the variable id:

FREQ VAR = id / FORMAT = DFREQ.

If a supposedly unique identifier appears more than once in your file, you
need to determine why. Looking at the values of other variables for the cases
with duplicate identifiers may help you decide whether cases are duplicates
or whether they are different cases mistakenly assigned the same identifier.
The following code will list the values for all variables for the cases with the
value ‘05732’ on the string variable id:

TEMP.
SELECT IF id = ‘05732’.
LIST VARIABLES = ALL.

File Manipulation and Management in SPSS

Table 13.3 Dictionary Information for the Variable standard

Name Position

STANDARD Meets some exercise standard 310

Measurement Level: Scale

Column Width: 2 Alignment: Right

Print Format: F2.0

Write Format: F2.0

Missing Values: 99

Value Label
0 No

1 Yes

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 84

The TEMP (TEMPORARY) command is important, because it makes
the selection that follows temporary. If it is omitted, the selection will be
permanent and the only cases left in the active file will be those with the
value ‘05732’ on id. If there are many variables in the file, you may want
to list only those that will be most helpful in identifying cases, for
instance,

TEMP.
SELECT IF ID = ‘05732’.
LIST VARIABLES = fname lname address bdate.

If you decide that the cases with duplicate id values are, in fact, duplicate
records, there are several ways to eliminate them, as discussed in Chapter
15. This is the type of decision that normally requires consultation with the
owner of the data.

You may want to count how many times values are duplicated on sets
of variables within a data set, because this will give you an idea of how
many potential duplicates the file contains. The following syntax will
count the number of duplicates (here defined as cases with identical
values on all variables in the file) and write that number into the variable
numdup:

DATA LIST / v1 v2 v3 1-6.
BEGIN DATA
1 2 3
1 2 3
1 2 3
1 2 2
1 3 3
END DATA.
AGGREGATE OUTFILE = *

/ BREAK = ALL
/ numdup = N.

LIST VAR = ALL.

Output from the LIST command is displayed in Table 13.4. Any value
greater than 1 on the variable numdup indicates sets of records with identi-
cal values. In this file, there are three records with identical values on all
variables.

85Inspecting a Data File

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 85

86

LOOKING AT VARIABLE VALUES AND DISTRIBUTIONS

The easiest way to look at the values on individual variables is through the
FREQUENCIES command, which is most appropriate for variables with
only a few values. The FREQUENCIES command is demonstrated in the
syntax below:

* Simple frequencies command.
DATA LIST FREE / var1.
BEGIN DATA
1 2 1 3 2 3
END DATA.
FORMAT var1 (F1.0).
FREQ VAR = var1.

Output from the FREQUENCIES command is presented in Tables 13.5
and 13.6. Table 13.5 displays the number of valid and missing values for
var1, and in this case there are six valid values and no missing values. Table
13.6 displays the values for var1, their frequencies, and what percentage
each value represents of total and valid (non-missing) cases.

File Manipulation and Management in SPSS

Table 13.4 Data Set With Count of Duplicate Cases

V1 V2 V3 NUMDUP

1 2 2 1

1 2 3 3

1 3 3 1

Table 13.5 Summary Table Produced With FREQUENCIES Command

N Valid 6

Missing 0

The FREQUENCIES command can also produce statistics and graphical
displays. The following syntax suppresses the frequency table with the sub-
command FORMAT = NOTABLE and requests a barchart and the mean,
standard deviation, skewness, and standard error of skewness for the hypo-
thetical variable age:

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 86

FREQ VAR = age / FORMAT = NOTABLE
/ BARCHART
/ STATS = MEAN STDDEV SKEW SESKEW.

Many other statistics and charts can be produced with the FREQUEN-
CIES command. These are discussed in the FREQUENCIES chapter of the
SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001).

The EXAMINE command produces a number of statistics and graphics
that are useful when exploring a new data file. The syntax below will pro-
duce the default output for var1:

EXAMINE VAR = var1.

This will include a stem-and-leaf diagram, a boxplot, and the statistics
presented in Table 13.7.

87Inspecting a Data File

Table 13.6 Frequency Table Produced With FREQUENCIES
Command

Table 13.7 Statistics Produced With EXAMINE Command

Statistic Std. Error

VAR1 Mean 2.00 .365

95% Confidence Upper Bound 1.06
Interval for Mean Lower Bound 2.94

5% Trimmed Mean 2.00

Median 2.00

Variance .800

Std. Deviation .894

(Continued)

Frequency Percent Valid Cumulative
Percent Percent

Valid 1 2 33.3 33.3 33.3

2 2 33.3 33.3 66.7

3 2 33.3 33.3 100.0

Total 6 100.0 100.0

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 87

88

CREATING STANDARDIZED SCORES

One way to screen a data set for extreme values or outliers is through the use
of standardized scores, also known as z-scores or normal scores. These scores
express the data values for each variable as units of that variable’s standard
deviation, with the value 0 representing the mean for that variable. There
are no absolute rules about when a standard score is “too large,” but one
rule of thumb is to look closely at data with z-scores larger than 2 or 3. The
use of standardized scores to screen for outliers is demonstrated in the
syntax below:

DATA LIST FREE / id var1.
BEGIN DATA
1 1 2 1 3 2 4 33 5 2 6 2 7 3 8 3 9 3 10 1
END DATA.
DESCR VAR = var1 / SAVE.
TEMP.
SELECT IF zvar1 GT 2 OR zvar1 LT-2.
LIST VAR = ALL.

The DESCR command creates z-scores for the variables named, in this
case for var1. The new variable will have the name of the source variable
plus the letter z, so the z-score for var1 is named zvar1. We use the z-scores
thus created to select cases with extreme values, using the SELECT com-
mand. The LIST command will produce the data presented in Table 13.8; a
case with a value of 33.0 from a variable with a mean of 5.1 warrants fur-
ther attention, and the z-score of 2.84 also tells us this is an extreme value
for the variable in question.

File Manipulation and Management in SPSS

Table 13.7 (Continued)

Statistic Std. Error

Minimum 1

Maximum 3

Range 2

Interquartile Range 2.00

Skewness .000 .845

Kurtosis −1.875 1.741

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 88

The SELECT command selects cases with standardized scores that are
more than 2 standard deviations away from the mean, that is, with scores on
zvar1 outside the range (–2, 2). The LIST command displays values from
these extreme cases, as presented in Table 13.9. Case 4 has the value 33 for
var1, which translates to a z-value over 2.8, meaning it is almost 3 standard
deviations higher than the mean. In fact, this value appears to be due to data
entry error, because it has a value of 33 while no other case has a value
higher than 3. Of course, the decision on which values should be corrected
or deleted must be reached in consultation with the owners of the data.

89Inspecting a Data File

Table 13.8 Statistics Produced With DESCRIPTIVES Command

N Minimum Maximum Mean Std. Deviation

VAR1 10 1.00 33.00 5.1000 9.83700

Valid N (listwise) 10

Table 13.9 Selection of Case With Extreme Z-score

ID VAR1 ZVAR1

4.00 33.00 2.83623

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 89

13-Boslaugh.qxd 10/12/2004 12:53 PM Page 90

C H A P T E R 1 4

Combining Data Files

This chapter discusses how to combine cases or variables from several
data files into one file. Topics include

❍ Adding new variables to existing cases

❍ Adding summary data to an individual-level file

❍ Combining cases from several files

❍ Updating values in a file

The first two situations are handled with the MATCH FILES command,
the third with the ADD FILES command, and the fourth with the UPDATE
command. The following points apply to all three commands:

1. All data files involved must be SPSS system files or the current active file.

2. If key variables are used, they must exist and have the same name in
all files.

3. If key variables are used, the data files must be sorted in ascending
order on those variables.

4. The RENAME, DROP, KEEP, and MAP subcommands are available
with all three commands, as with the GET FILE command discussed
in Chapter 9.

5. All three procedures create a new active data file.

ADDING NEW VARIABLES TO EXISTING CASES

MATCH FILES allows you to combine variables from two or more (up to 50)
files. Files are usually combined in a nonparallel match, meaning that cases

91

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 91

92

are identified by their values on one or more key variables specified on the BY
subcommand. The key variables act as unique identifiers, as discussed in
Chapter 13: A particular combination of key variables identifies a case and
differentiates it from all other cases. The syntax below matches two files, one
containing each student’s age and the other, the student’s grade in school:

* Create the first file.
DATA LIST FREE / id age.
BEGIN DATA
1 15 2 16 4 15 3 17 5 18
END DATA.
SORT CASES BY ID.
SAVE OUTFILE = data1.
* Create the second file.
DATA LIST FREE / id grade.
BEGIN DATA
1 9 2 10 4 9 3 11 5 12
END DATA.
SORT CASES BY ID.
SAVE OUTFILE = data2.
* Match the two files (nonparallel).
MATCH FILES FILE = data1

/ FILE = data2
/ BY id.

FORMATS ALL (F2.0).
LIST VAR = ALL.

This syntax reads two data files into SPSS, sorts each by the key variable
id, and saves each as a system file. The MATCH FILES command combines
these files into a new active file, matching cases by the key variable id.
Output from the LIST command is displayed in Table 14.1. If the same vari-
able name occurs in one or more of the files, the value from the file named
first will appear in the combined file.

File Manipulation and Management in SPSS

Table 14.1 Matched Data File

ID AGE GRADE

1 15 9
2 16 10
3 17 11
4 15 9
5 18 12

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 92

In a parallel match, two or more files are matched without using a key
variable to identify cases, so the BY subcommand is not used. This tech-
nique is useful when the files have been sorted by a key variable, such as a
patient identification number, and then the key variable has been removed
from the files for confidentiality reasons. It is critical that the files to be com-
bined contain the same cases in the same order, because cases are identified
only by their positions in the file.

The IN subcommand creates an indicator variable that takes the value 1
if a case exists in a file, and 0 otherwise. This is useful because it allows you
to see how many cases from each file were matched by cases in the other
files. The IN subcommand is demonstrated in the syntax below:

* Using the IN subcommand with MATCH FILES.
* Create the first file.
DATA LIST FREE / id v1.
BEGIN DATA
1 1 2 2 3 3 4 4
END DATA.
SORT CASES BY id.
SAVE OUTFILE = data3.
* Create the second file.
DATA LIST FREE / id v2.
BEGIN DATA
1 5 2 6 3 7 4 8 5 9
END DATA.
SORT CASES BY id.
SAVE OUTFILE = data4.
* Match the files and check the match.
MATCH FILES FILE = data3 / IN = in3

/ FILE = data4 / IN = in4
/ BY id.

CROSSTABS in3 by in4.

Results from the CROSSTABS command are presented in Table 14.2.
These files did not match perfectly: One case has a value of 0 on in3 and 1
on in4, meaning it exists in the file data4 but not in data3. The syntax below
will identify the id value for the case that didn’t match:

TEMP.
SELECT IF in3 = 0 AND in4 = 1.
LIST VAR = id.

93Combining Data Files

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 93

ADDING SUMMARY DATA TO AN INDIVIDUAL-LEVEL FILE

Often, you have a data set in which the cases are individuals who exist in nat-
ural groupings, such as patients in different medical clinics or students in dif-
ferent schools. You may want to add data computed at the group level, such as
average age or total number of students, to the individual-level data file. Such
a file can be created in two steps: First, the group-level statistics are calculated
using the AGGREGATE command; then, the values for those statistics are
matched into the individual file. The syntax below illustrates these steps:

* Create the individual-level file.
DATA LIST FREE / id class grade.
BEGIN DATA
1 1 95
2 1 90
3 1 93
4 2 88
5 2 91
6 2 82
END DATA.
FORMATS id class grade (F3.0).
SORT CASES BY class.
SAVE OUTFILE = ind.
* Compute the mean grade within each class.
AGGREGATE OUTFILE = *

/ BREAK = class
/ meangrad = MEAN(grade).

SAVE OUTFILE = agg.
* Match the two files.
MATCH FILES FILE = ind

94

This will identify Case 5 (the case with the value of 5 on id) as the case
that didn’t match.

File Manipulation and Management in SPSS

Table 14.2 Diagnostic Cross-Tabulation Table for Matched Data File

Count IN4 Total

1

IN3 0 1 1

1 4 4

Total 5 5

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 94

COMBINING CASES FROM SEVERAL FILES

The ADD FILES command allows you to combine cases from multiple files
(up to 50) into one SPSS file. This procedure would be useful, for instance,
if a school kept records for every class in a separate file and wanted to cre-
ate one file containing information about every class in the school. If the
BY subcommand is not used, the files will be concatenated, meaning that all
cases from the first file will appear in the combined file, followed by all cases
from the second file, and so on. If the BY subcommand is used, the files will
be interleaved, so cases in the combined file will be ordered by their values on
the BY variables. The difference in these two methods is illustrated in the
following syntax:

/ TABLE = agg
/ BY class.

LIST VAR = ALL.

The first file (ind) contains data on individual students: their identifica-
tion number, class, and grade. The AGGREGATE command calculates the
mean grade within each class and saves it in the file agg. The MATCH FILES
command matches the two files so each student record includes the mean
grade for his or her class. This type of match is called a table lookup match
because the group-level file operates as a table of values, identified by the
subcommand TABLE, from which the program looks up the correct values
of the group-level variables for each individual case. Output from the LIST
command is presented in Table 14.3.

95Combining Data Files

Table 14.3 Individual-Level Data File Matched With Summary
Information

ID CLASS GRADE MEANGRAD

1 1 95 92.67

2 1 90 92.67

3 1 93 92.67

4 2 88 87.00

5 2 91 87.00

6 2 82 87.00

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 95

96

* Create the first file.
DATA LIST FREE / id v1.
BEGIN DATA
1 1 3 1
END DATA.
SORT CASES BY ID.
SAVE OUTFILE = add1.
* Create the second file.
DATA LIST FREE / id v1.
BEGIN DATA
2 2 4 2
END DATA.
SORT CASES BY ID.
SAVE OUTFILE = add2.
* Add files by concatenation.
ADD FILES FILE = add1

/ FILE = add2.
LIST VAR = ALL.
* Add files by interleaving.
ADD FILES FILE = add1

/ FILE = add2 / BY id.
LIST VAR = ALL.

Output from the first LIST command displays the contents of the
concatenated file, as presented in Table 14.4. This file consists of the cases
from the file add1 followed by the cases from the file add2. Output from the
second LIST command displays the contents of the interleaved file, as
presented in Table 14.5. This file consists of the cases from both files,
ordered by the value of the variable id: The first case comes from add1, the
second from add2, and so on.

File Manipulation and Management in SPSS

Table 14.4 Files Added by Concatenation

ID V1

1.00 1.00

3.00 1.00

2.00 2.00

4.00 2.00

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 96

The UPDATE command copies all the variables from the master file into
a new active file, then copies the variables from the first transaction file into
the active file, then the variables from the second transaction file, and so on.
Values are updated when their cases match on the BY variables. The basic
principle behind the UPDATE command is that the most recent valid value
will appear in the updated file, so it is important that the transaction files be
listed in the correct order (most recent last). Only valid data are used to
update the active file, so missing data will never overwrite valid data. The
UPDATE command is illustrated in the following syntax:

* Using the UPDATE command.
* Create the master file.
DATA LIST FREE / id v1.
BEGIN DATA
1 1
2 1
3 1
END DATA.
SORT CASES BY id.
SAVE OUTFILE = master.
* Create the first transaction file.
DATA LIST FREE / id v1.

UPDATING VALUES IN A FILE

The UPDATE command allows you to update values in a master file, using
data from one or more transaction files. The master file is named first in the
command, and the master and transaction files must be linked by one or
more key variables named on the BY subcommand.

97Combining Data Files

Table 14.5 Files Added by Interleaving

ID V1

1.00 1.00

2.00 2.00

3.00 1.00

4.00 2.00

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 97

BEGIN DATA
1 2
END DATA.
SORT CASES BY id.
SAVE OUTFILE = trans1.
* Create the second transaction file.
DATA LIST FREE / id v1.
BEGIN DATA
1 .
3 3
END DATA.
SORT CASES BY id.
SAVE OUTFILE = trans2.
UPDATE FILE = master

/ FILE = trans1
/ FILE = trans2
/ BY id.

FORMATS ALL (F1.0).
LIST VAR = ALL.

Output from the LIST command is displayed in Table 14.6. The updated
file includes one case (id = 2) from the master file, one from the first trans-
action file (id = 1), and one from the second transaction file (id = 3). Note
that the invalid value for Case 1 in the second transaction file did not
overwrite the valid value from the first transaction file.

98 File Manipulation and Management in SPSS

Table 14.6 Updated Data File

ID V1

1 2

2 1

3 3

14-Boslaugh.qxd 10/12/2004 12:55 PM Page 98

C H A P T E R 1 5

Data File Management

This chapter discusses syntax for file management functions, including
the following topics:

❍ Reordering and dropping variables in the active file

❍ Eliminating duplicate records

❍ Sorting a data set

❍ Splitting a data set

❍ Making temporary and permanent case selections

❍ Weighting cases

REORDERING AND DROPPING
VARIABLES IN THE ACTIVE FILE

You can reorder or drop variables in the active file by matching the file
to itself, using the KEEP and DROP subcommands to change the variable
order or drop variables. These subcommands operate in the same manner as
they do with the GET FILE command discussed in Chapter 9. The following
syntax reverses the order of variables in the active file and drops one variable:

DATA LIST FREE / var1 var2 var3 var4 var5.
BEGIN DATA
1 2 3 4 5
6 7 8 9 10
END DATA.

99

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 99

MATCH FILES FILE = *
/ KEEP = var5 var4 var3 var2.

EXE.
FORMATS ALL (F2.0).
LIST VAR = ALL.

Output from the LIST command is displayed in Table 15.1.

ELIMINATING DUPLICATE RECORDS

Screening data files for duplicate records was discussed in Chapter 13. If
you have established that a file contains duplicates that should be deleted,
there are several ways to accomplish this. The syntax below demonstrates a
technique to create a new active file without duplicates, when duplicates
are defined as cases with identical values on all variables:

DATA LIST FREE / id var1 var2 var3.
BEGIN DATA
101 1 2 3
102 1 2 2
102 1 2 2
103 1 2 3
103 1 2 3
END DATA.
SORT CASES BY id var1 var2 var3.
MATCH FILES FILE = *

/ BY ALL
/ FIRST = first1.

FORMATS ALL (F3.0).
SELECT IF first1 = 1.
LIST VAR = ALL.

There are five case in the data file created by the DATA LIST command,
two of which are duplicates of other cases. The output from the LIST

100 File Manipulation and Management in SPSS

Table 15.1 Active File With Cases Reordered and One Case
Dropped

VAR5 VAR4 VAR3 VAR2

5 4 3 2

10 9 8 7

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 100

The key to this technique is the creation of the variable first1, which has
a value of 1 for the first case with a particular set of values and a value of 0
for any subsequent cases with identical values. Because the file has been
sorted on all variables, cases with the same values for all variables will
appear consecutively.

A different situation is presented when you have meaningful criteria that
will help you decide which records to keep. For instance, you may have a file
containing multiple records for individuals, with a variable indicating when a
particular record was entered. You can use this variable to select and keep
only the most recently entered record for each individual. The following code
will retain the record for each individual, with the most recent value on date1:

* Meaningful selection from records with duplicate
identifiers.

DATA LIST FREE / id (F3.0) date1 (DATE9) score (F3.0).
BEGIN DATA
101 1-jan-01 88
101 5-feb-01 75
101 13-apr-01 91
102 3-jan-01 93
102 4-feb-01 85
103 6-jan-01 91
END DATA.
SORT CASES BY id (A) date1 (D).
DO IF $CASENUM = 1.
COMPUTE flag = 1.
ELSE IF id = LAG(id).
COMPUTE flag = 0.
ELSE.

101Data File Management

Table 15.2 Data File With Duplicate Records Eliminated

ID VAR1 VAR2 VAR3 FIRST1

101 1 2 3 1

102 1 2 2 1

103 1 2 3 1

command, which displays the contents of the file after the duplicate cases
have been eliminated, is presented in Table 15.2.

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 101

SORTING A DATA SET

Sorting a data set is done for many reasons: It is a prerequisite to using
certain procedures, such as MATCH FILES and UPDATE, and a sorted
data set is easier to proofread and examine for patterns. The basic command
structure is as follows:

SORT CASES BY var1.

where var1 is the variable used to sort the active file. The keyword BY is
optional:

SORT CASES var1.

102 File Manipulation and Management in SPSS

COMPUTE flag = 1.
END IF.
EXE.
FORMAT FLAG (F1.0).
SELECT IF flag = 1.
LIST VAR = ALL.

This data set has three records for id #101, two for id #102, and one for
id #103. This syntax uses the LAG function to create a flag variable with
the value of 1 for the first record from each group with the same value on
id, and a value of 0 otherwise. Because the file is sorted in descending order
by the date variable (date1), the first record in each group will be the most
recent. The SELECT command retains records with a value of 1 on flag.
Output from the LIST command is presented in Table 15.3.

Table 15.3 Data File With Most Recent Records for Each Case
Retained

ID DATE1 SCORE FLAG

101 13-APR-01 91 1

102 04-FEB-01 85 1

103 06-JAN-01 91 1

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 102

and would produce the same result. By default, cases are sorted in ascending
order (with the lowest value first). To sort in descending order (with the
highest value first), add the keyword (D).

You can specify several sort variables. SPSS will sort all cases on the first
variable, then on the second variable within categories of the first variable,
and so on. Order specifications (ascending or descending) apply to all vari-
ables to their left unless the syntax explicitly states otherwise, so if you want
to sort the first variable in ascending order and the second in descending
order, you must specify this, as in the syntax below:

SORT CASES BY var1 (A) var2 (D).

SPLITTING A DATA SET

The SPLIT FILE command makes it possible to repeat analyses on two or more
subgroups within a data file. For instance, you may have a file containing data
from both male and female respondents and wish to analyze the data for men and
women separately. The easiest way to do this is to use the SPLIT FILE command,
which instructs SPSS to treat the two types of cases separately without actually
creating new data files. The active file must be sorted by the SPLIT variables, and
the SPLIT FILE command remains in effect until it is canceled by SPLIT FILE
OFF. The following syntax demonstrates the SPLIT FILE command:

SORT CASES BY gender.
SPLIT FILE BY gender.
REGRESSION VARS = y x1 x2 x3 x4 x5 x6

/ DEPENDENT = y
/ METHOD = ENTER.

SPLIT FILE OFF.

This syntax will perform the same regression analysis twice, once for
men and once for women.

SELECTING CASES

The SELECT command selects cases according to specified logical condi-
tions. This command should be used with caution, because by default,
selections are permanent, meaning nonselected cases are removed from the
active file. To do a temporary selection, precede the SELECT command with

103Data File Management

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 103

104

the TEMPORARY command, which specifies that the selection should
apply only to the procedure immediately following. The following syntax
demonstrates temporary selection:

TEMP.
SELECT IF (gender = ‘M’).
CROSSTABS race BY educ.
CROSSTABS race BY educ.

The first CROSSTABS command will include males only, while the
second will include all cases.

FILTERING CASES

The FILTER command provides another way to select cases according to
their value on some variable. It is less flexible than the SELECT command
but has the advantage of not deleting cases from the active file. Only one fil-
ter variable may be used, and it must be numeric. The FILTER command
excludes cases that have a value of 0 or are missing on the filter variable, so
potential filter variables must be coded with this system of selection in
mind. For instance, if gender is coded so 1 = male and 0 = female, the FIL-
TER command can be used to run procedures on male cases only. This is
demonstrated in the following syntax:

* Using a filter variable.
DATA LIST FREE / gender v2.
BEGIN DATA
1 1
1 2
1 3
0 4
0 5
END DATA.
value labels gender 1 ‘Male’ 0 ‘Female’.
FILTER BY gender.
FORMATS ALL (F1.0).
LIST VAR = ALL.
FILTER OFF.

Output from the LIST command, which includes data for males
(gender = 1) only, is presented in Table 15.4. FILTER does not actually

File Manipulation and Management in SPSS

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 104

WEIGHTING CASES

Typically, cases in a data file are unweighted, meaning that one case in the
data file counts as one case for analytical purposes. In an unweighted data
file with 30 cases, you will have an n of 30 for analysis, assuming no data
are missing. However, sometimes data sets are meant to be weighted before
analysis. For example, Chapter 8 includes a technique to perform a chi-
square analysis by applying weights to each cell of a 2 × 2 table. A data file
that includes weighting variables may have those weights applied or not
applied. To see whether weights are currently applied to a data set, use the
command,

SHOW WEIGHT.

To remove weights, use the command,

WEIGHT OFF.

To apply a weight variable, use the command,

WEIGHT BY wtvar.

where wtvar is the name of the variable containing the weight you want to
apply.

remove the unselected cases from the data file, so when the FILTER
command is canceled by FILTER OFF, all cases are available for analysis
again.

105Data File Management

Table 15.4 Output From Data Set Filtered by gender

GENDER V2

1 1

1 2

1 3

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 105

15-Boslaugh.qxd 10/12/2004 3:52 PM Page 106

C H A P T E R 1 6

Restructuring Files

This chapter discusses file structure and how to change it using SPSS.
Topics include

❍ The unit of analysis

❍ Changing file structure from univariate to multivariate

❍ Including a test condition when restructuring a file

❍ Changing file structure from multivariate to univariate

❍ Transposing the rows and columns of a data set

The term unit of analysis refers to what is considered a case in a given study.
For instance, in the field of education, you might be studying the perfor-
mance of individual students, or you might be studying the performance
of different schools. If you were studying the performance of individual
students, the unit of analysis would be the individual and each student
would be considered a case. If you were studying the average performance
in different schools, the unit of analysis would be the group and each school
would be considered a case. Most analyses are conducted at a single level of
analysis, although it is possible to combine data from different levels into
one model. This type of analysis requires multilevel modeling techniques,
which are beyond the scope of this book. A standard reference on multilevel
modeling is Hierarchical Linear Models (Raudenbush & Bryk, 2002).

Unit of analysis is also relevant to studies that collect data on more than
one occasion from the same individuals. For instance, lab rats could be

107

THE UNIT OF ANALYSIS

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 107

CHANGING FILE STRUCTURE
FROM UNIVARIATE TO MULTIVARIATE

Changing a file’s structure from univariate to multivariate is some-
times referred to as changing a file from narrow to wide, or from simple

108

weighed weekly to see whether they are gaining weight, or students could
be tested monthly to see whether their vocabulary size is increasing. In
this type of study, the unit of analysis may be either the occasion of mea-
surement or the individual from whom repeated measurements are taken.

A univariate file structure is organized so that each line of the file
contains data from one occasion of measurement for one individual. For
instance, a univariate file containing student grades collected at three time
points would have three lines of data for each student. This arrangement is
typical when the unit of analysis is the occasion of measurement. The same
data could also be arranged in a file so all data pertaining to a student
appears on a single line. This is multivariate structure and is typically used
when the unit of analysis is the individual and occasions of measurement
are considered repeated measurements within each individual. The differ-
ence is demonstrated in Tables 16.1 and 16.2 below.

File Manipulation and Management in SPSS

Table 16.1 Univariate Data File

ID TIME SCORE

1 1 93

1 2 85

1 3 89

2 1 88

2 2 90

2 3 81

Table 16.2 Multivariate Data File

ID SCORE1 SCORE2 SCORE3

1 93 85 89

2 88 90 81

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 108

to complex. The following syntax restructures a univariate file as
multivariate:

* Restructuring a univariate file as multivariate.
DATA LIST / student 1 time 3 score 5-7.
BEGIN DATA
1 1 90
1 2 81
1 3 82
2 1 79
2 3 98
3 1 91
3 2 95
3 3 93
END DATA.
SORT CASES by student.
LIST VAR = ALL.
CASESTOVARS

/ ID = student
/ INDEX = time.

LIST VAR = ALL.

The CASESTOVAR command performs the file restructuring. As the name
implies, repeated measurements that were treated as cases in the original file
become variables in the new file. The subcommand ID indicates the variable that
defines a case in the multivariate file (student), and the subcommand INDEX
indicates the variable that identifies an occasion of measurement (time). Output
from the first LIST command is displayed in Table 16.3, which displays the
structure of the univariate file: Each line contains the data from one occasion of
measurement for one person. Output from the second LIST command is dis-
played in Table 16.4, which displays the structure of the multivariate file created
by the CASESTOVARS command: Each line contains the data from all occa-
sions of measurement for one person. Note that new variable names have been
created for each occasion of measurement: score.1, score.2, and score.3. These
names were created by SPSS using two pieces of information:

1. The stem from the name of the variable representing the measure-
ment (score).

2. The suffix (.1, .2, or .3) representing the occasion of measurement,
as taken from the variable time.

109Restructuring Files

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 109

CASESTOVARS assumes that each case in the multivariate file should
have the same occasions of measurement. In this example, the second case
did not have a score for time 2, but SPSS still created the variable score.2 for
that case and assigned it the system-missing value.

Another way to restructure files from univariate to multivariate is to use
the VECTOR, DO REPEAT, and AGGREGATE commands, which are fur-
ther discussed in Chapter 25. This technique is demonstrated in the syntax
below, which performs the same file restructuring as the CASESTOVARS
command did in the program above:

* Using vectors to restructure a univariate file as
multivariate.
DATA LIST / student 1 time 3 score_ 5-7.
BEGIN DATA
1 1 90
1 2 81
1 3 82
2 1 79
2 3 98
3 1 91
3 2 95

110 File Manipulation and Management in SPSS

Table 16.4 Univariate File (Table 16.3) Restructured as Multivariate

ID SCORE1 SCORE2 SCORE3

1 90 81 82

2 79 . 98

3 91 95 93

Table 16.3 Univariate Data File

ID TIME SCORE

1 1 90

1 2 81

1 3 82

2 1 79

2 3 98

3 1 91

3 2 95

3 3 93

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 110

3 3 93
END DATA.
* Create new variables.
VECTOR score_ (3F2.0).
* Write the values into these variables.
DO REPEAT a = score_ / b = score_.
COMPUTE a(time) = b.
END REPEAT.
EXE.
LIST VARS = ALL.
* Aggregate file so only valid values are retained.
AGGREGATE OUTFILE = *

/ BREAK = student
/ score_1 TO score_3 = MAX(score_1 to score_3).

LIST VAR = ALL.

The VECTOR command creates three F2.0 variables, named score_1,
score_2, and score_3. The DO REPEAT–END REPEAT command structure
writes the values from each occasion of score to the respective score_ variable. For
instance, the scores for time 1 are written to the variable score_1. Output from the
first LIST command, which represents the data file after the execution of the DO
REPEAT–END REPEAT structure, is presented in Table 16.5. Each line of this
file has a valid value for only one of the newly created variables score_1, score_2,
and score_3. We use this fact in conjunction with the MAX(score_1 to score_3)
function to retain only the valid values. The MAX function selects the largest or
maximum of its arguments, and because valid values are larger than missing val-
ues, the single valid value will be selected for each case. Output from the second
LIST command is displayed in Table 16.6, which is identical to Table 16.4 except
for the variable names (e.g., SCORE.1 in Table 16.4 is SCORE_1 in Table 16.6).

111Restructuring Files

Table 16.5 Data File Before Aggregation

ID TIME SCORE SCORE_1 SCORE_2 SCORE_3

1 1 90 90 . .
1 2 81 . 81 .
1 3 82 . . 82
2 1 79 79 . .
2 3 98 . . 98
3 1 91 91 . .
3 2 95 . 95 .
3 3 93 . . 93

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 111

112

INCORPORATING A TEST CONDITION
WHEN RESTRUCTURING A DATA FILE

Another way to restructure a file is to apply some test condition to deter-
mine whether multiple lines of data constitute one case or several. Suppose
you have a file of insurance claims for hospitalizations. In this file, a line of
data contains the information for one uninterrupted stay in the hospital by
one person. Each person is identified by a unique value on the variable id.
You need to group these claims into “episodes of care,” which are defined as
all claims by one individual that take place without 90 or more days pass-
ing between the end of one claim and the beginning of the next. In this
example, the case is one “episode of care.” The following syntax accom-
plishes this restructuring:

* Restructuring a data file using the LAG function.
* Test condition: new episode = gap of more than 90

days between claims.
DATA LIST / id 1 start 3-12 (date) end 15-24 (date).
BEGIN DATA
1 11-JAN-90 13-JAN-90
1 15-FEB-90 25-FEB-90
1 1-AUG-91 8-AUG-91
2 5-JUN-90 7-JUN-90
2 1-JUL-90 5-JUL-90
END DATA.
* Count the number of days within each claim.
COMPUTE DAYS = CTIME.DAYS(end - start).
SORT CASES BY id start.
* Assign all cases the value 1 for episode to begin

with.
COMPUTE episode = 1.
DO IF ($CASENUM NE 1).
* Increment values of episode where appropriate.
IF id = LAG(id) and CTIME.DAYS(start-LAG(end)) LE 90

episode = LAG(episode).

File Manipulation and Management in SPSS

Table 16.6 Data File (Table 16.5) After Aggregation

ID SCORE_1 SCORE_2 SCORE_3

1 90 81 82

2 79 . 98

3 91 95 93

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 112

IF id = LAG(id) and CTIME.DAYS(start-LAG(end)) GT 90
episode = LAG(episode) + 1.

END IF.
FORMAT days episode (F3.0).
* Look at the file before restructuring.
LIST VAR = ALL.
* Aggregate the file so an episode of care = a case.
AGGR OUTILE = *

/ BREAK = id episode
/ start = MIN(start)
/ end = MAX(end)
/ days = sum(days).

FORMAT days (F3.0).
* Look at the restructured file.
LIST VAR = ALL.

The file has been sorted by id and start, so the claims for each individual
are arranged in chronological order. Output from the first LIST command,
displayed in Table 16.7, shows the content of the unstructured file after
the days and episode variables have been created. The days variable repre-
sents the number of days between the start and end dates in each claim.
The episode variable is created with the LAG function, using the following
rules:

1. Assign the value of 1 to all cases for the variable episode.

2. Leave this value for the first case, which is the first episode for that
individual.

3. For each subsequent case, see whether the id variable has the same
value as the previous case.
a. If the id values are different, the cases represent different people,

so leave the value of episode as it is.
b. If the id values are the same, test to see how many days have

elapsed between the start of the current claim and the end of the
previous claim.
i. If 90 days or fewer have elapsed, both cases belong to the same

episode, so give the current case the same value of episode as
the previous case.

ii. If more than 90 days have elapsed, the current case belongs to
a new episode, so give the current case a value of episode that
is the value of episode from the previous case plus one.

113Restructuring Files

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 113

114

It can be seen from this table that id #1 has three claims and the first two
belong to the same episode, while the third belongs to a new episode. This is
because only 33 days elapsed between the end of the first claim and the
start of the second claim (13-JAN-90 to 15-FEB-90), but 522 days elapsed
between the end of the second claim and the start of the third claim (25-
FEB-90 to 01-AUG-91). Both claims for id #2 belong to the same episode
because only 24 days elapsed between the end of the first claim and the
start of the second (07-JUN-90 to 01-JUL-90).

The final step is to restructure the file so each line of data represents one
episode of care and includes the start and end dates of the episode and the
total number of hospital days claimed within the episode. This is accom-
plished by the AGGREGATE command, which creates one line of data
for each unique combination of id and episode and computes the following
variables:

1. days, which is the sum of claim days within the episode

2. start, which is the first (MIN, i.e., minimum) start date of the claims
within the episode

3. end, which is the last (MAX, i.e., maximum) end dates within the
episode

Output of the final LIST command, which displays the contents of the
restructured file, is presented in Table 16.8. The first and second claims
from the original file were combined into one episode, with 12 total days
(2 days from the first claim and 10 days from the second claim). The start
date is that of the first claim, and the end date is that of the second
claim. Similarly, the fourth and fifth claims were combined into one
episode.

File Manipulation and Management in SPSS

Table 16.7 Univariate Data File

ID START END DAYS EPISODE

1 11-JAN-90 13-JAN-90 2 1

1 15-FEB-90 25-FEB-90 10 1

1 01-AUG-91 08-AUG-91 7 2

2 05-JUN-90 07-JUN-90 2 1

2 01-JUL-90 05-JUL-90 4 1

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 114

CHANGING FILE STRUCTURE
FROM MULTIVARIATE TO UNIVARIATE

File structure can be changed from multivariate to univariate with the
VARSTOCASES command, which, as the name implies, takes variables and
makes them into cases. The syntax below takes the multivariate version of
the data set created with the CASESTOVARS command above and restruc-
tures it as univariate, using the VARSTOCASES command:

* Restructuring a multivariate file as univariate.
DATA LIST / id 1 score1 2-4 score2 5-7 score3 8-10.
BEGIN DATA
1 90 81 82
2 79 . 98
3 91 95 93
END DATA.
LIST VAR = ALL.
VARSTOCASES

/ MAKE score FROM score1 to score3
/ INDEX = time.

LIST VAR = ALL.

The VARSTOCASES command performs the restructuring. The sub-
command MAKE score FROM score1 to score3 creates the variable
score from the three variables score1, score2, and score3. The subcommand
INDEX = time tells SPSS to create a new variable named time to identify
the occasion of measurement. When score represents the value of score1,
time equals 1; when score represents the value of score2, time equals 2, and
so on. Output from the first LIST will be identical to that presented in Table
16.4 and displays the structure of the multivariate file. Output from the
second LIST command will be identical to that presented in Table 16.3 and
displays the structure of the univariate file.

115Restructuring Files

Table 16.8 Univariate File (Table 16.7) Restructured as Multivariate

ID EPISODE START END DAYS

1 1 11-JAN-90 25-FEB-90 12

1 2 01-AUG-91 08-AUG-91 7

2 1 05-JUN-90 05-JUL-90 6

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 115

116

TRANSPOSING THE ROWS
AND COLUMNS OF A DATA SET

Transposing rows and columns, also known as “flipping” a data set, does
not change the unit of analysis. Instead, it changes the physical format of
the file so it can be analyzed by SPSS. Spreadsheets are often arranged so the
rows represent variables and the columns represent cases. If you are given
such a file and need to work with it in SPSS, you must transpose it so that
rows represent cases and columns represent variables. This may be accom-
plished with the FLIP command, as demonstrated in the syntax below:

* Transposing cases and rows.
DATA LIST / case1 case2 case3 1-6.
BEGIN DATA
1 2 3
4 5 6
END DATA.
LIST VAR = ALL.
FLIP VAR = ALL.
LIST VAR = ALL.

Output from the first LIST, which displays the file as produced by the
DATA LIST command, is displayed in Table 16.9. Output from the second
LIST command, which displays the file after it has been flipped, is presented
in Table 16.10. Note that

1. SPSS has created a new variable, case-lbl, which contains the variable
names (case1 to case3) from the original file.

2. The columns or variables have been assigned the default names
var001 and var001.

3. The data values have the default format F8.2 rather than their orig-
inal F2.0 format.

File Manipulation and Management in SPSS

Table 16.9 Data File Before Transposition

CASE1 CASE2 CASE3

1 2 3

4 5 6

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 116

If the spreadsheet has variable names, you can retain them with the
NEWNAMES subcommand, as demonstrated in the following syntax:

* Transposing cases and rows.
DATA LIST / labels 1-2 (a) case1 case2 case3 4-9.
BEGIN DATA
q1 1 2 3
q2 4 5 6
END DATA.
LIST VAR = ALL.
* Retaining variable names.
FLIP VAR = ALL

/ NEWNAMES = labels.
LIST VAR = ALL.

Output from the first LIST command, which displays the data as they
were read by the DATA LIST command, is presented in Table 16.11. Output
from the second LIST command, which displays the data after they have
been flipped, is presented in Table 16.12. Note that in Table 16.12, the val-
ues of the variable labels (q1 and q2) have been used as variable names in
place of the default names (var001 and var002).

117Restructuring Files

Table 16.12 Transposed Data (Table 16.11) Using labels as Variable
Names

CASE-LBL Q1 Q2

CASE1 1.00 4.00
CASE2 2.00 5.00
CASE3 3.00 6.00

Table 16.11 Data File Including the Variable labels

LABELS CASE1 CASE2 CASE3

Q1 1 2 3

Q2 4 5 6

Table 16.10 Data File (Table 16.9) After Transposition

CASE-LBL VAR001 VAR002

CASE1 1.00 4.00
CASE2 2.00 5.00
CASE3 3.00 6.00

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 117

16-Boslaugh.qxd 10/12/2004 3:54 PM Page 118

C H A P T E R 1 7

Missing Data in SPSS

This chapter discusses different types of missing data, how missing data
is handled in SPSS, and some choices you have when dealing with

missing data. Topics include the following:

❍ Types of missing data

❍ System-missing and user-missing data

❍ Looking at patterns of missing data in a data file

❍ Changing the values of blanks in numeric fields

❍ Treatment of missing values in SPSS commands

❍ Substituting values for missing data

The effect of missing data on arithmetic operations and functions is dis-
cussed in Chapter 22, as is a technique to control whether a function will
execute when some of its arguments are missing.

Missing data is a fact of life for most data managers and analysts. The
data set that contains valid values for every variable and every case is the
exception rather than the rule. This chapter will not go into the theoretical
issues behind the treatment of missing data, which are ably handled in Sta-
tistical Analysis With Missing Data (Little & Rubin, 2002). Instead, we will
concentrate on how SPSS treats missing data, how you can use SPSS to
examine the pattern of missing data within a file, and different approaches
to dealing with missing data.

SPSS produces a module called Missing Value Analysis (MVA), which is
specifically designed to display patterns of missing data in a file and to sub-
stitute values for missing data using the Expectation Maximization (EM)

119

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 119

120

algorithm. This chapter assumes you do not have the MVA module. If you
do, you probably would use it in preference to most of the procedures
described in this chapter. However, if you don’t have MVA, you can accom-
plish many of the same purposes using commands available in Base SPSS.
One thing you cannot do in SPSS without MVA is EM estimation, so if that
feature is critical to your analysis, you will have to purchase the MVA
module or use another program that has this capability.

TYPES OF MISSING DATA

Several different types of data can be considered to be “missing” in a data
set. First and most obvious is the case in which no data were recorded. This
type of missing data will appear as blank cells or periods (.) in the data table.
A second case is when you have some information, but not the information
you sought. For instance, someone might decline to answer a question on
a survey, and you could record that fact with a code to indicate that the
question was declined, not skipped by accident. A third case is when data
are missing because a question does not apply to a particular individual or
group. For instance, you would not ask men whether they intended to get a
mammogram in the next 12 months. You could use a code to indicate that
the question was not applicable to those individuals. A fourth case is when
recorded data values appear to be incorrect, for instance, if a person’s age
was recorded as 350 years. This is the most complicated case, because with
continuous variables, there is often no clear cutoff point between valid and
invalid values, and setting an acceptable range of values is partly a matter
of judgment.

SYSTEM-MISSING AND USER-MISSING DATA

SPSS recognizes two types of missing data, system-missing and user-missing.
The system-missing category exists only for numeric variables and is auto-
matically applied by SPSS to invalid values, including blanks, values con-
taining a nonnumeric character, and the values created as the result of an
illegal transformation such as division by zero. String variables cannot be
system-missing, because any character, including a blank, is legal in a
string variable. Values assigned the system-missing value appear in the data
window as periods (.) or as whatever symbol is used for the decimal point,
unless this is changed by the SET command, as discussed below.

File Manipulation and Management in SPSS

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 120

Both numeric and short string variables may have user-missing values,
but long string variables cannot (the distinction between long and short
string variables is discussed in Chapter 19). User-missing values are speci-
fied by the programmer. The following syntax declares the value 9 as user-
missing for var1:

* Declaring user-missing values.
DATA LIST FREE / var1.
BEGIN DATA
1 1 9 2 1 2 9 2
END DATA.
MISSING VALUES var1 (9).
FORMATS var1 (F1.0).
FREQ VAR = var1.

Output from the FREQ is presented in Table 17.1, which demonstrates
how SPSS reports missing values:

1. Frequency counts for valid and missing values are reported
separately.

2. The “Percent” column includes both valid and missing values, while
the “Valid Percent” and “Cumulative Percent” columns include only
valid values.

For instance, the value 1 appears in 37.5% of the total cases but 50.0%
of the valid cases.

121Missing Data in SPSS

Table 17.1 Frequency Table With User-Missing Values

VAR1

Valid Cumulative
Frequency Percent Percent Percent

Valid 1 3 37.5 50.0 50.0

2 3 37.5 50.0 100.0

Total 6 75.0 100.0

Missing 9 2 25.0

Total 8 100.0

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 121

Several rules apply to missing-value declarations:

1. Missing values for string variables must be enclosed in apostrophes
or quotation marks.

2. Up to three missing values may be declared for each variable.

3. Different missing values for different variables may be declared on
the same MISSING VALUES command, for instance:

MISSING VALUES v1 (7) v2 (8,9).

4. A range of values may be coded as missing, using the keywords LO
or LOWEST, THRU, and HI or HIGHEST. For instance, the follow-
ing syntax will code any value lower than 18 on age as missing:

MISSING VALUES age (LO THRU 17.99).

LOOKING AT MISSING DATA ON INDIVIDUAL VARIABLES

Before making any decisions about how to deal with missing data, you need
to know how much data is missing on each variable and the patterns of
missing data among variables. For instance, if a person is missing on var1,
are they also likely to be missing on var2? How many cases are complete?
How many are missing on more than two variables?

You can display the amount of missing data on individual variables using
the FREQUENCIES command, as demonstrated in the following syntax:

DATA LIST FREE / var1.
BEGIN DATA
1 0 0 9 . 9 1 1
END DATA.
MISSING VALUES var1 (9).
FREQ VAR = var1 / FORMAT = NOTABLE.

Because these are freefield data, which use the blank space as a delimiter,
a system-missing value must be represented by some value, in this case, a
period (.). The NOTABLE (“no table”) option suppresses the frequency table
so that only the summary table presented in Table 17.2 is produced.

122 File Manipulation and Management in SPSS

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 122

LOOKING AT THE PATTERN OF USER-MISSING
DATA AMONG PAIRS OF VARIABLES

The CROSSTABS command can be used to produce a table displaying the
distribution of valid and user-missing values among pairs of variables. This
requires using CROSSTABS in integer mode, specifying the range of values
for each variable, and using the MISSING == REPORT subcommand.
System-missing values cannot be displayed with the CROSSTABS
command. The following syntax demonstrates this technique:

The following table combines user-missing and system-missing frequen-
cies. If you want to see them separately, drop the FORMAT == NOTABLE
subcommand and SPSS will produce the output presented in Table 17.2
plus a frequency table similar to that displayed in Table 17.3.

123Missing Data in SPSS

Table 17.2 Summary Table With Missing Data

VAR1

N Valid 5

Missing 3

Table 17.3 Frequency Table With User-Missing and System-Missing
Values

Valid Cumulative
Frequency Percent Percent Percent

Valid .00 2 25.0 40.0 40.0

1.00 3 37.5 60.0 100.0

Total 5 62.5 100.0

Missing 9.00 2 25.0

System 1 12.5

Total 3 37.5

Total 8 100.0

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 123

124

* Crosstabs to examine patterns in user-missing data.
DATA LIST FREE / var1 var2.
BEGIN DATA
1 1 1 9 2 1 9 2 9 1 9 1 1 9
1 2 1 9 9 1 1 9 9 2 2 1 1 1
END DATA.
MISSING VALUES var1 var2 (9).
* Use CROSSTABS in integer mode.
CROSSTABS VAR = var1 (1,9) var2 (1,9)

/ TABLES = var1 BY var2
/ MISSING = REPORT.

Output from the CROSSTABS command is presented in Table 17.4. The
numbers in the cells represent the frequency for each combination of val-
ues, so we can see that two cases have the value of 1 on both var1 and var2.
Cases with missing data are reported but not included in the marginal
totals. For instance, only three cases are reported as having the value 1 on
var1, because the four cases that have the value of 1 on var1 but are miss-
ing on var2 are excluded from the total. We can see several interesting pat-
terns even in this small data set. First of all, no cases are missing on both
variables. Second, missing values on var2 occur only in cases that have the
value 1 on var1. Finally, missing data on var1 is about equally likely to occur
in cases with either value of var2.

File Manipulation and Management in SPSS

LOOKING AT THE PATTERN OF
MISSING DATA ACROSS MANY VARIABLES

You can create a variable to display the pattern of missing data across many
variables. Suppose you want to see the pattern of missing data across the

Table 17.4 Cross-Tabulation Table Including User-Missing Values

VAR2

1.00 2.00 9.00 (Missing) Total

VAR1 1.00 2 1 4 3

2.00 2 2

9.00 (Missing) 3 2 5

Total 4 1 4 5

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 124

numeric variables v1, v2, v3, and v4. The following code creates a new variable,
miss.ind, which displays the pattern of missing values across these four variables:

* Create a variable to display missing data patterns.
DATA LIST /id v1 to v4 1-5.
BEGIN DATA
11323
24 32
32334
4 214
5 424
6 332
END DATA.
COMPUTE miss.1 = NOT(MISSING(v1)).
COMPUTE miss.2 = NOT(MISSING(v2)).
COMPUTE miss.3 = NOT(MISSING(v3)).
COMPUTE miss.4 = NOT(MISSING(v4)).
COMPUTE miss.ind = miss.1*1000 + miss.2*100 + miss.3*10

+ miss.4.
FORMATS miss.ind (N4.0).
FREQ VAR = miss.ind.

Output from the FREQ is presented in Table 17.5. The creation of the
variable miss.ind takes advantage of the fact that MISSING is a logical func-
tion that takes the value of 1 if true and 0 if false. We have reversed the
meaning of the MISSING function with the NOT keyword, so each logical
variable (miss.1 through miss.4) will have a value of 1 if the variable is not
missing and 0 if it is missing. The four logical variables are then multiplied
by constants so they will form a four-digit number. For instance, miss.1 is
multiplied by 1,000, so it will always appear as the first of four digits. Note
that miss.ind must be formatted as N4.0 rather than F4.0 in order to have
the leading zeros appear.

125Missing Data in SPSS

Table 17.5 Variable Displaying Missing-Data Patterns for Four
Variables

Valid Cumulative
Frequency Percent Percent Percent

Valid 0111 3 50.0 50.0 50.0
1011 1 16.7 16.7 66.7
1111 2 33.3 33.3 100.0

Total 6 100.0 100.0

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 125

126

CHANGING THE VALUE OF BLANKS IN NUMERIC FIELDS

By default, SPSS automatically assigns the system-missing value to blank
fields in numeric variables. You can change this. For instance, you may
want blanks coded as 0. This is demonstrated in the following syntax:

* Default setting: blanks = system-missing.
SET BLANKS = SYSMIS.
DATA LIST / v1 TO v4 1-4.
BEGIN DATA
1111
111
END DATA.
COMPUTE sum4 = v1 + v2 + v3 + v4.
LIST VARS = ALL.
* Set blanks equal to zero.
SET BLANKS = 0.
DATA LIST / v1 TO v4 1-4.
BEGIN DATA
1111
111
END DATA.
COMPUTE sum4 = v1 + v2 + v3 + v4.
LIST VARS = ALL.

This syntax reads the same data set twice, one with blanks set to the
system-missing value and once with blanks set to 0. Output from the first
LIST command, which displays results from the data set read with blanks
set to system-missing, is presented in Table 17.6. There are two important
points about these results:

1. The missing value of v4 for the second case appears as a period (.),
which signifies a system-missing value.

2. The variable sum4 was not computed for the second case because
one of the variables required for the calculation was missing.

File Manipulation and Management in SPSS

Table 17.6 Blanks Read as System-Missing

V1 V2 V3 V4 SUM4

1 1 1 1 4.00

1 1 1 . .

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 126

Several important points about the SET BLANKS command are as
follows:

1. SET BLANKS applies to all numeric variables read or created after it
is executed. It cannot be applied selectively.

2. The SET command cannot be applied retroactively, so it cannot
change the system-missing value in the active file.

3. SET commands remain in force until changed. To restore the default
setting and have blanks read as system-missing, use the command
SET BLANKS == SYSMIS.

4. The SET BLANKS command does not affect string variables because
they do not have system-missing values.

TREATMENT OF MISSING VALUES IN SPSS COMMANDS

Each SPSS command has a default setting for handling missing data, and
many commands have one or more options besides the default. The default
and available options are specified in the SPSS 11.0 Syntax Reference Guide
(SPSS Inc., 2001), in the chapter on each command. The basic decisions to
be made about missing data are

1. Will cases with missing data will be excluded from the analysis?

2. If cases are excluded, what method of exclusion will be used?

Table 17.7 displays results of the same calculations after the same data
were read with blanks set to 0. This table differs in two ways from Table 17.6:

1. The missing value of v4 for the second case appears as the value 0.

2. The variable sum4 was computed for the second case because 0 is a
valid value.

127Missing Data in SPSS

Table 17.7 Blanks Read as Zeros

V1 V2 V3 V4 SUM4

1 1 1 1 4.00

1 1 1 0 3.00

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 127

128

For the first question, the choice is whether to automatically exclude
cases with missing values or to include them and treat missing values as a
separate data value. For the second question, the choice is between listwise
and casewise deletion. Listwise deletion excludes a case from analysis if it is
missing on any variable used in the analysis. Casewise deletion, also known
as pairwise deletion, excludes only cases that are missing on the specific
variables required for each procedure. Consider the following example:

1. You want to produce a correlation matrix with three variables, v1,
v2, and v3.

2. One case in the data set is missing on v1 only, three cases are missing
on v2 only, and five cases are missing on v3 only.

You have two options:

1. Use listwise deletion: Drop every case that is missing on any of the
three variables. With this option, the same cases will be used to cal-
culate each correlation, but your sample is reduced by nine cases.

2. Use casewise deletion: Use as many cases as possible for each paired
correlation. This option uses the maximum possible data for each
correlation but means that a different number of cases will be used
to calculate each paired correlation, which can cause serious statis-
tical problems. For more on this topic, see the Little and Rubin text
mentioned earlier (2002).

SUBSTITUTING VALUES FOR MISSING DATA

Some people choose to deal with missing data by substituting a value
calculated from the valid data on the same or related variables. This prac-
tice is controversial, and the programmer is, again, referred to Little and
Rubin (2002). Several substitution techniques are presented here because
programmers may want to use them. This is not an endorsement or a
recommendation for their use.

One way to deal with missing data is to substitute the mean (average)
value of a variable. Some procedures, such as REGRESSION and FACTOR,
allow the programmer to request automatic mean substitution. This means
that any cases missing on a variable will automatically be assigned
the mean value as computed from the valid values for that variable. The

File Manipulation and Management in SPSS

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 128

substitute values are treated as observations so no cases are dropped from
the analysis. If you have a file with 200 cases, 170 of which have complete
data on var1 to var4, the syntax,

REGRESSION VARIABLES = var1 var2 var3 var4
/ DEPENDENT = var1
/ METHOD = ENTER.

would use only the 170 complete cases, while

REGRESSION VARIABLES = var1 var2 var3 var4
/ DEPENDENT = var1
/ METHOD = ENTER
/ MISSING = MEANSUBSTITUTION.

would use all 200 cases. Of course, in the second instance, 30 cases would
have data values that were not observed, but were computed from the val-
ues on other cases, so the validity of the results is open to question. Often,
programmers will run the same analysis with and without mean substitu-
tion to see how much parameter estimates change. The substituted values
created by this method are not written into the data file.

The RMV procedure may be used to substitute mean values for missing
data, and it writes the new values into the data, which may then be used in
any analysis. The command,

RMV newvar1 = smean(var1).

creates the variable newvar1, which will contain the value of var1 if it exists
for that case in the original data set, and the mean value of var1 if var1 is
missing for that case. Table 17.8 shows how this would work for a hypo-
thetical data set. The mean (3.17) of var1 was written into newvar1 for the
two cases where var1 was missing, and otherwise the values were copied
from var1 to newvar1.

It is also possible to write the substitute values into the original variables,
as in the following syntax:

RMV var1 = smean(var1).

129Missing Data in SPSS

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 129

It is possible to control when mean substitution is applied, according to
the number of cases missing on a variable. Suppose you have a scale of five
items and wish to compute a summed-scale score for every case that has
valid values on at least four of the items. Furthermore, you want to substi-
tute a mean value for the one missing item for cases with four valid values.
This may be expressed by the following rules:

1. If a case has valid values for all five items, compute the scale score
from those values.

2. If a case has valid values for four of the five items, use mean substi-
tution for the missing item and compute the scale score from the five
values.

3. If a case has values for less than four items, make it missing on the
scale score.

The steps to carry out this procedure are in the syntax below:

DATA LIST / v1 TO v5 1-5.
BEGIN DATA
11010
1110
101
END DATA.
* Count the number of missing values for v1-v5.
COMPUTE nmis5 = NMISS(v1 to v5).
* Calculate mean values for missing values.
RMV sv1 to sv5 = SMEAN(v1 to v5).

130 File Manipulation and Management in SPSS

Table 17.8 Mean Substitution Using the RMV Command

CASE VAR1 NEWVAR1

1 2.00 2.00

2 5.00 5.00

3 3.00 3.00

4 . 3.17

5 5.00 5.00

6 3.00 3.00

7 1.00 1.00

8 . 3.17

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 130

* Substitute mean values for cases missing exactly one
item.

IF nmis5 = 1 AND MISSING(v1) v1 = sv1.
IF nmis5 = 1 AND MISSING(v2) v2 = sv2.
IF nmis5 = 1 AND MISSING(v3) v3 = sv3.
IF nmis5 = 1 AND MISSING(v4) v4 = sv4.
IF nmis5 = 1 AND MISSING(v5) v5 = sv5.
* Compute the scale using only complete cases,

including substituted values.
COMPUTE scale = v1+v2+v3+v4+v5.
FORMAT nmis5 scale (F2.0).
LIST VAR = nmis5 scale.

This syntax reads a data set in which the first case has complete data, the
second is missing on one variable, and the third is missing on two variables.
It then performs the following tasks:

1. COMPUTE nmis5 == NMISS(v1 to v5): This syntax creates the
variable nmis5, which counts the number of missing variables for
each case.

2. RMV sv1 to sv5 == SMEAN(v1 to v5): This syntax creates five new
variables, sv1 to sv5, which hold mean values for the variables v1 to v5.

3. IF nmis5 == 1 AND MISSING(v1) v1 == sv1 to IF nmis5 == 1 AND
MISSING(v5) v5 == sv5: These commands perform conditional
mean substitution. For each variable v1 to v5, if a case is missing on
exactly one of these variables, the corresponding mean value is sub-
stituted for the mean value. For instance, if a case were missing on v1
only, the value of sv1 would be written into v1.

4. COMPUTE scale == v1++v2++v3++v4++v5: This syntax calculates the
scale variable, whose value is the sum of the values v1 to v5. This syn-
tax takes advantage of the fact that any missing value in an arith-
metic expression will cause the result to be missing (further discussed
in Chapter 22). Therefore, it computes scale only for cases with com-
plete data. Because this command follows the mean substitution pro-
cedure, cases with one missing variable are “complete” in the context
of this command and the variable scale will be computed for them,
while scale will not be computed for cases missing on more than one
variable.

Output from the LIST command, presented in Table 17.9, demonstrates
that scale was calculated for cases that were complete or missing one value,

131Missing Data in SPSS

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 131

132

but not for cases missing more than one value. Note that if blanks are set
equal to zero, there will be no missing values and this syntax will not work
as intended. You can see the current setting for blanks in your system with
the command SHOW BLANKS, and set blanks equal to system-missing
(which will enable the syntax to work correctly) with the command SET
BLANKS == SYSMIS.

File Manipulation and Management in SPSS

Table 17.9 Results of Conditional Mean Substitution

NMISS SCALE

0 3

1 3

2 .

17-Boslaugh.qxd 10/12/2004 3:56 PM Page 132

C H A P T E R 1 8

Using Random
Processes in SPSS

This chapter discusses the use of random processes in SPSS, and the
following topics:

❍ The random-number seed

❍ Generating random distributions

❍ Selecting cases at random

SPSS has a pseudo-random number generator that allows you to generate
random numbers from a specified distribution. Details about the algorithm
used are available on the SPSS Web site (SPSS Technical Support). Pseudo-
random numbers are not truly random, because they are generated by an
algorithm and are dependent on a seed, or starting value, but are
adequate for most purposes where the properties of randomness are desired.

THE RANDOM-NUMBER SEED

The seed value is set at the start of every SPSS session. Its initial value may
vary or be fixed, depending on the installation. To see the seed in use, use
the SHOW SEED command. By default, the seed value changes every time
a random-number series is generated. To keep the same seed value for sev-
eral series, run the SET SEED command before each series and specify the
same seed number, for instance,

SET SEED = 123456789.

133

18-Boslaugh.qxd 10/12/2004 12:59 PM Page 133

134

To have SPSS reset the seed to a random number, use the command,

SET SEED = RANDOM.

GENERATING RANDOM DISTRIBUTIONS

SPSS can generate data from many different distributions, including uni-
form, normal, and chi-square. A complete list may be found in the SPSS
11.0 Syntax Reference Guide (SPSS Inc., 2001), in the chapter on the COM-
PUTE command. Names of the functions used to generate random vari-
ables consist of the prefix RV for “random variable,” a period (.), the name
of or abbreviation for the distribution (e.g., NORMAL or CHISQ), and in
parentheses, the information necessary to create the distribution, such as
the range of a uniform distribution.

The INPUT PROGRAM command may be used to generate a data file
from a specified distribution. The following syntax generates a data set con-
sisting of 30 cases of one variable, id, whose values are generated from a
normal distribution with a mean of 0 and standard deviation of 1:

SET SEED RANDOM.
INPUT PROGRAM.
LOOP id = 1 to 30.
COMPUTE id = RV.NORMAL(0,1).
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
EXE.

You do not need to have a data file open in the SPSS Data Editor window
to run this program, because INPUT PROGRAM creates a new data set.
This type of program can be used in classroom demonstrations, for instance,
to show the effects of sample size on accuracy of estimation. By changing
the second number in the LOOP command, you change the size of the
sample drawn, so LOOP id = 1 to 3000 will generate 3,000 values of id.

RANDOM SELECTION OF CASES

The SPSS command SAMPLE selects cases randomly from the active file.
Sample size can be specified either as the number or the percentage of cases

File Manipulation and Management in SPSS

18-Boslaugh.qxd 10/12/2004 12:59 PM Page 134

from the active file that should be selected. To draw a random sample of
specified size, use code similar to the following:

SAMPLE 30 from 1000.

This will select exactly 30 cases for the sample if there are at least
1,000 cases in the active file. If there are more than 1,000 cases, the sam-
ple will be drawn from the first 1,000 cases only. If there are fewer than
1,000 cases, the sample will be proportionately smaller. For instance, if
there are only 500 cases, approximately 15 will be selected. To select a
proportion of cases rather than a specific number, use code similar to the
following:

SAMPLE .25.

This will select approximately one quarter of the active file. Unless pre-
ceded by the TEMPORARY command, SAMPLE commands are perma-
nent, so nonselected cases are deleted from the active file.

It is also possible to generate random numbers and use them for sam-
pling. The following code creates a uniform random variable random1 with
a value between 0 and 1 for every case in the active file, then uses it to
randomly select half the sample:

COMPUTE random1 = RV.UNIFORM(0,1).
SELECT IF random1 LE .5.

To select a fixed number of cases, use code similar to the following:

COMPUTE random1 = RV.UNIFORM(0,1).
RANK VARIABLES = random1

/ RANK into random2.
SELECT IF (random2 LE 30).

This code selects 30 cases at random from the active file by creating a
uniform random variable, ranking cases on the value of that variable, then
selecting the cases with the 30 lowest ranks.

135Using Random Processes in SPSS

18-Boslaugh.qxd 10/12/2004 12:59 PM Page 135

136

RANDOM GROUP ASSIGNMENT

Cases may be randomly assigned to groups using a random variable. The
following syntax randomly assigns cases within a data file so that approxi-
mately half will be in a treatment group and the other half in a control group:

COMPUTE random = RV.UNIF(0,1).
IF random LE .5 group = 1.
IF random GT .5 group = 2.
VAL LAB group 1 ‘treatment’ 2 ‘control’.
EXE.

RANDOM SELECTION FROM MULTIPLE GROUPS

You can draw equal numbers of cases from several groups within a file,
by ranking each group separately on the value of a random variable. The
following code will draw samples of 25 men and 25 women (identified by
the variable gender):

COMPUTE random = RV.UNIF(0,1).
RANK VARIABLES = random BY gender

/ RANK INTO rank2.
SELECT IF rank2 LE 25.
EXE.

A related circumstance is when cases are members of larger units and
you want to select one case at random from each unit. Suppose you had a
data set composed of individuals within households and each case had a
value on the variable house that identified an individual’s household. The
following syntax ranks individuals randomly within each household and
selects the individual with the lowest rank within his or her household:

COMPUTE random = uniform(1).
RANK VARIABLES = random by house.
SELECT IF rrandom = 1.
EXECUTE.

Note that the SELECT statement uses the default rank variable created
by SPSS, rrandom, which consists of the letter r plus the name of the ranking
variable, random.

File Manipulation and Management in SPSS

18-Boslaugh.qxd 10/12/2004 12:59 PM Page 136

P a r t V

Variables and Variable
Manipulations

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 137

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 138

C H A P T E R 1 9

Variables and
Variable Formats

T his chapter discusses different types of variables and variable formats
used in SPSS, including

❍ String and numeric variables

❍ Scratch variables

❍ Input and output formats

❍ The NUMBER format

❍ The COMMA, DOT, DOLLAR, and PCT formats

Logical variables, which take a value of true or false, are discussed in
Chapter 21.

STRING AND NUMERIC VARIABLES

SPSS uses two types of variables: string and numeric. String variables
are also called alpha or alphanumeric variables, because they can include
both alphabetic characters (letters) and numbers. The following are some
important points about string variables:

1. String variables are stored as a series of codes representing the
individual characters in a character string, but they display as char-
acters, for instance “Smith” or “10 Downing Street.”

2. A string variable cannot be created through a function or procedure,
but must be declared with the STRING command.

139

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 139

140

3. The length of a string variable cannot be changed through the
FORMATS, PRINT FORMATS, or WRITE FORMATS commands.

4. String variables cannot be used in computation.

String variable functions are discussed in Chapter 23.
SPSS differentiates between short string and long string variables.

Unless otherwise specified, references to string variables in this text refer
to short string variables. Some important points about long and short
string variables include the following:

1. The user does not declare string variables as long or short. This
classification is done automatically and depends partly on the
computer and operating system used.

2. The maximum length of a short string variable is typically 8 charac-
ters, while long string variables can hold up to 255 characters.

3. Short string variables can have user-missing values, but long string
variables cannot.

4. Usually, long string variables are used to store lengthy blocks of text,
such as free responses to questions, while short string variables are
used to store values that fall into categories but were entered using
text rather than numbers.

Numeric variables store numeric values and for this reason can be used
in computations. Some important points about numeric variables include
the following:

1. SPSS assumes variables are numeric unless they are declared otherwise.

2. Numeric variables are stored as floating-point numbers (as a base
plus an exponent) but are usually displayed in other formats.

3. Numeric variables can contain only digits, periods, and the minus sign.

4. SPSS can read numeric variables in many different formats, such as
integer binary and zoned decimal. These are described in the chapter
on the DATA LIST command and in the “Variables” section of the
“Universals” chapter in the SPSS11.0 Syntax Reference Guide (SPSS Inc.,
2001). Only the most common formats are discussed in this chapter.

Numeric variable functions are discussed in Chapter 22.

Variables and Variable Manipulations

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 140

SYSTEM VARIABLES

Variables whose names begin with the dollar sign ($) are system variables
and are created automatically by the SPSS system. Commonly used system
variables include

❍ $CASENUM, which is the sequence number of each case in a file.

❍ $SYSMIS, which is the current value assigned to system-missing data.

❍ $TIME, which is the number of seconds from October 14, 1582, to the
present.

You cannot modify system variables, and they cannot be used in proce-
dures, but they can be used in conditional and COMPUTE statements.
Several chapters include syntax using system variables, including
$CASENUM in Chapters 15 and 16 and $TIME in Chapter 24.

SCRATCH VARIABLES

Variables whose names begin with the pound sign (#) are scratch variables.
This type of variable is created by the programmer and is not saved as part
of the data file. Scratch variables are typically used when a variable is
needed during a procedure, such as the counter variable in a LOOP com-
mand, but has no meaning outside that context. Use of scratch variables is
demonstrated in Chapter 25 in conjunction with the LOOP command.

INPUT AND OUTPUT FORMATS

Every variable in SPSS has an input format and an output format. The input
format affects how variables are read, while the output format controls how
values are displayed or written to a file. Output formats are created at the
same time as input formats and are usually identical to input formats at
that time, although they can be changed later. The principal exceptions are
some date formats (discussed in Chapter 24) and numeric variables dis-
played with nonnumeric symbols, such as commas (discussed later in this
chapter). In both cases, the output format may be longer than the input for-
mat, to allow for the maximum length possible for a particular variable.

141Variables and Variable Formats

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 141

142

Output formats control how a variable appears but do not affect its stored
value.

The output format of numeric variables can be changed through the
FORMATS, PRINT FORMATS, and WRITE FORMATS commands. FOR-
MATS is the most general of the three commands because it changes both
print and write formats. The following syntax changes the output format of
the variable var1 to F8.4:

FORMATS var1 (F8.4).

The same basic structure is used for PRINT FORMATS, which affects
how variables are displayed on the monitor or printed, and WRITE FOR-
MATS, which controls how variables are written with the WRITE com-
mand. All three format commands take effect immediately.

Several variables may be formatted in the same FORMATS command, and
they may be assigned different formats. It is optional to separate groups of
variables by a slash (/), so the two commands below will function identically:

FORMATS var1 (F2.0) var2 var3 (F4.1).
FORMATS var1 (F2.0) / var2 var3 (F4.1).

The new format should include enough digits to display the largest value
of the variable, including nonnumeric characters, such as commas. If it
does not, SPSS will try to shorten the variable by dropping punctuation
characters and decimal places. If the value is still too long to be displayed in
the indicated format, a series of asterisks (***) will be displayed in its place.
You can see the output formats of the variables in your file with the DIS-
PLAY VARIABLES command. Most formats are easy to recognize because
they follow these rules:

❍ Most numeric variable formats have the form Fw.d, where w is the
variable width and d is the number of digits to the right of the decimal
point. The F stands for floating point, the format in which numeric vari-
ables are stored.

❍ String variable formats have the form Aw, where w is the variable
width. The A stands for alphanumeric, which is a synonym for string in
this context.

Variables and Variable Manipulations

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 142

❍ Date and time variable formats have the form NAMEw or NAMEw.d,
where NAME is the name of the specific format, w is the variable width,
and d is the number of decimal places. Date and time variables are
discussed further in Chapter 24.

❍ A few numeric variable formats have the form NAMEw or NAMEw.d,
where NAME is the name of the specific format, w is the variable width,
and d is the number of decimal places. Examples include the NUMBER,
DOT, DOLLAR, PCT, and COMMA formats discussed later in this
chapter.

Table 19.1 may make these rules clearer. There are many other output
formats available in SPSS. They are discussed in the SPSS 11.0 Syntax
Reference Guide (SPSS Inc., 2001), in the FORMATS chapter and in the
“Date and Time” section of the “Universals” chapter.

THE NUMBER FORMAT

Numeric variables stored with floating-point formats, such as F8.2, do not
have leading zeros (zeros to the left of the meaningful digits, such as 0082).
This is not a problem for numbers used in calculation, but it is a problem if
you want to display a numeric variable with leading zeros. For instance, you
may want to store an identification number as a numeric variable and also
want this variable to be the same length for all cases. If this variable had val-
ues from 1 to 200, values less than 100 would need to be displayed with
leading zeros, so 1 would be displayed as 001 and 20 as 020. The NUMBER
format will allow you to do this because it automatically pads numeric
variables with leading zeros up to the length of the variable. The following
syntax illustrates use of the NUMBER format:

143Variables and Variable Formats

Table 19.1 Examples of SPSS Formats

Format Meaning Example

F2 Numeric, width 2, no decimal places 10

F4.2 Numeric, width 4, 2 decimal places 10.25

A3 String, width 3 abc

ADATE8 American date (mm/dd/yy), 2-digit year 01/20/03

PCT 6.2 Percent, width 6, 2 decimal places 25.25%

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 143

144

* Using the NUMBER format.
DATA LIST FREE / var1 var2.
BEGIN DATA
1 1
2 2
10 10
100 100
END DATA.
FORMAT var1 (N3.0).
LIST VARS = ALL.

Both var1 and var2 are read in the default numeric format, usually F8.2.
The FORMAT command changes the format of var1 to NUMBER format
with a width of 3 and no decimal places (N3.0). This difference is clear in
Table 19.2, which displays the output from the LIST command. The values
of var1 for the first three cases are padded with leading zeros so they have a
width of 3, while the fourth case has three meaningful digits, so it is not
padded. The values of var2 appear in the default F8.2 format.

Variables and Variable Manipulations

Table 19.2 The NUMBER and F8.2 Formats Contrasted

VAR1 VAR2

001 1.00

002 2.00

010 10.00

100 100.00

THE COMMA, DOT, DOLLAR, AND PCT FORMATS

The COMMA, DOT, DOLLAR, and PCT formats allow SPSS to perform
two tasks:

1. Read numeric data containing certain nonnumeric symbols (commas,
dollar signs, and percent signs)

2. Format variables using the specified symbols consistently, whether
they were present in the original data or not

The DOT command performs a third task:

3. Interpret periods within data as the thousands separator, not the
decimal point

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 144

Each of these formats may be used in two ways:

1. In a DATA LIST command, to control how raw data are read

2. In a FORMATS command, to control how variables are displayed

When used in the DATA LIST command, these formats should be used
with the FIXED option and the variable width should be long enough to
accommodate the extra characters (commas, dollar signs, etc.). These
formats are demonstrated in the syntax below:

* Using the COMMA, DOT, DOLLAR, AND PERCENT FORMATS.
DATA LIST FIXED / var1 1-10 (COMMA) var2 11-20 (DOT)

var3 21-30
(DOLLAR) var4 31-40 (PCT).
BEGIN DATA
100,000 100.000 $100,000 10%
200000 200000 200000 20
END DATA.
LIST VAR = ALL.

Output from the LIST command is presented in Table 19.3. Note that
these input formats also standardize the output formats: The variables for
the second case appear with commas, decimal points, dollar signs, and per-
cent signs, although those symbols were not present in the raw data. The
values of var2 are 100,000 and 200,000 because in the DOT format, the
period is the thousands separator, not the decimal point.

145Variables and Variable Formats

Table 19.3 Data Read Using the COMMA, DOT, DOLLAR,
and PERCENT Formats

The following syntax demonstrates using the COMMA, DOT, DOLLAR,
and PCT formats to change the output format of numeric variables in an
SPSS system file:

VAR1 VAR2 VAR3 VAR4

100,000 100.000 $100,000 10%

200,000 200.000 $200.000 20%

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 145

146

DATA LIST FREE / v1 v2 v3 v4.
BEGIN DATA
1000 2000 300 40.0
END DATA.
LIST VAR = ALL.
FORMAT v1 (COMMA8) v2 (DOT8) v3 (DOLLAR8) v4 (PCT6.1).
LIST VAR = ALL.

Table 19.4 displays the output from the first LIST command, which
shows the variables in the default F8.2 format. Table 19.5 displays the out-
put from the second LIST command, after the specific formats have been
applied.

Variables and Variable Manipulations

Table 19.5 Data Displayed in the COMMA, DOT, DOLLAR,
and PERCENT Formats

V1 V2 V3 V4

1,000 2.000 $300 40.0%

Table 19.4 Data Displayed in the F8.2 Formats

V1 V2 V3 V4

1000.00 2000.00 300.00 40.00

19-Boslaugh.qxd 10/12/2004 3:57 PM Page 146

C H A P T E R 2 0

Variable and
Value Labels

This chapter discusses variable names and labels and value labels.
Specific topics include

❍ Rules about variable names in SPSS

❍ Systems for naming variables

❍ Adding variable labels

❍ Adding value labels

❍ Controlling whether labels are displayed in tables

❍ Applying the data dictionary from a previous data set

Before SPSS 12.0, names of SPSS variables were limited to 8 characters. Even
though Version 12.0 allows variable names of up to 64 characters, many pro-
grammers will continue to adhere to the 8-character limit, at least for the near
future, so their programs will be compatible with earlier versions of SPSS.
Besides the length limit, the following rules apply to SPSS variable names:

1. They must begin with a letter or one of the symbols @, #, or $.

2. Only letters, numbers, the period (.), underscore (_), and the $, #,
and @ symbols can be used within variable names.

3. Spaces are not allowed within variable names.

147

RULES ABOUT VARIABLE NAMES IN SPSS

20-Boslaugh.qxd 10/12/2004 1:01 PM Page 147

148

When files imported from other programs have variable names that
violate these rules, SPSS alters the names according to the following:

1. Variable names longer than eight characters will be truncated to
eight characters.

2. Names containing spaces have an underscore added where the
spaces were.

3. Names violating other SPSS naming conventions or that would
duplicate other names after truncation are renamed v1, v2, and so
on according to their positions in the original file.

SYSTEMS FOR NAMING VARIABLES

Every variable in an SPSS data set has a name, even if it is the default
name assigned by the system, such as var00001, var00002, and so on in
the current Macintosh and PC versions of SPSS. Most programmers
choose to assign names to the variables in their data sets. There are two
schools of thought on variable names: Some people believe the name itself
should be informative, while others prefer to use simple consecutive vari-
able names (such as v1, v2, v3). The principal advantage to using mean-
ingful names is that they suggest what the variable means. Consider
how easy it is to grasp the meaning of the first line of code below, while
the second requires reference to a codebook to find the meaning of the
variables:

COMPUTE income = wages + bonus + tips.
COMPUTE v4 = v1 + v2 + v3.

Using consecutive variable names has two principal advantages: They
are easier to type, and it is easier to find variables in a questionnaire or other
document if they are consecutively numbered.

SPSS variable names are not case-sensitive: SPSS will treat VAR1
and var1 as the same variable name. Both the Macintosh and PC versions of
SPSS translate variable names to capital letters in output tables, so this book
follows that convention in presenting output, although variable names are
presented in lowercase letters in syntax and in narrative text.

Variables and Variable Manipulations

20-Boslaugh.qxd 10/12/2004 1:01 PM Page 148

ADDING VARIABLE LABELS

Variable labels allow you to attach descriptive text to variables and can be
displayed in the output from some procedures as well as or instead of variable
names. The syntax below attaches the label ‘Pupil’ to v1 and ‘School’ to v2:

VARIABLE LABELS v1 ‘Pupil’ / v2 ‘School’.

If multiple variables are labeled with a single command, they must be
separated by slashes, as in the example above. The apostrophes around the
variable labels are optional unless the label continues over more than one
line. Variable labels may be as long as 255 characters, although they will be
truncated in the output from some procedures. Variable labels become part
of the dictionary attached to the data file, and when the command VARI-
ABLE LABELS is applied to a variable that had a label previously, the old
label will be replaced by the new. Any character, including blanks, can be
included within a variable label. If a label includes an apostrophe, the label
must be enclosed with quotation marks.

Variable labels can be continued across command lines, but each seg-
ment of the label must be enclosed in apostrophes or quotation marks, and
a plus sign (+) must appear at the beginning of each continuation line,
followed immediately by the continuation of the label. These rules are illus-
trated in the following example:

VARIABLE LABELS exam1 “First exam taken in subject’s”
+” freshman year”.

ADDING VALUE LABELS

Sometimes, the meaning of values in a variable is clear. For instance, the
value ‘45’ in a variable labeled age probably refers to a 45-year-old person.
However, often values are codes that need further explanation. For
instance, ‘1’ may signify ‘Yes’ and ‘0’ may signify ‘No.’ Using numeric codes
rather than text fields has several advantages, including easier data entry.
The major disadvantage of using numeric codes is that their meaning is not

149Variable and Value Labels

20-Boslaugh.qxd 10/12/2004 1:01 PM Page 149

self-evident. The VALUE LABELS command allows you to attach meaningful
labels to numeric codes, and this information is added to the dictionary for
the data file. The following syntax adds the label ‘Yes’ to the value 1 and
‘No’ to the value 0 for the variable v1 to v5.

VALUE LABELS v1 to v5 1 ‘Yes’ 0 ‘No’.

Value labels may be applied to numeric or short string variables but not
to long string variables (long and short string variables are discussed in
Chapter 19). Value labels can hold up to 60 characters, although only
20 characters will be displayed by most SPSS procedures. As with variable
labels, if a value label is continued over several lines, each segment must be
enclosed in quotation marks or apostrophes and a plus (+) used before each
segment except the first. Value labels must be enclosed in apostrophes or
quotation marks, and if labels are being added to a short string variable, the
values themselves must also be enclosed in quotation marks or apostrophes.

A VALUE LABELS command deletes existing value labels for the variables
named. To add additional value labels without deleting those that already exist,
use the ADD VALUE LABELS command. The syntax below uses the VALUE
LABELS and ADD VALUE LABELS commands for the same variable:

VALUE LABELS v1 0 ‘No’.
ADD VALUE LABELS v1 1 ‘Yes’.

This syntax will result in variable v1 having the label ‘No’ for value 0 and
‘Yes’ for value 1.

CONTROLLING WHETHER
LABELS ARE DISPLAYED IN TABLES

If you have attached labels to variables and values in a data file, you can
have them appear in tabular output instead of or as well as the variable
names and values. This is accomplished through the SET command. For
instance,

SET TVARS = LABELS.

150 Variables and Variable Manipulations

20-Boslaugh.qxd 10/12/2004 1:01 PM Page 150

will have the variable labels rather than the names appear, and,

SET TNUMBERS = BOTH.

will have both values and value labels appear. TNUMBERS and TVALUES
stand for table numbers and table values, respectively. Despite the name, the
TNUMBERS option applies to string values as well. The options for vari-
ables are NAMES, LABELS, or BOTH; for values, they are VALUES,
LABELS, or BOTH. You can find the current settings with the command,

SHOW TVARS TNUMBERS.

APPLYING THE DATA DICTIONARY
FROM A PREVIOUS DATA SET

The APPLY DICTIONARY command allows you to copy dictionary infor-
mation (variable labels, value labels, missing values, print and write formats,
and weights) from an SPSS system file (the source file) to a new file (the target
file). The target file must be the active file when the APPLY DICTIONARY
command is executed. The following syntax will apply the dictionary
information from the system file source.sav to the active file:

APPLY DICTIONARY FROM ‘source.sav’.

The following rules govern how dictionary information is applied to the
target file:

1. Dictionary information will be applied to every variable in the target
file that has the same name and type as a variable in the source file.
Variables in the target file that have no matches in the source file are
not changed.

2. If a variable has a label in the target file but not in the source file or
if the source file label is a blank, the label from the target file will be
retained.

151Variable and Value Labels

20-Boslaugh.qxd 10/12/2004 1:01 PM Page 151

152

3. Value labels for each variable are treated as a set: If a variable in the
source file has any value labels, the set of labels from the source file
will replace the set of value labels in the target file.

4. Missing-value designations for each variable are treated as a set: If a
variable in the source file has any missing-value designations, they
will replace the set of missing values designated in the target file for
that variable.

5. Print and write formats of matched numeric variables in the target
file are changed to those of the source file, while string variables are
left unchanged.

6. Weight information from the target file is retained if the source file is
unweighted, and copied from the source file if it is weighted, and the
weight variable from the source file is matched in the target file.

Variables and Variable Manipulations

20-Boslaugh.qxd 10/12/2004 1:01 PM Page 152

C H A P T E R 2 1

Recoding and
Creating Variables

This chapter discusses different ways to recode variables in SPSS and
ways to create new variables. Specific topics discussed include the

following:

❍ The IF statement

❍ Relational operators

❍ Logical variables

❍ Logical operators

❍ Creating dummy variables

❍ The RECODE and AUTORECODE commands

❍ Converting variables from string to numeric or numeric to string

❍ Counting the occurrence of values across variables

❍ Counting the occurrence of multiple values in one variable

❍ Creating a cumulative variable

Frequently, you will want to change the values of certain variables in a
data set, for instance, to categorize continuous values or reverse the scoring
on questionnaire items. You may also wish to create new variables using the
information contained in other variables. For instance, you may want to
create a set of indicator or dummy variables that reflect the information
contained in a single variable with many categories. SPSS offers several

153

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 153

154

different methods of recoding values, most notably the IF and RECODE
commands. Other ways to recode variables are presented in Chapter 25,
which discusses the DO IF, DO REPEAT, and LOOP commands.

THE IF STATEMENT

An IF statement or command specifies an action to be taken, conditional
on the value of some logical expression. An IF statement has three compo-
nents: a relational or logical expression, a target variable, and an assign-
ment expression. In the following syntax,

IF (var1= 1 AND var2 > 50) group = 2.

the logical expression is var1 == 1 AND var2 >> 50, the target variable is
group, and the assignment expression is == 2. The logical expression may be
either true or false. If it is true, the target variable will be recoded according
to the assignment expression. If it is false, the assignment expression will
not be executed and the target variable either retains its current value (if
the target variable existed before the IF command was executed) or is miss-
ing (if the target variable did not).

The terms logical expression or relational expression are often used syn-
onymously. In this context, they refer to an expression that states a relation-
ship between two entities and may be either true or false. In this example,
we used a compound expression, which consists of two relational statements
(var1 == 1 and var2 >> 50) joined by a logical operator (AND). The paren-
theses are optional in this case but were included to make the syntax easier
to read. Relational statements and logical operators are discussed further
later in this chapter. However, their meaning is often intuitive: In this case,
the logical statement var1 == 1 AND var2 >> 50 is true if both conditions
are met (i.e., if the value of var1 is equal to 1 and the value of var2 is greater
than 50).

RELATIONAL OPERATORS

A relational operator states a relationship between variables or constants,
for instance, that they are equal or that the first is greater than the second.
Table 21.1 displays the relational operators that are used with the IF

Variables and Variable Manipulations

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 154

The following rules apply to relational expressions in SPSS:

❍ String variables can be compared only to string variables or string
constants, and numeric variables to numeric variables or numeric
constants.

❍ String variables cannot be created in a logical expression.

❍ String values must be enclosed in apostrophes or quotation marks.

❍ Each relational expression must be completely stated, so the first line of
the following syntax is incorrect, while the second is correct:

IF state = “ND” OR “SD” region = “North
Central”. [WRONG]

IF state = “ND” OR state = “SD” region = “North
Central”.

The following syntax demonstrates the use of relational operators in IF
statements:

command. The symbols and abbreviations are interchangeable, so the two
statements below will function identically:

IF var1 GT 25 var2 EQ 1.
IF var1 > 25 var2 = 1.

155Recoding and Creating Variables

Table 21.1 SPSS Relational Operators

Meaning Symbol Abbreviation

Equal to = EQ

Less than < LT

Greater than > GT

Not equal to* <> NE

Less than or equal to <= LE

Greater than or equal to >= GE

* On some systems you can use the symbols ∼= for “Not equal to.”

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 155

* Relational operators.
DATA LIST FREE / var1.
BEGIN DATA
25 26 27 28 29 30
END DATA.
IF var1 < 25 r1 = 1.
IF var1 <= 25 r2 = 1.
IF var1 NE 28 r3 = 1.
IF var1 GE 29 r4 = 1.
FORMATS var1 to r4 (F2.0).
LIST VAR = ALL.

In this syntax, if a logical expression is true, the outcome variable (r1, r2,
r3, or r4) is assigned a value of 1. If the logical expression is false, the out-
come variable is missing. The first logical expression (var1 << 25) is false for
all values in the data set, so the assignment expression r1 == 1 is never exe-
cuted and all cases are missing on r1. The logical expression of the second
IF statement (var1 << == 25) is true for the first case, so that case has a value
of 1 for r2, while the other cases are missing on r2. Coding for r3 and r4
follows the same pattern, as can be seen in Table 21.2, which displays the
output from the LIST command.

LOGICAL VARIABLES

Logical variables take the value 1 if true, 0 if false, and missing if
they can’t be evaluated. The syntax below creates a set of logical vari-
ables log1 to log4, analogous to the variables r1 to r4 in the previous
syntax:

156 Variables and Variable Manipulations

Table 21.2 Variables Created With IF Statements

VAR1 R1 R2 R3 R4

25 . 1 1 .

26 . . 1 .

27 . . 1 .

28

29 . . 1 1

30 . . 1 1

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 156

The fact that 1 = true and 0 = false for logical variables can be used to
create new variables. Suppose you work for a health insurance company
and have a data file that identifies claims by two variables: days, which is
the number of days claimed, and type, which identifies the type of claim.
For instance, a particular claim might be for 5 days of inpatient hospital
services or 1 day of outpatient services. The syntax below creates new
variables that contain the number of days claimed for each type of service:

* Creating new variables using logical variables.
DATA LIST FREE / days (F2.0) type (A).
BEGIN DATA
1 I

DATA LIST FREE / var1.
BEGIN DATA
25 26 27 28 29 30
END DATA.
COMPUTE log1 = var1 < 25.
COMPUTE log2 = var1 <= 25.
COMPUTE log3 = var1 NE 28.
COMPUTE log4 = var1 GE 29.
FORMAT ALL (F2.0).
LIST VAR = ALL.

Table 21.3, which presents the results of the LIST command, is identical
to Table 21.2, except that missing values in Table 21.2 have the value 0 in
Table 21.3. This is because a logical variable with the value of false (i.e.,
that was created by a false logical expression), takes the value of 0.

157Recoding and Creating Variables

Table 21.3 Logical Variables Created With the COMPUTE Command

VAR1 LOG1 LOG2 LOG3 LOG4

25 0 1 1 0

26 0 0 1 0

27 0 0 1 0

28 0 0 0 0

29 0 0 1 1

30 0 0 1 1

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 157

LOGICAL OPERATORS

Logical operators, also known as Boolean operators, are used to combine
relational or logical statements into complex logical expressions. When
several relational statements are linked in a logical expression, the truth
or falsity of the entire expression is evaluated. Table 21.5 presents the
logical operators that can be used with the IF command.

158

3 I
6 O
10 I
5 O
END DATA.
COMPUTE indays = days*(type = ‘I’).
COMPUTE outdays = days*(type = ‘O’).
FORMAT indays outdays (F2.0).
LIST VARS = ALL.

This syntax creates two new variables: indays, which holds the
number of inpatient days for a particular claim, and outdays, which
holds the number of outpatient days for a claim. The logical value of the
type == ‘I’ and type == ‘O’ statements control the creation of the indays
and outdays variables. For instance, for the first case, the logical state-
ment type == ‘I’ was true, so the value of days was multiplied by 1 and
the result written into indays. The logical statement type == ‘O’ was false
for the first case, so the value of days was multiplied by 0 and the result
written into outdays. Output from the LIST command is displayed in
Table 21.4.

Variables and Variable Manipulations

Table 21.4 Variables Created Using Logical Variables as Multipliers

DAYS TYPE INDAYS OUTDAYS

1 I 1 0

3 I 3 0

6 O 0 6

10 I 10 0

5 O 0 5

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 158

The basic rules governing the evaluation of complex logical statements
are simple:

❍ For an AND statement to be true, all parts must be true.

❍ For an OR statement to be true, it suffices for one part to be true.

SPSS evaluates relational statements joined by Boolean operators, as
displayed in Table 21.6. Table 21.7 displays how SPSS evaluates logical
expressions including missing data.

159Recoding and Creating Variables

Table 21.5 SPSS Logical Operators

OPERATOR SYMBOL* MEANING

AND & and

OR | or

NOT ~ not

Table 21.6 SPSS Evaluation of Logical Expressions

A B relational statements values outcome

30 25 (A=30) AND (B=25) true AND true true

30 25 (A=30) AND (B=30) true AND false false

30 25 (A=20) AND (B=30) false AND false false

30 25 (A=30) OR (B=30) true OR false true

30 25 (A=20) OR (B=20) false OR false false

Table 21.7 SPSS Evaluation of Logical Expressions Including Missing
Data

A B C D logical statements values outcome

30 25 . . (A=30) AND (C=25) true AND missing missing

30 25 . . (C=30) AND (D=25) missing AND missing missing

30 25 . . (C=30) AND (B=30) missing AND false false

30 25 . . (A=30) OR (C=25) true OR missing true

30 25 . . (A= 20) OR (C=25) false OR missing missing

30 25 . . (C= 20) OR (D=25) missing OR missing missing

* ~ is not available on all systems.

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 159

As mentioned earlier, parentheses are not always required in logical
statements, but they can clarify the meaning of the syntax. When two or
more logical operators are used within a single statement, parentheses can
be used to change the order of operations. SPSS evaluates the logical state-
ments within a command in the following order:

1. NOT

2. AND

3. OR

It is possible to rely on the order of operations in complex logical state-
ments, but using parentheses can clarify syntax. For instance, the
following two statements are equivalent:

a = 1 AND b = 2 OR c = 3 AND D = 4.
(a = 1 AND b = 2) OR (c = 3 AND D = 4).

but adding the parentheses makes it clear what the programmer intended
and removes any suspicion that the following statement may have been
intended instead:

a = 1 AND (b = 2 OR c = 3) AND D = 4.

CREATING DUMMY VARIABLES

Often, a data set contains variables that need to be recoded as a series of
indicator or dummy variables. These are variables that indicate the absence
or presence of some characteristic. For instance, you may have a variable
named race, with three categories: 1 = White, 2 = Black, 3 = Other. The val-
ues of this variable have meaning only at the nominal level, as labels indi-
cating what racial group a person identifies with. To use the information
contained in this variable in a regression equation, you need to recode it
into dummy variables. There are different schemes to accomplish this type
of recoding. A simple method is illustrated here, in which 1 indicates the
presence of a characteristic and 0 its absence. We will create three new
variables, White, Black, and Other, each with a value of 1 if that category

160 Variables and Variable Manipulations

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 160

THE RECODE AND AUTORECODE COMMANDS

The RECODE command allows you to recode values within a variable or
on multiple variables, also known as the input variables, and can write
the recoded values to new variables, also known as target variables. In the
RECODE statement that follows, var1 and var3 are the input variables;
the assignment statements (2==0) (ELSE == COPY) specify how they should
be recoded; and var1r and var2r are the target variables:

applies to the case, and 0 otherwise. The following syntax accomplishes this
using logical variables:

DATA LIST FREE / race.
BEGIN DATA
1 1 2 3 3 2 2 1
END DATA.
COMPUTE White = (race = 1).
COMPUTE Black = (race = 2).
COMPUTE Other = (race = 3).
FORMAT race to Other (F2.0).
LIST VAR = ALL.

Results of the LIST command are presented in Table 21.8. The DO
REPEAT command can also be used to create dummy variables, as
discussed in Chapter 25.

161Recoding and Creating Variables

Table 21.8 Dummy Variables Created Using Logical Statements

RACE WHITE BLACK OTHER

1 1 0 0

1 1 0 0

2 0 1 0

3 0 0 1

3 0 0 1

2 0 1 0

2 0 1 0

1 1 0 0

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 161

162

RECODE var1 var2 (2=0) (ELSE = COPY) INTO var1r var2r.

Once this code is executed, any case with a value of 2 on var1 will have
a value of 0 on var1r, while otherwise var1 and var1r will have the same
values. The same rules apply to var2r. Values for string variables must be
enclosed in quotes or apostrophes, for example,

RECODE string1 string2 (‘A’ = ‘1’) (‘B’ = ‘2’).

This syntax does not name target variables, so the values of string1 and
string2 will be overwritten (i.e., replaced by the new values).

The keywords LO or LOWEST, HI or HIGHEST, and THRU can be used
to specify value ranges for numeric variables. In the example below,
the acceptable range of values for var1 and var2 is 1 through 3, so values
outside that range are recoded as system-missing:

DATA LIST FREE / var1 var2.
BEGIN DATA
0 1 1 3 1 4 2 2
END DATA.
LIST VAR = ALL.
RECODE var1 var2 (LO THRU .99 = sysmis) (3.01 THRU HI

= SYSMIS)
(ELSE = COPY) into var1x var2x.
FORMATS ALL (F2.0).
LIST VAR = var1 var1x var2 var2x.

Results from the LIST command are presented in Table 21.9. After recod-
ing, the target variables are missing for the out-of-range values in the first
and third cases, and otherwise have the same values as the input variables.

Variables and Variable Manipulations

Table 21.9 Data With Out-of-Range Values Recoded to MISSING

VAR1 VAR1X VAR2 VAR2X

0 . 1 1

1 1 3 3

1 1 4 .

2 2 2 2

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 162

The AUTORECODE command automatically assigns consecutive
integers to the values of input variables and writes the new values to target
variables. Input variables for AUTORECODE can be either string or
numeric, but target variables are always numeric. The value labels or values
from the original variables become value labels in the target variables.
A common use of AUTORECODE is to create consecutive integer values
for variables to be used in procedures such as ONEWAY or ANOVA. The
following syntax demonstrates the use of AUTORECODE:

* Demonstrating the AUTORECODE command.
DATA LIST FREE / schoolid (F2.0) status (A15).
BEGIN DATA
5 Dropout
5 Graduated
17 Dropout
17 Transferred
32 Graduated
32 Graduated
32 Transferred
END DATA.
AUTORECODE schoolid status / INTO rschool rstatus.
LIST VAR = schoolid rschool status rstatus.

Results of the LIST command are presented in Table 21.10. The input
variables are schoolid and status, and the target variables are rschool and
rstatus. Autorecode values are assigned by the sort order of the input
values. For instance, for the string variable status, the value ‘Dropout’
was autorecoded to 1 because it comes first in alphabetical order. For the
numeric variable schoolid, the value 5 was autorecoded to 1 because it
comes first in numerical order.

163Recoding and Creating Variables

Table 21.10 Variables Created With the AUTORECODE Command

SCHOOLID RSCHOOL STATUS RSTATUS

5 1 Dropout 1

5 1 Graduated 2

17 2 Dropout 1

17 2 Transferred 3

32 3 Graduated 2

32 3 Graduated 2

32 3 Transferred 3

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 163

Converting string variables to numeric is more complicated because not
all valid string values are valid numeric values. The simplest case is con-
verting string variables that include only digits (i.e., representations of
numbers, rather than alphabetic or other characters). Two ways to perform
this conversion are demonstrated in the following syntax:

164

CONVERTING VARIABLES FROM
NUMERIC TO STRING OR STRING TO NUMERIC

It is easy to convert a variable from numeric to string variable, because all
numeric values are valid string values. The following code demonstrates
this process:

* Converting numeric variables to string.
DATA LIST FREE / var1 (F2.0).
BEGIN DATA
1 2 14 5 17
END DATA.
STRING svar1 (A2).
COMPUTE svar1 = STRING(var1,F2.0).
LIST VAR = ALL.

This code creates a data set with one numeric variable, var1, then
uses the string function to convert it to the string variable svar1. The
format in the STRING function (F2.0) is that of the source variable,
not the target variable. Output from the LIST command is presented in
Table 21.11.

Variables and Variable Manipulations

Table 21.11 Numeric Variable Converted to String

VAR1 SVAR1

1 1

2 2

14 14

5 5

17 17

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 164

* Converting string variables to numeric (1).
* The easy case, when the string variables contain only

digits.
DATA LIST FREE / svar (A2).
BEGIN DATA
1 2 14 5 17
END DATA.
* First method.
RECODE svar (CONVERT) INTO num1.
* Second method.
COMPUTE num2 = NUMBER(svar,F2.0).
FORMATS num1 num2 (F2.0).
LIST VAR = ALL.

This syntax creates a data set with one string variable, svar, then uses two
different techniques to convert it into the numeric variables num1 and
num2. The first method uses a RECODE statement with the CONVERT
keyword, which specifies that the string values in svar should be converted
to numeric values before being written to the variable num1. It is not nec-
essary to name specific values or use the keywords ELSE == COPY in this
case. The second method uses a COMPUTE command with the NUMBER
function. Although the argument to the NUMBER function is the source
string variable (svar), the format specified (F2.0) is that of the target
numeric variable. Output from the LIST is presented in Table 21.12.

The two methods demonstrated above for converting string variables to
numeric work only for string values that are representations of numbers.
To have numeric values assigned to string values such as ‘A’ or ‘+,’ you
must use the RECODE command and specify how to translate values
between the target and source variables. This is demonstrated in the
following syntax:

165Recoding and Creating Variables

Table 21.12 String Variable Converted to Numeric (1)

SVAR NUM1 NUM2

1 1 1

2 2 2

14 14 14

5 5 5

17 17 17

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 165

COUNTING OCCURRENCES
OF VALUES ACROSS VARIABLES

The COUNT command allows you to create a variable that counts the
number of occurrences of a value or values across two or more vari-
ables. For instance, you may have a set of 10 variables representing data
from a questionnaire, each with the possible values 1 “Strongly agree,”
2 “Agree,” 3 “No opinion,” 4 “Disagree,” and 5 “Strongly disagree.” The
following code will create the count variable strdis, which counts how
many times each subject chose the response “Strongly disagree” (value
5) on var1 to var10:

* Creating a COUNT variable.
DATA LIST FREE / id v1 to v10.

166

* Converting string variables to numeric (2).
* The more difficult case, when the strings include

letters and symbols.
DATA LIST FREE / svar2 (A2).
BEGIN DATA
1 3 A 2 #
END DATA.
RECODE svar2 (‘A’= 10) (‘#’= 11) (CONVERT) INTO num3.
LIST VAR = ALL.

The CONVERT keyword on the RECODE command will translate
representations of numbers in the variable svar2 to numbers in the variable
num3. Conversion of the other symbols is specified by the (‘A’== 10) and
(‘#’== 11) assignment statements. Output from the LIST command is
presented in Table 21.13.

Variables and Variable Manipulations

Table 21.13 String Variable Converted to Numeric (2)

SVAR2 NUM3

1 1.00

3 3.00

A 10.00

2 2.00

11.00

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 166

COUNTING THE OCCURRENCE
OF MULTIPLE VALUES IN ONE VARIABLE

The ANY function searches for the appearance of specified values within one
variable and takes the logical value of true or 1 if any of them are found, and
false or 0 otherwise. The following two commands are equivalent:

IF ANY(var1,2,4,6,8) flag = 1.
IF var1 = 2 OR var1 = 4 OR var1 = 6 OR var1 = 8
flag = 1.

The first argument to the ANY function is the name of the variable to be
searched (var1 in the above example), and the remaining arguments are
the values to be searched for, separated by commas (2,4,6,8 in the above
example). When the ANY function is used with a string variable, values to
be searched for must be enclosed in quotation marks or apostrophes, the
target variable must be string, and the target value must be enclosed in
quotation marks or apostrophes, as in the following example:

BEGIN DATA
1 1 1 2 3 2 1 3 4 3 4
2 2 2 3 4 1 5 5 4 5 4
3 2 3 3 5 2 4 4 5 5 5
END DATA.
COUNT strdis = v1 TO v10 (5).
FORMATS id TO strdis (F2.0).
LIST VAR = id strdis.

Results from the LIST command are displayed in Table 21.14. The first
subject never chose “Strongly disagree,” the second chose it three times,
and the third chose it four times.

167Recoding and Creating Variables

Table 21.14 Data Set With Count Variable

ID STRDIS

1 0

2 3

3 4

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 167

168

IF ANY(string1,”a””c”) string2 = “1”.

CREATING A CUMULATIVE VARIABLE

There are several ways to create a cumulative variable containing the sum
of the values of some other variable across many cases. One method is to
use the LEAVE command, which keeps the value of the cumulative variable
from being reinitialized as each new case is read. This technique is demon-
strated in the following syntax, which creates a cumulative variable, cum-
sales, containing the sum of sales for all cases in the data set:

* Creating a cumulative variable with the LEAVE
command.

DATA LIST FREE / id sales.
BEGIN DATA
1 5 2 10 3 5 4 20 5 10
END DATA.
COMPUTE cumsales = cumsales + sales.
LEAVE cumsales.
EXE.
FORMAT ALL (F2.0).
LIST VAR = ALL.

This syntax writes the value of sales for the first case to cumsales, then
adds the value of sales to cumsales as each new case is read. When the first
case is read, the value of cumsales is 5, the same as the value of sales for the
first case. When the second case is read, the value of cumsales becomes 15,
which is the sum of the values of sales for the first and second cases. When
the final case in the file is read, the value of cumsales is 50, equal to the sum
of sales for all the cases in the file. Output from the LIST command is
presented in Table 21.15.

Variables and Variable Manipulations

Table 21.15 Data Set With Cumulative Variable

ID SALES CUMSALES

1 5 5

2 10 15

3 5 20

4 20 40

5 10 50

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 168

Another way to create a cumulative variable is with the LAG function, as
demonstrated in the following syntax:

* Creating a cumulative variable with the LAG function.
DATA LIST FREE / id sales.
BEGIN DATA
1 5 2 10 3 5 4 20 5 10
END DATA.
DO IF $CASENUM = 1.
COMPUTE cumsales = sales.
ELSE.
COMPUTE cumsales = LAG(cumsales) + sales.
END IF.
EXE.
FORMAT ALL (F2.0).
LIST VAR = ALL.

The output produced by the LIST command will be identical to that
presented in Table 21.15. This syntax uses the LAG function to add the
value of sales for each case to the value of cumsales, so that when all cases
are read, cumsales equals the total value of sales for all cases. The LAG
function is discussed further in Chapter 16.

169Recoding and Creating Variables

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 169

21-Boslaugh.qxd 10/12/2004 4:01 PM Page 170

C H A P T E R 2 2

Numeric Operations
and Functions

This chapter discusses numeric operations and functions in SPSS,
including

❍ Arithmetic operations

❍ Mathematical and statistical functions

❍ Missing values in arithmetic operations and functions

❍ Domain errors

❍ A substring-like technique for numeric variables

This chapter introduces the concept of a function in SPSS and discusses
operations and functions for numeric variables. Functions for string vari-
ables are discussed in Chapter 23.

The basic mathematical operations of addition, subtraction, multiplica-
tion, division, and exponentiation can be written into SPSS syntax using
symbols called operators. The operators available in SPSS are presented in
Table 22.1.

171

ARITHMETIC OPERATIONS

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 171

172

Use of these operators in COMPUTE statements is fairly intuitive, as is
demonstrated in the following syntax:

DATA LIST FREE / v1 v2 v3 v4.
BEGIN DATA
1 2 3 4
5 6 7 8
END DATA.
COMPUTE add = v1 + v2.
compute add2 = v1 + v2 + v3.
COMPUTE subtr = v2 − v1.
COMPUTE mult = v3 * v4.
COMPUTE divide = v4 / v2.
COMPUTE expon = v2 ** 2.
FORMAT v1 to mult expon (F2.0).
LIST VAR = add to expon.

Results from the LIST command are presented in Table 22.2.

Variables and Variable Manipulations

Table 22.1 SPSS Mathematical Operators

Operator Meaning

+ Addition

− Subtraction

∗ Multiplication

/ Division

∗∗ Exponentiation

Table 22.2 Variables Created Using Mathematical Operators

ADD ADD2 SUBTR MULT DIVIDE EXPON

3 6 1 12 2.00 4

11 18 1 56 1.33 36

If more than one type of arithmetic operation is included on a
COMPUTE statement, the operations will be executed according to the
following order of operations:

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 172

1. Functions

2. Exponentiation

3. Multiplication

4. Division

5. Addition and subtraction

Operations on the same level, for instance, two multiplication state-
ments, are executed from left to right. Operations in parentheses are exe-
cuted first and override the default order of operations. Even if your syntax
uses the default order of operations, it is often useful to include parentheses
to clarify the order of operations. If several expressions on a COMPUTE
statement are nested within parentheses, they are executed beginning with
the innermost expression and working outward.

MATHEMATICAL AND STATISTICAL FUNCTIONS

A complete list of SPSS mathematical and statistical functions is available
in the COMPUTE chapter of the SPSS 11.0 Syntax Reference Guide (SPSS
Inc., 2001). Only the most common functions will be demonstrated here.
All functions have the same parts:

1. The name of the function

2. The arguments to the function, contained within parentheses

The basic meaning of a function is “Do this operation (name of function)
on these variables or values (arguments of the function).” For instance, the
function SQRT(var2) tells SPSS to compute the square root of var2: The
name of the function is SQRT, and the argument is var2.

Functions may have multiple arguments, and arguments may be vari-
ables, constants, or both. For instance, the function SUM(5,10,15) has
three arguments, all of which are constants (the numbers 5, 10, and 15).
The function SUM(5,v2) has two arguments: One is a constant (the
number 5), and one is a variable (v2).

Functions may be nested; that is, the result of one function may be used
as an argument to another function. The following rules apply to nested
functions:

173Numeric Operations and Functions

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 173

174

1. Within the same level of parentheses, functions are executed from
left to right.

2. The function in the innermost parentheses is executed first, then the
other functions are executed in order, working outward.

Two common mathematical functions are demonstrated in the syntax
below:

DATA LIST FREE / v1 v2.
BEGIN DATA
1 2
-1 4
END DATA.
* Absolute value.
COMPUTE abs1 = ABS(v1).
* Square root.
COMPUTE sqrt2 = SQRT(v2).
FORMATS v1 to abs1 (F2.0).
LIST VAR = v1 abs1 v2 sqrt2.

Results from the LIST command are presented in Table 22.3.
Mathematical functions are also available to find the modulus (remainder)
of an argument, to round and truncate values, and to produce exponential,
logarithms, and trigonometric values.

Variables and Variable Manipulations

Table 22.3 Variables Created Using Mathematical Functions

V1 ABS1 V2 SQRT2

1 1 2 1.41

−1 1 4 2.00

Statistical functions are specified in the same way as arithmetic func-
tions: They consist of the function name, followed by the argument(s) in
parentheses. The following syntax demonstrates some common statistical
functions:

DATA LIST FREE / v1 v2 v3 v4.
BEGIN DATA
1 2 3 4

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 174

MISSING VALUES IN NUMERIC
OPERATIONS AND FUNCTIONS

Some common numeric calculations, such as adding numbers or taking a
square root, can be done in SPSS either through a statement of arithmetic
operations or through a mathematical function. If there are no missing
data, either method will produce the same results. However, operations and
functions differ in how they deal with missing data, and this can make a
major difference in the outcome. Arithmetic operations will return a miss-
ing value if any of the variables in the equation are missing, while most
functions will return a missing value for their results only if all the variables
are missing. This difference is demonstrated in the following syntax:

DATA LIST / v1 to v3 1-6.
BEGIN DATA
1 2 3
1 2
END DATA.
COMPUTE add1 = v1 + v2 + v3.
COMPUTE add2 = SUM(v1 TO v3).
FORMAT ALL (F2.0).
LIST VARS = ALL.

END DATA.
* Calculating the sum.
COMPUTE sum1 = SUM(v1 to v4).
* Calculating the mean.
COMPUTE mean1 = MEAN(v1,v3).
* Finding the minimum value.
COMPUTE min1 = MIN(v2,v4).
* Finding the maximum value.
COMPUTE max1 = MAX(v1,v3).
FORMATS ALL (F3.0).
LIST VARS = sum1 to max1.

Results from the LIST command are presented in Table 22.4.

175Numeric Operations and Functions

Table 22.4 Variables Created Using Statistical Functions

SUM1 MEAN1 MIN1 MAX1

10 2 2 3

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 175

You can control whether functions will execute when some of their
arguments are missing. For instance, you could decide that a function
will be calculated only if at least eight of its arguments have valid
values. This is specified with the .n suffix to function names, where n is
the number of valid values required for the function to execute. The
COMPUTE statement below will calculate the variable newmean only
for cases that have valid values on at least eight of the variables var1 to
var10:

COMPUTE newmean = MEAN.8(var1 TO var10).

DOMAIN ERRORS

A domain error occurs when the result of a numeric expression is unde-
fined for reasons other than missing data. Most domain errors are due to
violations of mathematical rules, such as trying to divide a number by zero.
When an arithmetic expression results in a domain error, SPSS issues a
warning and the result of the expression is set to the system-missing value.
A complete list of domain errors is available in the SPSS 11.0 Syntax
Reference Guide (SPSS Inc., 2001), in the section on “Transformation
Expressions.”

176

Results from the LIST command are presented in Table 22.5. Add1 is
created by an arithmetic operation, and add2 is created by a mathematical
function. The first case has complete data, so the values for add1 and add2
are identical. The second case is missing on v3, so add1 is missing and add2
consists of the sum of v1 and v2.

Variables and Variable Manipulations

Table 22.5 Results of Operations and Functions Including
Missing Data

V1 V2 V3 ADD1 ADD2

1 2 3 6 6

1 2 . . 3

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 176

A SUBSTRING-LIKE TECHNIQUE
FOR NUMERIC VARIABLES

Sometimes, numeric variables are used to store information in a manner
analogous to string variables. One example is the variable computed
to display missing-data patterns in Chapter 17. Another example is the
variable alcdays in the 2001 BRFSS (Behavioral Risk Factor Surveillance
System) survey (Centers for Disease Control, 2001). This F3.0 variable
holds the response to a question about how often the subject consumed
alcohol. Some answered this question in terms of the number of days per
week they drank, while others answered it in terms of the number of days
per month. This information was captured in the left-most digit of alcdays:
1 indicated that the following two digits referred to days per week, while
2 indicated that the following digits referred to days per month (defined as
the past 30 days).

To convert this variable to useful information, it is necessary to interpret
the two right-most digits in terms of the meaning of the left-most. For
instance, 107 would indicate a person who drank 7 days per week, which is
7/7 or 100% of the days, while 207 would indicate a person who drank
7 days per month, which is 7/30 or 23.3% of the days. The following code
creates a small data set to illustrate how the information stored in alcdays
can be used to compute the percentage of days a person drank alcohol:

DATA LIST / alcdays 1-3.
BEGIN DATA
107
210
105
200
END DATA.
IF alcdays GE 100 AND alcdays LE 107 drink = (alcdays-

100) / 7.
IF alcdays GE 200 and alcdays LE 230 drink = (alcdays-

200) / 30.
COMPUTE drink = DRINK * 100.
FORMAT drink (PCT6.1).
LIST VAR = ALL.

Results from the LIST command are presented in Table 22.6. The value
of drink represents the percentage of days a person drank alcohol. For

177Numeric Operations and Functions

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 177

178

instance, the second case answered the question in terms of days per
month and said he or she drank 10 days per month for a total of 10/30 or
33.3% of the days.

Variables and Variable Manipulations

Table 22.6 Results of a Substring-Like Manipulation of a Numeric
Variable

ALCDAYS DRINK

107 100.0%

210 33.3%

105 71.4%

200 .0%

22-Boslaugh.qxd 10/12/2004 4:04 PM Page 178

179

C H A P T E R 2 3

String Functions

T his chapter discusses functions for string variables in SPSS, including

❍ The substring function

❍ Concatenation

❍ Searching for characters within a string variable

❍ Adding or removing leading or trailing characters

❍ Finding character strings identified by delimiters

All the functions discussed in this chapter operate on string variables.
Numeric functions are discussed in Chapter 22, which also introduces the
concept of a function, the parts of a function, and how functions are exe-
cuted in SPSS.

The substring function allows you to extract a substring or string of char-
acters from a string variable. This function is useful when dealing with
string variables in which characters in different positions represent dif-
ferent types of information. For example, a hospital might identify a
patient with a variable made up of the person’s social security number
plus a code indicating his or her health insurance plan. You may want
to create two variables, one with the social security information and
one with the health insurance information. This is accomplished in the
following syntax:

THE SUBSTRING FUNCTION

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 179

180

* Creating new variables with the substring function.
DATA LIST / ID 1-12 (A).
BEGIN DATA
406615622101
100503425102
END DATA.
STRING ssn (A9) insur (A3).
COMPUTE ssn = SUBSTR(id,1,9).
COMPUTE insur = SUBSTR(id,10).
LIST VAR = ALL.

This syntax creates a data set with one variable, the 12-character string
variable id. It then uses the substring function to write the first 9 characters
of id into the string variable ssn and the last 3 characters into the string
variable insur. The SUBSTR function has three arguments:

1. The variable from which the substring is to be extracted

2. The character where the substring begins

3. The character where the substring ends, which may be omitted if the
substring runs to the end of the variable

The first substring function SUBSTR(id,1,9) tells SPSS to take a substring of
the variable id, beginning at the first character and continuing to the 9th char-
acter. The second substring function, SUBSTR(id,10), tells SPSS to take a sub-
string of the variable id, beginning at the 10th character and continuing to the
end of the variable. Output from the LIST command is presented in Table 23.1.

Variables and Variable Manipulations

Table 23.1 Variables Created With the SUBSTR Function

ID SSN INSUR

406615622101 406615622 101

100503425102 100503425 102

CONCATENATION

Concatenation builds string variables by combining existing strings. To reverse
the example above, you may have a file with variables representing people’s
social security numbers and insurance plans and wish to combine them into a
single identification variable. The following syntax accomplishes this:

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 180

DATA LIST / ssn 1-9 (A) insur 11-13 (A).
BEGIN DATA
406615622 101
100503425 102
END DATA.
STRING id (A12).
COMPUTE id = CONCAT(ssn,insur).
LIST VAR = ALL.

The CONCAT function creates the variable id from the character strings
of its arguments, the string variables id and insur. Output from the LIST
command is presented in Table 23.2.

181String Functions

Table 23.2 Variable Created With the CONCAT Function

SSN INSUR ID2

406615622 101 406615622101

100503425 102 100503425102

Literal characters may be included as arguments to the CONCAT
function. Continuing with the data set used to created Table 23.2, the
following syntax will insert a dash (-) between the character strings ssn
and insur:

STRING id2 (A13).
COMPUTE id2 = CONCAT(ssn,”-”,insur).
LIST VAR = ssn insur id2.

Output from the LIST command is presented in Table 23.3.

Table 23.3 Concatenated Variable Including a Literal

SSN INSUR ID3

406615622 101 406615622-101

100503425 102 100503425-102

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 181

182

SEARCHING FOR CHARACTERS
WITHIN A STRING VARIABLE

The INDEX function searches for character strings within a string variable.
It has two arguments:

1. The variable being searched

2. The character string searched for, enclosed in apostrophes or quota-
tion marks

For instance, INDEX(var1,’Smith’) searches the variable var1 for the
character string ‘Smith’.

The INDEX function returns the value of the first position where the
specified character string is found. If the string is not found, a value of 0 is
returned. This function is used in the syntax below to search a file of
patients and select those treated for ankle injuries:

DATA LIST / id (A3) injury (A30).
BEGIN DATA
01 Ankle Sprain
02 broken wrist
03 broken ankle
END DATA.
COMPUTE flag = INDEX(UPCASE(injury),’ANKLE’).
FORMAT FLAG (F2.0).
LIST VAR = ALL.
SELECT IF FLAG NE 0.
LIST VAR = id injury.

The UPCASE function in the COMPUTE command converts the text
being searched into uppercase letters and then matches it against the
search term, which is also specified in all uppercase letters. This allows it to
match both ‘Ankle’ in the first case and ‘ankle’ in the third case, which are
different character strings in SPSS. The COMPUTE statement creates the
variable flag, which will have a value of 0 if the search string is not found in
the variable injury, and a number greater than 0 if it is found. Table 23.4
presents the results of the first LIST command, which displays the entire
data set. The variable flag has the value of 0 for the second case because the
search string was not found. Cases 1 and 3 have the value 1 and 8 for flag,
respectively, indicating the first position where the search string was found

Variables and Variable Manipulations

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 182

ADDING OR REMOVING LEADING
OR TRAILING CHARACTERS

Sometimes, you want to add or remove leading (left-most) characters from
string variables. For instance, you may wish to increase the length of a field
by adding leading zeros to it, or remove leading zeros in a field containing
only digits. The following code demonstrates how a string variable may be
padded with leading zeros using the LPAD (left-pad) function:

DATA LIST FREE / id (A1).
BEGIN DATA
1 2 3
END DATA.
STRING id3 (A3).
COMPUTE id3 = LPAD(id,3,’0’).
LIST VAR = id id3.

The LPAD function has three arguments:

1. The name of the variable to be padded (in this case, id)

2. The total length of the string, including the padded characters (in
this case, 3)

3. The character to used for padding (in this case, 0)

for each case. Table 23.5 presents the results of the second LIST command,
which includes only the cases with ankle injuries.

183String Functions

Table 23.4 Data File With Beginning of Character String Flagged

ID INJURY FLAG

01 Ankle sprain 1

02 Broken wrist 0

03 Broken ankle 8

Table 23.5 Display of Cases With Ankle Injuries

ID INJURY

01 Ankle sprain

03 Broken ankle

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 183

184

Results from the LIST command are presented in Table 23.6. The variable
id3 consists of the value of id plus enough leading zeros to give it a length of 3.

Variables and Variable Manipulations

Table 23.6 Variable Padded With Leading Zeros

ID ID3

1 001

2 002

3 003

Deleting leading characters in a string variable is similar to adding them.
The following code demonstrates the use of LTRIM to remove leading zeros
from the variable id:

DATA LIST FREE / id (A3).
BEGIN DATA
01 2 003 4 05
END DATA.
STRING idx (A3).
COMPUTE idx = LTRIM(id,’0’).
LIST VAR = id idx.

The LTRIM functions has two arguments:

1. The variable to be trimmed (in this case, id)

2. The character to be trimmed (in this case, 0)

Results from the LIST command are presented in Table 23.7. The vari-
able idx consists of the characters of the variable id minus the leading zeros.

Table 23.7 Variable With Leading Zeros Trimmed

ID IDX

01 1

2 2

003 3

4 4

05 5

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 184

More complicated syntax is required to add leading zeros to a variable
without increasing its length. The code below creates the A3 variable id3x,
which uses leading zeros consistently, from the A3 variable id, which is
inconsistent in its use of leading zeros:

DATA LIST FREE / id (A3).
BEGIN DATA
01 2 003 10 100
END DATA.
STRING id3x (A3).
COMPUTE idn = NUMBER(id,F3.0).
COMPUTE id3x = LPAD(LTRIM(STRING(idn,F3.0)),3,”0”).
LIST VAR = id id3x.

The first COMPUTE statement converts the string variable id to the
numeric variable idn, with format F3.0. The second COMPUTE statement
performs the following tasks, reading the syntax from the innermost paren-
theses outward:

1. STRING(idn,F3.0): Converts idn from a numeric to a string variable

2. LTRIM(STRING(idn,F3.0)): Trims leading blanks from the new
string variable

3. LPAD(LTRIM(STRING(idn,F3.0)),3,”0”): Pads the new string
variable with leading zeros to make it a character string of
length 3

Results from the LIST command are presented in Table 23.8.

185String Functions

Table 23.8 Variable Trimmed Then Padded With Leading Zeros

ID ID3X

01 001

2 002

003 003

10 010

100 100

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 185

186

The function RTRIM removes the right-most characters from a string
variable. A typical use of RTRIM is to improve the appearance of a string
variable created from several existing string variables. If some variables
have fewer characters than their declared lengths, extra spaces will appear
in the concatenated variable. The following code illustrates the creation of
a new variable consisting of the first and last name of each case, first with
extra spaces between the first-name and last-name fields (name1) and then
using the RTRIM function to remove the extra spaces (name2):

DATA LIST FREE / lname (a15) fname (a10).
BEGIN DATA
Smith John
Doe Mary
END DATA.
STRING name1 name2 (A25).
COMPUTE name1 = CONCAT(fname,lname).
COMPUTE name2 = CONCAT(RTRIM(fname),’ ‘,lname).
LIST VAR = name1 name2.

Results from the LIST command are presented in Table 23.9. Name2
includes one space as a literal between fname and lname. If we had not added
this space, the two variables would have run together (e.g., ‘JohnSmith’ for
the first case). To trim any character other than a blank space, it is neces-
sary to specify the character as the second argument to the RTRIM func-
tion. For instance, RTRIM(var1,’ 0’) would trim trailing zeros from var1.

FINDING CHARACTER STRINGS
IDENTIFIED BY DELIMITERS

It is possible to locate substrings that are identified by delimiters rather than
by position. In the example below, the variable id1 consists of a school code,

Variables and Variable Manipulations

Table 23.9 Concatenated Variable With and Without Extra Blank
Spaces

NAME1 NAME2

John Smith John Smith

Mary Doe Mary Doe

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 186

a hyphen, and a pupil code. The syntax uses the hyphen to identify the two
fields and writes their contents into the variables school and pupil:

* Finding the location of text strings identified by
delimiters.

DATA LIST / id1 (A8).
BEGIN DATA
1-1
211-2
2-140
12-165
END DATA.
STRING school pupil (A3).
COMPUTE school = SUBSTR(id1,1,INDEX(id1,’-’)-1).
COMPUTE pupil = SUBSTR(id1,INDEX(id1,’-’)+1).
LIST VAR = id1 school pupil.

The first SUBSTR function begins reading at the first character of id1
and continues until the last character before the hyphen, as indicated
by INDEX(id1,’-’)−−1). The second SUBSTRING function begins reading
at the first character of id1 following the hyphen, as indicated by
INDEX(id1,’-’)++1), and continues to the end of the variable. Results from
the LIST command are presented in Table 23.10.

187String Functions

Table 23.10 Variable-Length Substrings Identified by a Delimiter

ID1 SCHOOL PUPIL

1-1 1 1

211-2 211 2

2-140 2 140

12-165 12 165

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 187

23-Boslaugh.qxd 10/12/2004 4:06 PM Page 188

C H A P T E R 2 4

Date and Time Variables

This chapter explains how to use date and time variables in SPSS. Topics
covered include the following:

❍ How date and time variables are stored in SPSS

❍ An overview of SPSS date formats

❍ Reading dates with two-digit years in the correct century

❍ Creating date variables with syntax

❍ Creating date variables from string variables

❍ Extracting part of a date variable

❍ Doing arithmetic with date variables

❍ Creating a variable holding today’s date

❍ Designating missing values for date variables

HOW DATE AND TIME VARIABLES ARE STORED IN SPSS

SPSS date and time variables are stored as floating-point numbers repre-
senting the number of seconds from 0 hours, 0 minutes, and 0 seconds on
October 14, 1582, the date the Gregorian calendar was adopted. However,
dates and times are usually entered and displayed in more familiar formats.
The SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001) contains a detailed
table of the time and date formats available in SPSS in the “Date and Time”
section of the “Universals” chapter. Only the most commonly used formats
will be discussed in this chapter.

189

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 189

190

AN OVERVIEW OF SPSS DATE FORMATS

This section discusses how to read date information into SPSS with the
DATA LIST command and how to control the appearance of date variables
with output formats. SPSS can read date information specified in many
different ways. The following rules apply to reading date variables with the
DATA LIST command:

1. The FIXED format must be used to read date variables.

2. The column width of date variables must be wide enough to accom-
modate the longest possible value of a date in a particular format.

3. Date variables must be identified by one of the date formats plus the
variable width. Width information may be specified either by indi-
cating the columns that contain the variable, as in the first example
below, or as part of the date format, as in the second example:

DATA LIST / date1 1-9 (DATE).

or

DATA LIST / date1 (DATE9).

4. Date information can appear anywhere within a field, so leading or
trailing blanks are not a problem.

5. Date variables containing day, month, and year information must
use delimiters to separate those elements. The following characters
are acceptable delimiters: dashes (-), commas (,), periods (.), slashes
(/), and blanks ().

6. Months may be represented as numbers, Roman numerals, three-
digit abbreviations, or may be fully spelled out.

7. Years may be entered with two or four digits. Two-digit years will
be assigned to a century depending on the value of EPOCH, as
discussed below.

8. Dates are displayed according to their output format, not necessarily
how they were input.

Variables and Variable Manipulations

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 190

These rules are demonstrated in the following syntax, which reads the
same date values specified several different ways:

* Demonstration of different date input strings.
DATA LIST / date1 1-20 (DATE).
BEGIN DATA
1-OCT-02
01 / 10 / 2002
1 October 02
01 X 2002
01-oct-02
END DATA.
LIST VAR = ALL.

All cases will display as “01-OCT-2002.” The input strings “1-OCT-02,”
“01/01/2002,” and so on were converted to the numeric value
13252809600 and then displayed in the international date format (DATE)
with a four-digit year (because 20 columns were allowed for the variables,
which is sufficient to display the four-digit year).

One confusing point about date and time formats is that the input and
output formats are sometimes different lengths. For instance, the minimum
input length for a date in international format (dd-mmm-yy, for instance,
1-Jan-04) is 8, but the minimum output length is 9. This occurs because
SPSS automatically increases the length of date and time formats to allow
for the longest possible value. Any input formats specified by the program-
mer, however, should be long enough to allow for the longest possible value
of a variable.

The same date information can be displayed many different ways, by
changing the output format. This is demonstrated in the syntax below:

* Demonstration of different date output formats.
DATA LIST / refdate (DATE9).
BEGIN DATA
1-OCT-02
END DATA.
list var = refdate.
format refdate (adate8).
list var = refdate.
format refdate (date11).
list var = refdate.
format refdate (edate8).
list var = refdate.

191Date and Time Variables

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 191

READING DATES WITH
TWO-DIGIT YEARS IN THE CORRECT CENTURY

When date variables are entered with two-digit years, SPSS has to assign
them to a century. For instance, “01/01/01” could refer to January 1, 1901,
or January 1, 2001. To make this assignment, SPSS uses a 100-year period
whose default setting begins 69 years prior to the current date and ends 30
years after the current date. With this default setting, if you were entering
data on January 1, 2001, the date 01/01/05 would be read as January 1,
2005, and the date 01/01/50 would be read as January 1, 1950.

To see what 100-year period is currently in use on your system, use the
SHOW EPOCH command. If you want to change this period, use the SET
EPOCH command, which specifies the first year of the 100-year span you
wish to use. For instance, the command,

SET EPOCH 1910.

192

format refdate (jdate7).
list var = refdate.
format refdate (sdate11).
list var = refdate.

Table 24.1 displays the appearance of the same date in different formats.
Date formats specify both type (e.g., ADATE for American date, in which
the month precedes the day) and width. The width controls whether two- or
four-digit years are printed, so that using the ADATE10 format in this
example would cause refdate to display as 10/01/2002.

Variables and Variable Manipulations

Table 24.1 Common SPSS Date Formats

Format Appearance Name of Format

date9 01-OCT-02 International date, 2-digit year

adate8 10/01/02 American date, 2-digit year

date11 01-OCT-2002 International date, 4-digit year

edate8 01.10.02 European date, 2-digit year

jdate7 2002274 Julian date

sdate9 2002/10/01 Sortable date, 4-digit year

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 192

specifies the 100-year period 1910 through 2009. With this specification,
the date 12/31/09 will be read as December 31, 2009, and the date
01/01/10 will be read as January 1, 1910. If dates in a data file span more
than 100 years (for instance, 1800 to 2000), they must be entered with
four-digit years in order to be read correctly.

CREATING DATE VARIABLES WITH SYNTAX

Sometimes, you need to create a date variable that was not in the original
data file. For instance, you may want to create a variable holding the value
of the date a research study began. The following syntax creates the date
variable refdate with the value January 1, 1998:

COMPUTE refdate = DATE.DMY(01,01,98).

The function DATE.DMY is called an aggregation function because it com-
bines several pieces of information (day, month, and year) into one date.
DMY stands for “DayMonthYear” and specifies that the first argument
refers to the day, the second to the month, and the third to the year. A
number of other date aggregation functions are listed in the SPSS 11.0
Syntax Reference Guide (SPSS Inc., 2001), in the chapter on the COMPUTE
command. The input values for an aggregation function can be variables
instead of numbers. If the value of the variable day were 1, the value of the
variable month were 5, and the value of the variable year were 1990, the
command,

COMPUTE refdate = DATE.DMY(day,month,year).

would assign the date May 1, 1990, to the variable refdate.

CREATING DATE VARIABLES FROM STRING VARIABLES

Sometimes, a date field is stored as a string variable, for instance, when a
data file created in one program has to be transferred to another. Two ways
to create date variables from this type of string variable are presented below.
Both methods create separate variables holding day, month, and year

193Date and Time Variables

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 193

194

information. The first method then uses the CONCAT function to combine
these variables into a date variable, as demonstrated in the following syntax:

* Creating a date variable from a string variable.
DATA LIST / olddate (A8).
BEGIN DATA
20021985
08101967
07021991
END DATA.
* Create separate day, month, and year variables.
STRING day month year(A2) new1 (A8).
COMPUTE day = SUBSTR(olddate,1,2).
COMPUTE month = SUBSTR(olddate,3,2).
COMPUTE year = SUBSTR(olddate,7,2).
* Concatenate month, day, and year.
COMPUTE new1 = CONCAT(month, “/”,day, “/”,year).
* Format the result to appear as a date.
COMPUTE newdate = NUMBER(new1,ADATE8).
FORMAT newdate (DATE9).
LIST VAR = ALL.

This syntax creates three new string variables to hold the day, month,
and year elements, extracts the relevant information from olddate, and
writes it to the new variables. It then creates the variable new1 by concate-
nating the variables month, day, and year, separated by slashes, and converts
the result to the numeric variable newdate. Finally, newdate is formatted
as an international date with a two-digit year. Output from the LIST
command is presented in Table 24.2.

Variables and Variable Manipulations

Table 24.2 Date Variable Created From a String Variable

OLDDATE DAY MONTH YEAR NEW1 NEWDATE

20021985 20 02 85 02/20/85 20-FEB-85

08101967 08 10 67 10/08/67 08-OCT-67

07021991 07 02 91 02/07/91 07-FEB-91

The same results can be achieved by using the aggregation function
demonstrated earlier. The following syntax uses the day, month, and year
variables created in the program above:

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 194

* Using a date aggregation function.
* Convert the day, month, and year variables to numeric.
COMPUTE dayn = NUMBER(day,F2.0).
COMPUTE monthn = NUMBER(month,F2.0).
COMPUTE yearn = NUMBER(year,F2.0).
* Aggregate day, month, and year to a created a date

variable.
COMPUTE newdate2 = DATE.DMY(dayn,monthn,yearn).
* Format the result as a date.
FORMAT newdate2 (DATE9).
EXE.

This syntax converts the variables day, month, and year to the numeric
variables dayn, monthn, and yearn. It then creates the date variable new-
date2, using those variables and the aggregation function DATE.DMY, and
formats newdate2 as an international date. The values of newdate2 will be
identical to those of newdate in Table 24.2.

EXTRACTING PART OF A DATE VARIABLE

Sometimes, you need to extract part of a date from an existing date variable.
For instance, you could extract the day of the week from a variable holding
the dates of medical appointments, to see whether some days are more
heavily scheduled than others. SPSS provides a number of date extraction
functions, which are listed in the SPSS 11.0 Syntax Reference Guide (SPSS
Inc., 2001), in the COMPUTE chapter. Several date extraction commands
are illustrated in the code below:

* Demonstration of date extraction functions.
DATA LIST / date1 (DATE11).
BEGIN DATA
11-Feb-1995
END DATA
* Extract the month.
COMPUTE month = XDATE.MONTH(date1).
* Extract the year.
COMPUTE year = XDATE.YEAR(date1).
* Extract the day of the week.
COMPUTE daywk = XDATE.WKDAY(date1).
* Extract the day of the month.
COMPUTE daymth = XDATE.MDAY(date1).
FORMAT month to daymth (F4.0).

195Date and Time Variables

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 195

DOING ARITHMETIC WITH DATE VARIABLES

You can do arithmetic with dates in SPSS, such as calculating the number
of days between two dates. However, the results of such a calculation will
be in seconds, and usually we want to convert them to more meaningful
units, such as days or years. This conversion can be carried out either by
performing an arithmetic function or using an automatic-conversion
function.

Using the first approach, you can convert seconds to days by dividing by
86400, the number of seconds in a day. Similarly, you can convert days to
years by dividing by 365.25, the number of days in a year (the quarter day
is to allow for leap years). Converting seconds to years requires dividing by
(365.25 * 86400). These techniques are demonstrated in the following
syntax:

* Using arithmetic to convert seconds to days and
years.

DATA LIST / date1 (DATE11) date2 (DATE11) date3
(DATE11).

BEGIN DATA
11-Feb-199513-FEB 199515-SEP-1996
END DATA.
COMPUTE days1 = (date2-date1) / 86400.
COMPUTE years1 = (date3-date1) / (365.25 * 86400).
LIST VAR = days1 years1.

196

Daywk and month can be formatted so they are spelled out, as in the
following syntax:

FORMAT month (MONTH15).
FORMAT daywk (WKDAY10).
LIST VAR = ALL.

Output from the LIST command is presented in Table 24.3.

Variables and Variable Manipulations

Table 24.3 Variables Created Using SPSS Date Extraction Functions

DATE1 MONTH YEAR DAYWK DAYMTH

11-Feb-1995 FEBRUARY 1995 SATURDAY 11

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 196

The variable days1 will have the value of 2.00, and years1 of 1.59. You
can also convert seconds to days using the SPSS date conversion function
CTIME.DAYS. For instance, we can compute days1 and years1 with the
following syntax:

COMPUTE days1 = CTIME.DAYS(date2-date1).
COMPUTE years1 = (CTIME.DAYS(date3-date1)) / 365.25.

The results will be the same as above: days1 = 2.00, years1 = 1.59.
Because days1 and years1 are the results of arithmetic procedures, they

are in the default F8.2 format. The fractional parts of these numbers can be
eliminated by using the TRUNC (truncation) function to drop the noninte-
ger portion of the numbers and using the FORMATS function to display
the numbers without decimal places. It is also possible to format variables
to appear without decimals but without specifying truncation, in which
case decimal values greater than .5 will be rounded up to the next integer.
The difference is demonstrated in the following syntax:

DATA LIST FREE / var1 var2.
BEGIN DATA
1.3 1.3
1.5 1.5
1.8 1.8
END DATA.
LIST VAR = ALL.
COMPUTE tvar1 = TRUNC(var1).
FORMATS var2 tvar1 (F2.0).
LIST VAR = ALL.

Results of the LIST command are presented in Table 24.4. Var1 and var2
have the same value for each case, but var1 is displayed in the default F8.2
format and var2 in the F2.0 format. Tvar1 is truncated and displayed in the
F2.0 format. Var2 and tvar1 appear identical for the first case because var2
holds the value 1.30 but does not display the decimal part, while tvar1 holds
the truncated value 1. This is not true for the second and third cases, which
have values of 1.50 and 1.80 for var1. When 1.50 and 1.80 are formatted
to appear without decimal places in var2, they are rounded up to the next
integer, in this case, 2, because their decimal value is .5 or greater. When
these values are truncated in tvar1, the decimal places are simply dropped,
so tvar1 has the value of 1 for both variables. Truncation changes the stored

197Date and Time Variables

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 197

Often, you want to add some fixed length of time to an existing date. For
instance, you may want to create a new variable that is one day later than
the value stored in a data variable in your file. Since a day in SPSS terms is
the number of seconds in a day (86,400), adding a day to a date variable
means adding 86,400 to that variable. The following syntax creates new
variables one day (plusday) and one week (plusweek) later than the date
stored in the variable date1:

DATA LIST / date1 (DATE11).
BEGIN DATA
11-May-2000
END DATA.
COMPUTE plusday = date1 + 86400.
COMPUTE plusweek = date1 + (7 * 86400).
FORMAT plusday plusweek (DATE11).
LIST VARS = ALL.

The value of plusday will be “12-MAY-200,” and the value of plusweek
will be “18-MAY-2000.”

CREATING A VARIABLE HOLDING TODAY’S DATE

The system variable $TIME holds the value of today’s time and date,
according to your computer’s internal clock. As discussed in Chapter 19,
you cannot display the value of a system variable directly, but you can use
the XDATE.DATE function to extract the date information from this system
variable and store it in another variable. The value of the new variable may

198

value of a variable, not merely its appearance. Once a value is truncated,
the parts that have been dropped cannot be restored.

Variables and Variable Manipulations

Table 24.4 Rounding and Truncation Contrasted

VAR1 VAR2 TVAR1

1.30 1 1

1.50 2 1

1.80 2 1

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 198

DESIGNATING MISSING VALUES FOR DATE VARIABLES

Sometimes, a default date is entered into a database to signify that the infor-
mation was not available. For instance, “Jan. 1, 1900,” might be entered in
the field for a person’s birthdate if that information is unknown. You may
want to declare this value as missing so it will not be used in computations
or reports. There are two ways to accomplish this: Recode this value as
system-missing, as in the first example below, or declare this value to be

be displayed, used in calculations, and so on. This is demonstrated in the
following syntax:

DATA LIST / bdate (DATE11).
BEGIN DATA
04-JUN-1955
10-AUG-1962
END DATA.
* Make a variable holding today’s date.
COMPUTE today = XDATE.DATE($TIME).
* Calculate age as of today.
COMPUTE age = CTIME.DAYS(today-bdate) / 365.25.
COMPUTE age1 = TRUNC(age).
FORMAT today bdate (DATE11) age1 (F2.0).
LIST VAR = ALL.

Results from the LIST command are presented in Table 24.5. This program
reads in a data set with two cases and one variable, bdate (representing some-
one’s birthdate). It uses the XDATE.DATE function to extract the value of
today’s date from the system variable $TIME and store it in the variable today.
It then calculates the variable age for the two cases by subtracting bdate from
today and converting the result to years. The result is displayed both as an F8.2
variable (age) and truncated (age1). Of course, the variable today will depend on
the date when you run this syntax, so the values of age and age1 will also differ.

199Date and Time Variables

Table 24.5 Results of Calculations Using Today's Date

BDATE TODAY AGE AGE1

04-JUN-1955 20-MAR-2004 48.79 48

10-AUG-1962 20-MAR-2004 41.61 41

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 199

200

user-missing, as in the second example below. The code below will
substitute the system-missing value for the date value corresponding to
January 1, 1900, for the variable bday:

IF bday = DATE.MDY(1,1,1900) bday = $SYSMIS.

Once this code is executed, the date information will be permanently
deleted from cases holding the value corresponding to January 1, 1900.

To declare a date as missing without deleting its value, you must find the
numeric value of that date and specify that value as user-missing, with the MISS-
ING VALUES command. Both steps are demonstrated in the following syntax:

DATA LIST / bdate (DATE11).
BEGIN DATA
04-JUN-1955
1-JAN-1900
END DATA.
* Find the numeric value of 1-JAN-1900.
COMPUTE missdate = DATE.DMY(1,1,1900).
FORMAT missdate (F13.0).
LIST VAR = missdate.
* Declare the numeric value of 1-JAN-1900 as missing.
MISSING VALUES bdate (10010390400).
FREQ VAR = bdate.

This syntax reads in a data set with two cases and one date variable, bdate.
It uses the COMPUTE, FORMAT, and LIST commands to find the numeric
value of the date 1-JAN-1900, then declares this as a missing value for bdate.
Output from the FREQUENCIES command, presented in Table 24.6, demon-
strates that the date value representing January 1, 1900, was declared user-
missing but the value itself was not deleted from the variable bdate.

Variables and Variable Manipulations

Table 24.6 Data Set With User-Missing Data for a Date Variable

BDATE

Valid Cumulative
Frequency Percent Percent Percent

Valid 04-JUN-1955 1 50.0 100.0 100.0

Missing 01-JAN-1900 1 50.0

Total 2 100.0

24-Boslaugh.qxd 10/12/2004 4:09 PM Page 200

P a r t V

Other Topics

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 201

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 202

C H A P T E R 2 5

Automating Tasks
Within Your Program

This chapter discusses how to use repeating functions in SPSS. Topics
discussed include:

❍ Vectors

❍ The DO IF command structure

❍ The DO REPEAT command structure

❍ The LOOP command structure

A vector in SPSS is a set of variables identified as a group and assigned a
name. Variables defined as a vector can be referenced by the name of the
vector, and individual variables within a vector may be referenced by the
vector name plus an index number indicating their position within the vec-
tor. Vectors are often used within repeating structures because they allow a
program to use a group of variables without having to name every variable
in that group.

The variables named in a vector may be preexisting or created by the
VECTOR command. The first VECTOR command below creates five new
variables, named vector1 to vector5, while the second VECTOR command
associates five existing variables with the vector name vect2:

203

VECTORS

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 203

204

VECTOR vector (5).
VECTOR vect2 = v1 to v5.

The syntax below demonstrates the use of the VECTOR and LOOP
commands:

DATA LIST / v1 to v5 1-10.
BEGIN DATA
1 2 2 1 2
2 1 1 2 1
END DATA.
FORMATS v1 to v5 (f1.0).
LIST VAR = ALL.
VECTOR vect = v1 TO v5.
LOOP #i = 1 TO 5.
DO IF vect(#i) = 2.
COMPUTE vect(#i) = 0.
END IF.
END LOOP.
LIST VAR = ALL.

The VECTOR command associates the vector name vect with the vari-
ables v1 through v5. The LOOP command that follows takes advantage of
the fact that SPSS treats the variables named in a vector as elements of the
vector, which may be identified by the vector name plus an index number.
For instance, the first time the LOOP executes, the value of #i is 1, so the
DO IF and COMPUTE commands refer to variable vect(1) or v1, the first
element in the vector vect. The second time the loop executes, these com-
mands refer to vect(2) or v2, and in the fifth and final loop, they refer to
vect(5) or v5. Results of the first LIST command, which display the data set
as read by the DATA LIST command, are presented in Table 25.1. The DO
IF and COMPUTE commands within the LOOP structure recode the val-
ues of 2 to 0 for variables v1 to v5. This recoding is reflected in the results
from the second LIST command, presented in Table 25.2.

Other Topics

Table 25.1 Data Set Before Recoding

V1 V2 V3 V4 V5

1 2 2 1 2

2 1 1 2 1

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 204

It is possible to specify the format for variables created with the VECTOR
command, as in the following code:

VECTOR str(3,A1) num(2,F1.0).

This syntax will create three string variables of length 1, named str1,
str2, and str3, and two numeric variables of length 1, named num1 and
num2.

Although SPSS recognizes variables as elements of a vector within
transformations, it is not valid for procedures such as FREQUENCIES. For
instance, you cannot get a frequency table for the variables v1 to v5 with
the command,

FREQ VAR = vect. [WRONG]

or a frequency table for v3 with the command,

FREQ VAR = vect(3). [WRONG]

THE DO IF COMMAND STRUCTURE

The DO IF command structure is an extension of the IF command dis-
cussed in Chapter 21. We refer to the DO IF command structure because
DO IF is one of a series of commands that are used together: DO IF, ELSE
IF, and END IF. The DO IF command structure allows you to perform a
series of transformations conditional on the values of a series of logical
expressions. This is demonstrated in the following code:

205Automating Tasks Within Your Program

Table 25.2 Data Set After Recoding

V1 V2 V3 V4 V5

1 0 0 1 0

0 1 1 0 1

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 205

206

DO IF (age GE 18 and age LT 30).
COMPUTE agecat = 1.
ELSE IF (age GE 30 and age LT 50).
COMPUTE agecat = 2.
ELSE IF (age GE 50).
COMPUTE agecat = 3.
END IF.

The conditional statements in this syntax (DO IF, ELSE IF) include logi-
cal statements that are evaluated for their truth or falsity, as discussed in
Chapter 21. If the logical statement is true, the transformation is executed
and SPSS will skip over the rest of the commands in the DO IF structure. If
the logical statement is false, the transformation is not executed and SPSS
will evaluate the next logical statement in the command structure. If none
of the conditions are true, SPSS will reach the END IF statement without
having executed any of the COMPUTE statements and the case will be
assigned the system-missing value for agecat. The END IF command is
required: Failure to include it will result in an “unclosed DO loop,” and the
syntax will not execute.

THE DO REPEAT COMMAND STRUCTURE

The DO REPEAT–END REPEAT command structure is an efficient way
to perform transformations on a group of variables, as illustrated in the
syntax below:

DO REPEAT v = var1 TO var20.
COMPUTE v = 0.
FORMAT v (F1.0).
END REPEAT.

This syntax sets values of the variables var1 to var20 to 0 for all cases, a
process also known as “initializing var1 to var20 to 0.” The same result
could have been realized by a series of COMPUTE statements, but the DO
REPEAT structure is more efficient because it uses the stand-in variable v to
represent var1 to var20: The transformations specified for v will be executed
on var1 to var20.

Not all SPSS commands can be used within a DO REPEAT structure.
The SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001) has a complete

Other Topics

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 206

list of available commands in the chapter on the DO REPEAT
command. Those used most often are data transformations; missing-
value declarations; print, write, and format commands; and the LOOP
and DO IF structures. Variable and value labels commands cannot be
executed within the DO REPEAT structure and neither can descriptive
and statistical procedures such as FREQUENCIES, MEANS, and
REGRESSION.

A typical use of the DO REPEAT command structure is to create a series
of indicator variables from a single categorical variable. An indicator or
dummy variable is a variable that indicates the presence or absence of
some characteristic. Often, dummy variables are coded as 0 or 1, although
other coding schemes may also be used. Dummy variables are used in
procedures such as regression, where the use of numerically coded
nominal variables would be misleading. The following syntax creates four
indicator variables, ethnic1 to ethnic4, using the information from the
categorical variable ethnic:

DATA LIST FREE / ethnic (F1.0).
BEGIN DATA
1 2 3 4
END DATA.
DO REPEAT eth = ethnic1 to ethnic4 / x = 1 to 4.
COMPUTE eth = 0.
DO IF ethnic = x.
COMPUTE eth = 1.
FORMAT eth (F1.0).
END IF.
END REPEAT.
EXE.
LIST VAR = ALL.

The DO REPEAT structure uses two stand-in variables: eth, which
stands for the new variables ethnic1 to ethnic4; and x, which will take the
values 1 to 4 and controls which of the variables ethnic1 to ethnic4 will be
coded with a 1. For instance, the value of ethnic for the first case is 1, so
the value of ethnic1 will be 1 and the value of ethnic2, ethnic3, and ethnic4
will be 0. For the third case, the value of ethnic is 3, so the value of ethnic3
will be 1 and ethnic1, ethnic2, and ethnic4 will have a value of 0. This
may be clarified by Table 25.3, which presents the results of the LIST
command.

207Automating Tasks Within Your Program

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 207

208

Distinct variable names can be used in a DO REPEAT structure, also. For
instance, the following DO REPEAT COMMAND could be substituted into
the previous program, and the results would be the same except that the
variables created would be named White, Black, Hispanic, and Other:

DO REPEAT eth = White Black Hispanic Other / x = 1
to 4.

THE LOOP COMMAND STRUCTURE

The LOOP–END LOOP command structure directs SPSS to perform the
commands within the structure repeatedly until some limit on the number
of repetitions is reached. A simple LOOP structure was demonstrated in the
section on vectors in this chapter. There are several ways to specify how
many times a loop should be repeated. The simplest is to rely on the maxi-
mum number of loops allowed by the current setting on your computer.
You can see what this setting is with the command SHOW MXLOOPS and
set it to some value (10 in this example) with the command,

SET MXLOOPS = 10.

The MXLOOPS setting prevents the creation of an “infinite loop,” in
which the program keeps executing a loop forever because the programmer
did not include code to tell it when to stop.

Usually, programmers do not depend on the MXLOOPS value, but
control the number of iterations with an index or counter variable. An
index variable is a variable included in the LOOP statement that will be

Other Topics

Table 25.3 Indicator Variables Created With the DO REPEAT
Command Structure

ETHNIC ETHNIC1 ETHNIC2 ETHNIC3 ETHNIC4

1 1 0 0 0

2 0 1 0 0

3 0 0 1 0

4 0 0 0 1

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 208

incremented once with each repetition of the LOOP. A scratch variable is
often used for this purpose because it does not need to become a permanent
part of the data set. Use of an index variable (#i) is demonstrated in the
syntax below:

COMPUTE sum = 0.
LOOP #i = 1 to 6.
COMPUTE sum = sum + 1.
END LOOP.

The variable #i begins with a value of 1 and is incremented (in this case,
increased by the default of 1) after each repetition of the loop. The LOOP
command specifies that the loop will be repeated while #i has a value from
1 to 6, which is equivalent to a logical condition that is true when #i has a
value in that range. When the value of #i becomes 7, SPSS will exit the
LOOP structure and resume reading syntax following the END LOOP
command. The number of loops can also be stored in a variable, as demon-
strated in the following code:

COMPUTE exit = 6.
COMPUTE sum = 0.
LOOP #I = 1 to exit.
COMPUTE sum = sum + 1.
END LOOP.

The number of loops is controlled by the value of the variable exit, in this
case, 6. This method of control has the advantage that the LOOP syntax
can be used unchanged, while the number of loops is controlled by a
variable outside its structure.

The number of executions may also be controlled by IF statements
within the LOOP structure. The following syntax places the test condition
in the LOOP statement so the logical condition will be tested before each
execution of the loop:

COMPUTE x = 0.
LOOP IF (x LT 5).
COMPUTE x = x+1.
END LOOP.

209Automating Tasks Within Your Program

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 209

210

This loop will execute five times, and the final value of x will be 5. At the
beginning of the sixth repetition, the condition (x LT 5) will be false, so
SPSS will pass control to the syntax following the END LOOP command.
Similar results can be achieved by including the test condition at the end of
the loop, as in the following syntax:

COMPUTE x = 0.
LOOP.
COMPUTE x = x+1.
END LOOP IF (x = 5).

This loop will also execute five times. After the fifth repetition, the condi-
tion (x = 5) will be true, so the END LOOP command will be executed and
control will pass to the syntax following it.

A LOOP structure can be used with an INPUT PROGRAM structure to
create a data set. This technique was demonstrated in Chapter 18 to gener-
ate random variables from a specified distribution. Here, we use the same
technique to create a data set that includes a variable containing values
for all the days within a specified time period, for use with a longitudinal
project:

* Generate a file with all the dates from 1-Feb-1999
to 31-Jan-2001.

* Loop is 0 to 1095, will create 1096 consecutive
dates.

INPUT PROGRAM.
LOOP dayid = 0 TO 1095.
COMPUTE n_date = DATE.MDY(2,1,1999) + (86400*dayid).
FORMAT n_date (DATE11).
END CASE.
END LOOP.
END FILE.
END INPUT PROGRAM.
EXE.
FORMAT dayid (F4.0).
MEANS ALL/CELLS = COUNT MIN MAX.

This program uses the index dayid, which begins with a value of 0 and
ends with a value of 1,095, causing the LOOP to execute 1,096 times (the
number of days between 1-Feb-1999 and 31-Jan-2001). Each repetition of

Other Topics

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 210

the loop adds one day (86,400 seconds) to the beginning value of n_date
(1-Feb-1999), so the final date generated will be 31-Jan-2001. This syntax
creates a file with 1,096 cases: The first has the value 0 for dayid and
01-FEB-1999 for n_date, the second has the value 1 for dayid and 02-FEB-
1999 for n_date, and so on, as seen in Table 25.4. Output from the MEANS
command demonstrates that the number of cases and date range generated
are correct.

211Automating Tasks Within Your Program

Table 25.4 Means Table for a File of Dates Created With INPUT
PROGRAM

DAYID N_DATE

N 1,096 1,096

Minimum 0 01-FEB-1999

Maximum 1,095 31-JAN-2002

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 211

25-Boslaugh.qxd 10/12/2004 2:15 PM Page 212

C H A P T E R 2 6

A Brief Introduction
to the SPSS
Macro Language

T his chapter discusses the SPSS macro language. Topics covered include:

❍ The parts of a macro

❍ Different ways to declare arguments in a macro

❍ How to control the macro environment

❍ How to find more information about macros

This chapter introduces the SPSS macro language. Many SPSS users are
unaware that the macro language exists, and others may feel it is too diffi-
cult for them to learn. The purpose of this chapter is to break through those
initial barriers by introducing the concept of the macro language, present-
ing the basic techniques necessary to write simple macros, and directing
interested readers to sources of further information.

The SPSS macro language is a programming language that makes it pos-
sible to write, name, and recall self-contained sections of code called macros.
The macro language has two main uses:

1. To automate procedures done repeatedly

2. To write algorithms to calculate statistics, generate distributions, and
so on that are not included in any of the SPSS prewritten routines

213

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 213

214

The macros presented in this chapter are simple because their purpose
is to introduce the macro language. More complex macros can be found in
the sources listed at the end of this chapter. As with SPSS syntax, the most
efficient way to learn to the macro language is by examining and altering
macros written by others.

THE PARTS OF A MACRO

SPSS macros begin with the command DEFINE and end with the command
!ENDDEFINE. The first line of a macro includes the command DEFINE, the
name of the macro, and the definition of any arguments to the macro, within
parentheses. Empty parentheses must be included in this line even if the
macro does not include arguments. Arguments in this context are the names
used to refer to the variables or sets of variables used within a macro. A
macro may have multiple arguments, and each argument may consist of
multiple variables. The macro body consists of the lines between the DEFINE
and !ENDDEFINE commands. A macro call is a line of syntax outside the
macro that begins with the name of the macro followed by the arguments
and variables to those arguments, if required. When a macro call is exe-
cuted, the macro facility expands it, that is, substitutes the commands con-
tained within the macro for the name of the macro, using the variables
named in the macro call in place of the argument names in the macro. These
commands are then executed as if they had been written into the syntax at
that point, using the current active file. A few notes about macros:

1. Macro names are often preceded by the exclamation point (!), in
order to differentiate them from other variable names or keywords.
Other than this, the same rules apply as do for SPSS variable names,
as discussed in Chapter 20.

2. Macro keywords and commands are preceded by the exclamation
point (!).

3. Arguments referred to in the macro body must be preceded by excla-
mation points.

4. If a macro name appears anywhere in SPSS syntax, even in a comment
prefaced by an asterisk (*), it may be invoked (i.e., called and executed).
For this reason, the /* */ style of commenting (discussed in Chapter 7)
should be used when a comment includes the name of a macro.

5. The command structure BEGIN DATA–END DATA cannot be used
in a macro.

Other Topics

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 214

MACROS WITHOUT ARGUMENTS

Not all macros require arguments. The syntax below creates a macro named
!demogr and associates the variables age, race, gender, income, and education
with it, so that a procedure that refers to !demogr, in this case the FORMAT
and LIST commands, will be executed on those variables:

DATA LIST FREE / age race gender income educ.
BEGIN DATA
25 1 1 20 12
40 02 0 35 16
END DATA.
DEFINE !demogr () age race gender income educ.
!ENDDEFINE.
FORMAT !demogr (F4.0).
LIST VAR = !demogr.

The results of the LIST command are presented in Table 26.1. These
results are identical to those that would have been produced with the
command,

LIST VAR = age race gender income educ.

215A Brief Introduction to the SPSS Macro Language

Table 26.1 LIST Table Produced With a Macro Call

AGE RACE GENDER INCOME EDUC

25 1 1 20 12

40 2 0 35 16

MACROS WITH ARGUMENTS

Macros that use arguments can perform operations on variables specified
outside the macro. Note that a single argument can refer to multiple vari-
ables, as in the syntax below:

* Macro with arguments.
DATA LIST FREE / var1 to var4.
BEGIN DATA

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 215

Macros can also use Keyword arguments, which means that user-defined
names are assigned to arguments specifying the role they play in the macro.
This is demonstrated in the following syntax:

* Macro with keyword arguments.
DEFINE !cross1 (row = !TOKENS(1)

/ col = !TOKENS(1)).
CROSSTABS TABLES = !row by !col

/ CELLS = COUNT ROW.

216

3 2 4 3
2 1 2 4
2 1 1 1
3 4 4 5
END DATA.
DEFINE !stats1 (varlist = !TOKENS(4))
FREQ VAR = !varlist

/ STATS = MEAN STDDEV
/ FORMAT = NOTABLE.

!ENDDEFINE.
* Call this macro.
!stats1 varlist = var1 TO var4.

The definition of the macro !stats1 names one argument, varlist, and
specifies with the !TOKENS(4) keyword that varlist will consist of four vari-
ables to be named in the macro call. A TOKEN in this context means some-
thing to be passed from one part of the program to another, in this case a
variable to be passed from the macro call to the macro. The body of the macro
consists of a FREQUENCIES command that will be performed on varlist.
The macro call consists of the macro name (!stats1), the argument (varlist),
and the variables that will constitute varlist for this execution of !stats1 (var1
TO var4). The macro call will produce the results in Table 26.2.

Other Topics

Table 26.2 Frequencies Table Produced With a Macro Call

VAR1 VAR2 VAR3 VAR4

N Valid 4 4 4 4

Missing 0 0 0 0

Mean 2.500 2.000 2.7500 3.2500

Std. Deviation .57735 1.41421 1.50000 1.70783

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 216

!ENDDEFINE.
* Call this macro.
!cross1 row = var1 col = var2.

The macro definition assigns the keywords row and col to the arguments
to be used in the cross-tabulation procedure. Each consists of one variable to
be specified on the macro call statements, as specified by !TOKENS(1). The
keywords are used in the macro call to identify which variable should be used
in each part of the cross-tabulation procedure. Execution of the macro call
will produce a cross-tabulation table of var1 by var2.

SPECIFYING ARGUMENTS BY POSITION

Arguments may be specified by position within the macro call. The macro
!cross2 below achieves the same results as !cross1 using positional specification:

* Macro with positional arguments.
DEFINE !cross2 (!POSITIONAL !TOKENS(1)

/ !POSITIONAL !TOKENS(1)).
CROSSTABS TABLES = !1 by !2

/ STATS = CHISQ
/ CELLS = COUNT ROW.

!ENDDEFINE.
* Call this macro.
!cross2 var1 var2.

The keyword !POSITIONAL in the macro definition tells SPSS that the
variables used in the macro body will be identified by their positions in the
macro call. The first-named variable is identified in the macro body as !1
and will be the row variable in the cross-tabulation table, and the second-
named variable is identified as !2 and will be the column variable. In the
macro call, the first-named variable is var1 and the second-named is var2,
so this macro call will produce a cross-tabulation table of var1 by var2.

MACROS USING A FLEXIBLE NUMBER OF VARIABLES

There are three ways to use arguments in macros without specifying the
number of variables associated with them:

217A Brief Introduction to the SPSS Macro Language

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 217

218

1. !ENCLOSE, which includes the variables enclosed within specified
symbols

2. !CHAREND, which includes the variables up to a specified character

3. !CMDEND, which includes the variables up to the end of the macro
call

The following three syntax examples achieve the same results using
these three methods of argument definition. The first example illustrates
the use of !ENCLOSE:

* Macro with flexible number of variables.
DATA LIST FREE / var1 var2.
BEGIN DATA
1 1 1 0 0 1 0 0 0 1
END DATA.
* Macro using !ENCLOSE.
DEFINE !means1 (!POSITIONAL !ENCLOSE(‘[‘,’]’)).
MEANS !1 / CELLS = COUNT MEAN.
!ENDDEFINE.
* Call this macro.
!means1 [var1 var2].

The macro definition specifies square brackets ([]) as the symbols
that define which variables named in the macro call will be used in
the macro. The !1 in the macro body is optional in this case because only
one group of variables is used. If there were several groups of variables,
they would be referred to in the macro body as !1, !2, and so on, as in
the macro cross1 above. Results from the macro call are presented in
Table 26.3.

Other Topics

Table 26.3 Means Table Produced With a Macro Call

VAR1 VAR2

N 5 5

Mean .4000 .6000

The next macro uses the same data set and specifies the arguments with
!CHAREND:

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 218

* Macro using !CHAREND.
DEFINE !means2 (!POSITIONAL !CHAREND(‘/’)).
MEANS !1 / CELLS = COUNT MEAN.
!ENDDEFINE.
* Call this macro.
!means2 var1 var2 /.

The argument statement identifies the slash (/) as the symbol that
defines the variables to be used. All variables named in the macro call, up to
the first instance of this symbol, will be used in the macro. Results from this
macro are the same as those presented in Table 26.3. If the call statement
had been written as follows,

!means2 var1 / var2.

only var1 would be used.
The third example also uses the same data set and defines the arguments

with !CMDEND:

* Macro using !CMDEND.
DEFINE !means3 (!POSITIONAL !CMDEND).
MEANS !1 / CELLS = COUNT MEAN.
!ENDDEFINE.
* Call this macro.
!means3 var1 var2.

Results will be the same as those presented in Table 26.3.
Different argument specifications can be combined. For instance, the fol-

lowing macro combines the !CHAREND and !CMDEND specifications:

* Macro illustrating two types of argument
specification.

DATA LIST FREE / var1 var2 var3.
BEGIN DATA
1 2 3
1 2 3
1 1 1
2 2 1
END DATA.

219A Brief Introduction to the SPSS Macro Language

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 219

DEFINE !view (!POSITIONAL !CHAREND(‘/’)
/ !POSITIONAL !CMDEND).

FREQ VAR = !1.
MEANS !2 / CELLS = COUNT MEAN.
!ENDDEFINE.
* Call this macro.
!view var1 / var2 var3.

The argument statement specifies that variables named on the macro
call statement, up to the slash (/), constitute the group identified in the
macro body as !1. The second group of variables, identified in the macro
body as !2, includes all variables from the slash to the end of the macro call.
This macro will produce a frequency table for the first group of variables (in
this case, var1) and a means table for the second group of variables (in this
case, var2 and var3).

CONTROLLING THE MACRO
LANGUAGE ENVIRONMENT

There are four settings related to the macro language that may be listed
with the SHOW command and changed with the SET command (discussed
in Chapter 4). MPRINT has a value of YES or NO and regulates whether
macro commands will be listed after expansion. MEXPAND has a value of
ON or OFF and controls whether macros will be expanded. MNEST speci-
fies the maximum number of levels of nesting allowed within macros, and
MITERATE specifies the maximum number of loop iterations within
macro expansion. The following command will get information about your
current settings:

SHOW MPRINT MEXPAND MNEST MITERATE.

MEXPAND must be set to ON in order for macros longer than one line
to be executed; if for some reason it is set to OFF in your system, you can
reset it with the command,

SET MEXPAND ON.

220 Other Topics

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 220

SOURCES OF FURTHER
INFORMATION ABOUT SPSS MACROS

This chapter has only been able to introduce macros and give a few simple
examples. To use the macro language efficiently, the programmer will have
to progress beyond the elementary level. An essential source of information
about the macro language is the SPSS 11.0 Syntax Reference Guide (SPSS
Inc., 2001), which discusses macros primarily in the Appendix, “Using the
Macro Facility,” and in the chapter on the DEFINE–!ENDDEFINE com-
mand structure. Two other books can be recommended: SPSS Program-
ming and Data Management (Levesque, 2003) and Next Steps with SPSS
(Einspruch, 2004).

There are many sources of SPSS macros. First, the books named above
include examples of macros with explanations of how they work. In addi-
tion, many SPSS macros are available on the World Wide Web. A number
are available from SPSS Inc.: You can find macros on the SPSS Web site by
searching for the term “macro” or “!ENDDEFINE” from the technical sup-
port page (SPSS Technical Support). Many examples of macros, some with
detailed explanations of how they work, can be found on the Raynald
Levesque site (Raynald’s SPSS Page). A Web search on “SPSS macros” or
“SPSS AND !ENDDEFINE” will locate many more pages containing SPSS
macros.

221A Brief Introduction to the SPSS Macro Language

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 221

26-Boslaugh.qxd 10/12/2004 4:11 PM Page 222

C H A P T E R 2 7

Resources for Learning
More About SPSS Syntax

B ecoming an SPSS programmer is an ongoing learning process.
Resources to aid in this process are discussed in this chapter, including:

❍ Books

❍ Web pages

❍ Mailing lists

SPSS Inc. produces several useful resources for the programmer. The most
important is the SPSS 11.0 Syntax Reference Guide (SPSS Inc., 2001), which is
available both as a printed book and as an electronic file in Adobe Acrobat
format. This guide is a reference book that contains detailed information about
SPSS commands and about the SPSS system in general. The electronic version
is particularly useful because you can search the text for character strings using
keyboard commands or the menu choices Edit, Find. Other resources are the
earlier versions of the SPSS manuals, which contain many examples of syntax
and annotated output. One “classic” manual to which many programmers still
refer is the third edition of the SPSS-X User’s Guide (SPSS Inc., 1988). SPSS Inc.
also offers a number of training courses, including Syntax I: Introduction to SPSS
Syntax and Syntax II: Programming With SPSS Syntax and Macros, and sells the
guides to these courses through their Web site (SPSS Training).

Several other books may be useful to the SPSS programmer. SPSS
Programming and Data Management (Levesque, 2003) includes many examples

223

BOOKS

27-Boslaugh.qxd 10/12/2004 4:19 PM Page 223

224

of syntax, and the coverage of macros is particularly good. Next Steps with
SPSS (Einspruch, 2004) also includes many examples of syntax. Using
Multivariate Statistics (Tabachnick & Fidell, 2001) is an intermediate statistics
textbook that includes many examples of SPSS syntax and annotated output,
primarily to demonstrate statistical procedures. The SPSS 11.0 Guide to Data
Analysis (Norusis, 2002) demonstrates many analytical techniques using the
menu system but can be used to generate and save SPSS syntax using the
techniques discussed in Chapter 5.

There are many books that discuss computers and programming in
general. The Philosophical Programmer (Kohanski, 1998) discusses program-
ming for readers without technical backgrounds. Learning Computer Pro-
gramming (Farrell, 2002) is more technical but presupposes no background
in programming. The Free On-Line Dictionary of Computing (FOLDOC) con-
tains a wealth of technical and historical information about computers and
programming.

WEB PAGES

SPSS Inc. has a Web page at http://www.spss.com/. The organization of
this site changes frequently, so it may be necessary to search the site to
find particular sections. One useful feature for programmers is the search-
able database of questions and answers regarding SPSS (SPSS Technical
Support).

A number of institutional and personal Web pages include SPSS syntax.
One very useful page is Raynald’s SPSS Page (Levesque), maintained by the
author of SPSS Programming and Data Management (Levesque, 2003), men-
tioned above. This Web page includes a FAQ (Frequently Asked Questions)
page for SPSS; a searchable archive of SPSS programs, macros, and scripts;
and a page devoted to SPSS beginners.

University Web sites are another good source of code. Only two of
the best sites are mentioned here. The Web site of the University of
California at Los Angeles includes a wealth of searchable SPSS infor-
mation (UCLA Academic Technology Services). The University of Texas
Web site includes answers to a number of questions regarding SPSS
(University of Texas).

Many other Web pages that include examples of SPSS code and pro-
gramming advice may be found by searching with a Web search engine,
such as Google, on terms such as “SPSS syntax.”

Other Topics

27-Boslaugh.qxd 10/12/2004 4:19 PM Page 224

MAILING LISTS

The SPSSX-L mailing list is an active email list for SPSS users, managed
through the University of Georgia (UGA) Web site. List members post SPSS
problems and solutions, and statistical topics are often discussed as well.
Instructions on subscribing and a searchable list archive are available
online (University of Georgia).

225Resources for Learning More About SPSS Syntax

27-Boslaugh.qxd 10/12/2004 4:19 PM Page 225

27-Boslaugh.qxd 10/12/2004 4:19 PM Page 226

References

Adobe Systems Inc. (n.d.). Download Adobe reader. Retrieved March 15, 2004, from
http://www.adobe.com/products/acrobat/readstep2.html.

Centers for Disease Control. (2001). BRFSS survey data. Atlanta, GA: Author.
Einspruch, E. L. (2004). Next steps with SPSS. Thousand Oaks, CA: Sage.
Farrell, M. E. (2002). Learning computer programming: It’s not about languages.

Hingham, MA: Charles River Media.
FOLDOC: The free on-line dictionary of computing. (n.d.). Retrieved March 15, 2004,

from http://foldoc.hld.c64.org/index.html.
Kohanski, D. (1998). The philosophical programmer: Reflections on the moth in the

machine. New York: St. Martin’s.
Levesque, R. (n.d.). Raynald’s SPSS page. Retrieved March 15, 2004, from http://

pages.infinit.net/rlevesqu/.
Levesque, R. (2003). SPSS programming and data management: A guide for SPSS and

SAS users. Chicago: SPSS Inc.
Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data (2nd ed.).

Hoboken, NJ: Wiley.
Norusis, M. (2002). SPSS 11.0 guide to data analysis. Upper Saddle River, NJ:

Prentice Hall.
Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and

data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.
SPSS Inc. (n.d.). About SPSS Inc.: Corporate history. Retrieved March 15, 2004, from

http://www.spss.com/corpinfo.history.htm.
SPSS Inc. (n.d.). Software and solutions. Retrieved March 15, 2004, from

http://www.spss.com/products/.
SPSS Inc. (1988). SPSS-X User’s Guide (3rd ed.). Chicago: Author.
SPSS Inc. (2001). SPSS 11.0 syntax reference guide. Chicago: Author.
Stone, R., & Fox, J. (Eds.). (1997). Statistical computing environments for social research.

Thousand Oaks, CA: Sage.
Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Boston:

Allyn & Bacon.
UCLA Academic Technology Services. (n.d.). Resources to help you learn and use SPSS.

Retrieved March 15, 2004, from http://www.ats.ucla.edu/stat/spss/.
University of Georgia. (n.d.). Archives of SPSSX-L@LISTSERV.UGA.EDU. Retrieved

March 15, 2004, from http://listserv.uga.edu/archives/spssx-l.html.
University of Texas. (n.d.). Frequently asked questions and answers. Retrieved March

15, 2004, from http://www.utexas.edu/cc/faqs/stat/index.html#SPSS.

227

Ref-Boslaugh.qxd 10/12/2004 2:21 PM Page 227

Ref-Boslaugh.qxd 10/12/2004 2:21 PM Page 228

Index

NOTE: SPSS keywords are presented in all capital letters ($CASENUM). SPSS
commands are presented in all capital letters and boldface type (ADD FILES).
For commands used frequently (e.g., DATA LIST), only principal text references
are cited.

229

* (asterisk signifying a
comment line), 34

/ (slash signifying multiple records
in a data file, 49

! (exclamation point, signifying a
macro command), 213-221

$CASENUM (system variable),
101-102, 112-115, 141, 169

$SYSMIS (system variable), 141,
199-200

$TIME (system variable), 141,
198-199

ADD FILES, 95-96
AGGREGATE

restructuring a data file using,
110-115

computing summary statistics
using, 94-95

counting duplicate records using,
85-86

Alias. See File alias, 41-42
APPLY DICTIONARY, 151-152
AUTORECODE, 163

BEGIN DATA–END DATA, 40

Casewise deletion. See Deletion,
casewise vs. listwise

CASESTOVARS, 108-110

COMPUTE, 156-158, 168-169,
171-173

restructuring a data file using,
110-115, 160-161

See also Functions
COUNT, 166-167
CROSSTABS

using aggregated data to create,
47-48

checking file match results using,
93-94

examining missing data using,
123-124

using a macro to create,
216-217

DATA LIST, 40, 43-53
reading complex data files with,

65-70
DEFINE–!ENDDEFINE,

214-221
DESCRIPTIVES, 88-89
Date variables, 189-200

restructuring a data file using,
112-115

selecting cases using, 101-102
Deletion, casewise vs. listwise

127-128
DISPLAY, 35, 82-84
DOCUMENT, 34-35
DO IF, 205-206

identifying duplicate cases using,
101-102, 112-115

DO REPEAT–END REPEAT,
206-208

Index-Boslaugh.qxd 10/12/2004 3:44 PM Page 229

230

creating a file of consecutive dates
using, 210-211

restructuring a data file using,
110-112

DROP, 35

ECHO, 35
EXAMINE, 87-88
EXPORT, 76

File alias, 41-42
FILE HANDLE, 41-42
FILE TYPE, 66-69
FILTER, 104-105
FLIP, 116-117
FORMATS, 141-146
FREQUENCIES, 86-87, 122-123

checking for duplicate
cases using, 84

examining missing data using,
122-123

macro including, 215-215
Functions

ABS, 174
CONCAT, 180-181, 185-186, 194
CTIME.DAYS, 112-115, 196-199
DATE.DMY, 193-195, 200
DATE.MDY, 200, 210-211
INDEX, 182-183, 186-187
LAG, 101-102, 112-115, 169
LPAD, 183-185
LTRIM, 184-186
MAX, 174-175
MEAN, 174-175
MISSING, 124-125, 130-132
MIN, 174-175
NMISS, 130-132
NOT, 124-125
NUMBER, 185-186, 194-195
RTRIM, 186
RV.NORMAL, 134
RV.UNIFORM, 135-136
SUBSTR, 179-180, 186-187, 194
SUM, 174-176
SQRT, 174
STRING, 164, 185
TRUNC, 197-199
UPCASE, 182-183
XDATE.DATE, 198-199
XDATE.MDAY, 195-196
XDATE.MONTH, 195-196

XDATE.WKDAY, 195-196
XDATE.YEAR, 195-196

GET FILE, 55-57
GET SAS, 63-64
GET TRANSLATE, 60-62

IF, 154-156
creating new variables using,

34, 136, 177-178
recoding variables using,

130-132
restructuring a data file using,

112-115
IMPORT, 56
INPUT PROGRAM–END INPUT

PROGRAM, 134, 210-211

LEAVE, 168-169
Listwise deletion. See Deletion,

casewise vs. listwise
LOOP–END LOOP, 134, 208-211

MATCH FILES, 91-95
eliminating duplicate records using,

99-101
MATRIX DATA, 69-73
MEANS, 210-211

macro including, 218-220
MISSING VALUES, 121-124

date variables with, 199-200

Order of operations, mathematical,
172-174

Pathnames, Windows and Macintosh,
41-42

RANK, 135-136
RECODE, 161-162

converting string variables to
numeric using, 164-166

RECORD TYPE, 66-69
REGRESSION, 103

using mean substitution in,
128-129

RELIABILITY, 73
RMV, 129-132

SAMPLE, 134-135
SAVE, 75-76

An Intermediate Guide to SPSS Programming

Index-Boslaugh.qxd 10/12/2004 3:44 PM Page 230

SAVE TRANSLATE, 76-77
Scratch variables, 141

LOOP structure including,
204-205, 208-209

reading NESTED data file using,
68-70

SELECT, 30, 84-85
SET, 13-14

BLANKS, 126-127
EPOCH, 192-193
ERRORS, 31
HEADER, 36
LENGTH, 15
JOURNAL, 12, 24
MEXPAND, 220
MXLOOPS, 208
PRINTBACK, 24
SEED, 133-134
TNUMBERS, 150-151
TVARS, 150-151
WORKSPACE, 15

SHOW, 13-14
ERRORS, 31
JOURNAL, 24
LENGTH, 14
LICENSE, 14
MEXPAND, 220
MITERATE, 220
MNEST, 220

MPRINT, 220
MXWARNS, 31
N, 82
PRINTBACK, 24
TNUMBERS, 151
UNDEFINED, 31
WEIGHT, 105
WIDTH, 14

SORT CASES, 102-103
SPLIT FILE, 103
STRING, 29, 139-140
SUBTITLE, 36

TEMPORARY, 30, 84-85, 103-104
TITLE, 36
TO (in variable list), 50

UPDATE, 96-98

VALUE LABELS, 47-48,
104-105, 149-151

VARIABLE LABELS, 149-151
VARSTOCASES, 115
VECTOR, 110-112, 203-205

WEIGHT, 47, 105
WRITE, 77-78

XSAVE, 75-76

231Index

Index-Boslaugh.qxd 10/12/2004 3:44 PM Page 231

Index-Boslaugh.qxd 10/12/2004 3:44 PM Page 232

About the Author

Sarah Boslaugh, PhD, has more than 20 years of experience working
in data management and statistical analysis. She has worked as an SPSS
programmer and statistician in many different settings, including education,
health care, government, and the insurance industry.

Dr. Boslaugh received her PhD in research methods and evaluation from
the City University of New York and is currently a Senior Statistical Data
Analyst in the Department of Pediatrics at the Washington University School
of Medicine in St. Louis. Her research interests include multilevel modeling,
geographic information systems, and measurement theory.

233

ABA-Boslaugh.qxd 10/12/2004 4:21 PM Page 233

ABA-Boslaugh.qxd 10/12/2004 4:21 PM Page 234

ABA-Boslaugh.qxd 10/12/2004 4:21 PM Page 235

ABA-Boslaugh.qxd 10/12/2004 4:21 PM Page 236

	Contents
	Part I
	Part II
	Part III
	Part IV
	Part V
	Part VI
	References
	Index

