
PREDICTION OF PROTEIN SECONDARY STRUCTURE
USING GENETIC PROGRAMMING

Summer Internship Project Report
During June-July 2003

Under: Dr. Bob MacCallum
Stockholm Bioinformatics Center

Stockholm University, Sweden

Varun Aggarwal
Electronics And Communication Engg.
Netaji Subhas Institute of Technology

New Delhi- 110048

Contents

Certificate

Acknowledgement

The Group 1

Project 1:Using SOM and Genetic Programming to predict
Protein Secondary structure

 2

Project 2: Improving PSIPRED Predictions using Genetic
Programming

 10

Conclusion 14

References 15

Appendix I 16

Appendix II 17

Certificate

This is to certify that, Varun Aggarwal, (104/ECE/2000) a student of NSIT, Delhi, India
did his summer training under me at Stockholm Bioinformatics Center for the months of
June-July 2003. He worked on two projects documented in this report.

Robert M. MacCallum
Assistant Proffessor

Stockholm Bioinformatics Center
SCFAB
Stockholm University
S-106 91 Stockholm
Sweden

phone: +46 (0)8 5537 8567
fax: +46 (0)8 5537 8214
email: maccallr@sbc.su.se

Acknowledgement

I will like to thanks Dr. Bob MacCallum for giving me this opportunity to work with his
group. I hugely benefited and wish to thank profusely for spending time with me
explaining bioinformatics, genetic programming and perl programming concepts. I also
enjoyed the stimulating discussions we had on various concepts and ideas. It was a
pleasure working under his guidance.

Varun Aggarwal
Electronics and Communication Engg.,
Netaji Subhas Institute of Technology,
New Delhi, India

The Group

During my internship, I worked in the group of Dr. Bob Maccallum, Assistant Professor,
Stockholm Bioinformatics Center, (www.sbc.su.se/~maccallr).The group comprises of
six members including myself, three master students and one post-doc.

The group's major interest is to develop machine learning and evolutionary computation
techniques to understand protein folding and structure. A protein starts life inside the cell
as a simple linear chain of amino acids, but quickly and efficiently folds into a specific
three-dimensional shape which dictates how it interacts with other molecules in the cell
or organism. This interplay of proteins and other biomolecules is the very essence of life.

An organism's DNA specifies the exact sequence of amino acids for every protein. In
turn, the sequence of amino acids specifies the three-dimensional shape of the folded
protein. The folding process is difficult to observe experimentally and currently
impossible to simulate accurately in a computer. Therefore our limited understanding of
protein folding has not yet resulted in a computational prediction method, which can
accurately produce a 3D structure given a sequence as input.

Living organisms have overcome many difficult challenges, such as surviving in extreme
climates or flying through the air, by the process of evolution, driven by chance mutation
events, selection and reproduction. Evolutionary computation is an area of computer
science, which takes inspiration from Nature as it tries to evolve solutions to difficult
problems. We hold the view that it may be possible to evolve simplified but accurate
models of protein folding that no human has so far been able to come up with. We are
particularly interested in genetic programming, which is the automatic evolution of
computer programs, as the means to achieve this. We pay particular attention to
developing evolutionary algorithms which follow the biological lead. One example is our
exploration of meta-evolution - where not only the 'organisms' evolve but also the
evolutionary mechanisms.

At the same time as working on algorithms, we are also looking at aspects of sequence-
structure relationships with other techniques which we hope will give valuable insight
into protein structure and function.

The ultimate goal is to understand complex biological systems with exciting new
biologically inspired machine learning algorithms.

(From: www.sbc.su.se/~maccallr)

Using SOM and Genetic Programming to predict Protein Secondary structure

Introduction

Proteins are polymers of amino acids. A protein consists of amino acids (there are 20
amino acids) bonded together in various ways. Each protein folds in a unique way giving
rise to a 3-D secondary structure. The 3-D structure basically contains three structural
elements, i.e. helix, strands and coils. Figure 1 illustrates the 3-D primary secondary
structure of a protein. (For further reading, one may consult, “Introduction to Protein
Structure”, by Branden and Tooze.)

 The 3-D structure of protein has been of keen interest to researchers (eg. biologists) for
long. The structure of the protein is useful for understanding its functionality and is
therefore useful in development of drugs in the pharmaceutical industry. Moreover, they
are of great academic interest since they give essential hints about evolution of different
species.

Figure 1: Depiction of 3-D structure of a protein

 There are experimental ways of finding out the structure of protein using X-RAY
crystallography, which involves human effort and lot of time. However, since a particular
amino acid sequence maps to a unique structure, (even if the same protein exists in
different organisms), it is logical to believe that the amino acid structure contains full
information about the protein structure. Therefore prediction of protein sequence should
be possible, if a one-to-one mapping (function) between the amino acid sequence and the
protein structure can be identified.

Since the 3-D structure is quite complicated and difficult to predict, researchers around
the world made an effort towards predicting the secondary structure of the protein. The
secondary structure simply tells whether a given amino acid in a given protein is a helix,
strand or coil. Therefore an amino acid sequence can be mapped into a sequence of
helices (H), extended strands (E) and coils (C). This sequence of structural elements is
called the secondary structure of the protein. Figure. 2 clarifies this.

Domain d1ayfa_

Amino Acid Sequence

…VEAGTELEIVCKAVDSSYNVQPDSVAPIWNLRGVLSTAWHRVRVSVQD…

Secondary Structure

…e----eeeeeeeeee----------hhh-----------eeeeeee--…

e Extended Strand

h Helix

- Coil

Figure 2. Depiction of Protein Secondary Structure for domain d1ayfa_i

The problem of predicting the 3-D structure of proteins was thus broken into two parts:
1. Prediction of secondary structure from amino acid sequence, 2. Prediction/Mapping of
teritiary 3-D structure from secondary structure. In the present project, we deal with the
first part, i.e. prediction of protein secondary structure.

The prediction of protein structure is being explored since 1960, however the most
ground breaking and interesting studies came through use of Neural of neural networks
for prediction, which gave a protein prediction accuracy of 76% [3]. A complete survey
of the different methods of prediction of protein secondary structure in given in [1].

In this project we attempted to use Genetic Programming (GP) to predict the secondary
structure of protein. Genetic Programming is basically a search/optimization algorithm,
which attracted global attention through the book “Genetic Programming: On the
Programming of Computers by Means of Natural Selection”, by Prof. John Koza [2]. GP
is a class of algorithms that try to ‘evolve’ programs to solve a given problem. It
primarily requires the ideal input and output dataset to calculate the performance of the
evolving program. A typical GP would begin with a random population of programs and
try to search for a solution using principles of natural evolution, such as ‘survival of the
fittest’, crossovers, mutations, etc. GP is generally sensitive to parameter variation and
there is no guarantee that GP would be able to solve a given problem. (However, there
have been numerous publications, where GP has been able to solve NP-Complete
problem, regression problems, circuit design problems, etc.)

We used the multi-aligned amino acid sequence [4] as the input data to the GP and
wanted as output the correct secondary structure of the protein. Since the input data set is
highly dimensional, it becomes difficult for the GP to use it effectively. Therefore, we
decided to use Self Organizing Maps (SOM) to transform the initial higher dimensional
data (the multi-aligned amino acid sequence) to lower dimensional data (positions in the
SOM). SOM is a neural network tool, which uses unsupervised (competitive) learning to
classify data into positions in a map. One can choose the dimensions of the map
(analogous to number of classification parameters) and size of the map (analogous to
total number of different classes). In this way, we could map each amino acid in a protein
into a position in SOM, equivalently characterized by the co-ordinates of the position in
the input to GP. Some nice introductory text on SOM can be found at
http://davis.wpi.edu/~matt/courses/soms/#Introduction.

We hoped that this genetic programming approach could give us probability higher than
the current 76%.

My Work

Algorithms to train the SOM were already coded by the group. I had to do the following
things:

• I had to interpret and try to figure out patterns in the SOM data to judge whether
it contains ample information about the secondary structure of the data.

• Vary various parameters of SOM such as the window size, map size, etc. and
observe their effect on the data.

• Find innovative ways to further preprocess the SOM data before sending to the
genetic algorithm.

• Work upon the Grammar of the evolving genetic program and tune its parameters
through intuition, experiments and observation for better results.

Tools Used

Perl, PDL, PerlGP, Matlab, PDB Resources, etc.

Experiments and Observations

Studying the SOM data

The SOM data mapped each amino acid into a position in the SOM. Therefore, each
amino acid is depicted by the coordinates of its positions in the map in the input data for

the GP. (Details of how multi-aligned sequences were mapped to SOM positions can be
requested from Dr. Bob MacCallum)

It was so hypothesized that each place in the map shall correspond to a single secondary
structural element, i.e. coil, strand or helix. We did statistical tests on the map to see
whether this hypothesis was correct. We trained the map using 100 proteins, allotting
each place in the map the secondary structure, which hit it the maximum time. Then we
tested the maps on another independent set of 100 proteins and found the percent correct
prediction (secondary structure) to judge whether our hypothesis was correct. Results for
a map of 6X6X6 with varying window sizes is included underneath.

 reda Training % Correct Prediction uffa Testing % Correct Prediction

Figure 3: Variation of training and test fitness with window size

It is thus observed that the window size of 15 gives the least difference between the
training and testing fitness, thus substantiating our claim. Also, previous studies using
Neural Networks stated 15 as the optimum window size.

In the aforesaid manner, prediction through Statistical Evaluation of Kohonen Maps gave
a prediction accuracy of 59.94% for a window of 15.

I further studied the errors of mapping each amino acid in the SOM. We believed that we
could see some pattern between the secondary structural element and the range of error.
Figure. 4 depicts results of experiments over 100 proteins.

Figure 4: Variation of number of strand, helices and coils with value of error. X axis depicts error value,
while the Y axis shows the number of secondary structural element

One could observe that the graph for strands was noisy. Though, no direct inference
could be made from this data. We felt(intuitively) that wrongly predicted secondary
structure would have higher values of error, however statistical tests proved the
hypothesis to be wrong.

I believed, maybe, the length of the amino acid sequence contained some information
about the wrongly predicted secondary structure. Following is the plotted data.

Figure 5: Number of wrongly predicted structures vs. length of protein.

The first graph shows the number of wrongly predicted secondary structure (individually
for strand, coil and helix) for different lengths. The second graph shows the total number
of wrongly predicted secondary structure for each length. Clearly, one cannot see any
bias towards predicting wrong secondary structure for particular lengths of proteins.
Hence this information was also regarded useless as far as this project was concerned.

The next approach to process the SOM data was using smoothing. In carrying out
statistical tests on the SOM, one could calculate the probability of occurrence of each
kind of secondary structure for each place in the SOM. When the SOM was applied on
the test set, a record of this probability was made for each position on the map. On
plotting this probability on a sequence of amino acids (protein), we observed that the
curve was quite noisy. However the PSIPRED (gives 76% prediction accuracy, Rost 11)
probabilities vary smoothly over the protein sequence. Hence, we were made to believe
that smoothening the data might improve the prediction accuracy. The underlying figure
shows some examples of how the probabilities look before and after smoothening.

Domain: d1hdmb2_ Domain: d1bz4a_

Figure 6: Variation of probability of occurrence of strand with residue number (amino acid
number). The blue line depicts the SOM probabilities, while the red line shows the SOM probability

smoothened using a window of three and repeated five times.

We carried out experiments varying the window and the ‘number of repeats’ parameter.
The test percent correct prediction was calculated for each case. The results are given in
Appendix I. The best result obtained was for a window of 1 repeated 3 times. It improved
the test fitness structure (prediction accuracy) to 63.525%., which meant an improvement
of 3.58% upon the initial SOM data.

Further Work

• There is scope for further studying the effect of changing dimensionality and size
of the SOM on the prediction accuracy.

• We believe that there is scope for further preprocessing of SOM data before it is
sent to GP. Novel ideas in this direction may be developed. The problem is to
somehow classify the wrongly predicted residues. Then use innovative methods to
repair these errors, e.g., maybe a way to combine the SOM data from two maps of
different dimensionality (or other parameters) for better prediction. (a very vague
example, just a direction of thought)

• We did some initial experiments and tried to correlate pairs of windows (of size 5)
containing SOM positions over the amino acid sequence of a given domain and
extract information. We believed that the maximum correlation a window would
have in a given protein would give some information about its secondary
structure. Due to weak preliminary results and lack of time, this approach couldn’t
be fully explored.

Final Result: The SOM data gives a prediction accuracy of approx. 59.9% and can be
improved to 63.5% using smoothing. We have three sets of available data, SOM places,
SOM probabilities and Smoothened SOM probabilities.

Using GP to process the SOM data

We used the PerlGP system (http://www.perlgp.org, [5]) to evolve perl programs. It was
decided to use PDL in the evolved code to process the SOM data. PDL [website
reference] is a library for perl, which has similar syntax and goals to that of MATLAB. It
allows easy and flexible array/matrix operations. Since our input data (SOM location for
each residue in the protein sequence) to the GP was a matrix of dimensions
(length(protein) X dimensions of map), and we required the same operation to be carried
out on each residue (row) of the protein sequence (matrix), PDL was the appropriate
choice.

We wanted to evolve a code, which could map the input SOM location matrix into
probabilities of occurrence of three secondary structural elements (the three columns of
the output matrix). Using this information, we would predict the secondary structure for
each residue using the highest valued column. Hence, the input and output data for the
evolved code is a matrix of same size i.e. (length(protein) X dimensions of map).

The GP used two sets of data to evaluate the prediction accuracy. One set was used to
guide the evolution, while the second test was a validation test. It saw the effect on the

evolved program on a fresh (independent, not used for evolution) set of data. It was the
test set, which gave the right idea about both the prediction accuracy and GP efficiency.
The test and training set contained 200 domains each for this experiment.

Approach 1: Since we believed that each SOM position mapped to a unique secondary
structure, we allowed only horizontal operations on the input matrix, so that the same
position in the SOM always maps to the same structural element. We used addition,
multiplication, division, equality, and etc. operators on the matrix, individual columns of
matrix, numbers, etc. as the transformation operators for the GP. A copy of the Grammar
used for evolving the code is included in Appendix II. Apart from this approach, we used
two other approaches to grammar and varied parameters to obtain the best performance.
The highest prediction percentage we could obtain was 53.4% when we ran the GP for 5
hours. We didn’t pursue this approach further, since statistical tests already gave
prediction accuracy as high as 59.5%. However, there is always a chance that GP could
do better in more hours.

Approach 2: In the second approach, we allowed vertical operations on the input matrix,
enabling GP to avail information from the SOM locations of neighboring amino acids to
predict the secondary structure of the given amino acid. The same grammar could be
used; only a few additions were made to include vertical operations. The best prediction
accuracy 59.652% after running the GP for 120hrs. One can see that the GP was able to
reach the statistical percentage correctness, however the statistical tests used no vertical
information.

We also used the SOM probabilities and smoothened SOM probabilities as input to the
GP. Using these data sets, we had already achieved a prediction accuracy of 59% and
63% respectively. We wanted to use the GP to improve the accuracy further.

Using the SOM probabilities for GP (the grammar remaining essentially the same) and
running it for 48hrs, we got an improvement of 3.108% over the statistical data.
However, the smoothened SOM probabilities already gave us a prediction accuracy
improvement of 3.58%.

We are still running GP for programs including both smoothened and normal SOM
probabilities. It has already shown an improvement of 4.48% over the statistical
prediction of 59.5% (in 45 hours). We hope we will get better results in more hours.

Further Work

• We believe that the variation in the grammar of the evolved code could bring
considerable change in the GP performance. One could add for loops, if else
commands, or try other novel grammar approaches.

Improving PSIPRED Prediction using Genetic Programming

PSIPRED (3) is one of the most reliable methods for predicting protein secondary
structure giving an accuracy of 76%. PSIPRED data is available through the internet
(http://bioinf.cs.ucl.ac.uk/psiform.html). The PSIPRED output contains the probability of
whether a residue in a protein is a helix, coil or a strand and this data is accessible
(downloadable) for all proteins given in The Protein Data Bank (PDM). An example of
typical PSIPRED data is shown underneath.

Domain: D153L__

 1 R C 0.977 0.005 0.002

 2 T C 0.843 0.045 0.113

 3 D C 0.840 0.018 0.135

 4 C C 0.632 0.020 0.309

 5 Y C 0.557 0.010 0.482

 6 G E 0.249 0.006 0.754

 7 N E 0.312 0.004 0.718

 8 V E 0.313 0.016 0.691

 9 N E 0.209 0.034 0.741

 10 R E 0.137 0.012 0.852

 11 I E 0.211 0.013 0.770

 12 D E 0.180 0.009 0.794

 ….

The file is organized as: Residue Number, Amino Acid Name, Predicted Secondary
Structure, and Probabilities of Coil, Helix and Strand.

Figure 7: Typical PSIPRED output

How these probabilities can be improved for better secondary structure prediction is still
a challenge. Human-developed (based on intuition and analysis) methods to improve this
probability for better results have failed. In the present project, we used Genetic
Programming to improve the PSIPRED probabilities to give higher prediction accuracy.

My Work

• Use and adapt the existing PerlGP libraries (created in the group) for the
PSIPRED project.

• Discuss and implement innovative methods to improve the GP search.

Tools Used

Perl, PDL, PerlGP, Matlab, PDB Resources, etc.

Experiments and Observations

The PerlGP system was used to evolve code for this problem. The input data, i.e. an array
containing the probabilities for the three secondary structural elements was a matrix of
(length of domain) by 3. The output matrix also had the same dimensions, since it was
just an array of improved probabilities.

The input-output data set of this problem is totally compatible with the one discussed in
the project discussed before (Using SOM and Genetic Programming to predict Protein
Secondary structure). Therefore the same operations and grammar were used here.
However there was more thrust on the vertical operations, since we wanted to extensively
use information from neighboring residue for mapping the probability for a given residue
to a new improved value.

We also used the smoothened PSIPRED probabilities as a part of the input data. This data
effectively (in an unbiased manner) gets the information of neighboring residues in a
given residue.

We conducted experiments on the PSIPRED data using the as input data, both the normal
PSIPRED probabilities and the smoothened probabilities. The following graph shows the
effect of variation of window size (times = 5) on the best prediction accuracy (training
and testing) the GP could achieve. The fitness values have been averaged over 6 GP runs
for 5 hours evaluating 200 proteins.

Figure 8: Variation of training and test fitness with Window size

The graph is discrete (bumpy) and needs more time and GP runs to give a clearer picture
of the effect of variation of window size. However due to lack of time, it couldn’t be
done. Still one can clearly see a peak at the window size of 12. For our GP run, we
decided to use a low, medium and highly smoothened data for the GP input set.

Presently, we are running a GP for a week which takes as input, a. PSIPRED probabilities
b. Smoothened PSIPRED probabilities (Window: 2, Times: 5) c. Smoothened PSIPRED
probabilities (Window: 12, Times: 5), d. Smoothened PSIPRED probabilities (Window:
30, Times: 5) e. SOM locations f. Smoothened SOM probabilities (Window: 1, Times: 3)
Since the signal (improvement) we are trying to achieve is very weak and needs a large
data set to be substantial and recognizable, we use a large set of training and testing data.
Our training and testing data set contains 949 and 498 proteins respectively. Results are
awaited.

Further Work

• By running GP for longer time and for more number of runs, the effect of window
size and number of times smoothing is carried out can be better benchmarked. If
some statistical method of benchmarking the effect of window parameter is
developed, it will be a break-through for this problem.

• We formed preliminary ideas to implement a difference data in the GP. On

observing the PSIPRED probabilities one could see that a sudden change in the
probability gave some information. Consider the example: The probability of the
residue being helix suddenly drops down, though still remains the largest,
PSIPRED predicts it to be a helix, but on observing a handful (we admit!) of
domains, we saw that the secondary structure for the specific residue was many-a-
time different. Initially we thought of two approaches to bring in this data into

GP, one by just taking the difference of consecutive rows of the PSIPRED data
and second by considering the difference percentage, i.e. also dividing by the
averaged probability over the two residues. Our initial results with these
approaches didn’t look good. Secondly, the GP grammar could easily create this
data if required. However these ideas might be refined and used in further studies.

• More experiments could be performed with the grammar of the evolved program

such as including for loops, if, etc.

• If, by any chance, it is observed that SOM probabilities predict those residues
correct, which are predicted wrongly by PSIPRED, a new grammar approach
could be to devise a condition to choose one of the two probabilities for the
resultant output matrix.

Conclusion

Using SOM and Genetic Programming to predict Protein Secondary structure:

• One can use SOMs to extract information about the secondary structure of the
protein. An accuracy upto approx. 63% has been reported in our study.

• GP can do improve the SOM data prediction by around a percent (in our case,
running for 60hrs). There is scope that GP could do better in more hours.

• There is scope for further statistical processing of SOM data and we are still
working on some ideas related to use of multiple SOM created using different
parameters.

Improving PSIPRED Prediction using Genetic Programming

• Our present runs show an improvement of 0.2% on the test set. Also, we see that
the GP is still learning. These results are quite exciting. We hope to see an
improvement 1% or 2% in more time (maybe a month of running the genetic
algorithm).

References

1. Rost, B.: Review: Protein Secondary Structure Prediction Continues to Rise, Journal

of Structural Biology, 2001

2. Koza, J: Genetic Programming: On the Programming of Computers by Means of

Natural Selection, The MIT Press, 1992

3. Jones, D. T. : Protein secondary structure prediction based on position-specific

scoring matrices, J. Mol. Biol. 292, 195–202. , 1999

4. Dickerson, R. E., Timkovich, R., and Almassy, R. J.: The cytochrome fold and the

evolution of bacterial energy metabolism, J. Mol. Biol. 100, 473–491, 1979

5. MacCallum, R. M.: Introducing a Perl Genetic Programming System -- and Can

Meta-evolution Solve the Bloat Problem?, (Poster paper) EuroGP 2003

Appendix I

Percentage Correct Probability by smoothening the SOM probabilities.

Trained, tested on 200 domains

Smoothening window: 0 Smoothening times: 1 Probability: 5.982596e-001
--
Smoothening window: 0 Smoothening times: 2 Probability: 5.982596e-001
Smoothening window: 0 Smoothening times: 3 Probability: 5.982596e-001
Smoothening window: 0 Smoothening times: 4 Probability: 5.982596e-001
Smoothening window: 0 Smoothening times: 5 Probability: 5.982596e-001
Smoothening window: 1 Smoothening times: 1 Probability: 6.298167e-001
--
Smoothening window: 1 Smoothening times: 2 Probability: 6.349896e-001
Smoothening window: 1 Smoothening times: 3 Probability: 6.352598e-001
Smoothening window: 1 Smoothening times: 4 Probability: 6.335889e-001
Smoothening window: 1 Smoothening times: 5 Probability: 6.329593e-001
Smoothening window: 2 Smoothening times: 1 Probability: 6.320321e-001
--
Smoothening window: 2 Smoothening times: 2 Probability: 6.310021e-001
Smoothening window: 2 Smoothening times: 3 Probability: 6.248429e-001
Smoothening window: 2 Smoothening times: 4 Probability: 6.201926e-001
Smoothening window: 2 Smoothening times: 5 Probability: 6.160115e-001
Smoothening window: 3 Smoothening times: 1 Probability: 6.259857e-001
--
Smoothening window: 3 Smoothening times: 2 Probability: 6.184742e-001
Smoothening window: 3 Smoothening times: 3 Probability: 6.075430e-001
Smoothening window: 3 Smoothening times: 4 Probability: 5.984256e-001
Smoothening window: 3 Smoothening times: 5 Probability: 5.932018e-001
Smoothening window: 4 Smoothening times: 1 Probability: 6.125074e-001
--
Smoothening window: 4 Smoothening times: 2 Probability: 6.037882e-001
Smoothening window: 4 Smoothening times: 3 Probability: 5.913767e-001
Smoothening window: 4 Smoothening times: 4 Probability: 5.825128e-001
Smoothening window: 4 Smoothening times: 5 Probability: 5.759176e-001
Smoothening window: 5 Smoothening times: 1 Probability: 5.926863e-001
--
Smoothening window: 5 Smoothening times: 2 Probability: 5.902588e-001
Smoothening window: 5 Smoothening times: 3 Probability: 5.771551e-001
Smoothening window: 5 Smoothening times: 4 Probability: 5.675426e-001
Smoothening window: 5 Smoothening times: 5 Probability: 5.575844e-001

Appendix II

A Grammar file illustrating the type of Grammar used to evolve perl (PDL) programs.

package Grammar;

the PerlGP library is distributed under the GNU General Public
License
all software based on it must also be distributed under the same
terms
Due to the limitations of the SDBM module, each string you define
must be less than 1000 characters

Functions
%F = ();
Terminals
%T = ();

#dimension of the SOM

my $dims=3;

$F{ROOT} = [<<'___',
package Individual;

sub transform {
 my $pdl = shift;
my $t = null;
my $mem = zeroes($pdl);

 {STMNT}

 return $pdl;
}

];

$F{STMNT} = [
 copies(4, '{STMNT}
 {STMNT}'),

 # swap 2 colums
 '$t = $pdl->dice([{NUMS},{NUMS}],X); $t .= $t->rotate({NUMS});
#swap',

 # assign/add/multiply to whole PDL
 '$pdl .= {PDL};',
 '$pdl += {PDL};',
 '$pdl *= {PDL};',

 # assign/add/multiply to a vertical slice (one column)

 '$pdl->slice("{NUMS}") .= {VSLICE};',
 '$pdl->slice("{NUMS}") *= {VSLICE};',
 '$pdl->slice("{NUMS}") %= {NUM};',
];

$F{PDL} = [copies(4, '$pdl->rotate({NUMS})'),
 'pdl('.join(', ', map '{NUM}', (1 .. $dims)).')',
 '{NUM}',
 '{MATH}({PDL})',
 '({PDL} + {PDL})',
 '({PDL} * {PDL})',
 '{NUMD}'
'({PDL} > {PDL})', # maybe also with VSLICE
];

$F{VSLICE} = ['{NUM}',
 '{MATH}({VSLICE})',
 '({VSLICE} + {VSLICE})',
 '({VSLICE} * {VSLICE})',
 copies(4, '$pdl->slice("{NUMS}")'),
 '({VSLICE} {CMP} {VSLICE})',
];

$T{STMNT} = ['# nothing'];

$T{CMP} = ['<', '>', '<=', '>=', '==',];

#NUMD might be a 1X1 number or a 3X1 number, it can be threaded to be
added to $pdl

$F{NUMD} = ['pdl('.join(', ', map '{NUM}', (1 .. $dims)).')',
 '{NUM}'];

$F{NUM} = [copies(6, '{NUMX}*{NUM}'),
 copies(6, 'pdiv({NUM},{NUM})'),
 copies(6, '({NUM} + {NUM})'),
 copies(6, '({NUM} - {NUM})'),
 copies(4, 'abs({NUM})'),
copies(1, '({NUM} > 0 ? {NUM} : {NUM})'),
 copies(16, '{NUMX}'),
 copies(16, '{RCONST}'),
 copies(4, '($pdl->sum/$pdl->nelem)'),
 copies(4, '$pdl->nelem'),
 copies(2, '$pdl->dim(0)', '$pdl->dim(1)'),

];

#NUMPDL is basically a [1 length] matrix where each row element is
#some function of the elements of the the respective row of $pdl

$T{NUMPDL} = [
 '$pdl->sumover()->dummy(0)',
 '$pdl->maximum()->dummy(0)',
 '$pdl->minimum()->dummy(0)',
 '$pdl->average()->dummy(0)',

 '$pdl->medover()->dummy(0)',
 '$pdl->oddmedover()->dummy(0)',
];

$F{SLICE} = [
 '$pdl->slice(\'{NUMS}:{NUMS},:\')'
];

$T{MATH} = [
 'sin',
 'cos',
 'tan',
 'exp', # could be dangerous...
 'abs',
];

$T{ROOT} = ['sub transform { }'];

$T{NUMS} = [0..($dims-1)];
$T{DIMS} = [$dims];

$T{NUM} = $T{NUMX} = $T{NUMD} = $T{PDL} = $T{VSLICE} = [-5 .. 5];

$T{RCONST} = [map { sprintf "%.4f", rand(1); } (1 .. 10000)];

this helper routine will give you multiple copies of
something, i.e qw(1 1 1 2 3) is equivalent to (copies(3, 1), 2, 3)
sub copies {
 my ($num, @things) = @_;
 my @result;
 while ($num-->0) {
 push @result, @things;
 }
 return @result;
}

1;

