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The Group 
 
During my internship, I worked in the group of Dr. Bob Maccallum, Assistant Professor, 
Stockholm Bioinformatics Center, (www.sbc.su.se/~maccallr).The group comprises of 
six members including myself, three master students and one post-doc. 

The group's major interest is to develop machine learning and evolutionary computation 
techniques to understand protein folding and structure. A protein starts life inside the cell 
as a simple linear chain of amino acids, but quickly and efficiently folds into a specific 
three-dimensional shape which dictates how it interacts with other molecules in the cell 
or organism. This interplay of proteins and other biomolecules is the very essence of life.  

An organism's DNA specifies the exact sequence of amino acids for every protein. In 
turn, the sequence of amino acids specifies the three-dimensional shape of the folded 
protein. The folding process is difficult to observe experimentally and currently 
impossible to simulate accurately in a computer. Therefore our limited understanding of 
protein folding has not yet resulted in a computational prediction method, which can 
accurately produce a 3D structure given a sequence as input.  

Living organisms have overcome many difficult challenges, such as surviving in extreme 
climates or flying through the air, by the process of evolution, driven by chance mutation 
events, selection and reproduction. Evolutionary computation is an area of computer 
science, which takes inspiration from Nature as it tries to evolve solutions to difficult 
problems. We hold the view that it may be possible to evolve simplified but accurate 
models of protein folding that no human has so far been able to come up with. We are 
particularly interested in genetic programming, which is the automatic evolution of 
computer programs, as the means to achieve this. We pay particular attention to 
developing evolutionary algorithms which follow the biological lead. One example is our 
exploration of meta-evolution - where not only the 'organisms' evolve but also the 
evolutionary mechanisms.  

At the same time as working on algorithms, we are also looking at aspects of sequence-
structure relationships with other techniques which we hope will give valuable insight 
into protein structure and function.  

The ultimate goal is to understand complex biological systems with exciting new 
biologically inspired machine learning algorithms.  

(From: www.sbc.su.se/~maccallr) 
 
 
 



Using SOM and Genetic Programming to predict Protein Secondary structure 
 
Introduction  

Proteins are polymers of amino acids. A protein consists of amino acids (there are 20 
amino acids) bonded together in various ways.  Each protein folds in a unique way giving 
rise to a 3-D secondary structure. The 3-D structure basically contains three structural 
elements, i.e. helix, strands and coils. Figure 1 illustrates the 3-D primary secondary 
structure of a protein. (For further reading, one may consult, “Introduction to Protein 
Structure”, by Branden and Tooze.) 

 The 3-D structure of protein has been of keen interest to researchers (eg. biologists) for 
long. The structure of the protein is useful for understanding its functionality and is 
therefore useful in development of drugs in the pharmaceutical industry. Moreover, they 
are of great academic interest since they give essential hints about evolution of different 
species. 

 

Figure 1: Depiction of 3-D structure of a protein 

 There are experimental ways of finding out the structure of protein using X-RAY 
crystallography, which involves human effort and lot of time. However, since a particular 
amino acid sequence maps to a unique structure, (even if the same protein exists in 
different organisms), it is logical to believe that the amino acid structure contains full 
information about the protein structure. Therefore prediction of protein sequence should 
be possible, if a one-to-one mapping (function) between the amino acid sequence and the 
protein structure can be identified.  

Since the 3-D structure is quite complicated and difficult to predict, researchers around 
the world made an effort towards predicting the secondary structure of the protein.  The 
secondary structure simply tells whether a given amino acid in a given protein is a helix, 
strand or coil. Therefore an amino acid sequence can be mapped into a sequence of  
helices (H), extended strands (E) and coils (C). This sequence of structural elements is 
called the secondary structure of the protein. Figure. 2 clarifies this. 



 
Domain d1ayfa_ 

Amino Acid Sequence 

…VEAGTELEIVCKAVDSSYNVQPDSVAPIWNLRGVLSTAWHRVRVSVQD… 
 

Secondary Structure 

…e----eeeeeeeeee----------hhh-----------eeeeeee--… 

 

e  Extended Strand 

h  Helix 

-  Coil 
 

Figure 2. Depiction of Protein Secondary Structure for domain d1ayfa_i 

The problem of predicting the 3-D structure of proteins was  thus broken into two parts: 
1. Prediction of secondary structure from amino acid sequence, 2. Prediction/Mapping of 
teritiary 3-D structure from secondary structure. In the present project, we deal with the 
first part, i.e. prediction of protein secondary structure. 

The prediction of protein structure is being explored since 1960, however the most 
ground breaking and interesting studies came through use of Neural of neural networks 
for prediction, which gave a protein prediction accuracy of 76% [3]. A complete survey 
of the different methods of prediction of protein secondary structure in given in [1]. 

In this project we attempted to use Genetic Programming (GP) to predict the secondary 
structure of protein. Genetic Programming is basically a search/optimization algorithm, 
which attracted global attention through the book “Genetic Programming: On the 
Programming of Computers by Means of Natural Selection”, by Prof. John Koza [2]. GP 
is a class of algorithms that try to ‘evolve’ programs to solve a given problem. It 
primarily requires the ideal input and output dataset to calculate the performance of the 
evolving program. A typical GP would begin with a random population of programs and 
try to search for a solution using principles of natural evolution, such as ‘survival of the 
fittest’, crossovers, mutations, etc. GP is generally sensitive to parameter variation and 
there is no guarantee that GP would be able to solve a given problem. (However, there 
have been numerous publications, where GP has been able to solve NP-Complete 
problem, regression problems, circuit design problems, etc.) 



We used the multi-aligned amino acid sequence [4] as the input data to the GP and 
wanted as output the correct secondary structure of the protein.  Since the input data set is 
highly dimensional, it becomes difficult for the GP to use it effectively. Therefore, we 
decided to use Self Organizing Maps (SOM) to transform the initial higher dimensional 
data (the multi-aligned amino acid sequence) to lower dimensional data (positions in the 
SOM). SOM is a neural network tool, which uses unsupervised (competitive) learning to 
classify data into positions in a map. One can choose the dimensions of the map 
(analogous to number of classification parameters) and size of the map (analogous to 
total number of different classes). In this way, we could map each amino acid in a protein 
into a position in SOM, equivalently characterized by the co-ordinates of the position in 
the input to GP. Some nice introductory text on SOM can be found at 
http://davis.wpi.edu/~matt/courses/soms/#Introduction.  

We hoped that this genetic programming approach could give us probability higher than 
the current 76%. 

 

My Work 

Algorithms to train the SOM were already coded by the group. I had to do the following 
things: 

• I had to interpret and try to figure out patterns in the SOM data to judge whether 
it contains ample information about the secondary structure of the data.  

• Vary various parameters of SOM such as the window size, map size, etc. and 
observe their effect on the data. 

• Find innovative ways to further preprocess the SOM data before sending to the 
genetic algorithm. 

• Work upon the Grammar of the evolving genetic program and tune its parameters 
through intuition, experiments and observation for better results. 

 

Tools Used 

Perl, PDL, PerlGP, Matlab, PDB Resources, etc.  

 

Experiments and Observations 

Studying the SOM data 

The SOM data mapped each amino acid into a position in the SOM. Therefore, each 
amino acid is depicted by the coordinates of its positions in the map in the input data for 



the GP. (Details of how multi-aligned sequences were mapped to SOM positions can be 
requested from Dr. Bob MacCallum) 

It was so hypothesized that each place in the map shall correspond to a single secondary 
structural element, i.e. coil, strand or helix. We did statistical tests on the map to see 
whether this hypothesis was correct. We trained the map using 100 proteins, allotting 
each place in the map the secondary structure, which hit it the maximum time. Then we 
tested the maps on another independent set of 100 proteins and found the percent correct 
prediction (secondary structure) to judge whether our hypothesis was correct. Results for 
a map of 6X6X6 with varying window sizes is included underneath. 

 

    reda Training % Correct Prediction  uffa     Testing % Correct Prediction 

Figure 3: Variation of training and test fitness with window size 

It is thus observed that the window size of 15 gives the least difference between the 
training and testing fitness, thus substantiating our claim. Also, previous studies using 
Neural Networks stated 15 as the optimum window size. 

In the aforesaid manner, prediction through Statistical Evaluation of Kohonen Maps gave 
a prediction accuracy of 59.94% for a window of 15. 

I further studied the errors of mapping each amino acid in the SOM. We believed that we 
could see some pattern between the secondary structural element and the range of error. 
Figure. 4 depicts results of experiments over 100 proteins. 



 

Figure 4: Variation of number of strand, helices and coils with value of error. X axis depicts error value, 
while the Y axis shows the number of secondary structural element 

One could observe that the graph for strands was noisy. Though, no direct inference 
could be made from this data. We felt(intuitively) that wrongly predicted secondary 
structure would have higher values of error, however statistical tests proved the 
hypothesis to be wrong.  

I believed, maybe, the length of the amino acid sequence contained some information 
about the wrongly predicted secondary structure. Following is the plotted data. 



  

Figure 5: Number of wrongly predicted structures vs. length of protein.  

The first graph shows the number of wrongly predicted secondary structure (individually 
for strand, coil and helix) for different lengths. The second graph shows the total number 
of wrongly predicted secondary structure for each length. Clearly, one cannot see any 
bias towards predicting wrong secondary structure for  particular lengths of proteins. 
Hence this information was also regarded useless as far as this project was concerned. 

The next approach to process the SOM data was using smoothing. In carrying out 
statistical tests on the SOM, one could calculate the probability of occurrence of each 
kind of secondary structure for each place in the SOM. When the SOM was applied on 
the test set, a record of this probability was made for each position on the map. On 
plotting this probability on a sequence of amino acids (protein), we observed that the 
curve was quite noisy. However the PSIPRED (gives 76% prediction accuracy, Rost 11) 
probabilities vary smoothly over the protein sequence. Hence, we were made to believe 
that smoothening the data might improve the prediction accuracy. The underlying figure 
shows some examples of how the probabilities look before and after smoothening. 

 

Domain: d1hdmb2_      Domain: d1bz4a_ 

Figure 6: Variation of probability of occurrence of strand with residue number (amino acid 
number). The blue line depicts the SOM probabilities, while the red line shows the SOM probability 

smoothened using a window of three and repeated five times. 



We carried out experiments varying the window and the ‘number of repeats’ parameter. 
The test percent correct prediction was calculated for each case. The results are given in 
Appendix I. The best result obtained was for a window of 1 repeated 3 times. It improved 
the test fitness structure (prediction accuracy) to 63.525%., which meant an improvement 
of 3.58% upon the initial SOM data. 

Further Work 

• There is scope for further studying the effect of changing dimensionality and size 
of the SOM on the prediction accuracy. 

• We believe that there is scope for further preprocessing of SOM data before it is 
sent to GP. Novel ideas in this direction may be developed. The problem is to 
somehow classify the wrongly predicted residues. Then use innovative methods to 
repair these errors, e.g., maybe a way to combine the SOM data from two maps of 
different dimensionality (or other parameters) for better prediction. (a very vague 
example, just a direction of thought) 

• We did some initial experiments and tried to correlate pairs of windows (of size 5) 
containing SOM positions over the amino acid sequence of a given domain and 
extract information. We believed that the maximum correlation a window would 
have in a given protein would give some information about its secondary 
structure. Due to weak preliminary results and lack of time, this approach couldn’t 
be fully explored. 

Final Result: The SOM data gives a prediction accuracy of approx. 59.9% and can be 
improved to 63.5% using smoothing. We have three sets of available data, SOM places, 
SOM probabilities and Smoothened SOM probabilities. 

Using GP to process the SOM data 

We used the PerlGP system (http://www.perlgp.org, [5]) to evolve perl programs. It was 
decided to use PDL in the evolved code to process the SOM data. PDL [website 
reference] is a library for perl, which has similar syntax and goals to that of MATLAB. It 
allows easy and flexible array/matrix operations. Since our input data (SOM location for 
each residue in the protein sequence) to the GP was a matrix of dimensions 
(length(protein) X dimensions of map), and we required the same operation to be carried 
out on each residue (row) of the protein sequence (matrix), PDL was the appropriate 
choice. 

We wanted to evolve a code, which could map the input SOM location matrix into 
probabilities of occurrence of three secondary structural elements (the three columns of 
the output matrix). Using this information, we would predict the secondary structure for 
each residue using the highest valued column. Hence, the input and output data for the 
evolved code is a matrix of same size i.e. (length(protein) X dimensions of map). 

The GP used two sets of data to evaluate the prediction accuracy. One set was used to 
guide the evolution, while the second test was a validation test. It saw the effect on the 



evolved program on a fresh (independent, not used for evolution) set of data. It was the 
test set, which gave the right idea about both the prediction accuracy and GP efficiency. 
The test and training set contained 200 domains each for this experiment.  

Approach 1: Since we believed that each SOM position mapped to a unique secondary 
structure, we allowed only horizontal operations on the input matrix, so that the same 
position in the SOM always maps to the same structural element. We used addition, 
multiplication, division, equality, and etc. operators on the matrix, individual columns of 
matrix, numbers, etc. as the transformation operators for the GP. A copy of the Grammar 
used for evolving the code is included in Appendix II. Apart from this approach, we used 
two other approaches to grammar and varied parameters to obtain the best performance. 
The highest prediction percentage we could obtain was 53.4% when we ran the GP for 5 
hours. We didn’t pursue this approach further, since statistical tests already gave 
prediction accuracy as high as 59.5%. However, there is always a chance that GP could 
do better in more hours. 

Approach 2: In the second approach, we allowed vertical operations on the input matrix, 
enabling GP to avail information from the SOM locations of neighboring amino acids to 
predict the secondary structure of the given amino acid. The same grammar could be 
used; only a few additions were made to include vertical operations. The best prediction 
accuracy 59.652% after running the GP for 120hrs. One can see that the GP was able to 
reach the statistical percentage correctness, however the statistical tests used no vertical 
information. 

We also used the SOM probabilities and smoothened SOM probabilities as input to the 
GP. Using these data sets, we had already achieved a prediction accuracy of 59% and 
63% respectively. We wanted to use the GP to improve the accuracy further. 

Using the SOM probabilities for GP (the grammar remaining essentially the same) and 
running it for 48hrs, we got an improvement of 3.108% over the statistical data. 
However, the smoothened SOM probabilities already gave us a prediction accuracy 
improvement of 3.58%. 

We are still running GP for programs including both smoothened and normal SOM 
probabilities. It has already shown an improvement of 4.48% over the statistical 
prediction of 59.5% (in 45 hours). We hope we will get better results in more hours. 

Further Work 

• We believe that the variation in the grammar of the evolved code could bring 
considerable change in the GP performance. One could add for loops, if else 
commands, or try other novel grammar approaches. 



Improving PSIPRED Prediction using Genetic Programming 

PSIPRED (3) is one of the most reliable methods for predicting protein secondary 
structure giving an accuracy of 76%. PSIPRED data is available through the internet 
(http://bioinf.cs.ucl.ac.uk/psiform.html). The PSIPRED output contains the probability of 
whether a residue in a protein is a helix, coil or a strand and this data is accessible 
(downloadable) for all proteins given in The Protein Data Bank (PDM). An example of 
typical PSIPRED data is shown underneath. 

 

Domain: D153L__ 

   1 R C   0.977  0.005  0.002 

   2 T C   0.843  0.045  0.113 

   3 D C   0.840  0.018  0.135 

   4 C C   0.632  0.020  0.309 

   5 Y C   0.557  0.010  0.482 

   6 G E   0.249  0.006  0.754 

   7 N E   0.312  0.004  0.718 

   8 V E   0.313  0.016  0.691 

   9 N E   0.209  0.034  0.741 

  10 R E   0.137  0.012  0.852 

  11 I E   0.211  0.013  0.770 

  12 D E   0.180  0.009  0.794 

  …. 

The file is organized as: Residue Number, Amino Acid Name, Predicted Secondary 
Structure, and Probabilities of Coil, Helix and Strand. 

Figure 7: Typical PSIPRED output 

How these probabilities can be improved for better secondary structure prediction is still 
a challenge. Human-developed (based on intuition and analysis) methods to improve this 
probability for better results have failed. In the present project, we used Genetic 
Programming to improve the PSIPRED probabilities to give higher prediction accuracy. 



My Work 

• Use and adapt the existing PerlGP libraries (created in the group) for the 
PSIPRED project. 

• Discuss and implement innovative methods to improve the GP search. 

 

Tools Used 

Perl, PDL, PerlGP, Matlab, PDB Resources, etc. 

 

Experiments and Observations 

The PerlGP system was used to evolve code for this problem. The input data, i.e. an array 
containing the probabilities for the three secondary structural elements was a matrix of 
(length of domain) by 3. The output matrix also had the same dimensions, since it was 
just an array of improved probabilities.  

The input-output data set of this problem is totally compatible with the one discussed in 
the project discussed before (Using SOM and Genetic Programming to predict Protein 
Secondary structure). Therefore the same operations and grammar were used here. 
However there was more thrust on the vertical operations, since we wanted to extensively 
use information from neighboring residue for mapping the probability for a given residue 
to a new improved value. 

We also used the smoothened PSIPRED probabilities as a part of the input data. This data 
effectively (in an unbiased manner) gets the information of neighboring residues in a 
given residue. 

We conducted experiments on the PSIPRED data using the as input data, both the normal 
PSIPRED probabilities and the smoothened probabilities. The following graph shows the 
effect of variation of window size (times = 5) on the best prediction accuracy (training 
and testing) the GP could achieve. The fitness values have been averaged over 6 GP runs 
for 5 hours evaluating 200 proteins. 



 

 
Figure 8: Variation of training and test fitness with Window size 

 
The graph is discrete (bumpy) and needs more time and GP runs to give a clearer picture 
of the effect of variation of window size. However due to lack of time, it couldn’t be 
done. Still one can clearly see a peak at the window size of 12. For our GP run, we 
decided to use a low, medium and highly smoothened data for the GP input set. 
 
Presently, we are running a GP for a week which takes as input, a. PSIPRED probabilities 
b. Smoothened PSIPRED probabilities (Window: 2, Times: 5) c. Smoothened PSIPRED 
probabilities (Window: 12, Times: 5), d. Smoothened PSIPRED probabilities (Window: 
30, Times: 5) e. SOM locations f. Smoothened SOM probabilities (Window: 1, Times: 3)  
Since the signal (improvement) we are trying to achieve is very weak and needs a large 
data set to be substantial and recognizable, we use a large set of training and testing data. 
Our training and testing data set contains 949 and 498 proteins respectively. Results are 
awaited. 
 
Further Work 
 

• By running GP for longer time and for more number of runs, the effect of window 
size and number of times smoothing is carried out can be better benchmarked. If 
some statistical method of benchmarking the effect of window parameter is 
developed, it will be a break-through for this problem. 

 
• We formed preliminary ideas to implement a difference data in the GP. On 

observing the PSIPRED probabilities one could see that a sudden change in the 
probability gave some information. Consider the example: The probability of the 
residue being helix suddenly drops down, though still remains the largest, 
PSIPRED predicts it to be a helix, but on observing a handful (we admit!) of 
domains, we saw that the secondary structure for the specific residue was many-a-
time different. Initially we thought of two approaches to bring in this data into 



GP, one by just taking the difference of consecutive rows of the PSIPRED data 
and second by considering the difference percentage, i.e. also dividing by the 
averaged probability over the two residues. Our initial results with these 
approaches didn’t look good. Secondly, the GP grammar could easily create this 
data if required. However these ideas might be refined and used in further studies. 

 
• More experiments could be performed with the grammar of the evolved program 

such as including for loops, if, etc. 
 

• If, by any chance, it is observed that SOM probabilities predict those residues 
correct, which are predicted wrongly by PSIPRED, a new grammar approach 
could be to devise a condition to choose one of the two probabilities for the 
resultant output matrix. 



Conclusion 
 
Using SOM and Genetic Programming to predict Protein Secondary structure: 
 

• One can use SOMs to extract information about the secondary structure of the 
protein. An accuracy upto approx. 63% has been reported in our study. 

• GP can do improve the SOM data prediction by around a percent (in our case, 
running for 60hrs). There is scope that GP could do better in more hours. 

• There is scope for further statistical processing of SOM data and we are still 
working on some ideas related to use of multiple SOM created using different 
parameters. 

 
 

Improving PSIPRED Prediction using Genetic Programming 

• Our present runs show an improvement of 0.2% on the test set. Also, we see that 
the GP is still learning. These results are quite exciting. We hope to see an 
improvement 1% or 2% in more time (maybe a month of running the genetic 
algorithm). 
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Appendix I 

Percentage Correct Probability by smoothening the SOM probabilities. 

Trained, tested on 200 domains 
 
Smoothening window: 0  Smoothening times: 1 Probability: 5.982596e-001 
-- 
Smoothening window: 0  Smoothening times: 2 Probability: 5.982596e-001 
Smoothening window: 0  Smoothening times: 3 Probability: 5.982596e-001 
Smoothening window: 0  Smoothening times: 4 Probability: 5.982596e-001 
Smoothening window: 0  Smoothening times: 5 Probability: 5.982596e-001 
Smoothening window: 1  Smoothening times: 1 Probability: 6.298167e-001 
-- 
Smoothening window: 1  Smoothening times: 2 Probability: 6.349896e-001 
Smoothening window: 1  Smoothening times: 3 Probability: 6.352598e-001   
Smoothening window: 1  Smoothening times: 4 Probability: 6.335889e-001 
Smoothening window: 1  Smoothening times: 5 Probability: 6.329593e-001 
Smoothening window: 2  Smoothening times: 1 Probability: 6.320321e-001 
-- 
Smoothening window: 2  Smoothening times: 2 Probability: 6.310021e-001 
Smoothening window: 2  Smoothening times: 3 Probability: 6.248429e-001 
Smoothening window: 2  Smoothening times: 4 Probability: 6.201926e-001 
Smoothening window: 2  Smoothening times: 5 Probability: 6.160115e-001 
Smoothening window: 3  Smoothening times: 1 Probability: 6.259857e-001 
-- 
Smoothening window: 3  Smoothening times: 2 Probability: 6.184742e-001 
Smoothening window: 3  Smoothening times: 3 Probability: 6.075430e-001 
Smoothening window: 3  Smoothening times: 4 Probability: 5.984256e-001 
Smoothening window: 3  Smoothening times: 5 Probability: 5.932018e-001 
Smoothening window: 4  Smoothening times: 1 Probability: 6.125074e-001 
-- 
Smoothening window: 4  Smoothening times: 2 Probability: 6.037882e-001 
Smoothening window: 4  Smoothening times: 3 Probability: 5.913767e-001 
Smoothening window: 4  Smoothening times: 4 Probability: 5.825128e-001 
Smoothening window: 4  Smoothening times: 5 Probability: 5.759176e-001 
Smoothening window: 5  Smoothening times: 1 Probability: 5.926863e-001 
-- 
Smoothening window: 5  Smoothening times: 2 Probability: 5.902588e-001  
Smoothening window: 5  Smoothening times: 3 Probability: 5.771551e-001 
Smoothening window: 5  Smoothening times: 4 Probability: 5.675426e-001 
Smoothening window: 5  Smoothening times: 5 Probability: 5.575844e-001 



Appendix II 

A Grammar file illustrating the type of Grammar used to evolve perl (PDL) programs. 

package Grammar; 
 
# the PerlGP library is distributed under the GNU General Public 
License 
# all software based on it must also be distributed under the same 
terms 
# Due to the limitations of the SDBM module, each string you define 
# must be less than 1000 characters 
 
# Functions 
%F = (); 
# Terminals 
%T = (); 
 
 
#dimension of the SOM 
 
my $dims=3; 
 
$F{ROOT} = [ <<'___', 
package Individual; 
 
sub transform { 
  my $pdl = shift; 
#  my $t = null; 
#  my $mem = zeroes($pdl); 
 
  {STMNT} 
 
  return $pdl; 
} 
___ 
]; 
  
 
$F{STMNT} = [ 
    copies(4, '{STMNT} 
  {STMNT}'), 
  
 
    # swap 2 colums 
    '$t = $pdl->dice([{NUMS},{NUMS}],X); $t .= $t->rotate({NUMS}); 
#swap', 
 
    # assign/add/multiply to whole PDL 
    '$pdl .= {PDL};', 
    '$pdl += {PDL};', 
    '$pdl *= {PDL};', 
 
    # assign/add/multiply to a vertical slice (one column) 



    '$pdl->slice("{NUMS}") .= {VSLICE};', 
    '$pdl->slice("{NUMS}") *= {VSLICE};', 
    '$pdl->slice("{NUMS}") %= {NUM};', 
]; 
 
 
$F{PDL} = [ copies(4, '$pdl->rotate({NUMS})'), 
            'pdl('.join(', ', map '{NUM}', (1 .. $dims)).')', 
            '{NUM}', 
            '{MATH}({PDL})', 
            '({PDL} + {PDL})', 
            '({PDL} * {PDL})', 
            '{NUMD}'              
###            '({PDL} > {PDL})', # maybe also with VSLICE 
]; 
 
$F{VSLICE} = [ '{NUM}', 
               '{MATH}({VSLICE})', 
               '({VSLICE} + {VSLICE})', 
               '({VSLICE} * {VSLICE})', 
               copies(4, '$pdl->slice("{NUMS}")'), 
               '({VSLICE} {CMP} {VSLICE})', 
]; 
 
$T{STMNT} = [ '# nothing' ]; 
 
 
$T{CMP} = [ '<', '>', '<=', '>=', '==', ]; 
 
#NUMD might be a 1X1 number or a 3X1 number, it can be threaded to be 
added to $pdl 
 
$F{NUMD} = [ 'pdl('.join(', ', map '{NUM}', (1 .. $dims)).')', 
              '{NUM}' ]; 
 
$F{NUM} = [ copies(6, '{NUMX}*{NUM}'), 
     copies(6, 'pdiv({NUM},{NUM})'), 
     copies(6, '({NUM} + {NUM})'), 
     copies(6, '({NUM} - {NUM})'), 
            copies(4, 'abs({NUM})'), 
#            copies(1, '({NUM} > 0 ? {NUM} : {NUM})'), 
            copies(16, '{NUMX}'), 
            copies(16, '{RCONST}'), 
            copies(4, '($pdl->sum/$pdl->nelem)'), 
            copies(4, '$pdl->nelem'), 
            copies(2, '$pdl->dim(0)', '$pdl->dim(1)'), 
 
   ]; 
 
#NUMPDL is basically a [1 length] matrix where each row element is  
#some function of the elements of the the respective row of $pdl  
 
$T{NUMPDL} = [ 
    '$pdl->sumover()->dummy(0)', 
    '$pdl->maximum()->dummy(0)', 
    '$pdl->minimum()->dummy(0)', 
    '$pdl->average()->dummy(0)', 



    '$pdl->medover()->dummy(0)', 
    '$pdl->oddmedover()->dummy(0)', 
    ]; 
 
$F{SLICE} = [ 
    '$pdl->slice(\'{NUMS}:{NUMS},:\')' 
    ]; 
 
$T{MATH} = [ 
    'sin', 
    'cos', 
    'tan', 
    'exp', # could be dangerous... 
    'abs', 
    ]; 
 
$T{ROOT} = [ 'sub transform { }' ]; 
 
$T{NUMS} = [0..($dims-1)]; 
$T{DIMS} = [$dims]; 
 
$T{NUM} = $T{NUMX} = $T{NUMD} = $T{PDL} = $T{VSLICE} = [ -5 .. 5 ]; 
 
$T{RCONST} = [ map { sprintf "%.4f", rand(1); } (1 .. 10000) ]; 
 
# this helper routine will give you multiple copies of 
# something, i.e qw(1 1 1 2 3) is equivalent to (copies(3, 1), 2, 3) 
sub copies { 
  my ($num, @things) = @_; 
  my @result; 
  while ($num-->0) { 
    push @result, @things; 
  } 
  return @result; 
} 
 
1; 
 


