
The Perl Data Language (PDL)
– A short intro

Karl Glazebrook

Monday, 17 October 2011

What is PDL?
– Array processing oriented language
– Multiple datatypes (ints, floats, doubles...)
– Arrays are stored in C-friendly compact
memory blocks
– C-speed for array processing
– Lots of numerical oriented functions

$r = rvals(2000,2000);

$sin = 10*sin(0.02*$r);

imag $sin/max($sin)+grandom($r)*0.1;

Monday, 17 October 2011

DEMO

Monday, 17 October 2011

History

Monday, 17 October 2011

Some key features
High-level expressive coding

2D graphics uses familiar PGPLOT (support for
multiple 2D+3D graphics libraries)

Deep vectorization

Access to all of Perl (CPAN libraries) – text
processing, DB/SQL support, WWW interfaces,...

Excellent FITS & astro support

Fast

Free

Easy extension with C code (inline!)
Monday, 17 October 2011

Deep vectorization
$x = random(1000000);
$median = medover($x); # 0D answer

$x = random(100000,200);
$median = medover($x); # 1D answer (200 elements)
$median = medover($x->mv(1,0)); # 1D answer (100000)

All vector functions operate at C speed and automatically
‘thread’ over extra dimensions

Lots of functions for slicing, dicing, clumping, indexing and
generally mixing up dimensions

$x = random(10, 2000,2000,2);
$median = medover($x->clump(1,2)->mv(1,0)); # answer is 10x2

Monday, 17 October 2011

Real World Example

DEIMOS sky spectrum

Something I did recently...

Monday, 17 October 2011

Code
($w,$f) = rcols 'cooper-skyspec.dat';

Smooth with a series of gaussians

$fwhm = 10**(sequence(20)/10) * 2;
$r = rvals(500);
$gauss = exp(-0.5*($r/($fwhm->dummy(0)/2.35))**2) ;
$fsm = conv1d($f, $gauss);
imag $fsm;

Calculate average brightness of the darkest 80%

$fsm_norm = $fsm / sumover($fsm)->dummy(0); # Normalise each spectrum
$sort = qsort($fsm_norm);
$i80 = int(0.8 * $sort->getdim(0)) ; # 80%ile pixel on x axis
$brightness = average($sort(0:$i80,:));

line $fwhm, $brightness/min($brightness); # Plot
pglab 'FWHM / A', 'Relative brightness of darkest 80%','';

Tmp column vector

Log sequence of FWHMs

Monday, 17 October 2011

DEMO

Monday, 17 October 2011

More non-trivial examples
Karl – 2 component SFH stellar mass fitting
code

Sánchez – R3D – IFU reduction package

Benson – semi-analytic model analysis

Karl – GDDS data reduction prototyping

Kenworthy – SPIRAL1 datacube processing

de Forest – post-processing of
magnetohydrodynamical solar simulations

Monday, 17 October 2011

PDL vs IDL
No licensing headaches

Perl is a real language, does not break at
 ‘edge cases’, proper support for modern
programming styles

Modular: namespaces/modular extensions/
easy to add in your own C/F77 code

Speeds are comparable for simple examples
but PDL has better vectorization

Excellent for non-numeric language tasks

Monday, 17 October 2011

* No multidimensional wildcarding/threading -- once you use one "*" in a dimension, you're done(!)
* No null sets -- so operations like where() (their equivalent of our which()) always require
checking -- in the null case it returns -1;
* No rich ND operations
* Interpolation is inconsistent (pixel-centered vs. corner centered for different types of
interpolation)
* No heterogeneous arrays/lists -- the best you can do is a "data cube"
* No hashes -- IDL "structures" are absolutely wretched. Anonymous structures can be mocked
up to work sort of like hashes, but they use a linear search through a set of string tags -- so you
have to recopy the whole structure if you add/delete a tag(!!); and searching is linear(!!).
* No type promotion -- loops fail on the 32,768th iteration by default.
* Awful string handling
* Ghastly widget sets, if you're into that kind of thing (e.g. Perl's Tk is much, much easier to use)
* Nothing remotely like PDL::Transform
* Hideous handling of booleans (the low-order bit of an integer is treated as the boolean value, so
2 is false)
* No hierarchical namespace
* It's ****ing broken out of the box. (I recently installed IDL 8 to run some instrument-provided
calibration code. It wouldn't install because a relative path in the install script didn't agree with the
structure of their tarball.)
* The owners have taken active steps to prevent data compatibility (sorry to say, our PDL::IO::IDL
module is responsible for the plaintext legalese warning at the top of all recent IDL .SAV files).

– Craig DeForest, SWRI
Monday, 17 October 2011

Example: the ‘points in polygon problem’

Monday, 17 October 2011

Example: the ‘points in polygon problem’

C code

Monday, 17 October 2011

Example: the ‘points in polygon problem’

PDL code

Monday, 17 October 2011

Example: the ‘points in polygon problem’
IDL code

Monday, 17 October 2011

PDL vs SciPy
(or Perl vs Python)

Python: more of a ‘bondage & discipline’
language – style is coerced (e.g. indents!),
everything is an object.

Perl: free form expression, variety of styles,
more rope to hang yourself

SciPy: adopted by STScI, IRAF

PDL: faster, easier to extend with your own
vector code

Monday, 17 October 2011

Two cool things

Monday, 17 October 2011

Two cool things

Warning: deep Nerd territory!

Monday, 17 October 2011

Inline:PDLpp
Automatically vectorized C extensions

Monday, 17 October 2011

PDL::ParallelCPU
(Experimental)

Monday, 17 October 2011

Where to start: pdl.perl.org

Monday, 17 October 2011

Where to start: pdl.perl.org

Monday, 17 October 2011

Where to start: pdl.perl.org

Monday, 17 October 2011

Monday, 17 October 2011

Monday, 17 October 2011

