The Perl Data Language (PDL)
— A short intro

What is PDL!?

— Array processing oriented language

— Multiple datatypes (ints, floats, doubles...)
— Arrays are stored in C-friendly compact
memory blocks

— C-speed for array processing

— Lots of numerical oriented functions

$r = rvals(2000,2000);
$sin = 10*sin(0.02*%r);

imag $sin/max($sin)+grandom($r)*0.1;

DEMO

Monday, 17 October 2011

..7‘

» . 4 - -
| oy e .‘W'
4 T b RN -

day, 17 October 2011

Some key features

High-level expressive coding

2D graphics uses familiar PGPLOT (support for
multiple 2D+3D graphics libraries)

Deep vectorization

Access to all of Perl (CPAN libraries) — text
processing, DB/SQL support, WWWV interfaces,...

Excellent FITS & astro support
Fast
Free

Easy extension with C code (inline!)

Monday, 17 October 2011

Deep vectorization

$x = random(1000000);
$median = medover($x); # 0D answer

$x = random(100000,200);
$median = medover($x); # |ID answer (200 elements)
$median = medover($x->mv(1,0)); # ID answer (100000)

All vector functions operate at C speed and automatically
‘thread’ over extra dimensions

Lots of functions for slicing, dicing, clumping, indexing and
generally mixing up dimensions

$x = random(10,2000,2000,2);
$median = medover($x->clump(1,2)->mv(1,0)); # answer is 10x2

Monday, 17 October 2011

Real VWorld Example

Something | did recently...

IIIIIIIIIIIIIIIIIIIIIIIIII

DEIMOS sky spectrum

Flux

Monday, 17 October 2011

Code

($w,$f) = rcols 'cooper-skyspec.dat’;
Smooth with a series of gaussians

$fwhm = |10**(sequence(20)/10) * 2;

$r = rvals(500);

$gauss = exp(-0.5%($r/($fwhm->dummy(0)/2.35))**2) ;
$fsm = conv|d($f, $gauss);

imag $fsm;

Calculate average brightness of the darkest 80%

$fsm_norm = $fsm / sumover($fsm)->dummy(0); # Normalise each spectrum
$sort = gsort($fsm_norm);

$i80 = int(0.8 * $sort->getdim(0)) ; # 80%ile pixel on x axis

$brightness = average($sort(0:$i80,:));

line $fwhm, $brightness/min($brightness); # Plot
pglab 'FWHM / A', 'Relative brightness of darkest 80%',";

Monday, 17 October 2011

DEMO

Monday, 17 October 2011

More non-trivial examples

® Karl — 2 component SFH stellar mass fitting
code

® Sinchez — R3D — IFU reduction package

® Benson — semi-analytic model analysis

® Karl —- GDDS data reduction prototyping
® Kenworthy — SPIRALI datacube processing

® de Forest — post-processing of
magnetohydrodynamical solar simulations

PDLvs IDL i3

e . , LICENSING
No licensing headaches HEADACHE

Rx FOR THE

® Perl is a real language, does not break at
‘edge cases’, proper support for modern
programming styles

® Modular: namespaces/modular extensions/
easy to add in your own C/F/7 code

® Speeds are comparable for simple examples
but PDL has better vectorization

® Excellent for non-numeric language tasks

Monday, 17 October 2011

* No multidimensional wildcarding/threading -- once you use one "*" in a dimension, you're done(!)
* No null sets -- so operations like where() (their equivalent of our which()) always require
checking -- in the null case it returns -1;

* No rich ND operations

* Interpolation is inconsistent (pixel-centered vs. corner centered for different types of
interpolation)

* No heterogeneous arrays/lists -- the best you can do is a "data cube”

* No hashes -- IDL "structures" are absolutely wretched. Anonymous structures can be mocked
up to work sort of like hashes, but they use a linear search through a set of string tags -- so you
have to recopy the whole structure if you add/delete a tag(!!); and searching is linear(!!).

* No type promotion -- loops fail on the 32,768th iteration by default.

* Awful string handling

* Ghastly widget sets, if you're into that kind of thing (e.g. Perl's Tk is much, much easier to use)
* Nothing remotely like PDL::Transform

* Hideous handling of booleans (the low-order bit of an integer is treated as the boolean value, so
2 is false)

* No hierarchical namespace

* It's ****ing broken out of the box. (I recently installed IDL 8 to run some instrument-provided
calibration code. It wouldn't install because a relative path in the install script didn't agree with the
structure of their tarball.)

*The owners have taken active steps to prevent data compatibility (sorry to say, our PDL:1O:IDL
module is responsible for the plaintext legalese warning at the top of all recent IDL .SAV files).

— Craig DeForest, SWRI

Monday, 17 October 2011

Example: the ‘points in polygon problem’

Monday, 17 October 2011

Example: the ‘points in polygon problem’

Here is the code, for reference. Excluding lines with only braces, there are only 7 lines of code.

int pnpoly(int nvert, float #*vertx, float #*verty, float testx, float testy)
{

int i, j, ¢© 0;

for (1 0, 3 nvert-1l; i < nvert; j i+4) {

if (((verty[i]>testy) != (verty[j]l>testy)) &&
(testx < (vertx[j]-vertx[i]) * (testy-verty[i]) / (verty[jl-verty[i]) + vertx[i]))
c ic:
}

return c;

}

vArgument Meaning

nvert Number of vertices in the polygon. Whether to repeat the first vertex at the end is discussed below.
vertx, verty||Arrays containing the x- and y-coordinates of the polygon's vertices.

testx, testy ||X- and y-coordinate of the test point.

Monday, 17 October 2011

Example: the ‘points in polygon problem’

PDL code

sub pnpoly{
my(Stx, Sty, Svertx, $verty) = @_;
my Stestx = S$tx->dummy(0);
my Stesty = Sty->dummy(0);
my Svertx) = Svertx->rotate(l);
my Svertyj = Sverty->rotate(l);

$c = sumover(((Sverty>Stesty) != ($vertyj>Stesty)) &
($testx < ($vertxj-Svertx) * (Stesty-Sverty) /
($vertyj-Sverty) + Svertx)
) %2;

return $c; |

}

Monday, 17 October 2011

Example: the ‘points in polygon problem’
IDL code

FUNCTION Inside, X, Y, PX, pPY

X The coordinate of the point.

Y The coordinate of the point.
pxX The coordinates of the polygon.
PY The coordinates of the polygon.

The return value of the function is 1 if the point is inside the
polygon and 0 if it is outside the polygon.

sXx = Size(px)

sy = Size(py)

IF (sx[0] EQ 1) THEN NX=sx[1l] ELSE RETURN, -1 ; Error if px not a vector
IF (sy[0] EQ 1) THEN NY=sy[l] ELSE RETURN, -1 ; Error if py not a vector
IF (NX EQ NY) THEN N = NX ELSE RETURN, -1 ; Incompatible dimensions

tmp px = [px, px[0]] ; Close Polygon in x
tmp_py = [pY, PY[0]] ; Close Polygon in y

i = indgen(N) ; Counter (0:NX-1)
ip indgen(N)+1 ; Counter (1l:nx)

X1 tmp _px(1i)
Yl tmp _py(i)
X2 tmp_px(ip)
Y2 = tmp_py(ip)

dp X1*¥X2 + Y1*Y2 ; Dot-product

cp = X1*Y2 - Y1*X2 ; Cross-product
theta = Atan(cp,dp)

IF (Abs(Total(theta)) GT !PI) THEN RETURN, 1 ELSE RETURN, 0

Monday, 17 October 2011

PDL vs SciPy

(or Perl vs Python)

Python: more of a ‘bondage & discipline’
language — style is coerced (e.g. indents!),
everything is an object.

Perl: free form expression, variety of styles,
more rope to hang yourself

SciPy: adopted by STScl, IRAF

PDL: faster, easier to extend with your own
vector code

Iwo cool things

Warning: deep Nerd territory!

Monday, 17 October 2011

Inline:PDLpp

Automatically vectorized C extensions

use Inline Pdlpp;
$a = 10@+sequence 10; $b = random(10); $c=sequence(10)*20;
print $a->myfunc($b,$c),"\n";

= random(1000, 2000) ;
= $x->tcumul;

__Pdlpp__

pp_def('myfunc’
Pars

Code

);

pp_def(' tcumul’,
Pars => "in(n):|o]
Code => "$mul()

- ~ N v
O() (J { |) / 1"
L - \ S .

Monday, 17 October 2011

PDL::ParallelCPU

(Experimental)

set_autopthread_targ(4);
set_autopthread_size(5);

$a = zeroes(5000,5000);

$b = $a + 5;

$actualPthreads = get_autopthread_actual();

Monday, 17 October 2011

Where to start: pdl.perl.org

Where to start: de perl.org

CDl) 6 FAg

About PDL
___Home |

Get PDL
Screenshots
PDL Users
Mailing Lists

FAQ
Tutorials
Modules
Course
Index

Resources

Demos
Presentations
PDL Wiki
External Libs

Get Started
Browse Git
Bugs
Patches
Credits

Sourceforge

81TT

Perl Data Language

Scientific computing with Perl

PDL ("Perl Data Language")
gives standard Perl the ability
to compactly store and
speedily manipulate the large
N-dimensional data arrays
which are the bread and butter
of scientific computing.

PDL turns Perl in to a free,
array-oriented, numerical
language similar to (but, we
believe, better than) such

commerical packages as IDL and MatLab. One can write
simple perl expressions to manipulate entire numerical arrays all at once.

Simple interactive shells,

pdl2

and perldl ,

are provided for use from the

command line along with the epr module for use in Perl scripts.

Monday, 17 October 2011

Recent News

2011-08-13 Support for large
(>2GB) pdls in PDL

2011-05-21 Multi-Core
available
on CPAN

2011-05-11 SciPDL Package for
Mac OS X released

2011-04-11 PDL 2.4.9 released

2011-04-06 inSCIght
Computing
about PDL

support
in git and

Scientific
Podcast

Where to start: de perl.org

CDl) 6 FAg

About PDL
___Home |

Get PDL
Screenshots
PDL Users
Mailing Lists

Modules
Course
Index

Resources

Demos
Presentations
PDL Wiki
External Libs

Get Started
Browse Git
Bugs
Patches
Credits

Sourceforge

81TT

Tutorials I

Perl Data Language

Scientific computing with Perl

get...
Docs

PDL ("Perl Data Language")
gives standard Perl the ability
to compactly store and
speedily manipulate the large
N-dimensional data arrays
which are the bread and butter
of scientific computing.

PDL turns Perl in to a free,
array-oriented, numerical
language similar to (but, we
believe, better than) such

commerical packages as IDL and MatLab. One can write
simple perl expressions to manipulate entire numerical arrays all at once.

Simple interactive shells,

pdl2

and perldl ,

are provided for use from the

command line along with the epr module for use in Perl scripts.

Monday, 17 October 2011

Recent News

2011-08-13 Support for large
(>2GB) pdls in PDL

2011-05-21 Multi-Core
available
on CPAN

2011-05-11 SciPDL Package for
Mac OS X released

2011-04-11 PDL 2.4.9 released

2011-04-06 inSCIght
Computing
about PDL

support
in git and

Scientific
Podcast

ICD‘> X,

Home Install PDL

Get PDL

Screenshots
PDL Users

Mailing Lists New to Perl?
No worries! If you are using Linux or Mac OS X, you should already have Perl

Documentation installed. If you are a Windows user, you can use Strawberry Perl or Active Perl.

FAQ
Tutorials
Modules
Course

Index
I am looking for ... Pre-Built Binaries

Resources ' . .
Sy ® The easiest possible install. My platform is ...

Presentations /i\ The latest VerSion Of PDL.
PDL Wiki O A customized installation. o Windows. ® Mac 0OS X.
External Libs .)

O Ubuntu / Debian. © Mandriva.
Development O Fedora. O OpenSUSE.

Get Started
Browse Git
Bugs

Patches - :
Cradite Easiest install - Mac O X

Install "SciPDL" binary.

sourceforge

Monday, 17 October 2011

I(I)‘> X,

Home Install PDL

Get PDL

Screenshots
PDL Users ——
Mailing Lists New to « Install SciPDL

No worrie
installed.

FAQ Welcome to SciPDL 2.4.9

Tutorials © Introduction o -
Modules This SciPDL package will install PDL ("The Per! Data Language") and

Course tead Me miscellaneous support libraries. No C or FORTRAN compiler is required for this
Index binary install, the only prerequisite is X11.

Documentation Welcome to the SciPDL Installer

I am looking

Once installed, test your installation from a Terminal window with:
Resources

® The easiest pi el atinn Tuna serldl A

stallation Type — -

Presentations The latest ver e laking demo 3d

PDL Wiki) A customized I The following components are installed:
External Libs

Demos

PDL, POGL, perl-PGPLOT, PGPLOT, ExtUtils::F77,
Inline,
Develo pment Parse: :RecDescent, Bundle::CPAN,
Astro::FITS: :Header
Get Started d
Browse Git Astro::FITS::CFITSIO, CFITSIO

Bugs
Patches

Credits Easiest

Install "Sc

sourceforge

" Continue

Monday, 17 October 2011

