
ar
X

iv
:1

70
2.

07
75

3v
1

 [
cs

.P
L

]
 2

4
Fe

b
20

17

Practical Magick with C, PDL and PDL::PP – a guide to

compiled add-ons for PDL

Craig DeForest, Karl Glazebrook

February 28, 2017

Preface

This guide is intended to knit together, and extend, the existing PP and C documentation on PDL internals.
It draws heavily from prior work by the authors of the code. Special thanks go to Christian Soeller, and
Tuomas Lukka, who together with Glazebrook conceived and implemented PDL and PP; and to Chris
Marshall, who has led the PDL development team through several groundbreaking releases and to new levels
of usability.

1

http://arxiv.org/abs/1702.07753v1

Contents

1 Introduction 3
1.1 Review of PDL Dimensions . 3
1.2 Threading Rules . 4
1.3 What is PDL::PP? . 4
1.4 A trivial example: a linear function . 5
1.5 A non-trivial example: Mandelbrot set visualization . 5

2 Basic PP 8
2.1 Dimensionality and the signature of an operator . 9

2.1.1 The Importance of Operator Shape: A Cautionary Example 9
2.1.2 Signature option flags . 10
2.1.3 Signature data types . 10

2.2 PP definition functions . 11
2.2.1 Generating C and XS code . 11
2.2.2 Controlling import/export and the symbol table . 12

2.3 The pp_def definition function . 13
2.3.1 A simple pp_def example: cartND . 13
2.3.2 Basic pp_def keys . 14
2.3.3 More advanced pp_def keys . 16
2.3.4 pp_def Code macros . 17

3 Putting it together: Example PP functions 18
3.1 Using PP inline with Perl, via Inline::Pdlpp . 18

3.1.1 A simple case: combining compound math operations 18
3.1.2 Calling a C function with Inline::Pdlpp . 19

3.2 A standalone PP Module . 22
3.2.1 Makefile.PL . 23
3.2.2 hello.pd . 23
3.2.3 Using PPDemo::Hello . 27

4 Using PP for Calculations (no dataflow) 28
4.1 Using direct assignment . 28
4.2 Temporary Variables to Ease the Pain . 29
4.3 Conditioning arguments with Perl . 30
4.4 BAD values . 32

4.4.1 BAD value handling: a simple case . 33
4.4.2 BAD value handling: marking values BAD. 33

4.5 Adjusting output dimensions (RedoDimsCode) . 34

5 Using PP With Dataflow 35
5.1 Code/BackCode and a basic dataflow operator . 36
5.2 Structure of a dataflow operator . 36

6 PP on the Edge (things PP can’t do easily, and how to do them) 38
6.1 Variable Active Dims . 38
6.2 Variable Argument Counts . 39
6.3 Returning Perl Variables . 39

7 PDL internals: accessing PDLs directly from C 39
7.1 The struct pdl type . 40

2

1 Introduction

PDL uses C to make “the magic” happen. PDL variables are represented internally with C structures that
carry metadata and the actual data around. You can access those directly with C code that you link to Perl
using the perlXS mechanism that is supplied with Perl.

Handling PDL variables directly in C can be tedious, because it involves variable-depth nested looping
and direct (and fiddly) pointer access to variable-type arrays. So most PDL functions are written in a
metalanguage called PP that wraps your C code snippet with a concise description of how a PDL operator
should work. PP is compiled by a macro preprocessor, contained in the module PDL::PP. PDL::PP generates
Perl and perlXS code from your concise description; that code is then compiled and dynamically linked using
perlXS. We use the word operator to distinguish PP-compiled code from a Perl (or XS) function. A PP-
compiled operator can include several ancillary Perl and/or C functions.

PDL and related vectorized languages like IDL or NumPy work fast because they automatically vectorize
large operations out of the high level interpreter: while the language itself is processed by an intepreter,
the “hot spot” operations at the core of a scientific calculation run in faster compiled C loops. But all of
them are generally slower than custom written C code. The reason for that is all vectorized languages access
memory in pessimal order. If you write an expression like “$a = sqrt($b*$b + $c*$c)”, for example, then
all of the elements of $c are accessed twice and written to a temporary variable; then likewise for $b; then
all elements of both temporary variables are accessed and the result is written to yet another temporary
variable, which is accessed and processed with the sqrt operation – making 11 passes through your data.
If the data are large enough, then every single operation will break your CPU’s cache and require (slow)
access to the system RAM. The same operation, written in PP, can carry out the root-sum-squares on each
element in order, preserving CPU cache and running several times faster.

The point of PP is to make writing custom operators in C inside the vectorized threading loops nearly as
quick and easy as writing Perl expressions. PP handles most of the argument processing and looping logic
that is required to make PDL operations work, so that you only write the interior of the loop. PP code
is written in C with some extra macros to access the data and metadata of the arguments. With a small
amount of effort, you can dash off new operators almost as fast as you could write them in PDL itself. The
point of this document is to give you the ability to do that.

This document is intended to be a comprehensive introduction and reference for PDL data structures
and the PP language, unifying and extending much of the half-written documentation that already exists
(late 2013). Since PP is basically C, you should be familiar with Perl, PDL, and C. You should also have at
least read the perlguts man page and preferably be familiar with XS (perlxs), which is Perl’s interface to C.

1.1 Review of PDL Dimensions

PDL (the language) manipulates structured-array objects. Each PDL/piddle (object) has a dimlist that lists
0 or more dimensions and a size for each one. If the dimlist has 0 elements, the piddle is a “scalar piddle”.
Each element of the dimlist is the size of the corresponding dimension of the array, and can be 0 or more. If
any element of the dimlist contains 0, then the piddle is empty and contains zero elements.

There is a special case – a null piddle – that contains no dimlist at all. Null piddles are placeholders,
used mainly for output in PP functions. When PP code encounters a null piddle it automatically resizes
and allocates the piddle to the appropriate size for the current operation, based on the shapes of the other
piddles in the same function call.

Each PDL function or operator operates on objects with some dimension – 0, 1, 2, etc. These dimensions
are taken from the front of the operands’ dimlists, and are called active dimensions or active dims of the
operator to distinguish them from thread dimensions of a particular operation (Thread dimensions are looped
over automagically by the PP engine, which is what makes PDL a vector language). Scalar operators like
+ have 0 active dimensions. Matrix multiplication has 2 active dimensions. Operators with more than one
argument can have different numbers of active dimensions for each argument – for example, index has one
active dim in the source variable (since you must have a dimension to index over) and zero active dims in

3

the index variable (since the value used to do the indexing is itself a scalar). Further, the output can have a
different number of active dims than the input. The collapse operators, like sumover and average, have one
active dim on their input and zero active dims on their output.

Properly written PDL operators access their arguments as if they only had the active dimensions. A
scalar operator treats its arguments as if they were scalars. A 1-D operator treats all of its arguments as if
they had only a single dimension, etc. Higher dimensions, if any, are called thread dims because they are
matched up and handled by the threading engine.

1.2 Threading Rules

Threading is a form of automatic vectorization. After the active dimensions in each argument to an operator
are accounted for, any remaining dimensions are looped over by the PP engine. These dims are called thread
dims. All the thread dims in a given operator call must match. They are handled with three simple rules:

1. Missing dimensions are added, with size 1. This deals with a basic ambiguity between an array of
length 1 and a scalar, by implictly extending low-dimensional arrays out into higher dimensions with
size 1.

2. Dimensions of size 1 are silently repeated. This extends the concept of scalar operators in a vector
space (e.g. scalar multiplication, scalar addition).

3. All dimensions that are not size 1 must match sizes exactly. This prevents trying to add, say, a 2-vector
to a 3-vector, which doesn’t make sense. Note that 0 6= 1, so it is possible for an empty piddle to fail
to mix with non-empty piddles.

The threading rules are implemented by code generated by the PP suite for each PP function/operator. The
PP code “knows” the difference between active and thread dimensions by inspecting the function’s signature
(§2.1), which is a compact way of expressing the structure and dimensionality of an operator.

There is an additional rule of threading: under normal circumstances there should be no causal link
between different iterations of the threadloop – i.e. the different computations carried out by the thread
loops must be completely independent of one another. This leaves the threading engine open to use multiple
CPU cores for a large thread operation. (If you must break this rule for a particular operator, it is possible
to mark the operator as non-parallelizable.)

1.3 What is PDL::PP?

PDL::PP is a collection of codewalker/compiler modules that compile PP definitions into XS and Perl code.
The XS code normally then gets treated with perlxs and turned into C code, which in turn gets compiled
and linked into a running Perl.

Because PP is a compiler and not a runtime interpreter, the compiled code runs quickly. But it also
has certain limitations that aren’t present in an interpreter. For example, PP mocks up dynamic typing. It
keeps track of a single data type of the entire calculation, and autopromotes all the arguments to the type
of the strongest one (except as you specify, see §2.1.3). Because the dynamic data types are resolved into a
single type before your code gets called, PP can simply compile multiple copies of your code, one for each
possible data type. When the Perl side user calls your PP operator, all the arguments get regularized and
the appropriately-typed version of your compiled code gets used. Each PP operator gets compiled into a
family of C functions that implement it.

Like Perl code, PP operators can be written into a standalone module, or placed inline in a Perl script
with the Inline::PdlPP module.

PDL::PP is necessary to build PP modules, but not to run them – though this distinction is blurred if
you use Inline::PdlPP to insert PP code directly in the middle of a Perl script.

4

1.4 A trivial example: a linear function

Here’s a simple PP routine that performs linear scaling: given input variables a, b, and c, it returns the
value ab+c. This function is nearly universally useful: with appropriate values of b and c it can convert
between Fahrenheit and Celsius, scale between samples of different population size, or (if b is a gain matrix
and c is a dark image value) flat-field a scientific image. The following is a snippet of Perl code, suitable for
pasting directly into a Perl/PDL script or autoload file. It invokes the module Inline::Pdlpp to insert code in
a different language (PP) directly into your script. The PP code is automagically compiled and linked into
your running Perl.

no PDL::NiceSlice; # prevents interference

use Inline Pdlpp => <<’EOPP’;

pp_def(’linscale’,

Pars => ’a(); b(); c(); [o]o()’, // Pars (signature) specs threadable arguments.

Code =><<’EOC’,

$o() = $a() * $b() + $c();

EOC

);

EOPP

*linscale = \&PDL::linscale; # copy the defined code into the current package

The Inline code declares a PP operator called “linscale” that is defined in the PDL package. definition takes
the form of a call to a function called pp_def, which assembles an operator called PDL::linscale. The pp_def

constructor accepts an operator name, followed by a hash containing declarative fields. The minimum fields
required are the Pars section, which contains a concise description of the parameters, and the Code section,
which contains the actual code to build.

This Pars section specifies three input parameters with zero active dims each; and one output parameter.
The user can pass in either three PDLs or four. If the fourth (marked [o] for output) is omitted, then the
operator will autocreate it and return it. The Code section contains a small snippet of C code with macro
substitutions, that carries out the operation for a single iteration of any thread loops. In this case the C code
snippet is very simple indeed: it just carries out the linear operation and stuffs the result into the output
variable.

You can call this function just by invoking it, as in:

print (linscale(pdl(1, 2, 3), 2, pdl(4, 5, 6))).”\n”;

which is equivalent to

print (pdl(1,2,3)*2 + pdl(4,5,6)).”\n”;

in normal PDL. Either one will generate the output [6 9 12]. The PP version of even this trivial example
runs slightly faster, because the high level expression generates several temporary variables while the PP
code walks through the input parameters exactly once.

1.5 A non-trivial example: Mandelbrot set visualization

Here’s a fast example PP routine for calculating something useful: whether a particular complex number
is in the famous Mandelbrot set, or no. The Mandelbrot operator on a complex number z is given by
Mi(z) = Mi−1(z)

2+z, with M0(z) = z. The Mandelbrot set is the set of all z such that |M∞(z)| is bounded.
Visualizing the Mandelbrot set requires testing each pixel for membership in the set, by iterating M to some
large i. You could make a visualizer with simple threading of elementary operators like this:

sub thread_mandel {

5

my $z = shift; my $cxy = $z->copy; # expects N=2 in dim 0 (real,imaginary)

my $n = shift // 1000; # max iteration count -- defaults to 1000.

for my $i(0..$n) {

my $tmp = $cxy * $cxy;

$cxy->((1)) *= 2 * $cxy->((0)); # imaginary part

$cxy->((0)) .= $tmp->((0)) - $tmp->((1)); # real part

$cxy += $z;

}

return ((($cxy*$cxy)->sumover - 4)->clip(0)->log);

}

You feed a 2×W×H array of complex numbers to thread_mandel, and it returns a W×H PDL indicating
whether each input number might be in the Mandelbrot set. If the return value is 0, the corresponding input
number might be in the set; if it’s positive, the corresponding number is out of the set, and the value is a
measure of its distance from the set. The routine uses the threading engine to operate on an entire complex
“image”. This threaded example works much faster than a Perl script, but much slower than it could.

Ideally, we’d like the threading engine to do all the operations for each point at once (and then move
on to the next point), to preserve CPU cache. Also, we’d like it to stop with each point as soon as it can,
to save time on points that diverge fast. Using Inline::Pdlpp, we can do just that – from within our Perl
script! Right under the thread_mandel declaration (or anywhere else in our script or module), we can write
this (notice that we “use Inline” with arguments, rather than calling Inline::Pdlpp directly):

no PDL::NiceSlice; # prevents interference

use Inline Pdlpp => <<’EOPP’;

pp_def(’pp_mandel’,

Pars => ’c(n=2); [o]o()’, // Pars (signature) specs threadable arguments.

OtherPars => ’int max_it’, // OtherPars specs scalar arguments.

Code =><<’EOC’,

/* All this code gets wrapped automagically in a thread loop. */

/* It starts a fresh C block, so you can declare stuff up top. */

/* The $GENERIC() macro is the overall expression type. */

int i; // iterator.

$GENERIC() rp0 = $c(n=>0), ip0 = $c(n=>1); // Copy the initial value to rp0/ip0

$GENERIC() rp = rp0, ip = ip0; // Copy again for the initial iteration

$GENERIC() rp2 = rp*rp, ip2 = ip*ip; // find RP^2 and IP^2 for magnitude and z^2.

for(i=$COMP(max_it); rp2+ip2 < 4 && i; i--) { // the OtherPars are in the $COMP macro.

ip *= 2 * rp; rp = rp2 - ip2; // calculate M_i(z)^2

rp += rp0; ip += ip0; // add z

rp2 = rp*rp; ip2 = ip*ip; // calculate rp^2 and ip^2 for next time

}

$o()= i; // Assign the iterator to the output value

EOC

);

EOPP

That code snippet (which can be placed anywhere you’d place a regular Perl subroutine declaration) declares
a function called PDL::pp_mandel. It gets compiled into C and then into object code, and linked into the
running Perl. The C-like code in the core of the declaration is, in fact, C – with some preprocessor macros.
It handles one instance of the function. It gets wrapped automatically with all the required interface logic
and loops to become part of a threaded operator and interface to perl, as a function in the PDL package.
PDL::pp_mandel accepts two inputs: a PDL (called ’c’ in the code) with a single active dim of size 2; and a
separate scalar integer (’max_it’) saying how many times (at most) to iterate Mi for each point. The PDL

6

arguments (both input and output) are described in the “Pars” section of the declaration, which also points
out that the return value is a scalar – the active dim is collapsed and discarded, so a 2×W×H input PDL
will yield a W×H output PDL. Since max_it doesn’t participate in the threading operation, it is declared
in the “OtherPars” section and gets accessed slightly differently from the main threading variables.

The C code is passed into the declaration as a string, and it has three important macros that are used
here:

• $GENERIC() is a stand-in for whatever the type of the arguments may be. PP compiles a separate variant
of the code for each possible data type of its PDL arguments, so that (e.g.) double type variables run
in a version of the code where $GENERIC() is “double”; but byte PDLs run in a version where $GENERIC()

is “unsigned char”.

• $COMP(max_it) is an expression that retrieves the integer parameter. The $COMP() macro is used to
store a bunch of compiled-in values specific to each PP function - it’s described more later. All the
OtherPars (which are typically simple C types) can be found here.

• $c() and $o() give access to the PDL variables declared in the Pars section. Each active dim is declared
up in the Pars section, and you can specify which element of each active dim you want, by naming it
(as in “n=>0”). There’s another construct, called loop, that you can use to loop over a particular active
dim. Inside a loop, you don’t have to access a particular location along each active dim – it’s done for
you automagically. Here we’re not explicitly looping over any dimension – the only active dim runs
across (real, imaginary), and we access the components with the “n=>” nomenclature. The parameter
name (“n” here) is required, in order to avoid confusion in positional notation: sometimes there is more
than one active dim, and/or some of the active dims might be masked by a surrounding loop structure.

After mandel is declared (either inline or as part of a module declaration; see below for details) you can call
it just like any other PDL method – for example,

$vals = (ndcoords(200,200)/50-2)->pp_mandel(1000);

will feed a 2x200x200 array into PDL::pp_mandel and return a 200×200 array in $vals. On return, any point
that might be in the Mandelbrot set gets a return value of 0, and any point that is definitely not in the
set gets the number of remaining iterations at the time it diverged. Unlike the simple threading version,
pp_mandel doesn’t waste iterations on numbers that have already diverged.

You can visualize a piece of the mandelbrot set by enumerating a region on the complex plane and feeding
it to pp_mandel, then plotting the result:

pdl> $cen = pdl(-0.74897,0.05708);

pdl> $coords = $cen + (ndcoords(501,501)/250 - 1) * 0.001;

pdl> use PDL::Graphics::Simple;

pdl> $w=pgswin(size=>[600,600]);

pdl> $w->image($coords->using(0,1), $coords->pp_mandel(2500), {title=>”Mandelbrot”});

yields the image:

7

2 Basic PP

The PP compiler is implemented as a Perl module (PDL::PP). A PP source code file is itself a Perl script that
loads the PDL::PP module and executes methods in it, to generate .pm and .xs output files. The script calls
particular functions exported by the PDL::PP module to generate segments of code. Each function call takes
some parameters that describe the particular code segment. The core of the system is the function pp_def(),
which defines a PP operator; but there are many definition functions that let you mix and match Perl code
segments (and POD documentation), PP operators, and PerlXS / C code segments.

If you want to produce a standalone module, you put the PP calls into a Perl script (standard suffix
“.pd”) inside your usual module directory structure. The script can use PDL::PP itself, but more typically
that is handled by MakeMaker and/or your makefile (see Section 3.2 for a description of how to set up a PP
module with MakeMaker).

You don’t have to make a standalone module. The module Inline::PP can insert some compiled inline PP
code directly into your Perl script. The Inline::Pdlpp module takes care of using PDL::PP and generating
the intermediate files for linking, so you can just insert some pp_def calls in a “use Inline Pdlpp” segment.
That is covered in Section 3.1.

PP operators do not return values in the conventional way. In general, you declare one or more named
PDL parameters that are flagged as output variables, and these get autogenerated by PP (See the code in
§1.4 and §1.5 for examples of how this looks). Your code assigns to particular values inside the output PDL.
If you need to return a non-PDL value, the easiest way is to declare a Perl helper function that passes in a
Perl SV and or SV ref, and modify that in-place. Then the Perl helper can return the non-PDL value in the
usual way.

8

2.1 Dimensionality and the signature of an operator

PP keeps track of the dimensionality of each operator with a “signature”. PP operator signatures are similar
to, but slightly different from, C argument declarations. The signature is a list of specifications and names
for PDL arguments to the operator. The arguments are delimited with ’;’. Each specifier is an optional
type specifier, followed by a comma-delimited set of option flags in square brackets, followed by a variable
name and a comma-delimited collection of zero or more active dim symbols, all enclosed in parens ’(’,’)’. An
example:

a(n); indx b(); [o,nc]c()

This signature describes an operator with three parameters a, b, and c. The first, a, can be any type and
has one active dim, called n. Your code can loop explicitly over n, or index particular values of n directly.
The second, b, is forced to be an index type and has zero active dims - i.e. your code will treat it as a scalar.
The last, c, is used for output (that is the purpose of the o flag), and has zero active dims. The nc flag forces
the user to supply a PDL for output - the code will not autocreate one if it is missing.

If you have two or more arguments with more than zero active dims, you can choose whether their active
dims are “the same” or “different” by giving them the same or different names. For example, the signature:

a(n); b(n); [o,nc]c()

describes a function with two arguments and one active dim. The two arguments must agree on the size of
the active dim, (although your code has full access along that dim).

You can set the exact size of a dimension by assigning to the index name like a C lvalue in the signature.
For example,

a(n=3); [o]out()

specifies a single input argument (a) with one active dim (called n) that has size 3. If the actual passed-in
argument has a different size at runtime, the code will throw an error.

Sometimes, you might want to calculate a dimension on-the-fly based on context. You can do that either
by conditioning your PP call with a Perl subroutine (see the paragraph on PMCode, in Section 2.3.2),
or by using a special hook to generate code that calculates the dims on the fly (see the paragraph on
RedoDimsCode, in Section 2.3.3).

Repeated Dims (Square Operators) There is a not-too-uncommon special case where you want to
force two active dims to have the same size (e.g. if your operator works on a square matrix). For that, you
have to specify the same dim name in two locations, for example:

a(n,n); b(n,n)

That case is autodetected and works as expected – except that inside the code block, you refer to the dims
with a trailing digit, to distinguish them – the first copy is called n0 and the second is called n1. The order
is the same in all square variables if you have more than one: the first copy of n, working left to right, is
referred to as n0; the second is n1; etc.

2.1.1 The Importance of Operator Shape: A Cautionary Example

It’s very important to understand the shape of any operator you intend to use or build, and to think about
how that shape interacts with the threading engine. For many operators shape is trivial, but for some it
can strongly affect threading behavior and performance. For example, the built-in index routine has the
signature

src(n); indx dex(); [o]output()

9

and it carries out lookup by a single number (in dex) into src. Provided that src is 1-D, or that the user
only grabs one value from src, that works fine. But a common use case is to thread over additional dims in
src – feeding in, say, a 2-D array and selecting column vectors with dex. Since both dex and src have thread
dimensions, those dimensions must match. Suppose you want to extract 5 column vectors from a 10 × 20
src variable. The active dimension n gets size 10 and the first thread dim. gets size 20. Since dex is declared
with no active dims, it must match the first thread dim - i.e. its dim 0 must have size 20 to match the first
thread dim. Getting your 5 column vectors requires using a 20 × 5 dex. (You could supply a 1 × 5 dex, of
course, and the thread engine would automatically extend it to 20× 5.) That indexing operation requires 20
times more offset lookups than are strictly necessary, hurting speed. If you know you are planning to thread
both over the index and over the source file, you can instead use index1d, which behaves similarly but has
the signature:

src(n); indx dex(m); [o]output(m)

This signature declares the dex as a 1-D object (to be treated as a list of indices into the 0 dim of src,
called n), and declares that the output is also a 1-D object. If src is a 10 × 20-piddle, and dex is a scalar,
then the return value will be a 1 × 20-piddle (where index would return a 20-piddle), since the first thread
dimension gets size 10. Similarly, if src is a 10× 20-piddle and dex is a 2-piddle, then the return value will
be a 2 × 20-piddle (where index would crash on a thread dim mismatch). In other words, index1d threads
more appropriately than index, to pull threaded vectors out of src.

That’s not to say that index is inferior to index1d: if you plan to thread over only one of the two inputs
(either to extract a single source value for each index, or extract a single column from source with exactly
one index location), index handles the output dimensions more conveniently.

2.1.2 Signature option flags

You can modify any of your parameters in the Pars field, with one or more of these options in square brackets:

io Marks an argument as both input and output.

nc Marks an argument as necessary (“never create”). This is the default for normal input parameters; the
use case is not obvious, but I include it here for completeness.

o marks the argument as an output argument; if missing, it will be created. (If there is only one output
argument, it will be returned as the operator’s return value).

oca marks the argument as an output, and also forces it to be created (i.e. it should not be passed in when
the operator is called). Normal output arguments can be passed in to reuse an existing variable.

t marks the argument as a temporary variable (not passed in or out; just created on-the-fly as a scratch
space, and erased on return. The argument is only large enough to hold the active dims; it is overwritten
on each iteration of the surrounding thread loops)

phys Forces the argument to be physicalized – i.e. calculated and placed in memory if any calculations are
pending, or if the argument is a complex slice of another PDL. This is necessary if you plan to access
the argument’s memory directly, rather than only through the macros supplied by PP.

2.1.3 Signature data types

You can specify the data type of a particular argument in the signature. Normally, a separate version of the
code is compiled for each possible numeric data type, and all arguments are promoted to the “weakest” data
type that can contain all of them, before your code gets run. If you specify a type for a particular argument,
then it is hammered into that type regardless of the type of the rest of the arguments.

PP can accept these type names (in promotion order): byte, short, ushort, int, indx, longlong, float,
and double. All of these are the same as their basic C type, except indx – which is the type used on the

10

current system for indexing pointers. (32 or 64 bit signed integer). You can append a “+” to the type to
force that argument to take at least the named type or a stronger one.

If you name the data type of an argument, then that argument is excluded from the overall data type
calculation. So if you specify a signature like

float+ a(); b(m,n); [o]c

then its first argument a will always be treated as a float or double, but the second argument b won’t be
autopromoted to match the first, even if you pass in, say, a float and a byte type for a and b respectively.
If you use the “+” format, then the generated code for weaker argument types will declare your argument
as the specified type, but for stronger types it will be declared as the generic type for the operation. For
example: “short+ a()” will cause a to be a short in the C function that handles byte as the generic type,
and it will cause a to be a float in the C function that handles float as the generic type.

Using data type specification can help cut down on memory overhead – for example, specifying a bulky-
type temporary variable and manually promoting data into it inside your function avoids storing the whole
promoted data array.

2.2 PP definition functions

Running a PP definition script applies the various definitions in the file, in the order they appear. The
definitions take the form of calls to functions exported by the PDL::PP module. Each call either changes
the behavior of PP, builds a data structure containing your code, or exports it as a .pm and .xs file.

The most basic PP file is a Perl script that imports the PDL::PP module and makes calls to pp_def()

and pp_done().

2.2.1 Generating C and XS code

Here are PP definitions you’re likely to find useful, even for basic stuff.

pp_def - the core of PP pp_def accepts an operator name and a hash ref that describes the operator
with several different keywords. It is so important that it gets its own section below (§2.3).

pp_done - finish a PP definition The very last PP call at the bottom of a definition script should be
pp_done(). It takes no arguments, and causes the definitions to be written out to the .xs and .pm files. You
can leave it out of Inline Pdlpp scripts, since Inline::Pdlpp puts it in for you.

pp_addpm - add Perl or POD material to the .pm file (Perl language) PP produces a .xs and a .pm
(Perl module) file. pp_addpm() accepts a single string containing Perl language material that gets inserted
into the generated .pm file, in order of pp_addpm calls. The added code starts just after the introductory
material at the top of the module, and subsequent calls to pp_addpm() append more lines. It’s useful for
adding pure-Perl functions or POD. There are a couple of minor restrictions on the Perl code you can insert
(in particular, don’t mess with @EXPORT or @ISA directly; use the definition functions below).

PP keeps track of three different locations in your .pm file – the “Top”, “Middle”, and “Bottom”. These
are handled by three separate queues of material. By default, pp_addpm adds to the “Middle” section, but
you can use a two-argument form to specify which queue you want to add stuff to. Just pass in an initial
argument that is a hash ref – one of “{At=>’Top’}”, “{At=>’Middle’}”, or “{At=>Bottom’}”. That way you can
organize the .pm file more or less independently of the structure of your .pd file.

pp_addbegin - add Perl or POD material to a BEGIN block in the .pm file (Perl language) You
can add BEGIN block material to your .pm file this way. (You can also insert an explicit BEGIN block with
pp_addpm).

11

pp_addxs - add extra XS code of your own This is handy for adding an extra XS/C function to the
generated .xs file, just like pp_addpm is useful for adding perl functions to the generated .pm file. This
could be a utility or interface function that doesn’t use threading. You should pass in a string that is a
complete perlXS declaration; it will go in the function-declaration part of the XS file.

pp_addhdr - add PerlXS header material (C language) This lets you add stuff up in the PerlXS
header segment. It comes *after* the basic includes and XS setup, so you can define whole C functions and
such in here, as well as just invoking header material. pp_addhdr takes a single argument, which is a string
containing the code you want to add. If you wrap your string in a pp_line_numbers() call, then any compiler
errors will refer to line numbers in the .pd file (and be much more understandable).

pp_add_boot - add XS BOOT code This lets you add lines to the declaration/initialization section of
the perlXS file, to set up libraries or initialize globals.

pp_boundsCheck - turn off/on PDL bounds checking in macros By default, the PDL access macros
inside your PP code are wrapped in bounds checks. This normally doesn’t cost much time, because the index
variables are usually present in the CPU cache and many processes are memory-bound anyway – but you
can turn off bounds checking for a little extra speed (at the risk of dumping core, instead of just throwing
a Perl exception, in case of error). You feed in a single argument that is evaluated in boolean context. You
can check the status by feeding in no arguments, in which case the current boundsCheck flag is returned.

pp_line_numbers - insert line number pragmas into some code This is mainly helpful for debugging
– anywhere you hand in code as a string (mostly in pp_def), you can wrap the string in a pp_line_numbers

call to insert line number pragmas into the code. So instead of saying “Code=><<’EOCODE’,” in your pp_def

call, you can say “Code => pp_line_numbers(__LINE__, <<’EOCODE’),”, and your generated code will report
the actual line number in the .pd file instead of a meaningless line number in an intermediate .xs or .pm file.

2.2.2 Controlling import/export and the symbol table

There are a few PP functions that are specifically for controlling how modules import and export elements.
You’re not likely to encounter or need them for simple tasks but will find them handy if you declare large
modules.

pp_bless - set the module into which operators will be added (default “PDL”) Pass in the name
of the module you want to add your operators to. It defaults to PDL. If you say “pp_bless(__PACKAGE__)”
they will go into the current package from which you are running PP (probably “main” unless you’ve declared
one).

pp_add_isa - add elements to the module’s @ISA list Just pass in a string containing a module name
to be added to @ISA. Use this instead of messing with @ISA directly. If you call pp_add_isa, you should call
pp_bless first, to set the module that you are modifying! This is mainly useful if/when you’re designing a
new type of object using PP constructs.

pp_core_importList - control imports from PDL::Core By default, PP issues a ’use PDL::Core;’ line
into the .pm file. This imports the exported-by-default names from PDL::Core into the current namespace.
If you hand in the string “()” you get none of that, which is handy if you are over-riding one of Core’s
methods. Alternatively, you can explicitly list the names you want, as in “ qw/ barf / ”.

12

pp_add_exported - export particular Perl functions from the module You supply a single string
with a whitespace delimited collection of Perl function names to export from the module. You should use
pp_add_exported() instead of messing directly with @EXPORT in a pp_addpm() block. If you don’t want to
export any function names to the using package, then don’t bother. As with a regular PerlXS module, you
can export both Perl function found in the .pm file and also hybrid compiled functions named in the .xs file
(i.e. things you created with pp_def or pp_addxs).

pp_export_nothing - don’t export defined routines By default, PP adds all subs defined using pp_def

into the output .pm file’s @EXPORT list. This is awkward if you don’t want them exported into any module
that uses them – for example if you are creating a subclassed object, or otherwise have a name conflict. Call
pp_export_nothing() just before pp_done(), and nothing will be exported, keeping the namespace clean

2.3 The pp_def definition function

Calling pp_def is the main way to declare a new PDL operator. The basic call is simple. You feed in the
name of a function and a collection of hash keys, the values of which are metadata and/or code for the
operator. Inside snippets of code, you can use special macros to access the data and metadata of the PDL
arguments to your operator. In this section we describe the different keys you can hand to pp_def, and the
macros you can use inside your code sections.

There are two basic forms of operator: calculations (data operations) and connections (dataflow opera-
tions). Calculation operators are straightforward: they work just like function calls in any other language,
returning zero or more PDLs that are the result of the main calculation but that do not remain connected to
their source. Connections connect two or more PDLs so that they maintain an ongoing relationship that is
updated automagically – assigning to or modifying one causes a recalculation of the other one. In principle
connections can perform calculations (e.g. you can define a “reciprocal” operator that flows data between
two PDLs), but in practice only the selection and slicing operators are connections.

Both types of call use a single “generic” data type that is calculated at call time, from the arguments.
Multiple copies of your operator are compiled, one for each main generic data type, and given slightly
different function names. At call time, all arguments are regularized to an appropriate generic type and the
appropriate copy of your code (compiled for that generic type) gets called.

2.3.1 A simple pp_def example: cartND

Here is a simple example of a PP calculation function, PDL::cartND, that collapses the 0 dim of its input to
find the Cartesian length of each row vector in it.

pp_def(’cartND’, # name (goes in PDL:: package by default)

Pars => ’vec(n); [o]len;’, # Signature of the function

GenericTypes => [’F’,’D’], # Data types to use -- or omit to use all

Code => q{ # Single quotes around code block

$GENERIC() acc = 0; # Declare ’acc’ to be the generic type

loop(n) %{ # Loop over the active dim ’n’ in the signature

acc += $vec()*$vec(); # Parameter PDLs are automagically indexed for you

%} # [outside loop you could use, e.g., ’$vec(n=>2)’]

$len = sqrt(acc); # Assign to the output PDL.

}

);

The operator has a name (cartND), and a collection of hash values that define the rest of the function to the
PP compiler. The first value has the name Pars and is the signature of the operator. The operator accepts
a single parameter (vec) with a single active dim, and returns a single parameter (len) with no active dims.
It operates on the data types float and double only – its argument will be promoted to float if it begins life
as an integer type. The Code section is where the basic operation takes place – it is written in C with some

13

extra macros, and gets wrapped automatically with a loop that handles all thread dims if vec turns out to
have more than one dimension.

The $GENERIC() at the top of the Code section is a PP macro – it expands into a type definition for each of
the data types you list by abbreviation in the GenericTypes value. So that line declares acc to be a holding
variable of whatever type is appropriate based on the arguments’ types at call time.

The loop(n) and matching %{ and %} form another macro that expands to a C style for loop running
over all possible values of the index n, so the loop accumulates the sum-of-squares of all the components of
the vector. The parameters are accessed with a leading $ and a trailing () pair. You must specify the value
of any active dim indices that aren’t explicitly set or looped over (e.g. with “$vec(n=>ii)” if you have an
index variable ii) – but in this example there’s no need. The loop(n) provides implicit dereferencing for the
n index.

Note that you don’t have to include any loops in your PP code if your signature is scalar – in that case,
each $arg() macro stands on its own. (Note that you have to include the parentheses even if you’re
not setting the value of any index!)

At the end of the accumulation loop, the Code takes the square root of the accumulated value and assigns
it to $len(), which goes into the output PDL.

That’s all!
You can insert the above snippet into a .pd file and compile it, or into an Inline block in your script and

have it compiled on-the-fly.

2.3.2 Basic pp_def keys

Here are a list of common pp_def keys you need for basic calculations.

Pars - the operator signature and argument names This is the operator signature discussed above
(Section 2.1). It lists all the PDL arguments accepted by your operator, and their active dims (if any), access
modes, and allowable type(s) for that argument (if different from the generic type). An example for a scalar
binomial operator is “Pars => ’a(); b(); [o]out();’”. Another example, for outer product of two vectors,
is “Pars => ’a(n); b(m); [o]out(m,n)’”.

OtherPars - non-PDL argument names After all the PDL arguments to a PP function you can also
pass in other parameters that are not PDLs. These are handled with the OtherPars section. These can be
declared as C types or Perl C-side types (including SV *) and will be converted on-the-fly from their scalar
values on the Perl side of the operator call. A caveat is that you can’t easily provide a custom typemap for
these arguments. If you have, for example, a structure pointer to pass in you can pass it in as a Perl IV and
cast it to a pointer when you use it (PDL’s interface to the Gnu Scientific Library does that). Alternatively,
you can pass in pretty much anything as an SV * and allow your Code section to handle it directly. An
example OtherPars is “OtherPars=>’double foocoeff; IV foocount; SV * perlsv;’”.

Note that, even if you pass in lots of OtherPars, you must always pass in at least one PDL argument in
the Pars section, or PP will choke.

The OtherPars are not available as directly named variables or direct macros. You get them via a
macro called $COMP() that is accessible in the Code segment. For example, with the above declaration, you
could access foocoeff by saying “$COMP(foocoeff)”. COMP stands for “Compiled”, and it is a data structure
compiled by PP to hold ancillary data during setup for an operation.

PMCode - a Perl-side handler PMCode lets you define some Perl code that gets executed instead of the
Code block when your operator gets called. There could be several reasons. For example, you might want to
precondition the arguments to your PP function, or want to be sure you don’t break dataflow connections
by autoconverting the arguments to your function; you might want to prepare default values for optional
arguments to the main Code block; or you may even want to mock up the Code block in Perl before
implementing it. PMCode lets you handle those cases.

14

If you want to use your Perl code to condition the arguments for the compiled code, you can include a
Code block and a PMCode block. That will generate both types of code, but only the PMCode gets executed
directly. Your PMCode can call the special function “&<package> ::_<name>_int()” with the arguments
given in Pars and OtherPars to run the Code block. The <package> is either “PDL” by default, or the value
you specified with a call to pp_bless(). That mechanism lets you do some initial parsing or argument
currying with Perl, then jump into your compiled code for faster processing of the algorithmic “hot spot”.
Note: This functionality does not work for Inline PP modules, for all versions of PDL through 2.011. That
is a “known problem” that may be fixed in a future release of PDL. To curry arguments with inline code, you
must (for all versions at least through 2.011) declare a “front-end” perl function and a separate PP operator
with no PMCode block.

Code - the main code to execute The compiled code you want to implement. See Section 2.3.4 for details
on what goes in here. This is the main Code block, but there can be several code blocks even in a simple
calculation function (see BadCode and PMCode, below). You don’t actually need to declare a Code block at all
if your operator is written entirely in Perl (you can use the PMCode key for that).

BadCode - A variant of Code PDL can handle bad values in data. A particular in-band value (e.g. -32768
for shorts) is chosen to mark data as bad or missing. Bad values are intended to be contagious. Handling
them requires additional logic. For example, “$c() = $a() + $b()” becomes something like:

if(!$ISBAD($a()) && !$ISBAD($b()))

$c() = $a() + $b();

else

$c() = BADVAL;

which requires a few more CPU cycles than the direct addition. Specifying a separate BadCode segment lets
PP switch between direct operations and their bad-value-handling variants based on whether the arguments’
badflags are set (i.e. whether bad values may be present or cannot possibly be present). See Section 4.4 for
details.

GenericTypes - set specific types to be compiled PP normally creates a separate version of your
operator for each data type recognized by PDL. When the routine is called by name, the PDL threading
engine reconciles the variable types the same way they would be reconciled in an arithmetic expression – and
the call is dispatched to the appropriate version of the operator (in which the argument types are declared
appropriately, and the $GENERIC() macro expands to that type declaration in C). But sometimes you want
to support only a subset of the available types. You pass in a Perl array ref containing the single-letter
specifiers for the types you want to support: ’B’ for byte, ’S’ for short, ’L’ for long, ’N’ for index (32 or
64 bits as appropriate to your system), ’F’ for float, and ’D’ for double. Unrecognized types will yield a
compiler error.

Inplace - Set inplace handling If this is set to be true, then your routine can handle in-place processing
of its arguments (to save memory, or for convenience). When an argument is processed in-place, its result
is placed back into the original piddle instead of copied to an output variable. The in-place operation is
handled fully by the PP engine, including clearing the inplace flag after the operation completes. If you want
to handle in-place operation manually, you can check the flag for yourself by masking the parameter’s state
field with the constant PDL_INPLACE (declared in pdl.h) – but remember to clear that flag before returning!

If your operator has only one input and only one output, you can set “Inplace=>1”, and the input and
output variable will be linked if the input has its inplace flag set. If you have more inputs and/or more
outputs, you must specify a two-element array ref with the names of the input and output parameter to link.
For example: “Pars=>’a(); z(); [o]b();’, Inplace=>[’a’,’b’]”. Of course, the two parameters must have
the same signature in the Pars declaration, except that the [o] modifier must be set for the second.

15

You can link at most one input to one output parameter using the built-in inplace handling, though of
course you can roll your own by accessing the inplace flag of each argument.

HandleBad - set bad value handling If you set HandleBad=>0, then any input argument with its BadFlag
set will cause an exception. If you set it to undef, or don’t set it at all, then bad values are ignored and
treated as any other value.

If you set HandleBad=>1, and declare BadCode (below), then the BadCode will get run whenever it’s
appropriate (i.e. one or more input PDLs has its BadFlag set and therefore might contain specially coded
missing values). Also, PP will define all the relevant bad-value handling macros $ISBAD(), $SETBAD(), etc.
See Section 4.4.

Doc - POD documentation You can document your project using POD, Perl’s Plain Old Documentation
format. You can in principle add POD using a PMCode block (since POD is a valid Perl no-op), but using
the Doc field will cause your project to be indexed into the system PDL documentation database if/when
you “make install” your module.

BadDoc - Special POD for bad value handling If the installed version of PDL was compiled to handle
bad values, this documentation gets appended to the documentation in the Doc field.

NoPThread - Mark Function as not threadsafe By default, PP reserves the right to run multiple instances
of your code in multiple CPU threads, for extra speed on multiprocessor systems. (If it does this, temporary
variables in the signature are properly duplicated across threads). If your code is not threadsafe (for example,
if you write to local variables or the $COMP structure without your own MUTEX), you can set this flag to
avoid multithreading. (Note that multithreading is currently a language-compile-time experimental option
in PDL 2.009, but it may be enabled by default in a future version.)

Because the nomenclature is confusing, here’s a reminder. A PThread is a Perl thread, which is generally
implemented as a CPU thread. A CPU thread is an execution environment with a unique program counter
– unlike a CPU process, it shares memory with other threads in the same execution context. A PThread is
a CPU-like thread that exists in some Perl environments, depending on how perl was compiled. These types
of thread are distinct from PDL’s “threading”, which is vectorization over thread dims of a PDL. A MUTEX
is a mutual-exclusion gate that prevents multiple threads from writing to the same memory simultaneously,
or prevents one from reading from a program variable while a different one is writing to it.

PMFunc - Control Where the Function gets Linked Normally your PP code gets compiled and linked
into the PDL module (or whichever module you specified with pp_bless, if you used that - see Section 2.3.3).
PMFunc adds a hard link to the function name of your choice. It’s functionally equivalent to adding a line
“*name=\&PDL::name;” to the Perl part of your definition. It appears, as of PDL 2.009, to not work with
inline declarations, though it works with module declarations.

RedoDimsCode - Calculate the Dimensionality of the Output at Runtime This field isn’t normally
necessary, but you can use it to calculate the dimensionality of an output variable at runtime. That’s useful
for some applications where the output variable’s shape is related in a non-simple way to the input variables’.
See Section 4.5 for details.

2.3.3 More advanced pp_def keys

You can pass in many more keys to pp_def than the basics described above. The most important of these
are associated with dataflow. They are covered in Chapter 5.

16

2.3.4 pp_def Code macros

In the C code blocks like Code or BadCode, you write in C – with preprocessing. The PDL “hooks” are
implemented with text replacement macros that give you the functionality you need. The basic ones are
below. You can find other macros for handling bad values, in Section 4.4.

$COMP(name) - access the compiled data structure and OtherPars parameters $COMP accesses a
compiled data structure associated with the operator. In computation operators, $COMP is by default pre-
loaded with all (and only) the non-threading parameters you declare with an OtherPars field in pp_def. You
can declare additional $COMP fields with the Comp argument to pp_def, and/or perform additional computations
up-front to generate $COMP values with a MakeComp block (See Section 2.3.3). That’s primarily useful in
dataflow operators. The $COMP(name) C fields are lvalues.

$name() - access elements in threaded Pars parameters To access the value in one of the parameters
named in the Pars signature of your operator, you just name it, with a prepended $ and a postpended pair
of parentheses. (Note that this means you should not name a parameter, e.g., “COMP”!) If there is a
named dimension in the parameter, you must index that dimension with a double-arrow, as in $a(n=>2) for
a parameter a with an active dimension called n. The loop construct, below, automagically selects the index
in the dimension being looped over, so you don’t have to. If you have to specify multiple indices, you can
separate them with commas, as in $a(n=>2,m=>3) to specify location in a variable with two active dims.

If a dim appears twice in the signature, as in “a(n,n);” in the Pars section to specify a 2-D square
variable, then you access the two dimensions by appending a numeral, starting at 0, as in “$a(n0=>2,n1=>3)”.
The numerals start fresh at 0 for each Par with a square (or greater) aspect. There’s currently no way
to transpose two square parameters relative to one another: the first copy of the repeated name in each
parameter maps to name0 for all square parameters, and the second maps to name1.

$SIZE(iname) - return the size of a named dimension You often need to know the size of a named
dimension. This macro expands to it.

$GENERIC() - the generic C type $GENERIC() expands to a C type declaration for the generic type of the
operation. All incoming PDL parameters’ types will be resolved to the smallest type that can represent all
of them, and converted to that type. So you can declare an internal working variable x, for example, as
“$GENERIC() x=0;” in your Code block. PP will compile a separate copy of your code for each possible value
of $GENERIC(), and dispatch execution accordingly at runtime.

$Tfoo() - type-dependent syntax The $T macro is used to switch syntax according to the generic type.
Each generic type has a one-letter abbreviation: “B” for byte, “U” for unsigned short, “S” for short, “L” for
long, “I” for Indx, “F” for float, and “D” for double. You string the letters together after the $T, and give the
macro a comma-separated list of words to insert in the code depending on the value of the generic type. For
example, “a = ($TSLFD(short, long, float, double)) b;” is a limited equivalent to “a = ($GENERIC())

b;”. $T is useful for dispatching calls to a type-specific library function, or any other situation where you need
to make a small difference between each of the generic-type copies of the compiled code. Note: replacement
strings containing commas are not supported!

$PDL(var) - return a pointer to the PDL struct On occasion you need to dive into the guts of the C
struct associated with a particular PDL (see §7.1). This macro returns a C pointer of type “struct PDL *”,
so you can access the internals directly.

17

threadloop %{ ... %} - explicitly locate the thread loop PP autogenerates looping code to repeat your
operation for each element along thread (extra) dimensions in the input parameters. By default your entire
Code block is run separately for each threaded-over element. For some types of operation this is inefficient –
for example, you might carry out some initialization that applies to each threaded instance of the operation.
If you explicitly place your code between the %{ and %} of a threadloop macro, the thread looping code will
be placed there only.

loop(iname) %{ ... %} - explicitly loop over a named dimension This operates like threadloop, but
generates an explicit loop over just the named dimension. If you use a parameter macro inside the loop, you
do not need to specify the value of the named dimension index. You can override the loop by specifying it
anyway. Of course, you are also free to generate loop constructs explictly with temporary index variables
and normal C looping structures, but loop can be more convenient and readable.

3 Putting it together: Example PP functions

Declaring a PP function is only a part of the process of compilation. Here are examples of how to create a
standalone PP module and how to include PP code inline in your Perl code. You can use these examples as
templates for your own PP projects.

3.1 Using PP inline with Perl, via Inline::Pdlpp

Inline::Pdlpp is terrific for placing a compiled “hot spot” function right in the middle of your Perl script.
We already saw a simple example in §1.5. Here are some more examples: a simple one that generates
SpirographTM-like parameterized hypocycloid curves, and a more complex one that enumerates a fractal
path through a 2-D grid.

There is an important wart with Inline::Pdlpp compared to a full module definition: at least through PDL
2.008, the PMCode and field for pp_def doesn’t work correctly. It is simply ignored by the Inline compilation
process. If you need a perl helper to precondition inputs, you need to write it explicitly and call the PP
function from there.

You can use a call to pp_bless to place the helper function in the package you want, but it’s also
common to just use a single pp_def call and let PP compile the helper into the default PDL package (as in
the examples here).

3.1.1 A simple case: combining compound math operations

This example implements spiro, a compound math function that generates a parameterized cyclocycloid
in 2-D from a single time parameter and some coefficients. Compound math functions like spiro are good
candidates for PP, because they require many atomic math functions to implement – which breaks cache if
you thread over a large dataset. By merging the operations (in C/PP) inside the thread loop, you can make
spiro work up to 10x faster on large data sets and multiple elementary math operations. An advantage of
Inline::Pdlpp is that you can prototype your code in PDL, then upgrade it in-place later in exactly the same
location, and call it in exactly the same way. You do not have to set up a module file structure – Inline
handles all the compilation behind the scenes.

Here are both a PDL and a PP version of spiro. You could place them as part of a larger module
declaration, or paste them into a Perl script to be defined in-place, or place them in autoloader files.

The input $s parameterizes length along the spiral. $r1 and $r2 are the sizes of the outer and inner
“gears” in the cyclocycloid apparatus, and $n1 and $n2 are the number of teeth.

The code below implements the same operation in regular PDL idiom, and also in PP using Inline – you
can place both definitions together in a single script (or, for that matter, module). Using PP moves memory
accesses inside the loop, preserving cache and speeding up the code by ~3× for moderate-sized curves of up
to a million points.

18

=head2 spiro - parameterized spirograph-like cyclocycloid

=for usage

$xy = spiro_pdl($s, $r1, $n1, $r2, $n2);

$xy = spiro_pp($s, $r1, $n1, $r2, $n2);

=cut

sub spiro_pdl {

my($s,$r1,$t1,$r2,$t2) = @_;

my $phase1 = ($s/$r2);

my $phase2 = $phase1 * $t1/$t2;

my $xy1 = pdl(cos($phase1), sin($phase1))->mv(-1,0) * $r1;

my $xy2 = pdl(cos($phase2), sin($phase2))->mv(-1,0) * $r2;

return $xy1 + $xy2;

}

no PDL::NiceSlice;

use Inline Pdlpp => <<’EOF’;

pp_def(’spiro_pp’,

Pars=>’s(); r1(); t1(); r2(); t2(); [o]xy(n=2)’,

Code=> q{

double ph1 = $s() / $r2());

double ph2 = ph1 * $t1() / $t2();

$xy(n=>0) = cos(ph1) * $r1() + cos(ph2) * $r2();

$xy(n=>1) = sin(ph1) * $r1() + sin(ph2) * $r2();

});

EOF

*spiro_pp = \&PDL::spiro_pp; # copy to current package

print “Loaded spiro_pdl and spiro_pp!\n”;

The two versions of spiro have very similar structure. Both versions accept a collection of points to plot (the
“s” parameter), two gear tooth counts, and two gear radii. They calculate the corresponding 2-D location
of the cyclocycloid at the given “s”. The Perl version uses threaded arithmetic operations to assemble the
output. The PP version does the same calculation in C – but, more importantly, the C calculation is
performed inside the threadloop, so that all of the relevant variables can be loaded into registers and/or
CPU cache.

The signature of spiro_pp shows that it is a scalar operator with 5 inputs. The output has 1 active dim,
of size 2 – because it is a collection of 2-D vectors. The arithmetic operations are exactly the same as in
spiro_pdl, translated to C – except that the assignments and calculations in spiro_pp are normal C language
scalar operations.

3.1.2 Calling a C function with Inline::Pdlpp

The hilbert routine demonstrates jumping out to a C routine to get useful things done. It calculates an
approximation to the Hilbert curve, which is a linear fractal that fills the plane (it has Hausdorff dimension
2). The Hilbert curve is useful for dithering greyscale images to a single bit, or other applications that require
traversing a 2-D grid of locations without rasterizing them. The Hilbert curve, being fractal, is infinitely
complex – so hilbert is recursive, producing an approximation that has been refined through a specified
number of levels of recursion.

The C code here populates a string with glyphs that indicate which direction the Hilbert curve steps
next; it is recursive and descends level steps to refine the curve. The PP code parses the returned string and
uses it to populate a collection of 2-vectors describing the vertex locations of the curve. For convenience,

19

I’ve interspersed explanatory text with code snippets – but all the code in this section can be pasted into a
single file for the PDL AutoLoader.

=head2 hilbert - generate a Hilbert ordering of planar points

=for usage

$line = hilbert($pdl);

$line = hilbert($w,$h);

=for ref

The Hilbert curve fills the unit square with a linear area-filling fractal curve. This routine uses approximations

=cut

This top part of the code is just POD that you might put in any .pdl script.

Here is the main entry point -- a Perl subroutine that allocates the

output array and jumps into the PP code.

sub hilbert {

my $w, $h;

($w,$h) = (ref $_[0] eq ’PDL’) ? shift->dims : splice(@_,02);

my $dim = ($w>$h ? $w : $h);

$n = (log(pdl($dim))/log(2))->ceil; $siz = 2 ** $n;

$coords = PDL->new_from_specification(long, 2, $siz*$siz);

PDL::hpp($coords,$n);

return $coords;

}

The actual perl function being defined is hilbert. That Perl function calls a PP function declared below –
PDL::hpp – which, in turn, calls a C function. PDL::hpp gets called with a single output PDL ($coords) that has
the 2×size

2 dimensions calculated above. Notice that $coords is defined with PDL->new_from_specification(),
rather than (say) zeroes(). That eliminates one pass through the memory, since the values in $coords are
not actually initialized – they get whatever happened to be sitting in memory.

Here is the actual inline code. The “no PDL::NiceSlice” is necessary because NiceSlice interferes with C
code parsing. Everything between the “use Inline Pdlpp” and the “EOF” below is fed to PP to generate a
.pm and .xs file that are then linked in on-the-fly. The code defines a C function and a PP interface function.

no PDL::NiceSlice;

use Inline Pdlpp=><<’EOF’; # exactly like this (no ’::’)

This is the first PP call (inside the PP block). It is a declaration of a C utility routine. Here is where you
could #include external libraries, for example, if you need them. We use pp_addhdr to put this piece of C
code at the top of the generated code.

pp_addhdr(<< ’EOAHD’);

PDL_COMMENT(“ This stuff goes below the top-of-file declarations and ”)

PDL_COMMENT(“ before the XS stuff, in the compiled C code. It’s a good ”)

PDL_COMMENT(“ place to declare a helper C function. ”)

static char *hre(char *p, char dir, int level) {

if(level==0) {

switch(dir) {

case ’<’: strcpy(p,”>v<”); break; case ’>’: strcpy(p,”<^>”); break;

case ’^’: strcpy(p,”v>^”); break; case ’v’: strcpy(p,”^<v”); break;

}

p += 3;

20

} else {

int l = level - 1;

switch(dir) {

case ’<’: p=hre(p,’^’,l); *(p++)=’>’; p=hre(p,’<’,l); *(p++)=’v’;

p=hre(p,’<’,l); *(p++)=’<’; p=hre(p,’v’,l); break;

case ’>’: p=hre(p,’v’,l); *(p++)=’<’; p=hre(p,’>’,l); *(p++)=’^’;

p=hre(p,’>’,l); *(p++)=’>’; p=hre(p,’^’,l); break;

case ’^’: p=hre(p,’<’,l); *(p++)=’v’; p=hre(p,’^’,l); *(p++)=’>’;

p=hre(p,’^’,l); *(p++)=’^’; p=hre(p,’>’,l); break;

case ’v’: p=hre(p,’>’,l); *(p++)=’^’; p=hre(p,’v’,l); *(p++)=’<’;

p=hre(p,’v’,l); *(p++)=’v’; p=hre(p,’<’,l); break;

}

}

return p;

}

EOAHD

The EOAHD ended the first PP call (we’re still inside the PP definition block), so we’re ready to call pp_def.
There is a single PDL parameter in the Pars signature - a collection of vectors that we will populate. It’s
declared “nc” for clarity, because PP can’t autocreate it (it would have no way of knowing the size of the
named dimension m) The named dimension n is forced to have size 2, since it indexes an (x,y) pair for each
of the m points to be reported. The tag points out that we only want a single copy of the code, suitable
for running on the long type. One non-PDL parameter is accepted – the recursion level to which hre should
descend. It’s autoconverted to int by PP and the PerlXS mechanism. The level parameter gets accessed
with the $COMP(level) macro.

The hre code needs a character buffer in which to put the motion directions, so we allocate that. The size
of each active dim is available through the $SIZE() macro, and we use that to make the buffer the correct
size (the size was precomputed by hilbert before entry).

The meat of the code is simple: we call the C routine that does the work, then convert its recursively-
generated step code into a sequence of coordinates of the vertices of the curve. Because n and m are declared
active dimensions, they are not automatically looped over – our code has to do that. But we don’t have
to use a for loop - the loop(m) macro takes care of that. Take care to use the macro brackets %{ and %},
rather than simple brackets! Inside the loop, the variable m, with no modifiers, is predeclared and has the
correct value. We access out with the macro $out(). Inside the macro parens, we have to give values to all
the active dimensions that are not already defined. Since we’re in the loop(m) construct, m is defined – but
n is not. The $out() macro is an lvalue, and we assign the accumulated x and y values to it.

The loop(m) loop is nested inside a construct called threadloop. That is important in case of threading
– by default, PP wraps the threadloop around the whole code – but we don’t want to call hre() once for
each hyperplane, if the user decides to thread his call. We only need to call it once. Placing the threadloop
macro around the hotspot lets the code call hre() just once (at the start) and then get down to the business
of threading over higher dimensions. The threadloop macro can even be placed inside the other loop – we
could in principle save even a little more time by putting the loop(m) macro on the outside and nesting only
the final two assignments inside a tiny threadloop.

pp_def(’hpp’,

Pars=>’[o,nc]out(n=2,m);’, # Note: must be passed in to define m size!

GenericTypes=>[L],

OtherPars=>’int level’,

Code=> <<’EOHPP’

long dex, side, x, y;

char *s, *buf = (char *)malloc($SIZE(m)+2);

21

$PDL_COMMENT(“ hre is the expensive computation. Since it’s exactly the same “);

$PDL_COMMENT(“ for all operations of the same size, we call it *outside* an “);

$PDL_COMMENT(“ explicit threadloop. That way it only gets executed once, even “);

$PDL_COMMENT(“ for a threaded operation. “);

hre(buf, ’>’, $COMP(level)-1);

s = buf;

threadloop %{ # Threadloop specifies the “hot spot” for threaded operations.

loop(m) %{

if(!m){ x=y=0; } else {

switch(*(s++)){

case ’^’: y++; break;

case ’v’: y--; break;

case ’<’: x++; break;

case ’>’: x--; break;

}

$out(n=>0) = x;

$out(n=>1) = y; }

%}

%}

free(buf);

EOHPP

);

EOF

This is the end of the inline PP block, and Perl code continues below. There’s just a simple print statement,
to show that we can pick up the thread. The print executes after Inline finishes compiling PDL::hpp.

print “Compiled hilbert!\n”;

3.2 A standalone PP Module

If you are coding a complete module that uses PP functions extensively, you can place the entire module
- PP, C, and Perl - in a single file that will generate .xs and .pm files when built. Most of PDL itself is
implemented this way. There are two important things that aren’t obvious from using PP inline: (1) you
need to invoke PDL::PP directly to process the source code and generate the files; and (2) most authors choose
to merge the Perl and PP segments of their module into a single source file called “module.pd”. If you use the
standard ExtUtils::MakeMaker or Module::Build, then there are straightforward recipes to use, with routines
that are included with PDL in the module PDL::Core::Dev.

The various intermediate and compiled files get put into the current working directory when the PP calls
are made. If you’re using ExtUtils::MakeMaker, that is the same directory as your .pd file. After compiling
your module, you’ll find a .xs, a .c, a .pm, and a .so file in the same directory. The human readable files
(.xs, .c, and .pm) all get warning comments at the top of the file, pointing out that they were generated
from your .pd file and should not generally be edited.

This section is a demonstration of how to implement a simple object, PPDemo::Hello, as a standalone
module that uses Perl, C, and PP code. All the elements are declared inside one file, hello.pd.

PPDemo::Hello is a bit silly – it keeps track of the number of people in a large guest house, indexed by
day of arrival or departure and ID of their group. It tracks arrival and departure of people in events, and
integrates those events to arrive at the number of dinner guests each day. The information is kept in a
3-column PDL that contains (day-of-event, party-id, number of people). The events are stored in rows. To
avoid too much overhead for shuffling memory, the PDL is allocated 100 rows at a time, and a separate
counter in the object keeps track of how many rows are used.

22

A PPDemo::Hello object doesn’t have a lot of extra information in it, so it also demonstrates PDL’s
autohash extensions: the object is stored in a hash ref, and the database is in a key called “PDL” – so it can
also be manipulated directly as a PDL object by all the usual techniques. To make that happen, we just
add “PDL” to @PPDemo::Hello::ISA.

If you use ExtUtils::MakeMaker (or Module::Build), you only need two files – a Makefile.PL (or Build.PL)
and a single “.pd” file that invokes PP to generate the program files.

3.2.1 Makefile.PL

Within the context of a MakeMaker module, you can use a simple Makefile.PL to compile your code, drawing
functionality from the PDL::Core::Dev module. Here’s a sample:

Sample Makefile.PL for a PP-based module

use ExtUtils::MakeMaker;

use PDL::Core::Dev;

PDL::Core::Dev->import();

my $package = [

“hello.pd”, # File name containing your module’s PP declarations

“PPDemo_Hello”, # Preferred name for your module’s intermediate files

“PPDemo::Hello” # Fully qualified name for the module you’re declaring

];

my %hash = pdlpp_stdargs($package);

(Modify %hash as you wish here - adding metadata, author name, etc.)

WriteMakefile(%hash);

sub MY::postamble { pdlpp_postamble($package) };

The pdlpp_stdargs call loads %hash with the appropriate values to set up compilation – it loads %hash with
all the parameters needed to make MakeMaker compile your .pd file into .pm and .xs files, to compile that
.xs file into appropriate dynamic libraries to which Perl can link, and to put the compiled files in their
correct places in the blib hierarchy. Your .pd file, as with any other Perl file, may or may not actually
declare a complete Perl module. For example, in the PDL distribution itself many .pd files create additional
functionality directly in the PDL package rather than declaring their own package.

3.2.2 hello.pd

The single file you use for your PP module is a “.pd” file. It is a perl program that calls PP functions to emit
code, so it starts a lot like any other Perl script. The very first call is to pp_bless, to make sure PP puts
compiled objects into the package we want. (The default is “PDL”, but if you just dump all your methods
in there you lose the benefits of a hierarchical name space). We also call pp_add_isa to make sure we can
manipulate our object with PDL calls. You probably don’t need that for your object, unless you want to
be able to manipulate it directly as a PDL. (All PP operators, including the main PDL API, can accept a
blessed hash ref containing a piddle in the field named “PDL”, instead of an ordinary piddle.)

#!/usr/bin/perl # (Or whatever for your system)

This is hello.pd - a demo file for a simple PP-based module.

use PDL;
pp_bless(’PPDemo::Hello’); # equivalent of “package” at top of a .pm

pp_add_isa(’PDL’); # hook in the PDL hash-extension stuff

The next bit is also common – we want to stick some POD and “use strict” into the top of our module. So
we use pp_addpm to place those things into the .pm file that PP will build.

23

pp_addpm({At=>Top}, <<’EOPM’); # place following perl code at the top of the file

use strict;

=head1 NAME

Hello - sample perl + PP object

=head1 DESCRIPTION

Hello keeps track of long-term guests over a span of days, counted by

day from an epoch. You tell it when guests enter and leave. Methods

retrieve information about how full the house is, and about who is the

most frequent visitor.

Methods are “new”, “event”, “tomorrow”, and “dinner_count”.

=cut

Do this if you want your POD loaded ino the PDL shell’s help database on-the-fly.

$PDL::onlinedoc->scan(__FILE__) if($PDL::onlinedoc);

EOPM

So much for Perl header material. We can also add some C header material. Here, it’s just a sample
comment and a helper C function to print the day of the week. The helper function uses pdl_malloc, which
is a fire-and-forget version of malloc that produces scratch areas on the fly. pdl_malloc uses the Perl garbage
collector mechanism: its returned pointer is the data field of an anonymous mortal SV, which is cleaned up
automagically by Perl whenever you exit the enclosing scope. The C code will get placed near the top of the
generated XS file, just above the various function declarations generated by PP itself.

pp_addhdr(<<’EOC’);

PDL_COMMENT(“ This is C. Both pdl.h and pdlcore.h have been included. (This “);

PDL_COMMENT(“ style is preferred by some over /* */, which doesn’t nest.)“);

#include <stdio.h>

PDL_COMMENT(“ Return the abbreviated day of the week in a short scratch string “);

static char *dow_data=”Sun\0Mon\0Tue\0Wed\0Tu\0Fri\0Sat\0”;

char *dow(unsigned int n) {

unsigned int dex = n % 7;

char *out = pdl_malloc(4 * sizeof(char));

strncpy(out, dow_data + 4 * dex, 4);

return out;

}

EOC

Most of the methods are Perl-side, so they are placed in a single pp_addpm call. You can break up the call
if you choose to. Since we don’t really care where this material goes in the module, we don’t specify the
lcoation to pp_addpm. It defaults to the “middle” (after the Top material and before the Bottom material).
The Top, Bottom, and Middle queues are maintained separately, so material appears in the order of pp_addpm
calls for each of those parts of the file. Notice that the methods make a lot of use of the fact that regular
PDL methods work on the object itself automagically since it keeps its primary piddle in the hash field
named ’PDL’. That shortcut is apparent in the stringifier, in particular, where we use “slice” and such on
the object itself instead of the piddle that it contains.

24

pp_addpm(<<’EOPM’);

Simple constructor

sub new {

return bless({ day=>0, n=>0, PDL=>zeroes(long, 3, 100) }, $_[0]);

}

Stringifier -- so “print $a” makes something useful

use overload ””” => sub {

my $me = shift;

my $s = sprintf(“PPDemo object - days: %d; events: %d; ids: %d”,

($me->slice(0)->max - $me->slice(0)->min + 1),

$me->{n}, $me->dim(1),

$me->slice([0,0,0])->qsort->uniq->nelem

);

$s .= ($me->{n}) ?

$me->slice(’x’,[0,$me->{n}-1]) :

“\n[Empty]\n”;

return $s;

};

event adder - add a row to the event database (or several - it’s threadable)

sub event {

my ($me, $id, $num) = ($_[0], pdl($_[1]), pdl($_[2]));

Extend rows if necessary

me->{PDL} = $me->{PDL}->glue(1,zeroes(3,100))

unless($me->{n} + $id->dim(0)) < $me->{PDL}->dim(1));

my $cut = $me->slice(’x’,[$me->{n}, $me->{n} + $id->dim(0) - 1, 1]);

$cut->slice([0,0,0]) .= $me->{day};

$cut->slice([1,1,0]) .= $id;

$cut->slice([2,1,0]) .= $type;

$me->{n} += $id->dim(0);

return $me;

}

Advance day

sub tomorrow { $_[0]->{day}++; }

EOPM

Here’s the first PP definition - a simple dinner-guest counter. You can normally get away with just a Code

section to the PP definition, as in the other examples – but here we use the PMCode section to declare a
Perl wrapper function that preparses the arguments. The parsing here is pretty trivial – it amounts to just
making the $day field default to -1 if not specified, since PP itself will autogenerate null PDLs if the output
parameter isn’t specified. The PP declaration just acccumulates dinner guests by event from the beginning
of time until the specified day (or the end of the data set), and returns the sum.

If you specify a PMCode field, then the Code field generates a function called _<name>_int, instead of just
<name>. The PMCode section is a Perl snippet that must declare <name>. Warning: If you don’t make a
pp_bless call (as we did above), then the _<name>_int ends up in the package PDL, while the Perl declaration

25

executes in the current package. In that case, you’d have to call PDL::_<name>_int explicitly. But it’s best
to call pp_bless and get everything in the right place from the start.

pp_def(

’dinner_count’,

Pars=>’in(col=3,m); day(); [o]out()’,

GenericTypes=>[’L’],

Code=><<’EOC’,

$out() = 0;

loop(m) %{

if(($day() < 0) || ($in(col=>0) <= $day()))

$out() += $in(col=>2);

%}

EOC

PMCode => <<’EOPM’,

sub dinner_count {

my($in, $day, $out) = (($_[0]), ($_[1] // -1), ($_[2] // PDL::null()));

_dinner_count_int($in, $day, $out);

return $out;

}

EOPM

);

Here’s the second (and last) PP definition – this one returns a string listing dinner attendees by day. It
might be better accomplished using Perl, but this demonstrates how to return a Perl SV from a PP routine.
There’s no clean mechanism to do so, so it works by modifying an SV in place and passing that out through
the PMCode wrapper. The PMCode wrapper generates an empty string SV and passes in a reference to it.
dinner_plan accesses the referred-to SV, and appends to the contained string. That same sort of hand-back
works for other Perl types that aren’t PDLs, as well. There is an explicit threadloop in the dinner_plan PP
code, to avoid reallocating the char buffer on every thread iteration.

pp_def(# Returns a Perl scalar by handing a ref into the compiled code

’dinner_plan’,

Pars=>’in(col=3,m); day()’,

OtherPars=>’SV *rv’,

GenericTypes=>[’L’],

Code=> <<’EOC’,

char buffer[BUFSIZ];

threadloop %{

int day = $day();

int nguests = 0;

PDL_COMMENT(“ sv is a Perl scalar in which we want to return a value. “)

PDL_COMMENT(“ We do this by passing in a ref to it, and following the ref here.”)

SV *sv = SvRV($COMP(rv));

if(day<0) { /* Negative input day means “use the last day”. */

loop(m) %{ /* Accumulate the maximum value of the day field */

if($in(col=>0) > day)

day = $in(col=>0);

%}

26

}

loop(m) %{ /* Accumulate dinner guests for this day */

if($in(col=>0) <= day)

nguests += $in(col=>2);

%}

/* Append a summary of the day to the passed-in string */

sprintf(buffer,"Day %d (%s): plan for %d\n", day, dow(day), nguests);

sv_catpv(sv, buffer);

%}

EOC

PMCode => <<’EOPM’

sub dinner_plan {

my($in, $day) = (($_[0]), ($_[1] // -1));

my $s = ""; # Generate an empty string $s

_dinner_plan_int($in, $day, \$s); # hand in a ref to $s (to be modified inplace)

return $s; }

EOPM

);

Finally, we have to finish the output with:

pp_done();

The earlier declarations only modify package-global variables in the PP code generator. pp_done() does the
actual work of generating the files.

3.2.3 Using PPDemo::Hello

Here’s a sample interaction with the perldl shell. User input is in bold.

pdl> use PPDemo::Hello

pdl> $a = new PPDemo::Hello

pdl> $a->event(pdl(1,6,7,8), pdl(-1,-1,2,3));

pdl> $a->tomorrow;

pdl> $a->event(1, 3);

pdl> $a->event(9, 1);

pdl> p $a

PPDemo object - days: 2; events: 6/100; ids: 2

[

[0 1 -1]

[0 6 -1]

[0 7 2]

[0 8 3]

[1 1 3]

[1 9 1]

]

pdl> p $a->dinner_plan();

Day 1 (Mon): plan for 7

pdl> p $a->dinner_plan(pdl(0,1,2));

Day 0 (Sun): plan for 3

Day 1 (Mon): plan for 7

Day 2 (Tue): plan for 7

pdl> p $a->dinner_count

7

pdl>

27

The object works as expected, and the C and Perl aspects merge (practically) seamlessly. In particular, note
that dinner_plan threads normally - but the output is still just a Perl scalar string that happens to contain
all the days, summarized by line.

4 Using PP for Calculations (no dataflow)

The most basic use of PP is to produce a single output PDL that is obtained by acting on one or more inputs.
The examples in §2-§3 all happen to be simple calculation cases, producing a single output. But you can
return any value or multiplet of values you want, by specifying multiple [o] variables in the Pars signature,
or by accepting refs in the OtherPars field. Direct assignment, temporary variables, and Perl wrappers have
all been demonstrated in §2-§3 but are described here in §4.1-§4.3 in more depth. Bad value handling is
straightforward and in §4.4.

4.1 Using direct assignment

The simplest and most common type of PP operator calculates a value and stuffs it into an appropriate
location in an output PDL. You design your algorithm to act on its simplest input data type (e.g. a scalar,
a vector, a collection of vectors, or what-have-you), and write a signature to match that data type. You
declare an output variable in the signature, assume it is allocated correctly for your input parameter, and
assign your computed value directly to the element(s) of the output variable. That basic mode of operation
is in most of the examples above, including §2.3.1.

Direct assignment doesn’t necessarily have to be simple. Here is an example of a function that accepts
an NxM array and returns its average (a scalar), its average-over-columns (an M-vector) and its average-
over-rows (an N-vector):

pp_def(’multisum’,

Pars=>’im(n,m); [o]av(); [o]avc(m); [o]avr(n);’,

Code => <<’EOC’,

$av() = 0;

loop(n) %{ $avr() = 0; %} // initialize avr

loop(m) %{

$avc() = 0; // initialize avc element

loop(n) %{

$GENERIC() pix = $im();

$av() += pix;

$avc() += pix;

$avr() += pix;

%}
$avc /= $SIZE(n); // normalize avc element

%}

loop(n) %{ $avr() /= $SIZE(m); %} // normalize avr

$av() /= $SIZE(m) * $SIZE(n); // normalize av

EOC

Doc => <<’EOD’

=for ref

Sample PP code uses direct assignment to a scalar and two vectors. The input has

two active dims named ’n’ and ’m’. We loop over both, accumulating a

(scalar) average of the whole input matrix, a (m-vector) average across

each row, and a (n-vector) average across each column.

=cut

EOD

28

);

Here, we accumulate sums three different ways and then normalize them appropriately. Note that the m and
n values are automatically handled right by the index macros inside the nested loops. The $av() macro gets
indexed with nothing, the $avc() macro gets indexed with the implicit value of m, and the $avr() macro gets
indexed with the implicit value of n.

4.2 Temporary Variables to Ease the Pain

Nearly any nontrivial calculation requires holding intermediate values in local variables. For scalar quantities
this is simple – you can declare a C variable in the Code section of your PP declaration. If you want to shave
a few clock cycles off your calculation, you can even declare the C variable outside an explicit threadloop %{

%} block, to prevent it being pushed onto the stack (and then popped off again) every time the thread loop
executes. For vector quantities it is not so simple - C requires you to track the size explicitly, and generally
to allocate the memory too.

Rather than explicitly declaring an array that is just the right size, you can declare a temporary variable
in the signature of your PP function, and use it just like a passed-in PDL. The access macros will work
correctly, and the temporary variable is typed just exactly like other arguments (e.g. $GENERIC() or other
type as declared). The temporary variable is declared just large enough to hold one instance of its declared
active dims – any thread dimensions are ignored, so you don’t allocate extra memory you don’t need.
(Warning: Temporary variables are currently not threadsafe in PDL 2.007. Threadsafe temporaries are a
planned feature for PDL 3.)

Here’s an example that uses a temporary variable to stash the denominator and discriminant of the
quadratic equation. These could have been declared as scalar variables - putting them in a temporary PDL
demonstrates autodeclaration of a vector quantity.

no PDL::NiceSlice;

*solve_quad = \&PDL::solve_quad;

use Inline Pdlpp => <<’EOF’;

pp_def(’solve_quad’,

Pars=>’coeffs(n=3); [o]sols(s=2); [t]parts(s);’,

GenericTypes=>[F,D,S],

Code => <<’EOC’,

/* Stash the denominator and discriminant */

$parts(s=>0) = 1.0 / ($coeffs(n=>2) * 2);

$parts(s=>1) = $coeffs(n=>1) ** 2 - 4 * $coeffs(n=>2) * $coeffs(n=>0);

if($parts(s=>1) >= 0) {

/* One or more solutions exist. Put them in the output. */

$parts(s=>1) = sqrt($parts(s=>1));

$sols(s=>0) = $parts(s=>0) * (-$coeffs(n=>1) - $parts(s=>1));

$sols(s=>1) = $parts(s=>0) * (-$coeffs(n=>1) + $parts(s=>1));

} else {

/* No real solutions exist. Set answer to NaN. notice the type selection macro! */

$sols(s=>0) = $sols(s=>1) = $TFDS(union_nan_float.f, union_nan_double.d, -32768);

}

EOC

);

EOF

29

The ’solve_quad’ example solves a quadratic equation analytically. The discriminant and denominator of the
quadratic formula are used more than once in valid solutions, so they get stashed in the temporary variable
parts, which is declared as a 2-vector. In the event that the discriminant is negative, no real solutions
exist, and the routine returns the appropriately typed NaN. In cases where a specific action is needed for a
specific type, you can use the $T macro – you list the $T followed by a collection of one-letter type identifiers.
The code switches between the strings in the argument list, based on the current value of $GENERIC() – so
the floating-point version of the code (“F”) gets “union_nan_float.f” and the double-precision version (“D”)
gets “union_nan_double.d”. Each of those expressions contains an appropriate NaN value for that data type.
Short types (’S’) can’t support NaN, so we supply -32768 instead. This would also be a good place to use
BAD values instead of NaN (see §4.4).

4.3 Conditioning arguments with Perl

Surprisingly often you might want to change the default behavior for a PP operator, or prepare or curry
arguments in some way, before entering the actual algorithm. For non-dataflow PP operators, there’s a
mechanism to do that. If you specify a field called PMCode in your PP declaration, the compiled stuff from
the Code field will go into _subname_int instead of just subname. Your PMCode field can then contain some
Perl that declares subname and (optionally) springboards into _subname_int. Here’s an example: a routine
called minismooth that accepts a 2-D PDL image and returns its input, smoothed by a quasi-minimum
operator. We use a temporary variable, too, to demonstrate how to use it from a Perl-wrapped call.

minismooth is useful, for example, for finding a smooth background image in the presence of spiky fore-
ground objects such as a starfield: the stars are eliminated in the local minimum-smoothing process, leaving
locally “typical” values for the background.

The arguments to minismooth get conditioned by the PMCode, so that it can be called more flexibly than
a naked PP operator can.

The minismooth algorithm itself is straightforward. There are two active dims – the height and width of
the image. The code loops over all pixels in the image, and for each one it loops over the entire neighborhood,
accumulating the n lowest values in the image. The output pixel at the current location gets the nth lowest
value from the neighborhood.

(Note that in versions of PDL up to at least 2.009, this type of declaration (using PMCode) only works
inside a standalone module definition. A long-standing wart in Inline::Pdlpp prevents the PMCode from being
interpreted.)

pp_def(’minismooth’,

Pars=>’im(n,m); [o]sm(n,m); [t]list(n);’,

OtherPars=>’long size; long nth;’,

PMCode => <<’EOPMC’,

=head2 minismooth

=for usage

$sm = minismooth($im, $size, $nth);

=for ref

C<minismooth> smooths an image by finding the minimum (or near-minimum) over

the C<$size>xC<$size> block of pixels around each source pixel. If you specify

C<$nth>, then the nth smallest pixel in each neighborhood is used, instead of the

absolute smallest.

=cut

sub PDL::minismooth {

30

my $im = shift;

die "minismooth requires a PDL!" unless(UNIVERSAL::isa($im,’PDL’));

my $size = shift // 21;

my $nth = shift // 1;

$nth = 1 if($nth < 1);

$size=1 if($size < 1);

my $sm = PDL->null;

PDL::_minismooth_int($im, $sm, PDL->null, $size, $nth);

return $sm;

}

EOPMC

Code => <<’EOC’,

{

long i,j,k,l,ii,jj; // declare index variables

PDL_Indx = ($COMP(size)-1)/2;

long nn, mm;

long n_kept;

$GENERIC() current;

for(i=0; i<$SIZE(m); i++) {

for(j=0; j<$SIZE(n); j++) {

n_kept = 0;

PDL_COMMENT("Loop over the neighborhood around the current pixel");

for(k=-sz; k<=sz; k++) {

for(l=-sz; l<=sz; l++) {

nn = j+l;

if(nn<0) { nn=0; } else if(nn>=$SIZE(n)) { nn=$SIZE(n)-1; }

mm = i+k;

if(mm<0) { mm=0; } else if(mm>=$SIZE(m)) { mm=$SIZE(m)-1; }

current = $im(n=>nn, m=>mm);

if((n_kept < $COMP(nth)) || current < $list(n=>0)) {

PDL_COMMENT("The current number fits on the minimum-values list");

PDL_COMMENT("Use insertion sort to keep the list sorted");

for(ii=0; ii<n_kept && $list(n=>ii) >= current; ii++) { ; }

if(n_kept < $COMP(nth)) {

PDL_COMMENT("Few enough elements - put ’em on the back");

for(jj=n_kept; jj>ii; jj--) { $list(n=>jj) = $list(n=>jj-1); }

n_kept++;

} else {

PDL_COMMENT("List is full - bump something off the front");

ii--;

for(jj=0; jj<ii; jj++) { $list(n=>jj) = $list(n=>jj+1); }

}

$list(n=>ii) = current;

} // end of list manipulation

} // end of l neighborhood loop

} // end of k neighborhood loop

$sm(n=>j, m=>i) = $list(n=>0);

} // end of j pixel loop

} // end of i pixel loop

} // end of PP code

EOC

);

31

4.4 BAD values

PDL’s BAD value system uses in-band special values to mark bad or missing points in your data. Because
bad values cost extra computing time (every value handled by a bad-aware PP operator has to be checked
against the bad value by the operator), PP lets you specify two different versions of your code - one that
handles bad values and one that doesn’t. The two parallel copies of the code should implement exactly the
same function, but one with bad value handling and one without.

Each PDL carries a status flag (the badflag) that indicates whether there might be bad values in the
PDL: if the badflag is 0, then the PDL is known to have no bad values and the normal Code gets used. If it
is 1, then the special BadCode gets used.

You can create a BAD-aware PP operator by setting the HandleBad field in the hash you pass to pp_def.
If HandleBad is set to a true value, then PP looks for both a Code section and a separate BadCode section.
The BadCode gets used on PDLs with a true BadFlag and the Code gets used on everything else.

If you do not do anything about BAD values, then your code will ignore them by default – but will pass
its parameters’ BadFlag status on to any output PDLs. If BAD values will cause your code trouble, you can
set the HandleBad field (in the pp_def argument hash) to 0. That will cause PP to throw an error if your
code gets a parameter with the BadFlag set.

Inside either your BadCode or your Code section, the following macros will come in handy:

$ISBAD(var) This boolean macro returns TRUE if the contained value in var is bad. The var is a regular
PDL access macro just like you’d use to access any of the PDLs in the signature, except that it doesn’t
have a leading $ – as in “$ISBAD(a(n=>2))”.

$ISGOOD(var) This is the counterpart to $ISBAD, and returns a flag indicating goodness.

$SETBAD(var) This assigns the BAD value to the corresponding PDL argument. The var uses the same
format as $ISGOOD and $ISBAD. Unlike those two, it makes sense to use in a Code section (since you may
have to set the first BAD value in a particular PDL). In the Code section, if you set a value to BAD
you should also set the PDL’s badflag with the $PDLSTATESETBAD() macro, below

$ISBADVAR(c_var, pdl) This works like $ISBAD, except that the first argument is a cached value of the PDL
in a $GENERIC() type C variable. The second argument is the name of the PDL it came from (which
must be one of the Pars in the signature).

$ISGOODVAR(c_var, pdl) This works like $ISGOOD, except that the first argument is a cached value of the
PDL in a $GENERIC() type C variable. The second argument is the name of the PDL it came from
(which must be one of the Pars in the signature).

$SETBADVAR(c_var, pdl) This works like $SETBAD, except that the first argument is a cached value of the
PDL in a $GENERIC() type C variable. Just like $SETBAD, you should also set the state of the PDL to
BAD using $PDLSTATESETBAD() if you use this inside a Code block.

$PDLSTATEISBAD(pdl) This accesses the pdl ’s badflag, which indicates whether the PDL may have BAD values
in it (and therefore requires bad-value checking). You don’t normally have to read the badflag explicitly,
since PP does that for you (and shunts execution into your Code or BadCode segment accordingly). The
pdl argument is the name of a parameter in the Pars field of pp_def.

$PDLSTATEISGOOD(pdl) Counterpart to $PDLSTATEISBAD.

$PDLSTATESETBAD(pdl) This sets the pdl ’s badflag. You need to do this explicitly if you set a value to BAD
inside your Code block. The pdl argument is the name of a parameter in the Pars field of pp_def.

$PDLSTATESETGOOD(pdl) This clears the pdl ’s badflag. You shouldn’t need to do this, but you might like to
if you are in a position to know that none of the elements of the pdl are BAD.

32

4.4.1 BAD value handling: a simple case

Here’s a simple example of BAD value handling. The countbad operator collapses a vector PDL by counting
the number of BAD values in it.

pp_def(’countbad’,

Pars=>’in(n); [o]out();’,

HandleBad => 1,

Code => << ’EOC’,

$out() = 0;

EOC

BadCode => <<’EOBC’

long bc = 0;

loop(n) %{

if($ISBAD(n))

bc++;

%}

$out() = bc;

EOBC

);

The code is pretty straightforward. If the input PDL has its badflag clear, i.e. it has no BAD values, then
the Code section gets used. It just returns 0. If the input PDL has its badflag set, the BadCode gets used.
It loops over the input values, counting the bad values, and returns the count. The count is cached in a local
variable, bc, to avoid the overhead of making the $out() macro call for each iteration of the loop.

4.4.2 BAD value handling: marking values BAD.

Here’s an example of how to mark values BAD. The recip operator implements reciprocals, with checking
for the 1/0 case. There are two copies of the reciprocal code – the Code block and the BadCode block. In
the Code block, no bad values are expected in the input, but we may have to generate some for the output.
In the BadCode block, the input may contain bad values, but the badflag of the output is automatically set
before our code block gets called. See also the example in Section 4.5.

pp_def(’recip’,

Pars=>’in(n); [o]out();’,

HandleBad => 1,

GenericTypes=>[’F’,’D’], # only makes sense for floating-point types

Code => << ’EOC’,

if ($in()==0) {

$PDLSTATESETBAD(out());

$SETBAD(out());

} else {

$out() = 1.0/$in();

}

EOC

BadCode => <<’EOBC’

33

if ($in()==0 || $ISBAD(in())) {

$SETBAD(out());

} else {

$out() = 1.0/$in();

}

EOBC

);

4.5 Adjusting output dimensions (RedoDimsCode)

Sometimes you don’t know the dimensionality of an output variable at compile time – that is to say, the
$SIZE() of one of the named dims in a signature argument (in the Pars section of pp_def) may require some
computation to figure out. PP can handle that, in a limited way. You accomplish that by passing in the
RedoDimsCode field into pp_def. Your RedoDimsCode is called during setup for the computation (before the
actual computation in the Code and/or BadCode sections), and you can treat the $SIZE() macro as an lvalue
(i.e. assign to it).

Many of the same other macros that are available in the Code and BadCode sections are available to you in
the RedoDimsCode section. The ones that are unavailable loop(foo) and threadloop loop-management macros,
and the data-access $var(dim=>expr...) macro.

This lets you adjust the size of your output and/or temporary parameters before carrying out the compu-
tation. Any thread dimensions from the overall calculation get added onto the end of the [o] output variables’
dimlists automatically, after you set the $SIZE(). (That doesn’t happen for [t] temporary variables, since
each temporary variable only gets its active dims – so no thread dims get tacked on the end.)

The adjustment is a bit limited, though – you can only compute the new size based on the informa-
tion available before the computation takes place, since no actual computation has happened before the
RedoDimsCode gets called. That works easily for operations where you know the output dimensions from the
input parameters or input dimensions, and it’s common to see a one-line RedoDimsCode section in those cases.
The only catch is that the $SIZE() macro is write-only at that stage, so you have to read any dimensions
directly from the C structure of the PDL itself.

Operations that output sets (such as which()) require actually walking through the data to figure out the
output dimensions. That can be tricky, since the threading loop constructs aren’t available in RedoDimsCode.
The which() operator and its relatives use a PMCode section to flatten the input PDL, and treat it as a single
array which can be looped over explicitly with a C for loop. That trick can work for n dimensional inputs
as well, provided that you know n when you are writing the code.

Here is an example of a simple RedoDimsCode that uses just the input dimensions to change the output.
For more complex examples (including the which() trick and more powerful techniques such as are used by
range()), see Section 6.

The increments operator accepts a collection of n number and returns the differences between adjacent
numbers. It has one fewer output elements than input elements. If you feed in a single element, you get back
an Empty piddle (size 0) and if you feed in an Empty piddle you get back another Empty piddle. There’s
both a Code and a BadCode segment to demonstrate BAD handling as well, but the important elements are
(a) the RedoDimsCode that sets the size of the m dimension, and (b) the explicit loop over the m dimension
(which could also have been handled with an explicit C loop and a local index variable). The RedoDimsCode

uses the $PDL(var) macro to get to the underlying C struct. The struct field ndims reports the number of
dimensions in the PDL; the dims array contains the sizes.

(Note that, because the inputs to increments have different dimensionality, it cannot handle inplace
processing. If the inplace flag for in is set, increments will ignore it.)

pp_def(’increments’,

34

Pars=>’in(n); [o]out(m);’,

RedoDimsCode=><<’EORDC’,

$PDL_COMMENT(“ Check the dimension of ’in’, and calculate output size. “);

if ($PDL(in)->ndims && $PDL(in)->dims[0]>0)

$SIZE(m) = ($PDL(in)->dims(0)-1)

else

$SIZE(m) = 0;

EORDC

Code=><<’EOC’,

loop(m) %{

$out() = $in(n=>m+1) - $in(n=>m);

%}

EOC

BadCode=><<’EOBC’,

loop(m) %{

if($ISGOOD(n=>m) && $ISGOOD(n=>i)) {

$out() = $in(n=>m+1)-$in(n=>m);

} else {

$SETBAD(out());

}

%}

EOBC

);

The RedoDimsCode in increments explicitly shortens the output dimension by 1 compared to the input dimen-
sion; the rest just calculates the difference between adjacent elements and handles BAD values.

5 Using PP With Dataflow

PP does not only allow you to do explicit, immediate calculations - your PP operators can set up dataflow
links between the input and output. This is implemented through a quasi-object implemented in C, called
a trans. A trans contains all the information needed to link two PDLs.

The dataflow engine was implemented by Tuomas Lukka in the early 2000s, with the intent that you could
construct complete behind-the-scenes data pipelines: modify a particular input PDL, and the result could
automagically cascade through an entire calculation to change the output PDL. As it turns out, the most
common use case for dataflow has been multiple representations of the same underlying data. Therefore, all
of the built-in selection operators in the language implement dataflow, while the calculation operators do
not.

With the information in this section, you can implement dataflow operations for either selection operators
or calculation operators. Dataflow operators in general construct trans structures that relate their input and
output PDLs, but their PP declarations are nearly the same as normal computed PP operator declarations.
Some additional fields to pp_def are required, to set up the additional code structures for the underlying
trans object.

35

5.1 Code/BackCode and a basic dataflow operator

You can implement a calculated dataflow operator with lazy evaluation, simply by marking it as a dataflow
operator and writing a BackCode section. Here’s an example of a simple two-way computed dataflow
operator, to convert Fahrenheit to Celsius and vice versa.

pp_def(’FtoC’,

DefaultFlow => 1, # Mark as a dataflow operator

NoPdlThread => 1, # Turn off threadsafe generated code (doesn’t work)

P2Child => 1, # Declares $PARENT and $CHILD parameters

Reversible => 1, # Enable BackCode

RedoDims =><<’EORD’ # No RedoDims by default - this just copies $PARENT dims to $CHILD.

long ii;

$SETNDIMS($PARENT(ndims));

for(ii=0; ii<$PARENT(ndims); ii++) {

$CHILD(dims[ii]) = $PARENT(dims[ii]);

$CHILD(dimincs[ii]) = $PARENT(dimincs[ii]);

}

$CHILD(datatype) = $PARENT(datatype);

$SETDIMS();

EORD

Code => ’$CHILD() = ($PARENT() - 32) * 5/9; ’,

BackCode => ’$PARENT() = ($CHILD() * 9/5) + 32; ’

);

Most of the characters in the operator are in the RedoDims section, which copies the parent dimensionality
(and internal dimincs fields) into the child. This could/should be done by default, but for PDL versions
through 2.009 this particular use case does not work properly in the PP compiler, so an explicit RedoDims is
required. The RedoDims code sets the child’s dimensionality and dimincs counters to be equal to the parent’s.
The Code converts a single element of the $PARENT from Fahrenheit to Celsius, and stores it in the $CHILD. The
BackCode converts a single element of the $CHILD from Celsius to Fahrenheit and stores it in the $PARENT.
You use FtoC as follows:

perldl> $F = pdl(32);

perldl> $C = $F->FtoC;

perldl> p $C;

0

perldl> $C++; p “$F F = $C C\n”;

33.8 F = 1 C

perldl> $F++; p “$F F = $C C\n”;

34.8 F = 1.55555555555555 C

perldl>

Assigning to either $F or $C with computed assignment (“.=”), or modifying $F or $C with side-effect operators,
automatically updates the other one. A dataflow connection has been established.

5.2 Structure of a dataflow operator

Dataflow operators make use of several stages of code execution. In a typical use case, at call time the
operator defines a trans that involves computing some input parameters and/or examining input data. Then
it sets the dimensions of the output PDL. The actual calculation is deferred until the output PDL is used.
This “lazy evaluation” is a wart that’s left over from the development history of dataflow in PDL, but could

36

in principle be extended to elementwise lazy evaluation. (At present, all operators calculate the results for
every element in a PDL, as soon as the first element is accessed). These different steps are implemented
with different pp_def fields.

Dataflow operations work by creating a separate structure/object called a “trans” that relates two PDLs
– the parent and the child. The trans structure includes metadata about the transformation and also pointers
to the code blocks you declare in the pp_def call. Its elements are accessible with the $PRIV() macro, which
expands to C code that references the private C struct.

The pp_def fields you need to know for a basic dataflow operator are:

Pars The signature (as in a regular computed operator). There are some caveats – see “P2Child” and
“DefaultFlow”, below.

OtherPars Any additional parameters not subject to the usual threading rules (which could be the main
parameters – see the rangeb operators in slices.pd for an example)

Doc POD format documentation for the operator

HandleBad Same as for a regular computed operator – ignore for default treatment, set to 1 to enable the
BadCode (and BadBackCode) fields, set to 0 to cause the code to barf if it receives a PDL with the badflag
set.

Code Just like a normal PP operator, this computes the output PDL value from the input PDL values.

BackCode This should compute (and set) the value of the input PDL from the output PDL. It gets called if
the output PDL is changed by some other operator, to flow data back into the input PDL. You do not
need to specify BackCode for one-way flow. (See the Reversible flag, below)

DefaultFlow You almost certainly want to set this flag to 1. It sets up a dataflow relationship between two
special parameters, “PARENT” and “CHILD”, that should be declared in the Pars field (or in the P2Child

field, see below). If you don’t either use the P2Child flag or declare PARENT and CHILD in the Pars field,
PP will throw an error.

Reversible This flag indicates whether the transformation is two-way. If it is, then you need to specify both
Code and BackCode segments (or EquivCPOffsCode – see below).

P2Child This flag takes the place of Pars for simple dataflow. Setting the flag is equivalent to declaring
Pars=>’PARENT(); [oca]CHILD();’. It declares a zero-dimensional input PARENT and a zero-dimensional
output CHILD.

NoPdlThread This is a flag that prevents the normal threading behavior of PP. If it is set, no threadloop will
be executed around (or within) the various Code blocks where it would normally happen. That is useful
for edge cases where you might want to work independently of the normal threading mechanism (see
Chapter 6).

Comp Should be a C declaration of some fields to be computed (and stashed) during setup of a trans. If
this is present, then the OtherPars parameters are not automatically incorporated in the array as with
conventional computed operators. (That happens with a default Comp and MakeComp field that gets over-
ridden by your Comp and MakeComp.) See MakeComp for details. The Comp field has (limited) access to the
$COMP() macro itself, specifically so that you can declare variable-length arrays here. In particular, con-
structs like “int b; int a[$COMP(b)]” work. Before using those arrays (in the corresponding MakeComp

code block) you have to set the variables that hold the sizes, then run the macro $DOCOMPDIMS(). That
allocates all the variable length arrays.

MakeComp Should contain code to compute and stash the contents of the $COMP() macro, called the computed
stash. This is the place to store any state or parametric information about the trans itself. The

37

OtherPars parameters are accessible in this block of code as regular C identifiers – so if you pass in an
OtherPar called foo, you access it here as foo and not as $COMP(foo). If you don’t specify MakeComp,
you get a default MakeComp block that just copies any OtherPars into the $COMP() structure.

RedoDims Should contain code to compute and stash the dimensions of the child PDL, from the dimensions
of the parent PDL and the parameters passed in.

EquivCPOffsCode This field is useful for simple dataflow relating arbitrary locations in one PDL to arbitrary
locations in another, for example inside the built-in range and index operators. It contains code
for relating particular elements between the two linked PDLs (parent and child). Its name derives
from “equivalent child/parent offsets”, and the code should implement direct-copy dataflow between
a single element of the special $CHILD() and $PARENT() piddles. If present, EquivCPOffsCode replaces
Code, BackCode, and (if HandleBad is set) BadCode and BadBackCode – these all end up running the
EquivCPOffsCode, with the appropriate assignment placed inside to slosh data forward or backward.
The EquivCPOffsCode should loop over all values for which dataflow should happen. For each of those
values, it needs call one of the special macros $EquivCPOffs(pi,ci) or $EquivCPTrunc(pi,ci,oob) for each
value. Here, pi is the computed offset in the parent to a particular element, ci is the offset to the
corresponding element in the child, and oob is a flag indicating that the offset is out of bounds in the
parent (and should therefore be loaded with BAD or 0 in the child for forward flow, or ignored for
reverse flow). Note that EquivCPOffsCode, unlike Code and BackCode, does not deal with threading! You
have to do the looping yourself.

The calling structure is as follows. When you first invoke the operator, MakeComp gets called (making the
$COMP() variable macros available), then RedoDims. Only when the user makes use of the resulting child PDL
does the EquivCPOffsCode (or Code or BackCode) get called.

Good examples of dataflow operators are to be found in the PDL distribution itself, in “.../Basic/Slices/slices.pd”.
Check out the code for slice and sliceb, or range and rangeb. Those operators are implemented without the
PMCode field, because PMCode seems to not work correctly for dataflow operators. The sliceb operator uses a
special kind of trans called an “affine” trans, which doesn’t actually use calculation code or EquivCPOffs at
all – it causes the child PDL to point directly at the parent’s data structure. The rangeb operator generates
a data structure containing information about each range to be extracted, then walks through the source
data calling EquivCPOffs.

6 PP on the Edge (things PP can’t do easily, and how to do them)

PP is great for performing ordinary vectorized calculations where the dimensions are known or computable
up front. There are certain problem domains at which it is awkward – for example, allowing an operator to
vary its own signature at runtime (changing the number of active dims) is difficult, as is accepting a variable
length argument list. Here are some basic strategies for writing operators that are right at the edge of what
PP can do easily.

6.1 Variable Active Dims

The most obvious example of an operator with variable active dims is the built-in indexND. That operator
collapses an index variable by lookup into a source array: the 0 dim of the index is treated as running across
dimension in the source array, and each row of the index variable causes one element of the source array to
be indexed. Depending on the size of the index variable’s active dim, the signature should look like one of
the following:

PARENT(i0); index(n=1); [o]CHILD());

PARENT(i0,i1); index(n=2); [o]CHILD());

PARENT(i0,i1,i2); index(n=3); [o]CHILD());

38

PARENT(i0,i1,i2,i3); index(n=4); [o]CHILD());

etc.

PP can’t handle that type of operator easily and straightforwardly, because the shape of PARENT depends on
the size of one of the dimensions in index.

The meat behind indexND is the slightly more general rangeb operator, which pulls a specified rectangular
block out of the source PDL at each indexed location. It can be found in the PDL source distribution in
the file “Basic/Slices/slices.pd”. It works by sidestepping the threading behavior entirely. The PARENT

and CHILD are passed in with 0 active dims via the P2Child flag to pp_def (which autodeclares a basic
parent/child signature). All other parameters (in particular the index and size) are declared as OtherPars

with type “SV *” so that the code has direct access to the Perl variable containing the index. PDL provides
a function, PDL->SvPDLV(), that accepts a SV * and returns the corresponding pdl *, so you can access the
internal structure directly.

The rangeb operator has three key parts: the MakeComp code gets executed first, and extracts all the
relevant size and offset information from the input PDLs into C arrays of known size. Then the RedoDims

code block calculates the size, dimincs (memory stride for each dimension) and datatype of the CHILD (output)
variable, from the input. It uses the $SETDIMS() macro to allocate the child’s actual dimensions and data
block, and reproduces the regular threading rules used by PP. Finally, the EquivCPOffsCode gets called to
copy values into the new CHILD piddle. The EquivCPOffsCode for rangeb iterates explicitly over all input
dimensions including thread dimensions. Iterating over a variable number of dimensions is tricky; there’s a
nice example at the bottom of the EquivCPOffsCode for rangeb. The main loop is a do/while construct,
with an explicit iterator at the end. The iterator is a for loop that handles carry from the fastest-moving to
the next-fastest-moving index, and on up to the slowest-moving index.

6.2 Variable Argument Counts

The best way to handle a variable argument count is to use a Perl-side currying function (PMCode in a module
or a separately declared function in an inline script) that stuffs the variables into a Perl array/list, then pass
a ref to the array into the PP operator as an OtherPars parameter. Your code can dereference the ref and
traverse the array (AV *) directly. Each element of the AV will be a separate SV * that you can parse with
your own code, and/or convert to a pdl * . See the perlguts and/or perlapi man page for details on how
to manipulate Perl AVs.

6.3 Returning Perl Variables

There is no explicit SV return mechanism in the Code blocks of a PP function If you need to return a single
SV value to a Perl function, you can pre-allocate a variable with a Perl-side currying function (PMCode in a
module or a separately declared function in an inline script), then pass in a ref to the value as an OtherPars

parameter. Your PP code can dereference the ref to get an lvalue SV, and assign to that SV. Then the
currying function can return the variable’s value.

The same mechanism works for lists – if you need to return several SVs, you can construct an array
in your currying function and pass a ref to it into the actual PP code. Then the C side can populate the
referenced AV with SVs to be returned by the currying function.

7 PDL internals: accessing PDLs directly from C

PDL data structures are directly accessible from your C code within PerlXS. Most times you want to use
PP to access the structure, but (particularly if you are using an external library) you may want to get in
and mess around with the internals yourself. Here is a brief overview to get you going. The most powerful
way to access PDLs is via PP (Section 2), but both direct access and a module called CallExt offer slightly
lighter-weight forms of access.

39

From within Perl, PDLs are blessed scalar refs. The scalar that is referenced contains an IV (Perl integer
value) that is itself a pointer to a C structure (struct pdl). If you #include both <pdl.h> and <pdlcore.h>,
you get access to the data structures and to a variety of important access routines. You do not need to link
to a PDL library to access this rather extensive C API.

When Perl executes “use PDL;”, a “core” structure (called “PDL” on the C side) is created that contains
direct function pointers to the utilities. The core structure is a static patchtable that allows all interested
modules to call the same C functions – otherwise the Perl dynamic linking code would link a separate copy
of the PDL core functions for each module that uses them. If you are using PP, a pointer to this patchtable
is automatically placed into a C file-scope static variable called “PDL” – hence utility routines are accessed
from C as (e.g.) “PDL->SvPDLV(foo)”.

[If you want to use the API from a non-PP XS module, then the header section of your PerlXS file should
declare a struct pdlcore * called PDL, and the BOOT: section of your perlXS file should retrieve the value
of this pointer from the Perl global variable $PDL::SHARE. (You must also ensure that the pointer has been
initialized, e.g. with a “use PDL;” in the Perl portion of your module).]

For a full list of the routines in the PDL C API, you currently need to examine the online documentation
and source code comments. A separate document is planned to describe these PDL internals, but the online
documentation is extensive and should get you going.

The very simplest, and preferred, way to access the data in a PDL from C/XS is to wrap your code in a
PP call and use the PP macros. For cases where that will not work easily, you can have your routine accept
an SV * (Perl scalar) and run PDL->SvPDLV on the SV *. The return value is a pdl *, i.e. a pointer to the
actual PDL internal structure. Before accessing the data directly from C without the PP macros, you must
check the status flags, non-nullness of the data field, and data type of the PDL. You will also need to cast
the data field to the appropriate type of pointer before dereferencing it. The data are structured using the
dimincs array of the PDL structure – you multiply each element of dimincs by the index you want in the
corresponding dimension, and summing those products gives you the offset into data.

7.1 The struct pdl type

The typedefed “pdl” type is a “struct pdl”, which is declared in pdl.h in the PDL distribution. Here is a
list of the fields in it. Nonstandard types are declared in pdl.h. The PDL_Indx type, in particular, is either a
32 bit or 64 bit unsigned value depending on your sysem architecture.

magicno (unsigned long) An unsigned long with a magic number (PDL_MAGICNO; declared in pdl.h) in it.
This is a fence for debugging purposes.

state (int) A bit field containing flags that describe the state of the PDL. The flags are declared in pdl.h:
use bitwise-and to mask them out of the state.

PDL_ALLOCATED Data have been allocated for this PDL. Also implies that the data is up-to-date (unless
the PDL_PARENTDATACHANGED flag is set).

PDL_PARENTDATACHANGED This PDL is connected to another one via dataflow, and that other PDL has
changed – but this one has not yet been updated.

PDL_PARENTDIMSCHANGED This PDL is connected to another one via dataflow, and that other PDL’s
shape has changed – but this one has not yet been updated.

PDL_PARENTREPRCHANGED The representation of the parent changed (for example, sever() broke it from
its parent), so data access hooks like the incs field need to be recalculated.

PDL_ANYCHANGED This is the bitwise OR of the previous 3 flags - i.e. the parent has been touched.

PDL_DATAFLOW_F Track forward dataflow starting from this PDL into its children.

PDL_DATAFLOW_B Track reverse dataflow back from this PDL into its parent.

40

PDL_DATAFLOW_ANY bitwise OR of the previous 2 flags - i.e. this PDL has a dataflow connection some-
where.

PDL_NOMYDIMS this PDL is null (auto-reshaping to match needed shape in an expression).

PDL_MYDIMS_TRANS the dims are received through a trans (transformation structure) from another PDL.

PDL_OPT_VAFFTRANSOK It’s okay to attach a virtual-affine trans to this PDL (i.e. to point another PDL
at the same data block)

PDL_HDRCPY The hdrcpy flag (causes the header of this PDL to be autocopied into result PDLs when
appropriate, in expressions and operators)

PDL_BADVAL The BAD flag for this PDL - if set, the PDL may contain BAD values and the BadCode
gets executed instead of the normal Code.

PDL_TRACEDEBUG causes a bunch of PP internal debugging

PDL_INPLACE the inplace flag for this PDL - if set, the PDL has been primed for an in-place operation
by the calling entity.

PDL_DESTROYING is set to indicate that this PDL is in the process of being destroyed, so data flow
operations should be ignored.

PDL_DONTTOUCHDATA indicates that the data pointer is inviolate - don’t change it, free it, nor use the
datasv. Used mainly for piddles that mmap memory from files.

trans (pdl_trans *) This is a pointer to a transformation structure, which implements dataflow for PDLs
that require explicit flow. The transformation structure includes code refs that are called by PP
whenever this PDL is updated. It is NULL if the PDL has no dataflow “children”. Complicated
dataflow (such as indexing, dicing, and ranging) uses this mechanism.

vafftrans (pdl_vaffine *) This is a pointer to a more optimized transformation structure for PDLs with
dataflow “children” that are related by an affine transformation. Affine transformations are transfor-
mations in which the indices in the child are related linearly to the corresponding indices in the parent
(as in simple slicing). They use a different structure and are very fast, because no copying is needed –
the same physical array in memory can be indexed by the related PDLs.

sv (void *) If this is non-NULL, it is a pointer back to the Perl SV that contains the PDL.

datasv (void *) This is either NULL or a pointer to a string Perl SV that contains the data in its data field.
PDLs use the Perl memory management infrastructure, so the data block of a given pdl * is stored as
a byte string in an anonymous Perl SV somewhere. The datasv should have a reference count of 1 for
each PDL that accesses it. The ref count gets decremented when the PDL is destroyed, freeing the
memory.

data (void *) This is the actual data pointer, and points to the string field in the associated SV. It can be
null if the PDL contains no actual data. The type of the data depends on the value of the datatype

field, below.

badvalue (double) If this PDL uses BAD value logic, then this is the value that is considered BAD. It is
stored as a double regardless of data type of the PDL itself.

has_badvalue (int) This is a simple flag – 0 for straight-up values, 1 for PDLs that recognize bad values.

nvals (PDL_Indx) This is the total number of elements contained in the whole PDL – it’s the product of
the elements of the “dims” array. It is returned to Perl by PDL::nelem.

datatype (int) indicates the data type of the PDL. It’s declared as an int, but is actually an enum - access
it with one of the datatype enums in pdl.h (PDL_B, PDL_S, PDL_US, PDL_L, PDL_IND, PDL_LL, PDL_F, or
PDL_D).

41

dims (PDL_Indx *) is a pointer to an array of sizes for each dimension of the data – the contents are
returned to Perl by PDL::dims or PDL::shape. This can be allocated separately or point to a small
preallocated space farther down, depending on the number of dimensions.

dimincs (PDL_Indx *) is a pointer to an array that caches the memory increments associated with each
dimension in the PDL. Like dims, it can be separately allocated or simply a part of this struct pdl,
depending on how many dimensions there are.

ndims (short) is the length of the dim list for this PDL. It is returned to Perl by PDL::ndims.

42

	1 Introduction
	1.1 Review of PDL Dimensions
	1.2 Threading Rules
	1.3 What is PDL::PP?
	1.4 A trivial example: a linear function
	1.5 A non-trivial example: Mandelbrot set visualization

	2 Basic PP
	2.1 Dimensionality and the signature of an operator
	2.1.1 The Importance of Operator Shape: A Cautionary Example
	2.1.2 Signature option flags
	2.1.3 Signature data types

	2.2 PP definition functions
	2.2.1 Generating C and XS code
	2.2.2 Controlling import/export and the symbol table

	2.3 The pp_def definition function
	2.3.1 A simple pp_def example: cartND
	2.3.2 Basic pp_def keys
	2.3.3 More advanced pp_def keys
	2.3.4 pp_def Code macros

	3 Putting it together: Example PP functions
	3.1 Using PP inline with Perl, via Inline::Pdlpp
	3.1.1 A simple case: combining compound math operations
	3.1.2 Calling a C function with Inline::Pdlpp

	3.2 A standalone PP Module
	3.2.1 Makefile.PL
	3.2.2 hello.pd
	3.2.3 Using PPDemo::Hello

	4 Using PP for Calculations (no dataflow)
	4.1 Using direct assignment
	4.2 Temporary Variables to Ease the Pain
	4.3 Conditioning arguments with Perl
	4.4 BAD values
	4.4.1 BAD value handling: a simple case
	4.4.2 BAD value handling: marking values BAD.

	4.5 Adjusting output dimensions (RedoDimsCode)

	5 Using PP With Dataflow
	5.1 Code/BackCode and a basic dataflow operator
	5.2 Structure of a dataflow operator

	6 PP on the Edge (things PP can't do easily, and how to do them)
	6.1 Variable Active Dims
	6.2 Variable Argument Counts
	6.3 Returning Perl Variables

	7 PDL internals: accessing PDLs directly from C
	7.1 The struct pdl type

