BEGGINING
PDL

Xavier Calbet
xcalbet@yahoo.es

Contents

I

1

Perl Quickie

Introduction
1.1 Introduction e e e e e
1.2 Where to get it, how toinstall it,
1.3 Comprehensive Perl Archive Network: CPAN
14 Gettinghelp. oL
Our first Perl program
2.1 The “Hello, World” program
2.2 Comments e e e e e e e e e e e e e
2.3 Solution to the exerciseso
Variable types
3.1 Introduction e e e e e e e
3.2 Scalars e e e e e e e e
3.2.1 Numerical variables
3.2.2 String variableso oL
3.2.3 Printing the value of variables.
3.3 Getting values from the keyboard L.
3.4 ArTays . .o oL e e
3.5 References and two dimensional arrays,
3.6 Functions to operate with arrays
3.6.1 Exercise e e e e e e
3.7 Hashes e e e
3.8 Solution to the exercises Lo e e e
Control structures
4.1 Statement blocks
4.2 The if/unless statement Lo Lo
4.3 Conditionals. L
4.4 The while/until statement Lo Lo
4.5 The do while/until statement Lo ..
4.6 The for statement
4.7 The foreach statement
4.8 Other control structures Lo
4.8.1 Thelast statemento
4.8.2 The next statemento oo
4.9 EXCErCiSe . . . ¢ v v v i e e e e e e e e e e e e e e e e

11
11
12
12
12

CONTENTS

4.10 Solution to the exercises L 25
Input/output 27
5.1 Opening a file for reading/writing 27
5.2 Closingafile 27
53 Readingfromafile 27
5.4 List and scalar contexto 28
5.5 Writingtoafile. oL 28
5.5.1 Exercise 28
5.6 Heredocuments. e e 28
5.7 Reading and writing binary files oo oL 29
5.8 Solution to the exercises 30
Functions 31
6.1 References tofunctions L. 31
6.2 Localizing your variables oL oo 32
6.3 Exercise e 33
6.4 Solution to the exercises o 34
A detour: writing a complete program 35
7.1 The Newton root finding method 35
7.2 Anexample e e 35
7.2.1 Exercise e e e e e e 36
7.2.2 EXErcise e e e e 36
7.2.3 Exercise e 37
7.2.4 EXercise e e e e e e e 37
7.3 Timing programs e 37
7.3.1 Exercise e e 39
7.4 Solution to the exercises 39
Directories and files 45
8.1 Directories. e e e e e e 45
8.1.1 Accessing directorieso 45
8.1.2 Changing directories 45
81.3 Globbing e 45
8.1.4 Making and removing directories L. 46
82 Files e 46
8.2.1 Removing and renaming fileso 0oL 46
822 Filetests 46
Processes 47
9.1 Running external programso 47
9.1.1 Using processes as filehandles 47
9.1.2 Exercise e e e e e 48

9.2 Solution to the exercises e 48

CONTENTS

10 Regular expressions

10.1 General concepts« . oL ool e e e e
10.2 Simple regular expressions oo e e
10.3 Testing the match of a regular expression
10.4 Substitutions L L
10.5 Split and join commandso L oo

1051 SPHt © o v oov e e

10.5.2 Joino

10.5.3 Exercise
10.6 Solution to the exercises

11 Modules
11.1 Using modules e
11.2 Making modules L e
11.2.1 Exercise
11.2.2 Exercise
11.3 Importing subroutines names
11.3.1 Exercise i i e e e e e e e e e e e e
11.4 Solution to the exercises i i i e e

12 Object oriented programming
12.1 Introduction
12.2 Perl representation of objectso
12.3 Polymorphism
12.4 Inheritance L
12.5 Exercise L.

13 Windows widgets with Perl: Perl/ Tk
13.1 Our first Perl/Tk program
13.2 More widgets
13.2.1 Button widget
13.2.2 Text entry widget
13.3 Exercise

II PDL

14 Introduction to PDL
14.1 What is PDL? e e e e e e e e e
14.2 Advantages and disadvantagesof PDL
14.3 Using PDL o e
144 Getting help
14.5 How to use the rest of thismanual

15 Creating PDLs
15.1 Introduction L
15.2 Basicusage
15.2.1 Simple piddleso
15.2.2 More complex piddles,
15.3 Advanced usageo e e e

51
o1
o1
51
52
52
52
52
52
53

55
95
95
56
56
56
56
56

65
65
65
67
72
74

75
75
76
76
7
78

CONTENTS

15.3.1 Data types Lo
15.3.2 More creatorsof piddles oL

16 Arithmetic
16.1 Basic usage . .
16.2 Advanced usage

17 Getting properties
17.1 Basic usage . .

18 Plotting
18.1 Basic usage . .

of piddles

18.1.1 2D plotting e
18.1.2 3D plotting

18.2 Advanced usage

1821 2D PIOtHNG . © o o v o e e e e e
182.2 3D plotting . . . o . o

19 Modifying piddles
19.1 Basic usage . .
19.1.1 set . . .

19.1.2 slice . .

19.1.3 list . . .

19.1.4 listindices e e e e e e e e

192 clip.
19.2.1 badmask

19.3 Advanced usage
19.3.1 dummy
19.3.2 hclip . .
19.3.3 lclip . .
19.3.4 one2nd
19.3.5 mslice .
19.3.6 reshape
19.3.7 convert

20 Combining several
20.1 Basic usage . .
20.1.1 append

20.1.2 cat . . .

20.1.3 dog . .

21 Matrix operations
21.1 Basic usage . .

PDLs

21.1.1 Matrix multiplication 0oL,

21.1.2 matinv .
21.1.3 eigsys .
21.2 Advanced usage
21.2.1 inner . .
21.2.2 outer . .
21.2.3 innerwt

91
91

93
93
93
94
97
97
99

101
101
101
101
101
101
101
102
102
102
102
102
102
102
102
102

103
103
103
103
103

CONTENTS

21.2.4 inner2 e e e e e e e e e e e e
21.2.5 inner2d e e e e e e e
21.2.6 Inner2t e

22 Descriptive statistics and internal piddle operations
22.1 BasicUSaGe oo e e e e
22.2 Advanced Usage i e e e

23 Piddle selection

24 Interpolation
24.1 Basicusageo e e
24.2 Advanced USage L i e e e e e

25 Input output functions
26 Math functions
27 Image manipulation

28 Fourier analysis

105
105
105

107
107
107

109

111
111
111

113

115

117

119

8 CONTENTS

Copyright (c) 2001 Xavier Calbet.

Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with
the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of
the license is included in the section entitled ”GNU Free Documentation License”.

Part 1

Perl Quickie

Chapter 1

Introduction

1.1 Introduction

Perl is short for “Practical Extraction and Report Language”. It is what is called a scripting
language, one in which there is no need to compile the written program or “script”. In
practice the program is really compiled partly at the beggining of its execution. It has been
designed to “make easy things easy and hard things possible”.

Some advantages of Perl include:

e It is a good “glue” language. You can put together several programs in an easy way
to make them achieve a given goal. This is specially important for Windows users,
which normally lack a good scripting language.

e It runs quite fast for a “scripting” language.

e It is available in many different platforms and operating systems. Actually it works
under many flavours of UNIX, Linux and all flavours of Windows. A program, if it is
written with compatibility in mind, can be written in one platform and executed in
another.

e Application development is very fast.

e There is a huge collection of modules that can be attached to any Perl script. They
are all available under CPAN (see below).

e Perl is free. More than that, it is “Free Software”. Here the term “free” is as in free
speech, not free beer. This means that the source code is available for anyone to see
and modify and, what is more important, it will always be. Even if you never intend
to make any changes to the code, it is important that you do have the ability to do
so, you can always hire or ask someone else to do it and in the case there is a bug, it
should always be possible to correct it.

e It gives the programmers a fair amount of freedom to do the program as they choose.
As the Perl slogan goes “There is more than one way to do it”.

Some disadvantages of Perl are:

11

12 CHAPTER 1. INTRODUCTION

o Isis slow for some applications, like low level programming, writing a driver application
or running a numerical model. Although in this last case we will see how you can insert
FORTRAN or C subroutines into Perl having the best of both worlds with not too
much hazzle.

e The freedom for the programmer might mean writting an unreadable program. If it
is not carefully written it can be difficult to read. In fact there is an obfuscated Perl
contest.

e Is uses quite a “large” number of computer resources. This means it is not as light as
a C program, but it still is very slim for common computer processing power available
these days.

1.2 Where to get it, how to install it

It is available on the internet at http://www.perl.com.

It is available today as default on many Linux distributions, so if you are running Linux
chances are that you already have it installed.

To install it follow the guidelines that come with the program.

1.3 Comprehensive Perl Archive Network: CPAN

Maybe the most important aspect that makes Perl a very useful programming language
is the huge number of modules made by programmers all over the world to extend Perl’s
capabilities. These modules are collected at the Comprehensive Perl Archive Network or
CPAN for short. It is available at

http://www.perl.com/CPAN.

1.4 Getting help

Perl is very well documented, there are plenty of books on Perl and there is also a very good
help facility. Typing man perl or perldoc perl gives you an overview of the available
help pages. Perhaps the most useful one is per1func which lists the functions of Perl, you
get it by typing man perlfunc or perldoc perlfunc. You can also get help from CPAN
http://www.perl.com/CPAN.

Chapter 2

Our first Perl program

2.1 The “Hello, World” program

Get hold of a good text processor and write down your first Perl program:

#!/usr/bin/perl -w
print "Hello, world\n";

The first line tells us that this is a Perl program, it also tells the machine that the
following lines must be interpreted as Perl commands. This line must be the first one in the
file and it should be written as is shown. The path that appears in this line must be the
location where the Perl executable is located, in this example the Perl executable is located
at /usr/bin/perl. Your system might have your Perl executable in another location.

In this line we can add options to the plain Perl interpreter. In this case we have added
the —w option which indicates the interpreter that we want to be warned as much as possible
of any mistakes we can make. It is advisable to add this option always.

The second line tells the computer to print a message to the screen. It consists of a
string, ended with a <NEWLINE> character, which is represented in Perl in the usual C
convention as \n. We see here that all Perl commands must end with a semicolon, just like
in C.

Perl programs are normally called by a name followed by a .pl extension.

2.2 Comments

In perl, comments can be inserted by pre-fixing a #. That is, anything following the # is
ignored.

Exercise comment.pl

Add a comment to the previous example and run it.

13

14 CHAPTER 2. OUR FIRST PERL PROGRAM

2.3 Solution to the exercises

Exercise comment.pl
#!/usr/bin/perl -w

This line is ignored
the following line prints a message

print "Hello, world\n";

Chapter 3

Variable types

3.1 Introduction

There are three type of data in Perl: scalars, arrays and hashes.

3.2 Scalars

Scalar variables are the ones that just hold one value. This value can be a number or a
string. Scalar variables start with a $ before the variable name. Here is an example:

$value=1;

Note that implicitly in the program there is no distinction between a number or string
variable. They are distinguished by Perl automatically.

3.2.1 Numerical variables

Numerical variables can be added, substracted, divided, etc.. There are also the typical C
increment, ++, and decrement, —-, operators.

They can be compared with the usual C operators, >, <, >=, <=, !'= and ==. More on this
later.

Exercise increment.pl

Write a short program in which you give a numerical value to a variable and then increment
it in one.

3.2.2 String variables

Strings are just a set of alphanumeric characters. They can be stated as single-quoted strings
and double-quoted strings.

15

16 CHAPTER 3. VARIABLE TYPES

3.2.2.1 Single-quoted strings

When a string is written down between single quotes, the meaning of the string is taken
literally. For example, the variable $mesg:

$mesg="Hello, how are you doing?’;

will have the value exactly as it is shown in its definition.

3.2.2.2 Double-quoted strings

If the same string is stated within double quotes, some special characters in that string will
be interpreted.

The most notables of these special characters are \n which includes a <NEWLINE>
character in the string and $ which interprets whatever comes next as a variable and sub-
stitutes its value. For example, the variable mesg:

$mesg="Hello\n How are you doing $name \n";

will have the value of “Hello” followed by a <NEWLINE>, then “How are you doing ”
and whatever the value of $name is followed by another <NEWLINE>.

3.2.2.3 Manipulation of string variables

String variables are easily manipulated in Perl. They can be concatenated with . and they
can be compared with FORTRAN like operators eq, ne, 1t, gt, le, ge.

3.2.3 Printing the value of variables

This is done with the print statement followed by a space character and then whatever we
want to print separated by commas:

Printing something literally

print ’This is a way to print something\n’;

This next line prints the same text but followed
by a <NEWLINE>

print "This is another way to print something\n";

Printing the value of a variable

print ’The mesg variable contains the ’,$mesg,’ value’,"\n";
This prints the same thing

print "The mesg variable contains the $mesg value\n";

and this too

print ’The mesg variable contains the’.$mesg."value\n";

Exercise incprint.pl

Write a short program in which you give a numerical value to two variables, then print them,
then increment one of them by one and then print it again. Afterwards, print the product
of the two.

3.3. GETTING VALUES FROM THE KEYBOARD 17

Exercise concat.pl

Print the values of two string variables, then join the two in a third variable and print it.

3.3 Getting values from the keyboard

To get the value of a variable from the keyboard use the <STDIN> symbol, which will replace
itself with whatever you type in the keyboard until you hit the <NEWLINE> key. Note
that the trailing <NEWLINE> character is also included in the string.

A useful function is chomp which chops the trailing <NEWLINE> character that comes
with the input.

For example:

$val=<STDIN>;
chomp ($val) ;
print "You just typed $vall\n’’;

Exercise fractall.pl

Write a program in a filename called fractall.pl in which you ask for two complex number
and then you calculate the product of the two, printing them on the screen. Keep this
program in a safe place, because we will be extending it until we have a complete beautiful
script.

3.4 Arrays

Arrays are variables that hold one or more value. In Perl they begin with an @.
To assign them a value we use values enclosed in parentheses and separated by commas.
They can also be printed with print:

#!/usr/bin/perl -w

Q@artop=(8,5,4,"job","cheese hello");
print "@artop\n";

You can access the value of one element of the array referring to it with the index number
enclosed in [].

print $artopl[3],"\n";
print $artopl[4],"\n";

Note the $ sign instead of the @ sign, the reason for this is that this value is not an array
any more, but a scalar. Indices, like in C, start at cero.

18 CHAPTER 3. VARIABLE TYPES

3.5 References and two dimensional arrays

Is it important to note that arrays are unidimensional, no matter what we do they are always
unidimensional arrays of scalars. To overcome this, we can use references. A reference is a
scalar variable that points to another variable, very much like in C.

If we define a variable, we can get a reference from it by pre-fixing a \ sign.

The variable

$val=5;

The reference to the variable
$ref_val=\$val;

It is advisable to denote references in a different way than normal variables, like beggining
their name with $ref_.

We can now retrieve the original value from the reference de-referencing it adding another
$ sign to to name of the variable:

print "The orginal value is ",${$ref_vall},"\n";
In this way we can include arrays in arrays like this

@array1=(2,3,4,5);
Qarray2=(5,6,7) ;
@array3=(7,8,9,1,2,3,4);

@ar2d=(\Qarrayl,\@array2, \@array3) ;
To get the values back we simply do:
print "@{$ar2d[0]1}\n";

this gives us back @arrayl. We can also get a single element of that referenced array,
for example, element one from @array1,

print $ar2d[0]1->[1];
Or equivalently
print $ar2d[0][1];

This last form can also be used to give values to an array like this:

$ppl[0]1[0]=1;
$pp[0]1[1]1=3;
$pp[0][2]=4;
$ppl[1]1[0]=6;
$pp[11[1]1=9;
$pp[11[2]1=10;

with no previous allocation of memory like in other languages. Perl makes space as
needed. This last method is the recomended one for persons used to numerical calculations
since it resembles very much the written mathematical notation.

Finally we can use what is called anonymous arrays which is just a reference to an array
but with no variable name, we do this using []:

$yes=[1,2,3,4,5];
print $$yes[0]," ",$$yes[1],"\n";

3.6. FUNCTIONS TO OPERATE WITH ARRAYS 19

3.6 Functions to operate with arrays
The following functions are useful to work with arrays

e push and pop adds or removes an element from the end of the array:

push(@list, $newvalue) ;
$oldvalue=pop(@list);

e shift and unshift removes or adds an element at the beggining of an array:

unshift(@list,$newvalue);
$oldvalue=shift(@list);

e sort sorts the elements of a list
@sorted_list=sort(@list);

If this command is used as shown it will sort the list alphanumerically. To make a
numerical sort use

@sorted_numerical_list=sort {$a <=> $b} CGnumerical_list;

See the perlfunc man page for more details.

e The $#array gives the last index of @array, so it is useful to find the size of arrays.

3.6.1 Exercise

Make a program that accepts several numbers from the keyboard and stores them in a list.
In the end print the result.

3.7 Hashes

Hashes are very similar to arrays, but instead of having a numerical index they have an
alphanumeric key and are not stored in an ordered way. A certain value is accesed like this:

$hh{"hello"}="bye";

The entire hash is named with %hh.
Anonymous hashes are created and accesed like this:

$hashref={
’key’ => ’value’,
’Adam’ => ’Eve’,

’Clyde’ => ’Bonnie’,

s
print $$hasref{’Adam’};

See the perlvar man page for more details.

20 CHAPTER 3. VARIABLE TYPES

3.8 Solution to the exercises

e Exercise increment.pl
#!/usr/bin/perl -w
$val=0;

$val++;

e Exercise incprint.pl
#!/usr/bin/perl -w

$val=0;

print "Value of val is $vall\n";

$val2=$val;

$val2++;

print "Value of val2 is $val2\n";

print "The product of the two is ",$val*$val2,"\n";

e Exercise concat.pl

e Exercise 77

#!/usr/bin/perl -w

print "Real part of first number?\n";
$re_num1=<STDIN>;

chomp ($re_numl) ;

print "Imaginary part of first number?\n";
$im_num1=<STDIN>;
chomp ($im_numl) ;

print "Real part of second number?\n";
$re_num2=<STDIN>;
chomp ($re_num?2) ;

print "Imaginary part of second number?\n";
$im_num2=<STDIN>;
chomp ($im_num?2) ;

$re_product=$re_numl*re_num2-im_numl*$im_num?2;
$im_product=$im_numl*re_num2+re_numl*$im_num?2;

print "Solution $re_product + $im_product i\n";

e Exercise 3.6.1

3.8. SOLUTION TO THE EXERCISES

#!/usr/bin/perl -w

$var1=<STDIN>;
push(@list,$varl);
$var2=<STDIN>;
push(@list,$var2);
$var3=<STDIN>;
push(@list,$var3d);

print "@list\n";

21

22

CHAPTER 3. VARIABLE TYPES

Chapter 4

Control structures

4.1 Statement blocks

A statement block is a sequence of statements enclosed in curly braces:

{
$val=1;
$array[3]=5;

4.2 The if/unless statement

It serves to modify execution flow, it can take the following forms:

This is the most simple one
if ($val == 3) {
print "The value is $vall\n";

}

This is a more sofisticated omne
if ($val > 3) {

print "Big value\n";
} else {

print "Small value\n";

}

This is a longer one
if ($val < 3) {
print "Small value\n";
} elsif ($val >= 3 && $val < 6) {
print "Intermediate value\n";
} else {
print "Big value\n";

}

The unless statement works just like the if statement except that the condition is
reversed.

23

24 CHAPTER 4. CONTROL STRUCTURES

4.3 Conditionals

The conditionals between parentheses are first evaluated whether they are true or not. A
value of zero, an empty string or an undefined variable is false, everything else is true.

Several conditionals can be concatenated together with a logical or, expresed with || or
or, or with a logical and, expresed with && or and. A logical not is expressed as ! or not.
The difference between the various flavours of logical operators is in the precedence. For
more information see the perlop man page.

4.4 The while/until statement

It works like any other while statement from other languages. It executes whatever is
between curly braces repeated times while the condition between parenthesis is true.

while ($val < 5) {
print "Another round\n";
$val++;

The until is the same as the while statement except that the condition is reversed.

4.5 The do while/until statement

Very similar to the while statement except that whatever is enclosed whithin braces is
executed at least one time:

do {
print "Hello\n";
$val++;

} while ($val < 5);

4.6 The for statement

It is very similar to the for statement from C:

for (initialization; condition to be met;
command executed after each;
iteration)
for ($val=0;$val<hs;$val++) {
print "val = $val\n";

}

4.7 The foreach statement

This statement takes a list of values and asigns them one at a time to a scalar variable,
executing a block of code with each successive assigment.

foreach $name ($name_list) {
print "A name in the list is $name\n";

}

4.8. OTHER CONTROL STRUCTURES 25

4.8 Other control structures

We will briefly describe the last and next statements. For more information please see the
perlfunc manual page.

4.8.1 The last statement

It is equivalent to the break statement in C. The last statement breaks out of the innermost
loop before finishing processing all iterations of the loop.

4.8.2 The next statement

This command causes execution to skip past the rest of the innermost enclosing looping
block without terminating the block.

4.9 Excercise

Write a program in which you ask for several names and then print them in a sorted order.

4.10 Solution to the exercises

e Excercise 4.9
#!/usr/bin/perl -w

$val="" ;

while($val ne ’end’) {
$val=<STDIN>;
chomp ($val);
push(@values,$val);

}

@sorted_values=sort(@values) ;
print "@sorted_values\n";

26

CHAPTER 4. CONTROL STRUCTURES

Chapter 5

Input/output

5.1 Opening a file for reading/writing

The way to open a file is with the open statement. This statement accepts what is known
as a filehandle, which is a named reference of the file for future use in the program, and a
string, which contains the name of the file. If the string starts with > it is an output file, if
it starts with < it is an input file and if it starts with >> it is an output file in which we will
append more data.

Open for output

open (OUTPUT, "> output.file");
Open for input

open (INPUT, "< input.file");

Open for appending
open(FILE,">> app.file");

5.2 Closing a file

To close a file just type

close(FILE);

5.3 Reading from a file

The most common way to read a file is reading it line by line. To read just one line from a
file we use:

$variable=<FILE>;
If we want to read a whole file line by line:

open(FILE,"< file.txt");
while (KFILE>) {
$line=$_;

chomp ($line);

27

28 CHAPTER 5. INPUT/OUTPUT

print $line;
}
close(FILE);

It can also be read the file as a whole using an array, having one line per list element:

open(FILE,"< file.txt");
Qarray_file=<FILE>;
close(FILE);

5.4 List and scalar context

We will make a slight detour here to explain array and list context. As we have seen when
reading files, a command that returns a value, like the <A_FILE> command, will have a
different behaviour whether the expresion to the left of the equal sign is a scalar or an array.
Some commands, like the one just shown, have more or less similar behaviours in both
contexts, but others can mean quite different things.

5.5 Writing to a file

To write to a file just use the print statement like this:
open(FILE,"> file.txt");
print FILE "This goes into the file $vall\n";
close(FILE);

If you want formatted output you can use a similar function to C
printf FILE "The value is %d\n",$a;

There is also a formatted print redirected to a string

$string=sprintf "This goes into the string $valln";

5.5.1 Exercise

Write a program that accepts several input parameters from the keyboard and then prints
the square of those values to a file.

5.6 Here documents

To avoid typing too many print statements when writing to a file, it is sometimes convenient
to use the here-doc syntax. It is used like this

print FILE <<EOF;

This line goes into FILE
This one too

EOF

5.7. READING AND WRITING BINARY FILES 29

What it does is it prints literally the lines after the print command until the EQF string
is found at the beggining of the line.

If we want the lines to be interpreted as if they where in double quotes we can use the
following

print FILE <<EOF;

This line goes into FILE

In this way we can print a variable $val
And again $var

EOF

For more information read the perldata man page.

5.7 Reading and writing binary files

This is done in exactly the same way as ASCII files, except that the content of the variables
we write is binary.
To fill a variable with binary content use the pack function:

$three_int=pack(’iii’,4,3,2);

this transforms the three numbers 4, 3, 2 into binary integer format, specified by the
’iii’ string. We can then print this variable to a file in the common way.
To read the data back from the binary file we use the read function like this,

read(FILE, $var,6);

this reads 6 bytes from FILE into variable $var.
To turn these binary values into normal Perl values use the unpack function

@values=unpack(’iii’,$var);

The format is the same as the pack function.
A complete example is shown below:

#!/usr/bin/perl -w

Writing binary file
open(FILE,"> data.bin");
$bin_val=pack(’iii’,3,2,1);
print FILE $bin_val;
close(FILE);

Reading binary file

open(FILE,"< data.bin");

read (FILE,$var,12);

@values=unpack(’iii’,$var);

print "The values from the file are @values\n";
close(FILE);

For more information see the perlfunc man page.

30 CHAPTER 5. INPUT/OUTPUT

5.8 Solution to the exercises

e Exercise 5.5.1

#!/usr/bin/perl -w

$val=’0";
while($val ne ’end’) {
print "Please enter a number (end to finish)\n";
$val=<STDIN>;
chomp ($val);
push(@values,$val);

}

pop(@values);

open(FILE,"> squares.txt");
foreach $val (@values) {
print FILE "The square of $val is ",$val*$val,"\n";
}
close(FILE);

Chapter 6

Functions

To structure your programs, the most convenient way to do it is using functions or equiva-
lently subroutines. They can have several scalar input parameters and several scalar output
parameters. To define a function it is done like this:

sub func_name {
Accepting input parameters
($inputl,$input2,$input3, $inputd)=0_;
Using them
$sum=$inputi1+$input2+$input3+$input4;
$product=$inputi+$input2+$input3+$inputs;

Sending output parameters
return ($sum,$product);

It should be called in this way:
($s1,$p1)=&func_name(2,1,6,3);

we can also ommit the & in front of the function like this
($s1,$p1)=func_name(2,1,6,3);

Note that you cannot transfer directly several arrays or hashes, this has to be done by
reference.
6.1 References to functions
We can also define references of functions with the \ symbol like this
$ref_function=\&func_name;

we can then use it somewhere else in the program like this
&$ref_function(2,1,6,3);

31

32 CHAPTER 6. FUNCTIONS

We can make anonymous references to functions using sub without a name:

$ref_function=sub {
print "Hello\n";
}

6.2 Localizing your variables

Until now all variables have been global, when a program grows in size it is important to
structure it more and keep the variables local to the function. This is done with the my
modifier like this:

sub func_name {
Accepting input parameters
Now this variables are only known in the function
my ($inputl,$input2,$input3,$inputd)=0_;

Using them

The same with these two

my $sum=$inputl+$input2+$input3+$inputs;

my $product=$inputi+$input2+$input3+$inputs;

Sending output parameters
return ($sum,$product);

These variables are restricted to the surrounding curly braces. Note that if you want
to declare with my more than one variable in the same line you should enclose them in
parenthesis.

Perl also allows us to force us to define all variables, this is done writing

use strict;

at the beggining of the program. If we still want certain variables to be global we should
declare them with my at the very beggining of the program before any left curly brace. To
declare variables inside the main body of the program we should surround the main body
of the program with curly braces and put our my declarations inside them. If we want a
variable to be re-defined several times so it uses a new memory space each time we use we
should include my in its assigment. Here is an example:

#!/usr/bin/perl -w

Whether you write down this or not does not matter
in the scope of the variables, it just enforces

us to declare all variables with \verb/my/

use strict;

#Now the global variables
my $globi;
my ($glob2,$glob3,$glob4d) ;

6.3. EXERCISE 33

Starting the main body of the program
{

These variables are local to the main body
my ($factl,$fact2);
my ($i);

$glob1=3;
$glob2=4;
$glob3=5;
$glob4=10;

($factl,$fact2)=pol($globl,$glob2,$glob3l);
print "The result is $factl $fact2\n";

for ($i1=0;$i<6;$i++) {
This variable is re-defined over and over again
So we completely forget past values and allocate
a new memory space
my $var=$facti*$fact2;

print "This is the product $var\n";

X

Definition of a subroutine
sub pol {

Variables local to a subroutine
my ($locl,$loc2)=@_;

return ($locl+$loc2**2,$locl**x2+$loc2);

In a certain part of the program, we can stop using this condition, again, restricted to
the surrounding curly braces like this

{
Here strict is not valid
no strict;
$pepe=0;

}

6.3 Exercise

Take the previous frac.pl program that calculates the product of two complex numbers and
convert the product algorithm into a separate function.

34 CHAPTER 6. FUNCTIONS

6.4 Solution to the exercises

e Exercise 6.3

#!/usr/bin/perl -w

print "Real part of first number?\n";
$re_num1=<STDIN>;

chomp ($re_numl) ;

print "Imaginary part of first number?\n";
$im_num1=<STDIN>;
chomp ($im_numl) ;

print "Real part of second number?\n";
$re_num2=<STDIN>;
chomp ($re_num?2) ;

print "Imaginary part of second number?\n";
$im_num2=<STDIN>;

chomp ($im_num?2) ;

($re_product,$im_product)=comp_prod($re_numl,$im_numi,
$re_num2,$im_num?2) ;

print "Solution $re_product + $im_product i\n";

sub comp_prod {
my ($rel,$iml,$re2,$im2)=0_;

return($rel*$re2-$imi*$im2,
$imi*x$re2+$rel*x$im2) ;

Chapter 7

A detour: writing a complete
program

We now have all the elements necessary to write a complete program. It will be a numerical
computation program based on the Newton root finding method. We will keep it for future
reference, since we will time it with other equivalent programs written in other languages
or in a different way with Perl.

7.1 The Newton root finding method

There is a method to find the root of an equation based on using the slope of the curve that
defines the equation.
Suppose you want to find the roots of the following equation:

@) =0 (7.1)

What we do is we start at a point which we think is close to the root. We find its
derivative and plot a tangent line from that point to the x axis (see Fig. 7.1). Wherever
this line cuts the x axis is our new solution which we will use again iteratively to get very
close to the real solution.

The equation of a line tangent to the initial guessed point, z; is

y = f(xi) = f'(@:) + f'(zi)a. (7.2)

To find where it cuts the x axis we make y = 0. The new x value, ;41 will be our new
estimation of the root, so

_ f(z:)
Tit1 = T4 fl(-’L'z) . (73)
7.2 An example
As an example we will study the solutions to
=1 (7.4)

35

36 CHAPTER 7. A DETOUR: WRITING A COMPLETE PROGRAM

Figure 7.1: Root finding with the Newton method. We start with a point close to the root
of the function (1). A downbhill linear extrapolation is made with the slope of the curve at
that point until the x-axis is met (2). This point, (2), is the first aproximation to the root.
We move with constant x to the curve (3) and repeat the process. Point (4) is the second
approximation.

We know that this equation has solutions in the complex plane x = 1,—1,%, —¢
The Newton method applied to this example gives:

=1

ZT; =T — ——5—
i+1 7 4.'L'3

7.2.1 Exercise

Write a subroutine that divides two imaginary numbers.

7.2.2 Exercise

Write a script that starts at a given point in the complex plane and then iterates five times
with the Newton method to find the root of z* = 1. Print the resulting root.

7.3. TIMING PROGRAMS 37

7.2.3 Exercise

Start with a 100x100 square on the complex plane between (-1,1) and (i,-i) as initial guessing
points. Run the Newton method solution for all these initial values with just 5 iterarions
each. If the program is too slow make the size of the square smaller.

7.2.4 Exercise

Do the same thing as the last exercise. Label each one of the known exact solutions,
x = 1,—1,4,—i, with an integer number from 0 to 3. Find out the closest exact solution
to the numerical computed solution and store its label on a matrix the size of the initial
100x100 square. Write this matrix to a file.

7.3 Timing programs

To compare the speed of different languages it is important to note the amount of CPU
time the programs use. To do this we can use the time command, which gives the time a
program takes to run. It is used by typing time command_to_time.

We will use as a reference the program equivalent to the one from Exercise 7.2.4 but
written in C. The time this program takes to execute will be a reference which we would
like to be as close to. The C program is shown below:

#include <stdio.h>
#include <math.h>

main()

{
FILE *fp2;

double rz,iz;

double in_rez,fin_rez,in_imz,fin_imz;
__complex__ double z;

long int lonpint,sobra;

unsigned short int i, j,k,kk,zeroe;
unsigned short int mat[1200][1200];
unsigned long int count;

double pasore,pasoim;
double mindisol;
__complex__ double sol[4];
double disol;

double rdz,idz;

zeroe=0;

lonpint=100;

38 CHAPTER 7. A DETOUR: WRITING A COMPLETE PROGRAM

in_rez=-1;
fin_rez=1;
in_imz=-1;
fin_imz=1;

pasore=(fin_rez-in_rez)/((double)lonpint);
pasoim=(fin_imz-in_imz)/((double)lonpint);

sol[0]=1;
sol[1]=-1;
sol[2]=11;
sol[3]=-11i;

for (i=0;i<lonpint;i++) {
//printf ("i = %d\n",1i);
for (j=0;j<lonpint;j++) {
mindisol=700000000;
kk=4;
rz=in_rez+((double)i)*pasore;
iz=in_imz+((double)j)*pasoim;
z=rz+iz*1i;
for (count=0;count<5;count++) {
z=z—- (z*xzxz*xz-1) / (4*z*z*z) ;
}
for (k=0;k<4;k++) {
disol=(z-sol[k])*~ (z-soll[k]);
if (disol < mindisol) {
mindisol=disol;
Kk=k;
}
}
mat[i] [j]1=kk;
//printf ("i j mat %d %d %d\n",i,j,mat[i][j1);
}
}

fp2=fopen("salida.txt","w");

for (i=0;i<lonpint;i++) {
for (j=0;j<lompint;j++) {
fprintf (£p2,"%u ",mat[i1[j1);
}
fprintf (fp2,"\n");
}

fclose(fp2);

7.4. SOLUTION TO THE EXERCISES 39

| Language | CPU time (secs.) |

C 0.33
Perl 32.50

Table 7.1: Benchmark of the frac program from Exercise 7.2.4 written in C and Perl

Benchmarks were taken for the C and Perl programs with five iterations on each point
and a 100x100 square on a Pentium 100 PC. The results are the following:

We can see that regular Perl for numerical calculations is very aproximately 100 times
slower than the fastest high level programming language, C.

7.3.1 Exercise

Time your program to compare in the future with the same program written in a more
efficient manner.
7.4 Solution to the exercises

e Exercise 7.2.1

sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;

return (($rel*$re2+$im1+$im2)/($re2**2+$im2**2) ,
($iml1*$re2-$rel1*$im2) / ($re2x*2+$im2%*2)) ;

e Exercise 7.2.2

#!/usr/bin/perl -w

$re_ini=1.3;
$im_ini=0.5;

$re_x=$%re_ini;
$im_x=$im_ini;

for ($count=0;$count<1000;$count++) {
($re_x2,$im_x2)=cpro($re_x ,$im_x ,$re_x,$im_x);
($re_x3,$im_x3)=cpro($re_x2,$im_x2,$re_x,$im_x);
($re_x4,$im_x4)=cpro($re_x3,$im_x3,$re_x,$im_x);

($re_dx,$im_dx)=cdiv($re_x4 - 1, $im_x4,
4 x $re_x3, 4 * $im_x3);

40

CHAPTER 7. A DETOUR: WRITING A COMPLETE PROGRAM

$re_x=%re_x-$re_dx;
$im_x=$im_x-$im_dx;

}

print "Initial value $re_ini + $im_ini i\n";
print "Final value $re_x + $im_x i\n";

sub cpro {
my ($rel,$iml,$re2,$im2)=0_;

return($rel*$re2-$imi1*$im2,
$iml*x$re2+$rel*$im2) ;
}

sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;

return (($rel*$re2+$im1+$im2)/($re2**2+$im2**2),
($iml*$re2-$rel1*$im2) / ($re2**2+$im2**2)) ;
}

Exercise 7.2.3
#!/usr/bin/perl -w
use strict;

my ($long_sq);

my ($re_ini_sq,$re_end_sq,$im_ini_sq,$im_end_sq);
my ($re_step,$im_step);

my ($i,$3);

my ($re_x,$im_x);

my ($re_x2,$im_x2);

my ($re_x3,$im_x3);

my ($re_x4,$im_x4);

my ($re_dx,$im_dx);

my ($count);

$long_sq=100;

$re_ini_sq=-1;
$re_end_sq=1;
$im_ini_sq=-1;
$im_end_sq=1;

$re_step=($re_end_sq-$re_ini_sq)/$long_sq;
$im_step=($im_end_sq-$im_ini_sq)/$long_sq;

7.4. SOLUTION TO THE EXERCISES

for ($i=0;$i<$long_sq;$i++) {
print "i = $i\n";
for ($j=0;$j<$long_sq;$j++) {
$re_x=$re_ini_sq+ixre_step;
$im_x=$im_ini_sq+$j*$im_step;

for ($count=0;$count<5;$count++) {
($re_x2,$im_x2)=cpro($re_x ,$im_x ,$re_x,$im_x);
($re_x3,$im_x3)=cpro($re_x2,$im_x2,$re_x,$im_x);
($re_x4,$im_x4)=cpro($re_x3,$im_x3,$re_x,$im_x) ;

($re_dx,$im_dx)=cdiv($re_x4 - 1, $im_x4,
4 x $re_x3, 4 * $im_x3);

$re_x=$re_x-$re_dx;
$im_x=$im_x-$im_dx;

}

sub cpro {
my ($rel,$iml,$re2,$im2)=0_;

return($rel*$re2-$imi1*$im?2,
$im1*$re2+$rel1*$im2) ;
sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;
if ($re2**2+$im2**2 == 0) { return(0,0); }
return (($rel*$re2+$im1+$im2) / ($re2x*2+$im2**2),
($im1*$re2-$rel1*$im2) / ($re2%*2+$im2**2));
}
e Exercise 7.2.4
#!/usr/bin/perl -w
use strict;
my ($long_sq);
my ($re_ini_sq,$re_end_sq,$im_ini_sq,$im_end_sq);
my ($re_step,$im_step);

my ($i,$j);

my ($re_x,$im_x);

CHAPTER 7. A DETOUR: WRITING A COMPLETE PROGRAM

my ($re_x2,$im_x2);
my ($re_x3,$im_x3);
my ($re_x4,$im_x4);
my ($re_dx,$im_dx);
my ($count);

my (@re_sol,@im_sol);
my ($disol,$mindisol);
my (@mat);

my ($kk,$k);

$long_sq=100;

$re_ini_sq=-1;
$re_end_sq=1;
$im_ini_sq=-1;
$im_end_sq=1;

$re_sol[0]=1;
$im_sol1[0]=0;
$re_sol[1]=-1;
$im_sol[1]=0;
$re_sol[2]=0;
$im_sol[2]=1;
$re_sol[3]=0;
$im_sol[3]=-1;

$re_step=($re_end_sq-$re_ini_sq) /$long_sq;
$im_step=($im_end_sq-$im_ini_sq)/$long_sq;

for ($i=0;$i<$long_sq;$i++) {
print "i = $i\n";
for ($j=0;$j<$long_sq;$j++) {
$mindisol=7000000;
$kk=4;
$re_x=$re_ini_sq+ixre_step;
$im_x=$im_ini_sq+$j*$im_step;

for ($count=0;$count<5;$count++) {
($re_x2,$im_x2)=cpro($re_x ,$im_x ,$re_x,$im_x);
($re_x3,$im_x3)=cpro($re_x2,$im_x2,%re_x,$im_x) ;
($re_x4,$im_x4)=cpro($re_x3,$im_x3,$re_x,$im_x);

($re_dx,$im_dx)=cdiv($re_x4 - 1, $im_x4,
4 x $re_x3, 4 * $im_x3);

$re_x=%re_x-$re_dx;

7.4. SOLUTION TO THE EXERCISES

$im_x=$im_x-$im_dx;

}

for ($k=0;$k<4;$k++) {
$disol=($re_x-$re_sol[$k]) **2+(im_x-im_sol [$k]) **2;
if ($disol < $mindisol) {

$mindisol=$disol;

$kk=8k;
}
}
$mat[$i] [$j]=$kk;
}
}

open(FILE,"> output.txt");
for ($i=0;%$i<$long_sq;$i++) {
for ($j=0;$j<$long_sq;$j++) {
print FILE " $mat[$i][$j1";
}
print FILE "\n";
}

close(FILE);

sub cpro {
my ($rel,$iml,$re2,$im2)=0_;

return($rel*$re2-$imi1*$im2,
$iml*$re2+$rel1*$im2) ;
sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;
if ($re2x*x2+$im2*x2 == Q) { return(0,0); }

return (($rel*$re2+$im1*$im2) / ($re2%*2+$im2xx2) ,

($im1*$re2-$re1*$im2) / ($re2**2+$im2**2)) ;

44

CHAPTER 7. A DETOUR: WRITING A COMPLETE PROGRAM

Chapter 8

Directories and files

8.1 Directories

8.1.1 Accessing directories

Perl can be used to access directories directly. The most common way to access them is
with directory handles. They are very similar to file handles, but instead of reading lines
from a file, it reads filenames from a directory. To open a directory the opendir command
is used. To access it, the readdir command is used. The command closedir is used to
close it. Here is an example:

#!/usr/bin/perl -w

Opening directory
opendir(DIR,"/home/pepe") ;
Reading filenames from direcotory
while ($name=readdir(DIR)) {

print "$name\n";

}
closedir (DIR);

8.1.2 Changing directories
To change the current working directory to another one use the command chdir like this
chdir("/home/pepe/bin") ;

8.1.3 Globbing

You can also use the equivalent to UNIX command line wildcards to access some given
filenames. This is done with the glob command. It can be used like this

@files=glob("/etc/passwd*");

45

46 CHAPTER 8. DIRECTORIES AND FILES

8.1.4 Making and removing directories

This is done with the mkdir and rmdir commands.
To obtain more information on how to use these commands consult the perlfunc manual

page.

8.2 Files

8.2.1 Removing and renaming files

This is done with the unlink and rename commands. For more information see the perlfunc
man page.

8.2.2 File tests

The properties of a file can be known from inside a Perl script. This is done with the -x file
tests.
For example, we can test if a given file is executable by typing:

if (-x $filename) {
print "File $filename is executable\n";

}

There are a lot of other Perl tests like these. See the perlfunc manpage under the -X
header.

Chapter 9

Processes

9.1 Running external programs

A way to run an external program from Perl is to use the system command. This command
runs a program just as if it were typed from the command line shell and returns the return
status of the program. For example:

system("1s");
\begin{verbatim}

If we want to capture the standard output
of the program in a variable use the backquotes:

\begin{verbatim}
$output=‘1s‘;

If we want the external program to be run and the Perl script to die we can use the exec
command:

exec("ls -1");

9.1.1 Using processes as filehandles

Regular programs can also be used as regular filehandles. For example, we can open the
UNIX 1s command for reading like this:

open (LSOUT,"1s |");

while (<LSOUT>) {
print $_;

}

or for writing

open(LPR,"| 1lpr");
print LPR "Print this in the default printer\n";

A process can also be opened as a file and its input and output processed. This feature
has to be handled with care since it can lead to a deadlock.
Here is an example:

47

48 CHAPTER 9. PROCESSES

#!/usr/bin/perl -w
use IPC::0Open2;

open2 (xREADME, *WRITEME, $program) ;

print WRITEME "Writing to the program\n";
$reading from_program=<README>;

close (WRITEME) ;

close (README) ;

9.1.2 Exercise

We know that we can numerically solve the following differential equations

éf = —Ssr+s

a Y

% = —xz+rr—y
% = zy—bz

with the following octave or matlab program

function xdot=f(x,t)
xdot=zeros(3,1);
xdot (1) =-s*x (1) +s*x(2) ;
xdot (2)=-x (1) *x(3) +r*x(1)-x(2) ;
xdot (3)=x(1) *x(2) -b*x(3) ;
endfunction
x0=[0.5;0.5;0.5];
t=linspace(0,50,10000) ;
y=1lsode("f",x0,t);
printf ("%g,",t);
printf ("\n");
printf ("%g,",y(:,1));
printf ("\n");
printf ("%g,",y(:,2));
printf("\n");
printf ("%g,",y(:,3));
printf ("\n");

but we want to control the program from Perl. We should be able to change the param-
eters s,r,b from Perl, then calculate the solution to these equations and later on get the

results. As an example set s = 10, b = 8/3 and r = 28.

9.2 Solution to the exercises

e Exercise 9.1.2

9.2. SOLUTION TO THE EXERCISES

#!/usr/bin/perl -w
use IPC::0pen2;

$s=10;
$b=8/3;
$r=28;

open2 (xREADME , xWRITEME, ’octave -q’) ;

print WRITEME <<’EQF’;
function xdot=f(x,t)

xdot=zeros(3,1);
EOF

print WRITEME <<"EOF";
xdot (1)=-$s*x (1) +$s*x(2) ;
xdot (2)=—x(1)*x(3) +$r*x(1)-x(2);
xdot (3)=x(1)*x(2)-$b*x(3) ;

EOQOF

print WRITEME <<’EQF’;
endfunction
x0=[0.5;0.5;0.5];
t=linspace(0,50,10000);
y=lsode("£",x0,t);
printf ("%g,",t);
printf ("\n");

printf ("%g,",y(:,1));
printf ("\n");

printf ("%g,",y(:,2));
printf ("\n");

printf ("%g,",y(:,3));
printf ("\n");

EOF

$t=<README>;
$x=<README>;
$y=<README>;
$z=<README>;

chomp ($t,$x,$y,$2) ;

close(WRITEME) ;
close (README) ;

$t\n";
$x\n";
$y\n";
$z\n";

print "t
print "x
print "y
print "z

49

50

CHAPTER 9. PROCESSES

Chapter 10

Regular expressions

10.1 General concepts
A regular expression is a pattern, a template, to be matched againts a string. We can check

whether a particular regular expression exists in a string, or change a regular expression for
another one, or change the case of the string.

10.2 Simple regular expressions

Regular expressions are denoted by enclosing them between slashes. Normally letters or
numbers are represented by themselves in regular expressions. This is a valid regular ex-
pression

/hola/

which matches any string that has hola in it.
These “normal” characters can be modified. If you add a * after a character it means
that character repeated cero or more times, so

/hoxla/

matches the string hla, hola, hoola, hooola and so on.
Another interesting modifier is + which means repeat the last character one or more
times, so

/ho+1la/

matches hola, hoola, hooola and so on, but not hla.

There are many more modifiers. Regular expressions can be a very powerful way to parse
text files. To see more have a look at the perlre man page.

10.3 Testing the match of a regular expression

We can see if a given string matches a regular expression like this

51

52 CHAPTER 10. REGULAR EXPRESSIONS

if ($str =~ /hola/) {
print ’The string $str contains the string hola’;

}

To test the opossite type

if ($str '~ /hola/) {
print ’The string $str does NOT contains the string hola’;

}

10.4 Substitutions
You can also substitute a regular expression with another one, this is made by using
$str="This is the content’;

print "$str\n";
Now we substitute all ’i’s with ’a’
$str =" s/i/a/g;
print "$str\n";

This substitution can be made case insensitive. You can also change from lowercase
letters to uppercase, etc. See the perlre man page for more details.

10.5 Split and join commands

10.5.1 Split

The split function splits a string into fields separated by a given regular expression. These
fields are given as elements of an array. For example,

@fields=split(/,/,$line);

splits the content of $1line in fields separated by commas.
To separate fields within whitespaces use split(’ ’, $line).

10.5.2 Join

The join function does the opossite to split, it joins the elements of an array into a string
with another string as delimiter. For example this joins the elements of an array into a
string separating them with :

$str=join(":",Q@array);

10.5.3 Exercise

Make a program that reads a text file with fields separated by commas and change them
with whitespces using split and join.

10.6. SOLUTION TO THE EXERCISES

10.6 Solution to the exercises

o Exercise 10.5.3
#!/usr/bin/perl -w

open(FILE,"< infile.txt");

open(0UT,"> outfile.txt");

while (KFILE>) {
@arr=split(/:/,$_);
$line=join(’ ’,@arr);
print OUTFILE $line;

}

close(FILE);

close(0UT);

93

54

CHAPTER 10. REGULAR EXPRESSIONS

Chapter 11

Modules

11.1 Using modules

As already stated, one of the stregths of Perl is its enormous amount of modules which are
available on http://www.perl.com/CPAN. To use one of such modules, if it is not available
in the regular Perl distribution it must be installed on your local computer. Once this is
accomplished it is called by using a use statement at the beggining of the program,

#!/usr/bin/perl -w
use Module;
Rest of the program
For example, there is a modules to compute complex numbers within Perl which is called

Math: :Complex
For more information about this package type man Math: :Complex.

11.2 Making modules

To make your own modules just type your subroutines in regular Perl and pre-pend them
with the package statement. When this statement is encountered it means that a new
namespace is created with its own global and local variables until another package statement
is found or the end of file. For example to make a package with a subroutine that adds two
numbers we can do

package Sum;
$global _var=15;

sub add {
my ($a,$b)=0_;

return $a+$b;

95

56 CHAPTER 11. MODULES

To access the subroutines or global variables of this package from another package or
from the main program we must pre-pend the name of the package like so,

print "$a plus $b is equal to ",Sum::add($a,$b),"\n";
print "The global variable from package Sum is ",

$Sum: :global_var,"\n";

The package can be separated in a different file with a .pm suffix and the invoked in the
program with the use statement.

11.2.1 Exercise

Write the previous Newton root finding method program including the subroutines in a
package.

11.2.2 Exercise

Separate the main program and the package in two separate files.

11.3 Importing subroutines names

Sometimes it is desirable to to know the subroutines in a package outside from it, without
pre-pending the package name. This is done adding three more lines after the package
directive like this

package Sum;
use Exporter;
@ISA=(’Exporter’);
@EXPORT=(’add’); # Put more subroutines here
and then using the use statement specifying the routines we want to access

use Sum;

For more information on modules see the perlmod man page.

11.3.1 Exercise

Write again the program from the previous exercise without pre-pending Complex:: in the
calling funtcions.

11.4 Solution to the exercises
e Exercise 11.2.1
#!/usr/bin/perl -w
use strict;

my ($long_sq);

11.4. SOLUTION TO THE EXERCISES

my ($re_ini_sq,$re_end_sq,$im_ini_sq,$im_end_sq);
my ($re_step,$im_step);

my ($i,8$3);

my ($re_x,$im_x);

my ($re_x2,$im_x2);

my ($re_x3,$im_x3);

my ($re_x4,$im_x4);

my ($re_dx,$im_dx);

my ($count);

my (@re_sol,@im_sol);
my ($disol,$mindisol);
my (@mat);

my ($kk,$k);

$long_sq=100;

$re_ini_sq=-1;
$re_end_sq=1;
$im_ini_sq=-1;
$im_end_sq=1;

$re_sol[0]=1;
$im_sol[0]=0;
$re_sol[1]=-1;
$im_sol[1]=0;
$re_sol[2]=0;
$im_sol[2]=1;
$re_sol[3]=0;
$im_sol[3]=-1;

$re_step=($re_end_sq-$re_ini_sq) /$long_sq;
$im_step=($im_end_sq-$im_ini_sq) /$long_sq;

for ($i=0;$i<$long_sq;P$i++) {
#print "i = $i\n";
for ($j=0;$j<$long_sq;$j++) {
$mindisol=7000000;
$kk=4;
$re_x=$re_ini_sq+$i*$re_step;
$im_x=$im_ini_sq+$j*$im_step;

for ($count=0;$count<5;$count++) {
($re_x2,$im_x2)=Complex: :cpro($re_x ,$im_x ,$re_x,$im_x);
($re_x3,$im_x3)=Complex: :cpro($re_x2,$im_x2,$re_x,$im_x);
($re_x4,$im_x4)=Complex: :cpro($re_x3,$im_x3,$re_x,$im_x);

57

CHAPTER 11.

($re_dx,$im_dx)=Complex::cdiv($re_x4 - 1, $im_x4,
4 x $re_x3, 4 * $im_x3);

$re_x=$%re_x-$re_dx;
$im_x=$im_x-$im_dx;

}

for ($k=0;8$k<4;$k++) {
$disol=($re_x-$re_sol[$k]) **2+(im_x-im_sol [$k])**2;
if ($disol < $mindisol) {

$mindisol=$disol;

$kk=8k;
}
}
$mat [$1] [$j]1=$kk;
}
}

open(FILE,"> output.txt");
for ($i=0;$i<$long_sq;$i++) {
for ($j=0;$j<$long_sq;$j++) {
print FILE " $mat[$i][$j1";
}
print FILE "\n";
}

close(FILE);

package Complex;

sub cpro {
my ($rel,$iml,$re2,$im2)=0_;

return($rel*$re2-$im1*$im2,
$imi1*x$re2+$rel*$im2) ;

sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;

if ($re2xx2+$im2**2 == 0) { return(0,0); }

return (($rel*$re2+$imi1*$im2)/($re2*x*2+$im2**2),

($im1x$re2-$re1x$im2) / ($re2**2+$im2x*2));

}

e Exercise 11.2.2

MODULES

11.4. SOLUTION TO THE EXERCISES

Program file

#!/usr/bin/perl -w

use strict;
use Complex;

my
my
my
my
my
my
my
my
my
my

my
my
my
my

($1long_sq);
($re_ini_sq,$re_end_sq,$im_ini_sq,$im_end_sq);
($re_step,$im_step);

($1,%3);

($re_x,$im_x);

($re_x2,$im_x2);

($re_x3,$im_x3);

($re_x4,$im_x4);

($re_dx,$im_dx);

($count) ;

(@re_sol,@im_sol);
($disol,$mindisol);
(@mat) ;

($kk, $k) ;

$long_sq=100;

$re_ini_sq=-1;
$re_end_sq=1;
$im_ini_sq=-1;
$im_end_sq=1;

$re_sol[0]=1;
$im_sol1[0]=0;
$re_sol[1]=-1;
$im_sol[1]=0;
$re_sol[2]=0;
$im_sol[2]=1;
$re_sol[3]=0;
$im_sol[3]=-1;

$re_step=($re_end_sq-$re_ini_sq)/$long_sq;
$im_step=($im_end_sq-$im_ini_sq)/$long_sq;

for ($i=0;$i<$long_sq;$i++) {
#print "i = $i\n";
for ($j=0;$j<$long_sq;$j++) {

$mindiso1=7000000;
$kk=4;

99

60

CHAPTER 11.

$re_x=$re_ini_sq+$i*$re_step;
$im_x=$im_ini_sq+$j*$im_step;

for ($count=0;$count<5;$count++) {
($re_x2,$im_x2)=Complex: :cpro($re_x ,$im_x ,$re_x,$im_x);
($re_x3,$im_x3)=Complex: :cpro($re_x2,$im_x2,$re_x,$im_x);
($re_x4,$im_x4)=Complex: :cpro($re_x3,$im_x3,$re_x,$im_x);

($re_dx,$im_dx)=Complex::cdiv($re_x4 - 1, $im_x4,
4 x $re_x3, 4 * $im_x3);

$re_x=%re_x-$re_dx;
$im_x=$im_x-$im_dx;

}

for ($k=0;$k<4;$k++) {
$disol=($re_x-$re_sol [$k]) **2+(im_x-im_sol [$k]) **2;
if ($disol < $mindisol) {

$mindisol=$disol;

$kk=8k;
}
}
$mat [$i] [$j]=$kk;
}
}

open(FILE,"> output.txt");
for ($i=0;$i<$long_sq;$i++) {
for ($j=0;$j<$long_sq;$j++) {
print FILE " $mat[$i][$j1";
}
print FILE "\n";
}

close(FILE);
Package file Complex.pm
package Complex;

sub cpro {
my ($rel,$iml,$re2,$im2)=0_;

return($rel*$re2-$imi1*$im2,
$iml*x$re2+$rel*$im?2) ;
}

sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;

MODULES

11.4. SOLUTION TO THE EXERCISES

if ($re2**2+$im2**2 == 0) { return(0,0); }

return (($rel*$re2+$imi1*x$im2) / ($re2x*x2+$im2**2),
($imi*$re2-$re1*x$im2) / ($re2**2+$im2*x*2)) ;
}

e Exercise 11.3.1

Program file
#!/usr/bin/perl -w

use strict;
use Complex;

my ($long_sq);

my ($re_ini_sq,$re_end_sq,$im_ini_sq,$im_end_sq);
my ($re_step,$im_step);

my ($i,$3);

my ($re_x,$im_x);

my ($re_x2,$im_x2);

my ($re_x3,$im_x3);

my ($re_x4,$im_x4);

my ($re_dx,$im_dx);

my ($count);

my (Q@re_sol,@im_sol);
my ($disol,$mindisol);
my (@mat);

my ($kk,$k);

$long_sq=100;

$re_ini_sq=-1;
$re_end_sq=1;
$im_ini_sq=-1;
$im_end_sq=1;

$re_sol[0]=1;
$im_sol[0]=0;
$re_sol[1]=-1;
$im_sol[1]=0;
$re_sol[2]=0;
$im_sol[2]=1;
$re_sol[3]=0;
$im_sol[3]=-1;

$re_step=($re_end_sq-$re_ini_sq) /$long_sq;

61

62

CHAPTER 11.

$im_step=($im_end_sq-$im_ini_sq) /$long_sq;

for ($i=0;$i<$long_sq;$i++) {
#print "i = $i\n";
for ($j=0;$j<$long_sq;$j++) {
$mindisol=7000000;
$kk=4;
$re_x=$re_ini_sq+ixre_step;
$im_x=$im_ini_sq+$j*$im_step;

for ($count=0;$count<5;$count++) {
($re_x2,$im_x2)=cpro($re_x ,$im_x ,$re_x,$im_x);
($re_x3,$im_x3)=cpro($re_x2,$im_x2,$re_x,$im_x);
($re_x4,$im_x4)=cpro($re_x3,$im_x3,$re_x,$im_x) ;

($re_dx,$im_dx)=cdiv($re_x4 - 1, $im_x4,
4 *x $re_x3, 4 * $im_x3);

$re_x=%re_x-$re_dx;
$im_x=$im_x-$im_dx;

}

for ($k=0;$k<4;$k++) {
$disol=($re_x-$re_sol[$k]) **2+(im_x-im_sol [$k])**2;
if ($disol < $mindisol) {

$mindisol=$disol;

$kk=9%k;
}
}
$mat [$1] [$j]1=$kk;
}
}

open(FILE,"> output.txt");
for ($i=0;$i<$long_sq;$i++) {
for ($j=0;%$j<$long_sq;$j++) {
print FILE " $mat[$i][$j1";
}
print FILE "\n";
}

close(FILE);
Package file Complex.pm
package Complex;

no strict;

MODULES

11.4. SOLUTION TO THE EXERCISES

use Exporter;
QISA=(’Exporter’) ;
@EXPORT=(’cpro’,’cdiv’);

sub cpro {
my ($rel,$iml,$re2,$im2)=0_;
return($rel*$re2-$imi1*x$im2,
$im1*x$re2+$rel1*$im2) ;
sub cdiv {
my ($rel,$iml,$re2,$im2)=0_;
if ($re2xx2+$im2**2 == 0) { return(0,0); }

return (($rel*$re2+$im1*$im2) / ($re2x*2+$im2**2),
($im1*$re2-$rel1*$im2) / ($re2**2+$im2**2)) ;

63

64

CHAPTER 11. MODULES

Chapter 12

Object oriented programming

12.1 Introduction

Object oriented programming is a programming technique in which is given much more
importance to the data than to the subroutines of the program. It changes the main focus
from the program to the data that is manipulated. The advantage of this aproach is that
normally, for a given problem, the data is well known and does not change much in time.
On the contrary, the program does change frequently with time, sometimes too frequently!
The data is normally represented in the program as objects, we can think of them as real
objects, for example a vehicle.

One of the goals in object oriented programming is to maintain the data structure inac-
cesible to the programmer, and the only way it can be accessed is through methods which
are very much alike subroutines. In this way, if the data structure changes for some reason,
we do not have to change all methods that manipulate those certain objects. This is what
is called encapsulating.

Objects of a certain type are grouped in a class, for example “vehicles”. A given object
of a given class is called an instance of that object, for example “my car”. If a class can de
subdivided in further classes, these further ones are named subclasses. For example, “cars”
is a subclass of “vehicles”.

12.2 Perl representation of objects

An object in Perl is normally represented with a hash or a reference to a hash. Let us create
an instance of the vehicle class,

$r_my_car= {
"color" => "red",
"wheel_number" => 4

};

Let us make a method or a subroutine that returns the color of the vehicle and another
one that changes its color,

sub color {
The first argument of the subroutine
MUST be the object to change

65

66 CHAPTER 12. OBJECT ORIENTED PROGRAMMING

my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};

}

sub change_color {
my ($r_vehicle,$new_color)=Q_;

${$r_vehicle}{"color"}=$new_color;

Note how the object must be the first argument to the subroutine. Let us integrate all
these functions into a program to see how it all works

#!/usr/bin/perl -w

We make an instance of vehicle
$r_my_car= {
"color" => "red",
"wheel_number" => 4

};

print "The color of my car is ",color($r_my_car),"\n";
print "Let us change the color of my car to green\n";
change_color($r_my_car,"green");

print "The color of my car is now "

,color($r_my_car),"\n";

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};

sub change_color {
my ($r_vehicle,$new_color)=0_;

${$r_vehicle}{"color"}=$new_color;

In object orienred programming it is customary to separate the subroutines for different
classes so they can be called in diferent ways. This is done in Perl with packages, so the
subroutines should be defined within a package.

It is also normally the case that objects are created not accessing directly the data
representation of the object, but by a method called new.

With all these changes, our program now looks like this,

#!/usr/bin/perl -w

12.3. POLYMORPHISM 67

We make an instance of vehicle
with the new method
$r_my_car=Vehicle: :new("red",4);

print "The color of my car is ",

Vehicle::color($r_my_car),"\n";
print "Let us change the color of my car to green\n";
Vehicle: :change_color ($r_my_car,"green") ;
print "The color of my car is now ",

Vehicle: :color ($r_my_car),"\n";

package Vehicle;

sub new {
my ($color,$wheel _number)=0@_;

my $r_vehicle={
"color" => $color,
"wheel_number" => $wheel_number

};

return $r_vehicle;

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};
sub change_color {
my ($r_vehicle,$new_color)=Q_;

${$r_vehicle}{"color"}=$new_color;

12.3 Polymorphism

Up to now there is no difference between object oriented programming and regular subrou-
tines or functions except for the concepts, but polymorphism will change that.

Supose you want to calculate the tax that a vehicle has to pay. This tax is calculated
from the number of wheels of the vehicle by multiplying it by 40 euros for a car and 80 euros

68 CHAPTER 12. OBJECT ORIENTED PROGRAMMING

for a truck. We can see now that there are two different types of vehicle classes, it is thus
convenient to create two new subclasses of the vehicle class: “cars” and “trucks”. We can
also implement for them a tax method to calculate the taxes each one of them has to pay.
Here is how it could be done

#!/usr/bin/perl -w

We make an instance of Car

with the new method
$r_my_car=Car: :new("red",4);

And a new instance of Truck
$r_my_truck=Truck: :new("yellow",6);

print "The color of my car is ",

Car::color($r_my_car),"\n";
print "Let us change the color of my car to green\n";
Car::change_color($r_my_car,"green");

print "The color of my car is now ",
Car::color($r_my_car),"\n";

print "My car has to pay ",
Car::tax($r_my_car)," euros in taxes\n";
print "My truck has to pay ",
Truck: :tax($r_my_truck)," euros in taxes\n";

Defining methods for the Car class
package Car;

sub new {
my ($color,$wheel number)=@Q_;

my $r_vehicle={
"color" => $color,
"wheel_number" => $wheel_number

};

return $r_vehicle;

}

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};

}

sub change_color {

12.3. POLYMORPHISM 69

my ($r_vehicle,$new_color)=0_;

${$r_vehicle}{"color"}=$new_color;

}
sub tax {

my ($r_vehicle)=@_;

return ${$r_vehicle}{"wheel_number"}*40;
}

Defining methods for the Truck class
package Truck;

sub new {
my ($color,$wheel_number)=Q_;

my $r_vehicle={
"color" => $color,
"wheel_number" => $wheel_number

};

return $r_vehicle;

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};
sub change_color {
my ($r_vehicle,$new_color)=Q_;

${$r_vehicle}{"color"}=$new_color;

}
sub tax {

my ($r_vehicle)=@_;

return ${$r_vehicle}{"wheel_number"}*80;
}

This is getting confusing. There are several identical subroutines for each class and when
we call them we always have to pre-pend the class (or package) name. It would be nice to
get rid of this last objection. This is done with the bless comand, which binds a newly
created instance of an object to its class, just the same as a child, in the christian religion,
is given a name when it is baptised.

70 CHAPTER 12. OBJECT ORIENTED PROGRAMMING

In object oriented programming it is also customary to use another notation to invoke
methods on objects. Normally the arrow notation is used instead. With this notation
whatever precedes the arrow is the object to which the method is applied and is taken inside
the subroutine as the first argument to it. That is the reason why the object had to be the
first argument.

With these new changes, our code is beggining to look more like real object oriented
programming

#!/usr/bin/perl -w

We make an instance of Car

with the new method
$r_my_car=Car: :new("red",4);

And a new instance of Truck
$r_my_truck=Truck: :new("yellow",6);

print "The color of my car is ",

$r_my_car->color,"\n";
print "Let us change the color of my car to green\n";
$r_my_car->change_color("green") ;
print "The color of my car is now ",
$r_my_car->color,"\n";

print "My car has to pay ",
$r_my_car->tax," euros in taxes\n";

print "My truck has to pay ",
$r_my_truck->tax," euros in taxes\n";

Defining methods for the Car class
package Car;

sub new {
my ($color,$wheel_number)=Q_;

my $r_vehicle={
"color" => $color,
"wheel_number" => $wheel_number
};

bless $r_vehicle, ’Car’;

return $r_vehicle;

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};

12.3. POLYMORPHISM 71

}

sub change_color {
my ($r_vehicle,$new_color)=Q_;

${$r_vehicle}{"color"}=$new_color;

}
sub tax {

my ($r_vehicle)=@_;

return ${$r_vehicle}{"wheel_number"}*40;
}

Defining methods for the Truck class
package Truck;

sub new {
my ($color,$wheel _number)=0@_;

my $r_vehicle={
"color" => $color,
"wheel_number" => $wheel_number
};

bless $r_vehicle, ’Truck’;

return $r_vehicle;

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};
sub change_color {
my ($r_vehicle,$new_color)=0_;

${$r_vehicle}{"color"}=$new_color;

}
sub tax {

my ($r_vehicle)=0@_;

return ${$r_vehicle}{"wheel_number"}*80;
}

Note how the tax method is invoked without having to state if it is the tax method for a
car or for a truck, this is automatically done by Perl and it is what is called polymorphism.

72 CHAPTER 12. OBJECT ORIENTED PROGRAMMING

12.4 Inheritance

We have improved in some ways the above program using polymorphism and the arrow
notation, but the program still looks messy. Several methods are defined for each one of the
classes which are exactly the same subroutine. There is a better way for this, inheritance.

We can, as we theoretically stated at the beginning of this chapter, define a vehicle class
and then make the car and truck class subclasses of the former. In this way we can define
methods for the more general vehicle class which are common to all subclasses and only make
especific methods for each subclass when they are different. In object oriented parlance we
say that the car class inherits from the vehicle class. To tell Perl about this we include tow
lines like this after the package command for the subclass

use class_to_inherit_form;
@ISA=(’class_to_inherit_from’);

and to be able to use the use command we must place the class in a .pm file.
In Perl you can also invoke the new method, and any method for that matter, in a
different way, we can first state the name of the method new and the its class like so

$my_car=new Car("red",4);
So, our object oriented program is finally written like this
#!/usr/bin/perl -w

We make an instance of Car

with the new method
$my_car=new Car ("red",4);

And a new instance of Truck
$my_truck=new Truck("yellow",6);

print "The color of my car is ",
$my_car->color,"\n";
print "Let us change the color of my car to green\n";
$my_car->change_color("green");
print "The color of my car is now ",
$my_car->color,"\n";

print "My car has to pay ",
$my_car->tax," euros in taxes\n'";

print "My truck has to pay ",
$my_truck->tax," euros in taxes\n";

Defining methods for the Car class
package Car;

Inheriting from Vehicle

use Vehicle;

@ISA=(’Vehicle’);

12.4. INHERITANCE 73

sub tax {
my ($r_vehicle)=@_;

return ${$r_vehicle}{"wheel_number"}*40;

Defining methods for the Truck class
package Truck;

Inheriting from Vehicle

use Vehicle;

@ISA=(’Vehicle’);

sub tax {
my ($r_vehicle)=@_;

return ${$r_vehicle}{"wheel_number"}*80;

And the Vehicle.pm file which defines the base class

Defining methods for the Vehicle class
package Vehicle;

use Exporter;
Q@ISA=(’Exporter’);
@EXPORT=(’new’,’color’,’change_color’);

sub new {
We include now $type because we changed
the way we call the routine and
to use it in the bless statement
my ($type,$color,$wheel_number)=@_;

my $r_vehicle={
"color" => $color,
"wheel_number" = $wheel _number
};

bless $r_vehicle, $type;

return $r_vehicle;

sub color {
The first argument of the subroutine
MUST be the object to change
my ($r_vehicle)=@_;

return ${$r_vehicle}{"color"};

74 CHAPTER 12. OBJECT ORIENTED PROGRAMMING

sub change_color {
my ($r_vehicle,$new_color)=@_;

${$r_vehicle}{"color"}=$new_color;

12.5 Exercise

Save the previous complex program in a safe place and rewrite using the Math: : Complex
package.

Chapter 13

Windows widgets with Perl:
Perl/Tk

Perl/Tk is a tool to make a graphical user interface (GUI) easily. It is very well desingned
and very easy to use. Here we will just get a feeling of it.

13.1 Our first Perl/Tk program
All Perl/Tk interfaces have the following structure:

1. Creating the root window. This is the main window on which all other widgets will
be places.

2. Creating one or more widgets. A widget is an object which has a reality in the windows
environment, it normally reacts to a given action from the user.

3. Placing the widget on the root window or on another widget. This is what is known
as geometry management. Widgets are structured in a hierarchical manner. Some
widgets can contain others, etc...

4. Start the event loop. Widget programming is an event driven techinque, which means
that after we initiate the event loop the program waits until something happens to the
widgets, in which case it reacts accordingly.

Let us make now a “Hello world” program.

#!/usr/bin/perl -w

use Tk;

Step 1), we create the main window
$top=MainWindow->new() ;

Now we change a property of the main window
$top->title("Hello again");

Step 2), we create a widget, which

75

76 CHAPTER 13. WINDOWS WIDGETS WITH PERL: PERL/TK

will "hang" from the root window
In this case it is a Label widget
with several properties
$lab=$top->Label(text => ’Hello world!’,
relief => ’groove’,
width => 10,
height => 5,
)

Step 3), we place the widget on the
parent widget, which is the root window
$1ab->pack();

Step 4), we start the main loop
MainLoop() ;

To know more about the label widget type man Tk: :Label.

13.2 More widgets

We have seen the label widget. There are many more, but here we will just see the button
and the text entry widget.

13.2.1 Button widget

As its name indicates, this creates a button which reacts when it is pressed.
Let us modify the above program so that we also have a button.

#!/usr/bin/perl -w
use Tk;

Step 1), we create the main window
$top=MainWindow->new() ;

Now we change a property of the main window
$top->title("Hello again');

Step 2), we create a widget, which
will "hang" from the root window

$lab=$top->Label(text => ’Hello world!’,
relief => ’groove’,
width => 10,
height => 5

);

$but=$top->Button(text => ’Press me!’,

width => 10,

height => 5,

We add a reference

to a subroutine to which

13.2. MORE WIDGETS 7

the action responds
command => \&do_task

)

Step 3), we place the widget on the

parent widget, which is the root window
$1lab->pack();

$but->pack();

Step 4), we start the main loop
MainLoop() ;

sub do_task {
print "Hello again\n";
exit;

}

In this case we have placed or packed both widgets before calling the event loop, but it
is more normal to do so just after creating the widgets. We will see this in the following
example.

To know more about the button widget type man Tk: :Button.

13.2.2 Text entry widget

The text entry widget admits a text as input. This value is automatically stored in a variable.
It is used like this

use Tk;

We create the main window
$top=MainWindow->new() ;

Now we change a property of the main window
$top->title("Hello again");

We create widgets, which
will "hang" from the root window
and place them on the root window

$top->Label(text => ’Hello world!’,
relief => ’groove’,
width => 10,
height => 5

)->pack();

$top->Button(text => ’Press me!’,
width => 10,

height => 5,
We add a reference
to a subroutine to which
the action responds
command => \&do_task

78 CHAPTER 13. WINDOWS WIDGETS WITH PERL: PERL/TK

)->pack();

$top—>Entry(width => 10,
textvariable => \$text
)->pack();

We start the main loop
MainLoop Q) ;

sub do_task {
print "Hello again\n";
print "Text entry has $text\n";
exit;

}

For more information on the entry widget type man Tk: :Entry.
To have a general view of Perl/Tk type widget.

13.3 Exercise

Write a program which accepts four entries which will be the four corners of a square on
the complex plane. Add another entry which will be the length of the side of the square as
number of points. Then add a button so that when it is pressed the calculation from the
Newton root finding method is done with the above values.

Part 11

PDL

79

Chapter 14

Introduction to PDL

14.1 What is PDL?

PDL is a numerical computation language based on Perl. It can make fast matrix calculations
in a simple manner.

14.2 Advantages and disadvantages of PDL

The main advantages of PDL are:

It is free and it is Open Source software.

It permits matrix and several dimensional calculations, it does not just stop on the
second dimension, but allows more dimensions to be involved in the calculations. In
this sense it is very well thought out and scales up very well.

It is very fast.

The graphical interface is very good. The two dimensional graphics are based on
PGPLOT which is very adecuate both for publication quality figures and for everyday
plotting. The three dimensional graphics, based on the MESA library, still does not
have a publication quality, but is is very good for plotting three dimensional parameters
in a simple way and allows real time rotation of the plotted data.

The main disadvantages of PDL are:

The available numerical library to make calculations is not very broad. This feature is
changing rapidly as more numerical routines like GSL or SLATEC are being inserted
in PDL.

It does not support calculation with complex numbers natively. In version 2.004 of
PDL a complex package has been added, but it just enables simple complex number
arithmetic.

Programming with PDL needs a more abstract thinking than other languages to exploit
its full capabilities. Also, in some cases, there is no easy way to use commands and a
more complicated workaround has to be used.

81

82 CHAPTER 14. INTRODUCTION TO PDL

14.3 Using PDL

There are two ways of using PDL, from a Perl program and interactively. If we want to use
it from a program just include the use PDL; directive at the beginning of the program. To
make use of it interactively type perldl.

14.4 Getting help

Help from PDL can be done in several ways.

Interactively we can use the help command. To know how to use it type help help.
To get a manual page from a given command type help command. To get help from a given
module type help module_name and to type a given manual type help manual_name. The
apropos command is also available. If you type apropos keyword, this gives you a listing
of the commands that has this keyword in its documentation database. To list the available
on line manuals type apropos manual, to list the available modules type apropos modules
and lo list all possible commands type apropos . .

There are also several HTML pages available where PDL has been installed, normally
at /usr/1ib/perl5/PDL/HtmlDocs

14.5 How to use the rest of this manual

Each of the following chapters is divided in a “Basic usage” and an “Advanced usage” section.
On a first read skip the latter one. The “Basic usage” section should be enough to get a
general feeling of the language. The “Advanced usage” section is added for completeness.
To get more information about each command just type help command.

The examples below are written in a tutorial way so that a line with a preceding

perldl>

are lines that you should type in as an exercise. Lines that do not start with this prompt
are the output of the program, DO NOT type this lines into the PDL command line interface.
For example in

perldl> p 3
3

you type the command p 3 and you get as output 3.

Chapter 15

Creating PDLs

15.1 Introduction

PDLs or piddles are the basic building blocks of PDL. They are Perl scalars but they do
not hold just a numerical value like in regular Perl. They represent a vector, matrix, or any
n—dimensional array. In this chapter we will see how to create them in different ways.

15.2 Basic usage

15.2.1 Simple piddles

To create a piddle you can use the pdl command. This command accepts a Perl scalar,
array reference or an array. For example, to create a vector or one dimensional piddle which
has values that go from 7 to 10 type

perldl> $a=pd1([7..10]1);
To print the contents of a PDL use the print command

perldl> print $a;
[7 8 9 10]

To type less, in the command line interface you can omit the trailing semicolon and the
print command can be substituted by just the letter p. Note that this is not so when
you type in the commands in a Perl script. So the following is equivalent to the previous
command,

perldl> p $a
[7 8 9 10]

Let us now create a piddle with any values
perldl> $b=pd1([4,2,8,1,6])
perldl> p $b
[4 281 6]

Let us make a two dimensional one

83

84 CHAPTER 15. CREATING PDLS

perldl> $b=pd1i([[3,4,5], [2,8,3] 1)
perldl> p $b

[
[3 4 5]
[2 8 3]

]

15.2.2 More complex piddles

The sequence command creates an array with a sequence of values. It accepts as argument
an array especifying the length of each of the dimensions the piddle has. For example this
line creates a vector with values ranging from 0 to 15.

perldl> $d=sequence(15);
perldl> p $d
[01 23456789 10 11 12 13 14]

To create a 3x4 matrix

perldl> $m=sequence(3,4);
perldl> p $m

[
[0 1 2]
[3 4 5]
[6 7 8]
[9 10 11]
]

The zeroes command makes a piddle filled with ceros with dimensions given by its
arguments.
To create a 67 matrix type

perldl> $r=zeroes(6,7);
perldl> p $r

L
[00000 0]
[00000 0]
[00000 0]
[0000 0 0]
[0000 0 0]
[00000O0]
[00000O0]

]

The \verb/ones/ command is very similar

15.2. BASIC USAGE 85

to the \verb/zeroes/ command and makes a piddle filled with ones
with dimensions given by its arguments.

\begin{verbatim}
perldl> $r=ones(6,7);
perldl> p $r

L
[111111]
[111111]
[111111]
[111111]
[111111]
[111111]
(111111]

]

What if we want to have a piddle of any dimensions with ascending values in the z axis?
For that it is useful the xvals command, which accepts as argument a piddle with identical
size to the one we want to get

perldl> $x=xvals(3,2);
perldl> p $x

A similar command can be used to span the y axis

perldl> $y=yvals(3,2);
perldl> p $y

L

[0 0 0]

[1 1 1]

]

The above commands span integer values beginnig at cero. But sometimes we want more
flexibility and we want to start at a given value x value and end at another one. This can
be accomplished with the x1invals command.

perldl> $a=zeroes(3,2);
perldl> $x=$a->x1invals(0.5,1.5);
perldl> p $x

Note that this command accepts three arguments, a piddle with dimensions identical to
the piddle we want to create, a starting value and a finish value. Note the object oriented

86 CHAPTER 15. CREATING PDLS

programming notation of this command. Recall that the object or variable that is placed
before the -> signs is really the first argument to the function. So an equivalent way to
write the above is

perldl> $a=zeroes(3,2);
perldl> $x=xlinvals($a,0.5,1.5);
perldl> p $x
L
[0.5 1 1.5]
[0.5 5]
]

In the following we will use the notation that seems more intuitive for the command
indistinctly.
There is an analogous command for the y axis values

perldl> $a=zeroes(2,3)
perldl> $y=$a->ylinvals(0.3,1.3);
perldl> p $y

[

0.3 0.3]

—
oo}
o
—

Also, from the object oriented notation, just as we can call a function with arguments
that are the output of another function like this

perldl> $y=ylinvals(zeroes(2,3),0.3,1.3);
perldl> p $y

L

0.3 0.3]

[0.8 0.8]

[1.3 1.3]
]

we can concatenate several commands together with arrow signs, -=> like this

perldl> $y=zeroes(2,3)->ylinvals(0.3,1.3);
perldl> p $y

[
[0.3]
[0.8 0.8]
[1.3]
]

Again any notation will be used indistinctly.

The x1linvals and ylinvals commands are useful for creating piddles to be used later
either as input for the 2 and y axis values for plotting or as input for a given function.

The following example calculates the values of a two dimensional gaussian function

15.3. ADVANCED USAGE 87

perldl> $x=zeroes(20,20)->x1linvals(-0.5,0.5);
perldl> $y=zeroes(20,20)->ylinvals(-0.5,0.5);
perldl> $gaus=exp(- ($x**2)/0.05 - ($y*x2)/0.02);

We can also create random numbers between cero and one in a piddle of a given dimension
with the random command

perldl> $r=random(2,3)
perldl> p $r
[
[0.84018772 0.39438293]
[0.78309922 0.79844003]
[0.91164736 0.19755137]
]

15.3 Advanced usage

15.3.1 Data types

PDL can make the piddles with several different data types. For example, to create a piddle
filled with doubles with the xvals we can type

perldl> $x=xvals(double,?2,3)
The available types are byte, short,ushort,long, float,double.
It is also possible to transform one type into another using the above types as functions,

like in the following example where we change the type of a piddle to a long integer.

perldl> $x=zeroes(3,3)->x1linvals(-1.5,1)
perldl> p $x

L
[-1.5 -0.25 1]
[-1.5 -0.25 1]
[-1.5 -0.25 1]
]

perldl> $i=long($x)
perldl> p $i

[
[-1 o0 1]
[-1 0 1]
[-1 0 1]
]

To obtain more information about data types use

help Datatype_conversions

88 CHAPTER 15. CREATING PDLS

15.3.2 More creators of piddles

For more information about these commands type
help command

e zvals. This command is like the xvals and yvals command except that it works
along the z axis.

e axisvals. An analog command to the xvals, yvals and zvals but it can applied to
any dimension.

e rvals. This command fills a piddle with radial distance values from some centre.
e diagonal. Creates a diagonal matrix

e topdl This command creates a piddle just like the pdl command, except that the if
the argument is a piddle the output will be that same piddle. It is used to ansure an
argument to some function is really a piddle.

Chapter 16

Arithmetic

16.1 Basic usage

PDL accepts several common known arithmetic operators and functions. The following
symbols add, substract, multiply and divide several piddles

+ - % /

With these operators, just like all the rest included in this chapter, PDL acts on a per
element basis. If for example, we multiply two PDLs of the same sizes and dimensions we
get an equivalent PDL with each element being the product of each one of the elements of
the two.

perldl> $a=pd1([1,2])
perldl> $b=pd1([3,4])
perldl> p axb

[3 8]

We can for example calculate and plot the points of a parabola as shown in Fig. 16.1

perldl> $x=zeroes(30)->xlinvals(-1,1);
perldl> $y=9$x**2;
perldl> line($x,$y)

The exponetiation operator is the same as in FORTRAN *x.
There are also relational and logical operators, very similar to the C ones

> K >= <K= == I=1

Note that this operators also act on a per element basis. That is, if a piddle is compared
with a number, the results is a piddle of the same size as the original one.

perldl> $a=pd1([0,1,2,3,4])
perldl> p $a > 2
[0001 1]

The mathematical functions also act on a per element basis, some of them are the
following

sin log abs atan2 sqrt cos exp

89

90 CHAPTER 16. ARITHMETIC

0.8
T
1

0.6

04

-1 -0.5 0 0.5 1

Figure 16.1: A plotted parabola.

16.2 Advanced usage
There are also the bitwise operators
>> < & |~

and other specialized ones

<=> Y -

Chapter 17

Getting properties of piddles

17.1 Basic usage
We shall see now some interesting functions to get properties of piddles

e nelem

This function returns the number of elements in a piddle.

perldl> $a=zeroes(10);
perldl> p nelem($a)

10

perldl> $b=ones(10,10);
perldl> p nelem($b)

100

e dims

This function returns the dimensions of a PDL as a Perl list or array.

perldl> $a=zeroes(10);
perldl> @da=dims($a)
perldl> p @da

10

perldl> $b=ones(10,10);
perldl> @db=dims($b)
perldl> p @db

10 10

e PDL::getndims

Returns the number of dimensions of a piddle.

perldl> $b=ones(10,10);
perldl> print PDL::getndims($b);
2

91

92

CHAPTER 17. GETTING PROPERTIES OF PIDDLES

at

Returns the value of a piddle for a given index position. For example to get the element
with indexes (1,1) we can do

perldl> $b=pdl [[1,2,31, [4,5,6] 1;
perldl> print $b->at(1,1);
5

Note that indices on a piddle start at 0, just like the regular Perl array notation. Also
note that the regular Perl array notation is NOT valid for piddles. The following is
wrong for a $b piddle,

perldl> print $b[1]1[1];

Chapter 18

Plotting

18.1 Basic usage

18.1.1 2D plotting

To plot functions we will use the powerful PGPLOT library, which can be easily called from
PDL. To be able to use it we have to load the PGPLOT package,

perldl> use PDL::Graphics: :PGPLOT;

To plot a 2D function we can use the line command. The following example will draw
a line

perldl> $x=pd1([0,1,2])
perldl> $y=pdl([4,5,6]1)
perldl> line($x,$y)

The first time we use a PGPLOT command to make a plot, and if we have not selected
a given decive before, a question will appear asking us which device type we want. To see
all available device types write ? and press <ENTER>. If we just want to plot on X windows
just type /xserve.

There are more ways to plot functions, let us use as an example the above cited parabola,

perldl> $x=zeroes(30)->xlinvals(-1,1);
perldl> $y=$x**2;

Let us now see in how many different ways can we plot this function.

e line. As we have seen previously we can draw this function with this command
obtaining the plot shown in Fig. 16.1.

perldl> line($x,8$y)

As stated above, if the device has not been selected before we will have to do so now
by answering /xserve to the device question.

e points. We can also plot the points separately obtaining the plot shown in Fig. ?7.

93

94

CHAPTER 18. PLOTTING

5.5
T

4.5

5
T
M R BT B

< P R R
0 0.5 1 1.5

]

Figure 18.1: A plotted line.

perldl> points($x,$y)

errb. We can also plot the points with error bars. Let us assume that the error in x
is constant and €(z) = 0.1, then the error in y can be expressed as €(y) = 2ze(z). To
plot the points with error bars in the y axis we can do,

perldl> errb($x,$y,2*$x*0.1)

This result is shown in Fig. ??

bin. To plot the parabola with a staircase look
perldl> bin($x,$y)

this is shown in Fig 77?.

poly. We can easily draw a polygon with this command. In this example a triangle
will be drawn

perldl> $xx=pd1([1,2,3]1);
perldl> $yy=pd1([0,1,0]);
perldl> poly($xx,$yy);

like is shown in Fig. ?7.

18.1.2 3D plotting

There are two different ways to make 3D plots. One of them is to use the same PGPLOT
package as we did with the 2D plots, the other one is to use the TriD package.

18.1. BASIC USAGE 95

0 5 10 15

Figure 18.2: Gaussian function plotted on a 2D plane.

18.1.2.1 3D plotting with PGPLOT
We will plot a two dimensional gaussian function in several ways using the PGPLOT package

perldl> use PDL::Graphics: :PGPLOT

perldl> $x=zeroes(20,20)->x1linvals(-0.5,0.5);
perldl> $y=zeroes(20,20)->ylinvals(-0.5,0.5);
perldl> $gaus=exp(- ($x**2)/0.05 - ($y*x2)/0.02);

e imag. To make a 2D plot of an image with grayscale we can use the imag command.
We can plot the above gaussian with

perldl> imag($gaus)
which should show a graph like Fig. 18.4.
e cont. A contour map can also be obtained like this
perldl> cont($gaus)
which is shown in Fig. ??

e hi2d. To plot a mesh with PGPLOT we can use this command. It is also worth
noting that if you have TriD working you will probably be better off using mesh3d
or a similar command. The result shown in Fig. ?? can be achieved like this

perldl> hi2d($gaus)

e vect. To plot a vector field with arrows we can use this command. If we assume
that the = components of the vectors are in the above formed $gaus matrix and the
y components are given by -$gaus we can obtain the vector field as shown in Fig. ??
with

vect ($gaus, -$gaus)

96 CHAPTER 18. PLOTTING

Tl 489S

Figure 18.3: 3D gaussian function.

18.1.2.2 3D plotting with TriD

The three dimensional plotting is not loaded into PDL at startup so we must first load it as
a module

perldl> use PDL::Graphics::TriD;

To plot 3D funtcions we will use the imag3d command. We can for example plot the
above gaussian function like this (remember to write the above use statement before)

perldl> $x=zeroes(20,20)->x1invals(-0.5,0.5);
perldl> $y=zeroes(20,20)->ylinvals(-0.5,0.5);
perldl> $gaus=exp(-($x**2)/0.05 - ($y**2)/0.02);
perldl> imag3d([$gaus])

Something like Fig. 18.3 should appear.

Note that the prompt does not return back. This is because we can modify the plotted
function in place. If we put the mouse pointer on the graph, we can rotate it by pressing
the left mouse button and moving the mouse. We can also zoom in and out by pressing the
right mouse button and moving the mouse. To exit this state type q on the graph. The
prompt will return. After that do not kill the graphics window if we want to keep the PDL
command line interface.

The above example of the gaussian function can be plotted in several other ways which
are shown below.

18.2. ADVANCED USAGE 97

e imag3d. We have already seen this command. It will show what is seen in Fig. 18.3,
that is, a solid surface of the function.

perldl> imag3d([$gaus])

e mesh3d. This function will show the same gaussian function as a mesh as is shown
in Fig. ??.

perldl> mesh3d([$gaus])

e points3d. The same surface can also be plotted as separate points in space as shown
in Fig. ??. This command accepts three arguments, the = coordinates of the points,
the y coordinates and the z coordinates.

perldl> points3d([$x,$y,$gaus])

e line3d. Lines can also be plotted in the 3D space. We will use the example that comes
in the demo of PDL obtaining a nice spiral as shown in Fig. 7?.

Number of subdivisions for lines / surfaces.
$size = 25

$cz = (xvals zeroes $size+1) / $size; # interval 0..1
$cx = sin($cz*12.6); # Corkscrew

$cy = cos($cz*12.6);

line3d [$cx,$cy,$cz]; # Draw a line

18.2 Advanced usage

18.2.1 2D plotting

Making 2D plots with PGPLOT is very powerful and almost any figure can be made with
it. To obtain more information on the different type plots that can be achieved with it try
having a look at the very informative PGPLOT demo by typing

perldl> demo pgplot

or see the help pages of the commands line, points, errb, bin and poly by typing for
example,

help points
Now several commands that control the way figures are plotted will be shown.

e dev. With this command we can send the output to a file instead of the monitor. For
example, to write the figure on a nice PostScript file named file.ps we can use this
command before any other plotting one

dev(’file.ps/ps’);

98

CHAPTER 18. PLOTTING

To see the list of the available devices in which we can plot draw any graph with
PGPLOT without especifying a determined device and we will be asked which device
we want. Answering with a ? will give us a list of all available devices.

hold. This command puts the graph on hold. This means that any other plotting PG-
PLOT command will be drawn on top of the graph we have without erasing anything.
This option is good for including several different things in a graph.

release. This command frees the previous hold on the graph. The next figure will be
drawn after erasing all previous graphs.

env. This command defines the region in physical space which will be plotted and
puts the graph on hold. In this way if we want to plot a region between 1 and 5 in the
z axis and 1 and 25 in the y axis we can use

env(1,5,1,25)

for a practical use of this command see the next item, “Directly using PGPLOT
commands”.

Directly using PGPLOT commands. If we want to make sofisticated plots it
is very probable that we will end up using direct PGPLOT commands. The direct
PGPLOT calls can be used from Perl (not PDL) directly. To use them we must load
the PGPLOT module first with

perldl> use PGPLOT

A listing of all the PGPLOT commands can be obtained in HTML form from the
PGPLOT installation. In Linux systems this is located at /usr/share/doc/pgploth
To call them we must substitute single FORTRAN numbers by Perl scalars and FOR-
TRAN matrices with matrix Perl references.

For example to plot five points with a direct call to PGPLOT we can use the PGPT
PGPLOT subroutine. The help page from PGPLOT states that this FORTRAN
subroutine should be called like this

SUBROUTINE PGPT (N, XPTS, YPTS, SYMBOL)
INTEGER N

REAL XPTS(*), YPTS(*)

INTEGER SYMBOL

Arguments:

N (input) : number of points to mark.

XPTS (input) : world x-coordinates of the points.

YPTS (input) : world y-coordinates of the points.

SYMBOL (input) : code number of the symbol to be drawn at each

point:

The integer numbers can be substituted by Perl scalars and the FORTRAN vectors by
Perl array references. Note that we must also supply the number of points as a scalar.
The direct call to obtain the plot in Fig. ?? would be done like this

18.2. ADVANCED USAGE 99

perldl> use PGPLOT
perldl> dev(’/xserve’)
perldl> @x=(1,2,3,4,5)
perldl> @y=(1,4,9,16,25)
perldl> env(1,5,1,25)
perldl> pgpt(5,\@x,\@y,0)

18.2.2 3D plotting
18.2.2.1 3D plotting with PGPLOT

e ctab. The colors corresponding to each level in the above plotted gaussian image can
be changed with this command. Let us assume that we have the following normalized
levels whose representation we want to change,

perldl> $x=zeroes(20,20)->x1linvals(-0.5,0.5);
perldl> $y=zeroes(20,20)->ylinvals(-0.5,0.5);
perldl> $gaus=exp(- ($x**2)/0.05 - ($y**2)/0.02);
perldl> imag($gaus)

perldl> $levels=zeroes(11)->x1invals(0,1)

perldl> p $levels

[0 0.1 0.2 0.30.40.50.60.70.80.91]

We can now assign the highest red color and the highest green color to the first value
and the inversley for the blue color,

perldl> $red=zeroes(11)->xlinvals(1,0)
perldl> $green=zeroes(11)->xlinvals(1,0)
perldl> $blue=zeroes(11)->x1linvals(0,1)

Now we change the color table

perldl> ctab($levels,$red,$green,$blue)
and redisplay the image

perldl> imag($gaus)

obtaining something like is shown in Fig. ?7.

imagrgb.

hold3d

release3d
keeptwiddling3d
nokeeptwiddling3d
imagrgb3d
grabpic3d

100 CHAPTER 18. PLOTTING

15

10

O [S O S | T O S O SO R SO O S e

0 5 10 15

Figure 18.4: Gaussian function plotted on a 2D plane with the colour table changed.

Chapter 19

Modifying piddles

19.1 Basic usage

19.1.1 set

Changes a single value inside a piddle
$a=zeroes(10,10);

Changing the (1,3) component

to 5
$a->set(1,3,5);

19.1.2 slice
xchg

19.1.3 list

Convert the PDL into a Perl array or list

$a=zeroes(10,10);
@a_list=1ist($a);

19.1.4 listindices

Converts the indices of a one dimensional piddle into a Perl array or list
$a=zeroes(5);

This returns

(0,1,2,3,4)

@a=listindices($a);

19.2 clip

This function clips a piddles with a certain upper a lower bound

101

102 CHAPTER 19. MODIFYING PIDDLES

$b=pdl [[1000, 2, 3], [1, -1000, 4] 1;
$c=$b->clip(0,10);

$c now contains

[

[10 2 3]

[1 0 4]

]

19.2.1 badmask

Signature: (a(); b(); [o]c())
Clears all infs and nans in a to the corresponding value in b

19.3 Advanced usage

19.3.1 dummy
19.3.2 hclip
19.3.3 lclip
19.3.4 one2nd
19.3.5 mslice
19.3.6 reshape
19.3.7 convert

Chapter 20

Combining several PDLs

20.1 Basic usage

20.1.1 append

Append two piddles by concatenating them over their first dimension.

$a=zeroes(3);

$b=ones(2);

$c now contains [0 0 0 1 1]
$c=append ($a, $b);

20.1.2 cat

Concatenates N piddles of the same sizes and returns a piddle with one more dimension of
length N+1.

$a=zeroes(3);
$b=ones(3);

This way we get
[

[0 0 0]

[11 1]

]
$c=cat($a,$b);

20.1.3 dog

Takes a single N dimensional piddles and splits it into a N-1 dimensional piddles.

$a=zeroes(3);
$b=ones(3);
$c=cat($a,$b);

Now $a == $d
and $b == $e
($d,$e)=dog($c);

103

104 CHAPTER 20. COMBINING SEVERAL PDLS

Chapter 21

Matrix operations

21.1 Basic usage

21.1.1 Matrix multiplication
$c=%$a x $b;

21.1.2 matinv

use PDL::Slatec;
$inv = matinv($mat)

21.1.3 eigsys

use PDL::Slatec;
($eigvals,$eigvecs) = eigsys($mat)

eigens Eigenvalues and -vectors of a matrix in lower triangular form
simqg Solution of simultaneous linear equations.
squaretotri Convert a symmetric square matrix to triangular vector storage.

21.2 Advanced usage

21.2.1 inner
21.2.2 outer
21.2.3 innerwt
21.2.4 inner2
21.2.5 inner2d
21.2.6 inner2t

105

106 CHAPTER 21. MATRIX OPERATIONS

Chapter 22

Descriptive statistics and
internal piddle operations

22.1 Basic usage

sumover
intover
cumsumover
prodover
cumprodover
sum
min
max
median
oddmedian
minmax
gsort
gsorti
minimum
minimum_ind
maximum
maximum_ind
minmaximum
wtstat
hist
histogram2d
stats

22.2 Advanced usage

minimum_n_ind
maximaum_n_ind

107

108CHAPTER 22. DESCRIPTIVE STATISTICS AND INTERNAL PIDDLE OPERATIONS

Chapter 23

Piddle selection

which
where
index

109

110 CHAPTER 23. PIDDLE SELECTION

Chapter 24

Interpolation

24.1 Basic usage

interpol

24.2 Advanced usage

vsearch

111

112 CHAPTER 24. INTERPOLATION

Chapter 25

Input output functions

rfits
wfits
rcols
wecols
rgrep
rdsa
rasc
isbigendian
rcube
bswap2
bswap4
bswap8
readfraw
writefraw
mapfraw
maptextfraw
readflex
writeflex
rpiccan
wpiccan
rpic
wpic
wmpeg
rpnm
wpnm
rndf
wndf
propndfx

113

114 CHAPTER 25. INPUT OUTPUT FUNCTIONS

Chapter 26

Math functions

The following math functions are available within PDL

e acos Standard arc cosine trigonometric function.
e asin Standard arc sine trigonometric function.

e atan Standard arc tangent trigonometric function.
e cosh Standard hyperbolic cosine function.

e sinh Standard hyperbolic sine function.

e tan Standard tangent trigonometric functions.

e tanh Standard hyperbolic tangent functions.

e ceil Returns the smallest integral value not less than the argument, that is, it rounds
the argument upward to the nearest integer.

e floor Returns the largest integral value not greater than the argument, that is, it
rounds the argument downwards to the nearest integer.

e rint Rounds the argument to the closest integer.

e pow Power funtcion, raises a number to the specified power. It is a synonym for *x*.
e acosh Standard hyperbolic cosine function.

e asinh Standard hyperbolic sine function.

e atanh Standard hyperbolic tangent function.

e erf The error function.

e erfc The complement of the error function.

e bessjO Standard Bessel Jp function.

e bessj1 Standard Bessel J; function.

e bessy0 Standard Bessel Y, function.

115

116 CHAPTER 26. MATH FUNCTIONS

e bessyl Standard Bessel Y; function.
e bessjn Standard Bessel J,, function.
e bessyn Standard Bessel Y,, function.

e lgamma The log gamma function. This returns 2 piddles — the first set gives the
log(gamma) values, while the second set, of integer values, gives the sign of the gamma,
function. This is useful for determining factorials, amongst other things.

e erfi The inverse of the error function.

Chapter 27

Image manipulation

conv2d
med2d
patch2d
max2d_ind
centroid2d
cc8compt
convolve
ninterpol
rebin
cquant
interlrgb
bytescl

117

118 CHAPTER 27. IMAGE MANIPULATION

Chapter 28

Fourier analysis

ftt

ifft

realfft
fftnd

ifftnd
fitconvolve
convmath
cmul

cdiv

119

