
Introduction to Octave
For Engineers and Scientists

Sandeep Nagar

Introduction to Octave: For Engineers and Scientists

ISBN-13 (pbk): 978-1-4842-3200-2		 ISBN-13 (electronic): 978-1-4842-3201-9
https://doi.org/10.1007/978-1-4842-3201-9

Library of Congress Control Number: 2017960430

Copyright © 2018 by Sandeep Nagar

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book's product page, located at www.apress.com/
9781484232002. For more detailed information, please visit http://www.apress.com/
source-code.

Sandeep Nagar
New York, USA

Chapter 1: �Introduction to Octave��� 1

1.1�� Introduction to Numerical Computing��1

1.2�� Analytical vs. Numerical Schemes���2

1.3 ��Tools for Numerical Computation���4

1.4 ��A Brief History of Octave��5

1.5 ��Octave vs. Other Alternatives���7

1.6 ��Installation���8

1.6.1 ��Mac OSX��9

1.6.2 ��Octave on Ubuntu��10

1.6.3 ��Octave on Windows���11

1.6.4 ��Using Octave Online��12

1.7 ��Octave GUI��13

1.8 ��Summary���15

1.9 Bibliography���15

Chapter 2: �Interactive Octave Sessions�� 17

2.1 ��Introduction��17

2.2 ��Clearing the Screen with the clc() Command���20

2.3 ��Customizing the Octave Prompt���21

2.4 ��Working with Files��23

Contents

2.5 ��Using the Workspace���25

2.6 ��Suppressing the Output Display���25

2.7 ��Running an Octave Program from the System Terminal��������������������������������26

2.8 ��Summary���26

2.9 Bibliography���26

Chapter 3: �Mathematical Expressions���27

3.1 ��Octave and Math��27

3.2 ��Octave as a Calculator���28

3.3 ��Rational Number Approximations��32

3.3.1 ��Predefined Constants��33

3.4 ��Using Complex Numbers��34

3.4.1 ��Defining a Complex Number��35

3.4.2 ��Properties of Complex Numbers��36

3.4.3 ��Using Conjugates���38

3.4.4 ��Adding and Subtracting Two Complex Numbers������������������������������������38

3.4.5 ��Multiplying and Dividing Complex Numbers��39

3.5 ��Common Mathematical Functions���40

3.6 ��Learning More Mathematical Functions��41

3.7 ��Using Variables��42

3.7.1 ��Data Types���44

3.7.2 ��Floating Point Numbers and Arithmetic���45

3.7.3 ��Overflow and Underflow Errors���47

3.7.4 ��Floating Point Numbers vs. Real Numbers��47

3.7.5 ��The eps() Function���48

3.7.6 ��Naming Conventions for Variables��49

3.7.7 ��List of Variables���51

3.7.8 ��Global and Local Variables���51

3.7.9 ��The clear Function���52

3.8 ��Summary���56

3.9 Bibliographys���56

Chapter 4: �Working with Arrays��57

4.1 ��Introduction��57

4.2 ��Arrays and Matrices���59

4.3 ��Arrays as Vectors���60

4.3.1 ��Coordinate Properties and Basic Transformations��������������������������������62

4.4 ��Higher Dimensional Arrays/Matrices���64

4.5 ��Operations on Arrays and Vectors��68

4.5.1 ��Matrix Multiplication��70

4.5.2 ��Matrix Division and Inverse of a Matrix���71

4.5.3 ��Finding Roots for a Set of Linear Equations��76

4.6 ��Summary���79

Chapter 5: �Array Properties���81

5.1 ��Introduction��81

5.2 ��Automatic Creation of Arrays���82

5.3 ��Creating Random Matrices��82

5.3.1 ��Creating Random Matrices with Integers��85

5.3.2 ��Defining Random Numbers from a Set Distribution������������������������������88

5.4 ��Automatic Generation of Large Arrays���92

5.4.1 ��Generating Arrays Using a Rule���93

5.4.2 ��Creating Linearly Spaced Vectors��94

5.4.3 ��Creating Logarithmically Spaced Vectors��96

5.5 ��Creating Special Matrices��97

5.5.1 ��Upper and Lower Triangular Matrix���97

5.5.2 ��Diagonal Matrix���98

5.5.3 ��Ones and Zeros Matrices���100

5.5.4 ��Sparse Matrix��101

5.6 ��Manipulating Arrays���109

5.6.1 ��Indexing���109

5.6.2 ��Using Indices to Make New Vector��111

5.6.3 ��Slicing��112

5.6.4 ��Flipping a Matrix��117

5.6.5 ��Rotating a Matrix���118

5.6.6 ��Reshaping a Matrix��119

5.6.7 ��Sorting���119

5.7 ��Summary���120

5.8 Bibliography���120

Chapter 6: �Plotting���121

6.1 ��Introduction��121

6.2 ��2D Plotting���122

6.2.1 ��The plot(x,y) Function��122

6.2.2 ��The area() Function��123

6.2.3 ��The bar(), barh(), and hist() Functions��124

6.2.4 ��Plotting in Polar Coordinates���132

6.2.5 ��Logarithmic Plots���135

6.2.6 ��Creating 3D Plots���140

6.3 ��Summary���145

Chapter 7: �Data Through File Reading and Writing���������������������������147

7.1 ��Introduction��147

7.2 ��File Operations���148

7.2.1 ��Users���148

7.2.2 ��File Path���149

7.2.3 ��Creating and Saving Files��150

7.2.4 ��Working with Excel Files��155

7.3 ��Accessing Data from the Internet��158

7.4 ��Printing and Saving Plots���159

7.4.1 ��The print Function���159

7.4.2 ��The saveas Function��160

7.4.3 ��The orient Function��160

7.5 ��Summary���161

Chapter 8: �Functions and Loops��163

8.1 ��Introduction��163

8.2 ��Using Loops���164

8.2.1 ��The while Loop��164

8.2.2 ��The do-until Loop���165

8.2.3 ��The for Loop���167

8.2.4 ��The if-elseif-else Loop���168

8.3 ��Using Functions���169

8.3.1 ��The function Function��169

8.3.2 ��The inline Function��172

8.3.3 ��Anonymous Functions���172

8.4 ��Summary���174

Chapter 9: �Numerical Computing Formalism������������������������������������175

9.1 ��Introduction��175

9.2 ��Physical Problems��176

9.3 ��Defining a Model��176

9.4 ��Numerical Approximations���180

9.5 ��Tolerance��180

9.6 ��Taylor Series���181

9.7 ��Taylor Polynomials���182

9.7.1 ��Maclaurin Series for sin(x) and cos(x)���184

9.7.2 ��Maclaurin Series for ex��191

9.8 ��Computational Error���197

9.8.1 ��Significant Digits���198

9.9 ��Challenges in Real Number to Floating Point Number
Conversions���199

9.9.1 ��Overflow��199

9.9.2 ��Underflow��201

9.10 ��Converting Real Numbers to Floating Point Numbers��������������������������������202

9.11 ��Octave Packages��203

9.12 ��Summary���203

9.13 Bibliography���204

�Index��205

CHAPTER 1

Introduction to Octave

1.1  �Introduction to Numerical Computing
Modern times have seen an exponential growth in scientific knowledge.

Computing devices have benefited the most from this increase in knowledge.

They started with mechanical solutions, whereby lever- and pulley-based

computers were used to perform complex calculations with progressively

fewer interventions. But mechanical systems were notoriously slow and

inefficient and there were energy concerns too. When vacuum tube based

transistors were invented, they were applied to this domain. Vacuum tube

based computers entered the research labs of academia and industry alike.

During WWII, they were used to run programs to crack enemy codes as well

as to simulate various scenarios for designing weapons. This infused much

needed money and talent in this area and, within a few years, the overall

efficiency of computing devices saw an amazing exponential increase.

Simulating a real-world phenomenon involves solving equations

governing these issues. Numerical simulation involves defining the

problem for a digital computer. This can be achieved in two ways:

•	 Using a programming language and encoding every

step used for numerical computation

•	 Using a specialized software framework that presents a

general framework to define a mathematical problem

that the computer understands

2

Scientific computation was initially performed by the first method.

Programming languages like FORTRAN, C, and C++ became very popular.

Even today these languages, and recent ones like Python and Julia, are

still widely used for this purpose. But during the same time, the need

for a specialized numerical computing framework was also recognized.

Using programming languages, you could make a generalized scheme

for numerical computing in which you could define a scientific problem.

One of the biggest advantages of such an approach is that you can define

a lot of library functions that can be simply used as and when required,

instead of each user writing them down each time for a different problem.

Hence, over the period of time a number of software programs came into

existence.

One of them was MATLAB, and it became very popular all over the

world. It is sometimes called the “language of engineering” for the right

reasons, since most engineering problems can be easily defined using

it. Engineers can concentrate on defining a problem rather than writing

efficient code (which they can simply pick from a library). Being commercial

software, MATLAB comes with a price as well as with a restrictive license.

With the introduction of open source licensing, there was a need for an open

source alternative. This is where Octave came into being. This book presents

usage of Octave as an effective alternative to MATLAB.

1.2  �Analytical vs. Numerical Schemes
Analytical schemes to solve mathematical problems involve deriving

equations describing a system using relationships between various

parameters and then solving these equations by either using invented

functions (mapping of variables from one domain to another) or inventing

new functions that fit the purpose. On the other hand, a numerical scheme

also requires describing the system using a relationship between various

parameters and functions, but deriving a solution has a marked difference.

This can be shown with a simple example.

Chapter 1 Introduction to Octave

3

Let’s try to find a value of x that can satisfy the equation f (x) = x + 25.

Finding an analytical solution involves the following steps:

	 1.	 x + 2 = 0

	 2.	 Add −2 to both sides

	 3.	 x = −2 is the answer

On the other hand, a numerical solution using the bisection method

involves first guessing a value as a solution of the equation and then

following the scheme as shown here:

	 1.	 Let’s guess 3 as the answer

	 2.	 f (3) = 1 + 2 = 3 > 0 so let’s guess f (−3) = −3 + 2 = −1 < 0

	 3.	 Since 3 results in an answer more than 0 and −3

results in an answer less than 0, an average value is

calculated for both as follows:

3 3

2
0

+ -()
=

The f (0) is calculated and replaced with the same

initial guess, depending on if the result is less than

or greater than zero.

	 4.	 These steps are repeated successively until we reach

the true value, i.e., −2 (as found using the analytical

solution).

Now the question arises that if we have analytical solutions, why

should we even care for finding numerical solutions? The main reason

is that sometimes we don’t have an analytical solution. Try to solve

e x tan x x xx.sin 2 2 3 3 24 2 4 0- ()- + - =()/ . Finding solutions would require

too much human effort (may even take more than a lifetime in some

cases). Moreover, complex problems involving advanced structures like

Chapter 1 Introduction to Octave

4

differentiations, integrations, etc., are very difficult to solve using analytical

solutions. For these purposes, numerical schemes have been defined.

As time progressed, various schemes to define analytical functions

like differentiation, integration, trigonometric, etc., were written for digital

computers. This involved their digitization, which certainly introduces

some errors. Knowledge of error introduced and its proper nullification

could yield valuable information quicker than using analytical results.

Thus, it became one of the most actively researched fields of science and

continues to be one. The search for faster and more accurate algorithms

continues to drive innovation in the field of numerical computing and

enables humanity to simulate otherwise impossible tasks.

1.3  �Tools for Numerical Computation
While all problems can be coded in programming languages, we need to

change the approach to computing, file management, etc. when we change

the microprocessor platform, operating system, or both. This hinders

interoperability. Modern programming languages address some of these

issues but the need for specialized software for numerical computing,

where predefined tools can be simply called as and when required, was

being felt in academia. A number of attempts were made in this direction.

A number of alternatives exist to perform numerical computations.

Programming languages written to handle mathematical functions like

FORTRAN, C, Python, and Java, to name a few, can be used to write algorithms

for numerical computation. Specialized software packages like MATLAB,

Scilab, and Mathematica also provide specialized solutions to particular fields

of problems. Their rich libraries now run in many GBs of data.

Among them, MATLAB became tremendously popular among the

scientific community starting in 1984. The cheap availability of digital

computing resources propelled its use in industry and academia to such

an extent that virtually every lab needed MATLAB. It was embraced by

academia as well as industry and in some cases, became a standard tool

Chapter 1 Introduction to Octave

5

for computational work. An engineer who was not trained on MATLAB was

less employable than others and, hence, a lot of universities adopted it in

their curriculum.

But MATLAB has two serious drawbacks: its price and its licensing

requirements. It started with a set of freely available tools written by

academics but, when it became a commercial product, it came with a

commercially restrictive license and a hefty price tag. It was the license

that troubled academics more than the cost, because the license blocked

sharing the software and even required an additional cost to do research

work apart from teaching MATLAB.

It wasn’t cost-prohibitive for well funded western universities, but it

proved to a costly piece of software for rest of the world, particularly for

third-world countries. This part of the world, which has an otherwise

large scientific community, needed an open sourced alternative to

MATLAB. Thus Octave and Scilab came into existence.

Whereas Scilab is extremely powerful, it was not compatible with

MATLAB syntax-wise. It derived its origin from the same pieces of code from

which MATLAB was born, but it split the other way and defined different types

of files for computations and improved on the syntax accordingly. Hence, you

cannot run MATLAB directly using Scilab. On the other hand, Octave was

developed so that MATLAB .m files could directly run on Octave software.

1.4  �A Brief History of Octave
MATLAB was developed by Cleve Moler [1], who was a math professor at the

University of New Mexico, teaching numerical analysis and matrix theory. As

a PhD student, he initially wrote a lot of code in FORTRAN to solve systems

of simultaneous linear equations involving matrix algebra. He ultimately

gave this the name MATrixLABoratory (MATLAB). As a professor, he wanted

his students to be able to use their new packages without writing FORTRAN

programs. Hence, in late 1970s, the first version of MATLAB came out

(written in FORTRAN). There were 80 functions for performing calculations

Chapter 1 Introduction to Octave

6

involving linear algebra problems. Further down the line, Jack Little and

Steve Bangert reprogrammed MATLAB in C with additional features for

producing a commercial version of the software. Together, all three of

them founded The MathWorks [2] in California in 1984, which develops,

maintains, and distributes MATLAB and its products worldwide. MATLAB as

proven to be an excellent tool for numerical methods [3].

So many tools and features have been added to the base package

of MATLAB that along with a rich set of libraries, the installation

requirements run in many GBs of data. MATLAB became tremendously

popular within the scientific community. It is being used by more than

5000 universities worldwide. It is sometimes rightly termed the “language

of engineering”. Cheap availability of digital computing resources

propelled its usage in industry and academia to such an extent that

virtually every lab needs MATLAB.

Octave, on the other hand, was conceived in 1988 [4]. Initially, it

was conceived to be merely companion software by James B. Rawlings

[5] of the University of Wisconsin-Madison and John G. Ekerdt [6] of the

University of Texas, for an undergraduate-level textbook on chemical

reactor design. They realized that chemical engineering students were

finding it difficult to code in FORTRAN. Instead, they wanted a solution

where students could concentrate on solving chemical engineering

problems. So they conceived a solution where they could use an interactive

environment like Octave so that students could learn quickly and start

coding in a few hours. This was a similar solution to the one provided by

Cleve Moler and which ultimately became MATLAB.

For the next five years, development proceeded toward making Octave

almost as good as basic MATLAB. On February 17, 1993, Version 1.0 was

released. Contrary to popular belief, the name Octave is not related to

music. It was actually named after Dr. Octave Levenspiel [7]. He was a

former professor who wrote a famous textbook on chemical reaction

engineering and was also well known for his ability to do quick, “back of

the envelope” calculations.

Chapter 1 Introduction to Octave

7

Octave is shared under a GNU General Public license [8] and hence

it is free to modify and redistribute as defined by the license. Being open

sourced, it grew rapidly as one of the hottest open source projects, where

developers (mostly students) from all over the world contributed code to

the project. This enriched the main program as well as various specialized

packages. Its large base of library functions makes it an obvious choice

for defining engineering problems. Since it can run MATLAB files without

any major changes, it became popular with students, as they could install

Octave on their personal computers and study at home too.

This book introduces Octave for absolute beginners. Even if you

have never used MATLAB, you can start with Octave. But over time,

you are encouraged to become a developer yourself. Developers enrich

the library functions and share within the community. The community

of users and fellow developers test and report bugs. These are then

rectified in a collaborative manner. This ecosystem of collaborative

development is the backbone of open source scientific computing.

Users may find more information about Octave development at [9].

As an example, check out a host of community developed packages,

which are listed in reference [10].

1.5  �Octave vs. Other Alternatives
Octave is an open source alternative that can run MATLAB code. Existing

MATLAB users can swiftly change to this new system. Similarly, new users

can learn to code in Octave and then shift to a MATLAB environment as

and when required. GNU Octave version 4.0.3 presents a Graphic User

Interface (GUI) too, which proves to be an easier option for beginners.

For this reason, it has been chosen for this book. The book’s code will also

run older and future versions well, provided that future versions choose to

remain compatible with the present version.

Chapter 1 Introduction to Octave

8

Other alternatives include Scilab and programming languages like

Python, C, C++, and Java. They have their own merits and drawbacks

and you are advised to decide based on your particular needs. Octave

is a good choice for prototyping the problem quickly and checking the

results.

These alternatives are better when you are working with web-based

data collection, analysis, and visualization. Octave is a high-level

language, primarily intended for numerical computations. Octave has

a rich library of tools for solving numerical linear algebra problems,

finding the roots of non-linear equations, integrating ordinary functions,

manipulating polynomials, and solving ordinary and partial differential

and differential-algebraic equations. This makes it suitable for most

of the basic numerical computational work. When you are concerned

about speed and need multi-core programming for data distributed over

multiple web servers, you might opt for coding in specific programming

languages written for high-performance computing like Julia and numpy/

scipy (Python), or simply C/C++. But you can still prototype parts of such

problems in Octave for simplicity of understanding.

1.6  �Installation
Note that following instructions are valid for Octave, version 4.0.3 only.

GNU Octave can be downloaded [11] based on your operating system

requirements. Various installation instructions are outlined at the wiki web

site [12]. Installation is quite straightforward and user forums or a simple

Google search yields useful answers to common problems encountered

by users. From version number 3.8.1 onward, the Octave package installer

comes with a default GUI interface. You should install this version for

forthcoming discussions, although the older versions will prove to be fine

as well.

Chapter 1 Introduction to Octave

9

1.6.1  �Mac OSX
Two processes of installation are explained in this section. One uses a

standard package installer provided by the Octave community for the Mac

OSX operating system, which has a graphical instillation script. This must

be run with sufficient privileges for proper installation. If you have issues,

consult your system administrator. The other process uses homebrew,

discussed shortly. It’s good for those who love to install simply by using

command line terminal. You should have sufficient knowledge of using a

command line to use this method.

�Installation Package

The installer can be downloaded [13] as a .dmg file. This file, when

clicked, starts the GUI-based installation process where users can

choose a location to install. A logo [14] representing Octave appears in

the Application folder, and you simply click it to start the software.

See Figure 1-1.

Figure 1-1.  The Octave logo

Chapter 1 Introduction to Octave

10

�Homebrew

An alternative is to brew the Octave software within Mac OSX using

homebrew [15]. This involves first installing homebrew on your system and

then simply issuing this command from the terminal:

1 $brew install octave

All its dependencies are installed and the latest version of the

homebrew repository is properly installed. You must have administrative

privileges for the account doing the installation. You can update to a newer

version using this command:

1 $brew update octave

2 $brew upgrade octave

1.6.2  �Octave on Ubuntu
Ubuntu is one of the most famous Linux distributions. Binary packages for

Octave are provided by all versions of Debian and Ubuntu. These are very

well tested binaries and should work best for most users.

1 $sudo apt-get install octave

�Octave’s PPA for Ubuntu

An alternative route to installation is using a PPA (Personal Package

Archive). This can be done by typing the following commands successively

at the Linux command terminal.

1 $sudo apt-add-repository ppa:octave/stable

2 $sudo apt-get update

3 $sudo apt-get install octave

Chapter 1 Introduction to Octave

11

After installation, you can simply run Octave by typing octave at the

terminal. This will start the Octave terminal, which is octave:1>, as shown

in Figure 1-2.

To exit an Octave session, you type exit() at the Octave command

prompt.

If you want to use the GUI, you start Octave by typing octave --force-

gui at the command prompt. There are a few other command-line options

you can use while starting. They are given at reference [16], but they must be

used by an experienced user who knows how to use Linux commands well.

Figure 1-2.  Octave command-line interface

1.6.3  �Octave on Windows
Installation files for Windows OS can be found at the main web site

[17]. The appearance of the Octave application is the same as shown in

Figure 1-2. The color scheme for displaying Windows is based on the

Chapter 1 Introduction to Octave

12

system preferences. It must be noted that users must first know whether

their systems have a 32-bit or 64-bit architecture for the motherboard

and hence the operating system. Accordingly, an installer must be

chosen to avoid installation errors. Working within an Octave session

will be uniform irrespective of the choice of operating system. But the

OS-specific behaviors will be reflected in some places, like defining file

paths. Windows- and Linux-based OSes use different separators for

defining directory tree structure.

1.6.4  �Using Octave Online
Another option for using Octave without an installation is to use it live on

the web at [18]. See Figure 1-3. The basic form of Octave works as good

as the local installation here. It is a good practice to start with Octave

here and then proceeding with the local installation once you are more

experienced.

You need to log in by creating an account first. Then you are

presented with a window within an Internet browser. Since this is

an Internet browser based installation, you don’t need the local

installation of the Octave application program. But note that the user

works at a remote computer in this case. You upload the data at this

remote computer and generate outputs here. Also, all Octave programs

are stored in the limited storage offered by this free remote computer.

That means you are restricted by the services it offers. It is a good

practice for a beginner, but a serious developer will ultimately need a

location installation too. This is especially the case when you do not

have access to the Internet.

Chapter 1 Introduction to Octave

13

1.7  �Octave GUI
Octave’s GUI looks quite similar to MATLAB’s GUI. As shown in Figure 1-4,

the left side has three panels:

•	 File Browser: You can browse through the files in a

working directory and change the names. You can run

an .m file by clicking on the file. The file opens in the

Editor window and can be run from there.

•	 Workspace: It stores the variables names, values, and

their properties like types and sizes. It is useful for

developers to visualize the variables and their contents.

The meaning of variables and their values, sizes, etc. is

illustrated in subsequent chapters.

Figure 1-3.  Online instance of Octave at http://octave-online.net

Chapter 1 Introduction to Octave

http://octave-online.net/

14

•	 Command History : It stores the commands used in

an Octave session. A command can be run by simply

clicking it in command window. It is then executed at

Octave command prompt.

All three panes are optional and can be closed down for a session by

clicking the cross sign in the upper-right.

On the right side, there is a pane named Command Window. The bottom

part of the Command window includes three tabs:

•	 Command window

•	 Editor

•	 Documentation

Here, the Command window takes input one line at a time.

The Editor window is used to write an .m script file that can then

be executed. This will be elaborated in Chapter 2 onward. The

Documentation window can be used to read documentation and

seek help to learn more about commands. Octave has an extensive

documentation that enables a beginner to learn Octave with nothing

but a command line. It also helps an experienced user who can seek

help in using less common commands.

Chapter 1 Introduction to Octave

15

1.8  �Summary
What started as a simple effort to provide students with a helpful set

of programs to learn chemical reaction kinematics grew up as a major

open source project that is now at par with its commercial counterpart.

Octave evolved from human desire to share and advance collectively the

knowledge base for the benefit of everyone. It further requires a consistent

effort of budding developers working on this common aim. This book

aims to provide a short and concise introduction to this software so that

beginners can become users and ultimately developers of Octave.

1.9  Bibliography
	 [1]	 https://mathworks.com/company/newsletters/

articles/the-origins-of-matlab.html

	 [2]	 https://www.mathworks.com

Figure 1-4.  Octave graphical user interface

Chapter 1 Introduction to Octave

https://mathworks.com/company/newsletters/articles/the-­origins-­of-matlab.html
https://mathworks.com/company/newsletters/articles/the-­origins-­of-matlab.html
http://www.mathworks.com/

16

	 [3]	 https://in.mathworks.com/discovery/

numerical-analysis.html

	 [4]	 https://www.gnu.org/software/octave/about.html

	 [5]	 https://directory.engr.wisc.edu/che/faculty/

rawlings_james

	 [6]	 https://sites.utexas.edu/ekerdtgroup/

dr-john-g-ekerdt/

	 [7]	 http://www.levenspiel.com/octave/resume.htm

	 [8]	 https://www.gnu.org/copyleft/gpl.html

	 [9]	 https://www.gnu.org/software/octave/

get-involved.html

	[10]	 https://octave.sourceforge.io/

	[11]	 https://www.gnu.org/software/octave/download.html

	[12]	 https://wiki.octave.org/Octave_for_

macOS#Custom_Installation_Instructions

	[13]	 https://sourceforge.net/projects/octave/

files/Octave%20MacOSX%20Binary/2016-07-

11-binary-octave-4.0.3/octave_gui_403_

appleblas.dmg/download

	[14]	 https://www.gnu.org/software/octave/img/

octave-logo.svg

	[15]	 https://brew.sh/

	[16]	 https://www.gnu.org/software/octave/doc/

v4.0.1/Command-Line-Options.html#Command-

Line-Options

	[17]	 https://www.gnu.org/software/octave/download.html

	[18]	 https://octave-online.net/

Chapter 1 Introduction to Octave

https://in.mathworks.com/discovery/numerical-analysis.html
https://in.mathworks.com/discovery/numerical-analysis.html
http://www.gnu.org/software/octave/about.html
https://directory.engr.wisc.edu/che/faculty/rawlings_james
https://directory.engr.wisc.edu/che/faculty/rawlings_james
https://sites.utexas.edu/ekerdtgroup/dr-john-g-ekerdt/
https://sites.utexas.edu/ekerdtgroup/dr-john-g-ekerdt/
http://www.levenspiel.com/octave/resume.htm
http://www.gnu.org/copyleft/gpl.html
http://www.gnu.org/software/octave/get-involved.html
http://www.gnu.org/software/octave/get-involved.html
https://octave.sourceforge.io/
http://www.gnu.org/software/octave/download.html
https://wiki.octave.org/Octave_for_macOS#Custom_Installation_Instructions
https://wiki.octave.org/Octave_for_macOS#Custom_Installation_Instructions
https://sourceforge.net/projects/octave/files/Octave MacOSX Binary/2016-07-11-binary-octave-4.0.3/octave_gui_403_appleblas.dmg/download
https://sourceforge.net/projects/octave/files/Octave MacOSX Binary/2016-07-11-binary-octave-4.0.3/octave_gui_403_appleblas.dmg/download
https://sourceforge.net/projects/octave/files/Octave MacOSX Binary/2016-07-11-binary-octave-4.0.3/octave_gui_403_appleblas.dmg/download
https://sourceforge.net/projects/octave/files/Octave MacOSX Binary/2016-07-11-binary-octave-4.0.3/octave_gui_403_appleblas.dmg/download
https://www.gnu.org/software/octave/img/octave-logo.svg
https://www.gnu.org/software/octave/img/octave-logo.svg
https://brew.sh/
https://www.gnu.org/software/octave/doc/v4.0.1/Command-Line-Options.html#Command-Line-Options
https://www.gnu.org/software/octave/doc/v4.0.1/Command-Line-Options.html#Command-Line-Options
https://www.gnu.org/software/octave/doc/v4.0.1/Command-Line-Options.html#Command-Line-Options
http://www.gnu.org/software/octave/download.html
https://octave-online.net/

CHAPTER 2

Interactive Octave
Sessions

2.1  �Introduction
When you start an Octave session, you can work in an interactive session

in the sense that the Octave prompt >> waits for you to input a command,

which will be executed as soon as you press the Enter key at the end

of command. The Octave command prompt presents a full-featured

interactive command-line commonly called REPL (read-eval-print loop).

The interactive shell of the Octave programming language is

commonly called REPL because it:

•	 Reads what a user types

•	 Evaluates what it reads

•	 Prints out the return value after evaluation

•	 Loops back and does it all over again

This kind of interactive working environment proves especially useful

for debugging. It also helps in prototyping a problem, where each step can

be visualized for its output in a live fashion. You can check the results of

the particular code as soon as you finish writing it. The way to work with

18

Octave’s REPL is to write the code, analyze the results, and continue this

process until the final result is computed. In addition to allowing quick and

easy evaluation of Octave statements, REPL also showcases:

•	 A searchable history: You can press the Up and

Down keys on the keyboard to browse through past

commands instead of writing them again.

•	 Tab completion: You can simply press a Tab after

writing a few letters for a command to auto-complete

it. This avoids syntax errors. If more than one option

matches when the Tab key is pressed, these options

are displayed at the command prompt. This action is

displayed here:

1 >> cl

2 cla class clear clock close

3 �clabel clc clf cloglog closereq

4 >> clo

5 clock cloglog close closereq

6 >> clock

7 ans =

8 �2017.0000 9.0000 11.0000 20.0000

48.0000 21.6951

9

When cl is printed and the Tab key is pressed, a

series of commands that start with these letters

are shown. When clo is typed and the Tab key is

pressed, then the commands that start with clo

are shown. Finally when clock is typed, an output

is generated. The output prints the system time in

year, month, date, time, minutes, and seconds.

Chapter 2 Interactive Octave Sessions

19

•	 Many helpful key bindings: The key bindings depend on

the operating system. When you click various items on

the menu bar (at the top of Octave’s main window), you

will see the key bindings next to the name of the option.

•	 Help and documentation: Getting help on each topic

and locating the documentation is also easy in Octave.

You can simply feed any argument in as a string

(i.e., characters enclosed within double quotes " ") to

the built-in function help() or doc().

–– Using help(), you’ll get the help strings (useful
illustrations of using a function/command) on the
command line. An example is shown in Figure 2-1,
where writing help("version") shows the usage of
the version command.

–– Using doc(), you’ll get detailed documentation under
the documentation window instead of displaying it at
the command prompt. The example shown in
Figure 2-2 shows the usage of the version command.

Figure 2-1.  Using the help() function

Chapter 2 Interactive Octave Sessions

20

Another way of seeking help is to use Octave’s main menu bar, which

has an option titled Help. You can type in the command there or use the

submenu, titled Documentation. Documentation files can be found on

your local disk as well as online.

The online documentation is the most up to date, unless the local

installation is using the most up to date version of the software.

2.2  �Clearing the Screen with the clc()
Command

Sometimes you’ll need to obtain a clear screen, which is what the clc

command does. You can learn about its proper usage by using the

help("clc") or doc("clc") commands. This command presents a fresh

Figure 2-2.  Using the doc() function

Chapter 2 Interactive Octave Sessions

21

command prompt. It is worth noting that Octave does not restart during

this process. It merely shows a fresh screen to the user. It still stores all the

variables and their respective values.

You can also use this command as a function by writing clcl(n),

where n is an integer. The command will clear that many number of lines

from the previous session. If you simply type clc() instead, all lines are

cleared from the screen.

2.3  �Customizing the Octave Prompt
The PS1() function can be used to customize the Octave prompt to any

desired string. For example, suppose you want to use octave>> as the

Octave command prompt. You simply type the following command:

1 >> PS1("Octave>>")

2 Octave>> PS1(">>")

3 >>

Notice that the second command—PS1(">>")—is written at the

changed command prompt—PS1("Octave>>"). Also, this returns the

default command prompt. This book showcases the default prompt, but

feel free to change it based on your choice and creativity.

If you want to be creative and have a unique command prompt, you

can use one of the special characters [1] listed in Table 2-1.

Chapter 2 Interactive Octave Sessions

22

Using special characters, you can create a creative command prompt.

Some examples are shown here:

1 >>PS1("\\u@\\h> ") % �sets command prompt as username@

hostname

2 >>PS1("\\d@\\t> ") % sets command prompt as date@time

3 >>PS1("\\w@\\s> ") % �sets command prompt as working

directory @program

Similarly, you can use a combination of options from Table 2-1 to

create complex command prompts. You can always come back to the

original command prompt by issuing the PS1(">>") command.

A second command prompt can be used by using the PS2() command.

This happens when a user is prompted to input a value from the keyboard

inside an Octave program. It is important to note that the particular

Table 2-1.  Special Characters and Their

Meanings in a String

Special Characters Meaning

\t Time

\d Date

\n New line character

\h Host name

\s Name of program, i.e., octave

\w Current working directory

\u Username

Command number since Octave

started

\\ A backslash

Chapter 2 Interactive Octave Sessions

23

command prompt is valid during a single session of Octave. When Octave

restarts, the old values are lost and the default command prompt is issued

at the Octave terminal.

Note that statements starting with % are treated as comments; they

are not executed by Octave. Comments must be written to explain the

structure of the code and beginners should practice writing comments for

each line. They will help you understand your code after a long time and

will also help others when the code is shared with them.

2.4  �Working with Files
Apart from working on Octave REPL, you can write multi-line programs

using the built-in text editor in Octave and run the program. Let’s see

how this works by writing a two-line program called helloagain.m

(see Listing 2-1). This can be created by typing edit helloagain at

the Octave command prompt. A new file called helloagain.m will be

created in a folder/directory in which the present session of Octave is

running. Alternatively, the program can also be created in the editor

by clicking on the lowermost part of the Command Window, which has

an option named Editor. This opens a blank editor window in which

the helloagain.m code can be written manually. You can then save the

file using Ctrl+S. By default. Note that all Octave script files are saved

with an .m extension. You can open the existing file by navigating to the

appropriate folder and choosing the file in the explorer.

Listing 2-1.  The helloagain.m File

1 disp("\nHello World!\n")

2 disp("Hello again\n")

Chapter 2 Interactive Octave Sessions

24

The \n character in the string input is used to print a newline character,

which simply adds a paragraph return and prints the next characters on a new

line. The disp() function prints the string at the command prompt.

You have many options for running an Octave file:

•	 You can simply type the name of file (without the

extension) at the Octave command prompt. For

example, the output of typing helloagain is shown

here:

1 >> helloagain

2

3 Hello World!

4

5 Hello again

6

7 >>

8

•	 From the Editor menu, you can click on Run and choose

Save File and Run. You can also choose to click the

given key combination. It prompts you to save the file

if the script file is being run for the first time. You can

choose to save the file at a chosen destination within

the local computer’s storage.

In any case, the output is displayed at the command prompt, unless

graphical output is directed to a graphical terminal. For now, we’ll restrict

the discussion to textual output.

These two methods of working with Octave (using REPL and using

files) each has its own merits and usage. Interactive sessions are best for

quickly checking for a small part of complex code. Files are best with a

project involving detailed calculations and are linked with one another

to perform a computational task. The following chapters discuss various

concepts wrapped around these two kinds of sessions.

Chapter 2 Interactive Octave Sessions

25

2.5  �Using the Workspace
A workspace is the abstract space reserved for objects in the Octave session.

All the objects used in calculations are displayed. This is usually placed as

the second option in the left panel of the main Octave session window. You

can observe that ans appears when anything is executed at the command

prompt. For example, when helloagain.m was executed, ans was created

and it stored Char (characters). If ans is now written at the command

prompt, it prints the full path to the file helloagain.m in the local computer.

The ans displayed in the workspace is called a variable (because it

can store a variety of values) and it stores the last executed values as

a result of evaluating the expression at the Octave command prompt.

All commands are treated as expressions at the Octave command

prompt. The ans is called the global variable because it can be accessed

globally, i.e., it has a global scope. This means that any Octave function

can access it for usage and modification. More illustrations are

shown in Chapter 3. The workspace window displays all global and

local variables (those that have specific/local scope within a function

only). The command clear clears all global and local variables in the

workspace and makes it fresh, just as when an Octave session is initially

launched. Its detailed usage is explained in Chapter 3.

2.6  �Suppressing the Output Display
If the semicolon symbol ; is used at the end of a command, the output

is not displayed upon the execution of the command. The workspace is

appropriately populated with local and global variables, their values, and

other properties, but the output display is suppressed. This is useful when

you expect too much output would be displayed. For example, when you are

dealing with a multitude of data points, say a million data points, it would be

pointless to invest time and computer memory in displaying them at Octave’s

command prompt. This feature can also be used within Octave scripts, when

you don’t want to print a particular output at the command prompt.

Chapter 2 Interactive Octave Sessions

26

2.7  �Running an Octave Program from the
System Terminal

All operating systems offer terminal programs from which commands

can be issued. A program can be run from a terminal by typing the name

of application program stored in the system. In the case of Octave, this

is $octave. Hence an Octave program, such as helloagain.m, can be

executed from a system’s terminal by issuing this command:

1 $octave helloagain.m

It is important to note that this works only if you are working in the

same directory in which the program is stored. Otherwise, instead of just

filename, you must provide the full file path. You can also run multiple

Octave files by typing their names successively, separated by whitespace

characters.

2.8  �Summary
This chapter introduced working with Octave using single-line programs

or multi-line script files. Working with Octave REPL in an efficient manner

is a critical skill for a developer. At the same time, Octave also presents a

feature rich built-in text editor. This makes life for an Octave developer

quite easy, as you don’t need to write the code outside the Octave session

and then run it using an Octave program.

2.9  Bibliography

	 [1]	 https://www.gnu.org/software/octave/doc/

v4.0.0/Customizing-the-Prompt.html

Chapter 2 Interactive Octave Sessions

https://www.gnu.org/software/octave/doc/v4.0.0/Customizing-the-Prompt.html
https://www.gnu.org/software/octave/doc/v4.0.0/Customizing-the-Prompt.html

CHAPTER 3

Mathematical
Expressions

3.1  Octave and Math
Octave is primarily a tool for solving mathematical problems numerically.

This must necessarily mean that Octave provides a means to define

mathematical structures in some way so that Octave REPL can evaluate

them. Octave REPL must also understand some mathematical symbols

like + (addition),- (subtraction), * (multiplication), and / (division) and

their behavior must match their mathematical definitions. Octave must

also be able to define a variety of numbers in its framework and be able

to operate arithmetic operations on them appropriately. If Octave cannot

depict a number system or cannot define mathematical operations, then

you cannot perform those calculations using Octave. For example, Octave

at present cannot perform bra and ket operator-based calculations for

quantum mechanics.

Let’s start probing Octave’s abilities to perform simple arithmetic

operations first and then dive into complex calculations. Keep in mind

that the speed of execution depends on the user’s machine’s hardware.

Older computers having less RAM and slower processors will take longer

to execute a program than newer computers. Speed also depends on

28

the processor’s availability for requests from Octave. Most of the newer

computers perform calculations at lightening speeds, such that as soon as

you press Enter, you can see the output of these simple calculations. But

a lot of steps are happening behind the scenes and you must understand

the process to optimally utilize both the computing resources at hand and

Octave as a program.

3.2  �Octave as a Calculator
In its simplest form, Octave works as a calculator with mathematical

operators like multiplication (*), division (/), addition (+), subtraction (-),

and exponentiation (^). The following code illustrates this behavior:

 1 >> 3+5

 2 ans = 8

 3 >> 3.0+5.0

 4 ans = 8

 5 >> 3.1+5.0

 6 ans = 8.1000

 7 >> 2-3

 8 ans = -1

 9 >> 3.0*5

10 ans = 15

11 >> 2/3

12 ans = 0.66667

13 >> format long

14 >> 2/3

15 ans = 0.666666666666667

16 >> format short

17 >> 2/3

18 ans = 0.66667

19 >> 2%3

Chapter 3 Mathematical Expressions

29

20 ans = 2

21 >> 2ˆ3
22 ans = 8

As you can see, when a command is entered at the Octave REPL

command prompt >>, it is executed and an answer is displayed in the next

line as ans =. As explained, ans is a global variable that stores the value

of the last executed expression. The commands written at Octave REPL

are called expressions and are evaluated by REPL. The behavior of this

expression execution must be well defined to get a meaningful answer.

Unlike other programming environments, even 3.0+5.0 yields an answer,

which is displayed as an integer 8. But when 3.1+5.0 is evaluated, the

answer is displayed as 8.1000. To display more numbers in the result, you

can use the format long command. By default, Octave works with the

command format short.

In the section on data types later in this chapter, you learn that all

objects belong to a certain data type. Integers and decimal numbers

belong to two distinct data types and operators act accordingly. For

example, adding two decimals is quite different than adding two integers.

In the case of decimals, digits before and after the decimal point hold a

different significance. They are also represented and stored differently in a

computer.

Octave requires a * symbol to represent two or more multiplying

entities. It is important to note that it is not x sign as you might expect.

A computing system needs to know the operand and the operator. For

example, * is an operator and 3.0 and 5 are the operators. Notice that if a

result can be represented as an integer, Octave will do so. This behavior is

quite different than other programming languages.

Dividing two numbers produces two outputs, the quotient and the

remainder. Octave calculates the quotient using the / operator and

calculates the remainder using the % operator. For this reason, when 2/3 is

given to REPL, the quotient is evaluated as 0.66667, and when 2%3 is given

to REPL, the remainder is evaluated as 2.

Chapter 3 Mathematical Expressions

30

By default, Octave displays five significant digits in human-readable

form. The format() function can change this option. As seen in the

following code, format short shortens the number of significant digits

and format long lengthens them. But it is important to note that this does

not alter the way Octave stores these numbers. They are stored as per their

assigned/declared data type. The format short e and format short E

commands both print the evaluated result in scientific notation.

1 >> format short e

2 >> 2/3

3 ans = 6.6667e-01

4 >> format short E

5 >> 2/3

6 ans = 6.6667E-01

This is inline with the fact that

2

3
6 6667 10 0 666671= ´ =-. .

Since the display is formatted for five significant digits, the last digit

(i.e., the fifth one) is rounded toward +∞. In both cases, the power of 10

is separated by either a lowercase e or an uppercase E. As discussed, the

short command sets the significant digits to five. It can be set to 15 using

long, as shown here:

1 >> format long e

2 >> 2/3

3 ans = 6.66666666666667e-01

4 >> format long E

5 >> 2/3

6 ans = 06.66666666666667E-01

Chapter 3 Mathematical Expressions

31

If short g or long g is given to REPL, it chooses between a fixed point

and exponential format based on the magnitude of the number. This

behavior is shown here:

 1 >> format short g

 2 >> 2/3

 3 ans = 0.66667

 4 >> 2/3.1354222

 5 ans = 0.63787

 6 >> 2.12342/3.7773837383

 7 ans = 0.56214

 8 >> 29/9282829290200229

 9 ans = 3.124e-15

10 >> format long g

11 >> 2/3

12 ans = 0.666666666666667

13 >> 2/3.1354222

14 ans = 0.637872628445381

15 >> 2.12342/3.7773837383

16 ans = 0.562140398517107

17 >> 29/9282829290200229

18 ans = 3.12404753910696e-15

If short eng or long eng is chosen, then the behavior is identical to

short e or long e, except that the value is displayed using an engineering

format, where the exponent is divisible by 3.

 1 >> format short eng

 2 >> 2/3

 3 ans = 666.6667e-003

 4 >> 29/9282829290200229

 5 ans = 3.1240e-015

 6 >> format long eng

Chapter 3 Mathematical Expressions

32

 7 >> 2/3

 8 ans = 666.66666666666663e-003

 9 >> 29/9282829290200229

10 ans = 3.12404753910696e-015

3.3  �Rational Number Approximations
A rational number corresponds to a real number. But real numbers

involve rational as well as irrational numbers. A real number can only be

approximated as a rational expression. This can be achieved using the

rat() function. An example is given as follows:

1 >> rat(2.34)

2 ans = 2 + 1/(3 + 1/(-17))

3 >> rat(2.3445643)

4 ans = 2 + 1/(3 + 1/(-10 + 1/(-4 + 1/(-2 + 1/(-2)))))

When these fractions are calculated and added, the final result is quite

close to 2.34 and 2.3445643, respectively. Since you may never achieve

the exact number in most cases, this is called a rational approximation.

The job of the rat() function to to print the rational approximation on the

screen. Keep in mind that the rational approximation is merely printed

this way; it is still stored as a real number (represented by floating point

numbers). All the numerical outputs of REPL can be formatted as rational

number approximations using the format rat command, as shown here:

1 >> format rat

2 >> 30.34

3 ans = 1517/50

4 >> 3.54/23.787986

5 ans = 4871/32732

Chapter 3 Mathematical Expressions

33

The default is format short, which I suggest you use in the rest of the

book. These formatting commands last only as long as the present Octave

session. When Octave is restarted, the default settings are in place again.

3.3.1  �Predefined Constants
A number of physical constants are defined as follows: pi, e (Euler’s

number), i and j (the imaginary number -1), inf (infinity), and NaN

(not a number, which results from undefined operations such as Inf/Inf).

 1 >> pi

 2 ans = 3.1416

 3 >> e

 4 ans = 2.7183

 5 >> i

 6 ans = 0 + 1i

 7 >> j

 8 ans = 0 + 1i

 9 >> Inf/Inf

10 ans = NaN

They can also be used with formatted outputs, as shown in this code:

 1 >> pi

 2 ans = 3.1416

 3 >> format long

 4 >> pi

 5 ans = 3.14159265358979

 6 >> format long e

 7 >> pi

 8 ans = 3.14159265358979e+00

 9 >> format short e

10 >> pi

Chapter 3 Mathematical Expressions

34

11 ans = 3.1416e+00

12 >> format short g

13 >> pi

14 ans = 3.1416

15 >> format long g

16 >> pi

17 ans = 3.14159265358979

18 >> format short eng

19 >> pi

20 ans = 3.1416e+000

21 >> format long eng

22 >> pi

23 ans = 3.14159265358979e+000

24 >> format rat

25 >> pi

26 ans = 355/113

27 >> format short

It is interesting to note that π (which is an irrational number) can be

depicted in a variety of formats on the terminal.

3.4  �Using Complex Numbers
Computations involving complex numbers can be found in almost

all branches of science and mathematics. The flexible way of defining

complex numbers and their mathematics is an art that all Octave-

based numerical computation developers must understand to compute

efficiently. The world of complex numbers encompasses important

scientific domains. When they are used to describe reality, they present

more enriched pictures of physical phenomena as compared to using only

real numbers.

Chapter 3 Mathematical Expressions

35

Every programming language that can perform mathematical

calculations robustly must handle complex numbers with ease. Octave

is one such language. Complex numbers are defined with ease and most

of their functions are present. Their usage in calculations with other data

types is quite flexible and flawless.

3.4.1  �Defining a Complex Number
A complex number can be defined in two ways:

•	 Using the complex() function with two inputs, where

the first one is real and the second one is imaginary:

1 >> complex(2,3)

2 ans = 2 + 3i

3

•	 Straightaway as a + ib or a + jb:

 1 >> i

 2 ans = 0 + 1i

 3 >> j

 4 ans = 0 + 1i

 5 >> 2 + 3i

 6 ans = 2 + 3i

 7 >> 2 + 3j

 8 ans = 2 + 3i

 9 >>

10

Both i and j hold the value of iota, i.e., -1 . The real and imaginary

parts can be found using the real() and imag() functions, which take a

complex number as their input.

Chapter 3 Mathematical Expressions

36

1 >> real(complex(2,3))

2 ans = 2

3 >> imag(complex(2,3))

4 ans = 3

5 >> real(3)

6 ans = 3

7 >> imag(3)

8 ans = 0

When real and imaginary parts of a real number are probed, you

obtain only the real part, as the imaginary part is zero.

3.4.2  �Properties of Complex Numbers
Complex numbers are graphically defined as shown in Figure 3-1. On a

real-imaginary axis based complex plane, a particular point is defined

by a complex number a + ib, where a is magnitude of projection of the

point on a real axis and b is magnitude of projection of the point on an

imaginary axis.

The figure shows a point depicting the complex number z = x + iy. The

values of r = |z| (absolute value) and ϕ (argument) are given by:

	 r x y= +2 2
	 (Equation 3-1)

	
f = æ

è
ç

ö
ø
÷

-tan
y

x
1

	
(Equation 3-2)

Chapter 3 Mathematical Expressions

37

The absolute value of a complex number is simply its distance from

the origin. The argument of a complex number is simply the angle it makes

with the horizontal axis in a counterclockwise direction.

The principle and argument (in radians) for complex numbers—for

example, 4 + 3i and 4 + 3i—can be calculated using Octave.

 1 >> abs(complex(4,3))

 2 ans = 5

 3 >> angle(complex(4,3))

 4 ans = 0.64350

 5 >> abs(complex(4,3))

 6 ans = 5

 7 >> angle(complex(4,3))

 8 ans = 0.64350

 9 >> abs(complex(-4,3))

10 ans = 5

11 >> angle(complex(-4,3))

12 ans = 2.4981

The angle outputs are produced in radians, which can then be

converted into degrees. Here, we used the mathematical functions abs()

and angle() on complex numbers. The next section illustrates more

functions that can be used on real numbers too.

Figure 3-1.  Complex number depicted on complex plane [1]

Chapter 3 Mathematical Expressions

38

3.4.3  �Using Conjugates
The conjugate of a complex number is its mirror image along the

horizontal axis. Its imaginary part is the negative of the original number.

When the original number is squared with its conjugate, you get r2.

1 >> conj(complex(2,3))

2 ans = 2 - 3i

3 >> conj(complex(2,3))*complex(2,3)

4 ans = 13

3.4.4  �Adding and Subtracting Two Complex
Numbers

Complex arithmetic involves the typical operations such as addition,

subtraction, multiplication, division, and exponentiation. However, the

rules for complex numbers are a bit different.

Adding two complex numbers involves adding their real and imaginary

parts. This is also the case with subtraction. Suppose you define two

complex numbers as follows:

	 z a b i1 1 1= + 	

	 z a b i2 2 2= + 	

Then you can define their addition and subtraction as follows:

	 z z a a b b i1 2 1 2 1 2+ = +()+ +()
	

	 z z a a b b i1 2 1 2 1 2- = +()- +() 	

This can be verified by the Octave code as follows:

1 >> (2 + 3i)+(3 + 2i)

2 ans = 5 + 5i

3 >> (2 + 3i)-(3 + 2i)

4 ans = -1 + 1i

Chapter 3 Mathematical Expressions

39

3.4.5  �Multiplying and Dividing Complex
Numbers

Multiplication and division operations on complex numbers are not that

straightforward. Consider this operation:

z z a a a b i a b b b i1 2 1 2 1 2 2 2 1 2
2´ = ´()+ ´() + ´()+ ´()()

It simplifies by collecting the real terms and imaginary terms, as follows:

z z a a b b a b a b i1 2 1 2 1 2 1 2 2 1´ = -()+ +()

because i  2 = -1. You can multiply and divide a complex number by a real

number by simply performing the multiplication or division for the real

and imaginary part, respectively.

A complex conjugate of a complex number, such as z1 = a1 + b1i, is

defined as z a b i1 1 1
* = - . Geometrically, z1

* is the “reflection” of z1 about

the real axis. Hence, if you calculate the conjugate twice, you get the same

number: (z1
)= z1.

You can divide a complex number using its conjugate, as follows:

a b i

a b i

a b i

a b i

a b i

a b i

a a b b

a b

b1 1

2 2

1 1

2 2

2 2

2 2

1 2 1 2

2
2

2
2

1+
+

=
+
+

´
-
-

=
+
+

+
aa a b

a b
i2 1 2

2
2

2
2

-
+

So multiplying the denominator’s complex conjugate by both the

numerator and the denominator yields a new complex number, which is

the result of dividing two complex numbers.

1 >> (2 + 3i)*(2 - 3i)

2 ans = 13

3 >> (2 + 3i)*(4 - 4i)

4 ans = 20 + 4i

5 >> (2 + 3i)/(4 - 4i)

6 ans = -0.12500 + 0.62500i

Chapter 3 Mathematical Expressions

40

3.5  �Common Mathematical Functions
A number of built-in mathematical functions exist in Octave. Describing

each one is beyond the scope of this book, but a few of the more common

ones are explained in this section.

•	 Absolute value: abs().

•	 Logarithm: Natural logarithm log(), Base-10 logarithm

log10().

•	 Trigonometric functions: sin(), cos(), and tan().

Arguments are taken in radians.

•	 Inverse-trigonometric functions: asin(), acos(), and

atan().

 1 >> abs(-10.034) // absolute value

 2 ans = 10.034

 3 >> log (e) // logarithm to base e

 4 ans = 1

 5 >> log10(10) // logarithm to base 10

 6 ans = 1

 7 >> sin(10) // sine(angle in radians)

 8 ans = -0.54402

 9 >> cos(10) // cosine(angle in radians)

10 ans = -0.83907

11 >> tan(10) // tangent(angle in radians)

12 ans = 0.64836

13 >> asin(1) // arcsin or inverse of sine

14 ans = 1.5708

15 >> asin(10)

16 ans = 1.5708 + 2.9932i

17 >> acos(1) // arccosin or inverse of cosine

Chapter 3 Mathematical Expressions

41

18 ans = 0

19 >> acos(10)

20 ans = 0.00000 - 2.99322i

21 >> atan(1) // arctan or inverse of tangent

22 ans = 0.78540

23 >> atan(10)

24 ans = 1.4711

Complex calculations using these functions and operations can be

performed with ease:

sin cos10 10
2 2() + ()

and

sin

cos

10

10

()
()

1 >> sqrt(((sin(10))ˆ2)+(cos(10))ˆ2)
2 ans = 1

3 >> sin(10)/sqrt(cos(10))

4 ans = 0.00000 + 0.59390i

3.6  �Learning More Mathematical Functions
Covering all the functions available in Octave is beyond the scope of this

book. To understand how a particular function needs to be used, you can

use the help() command, where the argument is the function you want

to learn about. For example, help(exp) gives a detailed view of how this

function should be used.

Chapter 3 Mathematical Expressions

42

 1 >> help("exp")

 2 �'exp' is a built-in function from the file libinterp/

corefcn/mappers.cc

 3

 4 -- Mapping Function: exp(X)

 5 Compute 'eˆx' for each element of X.
 6

 7 �To compute the matrix exponential, see *note Linear

Algebra::.

 8

 9 See also: log.

10

11 Additional help for built-in functions and operators is

12 �available in the online version of the manual. Use the command

13 'doc<topic>' to search the manual index.

14

15 Help and information about Octave is also available on the

16 WWW at http://www.octave.org and via the help@octave.org

17 mailing list.

Using the doc("exp") command, you will obtain detailed syntax

information as well as example code in some cases. You can simply browse

the Arithmetic section of the documentation to learn more.

3.7  �Using Variables
Until now, we have been feeding numbers into Octave REPL with on-the-

spot evaluation. Alternatively, you can designate a memory location where

values are stored and this memory location can be known by a name for

ease of usage. Such a programming construct is known as a variable.

Chapter 3 Mathematical Expressions

43

To store values temporarily, you use variables that store the value at a

particular memory location and address it with a symbol or set of symbols

(called strings). For example, you can store the value of 1/10*pi as a

variable a and then use it in an equation like so:

a a2 10+

1 >> a=1/10*pi

2 a = 0.31416

3 >> aˆ2 + 10* sqrt(a)
4 ans = 5.7037

The symbol = works as an assignment operator because it assigns the

value on the right side to the variable name on the left side. Its behavior is

markedly different than its mathematical counterpart (which checks the

equality of its right side and left side).

Multiple assignments can be performed using the comma (,) operator.

Also if you do not want to produce results on-screen, you can suppress this

by using the ; operator.

 1 >> a1 = 1, a2 = 10, a3 = 100

 2 a1 = 1

 3 a2 = 10

 4 a3 = 100

 5 >> a1 = 1, a2 = 10, a3 = 100;

 6 a1 = 1

 7 a2 = 10

 8 >> a1 = 1; a2 = 10; a3 = 100;

 9 >> a1

10 a1 = 1

11 >> a2

12 a2 = 10

13 >> a3

14 a3 = 100

Chapter 3 Mathematical Expressions

44

3.7.1  �Data Types
While assigning data to a variable, it is important to understand that data

can be defined as a variety of objects defined by a data type, as follows:

•	 Logical: This type of data stores boolean values 1 or

0. Boolean values can be operated on by boolean

operators, like AND, OR, XOR, etc.

•	 Char: This type of data stores alphabetic characters and

strings (groups of characters written in a sequence).

•	 Int8, int16, int32, and int64: This type of data is stored

as integers within 8 bits, 10 bits, 32 bits, and 64 bits.

The size of the integer is given by its bit counts. Both

logical and char are 1 byte (8 bits) wide.

•	 uint8, uint16, uint32, and uint64: This type of data

stores unsigned integer data in 8, 16, 32, and 64 bits.

•	 double, single: This type of data is stored as double and

single precision floating types, respectively. Decimal

numbers are represented by floating point data types.

Single precision occupies 4 bytes (32 bits) and double

precision occupies 8 bytes (64 bits) to store the floating

point numbers.

In a single precision system, 23 bits store the fraction

bits (i.e., the numbers after the decimal point), 8

bits store the exponent (i.e., the numbers before the

decimal point), and the 32nd bit is reserved for storing

the sign.

In a double precision system, 52 bits store the fraction

bits (i.e., the numbers after the decimal point), 11 bits

store the exponent (i.e., the numbers before the decimal

point), and the 64th bit is reserved for storing the sign.

Chapter 3 Mathematical Expressions

45

Single and double precision matters when the precision

of the result matters. In cases like GPS position for a

projectile flying at high speeds, the results should be as

precise as possible for greater accuracy.

•	 double complex, single complex: Complex numbers

have real and imaginary parts, which are stored

separately. These numbers can be stored as single or

double precision numbers using these data types.

3.7.2  �Floating Point Numbers and Arithmetic
Real numbers are represented as floating-point numbers in a computer.

The mapping of a real number to a computer’s storage system is a

formulaic representation (called a floating point representation) [2]. Here,

real numbers are expressed in three parts—the significand, base, and

exponent.

For example, the value of π is 3.1415926535897… . Let’s suppose that

you have only four significant digits for a particular calculation. So the value

can be rewritten as 3.1415. Now this number is represented as 31415 x 10-4

where 31415 is the significand, 10 is the base, and -4 is the exponent.

While assigning a number to the significand, the information about

the number of significant digits is used. The significant figures of a number

are the digits that carry meaning contributing to its measurement. In the

current example, we assumed only four significant digits, depending on

the requirements of the calculations/measurements. The term floating

point refers to the fact that a number’s radix point (decimal point) can

float; that is, it can be placed anywhere relative to the significant digits

of the number. This position is indicated as the exponent component,

and thus the floating point representation can be thought of as a kind of

scientific notation.

Chapter 3 Mathematical Expressions

46

�Storing a Floating Point Number

Computers can store numbers as floating point objects. A floating point

object stores a number as follows:

	 ± ´d d ds
e

1 2� b 	 (3.3)

Where di = 0, 1, 2…β - 1 but d1 ≠ 0 and m ≤ e ≤ M, where m ∈ I- and

M ∈ I+.

The three parts of a floating point number are:

•	 Sign (±)

•	 Significand (mantissa) (d1d2…ds)

•	 Exponent (β)

Each part of a floating point number is stored in different memory

locations and occupies a specified number of bits. How many bits are

defined to which parts? These questions have been answered by IEEE

standards known as the IEEE754 [2]. First let’s look at the concept of

precision in a number representation.

•	 Single precision: Occupies 4 bytes/32 bits

•	 Double precision: Occupies 8 bytes/64 bits

•	 Extended double precision: Occupies 80 bits

•	 Quadruple precision: Occupies 16 bytes/128 bits

Each version has one bit reserved for depicting the sign of the number.

Others bits are divided based on significand and exponent. Since all

numbers are stored as binary numbers in a computer, the base is always 2.

Depending on the number of bits available for storage, the maximum

numeral value can be defined for a data type.

Chapter 3 Mathematical Expressions

47

3.7.3  �Overflow and Underflow Errors
If n bits are available to the significand, the maximum value can be 2n. For

the overall data type, if n bits are available for storage, and if one of them

must be used for assigning the sign bit, then 2n - 1 is the maximum numeral

value that can be stored by that data type. The limits are toward the both

extremes (positive and negative numbers) for each data type.

Hence, crossing the limits results in overflow and underflow errors.

When a number bigger than the biggest possible number is stored within

a data type, it’s called an overflow error. Similarly, when a smaller number

is raised past its precision, underflow errors might occur. These types of

errors can affect the final result drastically, especially when they propagate

in a calculation.

It is important to perform back-of-the-envelop calculations for a

particular problem to get an idea about the maximum and minimum

numbers expected when running a program. Accordingly, you can assign

data types based on your calculations. If you do not assign data types, Julia

will assign them according to its own rules and this might incur precision

errors as well as underflow and overflow errors.

3.7.4  �Floating Point Numbers vs. Real Numbers
Keep in mind that floating point numbers are abstracts of real numbers.

Sometimes this abstraction fails to represent the real numbers precisely.

It depends on the user’s judgment whether this failure is insignificant.

You can still confidently use floating point representation for calculations,

keeping in mind the errors. A few examples will make this clearer:

If a, b, n ∈ ℜ ∃ c
a b

n
=

+
 such that c ∈ ℜ, where ℜ represents a set of

real numbers. This essentially says that between any two real numbers,

there exists another real number.

But, this is not true for floating point numbers because floating point

numbers are defined for a finite precision.

Chapter 3 Mathematical Expressions

48

Because of this, floating point numbers are approximations of real

numbers.

7 7 7 0´ - = , but Julia shows a finite small number for this

calculation due to the finite precision nature of floating point numbers

used to define 7 :

1 >> format long

2 >> sqrt(7)*sqrt(7)

3 ans = 7.00000000000000

4 >> (sqrt(7)*sqrt(7))-7

5 ans = 8.88178419700125e-16

6

3.7.5  �The eps() Function
The eps() (epsilon) function defines the smallest floating point number

that can be defined for a machine. Hence, t is the machine precision

for representing a floating point number on a particular machine. For

example, on a 64-bit system, it comes out to be 2.22044604925031×10-16.

The eps() function takes a floating point number as input and outputs the

next floating point number that can be represented by the machine.

1 >> eps

2 ans = 2.22044604925031e-16

3 >> eps(1)

4 ans = 2.22044604925031e-16

5 >> eps(10)

6 ans = 1.77635683940025e-15

Machine resolution generally decides the resolution of results and

affects the accuracy of results. Storing numbers with better resolution is

costly in terms of time (it will take more time to calculate a larger number

of bits) and storage (the numbers themselves will occupy more bits).

Chapter 3 Mathematical Expressions

49

3.7.6  �Naming Conventions for Variables
Variable names have certain naming conventions that you must abide by

to avoid errors.

•	 Names should not start with a number; however,

numbers can be used anywhere afterwards.

•	 Variable names are case-sensitive.

•	 Keywords cannot be used as names.

•	 Names can include underscores (_).

While naming a variable, if you need to verify that the name is not

a keyword, you can use the built-in function iskeyword(name). Simply

typing iskeyword() produces a list of keywords, as shown here:

 1 >> iskeyword()

 2 ans =

 3 {

 4 [1,1] = __FILE__

 5 [2,1] = __LINE__

 6 [3,1] = break

 7 [4,1] = case

 8 [5,1] = catch

 9 [6,1] = classdef

10 [7,1] = continue

11 [8,1] = do

12 [9,1] = else

13 [10,1] = elseif

14 [11,1] = end

15 [12,1] = end_try_catch

16 [13,1] = end_unwind_protect

17 [14,1] = endclassdef

Chapter 3 Mathematical Expressions

50

18 [15,1] = endenumeration

19 [16,1] = endevents

20 [17,1] = endfor

21 [18,1] = endfunction

22 [19,1] = endif

23 [20,1] = endmethods

24 [21,1] = endparfor

25 [22,1] = endproperties

26 [23,1] = endswitch

27 [24,1] = endwhile

28 [25,1] = enumeration

29 [26,1] = events

30 [27,1] = for

31 [28,1] = function

32 [29,1] = global

33 [30,1] = if

34 [31,1] = methods

35 [32,1] = otherwise

36 [33,1] = parfor

37 [34,1] = persistent

38 [35,1] = properties

39 [36,1] = return

40 [37,1] = static

41 [38,1] = switch

42 [39,1] = try

43 [40,1] = until

44 [41,1] = unwind_protect

45 [42,1] = unwind_protect_cleanup

46 [43,1] = while

Chapter 3 Mathematical Expressions

51

3.7.7  �List of Variables
A list of all variables can be obtained by using the commands who and

whos. The who command simply presents the list of variables in the

workspace, whereas whos presents the list with more detail, including the

size of the variable, the number of bytes used to store the variable, and the

variable type.

 1 >> who

 2 Variables in the current scope:

 3

 4 ans

 5

 6 >> whos

 7 Variables in the current scope:

 8

 9 Attr Name Size Bytes Class

10 ==== ==== ==== ===== =====

11 ans 42x1 336 cell

12

13 Total is 42 elements using 336 bytes

By using who and whos, you can keep track of memory requirements.

Judicious use of memory resources is especially important with Raspberry

Pi based systems.

3.7.8  �Global and Local Variables
A variable declared globally (within the main program) is known as a global

variable, whereas a variable declared locally (within a function) is known

as a local variable. When you define the global declaration statement, it

remains the same regardless of any new definitions, unless you issue the

clear command to clear the variable names and values from memory.

Chapter 3 Mathematical Expressions

52

 1 >> global a =1

 2 >> global a = 2

 3 >> a

 4 a = 1

 5 >> clear

 6 >> who

 7 >> whos

 8 >> a=1

 9 a = 1

10 >> a=2

11 a = 2

12 >>

As you can see, a = 1 stays the same regardless of the next definition,

a = 2. When the clear command is issued at the command prompt, all

variable names and values are flushed from memory and the variable

name can be used again. This time, if it is not defined as a global variable,

then its value can be changed repeatedly. The isglobal()command lets

you check if a variable name has been defined as a global variable.

Global variables are used to define constants during numerical

calculations. Suppose you wanted all variables except a select few to

change values. In this case, you would define those unchanging values as

global variables by giving them the name of your choice. The predefined

variables like pi, e, etc. have been defined in a similar manner.

3.7.9  �The clear Function
As you saw in the previous section, the clear command flushes out

variable names and their values from memory. But it proves to be much

more useful than that. Whereas clear all is the same as clear, it can also

be used to selectively wipe out variables and their values. Simply type help

clear to get a detailed view of its use:

Chapter 3 Mathematical Expressions

53

 1 >> help clear

 2 �'clear' is a built-in function from the file libinterp/

corefcn/variables.cc

 3

 4 -- Command: clear [options] pattern ...

 5 �Delete the names matching the given patterns from the

symbol table.

 6 The pattern may contain the following special characters:

 7

 8 '?'

 9 Match any single character.

10

11 '*'

12 Match zero or more characters.

13

14 '[LIST]'

15 Match the list of characters specified by LIST. If the first

16 character is '!' or 'ˆ', match all characters except those
17 specified by LIST. For example, the pattern '[a-zA-Z]' will

18 match all lowercase and uppercase alphabetic characters.

19

20 For example, the command

21

22 clear foo b*r

23

24 �clears the name 'foo' and all names that begin with the

letter 'b'

25 and end with the letter 'r'.

26

27 If 'clear' is called without any arguments, all user-defined

Chapter 3 Mathematical Expressions

54

28 �variables (local and global) are cleared from the symbol

table. If

29 �'clear' is called with at least one argument, only the

visible

30 �names matching the arguments are cleared. For example,

suppose you

31 �have defined a function 'foo', and then hidden it by

performing the

32 �assignment 'foo = 2'. Executing the command 'clear foo'

once will

33 �clear the variable definition and restore the definition of

'foo'

34 �as a function. Executing 'clear foo' a second time will

35 clear the function definition.

36

37 �The following options are available in both long and short

form

38

39 �'-all, -a' Clears all local and global user-defined

40 variables and all functions from the symbol table.

41

42 '-exclusive, -x'

43 �Clears the variables that don't match the following

pattern.

44

45 '-functions, - f'

46 Clears the function names and the built-in symbols names.

47

48 '-global, -g'

Chapter 3 Mathematical Expressions

55

49 Clears the global symbol names.

50

51 '-variables, -v'

52 Clears the local variable names.

53

54 '-classes, -c'

55 Clears the class structure table and clears all objects.

56

57 '-regexp, -r'

58 The arguments are treated as regular expressions as any

59 variables that match will be cleared.

60

61 �With the exception of 'exclusive', all long options can be used

62 without the dash as well.

63

64

65 Additional help for built-in functions and operators is

66 �available in the online version of the manual. Use the

67 command 'doc<topic>' to search the manual index.

68

69 Help and information about Octave is also available on the

70 WWW at http://www.octave.org and via the help@octave.org

71 mailing list.

72 >>

Judicious use of the clear command proves to be a very powerful tool

in managing memory requirements for a memory-intensive numerical

calculation.

Chapter 3 Mathematical Expressions

56

3.8  �Summary
Octave provides an easy means of performing mathematical calculations.

REPL is quite intuitive and easy to use, but you must consider the fact that

you always get an approximate result. Knowing the machine precision and

using data types judiciously will help you avoid underflow and overflow

errors, which are critical to any numerical analysis task.

3.9  Bibliography
	 [1]	 https://en.wikipedia.org/wiki/File:Complex_

number_illustration_modarg.svg

	 [2]	 http://grouper.ieee.org/groups/754/

Chapter 3 Mathematical Expressions

https://en.wikipedia.org/wiki/File:Complex_number_illustration_modarg.svg
https://en.wikipedia.org/wiki/File:Complex_number_illustration_modarg.svg
http://grouper.ieee.org/groups/754/

CHAPTER 4

Working with Arrays

4.1  �Introduction
Until now, we have considered storing only one value as a variable.

However, there can be situations when a set of elements require similar

processing. Then it would be wise to store them as an ordered set instead

of creating separate variables for each data point. Octave defines an object

named Arrays that can store an ordered set of elements. The elements of

an array can have any data type, but most numerical computations deal

with numerical elements, such as integers, floating point numbers, and

complex numbers. A group of operations can be performed element-wise

on an array by simply using the a.(dot) operator in front of a symbolic

representation of the arithmetic operator. Other mathematical functions—

like sin(), cos(), asin(), etc.—are already vectorized, which means they

perform the operation on each element of the given array. This chapter

deals with defining arrays and using them for scientific computation.

Arrays can be defined by simply enclosing elements in square brackets

and separating them by comma operators or whitespace. For example:

 1 >> a1 = [1,2,3]

 2 a1 =

 3 1 2 3

 4 >> a2 = [1 2 3]

58

 5 a2 =

 6 1 2 3

 7 >> a3 = [1;2;3]

 8 a3 =

 9 1

10 2

11 3

12 >> a4 = ["Sandeep";"Nagar";"Author"]

13 a4 =

14 Sandeep

15 Nagar

16 Author

17 >> a5 = ["Sandeep",1,2]

18 warning: implicit conversion from numeric to char

19 a5 = Sandeep

20 >> a5 = ["Sandeep","","Nagar"]

21 a5 = Sandeep Nagar

As seen in the example code, elements must be the same type.

Numerical data types can be converted to each other, but characters and

strings cannot be converted to numerical data. The first definition of array

a5 produced a warning message and ignored the elements that do not

match the first element’s data type. If elements are strings, then the output

is printed as a simple string at the terminal.

Note that the semicolon ; operator sends the element in the next row

instead of the next column. This way, a 2D or 3D array can be created.

The comma/whitespace operator will separate elements in the same row

and ; will define the element in the next column.

This chapter deals with using arrays as matrices and performing

mathematical calculations on an ordered set of numerical values.

Manipulating matrices and using them to perform numerical calculations

was the key feature of MATLAB that made it so popular. Octave also

includes most of the options facilitated by MATLAB in this regard.

Chapter 4 Working with Arrays

59

4.2  �Arrays and Matrices
Matrices have become an integrated part of numerical computation when

dealing with large quantities of data. For a 2D matrix, elements have a

unique row and column index through which you can access them. Rows

and columns can be attributed to different properties under study. This

way, you can fit data for two properties as a matrix and then use these

matrices for numerical calculations. For example, suppose an element of a

row is defined as 1 if a compound is a conductor, 2 if it is a semiconductor,

and 3 if it is an insulator. A row vector (a matrix composed of only one row)

[1 0 0 3 2 1 3 0 1 0 3 2 1] has information about 13 compounds. In

a numerical conductivity experiment involving the conductive nature of

a compound, this row vector (a 13x1 matrix) can be utilized. A particular

element of an array can be accessed using its index. For 1D arrays, it is

simply the row/column number, whereas for 2D arrays, it’s a combination

of row number and column number. For example:

 1 >> a = [1 0 0 3 2 1 3 0 1 0 3 2 1] % defined an array

 2 a =

 3 1 0 0 3 2 1 3 0 1 0 3 2 1

 4 >> a(1) % first element

 5 ans = 1

 6 >> a(2) % second element

 7 ans = 0

 8 >> a(10) % tenth element

 9 ans = 0

10 >> a = [1 2 3;4 5 6] // defining a two dimensional array

11 a =

12

13 1 2 3

14 4 5 6

15

Chapter 4 Working with Arrays

60

16 >> a(1,2) % element in row 1 and column 2

17 ans = 2

18 >> a(2,1) % element in row 2 and column 1

19 ans = 4

20 >> a(2,2) % element in row 2 and column 2

21 ans = 5

22 >> a(2,4) % element in row 2 and column 4

23 error: �A(I,J): column index out of bounds; value 4 out of

bound 3

When a 2D array is defined (separate elements in the same row by

commas or whitespace and separate elements of two rows by ;), they can

be accessed by giving an appropriate index with row and column indices

separated by commas.

In this way, multi-dimensional matrices can be formed. The next

sections illustrate the processes of creating even higher dimensional

arrays, creating subarrays of lower dimensions, accessing elements of

higher dimensional arrays, and slicing arrays to make another arrays

from their elements. But first the following sections illustrate how a array

having three elements in a row can be effectively used to represent a vector

and three elements can be treated as coordinate points in a particular

coordinate system.

4.3  �Arrays as Vectors
We live in a 3D world and if we consider a Cartesian coordinate system

then we need three numbers along the x, y, and z axes to point at a

particular point. In this case, the point (0, 0, 0) represents the origin and it

is fixed for a system. The point (1, 0, 0) represents moving one step forward

in the x direction, while (0, 0, 1) represents moving one step forward in

the z direction. In a similar fashion, (0, -1, 0) represents moving one step

Chapter 4 Working with Arrays

61

backward in the y direction. You can also move multiple steps at a time.

For example, (2,-3,5) represents a point achieved by moving two steps

forward in the x direction, three steps backward in the y direction, and five

steps forward in the z direction.

Octave can define these coordinates as a row vector (an array having

just row elements) or as a column vector (an array having just column

elements). For example:

 1 >> a1 = [1,0,0]

 2 a1 =

 3

 4 1 0 0

 5

 6 >> a2 = [0,0,1]

 7 a2 =

 8

 9 0 0 1

10

11 >> a3 = [0,-1,0]

12 a3 =

13

14 0 -1 0

15

16 >> a4 = [2,-3,5]

17 a4 =

18

19 2 -3 5

The variables a1,a2,a3,a4, and a5 store arrays corresponding to

Cartesian coordinates (1,0,0), (0,0,1), (0,-1,0), and (2,-3,5), respectively.

Chapter 4 Working with Arrays

62

4.3.1  �Coordinate Properties and Basic
Transformations

Two coordinates can be added and subtracted to get a new coordinate.

For example, (1,0,0) and (2,-1,2) can be added. The individual x, y, and z

components are added to get a new coordinate (3,-1,2). This can be done

in Octave as follows:

 1 >> a1 = [1,0,0]

 2 a1 =

 3

 4 1 0 0

 5

 6 >> a2 = [2,-1,2]

 7 a2 =

 8

 9 2 -1 2

10

11 >> a1 + a2

12 ans =

13

14 3 -1 2

15

16 >> a2 + a1

17 ans =

18

19 3 -1 2

20

21 >> a1 - a2

22 ans =

23

24 -1 1 -2

Chapter 4 Working with Arrays

63

25

26 >> a2 - a1

27 ans =

28

29 1 -1 2

It is important to note that while a1+a2 is the same as a2+a1,

performing a1-a2 and a2-a1 does not yield the same results. This is in line

with the rules of coordinate transformation.

Dividing a coordinate by a real number means taking a smaller step

in that particular direction. For example, (1,1,1) can be divided by 2 to

obtain (0.5,0.5,0.5), which moves half a step in each direction. Similarly,

multiplying real numbers means taking steps that many number of times.

For example, multiplying (1,1,1) by 2 would result in the coordinates (2,2,2).

This moves two steps forward in each direction. Similarly, multiplying by a

negative number means moving that many number of steps in a backward

direction. This is shown in the following Octave code:

 1 >> a1 = [1,1,1]

 2 a1 =

 3

 4 1 1 1

 5

 6 >> 0.5*a1

 7 ans =

 8

 9 0.50000 0.50000 0.50000

10

11 >> a1/2

12 ans =

13

14 0.50000 0.50000 0.50000

Chapter 4 Working with Arrays

64

15

16 >> 2*a1

17 ans =

18

19 2 2 2

20

21 >> -2*a1

22 ans =

23

24 -2 -2 -2

25

26 >> a1/-2

27 ans =

28

29 -0.50000 -0.50000 -0.50000

It is important to note that we have used row vectors, but column

vectors can also be used for the same purpose. The convention is to use

row vectors but it is not a rule.

4.4  �Higher Dimensional Arrays/Matrices
Instead of just three elements, you can have any number of elements in an

array. For example:

 1 >> a = [1,2,3,4,5]

 2 a =

 3

 4 1 2 3 4 5

 5

 6 >> a1 = [10,11,12,13,14]

Chapter 4 Working with Arrays

65

 7 a1 =

 8

 9 10 11 12 13 14

10 >> matrix22 = [1,2;3,4]

11 matrix22 =

12

13 1 2

14 3 4

15 >> matrix33 = [1,2,3;4,5,6;7,8,9]

16 matrix33 =

17

18 1 2 3

19 4 5 6

20 7 8 9

21 >> size(a)

22 ans =

23

24 1 5

25

26 >> size(matrix22)

27 ans =

28

29 2 2

30

31 >> size(matrix33)

32 ans =

33

34 3 3

As seen in the example code, an array can be understood as a matrix

consisting of rows and columns. Thus, you can make a desired sized

matrix. For example, matrix22 is a 2X2 matrix and matrix33 is a 3X3

matrix, whereas a is a 1X5 matrix. The first number when defining the size

Chapter 4 Working with Arrays

66

indicates the number of rows, whereas the second number indicates the

number of columns. The comma (,) operator operates by defining the next

element in the same row, whereas the semicolon (;) operator defines the

numbers in the next line/row.

The size() function provides information about the elements in the

rows and columns. In case of higher dimensional matrices, the size()

function outputs the number of elements in each dimension.

If the number of elements in each row/column does not match, you’ll

get an error message:

 1 >> right33 = [1,2,3;4,5,6;7,8,9]

 2 right33 =

 3

 4 1 2 3

 5 4 5 6

 6 7 8 9

 7

 8 >>wrong33 = [2,3;4,5,6;7,8,9]

 9 error: vertical dimensions mismatch (1x2 vs 1x3)

10 >> wrong33 = [1,2,3;4,5,6;8,9]

11 error: vertical dimensions mismatch (2x3 vs 1x2)

In array wrong33, the first row has only two elements; you can also

say that column 3 has only two elements, which is why an error message

showing a dimensional mismatch is displayed.

Elements of an array can be any data type, as defined in Chapter 3.

All elements of an array can be set to a particular data type by using the

commands as shown here:

 1 >> x = uint32 ([1,65535])

 2 x =

 3

 4 1 65535

Chapter 4 Working with Arrays

67

 5

 6 >> x = uint64([1,65535])

 7 x =

 8

 9 1 65535

10

11 >> x = int16([1,65535])

12 x =

13

14 1 32767

15

16 >> x = int32([1,65535])

17 x =

18

19 1 65535

20

21 >> x = int64([1,65535])

22 x =

23

24 1 65535

25

26 >> x = float([1,65535])

27 error: 'float' undefined near line 1 column 5

28 >> x = single([1,65535])

29 x =

30

31 1 65535

32

33 >> x = double([1,65535])

34 x =

35

Chapter 4 Working with Arrays

68

36 1 65535

37

38 >> x = single([1.0,65535e10])

39 x =

40

41 1.0000e+00 6.5535e+14

42

43 >> x = double([1.0,65535e10])

44 x =

45

46 1.0000e+00 6.5535e+14

Line 14 shows that if the element is set to int16, it can store a

maximum value of 32767, regardless of being commanded to store a value

bigger than that. Hence, it becomes supremely important to understand

the data type of the elements beforehand, in order to avoid errors in

numerical calculations.

Keep in mind also that storing very small numbers in larger numbers

of bits is a waste of memory. (Line 46 displays that the number 1 is stored

as a double precision floating point number, which occupies 64 bits,

whereby essentially 63 bits except the last one are all zeros.)

4.5  �Operations on Arrays and Vectors
Operating on arrays involves two aspects:

•	 Operating on two or more arrays

•	 Element-wise operations

All arithmetic operators, such as +, -, *, /, %, ^, etc., can be used in both

cases. When you need to do element-wise operations, then a dot . is placed

before the operator. The element-wise operators therefore become .+, .-,

.*, ./, .%, and .^. This will become clearer in the following example.

Chapter 4 Working with Arrays

69

 1 >> a = [1,2;3,4]

 2 a =

 3

 4 1 2

 5 3 4

 6

 7 >> b = [5,6;7,8]

 8 b =

 9

10 5 6

11 7 8

12

13 >> a + b

14 ans =

15

16 6 8

17 10 12

18

19 >> 2.+ a

20 ans =

21

22 3 4

23 5 6

24

25 >> -10.+ b

26 ans =

27

28 -5 -4

29 -3 -2

Chapter 4 Working with Arrays

70

When a and b are matrices to be added/subtracted, their elements are

added/subtracted with elements in the same position. For this reason, the

size of the two matrices added or subtracted must be the same.

We write 2.+a and then add 2 to each element individually. This can be

done regardless of size and is implemented uniformly on all the elements

of the matrix.

4.5.1  �Matrix Multiplication
Those who are familiar with matrix algebra know that matrix

multiplication and division is not a straightforward task. An a × b matrix

can only be multiplied by a b × c matrix, which results in an a × c matrix.

This is performed by multiplying elements of rows with elements of

columns to get new elements.

 1 >> a = [1,2;3,4;5,6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7 >> a'

 8 ans =

 9

10 1 3 5

11 2 4 6

12

13 >> a*a'

14 ans =

15

16 5 11 17

17 11 25 39

Chapter 4 Working with Arrays

71

18 17 39 61

19 >> a/b

20 ans =

21

22 0.050000 0.050000 0.050000

23 0.116667 0.116667 0.116667

24 0.183333 0.183333 0.183333

The command a' transposes the matrix a. That means that rows are

made into columns and vice versa.

4.5.2  �Matrix Division and Inverse of a Matrix
Performing division on a matrix involves matrix inversion. This can be

achieved using the inv() function if the input matrix is a square matrix.

Otherwise, the pin() function must be used. A square matrix has an equal

number of rows in each dimension. The built-in function issquare() can

be used to check if the given matrix (represented by an array) is a square

matrix and whether an appropriate function should be used. The result is

1 if the matrix is a square matrix and 0 otherwise. Its usage is illustrated in

the following code:

 1 >> a = [1,2;2,3]

 2 a =

 3

 4 1 2

 5 2 3

 6

 7 >> issquare(a)

 8 ans = 1

 9

10 >> b = [1,2;2,3;3,4]

Chapter 4 Working with Arrays

72

11 b =

12

13 1 2

14 2 3

15 3 4

16

17 >> issquare(b)

18 ans = 0

When the inverse of a matrix is multiplied by itself, you get an identity

matrix, i.e., a matrix with 1 as its elements in the diagonal direction and 0

everywhere else. This can be used to determine if the functions inv() and

pinv() are working fine.

 1 >> a = [2,-2;4,2]

 2 a =

 3

 4 2 -2

 5 4 2

 6

 7 >> inv(a)

 8 ans =

 9

10 0.16667 0.16667

11 -0.33333 0.16667

12

13 >> a*inv(a)

14 ans =

15

16 1.00000 0.00000

17 0.00000 1.00000

18

Chapter 4 Working with Arrays

73

19 >> b = [1,2;3,4;5,6]

20 b =

21

22 1 2

23 3 4

24 5 6

25

26 >> pinv(b)

27 ans =

28

29 -1.33333 -0.33333 0.66667

30 1.08333 0.33333 -0.41667

31

32 >> pinv(b)*b

33 ans =

34

35 1.0000e+00 8.8818e-16

36 -6.6613e-16 1.0000e+00

37

38 >> eps

39 ans = 2.2204e-16

pinv(b)*b results in very small numbers (of the order of 10-16) instead

of 0. This is of the same order of magnitude as the value of eps(). This

means that these numbers can be approximated to be very close to zero, so

the result is indeed an approximation of an identity matrix.

�Identity Matrix

I is called an identity matrix because all of its diagonal elements are 1 and

all its non-diagonal elements are 0, which makes its determinant 1.

Chapter 4 Working with Arrays

74

The determinant of a matrix b is calculated by the command det(b).

So let’s investigate whether the determinant of pinv(b)*b is 1:

 1 >> b = [1,2;3,4;5,6]

 2 b =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> pinv(b)

 9 ans =

10

11 -1.33333 -0.33333 0.66667

12 1.08333 0.33333 -0.41667

13

14 >> pinv(b)*b

15 ans =

16

17 1.0000e+00 8.8818e-16

18 -6.6613e-16 1.0000e+00

19

20 >> det(pinv(b)*b)

21 ans = 1.0000

An identity matrix is automatically generated by using the command

eye(a,b), where a and b are the number of rows and columns.

 1 >> eye(2,2)

 2 ans =

 3

 4 Diagonal Matrix

 5

Chapter 4 Working with Arrays

75

 6 1 0

 7 0 1

 8 >> det(eye(2,2))

 9 ans = 1

10 >> eye(4,5)

11 ans =

12

13 Diagonal Matrix

14

15 1 0 0 0 0

16 0 1 0 0 0

17 0 0 1 0 0

18 0 0 0 1 0

�Division of Matrices

A matrix a can be divided by another matrix b by performing the following:

	

a

b
a b= ´ -1

	 (Equation 4-1)

Let’s test this behavior using Octave code, where first two matrices

are created and stored in variables a and b. Then you can perform matrix

division by calculating a/b and verify the same by calculating a*pinv(b).

 1 >> a = [1,2;3,4]

 2 a =

 3

 4 1 2

 5 3 4

 6

 7 >> b = [2,1;4,3]

 8 b =

Chapter 4 Working with Arrays

76

 9

10 2 1

11 4 3

12

13 >> a/b

14 ans =

15

16 -2.5000 1.5000

17 -3.5000 2.5000

18

19 >> a*inv(b)

20 ans =

21

22 -2.5000 1.5000

23 -3.5000 2.5000

These actions are used to determine a solution for a system of

equations.

4.5.3  �Finding Roots for a Set of Linear Equations
To practically apply these arrays to solve real-world problems, let’s use

arrays to find roots of a set of linear equations. Assume that you have the

following:

	 x y z- - =4 4 	 (Equation 4-2)

	 - - + = -x y z 1 	 (Equation 4-3)

	 x y z+ - = 2 	 (Equation 4-4)

Chapter 4 Working with Arrays

77

You want to find those values of x, y, and z for which all three equations

hold true. To do this, the first matrix formed from these equations can be

written as:

	

1 4 1

1 1 1

1 1 1

4

1

2

- -
- -

-

é

ë

ê
ê
ê

ù

û

ú
ú
ú
´
é

ë

ê
ê
ê

ù

û

ú
ú
ú
= -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

x

y

x

	 (Equation 4-5)

If you assume that:

	 A =
- -

- -
-

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 4 1

1 1 1

1 1 1

	 (Equation 4-6)

	 X

x

y

x

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

	 (Equation 4-7)

	 B = -
é

ë

ê
ê
ê

ù

û

ú
ú
ú

4

1

2

	 (Equation 4-8)

Then you can write the following:

	 Ax B= 	 (Equation 4-9)

The solution is as follows:

	 X A B= -1 	 (Equation 4-10)

Chapter 4 Working with Arrays

78

This can be found with ease in Octave; you use just one command:

 1 >> A = [1,-4,1;-1,-1,1;1,1,-1]

 2 A =

 3

 4 1 -4 1

 5 -1 -1 1

 6 1 1 -1

 7

 8 >> B = [4;-1;2]

 9 B =

10

11 4

12 -1

13 2

14

15 >> A\B

16 warning: matrix singular to machine precision

17 ans =

18

19 1.60526

20 -0.76316

21 -0.65789

Thus, x = 1.60526, y = -0.76316, and z = -0.65789, which satisfies the

equations. In this way, Octave can perform complex matrix calculations

with ease.

Chapter 4 Working with Arrays

79

4.6  �Summary
Array-based computing lies at the very heart of modern computational

techniques. MATLAB became popular due to its ability to define

computations in terms of matrix manipulations, which is reflected in

its name (MATrix LABoratory). In a similar fashion, Octave presents a

very suitable platform to perform this technique with ease. A variety

of predefined functions enable users to save time when prototyping a

problem. Flexible methods for defining multidimensional arrays and

performing fast computations are critical these days. Most of the time

spent on a simulation is in the loops or in array operations. Predefined

array operations have been optimized with algorithms for reliability, time

savings, and efficient memory management.

Chapter 4 Working with Arrays

CHAPTER 5

Array Properties

5.1  �Introduction
The preceding chapter discussed how arrays can effectively be used to

represent a matrix and how matrix operations can be performed on array

objects. This chapter discusses how arrays can be created automatically,

how sub-arrays can be created from an array, and how arrays can be

manipulated. These skills prove essential in the course of developing a

numerical solution for a mathematical problem.

Automatic creation of arrays includes creating arrays of random

numbers as well as creating arrays based on a formula. Pseudo-random

numbers can be generated by algorithms defined in a base program.

You can write your own algorithms too, but the base program presents

optimized codes to perform such tasks. A number of types of random

numbers can be generated based on the types of distributions. They

should be chosen based on the requirements and this will be discussed.

Matrices can also be generated based on rules, like numbers from a

starting point to a stopping point in linear fashion or logarithmic fashion.

Matrices for zeros and one, as well as special matrices like upper triangular

and lower triangular matrices, can be created with ease. The programs to

create these matrices are written as Octave programs and supplied in the

base package of Octave. You simply use them as regular Octave functions—

you supply the inputs in a desired fashion and obtain the output. The help()

and doc() functions can help you learn more about their use.

82

5.2  �Automatic Creation of Arrays
Automatic creation of arrays is categorized into three areas:

•	 Creating random arrays, i.e., arrays with random

numbers

•	 Creating arrays based on a rule

•	 Creating special matrices

When Octave is used to simulate real-world problems, sometimes

you’ll want to create fake arrays that are as close to reality as possible. This

is where random number generators come in to play. It is worth noting

that true random number generators do not exist, but most algorithms

produce random numbers with very large cyclic repetitions and hence are

good pseudo-random number generators.

5.3  �Creating Random Matrices
Using random number generators, a random matrix can be created by the

function rand(). The function rand() uses the Mersenne Twister with a

period of 219937 -1 [1]. It returns a matrix with random elements uniformly

distributed on the interval (0, 1). Its usage is explained in the following

code:

 1 >> rand(1,5) // random matrix with 1 row and 5 columns

 2 ans =

 3

 4 0.61623 0.23808 0.82978 0.99066 0.37742

 5

 6 >> rand(5,1) // random matrix of five rows and 1 column

 7 ans =

 8

Chapter 5 Array Properties

83

 9 0.55830

10 0.51624

11 0.91662

12 0.74379

13 0.20169

14

15 >> rand(4,5) // random matrix of 4 rows and 5 columns

16 ans =

17

18 0.779821 0.904132 0.025018 0.118232 0.823903

19 0.963702 0.393643 0.148051 0.832420 0.316977

20 0.149530 0.943838 0.872814 0.699306 0.509816

21 0.133360 0.115337 0.401372 0.067246 0.264232

Note that the numbers generated here will be different each time, even

on the same machine, since they are supposed to be random in nature. By

default, they are uniformly distributed over the interval (0, 1). help rand

gives a detailed description of the various other features and arguments of

this random number generator.

By default, the generator is initialized from the /dev/urandom file if

it is available; otherwise it’s from the CPU time, wall clock time, and the

current fraction of a second. This approach differs considerably from the

approach used by MATLAB, which initializes to the same state at startup.

The state of a random number generator is stored as a column vector of

length 625. You can see this by typing rand ("state") on the terminal.

1 >>v = rand("state") % storing the state vector in variable v

2 >>rand("state", v) % setting the state vector to v

Chapter 5 Array Properties

84

As mentioned, each time a random number is executed, you get a

different number. This can become a problem if you want to generate the

same set of random numbers. The state vector v (as stored in the previous

code) can be used to generate the same set of random numbers. Setting

the state to the one stored in v will always produce the same set of random

numbers. The keyword reset can be used as an argument to reset the state

vector of rand() so that it will again produce different sets of vectors. The

following Octave code will make its usage clear.

 1 �>> v = rand("state"); % sets the state of rand() function to v

 2 >> a1 = rand(3,4) % a1 stores 3 X 4 random number matrix

 3 a1 =

 4

 5 0.56781 0.79619 0.85139 0.42739

 6 0.72397 0.19870 0.96399 0.86126

 7 0.31604 0.29627 0.54185 0.76511

 8

 9 >> rand("state",v); % sets the state to v

10 >> a2 = rand(3,4) % a2 stores 3 X 4 random number matrix

11 a2 =

12

13 0.56781 0.79619 0.85139 0.42739

14 0.72397 0.19870 0.96399 0.86126

15 0.31604 0.29627 0.54185 0.76511

16

17 >> a1 == a2 % a1 and a2 store similar numbers

18 ans =

19

20 1 1 1 1

21 1 1 1 1

22 1 1 1 1

23

Chapter 5 Array Properties

85

24 >> rand("state", "reset"); % state is reset

25 >> a3 = rand(3,4) % a3 stores 3 X 4 random number matrix

26 a3 =

27

28 0.019441 0.141170 0.850737 0.145619

29 0.963360 0.888967 0.527707 0 558187

30 0.067530 0.228185 0.473682 0 625065

31

32 �>> >> a3 == a2 % �a3 elements are not similar to a2 since

the state has been reset

33 ans =

34

35 0 0 0 0

36 0 0 0 0

37 0 0 0 0

5.3.1  �Creating Random Matrices with Integers
The function randi(imax) can be used in a similar fashion as rand() to

produce integers from 1 to imax. The following Octave code will make the

usage clear:

 1 >> randi(5)

 2 ans = 2

 3 >> randi(5)

 4 ans = 3

 5 >> randi(5)

 6 ans = 1

 7 >> randi(5)

 8 ans = 1

 9 >> randi(100)

10 ans = 81

Chapter 5 Array Properties

86

11 >> randi(100)

12 ans = 60

13 >> randi(100)

14 ans = 21

15 >> randi(100)

16 ans = 31

17 >> randi(100)

18 ans = 17

randi(5) generates a random integer between 1 to 5 each time it is

used. Similarly, rand(100) generates a random integer between 1 to 100.

A matrix of numbers can be constructed in a similar fashion, where

the following arguments to the function define the number of elements in

each dimension.

 1 �>> randi(100,2,3) % �matrix of 2 rows and 3 columns with

random integer from 1 to 100

 2 ans =

 3

 4 28 16 26

 5 36 90 79

 6

 7 >> randi(100,2,3) % generates different set of integers

 8 ans =

 9

10 41 32 45

11 3 49 91

The lower and upper bounds can also be defined as the first argument.

This must be done as an array of two numbers, where the first element

defines the lower bound and the second one defines the upper bound.

Chapter 5 Array Properties

87

 1 �>> randi([-100,100],2,3) % �2 X 3 matrix of numbers from

-100 to +100

 2 ans =

 3

 4 78 11 -59

 5 -28 -74 -15

 6

 7 �>> randi([-100,100],2,3) % �A different set of numbers is

generated

 8 ans =

 9

10 29 45 -16

11 -20 75 34

The same set of random numbers can also be generated in a similar

fashion as that of the rand() function. In fact, the state is set using the

same function.

 1 >> v1 = rand("state"); % storing state vector

 2 >> randi([-100,100],2,3) % Generating 2 X 3 vector

 3 ans =

 4

 5 14 71 -18

 6 -27 49 18

 7

 8 >> rand("state",v1); % restoring the same state vector

 9 �>> randi([-100,100],2,3) % same set of elements are generated

10 ans =

11

12 14 71 -18

13 -27 49 18

Chapter 5 Array Properties

88

5.3.2  �Defining Random Numbers from a Set
Distribution

Now you need to learn how to define random numbers based on different

kinds of distributions. For this purpose, the following functions are used:

•	 rande(): Exponential distribution

•	 randn(): Normal distribution

•	 randp(): Poisson distribution

•	 randg(): Gamma (A,1) distribution

Choose your distributions judiciously. Choosing the right distribution

for your simulation will make it more realistic.

�The rande() Function

The rande() function returns a matrix with exponentially distributed

random elements. The arguments are handled the same way as the

arguments for rand().

1 >> rande(4,5)

2 ans =

3

4 0.526399 0.586847 2.761980 1.006396 1.909515

5 1.496118 0.976633 0.059666 3.201508 0.898904

6 1.559492 0.266075 0.346443 0.129497 1.556362

7 0.281763 2.006331 0.892212 0.650638 0.651668

Chapter 5 Array Properties

89

�The randg() Function

This function returns a matrix with “gamma (A,1)” distributed random

elements. The gamma distribution is a two-parameter family of continuous

probability distributions. The common exponential distribution and chi-

squared distribution are special cases of the gamma distribution.

1 >> randg(4,5)

2 ans =

3

4 5.25552 3.20796 9.40051 4.53603 7.30682

5 0.92867 5.48899 3.09422 4.26167 10.41489

6 2.35244 2.34990 1.26921 4.87652 3.97179

7 3.53832 3.12559 5.08525 6.50268 5.69221

8 4.98024 3.51875 9.43768 8.82720 5.74206

�The randn() Function

This function returns a matrix with normally distributed random elements

having a mean equal to 0 and a variance equal to 1. randn() uses the

Marsaglia and Tsang Ziggurat technique [2] to change from a uniform to a

normal distribution.

1 >> randn(4,5)

2 ans =

3

4 0.695713 2.013552 -0.076682 -0.695119 -0.889084

5 -1.659300 0.875251 0.385765 0.596478 -1.302996

6 -0.330802 1.554179 0.174712 -1.087671 -1.371431

7 -1.446307 -0.969824 -0.123708 1.014428 0.673549

Chapter 5 Array Properties

90

�The randp() Function

This function returns a matrix with Poisson distributed random elements

with a mean value parameter given by the first argument. For example, if

first argument is 1, then random numbers within the Poisson distribution

having a mean of 1 are produced.

 1 >> randp(1)

 2 ans = 2

 3 >> randp(1)

 4 ans = 0

 5 >> randp(1)

 6 ans = 0

 7 >> randp(1)

 8 ans = 2

 9 >> randp(1)

10 ans = 0

11 >> randp(1)

12 ans = 1

13 >> randp(1)

14 ans = 3

On the other hand, a matrix can also be produced by giving

dimensions of the matrix as other arguments. Arguments can be presented

as numbers separated by commas or as an array having a description of

dimensions.

 1 >> randp(1,2,3) % mean=1, matrix of 2 rows and 3 columns

 2 ans =

 3

 4 1 0 1

 5 0 0 1

 6

Chapter 5 Array Properties

91

 7 �>> randp(1,2,3) % �repeating the same command and getting a

different set of numbers

 8 ans =

 9

10 1 3 1

11 1 1 2

12

13 >> randp(2,2,3) % mean=2, matrix of 2 rows and 3 columns

14 ans =

15

16 1 3 2

17 2 0 1

18

19 �>> randp(2,2,3) % �repeating the same command and getting a

different set of numbers

20 ans =

21

22 3 0 0

23 2 3 0

24

25 �>> randp(20,4,3) % mean=20, matrix of 4 rows and 3 columns

26 ans =

27

28 21 17 22

29 23 21 13

30 17 24 12

31 30 13 13

32

33 �>> randp(20,4,3) % �repeating the same commands and getting

different set of numbers

34 ans =

35

Chapter 5 Array Properties

92

36 25 29 27

37 28 11 20

38 17 22 36

39 21 16 18

40

41 �>> randp(20,[4,3]) % �Inputting matrix dimensions as an

array (4 rows and 3 columns)

42 ans =

43

44 18 18 19

45 29 22 13

46 19 25 24

47 20 18 17

48

49 �>> randp(20,[3,4]) %% �Inputting matrix dimensions as an

array (3 rows and 4 columns)

50 ans =

51

52 19 19 25 28

53 21 17 10 29

54 18 20 19 24

5.4  �Automatic Generation of Large Arrays
You can automatically generate an array by defining a rule using the colon

: operator or by using the linspace() and logspace() arguments. These

methods are widely used, as they are convenient ways to generate large

matrices. It is important to remember that you can suppress the output

being printed on the terminal by ending the command with the semicolon

; operator, since it can be quite annoying to see a large set of numbers on

the terminal.

Chapter 5 Array Properties

93

5.4.1  �Generating Arrays Using a Rule
You can generate a series of numbers and store them as arrays by using

the command start:step:stop, where the numbers representing start,

step, and stop are real numbers. When complex numbers are entered,

they are converted to real numbers (only the real part of a complex

number is used). The result is an array. Defining the brackets ([]) is

optional. If the step is not defined, then it is taken as 1.

 1 >>x = 1:10 % start 1 and stop 10, default step=1 is used

 2 a =

 3

 4 1 2 3 4 5 6 7 8 9 10

 5

 6 >> x = 1:2:10 % without brackets, start=1, step=2, stop=10

 7 x =

 8

 9 1 3 5 7 9

10

11 >> x = [1:1:10] % with brackets, start=1, step=1, stop =10

12 a =

13

14 1 2 3 4 5 6 7 8 9 10

15

16 >> y = 2.2:3.8 % start=2.2, stop=3.8, step=1

17 y =

18

19 2.2000 3.2000

20

21 >> y = 2.2:0.2:3.8 % start=2.2, step=0.2, stop=3.8

22 y =

23

Chapter 5 Array Properties

94

24 2.2000 2.4000 2.6000 2.8000 3.0000

 3.2000 3.4000 3.6000 3.8000

25

26 >> a = 2 + 3i % Defining a complex number

27 a = 2 + 3i

28

29 >> a:a/2:a*2 % start=complex number a, step=a/2, stop=2a

30 ans =

31

32 2 3 4

33

34 >> a:a/3:a*3 % start=complex number a, step=a/3, stop=3a

35 ans =

36

37 2.0000 2.6667 3.3333 4.0000 4.6667

 5.3333 6.0000

5.4.2  �Creating Linearly Spaced Vectors
The linspace(start,stop,n) command produces an array starting with

the first number and stopping at the second one, with a total of n numbers.

Hence, they are linearly spaced. When complex numbers are used as

arguments, you get an array of complex numbers as the output. In this

case, the step is calculated to be:

	
s

S E

n
=

+
	 (Equation 5-1)

Chapter 5 Array Properties

95

Where s = step, S = start, E = End, and n = number of items.

 1 >> a = linspace(1,2,5) % start=1, stop=2, number of items=5

 2 a =

 3

 4 1.0000 1.2500 1.5000 1.7500 2.0000

 5

 6 �>> a = linspace(1,2,10) % start=1, stop=2, number of items=10

 7 a =

 8

 9 1.0000 1.1111 1.2222 1.3333 1.4444 1.5556

 1.6667 1.7778 1.8889 2.0000

10

11 >> a = 2 + 3i % defining the complex number

12 a = 2 + 3i

13 >> linspace(a,2*a,10) % start=a, stop=2a, number of items=10

14 ans =

15

16 Columns 1 through 6:

17

18 �2.0000 + 3.0000i 2.2222 + 3.3333i 2.4444 + 3.6667i

2.6667 + 4.0000i 2.8889 + 4.3333i 3.1111 + 4.6667i

19

20 Columns 7 through 10:

21

22 �3.3333 + 5.0000i 3.5556 + 5.3333i 3.7778 + 5.6667i

4.0000 + 6.0000i

Chapter 5 Array Properties

96

5.4.3  �Creating Logarithmically Spaced Vectors
Similar to linspace, the logspace(A,B,n) function returns a row vector

with n elements, which are logarithmically spaced from 10A to 10B. This is

useful in generating fictitious data involving exponential functions because

data points must increase exponentially. When complex numbers are used

as an input to this function, you obtain an array of complex numbers.

 1 >> logspace(1,10,5)

 2 ans =

 3

 4 1.0000e+01 1.7783e+03 3.1623e+05 5.6234e+07 1.0000e+10

 5

 6 >> logspace(1,-10,10)

 7 ans =

 8

 9 �1.0000e+01 5.9948e-01 3.5938e-02 2.1544e-03

1.2915e-04 7.7426e-06 4.6416e-07 2.7826e-08

1.6681e-09 1.0000e-10

10

11 >> logspace(1,10,10)

12 ans =

13

14 1.0000e+01 1.0000e+02 1.0000e+03 1.0000e+04

 1.0000e+05 1.0000e+06 1.0000e+07 1.0000e+08

 1.0000e+09 1.0000e+10

15

16 >> a = 2 + 3i

17 a = 2 + 3i

18 >> logspace(a,2*a,10)

19 ans =

20

Chapter 5 Array Properties

97

21 Columns 1 through 5:

22

23 �81.121 + 58.475i 29.650 + 164.154i -154.540 + 231.395i

-453.528 + 98.772i -658.825 - 406.736i

24

25 Columns 6 through 10:

26

27 �-319.756 - 1251.342i 1065.540 - 1872.489i

3447.917 - 1013.589i 5312.927 + 2776.859i

3161.384 + 9487.131i

5.5  �Creating Special Matrices
Matrix algebra defines matrices that are special in nature and find their

use in some specialized problems. Octave has some functions defined to

create these matrices.

5.5.1  �Upper and Lower Triangular Matrix
An upper triangular matrix is one where only the diagonal and the

elements above diagonal are non-zero. Similarly, a lower triangular matrix

is one where the diagonal and the elements below diagonal are non-zero.

The tril() function returns a lower triangular matrix and triu returns an

upper triangular matrix. They take input from another matrix and return a

matrix of similar dimensions, but with modifications.

 1 >> a = rand(3,3)

 2 a =

 3

 4 0.414936 0.399589 0.269880

 5 0.070691 0.405602 0.378955

Chapter 5 Array Properties

98

 6 0.169398 0.850042 0.919782

 7

 8 >> tril(a)

 9 ans =

10

11 0.41494 0.00000 0.00000

12 0.07069 0.40560 0.00000

13 0.16940 0.85004 0.91978

14

15 >> triu(a)

16 ans =

17

18 0.41494 0.39959 0.26988

19 0.00000 0.40560 0.37896

20 0.00000 0.00000 0.91978

5.5.2  �Diagonal Matrix
Using the diag() function, you can return an array of diagonal elements.

The first argument is the matrix and the second argument indicates the

direction of movement from the central diagonal, which is represented by

the default value 0.

 1 >> a = rand(4,4)

 2

 3 >> a

 4 a =

 5

 6 0.159507 0.612608 0.962059 0.774479

 7 0.571956 0.302159 0.933308 0.621334

 8 0.024959 0.643726 0.043745 0.171901

 9 0.136112 0.943376 0.056256 0.102074

10

Chapter 5 Array Properties

99

11 >> diag(a) % central diagonal element

12 ans =

13

14 0.159507

15 0.302159

16 0.043745

17 0.102074

18

19 �>> diag(a,1) % �diagonal element after moving one step

upwards from central diagonal

20 ans =

21

22 0.61261

23 0.93331

24 0.17190

25

26 �>> diag(a,-1) % �diagonal element after moving one step

downwards from central diagonal

27 ans =

28

29 0.571956

30 0.643726

31 0.05625632

32

33 �>> diag(a,-2) % �diagonal element after moving two steps

downwards from central diagonal

34 ans =

35

36 0.024959

37 0.943376

38

Chapter 5 Array Properties

100

39 �>> diag(a,2) % �diagonal element after moving two step

upwards from central diagonal

40 ans =

41

42 0.96206

43 0.62133

5.5.3  �Ones and Zeros Matrices
A matrix that contains all 1s or all 0s is a ones matrix and zeros matrix,

respectively:

 1 >> ones(3,3)

 2 ans =

 3

 4 1 1 1

 5 1 1 1

 6 1 1 1

 7

 8 >> zeros(3,3)

 9 ans =

10

11 0 0 0

12 0 0 0

13 0 0 0

These are generally used for initialization of matrices of desired

dimensions. The initialized matrix is then used for manipulations.

Chapter 5 Array Properties

101

5.5.4  �Sparse Matrix
Since arrays can store large amounts of data, they can become so large that

they are an issue for computers with limited storage capabilities. In some

cases, many of these values are 0. In this case, it makes sense to have a

special matrix to handle this class of problems, whereby only the non-zero

elements of the matrix are stored.

This provides two aspects of an efficient computational framework.

First, it reduces the amount of memory needed to store a matrix. It also

means that you can take advantage of prior knowledge about positions of

non-zero elements and devise the mathematical operations for targeted

indices.

One of the simplest ways to store a sparse matrix is by storing the

elements of the matrix as triplets:

•	 Two elements being their position in the array

(i.e., their row and column indices).

•	 Third element being the data itself.

This is conceptually easy to grasp, but requires more storage than is

strictly needed. Octave instead uses a compressed column format. The

position of each element in a row and the data are stored the same way

as the previous method, but the number of non-zero elements in each

column is stored rather than their positions. This reduces the storage

memory requirements.

You can create a sparse matrix in many ways. The speye() function

returns an sparse identity matrix, whereby inputs define the number of

elements in a dimension.

 1 >> a = speye(2,3) % 2 X 3 sparse matrix

 2 a =

 3

Chapter 5 Array Properties

102

 4 �Compressed Column Sparse (rows = 2, cols = 3, nnz = 2 [33%])

 5

 6 (1,1) -> 1

 7 (2,2) -> 1

 8

 9 >> a = speye(20,30) % 20 X 30 sparse matrix

10 a =

11

12 �Compressed Column Sparse (rows = 20, cols = 30, nnz = 20 [3.3%])

13

14 (1,1) -> 1

15 (2,2) -> 1

16 (3,3) -> 1

17 (4,4) -> 1

18 (5,5) -> 1

19 (6,6) -> 1

20 (7,7) -> 1

21 (8,8) -> 1

22 (9,9) -> 1

23 (10,10) -> 1

24 (11,11) -> 1

25 (12,12) -> 1

26 (13,13) -> 1

27 (14,14) -> 1

28 (15,15) -> 1

29 (16,16) -> 1

30 (17,17) -> 1

31 (18,18) -> 1

32 (19,19) -> 1

33 (20, 20) -> 1

Chapter 5 Array Properties

103

The mathematical output of speye() and eye() is the same, but the

amount of storage required is quite large in the case of the eye() function,

because it stores all zeros in non-diagonal positions too.

The spdiags() function is a generalization of the diag() function,

whereby the diagonals are non-zero. The first argument is the input matrix

and the second argument is the direction of movement from the central

diagonal.

 1 >> a = rand(3,3)

 2 a =

 3

 4 0.73015 0.35654 0.68810

 5 0.43991 0.71976 0.51030

 6 0.86486 0.95695 0.20814

 7

 8 >> spdiags(a)

 9 ans =

10

11 0.86486 0.43991 0.73015 0.00000 0.00000

12 0.00000 0.95695 0.71976 0.35654 0.00000

13 0.00000 0.00000 0.20814 0.51030 0.68810

14

15 >> spdiags(a,2)

16 ans =

17

18 0.00000

19 0.00000

20 0.68810

21

22 >> spdiags(a,1)

23 ans =

24

Chapter 5 Array Properties

104

25 0.00000

26 0.35654

27 0.51030

The sprand() function can be used to produce a sparse matrix of

uniformly distributed random numbers. The first two arguments are the

number of rows and columns, while the third argument determines the

density (ith should be between 0 and 1). In a similar fashion, sprandn()

creates normally distributed random numbers.

 1 >> sprand(2,3,0.5) %2X3 matrix with 50% density

 2 ans =

 3

 4 �Compressed Column Sparse (rows = 2, cols = 3, nnz = 3 [50%])

 5

 6 (1,2) -> 0.45900

 7 (2,2) -> 0.48153

 8 (2,3) -> 0.58828

 9

10 >> sprand(2,3,0.1) % 2X3 matrix with 10% density

11 ans =

12

13 Compressed Column Sparse (rows = 2, cols = 3, nnz = 1 [17%])

14

15 (2, 1) -> 0.37447

16

17 >> sprand (2,3,0.9) % 2X3 matrix with 90% density

18 ans =

19

20 �Compressed Column Sparse (rows = 2, cols = 3, nnz = 5 [83%])

21

Chapter 5 Array Properties

105

22 (1,1) -> 0.57181

23 (1,2) -> 0.31887

24 (2,2) -> 0.45919

25 (1,3) -> 0.69767

26 (2,3) -> 0.76126

Note from this Octave code that density desired and density obtained

do not match exactly. In the first case, 10% density was desired, whereas

the result was 17%. In the other case, 90% density was desired, whereas the

result was 83%.

The sprandsym() function produces a symmetric matrix filled with

random numbers in a sparse fashion. Since a symmetric matrix is a square

matrix, defining only one dimension, say n, defines an nxn matrix.

 1 >> sprandsym(5,0.2)

 2 ans =

 3

 4 Compressed Column Sparse (rows = 5, cols = 5, nnz = 5 [20%])

 5

 6 (2,1) -> -0.39845

 7 (3,1) -> -0.12342

 8 (1,2) -> -0.39845

 9 (2,2) -> -0.14327

10 (1,3) -> -0.12342

11

12 >> sprandsym(5,0.8)

13 ans =

14

15 �Compressed Column Sparse (rows = 5, cols = 5, nnz = 20 [80%])

16

Chapter 5 Array Properties

106

17 (1,1) -> -2.1227

18 (2,1) -> 1.5120

19 (3,1) -> -1.1275

20 (5,1) -> 1.0004

21 (1,2) -> 1.5120

22 (2,2) -> 0.28871

23 (3,2) -> 1.1516

24 (4,2) -> -0.11822

25 (5,2) -> 0.20848

26 (1,3) -> -1.1275

27 (2,3) -> 1.1516

28 (4,3) -> 0.20721

29 (2,4) -> -0.11822

30 (3,4) -> 0.20721

31 (4,4) -> 1.3381

32 (5,4) -> -1.3052

33 (1,5) -> 1.0004

34 (2,5) -> 0.20848

35 (4,5) -> -1.3052

36 (5,5) -> 0.64491

Using the spconvert function, you can define a sparse matrix with

specific indices where you want to have non-zero elements. The first two

columns represent the row and column indices, respectively, and the third

and fourth columns represent the real and imaginary parts of the sparse

matrix. The matrix can contain zero elements and the elements can be

sorted in any order. Look at this example:

 1 >> a = [1 2 3 4;1 3 4 4;1 2 3 0]

 2 a =

 3

Chapter 5 Array Properties

107

 4 1 2 3 4

 5 1 3 4 4

 6 1 2 3 0

 7

 8 >> spconvert(a)

 9 ans =

10

11 �Compressed Column Sparse (rows = 1, cols = 3, nnz = 2 [67%])

12

13 (1,2) -> 6 + 4i

14 (1,3) -> 4 + 4i

15

16 >> a = [1 2 3;1 3 4;1 2 3]

17 a =

18

19 1 2 3

20 1 3 4

21 1 2 3

22

23 >> spconvert(a)

24 ans =

25

26 �Compressed Column Sparse (rows = 1, cols = 3, nnz = 2 [67%])

27

28 (1,2) -> 6

29 (1,3) -> 4

30

31 >> b=a'

Chapter 5 Array Properties

108

32 b =

33

34 1 1 1

35 2 3 2

36 3 4 3

37

38 >> spconvert(b)

39 ans =

40

41 �Compressed Column Sparse (rows = 3, cols = 4, nnz = 3 [25%])

42

43 (1,1) -> 1

44 (2,3) -> 2

45 (3,4) -> 3

46

47 >> a = [1 2 3 4;1 3 4 4;1 2 3 0]

48 a =

49

50 1 2 3 4

51 1 3 4 4

52 1 2 3 0

53

54 >> b=a'

55 b =

56

57 1 1 1

58 2 3 2

59 3 4 3

60 4 4 0

61

Chapter 5 Array Properties

109

62 >> spconvert(b)

63 ans =

64

65 �Compressed Column Sparse (rows = 4, cols = 4, nnz = 3 [19%])

66

67 (1,1) -> 1

68 (2,3) -> 2

69 (3,4) -> 3

5.6  �Manipulating Arrays
Arrays can be manipulated in Octave by indexing them, creating new

vectors, and slicing, flipping, sorting, and rotating them. The following

sections cover these functions.

5.6.1  �Indexing
Each element of the matrix is characterized by two numbers, the row

number and the column number. This information is used to pinpoint an

element and operate on it.

 1 >> a = rand(2,3)

 2 a =

 3

 4 0.5248873 0.5531882 0.0051345

 5 0.1597312 0.3685503 0.3041072

 6

 7 >> a(2,3)=1

 8 a =

 9

Chapter 5 Array Properties

110

10 0.5248873 0.5531882 0.0051345

11 0.1597312 0.3685503 1.0000000

12

13 >> a(1,1)=0

14 a =

15

16 0.00000 0.55319 0.00513

17 0.15973 0.36855 1.00000

Note that a(2,3)=1 sets the element in the second row and third

column, i.e., number 0.3041072, to 1. Likewise, a(1,1)=0 sets the element

in the first row and first column, i.e., number 0.5248873, to 0. To index

numbers in a vector, you need a single number.

 1 >> a = [1,2,3,4,5,6,7,8,9]

 2 a =

 3

 4 1 2 3 4 5 6 7 8 9

 5

 6 >> a(1)

 7 ans = 1

 8 >> a(-1)

 9 �error: subscript indices must be either positive integers

less than 2ˆ31 or logicals
10 >> a(5)

11 ans = 5

12 >> a(10)

13 �error: A(I): index out of bounds ; value 10 out of bound 9

14 >>

It is important to note that, unlike some programming languages,

where indices start at 0, in Octave indices start at 1. It will not take negative

numbers as indices.

Chapter 5 Array Properties

111

5.6.2  �Using Indices to Make New Vector
1 >> a = [10 20 30 40 50 60]

2 a =

3

4 10 20 30 40 50 60

5

6 >> b = a ([1 3 6 1])

7 b =

8

9 10 30 60 10

In this example, b is a new vector formed from vector a where

successive elements are made up of elements taken from the index vector

[1 3 6 1].

 1 >> a = [11,12,13; 40,50,60; 17,18,19]

 2 a =

 3

 4 11 12 13

 5 40 50 60

 6 17 18 19

 7

 8 >> a([1,2], [2,3]) %row 1&2 as well as column 2&3

 9 ans =

10

11 12 13

12 50 60

Note that since use of comma operator is optional, henceforth we will

define vectors and matrices by simply using whitespace.

Chapter 5 Array Properties

112

5.6.3  �Slicing
Matrices can be sliced to desired portions by using indices and the colon :

operator.

 1 >> a = [1 2 3 4 1 3 2 4 6 4 5]

 2 a =

 3

 4 1 2 3 4 1 3 2 4 6 4 5

 5

 6 >> b =a(1:5)

 7 b =

 8

 9 1 2 3 4 1

10

11 >> c = a(5:7)

12 c =

13

14 1 3 2

This is an important feature, as most experimental calculations

demand filtering data. Here, a slice of data will be stored separately in a

variable and then various mathematical operations can be performed on

it. Now let’s try to access slices of a multidimensional array. A matrix a is

defined to be 5x5 matrix.

 1 >> a = rand(5,5) % Defining a 5X5 matrix of random numbers

 2 a =

 3

 4 0.563363 0.809636 0.910532 0.444515 0.425933

 5 0.522041 0.926088 0.639679 0.972912 0.967932

 6 0.842271 0.906763 0.272078 0.411484 0.337096

 7 0.836302 0.320654 0.757441 0.459476 0.827371

 8 0.305874 0.477885 0.175771 0.516654 0.039506

Chapter 5 Array Properties

113

 9

10 >> b = a(1,1) % matrix with an element from row=1, column=1

11 b = 0.56336

12 >> c = a (1,:) % All elements of row=1

13 c =

14

15 0.56336 0.80964 0.91053 0.44451 0.42593

16

17 >> d = a(:,1) % All elements of column 1

18 d =

19

20 0.56336

21 0.52204

22 0.84227

23 0.83630

24 0.30587

25

26 �>> e = a(:) % All elements of row and column as a column matrix

27 e =

28

29 0.563363

30 0.522041

31 0.842271

32 0.836302

33 0.305874

34 0.809636

35 0.926088

36 0.906763

37 0.320654

38 0.477885

39 0.910532

40 0.639679

Chapter 5 Array Properties

114

41 0.272078

42 0.757441

43 0.175771

44 0.444515

45 0.972912

46 0.411484

47 0.459476

48 0.516654

49 0.425933

50 0.967932

51 0.337096

52 0.827371

53 0.039506

54

55 >> f = a(:,[1,3]) % all elements of column=1 and column=3

56 f =

57

58 0.56336 0.91053

59 0.52204 0.63968

60 0.84227 0.27208

61 0.83630 0.75744

62 0.30587 0.17577

63

64 >> g = a ([1,3],:) % all elements of row=1 and row=3

65 g =

66

67 0.56336 0.80964 0.91053 0.44451 0.42593

68 0.84227 0.90676 0.27208 0.41148 0.33710

Chapter 5 Array Properties

115

•	 To access a single element, you use the index value of

the row and column. For example, b = a(1,1) accesses

the elements in the first row and first column.

•	 To access all elements of a row or column, you

use the : operator. Hence, c = a(1,:) access all

elements in the first row. Similarly, >> d = a(:,1)

accesses all elements in the first column. A simple

way to remember how to use the colon operator is

that : stands for all elements for. Then you have the

nth row/column where n is the given value.

•	 Using a(:), you can create a new matrix, which is a

column matrix having all the elements.

•	 A sub-matrix can be accessed by defining all elements

for column/row and then defining indices in square

brackets. For example, f = a(:,[1,3]) defines a new

matrix where elements are composed of all elements

of the first and third columns. Similarly, a([1,3],:)

defines all elements of the first and third rows.

You can compose complex sub-matrices using this powerful way of

defining your choice of elements.

 1 >> a = rand(5,6)

 2 a =

 3

 4 0.1365941 0.7004691 0.4141496 0.1961403

 0.1386467 0.6338910

 5 0.4073519 0.3970787 0.9404709 0.6876520

 0.6595586 0.1230414

Chapter 5 Array Properties

116

 6 0.6775819 0.9203946 0.6048951 0.7997643

 0.6124899 0.2699103

 7 0.4513048 0.3531190 0.5228914 0.0504358

 0.6872609 0.3613488

 8 0.0071268 0.5250754 0.2268388 0.0047337

 0.2975212 0.3947907

 9

10 >> b = a([2,5],1:3)

11 b =

12

13 0.4073519 0.3970787 0.9404709

14 0.0071268 0.5250754 0.2268388

15

16 >> d = a([2,5],[1,3])

17 d =

18

19 0.4073519 0.9404709

20 0.0071268 0.2268388

21

22 >> e = a(2:5,1:3)

23 e =

24

25 0.4073519 0.3970787 0.9404709

26 0.6775819 0.9203946 0.6048951

27 0.4513048 0.3531190 0.5228914

28 0.0071268 0.5250754 0.2268388

This code defines a new 5x5 matrix called a and then defines a subset

of this matrix using a([2,5],1:3). This says, from the second and third

rows, take elements from the first column to the third column.

Chapter 5 Array Properties

117

Similarly c = a(2:5,[1,3]) creates a matrix using this logic: from

the first and fifth columns, take elements from the second and third rows.

Now you can easily guess what a([2,5],[1,3]) and a(2:5,1:3) should

perform. It’s a good idea to practice slicing arrays rigorously, as this is one

of the most sought-after skills in data cleaning and data analysis in general.

5.6.4  �Flipping a Matrix
The flipud(A) function returns a copy of matrix A with the order of the

rows reversed. flipud stands for flip up down. fliplr(A) returns a copy of

matrix A with the order of the rows reversed. fliplr stands for flip left right.

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> fliplr(a)

 9 ans =

10

11 2 1

12 4 3

13 6 5

14

15 >> flipud(a)

16 ans =

17

18 5 6

19 3 4

20 1 2

Chapter 5 Array Properties

118

5.6.5  �Rotating a Matrix
Using the rot90(a,n) command, you can rotate matrix a n times by 90

degrees.

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> rot90(a,1)

 9 ans =

10

11 2 4 6

12 1 3 5

13

14 >> rot90(a,2)

15 ans =

16

17 6 5

18 4 3

19 2 1

20

21 >> rot90(a,4)

22 ans =

23

24 1 2

25 3 4

26 5 6

Chapter 5 Array Properties

119

5.6.6  �Reshaping a Matrix
You can change the number of rows and columns in a matrix, provided

that the total number of elements remains the same.

 1 >> a = [1 2; 3 4; 5 6]

 2 a =

 3

 4 1 2

 5 3 4

 6 5 6

 7

 8 >> reshape(a,6,1)

 9 ans =

10

11 1

12 3

13 5

14 2

15 4

16 6

17 >> reshape(a,4,1)

18 error: reshape: can't reshape 3x2 array to 4x1 array

5.6.7  �Sorting
You can sort numbers in increasing order using the sort function:

1 >> a = rand(1,5)

2 a =

3

4 0.577290 0.079980 0.880757 0.294744 0.964269

5

Chapter 5 Array Properties

120

6 >> sort(a)

7 ans =

8

9 0.079980 0.294744 0.577290 0.880757 0.964269

5.7  �Summary
This chapter illustrated various methods of auto-generating arrays in a

desired fashion. Generating arrays for initialization enables you to write

code more easily. Not having to define loops to fill up values in a matrix is

a relief, because you can instead concentrate on auto-generating matrices

rather than defining code for their generation.

The generation of random numbers inside matrices was also

discussed. You can generate random numbers of desired distributions and

they allow you to define trial data that matches reality closely. The ability

to manipulate array dimensions as well as generate sub-arrays using

slicing enables you to carve out smaller arrays from a bigger array based on

designed rules that can be coded.

5.8  Bibliography

	 [1]	 http://www.math.sci.hiroshima-u.ac.jp/

~m-mat/MT/emt.html

	 [2]	 http://www.jstatsoft.org/v05/i08/

Chapter 5 Array Properties

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
http://www.jstatsoft.org/v05/i08/

CHAPTER 6

Plotting

6.1  �Introduction
The ability to provide quality visualizations from output data is a key part

of data analytics. Without visualization, numerical computations are

difficult and sometimes impossible to interpret. Producing publication-

quality images of complex plots that give a meaningful analysis of the

numerical results was one of the biggest challenges for engineers and

scientists all over the world when computers were introduced in the

scientific domain. Many commercial software programs satisfied this need.

Octave provides this functionality too. Its plotting features include

choosing from various types of plots in 2D and 3D formats, decorating

plots with additional information such as titles, labeled axes, grids, and

labels for data, and writing equations and other important information

about data. The sections in this chapter describe these actions in detail.

It is worth mentioning that plotting capabilities are essential to all

simulation-based experiments since visual direction from the progressive

steps give developers an intuitive understanding of the problem under

consideration.

122

6.2  �2D Plotting
Octave presents a host of built-in functions for generating a variety of 2D

plots. These functions take an array as input arguments to define the data

points and present plots in the desired fashion.

6.2.1  �The plot(x,y) Function
Since you need to plot data on two axes, you first need to create them. Let’s

assume that the x axis has 100 linearly-spaced data points, whereby y = x2.

See Figure 6-1.

1 >> x = linspace(0,100,100);

2 >> y = x.ˆ2
3 >> plot(x,y)

Figure 6-1.  Plotting y = x2 with the plot() function

Chapter 6 Plotting

123

First you define a variable x and place 100 equally-spaced data points

from 0 to 100. This creates a 1x100 matrix. Using the scalar operation

of exponentiation, you define the variable y as the x2. Then you use the

function plot(), which takes two arguments as the x-axis and y-axis data

points. Typing help(plot) on the command prompt gives you useful

insight into this wonderful function used to plot two-dimensional data.

6.2.2  �The area() Function
The area() function results in a similar plot as the plot() function, but it

also shades the area under the curve, as shown in Figure 6-2.

1 >> x = linspace(0,100,100);

2 >> y = x.ˆ2;
3 >> area(x,y)

Figure 6-2.  Plotting y = x2 with the area() function

Chapter 6 Plotting

124

6.2.3  �The bar(), barh(), and hist() Functions
Bar charts are primitive but very effective in visualizing primary statistical

information. There are three ways to plot bar charts and histograms:

•	 bar() plots a vertical bar chart (see Figure 6-3)

•	 barh() plots a horizontal bar chart (see Figure 6-4)

•	 hist() plots a histogram chart (see Figure 6-5)

1 >> x = [1,2,3,4,5,6];

2 >> y = [0.5,2.2,0.7,1.5,2.5,0.9];

3 >> bar(x,y)

Figure 6-3.  A bar chart

Chapter 6 Plotting

125

In a similar fashion, a horizontal bar chart can be plotted using the

barh() function.

1 >> x = [1,2,3,4,5,6];

2 >> y = [0.5,2.2,0.7,1.5,2.5,0.9];

3 >> barh(x,y)

A histogram can be plotted using the hist() function as well. Let’s

next check the behavior of a normalized distribution of random numbers

generated by the randn() function (see Figure 6-5).

Figure 6-4.  A horizontal bar chart

1 >> x = randn(100);

2 >> hist(x)

Chapter 6 Plotting

126

You can clearly observe the bell-shaped curve of the envelope to

confirm that the random numbers are indeed normally distributed. Other

distributions can be visualized using the rand() function. The following

Octave code produces uniformly distributed random numbers.

1 >> x = rand(100);

2 >> hist(x)

The result is shown in Figure 6-6; random numbers are indeed found

to be uniformly distributed over the range (1, 2).

Figure 6-5.  A histogram showing normalized distribution of random
numbers

Chapter 6 Plotting

127

In a similar manner, exponentially distributed random numbers can

be visualized using the rande() function. The following Octave code

produces exponentially distributed random numbers.

1 >> x = rande(100);

2 >> hist(x)

The result is shown in Figure 6-7; random numbers are indeed found

to be uniformly distributed over the range (1, 2).

Figure 6-6.  A histogram showing uniform distribution of random
numbers

Chapter 6 Plotting

128

�Plotting Multiple Plots on the Same Graph

Multiple plots can be plotted on the same graph by simply supplying x and

y axes vectors, as shown in Listing 6-1.

Listing 6-1.  The multi.m File

 1 clear all;

 2 clf;

 3 x = linspace(1,100,100);

 4 y1 = x.ˆ2.0;
 5 y2 = x.ˆ2.1;

Figure 6-7.  A histogram showing exponential distribution of random
numbers

Chapter 6 Plotting

129

 6 y3 = x.ˆ2.2;
 7 y4 = x.ˆ2.3;
 8 plot(x,y1,"@12",x,y2,x,y3,"4",x,y4,"+")

 9 grid on

10 legend('xˆ2','xˆ{2.1}','xˆ{2.2}','xˆ{2.3}');
11 xlabel('x-axis')

12 ylabel('y-axis')

13 title('Multiple Graphs')

14

15 %plot y with points of type 2 (displayed as '+')

16 %and color 1 (red), y2 with lines, y3 with lines

17 %of color 4 (magenta) and y4 with points displayed as '+'

Explanation of the lines in Listing 6-1 follows:

	 1.	 clear all clears the variable names and values

from memory.

	 2.	 clf clears any current window.

	 3.	 x = linspace(1,100,100) creates a vector called x

made up of 100 equally spaced data points between

1 and 100.

	 4.	 y1 = x.2.0, makes a new vector named y1 having an

element-wise square of vector x.

	 5.	 Y2 = x.2.1, makes a new vector named y2 having an

element-wise exponentiation by 2.1 of vector x.

	 6.	 Y3 = x.2.2, makes a new vector named y3 having an

element-wise exponentiation by 2.2 of vector x.

	 7.	 Y4 = x.2.3, makes a new vector named y4 having an

element-wise exponentiation by 2.3 of vector x.

	 8.	 Plots the numbers as per comment given in lines

15,16,17.

Chapter 6 Plotting

130

	 9.	 Grid is turned on for the figure.

	 10.	 xlabel takes the value of the string x-axis in line 11.

	 11.	 ylabel takes the value of the string y-axis in line 12.

	 12.	 title takes the value of the string Multiple Graphs

in line 13.

Figure 6-8 is obtained by running the code. These types of plots are

used to check the variation of results by varying a particular parameter.

�Plotting Multiple Plots Separately

The subplot(row,column,index) command is used to plot multiple plots

within the same figure separately. subplot(2,2,4) means that the plot will

be on the second row, in the second column, and in the fourth index. See

Listing 6-2.

Figure 6-8.  Multiple plots within the same figure

Chapter 6 Plotting

131

Listing 6-2.  The multiSubplot.m File

 1 clear all;

 2 clf;

 3 x = linspace(1,100,100);

 4 y1 = x.ˆ2.0;
 5 y2 = log(x);

 6 y3 = sin(x);

 7 y4 = log10(x);

 8 subplot(2,2,1), plot(x,y1)

 9 subplot(2,2,2), plot(x,y2)

10 subplot(2,2,3), plot(x,y3)

11 subplot(2,2,4), plot(x,y4)

12 %gridon

13 %legend('xˆ2','xˆ{2.1}','xˆ{2.2}','xˆ{2.3}');
14 %xlabel('x-axis')

15 %ylabel('y-axis')

16 %title('Multiple Graphs')

17

18 %plot y with points of type 2 (displayed as '+')

19 %and color 1 (red), y2 with lines, y3 with lines

20 %of color 4 (magenta) and y4 with points displayed as '+'

As shown in Figure 6-9, plots are organized as matrices, where row

numbers and column numbers dictate the position. An index of the plot

can then be used to treat it as an object for further processing on the

graphical objects.

You can learn about other commands for controlling the font size, tick

labels, fonts, mathematical equations, etc. by typing help plot or reading

the documentation of this function. There are also many examples on the

web. You will use this function frequently, so make sure you have good

command over its use.

Chapter 6 Plotting

132

6.2.4  �Plotting in Polar Coordinates
Sometimes you might prefer to plot in polar coordinates, rather than in

Cartesian coordinates. Then, instead of using x, y, the coordinates are r, θ.

See Listing 6-3.

Listing 6-3.  The CoordinatesPolar.m File

1 theta = 0:0.02:2*pi;

2 a1 = 0.5 + 1.3.ˆtheta;
3 a2 = 5*cos(theta);

4 a3 = 3*(1 - cos(theta));

5 a4 = 6*sin(4*theta);

6 r = [a1;a2;a3;a4];

7 PolarGraph = polar(theta,r,"*");

8 set(PolarGraph,"LineWidth",2);

9 legend("spiral","circle","heart","Rose");

Figure 6-9.  Separate multiple plots within the same figure

Chapter 6 Plotting

133

Figure 6-10 shows an example of a polar graph for code given by

the CoordinatesPolar.m example. Explanation of this program follows

(according to line number):

	 1.	 A variable named theta representing θ is defined by

points starting from 0 to 2π with steps of 0.02.

Figure 6-10.  A polar graph

	 2.	 A variable named a1 representing r for spiral is

calculated by equation r = 1.5(θ).

	 3.	 A variable named a2 representing r for circle is

calculated by equation r = 5(cos(θ)).

	 4.	 A variable named a3 representing r for heart is

calculated by equation r = 3(1-cos(θ)).

Chapter 6 Plotting

134

	 5.	 A variable named a4 representing r for rose is

calculated by equation r = 6(sin(4θ)).

	 6.	 A variable named r stores all the rs calculated using

the equations as a column vector.

	 7.	 A variable named PolarGraph stores the values

produced by the function polar(), which takes θ, r

as arguments and * for the type of marker.

	 8.	 The set function is used to set the property values

for the graph function. This is a neat way of setting

properties of the graph and experimenting with

them later. In this case, the property named

LineWidth is set to 2.

	 9.	 The legend() function sets four legends in the order

that the polar function takes them from the vector r.

�The rose() Function

The rose() function draws an angled histogram, i.e., a polar histogram.

The input should be a vector of numbers. Let’s look at its use by

constructing a vector of 100 random numbers using randn(100,1)*pi and

then feeding it to the rose() function. The result is shown in Figure 6-11.

1 >> x = randn(50,1)*pi/2;

2 >> rose(x)

Chapter 6 Plotting

135

6.2.5  �Logarithmic Plots
For plotting graphs involving logarithmic scale, MATLAB provides three

options:

•	 semilogx(): Plots with logarithmically spaced x-axis.

As an example, consider the log1a.m file shown

in Listing 6-4, which produces the plot shown in

Figure 6-12.

Figure 6-11.  Plot of random numbers by the rose() function

Chapter 6 Plotting

136

Listing 6-4.  The log1a.m File

 1 %Octave program to illustrate

 2 %usage of semilogx() and

 3 %semilogy() and loglog() command

 4

 5 %semilogx()

 6 y = 0:2:10;

 7 x = exp(-y/2);

 8 subplot(3,1,1)

 9 semilogx(x,y)

10 grid on

11 xlabel('x=eˆ{y/2}');
12 ylabel('y');

Figure 6-12.  Describing usage of semilogx()

Chapter 6 Plotting

137

13 title('Using semilogx() command');

14

15 %semilogy()

16 x1 = 0:2:10;

17 y1 = exp(-x1/2);

18 subplot(3,1,2)

19 semilogy(x1,y1)

20 grid on

21 xlabel('y=eˆ{x/2}');
22 ylabel('x');

23 title('Using semilogy() command');

24

25 %loglog()

26 x2 = 0:2:10;

27 y1 = exp(x2);

28 y2 = exp(x2/2);

29 subplot(3,1,3)

30 loglog(x1,y1)

31 grid on

32 xlabel('y1=eˆ{x}');
33 ylabel('y2=eˆ{x/2}');
34 title('Using loglog() command');

•	 semilogy(): Plots with a logarithmically spaced y-axis.

•	 loglog(): Plots with both axes logarithmically spaced.

�The pie() Function

You can create a pie chart using the pie() function. This provides a very

powerful tool to visualize the parts of a whole. The usage is explained in the

following code and the images are shown in Figure 6-13. The pie() function

supports 34 items such that a,b,c,d,e,f get 4,7,2,8,4 and 9 parts.

Chapter 6 Plotting

138

The pie chart can be made by first defining the parts as an array, then

defining the labels as an array. Then if pie() function is fed directly, you’ll

get a color-coded exploded pie chart showing the percentages of each

part. When a show() array is also used, it explodes only those parts whose

corresponding element is 1.

1 >> x = [3,2,1,4,1,2];

2 >> subplot(2,1,2)

3 >> pie(x)

4 >> subplot(2,1,1)

5 >> show = [0,1,0,1,0,1];

6 >> pie(x,show,labels)

Figure 6-13.  Pie plots with all parts exploded and with some parts
exploded

Chapter 6 Plotting

139

�The stairs() Function

A stairs() function draws a stair-step graph for elements of a vector.

Consider an example of plotting y = sin(x), where x is a vector of 100

elements from 0 to 20. As you can see in Figure 6-14, the sinusoidal wave

can be visualized whereby the data points are connected in a stair-step

fashion.

1 >> x = 0:20:1000;

2 >> y = sin(x);

3 >> stairs(y)

Figure 6-14.  A stair plot for y = x2.5

Chapter 6 Plotting

140

�The stem() Function

Stem plots draw data points as stems that extend from equally spaced

values. The code that plots y = sin(x) ∈ (-4π, 4π) is shown here. It will

produce the graph shown in Figure 6-15.

1 >> x = -4*pi:4*pi;

2 >> y = sin(x);

3 >> stem(y)

Figure 6-15.  Stem plot for y = cos(x) ∈ (-π, π)

6.2.6  �Creating 3D Plots
Octave has various functions available for 3D plotting. Choosing the best

one depends on your particular problem.

�The mesh Function

Listing 6-5 shows the mesh function in action. This code will produce the

3D graph shown in Figure 6-16.

Chapter 6 Plotting

141

Listing 6-5.  The ThreeDMesh.m File

1 a = b = linspace(-8,8,41)';

2 [xx,yy] = meshgrid(a,b);

3 c = sqrt(xx.ˆ2+yy.ˆ2) + eps;
4 d = sin(c)./c;

5 mesh(a,b,d);

Figure 6-16.  3D meshing

It’s important to note that this code uses a new function named

meshgrid. Use help meshgrid to learn a bit about this function. It is used

as follows:

1 >> a = b = linspace(-8,8,41);

2 >> [xx,yy] = meshgrid(a,b);

Chapter 6 Plotting

142

Two variables are created—a and b—and they store 41 linearly spaced

data points between -8 and 8 as a row vector. These two row vectors (both

are 1X41 in dimension) are passed as arguments for the meshgrid function,

which gives two outputs: xx and yy. These are 41X41 dimensioned

matrices, where rows of xx are copies of a and columns of yy are copies

of b. The meshgrid function can also take a third argument to create a

complete 3D grid. Otherwise, on the two-dimensional base grid, a function

can be defined for data points defined by copies of a and b. In this case, the

function is defined as follows:

	 c x y= +2 2 	 (Equation 6-1)

and

	
d

c

c
=

()sin
	 (Equation 6-2)

Note T he eps function produces a very small number
(2.2204.10-16 on the machine used for testing at the time of writing
the book). It is widely used in numerical computation where zero
needs to be avoided, especially in the case of division by zero. By
adding a very small number to large numbers, you avoid this problem
(remember that variable c calculated in Step 3 is then used in division
as the denominator in Step 4). (see Listing 6-5)

Continuing now with the plotting exercise, new arrays can then be

used to plot by applying the 3D plotting function mesh(), which takes two

arrays a and d as its arguments. This results in the graph in Figure 6-16.

Chapter 6 Plotting

143

If mesh(x,y,z) is used, then a wireframe mesh made up of rectangles

is created. The vertices of the rectangles are made up of data points

generated by the function (in this case, Equations 6-1 and 6-2). The (x, y)

coordination of vertices is given by the xx and yy matrices, since the x

coordinate comes from the xx matrix and the y coordinate comes from the

yy matrix. z determines the height above the plane of each vertex. In this

way a 3D plot is plotted.

It is important to note that the original 3D curve is interpreted as a

surface made of flat rectangles, which is, at best, an approximation. In

some cases, this error can be ignored. To get less error, make the rectangles

smaller, if possible. There are other variations of this same function, such

as ezmesh, meshc, and meshz. A simple help command can be very useful in

determining which one is best for a particular problem.

The mesh also color-codes for height (the z-value). This is computed

by linearly scaling the z values to fit the range of the current color-map

(use help colormap to learn more).

�The meshc Function

meshc() generates a 3D rectangular mesh as well as contour at the base. As

shown in Figure 6-17, apart from producing a 3D plot for a given function,

you also obtain a contour plot. Note that this time, the equation is working

on matrices and is written as an argument of the meshc() function, which

makes the programs even smaller. See Listing 6-6.

Listing 6-6.  The ThreeDMeshc.m File

1 x = linspace(-10,10,50);

2 y = linspace(-10,10,50);

3 [xx,yy] = meshgrid(x,y);

4 meshc(xx,yy,2-(xx.ˆ2+yy.ˆ2))

Chapter 6 Plotting

144

�The surf() Function

The surf() function (see Listing 6-7) generates a surface plot whereby a

wire mesh is simply filled up at the empty points, as shown in Figure 6-18.

Listing 6-7.  The ThreeDsurf.m File

1 a = b = linspace(-8,8,10)';

2 [xx,yy] = meshgrid(a,b);

3 c = sqrt(xx.ˆ2 + yy.ˆ2) + eps;
4 d = sin(c)./c;

5 surf(c,d);

Figure 6-17.  3D meshing with the meshc() function

Chapter 6 Plotting

145

6.3  �Summary
A rich library of plotting functions makes Octave a suitable choice for

plotting data in a variety of publication-ready formats. Together with

commands to access systems files and folders, these plots can be directed

to be saved at appropriate places for making a suitable report. Plotting in

3D and viewing with different angles is quite intuitive in Octave. Hence,

Octave is a suitable choice to visualize your data.

Figure 6-18.  3D meshing with the surf() function

Chapter 6 Plotting

CHAPTER 7

Data Through File
Reading and Writing

7.1  �Introduction
Once you have mastered the art of defining and manipulating arrays

and plotting the output, you can formulate physical problems in terms

of numerical computations and solve them on a digital computer. This

process has some requirements:

•	 The data should be in digital form (a digital file).

•	 The computer program should be able to read the file

and create arrays without errors. If errors have been

made, then a mechanism to check those errors and give

a warning should be in place. If possible, you should

also be able to correct them.

•	 The data should be stored as an array in the proper data

type and should be displayed on demand in the proper

format.

•	 Array operations on data will result in memory usage in

terms of reading and writing data on-disk. This should

be facilitated by the system. The user should be able to

check the status of memory as and when required.

148

•	 Post-processing tasks include displaying data in various

formats. This includes as a printout from the printer,

on a terminal, as a graph on the terminal or printer/

plotter, etc.

•	 Generate a report, file, or graph based on the data of

a particular experiment if possible, as this makes the

user’s tasks easier.

Octave includes features related to each of these steps. This chapter

discusses them briefly.

7.2  �File Operations
File operations are an important part of computation. It is important to

note that the file system is OS-dependent. Octave was traditionally written

for UNIX-like systems, so it works on Linux-based and Mac OSX equally

well and with the same set of commands. On Windows, you’ll use the same

commands as in Linux when dealing with files. The code in this chapter

was tested on Windows 8, Mac OSX 10.10, and Ubuntu 14.04 systems.

7.2.1  �Users
A computing system is accessed by many different users. Each user creates

a workspace to avoid damaging each other’s work. After login, a user’s

workspace becomes active for that user. The workspace is made up of

various files and folders. Some files are essential for the OS to define the

workspace and its properties, hence they should not be altered . This is

ensured by assigning permissions to various users. For example, reading

and writing a file are both restricted by permissions. The administrator

(called the admin) is also called the “super user” and has permission to

edit any file/folder. You must understand the defined user type for the

Chapter 7 Data Through File Reading and Writing

149

computer system and then issue commands accordingly. If you are not

permitted to access certain folders and then data is placed inside those

files/folders, you will be denied access (unless you ask the admin to change

your permissions).

7.2.2  �File Path
A directory/folder can contain subdirectories/subfolders and files again.

This can go to any level if this process if not restricted by the administrator.

The pwd command stands for print working directory. On an Octave

terminal, typing pwd displays the path of the present working directory, as

shown here:

1 >> pwd

2 ans = /home/sandeep

In the user’s /home directory, there is another directory named /sandeep.

This is the present working space. When pwd is typed on the terminal, a

variable named ans stores this data (the file path). A variable name of your

choice can be assigned to store the filename as a string.

A file/folder is accessed by typing the file path at the terminal. Let’s do

a small exercise to understand this process. To create a new directory, use

the mkdir name command as follows:

 1 >> mkdir octave

 2 ans = 1

 3 >> ls

 4 Downloads Music

 5 R

 6 Templates

 7 octave

 8 Videos

 9 Desktop software

Chapter 7 Data Through File Reading and Writing

150

10 Work

11 Documents Library

12 Pictures

13 >> cd octave

14 >>

On line 1, mkdir octave creates a directory named octave. To see the

contents of the present directory, you can use the ls command, as shown

on line 3, which stands for list. To change the directory, you can use the cd

file path command, as shown in line 13, which is changing to the octave

directory in this case. I suggest that you work in this directory for the rest of

the book.

7.2.3  �Creating and Saving Files
The save and load commands enable you to write and read data to

memory.

 1 >> matrix = rand(3,3);

 2 >> save MyFirstFile.mat matrix

 3 >> ls

 4 MyFirstFile.mat

 5 >> load MyFirstFile.mat

 6 >> matrix

 7 matrix =

 8

 9 0.467414 0.610273 0.429941

10 0.568490 0.037898 0.734682

11 0.547370 0.275421 0.539650

12

13 >>

Chapter 7 Data Through File Reading and Writing

151

On line 1, a variable named matrix is created. It stores a 3x3 matrix

with random values. On line 2, this data is stored as a .mat file named

MrFirstFile.mat, which is passed the variable name as the argument.

When required, this file can be loaded in the workspace using the load

MyFirstFile.mat command and then calling the variable name matrix.

The random numbers recorded at the time of saving the file are loaded

into the 3x3 matrix. Note that the data doesn’t have to be numbers. It can

be anything that a digital computer can handle, including pictures, videos,

strings, and characters, just to name a few.

Multiple variables can be stored in the same file by passing the name of

the variables at the time of saving.

 1 >> matrix1 = rand(4,4);

 2 >> matrix2 = rand(2,3);

 3 >> matrix3 = rand(2,2);

 4 >> �save ("SavingMultipleVariables.mat","matrix1","matrix2",

"matrix3")

 5 >> load SavingMultipleVariables.mat

 6 >> matrix1

 7 matrix1 =

 8

 9 0.8598130 0.0118250 0.9803720 0.3044413

10 0.6676748 0.0056845 0.1101545 0.2183920

11 0.2547204 0.8192626 0.8056112 0.6961116

12 0.7924558 0.9130480 0.1976146 0.4635055

13

14 >> matrix2

15 matrix2 =

16

17 0.35215 0.55770 0.66650

18 0.98515 0.98677 0.45513

19

Chapter 7 Data Through File Reading and Writing

152

20 >> matrix3

21 matrix3 =

22

23 0.097693 0.540354

24 0.923853 0.329501

25

26 >>>> save -binary SavedAsBinary m*

27 >> ls

28 MyFirstFile.mat SavedAsBinary SavingMultipleVariables.mat

The help save and help load commands give very useful instructions

about using these features. Using options, you can save the file in a

specific format. For example, on line 26, all variables names starting with m

are saved as binary data inside a binary file named SavedAsBinary. This is

particularly important when data generated from Octave-based numerical

computation is used to feed other programs. You can also specify the

precision of saved data using options. You can also compress a big file

using a -zip command. This is very useful when the data generated by

Octave is large and needs to be transmitted.

The load function follows the same logic as the save function. Data

can be unzipped and loaded from a particular formatted file as an array.

The array, thus populated, can be used for computation and the resultant

files can be created using the save function again (if required). Elaborate

computations require this procedure to be repeated successively many

times, so the functions have been optimized to locate and load the

required data quickly.

�The diary Command

An Octave session can be recorded in a file by using the diary command.

Use help diary to look at its usage in detail. Typing help filename allows

you to record the session in a file with a given filename. The commands

and their outputs are continuously updated using this function.

Chapter 7 Data Through File Reading and Writing

153

Using the history command, a list of executed commands is

displayed. Various options are available to see this history in its particular

formats.

�Opening and Closing Files

To read and write data files, they must be opened and defined as readable

and/or writable. The fopen function returns a pointer to an open file that

is ready to be read or written. This is defined by an option r as readable,

w as writable, r+ as readable and writable, a for appending (writing) new

content at the end of the file, and a+ for reading, writing, and appending.

The opening mode can be set as t for text mode or b for binary mode. z

enables you to open a zipped file for reading and writing.

Once all the data has been read from or written to the opened file, it

should be closed. The fclose function does this.

1 MyFile = fopen("a.dat","r");

A variable called MyFile is created and is used to store the contents of

the a.dat file. This file is opened in reading mode, which means it cannot

be edited. This is important if you want the file to remain unchanged while

sharing the information with others. freport() prints a list of files opened

and whether they are opened for reading, writing, or both. For example:

1 >> freport

2

3 number mode arch name

4 ------- ----- ----- ----

5 0 r ieee-le stdin

6 1 w ieee-le stdout

7 2 w ieee-le stderr

8

9 >>

Chapter 7 Data Through File Reading and Writing

154

�Reading and Writing Binary Files

A binary file is a computer-readable file. They are simply sequences of

bytes. Same as C functions, the fread and fwrite functions can read and

write binary data from a file.

�The csvread and csvwrite Functions

The csvread and csvwrite functions are used to read data from .csv files,

which stands for comma separated values.

Suppose the following data needs to be stored as a .csv file.

1 2 3 4

5 6 7 8

8 7 6 5

4 3 2 1

The following code creates an array using csvwrite to create a file

named csvTestData.dat containing the matrix values. You can check by

simply opening this newly created file in a text editor. On line 3, a new file

named csvTestData1.dat is created with an offset defined at row 1 and

column 2.

 1 >> a = [1,2,3,4;5,6,7,8;8,7,6,5;4,3,2,1];

 2 >> a

 3 a =

 4

 5 1 2 3 4

 6 5 6 7 8

 7 8 7 6 5

 8 4 3 2 1

 9 >> csvwrite('csvTestData.dat',a)

10 >> csvwrite('csvTestData1.dat',a,1,2)

11 >> a1 = csvread('csvTestData.dat')

Chapter 7 Data Through File Reading and Writing

155

12 a1 =

13

14 1 2 3 4

15 5 6 7 8

16 8 7 6 5

17 4 3 2 1

18

19 >> a1 = csvread('csvTestData.dat',1,2)

20 a1 =

21

22 7 8

23 6 5

24 2 1

25

26 >>

Now, the csvread function can be used to create matrices with the

desired offsets just as the function csvwrite.

Note A number of other functions that read and write files exist,
but the present section focuses on some of the most commonly used
ones. Access the documentation to learn more about using these
specialized functions, if required.

7.2.4  �Working with Excel Files
A lot of data is present on the Internet in the form of Excel files. Octave has

a separate module to work with these files, but it first needs to be installed.

The module IO is part of the octave-forge project. To install a module,

you have to type pkg install -forge package_name at the Octave

command prompt:

Chapter 7 Data Through File Reading and Writing

156

1 pkg install -forge io

Note that you must be connected to the Internet in this case.

Once the module has been automatically installed in the proper place,

you can use its functions. The following is the list of file extensions and

associated permissions.

 1 �File extension COM POI POI/OOXML JXL OXS UNO OTK JOD OCT
 2 �--
 3 .xls (Excel95) R R R
 4 .xls (Excel97-2003) + + + + + +
 5 �.xlsx (Excel2007+) ˜   + (+)  + +
 6 �.xlsb, .xlsm ˜   ? R R?
 7 .wk1 + R
 8 .wks + R
 9 .dbf + +
10 �.ods ˜   + + + +
11 �.sxc + +
12 .fods +
13 .uos +
14 .dif + +
15 .csv + R
16 �.gnumeric   +
17 �--
18
19 R : only read; + : full read/write; ˜ : dependent on Excel version

Chapter 7 Data Through File Reading and Writing

157

�Working with Excel Files

The xlsopen, xlswrite, xlsclose, odsopen, odswrite, and odsclose

commands open, write, and close .xls and .ods files. While .xls files

are generated using Microsoft Excel software, .ods files are generated

using Open/Libre Office software, which is the open source equivalent of

Microsoft Excel. The process of opening, reading, and writing data is as

follows:

•	 xlsopen('Filename.xls')

•	 a = xlsread('Filename.xls', '3rd_sheet',

'B3:AA10');

The numeric data from the Filename.xls worksheet’s

3rd sheet will be read from cell B3 to AA10. This data

is stored as an array named a.

•	 [Array,Text,Raw,limits] = xlsread('a.xls',

'hello');

The file a.xls is read from the worksheet named hello,

and the numeric data is fed into an array named Array.

The text data is fed into an array named Text. Likewise,

the raw cell data is saved into the cell array Raw and the

ranges are saved as limits.

•	 xlswrite('new.xls',a) writes the data in an array

named a and saves it into an .xls formatted Excel

sheet named new.xls.

•	 xlsclose

Chapter 7 Data Through File Reading and Writing

158

1 >> pkg load io

2 >> a = rand(10,10);

3 >> odswrite('a.ods',a)

4 ans = 1

5 >> ls

6 a.ods

7.3  �Accessing Data from the Internet
Very large data sets are often kept on remote servers and you’ll need to

access them at some point. Using urlread(), you can read remote files. To

save data at the local disk, you use the urlwrite() functions.

 1 >> a = urlread('http://www.fs.fed.us/land/wfas/fdr_obs.dat');

 2 >> who

 3 Variables in the current scope:

 4

 5 a ans

 6

 7 >> whos

 8 Variables in the current scope:

 9

10 Attr Name Size Bytes Class

11 ==== ====== ==== ====== =====

12 a 1x147589 147589 char

13 ans 1x1 8 double

14

15 Total is 147590 elements using 147597 bytes

16

17 �>> �urlwrite('http://www.fs.fed.us/land/wfas/fdrobs.dat',

'fire.dat')

Chapter 7 Data Through File Reading and Writing

159

18 >> ls

19 fire.dat

20 >>

Here, a variable named a stores the data from the data file at http://

www.fs.fed.us/land/wfas/fdr_obs.dat. Alternatively, the whole data file

is stored as a file named a.dat using the urlwrite(URL) function.

7.4  �Printing and Saving Plots
Some commands, like print and saveas, exist to save graphs/figures

generated by Octave programs in desired formats. They are discussed in

the following sections.

7.4.1  �The print Function
The print command handles the printing jobs such as printing using

a printer and/or plotter, printing to a file, etc. Especially with figures,

this command is very useful for saving information automatically with a

desired filename in a specified format.

 1 % Saving in svg format

 2 figure(1);

 3 clf();

 4 peaks();

 5 print -dsvg figure1.svg

 6

 7 % Saving in png format

 8 figure(1);

 9 clf();

10 sombrero();

Chapter 7 Data Through File Reading and Writing

http://www.fs.fed.us/land/wfas/fdr_obs.dat
http://www.fs.fed.us/land/wfas/fdr_obs.dat

160

11 print -dpng figure2.png

12

13 % Printing to a HP DeskJet 550C

14 clf();

15 sombrero();

16 print -dcdj550

The clf function clears the current graphic window. A lot of other

options for saving in different formats exist for the print command. To

learn more, type help print at the Octave terminal.

7.4.2  �The saveas Function
The saveas function saves a graphic object in a desired format, as follows:

1 clf();

2 a = sombrero();

3 saveas(a,"figure3.png");

7.4.3  �The orient Function
The orient(a,orientation) function defines the orientation of a

graphical object a. The valid options for orientation are portrait,

landscape, and tall. The landscape option changes the orientation

so the plot width is larger than the plot height. The tall option sets the

orientation to portrait and fills the page with the plot, while leaving a 0.25

inch border. The portrait option (the default) changes the orientation so

the plot height is larger than the plot width.

Chapter 7 Data Through File Reading and Writing

161

7.5  �Summary
This chapter discussed various functions for enabling reading and writing

permissions as well as accessing data to and from a file. These actions

are an essential part of a numerical computation exercise. Data can be

generated in the form of files using software or hardware (an instrument).

Octave does not care about its origin. It treats data by its file type. Knowing

which function to use to operate on your files is a skill you’ll learn and

it depends on the situation. File operations allow you to trim data so

that only the useful parts of the data are collected. Further trimming

can be performed by using slicing operations. By perfecting the art of

handling files, you can confidently proceed toward handling sophisticated

numerical computations.

Chapter 7 Data Through File Reading and Writing

CHAPTER 8

Functions and Loops

8.1  �Introduction
When a particular numerical tasks needs to be repeated over different data

points, digital computers become a useful tool since they can perform

repetitive tasks with much greater speed and accuracy than humans.

Loops perform exactly this task. Using a condition to check the start and

termination rules, loops can perform repetitive parts of a process easily.

Different programming languages and environments have different rules

for defining loops.

Octave provides a much simpler way to define and run loops. They

will be discussed shortly. It’s useful to define the term function here.

A big program may require a set of instructions to be called at different

times. Hence, these set of instructions can be defined as a subprogram,

which can be requested to perform the computation at a desired time.

In this way, a complicated task can be divided into many small parts.

This architecture of programming is called modular programming. This

is the most popular way of programming, since it’s logical, better at

visualizing the problem, and easy to debug. The most popular way of

defining these small sets of instructions is to define them as functions.

This chapter discusses both of these concepts in detail.

164

8.2  �Using Loops
Loops form an essential part of an algorithm since they perform the tasks

that computers perform best: doing repetitive actions in a very fast manner.

Loops come in many flavors, including the for loop, which repeats certain

tasks over a list of variable values, the while loop, which checks for a logical

condition before executing a certain task, and the if-then-else loop, which

checks a condition and directs the flow of an algorithm. The choice of a

particular loop depends on the problem at hand.

A variety of functions and their usage are explained in this chapter.

Judging their use critically becomes very important because the looping

part of the algorithm consumes most of the execution time.

8.2.1  �The while Loop
A while loop defines a logical condition and until that condition is

satisfied, it runs a block of code. The syntax for the while loop is as follows:

1 while condition

2 BODY

3 endwhile

Here, the keyword while initiates the execution of a while loop. The

condition is a logical condition whose answer can be true (1) or false (0).

The BODY encompasses the commands that are executed until the condition

holds true. Listing 8-1 shows an example while loop.

Listing 8-1.  The while1.m File

1 x = 1.0;

2 while x < 10

3 disp(sqrt(x));

4 x = x+1;

5 endwhile

Chapter 8 Functions and Loops

165

The while1.m program runs by first initializing a variable x to the value

1.0. Then it lists a logical condition:

x <10

During the first step of the loop, x = 1, this condition is satisfied since

1 < 10. When this condition is satisfied, disp(sqrt(x)) is executed and

displays the square root of x. Then line 4 is executed, where x = x + 1

increments x. With a newly incremented value of x to 2, the logical

condition x < 10 is again checked and the body of loop in lines 3 and 4 are

executed. This is done until x = 10, when the loop condition is no longer

satisfied. Then line 5 is executed, which declares the end of the while loop.

The execution of the while1.m file yields:

 1 >> while1

 2 1

 3 1.4142

 4 1.7321

 5 2

 6 2.2361

 7 2.4495

 8 2.6458

 9 2.8284

10 3

8.2.2  �The do-until Loop
It is important to note that there can be cases when the body of a while

loop is not executed even once. This is the case when, after initialization, a

condition is not satisfied. To deal with this kind of scenario, the do-until

loop has the following syntax:

1 do

2 BODY

3 until condition

Chapter 8 Functions and Loops

166

The loop first executes the body of the code and then checks for the

condition. This way, the code block comprising the body of the loop is

executed at least once. The usage can be understood in the example in

Listing 8-2.

Listing 8-2.  The dountil1.m File

1 %Displaying square root of the

2 %first ten positive natural numbers

3

4 x = 1.0;

5 do

6 disp(sqrt(x));

7 x = x+1;

8 until x == 10

The execution of this code yields:

 1 >> dountil1

 2 1

 3 1.4142

 4 1.7321

 5 2

 6 2.2361

 7 2.4495

 8 2.6458

 9 2.8284

10 3

11 >>

At line 4, x is initialized at 1.0. Then, the body of the loop displays the

square root of x and then increments it by 1. This is done until x = 10, i.e.,

until the value of x becomes 10.

Chapter 8 Functions and Loops

167

8.2.3  �The for Loop
The for loop is used to perform computations on a list of known values.

The syntax of a for loop is as follows:

1 for variable = vector

2 BODY

3 end

The keyword for declares the start of the loop, where a variable takes

the values stored in a vector. Then, the body of the code (represented by

BODY) is executed. The keyword end declares the end of the for loop. This is

shown in the example in Listing 8-3.

Listing 8-3.  The for1.m File

1 %program to calculate square root

2 %of the first 10 numbers

3

4 for i = 1:10

5 ans = sqrt(i)

6 end

Executing for1.m yields the following:

 1 >> for1

 2 ans = 1

 3 ans = 1.4142

 4 ans = 1.7321

 5 ans = 2

 6 ans = 2.2361

 7 ans = 2.4495

 8 ans = 2.6458

 9 ans = 2.8284

10 ans = 3

11 ans = 3.1623

Chapter 8 Functions and Loops

168

8.2.4  �The if-elseif-else Loop
In situations where a number of conditions need to be checked at different

points in time, the if-elseif-else loop works well. The syntax for the

loop is given by:

1 if condition1

2 BODY1

3 elseif condition2

4 BODY2

5 else

6 BODY3

7 endif

On line 1, a condition is defined. If this condition is satisfied, then line

2 is executed; otherwise, line 3 is executed. BODY1 and BODY2 are the blocks

of codes that are executed when checking for different sets of conditions,

and BODY3 is executed when none of the conditions is executed. Listing 8-4

shows an example of this kind of loop.

Listing 8-4.  The ifelse1.m File

 1 %Program to check if a

 2 %number is even or odd

 3

 4 x = 33;

 5

 6 if (rem(x,2) == 0)

 7 printf("x is even\n");

 8 elseif (rem(x,5) == 0)

 9 printf("x is odd and divisible by 5\n");

10 else

11 printf("x is odd\n");

12 endif

Chapter 8 Functions and Loops

169

Executing ifelse1.m yields:

1 >> ifelse1

2 x is odd and divisible by 5

At line 4, x is initialized to 33. Then at line 6, the remainder of
x

2
 is

checked. If it is zero, then line 7 is executed; otherwise, line 8 is executed,

where the remainder of
x

5
 is checked. If it is zero, then line 9 is executed. If

both conditions are not satisfied, then line 11 is executed. Line 12 declares

the end of the if-else loop.

8.3  �Using Functions
A function is code that can be called as and when required. Hence, it can

be defined separately either in a separate file or within the body of the

program. Octave presents some ways to define a function, as discussed in

the following sections.

8.3.1  �The function Function
The definition of a function follows this syntax:

1 �function [return value 1, return value 2, ...] = name([arg1,

arg2, ...])

3 body

4 endfunction

Here, the function keyword defines the object types as a function.

Then a set of variables is defined that this function is expected to return.

Next comes an equals = operator. Then the name of function. In this case,

the function is called name. Then comes the main body of the function. The

last part defines the end of function.

Chapter 8 Functions and Loops

170

For example, you can write a function to find x2 - y2 and assign it to a

variable named z.

1 function y = fn1(x,y)

2 y = xˆ2 - yˆ2;
3 end

Save this as fn1.m in the present working directory. Now go to the

Octave terminal and type the following:

 1 >> fn1(5,1)

 2 ans = 024

 3 >> fn1(5,2)

 4 ans = 21

 5 >> fn1(5,3)

 6 ans = 16

 7 >> fn1(5,4)

 8 ans = 9

 9 >> fn1(5,5)

10 ans = 0

Hence, you can see that the function named fn1 is performing the

computation x y2 2- on the two input arguments for which it is defined.

It is a good practice to define the program as a group of function files

and call them in the master program stored as a script file. This modular

approach makes it easy to experiment with the idea and also makes it

easier to debug and test the code. A function can return more than two

values too. For example:

1 function [y1,y2,y3] = fn2(x,y)

2 y1 = xˆ2 - yˆ2;
3 y2 = xˆ2 + yˆ2;
4 y3 = y2 - y1;

5 end

Chapter 8 Functions and Loops

171

This gives the following result:

1 >> [a,b,c] = fn2(5,2)

2 a = 21

3 b = 29

4 c = 8

5 >> [a,b,c] = fn2(5,0)

6 a = 25

7 b = 25

8 c = 0

Functions can incorporate loops to regulate the repetitive tasks inside

the program. For example, the factorial of a number can be calculated

using the function given here:

1 function result = factorial(n)

2 if (n == 0)

3 result = 1;

4 return;

5 else

6 result = prod0(1:n);

7 endif

8 endfunction

A function named factorial, which takes a number n as an argument,

calculates the product of the number with all its successive numbers.

When called from the Octave command line, the function yields the

following result.

 1 >> factorial(50)

 2 ans = 3.0414e+064

 3 >> factorial(1)

 4 ans = 1

 5 >> factorial(0)

Chapter 8 Functions and Loops

172

 6 ans = 1

 7 >> factorial(100)

 8 ans = 9.3326e+157

 9 >> factorial(1000)

10 ans = NaN

11 >> factorial(-1)

12 error: factorial: N must all be non-negative integers

help NaN and help prod provide useful insights into the behavior of

these commands.

8.3.2  �The inline Function
Functions can also be defined as inline using the inline command, as

follows:

1 >> f = inline("xˆ2+y");
2 >> f(1,2)

3 ans = 3

4 >> f(10,10)

5 ans = 110

6 >> f(0,2)

7 ans = 2

8 >>

Line 1 defines a function named f with two variables x and y to

calculate f (x, y) = x2 + y. When called with values of these two variables, the

inline function outputs the calculated values.

8.3.3  �Anonymous Functions
Anonymous functions are unnamed function objects defined in the

program. Their definition follows this simple syntax:

@(argument list) expression

Chapter 8 Functions and Loops

173

For example:

 1 >> a = @(x) sin(x)*cos(x);

 2 >> quad(a,0,1)

 3 ans = 0.35404

 4 >> quad(a,0,pi)

 5 ans = 7.3031e-017

 6 >> quad(a,-pi,pi)

 7 ans = 0

 8 >> quad(a,-pi,2*pi)

 9 ans = -2.8435e-016

10 >> quad(a,-2*pi,2*pi)

11 ans = 0

help quad tells us that the function quad evaluated the integration of a

function between two values. Hence, line 1 defines a function sin(x)cos(x)

whose integration is as follows.

0

1

0

17

0 35404

7 3031 10

ò

ò

ò

() () =

() () = ´ -

-

sin cos

sin cos

sin

x x

x x

.

.
p

p

p

xx x

x x

x

() () =

() () = - ´

()

-

-

-

ò

ò

cos

sin cos

sin cos

0

2 8435 10
2

16

2

2

p

p

p

p

.

xx() = 0

Hence, using the anonymous function definition, you don’t need to

name a function.

Chapter 8 Functions and Loops

174

8.4  �Summary
Defining functions is the key to modular programming. Octave presents an

elegant way to define and use functions, both inline and in separate files.

When combined with the ability to write functions inside a loop, complex

problems can be implemented in just a few lines of code. It requires an

artistic attitude while designing an algorithm, where functions and loops

are the paintbrush to devise an elegant solution to a given numerical

problem.

Chapter 8 Functions and Loops

CHAPTER 9

Numerical Computing
Formalism

9.1  �Introduction
Numerical computation enables you to compute solutions to numerical

problems, provided you can frame them into the proper format. This

requires certain considerations. For example, if you digitize continuous

functions, then you are going to introduce certain errors due to the

sampling at a finite frequency. Hence, a very accurate result requires a very

fast sampling rate. In cases when a large data set needs to be computed, it

becomes computationally intensive and time consuming.

Also, you must understand that the numerical solutions are an

approximation at best, compared to analytical solutions. The onus of

finding their physical meaning and significance lies on the scientist. The

art of discarding solutions that do not have a meaning in a real world

scenario is something that scientists/engineers develop over the years.

Also, a computational device is only as intelligent as its operator. The law

of GIGO (Garbage In Garbage Out) is followed very strictly in this domain.

This chapter explains some of the important steps you must consider

to solve a physical problem using numerical computation. Defining a

problem in proper terms is just the first step. Making the right model and

then using the right method to solve it (solver) is the difference between a

naive and an experienced scientist/engineer.

176

9.2  �Physical Problems
Everything in our physical world is governed by physical laws.

Owing to the men and women of science who toiled under difficult

circumstances and came up with fine solutions to things happening

around us, we obtained mathematical theories for physical laws. To

test these mathematical formalisms of physical laws, we use numerical

computations. If they yield the same results as a real experiment, they

validate each other.

Numerical simulations can obviate experiments altogether provided

you have a well tested mathematical formalism. For example, nuclear

powers no longer need to test nuclear bombs because the data about

nuclear explosions, which was obtained during actual explosions, enables

scientists to model these physical systems quite accurately.

Apart from applications like simulating real experiments, modeling

physical problems are good educational exercises. Hands-on modeling

exercises enable students to explore the subject in depth and give

proper meaning to the topic under study. Solving numerical problems

and visualizing the results makes the learning permanent and

elucidates any flaws in mathematical theory, which ultimately leads to

new discoveries.

9.3  �Defining a Model
Modeling means writing equations for a physical system. As the name

suggests, an equation is about equating two sides. An equation is written

using an equals (=) sign, where the terms on the left side are equal to

the terms on the right side. The terms on either side of equations can be

numbers or expressions. For example:

3 4 9 10x y z+ + =

Chapter 9 Numerical Computing Formalism

177

This equation has the term 3x + 4y + 9z on the left hand side (LHS)

and the term 10 on the right hand side (RHS). Note that whereas LHS is an

algebraic term, RHS is a number.

Expressions are written using functions, which are simply relationships

between two domains. Like f (x) = y is a relationship between y and x using

the rules of algebra. Mathematics has a rich library of functions that you

can use to make expressions.

The function you choose depends on the problem. Some functions

describe some situations best. For example, oscillatory behavior can be

described in a reasonable manner using trigonometric functions like

sin(x), cos(x), etc. Objects moving in straight lines can be described well

using linear equations like y = mx + c, where x is their present position, m

is constant rate of change of x and y, and c is the offset position. Objects

moving in a curved fashion can be described by various non-linear

functions (where the power of the dependent variable like x is not 1).

In real life, you can have a mixture of these scenarios. An object can

oscillate and move in a curved fashion at the same time. In that case, you

write an expression using a mixture of functions or find new functions

that could explain the behavior of an object. You verify functions by

finding solutions to equations describing the behavior and matching it

to observations of the object. If they match perfectly, you obtain a perfect

solution. In most cases, an exact solution might be difficult to obtain. In

these cases, you’ll get an “approximate” solution. If the errors are within

tolerable limits, the models can be acceptable.

As discussed, you can analytically solve physical situations by writing

mathematical expressions in terms of functions involving dependent

variables. The simplest problems have simple functions between

dependent variables with a single equation. There can be situations where

multiple equations are needed to explain a physical behavior. In case of

multiple equations being solved, the theory of the matrix comes in handy.

Chapter 9 Numerical Computing Formalism

178

Suppose these equations define the physical behavior of a system:

	 - + =x y3 4 	 (Equation 9-1)

	 2 4 3x y- = - 	 (Equation 9-2)

This system of two equations can be represented by a matrix equation

as follows:

-
-

é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú =

é

ë
ê
ù

û
ú

1 3

2 4

4

3

x

y

Using matrix algebra, values of variables x and y can be found such

that they satisfy the equations. Those values are called the roots of the

equations. These roots are the point in 2D space (because there are two

dependent variables) where the system will find stability for that physical

problem. In this way, you can predict the behavior of the system without

actually doing an experiment.

The mathematical concepts of differentiation and integration become

very important when you need to work with dynamic systems. When

the system is constantly changing the values of dependent variables to

produce a scenario, it’s important to know the rate of change of these

variables. When these variables are independent of each other, you use

simple derivatives to define their rate of change. When they are dependent,

you use partial derivatives.

For example, Newton’s second law of motion says that the rate of

change of velocity of an object is directly proportional to the force applied

on it. Mathematically:

	
F

dy

dx
a 	 (Equation 9-3)

Chapter 9 Numerical Computing Formalism

179

The proportionality is turned into equality by substituting a constant of

multiplication m such that:

	
F m

dy

dx
  	 (Equation 9-4)

If you know values or expressions for F, this equation can be solved

analytically. In some cases, the analytical solution may be too difficult

to obtain. In those cases, you digitize the system and find a numerical

solution.

There are many ways to digitize and numerically solve a given

function. Programs that implement a particular method to solve a

function numerically are called solvers. Many solvers exist and the one

you choose is critical to successfully obtain a solution. For example,

Equation 9-4 is a differential equation. It is a first order ordinary

differential equation. A number of solvers exist to solve such equations,

including Euler, Runge-Kutta, etc. The choice of the particular solver

depends on the accuracy of its solution, the time needed to obtain a

solution, and the amount of memory used during the process. Memory

usage is important when memory is not a freely expendable commodity,

as with micro-computers with limited memory storage.

The advantage of using Octave to perform these numerical

computations lies in the fact that it has a very rich library of functions

to perform these various tasks. The predefined functions have been

optimized for speed and accuracy (in some cases, accuracy can be

predefined). This enables the user to rapidly prototype the problem

instead of concentrating on writing functions to do basic tasks and

optimizing them for speed, accuracy, and memory usage.

Chapter 9 Numerical Computing Formalism

180

9.4  �Numerical Approximations
In the course of scientific investigation, finding exact answers may not be

possible at times. Instead of devoting a lot of effort to finding an exact answer

by solving the problem analytically, another alternative is to develop methods

that produce approximate answers. This works well for solutions involving

irrational numbers like pi. You can choose the number of significant digits for

pi and determine the accuracy of the result. The degree of accuracy required

always depends on the targeted application. For example, when measuring

the length of a building, you don’t need the answer to be accurate to the length

of an atom (Å). Likewise, while measuring a person’s body temperature,

you don’t need it to be accurate to more than two decimal places for most

applications. In the era of faster and more efficient computers, you can get

higher accuracies by investing more time and storage, whenever required. But

this facility must be used judiciously.

9.5  �Tolerance
When an approximated answer or a set of approximated answers is available,

one of them must be chosen for a particular answer depending on the

requirements of the application. One of the ways to make this decision is to

define a tolerance limit. Tolerance can be defined as a single number or as a

range of numbers (having maximum and minimum). The rules that define

tolerance limits are application dependent. For example, when measuring

human height, you might define the tolerance to be 1 centimeter, whereas

when measuring the diameter of a human hair, you would like to be more

accurate and measure down to the micron. The decision to define tolerance

is simpler when measuring sizes, i.e., tolerance is one or two orders of

magnitude smaller than the size of object. It may not be a straightforward

task in other applications. For example, measurement of land for

constructing a building requires a tolerance of a fraction of meters, whereas

positioning a screw in a hole requires the accuracy of fraction of a centimeter.

Chapter 9 Numerical Computing Formalism

181

In mathematical terms, if Î is the tolerance limit, x is the real value

and x* is approximated the value:

	
x  x 	 (Equation 9-5)

In this case, the absolute error (ea) and relative error (er) of the

measurements are given by:

	
e x xa = - *

	 (Equation 9-6)

	
e

x x

xr =
- *

	 (Equation 9-7)

Hence, if the absolute error is less than or equal to the tolerance limit,

then the approximate solutions are acceptable.

However, if x is known, why do you need to calculate x*, i.e., an

approximate solution?

When solutions of physical systems are unknown, x* can be calculated

and then be compared to the physical measurements. The physical

measurements constitute the value of x in this case. By using Equation 9-6,

you can calculate any error. Tolerance can then be determined by the fact that

some x* will differ from x insignificantly, i.e., the errors won’t matter much.

9.6  �Taylor Series
Most mathematical functions require many complex operators, other than

simpler ones like +, −, x, ÷, to be computed. However a polynomial

requires only these basic ones to be computed. Hence, if the other

mathematical functions can be represented in terms of polynomials, they

can be approximated with relative ease.

Chapter 9 Numerical Computing Formalism

182

A polynomial is defined as follows:

	 p x a a x a x a xn
n() = + + +¼+0 1 2

2 	 (Equation 9-8)

where anÎÂ (the a are called the coefficients). For the largest n, which

corresponds to an ≠ 0, the degree of polynomial is defined to be n.

9.7  �Taylor Polynomials
Taylor’s theorem shows the way to define a great many mathematical

functions, which can be defined as polynomials called Taylor polynomials.

The accuracy of final answer shown by a Taylor polynomial depends on

its number of terms defined in the polynomial. This provides a convenient

method to customize the polynomial based on desired tolerance.

Suppose a mathematical function f (x) needs to be approximated

around x = a. A Taylor polynomial pn(x) of degree n centered at x = a is

the polynomial (of degree at most n) that has the same value as the nth

derivative at x = a.

Deriving the formula for the Taylor polynomial:

•	 The zero order polynomial p0(x) has degree at most 0:

–– p0(x) must be a constant function (a horizontal line function,
graphically)

–– Approximating around x a p x f a= () = ():

•	 The first order polynomial p0(x) has degree at most 1:

–– p1(x) must satisfy two conditions:

	 p a f a1 () = () 	

and

	
¢ () = ()¢p a f a1 	

Chapter 9 Numerical Computing Formalism

183

–– p1(x) must be of the form p1(x) = mx + c (a straight line with
slope m and c as the intercept):

–– Since ¢ () = ()¢p a f a1 so m f a= ()¢

–– So one can write c f a f a a= ()- ()¢

–– Substituting back values of m and c, you get

	 p x f a x f a f a a f a x a1 () = () + ()- () = () -()¢ ¢ 	

Carrying forward the same arguments in a similar fashion, you can

write the general form of the Taylor polynomial of order n as follows:

p x f a f a x a f a x a

f a x a
n

n () = () + () -() + ¢¢() -() +

¢¢¢() -() +¼+

¢ 1

2
1

3

1

2

3

! !!
f a x an n() -()

This can be rewritten in sigma notation as follows:

	
p x

k
f a x an

k

n
k k() = () -()

=
å

0

1

! 	
(Equation 9-9)

This definition requires that the polynomial must have n derivatives at

x = a.

The Maclaurin Series is simply the Taylor Series defined for a = 0.

You can use algebraic manipulations of the Taylor/Maclaurin Series for

basic functions like sin(x), cos(x), ex, etc. Other complicated functions

can also be defined in their series forms. These can be performed by

simply using algebraic operators in addition to substitutions, derivatives,

and integrations. This mathematical convenience comes in handy when

formulating approximate solutions for physical systems defined by

complicated functions.

Chapter 9 Numerical Computing Formalism

184

9.7.1  �Maclaurin Series for sin(x) and cos(x)
To check Maclaurin expansion, let’s start with the trigonometric functions

sin(x) and cos(x). Both are continuous and differentiable in the range given

by any set of real numbers. Hence, their differentials exist as well. Thus

they can be expanded in the form of a Maclaurin Series as follows.

Suppose f (x) = sin(x) needs to be approximated at a = 0. Using Table 9-1

and Equation 9-9 results in:

	
sin x x x x x x

n
xn() = - + - + -¼±

1

3

1

5

1

7

1

9

13 5 7 9

! ! ! ! ! 	 (Equation 9-10)

Similarly for f (x) = cos (x) approximated at a = 0.

Table 9-1.  Calculating Coefficients

for Maclaurin Series of sin(x) at x = 0

n f (x) f (a)

0 sin (x) 0

1 cos (x) 1

0 -sin (x) 0

1 -cos (x) -1

0 sin (x) 0

Chapter 9 Numerical Computing Formalism

185

Table 9-2.  Calculating Coefficients

for Maclaurin Series of cos(x) at x = 0

n f (x) f (a)

0 cos (x) 1

1 -sin (x) 0

0 -cos (x) -1

1 sin (x) 0

0 cos (x) 1

Using Table 9-2 and Equation 9-9 results in the following:

	
cos x

x
x x x

n
xn() = - + - + -¼±1

2

1

4

1

6

1

8

12
4 6 8

! ! ! ! 	 (Equation 9-11)

�Choosing Tolerance While Calculating cos(x)
Using Octave

The MaclaurinCos.m file (see Listing 9-1) explains how error is reduced by

many orders of magnitude, as more and more terms of Taylor Series are

included for calculating cos(150).

Listing 9-1.  The MaclaurinCos.m File

 1 �%A program to show usage of Taylor Series expansion of cos(x)

 2 �%Suppose we wish to calculate cos(15) where argument of cos

function is given in degrees

 3

Chapter 9 Numerical Computing Formalism

186

 4 x = 15*pi/180; %converts 15 degrees into radian

 5

 6 �format long %�show results in long format having a lot of

decimal places for numbers

 7

 8 %Calculating each term of Taylor Series

 9

10 p1 = 1;

11 p2 = xˆ(2)/2;
12 p4 = xˆ(4)/factorial(4);
13 p6 = xˆ(6)/factorial(6);
14 p8 = xˆ(8)/factorial(8);
15 p10 = xˆ(10)/factorial(10);
16

17 approx_1 = p1-p2; %approximate values using two terms

18 approx_2 = p1-p2+p4; %approximate values using three terms

19 �approx_3 = p1-p2+p4-p6; %approximate values using four terms

20 �approx_4 = p1-p2+p4-p6+p8; %approximate values using five terms

21 �approx_5 = p1-p2+p4-p6+p8-p10; %�approximate values using

six terms

22

23 �real_value = cos(x); %�calculating the real value to find

errors

24

25 %calculation of final errors

26

27 error_1 = abs(real_value-approx_1);

28 error_2 = abs(real_value-approx_2);

29 error_3 = abs(real_value-approx_3);

30 error_4 = abs(real_value-approx_4);

Chapter 9 Numerical Computing Formalism

187

31 error_5 = abs(real_value-approx_5);

32

33 %making an error vector for plotting

34

35 error = [error_1,error_2,error_3,error_4,error_5];

36

37 %plotting error versus number of terms

38

39 figure(1)

40 semilogy(error, '*r-')

41 �title('Variation of error in calculating cos(15ˆ{0}) using
Taylor Series')

42 xlabel('Number of terms on Taylor Series')

43 ylabel('log(error)')

44

45 %plotting cos(x) and its various approximations

46

47 t = 0:0.001:20;

48 %length (t)

49

50 figure(2)

51 y = cos(t);

52 subplot(2,3,1)

53 plot(t,y,t,ones(length(t)))

54 subplot(2,3,2)

55 plot(t,y,t,(1-t.ˆ2/2))
56 subplot(2,3,3)

57 plot(t,y,t,(1-tˆ2/2+t.ˆ4/factorial(4)))
58 subplot(2,3,4)

59 plot(t,y,t,(1-t.ˆ2/2+t.ˆ4/factorial(4)-t.ˆ6/factorial(6)))

Chapter 9 Numerical Computing Formalism

188

60 subplot(2,3,5)

61 �plot(t,y,t,(1-t.ˆ2/2+t.ˆ4/factorial(4)-t.ˆ6/factorial(6)+t.ˆ8/
factorial(8)))

62 subplot(2,3,6)

63 �plot(t,y,t,(1-t.ˆ2/2+t.ˆ4/factorial(4)-t.ˆ6/factorial(6)+t.ˆ8/
factorial(8)-t.ˆ10/factorial(10)))

As you can see in Figure 9-1, you can insert a certain number of terms

based on the given tolerance for calculating cos(x). To make a judicious

decision about the number of terms, you must inspect the function in a

similar fashion (as is done by the code in MaclaurinCos.m). Inserting a

lot of terms while demanding less accuracy is a waste of time, energy, and

resources (both human and computational).

Instead of expanding around one particular point, the series can be

defined for a set of points. The Octave program CosApprox.m shown in

Listing 9-2 attempts to do this.

Figure 9-1.  Variation of logarithmic error based on the number of
terms used to define a Maclaurin Series for cos(x)

Chapter 9 Numerical Computing Formalism

189

Listing 9-2.  The CosApprox.m File

 1 %plotting cos(x) and its various approximations

 2

 3 �t = -3*pi:pi/10:3*pi;% defining an array of points for x-axis

 4 l = length(t); %to be used for defining pi

 5 y = cos(t); %real values of cosine function

 6

 7 %defining various terms of Maclauren Series

 8 a1 = ones(l); %only first term

 9 a2 = (1-t.ˆ2/2); %first and second term
10 a3 = (a2+t.ˆ4/factorial(4)); %first, second and third term
11 �a4 = (a3-t.ˆ6/factorial(6)); �%first, second, third and

fourth term

12 � a5 = (a4+t.ˆ8/factorial(8)); �%first, second, third, fourth
and fifth term

13 �a6 = (a5-t.ˆ10/factorial(10)); �%first, second, third,
fourth, fifth and sixth term

14

15 %plotting fitting of cos(x) with increasing number of terms

16 figure(1)

17

18 subplot(3,2,1)

19 plot(t,y,'*r-',t,a1,'*b-')

20 axis([-3*pi 3*pi -1.2 1.2])

21 title(' fitting p_{1} to cos(x) ')

22 xlabel(' t ')

23 ylabel(' cos(t) ')

24

25 subplot(3,2,2)

26 plot(t,y,'*r-',t,a2,'*b-')

Chapter 9 Numerical Computing Formalism

190

27 axis([-3*pi 3*pi -1.2 1.2])

28 title('fitting p-{2} to cos(x)')

29 xlabel('t')

30 ylabel('cos(t)')

31

32 subplot(3,2,3)

33 plot(t,y,'*r-',t,a3,'*b-')

34 axis([-3*pi 3*pi -1.2 1.2])

35 title('fitting p_{3} to cos(x)')

36 xlabel('t')

37 ylabel('cos(t)')

38

39 subplot(3,2,4)

40 plot(t,y,'*r-',t,a4,'*b-')

41 axis([-3*pi 3*pi -1.2 1.2])

42 title('fitting p_{4} to cos(x)')

43 xlabel('t')

44 ylabel('cos(t)')

45

46 subplot(3,2,5)

47 plot(t,y,'*r-',t,a5,'*b-')

48 axis([-3*pi 3*pi -1.2 1.2])

49 title('fitting p_{5} to cos(x)')

50 xlabel('t')

51 ylabel('cos(t)')

52

53 subplot(3,2,6)

54 plot(t,y,'*r-',t,a6,'*b-')

55 axis([-3*pi 3*pi -1.2 1.2])

56 title(' fitting p_{6} to cos(x)')

57 xlabel('t')

58 ylabel('cos(t)')

Chapter 9 Numerical Computing Formalism

191

As you can see in Figure 9-2, as higher order terms are used to

describe cos(x), the error reduces by fitting with increasing accuracy. For

ideal fitting, a very large number of terms must be used to describe the

approximated cos(x) function. The choice of tolerance is user defined.

Depending on the tolerance value, a particular number of terms can be

determined.

9.7.2  �Maclaurin Series for ex

Let’s explore the concept of errors using another example of Maclaurin

Series for ex:

	
e a

a a aa = + + + + +¼1
2 3 4

2 3 4

! ! ! 	 (Equation 9-12)

Figure 9-2.  Fitting of Maclaurin Series with a different number of
terms to cos(x)

Chapter 9 Numerical Computing Formalism

192

For programming purposes, it’s easier to derive an inherent

relationship between the terms of a Maclaurin Series. The first term is the

number 1 and each additional term can be obtained by multiplying the

previous terms by

	

a

n 	 (Equation 9-13)

where n represents the nth term. This fact is used in the MaclaurinExp.m

file in Listing 9-3, where the first term is defined on line 5 in the expVal

variable and then this variable is added to the variable currentTerm, which

is simply calculated using the formula in Equation 9-13.

Listing 9-3.  The MaclaurinExp.m File

 1 %Maclaurin Series for exp(0.1)

 2

 3 n = 5; %Number of terms

 4 a = 0.1; %Functional value of x for eˆ(x)
 5 expVal = 1.0;

 6 currentTerm = 1.0;

 7 for i =1:n

 8 currentTerm = currentTerm*a/i;

 9 expVal = expVal+currentTerm

10 endfor

11

12 trueVal = exp(0.1);

13 error = abs(trueVal-expVal)

The output is displayed as follows:

 1 >> MaclaurinExp

 2 expVal = 1.1000

 3 expVal = 1.1050

 4 expVal = 1.1052

Chapter 9 Numerical Computing Formalism

193

 5 expVal = 1.1052

 6 expVal = 1.1052

 7 error = 1.4090e-09

 8 >> format long

 9 >> MaclaurinExp

10 expVal = 1.10000000000000

11 expVal = 1.10500000000000

12 expVal = 1.10516666666667

13 expVal = 1.10517083333333

14 expVal = 1.10517091666667

15 error = 1.40898115397192e-09

Notice that while numeric display is typically set for just four numerical

values after the decimal point, the command format long increases this

setting (the command format short returns to the default behavior). You

can clearly observe that, by increasing the number of terms, you reduce

the error drastically as you approach the true value. You achieve an error in

the order of 10-9 with just five terms.

If you want to store all the calculated values in the variable expVal then

you must define it as a vector, as shown in Listing 9-4.

Listing 9-4.  MaclaurinExp1.m

 1 %Maclaurin Series for exp(0.1)

 2

 3 n = 5; %Number of terms

 4 a = 0.1; %Functional value of x for eˆ(x)
 5 expVal = 1.0;

 6 currentTerm = 1.0;

 7 for i = 1:n

 8 currentTerm = currentTerm*a/i;

 9 expVal(i+1) = expVal(i) + currentTerm;

10 endfor

11

Chapter 9 Numerical Computing Formalism

194

12 trueVal = exp(0.1);

13 error = abs(trueVal-expVal)

Here, line 9 dictates that the (i + 1)th term is modified based on

Equation 9-13 using the previous term, i.e., the (i)th term. Note that printing

line 9 has been suppressed here by using the ; operator. The output is

shown as follows:

1 >> MaclaurinExp1

2 error =

3

4 �1.0517e-01 5.1709e-03 1.7092e-04 4.2514e-06

8.4742e-08 1.4090e-09

5 >>>plot(error, 'r*-')

Using plot(error,'r*-'), you can generate graphs of error values.

This is illustrated in Figure 9-3.

Figure 9-3.  Error in calculating e0.1 with an increasing number of terms

Chapter 9 Numerical Computing Formalism

195

Since the error drops by orders of magnitude with each new term, the

effect can be best seen using a logarithmic plot. This can be generated

using the semilogy(error,'r*-') command; Figure 9-4 will be generated.

It seems that beyond 10 terms, the error flattens out. But you shall see

that this is an erroneous result, as this graph will depend on the least count

of the computing machine.

�How Many Terms

You can observe from Figure 9-4 that by increasing the number of terms,

you reduce the error by two orders of magnitude when calculating e0.1.

But does this trend mean that to achieve true values, you must include 1

number of terms? After all, each time you add a new term, you invest time

Figure 9-4.  Error in calculating e0.1 with an increasing number of terms

Chapter 9 Numerical Computing Formalism

196

and energy resources into the computation. In general, the Maclaurin

Series has the accuracy of an+1 when n terms are used:

	
e a

a a a a

n
O aa

n
n= + + + + +¼+ + ()+1

2 3 4

2 3 4
1

! ! ! ! 	 (Equation 9-14)

Analytically, you can choose n to be any large number, but this cannot

be done on a computing machine. The reason is explored next.

Figure 9-4 shows one interesting fact—beyond 10 terms, the error no

longer changes by orders of magnitude and instead flattens out. This is

misleading. Each computing machine has limits of storing tiny floating

point numbers. This can be obtained by issuing the command eps. The

system on which the program has been run shows the following output.

You can see that when the error values are very close to eps values, they

cannot be stored reliably. The command error(9:12) outputs a similar

viewpoint. While the ninth term yields an error in the order of 10-15, the

eleventh terms onward have similar values in the order 10-16. The computer

avoids crashing the calculation by going beyond its limits, which are

defined by the eps value.

1 >> error(9:12)

2 ans =

3

4 �3.10862446895044e-15 4.44089209850063e-16

4.44089209850063e-16 4.44089209850063e-16

5 >>> eps

6 ans = 2.22044604925031e-16

The command eps gives the machine precision. The command

help('eps') shows the documentation for the eps command and its usage.

Technically, eps is the relative spacing between any two adjacent numbers

in the machine’s floating point system, i.e., these computational machines

least count. This number is obviously system dependent, as you could

Chapter 9 Numerical Computing Formalism

197

devise specialized hardware where machine precision can be enhanced.

In fact, this is done for cases where increased precision really matters,

such as for missile guidance, space navigation, etc. On machines that

support IEEE floating point arithmetic, eps is approximately 2.2204 x 10-16

for double precision and 1 1921 10 7. ´ - for single precision.

It is interesting to know that 2 2 2204 1052 16- -» ´. essentially signifies

that the double precision mode of the software can store 52 digits after the

decimal point.

The realmax, realmin, intmax, and intmin commands show the

maximum and minimum values of real numbers and integers on the

particular machine where the software is installed.

1 >> realmax

2 ans = 1.79769313486232e+308

3 >> intmax

4 ans = 2147483647

5 >> realmin

6 ans = 2.22507385850720e-308

7 >> intmin

8 ans = -2147483648

It is useful to know these numbers, as any numbers beyond these limits

will be prone to error due to machine precision.

9.8  �Computational Error
You have learned about the inherent errors due to the inclusion of certain

numbers of terms while calculating a mathematical function. There is

another kind of error as well, which is introduced due to the fact that

computers can store numbers of finite lengths.

Chapter 9 Numerical Computing Formalism

198

9.8.1  �Significant Digits
The concept of significant digits plays an important role here. If computers

can store all the significant digits of the final answer, then the errors

become irrelevant. Otherwise, it is important to identify them and if

possible rectify them when reporting a final solution. For example, while

dealing with pi, if only three significant digits are desired, it can be stored

easily on any low-end computing solution.

Computers can store numbers as floating point objects. A floating

point object stores a number as follows:

	 ± ¼ ´d d ds
e

1 2 b 	 (Equation 9-15)

Where di = ¼ -0 1 2 1, , b but d1 ≠ 0 and m ≤ e ≤ M where m IÎ - and

M IÎ +.

The three parts of a floating point number are as follows:

•	 Sign ±()
•	 Mantissa (d1d2…ds)

•	 Exponent (β)

Each part is stored in its own separate fixed-width storage space. Based

on the IEEE double precision roundoff, MATLAB uses binary arithmetic,

whereby:

•	 b = 2

•	 s = 53

•	 m = -1074

•	 M = +1023

Since humans are used to decimal arithmetic systems, these binary

numbers are converted to decimal numbers for reporting purposes. It is

important to understand this key point—all internal calculations are done

Chapter 9 Numerical Computing Formalism

199

in binary form but input and output is in decimal form. The rounding-off

error due to these conversions is given by the unit roundoff u, which is the

maximum relative error while approximating a real number as a floating

point number.

MATLAB can handle numbers with absolute values from 2 101074 324- -


and 2 101023 308-
 with a unit roundoff u = - -2 1053 16

 .

9.9  �Challenges in Real Number to Floating
Point Number Conversions

A real number x can be stored in a floating point representation given by

Equation 9-15 as follows:

	 x d d d ds s
e= ± ¼ ¼´+1 2 1 10 	 (Equation 9-16)

Note that s = 53, but the previous description does not limit the

representation of the floating point number. Its storage is an altogether

different story. When it is stored, the number is rounded off and stored

based on the guidelines—s = 53 in this case.

9.9.1  �Overflow
From Equations 9-15 and 9-16, if e > M, computation is said to have

overflowed, i.e., a number bigger than the possible storage has been

presented and hence the storage container has overflowed. In this case,

MATLAB produces Inf or -Inf as the answer, which represents the fact

that the answer is a very large number. The following exercise, performed

in a MATLAB terminal, illustrates the process clearly. Inf is displayed as an

answer when e900 is attempted. When this number is divided by a negative

number, -Inf is displayed, signifying an overflow while storing a negative

number. When Inf-Inf is attempted, NaN is displayed, signifying that the

large numbers cannot produce a meaningful result.

Chapter 9 Numerical Computing Formalism

200

 1 >> format long

 2 >> exp(50)

 3

 4 ans =

 5

 6 5.184705528587072e+21

 7

 8 >> exp(100)

 9

10 ans =

11

12 2.688117141816136e+43

13

14 >> exp(500)

15

16 ans =

17

18 1.403592217852837e+217

19

20 >> exp(700)

21

22 ans =

23

24 1.014232054735005e+304

25

26 >> exp(900)

27

28 ans =

29

30 Inf

31

Chapter 9 Numerical Computing Formalism

201

32 >> exp(900)/-2

33

34 ans =

35

36 -Inf

37

38 >> exp(900)-exp(900)

39

40 ans =

41

42 NaN

9.9.2  �Underflow
If e < m, then underflow has occurred. Octave represents underflow

by showing zero as an answer. You might think that that underflow

is not serious, but consider the fact that, based on the basic rules of

exponentiation:

eae-a = ea-a = e0 = 1

When you perform the same calculations for numbers representing

overflow and underflow, Octave has to perform Inf X 0, which results in

NaN. This is demonstrated in this example:

 1 >> exp(900)*exp(-900)

 2

 3 ans =

 4

 5 NaN

 6

 7 >> exp(900)

 8

Chapter 9 Numerical Computing Formalism

202

 9 ans =

10

11 Inf

12

13 >> exp(-900)

14

15 ans =

16

17 0

9.10  �Converting Real Numbers to Floating
Point Numbers

After understanding the two extreme cases, overflow and underflow, you

need to understand the process of real number to floating point number

conversion. Recall from Equations 9-15 and 9-16 that a real number can be

stored with s significant digits, as follows:

	 ± ¼ ´d d ds
e

1 2 b 	

This can be written in floating point notation (for base-10) as:

	 x d d d ds s
e= ± ¼ ¼´+1 2 1 10 	

There are two ways to achieve the conversion: method of truncation

and method of rounding off. Method of truncation will simply discard all

digits after s, i.e., it will produce:

	 x d d ds
e= ± ¼ ´1 2 10 	 (Equation 9-17)

Chapter 9 Numerical Computing Formalism

203

On the other hand, the method of rounding off recommends the

following process:

	 1.	 If ss+1 < 5 then perform truncation and retain the

sign of x.

	 2.	 If ss+1 > 5 then ds is incremented and the truncation is

performed. Retain the sign of x.

This seemingly simple scheme has a flaw. Suppose for s = 4, you

need to round off 2.9345. The answer is 2.934, i.e., the last digit is 5 and

it’s simply discarded. In a similar fashion when 2.9355 is rounded off,

the answer can be written as 2.936, where the last digit is discarded and

last-significant-digit is incremented. In both cases, only one digit needs to

change. But suppose you need to round to 2.9999. In this case, the answer

comes out to be 3.000, where four numeral values need to be changed.

9.11  �Octave Packages
A number of packages exist to perform numerical computations in a

particular scientific domain. The reference [1] lists some of these packages.

You can install a package using this command on the Octave command

line:

>> pkg install -forge package_name

9.12  �Summary
Almost all branches of science and engineering require you to perform

numerical computation. Octave is one of the alternatives to doing so.

Octave has a library of optimized functions for general computation. Also,

it has a variety of packages to perform a specialized job. This makes it an

Chapter 9 Numerical Computing Formalism

204

ideal choice for prototyping a numerical computation problem efficiently.

This chapter summarized various issues related to the error generated

during numerical computation and various methods to obtain their value

or order of magnitude. These quantities are important to measure since

in real life, you will need these values to define the accuracy of the final

product.

This book presented the Octave programming language as an effective

alternative to the MATLAB base package. Furthermore, additional

packages can be associated with the Octave framework to perform

calculations from a specific domain. With an active community of

developers, Octave is flourishing in industry and academia and definitely

has a bright future.

9.13  Bibliography
	 [1]	 https://octave.sourceforge.io/

Chapter 9 Numerical Computing Formalism

https://octave.sourceforge.io/

Index

A, B
Analytical vs. numerical schemes, 2
Arrays

(dot) operator, 57
linear equations, 76
matrix, 59

division, 75
higher dimension, 64
identities, 73

size() function, 66
square brackets, 57
vectors

coordinate properties, 62
division and inverse of

matrix, 71
matrix multiplication, 70
operations, 68
row and column vector, 60
transformation, 63

Automatic creation of arrays
categories, 82
help() and doc() functions, 81
linearly spaced vectors, 94
linspace() and logspace()

arguments, 92
logarithmically spaced

vectors, 96

manipulation
flip up down, 117
indexing, 109
indices, 111
reshape, 119
rotation, 118
slicing, 112
sort function, 119

matrices, 97
diagonal matrix, 98
ones and zeros, 100
sparse, 101
spconvert() function, 106
spdiags() function, 103
speye() function, 101
sprandsym() function, 105
upper and lower triangular, 97

random matrices, 82
integers, 85
rand() function, 82, 87

random numbers, 81
rule, 93
set distribution

rande() function, 88
randg() function, 89
randn() function, 89
random numbers, 88
randp() function, 90

206

C, D, E
clear function, 52
Computational error, 197

decimal arithmetic systems, 198
significant digits, 198

F
File operations

data sets, 158
excel files

command prompt, 155
opening, reading, and

writing data, 157
file path, 149
print and save plots

orient function, 160
print function, 159
saveas function, 160

print working directory
(PWD), 149

requirements, 147
save and load commands

binary file, 154
creation, 150
csvread and csvwrite

functions, 154
diary command, 152
freport() prints, 153
help save and help load

commands, 152
multiple variables, 151
opening and closing files, 153

users, 148
Functions, 169

anonymous, 172
definition of, 169
inline, 172
script file, 170

G
Garbage In Garbage Out (GIGO), 175
Graphic User Interface (GUI), 13

H
Homebrew, 9–10

I, J, K
Interactive environment, 6
Interactive session, 17

clc() command, 20
disp() function, 24
doc() function, 19–20
evaluation of, 18
files, 23
helloagain.m file, 23
help() function, 19
output display, 25
programming language, 17
terminal programs, 26
unique command prompt, 21
variable, 25
workspace, 25

Inverse-trigonometric functions, 40

Index

207

L
Loops, 164

do-until loop, 165
for loop, 167
if-elseif-else loop, 168
while loop, 164

M
Mac OSX, 9

Homebrew, 10
Octave logo, 9
package, 9

Mathematical expressions
comma (,) operator, 43
built-in function, 40
calculator

data types, 29
division, 29
expressions, 29
format() function, 30
format (short/long), 31
inline function, 30
long command, 30
operator, 28
scientific notation, 30
short command, 31
* symbol, 29

clear function, 52
complex numbers

addition and subtraction, 38
complex() function, 35
complex plane, 37

computation, 34
conjugates, 38
definition, 35
multiplication and

division, 39
properties, 36
real() and imag()

functions, 35
data types, 44
definition, 27
eps() function, 48
floating-point numbers

definition, 45
radix point, 45
real numbers vs., 47
store numbers, 46

help() command, 41
overflow and underflow

errors, 47
rational number

approximations, 32
predefined constants, 33
rat() function, 32

strings, 43
variables, 42

global and local variables, 51
list of, 51
naming conventions, 49

Matrices, 59
MATrix LABoratory (MATLAB), 2,

5, 79
Modeling

definition, 176
equations, 178

Index

208

functions, 177
mathematical concepts, 178
matrix algebra, 178
Newton’s law, 178
solvers, 179

N, O
Numerical computations, 1, 175

vs. analytical schemes, 2
approximations, 180
definition, 1
GUI, 13
history of, 5
installation, 8
Mac OSX (see Mac OSX)
Octave vs. alternative, 7
online, 12
packages, 203
tools of, 4
Ubuntu, 10
Windows, 11

P, Q
Personal Package Archive (PPA), 10
Physical system. See Modeling
Plotting

3D meshing, 141
3D plots, 140

meshc function, 143
mesh function, 140
surf() function, 144

2D plotting

area() function, 123
bar chart, 124
histogram, 126–128
horizontal bar

chart, 125
multiple plots, 128
plot(x,y) function, 122
separate multiple

plots, 130
features, 121
polar coordinates

CoordinatesPolar.m
file, 132

graph, 133
logarithmic scale, 135
pie() function, 137
rose() function, 134–135
semilogx() function, 136
stairs() function, 139
stem() function, 140

R
Real number and floating point

representation, 199
method of truncation, 202
method of rounding off, 202
number conversion, 202
overflow, 199
underflow, 201

S
Scientific computation, 2
Sparse matrix, 101

Modeling (cont.)

Index

209

T
Taylor polynomials

definition, 182
double precision mode, 197
Maclaurin series for ex, 191
Maclaurin series for sin(x) and

cos(x), 184
number of terms, 195

Taylor series, 181
Tolerance limit, 180
Trigonometric functions, 40

U, V, W, X, Y, Z
Ubuntu, 10

command-line interface, 11

PPA, 10

Index

	Contents
	Intro to Octave
	Introduction to Numerical Computing
	Analytical vs. Numerical Schemes
	Tools for Numerical Computation
	A Brief History of Octave
	Octave vs. Other Alternatives
	Installation
	Octave GUI
	Summary
	Bibliography

	Interactive Octave Sessions
	Introduction
	Clearing the Screen with the clc() Command
	Customizing the Octave Prompt
	Working with Files
	Using the Workspace
	Suppressing the Output Display
	Running an Octave Program from the System Terminal
	Summary
	Bibliography

	Mathematical Expressions
	Octave and Math
	Octave as a Calculator
	Rational Number Approximations
	Using Complex Numbers
	Common Mathematical Functions
	Learning More Mathematical Functions
	Using Variables
	Summary
	Bibliography

	Arrays
	Introduction
	Arrays and Matrices
	Arrays as Vectors
	Higher Dimensional Arrays/Matrices
	Operations on Arrays and Vectors
	Summary

	Array Properties
	Introduction
	Automatic Creation of Arrays
	Creating Random Matrices
	Automatic Generation of Large Arrays
	Creating Special Matrices
	Manipulating Arrays
	Summary
	Bibliography

	Plotting
	Introduction
	D Plotting
	Summary

	File IO
	Introduction
	File Operations
	Accessing Data from the Internet
	Printing and Saving Plots
	Summary

	Functions & Loops
	Introduction
	Using Loops
	Using Functions
	Summary

	Numerical Computing Formalism
	Introduction
	Physical Problems
	Defining a Model
	Numerical Approximations
	Tolerance
	Taylor Series
	Taylor Polynomials
	Computational Error
	Challenges in Real Number to Floating Point Number Conversions
	Converting Real Numbers to Floating Point Numbers
	Octave Packages
	Summary
	Bibliography

	Index

